
ARM® CoreLink™ GIC-500 Generic
Interrupt Controller

Revision: r0p0

Technical Reference Manual
Copyright © 2014 ARM. All rights reserved.
ARM DDI 0516B (ID060914)

ARM CoreLink GIC-500 Generic Interrupt Controller
Technical Reference Manual

Copyright © 2014 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

 30 April 2014 A Non-Confidential First release for r0p0

 21 May 2014 B Non-Confidential Second release for r0p0
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. ii
ID060914 Non-Confidential

Contents
ARM CoreLink GIC-500 Generic Interrupt Controller
Technical Reference Manual

Preface
About this book ... vi
Feedback .. ix

Chapter 1 Introduction
1.1 About the GIC-500 ... 1-2
1.2 Compliance .. 1-6
1.3 Features ... 1-7
1.4 Interfaces ... 1-8
1.5 Configurable options .. 1-9
1.6 Test features .. 1-10
1.7 Product documentation .. 1-11
1.8 Product revisions ... 1-12

Chapter 2 Functional Description
2.1 About the functions .. 2-2
2.2 Interfaces ... 2-3
2.3 Operation ... 2-7
2.4 Clocking and resets ... 2-14
2.5 Constraints and limitations ... 2-15

Chapter 3 Programmers Model
3.1 About the GIC-500 programmers model .. 3-2
3.2 The GIC-500 register map ... 3-3
3.3 Distributor register summary .. 3-6
3.4 Distributor register descriptions ... 3-9
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. iii
ID060914 Non-Confidential

Contents
3.5 Distributor registers for message-based SPIs summary 3-11
3.6 Redistributor registers for control and physical LPIs summary 3-12
3.7 Redistributor register descriptions ... 3-14
3.8 Redistributor registers for SGIs and PPIs summary .. 3-15
3.9 ITS control register summary ... 3-17
3.10 ITS control register descriptions .. 3-19
3.11 ITS translation register summary ... 3-21
3.12 Implementation defined test registers in GICD page summary 3-22
3.13 Implementation defined test registers in the GICR page for PPIs and SGIs 3-25
3.14 Implementation defined test registers in the GITS control page summary 3-28

Appendix A Signal Descriptions
A.1 Clock and reset signals .. A-2
A.2 Miscellaneous signals .. A-3
A.3 Interrupt signals ... A-4
A.4 Test signals .. A-5
A.5 AXI4 slave interface signals ... A-6
A.6 AXI4 master interface signals .. A-8
A.7 GIC Stream master interfaces ... A-10
A.8 GIC Stream slave interfaces .. A-11
A.9 MBIST interface signals ... A-12

Appendix B Revisions
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. iv
ID060914 Non-Confidential

Preface

This preface introduces the ARM® CoreLink™ GIC-500 Generic Interrupt Controller Technical
Reference Manual. It contains the following sections:
• About this book on page vi.
• Feedback on page ix.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. v
ID060914 Non-Confidential

Preface
About this book
This technical reference manual is for the CoreLink GIC-500 Generic Interrupt Controller
(GIC).

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for
example, r1p2, where:
rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example,

p2.

Intended audience

This book is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the GIC-500.

Using this book

This book contains the following chapters:

Chapter 1 Introduction
Read this for an introduction to the GIC-500 and its features.

Chapter 2 Functional Description
Read this for a description of the major interfaces and for the
implementation-defined behavior of the GIC-500.

Chapter 3 Programmers Model
Read this for a description of the memory map and registers, and for information
about programming the device.

Appendix A Signal Descriptions
Read this for a description of the input and output signals.

Appendix B Revisions
Read this for a description of the technical changes between released issues of this
book.

Glossary

The ARM® Glossary is a list of terms used in ARM documentation, together with definitions for
those terms. The ARM® Glossary does not contain terms that are industry standard unless the
ARM meaning differs from the generally accepted meaning.

See the ARM® Glossary
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

Conventions

This book uses the conventions that are described in:
• Typographical conventions on page vii.
• Signals on page vii.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. vi
ID060914 Non-Confidential

Preface
Typographical conventions

The following table describes the typographical conventions:

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARM® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).
• ARM® AMBA® 4 AXI4-Stream Protocol Specification (ARM IHI 0051).
• ARM® Generic Interrupt Controller Stream Protocol Interface Specification

(ARM IHI 0066).
• ARM® Generic Interrupt Controller Architecture Specification version 3.0 and version 4.0

(ARM IHI 0069).
• ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architectural profile

(ARM DDI 0487).

Typographical conventions

Style Purpose

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the ARM® Glossary.
For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. vii
ID060914 Non-Confidential

Preface
The following confidential books are only available to licensees:
• ARM® CoreLink™ GIC-500 Generic Interrupt Controller Implementation Guide

(ARM DII 0288).
• ARM® CoreLink™ GIC-500 Generic Interrupt Controller Integration Manual

(ARM DIT 0050).

Other publications

This section lists relevant documents published by third parties:
• JEDEC Standard Manufacturer’s Identification Code, JEP106 http://www.jedec.org.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. viii
ID060914 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DDI 0516B.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. ix
ID060914 Non-Confidential

Chapter 1
Introduction

This chapter introduces the GIC-500. It contains the following sections:
• About the GIC-500 on page 1-2.
• Compliance on page 1-6.
• Features on page 1-7.
• Interfaces on page 1-8.
• Configurable options on page 1-9.
• Test features on page 1-10.
• Product documentation on page 1-11.
• Product revisions on page 1-12.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-1
ID060914 Non-Confidential

Introduction
1.1 About the GIC-500
The GIC-500 is a build-time configurable interrupt controller that supports up to 128 cores. The
GIC-500 only supports cores that implement the ARMv8 architecture and the GIC CPU
interface with the standard GIC Stream Protocol interface, such as Cortex®-A57 and
Cortex-A53. It implements the ARM® Generic Interrupt Controller Architecture Specification
version 3.0, to enable support for:
• ARMv8 cores.
• Physical interrupt signals.
• Software Generated Interrupts (SGIs).
• Interrupts generated by writing to the AXI4 slave port, known as message-based

interrupts.
• An Interrupt Translation Service (ITS) that provides ID translation and core migration for

message-based interrupts.

Figure 1-1 on page 1-3 depicts the GIC-500 in an example system.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-2
ID060914 Non-Confidential

Introduction
Figure 1-1 GIC-500 in an example system

The GIC-500 receives interrupts from the AXI4 slave, or from physical inputs, depending on
the type of interrupt. The GIC-500:

• Supports a few different types of interrupt with different characteristics. See Interrupt
types on page 2-7.

• Prioritizes the interrupts and ensures that the highest priority pending interrupt is sent to
the CPU interface. The CPU interface is part of the interrupt controller which is not part
of the GIC-500, but is instead part of compatible ARMv8 cores. ARM recommends the

AMBA
interconnect

System
Memory Management Unit

(MMU)

GIC-500

Cluster
of cores

AXI4-Stream interface

Peripheral

Physical interrupt signals

AXI4 Slave Port

Message-
based
interrupts
and SGIs
from
legacy
software

PCIe root
complex

AXI4 Master Port

Peripheral Peripheral

AXI4 AXI4

AXI4

AXI4
ACE

AMBA 5 CHI

GIC-500 Pre-ITS
Device ID
Multiplexer

System MMU
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-3
ID060914 Non-Confidential

Introduction
CPU interfaces are programmed using System register accesses, although legacy software
might program them using memory-mapped accesses, depending on what the core
supports.

• Connects to these CPU interfaces using dedicated AXI4-Stream interfaces.

• Is programmed using its AXI4 Slave port.

• Supports virtualization of interrupts for each connected CPU interface that provides this
feature.

• ITS provides interrupt ID translation that can allow peripherals to be programmed by a
virtual machine directly.

• Provides registers for managing interrupt sources, interrupt behavior, and interrupt
routing to one or more cores.

Connected ARM cores have System registers that provide the CPU interface to the GIC.

1.1.1 Topologies and terminology

Figure 1-2 shows a diagrammatic representation of the Redistributor hierarchy.

Figure 1-2 Redistributor hierarchy

Distributor

Redistributor

Affinity 0.0.0.0
Linear: 0

Redistributor

Affinity 0.0.0.1
Linear: 1

Redistributor

Affinity 0.0.1.0
Linear: 2

Redistributor

Affinity 0.0.1.1
Linear: 3

Core

Affinity 0.0.0.1
Linear: 1

Core

Affinity 0.0.1.0
Linear: 2

Core

Affinity 0.0.1.1
Linear: 3

Cluster 0 Cluster 1

Core

Affinity 0.0.0.0
Linear: 0

GIC-500
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-4
ID060914 Non-Confidential

Introduction
Note
 The linear representation indicates the order of the cores, that is sorted by the affinity values.
For example 0.0.1.1 is given the value of 3 because it is the fourth lowest affinity value in the
system.

The ARM architecture defines a register in a core that identifies the logical address of the core
in the system. This register, known as the Multiprocessor Affinity Register (MPIDR), has a
hierarchical format. Each level of the hierarchy is known as an affinity level, with the highest
affinity levels specified first:

• For an ARMv7 processor, the MPIDR defines three levels of affinity, with an implicit
affinity level 3 value of 0.

• For an ARMv8 processor, the MPIDR defines four levels of affinity.

This means the affinity can be specified, using a four-field dot-decimal notation, as
<Aff3>.<Aff2>.<Aff1>.<Aff0>, where Affn is a value for affinity level n.

For most processors, for example the Cortex-A57 MPCore processor, the processor is made up
from a cluster of cores that have a common affinity level 1. Each core must have a different
MPIDR value, so the cores have different affinity level 0 values, beginning from 0. For example,
a processor with four cores might have MPIDR values in the range 0.0.0.0-0.0.0.3. If there were
two processors then the second processor might have values in the range 0.0.1.0-0.0.1.3.
Typically the processor number is affinity level 1 and the core number is affinity level 0.

The GIC-500 only supports topologies where affinity levels 2 and above are the same. That is,
all cores must have MPIDR values of the form 0.0.c.d, where c and d are variables. The range
for c is assumed to start at 0 and be contiguous. The range for d is also assumed to start at 0 and
be contiguous for each c. For example, the first processor must have IDs 0.0.0.0 to 0.0.0.x and
the second processor must have IDs 0.0.1.0 to 0.0.1.y.

The GIC-500 supports up to 128 cores in up to 32 processors with a limit of eight cores per
processor, and has a pair of AXI4-Stream interfaces for each processor.

When using backwards compatibility mode, GIC-500 supports the first eight cores. That is, it
supports the eight cores with the lowest MPIDR values, whether they are in the same processor
or not.

GIC-500 provides a Redistributor for each core, each with a corresponding set of registers.
Many registers in the GIC-500 use the MPIDR value to specify cores. However, programming
the Interrupt Translation Service and integrating the AXI4 slave port require an alternative
linear representation. This representation is based on numbering the cores in order of increasing
affinity level, starting at 0. For example, in backwards compatibility mode, GIC-500 supports
cores 0-7 in linear representation.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-5
ID060914 Non-Confidential

Introduction
1.2 Compliance
The GIC-500 is compliant with the following interfaces and specifications:
• The AMBA AXI4 protocol. See the ARM® AMBA® AXI and ACE Protocol Specification,

and AXI4 slave interface signals on page A-6.
• The GIC Stream protocol is based on the following specifications:

— ARM® AMBA® 4 AXI4-Stream Protocol Specification.
— ARM® Generic Interrupt Controller Stream Protocol Interface Specification.

• Version 3.0 of the ARM GIC architecture specification. See the ARM® Generic Interrupt
Controller Architecture Specification version 3.0.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-6
ID060914 Non-Confidential

Introduction
1.3 Features
The GIC-500 provides registers for managing interrupt sources, interrupt behavior, and interrupt
routing to one or more cores. It supports:

• Multiprocessor environments with up to 128 cores.

• Up to 32 affinity-level 1 clusters.

• Up to eight cores for each cluster.

• The following interrupt types:
— Locality-specific Peripheral Interrupts (LPIs). These interrupts are generated by a

peripheral writing to a memory-mapped register in the GIC-500. See Configurable
options for the GIC-500 RTL on page 1-9.

— Shared Peripheral Interrupts (SPIs). See Configurable options on page 1-9.
— 16 Private Peripheral Interrupts (PPIs), that are independent for each core and can

be programmed to support either edge-triggered or level-sensitive interrupts.
— 16 SGIs, that are generated either by using software to write to GICD_SGIR or

through the GIC CPU interface of a core.

• Interrupt Translation Service (ITS). This provides device isolation and ID translation for
message-based interrupts, which allows virtual machines to program devices directly.

• Memory-mapped access to all registers.

• Interrupt masking and prioritization.

• Programmable interrupt routing based on affinity.

• Three different interrupt groups, which allow interrupts to target different exception
levels:
— Group 0.
— Non-secure Group 1.
— Secure Group 1.

• A global Disable Security (DS) bit. This allows support for systems with and without
security.

• 32 priority values, five bits for each interrupt.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-7
ID060914 Non-Confidential

Introduction
1.4 Interfaces
The GIC-500 provides the following external interfaces:
• AXI4 Slave Interface on page 2-3.
• AXI4 Master Interface on page 2-4.
• RAM Interfaces on page 2-5.
• Physical interrupt signals on page 2-5.
• GIC-500 Stream Protocol Interface on page 2-6.
• Other core signals on page 2-6.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-8
ID060914 Non-Confidential

Introduction
1.5 Configurable options
Table 1-1 shows the configurable options in the GIC-500 RTL.

Table 1-1 Configurable options for the GIC-500 RTL

Feature Range of options

Number of affinity-level 1 clusters. 1-32

Number of cores for each cluster. This can be different for each
cluster.

