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Preface

This preface introduces the ARM966E-S Revision r2p1 Technical Reference Manual. It 
contains the following sections:

• About this manual on page xii

• Feedback on page xvii.
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Preface 
About this manual

This document is the Technical Reference Manual for the ARM966E-S r2p1 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual, 
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written for experienced hardware and software engineers implementing 
the ARM966E-S processor system designs.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to the ARM966E-S processor.

Chapter 2 Programmer’s Model 

Read this chapter for a description of the ARM966E-S coprocessor 
registers and programming details.

Chapter 3 Memory Map 

Read this chapter for a description of the ARM966E-S fixed memory 
map implementation.

Chapter 4 Tightly-Coupled Memory Interface 

Read this chapter for a description of the requirements and operation of 
the tightly-coupled memory.

Chapter 5 Bus Interface Unit 

Read this chapter for a description of the operation of the Bus Interface 
Unit (BIU) and write buffer.

Chapter 6 Coprocessor Interface 

Read this chapter for a description of the coprocessor interface and the 
operation of common coprocessor instructions.
xii Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0213E



Preface 
Chapter 7 Debug Support 

Read this chapter for a description of the debug support for the 
ARM966E-S processor and the EmbeddedICE-RT logic.

Chapter 8 Embedded Trace Macrocell Interface 

Read this chapter for a description of the ETM interface, including details 
of how to enable the interface.

Chapter 9 Test Support 

Read this chapter for a description of the test methodology used for the 
ARM966E-S synthesized logic and tightly-coupled memory.

Appendix A Signal Descriptions 

Read this appendix for a description of the ARM966E-S signals.

Appendix B AC Parameters 

Read this appendix for a description of the timing parameters applicable 
to the ARM966E-S processor.

Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xiv

• Signals on page xiv

• Numbering on page xv.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
ARM processor signal names. Also used for terms in descriptive 
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You 
can enter the underlined text instead of the full command or option 
name.
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. xiii



Preface 
monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax 
where they appear in code or code fragments. They appear in 
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in 
timing diagrams. Variations, when they occur, have clear labels. You must not assume 
any timing information that is not explicit in the diagrams.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means HIGH for 
active-HIGH signals and LOW for active-LOW signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix n Denotes active-LOW signals except in the case of AHB or 
Advanced Peripheral Bus (APB) reset signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0213E
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Prefix P Denotes APB signals.

Suffix n AHB HRESETn and APB PRESETn reset signals.

Numbering

The numbering convention is:

<size in bits>'<base><number> 

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is 
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM Limited periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets, addenda, and the ARM Limited 
Frequently Asked Questions list.

ARM publications

This manual contains information that is specific to the ARM966E-S processor. Refer 
to the following manuals for related information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM9E-S Technical Reference Manual (ARM DDI 0240)

• AMBA® Specification (ARM IHI 0011)

• ARM966E-S Implementation Guide (ARM DII 0025)

• ARM966E-S Test Chip Implementation Guide (ARM DXI 0137)

• AHB Example AMBA System Technical Reference Manual (ARM DDI 0170)

• ETM9 Technical Reference Manual (ARM DDI 0157)

• Application Note 99 - Core Type and Revision Identification (ARM DAI 0099).
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. xv



Preface 
Other publications

This section lists relevant documents published by third parties:

• IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan 
Architecture.
xvi Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0213E
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Feedback

ARM Limited welcomes feedback both on the ARM966E-S processor and its 
documentation.

Feedback on the product

If you have any comments or suggestions about this product, contact your supplier 
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments about this document, send email to errata@arm.com giving:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcome general suggestions for additions and improvements.
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. xvii
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Chapter 1 
Introduction

This chapter introduces the ARM966E-S r2p1 processor. It contains the following 
sections:

• About the ARM966E-S processor on page 1-2

• Silicon revision information on page 1-5.
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Introduction 
1.1 About the ARM966E-S processor

The ARM966E-S processor is a synthesizable macrocell with Tightly-Coupled Memory 
(TCM) interfaces. It is a member of the ARM9E™ family of high-performance, 32-bit 
System-on-Chip (SoC) processor solutions. The ARM966E-S processor is targeted at a 
wide range of embedded applications where high performance, low system cost, small 
die size, and low power are all important.

The ARM966E-S processor provides a high-performance processor subsystem that 
includes:

• An ARM9E-S RISC integer CPU core featuring:

— ARMv5TE 32-bit instruction set with improved ARM/Thumb code 
interworking and enhanced multiplier designed for improved DSP 
performance

— ARM debug architecture with additional support for real-time debug. This 
enables critical exception handlers to execute while debugging the system.

• Support for external TCM. A TCM interface is provided for each of the external 
instruction and data memory blocks. The TCM interfaces of the ARM966E-S 
processor enable high-speed operation without incurring the performance and 
power penalties of accessing the system bus, while having a lower area overhead 
than a cached memory system. The size of both the Instruction and Data TCM 
blocks are implementor-specific to enable tailoring of the hardware to the 
embedded application.

• A simple fixed memory map for the local TCM, ideal for real-time embedded 
control applications.

• An AMBA AHB bus interface.

• Support for external coprocessors enabling floating point or other 
application-specific hardware acceleration to be added.

• Support for the use of a scan test methodology for the standard cell logic and 
Built-In-Self-Test (BIST) for the TCM.

Providing this complete high-frequency subsystem frees the SoC designer to 
concentrate on design issues unique to their system. The synthesizable nature of the 
device eases integration into ASIC technologies.

Figure 1-1 on page 1-3 shows the block diagram of the ARM966E-S processor.
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Introduction 
Figure 1-1 ARM966E-S processor block diagram

Table 1-1 Location of block descriptions

Block Location of description

ARM9E-S ARM9E-S Technical Reference Manual

AHB Bus Interface Unit and write buffer Chapter 5 Bus Interface Unit

TCM interface Chapter 4 Tightly-Coupled Memory Interface

System control coprocessor (CP15) Chapter 2 Programmer’s Model
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. 1-3
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External coprocessor interface Chapter 6 Coprocessor Interface

System controller Chapter 2 Programmer’s Model

ETM interface Chapter 8 Embedded Trace Macrocell Interface

Table 1-1 Location of block descriptions (continued)

Block Location of description
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1.2 Silicon revision information

This manual is for revision r2p1 of the ARM966E-S processor. Differences from 
revision r2p0 are:

• The ID code (CP15 register c0) value has changed, the new value is 0x41259661.

• The polarity of the clock on the test wrapper lock-up latch has been corrected so 
that WSO changes on the negative edge of the system clock when WEDGE is 0.

• Data tracing for an STC instruction has been corrected.

• The criteria that make a TCM access sequential have changed therefore, the 
behavior of ITCMSEQ and DTCMSEQ have changed. For more information, 
see Chapter 4 Tightly-Coupled Memory Interface.

• The behavior of the ITCMADDR and DTCMADDR outputs has been modified 
to reduce unnecessary changes of state during ITCM and DTCM idle cycles.

• The AHB address no longer changes while the bus is idle during a locked AHB 
transfer. ARM966E-S r2p0 and r2p1 are AMBA AHB compliant.

• DTCMCANCEL and ITCMCANCEL are now asserted when all of the data 
required for a read is provided by the respective TCM write buffers.

• HLOCK is no longer unnecessarily asserted for write accesses preceeding a SWP 
access.
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. 1-5
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Chapter 2 
Programmer’s Model

This chapter describes the ARM966E-S registers and provides information for 
programming the microprocessor. It contains the following sections:

• About the programmer’s model on page 2-2

• About the ARM9E-S programmer’s model on page 2-3

• CP15 registers on page 2-5.
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Programmer’s Model 
2.1 About the programmer’s model

The programmer’s model for the ARM966E-S processor primarily consists of the 
ARM9E-S core programmer’s model (see About the ARM9E-S programmer’s model on 
page 2-3). Additions to this model are required to control the operation of the 
ARM966E-S internal coprocessors, and any coprocessor connected to the external 
coprocessor interface.

There are two internal coprocessors within the ARM966E-S processor:

• CP14 within the ARM9E-S core enables software access to the debug 
communications channel

• CP15 enables configuration of the Tightly-Coupled Memory (TCM) and write 
buffer and other ARM966E-S system options such as big-endian or little-endian 
operation.

The registers defined in CP14 are accessible with MCR and MRC instructions. These 
are described in The debug communications channel on page 7-19.

The registers defined in CP15 are accessible with MCR and MRC instructions. These 
are described in CP15 registers on page 2-5.

Any coprocessors registers and operations, attached to the external coprocessor 
interface, are accessible with appropriate coprocessor instructions.
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2.2 About the ARM9E-S programmer’s model

The ARM9E-S core implements the ARMv5TE architecture, that includes the 32-bit 
ARM instruction set and the 16-bit Thumb instruction set. For a description of both 
instruction sets, see the ARM Architecture Reference Manual. 

2.2.1 Data Abort model

The ARM9E-S core implements the base restored data abort model, that differs from 
the base updated data abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating 
system code, the Data Abort handler. It does not affect user code. With the base restored 
data abort model, when a Data Abort exception occurs during the execution of a 
memory access instruction, the base register is always restored by the processor 
hardware to the value the register contained before the instruction was executed. This 
removes the requirement for the Data Abort handler to unwind any base register update 
that might have been specified by the aborted instruction.

The base restored data abort model significantly simplifies the Data Abort handler 
software.

2.2.2 ARM966E-S processor abort sources

Data Aborts can be generated from the following sources:

• data transactions to the AHB memory space that return an AHB ERROR response 
(except for buffered writes)

• data TCM reads for which the DTCMERROR input is asserted

• instruction TCM data reads for which the ITCMERROR input is asserted

• unaligned data accesses whenever data alignment checking is enabled.

Prefetch aborts can be generated from the following sources (if the instruction fetched 
is executed):

• instruction fetches from the AHB memory space that return an AHB ERROR 
response

• instruction fetches from the instruction TCM for which the ITCMERROR input 
is asserted.

Executing a BKPT instruction causes the Prefetch Abort exception to be entered. For 
more information, see the ARM Architecture Reference Manual.
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2.2.3 PLD instruction execution

The Preload (PLD) instruction is treated as a NOP by the ARM966E-S processor. For 
more information about this instruction, see the ARM Architecture Reference Manual.
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Programmer’s Model 
2.3 CP15 registers

CP15 enables configuration of the TCM and write buffer. It also enables other 
ARM966E-S system options such as big-endian or little-endian operation.

The ARM966E-S coprocessor 15 registers are described in the following sections:

• CP15 register map summary

• CP15 c0, ID Code Register on page 2-6

• CP15 c0, TCM Size Register on page 2-6

• CP15 c1, Control Register on page 2-7

• CP15 c7, Core Control Register on page 2-9

• CP15 c13, Trace Process Identifier Register on page 2-10

• CP15 c15, Test and Configuration Register on page 2-11.

2.3.1 CP15 register map summary

The ARM966E-S processor uses CP15 for system control functions. Table 2-1 shows 
the register map for CP15.

Note
 Register c0 and register c15 provide access to more than one register. The register 
access depends on the value of the Opcode_2 field. See the register descriptions in this 
section for more information.

Table 2-1 CP15 register map

Register Read Write

CP15 c0 ID code Unpredictable

CP15 c0 Tightly-coupled memory size Unpredictable

CP15 c1 Control Control

CP15 c2-c6 Unpredictable Unpredictable

CP15 c7 Unpredictable Core control

CP15 c8-c12 Unpredictable Unpredictable

CP15 c13 Trace process identifier Trace process identifier

CP15 c14 Unpredictable Unpredictable

CP15 c15 Test Test
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2.3.2 CP15 c0, ID Code Register

This is a read-only register that returns a 32-bit device ID code. You can access the ID 
Code Register by reading CP15 c0 with the Opcode_2 field set to any value other than 
2. For example:

MRC p15, 0, <Rd>, c0, c0, {0, 1, 3-7}; returns ID Code Register

Figure 2-1 shows the format of the ID Code Register.

Figure 2-1 ID Code Register

Table 2-2 shows the bit fields of the ID Code Register.

2.3.3 CP15 c0, TCM Size Register

This is a read-only register that returns the size of the Instruction and Data TCM 
attached to the ARM966E-S processor. 

You can access the TCM Size Register by reading CP15 c0 with the Opcode_2 field set 
to 2. For example:

MRC p15, 0, <Rd>, c0, c0, 2; returns Tightly-Coupled Memory Size Register

Figure 2-2 on page 2-7 shows the format of the TCM Size Register.

Minor

revision

31 24 23 20 19 16 15 4 3 0

Implementer
Major

revision
Architecture Part number

Table 2-2 ID Code Register bit functions

Bit Function Value

[31:24] Implementer 0x41

[23:20} Major specification revision 0x2

[19:16] ARM architecture v5TE 0x5

[15:4] Part number 0x966

[3:0] Minor specification revision 0x1
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Figure 2-2 TCM Size Register

Table 2-3 shows the bit fields of the TCM Size Register.

The memory size parameters take the values shown in TCM interface signals on 
page A-6. If TCM size is set to zero, the TCM absent bit is set to 1.

2.3.4 CP15 c1, Control Register

This register contains the global control bits of the ARM966E-S processor. All reserved 
bits must either be written with zero or one, as indicated, or written using 
read-modify-write. The reserved bits have an Unpredictable value when read. To read 
and write this register:

MRC p15, 0, <Rd>, c1, c0, 0; read Control Register
MCR p15, 0, <Rd>, c1, c0, 0; write Control Register

0

Reserved

1

ITCM size

31 23 11 6 5 222 18 17 15 14 13 10 3

DTCM size

Reserved Reserved

DTCM absent ITCM absent

Reserved Reserved

Table 2-3 TCM Size Register bit functions

Bit Function Value

[31:23] Reserved b000000000

[22:18} Data TCM size Implementation specific

[17:15] Reserved b000

[14] Data TCM absent Implementation specific

[13:11] Reserved b000

[10:6] Instruction TCM size Implementation specific

[5:3] Reserved b000

[2] Instruction TCM absent Implementation specific

[1:0] Reserved b00
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Figure 2-3 shows the format of the Control Register.

Figure 2-3 Control Register

Table 2-4 shows the bit fields of the Control Register.

0

SBZ

1

SBO

31 11 6 4 216 15 14 13 8 3

LT

V

12

I B

7

SBO W D A

SBZ

SBZ

Table 2-4 Control Register bit functions

Bit Function

[31:16] Reserved. When read, returns an Unpredictable value. When written, Should Be Zero.

[15] Load PC Thumb disable bit: 0 = Loading PC sets the T bit 1 = Loading PC does not set the T bit. Reset clears 
this bit.

[14] Reserved. When read, returns an Unpredictable value. When written, Should Be Zero.

[13] Location of exception vectors: 0 = Normal exception vectors selected, address range = 0x00000000-0x0000001C 
1 = High exception vectors selected, address range = 0xFFFF0000-0xFFFF001C. At Reset, the VINITHI pins 
determine the value of this bit.

[12] Instruction TCM enable: 0 = All accesses to the instruction memory space access the AMBA AHB 1 = All 
accesses to the fixed instruction memory space access the instruction TCM interface. At Reset, the INITRAM 
pins determine the value of this bit.

[11:8] Reserved. Should Be One.

[7] Endianness. This bit configures the ARM966E-S processor to rename the low four-byte addresses within a 
32-bit word: 0 = Little-endian operation 1 = Big-endian operation.Reset clears this bit.

[6:4] Reserved. Should Be One.

[3] BIU write buffer enable: 0 = All stores to the AMBA AHB are treated as nonbufferable 1 = All stores to the 
fixed bufferable space of the AMBA AHB are treated as buffered writes. Reset clears this bit.

[2] Data TCM enable. At Reset, the INITRAM pins determine the value of this bit.

[1] Address alignment fault checking enable: 0 = Fault checking of address alignment disabled 1 = Fault checking 
of address alignment enabled. Reset clears this bit.

[0] Reserved. When read, returns an Unpredictable value. When written, Should Be Zero.
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2.3.5 CP15 c7, Core Control Register

You can use a write to this register, to perform wait for interrupt and drain write buffer 
operations.

Wait for interrupt

This operation enables the ARM966E-S processor to enter a low-power standby mode. 
When the operation is invoked, the clock enable to the processor core is negated until 
either an interrupt or a debug request occurs. This function is invoked by a write to 
Register 7. The following ARM instruction causes this to occur:

MCR p15, 0, <Rd>, c7, c0, 4; wait for interrupt

Note
 This is the preferred encoding that must be used by new software. For compatibility 
with existing software, ARM966E-S processor also supports the following ARM 
instruction that has the same affect:

MCR p15, 0, <Rd>, c15, c8, 2; wait for interrupt

This stalls the processor from the time that the instruction is executed until nFIQ, 
nIRQ, or EDBGRQ are asserted. Also, if the debugger sets the debug request bit in the 
EmbeddedICE-RT control register then this causes the wait-for-interrupt condition to 
terminate.

In the case of nFIQ and nIRQ, the processor core is woken up regardless of whether 
the interrupts are enabled or disabled (that is, independent of the I and F bits in the 
processor CPSR). The debug-related waking only occurs if DBGEN is HIGH, that is, 
only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before 
executing the instruction after the wait for interrupt. If debug request is used to wake up 
the system, the processor enters debug-state before executing any more instructions.

Wait for interrupt does not prevent the write buffer from emptying.

Drain write buffers

This CP15 operation causes instruction execution to be stalled until the AHB and TCM 
write buffers are emptied. This operation is useful in real-time applications where the 
processor must be sure that a write to a peripheral has completed before program 
execution continues. An example is where a peripheral in a bufferable region is the 
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source of an interrupt. When the interrupt has been serviced, the request must be 
removed before interrupts can be re-enabled. This can be ensured if a drain write buffer 
operation separates the store to the peripheral and the enable interrupt functions.

The drain write buffer operation is invoked by a write to Register 7 using the following 
ARM instruction:

MCR p15, 0, <Rd>, c7, c10, 4; drain write buffer 

Note
 This stalls the processor core until any outstanding accesses in the write buffers have 
been completed, that is, until all data has been written to memory.

2.3.6 CP15 c13, Trace Process Identifier Register

This register enables the real-time trace tools to identify the currently executing process 
in multitasking environments.

The ETMPROCID[31:0] pins reflect the contents of the Trace Process Identifier 
Register.

Note
 Writing to the Trace Process Identifier Register sets the ETMPROCIDWR signal for 
one clock cycle.

To read and write this register:

MRC p15, 0, <Rd>, c13, {c0 - c15}; read Trace Process Identifier Register
MCR p15, 0, <Rd>, c13, {c0 - c15}; write Trace Process Identifier Register

Figure 2-4 shows the format of the Trace Process Identifier Register.

Figure 2-4 Trace Process Identifier Register

Trace process ID

31 0
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2.3.7 CP15 c15, Test and Configuration Register

This register provides access to:

• the Instruction and Data TCM test features 

• the configuration control features.

Table 2-5 shows the register map for CP15 c15.

Note
 The Opcode_1 field is set HIGH when accessing Register 15. The Opcode_2 field is 
used to index registers within the Register 15 register map.

2.3.8 Configuration Control Register

The Configuration Control Register enables modification of the default behavior of the 
ARM966E-S processor. This might be necessary in situations where the behavior of 
previous revisions of the ARM966E-S processor is required, or where particular 
features are not compatible with a system design.

Figure 2-5 on page 2-12 shows the format of the Configuration Control Register.

