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Preface

This preface introduces the ARM946E-S r1p1 Technical Reference Manual. It contains 
the following sections:

• About this document on page xvi

• Feedback on page xxi.
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Preface 
About this document

This document is a reference manual for the ARM946E-S processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this guide, 
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This document has been written for hardware and software engineers who want to 
design or develop products based on the ARM946E-S processor. It assumes no prior 
knowledge of ARM products.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction 

This chapter provides an introduction to the ARM946E-S processor.

Chapter 2 Programmer’s Model 

This chapter describes the programmer’s model of the ARM946E-S 
processor and includes a summary of the ARM946E-S coprocessor 
registers.

Chapter 3 Caches 

This chapter describes the ARM946E-S cache implementation.

Chapter 4 Protection Unit 

This chapter describes the ARM946E-S memory protection unit.

Chapter 5 Tightly-Coupled Memory Interface 

This chapter describes the requirements and operation of the 
Tightly-Coupled Memory (TCM).

Chapter 6 Bus Interface Unit and Write Buffer 

This chapter describes the operation of the bus interface unit and write 
buffer.
xvi Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D



Preface 
Chapter 7 Coprocessor Interface 

This chapter describes the coprocessor interface and the operation of 
common coprocessor instructions.

Chapter 8 ETM Interface 

This chapter describes the ETM interface, including details of how to 
enable the interface.

Chapter 9 Debug Support 

This chapter describes the debug support for the ARM946E-S processor 
and the EmbeddedICE-RT logic.

Chapter 10 Test Support 

This chapter describes the test methodology used for the ARM946E-S 
synthesized logic and memory.

Appendix A AC Parameters 

This appendix describes the timing parameters applicable to the 
ARM946E-S processor.

Appendix B Signal Descriptions 

This appendix describes the signals used in the ARM946E-S processor.

Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xviii

• Signals on page xix

• Numbering on page xix.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
signal names. Also used for terms in descriptive lists, where 
appropriate.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. xvii
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monospace Denotes text that you can enter at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You 
can enter the underlined text instead of the full command or option 
name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax 
where they appear in code or code fragments. They appear in 
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in 
timing diagrams. Variations, when they occur, have clear labels. You must not assume 
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Key to timing diagram conventions

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xviii Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D
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Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means HIGH for 
active-HIGH signals and LOW for active-LOW signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix n Denotes active-LOW signals except in the case of AHB or 
Advanced Peripheral Bus (APB) reset signals.

Prefix P Denotes APB signals.

Suffix n Denotes AXI, AHB, and APB reset signals.

Numbering

The numbering convention is:

<size in bits>'<base><number> 

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is 
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked 
Questions list. 

ARM publications

This document contains information that is specific to the ARM946E-S processor. See 
the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0406)
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. xix
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• ARM9E-S Technical Reference Manual (ARM DDI 0165)

• ARM946E-S Configuration and Sign-off Guide (ARM DII 0171)

• AMBA Specification (ARM IHI 0011).
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Feedback

ARM Limited welcomes feedback both on the ARM946E-S processor and its 
documentation.

Feedback on the ARM946E-S processor

If you have any comments or suggestions about this product, contact your supplier 
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments about this manual, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. xxi
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Chapter 1 
Introduction

This chapter introduces the ARM946E-S processor. It contains the following sections:

• About the ARM946E-S processor on page 1-2

• ARM946E-S block diagram on page 1-3

• Differences between processor versions on page 1-5.
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Introduction 
1.1 About the ARM946E-S processor

The ARM946E-S is a synthesizable processor combining an ARM9E-S™ processor 
core with a configurable memory system. It is a member of the ARM9E™ family of 
high-performance, 32-bit system-on-chip processor solutions.

The ARM946E-S is a Harvard architecture cached processor that provides a complete 
high-performance processor subsystem, including:

• An ARM9E-S RISC integer CPU core featuring: 

— ARMv5TE 32-bit instruction set that has improved ARM/Thumb code 
interworking and an enhanced multiplier designed for improved DSP 
performance

— ARM debug architecture with additional support for real-time debug. This 
enables critical exception handlers to execute while debugging the system.

• Support for external Tightly-Coupled Memory (TCM). A TCM interface is 
provided for each of the external instruction and data memory blocks. The size of 
both the Instruction and Data TCM blocks are implementor-specific and can 
range from 0KB to 1MB.

• Instruction and data caches. The design can be easily modified to enable any 
combination of caches from 0KB to 1MB.

• A protection unit that enables the memory to be protected in a simple manner, 
ideal for embedded control applications.

• An AMBA AHB bus interface. The ARM946E-S processor interfaces to the rest 
of the system are through use of unified address and data buses. This interface is 
compatible with the AMBA AHB bus standard.

• Support for external coprocessors enabling floating point or other application 
specific hardware acceleration to be added. For coprocessor support, the 
instruction and data buses are exported along with simple handshaking signals.

• Support for the use of a scan test methodology for the standard cell logic and 
Built-In-Self-Test (BIST) for the TCM and caches.

• An interface to an external Embedded Trace Macrocell (ETM) to support 
real-time tracing of instructions and data.

Providing this complete high-frequency subsystem frees the System-on-Chip (SoC) 
designer to concentrate on design issues unique to their system. The synthesizable 
nature of the device eases integration into ASIC technologies.

The ARM946E-S processor is targeted at a wide range of embedded applications where 
high-performance, low system cost, small die size, and low power are all important.
1-2 Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D



Introduction 
1.2 ARM946E-S block diagram

Figure 1-1 shows a block diagram of the ARM946E-S processor.

Figure 1-1 ARM946E-S processor block diagram
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The blocks shown in Figure 1-1 on page 1-3 are described in the locations listed in 
Table 1-1.

Table 1-1 Location of block descriptions

Block Location of description

ARM9E-S (Rev 1) ARM9E-S (Rev 1) Technical Reference Manual

AHB bus interface unit and write buffer Chapter 6 Bus Interface Unit and Write Buffer

Tightly-coupled Memory interface Chapter 5 Tightly-Coupled Memory Interface

System control coprocessor (CP15) Chapter 2 Programmer’s Model

External coprocessor interface Chapter 7 Coprocessor Interface

ETM interface Chapter 8 ETM Interface

System controller Chapter 2 Programmer’s Model

Memory protection unit Chapter 4 Protection Unit

Instruction cache Chapter 3 Caches

Data cache Chapter 3 Caches

Instruction cache control Chapter 2 Programmer’s Model and Chapter 3 Caches

Data cache control Chapter 2 Programmer’s Model and Chapter 3 Caches
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1.3 Differences between processor versions

The differences between the current version of the processor and Rev 0 are as follows:

• Tightly coupled memories are external to the macrocell. See Chapter 5 
Tightly-Coupled Memory Interface.

