
NEON™ Support in Compilation Tools
Development Article
Copyright © 2009 ARM Limited. All rights reserved.
DHT 0004A (ID081609)

NEON Support in Compilation Tools
Development Article

Copyright © 2009 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

10 August 2009 A Non-Confidential First release
ii Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

Contents
NEON Support in Compilation Tools
Development Article

Chapter 1 NEON Support in Compilation Tools
1.1 Introduction ... 1-2
1.2 Software considerations .. 1-3
1.3 Intrinsics .. 1-6
1.4 Automatic vectorization ... 1-8

Appendix A Implementing a NEON function using vectorization, intrinsics, or
assembly language.
A.1 Different implementations of the omxSP_DotProd_S16 function A-2

Appendix B Revisions
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. iii
ID081609 Non-Confidential, Unrestricted Access

Contents
iv Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

Chapter 1
NEON Support in Compilation Tools

This article describes different ways to generate NEON code using the GNU and ARM
RealView® compilation tools. It contains the following sections:
• Introduction on page 1-2
• Software considerations on page 1-3
• Intrinsics on page 1-6
• Automatic vectorization on page 1-8
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. 1-1
ID081609 Non-Confidential, Unrestricted Access

NEON Support in Compilation Tools
1.1 Introduction
NEON technology provides Single Instruction Multiple Data (SIMD) operations in
ARM processors implementing the Advanced SIMD architecture extensions. These
operations can significantly accelerate repetitive operations on large data sets. This can
be useful in applications such as media codecs.

A lot of the software development using this technology takes place in C or C++, to
increase maintainability and portability, and to shorten the development cycle. This
article describes how to make good use of available compilation tools to create
optimized software.

1.1.1 Compilation tools

There are several sources of compilation tools for ARM platforms. This article
describes the use of GNU and ARM RealView tools, but underlying concepts remain
valid for any toolchain that supports NEON technology.

GNU tools

A GNU toolchain consists of different components bundled together from separate open
source projects, including:

GCC C and C++ compilers.

binutils Assembler, librarian, linker and object inspection and manipulation tools.

libraries C and C++ libraries, for example glibc or uClibc.

Because these are developed by separate projects and released separately, the matrix of
possible combinations is complex. The different configuration options available when
building the components from sources adds more complexity. For this reason, many
companies choose to use a complete bundled toolchain from a commercial provider. An
alternative is to use a native GNU toolchain included in the target Linux distribution.

RealView tools

ARM supplies the RealView Compilation Tools (RVCT) as part of the RealView
Development Suite. RVCT consists of a C and C++ compiler, an assembler, a linker, a
librarian, and an image conversion utility. ARM bundles embedded C and C++ libraries
with RVCT.

RVCT 4.0 introduced support for GCC command line translation. See Cross-toolchain
projects on page 1-5 for practical examples of designing complete software projects that
can be compiled with either GCC or RVCT.
1-2 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

NEON Support in Compilation Tools
1.2 Software considerations
Before you start programming, read the following sections to familiarize yourself with
the fundamental aspects of NEON technology, development tools, and target platforms:
• Reset behavior
• Linkage
• Floating-point precision
• Default behavior of tools on page 1-4
• Cross-toolchain projects on page 1-5

1.2.1 Reset behavior

ARM processors boot with the NEON engine and Floating-Point Unit (FPU) disabled.
Until you have properly configured and enabled these features, attempting to execute
any NEON or VFP instructions results in an undefined instruction exception. On
processors that implement the TrustZone Security Extensions, you might also have to
explicitly permit FPU and NEON access when executing in Non-secure state. This is
normally configured by your boot process and your operating system.

1.2.2 Linkage

If the target has hardware support for NEON technology or an FPU, the highest
performance is achieved by passing NEON and FPU parameters and return values in
NEON and FPU registers. This is called hardware floating-point linkage. In some
situations, using the general-purpose registers for parameter passing might be preferred,
to simplify software compatibility between platforms with and without hardware
floating-point support. This is called software floating-point linkage.

You cannot mix objects with different floating-point linkage in a single image. Any
dynamic libraries loaded while the application is running must also use the same
linkage.