Table 2-5 Register 15, Test and Configuration Register

Register Read Write

Configuration Control Register MRC p15, 1, <Rd>, c15, c1, 0 MCR p15, 1, <Rd>, c15, c1, 0

BIST Control Register MRC p15, 1, <Rd>, c15, c0, 1 MCR p15, 1, <Rd>, c15, c0, 1

Instruction BIST Address Register MRC p15, 1, <Rd>, c15, c0, 2 MCR p15, 1, <Rd>, c15, c0, 2

Instruction BIST General Register MRC p15, 1, <Rd>, c15, c0, 3 MCR p15, 1, <Rd>, c15, c0, 3

Data BIST Address Register MRC p15, 1, <Rd>, c15, c0, 6 MCR p15, 1, <Rd>, c15, c0, 6

Data BIST General Register MRC p15, 1, <Rd>, c15, c0, 7 MCR p15, 1, <Rd>, c15, c0, 7
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Figure 2-5 Configuration Control Register

Table 2-6 shows the bit fields of the Configuration Control Register.

31 02 131516171819

SBZSBZ DI B FM IM

SBZ

Table 2-6 Configuration Control Register bit functions

Bit Function

[31:19] Reserved. Should Be Zero.

[18] Instruction TCM order bit: 0 = ITCM read accesses not stalled by data in ITCM write buffer 1 = ITCM read 
accesses stalled if ITCM write buffer contains data. Asserting this bit ensures that TCM accesses are performed 
in the order generated by the ARM9E-S core and that writes are committed to memory before subsequent reads 
are done. Asserting this bit when data is still in the TCM write buffer stalls any subsequent TCM access until 
the buffer is empty. Reset clears this bit.

[17] Data TCM order bit: 0 = DTCM read accesses not stalled by data in DTCM write buffer 1 = DTCM read 
accesses stalled if DTCM write buffer contains data. Asserting this bit ensures that TCM accesses are 
performed in the order generated by the ARM9E-S core and that writes are committed to memory before 
subsequent reads are done. Asserting this bit when data is still in the TCM write buffer stalls any subsequent 
TCM access until the buffer is empty. Reset clears this bit.

[16] AHB instruction prefetch buffer disable bit: 0 = Instruction prefetch buffer enabled 1 = Instruction prefetch 
buffer disabled. When this bit is set, all instruction accesses are performed as nonsequential transfers. This 
results in a number of idle cycles between each access. Reset clears this bit. See AHB instruction prefetch buffer 
on page 5-3.

[15:3] Reserved. Should Be Zero.

[2] FIQ interrupt mask when ETM FIFO is full: 0 = nFIQ enables core clocks until interrupt is serviced, but clocks 
are disabled on exit from FIQ mode 1 = nFIQ cannot enable core clocks when FIFOFULL is HIGH. Reset 
sets this bit.

[1] IRQ interrupt mask when ETM FIFO is full: 0 = nIRQ enables core clocks until interrupt is serviced, but 
clocks are disabled on exit from IRQ mode 1 = nIRQ cannot enable core clocks when FIFOFULL is HIGH. 
Reset clears this bit.

[0] Reserved. Should Be Zero.
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2.3.9 BIST Control Register

Table 2-7 shows the bit assignments within the BIST Control Register.

Note
 If the ARM966E-S BIST hardware is not present, the relevant BIST size field is always 
read back as all zeros.

 

At reset, all bits are cleared LOW except for the BIST size fields. Before a BIST 
operation starts, BIST must be enabled. When BIST is enabled to test one or both 
tightly-coupled memories, the TCM being tested is automatically disabled by clearing 
its enable bit in CP15 Register c1. This is to prevent the programmer inadvertently using 
the TCM following a BIST operation, because the BIST algorithm corrupts the TCM 
contents.

The BIST size field determines the size of the BIST operation. The value written to this 
field N, is decoded as follows:

BIST size in bytes = 2N+2

Table 2-7 BIST Control Register

Bit Meaning when written Meaning when read

[31:21] Instruction TCM BIST size. Instruction TCM BIST size

[20] Reserved. Should Be Zero. Instruction TCM BIST complete flag

[19] Reserved. Should Be Zero. Instruction TCM BIST fail flag

[18] Instruction TCM BIST enable. Instruction TCM BIST enable

[17] Instruction TCM BIST pause. Instruction TCM BIST pause 

[16] Instruction TCM BIST start strobe. Instruction TCM BIST running flag

[15:5] Data TCM BIST size. Data TCM BIST size

[4] Reserved. Should Be Zero. Data TCM BIST complete flag

[3] Reserved. Should Be Zero. Data TCM BIST fail flag

[2] Data TCM BIST enable. Data TCM BIST enable

[1] Data TCM BIST pause. Data TCM BIST pause 

[0] Data TCM BIST start strobe. Data TCM BIST running flag
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Table 2-8 shows some examples.

Note
 BIST size bits [31:26] Should Be Zero.

Writing to the BIST Control Register with bit[0] set initiates a Data TCM BIST 
operation. 

Writing to the BIST Control Register with bit[16] set initiates an Instruction TCM BIST 
operation.

Running BIST operations

You can run Instruction and Data BIST operations individually or concurrently. You 
must set up the Size, Pause and Enable bits within the BIST Control Register prior to 
initiating a BIST operation.

Reading the BIST Control Register Returns the status of the BIST operations. See BIST 
of tightly-coupled memory on page 9-4 for a detailed description of the BIST support 
and the additional BIST registers.

Table 2-8 BIST size encoding examples

Instruction RAM BIST size [31:21] N Size of test

b000000 00001 (minimum) 1 8 bytes

b000000 00100 4 64 bytes

b000000 00111 7 512 bytes

b000000 01000 8 1KB

b000000 01010 10 4KB

b000000 01111 15 128KB

b000000 11000 (maximum) 24 64MB
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Memory Map

This chapter describes the ARM966E-S processor fixed memory map implementation. 
It contains the following sections:

• About the ARM966E-S memory map on page 3-2

• Tightly-coupled memory address space on page 3-3

• Bufferable write address space on page 3-4.
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3.1 About the ARM966E-S memory map

The ARM966E-S processor couples Instruction and Data TCM memories of 
configurable size to the ARM9E-S core. This enables high-speed operation without 
incurring the performance and power penalties of accessing the system bus. Write 
buffers decouple the ARM9E-S core from wait states incurred when accessing the AHB 
bus and the TCMs.

The fixed memory map provides simple control over the AHB write buffers and TCM. 
Figure 3-1 shows the ARM966E-S memory map.

Figure 3-1 ARM966E-S memory map
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256MB
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64MB

64MB

AHB unbuffered

AHB buffered

AHB unbuffered

AHB buffered

DTCM

ITCM
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memory
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0xFFFF FFFF

0xF000 0000

0x2FFF FFFF

0x2000 0000

0x1FFF FFFF
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0x0FFF FFFF

0x0800 0000
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0x0400 0000
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3.2 Tightly-coupled memory address space

The Tightly-coupled Memory (TCM) is at the bottom of the memory map. The memory 
map allocates the bottom 64MB space for the Instruction TCM (ITCM) and the next 
64MB to Data TCM (DTCM).

In practice, each TCM is likely to be much smaller than the 64MB allowable. The 
address decode is implemented so that each memory is aliased throughout its 64MB 
range. Figure 3-2 shows an example of a 16KB ITCM aliased through the 64MB 
address space.

Figure 3-2 ITCM aliasing example

All accesses to addresses above the 128MB combined TCM address space result in 
AMBA AHB transfers controlled by the Bus Interface Unit (BIU).

An instruction fetch from the ARM9E-S core to the DTCM address space goes to the 
AHB, regardless of whether the DTCM is enabled. A data interface access from the 
ARM9E-S core can access both the DTCM and the ITCM. The ability to additionally 
access the ITCM is required for fetching inline literals within code, for programming of 
the ITCM, and for debugging purposes.

When a TCM is disabled, all accesses to its address space go to the AHB. When 
enabled, the TCM must be programmed before use. The value of the input pin 
INITRAM during Reset enables or disables the TCMs. Several boot options are 
available using INITRAM and the exception vectors location pin VINITHI. These are 
discussed in Using INITRAM input pin on page 4-4.
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3.3 Bufferable write address space

The use of the AHB write buffer is controlled by both the CP15 c1 Control Register and 
the fixed address map.

When the ARM966E-S processor comes out of Reset, the AHB write buffer is disabled 
by default. All data writes to the AHB are performed as unbuffered. The ARM9E-S core 
is stalled until the BIU completes the write on the AHB interface. 

When the AHB write buffer is enabled by writing to CP15 control register bit 3 (see 
CP15 registers on page 2-5), the data address (DA[31:0]) from the ARM9E-S core 
controls whether the AHB write buffer is used. If DA[28] is set, the write is unbuffered. 
If DA[28] is clear, the write is buffered and the BIU write buffer FIFO is used. Buffered 
writes enable the core to continue program execution while the write is performed on 
the AHB. If the AHB write buffer is full, the core stalls until space in the buffer becomes 
available. See AHB write buffer on page 5-6 for details of the BIU and AHB write buffer 
behavior.

Note
 Writes to TCM address space do not write through to the AHB if the TCM being 
accessed is enabled. Writes to the address space of a disabled TCM are buffered AHB 
writes when the AHB write buffer is enabled or unbuffered AHB writes when the AHB 
write buffer is not enabled.
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Tightly-Coupled Memory Interface

This chapter describes the ARM966E-S Tightly-Coupled Memory (TCM) interface. It 
contains the following sections:

• About the TCM interface on page 4-2

• TCM size on page 4-3

• Enabling TCM on page 4-4

• TCM write buffers on page 4-7

• TCM error detection signals on page 4-8

• TCMSEQ signals on page 4-9

• Interface operation on page 4-10

• TCM implementation examples on page 4-15.
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4.1 About the TCM interface

The ARM966E-S processor supports both instruction and data TCMs. You can use the 
DTCM and ITCM to store real-time and performance-critical code. The TCMs are 
instantiated externally to the ARM966E-S macrocell providing for flexibility in the 
design of the memory subsystem. The system designer can select memory type and 
optimize the memory subsystem for power or speed.

The features of the TCM interface include:

• independent ITCM and DTCM sizes of 0KB or 1KB-64MB in power-of-two 
increments

• software visibility and programmability of TCM size and enable

• boot control for ITCM

• data access to the ITCM for literal pool accesses in code

• simple SRAM-style interface supporting both reads and writes

• variable TCM wait state control for ITCM and DTCM

• ability to indicate sequential and nonsequential accesses.

The ARM966E-S processor contains a TCM controller that:

• schedules requests to the TCM interface

• handshakes with the ARM966E-S memory system controller to acknowledge 
when requests have been serviced

• returns TCM read data back to the ARM9E-S core.

The TCMs are located in the TCM address space. See Chapter 3 Memory Map.
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4.2 TCM size

The TCM supports a programmable memory size with a fixed offset defined in the 
ARM966E-S memory map. The TCM size can be determined by reading CP15 register 
c0 with the Opcode_2 field set to 2. See CP15 c0, TCM Size Register on page 2-6.

Table 4-1 shows how the ITCMSIZE[4:0] and DTCMSIZE[4:0] inputs control TCM 
RAM sizes. The supported sizes are 0 and 2n KB for n = 0 to 16.

For more information, see TCM interface signals on page A-6.

Table 4-1 Supported TCM RAM sizes

Value TCM size

b00000 0KB

b00001 1KB

b00010 2KB

b00011 4KB

b00100 8KB

b00101 16KB

b00110 32KB

b00111 64KB

b01000 128KB

b01001 256KB

b01010 512KB

b01011 1MB

b01100 2MB

b01101 4MB

b01110 8MB

b01111 16MB

b10000 32MB

b10001 64MB
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4.3 Enabling TCM

This section describes how to use the two mechanisms for controlling the enable of the 
TCM: 

• Using INITRAM input pin

• Using CP15 c1 Control Register on page 4-5.

4.3.1 Using INITRAM input pin

The INITRAM pin enables the ARM966E-S processor to boot with both external 
instruction and data memory blocks either enabled or disabled. Two resets are described 
in the following sections:

• Reset with INITRAM LOW

• Reset with INITRAM HIGH.

Reset with INITRAM LOW

If INITRAM is held LOW during Reset, the ARM966E-S processor comes out of Reset 
with both external instruction and data memory disabled. All accesses to external 
instruction and data memory space go to the AHB. The TCMs can then be individually 
or jointly enabled by writing to the CP15 c1 Control Register.

Reset with INITRAM HIGH

If INITRAM is held HIGH during Reset, the ARM966E-S processor comes out of 
Reset with both external instruction and data memory enabled. This is normally used 
for a warm Reset where the TCM has already been programmed before the application 
of HRESETn to the ARM966E-S processor. In this case, the TCM contents are 
preserved and the ARM966E-S processor can run directly from the TCM following 
Reset. Either one or both TCMs can be further disabled or enabled by writing to the 
CP15 c1 Control Register.

Note
 If INITRAM is held HIGH during a cold Reset (the TCM has not previously been 
initialized), the VINITHI pin must be set HIGH to ensure that the ARM966E-S 
processor boots from 0xFFFF 0000, that is in AHB address space and is substantially 
outside the TCM address space. This is necessary because if VINITHI is LOW, the 
ARM966E-S processor attempts to boot from 0x0000 0000, and this selects the 
uninitialized ITCM.
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4.3.2 Using CP15 c1 Control Register

When out of Reset, the state of CP15 c1 Control Register determines the behavior of the 
TCM.

Enabling the ITCM

You can enable the ITCM interface by setting bit [12] of the CP15 c1 Control Register. 
You must access this register in a read-modify-write fashion to preserve the contents of 
the bits not being modified. See CP15 registers on page 2-5 for details of how to read 
and write the CP15 c1 Control Register. After you enable the ITCM interface, all future 
ARM9E-S core instruction fetches and data accesses to the ITCM address space cause 
the ITCM interface to be accessed as shown in Figure 3-1 on page 3-2.

Enabling the ITCM interface greatly increases the performance of the ARM966E-S 
processor because the majority of accesses to it can be performed with no stall cycles, 
whereas accessing the AHB might cause several stall cycles for each access. Care must 
be taken to ensure that the ITCM interface is appropriately initialized before it is 
enabled and used to supply instructions to the ARM9E-S core. If the core executes 
instructions from uninitialized ITCM interface, the behavior is Unpredictable.

Disabling the ITCM 

You can disable the ITCM interface by clearing bit [12] of the CP15 c1 Control Register. 
After you disable the ITCM interface, all further ARM9E-S core instruction fetches 
access the AHB. If the core performs a data access to the ITCM address space as shown 
in Figure 3-1 on page 3-2, an AHB access is performed.

The contents of the memory are preserved when it is disabled. If it is re-enabled, 
accesses to previously initialized memory locations return the preserved data.

Note
 The TCM write buffers must be drained before disabling the ITCM interface.

Enabling the DTCM

You can enable the DTCM interface by setting bit [2] of the CP15 c1 Control Register. 
See CP15 registers on page 2-5 for details of how to read and write this register. After 
you enable the DTCM interface, all future read and write accesses to the DTCM address 
space, as shown in Figure 3-1 on page 3-2, cause the DTCM interface to be accessed.
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Disabling the DTCM

You can disable the DTCM by clearing bit [2] of the CP15 c1 Control Register. After 
you disable the DTCM, all further reads and writes to the DTCM address space, as 
shown in Figure 3-1 on page 3-2, access the AHB. 

Note
 The TCM write buffers must be drained before disabling the DTCM interface.
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4.4 TCM write buffers

To minimize the occurrence of stall cycles and to decouple the processor from memory 
wait states, there are write buffers in the DTCM and ITCM interfaces.

Each TCM write buffer is two entries deep. Each entry is an address and data pair. In 
normal operation, the data for a write access to the TCM address space is held in the 
TCM write buffer until it is forced out by another write to the TCM address space or by 
natural drain when there are no read requests to the TCM address space. 

Write accesses from the core always go into the TCM write buffer. If there is space in 
the TCM write buffer, writes are always single-cycle operations regardless of external 
TCM wait states. If there is no space in the TCM write buffer, any write access stalls the 
ARM9E-S core until a TCM write buffer entry becomes free.

4.4.1 TCM order bit

In normal operation, the TCM write buffer drains naturally into the TCM whenever 
there are no read accesses to the TCM address space. One effect of this drain mechanism 
is that read and write accesses to the TCM can be in a different order from that issued 
by the ARM9ES core. If the TCM write buffer contains the data required by a read 
access, data is returned from the buffer. Otherwise, a read can bypass a write that is 
pending in the TCM write buffer when a read is to a different address.

Read and write accesses to DTCM and ITCM can be maintained in the order that the 
ARM9E-S core generated them by using the TCM order bits in the CP15 c15 
Configuration Control Register. See Configuration Control Register on 
page 2-11.When the TCM order bit is set, the TCM write buffer is still used but any 
subsequent read accesses to the TCM are stalled until the buffer is emptied. 

To ensure correct operation, perform a drain-write-buffer operation immediately prior 
to setting the TCM order bit. To drain the TCM and AHB write buffers, use a CP15 c7 
core control operation. See Drain write buffers on page 2-9. 

To ensure correct ordering of data reads and writes to the DTCM and ITCM, set the 
DTCM and ITCM order bits. There is no enforced ordering between instruction reads 
and data accesses to the ITCM.

Note
 The ITCMSIZE[4:0] and DTCMSIZE[4:0] inputs are used to ensure that write 
accesses to aliased addresses return the correct data when read. The ITCMSIZE[4:0] 
and DTCMSIZE[4:0] values must match instantiated memory size for this to operate 
correctly. See TCM interface signals on page A-6 for details of the ITCMSIZE and 
DTCMSIZE values.
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4.5 TCM error detection signals

Large SRAM arrays are susceptible to errors caused by alpha particle radiation. These 
errors can result in incorrect data being returned. You can use parity checking or some 
form of error detection outside the ARM966E-S macrocell to detect these errors.

To enable the ARM966E-S processor to support external error detection on the TCMs, 
there is one error signal for each of the TCMs:

• DTCMERROR
• ITCMERROR.

The error signals inform the processor of error conditions during TCM read accesses 
and are ignored during write accesses. These signals are valid in the same clock cycle 
as the data returned from the TCM, and the processor ignores them at all other times.

Error detection is performed externally to the ARM966E-S macrocell. If error support 
is not required, DTCMERROR and ITCMERROR must be tied LOW. Because the 
ARM966E-S processor is capable of performing byte accesses, parity information must 
be generated for each byte. The parity bit must be generated at the same time as the data 
is written to memory. Data is always read from the TCMs in 32-bit words and a parity 
error in any one byte must be returned to the core as an error.

For data reads from either ITCM or DTCM, any error returned causes a Data Abort 
exception. The exception handler determines what corrective action, if any, to take.

For instruction fetches from the ITCM, any error returned causes a Prefetch Abort 
exception if the ARM966E-S processor tries to execute the returned instruction.

Note
 If all the data is returned from the TCM write buffer, ITCMERROR or 
DTCMERROR is ignored. If only part of the data is returned from the TCM write 
buffer, ITCMERROR or DTCMERROR is sampled. To prevent errors from 
uninitialized locations, memory must be initialized so that spurious read errors are not 
generated.
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4.6 TCMSEQ signals

When the DTCMSEQ and ITCMSEQ signals are asserted, the current TCM memory 
address is sequential to the previous address, that is, the current ITCMADDR or 
DTCMADDR is equal to the previous ITCMADDR or DTCMADDR plus one, and 
the current memory access is of the same type (read or write) as the previous access.

Note
 To optimize signal timing, ITCMSEQ and DTCMSEQ are not derived from direct 
comparisons of current and previous states of the ITCMADDR or DTCMADDR and 
the ITCMnRW or DTCMnRW signals, but from other internal signals. This can result 
in sequential TCM accesses that are not marked as sequential, that is, ITCMSEQ or 
DTCMSEQ is not asserted. The ITCMSEQ and DTCMSEQ signals are valid when the 
relevant ITCMCS or DTCMCS signal is asserted.
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4.7 Interface operation

This section describes the operation of the TCM interfaces.