• The AHB interface is changed to improve the input timing. See Chapter 6 Bus 
Interface Unit and Write Buffer.

• The AHB interface is changed to generate BUSY cycles during access types. See 
Chapter 5 Tightly-Coupled Memory Interface.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. 1-5
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Chapter 2 
Programmer’s Model

This chapter describes the programmer’s model for the ARM946E-S processor. It 
contains the following sections:

• About the ARM946E-S programmer’s model on page 2-2

• About the ARM9E-S programmer’s model on page 2-3

• CP15 register map summary on page 2-4.
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2.1 About the ARM946E-S programmer’s model

The programmer’s model for the ARM946E-S processor primarily consists of the 
ARM9E-S core programmer’s model (see About the ARM9E-S programmer’s model on 
page 2-3). Additions to this model are required to control the operation of the 
ARM946E-S internal coprocessors, and any coprocessor connected to the external 
coprocessor interface.

There are two internal coprocessors within the ARM946E-S processor:

• CP14 within the ARM9E-S core enables software access to the debug 
communication channel

• CP15 enables configuration of the caches, Tightly-Coupled Memory (TCM), 
protection unit, write buffer, and other ARM946E-S system options such as big 
or little-endian operation.

The registers defined in CP14 are accessible with MCR and MRC instructions, and are 
described in The debug communication channel on page 9-29.

The registers defined in CP15 are accessible with MCR and MRC instructions, and are 
described in CP15 register map summary on page 2-4. These instructions permit 
conditional access using the optional {cond} field.

Registers and operations provided by any coprocessors attached to the external 
coprocessor interface are accessible with appropriate coprocessor instructions.
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2.2 About the ARM9E-S programmer’s model

The ARM9E-S core implements the ARMv5TE architecture, which includes the 32-bit 
ARM instruction set and the 16-bit Thumb instruction set. For a description of both 
instruction sets, see the ARM Architecture Reference Manual.

2.2.1 Data Abort model

The ARM9E-S implements the base restored Data Abort model, which differs from the 
base updated Data Abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating 
system code, the Data Abort handler. It does not affect user code. With the base restored 
Data Abort model, when a Data Abort exception occurs during the execution of a 
memory access instruction, the base register is always restored by the processor 
hardware to the value the register contains before the instruction is executed. This 
removes the requirement for the Data Abort handler to repair any base register update 
that might have been specified by the aborted instruction.

The base restored Data Abort model significantly simplifies the Data Abort handler 
software.
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2.3 CP15 register map summary

The ARM946E-S processor incorporates CP15 for system control. CP15 enables 
configuration of the caches, Tightly-Coupled Memory (TCM), and protection unit. It 
also enables configuration of the ARM946E-S system options including big or 
little-endian operation. 

This section contains the following:

• Accessing CP15 registers on page 2-6

• Register 0, ID Code Register on page 2-7

• Register 0, Cache Type Register on page 2-7

• Register 0, Tightly-coupled Memory Size Register on page 2-10

• Register 1, Control Register on page 2-11

• Register 2, Cache Configuration Registers on page 2-15

• Register 3, Write Buffer Control Register on page 2-16

• Register 5, Access Permission Registers on page 2-17

• Register 6, Protection Region Base and Size Registers on page 2-19

• Register 7, Cache Operations Register on page 2-22

• Register 9, Cache Lockdown Registers on page 2-25

• Register 9, Tightly-coupled Memory Region Registers on page 2-26.

• Register 13, Trace Process Identifier Register on page 2-28

• Register 15, BIST Control Registers on page 2-29

• Register 15, Test State Register on page 2-31

• Register 15, Cache Debug Index Register on page 2-32

• Register 15, Trace Control Register on page 2-35.

Table 2-1 shows the register map for CP15.

Table 2-1 CP15 register map

Register Read Write

0 ID code a Unpredictable

0 Cache type a Unpredictable

0 Tightly-coupled memory size a Unpredictable

1 Control Control

2 Cache configuration b Cache configuration b

3 Write buffer control Write buffer control
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4 Unpredictable Unpredictable

5 Access permission b Access permission b

6 Protection region base and size a Protection region base and size a

7 Unpredictable Cache operations a

8 Unpredictable Unpredictable

9 Cache lockdown ab Cache lockdown ab

9 Tightly-coupled memory region ab Tightly-coupled memory region ab

10 Unpredictable Unpredictable

11 Unpredictable Unpredictable

12 Unpredictable Unpredictable

13 Trace process ID Trace process ID

14 Unpredictable Unpredictable

15 BIST control a BIST control a

15 Test state a Test state a

15 Cache debug index a Cache debug index a

15 Trace control  a Trace control a

a. Register location provides access to more than one register. The register accessed depends 
on the value of the opcode_2 or CRm field. See the register description for details.

b. Separate registers for instruction and data. See the register description for details.

Table 2-1 CP15 register map  (continued)

Register Read Write
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2.3.1 Accessing CP15 registers

Table 2-2 shows the terms and abbreviations used in this section.

In all cases, reading from, or writing any data values to any CP15 registers, including 
those fields specified as Unpredictable or Should Be Zero, does not cause any 
permanent damage.

All CP15 register bits that are defined and contain state are set to 0 by HRESETn unless 
otherwise stated in this chapter.

CP15 registers can only be accessed with MRC and MCR instructions in a privileged mode. 
The instruction bit pattern of the MCR and MRC instructions is shown in Figure 2-1.

Figure 2-1 CP15 MRC and MCR bit pattern

The assembler for these instructions is:

MCR/MRC{cond} p15,opcode_1,Rd,CRn,CRm,opcode_2

Table 2-2 CP15 terms and abbreviations

Term Abbreviation Description

Unpredictable UNP For reads, the data returned when reading from this location is 
Unpredictable. It can have any value.

For writes, writing to this location causes Unpredictable 
behavior, or an Unpredictable change in device configuration.

Undefined UND An instruction that accesses CP15 in the manner indicated 
takes the undefined instruction trap.

Should Be Zero SBZ When writing to this location, all bits of this field should be 0.

Should Be One SBO When writing to this location, all bits of this field should be 1.

CRm
opcode_2

Rd
CRn
opcode_1
Cond

L

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

111 1 11 1 1 0
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Instructions CDP, LDC, and STC, along with unprivileged MRC and MCR instructions to CP15, 
cause the Undefined instruction trap to be taken. The CRn field of MRC and MCR 
instructions specifies the coprocessor register to access. The CRm field and opcode_2 field 
specify a particular action when addressing registers.

Attempting to read from a nonreadable register, or writing to a nonwritable register 
causes Unpredictable results. 

The opcode_1, opcode_2, and CRm fields Should Be Zero, except when the values specified 
are used to select the desired operations, in all instructions that access CP15. Using 
other values results in Unpredictable behavior.

