ARM[®] CoreTile Express A15×2 A7×3

Cortex[®]-A15_A7 MPCore (V2P-CA15_A7)

Technical Reference Manual

ARM CoreTile Express A15×2 A7×3 Technical Reference Manual

Copyright © 2012-2014, 2016 ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this book.

Change history

Date	Issue	Confidentiality	Change
June 2012	А	Non-Confidential	First release for V2P-CA15_A7
July 2012	В	Non-Confidential	Second release for V2P-CA15_A7
10 August 2012	С	Non-Confidential	Third release for V2P-CA15_A7
12 October 2012	D	Non-Confidential	Fourth release for V2P-CA15_A7
31 March 2013	Е	Non-Confidential	Fifth release for V2P-CA15_A7
28 June 2013	F	Non-Confidential	Sixth release for V2P-CA15_A7
16 October 2013	G	Non-Confidential	Seventh release for V2P-CA15_A7
29 May 2014	Н	Non-Confidential	Eighth release for V2P-CA15_A7
16 December 2016	Ι	Non-Confidential	Ninth release for V2P-CA15_A7

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to ARM's customers is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow ARM's trademark usage guidelines at , http://www.arm.com/about/trademarks/guidelines/index.php

Copyright © 2012-2014, 2016 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

CE

The system should be powered down when not in use.

The daughterboard generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

- Ensure attached cables do not lie across the card.
- Reorient the receiving antenna.
- Increase the distance between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

— Note —

It is recommended that wherever possible shielded interface cables be used.

Contents ARM CoreTile Express A15×2 A7×3 Technical Reference Manual

	Preta	ace	
		About this book	viii
		Feedback	xii
Chapter 1	Intro	oduction	
-	1.1	About the CoreTile Express A15×2 A7×3 daughterboard	1-2
	1.2	Precautions	1-4
Chapter 2	Hard	Iware Description	
-	2.1	CoreTile Express A15×2 A7×3 daughterboard architecture	2-2
	2.2	Cortex-A15 A7 MPCore test chip	2-4
	2.3	System interconnect signals	2-6
	2.4	Power-up configuration and resets	2-10
	2.5	Serial Configuration Controller (SCC)	2-21
	2.6	Voltage control and process monitors	2-22
	2.7	Clocks	2-24
	2.8	Interrupts	2-34
	2.9	HDLCD	2-38
	2.10	DDR2 memory interface	2-39
	2.11	Debug	2-40
Chapter 3	Prog	grammers Model	
	3.1	About this programmers model	3-2
	3.2	Daughterboard memory map	3-3
	3.3	Test chip SCC registers	3-12
	3.4	Programmable peripherals and interfaces	3-54

Appendix A	Signal Descriptions					
	A.1 Daughterboard connectors A	-2				
	A.2 HDRX HSB multiplexing scheme A	-3				
	A.3 Header connectors	-5				
	A.4 Debug and trace connectors A	-6				
Appendix B	HDLCD controller					
	B.1 IntroductionB	-2				
	B.2 HDLCD Programmers Model B	-3				
Appendix C	Electrical Specifications					
	C.1 AC characteristics	-2				
Appendix D	Revisions					

Preface

This preface introduces the *ARM*[®] *CoreTile Express A15*×2 *A7*×3 *Technical Reference Manual*. It contains the following sections:

- About this book on page viii
- *Feedback* on page xii.

About this book	
	This book is for the CoreTile Express A15×2 A7×3 daughterboard.
Intended audience	
	This document is written for experienced hardware and software developers to aid the development of ARM-based products using the CoreTile Express A15×2 A7×3 daughterboard with the Motherboard Express μ ATX as part of a development system.
Using this book	
	This book is organized into the following chapters:
	Chapter 1 Introduction
	Read this for an introduction to the CoreTile Express A15×2 A7×3 daughterboard.
	Chapter 2 Hardware Description
	Read this for a description of the hardware present on the daughterboard.
	Chapter 3 Programmers Model
	Read this for a description of the configuration registers present on the daughterboard.
	Appendix A Signal Descriptions
	Read this for a description of the signals present on the daughterboard.
	Appendix B HDLCD controller
	Read this for a description of the HDLCD controller in the Cortex-A15_A7 test chip.
	Appendix C Electrical Specifications
	Read this for a description of the electrical specifications of the daughterboard.
	Appendix D Revisions
	Read this for a description of the technical changes between released issues of this book.
Glossary	
	The <i>ARM Glossary</i> is a list of terms used in ARM documentation, together with definitions for those terms. The <i>ARM Glossary</i> does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.
	See ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
Conventions	
	This book uses the conventions that are described in:
	Typographical conventions on page ix
	Iming diagrams on page 1x Signals on page x
	- Signuis on page x.

Typographical conventions

The following table describes the typographical conventions:

Style	Purpose
italic	Introduces special terminology, denotes cross-references, and citations.
bold	Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.
<u>mono</u> space	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.
monospace italic	Denotes arguments to monospace text where the argument is to be replaced by a specific value.
monospace bold	Denotes language keywords when used outside example code.
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0 <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>
SMALL CAPITALS	Used in body text for a few terms that have specific technical meanings, that are defined in the <i>ARM glossary</i> . For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The figure named *Key to timing diagram conventions* explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to the bus change shown in *Key to timing diagram conventions*. If a timing diagram shows a single-bit signal in this way then its value does not affect the accompanying description.

Signals

The signal conventions are:

Signal level	The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:				
	• HIGH for active-HIGH signals.				
	• LOW for active-LOW signals.				
Lower-case n	At the start or end of a signal name denotes an active-LOW signal.				

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- *ARM[®] Motherboard Express µATX Technical Reference Manual* (ARM DUI 0447)
- ARM[®] Versatile[™] Express Configuration Technical Reference Manual (ARM DDI 0496)
- ARM[®] Programmer Module (V2M-CP1) (ARM DDI 0495)
- ARM[®] LogicTile Express 3MG Technical Reference Manual (ARM DUI 0449)
- ARM[®] LogicTile Express 13MG Technical Reference Manual (ARM DUI 0556)
- ARM[®] LogicTile Express 20MG Technical Reference Manual (ARM DDI 0503)
- *ARM[®] Versatile[™] Express Boot Monitor Technical Reference Manual* (ARM DUI 0465)
- ARM[®] Cortex[®]-A15 Technical Reference Manual (ARM DDI 0438)
- Cortex[®]-A7 MPCore Technical Reference Manual (ARM DDI 0464)
- AMBA® Network Interconnect (NIC-301) Technical Reference Manual (ARM DDI 0397)
- CoreLink[™] GIC-400 Generic Interrupt Controller Technical Reference Manual (ARM DDI 0471)
- CoreLink[™] DMC-400 Dynamic Memory Controller Technical Reference Manual (ARM DDI 0466)
- PrimeCell Static Memory Controller (PL350 series) Technical Reference Manual (ARM DDI 0380)
- AMBA® DMA Controller DMA-330 Technical Reference Manual (ARM DDI 0424)
- ARM[®] Watchdog Module (SP805) Technical Reference Manual (ARM DDI 0270)
- ARM[®] PrimeCell External Bus Interface (PL220) Technical Reference Manual (ARM DDI 0249)

The following publications provide information about related ARM products and toolkits:

ARM[®] DSTREAM System and Interface Design Reference (ARM DUI 0499)

- *ARM® DSTREAM Setting up the Hardware* (ARM DUI 0481)
- *ARM*[®] *DSTREAM* and *RVI* Using the Debug Hardware Configuration Utilities (ARM DUI 0498)
- CoreSight[™] Components Technical Reference Manual (ARM DDI 0314)
- Application Note 283 Example LogicTile Express 3MG Design for a CoreTile Express A15×2
- Application Note 305 Example LogicTile Express 13MG Design for a CoreTile Express A15×2 or a CoreTile Express A15x2_A7x3
- Application Note 318 CoreTile Express A15×2 A7×3 Power Management.

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- the title
- the number, ARM DDI 0503I
- the page numbers to which your comments apply
- a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Chapter 1 Introduction

This chapter provides an introduction to the CoreTile Express A15×2 A7×3 daughterboard. It contains the following sections:

- *About the CoreTile Express A15×2 A7×3 daughterboard* on page 1-2
- *Precautions* on page 1-4.

1.1 About the CoreTile Express A15×2 A7×3 daughterboard

The CoreTile Express A15×2 A7×3 daughterboard is designed as a platform for developing systems based on *Advanced Microcontroller Bus Architecture* (AMBA) that use the *Advanced eXtensible Interface* (AXI) or custom logic for use with ARM cores.

You can use the CoreTile Express A15×2 A7×3 daughterboard to create prototype systems.

— Note ——

You can use the CoreTile Express A15×2 A7×3 daughterboard with a Motherboard Express μ ATX See *System interconnect signals* on page 2-6 for information about interconnection.

You can also use the CoreTile Express daughterboard with a custom-design motherboard. See *ARM*[®] *Programmer Module (V2M-CP1)*.

The daughterboard includes the following features:

- Cortex-A15_A7 MPCore test chip, with NEON[™], that is, the advanced *Single Instruction Multiple Data* (SIMD) extension, and *Floating Point Unit* (FPU), that contains a dual-core A15 cluster operating at 1GHz and a triple-core A7 cluster operating at 800MHz.
- Cortex-A15_A7 MPCore test chip internal AXI subsystem operating at 500MHz.
- Simple configuration with V2M-P1 motherboard:
 - Configuration EEPROM.
 - Daughterboard Configuration Controller.
- Nine programmable oscillators.
- 2GB of daughterboard DDR2 32-bit memory operating at 400MHz.
- *High Definition LCD* (HDLCD) controller that supports up to 1920×1080p video at 60Hz, 165MHz pixel clock.
- CoreSight software debug and 32-bit trace ports.
- HDRX header with one multiplexed AMBA AXI master bus port that connects to the other daughterboard site on the V2M-P1 motherboard.
- HDRY header with four buses to the motherboard:
 - Static Memory Bus (SMB).
 - MultiMedia Bus (MMB).
 - Configuration Bus (CB).
 - System Bus (SB).
- *Power Supply Units* (PSUs) for the Cortex-A15_A7 test chip and DDR2 memory.
- Core voltage control and current, temperature, and power monitoring.
- On-board energy meter.

— Note ———

The Cortex-A15 A7 test chip does not support TrustZone[®].

Figure 1-1 on page 1-3 shows the layout of the daughterboard:

Figure 1-1 CoreTile Express A15×2 A7×3 daughterboard layout

— Note —

All components in Figure 1-1, except for the HDRY and HDRX headers are on the upper face of the daughterboard facing away from the motherboard.

The HDRX and HDRY headers are on the lower face of the daughterboard facing towards the motherboard.

1.2 Precautions

This section contains advice about how to prevent damage to your daughterboard.

1.2.1 Ensuring safety

The daughterboard is supplied with a range of DC voltages. Power is supplied to the daughterboard through the header connectors.

——Warning ——

Do not use the board near equipment that is sensitive to electromagnetic emissions, for example medical equipment.

1.2.2 Preventing damage

The daughterboard is intended for use within a laboratory or engineering development environment. It is supplied without an enclosure and this leaves the board sensitive to electrostatic discharges and permits electromagnetic emissions.

——Caution ——

To avoid damage to the daughterboard, observe the following precautions:

- Never subject the board to high electrostatic potentials. Observe *ElectroStatic Discharge* (ESD) precautions when handling any board.
- Always wear a grounding strap when handling the board.
- Only hold the board by the edges.
- Avoid touching the component pins or any other metallic element.
- Do not use the board near a transmitter of electromagnetic emissions.

Chapter 2 Hardware Description

This chapter describes the hardware on the CoreTile Express A15×2 A7×3 daughterboard. It contains the following sections:

- CoreTile Express A15×2 A7×3 daughterboard architecture on page 2-2
- Cortex-A15 A7 MPCore test chip on page 2-4
- System interconnect signals on page 2-6
- *Power-up configuration and resets* on page 2-10
- Serial Configuration Controller (SCC) on page 2-21
- *Voltage control and process monitors* on page 2-22
- Clocks on page 2-24
- Interrupts on page 2-34
- *HDLCD* on page 2-38.
- DDR2 memory interface on page 2-39
- *Debug* on page 2-40.

2.1 CoreTile Express A15×2 A7×3 daughterboard architecture

Figure 2-1 shows a block diagram of the daughterboard.

Figure 2-1 CoreTile Express A15×2 A7×3 daughterboard block diagram

The daughterboard contains the following devices and interfaces:

Cortex-A15_A7 MPCore test chip

Dual-core A15 cluster, version r2p1, operating at 1GHz.

Triple-core A7 cluster, version r0p1, operating at 800MHz.

Daughterboard Configuration Controller

The Daughterboard Configuration Controller communicates with the *Motherboard Configuration Controller* (MCC) on the Motherboard Express µATX. The Daughterboard Configuration Controller and MCC initiate, control, and configure the test chip and the daughterboard.

Configuration EEPROM

The daughterboard EEPROM contains configuration information for identification and detection of the daughterboard during power-up and reset.

High-Definition LCD (HDLCD)

HDLCD interface to the Motherboard Express through the *MultiMedia Bus* (MMB).

DDR2 memory

The daughterboard supports 2GB of 32-bit DDR2 on-board memory.

Clock generators

The daughterboard provides nine on-board OSCCLKS to drive the core and internal AXI, AXIM, DDR2, SMC, and HDLCD interfaces.

CoreSight software debug (P-JTAG) and trace ports

The Cortex-A15_A7 MPCore test chip CoreSight system supports both the SWD and P_JTAG protocols.

A 32-bit trace interface is provided through the standard dual 16-bit *Matched Impedance ConnecTOR* (MICTOR) connectors.

System interconnect

HDRX header	Connects the multiplexed AXI master bus, HSB M, to the external AXI slave on the other daughterboard in Site 2 of the V2M-P1 Motherboard Express.
HDRY header	Connects the <i>Configuration Bus</i> (CB), the <i>System Bus</i> (SB), the <i>Static Memory Bus</i> (SMB) and the <i>MultiMedia Bus</i> (MMB) to the V2M-P1 Motherboard Express.
——Note —	

ARM recommends that you fit the CoreTile Express $A15 \times 2 A7 \times 3$ daughterboard on Motherboard Express site 1, and any optional FPGA daughterboard, for example the V2F_1XV5, on site 2.

See System interconnect signals on page 2-6.

2.2 Cortex-A15_A7 MPCore test chip

Figure 2-2 shows the main components of the test chip.

Figure 2-2 Top-level view of the Cortex-A15_A7 MPCore test chip components

— Note –

Bus lines with single-headed arrows indicate the direction of control, not the direction of data flow. That is, each arrow points from bus master to bus slave.

Cortex-A15_A7 MPCore test chip

The test chip includes the following components and interfaces:

- Cortex-A15 dual-core cluster operating at 1GHz:
 - Version r2p1.
 - 32KB I/D cache.
 - NEON and *Floating Point Unit* (FPU).
 - ACP port.
 - 1MB L2 cache.
 - Dual Program Flow Trace Macrocell (PTM).
- Cortex-A7 triple-core cluster operating at 800MHz:
 - Version r0p1.
 - 32KB I/D cache.
 - NEON and FPU.
 - 512KB L2 cache.
 - Dual Embedded Trace Macrocell (ETM).
- NIC-301 AXI interconnect operating at 500MHz.
- CCI-400 cache coherent interconnect operating at 500MHz that provides cache-coherency between the two clusters.
- DMC-400 32-bit *Double Data Rate* 2 (DDR2) *Dynamic Memory Controller* (DMC) interface to the onboard 2GB DDR2 memory.
- PL354 32-bit SMB controller (SMC). This connects to the motherboard peripherals.
- PL330 Direct Memory Access (DMA) controller.
- 24-bit HDLCD video controller that drives the MMB to the MUXFPGA on the V2M-P1 Motherboard Express.
- Multiplexed 64-bit AXI master interface.
- 64KB of local on-chip SRAM.
- CoreSight debug and trace interface to the onboard connectors:
 - PTM for each Cortex-A15 core.
 - ETM for each Cortex-A7 core.
 - 16KB ETB.
 - DAP.
 - Trace Port Interface Unit (TPIU) for real-time trace data.
 - JTAG interface for debug.
- Serial Configuration Controller (SCC) interface:
 - Interfaces to the Daughterboard Configuration Controller.
 - Configures the test chip *Phase-Locked Loops* (PLLs) during power up or reset.
- Interrupts interface:
 - Connects interrupt signals from the V2M-P1 motherboard to the Generic Interrupt Controller (GIC) in the test chip.

2.3 System interconnect signals

This section provides an overview of the signals present on the header connectors. It contains the following sections:

- Overview of system interconnect signals
- *High-Speed Bus (HSB) to other daughterboard* on page 2-8
- Static Memory Bus (SMB) on page 2-8
- *MultiMedia Bus (MMB)* on page 2-8
- System Bus (SB) on page 2-9
- *Configuration Bus (CB)* on page 2-9.

2.3.1 Overview of system interconnect signals

Figure 2-3 on page 2-7 shows the daughterboard system interconnect to the Motherboard Express μ ATX development system and to an optional LogicTile Express FPGA daughterboard. For more information about the global interconnect scheme, see the *ARM*[®] *Motherboard Express* μ *ATX Technical Reference Manual*.

Figure 2-3 System connect example with optional LogicTile Express FPGA daughterboard

• ARM recommends that you fit CoreTile Express daughterboards, including the CoreTile Express A15×2 A7×3 daughterboard, on site 1, and that you fit LogicTile Express FPGA daughterboards on site 2.

• The CoreTile Express A15×2 A7×3 daughterboard does not have an *High-Speed Bus* (HSB) slave port or a PCI express root complex.

– Note –

Application Note 283 Example LogicTile Express 3MG design for a CoreTile Express A15×2, that ARM provides, implements an example AMBA system using the LogicTile Express V2F-1XV5 daughterboard to interconnect with the CoreTile Express A15×2 A7×3 daughterboard. See the documentation supplied on the accompanying media and the Application Notes listing for more information at, http://infocenter.arm.com.

2.3.2 High-Speed Bus (HSB) to other daughterboard

The HSB link to the other daughterboard consists of one bus between the Cortex-A15_A7 MPCore test chip and the daughterboard fitted in the other site on the motherboard. This is a 64-bit multiplexed AXI master bus, HSB M, to the external AXI slave on the other daughterboard in Site 2.

The HSB connection to the other daughterboard is through:

- The HDRX header on the daughterboard.
- Dedicated headers HDRX1 and HDRX2 on the motherboard.
- Header HDRX on the other daughterboard.

— Note —

For information about the multiplexing scheme for the AXI buses, see Appendix A *Signal Descriptions*.

— Note ——

Application Note 283 Example LogicTile Express 3MG design for a CoreTile Express $A15 \times 2$, provides an example AXI design implementing an external multiplexed AXI master bus at the HDRX header on the FPGA daughterboard in site 2.

2.3.3 Static Memory Bus (SMB)

The SMB connects the Cortex-A15_A7 test chip SMC to the motherboard. You can use it to access the motherboard peripherals such as:

- NOR flash.
- SRAM.
- Ethernet.
- USB.
- *MultiMedia Card* (MMC).
- Compact Flash (CF).
- Keyboard and Mouse Interface (KMI).
- CLCD.
- UARTs.
- System registers.

2.3.4 MultiMedia Bus (MMB)

The MMB consists of a video bus that connects the 24-bit RGB HDLCD controller directly to the motherboard MUXFPGA. The motherboard IOFPGA implements a CLCD controller. The motherboard MUXFPGA selects the source for the motherboard DVI connector from:

• The MMB from the CoreTile Express A15 \times 2 A7 \times 3. That is, the 24-bit RGB from the HDLCD controller.

- The MMB from the LogicTile Express daughterboard in site 2.
- The CLCD controller in the motherboard IOFPGA.

2.3.5 System Bus (SB)

The SB connects 26 interrupt lines from motherboard peripherals to the *Generic Interrupt Controller* (GIC) in the MPCore cluster in the test chip.

2.3.6 Configuration Bus (CB)

The CB connects the Daughterboard Configuration Controller to the MCC. The Daughterboard Configuration Controller configures the OSCCLKs on the daughterboard and the Cortex-A15_A7 test chip SCC registers. The Daughterboard Configuration Controller also controls daughterboard resets and temperature monitoring. The CB connects the daughterboard EEPROM directly to the MCC and enables automatic detection and identification of the daughterboard at power-up or reset.

2.4 Power-up configuration and resets

This section describes the CoreTile Express A15 \times 2 daughterboard power-up configuration and resets. It contains the following subsections:

- Configuration architecture
- System configuration on page 2-13
- *Resets* on page 2-13
- *Configuration and reset signals* on page 2-13.

2.4.1 Configuration architecture

Figure 2-4 shows the power-up, configuration, and reset architecture when the CoreTile Express A15×2 daughterboard is fitted to a Motherboard Express, V2M-P1.

Figure 2-4 CoreTile Express A15×2 A7×3 configuration architecture with Motherboard Express, V2M-P1

ARM recommends that you fit the CoreTile Express A15×2 A7×3 daughterboard in site 1.

– Note

The configuration environment of the CoreTile Express A15×2 A7×3 daughterboard fitted to the Motherboard Express, V2M-P1, consists of the following hardware components:

- MCC on the Motherboard Express, V2M-P1.
- Daughterboard Configuration Controllers on the CoreTile Express daughterboard and on the LogicTile Express daughterboard.
- Configuration microSD card or *Universal Serial Bus Mass Storage Device* (USBMSD) on the Motherboard Express, V2M-P1.
- Configuration EEPROM on the Motherboard Express, V2M-P1.
- Clock generator logic on the V2P-CA15_A7 daughterboard.
- ON/OFF/Soft Reset and Hardware RESET buttons on the Motherboard Express, V2M-P1.
- USB-B port on the Motherboard Express, V2M-P1.
- Four UART ports on the Motherboard Express, V2M-P1.
- NOR flash on the Motherboard Express, V2M-P1.
- Power-on detect on the Motherboard Express, V2M-P1.
- Configuration EEPROM on the V2P-CA15 daughterboard.
- HDRY headers on the Motherboard Express, V2M-P1, and V2P-CA15_A7 daughterboard.

Figure 2-5 on page 2-12 shows the power-up, configuration, and reset architecture when the CoreTile Express A15×2 A7×3 daughterboard is fitted to a V2M-CP1 Programmer Module, and custom motherboard built under the ARM *Design Assist Program*.

Figure 2-5 CoreTile Express A15×2 A7×3 configuration architecture with custom motherboard

The configuration environment of a V2P-CA15_A7 daughterboard fitted to a custom motherboard and a V2M-CP1 Programmer Module consists of:

- MCC on the V2M-CP1.
- Daughterboard Configuration Controller on the V2P-CA15 daughterboard.
- Configuration microSD card or USBMSD on the V2M-CP1 Programmer Module.
- ON/OFF/soft reset and hardware reset buttons on the V2M-CP1 Programmer Module.
- USB port on the V2M-CP1 Programmer Module.
- Ethernet port on the V2M-CP1 Programmer Module.

—— Note ——

The V2M-CP1 Programmer Module does not support the ethernet port.

- Configuration EEPROM on the custom motherboard.
- Configuration EEPROM on V2P-CA15_A7 daughterboard.
- Clock generator logic on the V2P-CA15_A7 daughterboard.

2.4.2 System configuration

See the ARM^{e} VersatileTM Express Configuration Technical Reference Manual and ARM^{e} Motherboard Express (μATX) or ARM^{e} Programmer Module (V2M-CP1) for information on how to configure the V2P-CA15_A7 daughterboard using the configuration files on the motherboard.

——Caution —

ARM recommends that you use the configuration files for all system configuration. *Test chip SCC registers* on page 3-12 and *Programmable peripherals and interfaces* on page 3-54 describe registers that directly modify the test chip configuration.

2.4.3 Resets

The Daughterboard Configuration Controller manages reset signals between the motherboard and the daughterboard test chip in response to reset requests from the motherboard MCC as a result of, for example, pressing the motherboard power/reset push-button.

2.4.4 Configuration and reset signals

•

This section describes the configuration and reset signals and their sequences and timings. It contains the following sections:

- Overview of daughterboard reset signals
- Configuration and reset timing cycle on page 2-14
- *Configuration and reset signals* on page 2-15
- Internal resets on page 2-17.

Overview of daughterboard reset signals

Figure 2-6 on page 2-14 shows an overview of the daughterboard reset signals and includes configuration signals.

Figure 2-6 CoreTile Express A15×2 A7×3 daughterboard resets

The numbers in Figure 2-6 represent stages in the reset and configuration process. See Figure 2-7 on page 2-15.

Configuration and reset timing cycle

-Note -

Figure 2-7 on page 2-15 shows the CoreTile Express A15×2 daughterboard power-up configuration and reset timing cycle.

Figure 2-7 CoreTile Express A15×2 A7×3 daughterboard configuration and reset timing cycle

Configuration and reset signals

Table 2-1 shows the Cortex-A15_A7 MPCore test chip configuration and reset signals:

Table 2-1	Configuration	and rese	et signals
-----------	---------------	----------	------------

Reset source	Destination	Description
CB_CFGnRST	Daughterboard Configuration Controller	Initiate the daughterboard configuration process.
СВ_ОК	МСС	Daughterboard configuration system ready.
CB_SSPx ^a	Daughterboard Configuration Controller-MCC	Signal transactions during time period 3, <i>DB configuration</i> , that cause the Daughterboard Configuration Controller to configure the Cortex-A15 MPCore test chip SCC registers and daughterboard OSCCLKs.
CB_READY	МСС	Daughterboard configured and ready. The PLLS_LOCKED ^a signal and the control signals ^a between the Daughterboard Configuration Controller, Cortex-A15 MPCore test chip, and the daughterboard OSCLCLKS indicate to the Daughterboard Configuration Controller and MCC that the PLLs are locked and that the daughterboard OSCCLKS are operating.
CB_nPOR	Test chip internal signal nPORESET	This is the main power-on-reset that resets the entire test chip logic and the clock generation logic except for the PLLs.

Table 2-1 Configuration and reset signals (continued)

Reset source	Destination	Description
CB_nRST	Test chip internal signal nRESET	This is a hard reset from the motherboard that resets both cores in the Cortex-A15 dual-core cluster and all three cores in the Cortex-A7 triple-core cluster.
		The following internal resets, that the SCC reset control register controls, enable reset of specific sections of the test chip. The multi-signal resets, for example A15_nCPURESET[1:0] , enable reset of specific cores or ETMs, according to the bits selected in the SCC reset control register.
		These internal resets operate independently of nRESET:
		A15_nCPURESET[1:0]
		Note
		The <i>ARM</i> [®] <i>Cortex</i> [®] - <i>A15 Technical Reference Manual</i> names this signal as nCPUPORESET .
		• A7_nCPURESET[2:0]
		Note
		The Cortex [®] -A7 MPCore Technical Reference Manual names this signal as nCOREPORESET .
		• A15_nCORERESET[1:0].
		• A7_nCORERESET[2:0].
		• AI5_NCARESET[1:0].
		• A7 nDBGRESET[2:0]
		• A7 nETMRESET[2:0].
		• A15 nPRESETDBG.
		• A7_nSOCDBGRESET.
		• A15_nL2RESET.
		• A7_nL2RESET.
		• A7_nVSOCRESET.
		• A7_nVCORERESET.
		• A15_nVSOCRESET.
		• A15_nVCORERESET.
		See Internal resets on page 2-17.
		See the reset control register, <i>Test chip SCC Register 6</i> on page 3-22, for information on controlling these internal resets.
		See the <i>ARM</i> [®] <i>Cortex</i> [®] - <i>A15 Technical Reference Manual</i> and the <i>Cortex</i> [®] - <i>A7 MPCore Technical Reference Manual</i> for information on using the above internal resets.
JTAG nTRST ^a	Test chip internal signal nTRST	This is the test logic reset to the Cortex-A15 MPCore test chip TAP controller and the Daughterboard Configuration Controller.
JTAG nSRST ^a	CB_RSTREQ to motherboard MCC	If an external source asserts the JTAG nSRST signal, the daughterboard generates a reset request to the motherboard MCC. The motherboard hardware is reset and the MCC asserts CB_nRST , and optionally, CB_nPOR ^b . nSRST remains LOW until the reset sequence completes.
CB_RSTREQ ^b	MCC	Reset request from the daughterboard to the motherboard.
Test chip watchdogs	Test chip internal nPORESET	If the internal test chip watchdog timers are configured and trigger, they force an internal test chip nPORESET . The external system components on the motherboard are not reset.