1-8

Read Address ID width. 1-32

Write Address ID width. 1-32

Number of SPIs. 32-960a

GICv2 backwards compatibility support. Options include:
• Both Secure and Non-secure AREs are always set in

GICD_CTLR. There is no backwards compatibility.
• Both Secure and Non-secure AREs are programmable.

The GIC-500 resets to backward compatible mode.
See Backwards compatibility on page 2-10 for more
information.

Security Support. Options include:
• Security support programmable. Resets to supporting

security.
• Security support not present.

ITS and LPI support. Options include:
• ITS is present. LPIs are supported.
• ITS is not present. LPIs are not supported.

ITS Device ID width. 3-20
See AXI4 Slave Interface on page 2-3 for more information.

Number of LPI cache entries. 16-1024 (powers of two only).

a. Range from 32-960, with increments of 32.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-9
ID060914 Non-Confidential

Introduction
1.6 Test features
The GIC-500 provides Design For Test (DFT) signals for test mode. See Test signals on
page A-5.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-10
ID060914 Non-Confidential

Introduction
1.7 Product documentation
This section describes the GIC-500 documentation, how it relates to the design flow, and the
relevant architectural standards and protocols.

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the GIC-500. It is required at all
stages of the design flow. Some behavior described in the TRM might not be
relevant because of the way that the GIC-500 is implemented and integrated. If
you are programming the GIC-500 then contact:
• The implementer to determine the build configuration of the

implementation.
• The integrator to determine the signal configuration of the SoC that you are

using.
The TRM complements protocol specifications and relevant external standards.
It does not duplicate information from these sources.

Implementation Guide
The Implementation Guide (IG) describes:
• The available build configuration options and related issues if you select

them.
• How to configure the Register Transfer Level (RTL) with the build

configuration options.
• The processes to sign off the configured design.
The ARM product deliverables include reference scripts and information about
how you use them to implement your design.
The IG is a confidential book that is only available to licensees.

Integration Manual
The Integration Manual (IM) describes how to integrate the GIC-500 into a SoC.
It includes a description of the signals that the integrator must tie off to configure
the macrocell for the required integration. Some of the integration is affected by
the configuration options you use when you implement the GIC-500.
The IM is a confidential book that is only available to licensees.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-11
ID060914 Non-Confidential

Introduction
1.8 Product revisions
This section describes the differences in functionality between the product revisions:

r0p0 First release.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 1-12
ID060914 Non-Confidential

Chapter 2
Functional Description

This chapter describes the functionality of the GIC-500. It contains the following sections:
• About the functions on page 2-2.
• Interfaces on page 2-3.
• Operation on page 2-7.
• Clocking and resets on page 2-14.
• Constraints and limitations on page 2-15.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-1
ID060914 Non-Confidential

Functional Description
2.1 About the functions
Figure 2-1 shows the top-level functional block diagram with interfaces:

• The interfaces that the GIC-500 provides are described in Interfaces on page 2-3.

• The Interrupt Control Block (ICB) State RAM holds the settings for SPIs, PPIs, and SGIs.
It exists in all configurations of the GIC-500. See Interrupt types on page 2-7 for a
description of the interrupt types.

• The LPI State RAM and ITE State RAM cache settings for the LPIs and ITS. They only
exist in configurations where the ITS exists and LPIs are supported. See Configurable
options on page 1-9.

Figure 2-1 Top level functional block diagram

Note
 The names of the top-level and noram blocks in a real design contain the names of the chosen
configurations. The inputs and outputs are described in Interfaces on page 2-3.

Discrete
wire-based
interrupts

ICB State
RAM

LPI State
RAM

AXI4
Slave

Interface AXI4 Master
Interface

gic500_noram

gic500

AXI4-Stream master interface per cluster

AXI4-Stream slave interface per cluster

ITE State
RAM
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-2
ID060914 Non-Confidential

Functional Description
2.2 Interfaces
The GIC-500 interfaces are:
• AXI4 Slave Interface.
• AXI4 Master Interface on page 2-4.
• RAM Interfaces on page 2-5.
• Physical interrupt signals on page 2-5.
• GIC-500 Stream Protocol Interface on page 2-6.
• Other core signals on page 2-6.

2.2.1 AXI4 Slave Interface

One 32-bit AMBA AXI4 slave interface provides access to the programming interfaces of all
parts of the GIC-500:
• Distributor.
• Redistributors.
• ITS.

The slave interface also handles all message-based interrupts, which are interrupts generated by
writes to the AXI4 slave interface. Message-based interrupts can generate SPIs or LPIs,
depending on the register that you write to. See Interrupt types on page 2-7 for information
about the different types of interrupts.

The slave interface uses a single contiguous address region for all registers. See Chapter 3
Programmers Model for the address map.

Accesses to some registers requires sideband information. When using backwards compatibility
mode, some registers are banked to provide a separate copy for each core. The system integrator
must drive awuser_s[2:0] and aruser_s[2:0] with the binary number of the core performing the
access for writes and reads, respectively.

Note
 This information is only required for the first eight cores, because only this number of cores is
supported in backwards compatibility mode. See Backwards compatibility on page 2-10 for
more information.

To generate an LPI a peripheral must write to the GITS_TRANSLATER. For the ITS to know
which translations to apply to the generated interrupts, it must know which peripheral performed
the write. The ID of the peripheral is known as its Device ID. ARM recommends that for a PCI
Express (PCIe) peripheral, its GIC Device ID is its PCIe Requester ID without any modification.
The AXI4 slave only requires the Device ID for writes to the GITS_TRANSLATER. For writes
to that register, the GIC-500 supports two ways of receiving the Device ID:

• If awuser_s[3] is LOW, then for any writes made to the GITS_TRANSLATER the Device
ID bits are taken from awuser_s[23:4].

• If awuser_s[3] is HIGH, the slave port uses a mode of operation which reduces the
number of AWUSER bits required by the system. In this mode, the GIC-500 assumes all
write accesses are to the GITS_TRANSLATER and the Device ID bits are taken from
awaddr_s[21:2].
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-3
ID060914 Non-Confidential

Functional Description
Table 2-1 shows the AXI slave attributes and their values.

2.2.2 AXI4 Master Interface

The GIC-500 uses the AXI4 master interface to access main memory. One 64-bit AMBA AXI4
master port is provided to allow the ITS and Redistributors to access main memory. The main
memory holds the following:
• The translation tables for the ITS.
• The ITS command queue, which software writes to, that in turn programs the ITS.
• The LPI configuration table, which holds the priorities and enable bits for LPIs.
• The LPI pending tables, which can hold information on whether each LPI is pending on

each core.

Note
 The AXI master interface is not present if the ITS and LPI support are removed.

The hypervisor or OS software is responsible for allocating memory to the GIC-500. The GIC
architecture also requires you to write software that zeros the allocated memory before use.
Software must program registers in the ITS and Redistributors with the physical addresses of
the allocated memory. Therefore the AXI4 master makes accesses using physical addresses and
therefore does not require address translation such as a System Memory Management Unit
(MMU).

When software has enabled the relevant functionality in the GIC-500, the software must not
access the allocated memory again unless allowed by the GIC architecture. For example,
memory programmed in the GITS_BASER must not be accessed when the ITS is enabled.
However, the GIC architecture always permits software to write to the LPI configuration table
pointed to by GICR_PROPBASER, and defines the INV and INVALL ITS commands that make
the GIC use the new property values.

The GIC-500 does not support shareability, but does have programmable cacheability settings.
Therefore the GIC-500 always treats memory as non-shareable. Software must discover this by
attempting to write to the shareability and cacheability fields that are present in registers such
as GICR_PROPBASER and by reading back the written values. The attributes in the MMU
translation tables of the core must match those programmed in the GIC.

Consequently, software must issue the appropriate cache maintenance instructions when it
wants to ensure that writes made by the core are visible to the GIC and when it wants to ensure
that writes made by the GIC are visible to the core.

It is a system integration requirement that accesses that the GIC-500 makes to memory can
complete without depending on any other accesses in the system making progress.

Table 2-1 AXI slave interface attributes

Attribute Value

Combined acceptance capability 6

Read acceptance capability 3

Read data reorder depth 1

Write acceptance capability 3
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-4
ID060914 Non-Confidential

Functional Description
The AXI4 master interface only makes certain types of accesses. All transactions are 32 bytes
or smaller, consisting of up to four transfers with up to eight bytes in each transfer. Only
incrementing bursts are used. Accesses made by the AXI4 master involve the ITS and LPIs,
which are always Non-secure. Therefore the AXI4 master always makes Non-secure accesses.

If the AXI4 master receives a bus error, such as SLVERR or DECERR, this is signaled through
an external pin, axim_err. When this occurs, the GIC-500 might lose interrupts and cannot
recover and you must reset the GIC-500. If it is not reset, the behavior becomes
UNPREDICTABLE.

Table 2-2 shows the AXI master attributes and their values.

2.2.3 RAM Interfaces

The GIC-500 uses SRAMs to cache state, so that it can save area, power, and latency.

In typical operation, their existence is transparent to software, with a few exceptions:

• After reset, the RAMs are automatically initialized. Accesses made to the GIC-500 during
this time could take longer than normal.

• The RAMs are protected from errors using an Error-Correction Code (ECC) with single
error correction and double error detection (SECDED). If a double error is detected then
this is signaled through an external pin, ecc_fatal. When this occurs, the GIC-500 might
lose interrupts and cannot recover and must be reset. If it is not reset, behavior becomes
UNPREDICTABLE. The GIC-500 returns corrupted data if a double error is detected during
a read to any of the following:
— GICD_IPRIORITYRn.
— GICR_IPRIORITYRn.
— GICD_IROUTERn.
— GICD_ITARGETSRn.
If you want to guarantee that software does not read corrupted data after a double error,
software must never read from these registers and instead maintain its own copy of the
values written to these registers.

2.2.4 Physical interrupt signals

The GIC-500 supports the generation of SPIs and PPIs through physical interrupt signals. These
inputs can be programmed as either:
• Level-sensitive, where the interrupt is pending as long as the input is asserted.
• Edge-triggered, where a rising edge causes the interrupt to be set to pending.

There is one independent set of PPIs for each core. SPIs are global and therefore there is only a
single set. See Interrupt types on page 2-7 for more information.

Table 2-2 AXI master interface attributes

Attribute Value

Combined issuing capability 26

Read issuing capability 11

Write issuing capability 15
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-5
ID060914 Non-Confidential

Functional Description
Note
 • In the GIC-500, level-sensitive PPIs are active-LOW, whereas level-sensitive SPIs are

active-HIGH.

• The GIC-500 does not synchronize interrupt inputs. They must be synchronized to the
GIC-500 clock externally.

2.2.5 GIC-500 Stream Protocol Interface

For each cluster or group of cores, one upstream and one downstream 16-bit AMBA
AXI4-Stream interface is provided.

The GIC-500 GIC Stream Protocol Interface consists of a pair of AXI4-Stream interfaces that
the GIC-500 uses to send interrupts to the core and receive notifications when the core activates
interrupts. There is a pair of physical interfaces, one in each direction, for each cluster.

The GIC Stream interfaces use the prefix icd to indicate the master interface, and icc to indicate
the slave interface. The GIC Stream master interface uses the icdtdest signal to direct packets
to one core within the cluster. The GIC Stream slave interface uses the icctid signal to determine
which core within the cluster sent a packet.

2.2.6 Other core signals

When a core is powered down, it must first disable the sending of packets over the AXI4-Stream
interface using the GICR_WAKER.ProcessorSleep bit. When this has been done, the presence
of an interrupt specifically targeted at that core causes the wake_request signal for that core to
be asserted. ARM recommends that you connect this signal to the power controller to cause that
core to boot. When the core has booted, software is always expected to re-enable
communication over the interface through the use GICR_WAKER.ProcessorSleep, allowing the
interrupt to be processed.

The GIC-500 uses the cpu_active signal to decide which cores are preferred for SPIs that target
multiple cores. It does not affect the operation of any other type of interrupt. It also has no effect
if GICR_WAKER.ProcessorSleep is set to one for that core, because those SPIs are never sent
to cores with ProcessorSleep set to one. ARM recommends that this signal is deasserted when
a core is in certain software-transparent sleep states entered during WFI or WFE instructions,
such as retention, so that the core is less likely to handle SPIs that target multiple cores. This can
increase the amount of time that cores spend in these sleep states. If you use the cpu_active
signal this way, software must not rely on SPIs that target multiple cores causing cores to leave
WFI or WFE. Instead, software must use another mechanism to ensure this, such as an SGI, or
an SPI targeted at only the core in question.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-6
ID060914 Non-Confidential

Functional Description
2.3 Operation
The GIC-500 is divided into three main sections:

ITS The ITS is responsible for translating message-based interrupts from peripherals
into LPIs. You can also use the ITS to manage existing LPIs. The ITS is not used
for other types of interrupt.

Distributor The Distributor receives interrupts from the:
• Wire interrupts.
• Programming interface.
It is responsible for prioritizing these interrupts and sending them to the CPU
interface using the GIC Stream Protocol Interface.

Redistributor
There is one Redistributor for each core. Each Redistributor holds the state that is
individual to a particular core, such as the settings for PPIs, and SGIs. It also
stores the LPIs for that core after they have been generated using the ITS.

2.3.1 Interrupt types

This section describes the different types of interrupt that the GIC-500 handles.

SGIs

SGIs are inter-processor interrupts, that is, interrupts generated from one core and sent to other
cores. Activating an SGI on one core does not affect the same interrupt ID on another core.
Therefore when an SGI is sent to all cores it is handled independently on each core. The settings
for each SGI are also independent between cores.

You can generate SGIs using System registers in the generating core, or, in legacy software, by
writing to the Software Generated Interrupt Register, GICD_SGIR. There are 16 independent
SGIs, ID0-ID15, that are recorded separately for every target core. In backwards compatibility
mode, the number of the generating core is also recorded.