2.3.2 Register 0, ID Code Register

This is a read-only register that returns a 32-bit device ID code. The ID Code Register 
is accessed by reading CP15 register 0 with the opcode_2 field set to any value other than 
1 or 2. For example:

MRC p15, 0, Rd, c0, c0, {0,3-7}; returns ID register

Table 2-3 shows the contents of the ID code.

2.3.3 Register 0, Cache Type Register

This is a read-only register that contains information aboutthe size and architecture of 
the instruction cache and data cache, enabling operating systems to establish how to 
perform operations such as cache cleaning and lockdown. Future ARM cached 
processors will contain this register, enabling RTOS vendors to produce future-proof 
versions of their operating systems.

The cache type register is accessed by reading CP15 register 0 with the opcode_2 field 
set to 1. For example:

Table 2-3 Register 0, ID code

Register bits Function Value

[31:24] Implementor 0x41

[23:20] Variant (reserved) 0x0

[19:16] ARM architecture 5TE 0x5

[15:4] Primary part number 0x946

[3: 0] Revision (major product revision) 0x1
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MCR p15,0,Rd,c0,c0,1; returns cache details

Table 2-4 shows the format of the register.

Bits [28:25] indicate which major cache class the implementation falls into. b0111 
means that the cache provides:

• cache-clean-step operation

• cache-flush-step operation

• lock-down facilities.

Table 2-4 Cache Type Register format

Register bits Function Value

[31:29] Reserved b000

[28:25] Cache type b0111

[24] Harvard/unified b1 (defines Harvard cache)

[23:22] Reserved b00

[21:18] Data cache size Implementation-specific

[17:15] Data cache associativity Implementation-specific

[14] Data cache absent Implementation-specific

[13:12] Data cache words per line b10 (defines 8 words per line)

[11:10] Reserved b00

[9:6] Instruction cache size Implementation-specific

[5:3] Instruction cache associativity Implementation-specific

[2] Instruction cache absent Implementation-specific

[1:0] Instruction cache words per line b10 (defines 8 words per line)
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Bits [21:18] give the data cache size. Bits [9:6] give the instruction cache size. Table 2-5 
lists the meaning of values used for cache size encoding.

Bits [17:15] give the data cache associativity. Bits [5:3] give the instruction cache 
associativity. Table 2-6 lists the meaning of values used for cache associativity 
encoding.

The cache associativity fields in the cache type register are implementation-specific 
(implementor-defined). Therefore, if the implementation has an instruction or data 
cache, the associativity for that cache is set to b010 to indicate a four-way set associative 
cache. If either cache is not included in a specific implementation, then the associativity 
field for that cache is set to b000 to indicate that the cache is absent. 

Bit 14 gives the data cache base size and bit 2 gives the instruction cache base size.

Table 2-5 Cache size encoding

Bits [21:18] and 
bits[9:6]

Cache size

b0000 0KB

b0011 4KB

b0100 8KB

b0101 16KB

b0110 32KB

b0111 64KB

b1000 128KB

b1001 256KB

b1010 512KB

b1011 1MB

Table 2-6 Cache associativity encoding

Bits [17:15] and 
bits [5:3]

Associativity

b000 Direct mapped

b010 4
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The base size bits are implementation-specific. If the implementation has an instruction 
or data cache, the base size bit for that cache is set to 0, indicating that the cache type 
parameters are valid. If either cache is not included for a specific implementation, the 
relevant base size is set to 1, indicating that the cache is absent.

The cache base size and cache size fields are generated within the cache blocks to avoid 
having to resynthesize the design for different cache sizes.

2.3.4 Register 0, Tightly-coupled Memory Size Register

This is a read-only register that returns the size of the Instruction and Data 
Tightly-coupled Memory (TCM) integrated with the ARM946E-S processor. The 
register contents reflect the state of input signals PhyITCMSize[3:0] and 
PhyDTCMSize[3:0].

The tightly-coupled memory size register is accessed by reading CP15 register 0 with 
the opcode_2 field set to 2. For example:

MRC p15, 0, Rd, c0, c0, 2; returns tightly-coupled memory size register

The register contains information about the size of the Instruction TCM and Data TCM. 
Table 2-7 shows the format of the register.

Table 2-7 Tightly-coupled Memory Size Register

Register bits Meaning Value

[31:22 ] Reserved b0000000000

[21:18 ] Data TCM size Implementation-specific

[17:15] Reserved b000

[14 ] Data TCM absent Implementation-specific

[13:10] Reserved b0000

[9:6] Instruction TCM size Implementation-specific

[5:3] Reserved b000

[2] Instruction TCM absent Implementation-specific

[1:0] Reserved b00
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The memory size parameters are implementation-specific. The values used are 
generated within the memory blocks. This enables the memory size to be changed 
without having to re-synthesize the full design. Bits [21:18] define the Data TCM size. 
Bits [9:6] define the Instruction TCM size. Table 2-8 shows the memory size field 
definitions for Instruction and Data TCM sizes.

If the TCM is absent, the relevant TCM absent bit (bit 14 or bit 2) in the tightly-coupled 
memory size register should be one. If TCM is present in the design, the relevant TCM 
absent bit should be zero.

2.3.5 Register 1, Control Register

This register contains the control bits of the ARM946E-S processor. All reserved bits 
must either be written with zero or one, as indicated, or written using 
read-modify-write. The reserved bits have an Unpredictable value when read. To read 
and write this register:

MRC p15, 0, Rd, c1, c0, 0; read control register
MCR p15, 0, Rd, c1, c0, 0; write control register

Table 2-8 Memory size field

Bits [21:18] and bits [9:6] TCM size 

b0000 0KB

b0011 4KB

b0100 8KB 

b0101 16KB

b0110 32KB

b0111 64KB

b1000 128KB

b1001 256KB

b1010 512KB

b1011 1MB
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Table 2-9 shows the functions controlled by register 1.

The bits in the Control Register are described in this section.

Bit 19, Instruction TCM load mode

This bit controls the operation of the Instruction TCM load mode.

You can use the Instruction TCM load mode for initializing the Instruction TCM. The 
Instruction TCM load mode enables you to load data into the ARM946E-S processor 
from either data cache or main memory, and then write to the same address but within 
the Instruction TCM. This enables you to copy boot code from memory located at 
address 0x0 into the Instruction TCM which, when enabled, also exists at address 0x0. 
The operation of the load mode is described in Initializing the Instruction TCM on 
page 5-3. 

Table 2-9 Register 1, Control Register

Register bits Function

[31:20] Reserved (SBZ)

[19] Instruction TCM load mode

[18] Instruction TCM enable

[17] Data TCM load mode

[16] Data TCM enable

[15] Disable loading TBIT

[14] Round-robin replacement

[13] Alternate vector select 

[12] Instruction cache enable

[11:8] Reserved (SBZ)

[7] Big-endian

[6:3] Reserved (SBO)

[2] Data cache enable

[1] Reserved (SBZ)

[0] Protection unit enable
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At reset this bit is cleared.