Any system that supports both NEON and VFP instructions uses a common register
bank for these instructions, therefore configuration options that affect the floating-point
calling convention also affect how NEON parameters are passed and returned.

1.2.3 Floating-point precision

Processors that implement the ARMv7-A architecture profile have two options for
handling single-precision floating point, VFPv3 and NEON technology. VFPv3
supports full IEEE754 compliant single-precision and double-precision handling
completely in hardware. The NEON engine operates on single-precision floating-point
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. 1-3
ID081609 Non-Confidential, Unrestricted Access

NEON Support in Compilation Tools
numbers only, and its handling of denormalled numbers and NaNs is not IEEE754
compliant. The NEON engine processing of floating-point numbers is compliant with
the standards of most modern programming languages, including C and C++.

1.2.4 Default behavior of tools

Compilation tools make certain assumptions about the types of instructions and calling
conventions to use if these are not explicitly specified. Different tools have different
default behaviors that can be overridden using, for example, command line parameters.

GNU

The GNU tools do not assume hardware floating-point support unless it is explicitly
specified. You must specify -mfpu=neon on the command line to tell the compiler it can
generate NEON instructions. You must also specify the floating-point calling
convention to use, with the -mfloat-abi command line parameter. This takes one of the
following argument:
soft No hardware floating-point support. All floating-point operations are

implemented as calls to helper libraries. Soft linkage is used for
floating-point function arguments and return values. When this mode is
specified, the compiler does not generate NEON or VFP instructions.

softfp Soft linkage is used, but the compiler can generate hardware
floating-point instructions supported by the specified floating-point unit.

hard Hard linkage is used and the compiler can generate hardware
floating-point instructions supported by the specified floating-point unit.

For example, to build for NEON technology, using the soft-float calling convention, add
-mfpu=neon -mfloat-abi=softfp to the compiler command line. To build for VFPv3
only, with no NEON instructions, specify -mfpu=vfpv3.

RVCT

The RealView tools assume hardware floating-point support for processors that can
implement floating-point hardware unless explicitly stated otherwise. By default, they
also assume hardware floating-point linkage.

For example, specifying --cpu=Cortex-A9 on the command line permits the use of
NEON and VFP instructions, with hardware linkage unless software linkage is
explicitly specified.

To change the calling convention to soft linkage, you can specify, for example,
--fpu=SoftVFP+VFPv3. This informs the tool that VFPv3 hardware is available but that it
must use the software calling convention.
1-4 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

NEON Support in Compilation Tools
Build 591 of RVCT 4.0 introduced support for specifying floating-point linkage
independently from the hardware support. The parameters --apcs=/softfp and
--apcs=/hardfp specify soft and hard linkage respectively.

1.2.5 Cross-toolchain projects

RVCT 4.0 introduced GCC command line translation using the --translate-gcc and
--translate-g++ parameters. This makes it possible to design a software project to be
compiled with either GCC or RVCT without duplicating the build system. Because of
differences in syntax between the toolchains, the inline or embedded assemblers cannot
be used. You must place any assembly language used in the project in standalone
assembly language modules. Because the syntaxes of the standalone assemblers also
differ, you must then select which assembler to use consistently throughout the project.
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. 1-5
ID081609 Non-Confidential, Unrestricted Access

NEON Support in Compilation Tools
1.3 Intrinsics
Intrinsic functions and data types, or intrinsics in the shortened form, provide access to
low-level NEON functionality from C or C++ source code. They use syntax that is
similar to function calls. Software can pass NEON vectors as function arguments or
return values, and declare them as normal variables.

Intrinsics provide almost as much control as writing assembly language, but leave the
allocation of registers to the compiler, so that you can focus on the algorithms. Also, the
compiler can optimize the intrinsics like normal C or C++ code, replacing them with
more efficient sequences if possible. It can also perform instruction scheduling to
remove pipeline stalls for the specified target processor. This leads to more
maintainable source code than using assembly language.

Example 1-1 shows a short function that takes a four-lane vector of 32-bit unsigned
integers as input parameter, and returns a vector where the values in all lanes have been
doubled.