4.7.1 Single-cycle and multicycle accesses

This section describes:

• Single-cycle TCM interface

• Multicycle TCM interface on page 4-11.

Single-cycle TCM interface

Figure 4-1 shows a mixture of read and write operations and that the TCM must be able 
to support for back to back operations.

When DTCMWAIT is not asserted, the TCM controller expects all read and write 
operations to be single-cycle. DTCMWAIT can be tied LOW if a memory always 
performs single-cycle accesses. The ITCM operation is identical. DTCMCANCEL is 
HIGH in the second cycle and so the data in A does not get used.

Figure 4-1 Single-cycle TCM read and write
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Note
 The ITCMERROR and DTCMERROR signals are valid in the same clock cycle as 
ITCMRD[31:0] or DTCMRD[31:0]. For more information, see TCM error detection 
signals on page 4-8.

Multicycle TCM interface

If a TCM is not able to service a memory request in a single-cycle, it must assert its wait 
signal to stall the ARM966E-S processor. For example, if a TCM is not able to return 
read data in the cycle following the request, its wait signal must be asserted in the 
request cycle before the next rising CLK edge. The wait signal must be deasserted in 
the cycle prior to the read data being returned. 

Figure 4-2 on page 4-12 shows TCM read/write operations to a DTCM that requires two 
cycles for all accesses. On each new memory request, the DTCM asserts DTCMWAIT 
to inform the ARM966E-S processor that it is not able to service the memory request in 
that cycle. The ARM966E-S processor stalls until DTCMWAIT is deasserted. To aid 
in efficient use of multicycle memories, if the current access is sequential to the 
previous access, the ARM966E-S processor asserts DTCMSEQ.

The TCMWAIT signal is ignored until the ARM966E-S processor has started its 
memory access and TCMWAIT is used to stall the core until the memory access is 
complete. This makes it easy to generate wait state controllers for memory accesses 
because the state of TCMWAIT when there is no memory access does not matter.

When the core is stalled because of TCMWAIT, the TCM interface signals are no 
longer valid.

Design of single-port DMA controllers is more difficult because the ARM966E-S 
processor can start a new memory access even when TCMWAIT is held active. Logic 
must be implemented to register all TCM interface signals for memory accesses that 
start when TCMWAIT is active.

The following pseudo-code gives additional information to the block diagram in 
Figure 4-10 on page 4-21: 

while (DMA access)
TCMWAIT = 1
if (TCMS = 1)

CS_reg = TCMCS
ADDR_reg = TCMADDR
WE_reg = TCMWE
WD_reg = TCMWD
RnW_reg = TCMRnW
CANCEL_reg = TCMCANCEL
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SEQ_reg = TCMSEQ
endif

endwhile

Figure 4-2 Two cycle TCM read and write

Note
 The ITCMERROR and DTCMERROR signals are valid in the same clock cycle as 
ITCMRD[31:0] or DTCMRD[31:0]. For more information, see TCM error detection 
signals on page 4-8.

4.7.2 Speculative TCM read access

Some data reads from data memory and instruction reads from instruction memory are 
speculative. After a memory location is read, it is likely that the next read comes from 
the same area of memory. This second read is speculative because it is likely that it is 
correct but it is not certain. Misreads from speculative accesses cannot be aborted within 
one clock cycle.
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Other situations where read accesses can be made to memory but the requested data is 
not used are:

• the data is available internally from the TCM write buffers

• the ARM9E-S core cancels the read.

In all the above situations, DTCMCANCEL or ITCMCANCEL is used to signal that 
the requested memory data is not required. If no waited cycles are added, 
DTCMCANCEL or ITCMCANCEL is asserted in the clock cycle following 
DTCMCS or ITCMCS. However, if waited cycles are added, then DTCMCANCEL 
or ITCMCANCEL can be asserted in any or all clock cycles from the clock cycle 
following DTCMCS or ITCMCS to the clock cycle in which DTCMRD[31:0] or 
ITCMRD[31:0] is valid. When asserted, the data requested from the memory is not used 
by the ARM9E-S core or attached coprocessors.

Canceled accesses

Typical situations where the ITCMCANCEL and DTCMCANCEL signals occur are:

• a change from one memory region to another, typically leaving TCM space

• the ARM9E-S core aborts the first data access in a series of back-to-back data 
accesses

• the data requested is available internally from the TCM write buffers

• the ARM9E-S core cancels a speculative instruction fetch.

Figure 4-3 on page 4-14 shows examples of canceled accesses to the DTCM. In cycle 
c5, DTCMCANCEL goes HIGH when the memory access is canceled as a result of the 
error generated for the TCM access, TCM1. TCM2 is canceled. In cycles c7 to c9, 
DTCMCANCEL goes HIGH because there has been a change of memory space and 
the next data address is an AHB address. DTCMCANCEL goes HIGH and the data is 
not used by the ARM9E-S core.
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Figure 4-3 DTCM reads with cancels
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4.8 TCM implementation examples

This section contains the following examples:

• Simplest zero-wait-state RAM example

• Byte-banks of RAM example on page 4-16

• Multiple banks of RAM example on page 4-17

• Sequential RAM example on page 4-18

• Single or Multiple wait-state RAM example on page 4-19

• Dual port DMA-capable RAM example on page 4-21.

Note
 The examples in this section are for the DTCM. These are also applicable to the ITCM.

The additional logic required for implementing the examples in this section is the 
responsibility of the implementer. 

4.8.1 Simplest zero-wait-state RAM example

Figure 4-4 shows a single RAM device with a 32-bit data width connected directly to 
the TCM interface. The DTCMWAIT signal must be tied off to zero. 

Figure 4-4 Simplest zero-wait-state RAM example
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Inverters must be used if there are any polarity differences between the RAM input 
signals and those of the TCM interface. When the RAM chip select is active-LOW, an 
inverter must be placed between DTCMCS and the RAM chip select. This integration 
places a limit on the size of the TCMs. Multiple banks of RAM can be used to overcome 
this limitation, see Multiple banks of RAM example on page 4-17.

4.8.2 Byte-banks of RAM example

If byte-write RAM is not available, you can use four banks of 8-bit wide RAM by 
routing each of the four bits of DTCMWE to one of the four RAM write enable inputs, 
as shown in Figure 4-5. 

Figure 4-5 Byte-banks of RAM example

You can save a small amount of power by ANDing the chip select for each RAM device 
with (DTCMWE OR NOT DTCMnRW), so that byte and halfword writes generate 
requests only to the required byte RAM as shown in Figure 4-6 on page 4-17.
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]

]

Figure 4-6 Byte-banks of RAM alternative example

4.8.3 Multiple banks of RAM example

If RAMs of sufficient size are not available, you can use multiple RAM devices. The 
read data can come from one of two or more devices that are selected using a 
multiplexor or multiplexors. To ensure that write data is not written to all devices, 
additional logic is required on either the chip select or the write enable. 

Figure 4-7 on page 4-18 shows an example of multiple banked RAM with the chip 
select signal DTCMCS ANDed with the top address signal DTCMADDR[14]. 

Figure 4-6 shows an example of multiple banked RAM with the write enable signals 
DTCMWE[3:0] ANDed with the top address signal DTCMADDR[14]. 

Note
 For the banked RAM example shown in Figure 4-7 on page 4-18, the reads and writes 
only occur on the RAM device required, giving a reduction in the speed and power used 
when compared to the example shown in Figure 4-6.
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Figure 4-7 Multiple banks of RAM example

4.8.4 Sequential RAM example

If the RAM devices require a single wait-state except for sequential reads, the device 
can be connected as shown in Figure 4-8 on page 4-19. The DTCMWAIT signal is 
derived by using an inverter. The behavior of the DTCMSEQ signal is designed so that 
the correct wait signal behavior is produced.
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Figure 4-8 Sequential RAM example

4.8.5 Single or Multiple wait-state RAM example

If the RAM devices require more than one cycle for all accesses, logic is required to 
assert the wait signal for the required number of cycles. Figure 4-9 on page 4-20 shows 
a Wait State Controller asserting the wait signal as required. The power control block 
removes power to the TCM when it is not required.
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Figure 4-9 Single or Multiple wait-state RAM example

4.8.6 Single port RAM example

When using single port RAM, multiplexors are required to switch between DMA 
controller and ARM966E-S memory interface signals. Figure 4-10 on page 4-21 shows 
a single port RAM example.
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Figure 4-10 Single port DMA-capable RAM example

4.8.7 Dual port DMA-capable RAM example

For dual port RAM, the TCM interface must be attached to one port and the DMA 
controller to the other port as shown in Figure 4-11 on page 4-22. This requires minimal 
extra logic (more logic might be required to detect address conflicts, depending on the 
devices and the application).
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Figure 4-11 Dual port RAM example
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Chapter 5 
Bus Interface Unit

This chapter describes the ARM966E-S Bus Interface Unit (BIU) and AHB write 
buffer. It contains the following sections:

• About the BIU on page 5-2

• AHB instruction prefetch buffer on page 5-3

• AHB write buffer on page 5-6

• AHB bus master interface on page 5-9

• AHB transfer descriptions on page 5-10

• AHB clocking on page 5-15

• CLK-to-HCLK skew on page 5-17.
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. 5-1



Bus Interface Unit 
5.1 About the BIU

The ARM966E-S processor uses an Advanced Microprocessor Bus Architecture 
(AMBA) Advanced High-performance Bus (AHB) interface. The AHB is a new 
generation of AMBA interface that addresses the requirements of synthesizable 
high-performance designs, including:

• single rising-clock-edge operation

• unidirectional buses

• mapped burst transfers

• split transactions

• single-cycle bus master handover.

See the AMBA Specification (Rev 2.0) for full details of this bus architecture.

The ARM966E-S BIU implements a fully-compliant AHB bus master interface and 
incorporates an instruction prefetch buffer and a write buffer to increase system 
performance. The BIU is the link between the ARM9E-S core with its TCMs and the 
external AHB memory. The AHB memory must be used to initialize the TCMs and to 
access code and data that are not assigned to the TCM address space.
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5.2 AHB instruction prefetch buffer

The BIU Instruction Prefetch Buffer (IPB) is four 32-bit entries deep. All nonsequential 
instruction fetches to AHB space cause the IPB to be flushed and an initial burst of four 
words to be performed on the AHB. After this initial burst, the IPB performs AHB 
accesses to keep the buffer full. If the ARM9E-S core takes an instruction out of the 
buffer on each clock cycle, the fetches on the AHB interface are performed as 
incrementing bursts of unspecified length (HBURST[2:0] = 001).

Only valid instruction requests initiates prefetching. The prefetch buffer marks each 
entry with the error response returned from the AHB. The prefetch buffer also marks 
each entry with the external breakpoint request returned from the external memory 
system. Instruction prefetching does not cross 1KB boundaries.

5.2.1 Optimized Thumb instruction prefetch

In Thumb state, the prefetch buffer depth is reduced to two words (four Thumb 
instructions). The ARM966E-S processor performs a two-word incrementing burst for 
nonsequential fetches. When space becomes available the IPB performs transfers to fill 
any vacant entries up to the buffer depth limit of two word entries available in Thumb 
state. 

5.2.2 IPB disable bit

Setting bit [16] of the CP15 c15 Configuration Control Register disables the IPB. Actual 
prefetch behavior does not change until the next nonsequential instruction fetch occurs. 
See CP15 c15, Test and Configuration Register on page 2-11. Reset clears bit [16] and 
enables prefetching.

5.2.3 AHB error response with IPB

If an error response is returned from the AHB, it is stored in the IPB along with the 
instruction. If the instruction reaches the Execute stage of the ARM9E pipeline, a 
Prefetch Abort exception occurs.

5.2.4 IPB timing examples

This section gives two examples of IPB operation:

• Nonsequential instruction fetch on page 5-4

• Nonsequential instruction fetch after a data access on page 5-5.
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Nonsequential instruction fetch

Figure 5-1 shows AHB prefetching in operation. In this case, the ARM9E-S core is 
executing code sequentially from the AHB. As soon as each instruction is returned from 
the AHB, it is returned to the ARM9E-S core. None of the returned data is placed into 
the prefetch buffer because the processor is continuously requesting instructions from 
the AHB. The AHB runs ahead of the core to minimize the number of stall cycles. 

The ARM9E-S core generates a nonsequential instruction fetch. This can be a result of 
a branch or an operation changing the value of the PC, for example. The BIU terminates 
the current burst and starts a new prefetch operation with a burst of length four to fill the 
prefetch buffer. The first instruction from the burst is returned to the ARM9E-S core. 
The BIU keeps the prefetch buffer full by performing an undefined length burst. This is 
because the ARM9E-S core is running sequentially and requesting instructions each 
cycle. Because this is a new burst, AHB indicates NSEQ.

Figure 5-1 Nonsequential instruction fetch

Note
 All timing examples in this chapter are based on one-to-one clocking in which the 
ARM966E-S processor and AHB share the same clock. See AHB clocking on page 5-15 
for details of AHB clocking modes. All timing examples assume that bus mastership has 
been granted. 
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Nonsequential instruction fetch after a data access

Figure 5-2 shows an AHB data access between instruction fetches. Because data 
accesses take precedence over instruction fetches, the instruction fetch starts after the 
data access. After the first instruction address is issued on the AHB, sequential 
instruction prefetching starts. The core does not advance until both of the simultaneous 
memory requests are satisfied. 

As shown in the previous example in Figure 5-1 on page 5-4, the prefetch buffer is not 
used immediately because each instruction returned from the BIU is immediately used 
by the processor. The second data memory request causes the processor to stall until the 
data request is completed. This causes the two outstanding instruction prefetches to be 
stored in the prefetch buffer. Prefetching stops as a result of data request. 

The instruction request issued with the data access can be acknowledged as soon as the 
AHB transfer is complete. After the data access, prefetching can continue because the 
address is sequential to the previous instruction address.

Figure 5-2 Nonsequential instruction fetch after a data access
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5.3 AHB write buffer

The AHB write buffer can hold a four-entry address and eight data word entry. The write 
buffer decouples the core from the wait cycles caused by accessing the AHB. If a write 
is sent to the write buffer, the core is able to continue program execution without having 
to wait for the write to complete on the AHB. More writes can be committed to the write 
buffer without stalling if spare entries are available. If the ARM9E-S core tries to write 
to a buffered location when the write buffer is full, the core stalls until there is space in 
the write buffer.

If the ARM9E-S core performs a read from AHB address space or an unbuffered write 
to AHB address space, the core stalls until all write buffer entries are written. Draining 
the write buffer ensures data coherency. 

5.3.1 Committing write data to the AHB write buffer

The AHB write buffer is used when the following conditions are met:

• the write buffer is enabled 

• the write address is in a bufferable region 

• the write address is in AHB address space

• the write address selects a TCM that is disabled.

For details on AHB write buffer enable and the ARM966E-S fixed address map, see 

• CP15 c1, Control Register on page 2-7

• About the ARM966E-S memory map on page 3-2.

When the core performs a write that conforms to these conditions, the address for the 
write is put into the first available address entry of the write buffer FIFO. The next 
available entry data is used for the write data. If the write is a store multiple (STM), 
subsequent data entries are used for each word of the STM. It is therefore possible for 
the FIFO to contain eight words of an STM. 

Alternatively, if several shorter bufferable STM or single writes (STR) instructions are 
performed, one address entry is used for each write instruction. The worst case is that 
only four data words fill the FIFO caused by four STR writes. In this case, the FIFO 
holds four address entries and four data entries.

5.3.2 Draining write data from the AHB write buffer

The AHB write buffer can drain naturally when AHB writes occur each time data is 
committed to the FIFO. The core stalls only if the write buffer overflows. However, 
there are times when a complete drain of the write buffer is enforced.
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Natural AHB write buffer drain

When a write is being committed to the AHB write buffer, a signal to the BIU initiates 
an AHB write. The BIU then pops the address for the write from the write buffer 
followed by the data and starts an AHB transfer. This process might take several cycles 
because the write access is to an AHB slave in a bufferable region that has a multicycle 
response. Additionally, if the AHB is running at a lower rate than the core, there can be 
extra delay in the buffered write process. This can cause the core to fill the write buffer 
by committing data faster than the write buffer can drain. The ARM9E-S core stalls 
until an entry becomes available.

When an address is placed in the AHB write buffer, a marker is also stored to indicate 
if the size of the write is byte, halfword, or word. If an STM is performed, a sequentiality 
marker is stored with the data, to indicate to the BIU that the address incrementer must 
be used to produce the AHB address for the second and following writes of the STM. 
This mechanism allows only one FIFO entry to be used for the address, leaving more 
room for data.

Enforced AHB write buffer drain

There are two situations in which the core stalls and the AHB write buffer is forced to 
drain completely before program execution can continue:

• the core requests an instruction fetch, data load, or unbuffered AHB write

• the core performs a drain-write-buffer operation.

AHB read access requested

To ensure data coherency, the core must be prevented from reading data from a location 
when new data for that location is still in the AHB write buffer. If the read occurs before 
the write buffer is drained, the core reads the old data, causing a data coherency failure.

For this reason, whenever an AHB read, an instruction fetch, a data load, or a load 
multiple is requested, the core must be stalled until the write buffer is drained. There is 
no dedicated logic to initiate a write buffer drain because this process is occurring 
whenever data is present within the buffer. However, there is dedicated logic that stalls 
the core until the last buffered write is completed on the AHB.

Drain write buffer instruction

You can use an MCR instruction to CP15 c7 to stall the core until the AHB write buffer 
is empty and the final write is completed on the AHB. This instruction is described in 
CP15 c7, Core Control Register on page 2-9. This instruction is useful when a write 
must be completed before program execution can continue.
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5.3.3 Enabling the AHB write buffer

Setting bit [3] of the CP15 c1 Control Register enables the write buffer. When this bit 
is set, all writes to bufferable address locations use the write buffer. If a slave peripheral 
in a bufferable region returns an AHB Data Abort, the abort is ignored when the write 
buffer is enabled. 

Note
 For debugging purposes, you can disable the AHB write buffer to enable AHB Data 
Aborts to be returned from bufferable regions.

5.3.4 Disabling the AHB write buffer

When data is committed to the write buffer, it is always written to the AHB. Disabling 
the write buffer by clearing bit [3] of the CP15 c1 Control Register causes any existing 
data in the write buffer to be written. Performing the wait-for-interrupt operation also 
causes any data in the write buffer to be written.

To ensure that no more buffered writes occur following write buffer disable or a 
wait-for-interrupt instruction, the write buffer must first be drained with a drain write 
buffer command.
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5.4 AHB bus master interface

The ARM966E-S processor implements a fully-compliant AHB bus master interface. 
See the AMBA Specification (Rev 2.0) for a detailed description of the AHB protocol. 

5.4.1 Overview of AHB

The AHB architecture is based on separate cycles for address and data. The address and 
control values for an access are broadcast from the rising edge of HCLK in the cycle 
before the data is expected to be read or written. During this data cycle, the address and 
control values for the next cycle are driven out. This leads to a fully pipelined address 
architecture. 

When an access is in its data cycle, a slave can wait the access by driving the HREADY 
response LOW. This has the effect of stretching the current data cycle and the pipelined 
address and control for the next access. This creates a system where all AHB masters 
and slaves sample HREADY on the rising edge of the HCLK to determine if an access 
is complete and a new address can be sampled or driven out.
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5.5 AHB transfer descriptions

The ARM966E-S BIU performs a subset of the possible AHB bus transfers. This 
section describes the transfers that can be performed and some back-to-back transfer 
cases:

• Back-to-back data transfers

• Data burst crossing a 1KB boundary on page 5-12

• SWP instruction on page 5-13.