Bit 18, Instruction TCM enable

This bit controls operation of the Instruction TCM. When the Instruction TCM is 
enabled, all instruction and data accesses to the Instruction TCM address range access 
the Instruction TCM.

At reset this bit takes the value of the input pin INITRAM.

Bit 17, Data TCM load mode

This bit controls the operation of the Data TCM load mode.You can use the Data TCM 
load mode for initializing the Data TCM. The Data TCM load mode enables you to load 
data into ARM registers from either data cache or main memory, and then write to the 
same address but within the Data TCM. The operation of the load mode is described in 
Initializing the Data TCM on page 5-5. 

At reset this bit is cleared.

Bit 16, Data TCM enable

This bit controls operation of the Data TCM. When the Data TCM is enabled, it takes 
precedence over the data cache and AHB for data accesses.

At reset this bit is cleared.

Bit 15, Disable loading TBIT 

This bit controls the behavior of load PC instructions. When clear the 
ARMv5TE-specific behavior is enabled, and bit 0 of the loaded data is used to control 
the entry into Thumb state when the PC (r15) is the destination register. When set, this 
ARMv5TE behavior is disabled.

At reset this bit is cleared.

Bit 14, Round-robin replacement

This bit controls the cache replacement algorithm.

When set, round-robin replacement is used. When clear, a pseudo-random replacement 
algorithm is used.

At reset this bit is cleared.
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Bit 13, Alternate vectors select

This bit controls the base address used for the exception vectors. 

When clear, the base address for the exception vectors is 0x00000000. When set, the base 
address is 0xFFFF0000.

Note
 This bit is initialized either set or clear during system reset, depending on the value of 
the input pin, VINITHI. This enables you to define the exception vector location during 
reset to suit the boot mechanism of the application. You can then reprogram this bit as 
required following system reset.

Bit 12, Instruction cache enable

Caution
 You must not enable the instruction cache if your implementation is configured with 
zero size cache. Enabling the instruction cache when no cache is present can lead to 
Unpredictable behavior.

Controls the behavior of the instruction cache. To use the instruction cache, both the 
protection unit enable bit (bit 0) and the instruction cache enable bit must be set. This 
can be done with a single write to register 1.

At reset this bit is cleared.

Bit 7, Endian configuration

Selects the endian configuration of the ARM946E-S processor. When this bit is set, 
big-endian configuration is selected. When clear, little-endian configuration is selected. 

At reset this bit is cleared.

Bit 2, Data cache enable

Caution
 You must not enable the data cache if your implementation is configured with zero size 
cache. Enabling the data cache when no cache is present can lead to Unpredictable 
behavior.

This bit controls the behavior of the data cache.
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To use the data cache, both the protection unit enable bit (bit 0) and the data cache 
enable bit must be set. This can be done with a single write to register 1.

At reset this bit is cleared.

Bit 0, Protection unit enable

This bit controls the operation of the ARM946E-S protection unit.

At reset this bit is cleared. This disables the protection unit, and as a result disables the 
instruction and data caches and the write buffer.

At least one protection region (see Register 6, Protection Region Base and Size 
Registers on page 2-19 and Chapter 4 Protection Unit) must be programmed before the 
protection unit is enabled.

2.3.6 Register 2, Cache Configuration Registers

These registers contain the cachable attributes for the eight areas of memory. Individual 
control is provided for the instruction and data caches. If the opcode_2 field is 0, then the 
data cache bits are programmed. If the opcode_2 field is 1, then the instruction cache bits 
are programmed. To read and write these registers:

MRC p15, 0, Rd, c2, c0, 0; read data cachable bits
MRC p15, 0, Rd, c2, c0, 1; read instruction cachable bits
MCR p15, 0, Rd, c2, c0, 0; write data cachable bits
MCR p15, 0, Rd, c2, c0, 1; write instruction cachable bits

The format for the cachable bits in data and instruction areas is the same, and is shown 
in Table 2-10.

Table 2-10 Programming instruction and data cachable bits

Register bits Function

[7] Cachable bit (C_7) for area 7

[6] Cachable bit (C_6) for area 6

[5] Cachable bit (C_5) for area 5

[4] Cachable bit (C_4) for area 4

[3] Cachable bit (C_3) for area 3
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2.3.7 Register 3, Write Buffer Control Register

This register contains the write buffer control (bufferable) attribute for the eight areas 
of memory.

Note
 This register only applies to data accesses.

To read and write the write buffer control register:

MCR p15, 0, Rd, c3, c0, 0; write data bufferable bits
MRC p15, 0, Rd, c3, c0, 0; read data bufferable bits

Table 2-11 shows the format for the bufferable bits in the data areas.

[2] Cachable bit (C_2) for area 2

[1] Cachable bit (C_1) for area 1

[0] Cachable bit (C_0) for area 0

Table 2-10 Programming instruction and data cachable bits  (continued)

Register bits Function

Table 2-11 Programming data bufferable bits

Register bits Function

[7] Bufferable bit (B_7) for data area 7

[6] Bufferable bit (B_6) for data area 6

[5] Bufferable bit (B_5) for data area 5

[4] Bufferable bit (B_4) for data area 4

[3] Bufferable bit (B_3) for data area 3

[2] Bufferable bit (B_2) for data area 2

[1] Bufferable bit (B_1) for data area 1

[0] Bufferable bit (B_0) for data area 0
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2.3.8 Register 5, Access Permission Registers

There are four access permission registers. These contain the access permission bits for 
the instruction and data protection regions. The opcode_2 field of the MCR/MRC instruction 
determines whether the standard or extended registers are accessed, and if the 
instruction or data access permissions are accessed. To read and write the extended 
registers:

MRC p15, 0, Rd, c5, c0, 2; read data access permission bits
MRC p15, 0, Rd, c5, c0, 3; read instruction access permission bits
MCR p15, 0, Rd, c5, c0, 2; write data access permission bits
MCR p15, 0, Rd, c5, c0, 3; write instruction access permission bits

The format for the access permission bits in instruction and data areas is the same, and 
is shown in Table 2-12. 

Table 2-12 Programming instruction and data access permission bits (extended)

Register bits Function

[31:28] Ap7[3:0] bits for area 7

[27:24] Ap6[3:0] bits for area 6

[23:20] Ap5[3:0] bits for area 5

[19:16] Ap4[3:0] bits for area 4

[15:12] Ap3[3:0] bits for area 3

[11:8] Ap2[3:0] bits for area 2

[7:4] Ap1[3:0] bits for area 1

[3:0] Ap0[3:0] bits for area 0
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The values of the IApn[3:0] and DApn[3:0] bits define the access permission for each 
area of memory, n. Table 2-13 shows the encoding.