Example 1-1 Using NEON intrinsics in C code

#include <arm_neon.h>

uint32x4_t double_elements(uint32x4_t input)
{

return(vaddq_u32(input, input));
}

Example 1-2 shows the disassembled version of the code generated from Example 1-1,
compiled for hardware linkage. The double_elements function translates to a single
NEON instruction and a return sequence.

Example 1-2 Disassembly of instructions generated by intrinsics example

double_elements PROC
VADD.I32 q0,q0,q0
BX lr
ENDP

Example 1-3 on page 1-7 shows the disassembly of the same example compiled for
software linkage. In this situation, the code must copy the parameters from
general-purpose registers to a NEON vector register before use. After the calculation, it
must copy the return value back from NEON registers to general-purpose registers.
1-6 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

NEON Support in Compilation Tools
Example 1-3 Disassembly of instructions generated by intrinsics example

double_elements PROC
VMOV d0,r0,r1
VMOV d1,r2,r3
VADD.I32 q0,q0,q0
VMOV r0,r1,d0
VMOV r2,r3,d1
BX lr
ENDP

GCC and armcc support the same intrinsics, so code written with NEON intrinsics is
completely portable between the toolchains. There are no specific command line
options required for the compiler to process NEON intrinsics. You must include the
arm_neon.h header file in any source file using intrinsics, and must specify the command
line options described in Default behavior of tools on page 1-4.

It can be useful to have a source module optimized using intrinsics, that can also be
compiled for processors that do not implement NEON technology. The macro
__ARM_NEON__ is defined by gcc when compiling for a target that implements NEON
technology. RVCT 4.0 build 591 or later also define this macro. Software can use this
macro to provide both optimized and plain C or C++ versions of the functions provided
in the file, selected by the command line parameters you pass to the compiler.

For information about the intrinsic functions and vector data types, see the:
• RealView Compilation Tools Compiler Reference Guide, available from

http://infocenter.arm.com

• GCC documentation, available from
http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. 1-7
ID081609 Non-Confidential, Unrestricted Access

NEON Support in Compilation Tools
1.4 Automatic vectorization
Instead of using intrinsics to take advantage of the NEON technology in your target
processor, you can use a compiler that automatically vectorizes your standard C or C++
code. This can give access to NEON performance without requiring assembler or
intrinsics programming.

Both GCC and RVCT support automatic vectorization for NEON technology, but
because the C and C++ standards do not cover the concurrency aspects, you might have
to provide the compiler with additional information to get full benefit. The required
source code modifications are part of the standard language specifications, so they do
not affect code portability between different platforms and architectures.

This section describes how to enable automatic vectorization for your compiler, and
small modifications to your source code that can lead to great improvements in
vectorized software performance.

1.4.1 GNU tools

To enable NEON vectorization, specify -ftree-vectorize and -mfpu=neon on the
compiler command line. Compiling at optimization level -O3 implies -ftree-vectorize
is implicit. -ftree-vectorize is not an ARM-specific option, it is available for many
architectures that support SIMD operations.

To get more information about the vectorizations the compiler is performing, or is
unable to perform because of possible dependencies, specify
-ftree-vectorizer-verbose on the command line. This parameter takes an integer value
specifying the level of detail to provide, where 1 enables additional printouts and higher
values add even more information.

1.4.2 RealView tools

RVDS 4.0 Professional includes support for the vectorizing compiler. This support is
enabled when you do any of the following:
• compile for maximum performance, with -Otime
• use aggressive optimizations, with -O2 or -O3
• specify the --vectorize command line parameter.

Specify the armcc command line parameter --remarks to provide more information
about the optimizations performed, or problems preventing the compiler from
performing certain optimizations.
1-8 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

NEON Support in Compilation Tools
1.4.3 Optimizing for vectorization

The C and C++ languages do not provide syntax that specifies concurrent behavior, so
compilers cannot safely generate parallel code. However, the developer can provide
additional information to let the compiler know where it is safe to vectorize.

Unlike intrinsics, these modifications are not architecture dependant, and are likely to
improve vectorization on any target platform, normally without any negative impact on
performance on targets where vectorization is not possible.