- a. Figure 2-7 on page 2-15 does not include these signals.
- b. The reset request from the daughterboard results in the motherboard asserting CB_nRST.

CB_nPOR can optionally be asserted by correctly defining the value of **ASSERTNPOR**, that can be TRUE or FALSE in the config.txt motherboard configuration file. See the *ARM*[®] *Motherboard Express* µ*ATX Technical Reference Manual* for an example config.txt file.

Internal resets

Test chip SCC Register 6 on page 3-22 controls the internal resets that operate independently of **nRESET**. Table 2-2 shows the blocks that the internal resets control.

Table 2-2 Internal resets controlled by SCC registers

Reset	Core	NEON and VFP	Debug	PTM ETM	Breakpoint and watchpoint logic	Shared debug, APB, CTI and CTM logic	Shared L2 memory system, GIC and timer logic	Comment
A15_NCPURESET	Yes	Yes	Yes	Yes	Yes	No	No	A15_CLK domain. Fine-grain reset.
A7_NCPURESET	Yes	Yes	Yes	Yes	Yes	No	No	A7_CLK domain. Fine-grain reset.
A15_NCORERESET	Yes	Yes	No	No	No	No	No	A15_CLK domain. Fine-grain reset.
A7_NCORERESET	Yes	Yes	No	No	No	No	No	A7_CLK domain. Fine-grain reset.
A15_NCXRESET	No	Yes	No	No	No	No	No	A15_CLK domain. Fine-grain reset.
A15_NDBGRESET	No	No	Yes	Yes	Yes	No	No	A15_CLK domain. Fine-grain reset.
A7_NDBGRESET	No	No	Yes	Yes	Yes	No	No	A7_CLK
A7_NETMRESET	No	No	No	Yes	Yes	No	No	domain. Fine-grain reset.
A15_NPRESETDBG	No	No	No	No	N	Yes	No	A15_CLK domain. Overrides fine-grain resets.

Reset	Core	NEON and VFP	Debug	PTM ETM	Breakpoint and watchpoint logic	Shared debug, APB, CTI and CTM logic	Shared L2 memory system, GIC and timer logic	Comment
A7_NSOCDBGRESET	No	No	Yes	Yes	Yes	Yes	No	A7_CLK domain. Overrides fine-grain resets.
A15_NL2RESET	No	No	No	No	No	No	Yes	A15_CLK domain. Overrides fine-grain resets.
A7_NL2RESET	No	No	No	No	No	No	Yes	A7_CLK domain. Overrides fine-grain resets.
A7_NVSOCRESET	No	No	No	No	No	No	No	ACLK and PCLK domain. Overrides fine-grain resets.

Table 2-2 Internal resets controlled by SCC registers (continued)

Reset	Core	NEON and VFP	Debug	PTM ETM	Breakpoint and watchpoint logic	Shared debug, APB, CTI and CTM logic	Shared L2 memory system, GIC and timer logic	Comment
A7_NVCORERESET	-	Yes	Yes	Yes	Yes	Yes	Yes	A7_CLK domain. Overrides fine-grain resets. This reset selects all cores in the cluster. It does not select specific cores.
A15_NVSOCRESET	No	No	No	No	No	No	No	ACLK and PCLK domain.
A15_NVCORERESET	-	Yes	Yes	Yes	Yes	Yes	Yes	A15_CLK domain. Overrides fine-grain resets. This reset selects all cores in the cluster. It does not select specific cores

Table 2-2 Internal resets controlled by SCC registers (continued)

Test chip SCC Register 6 on page 3-22 controls the internal resets. The fine-grained resets select specific cores or other blocks according to the bits you select in this register.

Each cluster contains the following power domains:

- **VCORE** Contains most of the cluster logic including all the cores.
- **VSOC** Contains the interface logic between the clusters and the rest of the test chip.

The reset signals operate as follows:

A7_NVCORERESET

Resets all of the A7 VCORE domain and overrides all the fine-grained A7 resets.

A15_NVCORERESET

Resets all of the A15 VCORE domain and overrides all the fine-grained A15 resets.

A7_NVSOCRESET

Resets the interface logic between the A7 VCORE and VSOC domains.

A15_NVSOCRESET

Resets the interface logic between the A15 VCORE and VSOC domains.

See the following for more information on the internal resets:

- Cortex[®]-A7 MPCore Technical Reference Manual
- ARM Cortex[®]-A15 Technical Reference Manual.

— Note ———

When power-management is enabled in the board.txt file, the CA15 or CA7 cores must not directly write to CFGREG6 or CFGREG11 because the Daughterboard Configuration Controller controls this. Writing to these registers prevents the power-management interface from functioning correctly.
2.5 Serial Configuration Controller (SCC)

The *Serial Configuration Controller* (SCC) is a block of registers internal to the test chip that the Daughterboard Configuration Controller writes through a serial interface. The Daughterboard Configuration Controller uses the SCC during power-up configuration to set the test chip PLLs and other default values from the board configuration files stored on the motherboard microSD card. The MCC also uses the SCC to read values from the test chip, for example, the device ID.

You can also read and write to the SCC registers while the system is running using the motherboard SYS_CFG register interface.

Figure 2-8 shows an overview of the SCC connectivity.

See Test chip SCC registers on page 3-12 for a full description of the SCC registers.

Figure 2-8 Overview of SCC connectivity

2.6 Voltage control and process monitors

This section describes the V2P_CA15_A7 daughterboard core voltage control and current, temperature, power, and energy monitoring. It contains the following subsections:

- Voltage control and current, temperature, and power monitoring
- *Energy meter* on page 2-23.

See *Application Note 318 CoreTile Express A15×2 A7×3 Power Management* for more information.

2.6.1 Voltage control and current, temperature, and power monitoring

The Daughterboard Configuration Controller transmits voltage and current measurements for the Cortex-A15 and Cortex-A7 clusters to the motherboard where they can be read from the SYS_CFG register interface.

Table 2-3 shows the device numbers for monitoring and setting the cluster voltages.

Table 2-3 Monitoring and setting the cluster voltages

Device	Cluster voltage supply	Default voltage	Description
0	Vcore	0.9V +/-2%	Sets and reads Cortex-A15 core voltage
1	Vcore	0.9V +/-2%	Sets and reads Cortex-A7 core voltage

Table 2-4 shows the device numbers for monitoring the current in the cluster.

Table 2-4 Cluster current monitors

Device	Cluster current	Description
0	Icore	Current measurement device for the two Cortex-A15 cores, total current
1	Icore	Current measurement device for the three Cortex-A7 cores, total current

Table 2-5 shows the device number for monitoring the power in the cluster.

Table 2-5 Cluster power monitors

Device	Cluster power	Description	
0	Pcore	Power measurement device for the two Cortex-A15 cores, total power	
1	Pcore	Power measurement device for the three Cortex-A7 cores, total power	

Table 2-6 shows the device number for monitoring the Daughterboard Configuration Controller temperature.

Table 2-6 Device number for monitoring the Daughterboard Configuration Controller temperature

Devic	e Description
0	Measurement device for the Daughterboard Configuration Controller internal operating temperature

2.6.2 Energy meter

The Daughterboard Configuration Controller firmware supports an on-board energy meter that enables you to measure the energy consumption of core supplies. The energy meter runs as a background task on the Daughterboard Configuration Controller and does not load the main core software except when you request a reading through the SYS_CFG interface.

You can use the energy meter to determine the amount of energy that a specific software function consumes. You read the energy before and after the function operates, and the difference between the two represents the amount of energy that the function consumes.

The energy meter accumulates core power supply at a rate of 10000 samples per second. You can read accumulated energy since reset in Micro-Joules through the SYS_CFGCTRL register interface.

A 64-bit value represents the total energy. This requires two 32-bit reads from the SYS_CFG interface. You must read the lower 32 bits followed by the upper 32 bits. When you read the lower 32 bits, the 64-bit data transfers to two temporary storage registers in the Daughterboard Configuration Controller and you then receive the lower 32 bits from the lower storage register. You then read the upper 32 bits and receive the value from the upper storage register.

If you read the upper 32 bits first, no data transfers to the storage register and you receive a false energy reading.

The energy value is the energy since reset. You can also clear the energy value by writing $0x0000_0000$ to the lower 32 bits.

Table 2-7 shows the device numbers for monitoring the cluster energy consumption.

Device	Cluster energy	Description
0	Jcore	Energy meter for the two A15 cores, lower 32 bits, total energy
1	Jcore	Energy meter for the two A15 cores, upper 32 bits, total energy
2	Jcore	Energy meter for the three A7 cores, lower 32 bits, total energy
3	Jcore	Energy meter for the three A7 cores, upper 32 bits, total energy

Table 2-7 Cluster energy monitors

See the *ARM*[®] *Motherboard Express* µ*ATX Technical Reference Manual* for more information on the SYS_CFGCTRL registers.

2.7 Clocks

This section describes the daughterboard clocks. It contains the following subsections.

- Overview of clocks
- Daughterboard programmable clock generators on page 2-27
- Test chip PLLs and clock divider logic on page 2-30
- *External clocks* on page 2-32.

2.7.1 Overview of clocks

The daughterboard sends clocks to, and receives clocks from, the motherboard and generates local clocks that are imported into the Cortex-A15_A7 MPCore test chip. Additional PLLs inside the test chip provide phase-shifted and frequency-multiplied versions of these imported clocks as Figure 2-10 on page 2-26 shows.

Figure 2-9 on page 2-25 shows a functional overview of the CoreTile Express A15×2 A7×3 daughterboard clocks and their connections to the motherboard and a LogicTile Express FPGA daughterboard.

Figure 2-9 System clocks overview

— Note — ____

The CoreTile Express A15×2 A7×3 daughterboard derives MMB clocks from **PXLREFCLK**, that originates from OSC 5 on the daughterboard. See Figure 2-10 on page 2-26.

Figure 2-10 on page 2-26 shows a functional view of the CoreTile Express $A15 \times 2 A7 \times 3$ daughterboard clocks, and the internal test chip PLLs and clocks.

Figure 2-10 CoreTile Express A15×2 A7×3 daughterboard clocks

Figure 2-10 shows the default inputs for the PLLs. You can independently select **SYSREFCLK** as the inputs to any or all of:

- A15 PLL0.
- A15 PLL1.
- A7 PLL0.
- A7 PLL1.
- HDLCD PLL.

DDR PLL.

See Test chip SCC Register 11 on page 3-27.

CPU_CLK0_A15 is the default source for A15_CLK.

CPU_CLK2_A7 is the default source for A7_CLK.

You can use the 4-way glitchless multiplexers to select any of the four inputs as the sources for A15_CLK and A7_CLK. See *Test chip SCC Register 11* on page 3-27.

When you write to the SCC registers to change the sources for the MPCore clocks, you can monitor when the change takes effect by reading the clock status register. See *Test chip SCC Register 12* on page 3-30.

You can select the polarity of **MMB_IDCLK** relative to **PXLREFCLK**. It can be either in phase with **PXLREFCLK** or inverted. See *Polarities Register bit assignments* on page B-17.

You can also use the SCC registers to exercise other options, for example, to select *External Bypass* to bypass the PLL and drive the reference clock into the design.

—— Note ———

The configuration process bypasses the HDLCD PLL by default.

ARM does not recommend that you select non-default options for the other PLLs and Figure 2-10 on page 2-26 does not show these options. See *Test chip SCC Register 11* on page 3-27 and *Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers* on page 3-31.

The MCC and Daughterboard Configuration Controller use the board.txt configuration file for the daughterboard to set the frequency of the daughterboard clock generators and to configure the SCC registers on power-up or reset. You can also adjust the daughterboard clocks during run-time by using the motherboard SYS CFG register interface.

For more information see:

- *Power-up configuration and resets* on page 2-10.
- Versatile[™] Express Configuration Technical Reference Manual for an example board.txt file.
- Motherboard Express µATX Technical Reference Manual.

2.7.2 Daughterboard programmable clock generators

This section describes the daughterboard clock generators and the clocks that the test chip generates from them to drive the on-chip systems.

The following SCC registers control the PLLs, clock divider blocks and PLL input select multiplexers:

- Test chip SCC Register 11 on page 3-27
- Test chip SCC Register 12 on page 3-30
- Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31
- Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.

Table 2-8 shows the maximum clock operating frequencies.

Clock	Maximum operating frequency
A15_CLK	1GHz
A7_CLK	800MHz
PCLK	1GHz
TRACECLKIN	140MHz
SMB_REFCLK	50MHz
ACLK	500MHz
PXLCLK and MMB_IDCLK	165MHz
DDRCLK	400MHz
HSBM (CLK)	40MHz

Table 2-8 Cortex-A15_A7 test chip maximum clock operating frequencies

—Note —

ARM derives the values in Table 2-8 from a random sample of test chips operating at room temperature and from temperature testing and RTL simulations. They are the best estimate ARM can provide on the maximum operating frequencies, but the maximum operating frequencies of the test chip on your daughterboard might be different from the frequencies in Table 2-8.

The daughterboard OSCCLK sources, and the PLL divider settings, control the minimum test chip operating frequencies.

Table 2-9 shows the daughterboard OSCCLK clock sources.

Table 2-9 Daughterboard OSCCLK clock sources

Test chip signal	Function	Source	OSCCLK frequency range and default	Description, clocks derived from test chip signal
CPUREFCLK0	A15 PLL 0 reference clock	OSCCLK 0	17MHz-50MHz Default is 50MHz	Reference for CPU_CLK0_A15. This is the default source for A15_CLK, the clock for the Cortex-A15 dual-core cluster. Default CPU_CLK0_A15 to OSCCLK 0 ratio: 20:1.
CPUREFCLK1	A15 PLL 1 reference clock	OSCCLK 1	17MHz-50MHz Default is 50MHz	Reference for CPU_CLK1_A15. This is an alternative source for A15_CLK, the clock for the Cortex-A15 dual-core cluster. Default CPU_CLK1_A15 to OSCCLK 1 ratio: 20:1.
CPUREFCLK2	A7 PLL 0 reference clock	OSCCLK 2	17MHz-40MHz Default is 40MHz	Reference for CPU_CLK2_A7. This is the default source for A7_CLK, the clock for the Cortex-A7 triple-core cluster. Default CPU_CLK2_A7 to OSCCLK 2 ratio: 20:1.

Test chip signal	Function	Source	OSCCLK frequency range and default	Description, clocks derived from test chip signal	
CPUREFCLK3	A7 PLL 1 reference clock	OSCCLK 3	17MHz-40MHz Default is 40MHz	Reference for CPU_CLK3_A7 . This is an alternative source for A7_CLK , the clock for the Cortex-A7 triple-core cluster. Default CPU_CLK3_A7 to OSCCLK 3 ratio: 20:1.	
SYSREFCLK	SYS PLL reference clock	OSCCLK 7	17MHz-50MHz Default is 50MHz	Reference for SYSCLK . This is the alternative source for A15_CLK , the clock for the Cortex-A15 dual-core cluster and for A7_CLK , the clock for the A7 triple-core cluster.	
				Default SYS	CLK to OSCCLK 7 ratio: 20:1.
				——— Not	e
				Programmab from SYSCI	le dividers generate the following clocks JK. See Figure 2-11 on page 2-31:
				PCLK	The CoreSight subsystem clock. The default value for the programmable divider is 2. See <i>Test chip SCC Register 11</i> on page 3-27.
				TRACECLKIN	
					The CoreSight <i>Trace Port Interface</i> <i>Unit</i> (TPIU) clock. The default value for the programmable divider is 4. See <i>Test chip SCC Register 11</i> on page 3-27.
				ACLK	The clock for the internal AXI fabric, the DMC-400 <i>Dynamic Memory</i> <i>Controller</i> (DMC) and the <i>Cache-Coherent Interconnect</i> (CCI-400).
					The default value for the programmable divider is 2. See <i>Test chip SCC Register 11</i> on page 3-27.
				These clocks select SYSC A7_CLK, th CCI-400 inte	are synchronous with SYSCLK . If you LK as the source for A15_CLK or e core operates synchronously with the perconnect and the NIC-301 matrix.
				See Figure 2-10 on page 2-26.	
HSBM (CLK)	Multiplexed AXI master clock	OSCCLK 4	2MHz-40MHz Default is 40MHz	External AX	I master clock.

Test chip signal	Function	Source	OSCCLK frequency range and default	Description, clocks derived from test chip signal
DDRREFCLK	DDR2 PLL reference clock	OSCCLK 8	20MHz-50MHz Default is 50MHz	Reference for DDRCLK . This is the default clock for the DMC-400 memory interface and DDR2 physical interface (PHY), the DDR2 pad interface. This operates asynchronously to the AXI clock, ACLK . See Figure 2-15 on page 2-39. Default DDRCLK to OSCCLK 8 ratio: 8:1.
				Note
				You can also select SYSREFCLK as the reference clock for the DDR2 PLL. See <i>Test chip SCC Register 11</i> on page 3-27.
				ARM does not recommend the non-default option, and Figure 2-10 on page 2-26 does not show this non-default connection.
PXLREFCLK	HDLCD PLL reference clock	OSCCLK 5	23.75MHz-165MHz Default is 23.75MHz	Reference for PXLCLK , the HDLCD controller clock in the test chip. You must adjust the frequency of this clock to match your target screen resolution. The HDLCD controller is capable of displaying up to 1920×1080p pixel resolution at 60Hz with PXLCLK set to 165MHz. The configuration process bypasses the HDLCD PLL by default. See: • Figure 2-10 on page 2-26 • <i>Test chip SCC Registers 13, 15, 17, 19, 23, and</i> 25 PLL control registers on page 3-31 • Appendix B HDLCD controller.
SMB_REFCLK	SMB clock	OSCCLK 6	15MHz-40MHz Default is 40MHz	Static memory controller clock.
REFCLK24MHZ	Reference clock	OSCCLK 6	Default is 24MHz	System timer, system counter, and SP805 Watchdog Timer clock.

Table 2-9 Daughterboard OSCCLK clock sources (continued)

The clock generators have an absolute accuracy of better than 1%. If you enter a setting that cannot be precisely generated, the value is approximated to the nearest usable value.

2.7.3 Test chip PLLs and clock divider logic

This section describes the test chip PLLs and dividers that generate the internal clocks that drive the on-chip systems.

The test chip contains seven PLLs. They use the programmable clocks from the daughterboard to generate some of the clocks that the internal systems on the test chip use. See Figure 2-10 on page 2-26.

The SCC registers control the output frequency of each PLL. Control bits from the registers set the PLL dividers to the values that achieve the required output frequency.

Two SCC registers control each PLL and send a:

- 6-bit word, CLKR, to the input divider.
- 13-bit word **CLKF** to the feedback divider.
- 4-bit word **CLKOD** to the output divider.

The following equation provides the output frequency of each PLL:

Figure 2-11 shows the structure of the test chip PLLS, A15 PLL0, and A7 PLL0 that have divide-by-two blocks on their outputs.

Figure 2-11 Structure of the test chip PLLs A15 PLL0 and A7 PLL0

Registers CFGREG19 and CFGREG20 control the dividers of A15 PLL0 that generates CPU_CLK0_A15 and CPU_CLK0_A15/2.

Registers CFGREG23 and CFGREG24 set the dividers of A7 PLL0 that generates CPU_CLK2_A7 and CPU_CLK2_A7/2.

Registers CFGREG21 and CFGREG22 set the dividers of A15 PLL1 that generates CPU_CLK1_A15.

Registers CFGREG25 and CFGREG26 set the dividers of A7 PLL1 that generates CPU_CLK3_A7.

Registers CFGREG17 and CFGREG18 set the dividers of HDLCD PLL that generates **PXLCLK**.

_____Note _____

The configuration process bypasses HDLCD PLL by default.

Registers CFGREG15 and CFGREG16 set the dividers of DDR PLL that generates DDRCLK.

Registers CFGREG13 and CFGREG14 set the dividers of SYSPLL that generates SYSCLK.

Figure 2-12 on page 2-32 shows the structure of SYS PLL that has three programmable dividers on its output.

Figure 2-12 Structure of the test chip PLL SYS PLL

The PCLK programmable divider default divide ratio is 2:1.

The TRACECLKIN default divide ratio is 4:1.

The ACLK default divide ratio is 2:1.

See the following for information on how to control the PLL dividers:

- Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31
- Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.

See *Test chip SCC Register 11* on page 3-27 for information on how to control the programmable dividers on the output of SYS PLL.

2.7.4 External clocks

Table 2-10 shows the external clocks that connect between the CoreTile Express $A15 \times 2 A7 \times 3$ daughterboard and the motherboard, and between the CoreTile Express $A15 \times 2 A7 \times 3$ daughterboard and the optional FPGA daughterboard in Site 2.

Table 2-10 External clock sources

Test chip signal	Function	Source	Frequency range and default	Description
HSBM (CLK)	-	-	-	See Table 2-9 on page 2-28.
MMB_IDCLK	MMB clock	OSCCLK 5	23.75MHz-166MHz Default is 23.7MHz	Clock for HDLCD 24-bit RGB data and synchronization signals. See PXLREFCLK in Table 2-9 on page 2-28.

Table 2-10 External clock sources (continued)

Test chip signal	Function Source		Frequency range and default	Description
SMB_CLKI	SMC uses this to adjust for optimum timing	Motherboard	See the ARM® Motherboard Express µATX Technical Reference Manual	A skew-controlled version of the SMB clock that is sent from the motherboard to the SMC in the test chip.
SMB_CLKO	SMC clock to motherboard	OSCCLK 6	See the ARM [®] Motherboard Express μATX Technical Reference Manual	Clock to motherboard SMB derived from SMB_REFCLK .
TRACECLKA TRACECLKB	Trace clocks	TPIU	140MHz maximum	Clocks to external debug trace equipment.

2.8 Interrupts

This section describes the daughterboard interrupts. It consists of the following subsections:

- Overview of interrupts
- *Interrupts* on page 2-35.

2.8.1 Overview of interrupts

The Cortex-A15 MPCore test chip implements a Generic Interrupt Controller, GIC-400, with 32 internal interrupts and 160 external interrupts as follows:

Internal interrupts

The 32 internal interrupts connect internally between the cores and the GIC.

External interrupts

- The IOFPGA on the motherboard connects to 30 of the 160 external interrupts through the SB.
 - Eighteen interrupts from peripherals inside the IOFPGA, SB_IRQ[17:0].
 - Four interrupts from the daughterboard in site 2, SB[39:36].
 - SB_IRQ[25;22]. These are copies of SB_IRQ[39;36].
 - Four interrupts, SB_IRQ[35:32], from the daughterboard in site 1.

- The Cortex-A15 cluster connect to 8 of the external interrupts.
- The Cortex-A7 cluster connect to 12 of the external interrupts.
- The test chip peripherals connect to 21 of the external interrupts.
- 65 external interrupts are reserved.

The CoreTile Express $A15 \times 2 \ A7 \times 3$ daughterboard does not send interrupts to the second daughterboard. You can route interrupts to the CoreTile Express $A15 \times 2 \ A7 \times 3$ daughterboard from the second daughterboard through the motherboard IOFPGA using **SB2_INT[3:0]** that loops back to **SB_IRQ**. Table 2-11 on page 2-35 shows the interrupt mapping.

Figure 2-13 on page 2-35 shows an overview of the Cortex-A15_A7 MPCore test chip interrupt signals.

Figure 2-13 CoreTile Express A15×2 A7×3 daughterboard interrupt overview

2.8.2 Interrupts

Table 2-11 shows the interrupts from the motherboard IOFPGA, the interrupts from the test chip peripherals, the interrupts from the MPCore cluster, and the reserved interrupts.

Table	2-11	Interru	pts
-------	------	---------	-----

GIC interrupt	SB_IRQ[] interrupt from the motherboard	Source	Signal	Description
0:31	Not applicable	MPCore cluster	-	Private peripheral connections between cores and GIC
32	0	IOFPGA	WDOG0INT	Watchdog timer
33	1	IOFPGA	SWINT	Software interrupt
34	2	IOFPGA	TIM01INT	Dual timer 0/1 interrupt

Table 2-11 Interrupts (continued)

GIC interrupt	SB_IRQ[] interrupt from the motherboard	Source	Signal	Description
35	3	IOFPGA	TIM23INT	Dual timer 2/3 interrupt
36	4	IOFPGA	RTCINTR	Real time clock interrupt
37	5	IOFPGA	UARTOINTR	UART0 interrupt
38	6	IOFPGA	UART1INTR	UART1 interrupt
39	7	IOFPGA	UART2INTR	UART2 interrupt
40	8	IOFPGA	UART3INTR	UART3 interrupt
42:41	10	IOFPGA	MCI_INTR[1:0]	Media card interrupt[1:0]
43	11	IOFPGA	AACI_INTR	Audio CODEC interrupt
44	12	IOFPGA	KMI0_INTR	Keyboard, mouse interrupt
45	13	IOFPGA	KMI1_INTR	Keyboard, mouse interrupt
46	14	IOFPGA	CLCDINTR	Display interrupt
47	15	IOFPGA	ETH_INTR	Ethernet interrupt
48	16	IOFPGA	USB_nINT	USB interrupt
49	17	IOFPGA	PCIE_GPEN	PCI express
53:50	21:18	b0	-	Reserved
57:54	25:22	IOFPGA	SB2_INT[3:0]	Copy of SB[39:36]
63:58	31:26	b0	-	Reserved
67:64	35:32	IOFPGA	SB1_INT[3:0]	Interrupts from daughterboard in site 1
71:68	39:36	IOFPGA	SB2_INT[3:0]	Interrupts from daughterboard in site 2
95:72	63:40	b0	-	Reserved
99:96	Not applicable	A15 cluster: b0	-	Reserved
101:100	Not applicable	A15 cluster	PMUIRQ[1:0]	A15 Performance monitor unit interrupt[1:0]
103:102	Not applicable	A15 cluster: b0	-	Reserved
105:104	Not applicable	A15 cluster	CTIIRQ[1:0]	A15 Cross trigger interrrupt[1:0]
107:106	Not applicable	A15 cluster: b0	-	Reserved
109:108	Not applicable	A15 cluster	A15_COMMTX[1:0]	A15 CP14 DTR COMMTX Interrupt[1:0]
111:110	Not applicable	A15 cluster: b0	-	Reserved
113:112	Not applicable	A15 cluster	A15_COMMRX[1:0]	A15 CP14 DTR COMMRX Interrupt[1:0]
115:114	Not applicable	A15 cluster: b0	-	Reserved
116	Not applicable	Test chip peripherals: b0	-	Reserved
117	Not applicable	Test chip peripherals	-	HDLCD interrupt

Table 2-11 Interrupts (continued)

GIC interrupt	SB_IRQ[] interrupt from the motherboard	Source	Signal	Description
119:118	Not applicable	Test chip peripherals	SMC[1:0]	SMC interface interrupt[1:0]
123:120	Not applicable	Test chip peripherals	DMA_IRQ[3:0]	DMA interrupts[3:0]
124	Not applicable	Test chip peripherals	DMA_IRQ_ABORT	-
125	Not applicable	Test chip peripherals	UART_TX_INT	UART TX interrupt
126	Not applicable	Test chip peripherals	UART_RX_INT	UART RX interrupt
127	Not applicable	Test chip peripherals	-	External power controller interrupt
128	Not applicable	Test chip peripherals	-	A15 AXI error
129	Not applicable	Test chip peripherals	-	A15 RAM double bit error
130	Not applicable	Test chip peripherals	-	System watchdog interrupt
131	Not applicable	Test chip peripherals	-	Generic timer interrupt
132	Not applicable	Test chip peripherals	-	CCI-400 error IRQ
137:133	Not applicable	Test chip peripherals	-	CCI-400 event counter overflow[4:0]
138	Not applicable	Test chip peripherals	-	A7 AXI error
143:139	Not applicable	Test chip peripherals: b0	-	Reserved
159:144	Not applicable	-	-	Reserved
162:160	Not applicable	A7 cluster	PMUIRQ[2:0]	A7 Performance monitor unit interrupt[2:0]
163	Not applicable	A7 cluster: b0	-	Reserved
166:164	Not applicable	A7 cluster	CTIIRQ[2:0]	A7 cross trigger interrrupt[2:0]
167	Not applicable	A7 cluster: b0	-	Reserved
170:168	Not applicable	A7 cluster	A7_COMMTX[2:0]	A7 CP14 DTR COMMTX Interrupt[2:0]
171	Not applicable	A7 cluster: b0	-	Reserved
174:172	Not applicable	A7 cluster	A7_COMMRX[2:0]	A15 CP14 DTR COMMRX Interrupt[2:0]
191:175	Not applicable	A7 cluster: b0	-	Reserved

_____Note _____

•

For more information on the motherboard peripherals that generate interrupts to the test chip, see the ARM^{\otimes} Motherboard Express μATX Technical Reference Manual.