The following instructions are supported for backwards compatibility with existing 
ARM processors with memory protection, and access the standard registers:

MRC p15, 0, Rd, c5, c0, 0; read data access permission bits
MRC p15, 0, Rd, c5, c0, 1; read instruction access permission bits
MCR p15, 0, Rd, c5, c0, 0; write data access permission bits
MCR p15, 0, Rd, c5, c0, 1; write instruction access permission bits

Table 2-14 shows the data format for these registers.

Table 2-13 Access permission encoding (extended)

I/DApn[3:0]
Access permission

Privileged User

b0000 No access No access

b0001 Read/write access No access

b0010 Read/write access Read-only

b0011 Read/write access Read/write access

b0100 UNP UNP

b0101 Read-only No access

b0110 Read-only Read-only

b0111 UNP UNP

b1xxx UNP UNP

Table 2-14 Instruction and data access permission bits (standard)

Register bits Function

[15:14] Ap7[1:0] bits for area 7

[13:12] Ap6[1:0] bits for area 6

[11:10] Ap5[1:0] bits for area 5

[9:8] Ap4[1:0] bits for area 4

[7:6] Ap3[1:0] bits for area 3
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The values of the IApn[1:0] and DApn[1:0] bits define the access permission for each 
area of memory, n. Table 2-15 shows the encoding.

Note
 On reset, the values of IApn and DApn bits are undefined. However, because on reset 
the protection unit is disabled, this is as though all areas are set to privileged mode 
read/write access and User read/write access. Therefore, you must program the access 
permission registers before you enable the protection unit.

If the access permissions are initially programmed using the extended access 
permissions (see Table 2-13 on page 2-18), and then reprogrammed using the standard 
access permissions (see Table 2-15 on page 2-19), the access permissions applied are 
as if Apn[3:2] are programmed to b00 in Table 2-13 on page 2-18.

2.3.9 Register 6, Protection Region Base and Size Registers

These registers define the protection region base address and size. You can define eight 
programmable regions using these registers. The values are ignored when the protection 
unit is disabled, and on reset only the region enable bit for each region is reset to 0. All 
other bits are undefined. You must program at least one memory region before you 
enable the protection unit.

[5:4] Ap2[1:0] bits for area 2

[3:2] Ap1[1:0] bits for area 1

[1:0] Ap0[1:0] bits for area 0

Table 2-15 Access permission encoding (standard)

I/DApn[1:0]
Access permission

Privileged User

b00 No access No access

b01 Read/write access No access

b10 Read/write access Read-only

b11 Read/write access Read/write access

Table 2-14 Instruction and data access permission bits (standard)   (continued)

Register bits Function
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The instructions used to access the eight Protection Region Base and Size Registers are 
listed in Table 2-16.

Each Protection Region Base and Size Register has the format shown in Table 2-17.

You must align the region base to a region size boundary, where the region size is 
defined in its respective protection region register. The behavior is Unpredictable if this 
is not done.

Table 2-16 Accessing Protection Region Base and Size Registers

ARM instruction Protection Region Base and Size Register

MCR/MRC p15, 0, Rd, c6, c7, 0 Memory region 7

MCR/MRC p15, 0, Rd, c6, c6, 0 Memory region 6

MCR/MRC p15, 0, Rd, c6, c5, 0 Memory region 5

MCR/MRC p15, 0, Rd, c6, c4, 0 Memory region 4

MCR/MRC p15, 0, Rd, c6, c3, 0 Memory region 3

MCR/MRC p15, 0, Rd, c6, c2, 0 Memory region 2

MCR/MRC p15, 0, Rd, c6, c1, 0 Memory region 1

MCR/MRC p15, 0, Rd, c6, c0, 0 Memory region 0

Table 2-17 Protection Region Base and Size Register format

Register bits Function

[31:12] Region base address

[5:1] Region size

[0] 1 = Region enable

0 = Region disable

Reset to 0
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Region sizes are encoded as shown in Table 2-18.

Table 2-18 Region size encoding

Bit encoding Region size

b00000 to b01010 Reserved (UNP)

b01011 4KB

b01100 8KB

b01101 16KB

b01110 32KB

b01111 64KB

b10000 128KB

b10001 256KB

b10010 512KB

b10011 1MB

b10100 2MB

b10101 4MB

b10110 8MB

b10111 16MB

b11000 32MB

b11001 64MB

b11010 128MB

b11011 256MB

b11100 512MB

b11101 1GB

b11110 2GB

b11111 4GB
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Example base setting

An 8KB size region aligned to an 8KB boundary at 0x00002000 (covering the address 
range 0x00002000-0x00003FFF) is programmed as 0x00002019.

The following instruction is supported for backward compatibility with other ARM 
processors using a memory protection unit:

MRC p15, 0, Rd, c6, CRm, 1; returns protection region register

This instruction enables the protection region registers to be read.

You must not write to the protection region base and size registers with opcode_2 set to 
1 because the behavior is Unpredictable.

2.3.10 Register 7, Cache Operations Register

You can use a write to this register to perform the following operations:

• flush instruction cache and data cache 

• prefetch an instruction cache line

• wait for interrupt 

• drain the write buffer

• clean and flush the data cache.

The ARM946E-S processor uses a subset of the ARM architecture v4 functions 
(defined in the ARM Architecture Reference Manual). Table 2-19 shows the available 
operations.

Table 2-19 Cache operations

ARM instruction Function Value

MCR p15, 0, Rd, c7, c5, 0 Flush instruction cache SBZa

MCR p15, 0, Rd, c7, c5, 1 Flush instruction cache single entry Address

MCR p15, 0, Rd, c7, c13, 1 Prefetch instruction cache line Address

MCR p15, 0, Rd, c7, c6, 0 Flush data cache SBZa

MCR p15, 0, Rd, c7, c6, 1 Flush data cache single entry Address

MCR p15, 0, Rd, c7, c10, 1 Clean data cache entry Address
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Figure 2-2 shows the data format for index and segment operations.

Figure 2-2 Register 7, Index and segment format

The size of the index (N:5) varies depending on the implemented cache size. Table 2-20 
shows how the index size changes for the cache sizes supported by the ARM946E-S 
processor.

MCR p15, 0, Rd, c7, c14, 1 Clean and flush data cache entry Address

MCR p15, 0, Rd, c7, c10, 2 Clean data cache entry Index and segment

MCR p15, 0, Rd, c7, c14, 2 Clean and flush data cache entry Index and segment

a. The value transferred in Rd Should Be Zero.

Table 2-19 Cache operations  (continued)

ARM instruction Function Value

Segment

Should be zero Index SBZ

N+1 N 5 4 031 30 29

Table 2-20 Index fields for supported cache sizes

Cache size Index

4KB [9:5]

8KB [10:5]

16KB [11:5]

32KB [12:5]

64KB [13:5]

128KB [14:5]

256KB [15:5]

512KB [16:5]

1MB [17:5]
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Figure 2-3 shows the data format for the instruction cache prefetch operation.