PPIs

PPIs are typically used for peripherals that are tightly-coupled to a particular core. Interrupts
connected to the PPI inputs associated with one core are only sent to that core. Activating a PPI
on one core does not affect the same interrupt ID on another core. The settings for each PPI are
also independent between cores.

A PPI is an interrupt that is specific to a single core and is generated by a wire input. PPI signals
are active-LOW level-sensitive, by default, but can also be programmed to be triggered on a
rising edge.

SPIs

SPIs are typically used for peripherals that are not tightly-coupled to a specific core. You can
program each SPI to target either a particular core or any core. Activating an SPI on one core
activates the SPI for all cores. That is, the GIC-500 allows at most one core to activate an SPI.
The settings for each SPIs are also shared between all cores.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-7
ID060914 Non-Confidential

Functional Description
SPIs can be generated either by wire inputs or by writes to the AXI4 slave programming
interface. The GIC-500 can support up to 960 SPIs corresponding to the external spi[991:32]
signal. The number of SPIs available depends on the implemented configuration. The permitted
values are 32-960, in steps of 32. The first SPI has an ID number of 32. You can configure
whether each SPI is triggered on a rising edge or is active-HIGH level-sensitive.

Note
 All signals, including SPIs, must be synchronous to the clock. Therefore, you must synchronize
any interrupt signals from an asynchronous source before they are connected to the GIC-500.

LPIs

LPIs are typically used for peripherals that produce message-based interrupts. An LPI targets
only one core at a given time. LPIs are generated when the peripheral writes to the ITS, which
also holds the registers to control the generation and maintenance of LPIs. The ITS provides
interrupt ID translation, allowing peripherals to be owned directly by a virtual machine if a
System MMU is also present for those peripherals.

Note
 The interrupt ID translation in the ITS only allows interrupts from these peripherals to be
translated to the ID space of the hypervisor, not sent directly to the virtual machine.

In the GIC-500, you can only generate LPIs by writing to the ITS using the AXI4 slave
programming interface. The GIC-500 always supports up to 57344 LPIs, but has a cache that
holds the settings for the most frequent interrupts. The settings for the ITS and LPIs are stored
in main memory, so a cache miss might result in up to three round trips to memory. The first LPI
has an ID number of 8192.

You can debug problems with LPI interrupt generation in the ITS using the LPI tracking
registers. These allow you to set a trigger to capture information about the next interrupt that the
ITS processes. This allows you to determine what happened to that interrupt and what
translation was applied. See Implementation defined test registers in the GITS control page
summary on page 3-28 for more information.

For the most efficient caching of LPIs, ARM recommends that you allocate input interrupt IDs
sequentially. You can measure the performance of the cache the input interrupt ID affects using
the GITS_TRKICR register. See Debug ITE Cache Statistics on page 3-32 for more
information. The other LPI cache is only affected by the distribution of LPI physical IDs (PIDs).
Therefore, if possible, ARM recommends that for best caching, PIDs are also sequentially
allocated. The performance of that cache can be monitored using the GITS_TRKLCR register.
See Debug LPI Cache Statistics on page 3-33 for more information.

Choosing between LPIs and SPIs

You can use both LPIs and SPIs for message-based interrupts. Your decision about whether to
use an LPI or SPI for an interrupt can potentially be made by software, providing there are spare
SPIs and the GIC-500 is integrated with ITS support. This can be achieved by either making the
peripheral write to a different GIC-500 address, or by changing the address translation for the
interrupt write in the System MMU. Changing only the System MMU is possible because the
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-8
ID060914 Non-Confidential

Functional Description
two registers for Non-secure message-based interrupts, GICD_SETSPI_NSR and
GITS_TRANSLATER, are at the same address offset in different pages. The following factors
can help you to decide which type of interrupts is most appropriate:

• Only the ITS provides interrupt ID translation and therefore LPIs are preferable for
peripherals owned by a virtual machine. This is because the hypervisor can let the virtual
machine program the peripheral directly, and let the ITS convert its interrupts from the
IDs used by the virtual machine to unique physical IDs.

• LPIs are always Group 1 Non-secure, so message-based interrupts that target Secure
software must use SPIs.

• Only SPIs provide the ability to target all cores, which means the GIC-500 attempts to
automatically balance the interrupt load to cores that are active but not handling other
interrupts.

• The GIC-500 can provide a far larger number of LPIs than SPIs for the same area. The
marginal area increase for each additional LPI is much less than for an SPI because the
LPI settings are only cached, not stored, in the GIC-500. This means that the lowest area
can often be achieved by using LPIs where possible rather than SPIs.

• In a small system where the features of the ITS are not required and there are few
message-based interrupts, you might decide not to include the ITS and LPI support.

• SPIs usually have a better worst-case interrupt latency than LPIs. This is because SPIs
have all their settings stored internally to the GIC-500, whereas LPIs that are not cached
require external memory accesses. The cache hit rate is expected to be higher for the LPIs
that occur more frequently. Therefore ARM recommends that SPIs are used for any
latency sensitive interrupts that are expected to occur infrequently.

2.3.2 Interrupt groups

The GIC-500 implements the following Interrupt Group Registers:
• GICD_IGROUPRn.
• GICD_IGRPMODRn.
• GICR_IGROUPR0.
• GICR_IGRPMODR0.

These control whether each interrupt is configured as:
• Group 0.
• Group 1 Secure.
• Group 1 Non-secure.

Each interrupt is programmed to belong to an interrupt group. Each interrupt group:
• Determines the target exception level and security state for interrupts in that group.
• Has separate enable bits that control whether interrupts in that group can be forwarded to

the core.
• Has an impact on later routing decisions in the CPU interfaces.

When using backwards compatibility mode or with security disabled, the meaning and number
of interrupt groups are affected. See the ARM® Generic Interrupt Controller Architecture
Specification version 3.0 for more information.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-9
ID060914 Non-Confidential

Functional Description
2.3.3 Interrupt triggering

The GIC-500 supports two types of physical interrupt signal:

Level-sensitive
The interrupt is pending while the interrupt input is asserted.

Edge-triggered
A rising-edge on the interrupt input causes the interrupt to become pending. The
pending bit is later cleared when the interrupt is activated by the CPU interface.

You must program GICD_ICFGRn and, for PPIs using ARE = 1, GICR_ICFGR1, to have the
correct settings for the system.

2.3.4 Backwards compatibility

You can configure the Distributor part of the GIC-500 at build time to support limited
backwards compatibility with GICv2. If this support is configured, the Distributor resets to
backwards compatibility mode. This mode supports up to eight cores. The eight cores supported
by the GIC-500 are the cores with the lowest affinity numbers.

The ARE setting in GICD_CTLR, which disables backwards compatibility, is programmable
when backwards compatibility support is configured. The ARE setting is also banked by
security. This allows Secure software to operate in backwards compatibility mode (ARE_S = 0)
while Non-secure software enables ARE. If Secure software is not operating in backwards
compatibility mode then Non-secure software cannot operate in backwards compatibility mode.

Note
 A major limitation of operating with Non-secure using ARE_NS = 1 and Secure using ARE_S
= 0 is that legacy Secure software is not able to control Non-secure interrupts. This means that
existing Secure Monitor code that relies on having this control cannot run correctly using this
mode of backwards compatibility. See the ARM® Generic Interrupt Controller Architecture
Specification version 3.0 for more information on this limitation.

The GIC-500 can expose software to more race conditions than previous GIC implementations.
Legacy code that relies on the stronger guarantees provided in these previous GICs might not
work reliably. For example, some GIC implementations ensure that a sequence of accesses to
both the CPU interface and Distributor is executed in program order. However, the ordering
between the Distributor and CPU interface is not architecturally guaranteed and is not
guaranteed in systems with the GIC-500.

In backwards compatibility mode, the GIC-500 ensures that the effects of all interrupt
programming are eventually observable, so you only have to update software that relies on the
reprogramming being observable by a specific point. Software typically only requires these
ordering guarantees during operations such as retargeting SPIs, if it must be ensured that the
previous target does not receive the SPI, or saving the state of a Distributor.

If your software relies on these guarantees, you must update your software using the following
guidance:

• To ensure that accesses to the CPU interface have completed and any side-effects have
been observed by the Distributor, software must execute a DSB instruction. Use this to
ensure the status of interrupts reported by the Distributor is up-to-date. Software that is
not using backwards compatibility mode must also use the same approach.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-10
ID060914 Non-Confidential

Functional Description
• To know that updates to the Distributor have completed and have been observed by the
CPU interface, you must wait until the GIC-500-specific GICD_ESTATUSR.SRWP bit
reads as zero. Use this to ensure that after reprogramming an interrupt, cores cannot
receive interrupts based on the old interrupt programming. Software not using backwards
compatibility mode must instead disable interrupts and poll the GICD_CTLR.RWP bit to
ensure that old settings are no longer visible to cores. The advantage of the SRWP bit is
that it provides this guarantee even if this sequence is not followed.

The GIC-500 might also implement different IMPLEMENTATION DEFINED choices than previous
implementations. For example, the GIC-400 did not set an interrupt pending if the interrupt
group for that interrupt was disabled in the GICD_CTLR. In contrast, the GIC-500 does set
interrupts pending in this scenario.

It is expected that legacy power management code is not compatible and has to be updated for
operation with the GIC-500. For example, GICR_WAKER.ProcessorSleep must be set to zero
after reset to enable interrupts to be sent to a core. Likewise, the powerdown sequence requires
writing to GICR_WAKER. The GICR_WAKER register is new in version three of the GIC
architecture and therefore you must update legacy code to use it.

2.3.5 Disable Security

The Disable Security (DS) bit removes the security support of the Distributor. It can be set by
Secure software during the boot sequence or be configured to be always set when you configure
the design. This configuration option must be used when the system does not have the concept
of security to allow access to important registers. If you run software without security awareness
on a system that supports security, then the Secure boot code can set DS before switching to a
Non-secure exception level to run the software. This enables you to program the GIC-500 from
any exception level and use two interrupt groups, Group 0 and Group 1. This means that
interrupts can target both the FIQ and IRQ handlers on a core.

You must take care when deciding to write security-unaware software using Group 0, as it might
not be portable to systems with a concept of security. This is because Group 0 is always Secure
in systems with security. It is most portable for security-unaware software to always use Group
1.

If a system has a concept of security but one or more cores do not, then you must not set DS.
Instead each core is only able to enable the interrupt groups corresponding to the security states
that it supports.

2.3.6 Power management

The GIC-500 supports the power down of cores and can itself be powered down. The
GICR_WAKER registers provide bits to control functions associated with power management.
The architecture recommends how these bits can be used. Some bits within the GICR_WAKER
are global, rather than separate, for each Redistributor, as GIC-500 is a monolithic
implementation. This means that the components are not distinct, but are instead tightly
integrated. The GIC architecture allows such implementations to behave differently. See the
ARM® Generic Interrupt Controller Architecture Specification version 3.0 for more
information.

The GIC architecture defines the programming sequence to safely power down a core that is
attached to a Distributor. This involves using the GICR_WAKER.ProcessorSleep bit. When all
cores within a cluster have been powered down using the architectural sequence, you can power
gate the AXI4-Stream interface for that cluster.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-11
ID060914 Non-Confidential

Functional Description
When powering down the GIC-500, with the exception of the LPI pending bits, software must
preserve the state of the GIC-500. The state must be copied after the GIC-500 core power down
sequence has completed to ensure that the pending information that is preserved is up to date.

You can preserve the LPI pending bits using the architectural Redistributor powerdown
sequence, which ensures the memory pointed to by each GICR_PENDBASER contains the
updated pending information for the LPIs. This involves using the GICR_WAKER.Sleep bit.
When the GIC-500 is powered up again, you can program the GICR_PENDBASER registers to
point to the same memory to reload the LPI pending status. If there is no requirement to reload
the pending LPIs, ARM recommends that you zero the pending table and set the
GICR_PENDBASER.PTZ bit to one to speed up the initialization of the GIC-500.

Note
 • GICR_WAKER.Sleep can only be set to one when:

— All RD0s have GICR_WAKER.ProcessorSleep == 1.
— All RD0s have GICR_WAKER.ChildrenAsleep == 1.

• GICR_WAKER.ProcessorSleep can only be set to zero when:
— GICR_WAKER.Sleep == 0.
— GICR_WAKER.Quiescent == 0.

Before a core is powered down, you must set GICR_WAKER.ProcessorSleep to one and wait
until GICR_WAKER.ChildrenAsleep is one to ensure there are no outstanding transactions on
the AXI4-Stream interface of the core. In the typical powerdown sequence, to ensure that there
are no interrupts during the powerdown of the core, you must:
1. Mask interrupts on the core.
2. Clear the CPU interface enables.
3. Set the interrupt bypass disable on the CPU interface.

When a core has been powered down and the GICR_WAKER.ProcessorSleep bit is set to one,
the GIC-500 attempts to wake the core if it receives an interrupt that targets only that core. It
does this by asserting the wake_request signal corresponding to that core. This signal connects
to the power controller. See Other core signals on page 2-6 for more information about the
wake_request signals.

You must not set GICR_WAKER.ProcessorSleep to one unless the core is entering a power state
where the GIC-500 must use the power controller to wake the core rather than using the
AXI4-Stream interface. For example, with Cortex-A53 and Cortex-A57, if the core is entering
a sleep state based on the WFI or WFE instructions, such as retention, you must not set
GICR_WAKER.ProcessorSleep to one. The core can enter these sleep states without software
assistance. Given GICR_WAKER.ProcessorSleep is zero, the GIC-500 sends interrupts using
the AXI4-Stream interface as normal. These interrupts can cause the core to leave the WFI or
WFE instruction based on the standard rules in the ARM® Architecture Reference Manual,
ARMv8, for ARMv8-A architectural profile. The system integrator can use the cpu_active signal
to ensure that interrupts that can target multiple cores are much less likely to target cores in
certain sleep states. In such a system, the software has more control over when cores leave sleep
states.