The following sections describe the key rules:
• Indicate knowledge of number of loop iterations
• Avoid loop-carried dependencies on page 1-10
• Use the restrict keyword on page 1-10
• Avoid conditions inside loops on page 1-11
• Use suitable data types on page 1-11.

Indicate knowledge of number of loop iterations

If a loop has a fixed iteration count, or if you know that the iteration count is always an
even multiple, indicating this can permit the compiler to perform optimizations that
would otherwise be unsafe.

Example 1-4 shows a function accumulating len number of int-sized elements. If you
know that the value passed as len is always a multiple of four, you can indicate this to
the compiler by masking off the bottom two bits when comparing the loop counter to
len. Because this loop now always executes a multiple of four times, the compiler can
safely vectorize it.

Example 1-4 Indicating known iteration multiple

int accumulate(int * c, int len)
{

int i, retval;

for(i=0, retval = 0; i < (len & ~3) ; i++) {
retval += c[i];

}

return retval;
}

DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. 1-9
ID081609 Non-Confidential, Unrestricted Access

NEON Support in Compilation Tools
Avoid loop-carried dependencies

If your code contains a loop where the result of one iteration is affected by the result of
a previous iteration, this prevents the compiler from vectorizing it. If possible,
restructure the code to remove any loop-carried dependencies.

Use the restrict keyword

C99 introduced the restrict keyword, that you can use to inform the compiler that the
location accessed through a specific pointer is not accessed through any other pointer
within the current scope.

Example 1-5 shows a situation where using restrict on a pointer to a location being
updated makes vectorization safe when it otherwise would not be.

Example 1-5 Use of the restrict keyword

int accumulate2(char * c, char * d, char * restrict e, int len)
{

int i;

for(i=0 ; i < (len & ~3) ; i++) {
e[i] = d[i] + c[i];

}

return i;
}

Without the keyword, the compiler must assume that e[i] can refer to the same location
as d[i + 1], meaning that the possibility of a loop-carried dependency prevents it from
vectorizing this sequence. With restrict, the programmer informs the compiler that any
location accessed through e is only accessed through pointer e in this function. This
means the compiler can ignore the possibility of aliasing and vectorize the sequence.

Note
 Using restrict does not change the function prototype in any externally-visible way. If
you pass to this function values for c or d that might overlap with e, the vectorized code
might not execute correctly.

Both GCC and RVCT support the alternative forms __restrict__ and __restrict when
not compiling for C99. RVCT also supports using the restrict keyword with C90 and
C++ when --restrict is specified on the command line.
1-10 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

NEON Support in Compilation Tools
Avoid conditions inside loops

Normally, the compiler cannot vectorize loops containing conditional sequences. In the
best case, it duplicates the loop, but in many cases it cannot vectorize it at all.

Use suitable data types

When optimizing some algorithms operating on 16-bit or 8-bit data without SIMD,
sometimes you get better performance if you treat them as 32-bit variables. When
producing software targeting automatic vectorization, for best performance always use
the smallest data type that can hold the required values. In a given period, the NEON
engine can process twice as many 8-bit values as 16-bit values.

Also, NEON technology does not support some data types, and some are only supported
for certain operations. For example, it does not support double-precision floating-point,
so using a double-precision double where a single-precision float is sufficient can
prevent the compiler from vectorizing code. NEON technology supports 64-bit integers
only for certain operations, so avoid using long long variables where possible.

Note
 NEON technology includes a group of instructions that can perform structured load and
store operations. These instructions can only be used for vectorized access to data
structures where all members are of the same size.

GCC 4.4 does not support vectorization with varying vector sizes. By default, it
vectorizes for doubleword registers only. You can instruct gcc to vectorize for quadword
registers instead by specifying -mvectorize-with-neon-quad on the command line.

1.4.4 Floating-point vectorization

Some floating-point operations are not vectorized by default, because this can result in
a loss of precision if the programmer has sorted the input values to achieve maximum
precision. If the algorithm does not require this level of precision, you can specify
--fpmode=fast, for armcc, or -ffast-math, for gcc, on the command line to enable these
optimizations.