Note
 Figure 5-1 on page 5-4 to Figure 5-6 on page 5-14 in this chapter are examples of 
specific situations only. You must not use these examples to derive general AHB 
protocol and timing requirements. For more information on AHB operation, see the 
AMBA Specification (Rev 2.0).

5.5.1 Back-to-back data transfers

Figure 5-3 on page 5-11 shows ARM966E-S bus activity when a sequence of STR 
instructions is executed with no AHB instruction fetches. The ARM9E-S core is 
executing instructions from the TCM space.

In cycle 2, the ARM9E-S core starts a nonsequential data write. A series of 
nonsequential and idle transfers is indicated for each access. The ARM9E-S core is 
re-enabled in cycle 10.
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Figure 5-3 Back-to-back data transfer write followed by read

Note
 Executing a sequence of back-to-back LDR instructions produces the same series of 
nonsequential and idle transfers. 

STM followed by instruction fetch

Figure 5-4 on page 5-12 shows an example of an STM transferring four words, 
immediately followed by an instruction fetch. The instruction read begins with a 
nonsequential/sequential sequence after the final sequential data access. In this 
example, subsequent instruction fetches are sequential. Instruction prefetching is 
enabled so instruction fetches appear on the AHB before the ARM9E-S core requests 
them.
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Figure 5-4 Single STM, followed by sequential instruction fetch

Data burst crossing a 1KB boundary

AMBA Specification (Rev 2.0) states that sequential accesses must not cross 1KB 
boundaries. The ARM966E-S processor splits sequential accesses that cross a 1KB 
boundary into two sets of separate accesses.

Figure 5-5 on page 5-13 shows bus activity with two back-to-back STM instructions 
crossing a 1KB boundary. DA+8 is the first address in a new 1KB region. The two sets 
of transfers each begin with a nonsequential access type, and are separated by idle 
cycles. In this example, instructions are being fetched from the ITCM.
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Figure 5-5 Data burst crossing a 1KB boundary

SWP instruction

The ARM SWP instruction performs an atomic read-modify-write operation. It is 
commonly used with semaphores to guarantee that another process cannot modify a 
semaphore when it is being read by the current process. 

If the ARM966E-S processor performs a SWP operation to an AHB address location, 
the access is always unbuffered to ensure that the core stalls until the write occurs on 
the AHB. The BIU asserts the HLOCK output to prevent the AHB arbiter from 
granting a different master, ensuring that the read-modify-write is atomic. In this 
example, instructions are being fetched from the ITCM.

Figure 5-6 on page 5-14 shows a SWP instruction.

Data burst crossing 1K boundary

CLK

CLKEN

HBUSREQ

DA

DnMREQ

DnRW

DSEQ

HTRANS

HWRITE

HADDR

HBURST

HWDATA

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

DA+8 DA+CDA DA+4

DA DA+4 DA+8 DA+C

WD1 WD2 WD3 WD4

IDLE NSEQ SEQ IDLE NSEQ SEQ IDLE

001 001
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. 5-13



Bus Interface Unit 
Figure 5-6 SWP instruction

5.5.2 Data burst support

To allow more efficient use of burst-capable memories on the AHB bus, the BIU detects 
core data burst sizes that align with AHB incrementing burst sizes. The ARM966E-S 
processor supports incrementing burst sizes of 4, 8, and 16 words. These bursts are then 
performed on the bus as defined length bursts. Bursts that cross 1K boundaries are split 
into 2 separate transactions on the AHB, one on each side of the boundary. All bursts 
that do not map onto AHB incrementing burst sizes are marked as unspecified length. 
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5.6 AHB clocking

The ARM966E-S design uses a single rising-edge clock, CLK, to time all internal 
activity. In systems where the ARM966E-S processor is embedded, it is best to run the 
AHB at a lower clock rate. To support this requirement, the ARM966E-S processor 
must have a clock enable, HCLKEN, to time AHB transfers.

The HCLKEN input is driven HIGH around a rising edge of the ARM966E-S 
processor CLK to indicate that this rising edge is also a rising edge of HCLK. HCLK 
must therefore be synchronous to CLK.

The SYSCLKEN is an internal signal connected to the CLKEN input of the ARM9E-S 
core, and is used to control the pipeline advance of the core. When SYSCLKEN is 
LOW, the core stalls.

When the ARM9E-S core is running from TCM or performing writes using the write 
buffer, the HCLKEN and HREADY inputs are decoupled from the SYSCLKEN stall 
signal. The core is only stalled by TCM stall cycles or if the write buffer overflows. This 
means that the ARM9E-S core is executing instructions at the faster CLK rate and is 
effectively decoupled from the HCLK domain AHB system.

If however, an AHB read access or unbuffered write is required, the core stalls until the 
AHB transfer is complete. Because the AHB system is being clocked by the slower 
HCLK, the core must examine HCLKEN to detect when to drive out the AHB address 
and control signals to start an AHB transfer. HCLKEN must detect the following rising 
edges of HCLK so that the BIU can detect when the access completes. Figure 5-7 
shows an example of an AHB read access with a 3:1 ratio of CLK to HCLK. 

Figure 5-7 AHB 3:1 clocking example
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If the slave being accessed at the HCLK rate has a multicycle response, the HREADY 
input to the ARM966E-S processor is driven LOW until the data is ready to be returned. 
The BIU must therefore perform a logical AND on the HREADY response with 
HCLKEN to detect that the AHB transfer is complete. When the AND is true, the 
ARM9E-S core is then enabled by reasserting SYSCLKEN.

Note
 Before the core can start an AHB access, it must wait until it receives the next 
HCLKEN pulse. Then it must wait until the access is complete. The stall before the 
start of the access is a synchronization penalty and the worst case can be expressed in 
CLK cycles as the CLK-to-CLK ratio minus one.
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5.7 CLK-to-HCLK skew

The ARM966E-S processor drives out the AHB address on the rising edge of CLK 
when the HCLKEN input is true. The AHB outputs have output hold and delay values 
relative to CLK. However, these outputs are used in the AHB system where HCLK is 
used to time the transfers. Similarly, inputs to the ARM966E-S processor are timed 
relative to HCLK but are sampled within the ARM966E-S processor with CLK. 
Minimizing the skew between HCLK and CLK prevents hold time issues from CLK 
to HCLK on outputs and from HCLK to CLK on inputs.

5.7.1 Clock tree insertion at top level

The ARM966E-S processor has a clock tree inserted to enable an evenly distributed 
clock to be driven to all the registers in the design. The registers that drive out AHB 
outputs and sample AHB inputs are timed off CLK’ at the bottom of the inserted clock 
tree and subject to the clock tree insertion delay. To maximize performance, when the 
ARM966E-S processor is embedded in an AHB system, the clock generation logic to 
produce HCLK must be constrained so that it matches the insertion delay of the clock 
tree within the ARM966E-S processor. This can easily be achieved by performing a 
top-level clock tree insertion for the ARM966E-S processor and the embedded system 
at the same time.

Figure 5-8 shows an example of an AHB slave connected to the ARM966E-S processor.

Figure 5-8 ARM966E-S CLK to AHB HCLK sampling
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In this example, the slave peripheral has an input setup and hold time and an output hold 
and valid time relative to HCLK. The ARM966E-S processor has an input setup and 
hold time and an output hold and valid relative to CLK’, the clock at the bottom of the 
clock tree. For optimal performance, clock tree insertion must be used to balance the 
HCLK to match CLK’. 

5.7.2 Hierarchical clock tree insertion

If clock tree insertion is performed before embedding the ARM966E-S processor, 
buffers are added on input data to match the clock tree so that the setup and hold is 
relative to the top level CLK. This is guaranteed to be safe at the expense of extra 
buffers in the data input path.

The HCLK domain AHB peripherals must still meet the ARM966E-S processor input 
setup and hold requirements. Because the ARM966E-S processor inputs and outputs are 
now relative to CLK, the outputs appear comparatively later by the value of the 
insertion delay. This ultimately leads to lower AHB performance.
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Coprocessor Interface

This chapter describes the ARM966E-S pipelined coprocessor interface. It contains the 
following sections:

• About the coprocessor interface on page 6-2

• Coprocessor interface signals on page 6-3

• LDC/STC on page 6-9

• MCR/MRC on page 6-11

• Interlocked MCR on page 6-12

• CDP on page 6-13

• Privileged instructions on page 6-14

• Busy-waiting and interrupts on page 6-15.
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6.1 About the coprocessor interface

The ARM966E-S processor fully supports the connection of on-chip coprocessors 
through the external coprocessor interface and supports all classes of coprocessor 
instructions. 

The interface differs from the basic ARM9E-S coprocessor interface. To ease 
integration of an external coprocessor, the interface from the ARM966E-S processor to 
the coprocessor is pipelined by a single clock cycle as shown in Figure 6-1.

Figure 6-1 Pipeline stages

This ensures that ARM966E-S interface outputs, which otherwise arrive late in the 
clock cycle, are driven out directly from registers to the external coprocessor. This 
significantly eases the implementation task for an external coprocessor.
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6.2 Coprocessor interface signals

Table 6-1 describes the ARM966E-S coprocessor interface signals.

Table 6-1 Coprocessor interface signals

Name

Direction with 
respect to 
ARM966E-S 
processor

Description

CPBURST[3:0] Input This signal indicates the number of words to be transferred as part of a burst 
from an external coprocessor. This signal allows a maximum of 16 words 
to be transferred. The values for the burst lengths are: b0000 = 1 word or 
undefined length b0001 = 2 words b0010 = 3 words b0011 = 4 words b0100 
= 5 words b0101 = 6 words b0110 = 7 words b0111 = 8 words b1000 = 9 
words b1001 = 10 words b1010 = 11 words b1011 = 12 words b1100 = 13 
words b1101 = 14 words b1110 = 15 words b1111 = 16 words Tie off to 
zero if no external coprocessors are present.

CPCLKEN Output Synchronous enable for coprocessor pipeline follower. When HIGH on the 
rising edge of CLK, the pipeline follower logic is able to advance.

CPINSTR[31:0] Output The 32-bit coprocessor instruction bus over which instructions are 
transferred to the coprocessor pipeline follower.

CPDOUT[31:0] Output The 32-bit coprocessor read data bus for transferring data to the 
coprocessor.

CPDIN[31:0] Input The 32-bit coprocessor write data bus for transferring data from the 
coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in the Execute stage of the 
pipeline, and it must be executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a coprocessor instruction, the 
coprocessor must cancel the instruction without changing any internal state. 
This signal is only asserted in cycles where the previous instruction caused 
a Data Abort to occur.

CHSDE[1:0] Input The handshake signals from the Decode stage of the coprocessor pipeline 
follower:ABSENT = 10 WAIT = 00 GO = 01 LAST = 11.

CHSEX[1:0] Input The handshake signals from the Execute stage of the coprocessor pipeline 
follower: ABSENT = 10 WAIT = 00 GO = 01 LAST = 11.
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6.2.1 Synchronizing the external coprocessor pipeline

A coprocessor connected to the ARM966E-S processor determines which instructions 
it needs to execute by implementing a pipeline follower in the coprocessor. Each 
instruction that enters the ARM9E-S pipeline also enters the coprocessor pipeline one 
clock cycle later. The interface to the coprocessor is pipelined and so the coprocessor 
pipeline follower operates one cycle behind the ARM9E-S core, sampling the 
CPINSTR[31:0] output bus from the ARM966E-S coprocessor interface. 

To hide the pipeline delay, a mechanism inside the interface block stalls the ARM9E-S 
core for a cycle by internally modifying the coprocessor handshake signals whenever an 
external coprocessor instruction is decoded. This enables the external coprocessor to 
catch up with the ARM9E-S core. 

After this initial stall cycle, the two pipelines can be considered synchronized. The 
ARM9E-S core then informs the coprocessor when instructions move from Decode into 
Execute, and whether the instruction has passed its condition codes and is to be 
executed.

Note
 Because the ARM966E-S processor hides the synchronization of the coprocessor 
pipeline follower, its coprocessor handshake interface is similar to that of the native 
ARM9E-S core. This implies that an ARM9E-S core designed pipeline follower can 
interface to the ARM966E-S processor without modification. The data path of the 
coprocessor differs however, due to the ARM966E-S pipelined output data 
CPDOUT[31:0].

CPTBIT Output When HIGH, indicates that the ARM966E-S processor is in Thumb state. 
When LOW, indicates that the ARM966E-S processor is in ARM state. 
Sampled by the coprocessor pipeline follower.

nCPMREQ Output When LOW on the rising edge of CLK and CPCLKEN is HIGH, the 
instruction on CPINSTR must enter the coprocessor pipeline.

nCPTRANS Output When LOW, indicates that the ARM966E-S processor is in User mode. 
When HIGH, indicates that the ARM966E-S processor is in Privileged 
mode. Sampled by the coprocessor pipeline follower.

Table 6-1 Coprocessor interface signals (continued)

Name

Direction with 
respect to 
ARM966E-S 
processor

Description
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6.2.2 External coprocessor clocking

The CDP instruction is used for coprocessor instructions that do not operate on values 
in ARM registers or in main memory. One example is a floating-point multiply 
instruction for a floating-point accelerator processor. 

To enable coprocessors to continue execution of CDP instructions while the ARM9E-S 
core pipeline stalls, for instance while waiting for an AHB transfer to complete, the 
coprocessor receives the free-running system clock CLK, and a clock enable signal 
CPCLKEN. If CPCLKEN is LOW around the rising edge of CLK then the ARM9E-S 
core pipeline stalls and the coprocessor pipeline follower must not advance. 

This prevents any new instructions entering Execute within the coprocessor but enables 
a CDP instruction in Execute to continue execution. The coprocessor only stalls when 
the current instruction leaves Execute and new instructions are required from the 
ARM966E-S interface. This goes some way towards decoupling the external 
coprocessor from the ARM9E-S memory interface.

There are three classes of coprocessor instructions:

• LDC/STC

• MCR/MRC

• CDP.

Examples of how a coprocessor executes these instruction classes are given in the 
following sections:

• LDC/STC on page 6-9

• MCR/MRC on page 6-11

• CDP on page 6-13.

6.2.3 Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor 
instruction, the handshake signals indicate the ABSENT state. In this 
case, the ARM9E-S core takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not 
immediately, the coprocessor handshake signals are driven to indicate 
that the ARM9E-S processor core must stall until the coprocessor can 
catch up. This is known as the busy-wait condition. In this case, the 
ARM9E-S processor core loops in an IDLE state waiting for 
CHSEX[1:0] to be driven to another state, or for an interrupt to occur. If 
CHSEX[1:0] changes to ABSENT, the undefined instruction trap is 
taken. If CHSEX[1:0] changes to GO or LAST, the instruction proceeds 
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as described here. If an interrupt occurs, the ARM9E-S processor is 
forced out of the busy-wait state. This is indicated to the coprocessor by 
the CPPASS signal going LOW. The instruction is restarted later and so 
the coprocessor must not commit to the instruction (it must not change 
any coprocessor state) until CPPASS is asserted HIGH, when the 
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction 
immediately, and that it requires at least another cycle of execution. Both 
the ARM9E-S processor core and the coprocessor must also consider the 
state of the CPPASS signal before actually committing to the instruction. 
For an LDC or STC instruction, the coprocessor instruction drives the 
handshake signals with GO when two or more words must still be 
transferred. When only one more word must be transferred, the 
coprocessor drives the handshake signals with LAST. During the Execute 
stage, the ARM9E-S processor core outputs the address for the 
LDC/STC. Also in this cycle, DnMREQ is driven LOW, indicating to the 
ARM966E-S memory system that a memory access is required at the data 
end of the device. The timing for the data on CPDOUT and CPDIN is 
shown in Figure 6-4 on page 6-9.

LAST An LDC or STC can be used for more than one item of data. If this is the 
case, possibly after busy waiting, the coprocessor drives the coprocessor 
handshake signals with a number of GO states, and in the next to the last 
cycle (LAST indicating that the next transfer is the final one). If there is 
only one transfer, the sequence is [WAIT,[WAIT,...]],LAST. LAST is also 
usually driven for CDP instructions.

6.2.4 Coprocessor handshake encoding

Table 6-2 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are 
encoded.

Table 6-2 Handshake encoding

[1:0] Meaning

10 ABSENT

00 WAIT

01 GO

11 LAST
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Note
 If the ARM966E-S processor does not have an external coprocessor, the CHSDE[1:0] 
and CHSEX[1:0] handshake inputs must be tied off to indicate ABSENT.

6.2.5 Multiple external coprocessors

If the ARM966E-S processor has multiple external coprocessors, the handshaking 
signals can be combined by ANDing bit [1], and ORing bit [0].

In the case of two coprocessors that have handshaking signals CHSDE1, CHSEX1 and 
CHSDE2, CHSEX2 respectively use:

CHSDE[1] = CHSDE1[1] AND CHSDE2[1]

CHSDE[0] = CHSDE1[0] OR CHSDE2[0]

CHSEX[1] = CHSEX1[1] AND CHSEX2[1]

CHSEX[0] = CHSEX1[0] OR CHSEX2[0].

For CPDIN[31:0] use:

CPDIN[31:0] = CPDIN1[31:0] OR CPDIN2[31:0].

For CPBURST[3:0] use:

CPBURST[3:0] = CPBURST1[3:0] OR CPBURST2[3:0].

6.2.6 Multiple external coprocessor example

Figure 6-2 on page 6-8 shows an example where VFP9 and two other coprocessors are 
connected to the ARM966E-S processor using the coprocessor interface logic block.
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Figure 6-2 Connecting multiple coprocessors

Handshaking logic block

Figure 6-3 shows example components of the handshaking logic in the coprocessor 
interface logic block.

Figure 6-3 Example handshake logic blocks
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6.3 LDC/STC

The LDC and STC instructions are used respectively to transfer data to and from 
external coprocessor registers and memory. In the case of the ARM966E-S processor, 
the memory can be either tightly-coupled memory or AHB depending on the address 
range of the access and TCM enable.

The cycle timing for these operations is shown in Figure 6-4.

Figure 6-4 LDC/STC cycle timing

In this example, four words of data are transferred. The number of words transferred is 
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

As with all other instructions, the ARM9E-S core performs the main decode off the 
rising edge of the clock during the Decode stage. From this, the core commits to 
executing the instruction and so performs an instruction fetch. The coprocessor 
instruction pipeline keeps in step with the ARM9E-S core by monitoring nCPMREQ. 
nCPMREQ is a registered version of the ARM9E-S core instruction memory request 
signal InMREQ. 
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At the rising edge of CLK, if CPCLKEN is HIGH, and nCPMREQ is LOW, an 
instruction fetch takes place, and CPINSTR[31:0] contains the fetched instruction on 
the next rising edge of the clock, when CPCLKEN is HIGH. 

This means that:

• the last instruction fetched must enter the Decode stage of the coprocessor 
pipeline

• the instruction in the Decode stage of the coprocessor pipeline must enter its 
Execute stage

• the fetched instruction must be sampled.

In all other cases, the ARM9E-S pipeline stalls, and the coprocessor pipeline must not 
advance.

During the Execute stage, the condition codes are compared with the flags to determine 
if the instruction really executes. The output CPPASS is asserted HIGH if the 
instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction is in a busy-wait state, CPPASS is asserted on every cycle 
until the coprocessor instruction is executed. If an interrupt occurs during busy-waiting, 
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor 
instruction.

Another output, CPLATECANCEL, cancels a coprocessor instruction when the 
instruction preceding it caused a Data Abort. This is valid on the rising edge of CLK on 
the cycle that follows the first Execute cycle of the coprocessor instructions. This is the 
only cycle in which CPLATECANCEL can be asserted.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor 
handshake signals CHSDE[1:0] or CHSEX[1:0]:

• if a new instruction enters the Execute stage in the next cycle, it examines 
CHSDE[1:0].