2.9 HDLCD

An ARM HDLCD controller in the Cortex-A15_A7 MPCore test chip provides graphic display capabilities. The controller is a frame buffer device that is capable of displaying up to 1920×1080p pixel resolution at 60Hz with a 165MHz pixel clock from OSCCLK 5. The MMB connects the 24-bit RGB data directly between the test chip and the motherboard through the HDRY header. The multiplexer FPGA on the motherboard can select this bus to drive the analog and digital interfaces for the DVI connector using the motherboard SYS_CFG register interface. See the $ARM^{\text{@}}$ Motherboard Express μATX Technical Reference Manual.

The HDLCD frame buffer is located in DDR2 memory serviced by the DMC from the test chip bus matrix. This ensures maximum data bandwidth between the Cortex-A15_A7 MPCore cluster, the HDLCD controller, and DDR2 memory without accessing off-chip devices.

Figure 2-14 shows a functional overview of the HDLCD controller and its connections to the Cortex-A15 test chip and the motherboard.

See Appendix B HDLCD controller for a full description of the HDLCD controller.

Figure 2-14 HDLCD graphics system interconnect

2.10 DDR2 memory interface

The Cortex-A15 DDR2 memory interface uses a DMC-400 *Dynamic Memory Controller* (DMC). By default, the DMC runs asynchronously to the AXI matrix so that the AXI sub-system does not impose frequency limitations on the DMC interface.

Figure 2-15 DDR2 memory interface

——Note ——

OSCCLK 8 is the source for **DDRCLK**.

OSCCLK 7 is the source for ACLK.

See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28.

2.11 Debug

You can attach a JTAG debugger to the daughterboard JTAG connector to execute programs to the daughterboard and debug them. For convenience, connect the cable from the rear panel JTAG connector to the daughterboard JTAG. For example, you can connect a software debugger, such as the DS-5 debugger, to this debug interface using an external DSTREAM debug and trace unit.

—— Note ———

The daughterboard does not support adaptive clocking. The **RTCK** signal is tied LOW on the JTAG ICE connector.

See Figure 1-1 on page 1-3 for the location of the JTAG ICE connector.

Figure 2-16 on page 2-41 shows an overview of the CoreSight system.

Figure 2-16 CoreTile Express A15×2 A7×3 CoreSight and trace

For information on CoreSight components, see the *CoreSight*[™] *Components Technical Reference Manual.*

The daughterboard supports up to 32-bit trace in *continuous* mode. There are two MICTOR connectors for JTAG and trace. See Figure 1-1 on page 1-3 for the location of these connectors.

To set up a trace connection to any of the cores on the test chip, you must know the funnel port number and PTM or ETM base address connection information associated with that core. Table 2-12 defines the funnel port numbers and base addresses.

Core	Core base address	Funnel port	PTM base address	ETM base address
Cortex-A15 Core 0	0x00_2201_0000	0	0x00_2201_C000	-
Cortex-A15 Core 1	0x00_2201_2000	1	0x00_2201_D000	-
Cortex-A7 Core 0	0x00_2203_0000	2	-	0x00_2203_C000
Cortex-A7 Core 1	0x00_2203_2000	4	-	0x00_2203_D000
Cortex-A7 Core 2	0x00_2203_4000	5	-	0x00_2203_E000

Table 2-12 Test chip Trace connection addresses

See the following for the memory addresses of all CoreSight components:

- Figure 3-3 on page 3-9
- Table 3-4 on page 3-9
- Figure 3-4 on page 3-10
- Table 3-5 on page 3-10.

Chapter 3 Programmers Model

This chapter describes the memory map and the configuration registers for the peripherals on the daughterboard. It contains the following sections:

- *About this programmers model* on page 3-2
- Daughterboard memory map on page 3-3
- *Test chip SCC registers* on page 3-12
- *Programmable peripherals and interfaces* on page 3-54.

3.1 About this programmers model

The following information applies to the SCC and to the system counter registers:

- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in UNPREDICTABLE behavior.
- Unless otherwise stated in the accompanying text:
 - Do not modify undefined register bits.
 - Ignore undefined register bits on reads.
 - All register bits are reset to a logic 0 by a system or power-on reset.
 - Access type in Table 3-7 on page 3-13 is described as follows:
 - **RW** Read and write.
 - **RO** Read only.
 - **WO** Write only.

3.2 Daughterboard memory map

The Cortex-A15_A7 test chip supports the 40-bit *Large Physical Address Extension* (LPAE). The programmers model is based on the *Cortex-A Series* memory map with support for 2GB of contiguous DDR memory that is located at 0x00_8000_0000.

The test chip SMC is located at 0x00_0000_0000 and supports up to six chip selects. The test chip internal peripherals are located at 0x00_2000_0000, Cortex-A15_A7 ACP at 0x00_3000_0000, and external AXI at 0x00_4000_0000.

The memory map supports a remap option at $0x00_0000_0000$ that can select SMC or external AXI.

A typical system boots from SMC CS0 that addresses the motherboard NOR flash 0. See *Remapping memory* on page 3-5. After DDR2 configuration is complete, the exception vectors are moved into the DDR2 area using the CoreSight vector offset registers.

3.2.1 Overview of daughterboard memory map

Figure 3-1 on page 3-4 shows the daughterboard memory map and the remap options. SCC *Test chip SCC Register 4* on page 3-19 controls the remap options. See *Remapping memory* on page 3-5.

0xFF_FFFF_FFF					
	Reserved				Reserved
0x81_0000_0000					
0x80_8000_0000	DDR2 2GB aliased				DDR2 2GB aliased
0×80_0000_0000	DDR2 2GB aliased				DDR2 2GB aliased
0,000,0000,0000	Reserved				Reserved
0x08_0000_0000	DDR2 2GB aliased				DDR2 2GB aliased
0x08_0000_0000	DDR2 2GB aliased				DDR2 2GB aliased
0x01_0000_0000	Reserved				Reserved
0×00_8000_0000	DDR2 2GB (Aliased from 0x08_0000_0000, 0x08_8000_0000, 0x80_0000_000 and 0x80_8000_0000 in 40-bit mode)				DDR2 2GB (Aliased from 0x08_0000_0000, 0x08_8000_0000, 0x80_0000_000 and 0x80_8000_0000 in 40-bit mode)
0x00_7FC0_0000	Test chip peripherals				External AXI
0x00_4000_0000	External AXI Master Interface		SMC CS3 (nerinherals)		
0x00_3000_0000	Cortex-A15 ACP		SMC CS2 (peripherals) SMC CS1 (PSRAM)	0x00_1200_0000 0x00_1800_0000 0x00_1400_0000	Cortex-A15 ACP
0x00_2000_0000	Test chip peripherals		Reserved SMC CS4 (NOR 1)	0x00_1000_0000 0x00_0C00_0000	Test chip peripherals
0x00_0000_0000	SMC		SMC CS0 (NOR 0) Secure RAM SMC CS0 (NOR 0)	0x00_0800_0000 0x00_0400_0000 0x00_0000_0000	External AXI
	CFGREG4[1:0] = b0 External AXI at 0x00 Default	, 0: _4000_000	0 enabled	-	CFGREG4[1:0] = b01: External AXI at 0x00_4000_0000 enabled
	CFGREG4[1:0] = b1 External AXI at 0x00	0: _4000_000	0 disabled		enabled

Figure 3-1 CoreTile Express A15×2 A7×3 daughterboard memory map

 Table 3-1 shows the daughterboard peripheral interfaces.

Table 3-1 Daughterboard memory map

Address range	Size	Description
0x00_0000_0000 - 0x00_03FF_FFF	64MB	CS0-Motherboard NOR flash 0:Also accessible at 0x00_0800_0000.
0x00_0400_0000 - 0x00_07FF_FFF	64MB	Secure RAM
0x00_0800_0000 - 0x00_0BFF_FFF	64MB	CS0-Motherboard NOR flash 0:Also accessible at 0x00_0000_0000.
0x00_0C00_0000 - 0x00_0FFF_FFF	64MB	CS4-Motherboard NOR flash 1
0x00_1000_0000 - 0x00_13FF_FFF	64MB	CS5-Reserved
0x00_1400_0000 - 0x00_17FF_FFFF	64MB	CS1-Pseudostatic RAM, PSRAM, on the motherboard
0x00_1800_0000 - 0x00_1BFF_FFFF	64MB	CS2-Video/ETH/USB on the motherboard
0x00_1C00_0000 - 0x00_1FFF_FFFF	64MB	CS3-system registers and peripherals on the motherboard
0x00_0000_0000 - 0x00_1FFF_FFF	512MB	External AXI master interface, remap option
0x00_2000_0000 - 0x00_2FFF_FFF	256MB	Test chip peripherals. some areas Reserved). See <i>Overview of the memory map for the on-chip peripherals</i> on page 3-6.
0x00_3000_0000 - 0x00_3FFF_FFF	256MB	Cortex-A15 Accelerator Coherency Port (ACP)
0x00_4000_0000 - 0x00_7FBF_FFFF	1020MB	External AXI between daughterboards
0x00_7FC0_0000 - 0x00_7FFF_FFF	4MB	Test chip peripherals (some areas Reserved). See <i>Overview of the memory map for the on-chip peripherals</i> on page 3-6.
0x00_8000_0000 - 0x00_FFFF_FFF	2GB	CoreTile Express A15×2 A7×3 daughterboard DDR2, block 1
0x01_0000_0000 - 0x07_FFFF_FFF	28GB	Reserved
0x08_0000_0000 - 0x08_7FFF_FFF	2GB	CoreTile Express A15×2 A7×3 daughterboard DDR2, alias to block 1
0x08_8000_0000 - 0x08_FFFF_FFF	2GB	CoreTile Express A15×2 A7×3 daughterboard DDR2, alias to block 1
0x09_0000_0000 - 0x7F_FFFF_FFF	476GB	Reserved
0x80_0000_0000 - 0x80_7FFF_FFF	2GB	CoreTile Express A15×2 A7×3 daughterboard DDR2, alias to block 1
0x80_8000_0000 - 0x80_FFFF_FFF	2GB	CoreTile Express A15×2 A7×3 daughterboard DDR2, alias to block 1
0x81_0000_0000 - 0xFF_FFFF_FFF	508GB	Reserved

3.2.2 Remapping memory

This section describes the remap options for address 0x00_0000_0000. It contains the following subsections:

- SMC or AXI on page 3-6
- Chip-select Remap on page 3-6
- Chip-select Remap on page 3-6.

SMC or AXI

SCC register bits CFGREG4[1:0] control whether AXI or SMC is mapped to the lower 512MB of memory. This enables booting from external AXI. One SMC option also selects external AXI enabled, and the other SMC option selects external AXI disabled. See *Test chip SCC Register 4* on page 3-19.

Chip-select Remap

SCC register bits CFGREG4[5:4] control whether CS0 or CS4 is addressed at address 0x00_0000_0000. See *Test chip SCC Register 4* on page 3-19.

— Note —

Chip-select remap operates only when you map SMC to 0x00_0000_0000.

The processor fetches its first instructions from address 0x00_0000_0000, but the actual memory read depends on the remapped memory region.

Memory remapping at power-on during run-time

You can configure the remap option at power-on or during run time as follows:

Remapping at power-on

Use the board.txt file if the remap option is required when the processor starts from a reset. The SCC: 0x000 entry in the board.txt file controls the settings for the SCC register CFGREG4. See ARM^{\circledast} VersatileTM Express Configuration Technical Reference Manual.

Remapping during run time

Write directly to the SCC register CFGREG0 to change remapping after power-on. See *Test chip SCC Register 4* on page 3-19. See the Boot Monitor sys_boot.s file for an example of reconfiguring while running.

— Caution ———

ARM recommends that you use the configuration file rather than directly writing to the control registers. You must perform remapping during run-time with care. Do not do this when code is running from the remapped area.

3.2.3 Overview of the memory map for the on-chip peripherals

Figure 3-2 on page 3-7 shows the on-chip peripheral memory map.

Figure 3-2 Cortex-A15_A7 on-chip peripheral memory map

Table 3-2 and Table 3-3 show the two areas of the Cortex-A15_A7 memory map occupied by test chip peripherals.

Address range	Size	Description
0x00_2000_0000 - 0x00_27FF_FFF	128MB	CoreSight components. See Table 3-4 on page 3-9.
0x00_2800_0000 - 0x00_29FF_FFF	32MB	Reserved.
0x00_2A00_0000 - 0x00_2A0F_FFFF	1MB	AXI Network Interconnect, NIC-301.
0x00_2A10_0000 - 0x00_2A41_FFFF	3.125MB	Reserved.
0x00_2A42_0000 - 0x00_2A42_FFFF	64KB	SCC, aliased.
0x00_2A43_0000 - 0x00_2A43_0013	20B	System counter control registers.
0x00_2A43_0014 - 0x00_2A48_FFFF	393196B	Reserved.
0x00_2A49_0000 - 0x00_2A49_0FFF	4KB	System Watchdog, SP805.
0x00_2A49_1000 - 0x00_2A7F_FFFF	3516KB	Reserved.
0x00_2A80_0000 - 0x00_2A80_0FFF	4KB	System counter read registers.
0x00_2A80_1000 - 0x00_2AFF_FFFF	8188KB	Reserved.
0x00_2B00_0000 - 0x00_2B00_024F	592B	HDLCD.
0x00_2B00_0250 - 0x00_2B01_FFFF	130480B	Reserved.
0x00_2B02_0000 -	-	UART.
0x00_2B04_0000 - 0x00_2B04_0FFF	4KB	System timer.
0x00_2B04_1000 - 0x00_2B09_FFFF	380KB	Reserved.
0x00_2BOA_0000 -	-	DMC-400 configuration.
0x00_2C00_0000 -	-	GIC-400.
0x00_2C09_0000 -	-	CCI-400.
0x00_2E00_0000 - 0x00_2E00_FFFF	64KB	64KB System SRAM.
0x00_2E01_0000 - 0x00_2FFF_FFF	32704KB	Reserved.

Table 3-2 Cortex-A15_A7 on-chip peripheral memory map

Table 3-3 Cortex-A15_A7 on-chip peripheral memory map

Size	Description
3008KB	Reserved.
64KB	DMC PHY configuration.
708KB	Direct Memory Access controller, DMA-330.
124KB	Reserved.
4KB	Static Memory Controller, SMC, PL354.
124KB	Reserved.
64KB	SCC.
	Size 3008KB 64KB 708KB 124KB 4KB 124KB 64KB

Figure 3-3 shows the on-chip CoreSight component memory map.

Figure 3-3 Cortex-A15 CoreSight component memory map

Table 3-4 shows the CoreSight component memory map.

Table 3-4	CoreSight	component	memory	map
-----------	-----------	-----------	--------	-----

Address range	Size	Description
0x00_2000_0000 - 0x00_2000_FFFF	64KB	DAP ROM table.
0x00_2001_0000 - 0x00_2001_FFFF	64KB	ETB.
0x00_2002_0000 - 0x00_2002_FFFF	64KB	CTI.
0x00_2003_0000 - 0x00_2003_FFFF	64KB	TPIU.
0x00_2004_0000 - 0x00_2004_FFFF	64KB	Funnel.
0x00_2005_0000 - 0x00_2005_FFFF	64KB	ITM.
0x00_2006_0000 - 0x00_2006_FFFF	64KB	SWO.
0x00_2007_0000 - 0x00_21FF_FFF	32320KB	Reserved.
0x00_2200_0000 - 0x00_2002_0FFF	128KB	Cortex-A15 cluster integration layer. See Figure 3-4 on page 3-10 and Table 3-5 on page 3-10.
0x00_2202_0000 - 0x00_2203_FFFF	128KB	Cortex-A7 cluster integration layer. See Figure 3-4 on page 3-10 and Table 3-6 on page 3-11.
0x00_2204_0000 - 0x00_27FF_FFF	98048KB	Reserved.

Figure 3-4 on page 3-10 shows expanded views of part of the CoreSight component memory map, the Cortex-A15 and Cortex-A7 cluster integration layer.

		0x00_2203_FFFF	Decerved
		0x00_2203_F000	Reserved
		0x00_2203_E000	A7 CPU 2 ETM
		0x00_2203_D000	A7 CPU 1 ETM
0 00 0001 5555	[]	0x00_2203_C000	A7 CPU 0 ETM
0x00_2201_FFFF 0x00_2201_E000	Reserved	0×00 2203 8000	Reserved
0x00_2201_D000	A15 CPU 1 PTM	0x00_2203_8000	A7 CPU 2 CTI
0x00_2201_C000	A15 CPU 0 PTM	0x00_2203_9000	A7 CPU 1 CTI
0x00_2201_A000	Reserved	0x00_2203_8000	A7 CPU 0 CTI
0x00_2201_9000	A15 CPU 1 CTI	0x00 2203 6000	Reserved
0x00_2201_8000	A15 CPU 0 CTI	0x00_2203_5000	A7 CPU 2 PMU
0x00_2201_4000	Reserved	0x00_2203_4000	A7 CPU 2 debug
0x00_2201_3000	A15 CPU 1 PMU	0x00_2203_3000	A7 CPU 1 PMU
0x00_2201_2000	A15 CPU 1 debug	0x00_2203_2000	A7 CPU 1 debug
0x00_2201_1000	A15 CPU 0 PMU	0x00_2203_1000	A7 CPU 0 PMU
0x00_2201_0000	A15 CPU 0 debug	0x00_2203_0000	A7 CPU 0 debug
0x00_2200_1000	Reserved	0x00_2202_1000	Reserved
0x00_2200_0000	A15 ROM table	0x00_2202_0000	A7 ROM table

Figure 3-4 Cortex-A15_A7 A15 and Cortex-A7 cluster integration layers

Table 3-5 shows the A15 cluster integration layer.

Table 3-5 Cortex-A15_A7 A15 and Cortex-A7 cluster integration layers

Address range	Size	Description
0x00_2200_0000 - 0x00_2200_0FFF	4KB	A15 ROM table
0x00_2200_1000 - 0x00_2200_FFFF	60KB	Reserved
0x00_2201_0000 - 0x00_2201_0FFF	4KB	A15 core 0 debug
0x00_2201_1000 - 0x00_2201_1FFF	4KB	A15 core 0 PMU
0x00_2201_2000 - 0x00_2201_2FFF	4KB	A15 core 1debug
0x00_2201_3000 - 0x00_2201_3FFF	4KB	A15 core 1 PMU
0x00_2201_4000 - 0x00_2201_7FFF	4KB	Reserved

Address range	Size	Description
0x00_2201_8000 - 0x00_2201_8FFF	16KB	A15 core 0 CTI
0x00_2201_9000 - 0x00_2201_9FFF	4KB	A15 core 1 CTI
0x00_2201_A000 - 0x00_2201_BFFF	8KB	Reserved
0x00_2201_C000 - 0x00_2201_CFFF	4KB	A15 core 0 PTM
0x00_2201_D000 - 0x00_2201_DFFF	4KB	A15 core 1 PTM
0x00_2201_E000 - 0x00_2201_FFFF	8KB	Reserved

Table 3-5 Cortex-A15_A7 A15 and Cortex-A7 cluster integration layers (continued)

 Table 3-6 shows the A7 cluster integration layer.

Table 3-6 Cortex-A15_A7 A15 and A7 cluster integration layers

Address range	Size	Description
0x00_2202_0000 - 0x00_2202_0FFF	4KB	A7 ROM table
0x00_2202_1000 - 0x00_2202_FFFF	60KB	Reserved
0x00_2203_0000 - 0x00_2203_0FFF	4KB	A7 core 0 debug
0x00_2203_1000 - 0x00_2203_1FFF	4KB	A7 core 0 PMU
0x00_2203_2000 - 0x00_2203_2FFF	4KB	A7 core 1 debug
0x00_2203_3000 - 0x00_2203_3FFF	4KB	A7 core 1 PMU
0x00_2203_4000 - 0x00_2203_4FFF	4KB	A7 core 2 debug
0x00_2203_5000 - 0x00_2203_5FFF	4KB	A7 core 2 PMU
0x00_2203_6000 - 0x00_2203_7FFF	8KB	Reserved
0x00_2203_8000 - 0x00_2203_8FFF	4KB	A7 core 0 CTI
0x00_2203_9000 - 0x00_2203_9FFF	4KB	A7 core 1 CTI
0x00_2203_A000 - 0x00_2203_AFFF	4KB	A7 core 2 CTI
0x00_2203_B000 - 0x00_2203_BFFF	4KB	Reserved
0x00_2203_C000 - 0x00_2203_CFFF	4KB	A7 core 0 ETM
0x00_2203_D000 - 0x00_2203_DFFF	4KB	A7 core 1 ETM
0x00_2203_E000 - 0x00_2203_EFFF	4KB	A7 core 2 ETM
0x00_2203_F000 - 0x00_2203_FFFF	4KB	Reserved

3.3 Test chip SCC registers

This section describes the SCC registers. It contains the following subsections:

- Test chip SCC register overview
- Test chip SCC register summary on page 3-13
- *Test chip SCC register descriptions* on page 3-17.

3.3.1 Test chip SCC register overview

The SCC register interface enables configuration at power-up in addition to the reading and writing of system parameters. The SCC registers use a dedicated interface to the Daughterboard Configuration Controller that communicates with the MCC over an SPI interface.

The MCC on the motherboard reads the config.txt and board.txt configuration files and uses the Daughterboard Configuration Controller to configure the motherboard and attached daughterboards. The Daughterboard Configuration Controller loads some of the registers in the test chip SCC.

Run-time read and write operations are performed through the SYS_CFG registers, or directly through the APB interface at base address 0x00_7FFF_0000.

_____Note _____

ARM recommends that, where possible, you perform all system configuration by loading configuration files into the microSD card on the motherboard rather than writing directly to the test chip controller. The settings in the board.txt file are applied to the daughterboard before reset is released.

You can read and write to the Cortex-A15_A7 test chip SCC registers as follows:

- The interface supports word writes to the configuration controller registers.
- Writes to read-only registers are ignored.
- Writes to unused words fail.
- ARM recommends that you use a read-modify-write sequence to update the configuration controller registers.
- Read accesses to the peripheral support reading back 32 bits of the register at a time.
- Reads from unused words in the register return zero.
- The base address of the SCC registers is 0x00_7FFF_0000.

3.3.2 Test chip SCC register summary

Table 3-7 shows the configuration registers and corresponding offsets from the base memory address. The offsets are also their board.txt entries. The configuration process, see ARM^{\circledast} *Versatile*TM *Express Configuration Technical Reference Manual*, overwrites the test chip or default values in Table 3-7.

Offset	Name	Туре	Test chip reset	Width	Description
0x000	CFGREG0	RW	0x14FC00FC	32	SMC CS0/1 register. See <i>Test chip SCC Register 0</i> on page 3-17.
0x004	CFGREG1	RW	0x1CFC18FC	32	SMC CS2/3 register. See <i>Test chip SCC Register 1</i> on page 3-17.
0x008	CFGREG2	RW	0x10FC0CFC	32	SMC CS4/5 register. See <i>Test chip SCC Register 2</i> on page 3-18.
0x00C	CFGREG3	RW	0x06FE04FE	32	SMC CS6/7 register. See <i>Test chip SCC Register 3</i> on page 3-19.
0x010	CFGREG4	RW	0x000003D0	32	Miscellaneous configuration register 0. See <i>Test chip SCC Register 4</i> on page 3-19.
0x014	CFGREG5	RW	0x00001000	32	DMA boot address register. See <i>Test chip SCC Register 5</i> on page 3-21.
0x018	CFGREG6	RW	0x1FFFFFFF	32	Reset control register. See <i>Test chip SCC Register 6</i> on page 3-22.
0x01C	CFGREG7	RO	0x07230477	32	DAP ROM default target ID register. See <i>Test chip SCC Register 7</i> on page 3-25.
0x020	CFGREG8	RO	0×00000000	32	DAP ROM default instance ID register. <i>Test chip SCC Register 8</i> on page 3-26.
0x03C - 0X024	-	-	-	-	Reserved. Do not write to or read from these registers.
0x040	CUSTOMER_ID	RO	0x10041002	32	Revision, designer ID and part number information register. See <i>Test chip SCC CUSTOMER_ID Register</i> on page 3-26.
0x0FC - 0X044	-	-	-	-	Reserved. Do not write to or read from these registers.
0x100	CFGREG11	RW	0x0110C900	32	Clock control register. <i>Test chip SCC Register 11</i> on page 3-27.
0x104	CFGREG12	RW	0×00000000	32	Clock status register. <i>Test chip SCC Register 12</i> on page 3-30.
0x108	CFGREG13	RW	0x022F10000	32	SYS PLL control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.

Table 3-7 Test chip SCC register summary

Table 3-7 Test chip SCC register summary (continued)

Offset	Name	Туре	Test chip reset	Width	Description
0x10C	CFGREG14	RW	0x0011710D	32	SYS PLL value register. See Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.
0x110	CFGREG15	RW	0x00BF1000	32	DDR PLL control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.
0x114	CFGREG16	RW	0x0005F503	32	DDR PLL value register. See Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.
0x118	CFGREG17	RW	0x01CD1000	32	HDLC PLL control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.
0x11C	CFGREG18	RW	0x000E6D09	32	HDLC PLL value register. See Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.
0x120	CFGREG19	RW	0x022F1000	32	A15 cluster PLL 0 control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.
0x124	CFGREG20	RW	0x0011710D	32	A15 cluster PLL 0 value register. See Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.
0x128	CFGREG21	RW	0x021B1000	32	A15 cluster PLL 1 control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.
0x12C	CFGREG22	RW	0x00021B0E	32	A15 cluster PLL 1 value register. See <i>Test chip SCC Registers 14, 16, 18, 22, 24 and 26</i> <i>PLL value registers</i> on page 3-33.
0x130	CFGREG23	RW	0x039F1000	32	A7 cluster PLL 0 control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.
0x134	CFGREG24	RW	0x0039F11C	32	A7 cluster PLL 0 value register. See Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.
0x138	CFGREG25	RW	0x01F71000	32	A7 cluster PLL 1 control register. See Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers on page 3-31.
0x13C	CFGREG26	RW	0x0001F711	32	A7 cluster PLL 1 value register. See Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers on page 3-33.
0x3FC - 0x140	-	-	-	-	Reserved. Do not write to or read from these registers.
0x400	CFGREG41	RW	0x33330C00	32	A15 configuration register 0. See <i>Test chip SCC Register 41</i> on page 3-35.
Table 3-7 Test chip SCC register summary (continued)

Offset	Name	Туре	Test chip reset	Width	Description
0x404	CFGREG42	RW	0x083FFC00	32	A15 configuration register 1. See <i>Test chip SCC Register 42</i> on page 3-36.
0x4FC - 0x408	-	-	-	-	Reserved. Do not write to or read from these registers.
0x500	CFGREG43	RW	0x77700001	32	A7 configuration register 0. See <i>Test chip SCC Register 43</i> on page 3-39.
0x504	CFGREG44	RW	0x00008007	32	A7 configuration register 1. See <i>Test chip SCC Register 44</i> on page 3-41.
0x5FC - 0x508	-	-	-	-	Reserved. Do not write to or read from these registers.
0x600	CFGREG45	RW	0x55555500	32	CCI-400 configuration register 0. See <i>Test chip SCC Register 45</i> on page 3-42.
0x604	CFGREG46	RW	0x01860038	32	CCI-400 configuration register 1. See <i>Test chip SCC Register 46</i> on page 3-44.
0x608	CFGREG47	RW	0x00070000	32	CCI-400 configuration register 2. See <i>Test chip SCC Register 47</i> on page 3-45.
0x6FC - 0x60C	-	-	-	-	Reserved. Do not write to or read from these registers.
0x700	CFGREG48	RW	0x0032F003	32	System information register. See <i>Test chip SCC Register 48</i> on page 3-47.
0xFF0- 0x704	-	-	-	-	Reserved. Do not write to or read from these registers.
0xFF4	APB_CLEAR	WO	-	32	Write 0x000A50F5 to this register to revert serial control to the values loaded through the SCC. See <i>Test chip SCC Register APB_CLEAR</i> on page 3-51.
0xFF8	TC_ID	RO	0x00050176	32	Test chip specific device ID register. See <i>Test chip SCC Register TEST_CHIP_ID</i> on page 3-52.
0xFFC	CPU_ID	RO	0x410FC0F0	32	Cortex-A15_A7 CPU ID register. See <i>Test chip SCC Register CPU_ID</i> on page 3-52.