Note
 Interrupts that target only one core are unaffected by cpu_active and are always sent to that
core. Moreover, if the GICR_WAKER.ProcessorSleep for that core is set, the wake_request
signal is asserted for that core. See Other core signals on page 2-6 for more information about
the cpu_active signals.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-12
ID060914 Non-Confidential

Functional Description
See the ARM® Generic Interrupt Controller Architecture Specification version 3.0 for
information about power management, and about wakeup signals and their relation to the core
outputs.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-13
ID060914 Non-Confidential

Functional Description
2.4 Clocking and resets
All configurations of the GIC-500 use a single clock input, clk, and a single reset input, resetn.
See Clock and reset signals on page A-2.

Note
 Clock and reset signals apply to all interfaces on the GIC-500 and all interfaces must be
synchronous to this clock. Therefore, synchronizer cells might be required for certain inputs.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-14
ID060914 Non-Confidential

Functional Description
2.5 Constraints and limitations
ARM recommends that when ARE = 1 you avoid generating or disabling SPI interrupts that
target multiple cores at times when no core is able to handle them. That is, disable or avoid
generating such interrupts while all targeted CPU interfaces are either powered down or do not
have the interrupt group enabled. This is because interrupts that are generated in these
circumstances might cause higher power consumption inside GIC-500. The GIC architecture
specifies that such interrupts do not cause a wake_request to become asserted so, in the absence
of other stimulus, this state of higher power consumption persists.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 2-15
ID060914 Non-Confidential

Chapter 3
Programmers Model

This chapter describes the GIC-500 registers and provides information about programming the
device. It contains the following sections:
• About the GIC-500 programmers model on page 3-2.
• The GIC-500 register map on page 3-3.
• Distributor register summary on page 3-6.
• Distributor register descriptions on page 3-9.
• Distributor registers for message-based SPIs summary on page 3-11.
• Redistributor registers for control and physical LPIs summary on page 3-12.
• Redistributor register descriptions on page 3-14.
• Redistributor registers for SGIs and PPIs summary on page 3-15.
• ITS control register summary on page 3-17.
• ITS control register descriptions on page 3-19.
• ITS translation register summary on page 3-21.
• Implementation defined test registers in GICD page summary on page 3-22.
• Implementation defined test registers in the GICR page for PPIs and SGIs on page 3-25.
• Implementation defined test registers in the GITS control page summary on page 3-28.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-1
ID060914 Non-Confidential

Programmers Model
3.1 About the GIC-500 programmers model
The following sections describe the GIC-500 registers:
• Distributor register summary on page 3-6.
• Distributor registers for message-based SPIs summary on page 3-11.
• Redistributor registers for control and physical LPIs summary on page 3-12.
• Redistributor registers for SGIs and PPIs summary on page 3-15.
• ITS control register summary on page 3-17.
• ITS translation register summary on page 3-21.
• Implementation defined test registers in GICD page summary on page 3-22.
• Implementation defined test registers in the GICR page for PPIs and SGIs on page 3-25.
• Implementation defined test registers in the GITS control page summary on page 3-28.

The following information applies to the GIC-500 registers:

• The GIC-500 implements only memory-mapped registers.

• The GIC-500 has a single base address. This address is not fixed and can be different for
each particular system implementation.
The offset of each register from the base address is fixed.

• Accesses to reserved or unused address locations do not result in a bus error. Reads to
these locations return zero and writes are ignored.

• Unless otherwise stated in the accompanying text:
— Do not modify reserved register bits.
— Ignore reserved register bits on reads.
— A system reset or a powerup reset resets all register bits to 0.

• The width of the GIC-500 AXI4 slave port is 32 bits. The ARM® Generic Interrupt
Controller Architecture Specification version 3.0 defines the permitted sizes of access.
When byte access is permitted, halfword access is also permitted. When word access is
permitted, doubleword access is also permitted.
Byte or halfword accesses to registers that do not permit those access sizes are not
successful and return a SLVERR response.

Note
 The GIC-500 does not guarantee single-copy atomicity for doubleword accesses,

although this is guaranteed for each word in the doubleword. However, none of the
GIC-500 registers require atomic doubleword accesses for correct operation.

• The GIC-500 only supports data in little-endian format.

• The access types for the GIC-500 are as follows:
RO Read only.
RW Read and write.
WO Write only. Reads return an UNKNOWN value.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-2
ID060914 Non-Confidential

Programmers Model
3.2 The GIC-500 register map
All of the GIC-500 registers have names that provide a short mnemonic for the function of the
register. In these names:
• The first letters indicate the logical block that the register belongs to:

— GICD indicates a Distributor register.
— GICR indicates a Redistributor register.
— GITS indicates an Interrupt Translation Service register.

• The remaining letters are a mnemonic for the register, for example the GIC Distributor
Control Register is called GICD_CTLR.

All pages are 64KB in size to allow for best compatibility with ARMv8. The address map within
all pages is defined by the architecture specification. See the ARM® Generic Interrupt Controller
Architecture Specification version 3.0.

The number of bits of address used by the GIC-500 address map is:

18 + max(1, ceil(log2 (total_number_of_cpus)))

Note
 The write address bus might be larger than the result of this equation in certain cases. In these
cases the most significant bit (MSB) referred to here might not be the MSB of the write address
bus. See Effect of Device ID multiplexing on page 3-4 for more information.

The top bit of the address selects between two sets of pages. When the MSB is LOW, the set of
pages is as shown in Table 3-1:

Table 3-1 Lower half of address map

Address[MSB] Address[MSB-1:16] Page description Address range

0 0 Distributor registers (GICD_*)
See Distributor register summary on page 3-6.

0x00000-0x0FFFF

1 Distributor registers for message-based SPIs (GICD_*)
See Distributor registers for message-based SPIs summary on
page 3-11.

0x10000-0x1FFFF

2 Interrupt Translation Service control registers (GITS_*)
See ITS control register summary on page 3-17.

0x20000-0x2FFFF

3 Interrupt Translation Service register (GITS_TRANSLATER)
See ITS translation register summary on page 3-21.

0x30000-0x3FFFF

Otherwise Reserved
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-3
ID060914 Non-Confidential

Programmers Model
When the MSB is HIGH as shown in Table 3-2, the set of pages contains the Redistributor pages
in sequence. For example, the RDs that correspond to each core in the first cluster precede the
RDs that correspond to each core in the second cluster.

For example, if there are four clusters, each with four cores, then there are 18 + max(1, 4) = 22
address bits, and the RD control registers for cluster 1, core 0 are at an offset 0x280000-0x28FFFF,
with those for SGIs and PPIs at an offset of 0x29000-0x29FFFF.

3.2.1 Discovery

ARM recommends that the system provides the operating system with three pointers to the start
of the first Distributor, ITS and Redistributor pages, respectively. These three pages can be
checked against the discovery registers that start at offset 0xFFD0 for all of these pages to verify
they are pages of GIC registers. These registers allow discovery of whether the architecture
version and, for GIC-500, whether the page contains the Distributor, ITS, or Redistributor
registers. When this is known, additional information can be obtained from registers specific to
each page.

For Redistributors, ARM recommends that GICR_TYPER is examined to determine:
• Whether the implementation has two or four pages per Redistributor, based on the features

implemented. It can be inferred that GIC-500 has only two pages for each Redistributor
because the feature bits in that register indicate that it does not support virtual LPIs.

• Whether it is the last Redistributor in the series of pages.
• Which core it is the Redistributor for, based on affinity values.

This information allows you to iteratively search through all Redistributors, discovering all of
them in a generic manner.

The GITS_TYPER register in the GIC-500 indicates that you must program the ITS with linear
processor numbers, rather than physical target addresses. The GICR_TYPER contains the linear
processor number that you must use to reference a Redistributor when programming the ITS.

Legacy code can still discover the identifier that the GIC-500 uses to reference the current core
by reading from the GICD_ITARGETSR0.

3.2.2 Effect of Device ID multiplexing

GIC-500 supports transporting the Device ID over awaddr_s for GITS_TRANSLATER writes,
which reduces the size of awuser_s in the system. See AXI4 Slave Interface on page 2-3. This
is invisible to software and is a system integration decision.

Table 3-2 Upper half of address map

Address[MSB] Address[MSB-1:17] Address[16] Page description

1 Global core number.
This is a core number using the contiguous,
linear representation as depicted in
Figure 1-2 on page 1-4.

0 Redistributor registers for control and
physical LPIs (GICR_*).
See Redistributor registers for control and
physical LPIs summary on page 3-12

1 Redistributor registers for SGIs and PPIs
(GICR_*).
See Redistributor registers for SGIs and
PPIs summary on page 3-15.

Values that do not correspond to a core
number.

x Reserved.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-4
ID060914 Non-Confidential

Programmers Model
To support this, the address space required in the system might be larger than the normal address
map, with the normal address map occupying the lower part of the address space. Given the
maximum 20 bits of Device ID, this can only be the case for some systems with fewer than nine
cores.

If transporting the Device ID over the address bus, the total address space required is (in bits):

max(18 + max(1, ceil(log2(total_number_of_cpus))), device_id_width + 2)

3.2.3 GIC-500 register access and banking

For information on the register access and banking scheme, see the ARM® Generic Interrupt
Controller Architecture Specification version 3.0 The key characteristics of the scheme are:

• Some registers, such as the Distributor Control Register, GICD_CTLR, and the
Redistributor Control Register, GICR_CTLR, are banked by security. This provides
separate Secure and Non-secure copies of the registers. A Secure access to the address
accesses the Secure copy of the register, and a Non-secure access accesses the Non-secure
copy.

• In backwards compatibility mode, where ARE = 0 for the security state of the access,
when the GIC-500 is part of a multiprocessor system, registers associated with PPIs or
SGIs are banked to provide a separate copy for each connected core.

• Some registers, such as the Interrupt Group Registers, GICD_IGROUPRn, are only
accessible using Secure accesses.

• Non-secure accesses to registers or parts of a register that are only accessible to Secure
accesses are Read-As-Zero and Writes Ignored (RAZ/WI) for that part.

See the ARM® Generic Interrupt Controller Architecture Specification version 3.0.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-5
ID060914 Non-Confidential

Programmers Model
3.3 Distributor register summary
Address offsets are relative to the Distributor base address defined by the system memory map.
Unless otherwise stated in the register description, all GIC-500 registers are 32 bits wide.

Table 3-3 lists the Distributor registers in base offset order and provides a reference to the
register description that either this book or the ARM® Generic Interrupt Controller Architecture
Specification version 3.0 describes.

Offsets that are not shown are Reserved and RAZ/WI.

Table 3-3 Distributor register summary

Offset Namea Type Reset Descriptionb

0x0000 GICD_CTLR RW Configuration dependentc Distributor Control Register

0x0004 GICD_TYPER RO Configuration dependentd Interrupt Controller Type Register

0x0008 GICD_IIDR RO 0x0000043B Distributor Implementer Identification
Register on page 3-9

0x000C-0x003C - - - Reserved

0x0040 GICD_SETSPI_NSR WO - Non-secure SPI Set Register

0x0044 - - - Reserved

0x0048 GICD_CLRSPI_NSR WO - Non-secure SPI Clear Register

0x004C - - - Reserved

0x0050 GICD_SETSPI_SRe WO - Secure SPI Set Registerf

0x0054 - - - Reserved

0x0058 GICD_CLRSPI_SRe WO - Secure SPI Clear Registerf

0x005C-0x007C - - - Reserved

0x0080-0x00F8 GICD_IGROUPRn RW 0x00000000 Interrupt Group Registersf

0x0100 GICD_ISENABLERn RWgh SGIs and PPIs: 0x0000FFFFijkl Interrupt Set-Enable Registers

0x0104-0x0178 SPIs: 0x00000000

0x0180 GICD_ICENABLERn RWgm SGIs and PPIs: 0x0000FFFFnjkl Interrupt Clear-Enable Registers

0x0184-0x01F8 SPIs: 0x00000000

0x0200-0x0278 GICD_ISPENDRno RW 0x00000000 Interrupt Set-Pending Registers

0x0280-0x02F8 GICD_ICPENDRno RW 0x00000000 Interrupt Clear-Pending Registers

0x0300-0x0378 GICD_ISACTIVERno RW 0x00000000 Interrupt Set-Active Registers

0x0380-0x03F8 GICD_ICACTIVERno RW 0x00000000 Interrupt Clear-Active Registers

0x0400-0x07DC GICD_IPRIORITYRnp RW 0x00000000 Interrupt Priority Registers.