• if the currently executing coprocessor instruction requires another Execute cycle, 
it examines CHSEX[1:0]. 
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6.4 MCR/MRC

The MCR and MRC cycles look very similar to the STC and LDC cycles. An example, 
with a busy-wait state is shown in Figure 6-5. First, nCPMREQ is driven LOW to 
denote that the instruction on CPINSTR[31:0] is entering the Decode stage of the 
pipeline. This causes the coprocessor to decode the new instruction and drive 
CHSDE[1:0]. In the next cycle, nCPMREQ is driven LOW to denote that the 
instruction is now issued to the Execute stage. If the condition codes passes, and the 
instruction is to be executed, the CPPASS signal is driven HIGH and the CHSDE[1:0] 
handshake bus is examined (it is ignored in all other cases).

Figure 6-5 MCR/MRC transfer timing with busy-wait
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the LAST condition is observed, the instruction is committed. For an MCR instruction, 
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6.5 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9E-S core pipeline 
during its first Decode cycle, then the ARM9E-S core pipeline interlocks for one or 
more cycles until the data is available. An example of this is where the register being 
transferred is the destination of a preceding LDR instruction.

In this situation, the MCR instruction enters the Decode stage of the coprocessor 
pipeline, and then remains there for a number of cycles before entering the Execute 
stage. Figure 6-6 gives an example of an interlocked MCR that also has a busy-wait 
state.

Figure 6-6 Interlocked MCR/MRC timing with busy-wait

CLK

CPINSTR[31:0]

CPPASS

CHSEX[1:0]

CPLATECANCEL

CHSDE[1:0]

nCPMREQ

CPDIN[31:0]

MRC

Fetch Decode

(interlock)

Decode Execute

(WAIT)

Execute

(LAST)

Memory

MCR/MRC

WAIT

LAST Ignored

CPDOUT[31:0]

MCR

Coprocessor

pipeline

Write

WAIT

Coproc to ARM

ARM to coproc
6-12 Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0213E



Coprocessor Interface 
6.6 CDP

CDP instructions normally execute in a single cycle. Like all the previous cycles, 
nCPMREQ is driven LOW to signal when an instruction is entering the Decode and 
then the Execute stage of the pipeline:

• if the instruction is to be executed, the CPPASS signal is driven HIGH during the 
Execute cycle

• if the coprocessor can execute the instruction immediately, it drives CHSDE[1:0] 
with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0] 
with WAIT and then CHSEX[1:0] with LAST.

Figure 6-7 shows a canceled CDP due to the previous instruction causing a Data Abort.

Figure 6-7 Late canceled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute 
by CPASS. In the following cycle, CPLATECANCEL is asserted. This causes the 
coprocessor to terminate execution of the CDP instruction, resulting in no state changes 
to the coprocessor.
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6.7 Privileged instructions

The coprocessor restricts certain instructions for use in Privileged modes only. To 
achieve this, the coprocessor tracks the nCPTRANS output. Figure 6-8 shows how 
nCPTRANS changes after a mode change.

Figure 6-8 Privileged instructions

The ARM9E-S core ignores the first two CHSDE[1:0] responses because only the final 
CHSDE[1:0] response, as the instruction moves from Decode into Execute, counts. 
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6.8 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait the processor during the execution of 
a coprocessor instruction if, for example, it is still busy with an earlier coprocessor 
instruction. To do so, the coprocessor associated with the Decode stage instruction 
drives WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute 
stage of the pipeline, the coprocessor drives WAIT onto CHSEX[1:0] for as many 
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons, the coprocessor might be interrupted while busy-waiting, 
causing the instruction to be abandoned. Abandoning execution is done through 
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait 
cycle. 

If it is HIGH, the instruction must still be executed. If it is LOW, the instruction must 
be abandoned.

Figure 6-9 shows a busy-waited coprocessor instruction being abandoned due to an 
interrupt.

Figure 6-9 Busy-waiting and interrupts
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Chapter 7 
Debug Support

This chapter describes the ARM966E-S debug interface. It contains the following 
sections:

• About the debug interface on page 7-2

• Debug systems on page 7-4

• ARM966E-S scan chain 15 on page 7-7

• Debug interface signals on page 7-9

• ARM9E-S core clock domains on page 7-14

• Determining the core and system state on page 7-15.

The ARM9E-S EmbeddedICE-RT logic is also discussed in this chapter including:

• About the EmbeddedICE-RT on page 7-16

• Disabling EmbeddedICE-RT on page 7-18

• The debug communications channel on page 7-19

• Monitor mode debug on page 7-23

• Debug additional reading on page 7-25.
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7.1 About the debug interface

The ARM966E-S debug interface is based on IEEE Std. 1149.1- 1990, Standard Test 
Access Port and Boundary-Scan Architecture. See this standard for an explanation of 
the terms used in this chapter and for a description of the TAP controller states.

The ARM9E-S core within the ARM966E-S processor contains hardware extensions 
for advanced debugging features. These make it easier to develop application software, 
operating systems, and the hardware itself.

The debug extensions enable you to force the core into debug state. In debug state, the 
core and ARM966E-S memory system are effectively stopped, and isolated from the 
rest of the system. This is known as halt mode operation. It enables you to examine the 
internal state of the ARM9E-S core, ARM966E-S processor, and external state of the 
AHB while all other system activity continues as normal. When debug is complete, the 
ARM9E-S core restores the system state and resumes program execution.

In addition, the ARM9E-S core supports a real-time debug mode that generates an 
internal Instruction Abort or Data Abort instead of a breakpoint or watchpoint. This is 
known as monitor mode operation.

When used in conjunction with a debug monitor program activated by the abort 
exception entry, you can debug the ARM966E-S processor while allowing the execution 
of critical interrupt service routines. The debug monitor program typically 
communicates with the debug host over the ARM966E-S debug communication 
channel. Monitor mode debug is described in Monitor mode debug on page 7-23.

7.1.1 Stages of debug

A request on one of the external debug interface signals, or on an internal functional unit 
known as the EmbeddedICE-RT logic, forces the ARM9E-S core into debug state. The 
interrupts that activate debug are:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request.

The internal state of the ARM9E-S core is examined using a JTAG-style serial interface, 
allowing instructions to be serially inserted into the core pipeline without using the 
external data bus. For example, when in debug state, a Store Multiple (STM) can be 
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S 
registers. This data can be serially shifted out without affecting the rest of the system. 
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7.1.2 Clocks

The system and test clocks must be synchronized externally to the ARM966E-S 
macrocell. The Multi-ICE debug agent directly supports one or more cores within an 
ASIC design. To synchronize off-chip debug clocking with the ARM966E-S macrocell 
requires a three-stage synchronizer. The off-chip device (for example, Multi-ICE) 
issues a TCK signal, and waits for the RTCK (Returned TCK) signal to come back. 
Synchronization is maintained because the off-chip device does not progress to the next 
TCK until after RTCK is received. 

Figure 7-1 shows this synchronization.

Figure 7-1 Clock synchronization
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7.2 Debug systems

The ARM966E-S core forms one component of a debug system that interfaces from the 
high-level debugging performed by you to the low-level interface supported by the 
ARM966E-S processor. Figure 7-2 shows a typical debug system.

Figure 7-2 Typical debug system

A debug system typically has three parts:

• The debug host

• The protocol converter

• ARM966E-S debug target on page 7-5.

The debug host and the protocol converter are system-dependent.

7.2.1 The debug host

The debug host is a computer that is running a software debugger, such as armsd. The 
debug host enables you to issue high-level commands such as setting breakpoints or 
examining the contents of memory.

7.2.2 The protocol converter

An interface, such as a parallel port, connects the debug host to the ARM966E-S 
development system. The messages broadcast over this connection must be converted 
to the interface signals of the ARM966E-S processor. The protocol converter performs 
the conversion.
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7.2.3 ARM966E-S debug target

The ARM9E-S core within the ARM966E-S processor has hardware extensions that 
ease debugging at the lowest level. The debug extensions:

• enable you to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The following major blocks of the ARM9E-S debug model are shown in Figure 7-3.

ARM9E-S CPU core 

This includes hardware support for debug.

EmbeddedICE-RT logic 

This is a set of registers and comparators used to generate debug 
exceptions (such as breakpoints). This unit is described in About 
the EmbeddedICE-RT on page 7-16.

TAP controller This controls the action of the scan chains using a JTAG serial 
interface.

Figure 7-3 ARM9E-S block diagram
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The ARM9E-S debug model is extended within the ARM966E-S processor by the 
addition of scan chain 15. This is used for debug access to the CP15 register bank, to 
enable the system state within the ARM966E-S processor to be configured while in 
debug state, for instance to enable or disable the TCM before performing a debug load 
or store. 

The rest of this chapter describes the ARM9E-S and ARM966E-S hardware debug 
extensions.
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7.3 ARM966E-S scan chain 15

Scan chain 15 is provided to enable debug access to the CP15 register bank, to enable 
the system state within the ARM966E-S processor to be configured while in debug 
state.

The order of scan chain 15 from the DBGTDI input to the DBGTDO output is shown 
in Table 7-1.

The CP15 register address field of scan chain 15 provides debug access to the CP15 
registers is shown in Table 7-2.

Table 7-1 Scan chain 15 addressing mode bit order

Bit Content

[38] Read = 0 write = 1

[37:32] CP15 register address

[31:0] CP15 register value

Table 7-2 Mapping of scan chain 15 address field to CP15 registers

Bit [38] Bits[37:32] Bits[31:30] CP15 register number Meaning

b0 b0 0000 0 xx c0 Read ID Register

b0 b0 0001 0 xx c1 Read Control Register

b1 b0 0001 0 xx c1 Write Control Register

b0 b1 1111 1 b00 c15 Read BIST Control 
Register

b1 b1 1111 1 b00 c15 Write BIST Control 
Register

b0 b1 1111 0 b01 c15 Read IBIST address

b1 b1 1111 0 b01 c15 Write IBIST address

b0 b1 1111 1 b01 c15 Read IBIST general

b1 b1 1111 1 b01 c15 Write IBIST general

b0 b1 1111 0 b11 c15 Read DBIST address
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The scan address decode overloads the existing functional decode logic that is used to 
access the CP15 registers during MCR and MRC instructions (see CP15 registers on 
page 2-5).

The decode overload is performed as follows:

Bit [37]  Corresponds to Opcode_1 of an MCR or MRC instruction.

Bits [36:33] Corresponds to the CRn field of an MCR or MRC instruction.

Bit [32] Corresponds to bit [0] of the Opcode_2 field of an MCR or MRC 
instruction.

Bits [2:1] Of Opcode_2 are tied to b00 during debug state.

The debug scan chain 15 allows access to only bit[0] of the Opcode_2 field by default. 
To enable access to the address and general BIST registers within CP15 c15, bits 
[31:30] of scan chain 15 are overloaded as shown in Table 7-2 on page 7-7. 

There are certain restrictions with the overloading; when writing to the BIST general 
registers (writing a new seed, for example). Bits[31:30] of the seed are restricted to 
those values shown in Table 7-2 on page 7-7. These bits are not used in the BIST 
address registers, therefore there are no debug restrictions when accessing these 
registers.

The ability to control the ARM966E-S system state through scan chain 15 provides 
extra debug visibility. For example, if the debugger wants to compare the contents of an 
address that maps to the ITCM or DTCM with the same address in AHB memory, the 
debugger can:

1. Load from the address with the TCM enabled to return the TCM data.

2. Disable the TCM.

3. Perform the load again. The second load now accesses the AHB because the TCM 
is disabled, returning the value from AHB memory. 

b1 b1 1111 0 b11 c15 Write DBIST address

b0 b1 1111 1 b11 c15 Read DBIST general

b1 b1 1111 1 b11 c15 Write DBIST general

Table 7-2 Mapping of scan chain 15 address field to CP15 registers (continued)

Bit [38] Bits[37:32] Bits[31:30] CP15 register number Meaning
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7.4 Debug interface signals

There are four primary external signals associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the 
ARM966E-S processor to enter debug state

• DBGACK is used by the ARM966E-S processor to flag back to the system that 
it is in debug state.

7.4.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of a cycle. To apply 
a breakpoint to that instruction, the breakpoint signal must be asserted by the end of the 
same cycle. This is shown in Figure 7-4 on page 7-10.

You can build external logic, such as additional breakpoint comparators, to extend the 
breakpoint functionality of the EmbeddedICE-RT logic. These outputs must be applied 
to the DBGIEBKPT input. This signal is ORed with the internally-generated 
breakpoint signal before being applied to the ARM9E-S core control logic. The timing 
of the input makes it unlikely that data-dependent external breakpoints are possible.

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any 
state change as a result of the instruction is prevented. All writes from previous 
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the 
breakpointed instruction. The latched breakpoint signal forces the processor to start the 
debug sequence.

Note
 The ARM966-S processor performs Thumb instruction fetches as 32-bit accesses to the 
AHB or TCM interfaces. As a result, external breakpoint hardware cannot identify 
which halfword has been requested by the ARM9E-S core as an instruction. If an 
external hardware breakpoint detector generates an external breakpoint, it applies to 
both instructions in the 32-bit word fetched from memory. External breakpoints in 
Thumb state must be avoided as program execution might be interrupted 
unintentionally. To ensure precise debug entry use the Embedded-ICE module within 
the ARM9E-S core.

Figure 7-4 on page 7-10 shows breakpoint timing.
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Figure 7-4 Breakpoint timing

7.4.2 Breakpoints and exceptions
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External logic, such as external watchpoint comparators, can extend the functionality of 
the EmbeddedICE-RT logic. Their output must be applied to the DBGDEWPT input. 
This signal is ORed with the internally-generated Watchpoint signal before being 
applied to the ARM9E-S core control logic. The timing of the input makes it unlikely 
that data-dependent external watchpoints are possible.

After a watchpointed access, the next instruction in the processor pipeline is always 
allowed to complete execution. When this instruction is a single-cycle data-processing 
instruction, entry into debug state is delayed for one cycle while the instruction 
completes. The timing of debug entry following a watchpointed load in this case is 
shown in Figure 7-5.

Figure 7-5 Watchpoint entry with data processing instruction
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The instruction following the instruction that generated the watchpoint might have 
modified the Program Counter (PC). If this happens, it is not possible to determine the 
instruction that caused the watchpoint. A timing diagram showing debug entry after a 
watchpoint where the next instruction is a branch is shown in Figure 7-6. However, it is 
always possible to restart the processor. 

When the processor enters debug state, the ARM9E-S core is interrogated to determine 
its state. In the case of a watchpoint, the PC contains a value that is five instructions on 
from the address of the next instruction to be executed. Therefore, if on entry to debug 
state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the processor 
restarted, execution flow returns to the next instruction in the code sequence.

Figure 7-6 Watchpoint entry with branch

7.4.4 Watchpoints and exceptions
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7.4.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
enters debug state when the instruction at the Execute stage of the pipeline is completed 
(when Memory and Write stages of the pipeline have completed). While waiting for the 
instruction to finish executing, no more instructions are issued to the Execute stage of 
the pipeline.

Caution
 Asserting EDBGRQ in monitor mode results in Unpredictable behavior.

7.4.6 Actions of the ARM9E-S core in debug state

When the ARM9E-S core is in debug state, both memory interfaces indicate internal 
cycles. This ensures that both the tightly-coupled memory that is connected to the 
ARM966E-S processor and the AHB interface are quiescent, allowing the rest of the 
AHB system to ignore the ARM9E-S core and function as normal. Because the rest of 
the system continues operation, the ARM9E-S core ignores aborts and interrupts.

The HRESETn signal must be held stable during debug. If the system applies reset to 
the ARM966E-S processor (HRESETn is driven LOW), the ARM9E-S core changes 
state without the knowledge of the debugger.
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7.5 ARM9E-S core clock domains

The ARM966E-S processor has a single clock, CLK, that is qualified by two clock 
enables:

• SYSCLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, SYSCLKEN conditions CLK to clock the core. When the 
ARM966E-S processor is in debug state, DBGTCKEN conditions CLK to clock the 
core.
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7.6 Determining the core and system state

When the ARM966E-S processor is in debug state, you can examine the core and 
system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine if the 
processor entered debug from manual state or manual state, by examining bit[4] of the 
EmbeddedICE-RT debug status register. When bit [4] is HIGH, the core enters debug 
from Thumb state.
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7.7 About the EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip debug support for 
the ARM9E-S core within the ARM966E-S processor.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller. 
Figure 7-7 shows the relationship between the core, EmbeddedICE-RT, and the TAP 
controller, with only signals that are pertinent to EmbeddedICE-RT. 

Figure 7-7 The ARM9E-S, TAP controller, and EmbeddedICE-RT

The EmbeddedICE-RT logic comprises:

• two real-time watchpoint units

• two independent registers, the Debug Control Register and the Debug Status 
Register

• debug communications channel.

The Debug Control Register and the Debug Status Register provide overall control of 
EmbeddedICE-RT operation.
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You can program one or both watchpoint units to halt the execution of instructions by 
the core. Execution halts when the values programmed into EmbeddedICE-RT match 
the values currently appearing on the address bus, data bus, and various control signals.

Note
 Any bit can be masked so that its value does not affect the comparison. 

Each watchpoint unit can be configured to be either a watchpoint (monitoring data 
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints 
can be data-dependent.
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7.8 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT by setting the DBGEN input LOW.

Caution
 Permanently tying the DBGEN input LOW disables debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to 
the core, and DBGACK from the ARM966E-S processor is always LOW.
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7.9 The debug communications channel

The ARM9E-S EmbeddedICE-RT logic contains a communications channel for 
passing information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel comprises:

• a 32-bit Communications Data Read Register 

• a 32-bit wide Communications Data Write Register

• a 6-bit wide Communications Control Register for synchronized handshaking 
between the processor and the asynchronous debugger. 

These registers are located in fixed locations in the EmbeddedICE-RT logic register 
map and are accessed from the processor using MCR and MRC instructions to 
coprocessor 14.

In addition to the communications channel registers, the processor can access a 1-bit 
Debug Status Register for use in the real-time debug configuration.

7.9.1 Debug Communication Channel Registers

Table 7-3 shows the CP14 registers.

7.9.2 Communications Channel Status Register

The Communications Channel Status Register is read-only. It controls synchronized 
handshaking between the processor and the debugger.

To read this register:

MRC p14, 0, <Rd>, c14, c0, 0; read Communications Channel Status Register

Figure 7-8 on page 7-20 shows the format of the Communications Channel Status 
Register.

Table 7-3 Coprocessor 14 register map

Register name Notes

CP14 c0 Communications Channel Status Read-only

CP14 c1 Communications Channel Data Read For reads

CP14 c1 Communications Channel Data Write For writes

CP14 c2 Communications Channel Monitor Mode Debug Status Read or write
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Figure 7-8 Communications Channel Status Register

Table 7-4 shows the bit fields of the Communications Channel Status Register.

From the viewpoint of the debugger, the registers are accessed using the scan chain in 
the usual way. From the viewpoint of the processor, these registers are accessed using 
coprocessor register transfer instructions.

You must use the following instructions:

 MRC p14, 0, <Rd>, c0, c0

This returns the Debug Communications Control Register into Rd.

 MCR p14, 0, <Rn>, c1, c0

This writes the value in Rn to the Communications Channel Data Write Register.

 MRC p14, 0, <Rd>, c1, c0

This returns the Communications Channel Data Read Register into Rd.

Because the Thumb instruction set does not contain coprocessor instructions, you are 
advised to access this data using SWI instructions when in Thumb state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W R

Table 7-4 Communications Channel Status Register bit functions

Bit Function

[31:28] EmbeddedICE-RT version number

[27:2] Reserved

[1] Communications Channel Data Write Register ready flag: 0 = 
Channel ready for new data from processor 1 = Data ready for 
scanout.