3.3.3 Mask operation to define SMC chip select address ranges

The following registers enable you to define SMC *Chip Select* (CS) base addresses by defining the 7th and 8th hexadecimal digits of each base addresses:

- Test chip SCC Register 0 on page 3-17
- *Test chip SCC Register 1* on page 3-17
- Test chip SCC Register 2 on page 3-18
- Test chip SCC Register 3 on page 3-19.

Each register defines two base addresses, and each base address is defined by 8 *match* bits and by 8 *mask* bits.

In each register:

- Bits[31:24] and bits[15:8] are the *match* bits.
- Bits[23:16] and bits[7:0] are the *mask* bits.

The 8 match bits modified by the 8 *mask* bits represent the 7th and 8th digits of the SMC base address as follows:

b0 in mask register

Masked. Corresponding bit in *match* register is *Don't Care*, X.

b1 in mask register

Not masked. Corresponding bit in *match* register is unchanged.

Example 3-1 Defining SMC CS4 base address

The match bits of SMC CS4 base address are b00001100, and the mask bits are b11111100. See *Test chip SCC Register 2* on page 3-18. The result of the mask operation is b000011XX.

This means that the 8th and 7th digits of the base address of SMC CS4 have the value 0x0C. Test chip circuitry generates the address range of SMC CS4 as 0x00_0C00_0000 to 0x00_0FFF_FFFF, that is a range of 64MB. See Figure 3-1 on page 3-4 and Table 3-1 on page 3-5.

Example 3-2 Defining SMC CS0 base address

The match bits of SMC CS0 base address are b00000000, and the mask bits are b11110100. See *Test chip SCC Register 0* on page 3-17. The result of the mask operation is b0000X0XX.

This means the 8th and 7th digits of the base address of SMC CS0 have two values that are 0x00 and 0x08. Test chip circuitry generates the address ranges of SMC CS0 as 0x00_0000_0000 to 0x00_03FF_FFFF and 0x00_0800_0000 to 0x00_0BFF_FFFF. Each range is 64MB. See Figure 3-1 on page 3-4 and Table 3-1 on page 3-5

3.3.4 Test chip SCC register descriptions

This section describes the SCC registers. Table 3-7 on page 3-13 provides cross references to individual registers.

Test chip SCC Register 0

The CFGREG0 Register characteristics are:

PurposeSMC CS0 and CS1 Register that enables you to read and write match and
mask bits for the SMC CS0 and SMC CS1. See Mask operation to define
SMC chip select address ranges on page 3-15.

Usage constraints There are no usage constraints.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-5 shows the bit assignments.

Figure 3-5 Test chip CFGREG0 Register bit assignments

Table 3-8 shows the bit assignments.

Table 3-8 Test chip CFGREG0 Register bit assignments

Bits	Name	Function
[31:24]	SMC_ADDR_MATCH0_1	SMC CS1 address match of top 8 bits
[23:16]	SMC_ADDR_MASK0_1	SMC CS1 address mask of top 8 bits
[15:8]	SMC_ADDR_MATCH0_0	SMC CS0 address match of top 8 bits
[7:0]	SMC_ADDR_MASK0_0	SMC CS0 address mask of top 8 bits

Test chip SCC Register 1

The CFGREG1 Register characteristics are:

PurposeSMC CS2 and CS3 Register that enables you to read and write match and
mask bits for the SMC CS2 and SMC CS3. See Mask operation to define
SMC chip select address ranges on page 3-15.Usage constraintsThere are no usage constraints.ConfigurationsNot applicable.AttributesSee Table 3-7 on page 3-13.Figure 3-6 on page 3-18 shows the bit assignments.

Figure 3-6 Test chip CFGREG1 Register bit assignments

Table 3-9 Test chip CFGREG1 Register bit assignments

Table 3-9 shows the bit assignments.

	•	6 6
Bits	Name	Function
[31:24]	SMC_ADDR_MATCH0_3	SMC CS3 address match of top 8 bits
[23:16]	SMC_ADDR_MASK0_3	SMC CS3 address mask of top 8 bits
[15:8]	SMC_ADDR_MATCH0_2	SMC CS2 address match of top 8 bits
[7:0]	SMC_ADDR_MASK0_2	SMC CS2 address mask of top 8 bits

Test chip SCC Register 2

The CFGREG2 Register characteristics are:

Purpose	SMC CS4 and CS5 Register that enables you to read and write match and
	mask bits for the SMC CS4. See Mask operation to define SMC chip select
	address ranges on page 3-15. SMC CS5 is reserved and the match and
	mask bits for CS5 are also reserved.

Usage constraints Bits[31:16] are reserved. Do not write to or read these bits.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-7 shows the bit assignments.

Figure 3-7 Test chip CFGREG2 Register bit assignments

Table 3-10 shows the bit assignments.

Table 3-10 Test chip CFGREG2 Register bit assignments

Bits	Name	Function
[31:24]	-	Reserved. Do not modify.

Bits	Name	Function
[23:16]	-	Reserved. Do not modify.
[15:8]	SMC_ADDR_MATCH1_0	SMC CS4 address match of top 8 bits.
[7:0]	SMC_ADDR_MASK1_0	SMC CS4 address mask of top 8 bits.

Table 3-10 Test chip CFGREG2 Register bit assignments (continued)

Test chip SCC Register 3

The CFGREG3 Register characteristics are:

Purpose	SMC CS6 and CS7 Register that controls the match and mask bits of CS6 and CS7. See <i>Mask operation to define SMC chip select address ranges</i> on page 3-15. CS6 and CS7 are reserved, and the bits in this register are reserved.
Usage constraints	This register is reserved. Do not read from or write to this register.
Configurations	Not applicable.
Attributes	See Table 3-7 on page 3-13.

Figure 3-8 shows the bit assignments.

Figure 3-8 Test chip CFGREG3 Register bit assignments

Table 3-11 shows the bit assignments.

Table 3-11 Test chip CFGREG3 Register bit assignments

Bits	Name	Function
[31:24]	-	Reserved. Do not modify
[23:16]	-	Reserved. Do not modify
[15:8]	-	Reserved. Do not modify
[7:0]	-	Reserved. Do not modify

Test chip SCC Register 4

The CFGREG4 Register characteristics are:

Purpose	Miscellaneous Configuration Register that enables you to read and write
	test chip configuration settings.

Usage constraints CFGREG4[5:4] = 00 or 11 are reserved and must not be used. These bits are valid only if CFGREG4[0] is b0.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-9 shows the bit assignments.

Figure 3-9 Test chip CFGREG4 Register bit assignments

Table 3-12 shows the bit assignments.

Table 3-12 Test chip CFGREG	4 Register bit assignments
-----------------------------	----------------------------

Bits	Name	Function
[31:28]	DMA_IRQS_NS[3:0]	These bits control the security state of the interrupt outputs when DMAC exits from reset:
		$DMA_IRQ_NS[x] = b0$
		The DMAC assigns IRQ[x] to the Secure state.
		$DMA_IRQ_NS[x] = b1$
		The DMAC assigns IRQ[x] to the Non-secure state.
		The default is b0000.
		See the AMBA® DMA Controller DMA-330 Technical Reference Manual.
[27:26]	DMA_PERIPH_NS[1:0]	Boot peripherals security state. These bits control the security state of the peripheral request interface when the DMAC exits from reset:
		$DMA_PERIPH_NS[x] = b0$
		The DMAC assigns peripheral request interface[x] to the Secure state.
		$DMA_PERIPH_NS[x] = b1$
		The DMAC assigns peripheral interface request interface[x] to the Non-secure state.
		The default is b00.
		See the AMBA® DMA Controller DMA-330 Technical Reference Manual.
[25]	DMA_BOOT_NS	Boot manager security state. When the DMAC exits from reset, this bit controls the security state of the DMA manager thread:
		b0 Assigns DMA manager to the Secure state.
		b1 Assigns DMA manager to the Non-secure state.
		The default is b0.
		See the AMBA® DMA Controller DMA-330 Technical Reference Manual.

Table 3-12 Test chip CFGREG4 Register bit assignments (continued)

Bits	Name	Function
[24]	DMA_BOOT_FRM_PC	 Boot from program counter. This controls the location from where the DMAC executes its initial instruction after it exits from reset: b0 DMAC waits for an instruction from the APB interface. b1 DMAC executes the instruction that is located at the address that the DMA boot address register provides. The default is b0. See <i>Test chip SCC Register 5</i> and the <i>AMBA</i>* <i>DMA Controller DMA-330 Technical Reference Manual</i>.
[23:10]	-	Reserved. Do not modify.
[9]	CORESIGHT_SPNIDEN	Maps to the SPNIDEN secure non-invasive debug signal for the CoreSight system. The default is b1. See the <i>CoreSight</i> [™] <i>Components Technical Reference Manual</i> .
[8]	CORESIGHT_NIDEN	Maps to the NIDEN non-invasive debug enable signal for the CoreSight system. The default is b1. See the <i>CoreSight</i> [™] <i>Components Technical Reference Manual</i> .
[7]	CORESIGHT_SPIDEN	Maps to the SPIDEN secure invasive debug signal for the CoreSight system. The default is b1. See the <i>CoreSight</i> [™] <i>Components Technical Reference Manual</i> .
[6]	CORESIGHT_DBGEN	Invasive debug enable for the CoreSight system: b0 Disables invasive debug. b1 Enables invasive debug. The default is b1. See the CoreSight™ Components Technical Reference Manual.
[5:4]	SMC remap[1:0]	These map to the SMC_REMAP[1:0] bus. b00 Reserved. b01 CS0. b10 CS4. b11 Reserved. The default is b01. These bits are valid only if SMC is mapped to 0x00_0000_0000, that is CFGREG0[0] = b0.
[3:2]	-	Reserved. Do not modify.
[1:0]	AXI_REMAP	NIC-301 AMBA AXI memory map: b00 SMC mapped to 0x00_0000. External AXI enabled. b01 AXI Master interface mapped to 0x00_0000_0000. b10 SMC mapped to 0x00_0000_0000. External AXI disabled. The default is b00. SMC

Test chip SCC Register 5

The CFGREG5 Register characteristics are:

Purpose	DMA boot address register that enables you to read and write the add of the boot instruction that the <i>Dynamic Memory Access Controller</i> , (DMAC), DMA-330, executes when it exits from reset.		
Usage constraints	There are no usage constraints.		
Configurations	Not applicable.		
Attributes	See Table 3-7 on page 3-13.		
Figure 3-10 on page	3-22 shows the hit assignments		

DMA_BOOT_ADDR-

Figure 3-10 Test chip CFGREG5 Register bit assignments

Table 3-13 shows the bit assignments.

Table 3-13 Test chip CFGREG5 Register bit assignments

Bits	Name	Function
[31:0]	DMA_BOOT_ADDR	Boot address for DMAC. This configures the address location that contains the first instruction that the DMAC executes when it exits from reset.
		Note The DMAC uses this address only when DMA_BOOT_FRM_PC is HIGH. See Test chip SCC Register 4 on page 3-19.
		See the AMBA® DMA Controller DMA-330 Technical Reference Manual.

Test chip SCC Register 6

The CFGREG6 Register characteristics are:

Purpose	Reset control register that enables you to read and write test chip resets	
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
Attributes	See Table 3-7 on page 3-13.	

Figure 3-11 shows the bit assignments.

Figure 3-11 Test chip CFGREG6 Register bit assignments

Table 3-14 shows the bit assignments.

Table 3-14 Test chip CFGREG6 Register bit assignments

Bits	Name	Function		
[31]	PHY_IDDQ	Forces the DDR PHY into IDDQ power-down mode:		
		b0 DDR PHY enabled.		
		b1 DDR PHY in IDDQ power-down mode.		
		The default is b0.		
[30]	DDR_PHY_RESET_N	PHY reset. Release after programming the PHY through APB and LOCK signal or register is asserted:		
		b0 Reset.		
		b1 Non-reset.		
		The default is b0.		
[29]	Reserved	Reserved. Do not modify.		
[28]	A7_NVSOCRESET	b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, Internal resets on page 2-17, and the		
		Cortex [®] -A7 MPCore Technical Reference Manual.		
[27]	A7_NVCORERESET	b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, Internal resets on page 2-17, and the		
		Cortex [®] -A7 MPCore Technical Reference Manual.		
[26]	A7_NSOCDBGRESET	b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17.		
[25]	A7_NL2RESET	Resets the A7 L2 logic, interrupt controller and timer logic. This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, Internal resets on page 2-17, and the		
		Cortex [®] -A7 MPCore Technical Reference Manual.		
[24:22]	A7_NDBGRESET[2:0]	This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b111. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the <i>Cortex</i> [®] - <i>A7 MPCore Technical Reference Manual</i> .		
[21:19]	A7_NETMRESET[2:0]	b0 Reset.		
		b1 Non-reset.		
		The default is b111. See Table 2-1 on page 2-15, Internal resets on page 2-17.		
[18:16]	A7_NCORERESET[2:0]	This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b111. See Table 2-1 on page 2-15, Internal resets on page 2-17, and the		
		Cortex [®] -A7 MPCore Technical Reference Manual.		

Bits	Name	Function		
[15:13]	A7_NCPURESET[2:0]	This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b111.		
		See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the <i>Cortex®-A7 MPCore Technical Reference Manual</i>		
		Note		
		The <i>Cortex®-A7 MPCore Technical Reference Manual</i> names this signal as nCOREPORESET .		
[12]	Reserved	Reserved. Do not modify.		
[11]	A15_NVSOCRESET	b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the <i>ARM</i> [®] <i>Cortex</i> [®] - <i>A15 Technical Reference Manual.</i>		
[10]	A15_NVCORERESET	b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the ARM [®] <i>Cortex[®]-A15 Technical Reference Manual.</i>		
[9]	A15_NPRESETDBG	This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the <i>ARM</i> [®] <i>Cortex</i> [®] - <i>A15 Technical Reference Manual.</i>		
[8]	A15_NL2RESET	This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b1. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the <i>ARM</i> [®] <i>Cortex</i> [®] - <i>A15 Technical Reference Manual.</i>		
[7:6]	A15 NDBGRESET[1:0]	This reset operates independently of nRESET :		
		b0 Reset.		
		b1 Non-reset.		
		The default is b11. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the <i>ARM</i> [®] <i>Cortex</i> [®] - <i>A15 Technical Reference Manual.</i>		

Bits	Name	Function		
[5:4]	A15_NCXRESET[1:0]	This reset operates independently of nRESET: b0 Reset. b1 Non-reset. The default is b11. See Table 2-1 on page 2-15, Internal resets on page 2-17, and the ARM® Cortex®-A15 Technical Reference Manual.		
[3:2]	A15_NCORERESET[1:0]	This reset operates independently of nRESET: b0 Reset. b1 Non-reset. The default is b11. See Table 2-1 on page 2-15, <i>Internal resets</i> on page 2-17, and the ARM® Cortex®-A15 Technical Reference Manual.		
[1:0]	A15_NCPURESET[1:0]	This reset operates independently of nRESET: b0 Reset. b1 Non-reset. The default is b11. See Table 2-1 on page 2-15, Internal resets on page 2-17, and the ARM* Cortex*-A15 Technical Reference Manual. Note The ARM* Cortex*-A15 Technical Reference Manual names this signal as nCPUPORESE		

Table 3-14 Test chip CFGREG6 Register bit assignments (continued)

— Note ——

When power-management is enabled in the board.txt file, the CA15 and CA7 cores must not directly write to CFGREG6 or CFGREG11 because the Daughterboard Configuration Controller controls this. Writing to these registers prevents the power-management interface from functioning correctly.

Test chip SCC Register 7

The CFGREG7 Register characteristics are:

Purpose Enables you to read the DAP ROM default target ID.

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-12 shows the bit assignments.

Figure 3-12 Test chip CFGREG7 Register bit assignments

Table 3-15 shows the bit assignments.

Bits	Name	Function
[31:0]	-	DAP ROM default target ID

Test chip SCC Register 8

The CFGREG8 Register characteristics are:

Purpose	Enables you to read the DAP ROM default instanc	e ID.
---------	---	-------

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-13 shows the bit assignments.

	31	4	3		0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0 0) ()
Reserved DAP ROM Default Instance ID					

Figure 3-13 Test chip CFGREG8 Register bit assignments

Table 3-16 shows the bit assignments.

Table 3-16 Test chip CFGREG8 Register bit assignments

Bits	Name	Function
[31:4]	-	Reserved, do not modify
[3:0]	-	DAP ROM default instance ID

Test chip SCC CUSTOMER_ID Register

The CUSTOMER ID Register characteristics are:

Purpose Enables you to read information about the Cortex-A15_A7 test chip.

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-14 on page 3-27 shows the bit assignments.

Figure 3-14 Test chip CUSTOMER_ID Register bit assignments

Table 3-17 shows the bit assignments.

Bits	Name	Function
[31:28]	-	Cortex-A15_A7 test chip configuration
[27:24]	-	Cortex-A15_A7 test chip major revision number
[23:20]	-	Cortex-A15_A7 test chip minor revision number
[19:12]	-	Cortex-A15_A7 test designer
[11:0]	-	Cortex-A15_A7 part number

Table 3-17 Test chip CUSTOMER_ID Register bit assignments

—— Note ———

Figure 3-14 and Table 3-17 show a test chip that has revision number r0p0, designer ID 41, for ARM, and part number 0x002, for LPAE.

Test chip SCC Register 11

The CFGREG11 Register characteristics are:

Purpose	Clock control register that enables you to read and write the bits that control clocks dividers, and selects the inputs to PLLs.	
Usage constraints	aints Some bit combinations are invalid. See Table 3-18 on page 3-28.	
Configurations	Not applicable.	
Attributes	See Table 3-7 on page 3-13.	

Figure 3-15 on page 3-28 shows the bit assignments.

Figure 3-15 Test chip CFGREG11 Register bit assignments

Table 3-18 shows the bit assignments.

Table 3-18 Test chip CFGREG11 Register bit assignments

Bits	Name	Function		
[31:28]	-	Reserved. Do not modify.		
[27:24]	A7_CLK_SEL[3:0]	Selects the source for A7_CLK:		
		b0001 Selects CPU_CLK0_A7.		
		b0010 Selects CPU_CLK1_A7.		
		b0100 Selects SYSCLK.		
		b1000 Selects CPU_CLK0_A7/2.		
		All other bit combinations are invalid.		
		The default is b0001. See Figure 2-10 on page 2-26.		
[23:22]	A15_CLK_SEL[3:0]	Selects the source for A15_CLK:		
		b0001 Selects CPU_CLK0_A15.		
		b0010 Selects CPU_CLK1_A15.		
		b0100 Selects SYSCLK.		
		b1000 Selects CPU_CLK0_A15/2.		
		All other bit combinations are invalid.		
		The default is b0001. See Figure 2-10 on page 2-26.		
[19:17]	-	Reserved. Do not modify.		
[16:14]	TRACECLKINRATIO[2:0]	TRACECLKIN divider ratio. This divides the output of SYS PLL to derive TRACECLKIN:		
		b000 Divider ratio 1.		
		b001 Divider ratio 2.		
		b010 Divider ratio 3.		
		b011 Divider ratio 4.		
		All other bit combinations are invalid. The default is b011. See Figure 2-10 on page 2-26,		
		Figure 2-12 on page 2-32, and Table 2-9 on page 2-28.		
		Note		
		The maximum operating frequency of TRACECLKIN is 140MHz.		

Bits	Name	Function		
[13:11]	PCLKRATIO[2:0]	PCLK divider ratio. This divides the output of SYS PLL to derive PCLK. b000 Divider ratio 1. b001 Divider ratio 2. b010 Divider ratio 3. b011 Divider ratio 4. All other bit combinations are invalid. The default is b001. See Figure 2-10 on page 2-26, Figure 2-12 on page 2-32, and Table 2-9 on page 2-28.		
[10:8]	ACLKRATIO[2:0]	ACLK divider ratio: This divides the output of SYS PLL to derive ACLK. b000 Divider ratio 1. b001 Divider ratio 2. b010 Divider ratio 3. b011 Divider ratio 4. All other bit combinations are invalid. The default is b001. See Figure 2-10 on page 2-26, Figure 2-12 on page 2-32, and Table 2-9 on page 2-28.		
[7:6]	-	Reserved. Do not modify.		
[5]	A7_1_REFCLK_SELECT	Selects the reference clock to A7 PLL 1: b0 Selects CPUREFCLK3 as input reference for A7 PLL 1. b1 Selects SYSREFCLK as input reference for A7 PLL 1. The default is b0. See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28. Note ARM does not recommend the non-default option, and Figure 2-12 on page 2-32 does not show this non-default connection.		
[4]	A7_0_REFCLK_SELECT	Selects the reference clock to A7 PLL 0: b0 Selects CPUREFCLK2 as input reference for A7 PLL 0. b1 Selects SYSREFCLK as input reference for A7 PLL 0. The default is b0. See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28. Note ARM does not recommend the non-default option and Figure 2-12 on page 2-32 does not show this non-default connection.		
[3]	A15_1_REFCLK_SELECT	Selects the reference clock to A15 PLL 1: b0 Select CPUREFCLK1 as input reference for A15 PLL 1. b1 Select SYSREFCLK as input reference for A15 PLL 1. The default is b0. See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28.		

Bits	Name	Function		
[2]	A15_0_REFCLK_SELECT	Selects the reference clock to A15 PLL 0:		
		b0 Selects CPUREFCLK1 as input reference for A15 PLL 0.		
		b1 Selects SYSREFCLK as input reference for A15 PLL 0.		
		The default is b0. See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28.		
		Note		
		ARM does not recommend the non-default option and Figure 2-10 on page 2-26 does not show this non-default connection.		
[1]	HDLCD_REFCLK_SELECT	Selects the reference clock to HDLCD PLL:		
		b0 Selects PXLREFCLK as input reference for SYS PLL.		
		b1 Selects SYSREFCLK as input reference for SYS PLL.		
		The default is b0. See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28.		
		Note		
		The maximum frequency of PXLCLK and MMB_IDCLK is 165MHz. ARM does not recommend the non-default option and Figure 2-10 on page 2-26 does not show this non-default connection.		
[0]	DDR REFCLK SELECT	Selects the reference clock to DDR PLL:		
		b0 Selects DDRREFCLK as input reference for SYS PLL.		
		b1 Selects SYSREFCLK as input reference for SYS PLL.		
		The default is b0. See Figure 2-10 on page 2-26 and Table 2-9 on page 2-28.		
		Note		
		The maximum value of DDRCLK is 400MHz. ARM does not recommend the non-default option and Figure 2-10 on page 2-26 does not show this non-default connection.		

Table 3-18 Test chip CFGREG11 Register bit assignments (continued)

— Note —

When power-management is enabled in the board.txt file, the CA15 or CA7 cores must not directly write to CFGREG6 or CFGREG11 because the Daughterboard Configuration Controller controls this. Writing to these registers prevents the power-management interface from functioning correctly.

Test chip SCC Register 12

The CFGREG12 Register characteristics are:

Purpose	Clock status register that enables you to read bits that indicate the source
	clocks for the Cortex-A15 and Cortex-A7 clusters.

- Usage constraints This register is read only.
- **Configurations** Not applicable.
- Attributes See Table 3-7 on page 3-13.

Figure 3-16 on page 3-31 shows the bit assignments.

Figure 3-16 Test chip CFGREG12 Register bit assignments

Table 3-19 shows the bit assignments.

Bits	Name	Function	
[31:8]	-	Reserved. Do	not modify.
[7:4]	A15_CRNTCLK[3:0]	Indicates the s b0001 b0010 b0100 b1000 See Figure 2-	source for the A15_CLK: Source is CPU_CLK0_A15. Source is CPU_CLK1_A15. Source is SYSCLK. Source is CPU_CLK0_A15/2. 10 on page 2-26.
[3:0]	A7_CRNTCLK[3:0]	Indicates sour b0001 b0010 b0100 b1000 See Figure 2-1	cce for A7_CLK: Source is CPU_CLK0_A15. Source is CPU_CLK1_A15. Source is SYSCLK. Source is CPU_CLK0_A15/2. 10 on page 2-26.

Test chip SCC Registers 13, 15, 17, 19, 23, and 25 PLL control registers

The CFGREG10, CFGREG13, CFGREG15, CFGREG17, CFGREG19, CFGREG21, CFGREG23, and CFGREG25 Register characteristics are:

Purpose	CFGREG13, CFGREG15, CFGREG17, CFGREG19, CFGREG21, CFGREG23, and CFGREG25 PLL are PLL control registers.		
	Together with the CFGREG14, CFGREG16, CFGREG18, CFGREG20, CFGREG22, CFGREG24, and CFGREG26 PLL value registers, they enable you to read and write PLL configuration settings as follows:		
	CFGREG13 and CFGREG14 control SYS PLL.		
	CFGREG15 and CFGREG16 control DDR PLL.		
	CFGREG17 and CFGREG18 control HDLCD PLL.		
	• CFGREG19 and CFGREG20 control A15 PLL 0.		
	• CFGREG21 and CFGREG22 control A15 PLL 1.		
	• CFGREG23 and CFGREG24 control A7 PLL 0.		
	• CFGREG25 and CFGREG26 control A7 PLL 1.		
	See Clocks on page 2-24.		
Usage constraints	Bit 5 is read-only.		
Configurations	Not applicable.		
Attributes	See Table 3-7 on page 3-13.		

Figure 3-17 shows the bit assignments.

Figure 3-17 Test chip CFGEG13, 15, 17, 19, 21, 23, and 25 Register bit assignments

Table 3-20 shows the bit assignments.

Table 3-20 CFGREG13, 15, 17, 19, 21, 23, and 25 Register bit assignments

Bits	Name	Function
[31:29]	-	Reserved. Do not modify.
[28:16]	x_CLKF	PLL feedback clock divider settings. Divisor = x_CLKF+1 .These bits have the following default values:CFGREG13 - SYS PLL b0001000101111, decimal 559.CFGREG15 - DDR PLL b00001011111, decimal 191.CFGREG17 - HDLCD PLL b0000111001101, decimal 461.CFGREG19 - A15 0 PLL b0001000101111, decimal 559.CFGREG21 - A15 1 PLL b0001000011011, decimal 539.CFGREG23 - A7 0 PLL b0001110011111, decimal 927.CFGREG25 - A7 0 PLL b0_0001_FFFF_0111, decimal 503.See Test chip PLLs and clock divider logic on page 2-30
[15:1]	-	Reserved. Do not modify.
[0]	x_HARD_BYPASS	This bit forces the reference input clock to bypass the PLL to enable it to be driven directly into the design. b0 Do not bypass PLL. b1 Bypass PLL. The default value is b0 for all control registers.

Test chip SCC Registers 14, 16, 18, 22, 24 and 26 PLL value registers

The CFGREG11, CFGREG13, CFGREG15, and CFGREG17 Register characteristics are:

- PurposeCFGREG14, CFGREG16, CFGREG18, CFGREG20, CFGREG22,
CFGREG24, and CFGREG26 are PLL value registers.Together with the CFGREG15, CFGREG17, CFGREG19, CFGREG21,
CFGREG23, and CFGREG25 PLL control registers, they enable you to
read and write PLL configuration settings as follows:•CFGREG13 and CFGREG14 control SYS PLL.
 - CFGREG15 and CFGREG16 control DDR PLL.
 - CFGREG17 and CFGREG18 control HDLCD PLL.
 - CFGREG19 and CFGREG20 control A15 PLL 0.
 - CFGREG21 and CFGREG22 control A15 PLL 1.
 - CFGREG23 and CFGREG24 control A7 PLL 0.
 - CFGREG25 and CFGREG26 control A7 PLL 1.

See *Clocks* on page 2-24.

Usage constraints There are no usage constraints.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-18 shows the bit assignments.