Figure 2-3 Instruction cache address format

Cache clean and flush operations

Cache clean and flush operations can occur during instruction and data linefetches. In 
such circumstances the linefetch completes before the clean or flush operation is 
executed.

Drain write buffer

This operation stalls instruction execution until the write buffer is emptied. This is 
useful in real-time applications where the processor must be sure that a write to a 
peripheral has completed before program execution continues. An example is where a 
peripheral in a bufferable region is the source of an interrupt. When the interrupt has 
been serviced, the request must be removed before interrupts can be re-enabled. This is 
ensured if a drain write buffer operation separates the store to the peripheral and the 
enable interrupt functions.

The drain write buffer operation is invoked by a write to register 7 using the following 
ARM instruction:

MCR p15, 0, Rd, c7, c10, 4; drain write buffer 

This stalls the processor core until any outstanding accesses in the write buffer are 
completed, that is, until all data is written to external memory.

Wait for interrupt

This operation enables the ARM946E-S processor to enter a low-power standby mode. 
When you invoke this operation, the processor core is halted and the cache and TCMs 
are placed in a low-power state until either an interrupt or a debug request occurs. This 
function is invoked by a write to register 7. The following ARM instruction causes this 
to occur:

MCR p15, 0, Rd, c7, c0, 4; wait for interrupt

SBZAddress

5 4 031
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This is the preferred encoding for new software. For compatibility with existing 
software, the ARM946E-S processor also supports the following ARM instruction that 
has the same affect:

MCR p15, 0, Rd, c15, c8, 2; wait for interrupt

This stalls the processor from the time that this instruction is executed until either nFIQ, 
nIRQ, or EDBGRQ are asserted. Also, if the debugger sets the debug request bit in the 
EmbeddedICE-RT logic control register then this causes the wait for interrupt condition 
to terminate.

In the case of nFIQ and nIRQ, the processor operation continues regardless of whether 
the interrupts are enabled or disabled (that is, independent of the I and F bits in the 
processor CPSR). DBGEN must be set (debug enabled) if this operation of EDBGRQ 
or of the debug request bit is required.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before 
executing the instruction after the wait for interrupt. If debug request is used to wake up 
the system, the processor enters debug state before executing any more instructions.

The write buffer continues to drain until empty while the wait for interrupt operation is 
executing.

2.3.11 Register 9, Cache Lockdown Registers

These registers enable you to lock down regions of the cache. To read and write these 
registers:

MCR p15, 0, Rd, c9, c0, 0; write data lockdown control
MRC p15, 0, Rd, c9, c0, 0; read data lockdown control
MCR p15, 0, Rd, c9, c0, 1; write instruction lockdown control
MRC p15, 0, Rd, c9, c0, 1; read instruction lockdown control

Table 2-21 shows the format of the register, Rd, transferred during this operation.

Lockdown is described in Cache lockdown on page 3-12.

Table 2-21 Lockdown Register format

Register bits Function

[31] Load bit, DL/IL

[30:2] UNP/SBZ

[1:0] Cache segment, Dindex, Iindex
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2.3.12 Register 9, Tightly-coupled Memory Region Registers

These registers enable you to modify the visible size of the TCMs.

You can either increase or decrease the size of the TCMs from the physical sizes 
described in Register 0 (see Register 0, Tightly-coupled Memory Size Register on 
page 2-10). Increasing the visible size of the TCMs above the physical size enables 
aliasing within the TCM space. This feature is useful for debugging multitasking 
systems.

There is a memory region register for each of the TCMs:

MRC p15, 0, Rd, c9, c1, 0; read data tightly-coupled memory
MCR p15, 0, Rd, c9, c1, 0; write data tightly-coupled memory
MRC p15, 0, Rd, c9, c1, 1; read instruction tightly-coupled memory
MCR p15, 0, Rd, c9, c1, 1; write instruction tightly-coupled memory

Table 2-22 shows the format of each TCM region register.

For a given number of aliases for the physical memory size (set in register 0), the area 
size is calculated in the following way: 

Number of required aliases = x (where x is a power of 2)
N = log2x (or 2N = x)
Area size = Physical size + N

Table 2-22 TCM Region Register format

Register bits Function

[31:12] Region base

[5:1] Area size

Minimum size = 4KB

Maximum size = 4GB

(See Table 2-23).

[0] SBZ
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Table 2-23 shows the encodings for the supported TCM area sizes.

You must align the region base to an area size boundary. The behavior is Unpredictable 
if this is not done.

Table 2-23 TCM area size encoding

Bit encoding TCM area size

b00011 4KB

b00100 8KB

b00101 16KB

b00110 32KB

b00111 64KB

b01000 128KB

b01001 256KB

b01010 512KB

b01011 1MB

b01100 2MB

b01101 4MB

b01110 8MB

b01111 16MB

b10000 32MB

b10001 64MB

b10010 128MB

b10011 256MB

b10100 512MB

b10101 1GB

b10110 2GB

b10111 4GB
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The Instruction TCM base address is fixed at 0x00000. For the Instruction TCM, the 
region base returns the value 0x00000 when read.

When writing to the Instruction TCM, you must set the region base to 0x00000. Writes 
with the region base set to any other value are Unpredictable.

At reset, the region base for both the Instruction and Data TCM region registers are 
cleared to 0x00000.

At reset, the area size for the Instruction and Data TCM region registers takes the value 
defined in the TCM size register (see Register 0, Tightly-coupled Memory Size Register 
on page 2-10).

You must program the Data TCM region registers before you set the Data TCM enable 
bit (bit 16) in register 1 (see Register 1, Control Register on page 2-11). If this is not 
done, the Data TCM resides at the same location resulting in Unpredictable behavior.

Note
 If the Data TCM is located at the same address as the Instruction TCM, then the 
instruction memory takes precedence for data accesses. If the Data TCM is located at 
the same address as the Instruction TCM, and the Instruction TCM is in load mode, data 
accesses read from the Data TCM and write to the Instruction TCM.

2.3.13 Register 13, Trace Process Identifier Register

This register enables you to identify the currently executing process in multi-tasking 
environments using the real-time trace tools.

The contents of this register are replicated on the ETMPROCID pins of the 
ARM946E-S processor.

The following ARM instructions are used for accessing the Process ID Register:

MRC p15, 0, Rd, c13, c0, 1; read process ID register
MCR p15, 0, Rd, c13, c0, 1; write process ID register

To support software written for other ARM processors, the following instructions are 
also supported:

MRC p15, 0, Rd, c13, c1, 1; read process ID register
MCR p15, 0, Rd, c13, c1, 1; write process ID register

The format of the register, Rd, transferred during these operations is shown in 
Figure 2-4.
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Figure 2-4 Process ID format

2.3.14 Register 15, BIST Control Registers

Register 15 gives you access to the test features included within the ARM946E-S 
processor. Memory BIST operations are initiated by writes to this register. BIST results 
and status are evaluated by reading this register. The formats of the TAG BIST Control 
Register, TCM BIST Control Register, and the Cache RAM BIST Control Register are 
the same. 