0x0800-0x081C GICD_ITARGETSRnp ROq - Interrupt Targets Registersr

0x0820-0x0BDC RW 0x00000000
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-6
ID060914 Non-Confidential

Programmers Model
0x0C00 GICD_ICFGRn RO SGIs: 0xAAAAAAAAl Interrupt Configuration Registers

0x0C04 RW PPIs: 0x00000000l

0x0C08-0x0CF4 RWs SPIs: 0x00000000

0x0D00-0x0D78 GICD_IGRPMODRne RW 0x00000000 Interrupt Group Modifier Registers

0x0E00-0x0EF4 GICD_NSACRne RW 0x00000000 Non-secure Access Control Registers

0x0F00 GICD_SGIRt WO - Software Generated Interrupt Register

0x0F10-0x0F1C GICD_CPENDSGIRnt RW 0x00000000 SGI Clear-Pending Registers

0x0F20-0x0F2C GICD_SPENDSGIRne RW 0x00000000 SGI Set-Pending Registers

0x0F30-0x60FC - - - Reserved

0x6100-0x7EF8 GICD_IROUTERn RW 0x0000000000000000 Interrupt Routing Registers, 64-bit

0x7F00-0xBFFC - - - Reserved

0xC000 GICD_ESTATUSR RO 0x00000000 Extended Status Register on page 3-22

0xC004 GICD_ERRTESTR WO - Error Test Register on page 3-23

0xC008-0xC080 - - - Reserved

0xC084-0xC0F8 GICD_SPISRn RO - GIC-500 Shared Peripheral Interrupt Status
Registers

0xC100- 0xFFCC - - - Reserved

0xFFD0 GICD_PIDR4 RO 0x00000044 Peripheral ID 4 Register

0xFFD4 GICD_PIDR5 RO 0x00000000 Peripheral ID 5 Register

0xFFD8 GICD_PIDR6 RO 0x00000000 Peripheral ID 6 Register

0xFFDC GICD_PIDR7 RO 0x00000000 Peripheral ID 7 Register

0xFFE0 GICD_PIDR0 RO 0x00000092u Peripheral ID 0 Register

0xFFE4 GICD_PIDR1 RO 0x000000B4 Peripheral ID 1 Register

0xFFE8 GICD_PIDR2 RO 0x0000003B Peripheral ID2 Register on page 3-9

0xFFEC GICD_PIDR3 RO 0x00000000 Peripheral ID 3 Register

0xFFF0 GICD_CIDR0 RO 0x0000000D Component ID 0 Register

0xFFF4 GICD_CIDR1 RO 0x000000F0 Component ID 1 Register

0xFFF8 GICD_CIDR2 RO 0x00000005 Component ID 2 Register

0xFFFC GICD_CIDR3 RO 0x000000B1 Component ID 3 Register

a. n denotes that there are multiple registers.
b. For the description of the registers that are not specific to the GIC-500, see the ARM® Generic Interrupt Controller Architecture Specification

version 3.0.

Table 3-3 Distributor register summary (continued)

Offset Namea Type Reset Descriptionb
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-7
ID060914 Non-Confidential

Programmers Model
c. The reset value depends on the configuration of the GIC-500.
In systems that include Security Support, the values of the configuration dependent fields of GICD_CTLR are:
DS, bit[6] - 0.
ARE_NS, bit[5] - no GICv2 backwards compatibility support included.
ARE_S, bit[4] - no GICv2 backwards compatibility support included.
In systems that do not include Security Support, the values of the configuration dependent fields of GICD_CTLR are:
DS, bit[6] - 1.
ARE, bit[4] - no GICv2 backwards compatibility support included.

d. The reset value depends on the configuration of the GIC-500. The values of the configuration dependent fields of the GICD_TYPER are:
A3V, bit[24] - 0.
IDbits, bits[23:19] - 0b01111.
DVIS, bit[18] - 0.
LPIS, bit[17] - ITS and LPI support included.
MBIS, bit[16] - 1.
LSPI, bits[15:11] - 0b00000.
SecurityExtn, bit[10] - Security Support included.
CPUNumber, bits[7:5] - the number of cores in the system, saturated to eight, minus one.
ITLinesNumber, bits[4:0] - the Number of SPIs divided by 32.

e. The existence of this register depends on the configuration of the GIC-500. If Security Support is not included, this register does not exist.
f. This register is only accessible from a Secure access.
g. Writes to bits corresponding to the SGIs are ignored.
h. GICD_ISENABLER0 is a mixed type register.
i. GICD_ISENABLER0 SGI bits are RO, PPI bits are RW.
j. The reset value for the register that contains the SGI and PPI interrupts is 0x0000FFFF because SGIs are always enabled. However, SGIs are

Group 0 on reset, so the reset value for Non-secure reads is 0x00000000.
k. In configurations where ARE is not programmable, the reset value for SGIs is zero.
l. The existence of this register depends on the configuration of the GIC-500. If GICv2 backwards compatibility support is not included, this

register does not exist.
m. GICD_ICENABLER0 is a mixed type register.
n. GICD_ICENABLER0 SGI bits are RO, PPI bits are RW.
o. The existence of the first of these registers depends on the configuration of the GIC-500. If GICv2 backwards compatibility support is not

included, the first register does not exist.
p. The existence of the first eight of these registers depends on the configuration of the GIC-500. If GICv2 backwards compatibility support is

not included, the first eight registers do not exist.
q. The registers that contain the SGI and PPI interrupts are read-only and the value is the core number of the current access. It is encoded in

an 8-bit one-hot field, for each implemented interrupt, and encoded as zero for interrupts that are not implemented. For more information on
core target field bit values, see the ARM® Generic Interrupt Controller Architecture Specification version 3.0.

r. In a system with a single core, these registers are RAZ/WI. For more information, see the ARM® Generic Interrupt Controller Architecture
Specification version 3.0.

s. The even bits of this register are RO. For more information, see the ARM® Generic Interrupt Controller Architecture Specification version
3.0.

t. The existence of this register depends on the configuration of the GIC-500. If GICv2 backwards compatibility support is not included, this
register does not exist.

u. The value of PIDR0 differs between the GICD, GICR, and GITS versions, and so you can tell the difference between these pages.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-8
ID060914 Non-Confidential

Programmers Model
3.4 Distributor register descriptions
This section describes the Distributor registers whose implementation is specific to the
GIC-500. The ARM® Generic Interrupt Controller Architecture Specification version 3.0
describes all the other registers.

3.4.1 Distributor Implementer Identification Register

The GICD_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the
Distributor.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-3 on page 3-6.

Figure 3-1 shows the bit assignments.

Figure 3-1 GICD_IIDR bit assignments

Table 3-4 shows the bit assignments.

3.4.2 Peripheral ID2 Register

The GICD_PIDR2 characteristics are:

Purpose Defines the GIC architecture version with which the GIC-500 complies.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-5 on page 3-10.

Figure 3-2 on page 3-10 shows the GICD_PIDR2 bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Table 3-4 GICD_IIDR bit assignments

Bits Name Description

[31:24] ProductID Indicates the product ID:
0x00 GIC-500

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision or variant of the product:
0x0 Variant number

[15:12] Revision Indicates the minor revision of the product:
0x0 Revision number

[11:0] Implementer Indicates the implementer:
0x43B ARM
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-9
ID060914 Non-Confidential

Programmers Model
Figure 3-2 GICD_PIDR2 bit assignments

Table 3-5 shows the GICD_PIDR2 bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Table 3-5 GICD_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-500 complies:
0x3 version 3.0.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 JEP106 identity code [6:4].
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-10
ID060914 Non-Confidential

Programmers Model
3.5 Distributor registers for message-based SPIs summary
Table 3-6 lists the message-based SPI registers.

Table 3-6 Distributor registers for message-based SPI register summary

Offset Name Type Reset Descriptiona

0x0000-0x003C - - - Reserved

0x0040 GICD_SETSPI_NSR WO - Aliased Non-secure SPI Set Register

0x0044 - - - Reserved

0x0048 GICD_CLRSPI_NSR WO - Aliased Non-secure SPI Clear Register

0x004C - - - Reserved

0x0050 GICD_SETSPI_SRb WO - Aliased Secure SPI Set Registerc

0x0054 - - - Reserved

0x0058 GICD_CLRSPI_SRb WO - Aliased Secure SPI Clear Registerc

0x005C-0xFFFC - - - Reserved

a. For the description of the registers that are not specific to the GIC-500, see the ARM® Generic Interrupt Controller Architecture Specification
version 3.0.

b. The existence of this register depends on the configuration of the GIC-500. If Security Support is not included, this register does not exist.
c. This register is only accessible from a Secure access.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-11
ID060914 Non-Confidential

Programmers Model
3.6 Redistributor registers for control and physical LPIs summary
In GICv3 and GICv4, these registers start from RD_base and the offset of each register is
defined in Table 3-7.

Offsets that are not shown are Reserved and RAZ/WI.

Table 3-7 Redistributor register summary

Offset Namea Type Reset Descriptionb

0x0000 GICR_CTLR RW 0x00000000 Redistributor Control Register.

0x0004 GICR_IIDR RO 0x0000043B Redistributor ID Register.

0x0008-0x000C GICR_TYPER RO Configuration dependentc Redistributor Type Register, 64-bit.

0x0010 - - - Reserved.

0x0014 GICR_WAKER RW 0x00000006 Power Management Control Register.

0x0018-0x006C - - - Reserved.

0x0070-0x0074 GICR_PROPBASERd RW 0x0000000000000000 Common LPI configuration table base register,
64-bit.

0x0078-0x007C GICR_PENDBASERde RW 0x0000000000000000 LPI pending table base register, 64-bit.

0x0080-0xFFCC - - - Reserved.

0xFFD0 GICR_PIDR4 RO 0x00000044 Peripheral ID 4 Register.

0xFFD4 GICR_PIDR5 RO 0x00000000 Peripheral ID 5 Register.

0xFFD8 GICR_PIDR6 RO 0x00000000 Peripheral ID 6 Register.

0xFFDC GICR_PIDR7 RO 0x00000000 Peripheral ID 7 Register.

0xFFE0 GICR_PIDR0 RO 0x00000093 Peripheral ID 0 Register.

0xFFE4 GICR_PIDR1 RO 0x000000B4 Peripheral ID 1 Register.

0xFFE8 GICR_PIDR2 RO 0x0000003B Peripheral ID2 Register on page 3-14.

0xFFEC GICR_PIDR3 RO 0x00000000 Peripheral ID 3 Register.

0xFFF0 GICR_CIDR0 RO 0x0000000D Component ID 0 Register.

0xFFF4 GICR_CIDR1 RO 0x000000F0 Component ID 1 Register.

0xFFF8 GICR_CIDR2 RO 0x00000005 Component ID 2 Register.

0xFFFC GICR_CIDR3 RO 0x000000B1 Component ID 3 Register.

a. n corresponds to the number of a CPU interface.
b. For the description of the registers that are not specific to the GIC-500, see the ARM® Generic Interrupt Controller Architecture Specification

version 3.0.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-12
ID060914 Non-Confidential

Programmers Model
c. The reset value depends on the configuration of the GIC-500. The values of the configuration dependent fields of the GICR_TYPER are:
A3, bits[63:56] - 0.
A2, bits[55:48] - 0.
A1, bits[47:40] - the Affinity Level 1 value for this Redistributor.
A0, bits[39:32] - the Affinity Level 0 value for this Redistributor.
Processor Number, bits [23:8] - the linear Processor Number for this Redistributor.
DPGS, bit[5] - 0
Last, bit[4] - this bit is only set to one for the last Redistributor in the memory-map of the configured GIC-500.
Distributed, bit[3] - 0.
VLPIS, bit[1] - 0.
PLPIS, bit[0] - ITS and LPI support included.

d. The existence of this register depends on the configuration of the GIC-500. If ITS and LPI support is not included, this register does not exist.
e. ARM recommends that if possible, you set the GICR_PENDBASER Pending Table Zero bit to one. This reduces the power and time taken

during initialization.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-13
ID060914 Non-Confidential

Programmers Model
3.7 Redistributor register descriptions
This section only describes the Redistributor registers whose implementation is specific to the
GIC-500. The ARM® Generic Interrupt Controller Architecture Specification version 3.0
describes all of the other registers.

3.7.1 Peripheral ID2 Register

The GICR_PIDR2 characteristics are:

Purpose Defines the GIC architecture version with which the GIC-500 complies.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-7 on page 3-12.

Figure 3-3 shows the bit assignments.

Figure 3-3 GICR_PIDR2 bit assignments

Table 3-8 shows the bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Table 3-8 GICR_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-500 complies:
0x3 version 3.0.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 JEP106 identity code [6:4].
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-14
ID060914 Non-Confidential

Programmers Model
3.8 Redistributor registers for SGIs and PPIs summary
Table 3-9 shows the address map of the Redistributor registers for SGIs and PPIs Registers.

Offsets that are not shown are Reserved and RAZ/WI.

Note
 These registers are all Reserved and RAZ/WI when using backwards compatibility mode.

Table 3-9 Redistributor registers for SGIs and PPIs summary

Offset Name Type Reset Description

0x0000-0x007C - - - Reserved

0x0080 GICR_IGROUPR0 RW 0x00000000 Interrupt Group Registersa

0x0084-0x0FFC - - - Reserved

0x0100 GICR_ISENABLER0 RW 0x00000000 Interrupt Set-Enable Registers

0x0104-0x017C - - - Reserved

0x0180 GICR_ICENABLER0 RW 0x00000000 Interrupt Clear-Enable Registers

0x0184-0x01FC - - - Reserved

0x0200 CICR_ISPENDR0 RW 0x00000000 Interrupt Set-Pending Registers

0x0204-0x027C - - - Reserved

0x0280 GICR_ICPENDR0 RW 0x00000000 Interrupt Clear-Pending Registers

0x0284-0x02FC - - - Reserved

0x0300 GICR_ISACTIVER0 RW 0x00000000 Interrupt Set-Active Registers

0x0304-0x037C - - - Reserved

0x0380 GICR_ICACTIVER0 RW 0x00000000 Interrupt Clear-Active Registers

0x0384-0x03FC - - - Reserved

0x0400-0x041C GICR_IPRIORITYRn RW 0x00000000 Interrupt Priority Registers

0x0420-0x0BFC - - - Reserved

0x0C00 GICR_ICFGRn RO SGIs: 0xAAAAAAAAb Interrupt Configuration Registers

0x0C04 RW PPIs: 0x00000000

0x0C08-0x0CFC - - - Reserved

0x0D00 GICR_IGRPMODR0 RW 0x00000000 Interrupt Group Modifier Registers

0x0D04-0x0DFC - - - Reserved

0x0E00 GICR_NSACR RW 0x00000000 Non-secure Access Control Registers

0x0E04-0xBFFC - - - Reserved
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-15
ID060914 Non-Confidential

Programmers Model
0xC000 GICR_MISCSTATUSR RO - Miscellaneous Status Register on page 3-25

0xC080 GICR_PPISR RO - Private Peripheral Interrupt Status Register on
page 3-26

0xC084-0xFFFC - - - Reserved

a. This register is only accessible from a Secure access.
b. When GIC-500 is configured to have ARE as programmable, this register is Reserved and RAZ/WI if ARE is 0 for the security state of the

SGI.