[0] Communications Channel Data Read Register ready flag: 0 = 
Channel ready for new data from debugger 1 = Data ready for 
processor to read.
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7.9.3 Communications Channel Monitor Mode Debug Status register

The coprocessor 14 Debug Status Register is provided for use by a debug monitor when 
the ARM9E-S core is configured into monitor mode.

The coprocessor 14 Debug Status Register is a 1-bit wide read or write register having 
the format shown in Figure 7-9. 

Figure 7-9 Debug Status Register

Bit [0] of the register, the DbgAbt bit, indicates whether the processor took a Prefetch 
or Data Abort in the past because of a breakpoint or watchpoint. If the ARM9E-S core 
takes a Prefetch Abort as a result of a breakpoint or watchpoint, then the bit is set. If on 
a particular instruction or data fetch, both the debug abort and external abort signals are 
asserted, the external abort takes priority and the DbgAbt bit is not set. You can read or 
write the DbgAbt bit with the MRC or MCR instructions.

This bit can be used by a real-time debug aware abort handler. This examines the 
DbgAbt bit to determine if the abort is externally or internally generated. If the DbgAbt 
bit is set, the abort handler initiates communication with the debugger over the 
communications channel.

7.9.4 Communications using the communications channel

Messages can be sent and received using the communications channel as described in:

• Sending a message to the debugger

• Receiving a message from the debugger on page 7-22.

Sending a message to the debugger

When the processor wants to send a message to the debugger, it must check that the 
Communications Channel Data Write Register is free for use by determine if the W bit 
of the Debug Communications Control Register is clear.

The processor reads the Debug Communications Control Register to check status of the 
W bit.

• If the W bit is clear, the Communications Channel Data Write Register is clear.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DbgAbt bit
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• If the W bit is set, previously written data is not read by the debugger. The 
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14. 
Because the data transfer occurs from the processor to the Communications Channel 
Data Write Register, the W bit is set in the Debug Communications Control Register. 

The debugger sees both the R and W bits when it polls the Debug Communications 
Control Register through the JTAG interface. When the debugger sees that the W bit is 
set, it can read the Communications Channel Data Write Register, and scan the data out. 
The action of reading this data register clears the Debug Communications Control 
Register W bit. At this point, the communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger polls the R bit of the Debug 
Communications Control Register. 

• if the R bit is LOW, the Communications Channel Data Read Register is free, and 
data can be placed there for the processor to read

• if the R bit is set, previously deposited data is not yet collected, so the debugger 
must wait.

When the Communications Channel Data Read Register is free, data is written there 
using the JTAG interface. The action of this write sets the R bit in the Debug 
Communications Control Register. 

The processor polls the Debug Communications Control Register. If the R bit is set, 
there is data that can be read using an MRC instruction to coprocessor 14. The action of 
this load clears the R bit in the Debug Communications Control Register. When the 
debugger polls this register and sees that the R bit is clear, the data is taken, and the 
process can be repeated.
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7.10 Monitor mode debug

The ARM9E-S core within ARM966E-S processor contains logic that enables the 
debugging of a system without stopping the core entirely. This enables the continued 
servicing of critical interrupt routines while the core is being interrogated by the 
debugger. Setting bit [4] of the Debug Control Register enables the real-time debug 
features of ARM9E-S core. When this bit is set, the EmbeddedICE-RT logic is 
configured so that a breakpoint or watchpoint causes the core to enter abort mode, 
taking the Prefetch Abort or Data Abort vectors respectively. When the core is 
configured for real-time debugging, you must be aware of the following restrictions:

• Breakpoints or watchpoints cannot be data-dependent. No support is provided for 
use of the range functionality. Breakpoints or watchpoints can only be based on:

— instruction or data addresses

— external watchpoint conditioner (DBGEXTERN)

— user or privileged mode access (DnTRANS and InTRANS)

— read or write access (watchpoints)

— access size (breakpoints, ITBIT, and watchpoints, DMAS[1:0])

— chained comparisons.

• The single-step hardware is not enabled.

• External breakpoints and watchpoints are not supported.

• The vector catching hardware can be used but must not be configured to catch the 
Prefetch or Data Abort exceptions.

Caution
 No support is provided to mix halt mode and monitor mode debug functionality. When 
the core is configured into the monitor mode, asserting the external EDBGRQ signal 
results in Unpredictable behavior. Setting the internal EDBGRQ bit results in 
Unpredictable behavior.

When an abort is generated by the monitor mode, it is recorded in the Communications 
Channel Monitor Mode Debug Status Register in coprocessor 14 (see Communications 
Channel Monitor Mode Debug Status register on page 7-21).

Because the monitor mode debug does not put the ARM9E-S core into debug state, it is 
necessary to change the contents of the watchpoint registers while TCM accesses are 
taking place, rather than being changed when in debug state. If the watchpoint registers 
are written to during an access, all matches from the affected watchpoint unit using the 
register being updated are disabled for the cycle of the update.
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If there is a possibility of false matches occurring during changes to the watchpoint 
registers, caused by old data in some registers and new data in others, then you must: 

1. Disable that watchpoint unit using the Control Register for that watchpoint unit.

2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the Control Register.
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7.11 Debug additional reading

A more detailed description of the ARM9E-S debug features and JTAG interface is 
provided in Appendix B Debug in Depth in the ARM9E-S Technical Reference Manual.

7.11.1 ARM966E-S JTAG TAP ID

The ARM966E-S processor TAP ID inputs are connected to the TAP ID Register inside 
the ARM9E-S core. Figure 7-10 shows the bit order in the TAP ID Register.

Figure 7-10 TAP ID Register bit order

Table 7-5 shows the settings for the ARM966E-S TAPID inputs on the debug interface. 
Set your TAPID according to the rules contained in Application Note 99 - Core Type 
and Revision Identification. The default TAPID for the ARM966E-S processor is 
0x25966477.

DBGTDI DBGTDOTAPID[31:0]

1Version

31 28 27 12 11 1 0

Part number Manufacturer ID

Table 7-5 TAP ID Register bit functions

Bit Function Value

[31:28] Specification revision b0010

[27:12] Product code b0101 1001 0110 0110

[11:1] Manufacturer ID, manufacturer-specific Default is b01000111011

[0] IEEE standard specified, always 1 1
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Chapter 8 
Embedded Trace Macrocell Interface

This chapter describes the ARM966E-S Embedded Trace Macrocell (ETM) interface. 
It contains the following sections:

• About the ETM interface on page 8-2

• Enabling the ETM interface on page 8-3

• ARM966E-S trace support features on page 8-4.
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8.1 About the ETM interface

The ARM966E-S processor supports the connection of an external Embedded Trace 
Macrocell (ETM) to provide real-time code tracing of the ARM966E-S processor in an 
embedded system. See the ETM9 Technical Reference Manual for further information.

The ETM interface is primarily one way. To provide code tracing, the ETM block must 
be able to monitor various ARM9E-S inputs and outputs. The required ARM9E-S 
inputs and outputs are collected and driven out from the ARM966E-S processor from 
the ETM interface registers, as shown in Figure 8-1.

Figure 8-1 ARM966E-S ETM interface

The ETM interface outputs are pipelined to provide early output timing and to isolate 
any ETM input load from the critical ARM966E-S signals. The latency of the pipelined 
outputs does not effect ETM trace behavior because all outputs are delayed by the same 
amount.
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8.2 Enabling the ETM interface

The ETM interface on the ARM966E-S processor is enabled by the top-level pin 
ETMEN. When this input is HIGH, the ETM interface is enabled and the outputs are 
driven so that an external ETM can begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are held at their last 
value before the interface was disabled.

The ETMEN input is usually driven by the ETM, and driven HIGH when the ETM is 
programmed using its TAP controller.

ARM Limited recommends that you connect the ETMEN input to the PWRDOWN 
output of the ETM9 macrocell through an inverter as shown in Figure 8-1 on page 8-2.

Note
 If an ETM is not used in an embedded ARM966E-S design, you must tie the ETMEN 
input LOW to save power.
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8.3 ARM966E-S trace support features

The trace support uses the following features:

• FIFOFULL

• Configuration Control Register

• Trace Process Identifier Register.

8.3.1 FIFOFULL

The FIFOFULL signal is an input to the ARM966E-S processor driven by the ETM9 
macrocell. Whenever the programmed upper watermark of the ETM FIFO is filled, 
FIFOFULL is asserted. The ARM966E-S processor uses FIFOFULL to stall the 
ARM9E-S core, preventing trace loss. The ARM9E-S core remains stalled until 
FIFOFULL is deasserted.

The ARM966E-S processor can only stall on instruction boundaries enabling any 
current AHB transfers to complete. You must take this into consideration when 
programming the ETM FIFO watermark. If the instruction being executed when 
FIFOFULL is asserted is either LDM or STM, the FIFO must be able to accept up to 16 
words after the assertion of FIFOFULL, to prevent trace lost.

Note
 Using FIFOFULL to stall the ARM966E-S processor affects real-time operating 
performance.

8.3.2 Configuration Control Register

The Configuration Control Register CP15 c15 enables the masking of interrupts during 
trace. This register enables nIRQ and nFIQ interrupt priority over FIFOFULL to be 
programmed. See CP15 c15, Test and Configuration Register on page 2-11 for a 
description of this register.

8.3.3 Trace Process Identifier Register

The Trace Process Identifier Register enables real-time trace tools to identify the 
currently executing process in multitasking environments. See CP15 c13, Trace Process 
Identifier Register on page 2-10 for a description of this register.
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Test Support

This chapter describes the test methodology employed for the ARM966E-S synthesized 
logic and tightly-coupled memory. It contains the following sections:

• About the ARM966E-S test methodology on page 9-2

• Scan insertion and ATPG on page 9-3

• BIST of tightly-coupled memory on page 9-4.
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9.1 About the ARM966E-S test methodology

To achieve a high level of fault coverage, scan insertion and ATPG techniques are used 
on the ARM9E-S core and ARM966E-S control logic as part of the synthesis flow. 
BIST is used to provide high fault coverage of the compiled TCM.
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9.2 Scan insertion and ATPG

This technique is covered in detail in the ARM966E-S Implementation Guide. Scan 
insertion requires that all register elements are replaced by scannable versions that are 
then connected up into a number of large scan chains. These scan chains are used to set 
up data patterns on the combinatorial logic between the registers, and capture the logic 
outputs. The logic outputs are then scanned out while the next data pattern is scanned in. 

Automatic Test Pattern Generation (ATPG) tools are used to create the necessary scan 
patterns to test the logic, when the scan insertion has been performed. This technique 
achieves a very high fault coverage for the standard cell combinatorial logic, typically 
in the 95-99% range.

Because of the larger scan register elements and the serial routing between them, scan 
insertion does have an impact on the area and performance of the synthesized design. 
To minimize these effects, perform scan insertion early in the synthesis cycle and 
reoptimize the design with the scan elements in place.

9.2.1 ARM966E-S test wrapper

To improve test coverage where there is no internal visibility of the macrocell, you can 
use a test wrapper. For logic to be testable, the input to the logic must be controllable 
using a scan chain, and so must be driven by a register. The output of the logic must also 
be observable through a scan chain, and so must be registered. 

If the ARM966E-S macrocell is integrated into an ASIC as a black box, the test tools 
do not have visibility of the internal ARM966E-S scan chains and cannot create vectors 
to cover any logic between the last register in the ARM966E-S macrocell and the next 
register in the ASIC. This is known as a test shadow and leads to a reduction in test 
coverage. 

The addition of a test wrapper enables this shadow logic to be tested. The test wrapper 
is a scan chain around the periphery of the ARM966E-S macrocell that connects to each 
input and output. The test wrapper scan chain can be used in two modes:

• INTEST mode

• EXTEST mode.

The INTEST wrapper is required only for embedded ARM966E-S macrocells. In 
INTEST mode, all macrocell inputs are driven using the test wrapper scan chain, and 
all macrocell outputs are observable through the test wrapper scan chain. This enables 
a complete set of ATPG vectors to be produced for the ARM966E-S macrocell in 
isolation. In EXTEST mode, all macrocell outputs are driven using the test wrapper 
scan chain, and all macrocell inputs are observable through the test wrapper scan chain. 
This enables the logic surrounding the ARM966E-S macrocell to be tested without the 
test tools requiring internal visibility of the ARM966E-S macrocell.
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9.3 BIST of tightly-coupled memory

Adding a simple memory test controller enables an exhaustive test of the memory arrays 
to be performed. You can perform a BIST test with an MCR instruction to the CP15 
BIST Control Register. You can run the BIST test on one or both of the ITCM and 
DTCM simultaneously.

When you perform a BIST test on a TCM, the functional enable for that TCM is 
automatically disabled, forcing all memory accesses to that TCM address space to go to 
the AHB. This enables BIST tests to be run in the background. For instance, the 
instruction TCM can be BIST tested, while code is executed over the AHB.

You can achieve full programmer control over the BIST mechanism through five 
registers that are mapped to the CP15 c15 address space. See CP15 c15, Test and 
Configuration Register on page 2-11 for details of the MCR or MRC instructions used 
to access these registers. Access to these registers is also available in debug mode, see 
Debug interface signals on page 7-9.

Note
 The IBIST and DBIST blocks are functionally independent.

9.3.1 BIST algorithm

The BIST test algorithm is a 6N test. Figure 9-1 on page 9-5 shows the test flow. The 
first pass starts from the bottom of the memory to be tested. A fixed value is written into 
each memory address to be tested and the address is incremented until the top of 
memory is reached.

The second pass starts from the bottom of the memory to be tested. In the second pass, 
the fixed pattern is checked. If the pattern match fails then the BIST fail flags are set and 
the test fails. If the pattern match is successful then the inverse pattern is written to each 
memory address. The inverse pattern is checked. If the pattern match fails then the BIST 
fail flags are set and the test fails. The address is incremented until the top of memory 
is reached.

The third pass starts from the top of memory. A fixed value is written into each memory 
address to be tested. The pattern is then checked. If the pattern match fails then the BIST 
fail flags are set and the test fails. The address is decremented until the bottom of the 
area of memory under test is reached.

During all reads, the TCMERROR flag is monitored and if an error is found, the test 
fails.

All BIST accesses are marked nonsequential by the SEQ flag being LOW.
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Figure 9-1 Test flow for BIST
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9.3.2 BIST control register

This controls the operation of the TCM memory BIST. Before initiating a BIST test, an 
MCR instruction is first performed to the BIST Control Register to set up the size of the 
test and enable the TCM to be tested. A further MCR is required to initiate the test.

You can access the current status of a BIST test and the result of a completed test by 
performing an MRC to the BIST Control Register. This operation returns flags to 
indicate that a test is:

• running

• paused

• failed

• completed.

In addition to returning the state for the size of the test and TCM enable status after 
completing a BIST test, the BIST test enable must first be cleared by writing to the BIST 
Control Register if you are to use the TCM for functional operation. You must then 
re-enable the TCM by writing to CP15 c1. This is necessary because the BIST test 
enable automatically clears the functional enable.

Note
 Clearing the functional TCM enable when BIST is enabled prevents the programmer 
from trying to run from TCM following a BIST test, without having first reprogrammed 
the TCM. This reprogramming is necessary because the BIST algorithm corrupts all 
tested TCM locations.

9.3.3 BIST address and general registers

The BIST Control Register enables standard BIST operations to be performed on each 
TCM and the size of the test to be specified. Additional registers provide functionality 
for:

• testing of the BIST hardware

• changing the fixed pattern data for a BIST test

• providing a nonzero starting address for a BIST test 

• peek and poke of the TCM

• returning an address location for a failed BIST test

• returning failed data from the failing address location.
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This additional functionality is most useful for debugging faulty silicon during 
production test. The exception to this is the start address for a BIST test. You can 
perform BIST of the TCM periodically throughout program execution a block at a time, 
rather than all at once, by incrementing the start address by the test block size each time 
a test is initiated.

Table 9-1 and Table 9-2 on page 9-8 show how the registers are used. The pause bits in 
the BIST Control Register provide extra decode of these registers. The BIST hardware 
is only capable of 32-bit word addressing. When writing to an address register, bits [1:0] 
are truncated, and when reading from an address register, bits [1:0] always read as zero. 
Similarly, bits above the usable address range are truncated and are read as zero.

The IBIST start address and peek or poke address registers share a hardware register, 
therefore writing to one corrupts the state of the other. The IBIST start address must be 
restored to the correct state after peek/poke operations, if the test is to be restarted from 
a User or Auto pause state.

The IBIST pattern data and poke data registers share a hardware register, therefore 
writing to one corrupts the state of the other. The IBIST pattern data must be restored 
to the correct state after poke operations, if the test is to be restarted from a User or Auto 
pause state.

Table 9-1 Instruction BIST address and general registers

BIST register
IBIST
pause

Read Write

IBIST address register 0 IBIST fail address IBIST start address

IBIST address register 1 IBIST fail address IBIST peek/poke address

IBIST general register 0 IBIST fail data IBIST pattern data

IBIST general register 1 IBIST peek data IBIST poke data
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The IBIST fail address and fail data registers only contain valid failure information after 
a failure has occurred and are invalidated when a new test is started or whenever TCM 
peek or poke operations are performed. Because the top address bit of IBIST fail 
address is not needed to give the fail address, it is used to indicate if a failure was due 
to ITCMERROR.

The DBIST start address and peek or poke address registers share a hardware register, 
therefore writing to one corrupts the state of the other. The IBIST start address must be 
restored to the correct state after peek or poke operations, if the test is to be restarted 
from a User or Auto pause state.

The DBIST pattern data and poke data registers share a hardware register, therefore 
writing to one corrupts the state of the other. The IBIST pattern data must be restored 
to the correct state after poke operations, if the test is to be restarted from a User or Auto 
pause state.

The DBIST fail address and fail data registers only contain valid failure information 
after a failure has occurred and are invalidated when a new test is started or whenever 
TCM peek or poke operations are performed. Because the top address bit of DBIST fail 
address is not needed to give the fail address, it is used to indicate if a failure was due 
to DTCMERROR.

9.3.4 Running a test

To start a test, perform the following:

1. Write to the BIST Control Register with relevant pause bit and start strobe bits 
cleared, enable bits set, and a suitable size value. The TCM is disabled for normal 
core accesses from this time onwards.

2. Write suitable values to the BIST start address and pattern data registers.

Table 9-2 Data BIST address and general registers

BIST register
IBIST
pause

Read Write

DBIST address register 0 DBIST fail address DBIST start address

DBIST address register 1 DBIST fail address DBIST peek/poke address

DBIST general register 0 DBIST fail data DBIST pattern data

DBIST general register 1 DBIST peek data DBIST poke data
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3. Write the BIST Control Register with the BIST start strobe bit set, and the pause 
bit cleared (for Normal or User pause mode) or set (for Auto pause mode).

The test runs, and the BIST running flag is set. If a failure occurs, the test hardware 
stores the failed address and data, and then goes to the idle state. At this point the 
running flag is cleared, the completion and fail flags are set. If the test completes 
without failures, the BIST running flag is cleared and the completion flag is set. If the 
test is paused (User or Auto), the BIST running flag is cleared, and is set again when 
the test is restarted.

Note
 The completion and fail flags retain their state between test invocations. They are only 
reset when a new test is started.

9.3.5 Peek and poke

Peek and poke functions require the relevant pause bit in the BIST Control Register to 
be set.

To read a location in the TCM:

1. Write the address to the BIST peek or poke address register.

2. Read the BIST peek data register.

The address write in step 1 initiates the TCM read operation. If necessary (because of 
TCM wait states), the peek data register read causes the core to stall until the data is 
available.