Table 2-24 shows the register map for CP15 register 15 BIST-related instructions.

Table 2-25 shows CP15 register 15 implementation-specific BIST instructions.

Trace process identifier

031

Table 2-24 Register 15, BIST instructions

Register Read Write

TAG BIST Control Register MRC p15, 0, Rd, c15, c0, 1 MCR p15, 0, Rd, c15, c0, 1

TCM BIST Control Register MRC p15, 1, Rd, c15, c0, 1 MCR p15, 1, Rd, c15, c0, 1

Cache RAM BIST Control Register MRC p15, 2, Rd, c15, c0, 1 MCR p15, 2, Rd, c15, c0, 1

Table 2-25 Register 15, implementation-specific BIST instructions

Register Read Write

Instruction TAG BIST Address Register MRC p15, 0, Rd, c15, c0, 2 MCR p15, 0, Rd, c15, c0, 2

Instruction TAG BIST General Register MRC p15, 0, Rd, c15, c0, 3 MCR p15, 0, Rd, c15, c0, 3

Data TAG BIST Address Register MRC p15, 0, Rd, c15, c0, 6 MCR p15, 0, Rd, c15, c0, 6

Data TAG BIST General Register MRC p15, 0, Rd, c15, c0, 7 MCR p15, 0, Rd, c15, c0, 7

Instruction TCM BIST Address Register MRC p15, 1, Rd, c15, c0, 2 MCR p15, 1, Rd, c15, c0, 2

Instruction TCM BIST General Register MRC p15, 1, Rd, c15, c0, 3 MCR p15, 1, Rd, c15, c0, 3

Data TCM BIST Address Register MRC p15, 1, Rd, c15, c0, 6 MCR p15, 1, Rd, c15, c0, 6

Data TCM BIST General Register MRC p15, 1, Rd, c15, c0, 7 MCR p15, 1, Rd, c15, c0, 7
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Note
 It is recommended that you do not write application code that relies on the presence of 
the BIST Address and General Registers. Support for these registers in future versions 
of the ARM946E-S processor is not guaranteed.

Table 2-26 shows the format of the BIST Control Register.

Instruction Cache RAM BIST Address Register MRC p15, 2, Rd, c15, c0, 2 MCR p15, 2, Rd, c15, c0, 2

Instruction Cache RAM BIST General Register MRC p15, 2, Rd, c15, c0, 3 MCR p15, 2, Rd, c15, c0, 3

Data Cache RAM BIST Address Register MRC p15, 2, Rd, c15, c0, 6 MCR p15, 2, Rd, c15, c0, 6

Data Cache RAM BIST General Register MRC p15, 2, Rd, c15, c0, 7 MCR p15, 2, Rd, c15, c0, 7

Table 2-25 Register 15, implementation-specific BIST instructions  (continued)

Register Read Write

Table 2-26 BIST Control Register bit definitions

Register bit  Meaning when written  Meaning when read

[31: 21]  Instruction BIST size  Instruction BIST size

[20]  Reserved (SBZ)  Instruction BIST complete flag

[19]  Reserved (SBZ)  Instruction BIST fail flag

[18]  Instruction BIST enable  Instruction BIST enable

[17]  Instruction BIST pause  Instruction BIST pause

[16]  Instruction BIST run strobe  Instruction BIST running flag

[15: 5]  Data BIST size  Data BIST size

[4]  Reserved (SBZ)  Data BIST complete flag

[3]  Reserved (SBZ)  Data BIST fail flag

[2]  Data BIST enable  Data BIST enable

[1]  Data BIST pause  Data BIST pause

[0]  Data BIST run strobe  Data BIST running flag
2-30 Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D



Programmer’s Model 
Note
 The pause and size bits of this register are not supported in all implementations. 

The BIST size field determines the size of the BIST operation. The value written to this 
field, N, is decoded as follows:

BIST size in bytes = 2N+2

Table 2-27 shows some examples.

2.3.15 Register 15, Test State Register

The register is accessed by:

MCR p15, 0, Rd, c15, c0, 0; write test state register
MRC p15, 0, Rd, c15, c0, 0; read test state register

Table 2-28 shows the bit assignments of the test state access register.

Table 2-27 BIST size encodings examples

Instruction RAM BIST size [31:21] N Size of test

b000000 00001 (minimum) 1 8 bytes

b000000 00100 4 64 bytes

b000000 00111 7 512 bytes

b000000 01000 8 1 KB

b000000 01010 10 4 KB

b000000 01111 15 128 KB

b000000 11000 (maximum) 24 64 MB

Table 2-28 Test State Register bit assignments

Register bits Function

[31:13] Unpredictable (SBZ)

[12] Disable data cache streaming

[11] Disable instruction cache streaming
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Reading the Test State Register returns bits [12:0] in the least significant bits. The value 
returned in bits [31:13] is Unpredictable. Writing the test state register updates only bits 
[12:9].

In debug you must be able to execute code without causing linefills to update the caches, 
primarily to load new code into memory. This means that STR instructions, if they hit the 
cache, must update the memory and the cache, and that for LDR instructions or 
instruction prefetches that miss, a linefill is not performed. 

Bits [10:9] when set prevent the respective cache from performing a linefill on a cache 
miss. The memory mapping, as seen by the ARM9E-S or by the programmer, is 
unchanged. This improves the performance of single-stepping when in debug.

Bits [12:11] when set prevent the respective cache from streaming data to the ARM9E-S 
while the linefill is performed to the cache. The linefill still occurs, but the prefetched 
instruction or load data is returned to the core at the end of a linefill.

2.3.16 Register 15, Cache Debug Index Register

Additional instructions and operations are required to support debug operations within 
the cache. Table 2-29 shows the instructions for the additional operations.

[10] Disable data cache linefill

[9] Disable instruction cache linefill

[8:0] Reserved (SBZ)

Table 2-28 Test State Register bit assignments  (continued)

Register bits Function

Table 2-29 Additional operations

Function Data Instruction

Write CP15 Cache Debug Index Register Index and segment MCR p15, 3, Rd, c15, c0, 0

Read CP15 Cache Debug Index Register Index and segment MRC p15, 3, Rd, c15, c0, 0

Instruction TAG write Data MCR p15, 3, Rd, c15, c1, 0

Instruction TAG read Data MRC p15, 3, Rd, c15, c1, 0

Data TAG write Data MCR p15, 3, Rd, c15, c2, 0

Data TAG read Data MRC p15, 3, Rd, c15, c2, 0
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With the Cache Debug Index Register, you can access any location within the 
instruction or data cache. You must program this register before using any of the TAG 
or cache read/write operations. The Cache Debug Index Register provides an index into 
the cache memories. 