Figure 3-18 Test chip CFGREG14, 16, 18, 20, 22, 24 and 26 Register bit assignments

Table 3-21 shows the bit assignments.

Bits	Name	Function
[31:12]	-	Reserved. Do not modify.
[11:8]	x_CLKOD	PLL output divider settings. Divisor = x _CLOD+1.
		These bits have the following default values:
		CFGREG14 - SYS PLL
		b0001.
		CFGREG16 - DDR PLL
		b0101.
		CFGREG18 - HDLCD PLL
		b1101.
		CFGREG20 - A15 0 PLL
		b0001.
		CFGREG22 - A15 1 PLL
		b0001.
		CFGREG24 - A7 0 PLL
		b0001.
		CFGREG26 - A7 0 PLL
		b0001.
		See Test chip PLLs and clock divider logic on page 2-30.
		Note
		See Table 2-8 on page 2-28 for the maximum clock operating frequencies.
[7:6]	-	Reserved. Do not modify.
[5:0]	x CLKR	PLL reference clock divider settings. Divisor = $x CLKR+1$.
		These bits have the following default values:
		CFGREG14 - SYS PLL
		b001101.
		CFGREG16 - DDR PLL
		b000011.
		CFGREG18 - HDLCD PLL
		b001001.
		CFGREG20 - A15 0 PLL
		b001101.
		CFGREG22 - A15 1 PLL
		b001110.
		CFGREG24 - A7 0 PLL
		b011100.
		CFGREG26 - A7 0 PLL
		b010001.
		See Test chip PLLs and clock divider logic on page 2-30.
		Note
		See Table 2-8 on page 2-28 for the maximum clock operating frequencies.

Table 3-21 Test chip CFGREG14, 16, 18, 20, 22, 24 and 26 Register bit assignments

Test chip SCC Register 41

The CFGREG41 Register characteristics are:

Purpose	Cortex-A15 configuration register 0 that enables you to read and write
	Cortex-A15 configuration settings.

Usage constraints There are no usage constraints.

- **Configurations** Not applicable.
- Attributes See Table 3-7 on page 3-13.

Figure 3-19 shows the bit assignments.

Figure 3-19 Test chip CFGREG41 Register bit assignments

Table 3-22 shows the bit assignments.

Table 3-22 Test chip CFGREG41 Register bit assignments

Bits	Name	Function
[31:30]	-	Reserved. Do not modify.
[29:28]	SPNIDEN[1:0]	Maps to the SPNIDEN secure privileged non-invasive debug enable bus for both Cortex-A15 cores:
		b0 Disable secure privileged non-invasive debug.
		b1 Enable secure privileged non-invasive debug.
		The default is b11.
[27:26]	-	Reserved. Do not modify.
[25:24]	SPIDEN[1:0]	Maps to the SPIDEN secure privileged invasive debug enable bus for both Cortex-A15 cores:
		b0 Disable secure privileged invasive debug.
		b1 Enable secure privileged invasive debug.
		The default is b11.
[23:22]	-	Reserved. Do not modify.
[21:20]	NIDEN[1:0]	Maps to the NIDEN non-invasive debug enable bus for both Cortex-A15 cores:
		b1 Disable non-invasive debug.
		b0 Enable non-invasive debug.
		The default is b11.

Bits	Name	Function	
[19:18]	-	Reserved. Do not modify.	
[17:16]	DBGEN[1:0]	Maps to the DBGEN invasive debug enable bus for both Cortex-A15 cores:	
		b0 Disable invasive debug.	
		b1 Enable invasive debug.	
		The default is b11.	
[15:14]	-	Reserved. Do not modify.	
[13:12]	CFGTE[1:0]	Maps to the Thumb [®] Exception Enable bus for both Cortex-A15 cores:	
		b0 Exception, including reset, taken in ARM state.	
		b1 Exception, including reset, taken in Thumb state.	
		The default is b00.	
[11:10]	-	Reserved. Do not modify.	
[9:8]	VINITHI_CORE[1:0]	Location of the exception vectors at reset for both Cortex-A15 cores:	
		b0 Exception vectors start at address 0x0000_0000.	
		b1 Exception vectors start at address 0xFFFF_0000.	
		The default is b00.	
[7]	IMINLN	Instruction cache minimum line size:	
		b0 32 bytes.	
		b1 64 bytes.	
		The default is b0.	
[6:4]	-	Reserved. Do not modify.	
[3:0]	CLUSTER_ID	A15 cluster ID. The default is b0000.	

Table 3-22 Test chip CFGREG41 Register bit assignments (continued)

Test chip SCC Register 42

The CFGREG42 Register characteristics are:

Purpose	Cortex-A15 configuration register 1 that enables you to read and write Cortex-A15 cluster configuration settings.	
Usage constraints	s There are no usage constraints.	
Configurations Not applicable.		
Attributes	See Table 3-7 on page 3-13.	
Б. 2.00		

Figure 3-20 on page 3-37 shows the bit assignments.

Figure 3-20 Test chip CFGREG42 Register bit assignments

Table 3-23 shows the bit assignments.

Table 3-23 Test chip CFGREG42 Register bit assignments

Bits	Name	Function	
[31]	-	Reserved. Do	not modify.
[30]	L2RSTDISABLE	Disables auto	matic L2 cache invalidate at reset:
		b0	Hardware resets L2 valid RAM contents.
		b1	Hardware does not reset valid RAM contents.
		The default is	s b0.
[29]	BROADCASTCACHEMAINT	Enables broa	dcasting of cache maintenance operations to downstream caches:
		b0	Disables broadcasting of cache maintenance operations to downstream caches.
		b1	Enables broadcasting of cache maintenance operations to downstream caches.
		The default is	s b0.
[28]	BROADCASTOUTER	Enables broa	dcasting of outer shareable transactions:
		b0	Disables external broadcast of outer shareable transactions.
		b1	Enables external broadcast of outer shareable transactions.
		The default is	s b1.
[27]	BROADCASTINNER	Enables broad	dcasting on inner shareable transactions:
		b0	Disables broadcasting of inner shareable transactions.
		b1	Enables broadcasting of inner shareable transactions.
		The default is	s b1.
[26]	SYSBARDISABLE	Disables broa	dcasting barriers onto system bus:
		b0	Enables broadcast barriers onto the system bus. This requires an AMBA 4 interconnect.
		b1	Disables broadcast barriers onto the system bus. This is compatible with an AXI3 interconnect.
		The default is	s b0.
[25]	-	Reserved. Do	o not modify.

Bits	Name	Function
[24]	ACP_64N128	Selects 64 or 128 bit operation for the ACP interface:b0128 bit ACP.b164 bit ACP.The default is b0.
[23]	ACP_BARE_METAL	Selects DMA bare metal access to ACP interface:b0DMA accesses ACP through NIC-301 fabric.b1DMA directly accesses ACP interface.The default is b0.
[22]	ACP_ADDRTRANS	Translates the ACP addresses 0x00_3000_0000 to 0x00_3FFF_FFFF by overriding bit 28 of the AxADDR of the cluster ACP: b0 00x_E000_0000. b1 00x_F000_0000. The default is b0.
[21:16]	ACP_AWUSER[5:0]	ACP AWCACHE override: AWUSER[5:2] = AWCACHE[3:0] if ACP_AUSER_OVERRIDE = b0. AWUSER[5:2] = CFGREG41[25:22] if ACP_AUSER_OVERRIDE = b1. AWUSER[1:0] = CFGREG41[21:20]. The default is b111111.
[15:10]	ACP_ARUSER[5:0]	ACP ARCACHE override: ARUSER[5:2] = ARCACHE[3:0] if ACP_AUSER_OVERRIDE = b0. ARUSER[5:2] = CFGREG41[19:16] if AUSER_OVERRIDE_ACP = b1. ARUSER[1:0] = CFGREG41[15:14]. The default is b111111.
[9]	ACP_AUSER_OVERRIDE	ACP AxUSER[5:2] override enable:b0Override disabled.b1Override enabled.The default is b0.
[8]	AINACTS	Disables the ACP interface: b0 ACP enabled. b1 ACP disabled. The default is b0.
[7]	ACINACTM	Disables the Cortex-A15 snoop interface:b0ACP snoop interface enabled.b1ACP snoop interface disabled.The default is b0.
[6]	-	Reserved. Do not modify.

Table 3-23 Test chip CFGREG42 Register bit assignments (continued)

Bits	Name	Function
[5:4]	CP15SDISABLE[1:0]	Disables write to secure Cortex-A15 core registers:b0Enable write to secure Cortex-A15 core registers.b1Disable write to secure Cortex-A15 core registers.The default is b00.
[3:2]	-	Reserved. Do not modify.
[1:0]	CFGEND[1:0]	Maps to the CFGEND[1:0] bus. Configures cores as bigend: b0 Configures cores as little-end. b1 Configures cores as big-end. The default is b00.

Table 3-23 Test chip CFGREG42 Register bit assignments (continued)

Test chip SCC Register 43

The CFGREG43 Register characteristics are:

Purpose	Configuration register 0 that enables you to read and write Cortex-A7 cluster configuration settings.	
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
Attributes	See Table 3-7 on page 3-13.	

Figure 3-21 shows the bit assignments.

Figure 3-21 Test chip CFGREG43 Register bit assignments

Table 3-24 shows the bit assignments.

Table 3-24 Test chip CFGREG43 Register bit assignments

Bits	Name	Function	
[31]	-	Reserved. Do not modify.	
[30:28]	SPIDEN[2:0]	Maps to the SPIDEN secure privileged invasive debug enable busfor all three Cortex-A7 cores:b0Disables secure privileged invasive debug.b1Enables secure privileged invasive debug.The default is b111.	
[27]	-	Reserved. Do not modify.	
[26:24]	NIDEN[2:0]	Maps to the NIDEN non-invasive debug enable bus for all threeCortex-A7 cores:b0Disables non-invasive debug.b1Enables non-invasive debug.The default is b111.	
[23]	-	Reserved. Do not modify.	
[22:20]	DBGEN[2:0]	Maps to the DBGEN invasive debug enable bus for all threeCortex-A7 cores:b1Disables invasive debug.b0Enables invasive debug.The default is b111.	
[19]	-	Reserved. Do not modify.	
[18:16]	CFGTE[2:0]	Maps to the Thumb Exception Enable bus for all three Cortex-A7cores. This bit sets:b0Exception, including reset, taken in ARM state.b1Exception, including reset, taken in Thumb state.The default is b000.	
[15]	-	Reserved. Do not modify.	
[14:12]	VINITHI_CORE[2:0]	Location of exception vectors at reset for all three Cortex-A7 cores:b0Exception vectors start at address 0x000_0000.b1Exception vectors start at address 0xFFFF_0000.The default is b000.	
[11]	-	Reserved. Do not modify.	
[10:8]	CFGEND[2:0]	Maps to the CFGEND[2:0] bus. Configures cores as bigend:b0:Configures cores as little-end.b1:Configures cores as big-end.The default is b000.	
[7:4]	-	Reserved. Do not modify.	
[3:0]	CLUSTER_ID	Maps to the CLUSTERID[3:0] bus.	

Test chip SCC Register 44

The CFGREG44 Register characteristics are:

Purpose	Configuration register 1 that enables you to read and write Cortex-A7
	cluster configuration settings.

Usage constraints There are no usage constraints.

- **Configurations** Not applicable.
- Attributes See Table 3-7 on page 3-13.

Figure 3-22 shows the bit assignments.

Figure 3-22 Test chip CFGREG44 Register bit assignments

Table 3-25 shows the bit assignments.

Table 3-25 Test chip CFGREG44 Register bit assignments

Bits	Name	Function	
[31:18]	-	Reserved. Do	not modify.
[17]	BROADCASTCACHEMAINT	Enables broad	casting of cache maintenance operations to downstream caches:
		b0	Disables broadcasting of cache maintenance operations to downstream caches.
		b1	Enables broadcasting of cache maintenance operations to downstream caches.
		The default is	b0.
[16]	BROADCASTOUTER	Enables broad	leasting of outer shareable transactions:
		b0	Disables external broadcast of outer shareable transactions.
		b1	Enables external broadcast of outer shareable transactions.
		The default is	b1.
[15]	BROADCASTINNER	Enables broad	leasting of inner shareable transactions:
		b0	Disables external broadcast of inner shareable transactions.
		b1	Enables external broadcast of inner shareable transactions.
		The default is	b1.

Bits	Name	Function	
[14]	SYSBARDISABLE	Disables broadcasting barriers onto system bus:	
		b0 Enables broadcast barriers onto system bus. This requires an AMBA 4 interconnect.	
		b1 Disables broadcast barriers onto system bus. This is compatible with an AXI3 interconnect.	
		The default is b0.	
[13]	ACINACTM	Disables Cortex-A7 snoop interface:	
		b0 ACP snoop interface enabled.	
		b1 ACP snoop interface disabled.	
		The default is b0.	
[12]	L2RSTDISABLE	Disables automatic L2 cache invalidate at reset:	
		b0 Hardware resets L2 cache.	
		b1 Hardware does not reset L2 cache.	
		The default is b0.	
[11]	-	Reserved. Do not modify.	
[10:8]	L1RSTDISABLE[2:0]	Disables automatic L1 cache invalidate at reset:	
		b0 Hardware resets L1 cache.	
		b1 Hardware does not reset L1 cache.	
		The default is b000.	
[7]	-	Reserved. Do not modify.	
[6:4]	CP7SDISABLE[2:0]	Disables write to secure Cortex-A7 core registers:	
		b0 Enables write to secure A7 core registers.	
		b1 Disables write to secure A7 core registers.	
		The default is b000.	
[3]	-	Reserved. Do not modify.	
[2:0]	SPNIDEN[2:0]	Maps to the SPNIDEN secure non-invasive debug enable bus for all three Cortex-A7 cores:	
		b0 Disables secure debug.	
		b1 Enables secure debug.	
		The default is b111.	

Table 3-25 Test chip CFGREG44 Register bit assignments (continued)

Test chip SCC Register 45

The CFGREG45 Register characteristics are:

Purpose	<i>Cache Coherency Interconnect</i> , CCI-400, configuration register 0 that defines the decode of each region of the address map. One set of inputs exists for each of the 16 regions in the address map.	
Usage constraints	There are no usage constraints.	
Configurations	Configurations Not applicable.	
AttributesSee Table 3-7 on page 3-13.		
Figure 3-23 on page 3-43 shows the bit assignments.		

Figure 3-23 Test chip CFGREG45 Register bit assignments

Table 3-26 shows the bit assignments.

Table 3-26 Test chip CFGREG45 Register bit assignments

Bits	Name	Function
[31:30]	ADDRMAP15	512GB to 1024GB, the default is M1. The default is b01
[29:28]	ADDRMAP14	256GB to 512GB, the default is M1. The default is b01
[27:26]	ADDRMAP13	128GB to 256GB, the default is M1. The default is b01
[25:24]	ADDRMAP12	64GB to 128GB, the default is M1. The default is b01
[23:22]	ADDRMAP11	32GB to 64GB, the default is M1. The default is b01.
[21:20]	ADDRMAP10	16GB to 32GB, the default is M1. The default is b01.
[19:18]	ADDRMAP9	8GB to 16GB, the default is M1. The default is b01
[17:16]	ADDRMAP8	4GB to 8GB, the default is M1. The default is b01.
[15:14]	ADDRMAP7	3.5GB to 4GB, the default is M1. The default is b01.
[13:12]	ADDRMAP6	3GB to 3.5GB, the default is M1. The default is b01.
[11:10]	ADDRMAP5	2.5GB to 3GB, the default is M1. The default is b01.
[9:8]	ADDRMAP4	2GB to 2.5GB, the default is M1. The default is b01.

Bits	Name	Function
[7:6]	ADDRMAP3	1.5GB to 2GB, the default is M1. The default is b00.
[5:4]	ADDRMAP2	1GB to 1.5GB, the default is M1. The default is b00.
[3:2]	ADDRMAP1	0.5GB to 1GB, the default is M1. The default is b00.
[1:0]	ADDRMAP0	0GB to 0.5GB, the default is M1. The default is b00.

Table 3-26 Test chip CFGREG45 Register bit assignments (continued)

Test chip SCC Register 46

The CFGREG46 Register characteristics are:

- PurposeCache Coherency Interconnect, CCI-400, configuration register 1 that
enables you to read and write CCI-400 configuration settings.
- Usage constraints There are no usage constraints.
- **Configurations** Not applicable.
- Attributes See Table 3-7 on page 3-13.

Figure 3-24 shows the bit assignments.

Figure 3-24 Test chip CFGREG46 Register bit assignments

Table 3-27 shows the bit assignments.

Table 3-27 Test chip CFGREG46 Register bit assignments

Bits	Name	Function	
[31:25]	-	Reserved. Do not modify.	
[24]	NIDEN	Maps to the NIDEN non-invasive debug enable signal: b0 Disables non-invasive debug. b1 Enables non-invasive debug. Enables the counting and export of Process Monitor Unit (PMU) events. The default is b1.	
[23]	SPNIDEN	Maps to the SPNIDEN secure privileged non-invasive debug enable signal: b0 Disables secure privileged non-invasive debug. b1 Enables secure privileged non-invasive debug. Enables the counting of both non-secure and secure PMU events. The default is b1.	
[22:19]	ECOREVNUM[3:0]	ECO revision number. The virtualizer software uses this data to read the configuration of the system. The default is b0000.	
[18:14]	ACCHANNELEN[4:0]	Enables AC request on corresponding slave interface:b0Disables AC requests on slave interface.b1Enables AC requests on slave interface.The default is b11000. Enable requests for Cortex-A15 and Cortex-A7 clusters, S3 and S4.	
[13:9]	QOSOVERRIDE4:0]	Overrides the ARQOS and AWQOS signals on the corresponding slave interface: b0 Does not override the ARQOS and AWQOS signals. b1 Overrides the ARQOS and AWQOS signals. The default is b00000.	
[8:6]	BUFFERABLEOVERRIDE[2:0]	Overrides the AWCACHE and ARCACHE[0] outputs to be non-bufferable. One bit exists for each master interface. The default is b000.	
[5:3]	BARRIERTERMINATE[2:0]	Terminates barriers instead of propagating on the corresponding master interface:b0Propagates barriers.b1Terminates barriers.The default is b111.	
[2:0]	BROADCASTCACHEMAINT[2:0]	 Enables broadcasting of cache maintenance operations to downstream caches. Each bit corresponds to one master interface: b0 Disables broadcasting of cache maintenance operations to downstream caches. b1 Enables broadcasting of cache maintenance operations to downstream caches. The default is b000. 	

Test chip SCC Register 47

The CFGREG47 Register characteristics are:

Purpose *Cache Coherency Interconnect*, CCI-400, and DMC-400 configuration register that enables you to read and write CCI-400 and DMC-400 port configuration settings.

Usage constraints There are no usage constraints.

Configurations Not applicable.

Attributes See Table 3-7 on page 3-13.

Figure 3-25 shows the bit assignments.

Figure 3-25 Test chip CFGREG47 Register bit assignments

Table 3-28 shows the bit assignments.

Table 3-28 Test chip CFGREG47 Register bit assignments

Bits	Name	Function	
[31:23]	-	Reserved. Do not modify.	
[22]	AWAP_S1	DMC-400 S1 port write auto pre-charge policy signal:	
		b0	
		b1	
		The default is b0.	
[21]	ARAP_S1	DMC-400 S1 port read auto pre-charge policy signal:	
		b0	
		b1	
		The default is b0.	
[20]	AWAP_S0	DMC-400 S0 port write auto pre-charge policy signal:	
		b0	
		b1	
		The default is b0.	
[19]	ARAP_S0	DMC-400 S0 port read auto pre-charge policy signal:	
		b0	
		b1	
		The default is b0.	
[18]	CWAKEUP_M0	Disables DMC-400 M0 port clock gating.	
		b0 Enables M0 port clock gating.	
		b1 Disables M0 port clock gating.	
		The default is b1.	

Bits	Name	Function	
[17]	CWAKEUP_S1	Disables DMC-400 S1 port clock gating.	
		b0 Enables S1 port clock gating.	
		b1 Disables S1 port clock gating.	
		The default is b1.	
[16]	CWAKEUP_S0	Disables DMC-400 S0 port clock gating.	
		b0 Enables S0 port clock gating.	
		b1 Disables S0 port clock gating.	
		The default is b1.	
[15:12]	AWREGIONS4[3:0]	Writes region identifier on the CCI-400 S4 port. The Cortex-A15 cluster does not drive this signal:	
		b0 Do not write region identifier.	
		b1 Write region identifier.	
		The default is b0000.	
[11:8]	ARREGIONS4[3:0]	Reads region identifier on CCI-400 S4 port. The Cortex-A15 cluster does not drive this signal:	
		b0 Do not read region identifier.	
		b1 Write read region identifier.	
		The default is b0000.	
[7:4]	AWREGIONS3[3:0]	Writes region identifier on CCI-400 S3 port. The Cortex-A15 cluster does not drive this signal:	
		b0 Do not write region identifier.	
		b1 Write region identifier.	
		The default is b0000.	
[3:0]	ARREGIONS[3:0]	Reads region identifier on CCI-400 S3 port. The Cortex-A15 cluster does not drive this signal:	
		b0 Do not read region identifier.	
		b1 Write read region identifier.	
		The default is b0000.	

Table 3-28 Test chip CFGREG47 Register bit assignments (continued)

Test chip SCC Register 48

The CFGREG48 Register characteristics are:

Purpose	System information register that enables you to read and write Cortex-A15 and Cortex-A7 cluster system settings.	
Usage constraints	s There are no usage constraints.	
Configurations	Not applicable.	
Attributes See Table 3-7 on page 3-13.		
Figure 3-26 on page 3-48 shows the bit assignments.		

Figure 3-26 Test chip CFGREG48 Register bit assignments

Table 3-29 shows the bit assignments.

Table 3-29 Test chip CFGREG48 Register bit assignments

Bits	Name	Function
[31:29]	-	Reserved. Do not modify.
[28]	BOOT_CLUSTER	Denotes the boot cluster:
		b1 CA7 cluster.
		b0 CA15 cluster.
		The default is b0.
[27:26]	-	Reserved. Do not modify.
[25:24]	BOOT_CPU[1:0]	Denotes the boot core:
		b10 CA7 core 2.
		b01 CA15 core 1 or CA7 core 1.
		b00 CA15 core 0 or CA7 core 0.
		The default is b00.
[23:20]	CLUSTER1_NUM_CPU[3:0]	Denotes the number of cores present in the Cortex-A7 cluster.
		The default is b0011 and this indicates that three Cortex-A7
		cores are present.
[19:16]	CLUSTER0_NUM_CPU[3:0]	Denotes the number of cores present in the Cortex-A15
		cluster.
		The default is b0010 and this indicates that two Cortex-A15 cores are present.

Bits	Name	Function
[15]	CA7_EVENTSTREAM	Recommends boot firmware or operating system action:b0Do not implement CA7 event stream generationb1Implement CA7 event stream generation.The default is b1.This bit has no direct effect but when it is b1, it acts as a hint to the software to enable a work-around for the Cortex-A15_A7 defect that prevents delivery of events between the CA15 and CA7 clusters when they operate at certain combinations of OPPs.
		To implement the work-around, the software uses the system counter to generate periodic wake-up events. The software implementation defines the frequency at which it generates the wake-up events. The software must enable event stream generation for each core after a warm or cold reset.
[14]	CA15_EVENTSTREAM	Recommends boot firmware or operating system action:b0Do not implement CA15 event stream generationb1Implement CA15 event stream generation.The default is b1.This bit has no direct effect but when it is b1, it acts as a hint to the software to enable a work-around for the Cortex-A15_A7 defect that prevents delivery of events between the CA15 and CA7 clusters when they operate at certain combinations of OPPs.To implement the work-around, the software uses the system counter to generate periodic wake-up events. The software implementation defines the frequency at which it generates the wake-up events.The software must enable event stream generation for each core after a warm or cold reset.
[13]	NONBOOT_CLUSTER_PWRDWN_ENABLE	Recommends boot firmware or operating system action:b0Do not power down the non-boot cluster.b1Power down the non-boot cluster.The default is b1.This bit has no direct effect but when it is b1it acts as a hint to the software to power down the non-boot cluster early in the cold boot process. Before it does this, the software must ensure that another software entity, such as an operating system, can power up the cluster at a later time.This feature is relevant only if the Daughterboard Configuration Controller powers up both the CA15 and CA7 clusters during cold reset of the CoreTile Express A15x2 A7x3 daughterboard.

Table 3-29 Test chip CFGREG48 Register bit assignments (continued)

Bits	Name	Function
[12]	PM_PERCORE_MBOX_ENABLE	 Recommends boot firmware or operating system action: b0 Do not use per-core mailboxes for power management. b1 Use per-core mailboxes for power management. The default is b1. Unless the operating system intervenes, the software stack uses the Motherboard Express μATX SYS_FLAGS system register to: Power up the non-boot cores after the boot-core has performed the necessary platform setup. Distinguish between a warm reset and a cold reset. Determine the common branch address for all cores after a warm reset. This bit has no direct effect but when it is b1it acts as a hint from the operating system to the boot firmware to use the per-core SPC mailbox registers to: Distinguish between a warm reset, a cold reset and a spurious reset of a core, possibly in conjunction with another software-defined method. This includes the ability to independently power up each non-boot core after a cold reset. Determine the branch address of a core after a warm reset. This enables the operating system to implement a full power management system and ensure that the boot firmware complies with that implementation. See <i>Application Note 318 CoreTile Express A15x2 A7x3</i>

Table 3-29 Test chip CFGREG48 Register bit assignments (continued)
Bits	Name	Function					
[11]	CA15_WFE_NOP_ENABLE	Recommends boot firmware or operating system action:					
		b0 Do not treat WFEs as NOPs.					
		b1 Treat WFEs as NOPs.					
		The default is b0.					
		This bit has no direct effect but when it is b1 it acts as a hint to the software, such as the boot software, to enable bit[7] of the CA15 Auxiliary Control Register for each core in the CA15. This results in WFE instructions being executed as NOP instructions. See <i>ARM</i> [®] Cortex [®] -A15 Technical Reference Manual.					
		Note					
		You can use this method as an alternative to the work-around to the Cortex A15_A7 defect that bit[14] of this register describes.					
[10:2]		Beconved Do not modify					
[10.2]	-	Reserved. Do not modify.					
[1:0]	ACTIVE_CLUSTER[1:0]	Denotes the active clusters:					
		b01The Cortex-A15 cluster is active and the Cortex-A7 cluster is inactive.					
		b10 The Cortex-A15 cluster is inactive and the Cortex-A7 cluster is active.					
		b11 The Cortex-A15 cluster is active and the Cortex-A7 cluster is active					
		The default is b11.					

Table 3-29 Test chip CFGREG48 Register bit assignments (continued)

Test chip SCC Register APB_CLEAR

The APB_CLEAR Register characteristics are:

Purpose	Write 0x000A50F5 to the APB_CLEAR register to revert all SCC registers to their test chip default values.
Usage constraints	There are no usage constraints.
Configurations	Not applicable.
Attributes	See Table 3-7 on page 3-13.
E	

Figure 3-27 shows the bit assignments.

Figure 3-27 Test chip APB_CLEAR Register bit assignments

Table 3-30 shows the bit assignments.

Table 3-30 Test chip APB_CLEAR Register bit assignments

Bits	Name	Function
[31:0]	-	Writing 0xA50FF0FA to this register reverts the SCC registers to their test chip default values.
		Note
		ARM recommends that you do not write to this register.

Test chip SCC Register TEST_CHIP_ID

The TEST	CHIP	ID	Register	characteristics	are:

Purpose	Enables you to read the Cortex-A15_A7 test chip-specific device ID.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-7 on page 3-13.

Figure 3-28 shows the bit assignments.

31	1 24 23				16 15						8 7								0												
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	1	1	0	1	1	0

Cortex-A15_A7 test chip specific device ID-

Figure 3-28 Test chip TC_ID Register bit assignments

Table 3-31 shows the bit assignments.

Table 3-31 Test chip TC_ID Register bit assignments

Bits Name		Function					
[31:0]	-	Cortex-A15_A7 test chip device ID. The default is 0x00050176.					

Test chip SCC Register CPU_ID

The CPUID Register characteristics are:

Purpose Enables you to read the Cortex-A15_A7 test chip core ID.