To write to a location in the TCM:

1. Write the address to the BIST peek and poke address register.

2. Write the data to the BIST poke data register.

The data write in step 1 initiates the TCM write operation. If necessary (because of 
TCM wait states), subsequent peek or poke operations cause the core to stall until the 
write has completed.

9.3.6 Pause modes

The suggested production test sequence for the TCM is:

1. Test each TCM using a full test.
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2. Test the BIST hardware for each TCM. To enable testing of the BIST hardware, 
a pause mechanism enables the BIST test to be halted and data within the TCM 
to be corrupted. The sequence for this is:

a. Writing the address for the location to be corrupted with an MCR to the 
relevant BIST address register.

b. Writing the corrupted data using an MCR to the BIST general register. 

c. Restarting the test by an MCR to the BIST Control Register.

d. Checking that the corrupted data causes the test to fail by reading the failed 
address and data from the BIST address and general registers.

In addition to controlling the addressing within the address and general registers, the 
pause bit also controls the progression of the BIST algorithm as follows:

• Auto pause

• User pause.

Auto pause

If the pause bit is set in the BIST Control Register when the BIST start strobe is asserted, 
the test runs in Auto pause mode. The BIST test will then pause at the end of the first 
pass or at the end of the second pass of the BIST algorithm, whichever comes first. This 
point is the top (for the first pass) or the bottom (for the second pass) of the memory 
area being tested.

The programmer can poll the BIST Control Register to detect when a test has paused 
(the running flag is LOW). Data can then be corrupted before restarting the BIST test. 
To restart the test, perform an MCR to the BIST Control Register with the start strobe 
bit set, after first ensuring the pause bit is in the correct state for subsequent operation.

User pause

If the pause bit is clear when the BIST start strobe is asserted, the test is run in User 
pause mode. The BIST algorithm is paused by an MCR to the BIST Control Register, 
setting the pause bit for the TCM being tested. The TCM contents are then corrupted as 
previously. This stops the BIST algorithm at a potentially unknown point, resulting in 
the possibility that the BIST algorithm overwrites and therefore does not cause a test to 
fail. 

To restart the test, perform an MCR to the BIST Control Register with the start strobe 
bit set, after first ensuring the pause bit is in the correct state for subsequent operation.
9-10 Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0213E



Test Support 
Note
 User pause mode is provided for production test debugging to shorten a test by pausing 
the algorithm early. The Auto pause mode is recommended to provide BIST hardware 
testing for all other occasions.
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Appendix A 
Signal Descriptions

This appendix describes the ARM966E-S signals. It contains the following sections:

• Signal properties and requirements on page A-2

• Clock interface signals on page A-3

• AHB signals on page A-4

• TCM interface signals on page A-6

• Coprocessor interface signals on page A-9

• Debug signals on page A-11

• Miscellaneous signals on page A-13

• ETM interface signals on page A-14

• Test wrapper signals on page A-16.
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A.1 Signal properties and requirements

To ensure ease of integration of the ARM966E-S processor into embedded applications 
and to simplify synthesis flow, the following design techniques have been used:

• a single rising edge clock times all activity

• all signals and buses are unidirectional

• all inputs are required to be synchronous to the single clock.

These techniques simplify the definition of the top-level ARM966E-S signals because 
all outputs change from the rising edge and all inputs are sampled with the rising edge 
of the clock. In addition, all signals are either input or output only, as bidirectional 
signals are not used.

Note
 Asynchronous signals, for example interrupt sources, must first be synchronized by 
external logic before being applied to the ARM966E-S processor. 
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A.2 Clock interface signals

Table A-1 describes the ARM966E-S clock interface signals.

Table A-1 Clock interface signals

Name Direction Description

CLK Input This clock times all operations in the ARM966E-S 
design. All outputs change from the rising edge and 
all inputs are sampled on the rising edge. The clock 
might be stretched in either phase. 

Through the use of the HCLKEN signal, this clock 
also times AHB operations.

Through the use of the DBGTCKEN signal, this 
clock also times debug operations.

HCLKEN Input Synchronous enable for AHB transfers. When 
HIGH, indicates that the next rising edge of CLK is 
also a rising edge of HCLK in the AHB system in 
which the ARM966E-S processor is embedded. 
HCLK must be tied HIGH in systems where CLK 
and HCLK are intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic accessed by the 
JTAG interface. When HIGH on the rising edge of 
CLK, the debug logic is able to advance.

HRESETn Input Asynchronously asserted LOW input used to 
initialize the ARM966E-S system state. 
Synchronously deasserted.
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A.3 AHB signals

Table A-2 describes the ARM966E-S AHB signals.

Table A-2 AHB signals

Name Direction Description

HADDR[31:0] Output The 32-bit AHB system address bus.

HTRANS[1:0] Output Indicates the type of ARM966E-S transfer, which 
can be: b00 = idle b10 = nonsequential b11 = 
sequential.

HWRITE Output When HIGH, indicates a write transfer. When LOW, 
indicates a read transfer.

HSIZE[2:0] Output Indicates the size of an ARM966E-S transfer, which 
can be: b000 = byte b001 = halfword b010 = word.

HBURST[2:0] Output Indicates if the transfer forms part of a burst. The 
ARM966E-S processor supports: b000 = single 
transfer b001 = incremental burst of unspecified 
length b011 = 4-beat incremental burst b101 = 8-beat 
incremental burst b111 = 16-beat incremental burst.

HPROT[3:0] Output Protection control signals. The signals indicate if:

• the transfer is an opcode fetch or data access

• the transfer is a Supervisor or User mode 
access

• the current access is Cachable or Bufferable.

HWDATA[31:0] Output The 32-bit write data bus is used to transfer data from 
the ARM966E-S processor to a selected bus slave 
during write operations.

HRDATA[31:0] Input The 32-bit read data bus is used to transfer data from 
a selected bus slave to the ARM966E-S processor 
during read operations.

HREADY Input When HIGH, indicates that a transfer has finished on 
the bus. You can drive this signal LOW to extend a 
transfer.

HRESP[1:0] Input The transfer response from the selected slave 
provides additional information on the status of the 
transfer. The response can be: 00 = Okay 01 = Error 
10 = Retry 11 = Split.
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HBUSREQ Output Indicates that the ARM966E-S processor requires the 
bus.

HLOCK Output When HIGH, indicates that the ARM966E-S 
processor requires locked access to the bus and no 
other master is granted until this signal has gone 
LOW. Asserted by the ARM966E-S processor when 
executing SWP instructions to AHB address space.

HGRANT Input Indicates that the ARM966E-S processor is currently 
the highest priority master. Ownership of the address 
and control signals changes at the end of a transfer 
when HREADY is HIGH, so the ARM966E-S 
processor gets access to the bus when both 
HREADY and HGRANT are HIGH.

Table A-2 AHB signals (continued)

Name Direction Description
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A.4 TCM interface signals

This section contains the following signal descriptions:

• Data TCM interface signals

• Instruction TCM interface signals on page A-7.

A.4.1 Data TCM interface signals

Table A-3 shows the data TCM interface signals.

Table A-3 Data TCM interface signals

Signal Direction Function

DTCMERROR Input Data TCM error signal This signal enables the ARM9E-S core to be 
informed of error conditions during read accesses.

DTCMnRW Output Data TCM not read, write: 0 = Read access 1 = Write access.

DTCMADDR[23:0] Output Data TCM address. Addresses up to 64Mbytes.

DTCMWD[31:0] Output Data TCM write data.

DTCMCS Output Data TCM chip select. Indicates a write or a read access. Active HIGH.

DTCMWE[3:0] Output Data TCM byte write indicator. Each bit indicates which of the 
corresponding bytes in DTCMWD are written to the RAM. The least 
significant bit of DTCMWE refers to the least significant byte of 
DTCMWD. For example: b0000 = No write b0001 = Byte write to the 
least significant byte b1000 = Byte write to the most significant byte 
b0011 = A half-word write to the least significant two bytes. Bits of 
DTCMWE are set only when a write is taking place, so when 
DTCMnRW is not set, bits of DTCMWE are not set.

DTCMSEQ Output Data address sequential signal: 0 = non sequential address 1 = sequential 
address.

DTCMRD[31:0] Input Data TCM read data.
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A.4.2 Instruction TCM interface signals

Table A-4 shows the instruction TCM interface signals.

DTCMWAIT Input Data TCM wait. If HIGH, the Data TCM cannot service any requests in 
the following cycle. This signal is used to stall the ARM9E-S for 
multiple cycle access RAM on the data TCM interface. This signal is 
active HIGH. For single port RAM, this signal is used to stall the core for 
direct memory access to the DTCM.

DTCMSIZE[4:0] Input Data TCM size. Static configuration pins. The data TCM size is 
configurable in the range 0 bytes to 64 MB: b00000 = 0 byte b00001 = 
1KB b00010 = 2KB b00011 = 4KB b00100 = 8KB b00101 = 16KB 
b00110 = 32KB b00111 = 64KB b01000 = 128KB b01001 = 256KB 
b01010 = 512KB b01011 = 1 MB b01100 = 2 MB b01101 = 4 MB 
b01110 = 8 MB b01111 = 16 MB b10000 = 32 MB b10001 = 64 MB The 
supported sizes are 0 and 2nKB for n = 0 to 16

DTCMCANCEL Output Data TCM access cancel signal. Pipelined by one clock cycle relative to 
the DTCMCS it refers to: 0 = Data from read access started in previous 
clock cycle is used by the ARM9E-S 1= Data from read access started in 
previous clock cycle is not used by the ARM9E-S.

Table A-3 Data TCM interface signals (continued)

Signal Direction Function

Table A-4 Instruction TCM interface signals

Signal Direction Function

ITCMERROR Input Instruction TCM error signal. Enables the ARM9E-S core to read error 
conditions during read accesses.

ITCMnRW Output Instruction TCM not read, write: 0 = Read access 1 = Write access.

ITCMADDR[23:0] Output Instruction TCM address. Addresses up to 64MB. Output delay 90% of 
clock cycle.

ITCMWD[31:0] Output Instruction TCM write data.

ITCMCS Output Instruction TCM chip select. Indicates a write or a read access. Active 
HIGH.
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ITCMWE[3:0] Output Instruction TCM byte write indicator. Each bit indicates which of the 
corresponding bytes in ITCMWD are written to the RAM. The least 
significant bit of ITCMWE refers to the least significant byte of 
ITCMWD. For example: b0000 = No write b0001 = Byte write to the 
least significant byte b1000 = Byte write to the most significant byte 
b0011 = A half-word write to the least significant two bytes. Bits of 
ITCMWE are set only when a write is taking place, so when 
ITCMnRW is not set, bits of ITCMWE are not set.

ITCMSEQ Output Instruction address sequential signal: 0 = Nonsequential address 1 = 
Sequential address.

ITCMRD[31:0] Input Instruction TCM read data.

ITCMWAIT Input Instruction TCM wait. If HIGH, the Instruction TCM cannot service any 
requests in the following cycle. This signal is used to stall the ARM9E-S 
for multiple cycle access RAM on the instruction TCM interface. This 
signal is active HIGH. For single port RAM, this signal is used to stall 
the core for direct memory access to the ITCM.

ITCMSIZE[4:0] Input Instruction TCM size. Static configuration pins. The instruction TCM 
size is configurable in the range 0 bytes to 64 MB: b00000 = 0 byte 
b00001 = 1KB b00010 = 2KB b00011 = 4KB b00100 = 8KB b00101 = 
16KB b00110 = 32KB b00111 = 64KB b01000 = 128KB b01001 = 
256KB b01010 = 512KB b01011 = 1 MB b01100 = 2 MB b01101 = 4 
MB b01110 = 8 MB b01111 = 16 MB b10000 = 32 MB b10001 = 64 MB 
The supported sizes are 0 and 2nKB for n = 0 to 16

ITCMCANCEL Output Instruction TCM access cancel signal. Pipelined by one clock cycle 
relative to the ITCMCS it refers to: 0 = Data from read access started in 
previous clock cycle is used by the ARM9E-S 1= Data from read access 
started in previous clock cycle is not used by the ARM9E-S.

Table A-4 Instruction TCM interface signals (continued)

Signal Direction Function
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A.5 Coprocessor interface signals

Table A-5 describes the ARM966E-S coprocessor interface signals.

Table A-5 Coprocessor interface signals

Name Direction Description

CPBURST[3:0] Input This signal indicates the number of words to be 
transferred as part of a burst from an external 
coprocessor. This signal allows a maximum of 16 
words to be transferred.CPBURST must be driven to 
b0000 when there is no coprocessor instruction in the 
Decode stage of the coprocessor pipeline. Tie off to 
zero if no external coprocessors are present.

CPCLKEN Output Synchronous enable for coprocessor pipeline 
follower. When HIGH on the rising edge of CLK, the 
pipeline follower logic can advance.

CPINSTR[31:0] Output The 32-bit coprocessor instruction bus for 
transferring instructions to the coprocessor pipeline 
follower.

CPDOUT[31:0] Output The 32-bit coprocessor read data bus for transferring 
data to the coprocessor.

CPDIN[31:0] Input The 32-bit coprocessor write data bus for transferring 
data from the coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in the 
Execute stage of the pipeline, and it must be 
executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a 
coprocessor instruction, then the coprocessor must 
cancel the instruction without changing any internal 
state. This signal is only asserted in cycles where the 
previous instruction caused a Data Abort to occur.

CHSDE[1:0] Input The handshake signals from the Decode stage of the 
coprocessor pipeline follower. Indicates: ABSENT = 
10 WAIT = 00 GO = 01 LAST = 11.

CHSEX[1:0] Input The handshake signals from the Execute stage of the 
coprocessor pipeline follower. Indicates: ABSENT = 
10 WAIT = 00 GO = 01 LAST = 11.
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CPTBIT Output When HIGH, indicates that the ARM966E-S 
processor in is Thumb state. When LOW, indicates 
that the ARM966E-S processor is in ARM state. 
Sampled by the coprocessor pipeline follower.

nCPMREQ Output When LOW on the rising edge of CLK and 
CPCLKEN is HIGH, the instruction on CPINSTR 
must enter the coprocessor pipeline.

nCPTRANS Output When LOW, indicates that the ARM966E-S 
processor is in User mode. When HIGH, indicates 
that the ARM966E-S processor is in Privileged 
mode. Sampled by the coprocessor pipeline follower.

Table A-5 Coprocessor interface signals (continued)

Name Direction Description
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A.6 Debug signals

Table A-6 describes the ARM966E-S debug signals.

Table A-6 Debug signals

Name Direction Description

DBGIR[3:0] Output These four bits reflect the current instruction loaded 
into the TAP controller control register. These bits 
change when the TAP controller is in the 
UPDATE-IR state.

DBGnTRST Input This is the active LOW reset signal for the 
EmbeddedICE internal state. This signal can be 
asserted asynchronously but must be deasserted 
synchronously. 

DBGnTDOEN Output When LOW, this signal denotes that the serial data is 
being driven out of the DBGTDO output. Normally 
used as an output enable for a DBGTDO pin in a 
packaged part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan 
chain currently selected by the TAP controller. These 
bits change when the TAP controller is in the 
UPDATE-DR state.

DBGSDIN Output Contains the serial data to be applied to an external 
scan chain.

DBGSDOUT Input Contains the serial data out of an external scan chain. 
When an external scan chain is not connected, this 
signal must be tied LOW.

DBGTAPSM[3:0] Output This bus reflects the current state of the TAP 
controller state machine.

DBGTDI Input Test data input for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

COMMRX Output When HIGH, denotes that the communications 
channel receive buffer contains valid data waiting to 
be read.

COMMTX Output When HIGH, denotes that the communications 
channel transmit buffer is empty.
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DBGACK Output When HIGH, indicates that the processor is in debug 
state.

DBGEN Input A static configuration signal that disables the debug 
features of the processor when held LOW. This signal 
must be HIGH to enable the EmbeddedICE logic.

DBGRQI Output Represents the debug request signal that is presented 
to the core debug logic. This is a combination of 
EDBGRQ and bit [1] of the Debug Control Register.

EDBGRQ Input An external debugger forces the processor into debug 
state by asserting this signal.

DBGEXT[1:0] Input Input to the EmbeddedICE-RT logic enables 
breakpoints/watchpoints to be dependent on external 
conditions.

DBGINSTREXEC Output Indicates that the instruction in the Execute stage of 
the processor pipeline has been executed.

DBGRNG[1:0] Output Indicates that the corresponding EmbeddedICE-RT 
watchpoint register has matched the conditions 
currently present on the address, data and control 
buses. This signal is independent of the state of the 
watchpoint enable control bit.

TAPID[31:0] Input Specifies the ID code value shifted out on DBGTDO 
when the IDCODE instruction is entered into the 
TAP controller. For more information on TAP ID, see 
ARM966E-S JTAG TAP ID on page 7-25.

DBGIEBKPT Input Asserted by external hardware to halt execution of 
the processor for debug purposes. If HIGH at the end 
of an instruction fetch, it causes the ARM966E-S 
processor to enter debug state if that instruction 
reaches the Execute stage of the processor pipeline.

DBGDEWPT Input Asserted by external hardware to halt execution of 
the processor for debug purposes. If HIGH at the end 
of a data memory request cycle, it causes the 
ARM966E-S processor to enter debug state.

Table A-6 Debug signals (continued)

Name Direction Description
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A.7 Miscellaneous signals

Table A-7 describes the ARM966E-S miscellaneous signals.

Table A-7 Miscellaneous signals

Name Direction Description

nFIQ Input This is the Fast Interrupt Request signal. This signal 
must be synchronous to CLK.

nIRQ Input This is the Interrupt Request signal. This signal must 
be synchronous to CLK.

VINITHI Input Determines the reset location of the exception 
vectors. When LOW, the vectors are located at 
0x00000000. When HIGH, the vectors are located at 
0xFFFF0000.

INITRAM Input Determines the TCM reset enable.When HIGH, the 
instruction and data TCM are both enabled during 
reset. When LOW, the TCM are disabled during 
reset.

BIGENDOUT Output When HIGH, the ARM966E-S processor treats bytes 
in memory as big-endian. When LOW, memory is 
treated as little-endian.
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A.8 ETM interface signals

Table A-8 describes the ARM966E-S ETM interface signals.

Table A-8 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. This signal must 
be tied LOW if there is no ETM.

FIFOFULL Input Asserted when ETM FIFO fills. This signal must be 
tied LOW if there is no ETM.

ETMBIGEND Output Big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMInMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMDA[31:0] Output Data address for the ETM.

ETMDMAS[1:0] Output Data size indication for the ETM.

ETMDnMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read or write for the ETM.

ETMDSEQ Output Sequential data indication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write data for the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARM9E-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.

ETMINSTRVALID Output Instruction valid indication for the ETM.

ETMRNGOUT[1:0] Output Watchpoint register match indication for the ETM.

ETMID31TO25[31:25] Output Instruction data field for the ETM.
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ETMID15TO11[15:11] Output Instruction data field for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signals for the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signals for the ETM.

ETMPASS Output Coprocessor instruction execute indication for the 
ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID[31:0] Output Process ID for the ETM.

ETMPROCIDWR Output Asserted when ETMPROCID is written.

Table A-8 ETM interface signals (continued)

Name Direction Description
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A.9 Test wrapper signals

Table A-9 describes the ARM966E-S test wrapper signals. 

Table A-9 Test wrapper signals

Name Direction Description

WSI Input Serial input data for the test wrapper scan chain.

WSO Output Serial output data from the test wrapper scan chain.

WSEI Input Enables scanning of data through the test wrapper 
scan chain inputs.

WSEO Input Enables scanning of data through the test wrapper 
scan chain outputs.

MUXINSEL Input Selects the test wrapper scan chain as the source for 
ARM966E-S processor inputs: 1 = test wrapper in 
INTEST mode 0 = functional mode. If MUXINSEL 
is set to 1, MUXOUTSEL must be set to 0.