Table 3-9 Redistributor registers for SGIs and PPIs summary (continued)

Offset Name Type Reset Description
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-16
ID060914 Non-Confidential

Programmers Model
3.9 ITS control register summary
Table 3-10 shows the address map of the ITS control registers.

Offsets that are not shown are Reserved and RAZ/WI.

Note
 This page does not exist in configurations of the GIC-500 without LPI and ITS support.

Table 3-10 ITS control register summary

Offset Namea Type Reset Descriptionb

0x0000 GITS_CTLR RW 0x80000000 ITS Control Register

0x0004 GITS_IIDR RO 0x0000043B ITS Identification Register on page 3-19

0x0008-0x000C GITS_TYPER RO Configuration dependentc ITS Type Register, 64-bit

0x0010-0x007C - - - Reserved

0x0080-0x0084 GITS_CBASER RW 0x0000000000000000 The command queue control register, 64-bit

0x0088-0x008C GITS_CWRITER RW 0x0000000000000000 The command queue write pointer, 64-bit

0x0090-0x0094 GITS_CREADR RO 0x0000000000000000 The command queue read pointer, 64-bit

0x0098-0x00FC - - - Reserved

0x0100-0x0104 GITS_BASER0 RW 0x0107000000000000 ITS table control register, 64-bit

0x0108-0xBFFC - - - Reserved

0xC000 GITS_TRKCTLR WO - Tracking Control Register on page 3-28

0xC004 GITS_TRKR RO 0x00000000 Tracking Status Register on page 3-29

0xC008 GITS_TRKDIDR RO 0x00000000 Debug Tracked DID Register on page 3-30

0xC00C GITS_TRKPIDR RO 0x00000000 Debug Tracked PID Register on page 3-31

0xC010 GITS_TRKVIDR RO 0x00000000 Debug Tracked ID Register on page 3-31

0xC014 GITS_TRKTGTR RO 0x00000000 Debug Tracked Target Register on page 3-32

0xC018 GITS_TRKICR RO 0x00000000 Debug ITE Cache Statistics on page 3-32

0xC01C GITS_TRKLCR RO 0x00000000 Debug LPI Cache Statistics on page 3-33

0xC020-0xFFCC - - - Reserved

0xFFD0 GITS_PIDR4 RO 0x00000044 Peripheral ID 4 Register

0xFFD4 GITS_PIDR5 RO 0x00000000 Peripheral ID 5 Register

0xFFD8 GITS_PIDR6 RO 0x00000000 Peripheral ID 6 Register

0xFFDC GITS_PIDR7 RO 0x00000000 Peripheral ID 7 Register

0xFFE0 GITS_PIDR0 RO 0x00000094 Peripheral ID 0 Register

0xFFE4 GITS_PIDR1 RO 0x000000B4 Peripheral ID 1 Register

0xFFE8 GITS_PIDR2 RO 0x0000003B Peripheral ID2 Register on page 3-19
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-17
ID060914 Non-Confidential

Programmers Model
0xFFEC GITS_PIDR3 RO 0x00000000 Peripheral ID 3 Register

0xFFF0 GITS_CIDR0 RO 0x0000000D Component ID 0 Register

0xFFF4 GITS_CIDR1 RO 0x000000F0 Component ID 1 Register

0xFFF8 GITS_CIDR2 RO 0x00000005 Component ID 2 Register

0xFFFC GITS_CIDR3 RO 0x000000B1 Component ID 3 Register

a. n corresponds to the number of a CPU interface.
b. For the description of the registers that are not specific to the GIC-500, see the ARM® Generic Interrupt Controller Architecture

Specification version 3.0.
c. The reset value depends on the configuration of the GIC-500. See the ARM® Generic Interrupt Controller Architecture Specification version

3.0 GITS_TYPER, ITS Type register for more information on the acronyms. The values of the configuration dependent fields of the
GITS_TYPER register are:
HCC, bits[31:24] - the number of cores in the system, plus one.
PTA, bit[19] - 0.
SEIS, bit[18] - 0.
Devbits, bits[17:13] - ITS Device ID width, minus one.
IDbits, bits[12:8] - 0b01111.
ITT Entry size, bits[7:4] - 0b0111.
Distributed, bit[3] - 0.
Virtual, bit[1] - 0.
Physical, bit[0] - 1.

Table 3-10 ITS control register summary (continued)

Offset Namea Type Reset Descriptionb
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-18
ID060914 Non-Confidential

Programmers Model
3.10 ITS control register descriptions
This section only describes the Redistributor registers whose implementation is specific to the
GIC-500. The ARM® Generic Interrupt Controller Architecture Specification version 3.0.
describes all of the other registers.

3.10.1 ITS Identification Register

The GITS_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the
Redistributor.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-9 on page 3-15.

Figure 3-4 shows the bit assignments.

Figure 3-4 GITS_IIDR bit assignments

Table 3-11 shows the bit assignments.

3.10.2 Peripheral ID2 Register

The GITS_PIDR2 characteristics are:

Purpose Defines the GIC architecture version with which the GIC-500 complies.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-10 on page 3-17.

Figure 3-5 on page 3-20 shows the GITS_PIDR2 bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Table 3-11 GITS_IIDR bit assignments

Bits Name Description

[31:24] ProductID Indicates the product ID:
0x00 GIC-500

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision or variant of the product:
0x0 Variant number

[15:12] Revision Indicates the minor revision of the product:
0x0 Revision number

[11:0] Implementer Indicates the implementer:
0x43B ARM
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-19
ID060914 Non-Confidential

Programmers Model
Figure 3-5 GITS_PIDR2 bit assignments

Table 3-12 shows the GITS_PIDR2 bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Table 3-12 GITS_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-500 complies:
0x3 version 3.0

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identify code is used

[2:0] DES_1 JEP106 identify code [6:4]
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-20
ID060914 Non-Confidential

Programmers Model
3.11 ITS translation register summary
Table 3-13 shows the address map of the ITS translation registers.

Offsets that are not shown are Reserved and RAZ/WI.

Note
 This page does not exist in configurations of the GIC-500 without LPI and ITS support.

Table 3-13 ITS translation register

Offset Name Type Reset Descriptiona

0x0000-0x003C - - - Reserved

0x0040 GITS_TRANSLATER WO - ITS Translation Register

0x0044-0xFFFC - - - Reserved

a. For the description of the registers that are not specific to the GIC-500, see the ARM® Generic Interrupt Controller Architecture Specification
version 3.0.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-21
ID060914 Non-Confidential

Programmers Model
3.12 Implementation defined test registers in GICD page summary
Table 3-14 shows the address map of the Distributor test registers in the GICD page. You must
not use these registers in software that is designed to be portable.

Offsets that are not shown are Reserved and RAZ/WI.

3.12.1 Extended Status Register

The GICD_ESTATUSR characteristics are:

Purpose This register guarantees that interrupt reprogramming is complete. Use
this register to support legacy software that requires this guarantee so that
it works with the GIC-500.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-14.

Figure 3-6 shows the bit assignments.

Figure 3-6 GICD_ESTATUSR bit assignments

Table 3-14 Implementation defined test register summary

Offset Name Type Reset Description

0xC000 GICD_ESTATUSR RO 0x00000000 Extended Status Register

0xC004 GICD_ERRTESTR WO - Error Test Register on page 3-23

0xC084-0xC0F8 GICD_SPISRn RO - Shared Peripheral Interrupt Status Register on
page 3-24

31 30 0

SRWP

Reserved
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-22
ID060914 Non-Confidential

Programmers Model
Table 3-15 shows the bit assignments.

3.12.2 Error Test Register

The GICD_ERRTESTR characteristics are:

Purpose This register tests the integration of the ecc_fatal and axim_err signals.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-14 on page 3-22.

Figure 3-7 shows the bit assignments.

Figure 3-7 GICD_ERRTESTR bit assignments

Table 3-16 shows the bit assignments.

Table 3-15 GICD_ESTATUSR bit assignments

Bits Name Description

[31] SRWP Super Register Write Pending.
This bit denotes whether any update that changes the state of any interrupt has taken effect. If the change
has not taken effect the bit reads as 0b1, else the bit reads as 0b0.
You can use this bit to provide guarantees required by legacy software. See Backwards compatibility on
page 2-10 for more information.
This bit reads as 0b1 until any updates to the following interrupt attributes are guaranteed to be observed by
all cores:
• Distributor group enable.
• Interrupt enable.
• Group.
• Priority.
• Targets.

[30:0] - Reserved.

31 1 0

Reserved

AXIM_err
ECC_fatal

Table 3-16 GICD_ERRTESTR bit assignments

Bits Name Description

[31:2] - Reserved.

[1]a AXIM_err Write 0b1 to this field to drive the axim_err pin to 0b1 for 1 cycle. You can use this bit for an
integration test of the axim_err signal.

[0] ECC_fatal Write 0b1 to this field to drive the ecc_fatal pin to 0b1 for 1 cycle. You can use this bit for an
integration test on the ecc_fatal signal.

a. The existence of this field depends on the configuration of the GIC-500. If ITS and LPI support is not included, this field is Reserved and
RAZ/WI.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-23
ID060914 Non-Confidential

Programmers Model
3.12.3 Shared Peripheral Interrupt Status Register

The GICD_SPISRn characteristics are:

Purpose Enables a core to access the status of the SPI wire inputs on the Distributor.

Note
 In systems with two security states, Non-secure accesses can only read the

status of Non-secure Group 1 interrupts.

Usage constraints The Distributor provides up to 30 registers to support 960 SPIs. If you
configure the GIC-500 to use fewer than 960 SPIs, it reduces the number
of registers accordingly. For locations where interrupts are not
implemented, the register is RAZ/WI.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-14 on page 3-22.

Figure 3-8 shows the bit assignments.

Figure 3-8 GICD_SPISRn bit assignments

Table 3-17 shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GICD_SPISR[0] for spis[63:32]

3263 3334

GICD_SPISR[1] for spis[95:64]

127

GICD_SPISR[2] for spis[127:96]

969798

GICD_SPISR[29] for spis[991:960]

.

.

960

.

.

0x1D08

0x1D0C

0x1D78

991

6495 6566

0x1D04

Table 3-17 GICD_SPISRn bit assignments

Bits Name Function

[31:0] SPIS[N+31:N] Returns the status of the spis inputs on the Distributor. For each bit:
0 spis is LOW.
1 spis is HIGH.

Note
 • The spis that a bit refers to depends on its bit position and the base address offset of the Shared

Peripheral Interrupt Status Registers, GICD_SPISRn.
• These bits return the actual status of the spis input signals. The Interrupt Set-Pending Register,

GICD_ISPENDRn and Interrupt Clear-Pending Register, GICD_ICPENDRn, can also provide
the spis status but because you can write to these registers, they might not contain the actual status
of the spis signals.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-24
ID060914 Non-Confidential

Programmers Model
3.13 Implementation defined test registers in the GICR page for PPIs and SGIs
Table 3-18 shows the address map for the implementation defined test registers in the GICR
page for PPIs and SGIs.

Offsets that are not shown are Reserved and RAZ/WI.

3.13.1 Miscellaneous Status Register

The GICR_MISCSTATUSR characteristics are:

Purpose Use this register to test the integration of the cpu_active input signals and
to debug the CPU interface enables as seen by the GIC-500.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-18.

Figure 3-9 shows the bit assignments.

Figure 3-9 GICR_MISCSTATUSR bit assignments

Table 3-19 shows the bit assignments.

Table 3-18 Implementation defined test register summary

Offset Name Type Reset Description

0xC000 GICR_MISCSTATUSR RO - Miscellaneous Status Register

0xC080 GICR_PPISR RO - Private Peripheral Interrupt Status Register on page 3-26

31 30 3 2 1 0

CPU active state EnableGrp1 Secure
EnableGrp1 Non-secure

Reserved

EnableGrp0

Table 3-19 GICR_MISCSTATUSR bit assignments

Bits Name Description

[31]a CPU active state This bit returns the actual status of the cpu_active signal for the core corresponding to the
Redistributor whose register is being read. That is, this field is one when the corresponding
cpu_active input is HIGH.

[30:3] - Reserved.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-25
ID060914 Non-Confidential

Programmers Model
3.13.2 Private Peripheral Interrupt Status Register

The GICR_PPISR characteristics are:

Purpose This register enables a core to access the status of the PPI inputs to the
Distributor.

Note
 In systems with two security states, Non-secure accesses can only read the

status of Non-secure Group 1 interrupts.

Usage constraints There are no usage constraints.

Configurations Always present in the GIC-500.

Attributes See the register summary in Table 3-18 on page 3-25.

Figure 3-10 shows the bit assignments.

Figure 3-10 GICR_PPISR bit assignments

[2]b EnableGrp1 Secure In systems with two security states enabled, that is, when GICD_CTLR.DS is set to zero:
• For Secure reads, returns the Group 1 Secure CPU interface enable.
• For Non-secure reads, returns zero.
In systems with only a single security state enabled, that is, when GICD_CTLR.DS is set to one:
• Returns zero.

[1]b EnableGrp1
Non-secure

In systems with two security states enabled, that is, when GICD_CTLR.DS is set to zero:
• For Secure reads, returns the Group 1 Non-secure CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS is one, returns the Group 1 Non-secure

CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS is zero, returns zero.
In systems with only a single security state enabled, that is, when GICD_CTLR.DS is set to one:
• Returns the Group 1 CPU interface enable.