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes Table 3-7 on page 3-13.

Figure 3-29 on page 3-53 shows the bit assignments.

Figure 3-29 Test chip CPU_ID Register bit assignments

Table 3-32 shows the bit assignments.

Table 3-32 Test chip CPUID Register bit assignments

Bits	Name	Function
[31:0]	-	Cortex-A15_A7 CPU ID. The default is 0x410FC0F0.

3.4 Programmable peripherals and interfaces

The following sections describe the configurable modules in the test chip:

- Cortex-A15 cluster
- Cortex-A15 L2 cache controller
- Cortex-A7 cluster on page 3-55
- *Cortex-A7 L2 cache controller* on page 3-55
- *GIC-400 Interrupt controller* on page 3-56
- AXI network interconnect, NIC-301 on page 3-57
- HDLCD controller on page 3-57
- Cache Coherent Interconnect, CCI-400 on page 3-57
- DDR2 memory controllers, DMC-400 on page 3-58
- Static memory controller, PL354 on page 3-59
- Direct memory access controller, DMA-330 on page 3-60
- *Watchdog, SP805* on page 3-60
- System counter on page 3-61
- *System timer* on page 3-75.

See also the reference manual for each peripheral for more information on programming these devices.

3.4.1 Cortex-A15 cluster

The Cortex-A15 cluster, version r2p1, consists of two Cortex-A15 cores, with NEON media processing technology, SIMD extension and FPU. The L1 memory subsystem has 32KB of instruction cache and 32KB of data cache for each core.

For information about the programmable devices within the Cortex-A15 cluster, see the *ARM*[®] *Cortex*[®]-*A15 Technical Reference Manual.*

3.4.2 Cortex-A15 L2 cache controller

Table 3-33 provides information on the Cortex-A15 Level-2 cache controller implementation.

Property	Value
Memory base address	Not applicable. The L2-cache controller is integrated into the Cortex-A15 cluster.
Cache size	1024KB.
Number of Ways	16.
Line size	64 bytes.
Master port	Single 128-bit ACE interface.
Slave port	Single 128-bit AXI 4 ACP interface.
Physically indexed and tagged cache	-
Parity	Error Correction Code (ECC), if enabled.

Table 3-33 Cortex-A15 Level-2 cache controller implementation

Table 3-33 Cortex-A15 Level-2 cache controller implementation (continued)

Property	Value
Default data and tag RAM latencies	2 cycles.
Release version	Not applicable.
Reference documentation	ARM [®] Cortex [®] -A15 Technical Reference Manual.

— Note —

The default level-2 data and tag RAM latency values in the level-2 control register in the Cortex-A15 cluster are set to 2 cycles. You must increase these values to 3 cycles to match the high-density RAMs used for the level-2 memory. You must perform this initialization in your OS boot code. See the *ARM*[®] *Cortex*[®]-*A15 Technical Reference Manual* for more information on the Cortex-A15 cluster Level-2 control register.

3.4.3 Cortex-A7 cluster

The Cortex-A15 cluster, version r2p1, consists of three Cortex-A7 cores with NEON media processing technology, SIMD extension, and FPU. The L1 memory subsystem has 32KB of instruction cache and 32KB of data cache for each core.

For information about the programmable devices within the Cortex-A7 cluster, see the *Cortex*[®]-*A7 MPCore Technical Reference Manual.*

3.4.4 Cortex-A7 L2 cache controller

Table 3-34 provides information on the Cortex-A7 Level-2 cache controller implementation.

Table 3-34 Cortex-A7 Level-2 cache controller implementation

Property	Value
Memory base address	Not applicable. The L2-cache controller is integrated into the Cortex-A7 cluster.
Cache size	512KB.
Number of ways	8.
Line size	64 bytes.
Master port	Single 128-bit ACE interface.
Slave port	No ACP interface.
Physically indexed and tagged cache	-
Default data RAM latency	2 cycles.
Release version	Not applicable.
Reference documentation	Cortex®-A7 MPCore Technical Reference Manual.

— Note ———

The default level-2 data RAM latency value in the level-2 control register in the Cortex-A7 cluster is set to 2 cycles. This is sufficient for the Cortex-A15_A7 test chip to function correctly and you do not need to alter this value. See the *Cortex®-A7 MPCore Technical Reference Manual* for more information on the Cortex-A7 cluster Level-2 control register.

3.4.5 GIC-400 Interrupt controller

The Cortex-A15 and Cortex-A7 clusters do not contain internal controllers. The Cortex-A15_A7 test chip contains a GIC-400 interrupt controller that both the Cortex-A15 and Cortex-A7 clusters share. The cluster signals connect to interfaces on the GIC-400 controller:

- Cortex-A15 signals connect to GIC-400 core interfaces 0 and 1.
- Cortex-A7 signals connect to GIC-400 interfaces 2, 3, and 4.

Table 3-35 shows information on the implementation of the GIC-400.

Table 3-35	Interrupt	controller	implementation
------------	-----------	------------	----------------

Interrupt controller block	Property	Value
GIC-400	Memory base address	0x00_2C00_0000
Reserved	Offset from base address	0x00_0000_0000 - 0x00_0000_0FFF
Interrupt controller distributor	Offset from base address	0x00_0000_1000 - 0x00_0000_1FFF
Interrupt controller physical core interface	Offset from base address	0x00_0000_2000 - 0x00_0000_3FFF
Interrupt controller virtual core interface, hypervisor view for requesting core	Offset from base address	0x00_0000_4000 - 0x00_0000_4FFF
Interrupt controller virtual core interface, hypervisor view for all cores	Offset from base address	0x00_0000_5000 - 0x00_0000_5FFF
Interrupt controller virtual core interface, virtual machine view	Offset from base address	0x00_0000_6000 - 0x00_0000_7FFF
-	Release version	ARM GIC-400 r0p0
-	Reference Documentation	CoreLink™ GIC-400 Generic Interrupt Controller Technical Reference Manual

3.4.6 AXI network interconnect, NIC-301

The **ACLK** signal clocks the internal AXI. The internal AXI operates asynchronously to the Cortex-A15_A7 cluster by default. You can operate the internal AXI synchronously to the cluster by selecting **SYSCLK** to clock the cluster. See *Clocks* on page 2-24 and *Test chip SCC register descriptions* on page 3-17.

Table 3-36 provides information on the AXI interconnect implementation.

Table 3-36 AXI network interconnect implementation

Property	Value
Memory base address	0x00_2A00_0000
A15 interrupt	128
A7 interrupt	138
Release version	ARM PL301 r2p1
Reference documentation	AMBA® Network Interconnect (NIC-301) Technical Reference Manual.

3.4.7 HDLCD controller

Table 3-37 provides information on the HDLCD controller implementation.

Table 3-37 HDLCD controller implementation

Property	Value
Memory base address	0x00_2B00_0000
Interrupt	117

See Appendix B HDLCD controller for a full description of the HDLCD video controller.

3.4.8 Cache Coherent Interconnect, CCI-400

Table 3-38 provides information on the Cache Coherent Interconnect, CCI-400, implementation.

Table 3-38 cache controller implementation

Property	Value
Memory base address	0x00_2C09_0000
CCI-400 error IRQ	132
CCI-400 event counter overflow interrupt[4:0]	137:133
ACE-Lite slave port S0	Connects to the CoreSight DAP
ACE-Lite slave port S1	Connects to PL330 DMA
ACE-Lite slave port S2	Connects to HDLCD
ACE slave port S3	Connects to the Cortex-A15 cluster
ACE slave port S4	Connects to the Cortex-A7 cluster

Table 3-38 cache controller implementation (continued)

Property	Value
ACE-Lite master port M0	Connects to the NIC-301 AXI subsystem
ACE-Lite master port M1	Connects to the DMC-400
ACE-Lite master port M2	Connects to the DMC-400
Release version	ARM CCI-400 r0p2
Reference documentation	CoreLink [™] CCI-400 Cache Coherent Interconnect Technical Reference Manual

3.4.9 DDR2 memory controllers, DMC-400

The DMC-400 AXI interface runs asynchronously to the internal NIC-301 AXI interconnect, by default, at the frequency that the daughterboard oscillator, OSCLK 8, defines. See:

- Top-level view of the Cortex-A15_A7 MPCore test chip components on page 2-4
- Figure 2-10 on page 2-26.

See the example board.txt file in the ARM^{\otimes} VersatileTM Express Configuration Technical Reference Manual for information on how to set OSCCLK 8.

Table 3-39 provides information on the DDR2 DMC-400 memory controller implementation.

-	
Property	Value
Memory base address	Controller 0: 0x_00_2B0A_0000
System interfaces	2
System ID width	9
System address width	40
System data width	128
System read acceptance	32
System read hazard depth	8
System read hazard RAM	0
Memory interfaces	1
Memory data width	64
Memory chip selects	2
Write buffer depth	16
Write buffer RAM	0
Read queue depth	32
Maximum burst length	4

Table 3-39 DDR2 memory controllers implementation

Property	Value
ECC	FALSE
Release version	ARM DMC-400 r0p0
Reference documentation	CoreLink [™] DMC-400 Dynamic Memory Controller Technical Reference Manual

Table 3-39 DDR2 memory controllers implementation (continued)

3.4.10 Static memory controller, PL354

The PL354 *Static Memory Controller* (SMC) connects between the NIC-AXI interconnect and the PL220 interface that drives the SMB.

SMC organization

The SMC accesses these devices on the motherboard using the following chip selects:

CS0	NOR flash 0.
CS1	PSRAM.
CS2	Video, ETH, USB.
CS3	System registers and peripherals.
CS4	NOR flash 1.
CS5	Reserved.
CS6	Reserved.
CS7	Reserved.

Static memory controller implementation

Table 3-40 provides information on the static memory controller implementation.

Table 3-40 Static memory controller implementation

Property	Value
Memory base address	0x00_7FFD_0000
Interrupts	118,119
AXI width	64
MEMIF width	32
MEMIF CS	8
Exclusion monitors	2
CFIFO depth	8
WFIFO depth	16
RFIFO depth	16
AID width	15
ECC	FALSE

Table 3-40 Static memory controller implementation (continued)

Property	Value
Pipeline	TRUE
Release version	ARM PL354 r2p1
Reference documentation	ARM PrimeCell [®] Static Memory Controller (PL350 series) Technical Reference Manual

PrimeCell External Bus Interface, PL220

A PL220 *External Bus Interface* (EBI) multiplexes the dual SRAM memory interface to reduce the pin count and to facilitate board layout.

See the *ARM*[®] *PrimeCell External Bus Interface (PL220) Technical Reference Manual* for more information.

3.4.11 Direct memory access controller, DMA-330

Table 3-41 provides information on the DMA implementation.

Table 3-41 DMA implementation

Property	Value
Memory base address	0x00_7FF0_0000
Interrupts	 Direct memory access controller: 120-123. Direct memory access abort: 124.
ICache lines	8
ICache words	4
Number of VChannels	4
Number of PChannels	4
Write Issue Cap	8
Read Issue Cap	8
Read LSQ depth	8
Write LSQ depth	8
FIFO depth	512
FIFO implementation	Register
Number of INTR	4
Release version	ARM PL330 r1p0
Reference documentation	AMBA® DMA-330 Technical Reference Manual

3.4.12 Watchdog, SP805

The SP805 watchdog module is an AMBA-compliant SoC peripheral developed and tested by ARM.

The watchdog module consists of a 32-bit down counter with a programmable time-out interval that has the capability to generate an interrupt and a reset signal when it times out. It can be used to apply a reset to a system in the event of a software failure.

Table 3-42 provides information on the Watchdog implementation.

Table 3-42 Watchdog implementation

Property	Value
Memory base address	0x00_2A49_0000.
Interrupt	130.
Clock	Clocked by REFCLK24MHZ . See Figure 2-10 on page 2-26.
Release version	ARM WDOG SP805 r2p0.
Reference documentation	ARM Watchdog Module (SP805) Technical Reference Manual.

_____Note _____

The watchdog counter is disabled if the core is in the debug state.

3.4.13 System counter

The two generic timers, the system counter, and the system timer, are part of the Cortex-A15 cluster. The system counter provides the Cortex-A15 cluster timers with a real time reference from reset.

This section describes the system counter. See *System timer* on page 3-75 for information on the system timer.

The system counter contains control registers and read registers. See *System counter control register summary* on page 3-62 and *System counter read register summary* on page 3-69.

Table 3-43 provides information on the system counter implementation.

Table 3-43 System counter implementation

Property	Value
Memory base address:	
System counter control registers	0x2A43_0000
System counter read registers	0x2A80_0000
Clock	Clocked by REFCLK24MHZ . See Figure 2-10 on page 2-26.

System counter control register summary

The base address of the system counter control registers is 0x2A43_0000. Table 3-44 shows the system counter control registers and their offsets from the system counter control register base memory address.

Offset	Name	Туре	Test chip reset	Width	Description
0x00	CNTCR	RW	0x0000_0001	32	System counter control register. See <i>CNTCR</i> on page 3-63.
0x04	-	-	-	-	Reserved. Do not write to or read from this register.
0x08	CNTCVL	RW	0×0000_0000	32	System counter lower 32 bits control register. See <i>CNTCVL</i> on page 3-63.
0x0C	CNTCVU	RW	0×0000_0000	32	System counter upper 32 bits control register. See <i>CNTCVU</i> on page 3-64.
0x10	CNTFID0	RW	0×0000_0000	32	Base frequency ID control register. See <i>CNTFID0</i> on page 3-64.
0xFDC - 0x14	-	-	-	-	Reserved. Do not write to or read from these registers.
0xFE0	PID0	RO	0x0000_0099	32	System counter Peripheral Identification control register 0. See <i>PID0</i> on page 3-65.
0xFE4	PID1	RO	0x0000_0010	32	System counter Peripheral Identification control register 1. See <i>PID1</i> on page 3-65.
0xFE8	PID2	RO	0x0000_0004	32	System counter Peripheral Identification control register 2. See <i>PID2</i> on page 3-66.
0xFEC	PID3	RO	0×0000_0000	32	System counter Peripheral Identification control register 3. See <i>PID3</i> on page 3-66.
0xFF0	COMPID0	RO	0x0000_000D	32	System counter Component Identification control register 0. See <i>COMPID0</i> on page 3-67.
0xFF4	COMPID1	RO	0x0000_00F0	32	System counter Component Identification control register 1. See <i>COMPID1</i> on page 3-67.
0xFF8	COMPID2	RO	0x0000_0005	32	System counter Component Identification control register 2. See <i>COMPID2</i> on page 3-68.
0xFFC	COMPID3	RO	0x0000_00B1	32	System counter Component Identification control register 3. See <i>COMPID3</i> on page 3-68.

Table 3-44 System counter control register summary

System counter control register descriptions

The following sections describe the system counter control registers.

CNTCR

The CNTCR Register characteristics are:

Purpose System counter control register that enables you to read and write system counter configuration settings that halt it on debug and enable or disable the counter.

Usage constraints There are no usage constraints.

Configurations Not applicable.

Attributes See Table 3-44 on page 3-62.

Figure 3-30 shows the bit assignments.

	31																													2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Reserved HDBG																																
EN																																

Figure 3-30 System counter CNTCR Control Register bit assignments

Table 3-45 shows the bit assignments.

Table 3-45 System counter CNTCR Control Register bit assignments

Bits	Name	Function	
[31:]	-	Reserved. Do	not modify.
[1]	HDBG	Halts on debu	g:
		b0	Debug signal into the counter has no effect.
		b1	Debug signal into the counter halts the count.
		The default is	b0.
[0]	EN	Enable counte	er:
		b0	Disable counter. Count is at reset value and not incrementing.
		b1	Enable counter. Count is incrementing.
		The default is	b1.

CNTCVL

The CNTCVL Register characteristics are:

PurposeSystem counter lower 32 bits control register that enables you to read and
write the system counter lower 32 bits.Usage constraintsThere are no usage constraints.ConfigurationsNot applicable.AttributesSee Table 3-44 on page 3-62.

Figure 3-31 on page 3-64 shows the bit assignments.

Figure 3-31 System counter CNTCVL Control Register bit assignments

Table 3-46 shows the bit assignments.

Table 3-46 System counter CNTCVL Control Register bit assignments

Bits	Name	Function	
[31:0]	CNTCVL	Current unencoded va	alue of counter lower 32 bits, CNTCV[31:0]:
		Counter disabled	Writes to this register pre-load the lower 32 bits of the counter.
		Counter enabled	The counter ignores writes to this register.
		The default is 0x0000	0000.

CNTCVU

The CNTCVU Register characteristics are:

Purpose	System counter upper 32 bits control register that enables you to read and write the system counter upper 32 bits.
Usage constraints	There are no usage constraints.
Configurations	Not applicable.
Attributes	See Table 3-44 on page 3-62.

Figure 3-32 shows the bit assignments.

Figure 3-32 System counter CNTCVU Control Register bit assignments

Table 3-47 shows the bit assignments.

Table 3-47 System counter CNTCVU Control Register bit assignments

Bits	Name	Function	
[31:0]	CNTCVU	Current unencoded va	alue of counter upper 32 bits, CNTCV[63:32]:
		Counter disabled	Writes to this register pre-load the upper 32 bits of the counter.
		Counter enabled	The Counter ignores writes to this register.
		The default is 0x0000_	0000.

CNTFID0

The CNTFID0 Register characteristics are:

 Purpose
 System counter base frequency ID control register that enables you to read and write the counter frequency.

Usage constraints There are no usage constraints.

Configurations Not applicable.

Attributes See Table 3-44 on page 3-62.

Table 3-48 shows the bit assignments.

Table 3-48 System	counter	CNTFID0	Control	Register	bit assig	gnments
-------------------	---------	---------	---------	----------	-----------	---------

Bits	Name	Function
[31:0]	CNTFID0	Counter frequency. You can program this value for reference, but it does not affect the counter operation. The default is 0x0000_0000.

PID0

The PID0 Register characteristics are:

Purpose	System counter peripheral identification control register 0 that enables you to read peripheral identification information.							
Usage constraints	This register is read-only.							
Configurations	Not applicable.							
Attributes See Table 3-44 on page 3-62.								
E	1 - 1 1/2 1							

Figure 3-33 shows the bit assignments.

	31																															0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1
PID0																	I															

Figure 3-33 System counter PID0 Control Register bit assignments

Table 3-49 shows the bit assignments.

Table 3-49 System counter PIDO Control Register bit assignments

Bits	Name	Function
[31:0]	PID0	System counter peripheral identification control register 0. The default is 0x0000_0099.

PID1

The PID1 Register characteristics are:

Purpose	System counter peripheral identification control register 1 that enables you to read peripheral identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-44 on page 3-62.

Figure 3-34 on page 3-66 shows the bit assignments.

Figure 3-34 System counter PID1 Control Register bit assignments

Table 3-50 shows the bit assignments.

Table 3-50 S	vstem counter PI	D1 Control Registe	er bit assignments
		U	

Bits	Name	Function
[31:0]	PID1	System counter peripheral identification control register 1. The default is 0x0001_0000.

PID2

The PID2 Register characteristics are:

Purpose	System counter peripheral identification control register 2 that enables you to read peripheral identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-44 on page 3-62.
Figure 3-35 shows the bit assignments.	

Figure 3-35 System counter PID2 Control Register bit assignments

Table 3-51 shows the bit assignments.

Table 3-51 System counter PID2 Control Register bit assignments

Bits	Name	Function
[31:0]	PID2	System counter peripheral identification control register 2. The default is 0x0000_0004.

PID3

The PID3 Register characteristics are:

Purpose	System counter peripheral identification control register 3 that enables you to read peripheral identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-44 on page 3-62.

Figure 3-36 shows the bit assignments.

Figure 3-36 System counter PID3 Control Register bit assignments

Table 3-52 shows the bit assignments.

Table 3-32 Oystern counter 1 ibs control Register bit assignment	Table 3-52 S	vstem counter	PID3 Control	Register bit	assignment
--	--------------	---------------	--------------	---------------------	------------

Bits	Name	Function
[31:0]	PID3	System counter peripheral identification control register 3. The default is 0x0000_0000.

COMPID0

The COMPID0 Register characteristics are:

Purpose	System counter component identification control register 0 that enables you to read component identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-44 on page 3-62.
Figure 2.27 shows the hit assignments	

Figure 3-37 shows the bit assignments.

Figure 3-37 System counter COMPID0 Control Register bit assignments

Table 3-53 shows the bit assignments.

|--|

Bits	Name	Function
[31:0]	COMPID0	System counter component identification control register 0. The default is 0x0000_000D.

COMPID1

The COMPID1 Register characteristics are:

Purpose	System counter component identification control register 1 that enables you to read component identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.

Attributes See Table 3-44 on page 3-62.

Figure 3-38 shows the bit assignments.

Figure 3-38 System counter COMPID1 Control Register bit assignments

Table 3-54 shows the bit assignments.

Table 3-54 System counter COMPID1 Control Register bit assignments

Bits Nam		Name	Function
	[31:0]	COMPID1	System counter component identification control register 1. The default is 0x0000_00F0.

COMPID2

The COMPID2 Register characteristics are:

Purpose	System counter component identification control register 2 that enables you to read component identification information.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-44 on page 3-62.	
Figure 3-39 shows the bit assignments.		

Figure 3-39 System counter COMPID2 Control Register bit assignments

Table 3-55 shows the bit assignments.

Table 3-55 System counter COMPID2 Control Register bit assignments

Bits	Name	Function
[31:0]	COMPID2	System counter component identification control register 2.

COMPID3

The COMPID3 Register characteristics are:

Purpose System counter component identification control register 3 that enables you to read component identification information.

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes See Table 3-44 on page 3-62.

Figure 3-40 shows the bit assignments.

Figure 3-40 System counter COMPID3 Control Register bit assignments

Table 3-56 shows the bit assignments.

Table 3-56 S	vstem counter COMPID	3 Control Reaiste	er bit assignments

Bits	Name	Function
[31:0]	COMPID3	System counter component identification control register 3. The default is 0x0000_00B1.

System counter read register summary

The system counter read registers base address is 0x2A80_0000. Table 3-57 shows the system counter read registers and their offsets from the system counter read register base memory address.

Offset	Name	Туре	Test chip reset	Width	Description
0x00 - 0x04	-	-	-	-	Reserved. Do not write to or read from these registers.
0x08	CNTCVL	RO	0x0000_0000	32	System counter lower 32 bits read register. See <i>CNTCVL</i> on page 3-70.
0x0C	CNTCVU	RO	0x0000_0000	32	System counter upper 32 bits read register. See <i>CNTCVU</i> on page 3-70.
0x10	CNTFID0	RO	0x0000_0000	32	Base frequency ID read register. See <i>CNTFID0</i> on page 3-71.
0xFDC- 0x14	-	-	-	-	Reserved. Do not write to or read from these registers.
0xFE0	PID0	RO	0x0000_0099	32	System counter Peripheral Identification read register 0. See <i>PID0</i> on page 3-71.
0xFE4	PID1	RO	0x0000_0010	32	System counter Peripheral Identification read register 1. See <i>PID1</i> on page 3-72.
0xFE8	PID2	RO	0x0000_0004	32	System counter Peripheral Identification read register 2. See <i>PID2</i> on page 3-72.
0xFEC	PID3	RO	0x0000_0000	32	System counter Peripheral Identification read register 3. See <i>PID3</i> on page 3-73.

Table 3-57 System counter read register summary

Offset	Name	Туре	Test chip reset	Width	Description
0xFF0	COMPID0	RO	0x0000_000D	32	System counter Component Identification read register 0. See <i>COMPID0</i> on page 3-73.
0xFF4	COMPID1	RO	0x0000_00F0	32	System counter Component Identification read register 1. See <i>COMPID1</i> on page 3-74.
0xFF8	COMPID2	RO	0x0000_0005	32	System counter Component Identification read register 2. See <i>COMPID2</i> on page 3-74.
0xFFC	COMPID3	RO	0x0000_00B1	32	System counter Component Identification read register 3. See <i>COMPID3</i> on page 3-75.

Table 3-57 System counter read register summary (continued)

System counter read register descriptions

The following sections describes the system counter read registers.

CNTCVL

The CNTCVL Register characteristics are:

Purpose	System counter lower 32 bits read register that enables you to read the system counter lower 32 bits.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-57 on page 3-69.

Figure 3-41 shows the bit assignments.

Figure 3-41 System counter CNTCVL Read Register bit assignments

Table 3-58 shows the bit assignments.

Table 3-58 System counter	· CNTCVL Read	Register b	it assignments
•		•	•

Bits	Name	Function
[31:0]	CNTCVL	Current unencoded value of counter lower 32 bits, CNTCV[31:0]. The default is 0x0000_0000.

CNTCVU

The CNTCVU Register characteristics are:

Purpose System counter upper 32 bits read register that enables you to read the system counter upper 32 bits.

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes See Table 3-57 on page 3-69.

Figure 3-42 shows the bit assignments.

Figure 3-42 System counter CNTCVU Read Register bit assignments

Table 3-59 shows the bit assignments.

Table 3-59 System counter CNTCVU Read Register bit assignments

Bits	Name	Function
[31:0]	CNTCVU	Current unencoded value of counter upper 32 bits, CNTCV[63:32]. The default is 0x0000_0000.

CNTFID0

The CNTFID0 Register characteristics are:

Purpose	System counter base frequency ID read register that enables you to read the counter frequency.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-57 on page 3-69.
Table 2 60 shows th	a hit assignmenta

Table 3-60 shows the bit assignments.

Table 3-60 System counter CNTFID0 Read Register bit assignments

Bits	Bits Name Function	
[31:0]	CNTFID0	Counter frequency. The default is 0x0000_0000.

PID0

The PID0 Register characteristics are:

Purpose	System counter peripheral identification read register 0 that enables you to read peripheral identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-57 on page 3-69.

Figure 3-43 on page 3-72 shows the bit assignments.

Figure 3-43 System counter PID0 Read Register bit assignments

Table 3-61 shows the bit assignments.

Table 3-61 S	ystem counter PIDO	Read Register bi	it assignments
	-		

Bits	Name	Function
[31:0]	PID0	System counter peripheral identification read register 0. The default is 0x0000_0099.

PID1

The PID1 Register characteristics are:

Purpose	System counter peripheral identification read register 1 that enables you to read peripheral identification information.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-57 on page 3-69.	
The set 2 44 shows the bit estimates		

Figure 3-44 shows the bit assignments.

Figure 3-44 System counter PID1 Read Register bit assignments

Table 3-62 shows the bit assignments.

Table 3-62 System counter PID1 Read Register bit assignments

Bits	Name	Function
[31:0]	PID1	System counter peripheral identification read register 1. The default is 0x0001_0000.

PID2

The PID2 Register characteristics are:

Purpose	System counter peripheral identification read register 2 that enables you to read peripheral identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-57 on page 3-69.

Figure 3-45 shows the bit assignments.

Figure 3-45 System counter PID2 Read Register bit assignments

Table 3-63 shows the bit assignments.

Table 3-63 Sv	vstem counter	PID2 Read	Register bit	t assiɑnments

Bits	Name	Function
[31:0]	PID2	System counter peripheral identification read register 2. The default is 0x0000_0004.

PID3

The PID3 Register characteristics are:

Purpose	System counter peripheral identification read register 3 that enables you to read peripheral identification information.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-57 on page 3-69.
E	1. 1.4

Figure 3-46 shows the bit assignments.

Figure 3-46 System counter PID3 Read Register bit assignments

Table 3-64 shows the bit assignments.

Table 3-64 System counter PID3 Read Register bit assignme

Bits	Name	Function
[31:0]	PID3	System counter peripheral identification read register 3. The default is 0x0000_0000.

COMPID0

The COMPID0 Register characteristics are:

System counter component identification read register 0 that enables you to read component identification information.
This register is read-only.
Not applicable.

Attributes See Table 3-57 on page 3-69.

Figure 3-47 shows the bit assignments.

Figure 3-47 System counter COMPID0 Read Register bit assignments

Table 3-65 shows the bit assignments.

Table 3-65 System counter COMPID0 Read Register bit assignments

Bits	Name	Function
[31:0]	COMPID0	System counter component identification read register 0. The default is 0x0000_000D.

COMPID1

The COMPID1 Register characteristics are:

Purpose	System counter component identification read register 1 that enables you to read component identification information.					
Usage constraints	This register is read-only.					
Configurations	Not applicable.					
AttributesSee Table 3-57 on page 3-69.						
Figure 3-48 shows the bit assignments.						