MUXOUTSEL Input Selects the test wrapper scan chain as the source for 
ARM966E-S processor outputs: 1 = test wrapper in 
EXTEST mode 0 = functional mode. If 
MUXOUTSEL is set to 1, MUXINSEL must be set 
to 0.

WEDGE Input Controls which edge the wrapper chain output 
activates on: 1 = activate on rising edge 0 = activate 
on falling edge.

CPMUXINSEL Input Enables the ARM966E-S processor to exercise its 
coprocessors in INTEST mode: 1 = standard 
INTEST mode 0 = functional mode or coprocessor 
test mode. If CPMUXINSEL is set to 1, then 
MUXINSEL must be set to 1.

TCMMUXINSEL Input Enables the ARM966E-S processor to test TCMs 
using BIST in INTEST mode: 1 = standard INTEST 
mode 0 = functional mode or TCM test mode. If 
TCMMUXINSEL is set to 1, then MUXINSEL 
must be set to 1.
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AC Parameters

This appendix describes the AC timing parameters for the ARM966E-S processor. It 
contains the following section:

• Timing diagrams and timing parameters on page B-2.
ARM DDI 0213E Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. B-1



AC Parameters 
B.1 Timing diagrams and timing parameters

All figures are expressed as percentages of the CLK period at maximum operating 
frequency.

The figures quoted are relative to the rising clock edge after the clock skew for internal 
buffering has been added. Inputs given a 0% hold figure require a positive hold relative 
to the top-level clock input. The amount of hold required is equivalent to the internal 
clock skew.

The timing diagrams and timing parameter tables in this section are:

• Clock, reset and AHB enable timing parameters

• AHB bus master timing parameters on page B-4

• Coprocessor interface timing parameters on page B-6

• Debug interface timing parameters on page B-8

• JTAG interface timing parameters on page B-10

• Exception and configuration timing parameters on page B-12

• AHB bus request and grant related timing parameters on page B-13

• INTEST wrapper timing parameters on page B-14

• ETM interface timing parameters on page B-16

• TCM interface timing parameters on page B-18.

B.1.1 Clock, reset, and AHB enable timing

Figure B-1 shows the clock, reset, and AHB enable timing parameters.

Figure B-1 Clock, reset and AHB enable timing parameters
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Table B-1 describes the timing parameters shown in Figure B-1 on page B-2.

B.1.2 AHB bus master timing

Figure B-2 on page B-4 shows the AHB bus master timing parameters. 

Table B-1 Clock, reset and AHB enable parameters

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tishen HCLKEN input setup time to rising CLK 85% -

Tihhen HCLKEN input hold time from rising CLK - 0%

Tisrst HRESETn deassertion input setup time to rising CLK 90% -

Tihrst HRESETn deassertion input hold time from rising CLK - 0%
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Figure B-2 AHB bus master timing parameters
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Table B-2 describes the AHB bus master timing parameters shown in Figure B-2 on 
page B-4.

B.1.3 Coprocessor interface timing

Figure B-3 on page B-6 shows the coprocessor interface timing parameters.

Table B-2 AHB bus master timing parameters

Symbol Parameter Min Max

Tovtr Rising CLK to HTRANS[1:0] valid - 30%

Tohtr HTRANS[1:0] hold time from rising CLK >0% -

Tova Rising CLK to HADDR[31:0] valid - 30%

Toha HADDR[31:0] hold time from rising CLK >0% -

Tovctl Rising CLK to AHB control signals valid - 30%

Tohctl AHB control signals hold time from rising CLK >0% -

Tovwd Rising CLK to HWDATA[31:0] valid - 30%

Tohwd HWDATA[31:0] hold time from rising CLK >0% -

Tisrdy HREADY input setup time to rising CLK 40% -

Tihrdy HREADY input hold time from rising CLK - 0%

Tisrsp HRESP[1:0] input setup time to rising CLK 40% -

Tihrsp HRESP[1:0] input hold time from rising CLK - 0%

Tisrd HRDATA[31:0] input setup time to rising CLK 30% -

Tihrd HRDATA[31:0] input hold time from rising CLK - 0%
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Figure B-3 Coprocessor interface timing parameters
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Table B-3 describes the coprocessor interface timing parameters shown in Figure B-3 
on page B-6.

B.1.4 Debug interface timing

Figure B-4 on page B-8 shows the debug interface timing parameters.

Table B-3 Coprocessor interface parameters

Symbol Parameter Min Max

Tovcpen Rising CLK to CPCLKEN valid - 30%

Tohcpen CPCLKEN hold time from rising CLK >0% -

Tovcpid Rising CLK to CPINSTR[31:0] valid - 30%

Tohcpid CPINSTR[31:0] hold time from rising CLK >0% -

Tovcpctl Rising CLK to transaction control valid - 30%

Tohcpctl Transaction control hold time from rising CLK >0% -

Tiscphs Coprocessor handshake input setup time to rising CLK 50% -

Tihcphs Coprocessor handshake input hold time from rising CLK - 0%

Tiscpb CPBURST[3:0] input setup time to rising CLK 50% -

Tihcpb CPBURST[3:0] input hold time from rising CLK - 0%

Tovcplc Rising CLK to CPLATECANCEL valid - 30%

Tohcplc CPLATECANCEL hold time from rising CLK >0% -

Tovcpps Rising CLK to CPPASS valid - 30%

Tohcpps CPPASS hold time from rising CLK >0% -

Tovcprd Rising CLK to CPDOUT[31:0] valid - 30%

Tohcprd CPDOUT[31:0] hold time from rising CLK >0% -

Tiscpwr CPDIN[31:0] input setup time to rising CLK 50% -

Tihcpwr CPDIN[31:0] input hold time from rising CLK - 0%
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Figure B-4 Debug interface timing parameters
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Table B-4 describes the Debug interface timing parameters shown in Figure B-4 on 
page B-8.

B.1.5 JTAG interface timing

Figure B-5 on page B-10 shows the JTAG interface timing parameters.

Table B-4 Debug interface parameters

Symbol Parameter Min Max

Tovdbgack Rising CLK to DBGACK valid - 60%

Tohdbgack DBGACK hold time from rising CLK >0% -

Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 80%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -

Tovdbgrqi Rising CLK to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from rising CLK >0% -

Tovdbgstat Rising CLK to DBGINSTREXEC valid - 45%

Tohdbgstat DBGINSTREXEC hold time from rising CLK >0% -

Tovdbgcomm Rising CLK to communications channel outputs valid - 60%

Tohdbgcomm Communications channel outputs hold time from rising CLK >0% -

Tisdbgen DBGEN input setup time to rising CLK 35% -

Tihdbgen DBGEN input hold time from rising CLK - 0%

Tisedbgrq EDBGRQ input setup hold time to rising CLK 30% -

Tihedbgrq EDBGRQ input hold time from rising CLK - 0%

Tisdbgext DBGEXT input setup time to rising CLK 20%

Tihdbgext DBGEXT input hold time from rising CLK - 0%

Tisiebkpt DBGIEBKPT input setup time to rising CLK 50% -

Tihiebkpt DBGIEBKPT input hold time from rising CLK - 0%

Tisdewpt DBGDEWPT input setup time to rising CLK 50% -

Tihdewpt DBGDEWPT input hold time from rising CLK - 0%
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Figure B-5 JTAG interface timing parameters
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Table B-5 describes the JTAG interface timing parameters as shown in Figure B-5 on 
page B-10.

B.1.6 Exception and configuration timing

Figure B-6 on page B-12 shows the exception and configuration timing parameters.

Table B-5 JTAG interface parameters

Symbol Parameter Min Max

Tovdbgir Rising CLK to DBGIR valid - 25%

Tohdbgir DBGIR hold time from rising CLK >0% -

Tovdbgscreg Rising CLK to DBGSCREG valid - 30%

Tohdbgscreg DBGSCREG hold time from rising CLK >0% -

Tovdbgtapsm Rising CLK to DBGTAPSM valid - 30%

Tohdbgtapsm DBGTAPSM hold time from rising CLK >0% -

Tovtdoen Rising CLK to DBGnTDOEN valid - 40%

Tohtdoen DBGnTDOEN hold time from rising CLK >0% -

Tovsdin Rising CLK to DBGSDIN valid - 25%

Tohsdin DBGSDIN hold time from rising CLK >0% -

Tovtdo Rising CLK to DBGTDO valid - 65%

Tohtdo DBGTDO hold time from rising CLK >0% -

Tisntrst DBGnTRST deasserted input setup time to rising CLK 25% -

Tihntrst DBGnTRST input hold time from rising CLK - 0%

Tistdi TAP state control input setup time to rising CLK 30% -

Tihtdi TAP state control input hold time from rising CLK - 0%

Tistcken DBGTCKEN input setup time to rising CLK 50% -

Tihtcken DBGTCKEN input hold time from rising CLK - 0%

Tistapid TAPID[31:0] input setup time to rising CLK 35% -

Tihtapid TAPID[31:0] input hold time from rising CLK - 0%
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Figure B-6 Exception and configuration timing parameters

Table B-6 describes the exception and configuration timing parameters shown in 
Figure B-6.
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Table B-6 Exception and configuration parameters

Symbol Parameter Min Max

Tovbigend Rising CLK to BIGENDOUT valid - 30%

Tohbigend BIGENDOUT hold time from rising CLK >0% -

Tisint Interrupt input setup time to rising CLK 30% -

Tihint Interrupt input hold time from rising CLK - 0%

Tishivecs VINITHI input setup time to rising CLK 90% -

Tihhivecs VINITHI input hold time from rising CLK - 0%

Tisinitram INITRAM input setup time to rising CLK 95% -

Tihinitram INITRAM input hold time from rising CLK - 0%
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The VINITHI and INITRAM pins are specified as 95% of the cycle because they are 
for input configuration during reset and can be considered static.

B.1.7 AHB bus request and grant-related timing

Figure B-7 shows the AHB bus request and grant-related timing parameters.

Figure B-7 AHB bus request and grant related timing parameters

Table B-7 describes the AHB bus request and grant-related timing parameters shown in 
Figure B-7. 
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Table B-7 AHB bus request and grant-related parameters

Symbol Parameter Min Max

Tovreq Rising CLK to HBUSREQ valid - 30%

Tohreq HBUSREQ hold time from rising CLK >0% -

Tovlck Rising CLK to HLOCK valid - 30%
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B.1.8 INTEST wrapper timing

Figure B-8 shows the INTEST wrapper timing parameters. The INTEST wrapper 
inputs and outputs are specified as 95% of the cycle because they are production test 
related and expected to operate at typically 50% of the functional clock rate.

Figure B-8 INTEST wrapper timing parameters

Tohlck HLOCK hold time from rising CLK >0% -

Tisgnt HGRANT input setup time to rising CLK 40% -

Tihgnt HGRANT input hold time from rising CLK - 0%

Table B-7 AHB bus request and grant-related parameters (continued)

Symbol Parameter Min Max
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Table B-8 describes the INTEST wrapper parameters shown in Figure B-8 on 
page B-14.

B.1.9 ETM interface timing

Figure B-9 on page B-16 shows the ETM interface timing parameters.

Table B-8 INTEST wrapper

Symbol Parameter Min Max

Tovso Rising CLK to SO valid - 30%

Tohso SO hold time from rising CLK >0% -

Tissi SI input setup time to rising CLK 95% -

Tihsi SI input hold time from rising CLK - 0%

Tisscanen SCANEN input setup time to rising CLK 95% -

Tihscanen SCANEN input hold time from rising CLK - 0%

Tistestmux Test mux input setup time to rising CLK 95% -

Tihtestmux Test mux input hold time from rising CLK - 0%
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Figure B-9 ETM interface timing parameters

CLK

ETMnWAIT

ETMIA[31:1]
ETM31TO25[31:25]
ETM15TO11[15:11]

ovetminstT
ETMInMREQ

ETMDSEQ
ETMISEQ
ETMITBIT

ETMINSTREXEC
ETMINSTRVALID

ETMDA[31:0]
ETMRDATA[31:0]

ETMWDATA[31:0]
ETMDMAS[31:0]

ohetminstT

ovetmictlT ohetmictlT

ovetmstatT ohetmstatT

ovetmdataT ohetmdataT

ovetmnwaitT ohetmnwaitT

ETMEN

isetmenT
ihetmenT

ETMDnMREQ
ETMDnRW

ETMDABORT
ovetmdctlT ohetmdctlT

ETMCHSD[1:0]
ETMCHSE[1:0]

ETMPASS
ETMLATECANCEL

ovetmcpifT ohetmcpifT

ETMDBGACK
ETMRNGOUT[1:0]

ovetmdbgT ohetmdbgT
ETMBIGEND
ETMHIVECS
ETMPROCID

ETMPROCIDWR
ovetmcfgT ohetmcfgT

FIFOFULL

isfifofullT
ihfifofullT
B-16 Copyright © 2000, 2002, 2004 ARM Limited. All rights reserved. ARM DDI 0213E



AC Parameters 
Table B-9 describes the ETM timing parameters shown in Figure B-9 on page B-16.

Table B-9 ETM parameters

Symbol Parameter Min Max

Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK >0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%

Tohetmictl ETM instruction control hold time from rising CLK >0% -

Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%

Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -

Tovetmdata Rising CLK to ETM data interface valid - 30%

Tohetmdata ETM data interface hold time from rising CLK >0% -

Tovetmnwait Rising CLK to ETMnWAIT valid - 30%

Tohetmnwait ETMnWAIT hold time from rising CLK >0% -

Tovetmdctl Rising CLK to ETM data control valid - 30%

Tohetmdctl ETM data control hold time from rising CLK >0% -

Tovetmcfg Rising CLK to ETM configuration valid - 30%

Tohetmcfg ETM configuration hold time from rising CLK >0% -

Tovetmcpif Rising CLK to ETM coprocessor signals valid - 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% -

Tovetmdbg Rising CLK to ETM debug signals valid - 30%

Tohetmdbg ETM debug signals hold time from rising CLK >0% -

Tisetmen ETMEN input setup time to rising CLK 50% -

Tihetmen ETMEN input hold time from rising CLK - 0%

Tisfifofull FIFOFULL input setup time to rising CLK 50% -

Tihfifofull FIFOFULL input hold time from rising CLK - 0%
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B.1.10 TCM interface timing

Figure B-10 shows the TCM interface timing parameters.

Figure B-10 TCM interface timing parameters
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Table B-10 describes the TCM interface timing parameters shown in Figure B-10 on 
page B-18.

Table B-10 TCM parameters

Symbol Parameter Min Max

Tovtcma Rising CLK to TCMADDR valid - 85%

Tohtcma TCMADDR hold time from rising CLK >0% -

Tovtcmca Rising CLK to TCMCANCEL valid - 75%

Tohtcmca TCMCANCEL hold time from rising CLK >0% -

Tovtcmctl Rising CLK to TCM data control valid - 85%

Tohtcmctl TCM data control valid hold time from rising CLK >0% -

Tovtcmwe Rising CLK to TCM write enable valid - 85%

Tohtcmwe TCM write enable hold time from rising CLK >0% -

Tovtcmdata Rising CLK to TCM write data valid - 50%

Tohtcmdata TCM write data hold time from rising CLK >0% -

Tistcmwait TCMWAIT input setup time to rising CLK 15% -

Tihtcmwait TCMWAIT input hold time from rising CLK - 0%

Tistcmrd TCM read data input setup time to rising CLK 40% -

Tihtcmrd TCM read data input hold time from rising CLK - 0%

Tistcmerr TCMERROR input setup time to rising CLK 40% -

Tihtcmerr TCMERROR input hold time from rising CLK - 0%
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Glossary

This glossary describes some of the terms used in this manual. Where terms can have 
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it must halt execution of an attempted illegal 
memory access. An abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction or data memory. An abort is classified 
as either a Prefetch Abort, a Data Abort, or an External Abort. 

See also Data Abort, External Abort and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data 
Abort exception. Different abort models behave differently with regard to load and store 
instructions that specify base register write-back.

Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running 
with multiple masters and slaves. It is an on-chip bus specification that details a strategy 
for the interconnection and management of functional blocks that make up a 
System-on-Chip (SoC). It aids in the development of embedded processors with one or 
more CPUs or signal processors and multiple peripherals. AMBA complements a 
reusable design methodology by defining a common backbone for SoC modules. AHB 
conforms to this standard.

AMBA See Advanced Microcontroller Bus Architecture.
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Application Specific 
Integrated Circuit

An integrated circuit that has been designed to perform a specific application function. 
It can be custom-built or mass-produced.

ARM instruction Is a word that specifies an operation for an ARM processor to perform. ARM 
instructions must be word-aligned.

ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in 
ARM state.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are 
stored at increasing addresses in memory.

See also Little-endian and Endianness.

BIST See Built-In Self Test.

Built-in Self Test The technique of designing circuits with additional logic that can be used to test proper 
operation of the primary (functional) logic. This is used only for TCMs in the 
ARM966E-S macrocell.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is to be halted. Breakpoints are inserted by the programmer to enable 
inspection of register contents, memory locations, variable values at fixed points in the 
program execution to test that the program is operating correctly. Breakpoints are 
removed after the program is successfully tested. 

See also Watchpoint.

Byte An 8-bit data item.

Communications channel
The hardware used for communicating between the software running on the processor, 
and an external host, using the debug interface. When this communication is for debug 
purposes, it is called the Debug Comms Channel.

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the 
main CPU cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

Data Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Data Abort is caused by attempting to access 
invalid data memory. 

See also Abort, External Abort, and Prefetch Abort.

Debugger A debugging system that includes a program, used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.
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Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise 
stated.

EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for ARM processor 
cores. It is accessed through the TAP controller on the ARM core using the JTAG 
interface.

Embedded Trace Macrocell (ETM)
A hardware macrocell which, when connected to a processor core, outputs instruction 
and data trace information on a trace port. The ETM provides processor driven trace 
through a trace port.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data 
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors 
are configured, that contains the first instruction of the corresponding interrupt service 
routine.

ETM See Embedded Trace Macrocell.

External Abort An indication from an external memory system to a core that it must halt execution of 
an attempted illegal memory access. An External Abort is caused by the external 
memory system as a result of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored 
at increasing addresses in memory.

See also Big-endian and Endianness.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
will comprise several macrocells (such as an ARM9E-S, an ETM9, and a memory 
block) plus application-specific logic.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value 
that was most recently written to that location. Memory coherency is made difficult 
when there are multiple possible physical locations that are involved, such as a system 
that has main memory, a write buffer and a cache.
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Prefetch Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Prefetch Abort can be caused by the external or 
internal memory system as a result of attempting to access invalid instruction memory. 

See also Data Abort, External Abort and Abort.

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional 
components such as memory, and interfaces. These are combined as a single macrocell, 
that can be fabricated on an integrated circuit. 

Region A partition of instruction or data memory space.

Register A temporary storage location used to hold binary data until it is ready to be used. 

SBO See Should Be One.

SBZ See Should Be Zero.

SCREG The currently selected scan chain number in an ARM TAP controller.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces 
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces 
Unpredictable results.

TAP See Test access port.

TCM See Tightly-coupled memory.

Test Access Port The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to 
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating 
in Thumb state.

Tightly-coupled 
memory

An area of low latency memory that provides predictable instruction execution or data 
load timing in cases where deterministic performance is required. TCMs are suited to 
holding: - critical routines (such as for interrupt handling) - scratchpad data - data types 
whose locality is not suited to caching - critical data structures (such as interrupt stacks).

Instructions and data can be shifted into and out of TCMs using loads and stores.
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Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM 
Architecture Reference Manual for more details on ARM exceptions.

UNP See Unpredictable.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. Unpredictable instructions must not halt 
or hang the processor, or any part of the system.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to allow inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested.

See also Breakpoint.

Word A 32-bit data item.
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