Example 1-6 on page 1-12 shows a sequence that can only be vectorized with one of
these parameters specified. In this case, it performs parallel accumulation, potentially
reducing the precision of the result.
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. 1-11
ID081609 Non-Confidential, Unrestricted Access

NEON Support in Compilation Tools
Example 1-6 Floating-point loop requiring additional parameters to vectorize

float g(float const *a)
{

float r = 0;
int i;

for (i = 0 ; i < 32 ; ++i)
r += a[i];

return r;
}

NEON technology always operates in Flush-to-Zero mode, making it non-compliant
with IEEE754. By default, armcc uses --fpmode=std, permitting the deviations from the
standard. However, if the command line parameters specify a mode option requiring
IEEE754 compliance, for example --fpmode=ieee_full, most floating-point operations
cannot be vectorized.
1-12 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

Appendix A
Implementing a NEON function using
vectorization, intrinsics, or assembly language.

This appendix shows the omxSP_DotProd_S16 function, defined in the OpenMAX
Development Layer specification, implemented in three different ways, all using the
NEON technology in an ARMv7-A processor.

Note
 OpenMAX is a royalty-free cross platform API standard created and distributed by the
Khronos Group.
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. A-1
ID081609 Non-Confidential, Unrestricted Access

Implementing a NEON function using vectorization, intrinsics, or assembly language.
A.1 Different implementations of the omxSP_DotProd_S16 function
The omxSP_DotProd_S16 function calculates the dot product of two supplied arrays of
signed 16-bit integers. The arrays must be 8-byte aligned in memory. It returns the result
as a signed 32-bit integer. Internal accumulators must be at least 32-bits in size.

A.1.1 Vectorized C code

Example A-1 shows how you can implement the omxSP_DotProd_S16 function in C code.
Because this function does not modify any locations accessed through pointers, you do
not have to use the restrict keyword to permit vectorization. Both GCC and RVCT can
vectorize this code.

Example A-1 Plain C implementation

#include "omxtypes.h"
#include "armOMX.h"
#include "omxSP.h"

OMX_S32 omxSP_DotProd_S16(const OMX_S16 *pSrc1,
const OMX_S16 *pSrc2,
OMX_INT len)

{
OMX_S32 retval = 0;

while(len != 0) {
/* 32-bit accumulation, so use 32-bit temporaries */
OMX_S32 Var1, Var2;

len--;
Var1 = pSrc1[len];
Var2 = pSrc2[len];

retval += Var1 * Var2;
}

return retval;
}

A-2 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

Implementing a NEON function using vectorization, intrinsics, or assembly language.
A.1.2 C with intrinsics

Example A-2 shows how you can implement the algorithm in Example A-3 on
page A-5 using NEON intrinsics. You can use either GCC or RVCT to compile the
example, but the resulting assembler output might differ, because the compilers apply
different optimizations.

Example A-2 Intrinsics implementation

#include <arm_neon.h>

#include "omxtypes.h"
#include "armOMX.h"
#include "omxSP.h"

static const OMX_S16 MaskTable16[] =
{

0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000
};

OMX_S32 omxSP_DotProd_S16(const OMX_S16 *pSrc1,
const OMX_S16 *pSrc2,
OMX_INT len)

{
int32x4_t qAccumulator;
OMX_S32 retval = 0;

/* Initialize all lanes in accumulation vector to zero */
qAccumulator = vdupq_n_s32(0);

/* Process elements, 4 in parallel */
while(len >= 4) {

int16x4_t dVect1, dVect2;

 /* Load data from source buffers into calculation vectors */
dVect1 = vld1_s16(pSrc1);
dVect2 = vld1_s16(pSrc2);

/* Multiply 16-bit lanes in dVect1 with corresponding lanes in dVect2
* Add resulting products to 32-bit lanes in accumulator vector */
qAccumulator = vmlal_s16(qAccumulator, dVect1, dVect2);

/* Update pointers and size counter */
pSrc1 += 4;
pSrc2 += 4;
len -= 4;

}

DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. A-3
ID081609 Non-Confidential, Unrestricted Access