[0]b EnableGrp0 In systems with two security states enabled, that is, when GICD_CTLR.DS is set to zero:
• For Secure reads, returns the Group 0 CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS is zero, returns the Group 1 Non-secure

CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS is one, returns zero.
In systems with only a single security state enabled, that is, when GICD_CTLR.DS is set to one:
• Returns the Group 0 CPU interface enable.

a. This bit is undefined when ProcessorSleep or ChildrenAsleep is set for a core, because the core is presumed to be powered down.
b. These bits are a copy of the CPU interface group enables for the core corresponding to this Redistributor. These copies are undefined when

ProcessorSleep or ChildrenSleep is set for a core, because the core is presumed to be powered down. These copies, which are maintained by
Upstream Write packets, can become de-synchronized after an incorrect powerdown sequence. This debug register enables you to debug this
scenario. For more information see the ARM® Generic Interrupt Controller Architecture Specification version 3.0.

Table 3-19 GICR_MISCSTATUSR bit assignments (continued)

Bits Name Description

ReservedPPI status

031 16 15
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-26
ID060914 Non-Confidential

Programmers Model
Table 3-20 shows the bit assignments.

Table 3-20 GICR_PPISR bit assignments

Bits Name Description

[31:16] PPI status These bits return the actual status of the PPI input signals. That is, each bit is one when the
corresponding PPI input is HIGH for the core whose register is being read. The position of
each bit corresponds to the interrupt ID of the PPI. For example, bit[30] corresponds to PPI ID
30. The Interrupt Set-Pending Register, GICR_ISPENDR, and Interrupt Clear-Pending
Register, GICR_ICPENDR, can also provide the PPI status but because you can write to these
registers, they might not contain the true status of the PPI input signals.

[15:0] - Reserved
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-27
ID060914 Non-Confidential

Programmers Model
3.14 Implementation defined test registers in the GITS control page summary
Table 3-21 shows the address map of the implementation defined test registers in the GITS
control page.

Offsets that are not shown are Reserved and RAZ/WI.

3.14.1 Tracking Control Register

The GITS_TRKCTLR characteristics are:

Purpose Use this register to control LPI related debug and performance
measurement features for the GIC-500.

Usage constraints There are no usage constraints.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21.

Figure 3-11 shows the bit assignments.

Figure 3-11 GITS_TRKCTLR bit assignments

Table 3-21 Implementation defined test register summary

Offset Name Type Reset Description

0xC000 GITS_TRKCTLR WO - Tracking Control Register

0xC004 GITS_TRKR RO 0x00000000 Tracking Status Register on page 3-29

0xC008 GITS_TRKDIDR RO 0x00000000 Debug Tracked DID Register on page 3-30

0xC00C GITS_TRKPIDR RO 0x00000000 Debug Tracked PID Register on page 3-31

0xC010 GITS_TRKVIDR RO 0x00000000 Debug Tracked ID Register on page 3-31

0xC014 GITS_TRKTGTR RO 0x00000000 Debug Tracked Target Register on page 3-32

0xC018 GITS_TRKICR RO 0x00000000 Debug ITE Cache Statistics on page 3-32

0xC01C GITS_TRKLCR RO 0x00000000 Debug LPI Cache Statistics on page 3-33

31 2 1 0

Reserved

LPI track
Cache count reset
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-28
ID060914 Non-Confidential

Programmers Model
Table 3-22 shows the bit assignments.

3.14.2 Tracking Status Register

The GITS_TRKR characteristics are:

Purpose This register provides some of the tracked state that is triggered by the LPI
track bit in the GITS_TRKCTLR register. Use this register to find out
whether an LPI was generated by the ITS and, if not, why it was not
generated. You must examine the least significant bits first.

Usage constraints There are no usage constraints.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-12 shows the bit assignments.

Figure 3-12 GITS_TRKR bit assignments

Table 3-22 GITS_TRKCTRL bit assignments

Bits Name Description

[31:2] - Reserved

[1] LPI track Write 0b1 to capture information about the next interrupt that the ITS generated, or failed to generate
because of misprogramming.
This information can then be inspected using the other registers in this page. Before using this bit, you
must:
• Enable GITS_CTLR.
• Program GITS_BASER0 and GITS_CBASER to be valid.
• Program GICR_WAKER to not have Sleep set.
• Ensure that GICR_WAKER is also not Quiescent.

Note
 This register also captures certain ITS commands. Therefore ARM recommends that it is only used when
the ITS command queue is empty.

[0] Cache count reset Write 0b1 to reset the cache hit and miss counters in GITS_TRKICR and GITS_TRKLCR.

Reserved

31 4 3 2 1 0

LPI tracked
Device ID out of range

567

Device ID unmapped
Input ID out of range

No translation
Target out of range

PID out of range
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-29
ID060914 Non-Confidential

Programmers Model
Table 3-23 shows the bit assignments.

3.14.3 Debug Tracked DID Register

The GITS_TRKDIDR characteristics are:

Purpose This register returns the Device ID of the LPI that is tracked as a result of
the LPI track bit in the GITS_TRKCTLR register being set to 0b1.

Usage constraints This register is valid when the LPI tracked field in GITS_TRKR is 1.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-13 shows the bit assignments.

Figure 3-13 GITS_SPISRn bit assignments

Table 3-23 GITS_TRKR bit assignments

Bits Name Description

[31:7] - Reserved

[6] PID out of range When it is 1, this bit indicates that the LPI PID is larger than that allowed by the IDbits field in
the GICR_PROPBASER. This bit is only valid if bits [4:1] are zero and bit [0] is 1.

[5] Target out of range When it is 1, indicates that target collection has not been successfully mapped using MAPC, or
that the target core does not have LPIs enabled in GICR_CTLR. This bit is only valid if bits [4:1]
are zero and bit [0] is 1.

[4] No translation When it is 1, indicates that no valid MAPI or MAPVI has successfully been performed for this
combination of input ID and Device ID. For example, the command might have failed because
of an illegal collection or PID. This bit is only valid if bits [3:1] are zero and bit [0] is 1.

[3] Input ID out of range When it is 1, indicates that the input ID is larger than that allowed by the Device ID, which is set
during the MAPD command, or it is larger than 65535. This bit is only valid if bits [2:1] are zero
and bit [0] is 1.

[2] Device ID unmapped When it is 1, indicates that no valid MAPD has successfully been performed for this Device ID.
This bit is only valid if bit [1] is zero and bit [0] is 1.

[1] Device ID out of range When it is set to 1, indicates that the Device ID is larger than that allowed by the Size and Page
Size in GITS_BASER0, or larger than the number of Device IDs configured.
See Configurable options on page 1-9 for more information.

[0] LPI tracked When it is 1, the LPI tracking initiated by the LPI track bit in the GITS_TRKCTLR register is
completed and the contents of the Debug Tracked registers are valid.

Device ID of the LPIReserved

0192031
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-30
ID060914 Non-Confidential

Programmers Model
Table 3-24 shows the bit assignments.

3.14.4 Debug Tracked PID Register

The GITS_TRKPIDR characteristics are:

Purpose This register returns the ID of the LPI that is tracked as a result of the LPI
track bit in the GITS_TRKCTLR register being set to 0b1.

Usage constraints This register is only valid when the LPI tracked field in GITS_TRKR is 1
and none of the other bits in the register is 1.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-14 shows the bit assignments.

Figure 3-14 GITS_TRKPIDR bit assignments

Table 3-25 shows the bit assignments.

3.14.5 Debug Tracked ID Register

The GITS_TRKVIDR characteristics are:

Purpose This register returns the ID received by the ITS that is tracked as a result
of LPI track bit in the GITS_TRKCTLR register being set to 0b1.

Usage constraints This register is valid when the LPI tracked field in GITS_TRKR is 1.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-15 on page 3-32 shows the bit assignments.

Table 3-24 GITS_SPISRn bit assignments

Bits Name Function

[31:20] - Reserved

[19:0] Device ID of LPI The Device ID for the interrupt that was tracked.

ID of the LPIReserved

031 16 15

Table 3-25 GITS_TRKPIDR bit assignments

Bits Name Function

[31:16] - Reserved.

[15:0] ID of LPI The ID after translation for an interrupt that was tracked and generated an LPI successfully. This is the
PID of the generated LPI.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-31
ID060914 Non-Confidential

Programmers Model
Figure 3-15 GITS_TRKVIDR bit assignments

Table 3-26 shows the bit assignments.

3.14.6 Debug Tracked Target Register

The GITS_TRKTGTR characteristics are:

Purpose This register returns the target core of the LPI that is tracked as a result of
the LPI track bit in the GITS_TRKCTLR register being set to 0b1.

Usage constraints This register is only valid when the LPI tracked field in GITS_TRKR is 1
and none of the other bits in the register is 1.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-16 shows the bit assignments.

Figure 3-16 GITS_TRKTGTR bit assignments

Table 3-27 shows the bit assignments.

3.14.7 Debug ITE Cache Statistics

The GITS_TRKICR characteristics are:

Purpose This register gives the count of hits and misses in the ITE cache since the
last time the Cache Count Reset bit in the GITS_TRKCTLR register was
set to 0b1.

ID received by the ITSReserved

031 16 15

Table 3-26 GITS_TRKVIDR bit assignments

Bits Name Function

[31:16] - Reserved

[15:0] ID received by ITS The ID before translation of the interrupt that was tracked

Target core of the
LPIReserved

031 67

Table 3-27 GITS_TRKTGTR bit assignments

Bits Name Function

[31:7] - Reserved

[6:0] Target core of the LPI The target core for an interrupt that was tracked and generated an LPI successfully. This is given
using the linerar representation described in Topologies and terminology on page 1-4. The linear
representation also corresponds to the Processor Number field in the GICR_TYPER of the target
core.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-32
ID060914 Non-Confidential

Programmers Model
Use this register to decide whether you want the ITE cache to be any
larger. If the ratio of hits to misses is low, you can increase the size of the
ITE cache to reduce latency and power consumption. The ITE cache has
the same number of entries as the LPI cache, so you can increase its size
using the LPI cache entries parameter. See Configurable options on
page 1-9.

Usage constraints There are no usage constraints.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-17 shows the bit assignments.

Figure 3-17 GITS_TRKICR bit assignments

Table 3-28 shows the bit assignments.

3.14.8 Debug LPI Cache Statistics

The GITS_TRKLCR characteristics are:

Purpose This register gives the count of hits and misses in the LPI cache since the
last time the Cache Count Reset bit in the GITS_TRKCTLR register was
set to 0b1.
Use this register to decide whether you want the LPI cache to be any larger.
If the ratio of hits to misses is low, you can increase the size of the LPI
cache to reduce latency and power consumption. You can increase its size
using the LPI cache entries parameter. See Configurable options on
page 1-9.

Usage constraints There are no usage constraints.

Configurations Present in configurations of the GIC-500 with ITS and LPI support.

Attributes See the register summary in Table 3-21 on page 3-28.

Figure 3-18 shows the bit assignments.

Figure 3-18 GITS_TRKLCR bit assignments

Number of misses in the ITE cacheNumber of hits in the ITE cache

031 16 15

Table 3-28 GITS_TRKICR bit assignments

Bits Name Function

[31:16] ITE cache hits Records the number of hits in the ITE cache

[15:0] ITE cache misses Records the number of misses in the ITE cache

Number of misses in the LPI cacheNumber of hits in the LPI cache

031 16 15
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-33
ID060914 Non-Confidential

Programmers Model
Table 3-29 shows the bit assignments.

Table 3-29 GITS_TRKLCR bit assignments

Bits Name Function

[31:16] LPI cache hits Records the number of hits in the LPI cache

[15:0] LPI cache misses Records the number of misses in the LPI cache
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. 3-34
ID060914 Non-Confidential

Appendix A
Signal Descriptions

This appendix describes the signals that the GIC-500 provides. It contains the following
sections:
• Clock and reset signals on page A-2.
• Miscellaneous signals on page A-3.
• Interrupt signals on page A-4.
• Test signals on page A-5.
• AXI4 slave interface signals on page A-6.
• AXI4 master interface signals on page A-8.
• GIC Stream master interfaces on page A-10.
• GIC Stream slave interfaces on page A-11.
• MBIST interface signals on page A-12.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-1
ID060914 Non-Confidential

Signal Descriptions
A.1 Clock and reset signals
Table A-1 shows the clock signals.

Note
 The GIC-500 does not synchronize any inputs, so all input signals, including the SPI and PPI
inputs, must be synchronous to clk.

Table A-1 Clock and reset signals

Signal name Type Source/destination Description

clk Input Clock source Common global clock signal for AXI and other interfaces. All clock gating
is internal to the noram.

resetn Input Reset source Common reset for all interfaces. Active LOW global asynchronous reset.
Reset must be asserted for at least (3 + number of synchronizer stages) clock
cycles. For example, 3+2 = 5 cycles.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-2
ID060914 Non-Confidential

Signal Descriptions
A.2 Miscellaneous signals
Table A-2 shows the miscellaneous signals for the GIC-500.

Table A-2 Miscellaneous signals

Signala Type Source/destination Description

cpu_active_<x>[n:0] Input Power controller Controls whether the GIC-500 considers a core as its first choice for
an SPI that targets multiple cores. ARM recommends that this signal
is typically driven HIGH during normal operation and driven LOW
during certain sleep states, such as retention, so the core is likely to
stay in the sleep state for longer. If this signal is not used, it must be
tied HIGH.

wake_request_<x>[n:0] Output Indicates a directed interrupt is pending for a core that has set
GICR_WAKER.ProcessorSleep. This signal is expected to cause
the core to power up and subsequently re-enable processing
interrupts.

ecc_fatal Output System controller Indicates an uncorrectable ECC error.

axim_err Output Indicates a bus error received by the AXI4 master port, such as a
SLVERR or DECERR.

a. n denotes the number of the last core in the cluster <x>.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-3
ID060914 Non-Confidential

Signal Descriptions
A.3 Interrupt signals
Table A-3 shows the interrupt inputs for the GIC-500.

Table A-3 Interrupt signals

Signala Type Source/destination Description

spi[variable] Inputb Peripherals SPI inputs. The least significant bit of this signal is bit 32, which
corresponds to interrupt ID 32.