Figure 3-48 System counter COMPID1 Read Register bit assignments

Table 3-66 shows the bit assignments.

Table 3-66 System counter COMPID1 Read Register bit assignments

Bits	Name	Function
[31:0]	0] COMPID1	System counter component identification read register 1. The default is 0x0000_00F0.

COMPID2

The COMPID2 Register characteristics are:

Purpose System counter component identification read register 2 that enables you to read component identification information.

Usage constraints This register is read-only.

Configurations Not applicable.

Attributes See Table 3-57 on page 3-69.

Figure 3-49 shows the bit assignments.

Figure 3-49 System counter COMPID2 Read Register bit assignments

Table 3-67 shows the bit assignments.

Table 3-67 Sv	stem counter	COMPID2 R	Read Register	[,] bit assignment	ts
---------------	--------------	-----------	---------------	-----------------------------	----

-	Bits	Name	Function
	[31:0]	COMPID2	System counter component identification read register 2. The default is 0x0000_0005.

COMPID3

The COMPID3 Register characteristics are:

Purpose	System counter component identification read register 3 that enables you to read component identification information.					
Usage constraints	This register is read-only.					
Configurations	Not applicable.					
Attributes See Table 3-57 on page 3-69.						
Figure 3-50 shows the bit assignments.						

Figure 3-50 System counter COMPID3 Read Register bit assignments

Table 3-68 shows the bit assignments.

Table 3-68 System counter COMPID3 Read Register bit assignments

Bits	Name	Function
[31:0]	COMPID3	System counter component identification read register 3. The default is 0x0000_00B1.

3.4.14 System timer

The two generic timers, the system counter and the system timer, are part of the Cortex-A15 cluster. This section describes the system timer. See *System counter* on page 3-61 for information on the system counter.

You can use the system timer to implement watchdog functionality. You can only use this functionality to generate a generic timer interrupt to the GIC-400, interrupt 131. You cannot use it to implement a reset request capability.

System timer register summary

The base address of the system timer control registers is 0x2B04_0000. Table 3-69 shows the system timer control registers and corresponding offsets from the system timer control register base-memory address.

Offset	Name	Туре	Test chip reset	Width	Description		
0x00	CNTLPCT	RO	Not applicable	32	System timer physical count lower 32 bits. See <i>CNTLPCT</i> on page 3-77.		
0x04	CNTUPCT	RO	Not applicable	32	System timer physical count upper 32 bits. See <i>CNTUPCT</i> on page 3-78.		
0x08	CNTLVCT	RW	Not applicable	32	Virtual count lower 32 bits, physical count, virtual offset. See <i>CNTLVCT</i> on page 3-78.		
0x0C	CNTUVCT	RW	Not applicable	32	Virtual count upper 32 bits, physical count, virtual offset See <i>CNTUVCT</i> on page 3-78.		
0x10	CNTFRQ	RW	Not applicable	32	Denotes the number of clock ticks per second, R0 from second 'user' view when access is enabled. See <i>CNTFRQ</i> on page 3-79		
0x14	CNTPL0ACR	RW	0x0000_0000	32	Second view access control, visible only in the first 'kernel' view. See <i>CNTPL0ACR</i> on page 3-79.		
0x18	CNTLVOFF	RO	Not applicable	32	Read-only version of the virtual offset lower 32 bits from the system timer control block CNTFOFF[31:0], visible only in the first 'kernel' view. See <i>CNTLVOFF</i> on page 3-80.		
0x1C	CNTUVOFF	RO	Not applicable	32	Read-only version of the virtual offset upper 32 bits from the system timer control block CNTFOFF[31:0], visible only in the first 'kernel' view. See <i>CNTUVOFF</i> on page 3-80.		
0x20	CNTPL_CVAL	RW	0x0000_0000	32	System timer lower 32 bits comparison value. See <i>CNTPL_CVAL</i> on page 3-80.		
0x24	CNTPU_CVAL	RW	0x0000_0000	32	System timer upper 32 bits comparison value. See <i>CNTPU_CVAL</i> on page 3-81.		
0x28	CNTP_TVAL	RW	0x0000_0000	32	System timer value. See <i>CNTP_TVAL</i> on page 3-81.		
0x2C	CNTP_CTL	RW	0x0000_0000	32	System timer control register. See <i>CNTP_CTL</i> on page 3-82.		
0x30	CNTVL_CVAL	RW	0x0000_0000	32	Virtual timer lower 32 bits comparison value. See <i>CNTVL_CVAL</i> on page 3-83.		

Table 3-69 System timer control register summary

Offset	Name	Туре	Test chip reset	Width	Description
0x34	CNTVU_CVAL	RW	0×0000_0000	32	Virtual timer upper 32 bits comparison value. See <i>CNTVU_CVAL</i> on page 3-83.
0x38	CNTV_TVAL	RW	0×0000_0000	32	Virtual timer value. See <i>CNTV_TVAL</i> on page 3-84.
0x3C	CNTV_CTL	RW	0×0000_0000	32	Virtual timer control register. See <i>CNTV_CTL</i> on page 3-84.
0xFDF-0x40	-	-	-	-	Reserved. Do not write to or read from these registers.
0xFE0	PID0	RO	0×0000_009B	32	System timer Peripheral Identification register 0. See <i>PID0</i> on page 3-85.
0xFE4	PID1	RO	0x0000_0010	32	System timer Peripheral Identification register 1. See <i>PID1</i> on page 3-86.
0xFE8	PID2	RO	0x0000_0004	32	System timer Peripheral Identification register 2. See <i>PID2</i> on page 3-86.
0xFEC	PID3	RO	0×0000_0000	32	System timer Peripheral Identification register 3. See <i>PID3</i> on page 3-87.
0xFF0	COMPID0	RO	0x0000_000D	32	System timer Component Identification register 0. See <i>COMPID0</i> on page 3-87.
0xFF4	COMPID1	RO	0x0000_00F0	32	System timer Component Identification register 1. See <i>COMPID1</i> on page 3-88.
0xFF8	COMPID2	RO	0×0000_0005	32	System timer Component Identification register 2. See <i>COMPID2</i> on page 3-88.
0xFFC	COMPID3	RO	0x0000_00B1	32	System timer Component Identification register 3. See <i>COMPID3</i> on page 3-89.

Table 3-69 System timer control register summary (continued)

System timer register descriptions

This following sections describes the system timer registers.

CNTLPCT

The CNTLPCT Register characteristics are:

Purpose	System timer physical count lower 32 bit register that enables you to read the lower 32 bits of the physical count.				
Usage constraints	This register is read-only.				
Configurations	Not applicable.				
Attributes	See Table 3-69 on page 3-76.				

Table 3-70 shows the bit assignments.

Table	3-70	System	timer	CNTI	PCT	Register	bit	assig	nments
Tuble	0-10	Oystein	unior			Register	MIL	ussigi	mento

Bits	Name	Function
[31:0]	CNTLPCT	Physical count register lower 32 bits

CNTUPCT

The CNTUPCT Register characteristics are:

Purpose	System timer physical count upper 32 bit register that enables you to rea the upper 32 bits of the physical count.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Table 3-71 shows the bit assignments.

Table 3-71 System timer CNTUPCT Register bit assignments

Bits	Name	Function
[31:0]	CNTUPCT	Physical count register upper 32 bits.

CNTLVCT

The CNTLVCT Register characteristics are:

PurposeSystem timer virtual count lower 32 bit register. It enables you lower 32 bits of the virtual count.		
Usage constraints	constraints This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Table 3-72 shows the bit assignments.

Bits	Name	Function
[31:0]	CNTLVCT	Virtual count register lower 32 bits, physical count, virtual offset

CNTUVCT

The CNTUVCT Register characteristics are:

Purpose	System timer virtual count upper 32 bit register that enables you to read the upper 32 bits of the virtual count.
Usage constraints	This register is read-only.
Configurations	Not applicable.

Attributes See Table 3-69 on page 3-76.

Table 3-73 shows the bit assignments.

Table 3-73 System timer CNTUVCT Register bit assignments

Bits	Name	Function
[31:0]	CNTUVCT	Virtual count register upper 32 bits, physical count, virtual offset

CNTFRQ

The CNTFRQ Register characteristics are:

Purpose Denotes the number of clock frequency and enables you to read an the clock frequency.		
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Table 3-74 shows the bit assignments.

Table 3-74 System timer CNTFRQ Register bit assignments

Bits	Name	Function
[31:0]	CNTFRQ	Clock frequency, read only from second 'user' view when access is enabled.

CNTPL0ACR

The CNTPLOACR Register characteristics are:

Purpose	Second view access control that enables you to read and write second view access control.	
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Figure 3-51 shows the bit assignments.

Figure 3-51 System timer CNTPL0ACR Register bit assignments

Table 3-75 shows the bit assignments.

Bits	Name	Function
[31:0]	CNTPL0ACR	Second view access control. This register is only visible in the first kernel view.

CNTLVOFF

The CNTLVOFF Register characteristics are:

Purpose	System register read-only version of the virtual offset lower 32 bits from the system timer control block CNTVOFF[31:0]. This is visible only in the first 'kernel' view and this enables you to read the virtual offset 32 bits.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Table 3-76 shows the bit assignments.

Table 3-76 System timer CNTLOFF Register bit assignments

Bits	Name	Function
[31:0]	CNTLVOFF	Read-only version of the virtual offset lower 32 bits from the system timer control block CNTVOFF[31:0]. This is visible only in the first 'kernel' view.

CNTUVOFF

The CNTUVOFF Register characteristics are:

Purpose	System register read-only version of the virtual offset upper 32 bits from the system timer control block CNTVOFF[63:32]. This is visible only in the first 'kernel' view and enables you to read the virtual offset upper 32 bits.	
Usage constraints	This register is read-only.	
Configurations	Configurations Not applicable.	
Attributes	See Table 3-69 on page 3-76.	
Table 3-77 shows the bit assignments.		

Table 3-77 System timer CNTVOFF Register bit assignments

Bits	Name	Function
[31:0]	CNTUVOFF	Read-only version of the virtual offset upper 32 bits of the system timer control block CNTVOFF[63:32]. This is visible only in the first 'kernel' view.

CNTPL_CVAL

The CNTPL_CVAL Register characteristics are:

Purpose	The CNTPL_CVAL register is the system timer lower 32 bits comparison value register. It enables you to read and write the system timer lower 32 bits comparison values.	
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Figure 3-52 shows the bit assignments.

Figure 3-52 System timer CNTPU_CVAL Register bit assignments

Table 3-78 shows the bit assignments.

Bits	Name	Function
[31:0]	CNTPL_CVAL	System timer lower 32 bits comparison values.

CNTPU_CVAL

The CNTPU CVAL Register characteristics are:

Purpose	System timer upper 32 bits comparison value register that enables you to read and write the system timer upper 32 bits comparison values.	
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
AttributesSee Table 3-69 on page 3-76.		
Figure 2, 52 shows the hit assignments		

Figure 3-53 shows the bit assignments.

CNTPU_CVAL -

Figure 3-53 System timer CNTPU_CVAL Register bit assignments

Table 3-79 shows the bit assignments.

Table 3-79 System timer CNTPU_CVAL Register bit assignments

Bits	Name	Function
[31:0]	CNTPU_CVAL	System timer upper 32 bits comparison values.

CNTP_TVAL

The CNTP_TVAL Register characteristics are:

Purpose	The CNTP_TVAL register is the system timer value register. It enables you to read and write the system timer value.	
Usage constraints	There are no usage constraints.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	
Eiguro 2 54 on page	2.92 shows the hit assignments	

Figure 3-54 on page 3-82 shows the bit assignments.

Figure 3-54 System counter CNTP_TVAL Register bit assignments

Table 3-80 shows the bit assignments.

Table 3-80 System counter CNTP_TVAL Register bit assignments

Bits	Name	Function
[31:0]	CNTP_TVAL	System timer value

CNTP_CTL

The CNTP_CTL Register characteristics are:

Purpose	The CNTP_CTL register is the physical timer control register. It enables you to read and write the physical timer control settings.
Usage constraints	There are no usage constraints.
Configurations	Not applicable.
Attributes	See Table 3-69 on page 3-76.

Figure 3-55 shows the bit assignments.

	31																											4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reserved IMSTAT ISTAT IMSK																																
EN																																

Figure 3-55 System counter CNTP_CTL Register bit assignments

Table 3-81 shows the bit assignments.

Table 3-81 System counter CNTP_CTL Register bit assignments

Bits	Name	Function				
[31:4]	-	Reserved. Do not modify.				
[3]	IMSTAT	Interrupt status after masking:				
		b0	Interrupt asserted.			
		b1	Interrupt not asserted.			
		The default is b0.				

Bits	Name	Function				
[2]	ISTAT	Interrupt st	atus before masking:			
		b0	Interrupt asserted.			
		b1	Interrupt not asserted.			
		The default is b0.				
[1]	IMSK	Mask interrupt:				
		b0	Mask interrupt.			
		b1	Unmask interrupt.			
		The default	t is b0.			
[1]	EN	Enable time	er			
		b0	Timer enabled.			
		b1	Timer disabled.			
		The default	t is b0.			

Table 3-81 System counter CNTP_CTL Register bit assignments (continued)

CNTVL_CVAL

The CNTVL_CVAL Register characteristics are:

Purpose	Virtual timer lower 32 bits comparison value register that enables you to read and write the virtual timer lower 32 bits comparison values.				
Usage constraints	There are no usage constraints.				
Configurations Not applicable.					
AttributesSee Table 3-69 on page 3-76.					
Figure 3-56 shows the bit assignments					

Figure 3-56 shows the bit assignments.

CNTVL CVAL-

Figure 3-56 System counter CNTVL_CVAL Register bit assignments

Table 3-82 shows the bit assignments.

Table 3-82 System counter CNTVL_CVAL Register bit assignments

_	Bits	Name	Function
	[31:0]	CNTVL_CVAL	Virtual timer lower 32 bits comparison value

CNTVU_CVAL

The CNTVU_CVAL Register characteristics are:

Purpose	Virtual timer upper 32 bits comparison value register that enables you to read and write the virtual timer upper 32 bits comparison values.
Usage constraints	There are no usage constraints.
Configurations	Not applicable.

Attributes See Table 3-69 on page 3-76.

Figure 3-57 shows the bit assignments.

Figure 3-57 System counter CNTVU_CVAL Register bit assignments

Table 3-83 shows the bit assignments.

Table 3-83 System counter CNTVU_CVAL Register bit assignments

Bits	Name	Function
[31:0]	CNTVU_CVAL	Virtual timer upper 32 bits comparison value

CNTV_TVAL

The CNTV_TVAL Register characteristics are:

Purpose	Virtual timer register that enables you to read and write the virtual timer value.
Usage constraints	There are no usage constraints.
Configurations	Not applicable.
Attributes	See Table 3-69 on page 3-76.

Figure 3-58 shows the bit assignments.

Figure 3-58 System counter CNTV_TVAL Register bit assignments

Table 3-84 shows the bit assignments.

Table 3-84 System counter CNTV_TVAL Register bit assignments

Bits	Name	Function
[31:4]	-	Reserved. Do not modify.

CNTV_CTL

The CNTV CTL Register characteristics are:

Purpose	Virtual timer control register that enables you to read and write the virtual timer control settings.
Usage constraints	There are no usage constraints.
Configurations	Not applicable.
Attributes	See Table 3-69 on page 3-76.

Figure 3-59 shows the bit assignments.

Figure 3-59 System counter CNTV_CTL Register bit assignments

Table 3-85 shows the bit assignments.

Table 3-85 System counter CNTV_CTL Register bit assignments

Bits	Name	Function					
[31:4]	-	Reserved. Do	Reserved. Do not modify.				
[3]	IMSTAT	Interrupt statu	us after masking:				
		b0	Interrupt asserted.				
		b1	Interrupt not asserted.				
		The default is	s b0.				
[2]	ISTAT	Interrupt status before masking:					
		b0	Interrupt asserted.				
		b1	Interrupt not asserted.				
		The default is b0.					
[1]	IMSK	Mask interruj	pt:				
		b0	Mask interrupt.				
		b1	Unmask interrupt.				
		The default is b0.					
[1]	EN	Enable timer:					
		b0	Timer enabled.				
		b1	Timer disabled.				
		Default b0.					

PID0

The PID0 Register characteristics are:

Purpose System timer peripheral identification register 0 that enables you to read system timer peripheral identification values.

- Usage constraints This register is read-only.
- **Configurations** Not applicable.
- Attributes See Table 3-69 on page 3-76.

Figure 3-60 on page 3-86 shows the bit assignments.

Figure 3-60 System counter PID0 Register bit assignments

Table 3-86 shows the bit assignments.

Table 3-86 System counter PID0 Register bit assignme
--

Bits	Name	Function
[31:0]	PID0	System timer peripheral identification register 0. The default is 0x0000009B.

PID1

The PID1 Register characteristics are:

Purpose	System timer Peripheral Identification register 1 that enables you to read system timer peripheral identification values.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Figure 3-61 shows the bit assignments.

Figure 3-61 System counter PID1 Register bit assignments

Table 3-87 shows the bit assignments.

Table 3-87 System counter PID1 Register bit assignments

Bits	Name	Function
[31:0]	PID1	System timer peripheral identification register 1. The default is 0x00000010.

PID2

The PID2 Register characteristics are:

Purpose	System timer Peripheral Identification register 2 that enables you to read system timer peripheral identification values.
Usage constraints	This register is read-only.
Configurations	Not applicable.
Attributes	See Table 3-69 on page 3-76.
Figure 3-62 shows the bit assignments.

Figure 3-62 System counter PID2 Register bit assignments

Table 3-88 shows the bit assignments.

Bits	Name	Function
[31:0]	PID2	System timer peripheral identification register 2

PID3

The PID3 Register characteristics are:

Purpose	System timer Peripheral Identification register 3 that enables you to read system timer peripheral identification values.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Figure 3-63 shows the bit assignments.

Figure 3-63 System counter PID3 Register bit assignments

Table 3-89 shows the bit assignments.

Table 3-89 System counter PID3 Register bit assignments

Bits	Name	Function
[31:0]	PID3	System timer peripheral identification register 3

COMPID0

The COMPID0 Register characteristics are:

Purpose	System timer Component Identification register 0 that enables you to system timer component identification values.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	
E' 0 (4		

Figure 3-64 on page 3-88 shows the bit assignments.

Figure 3-64 System counter COMPID0 Register bit assignments

Table 3-90 shows the bit assignments.

Table 3-90 System counter COMPID0 Register bit assignments

Bits	Name	Function
[31:0]	COMPID0	System timer component identification register 0. The default is 0x0000000D.

COMPID1

The COMPID1 Register characteristics are:

Purpose	System timer Component Identification register 1 that enables you to read system timer component identification values.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
Attributes See Table 3-69 on page 3-76.		
Figure 3-65 shows t	he bit assignments.	

Figure 3-65 System counter COMPID1 Register bit assignments

Table 3-91 shows the bit assignments.

Table 3-91 System counter COMPID1 Register bit assignments

Bits	Name	Function
[31:0]	COMPID1	System timer component identification register 0. The default is 0x000000F0.

COMPID2

The COMPID2 Register characteristics are:

Purpose	System timer Component Identification register 2 that enables you to read system timer component identification values.	
Usage constraints	s This register is read-only.	
Configurations	Not applicable.	
Attributes	See Table 3-69 on page 3-76.	

Figure 3-66 shows the bit assignments.

Figure 3-66 System counter COMPID2 Register bit assignments

Table 3-92 shows the bit assignments.

Bits	Name	Function
[31:0]	COMPID2	System timer component identification register 0. The default is 0x00000005.

COMPID3

The COMPID3 Register characteristics are:

Purpose	System timer Component Identification register 3 that enables you to read system timer component identification values.	
Usage constraints	This register is read-only.	
Configurations	Not applicable.	
AttributesSee Table 3-69 on page 3-76.		
Figure 3-67 shows t	he bit assignments	

-0/ shows the off assignments. ıg

Figure 3-67 System counter COMPID3 Register bit assignments

Table 3-93 shows the bit assignments.

Table 3-93 System counter COMPID3 Register bit assignments

Bits	Name	Function
[31:0]	COMPID3	System timer component identification register 0. The default is 0x0000081.

Appendix A Signal Descriptions

This appendix describes the signals present at the interface connectors. It contains the following sections:

- *Daughterboard connectors* on page A-2
- HDRX HSB multiplexing scheme on page A-3
- *Header connectors* on page A-5
- *Debug and trace connectors* on page A-6.

____ Note _____

See also the ARM[®] Motherboard Express µATX Technical Reference Manual.

A.1 Daughterboard connectors

Figure A-1 shows the connectors fitted to the daughterboard.

Figure A-1 CoreTile Express A15×2 A7×3 daughterboard connectors

All connectors in Figure A-1, except for the HDRY and HDRX headers, are on the upper face of the daughterboard facing away from the motherboard.

The HDRX and HDRY headers are on the lower face of the daughterboard facing towards the motherboard.

-Note -

A.2 HDRX HSB multiplexing scheme

A bus multiplexing scheme is necessary to reduce the number of pins required on the HDRX header for the 64-bit AXI master on the HSBM bus. The LogicTile Express daughterboard must implement a similar multiplexing scheme to be compatible with the CoreTile Express signals.

OSCCLK 4 on the CoreTile Express A15×2 daughterboard generates the AXI master bus clock. This clocks the test chip master multiplex and demultiplex logic. This logic is positive- and negative-edge triggered to avoid the requirement for a PLL or double-rate clock in the test chip. Double edge clocking also enables operation at low speed for use with emulation systems.

—— Note ———

All signals on the **HSB (M)** bus are 1.8V.

Figure A-2 shows a simplified block diagram of the multiplexing scheme for the AXI bus.

Figure A-2 HSB multiplexing

Application Note 283 Example LogicTile Express 3MG Design for a CoreTile Express A15×2, and Application Note 305 Example LogicTile Express 13MG Design for a CoreTile Express A15×2 or a CoreTile Express A15×2_A7x3, provided by ARM, implement example AMBA

systems using a LogicTile Express daughterboard to interconnect with the CoreTile Express A15×2 A7×3 daughterboard. See the documentation supplied on the accompanying media and the *Application Notes* for more information at, http://infocenter.arm.com.

A.3 Header connectors

Two high-density headers are fitted to the underside of the daughterboard. Header HDRY, J2, routes the buses and power interconnect between the V2P-CA15 daughterboard and the V2M-P1 motherboard.

Header HDRX, J1, routes the HSB buses between the V2P-CA15_A7 daughterboard and the daughterboard on the other motherboard site. The an283_revc.ucf constraints file, available in *Application Note 283 Example LogicTile Express 3MG design for a CoreTile Express A15*×2, lists the HDRX signals.

A.4 Debug and trace connectors

This section describes the debug and trace connectors on the daughterboard.

- ——Caution
 - Your external debug interface unit must adapt its interface voltages to the voltage level of the daughterboard JTAG. All the trace and JTAG signals operate at 1.8V.

A.4.1 JTAG connector

The daughterboard provides the JTAG connector to enable connection of DSTREAM or a compatible third-party debugger. Figure A-3 shows the JTAG connector.

—— Note ———

- EDBGRQ has a pull-down resistor to 0V. The daughterboard does not support adaptive clocking and RTCK has a pull-down resistor to 0V. All other signal connections on the P-JTAG connector have pull-up resistors to 1V8.
- Pins 7 and 9 of the JTAG connector are dual-mode pins that enable the Cortex-A15_A7 test chip to support both the JTAG and SWD protocols.

Figure A-3 JTAG connector, J6

Table A-1 shows the JTAG pin mapping for each JTAG signal.

	Table A-1	JTAG	connector	(J6)	signal	list
--	-----------	------	-----------	------	--------	------

Pin	Signal	Pin	Signal
1	VTREFC	2	VSUPPLYA
3	nTRST	4	GND
5	TDI	6	GND
7	TMS/SWDIO	8	GND
9	TCK/SWCLK	10	GND
11	RTCK	12	GND
13	TDO	14	GND
15	nSRST	16	GND
17	EDBGRQ	18	GND
19	DBGACK	20	GND

A.4.2 Trace connectors

The test chip supports up to 32-bit trace output from the CoreSight *Trace Port Interface Unit* (TPIU) and enables connection of a compatible trace unit. See Figure 2-16 on page 2-41. Two MICTOR trace connectors, labeled *Trace Dual* and *Trace Single*, are connected to the TPIU. The two connectors, when used together, support 32-bit trace, and the connector labeled *Trace Single*, when used alone, supports 16-bit trace.

_____Note _____

- DSTREAM is an example of a trace module that you can use.
- All the trace and JTAG signals operate at 1.8V.
- The trace connector cannot supply power to a trace unit.
- The interface does not support the **TRACE_CTL** signal. This is always driven LOW.

Figure A-4 shows the MICTOR connector, part number AMP 2-5767004-2.

Figure A-4 Trace Connector, J4 and J5

Table A-2 shows the trace pin mapping for each *Trace Dual* signal.

Table A-2 Trace Single connector, J4, signal list

Pin	Signal	Pin	Signal
1	Not connected	2	Not connected
3	Not connected	4	Not connected
5	GND	6	TRACE_CLKA
7	TRACEDBGRQ	8	TRACE_DBGACK
9	nSRST	10	TRACE_EXTTRIGX
11	TDO	12	VTREFA (1V8)
13	RTCK	14	VSUPPYLYA (1V8)
15	ТСК	16	TRACE_DATA7
17	TMS	18	TRACE_DATA6
19	TDI	20	TRACE_DATA5
21	nTRST	22	TRACE_DATA4
23	TRACE_DATA15	24	TRACE_DATA3
25	TRACE_DATA14	26	TRACE_DATA2
27	TRACE_DATA13	28	TRACE_DATA1
29	TRACE_DATA12	30	GND

Pin	Signal	Pin	Signal
31	TRACE_DATA11	32	GND
33	TRACE_DATA10	34	VTREFA (1V8)
35	TRACE_DATA9	36	TRACE_CTL
37	TRACE_DATA8	38	TRACE_DATA0

Table A-2 Trace Single connector, J4, signal list (continued)

Table A-3 shows the trace pin mapping for each *Trace Single* signal.

Table A-3 Trace Dual connector, J5, signal list

Pin	Signal	Pin	Signal
1	Not connected	2	Not connected
3	Not connected	4	Not connected
5	GND	6	TRACECLKB
7	Not connected	8	Not connected
9	Not connected	10	Not connected
11	Not connected	12	VTREF (1V8)
13	Not connected	14	Not connected
15	Not connected	16	TRACE_DATA23
17	Not connected	18	TRACE_DATA22
19	Not connected	20	TRACE_DATA21
21	Not connected	22	TRACE_DATA20
23	TRACE_DATA31	24	TRACE_DATA19
25	TRACE_DATA30	26	TRACE_DATA18
27	TRACE_DATA29	28	TRACE_DATA17
29	TRACE_DATA28	30	GND
31	TRACE_DATA27	32	GND
33	TRACE_DATA26	34	VTREF (1V8)
35	TRACE_DATA25	36	GND
37	TRACE_DATA24	38	TRACE_DATA16

Appendix B HDLCD controller

This appendix describes the HDLCD controller. It contains the following sections:

- *Introduction* on page B-2
- HDLCD Programmers Model on page B-3.

B.1 Introduction

This appendix describes the LCD controller supporting High Definition (HD) resolutions.

The HDLCD controller has the following features:

- Resolution of 2048×2048, sufficient for full 1080p HDTV resolution.
- Frame buffer:
 - Supports all common non-indexed RGB formats.
 - Frame buffer can be placed anywhere in memory.
 - Scan lines must be a multiple of 8 bytes long, and aligned to 8-byte boundaries.
 There are no other restrictions on size or placement. Line pitch is configurable in multiples of 8 bytes.
- Management:
 - Frame buffer address can be updated at any time, and applies from the next full frame.
 - Frame buffer size, color depth, and timing can only be changed while the display is disabled.
- Maskable interrupts:
 - DMA-end, last part of frame read from bus.
 - VSYNC.
 - Underrun.
 - Bus error.
- Color depths:
 - Supports 8 bits per color. Frame buffers with other color depths are truncated or interpolated to 8 bits per component.
- Interfaces:
 - AMBA 3 APB interface for configuration.
 - Read-only AXI bus for frame buffer reads.
 - Standard LCD external interface. All timings and polarities are configurable.
 - APB, AXI, and pixel clock can run on separate asynchronous clocks.
- Buffering:
 - Internal 2KB buffer.
 - After underrun, it blanks the rest of the frame and resynchronizes from the next frame.