Implementing a NEON function using vectorization, intrinsics, or assembly language.
/* Handle any remaining (1-3) elements */
if(len != 0) {

int16x4_t dVect1, dVect2, dMask;

/* Load vectors - this is safe even though we might be accessing beyond
* buffers described by pSrc1/pSrc2 because these are guaranteed to be
* 8-byte aligned and we are loading 8-byte values */
dVect1 = vld1_s16(pSrc1);
dVect2 = vld1_s16(pSrc2);

/* Mask off superfluous elements in dVect1 (subsequent multiplication
* eliminates them in dVect2) */
dMask = vld1_s16(&MaskTable16[3 - len]);
dVect1 = vand_s16(dVect1, dMask);

/* Accumulate remaining values */
qAccumulator = vmlal_s16(qAccumulator, dVect1, dVect2);

}

/* Accumulate the lanes in the accumulation vector qAccumulator into an
* OMX_S32 return value */
{

int32x2_t dAccL, dAccH;

/* Split 128-bit qAccumulator into 64-bit dAccL and dAccH for
* accumulation */
dAccL = vget_low_s32(qAccumulator);
dAccH = vget_high_s32(qAccumulator);

/* Accumulate 2 lanes in dAccL and dAccH into 2 lanes in dAccL */
dAccL = vadd_s32(dAccL, dAccH);
/* Accumulate 2 lanes in dAccL into first (and second) lane of dAccL */
dAccL = vpadd_s32(dAccL, dAccL);

/* Add accumulated value to retval */
retval = vget_lane_s32(dAccL, 0);

}

return retval;
}

A.1.3 Assembly language implementation

Example A-3 on page A-5 shows the implementation of omxSP_DotProd_S16. This
example is included for reference. Because this article is about the use of compilers, it
does not explain the assembly language code. The example accesses an external lane
mask table that is not shown.
A-4 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

Implementing a NEON function using vectorization, intrinsics, or assembly language.
Example A-3 Assembly implementation

IMPORT armCOMM_qMaskTable16
EXPORT omxSP_DotProd_S16

omxSP_DotProd_S16 PROC
VMOV.I16 d0,#0
VMOV.I32 q1,#0
LDR r3,=armCOMM_qMaskTable16

dotProdVectorLoop
VMLAL.S16 q1,d0,d1
VLD1.16 {d0},[r0]!
SUBS r2,r2,#4
VLD1.16 {d1},[r1]!
BGE dotProdVectorLoop
ADDS r2,r2,#4
ADDGE r3,r3,r2,LSL #4
VLD1.16 {d4},[r3]!
VAND d0,d0,d4
VMLAL.S16 q1,d0,d1
VADD.I32 d2,d2,d3
VPADD.I32 d2,d2,d2
VMOV.32 r0,d2[0]
BX lr
ENDP
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. A-5
ID081609 Non-Confidential, Unrestricted Access

Implementing a NEON function using vectorization, intrinsics, or assembly language.
A-6 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

Table B-1 Issue A

Change Location Affects

First release - -
DHT 0004A Copyright © 2009 ARM Limited. All rights reserved. B-1
ID081609 Non-Confidential, Unrestricted Access

Revisions
B-2 Copyright © 2009 ARM Limited. All rights reserved. DHT 0004A
Non-Confidential, Unrestricted Access ID081609

	NEON Support in Compilation Tools Development Article
	Contents
	NEON Support in Compilation Tools
	1.1 Introduction
	1.1.1 Compilation tools

	1.2 Software considerations
	1.2.1 Reset behavior
	1.2.2 Linkage
	1.2.3 Floating-point precision
	1.2.4 Default behavior of tools
	1.2.5 Cross-toolchain projects

	1.3 Intrinsics
	1.4 Automatic vectorization
	1.4.1 GNU tools
	1.4.2 RealView tools
	1.4.3 Optimizing for vectorization
	1.4.4 Floating-point vectorization

	Implementing a NEON function using vectorization, intrinsics, or assembly language.
	A.1 Different implementations of the omxSP_DotProd_S16 function
	A.1.1 Vectorized C code
	A.1.2 C with intrinsics
	A.1.3 Assembly language implementation

	Revisions