Note
 This represents a change from ARM interrupt controllers such as GIC-400,
where the LSB is bit 0, but still has ID 32.

ppi31_<x>[n:0] Inputc Peripherals local to a core PPI ID31.

ppi30_<x>[n:0] PPI ID30. Typically the Non-secure physical timer.

ppi29_<x>[n:0] PPI ID29. Typically the Secure physical timer.

ppi28_<x>[n:0] PPI ID28.

ppi27_<x>[n:0] PPI ID27. Typically the virtual timer.

ppi26_<x>[n:0] PPI ID26. Typically the hypervisor timer.

ppi25_<x>[n:0] PPI ID25. Typically the virtual CPU interface maintenance interrupt.

ppi24_<x>[n:0] PPI ID24. Typically the Cross Trigger Interface (CTI) interrupt.

ppi23_<x>[n:0] PPI ID23. Typically the Performance Counter (PMU) overflow interrupt.

ppi22_<x>[n:0] PPI ID22. Typically the Debug Communications Channel (DCC) interrupt.

ppi21_<x>[n:0] PPI ID21.

ppi20_<x>[n:0] PPI ID20.

ppi19_<x>[n:0] PPI ID19.

ppi18_<x>[n:0] PPI ID18.

ppi17_<x>[n:0] PPI ID17.

ppi16_<x>[n:0] PPI ID16.

a. n denotes the number of the last core in the cluster <x>.
b. This input is either active HIGH level-sensitive, or triggered on a rising edge, depending on the software programming.
c. All these inputs are either active LOW level-sensitive, or triggered on a rising edge, depending on the software programming.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-4
ID060914 Non-Confidential

Signal Descriptions
A.4 Test signals
Table A-4 shows the test signals for the GIC-500. These signals must all be LOW during normal
operation.

Table A-4 Test signals

Signal Type Source/destination Description

dftrstdisable Input DFT control logic Reset disable. Disables the external reset input for test mode. When this signal is
HIGH, it forces the internal active-LOW reset HIGH, bypassing the reset
synchronizer.

dftse Input Scan enable. Disables clock gates for test mode.

dftcgen Input Clock gate enable. When this signal is HIGH, it forces all the clock gates on so
that all internal clocks always run.

dftramhold Input RAM hold. When this signal is HIGH, it forces all the RAM chip selects LOW,
preventing accesses to the RAMs.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-5
ID060914 Non-Confidential

Signal Descriptions
A.5 AXI4 slave interface signals

The GIC-500 provides a 32-bit wide AXI4 slave interface. See the ARM® AMBA® AXI and ACE
Protocol Specification.

AXI4 signals that are not implemented in the GIC-500 are not shown in Table A-5.

Table A-5 The GIC-500 implementation of AXI4 slave signals

AXI signal Type Source/destination GIC-500 implementation

Write address channel signals

awuser_s[variable]a Input AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.
Bits [2:0] must contain the linear ID of the core performing the write, if
backwards compatibility mode is supported. See Topologies and
terminology on page 1-4 for more information.
Bit [3] indicates a GITS_TRANSLATER write, overriding the
awaddr_s, in which the DeviceID comes from awaddr_s[n:2]. If bit[3]
is not set and if there is a GITS_TRANSLATER write, the DeviceID
comes from the awuser_s[n:4].

awaddr_s[variable]a Input Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

awid_s[variable]a Input Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

awlen_s[7:0] Input See the ARM® AMBA® AXI and ACE Protocol Specification.

awsize_s[2:0] Input Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

awburst_s[1:0] Input See the ARM® AMBA® AXI and ACE Protocol Specification.

awprot_s[2:0] Input

awvalid_s Input

awready_s Output

Write data channel signals

wstrb_s[3:0] Input AXI4 interconnect See the ARM® AMBA® AXI and ACE Protocol Specification.

wdata_s[31:0] Input

wvalid_s Input

wready_s Output

Write response channel signals

bid_s[variable]a Output AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

bvalid_s Output See the ARM® AMBA® AXI and ACE Protocol Specification.

bready_s Input

bresp_s[1:0] Output
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-6
ID060914 Non-Confidential

Signal Descriptions
Read address channel signals

araddr_s[variable]a Input AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

arid_s[variable]a Input Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

arlen_s[7:0] Input See the ARM® AMBA® AXI and ACE Protocol Specification.

arsize_s[2:0] Input

aruser_s[2:0] Input Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.
Bits [2:0] must contain the linear ID of the core performing the read, if
backwards compatibility mode is supported. See Topologies and
terminology on page 1-4 for more information.
Bit [3] indicates a GITS_TRANSLATER write, overriding the
araddr_s, in which the DeviceID comes from araddr_s[n:2]. If bit[3]
is not set, if there is a GITS_TRANSLATER write, the DeviceID comes
from the aruser_s[n:4].

arburst_s[1:0] Input See the ARM® AMBA® AXI and ACE Protocol Specification.

arprot_s[2:0] Input

arvalid_s Input

arready_s Output

Read data channel signals

rid_s[variable]a Output AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI and ACE
Protocol Specification.

rdata_s[31:0] Output See the ARM® AMBA® AXI and ACE Protocol Specification.

rresp_s[1:0] Output

rlast_s Output

rvalid_s Output

rready_s Input

a. The variable is configuration dependent.

Table A-5 The GIC-500 implementation of AXI4 slave signals (continued)

AXI signal Type Source/destination GIC-500 implementation
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-7
ID060914 Non-Confidential

Signal Descriptions
A.6 AXI4 master interface signals

The GIC-500 provides a 64-bit wide AXI4 master interface. See the ARM® AMBA® AXI and
ACE Protocol Specification.

AXI4 signals that are not implemented in the GIC-500 are not shown in Table A-6.

Table A-6 GIC-500 implementation of AXI4 master signals

AXI signal name Type Source/destination Description

Write address channel signals

awaddr_m[47:0] Output AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI
and ACE Protocol Specification

awid_m[5:0] Output Non-standard width with respect to the ARM® AMBA® AXI
and ACE Protocol Specification

awvalid_m Output See the ARM® AMBA® AXI and ACE Protocol Specification

awready_m Input

awlen_m[7:0] Output

awsize_m[2:0] Output

awburst_m[1:0] Output

awprot_m[2:0] Output

awcache_m[3:0] Output

Write data channel signals

wstrb_m[7:0] Output AXI4 interconnect See the ARM® AMBA® AXI and ACE Protocol Specification

wdata_m[63:0] Output

wlast_m Output

wvalid_m Outut

wready_m Input

Write response channel signals

bid_m[5:0] Input AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI
and ACE Protocol Specification

bvalid_m Input See the ARM® AMBA® AXI and ACE Protocol Specification

bready_m Output

bresp_m[1:0] Input

Read address channel signals

araddr_m[47:0] Output AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI
and ACE Protocol Specification

arid_m[5:0] Output Non-standard width with respect to the ARM® AMBA® AXI
and ACE Protocol Specification
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-8
ID060914 Non-Confidential

Signal Descriptions
arvalid_m Output AXI4 interconnect See the ARM® AMBA® AXI and ACE Protocol Specification

arlen_m[7:0] Output

arsize_m[2:0] Output

arburst_m[1:0] Output

arprot_m[2:0] Output

arcache_m[3:0] Output

arready_m Input

Read data channel signals

rid_m[5:0] Input AXI4 interconnect Non-standard width with respect to the ARM® AMBA® AXI
and ACE Protocol Specification

rresp_m[1:0] Input See the ARM® AMBA® AXI and ACE Protocol Specification

rdata_m[63:0] Input

rvalid_m Input

rready_m Output

Table A-6 GIC-500 implementation of AXI4 master signals (continued)

AXI signal name Type Source/destination Description
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-9
ID060914 Non-Confidential

Signal Descriptions
A.7 GIC Stream master interfaces
Table A-7 shows the GIC Stream master interfaces from the GIC-500.

Table A-7 GIC Stream master interfaces

Signal namea Type Source/destination Description

icdtready<x> Input CPU interface See the ARM® Generic Interrupt Controller Stream Protocol Interface
Specification

icdtvalid<x> Output

icdtlast<x> Output

icdtdata<x>[15:0] Output

icdtdest_<x>[2:0] Output Contains the core number within the cluster

a. <x> denotes the cluster number.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-10
ID060914 Non-Confidential

Signal Descriptions
A.8 GIC Stream slave interfaces
Table A-8 shows the GIC Stream slave interfaces to the GIC-500.

Table A-8 GIC Stream slave interfaces

Signal namea Type Source/destination Description

icctready_<x> Output CPU interface See the ARM® Generic Interrupt Controller Stream Protocol Interface
Specification

icctvalid_<x> Input

icctlast_<x> Input

icctdata_<x>[15:0] Input

icctid_<x>[2:0] Input Contains the core number within the cluster

a. <x> denotes the cluster number.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-11
ID060914 Non-Confidential

Signal Descriptions
A.9 MBIST interface signals
Table A-9 shows MBIST interface signals.

Table A-9 MBIST interface signals

Port Name Type Source/destination Description

mbistack Output MBIST controller MBIST Mode Ready.
GIC-500 acknowledges that it is ready for MBIST testing.

mbistreq Input MBIST Mode Request.
Request to GIC-500 to enable MBIST testing. This signal must be
tied LOW during functional operation.

mbistresetn Input Resets MBIST logic.
Resets functional logic to enable MBIST operation by an
Active-LOW signal. This signal must be tied HIGH during
functional operation.

mbistaddr[variable]a Input Logical address.
The width is based on the RAM with the largest number of words.
You must drive the most significant bits to zero when accessing
RAMs with fewer address bits.

mbistindata[variable]a Input Data in.
Write data. Width based on the RAM with the largest number of
data bits.

mbistoutdata[variable]a Output Data out.
Read data. Width based on the RAM with the largest number of data
bits.

mbistwriteen Input Write control (mbistwriteen) and Read control (mbistreaden)
No access occurs if both enables are off. It is illegal to activate both
enables simultaneously.mbistreaden Input

mbistarray[1:0] Input Array selector.
This controls which RAM array is accessed. For the single RAM
configuration, this port is unused.

mbistcfg Input MBIST ALL enable.
When enabled, allows simultaneous access to all RAM arrays for
maximum array power consumption.

a. The variable is configuration dependent.
ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. A-12
ID060914 Non-Confidential

ARM DDI 0516B Copyright © 2014 ARM. All rights reserved. B-1
ID060914 Non-Confidential

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

Table B-1 Issue A

Change Location Affects

First release - -

Table B-2 Differences between issue A and issue B

Change Location Affects

Distributor register GICD_PIDR4 reset value updated from 0x00000004 to 0x00000044 Table 3-3 on page 3-6 All revisions

Redistributor register GICR_PIDR4 reset value updated from
0x00000004 to 0x00000044

Table 3-7 on page 3-12 All revisions

ITS control register GITS_PIDR4 reset value updated from 0x00000004 to 0x00000044 Table 3-10 on page 3-17 All revisions

	ARM CoreLink GIC-500 Generic Interrupt Controller Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1: Introduction
	1.1 About the GIC-500
	1.1.1 Topologies and terminology

	1.2 Compliance
	1.3 Features
	1.4 Interfaces
	1.5 Configurable options
	1.6 Test features
	1.7 Product documentation
	1.8 Product revisions

	2: Functional Description
	2.1 About the functions
	2.2 Interfaces
	2.2.1 AXI4 Slave Interface
	2.2.2 AXI4 Master Interface
	2.2.3 RAM Interfaces
	2.2.4 Physical interrupt signals
	2.2.5 GIC-500 Stream Protocol Interface
	2.2.6 Other core signals

	2.3 Operation
	2.3.1 Interrupt types
	2.3.2 Interrupt groups
	2.3.3 Interrupt triggering
	2.3.4 Backwards compatibility
	2.3.5 Disable Security
	2.3.6 Power management

	2.4 Clocking and resets
	2.5 Constraints and limitations

	3: Programmers Model
	3.1 About the GIC-500 programmers model
	3.2 The GIC-500 register map
	3.2.1 Discovery
	3.2.2 Effect of Device ID multiplexing
	3.2.3 GIC-500 register access and banking

	3.3 Distributor register summary
	3.4 Distributor register descriptions
	3.4.1 Distributor Implementer Identification Register
	3.4.2 Peripheral ID2 Register

	3.5 Distributor registers for message-based SPIs summary
	3.6 Redistributor registers for control and physical LPIs summary
	3.7 Redistributor register descriptions
	3.7.1 Peripheral ID2 Register

	3.8 Redistributor registers for SGIs and PPIs summary
	3.9 ITS control register summary
	3.10 ITS control register descriptions
	3.10.1 ITS Identification Register
	3.10.2 Peripheral ID2 Register

	3.11 ITS translation register summary
	3.12 Implementation defined test registers in GICD page summary
	3.12.1 Extended Status Register
	3.12.2 Error Test Register
	3.12.3 Shared Peripheral Interrupt Status Register

	3.13 Implementation defined test registers in the GICR page for PPIs and SGIs
	3.13.1 Miscellaneous Status Register
	3.13.2 Private Peripheral Interrupt Status Register

	3.14 Implementation defined test registers in the GITS control page summary
	3.14.1 Tracking Control Register
	3.14.2 Tracking Status Register
	3.14.3 Debug Tracked DID Register
	3.14.4 Debug Tracked PID Register
	3.14.5 Debug Tracked ID Register
	3.14.6 Debug Tracked Target Register
	3.14.7 Debug ITE Cache Statistics
	3.14.8 Debug LPI Cache Statistics

	A: Signal Descriptions
	A.1 Clock and reset signals
	A.2 Miscellaneous signals
	A.3 Interrupt signals
	A.4 Test signals
	A.5 AXI4 slave interface signals
	A.6 AXI4 master interface signals
	A.7 GIC Stream master interfaces
	A.8 GIC Stream slave interfaces
	A.9 MBIST interface signals

	B: Revisions