B.2 HDLCD Programmers Model

This section describes the programmers model. It contains the following subsections:

- About the HDLCD controller programmers model
- Register summary
- *Register descriptions* on page B-4.

B.2.1 About the HDLCD controller programmers model

The following information applies to the HDLCD controller registers:

- The base address is not fixed, and can be different for any particular system implementation. The offset of each register from the base address is fixed.
- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in UNPREDICTABLE behavior.
- Unless otherwise stated in the accompanying text:
 - Do not modify undefined register bits.
 - Ignore undefined register bits on reads.
 - All register bits are reset to a logic 0 by a system or power-on reset.
- Access type in Table B-1 is described as follows:
 - **RW** Read and write.
 - **RO** Read only.
 - **WO** Write only.

B.2.2 Register summary

Table B-1 shows the registers in offset order from the base memory address. The base memory address of the HDLCD controller on the Cortex-A15 MPCore test chip is 0x00_2B00_0000.

Table B-1	Register	summary
-----------	----------	---------

Offset	Name	Туре	Reset	Width	Description
0x0000	VERSION	RO	VERSION	32	Version Register on page B-4
0x0010	INT_RAWSTAT	RW	0x0	32	Interrupt Raw Status Register on page B-5
0x0014	INT_CLEAR	WO	N/A	32	Interrupt Clear Register on page B-6
0x0018	INT_MASK	RW	0x0	32	Interrupt Mask Register on page B-7
0x001C	INT_STATUS	RO	0x0	32	Interrupt Status Register on page B-8
0x0100	FB_BASE	RW	0x0	32	Frame Buffer Base Address Register on page B-9
0x0104	FB_LINE_LENGTH	RW	0x0	32	Frame Buffer Line Length Register on page B-9
0x0108	FB_LINE_COUNT	RW	0x0	32	Frame Buffer Line Count Register on page B-10
0x010C	FB_LINE_PITCH	RW	0x0	32	Frame Buffer Line Pitch Register on page B-11
0x0110	BUS_OPTIONS	RW	0x408	32	Bus Options Register on page B-11
0x0200	V_SYNC	RW	0x0	32	Vertical Synch Width Register on page B-12
0x0204	V_BACK_PORCH	RW	0x0	32	Vertical Back Porch Width Register on page B-13
0x0208	V_DATA	RW	0x0	32	Vertical Data Width Register on page B-13

Offset	Name	Туре	Reset	Width	Description
0x020C	V_FRONT_PORCH	RW	0x0	32	Vertical Front Porch Width Register on page B-14
0x0210	H_SYNC	RW	0x0	32	Horizontal Synch Width Register on page B-14
0x0214	H_BACK_PORCH	RW	0x0	32	Horizontal Back Porch Width Register on page B-15
0x0218	H_DATA	RW	0x0	32	Horizontal Data Width Register on page B-15
0x021C	H_FRONT_PORCH	RW	0x0	32	Horizontal Front Porch Width Register on page B-16
0x0220	POLARITIES	RW	0x0	32	Polarities Register on page B-17
0x0230	COMMAND	RW	0x0	32	Command Register on page B-17
0x0240	PIXEL_FORMAT	RW	0x0	32	Pixel Format Register on page B-18
0x0244	RED_SELECT	RW	0x0	32	Color Select Registers on page B-19
0x0248	GREEN_SELECT	RW	0x0	32	Color Select Registers on page B-19
0x024C	BLUE_SELECT	RW	0x0	32	Color Select Registers on page B-19

B.2.3 Register descriptions

This section describes the HDLCD controller registers. Table B-1 on page B-3 provides cross references to individual registers.

Version Register

The VERSION Register characteristics are:

Purpose	Holds a static version number for the LCD controller. Changes to the processor that affect registers and data structures increment the VERSION_MAJOR value and reset the VERSION_MINOR value.
	Other changes that do not affect the binary compatibility only increment the VERSION_MINOR number.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD configurations.

Attributes See Table B-1 on page B-3.

Figure B-1 shows the bit assignments.

31		16	15	8	7	0
	PRODUCT_ID		VERSION	I_MAJOR	VERSI	ON_MINOR

Figure B-1 Version Register bit assignments

Table B-2 shows the bit assignments.

Table B-2 Version Register bit assignments

Bits	Name	Function
[31:16]	PRODUCT_ID	Product ID number 0x1CDC.
[15:8]	VERSION_MAJOR	These bits provide the major product version information. For release r0p0, the value is 0x00.
[7:0]	VERSION_MINOR	These bits provide the minor product version information. For release r0p0, the value is 0x00.

Interrupt Raw Status Register

The INT_RAWSTAT Register characteristics are:

Purpose	Shows the unmasked status of the interrupt sources. Writing a 1 to the bit of an interrupt source forces this bit to be set and generate an interrupt if it is not masked by the corresponding bit in the <i>Interrupt Mask Register</i> on page B-7. Writing a 0 to the bit of an interrupt source has no effect. Use the <i>Interrupt Clear Register</i> on page B-6 to clear interrupts.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-2 shows the bit assignments.

31					4	3	2	1	0
		RESE	ERVED						
				UNDER VS BUS_ER DMA_	RUN- SYNC- ROR- END-				

Figure B-2 Interrupt Raw Status Register bit assignments

Table B-3 shows the bit assignments.

Table B-3 Raw Interrupt Register bit assignments

Bits	Name	Function
[31:4]	-	Reserved, write as zero, read undefined.
[3]	UNDERRUN	No data was available to display while DATAEN was active. This interrupt triggers if the controller does not have pixel data available to drive when DATAEN is active. When this occurs, the controller drives the default color for the rest of the screen and attempts to display the next frame correctly.

Table B-3 Raw Interrupt Register bit assignments (continued)

Bits	Name	Function
[2]	VSYNC	Vertical sync is active. This interrupt triggers at the moment the VSYNC output goes active.
[1]	BUS_ERROR	The DMA module received a bus error while reading data. This interrupt triggers if any frame buffer read operation ever reports an error.
[0]	DMA_END	The DMA module has finished reading a frame. This interrupt triggers when the last piece of data for a frame has been read. The DMA immediately continues on the next frame, so this interrupt only ensures that the frame buffer for the previous frame is no longer required.

Interrupt Clear Register

The INT_CLEAR Register characteristics are:

Purpose	Clears interrupt sources. Writing a 1 to the bit of an asserted source clears
	the interrupt in the Interrupt Raw Status Register on page B-5, and in the
	Interrupt Status Register on page B-8 if it is not masked.

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-3 shows the bit assignments.

31					4	3	2	1	0
		RESE	RVED						
				UNDERI VS BUS_ERI DMA_	RUN- YNC- ROR- END-				

Figure B-3 Interrupt Clear Register bit assignments

Table B-4 shows the bit assignments.

Table B-4 Interrupt Clear Register bit assignments

Bits	Name	Function
[31:4]	-	Reserved, write as zero.
[3]	UNDERRUN	No data was available to display while DATAEN was active. This interrupt triggers if the controller does not have pixel data available to drive when DATAEN is active. When this occurs, the controller drives the default color for the rest of the screen and attempts to display the next frame correctly.

Table B-4 Interrupt Clear Register bit assignments (continued)

Bits	Name	Function
[2]	VSYNC	Vertical sync is active. This interrupt triggers at the moment the VSYNC output goes active.
[1]	BUS_ERROR	The DMA module received a bus error while reading data. This interrupt triggers if any frame buffer read operation ever reports an error.
[0]	DMA_END	The DMA module has finished reading a frame. This interrupt triggers when the last piece of data for a frame has been read. The DMA immediately continues on the next frame, so this interrupt only ensures that the frame buffer for the previous frame is no longer required.

Interrupt Mask Register

The INT_MASK Register characteristics are:

Purpose	Holds the bit mask that enables an interrupt source if the corresponding mask bit is set to 1.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-4 shows the bit assignments.

31					4	3	2	1	0
		RESE	RVED						
				UNDERI VS` BUS_ERI DMA_	RUN- YNC- ROR- END-				

Figure B-4 Interrupt Mask Register bit assignments

Table B-5 shows the bit assignments.

Table B-5 Interrupt Mask Register bit assignments

Bits	Name	Function
[31:4]	-	Reserved, write as zero, read undefined.
[3]	UNDERRUN	No data was available to display while DATAEN was active. This interrupt triggers if the controller does not have pixel data available to drive when DATAEN is active. When this occurs, the controller drives the default color for the rest of the screen and attempts to display the next frame correctly.

Table B-5 Interrupt Mask Register bit assignments (continued)

Bits	Name	Function
[2]	VSYNC	Vertical sync is active. This interrupt triggers at the moment the VSYNC output goes active.
[1]	BUS_ERROR	The DMA module received a bus error while reading data. This interrupt triggers if any frame buffer read operation ever reports an error.
[0]	DMA_END	The DMA module has finished reading a frame. This interrupt triggers when the last piece of data for a frame has been read. The DMA immediately continues on the next frame, so this interrupt only ensures that the frame buffer for the previous frame is no longer required.

Interrupt Status Register

The INT_STATUS Register characteristics are:

Purpose	Interrupt Raw Status Register on page B-5 ANDed with the Interrupt Mask Register on page B-7 and shows the active and masked interrupt sources. Bits selected by the Interrupt Mask Register on page B-7 are active in the Interrupt Status Register. These bits show the status of the interrupt sources. Bits not selected by the interrupt mask are inactive. If any of the sources are asserted in the Interrupt Status Register, then the external IRQ line is asserted.
Usaga aanstraints	There are no usage constraints

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-5 shows the bit assignments.

Figure B-5 Interrupt Status Register bit assignments

Table B-6 shows the bit assignments.

Table B-6 Interrupt Status Register bit assignments

Bits	Name	Function
[31:4]	-	Reserved, read undefined.
[3]	UNDERRUN	No data was available to display while DATAEN was active. This interrupt triggers if the controller does not have pixel data available to drive when DATAEN is active. When this occurs, the controller drives the default color for the rest of the screen and attempts to display the next frame correctly.
[2]	VSYNC	Vertical sync is active. This interrupt triggers at the moment the VSYNC output goes active.
[1]	BUS_ERROR	The DMA module received a bus error while reading data. This interrupt triggers if any frame buffer read operation ever reports an error.
[0]	DMA_END	The DMA module has finished reading a frame. This interrupt triggers when the last piece of data for a frame has been read. The DMA immediately continues on the next frame, so this interrupt only ensures that the frame buffer for the previous frame is no longer required.

Frame Buffer Base Address Register

The FB_BASE Register characteristics are:

Purpose	Holds the address of the first pixel of the first line in the frame buffer.					
Usage constraints	There are no usage constraints.					
Configurations	Available in all HDLCD controller configurations.					
Attributes	See Table B-1 on page B-3.					

Figure B-6 shows the bit assignments.

Figure B-6 Frame Buffer Base Address Register bit assignments

Table B-7 shows the bit assignments.

Table B-7 Frame Buffer Base Address Register bit assignments

Bits	Name	Function
[31:3]	FB_BASE_ADDR	Frame buffer base address
[2:0]	-	Reserved, write as zero, read undefined

Frame Buffer Line Length Register

The FB_LINE_LENGTH Register characteristics are:

Purpose

Holds the length of each frame buffer line in bytes.

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-7 shows the bit assignments.

Figure B-7 Frame Buffer Line Length Register bit assignments

Table B-8 shows the bit assignments.

Bits	Name	Function
[31:3]	FB_LINE_LENGTH	Frame buffer line length
[2:0]	-	Reserved, write as zero, read undefined

Frame Buffer Line Count Register

The FB_LINE_COUNT Register characteristics are:

Purpose	Holds the number of lines to read from the frame buffer
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-8 shows the bit assignments.

31			12	2 11			0
	RESER	VED			FB_LINE_C	OUNT	

Figure B-8 Frame Buffer Line Count Register bit assignments

Table B-9 shows the bit assignments.

Table B-9 Frame Buffer Line Count Register bit assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	FB_LINE_COUNT	Frame buffer line count

Frame Buffer Line Pitch Register

The FB_LINE_PITCH Register characteristics are:

Purpose	Holds the number of bytes between the start of one line in the frame buffer and the start of the next line. This value is treated as a signed 2's complement number, enabling negative pitch if required.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-9 shows the bit assignments.

31					32	2	0
		FB_LI	NE_PITCH				
					Reserved		

Figure B-9 Frame Buffer Line Count Register bit assignments

Table B-10 shows the bit assignments.

Table B-10 Frame Buffer Line Count Register bit assignments

Bits	Name	Function
[31:3]	FB_LINE_PITCH	Frame buffer line pitch
[2:0]	-	Reserved, write as zero, read undefined

Bus Options Register

The BUS_OPTIONS Register characteristics are:

Purpose	Controls aspects of how the LCD controller accesses the bus. This value can be tuned to better match the characteristics of the memory controller and other units in the system.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.
D' D 10	

Figure B-10 on page B-12 shows the bit assignments.

31				12	11	8	7	5	4	3	2	1	0
	Reserv	ved											
			MAX_O	UTSTANDI Resen BURST BURST BURST BURST BURST	NG — _16 — Γ_8 — Γ_4 — Γ_2 — Γ_1 —								

Figure B-10 Bus Options Register bit assignments

Table B-11 shows the bit assignments.

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined.
[11:8]	MAX_OUTSTANDING	Maximum number of outstanding requests the LCD controller is permitted to have on the bus at any time.
		Caution
		A value of zero disables all bus transfers.
[7:5]	-	Reserved, write as zero, read undefined.
[4]	BURST_16	Permit the use of 16-beat bursts.
[3]	BURST_8	Permit the use of 8-beat bursts.
[2]	BURST_4	Permit the use of 4-beat bursts.
[1]	BURST_2	Permit the use of 2-beat bursts.
[0]	BURST_1	Permit the use of 1-beat bursts.

— Note —

- If the scan line length does not end up at a multiple of the permitted burst lengths, the controller uses smaller bursts to read the remaining few pixels in each scan line. If no bursts are permitted, this mechanism also triggers, and has the same effect as permitting all bursts.
- Incorrectly configuring this register can degrade the performance of both the LCD controller and the rest of the system.

Vertical Synch Width Register

The V_SYNC Register characteristics are:

Purpose	Holds the width of the vertical synch signal, counted in number of horizontal scan lines.				
Usage constraints	There are no usage constraints.				
Configurations	Available in all HDLCD controller configurations.				

Attributes See Table B-1 on page B-3.

Figure B-11 shows the bit assignments.

31			12 1	11		0
	Reserve	d			V_SYNC	

Figure B-11 Vertical Synch Width Register bit assignments

Table B-12 shows the bit assignments.

Table B-12 Vertical Synch Register bit assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	V_SYNC	Vertical synch width -1

Vertical Back Porch Width Register

The V_BACK_PORCH Register characteristics are:

Purpose	Holds the width of the interval between the vertical sync and the first
	visible line, counted in number of horizontal scan lines.

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-12 shows the bit assignments.

31			12 11			0
	Res	erved		V_BACK	_PORCH	

Figure B-12 Vertical Back Porch Width Register bit assignments

Table B-13 shows the bit assignments.

Table B-13 Vertical Back Porch Register bit assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	V_BACK_PORCH	Vertical back porch width -1

Vertical Data Width Register

The V_DATA Register characteristics are:

Purpose Holds the width of the vertical data area, that is, the number of visible lines, counted in the number of horizontal scan lines.

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-13 shows the bit assignments.

31					12 11			0
Reserved						V_[DATA	

Figure B-13 Vertical Data Width Register bit assignments

Table B-14 shows the bit assignments.

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	V_DATA	Vertical data width -1

Vertical Front Porch Width Register

The V_FRONT_PORCH Register characteristics are:

Purpose	Holds the width of the interval between the last visible line and the next vertical synchronization, counted in number of horizontal scan lines.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-14 shows the bit assignments.

31			1	12 11			0
	Reserved	l			V_FRONT_	PORCH	

Figure B-14 Vertical Front Porch Width Register bit assignments

Table B-15 shows the bit assignments.

Table B-15 Vertical Front Porch Width Register bit assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	V_FRONT_PORCH	Vertical front porch width -1

Horizontal Synch Width Register

The H_SYNCH Register characteristics are:

Purpose Holds the width of the horizontal synch signal, counted in pixel clocks.

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-15 shows the bit assignments.

31			12 11			0
	Rese	erved		H_\$	SYNC	

Figure B-15 Horizontal Synch Width Register bit assignments

Table B-16 shows the bit assignments.

Table	B-16	Horizontal S	vnch Width	Register b	it assignments
			,		

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	H_SYNC	Horizontal synch width -1

Horizontal Back Porch Width Register

The H_BACK_PORCH Register characteristics are:

Purpose	Holds the width of the interval between the horizontal sync and the first visible column, counted in pixel clocks.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-16 shows the bit assignments.

31		12	11		0
	Reserved		H_BA	CK_PORCH	

Figure B-16 Horizontal Back Porch Width Register bit assignments

Table B-17 shows the bit assignments.

Table B-17 Horizontal Synch Width Register bit assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	H_BACK_PORCH	Horizontal back porch width -1

Horizontal Data Width Register

The H_DATA Register characteristics are:

Purpose Holds the width of the horizontal data area, that is, the number of visible columns counted in pixel clocks.

Usage constraints There are no usage constraints.

Configurations Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-17 shows the bit assignments.

Figure B-17 Horizontal Data Width Register bit assignments

Table B-18 shows the bit assignments.

Table B-18 Horizon	tal Data Width	Register bit	assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	H_DATA	Horizontal data width -1

Horizontal Front Porch Width Register

The H_FRONT_PORCH Register characteristics are:

PurposeHolds the width of the interval between the last visible column next horizontal synchronization, counted in pixel clocks.	
Usage constraints	There are no usage constraints.
Configurations Available in all HDLCD controller configurations.	
Attributes See Table B-1 on page B-3.	
Figure D 19 shows t	ha hit accionmenta

Figure B-18 shows the bit assignments.

31		12 11			0
	Reserved		H_FRON	T_PORCH	

Figure B-18 Horizontal Front Porch Width Register bit assignments

Table B-19 shows the bit assignments.

Table B-19 Horizontal Front Porch Register bit assignments

Bits	Name	Function
[31:12]	-	Reserved, write as zero, read undefined
[11:0]	H_FRONT_PORCH	Horizontal front porch width -1

Polarities Register

The POLARITIES Register characteristics are:

Purpose	Controls the polarities of the synchronization signals and PXLCLK that is exported from the CoreTile Express A15×2 daughterboard.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.

Figure B-19 shows the bit assignments.

31						5	4	3	2	1	0
		Reserv	ved								
				PXLC DAT DATAE HSYN VSYN	CK_POLARIT TA_POLARIT IN_POLARIT IC_POLARIT IC_POLARIT	ΓΥ – ϓ – ΓΥ – ΓΥ –					

Figure B-19 Polarities Register bit assignments

Table B-20 shows the bit assignments.

Table B-20 Polarities Register bit assignments

Bits	Name	Function
[31:5]	-	Reserved, write as zero, read undefined.
[4]	PXLCLK_POLARITY	 Holds the value of the PXLCLKPOL output. This is intended to be used for controlling the polarity of the pixel clock that is exported from the CoreTile Express A15×2 daughterboard. Note
[3]	DATA_POLARITY	Holds active level of DATA output.
[2]	DATAEN_POLARITY	Holds active level of DATAEN output.
[1]	HSYNC_POLARITY	Holds active level of HSYNC output.
[0]	VSYNC POLARITY	Holds active level of VSYNC output.

Command Register

The COMMAND Register characteristics are:

Purpose	Starts and stops the LCD controller.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.

Attributes See Table B-1 on page B-3.

Figure B-20 shows the bit assignments.

31				1	0
		Reserved			
				 	Т

ENABLE

Figure B-20 Command Register bit assignments

Table B-21 shows the bit assignments.

Table B-21 Command Register bit assignments

Bits	Name	Function
[31:1]	-	Reserved, write as zero, read undefined
[0]	ENABLE	Enable the LCD controller

Pixel Format Register

The PIXEL_FORMAT Register characteristics are:

Purpose	BYTES_PER_PIXEL plus one bytes are extracted from the internal buffer. The extracted bytes are used to form a 32-bit value. The individual bytes are then optionally reordered if BIG_ENDIAN is set before the color components are extracted.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.

Attributes	See Table B-1 on page B-3.
------------	----------------------------

Figure B-21 shows the little endian byte layout.

31 24	23 16	15 8	7 0
3	2	1	0
Undefined	2	1	0
Unde	efined	1	0
Undefined			0

Figure B-21 Little endian byte layout

Figure B-22 on page B-19 shows the big endian byte layout.

31	24	23 16	15 8	7 0
(0	1	2	3
(0	1	2	Undefined
(0	1	Unde	fined
(0		Undefined	

Figure B-22 Big endian byte layout

Figure B-23 shows the bit assignments for the big endian format.

Figure B-23 Pixel Format Register bit assignments

Table B-22 shows the bit assignments for the big endian format.

Table B-22 Pixel Format Register bit assignments

Bits	Name	Function
[31]	BIG_ENDIAN	Use big endian byte order
[30:5]	-	Reserved, write as zero, read undefined
[4:3]	BYTES_PER_PIXEL	Number of bytes to extract from the buffer for each pixel to display, minus one
[2:0]	-	Reserved, write as zero, read undefined

Color Select Registers

The RED_SELECT, GREEN_SELECT and BLUE_SELECT Registers characteristics are:

Purpose	The bytes extracted from the internal buffer are presented as a 32-bit value. These registers select the number of bits to extract and use as the red, green, and blue color components. The register also defines the position. If the register extracts no bits, or no data is available, the default color applies.
Usage constraints	There are no usage constraints.
Configurations	Available in all HDLCD controller configurations.
Attributes	See Table B-1 on page B-3.
Figure B-24 on page	B-20 shows the bit assignments.

31	2	24 23	16 15	12	11 8	7 5	4 0
	Reserved	DEFAULT			SIZE		OFFSET
			Reserved-		Reserved		

Figure B-24 Color Select Register bit assignments

Table B-23 shows the bit assignments.

Table B-23 Color	Select Register	r bit assignments
	0010001100910101	sit acongrimento

Bits	Name	Function
[31:24]	-	Reserved, write as zero, read undefined.
[23:16]	DEFAULT	Default color. This color is used if SIZE is zero, if the buffer underruns, or while outside the visible frame area.
[15:12]	-	Reserved, write as zero, read undefined.
[11:8]	SIZE	Number of bits to extract. If this value is zero, the default color is used. If this value is in the range 1-7, the extracted MSBs are repeated for the LSBs until eight bits are reached. If this value is larger than eight, the behavior is UNDEFINED.
[7:5]	-	Reserved, write as zero, read undefined.
[4:0]	OFFSET	Index of the lowest bit to extract. If OFFSET + SIZE >= 8 + 8 x BYTES_PER_PIXEL the behavior is UNDEFINED.

Appendix C Electrical Specifications

This appendix contains the electrical specification for the daughterboard. It contains the following section:

• *AC characteristics*.

C.1 AC characteristics

Table C-1 shows the recommended AC operating characteristics for the Cortex-A15 MPCore test chip.

For more information on each interface that Table C-1 describes, see the appropriate technical reference manual in *Additional reading* on page x.

Table C-1 AC characteristics

Interface	Parameter	Symbol	Minimum	Maximum	Description	
Multiplexed master AXI	Clock cycle	T _{MXMIFeye}	25ns	-	Cmax=47.8pF	
port	Output valid time before clock edge	T _{MXMIFov}	-	6.086ns	Cmin=23.88pF	
	Output hold time after clock edge	T _{MXMIFoh}	2.708ns		-	
	Input setup time to clock edge	T _{MXMIFis}	-	10.522ns	-	
	Input hold time after clock edge	T _{MXMIFih}	6.366ns	-	-	
Trace	Clock cycle	T _{TRACEcyc}	7.140ns	-	Cmax=22.5pF Cmin=16.5pF	
JTAG	Clock cycle	T _{JTAGcyc}	40ns	-	Cmax=48.5pF	
	Output valid time before clock rising edge	T _{JTAGov}	-	15.428ns	Cmin=10.5pF	
	Output hold time after clock rising edge	T _{JTAGoh}	1.070ns	-	-	
	Input setup time to clock rising edge	T _{JTAGis}	-	36.568ns	-	
	Input hold time after clock rising edge	T _{JTAGih}	1.314ns	-	-	
SMC	Clock cycle	T _{SMCcyc}	20ns	-	Cmax=47.8pF	
	Output valid time before clock rising edge	T _{SMCov}	-	5.241ns	Cmin=23.88pF	
	Output hold time after clock rising edge	T _{SMCoh}	8.620ns	-	-	
	Input setup time to clock edge	T _{SMCis}	-	12.896ns	-	
	Input hold time after clock rising edge	T _{SMCih}	4.737ns	-	-	
HDLCD	Clock cycle	T _{HDLCDcyc}	6ns	-	Cmax=47.8pF	
	Output valid time before clock rising edge	T _{HDLCDov}	-	1.556ns	Cmin=23.88pF	
	Output hold time after clock rising edge	T _{HDLCDoh}	2.696ns	-	-	

Appendix D **Revisions**

This appendix describes the technical changes between released issues of this book.

Table D-1 Issue A

Change	Location	Affects
First release	-	-

Table D-2 Difference between issue A and issue B

Change	Location	Affects
Deleted NIC-301 inside MPCore clusters.	Figure 2-2 on page 2-4	All revisions
Changed description of Cortex-A15 L2 controller.	Cortex-A15 L2 cache controller on page 3-54	All revisions
Added description of Cortex-A7 L2 controller.	Cortex-A7 L2 cache controller on page 3-55	All revisions
Changed description of System Counter Control Registers.	Table 3-44 on page 3-62	All revisions

Table D-3 Differences between issue B and issue C

Change	Location	Affects
Updated daughterboard memory map.	Table 3-1 on page 3-5	All revisions

Table D-4 Differences between issue C and issue D

Change	Location	Affects
Clarified that user can access NOR Flash 0 at two memory locations.	Overview of daughterboard memory map on page 3-3. Table 3-1 on page 3-5	All revisions
Corrected Cortex-A7 cluster version number.	<i>Cortex-A15_A7 MPCore test chip</i> on page 2-4 <i>Cortex-A7 cluster</i> on page 3-55	All revisions
Updated interrupt table.	Table 2-11 on page 2-35	All revisions

Table D-5 Differences between issue D and issue E

Change	Location	Affects
Corrected default value of register bit BROADCASTOUTER for MPCore A15 and MPCore A7.	Figure 3-20 on page 3-37 Table 3-23 on page 3-37 Figure 3-22 on page 3-41 Table 3-25 on page 3-41	All revisions
Corrected definition of CoreSight Debug enable register bit	Table 3-12 on page 3-20	All revisions
Corrected default value of IMINLN bit in MPCore A15 configuration register 0.	Table 3-22 on page 3-35 Figure 3-19 on page 3-35	All revisions
Corrected test chip reset value of MPCore A15 configuration register 0.	Table 3-7 on page 3-13	All revisions
Added default value of boot cluster bit in the system information register.	Table 3-29 on page 3-48	All revisions
Added default value of boot core bits in the system information register.	Table 3-29 on page 3-48	All revisions

Table D-6 Differences between issue E and issue F

Change	Location	Affects
Added description of bits[15:11] of system information register.	Figure 3-26 on page 3-48 Table 3-29 on page 3-48	All revisions

Table D-7 Differences between issue F and issue G

Change	Location	Affects
Corrected introductory text to register table.	System timer register summary on page 3-76	All revisions

Table D-8 Differences between issue G and issue H

Change	Location	Affects
Corrected interrupt information.	Overview of interrupts on page 2-34	All revisions
	Figure 2-13 on page 2-35	
	Table 2-11 on page 2-35	

Change	Location	Affects
Corrected memory test chip peripheral areas of memory maps.	Overview of daughterboard memory map on page 3-3. Overview of the memory map for the on-chip peripherals on page 3-6.	All board versions.

Table D-9 Difference between Issue H and Issue I