Figure 2-5 on page 2-33 shows the format of the index and segment data.

Figure 2-5 Register 15, Index and segment format

The number of bits used in the index field varies depending on the implemented cache 
size. Table 2-20 on page 2-23 shows how the index address field size changes for the 
cache sizes supported by the ARM946E-S processor.

Note
 For TAG operations, the word address field in the Cache Debug Register is ignored.

Figure 2-6 shows the data format for the TAG read/write operations.

Instruction cache write Data MCR p15, 3, Rd, c15, c3, 0

Instruction cache read Data MRC p15, 3, Rd, c15, c3, 0

Data cache write Data MCR p15, 3, Rd, c15, c4, 0

Data cache read Data MRC p15, 3, Rd, c15, c4, 0

Table 2-29 Additional operations  (continued)

Function Data Instruction

31 30 29

Segment

Should be zero

N+1 N

Index
Word

address
SBZ

5 4 2 1 0
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Figure 2-6 Data format TAG read/write operations

The number of bits used in the index and TAG address fields vary depending on the 
implemented cache size. Table 2-30 shows how the index and TAG address field sizes 
change for the cache sizes supported by the ARM946E-S processor.

TAG address Index SetDirty

bits

Valid

N+1 N 5 4 3 2 1 031

Table 2-30 Index fields for supported cache sizes

Cache size TAG Index

4KB [31:10] [9:5]

8KB [31:11] [10:5]

16KB [31:12] [11:5]

32KB [31:13] [12:5]

64KB [31:14] [13:5]

128KB [31:15] [14:5]

256KB [31:16] [15:5]

512KB [31:17] [16:5]

1MB [31:18] [17:5]
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2.3.17  Register 15, Trace Control Register

This register enables masking of ETMFIFOFULL during interrupts in the 
ARM946E-S processor. It enables you to determine whether nIRQ or nFIQ interrupts 
take priority over ETMFIFOFULL to prevent the core being stalled if an interrupt is 
received when ETMFIFOFULL is asserted. Table 2-31 shows the access instructions 
for register 15.

Table 2-32 shows the bit assignments for this register. If bit 1 is 1, nIRQ interrupts do 
not re-enable the ARM946E-S processor if ETMFIFOFULL is asserted. If bit 2 is 1, 
nFIQ interrupts do not re-enable the ARM946E-S processor if ETMFIFOFULL is 
asserted. When these bits are set to 0, ETMFIFOFULL does not stall the core during 
interrupts. Bits [2:1] of this register are reset to 0 when HRESETn is asserted.

Table 2-31 Trace Control Register

Register Read Write

Trace Control Register  MRC p15, 1, Rd, c15, c1, 0 MCR p15, 1, Rd, c15, c1, 0

Table 2-32 Trace Control Register bit assignments

Register bits Content

[31:3] Reserved (Should Be Zero)

[2] 1 = Mask nFIQ interrupts during trace

0 = Do not mask nFIQ interrupts during trace

[1] 1 = Mask nIRQ interrupts during trace

0 = Do not mask nIRQ interrupts during trace

[0] Reserved (Should Be Zero)
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Chapter 3 
Caches

To reduce the effective memory access time, the ARM946E-S processor uses a cache 
controller, an instruction cache, and a data cache. This chapter describes the features 
and behavior of each of these blocks. It contains the following sections:

• About cache architecture on page 3-2

• Instruction cache on page 3-6

• Data cache on page 3-8

• Cache lockdown on page 3-12.
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3.1 About cache architecture

The ARM946E-S processor incorporates instruction cache and data cache. You can 
tailor the size of these to suit individual applications. A range of different cache sizes is 
supported:

• 0KB

• 4KB

• 8KB

• 16KB

• 32KB

• 64KB

• 128KB

• 256KB

• 512KB

• 1MB.

You can select the instruction cache and data cache sizes independently.

The instruction cache and data cache are formed from synchronous SRAM, and have 
similar architectures. Figure 3-1 on page 3-3 shows an example 8K cache.
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Figure 3-1 Example 8KB cache

The instruction cache and data cache are four-way set associative, with a cache line 
length of 8 words (32 bytes). Each cache supports single-cycle read access.
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Each cache segment consists of a TAG RAM for storing the cache line address and a 
data RAM for storing the instructions or data. 

During a cache access, all TAG RAMs are accessed for the first nonsequential access, 
and the TAG address is compared with the access address. If a match (or hit) occurs, the 
data from the segment is selected for return to the ARM9E-S core. If none of the TAGs 
match (a miss), then external memory must be accessed. If the access is a buffered write 
then the write buffer is used.

If a read access from a cachable memory region misses, new data is loaded into one of 
the four segments. This is an allocate on read-miss replacement policy. Selection of the 
segment is performed by a segment counter that can be clocked in a pseudo-random 
manner, or in a predictable manner based on the replacement algorithm selected.

Critical or frequently accessed instructions or data can be locked into the cache by 
restricting the range of the replacement counter. You cannot replace locked lines. They 
remain in the cache until they are unlocked or flushed.

Note
 Flushing the entire cache also flushes any locked-down code. If you want to preserve 
locked-down code, you must flush lines individually, avoiding the locked-down lines.

The access address from the ARM9E-S core can be split into four distinct segments:

• byte address (Addr[1:0])

• word address (Addr[4:2])

• index (cache line)

• address TAG.

Table 3-1 shows how the number of bits in the index and TAG fields change for the 
cache sizes supported by the ARM946E-S processor.

Table 3-1 TAG and index fields for supported cache sizes

Cache size Index TAG

4KB Addr[9:5] Addr[31:10]

8KB Addr[10:5] Addr[31:11]

16KB Addr[11:5] Addr[31:12]

32KB Addr[12:5] Addr[31:13]

64KB Addr[13:5] Addr[31:14]

128KB Addr[14:5] Addr[31:15]
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For example, the access address is broken down as shown in Figure 3-2 for a 4KB 
cache.

Figure 3-2 Access address for a 4KB cache

Three additional bits are associated with each TAG entry:

Valid bit This is set when the cache line has been written with valid data. 
Only a valid line can return a hit during a cache lookup. On reset, 
all the valid bits are cleared.

Dirty bits These are associated with write operations in the data cache and 
are used to indicate that a cache line contains data that differs from 
data stored at the address in external memory. One bit is allocated 
for each half cache line.

Data can only be marked as dirty if it resides in a write-back 
protection region.

256KB Addr[15:5] Addr[31:16]

512KB Addr[16:5] Addr[31:17]

1MB Addr[17:5] Addr[31:18]

Table 3-1 TAG and index fields for supported cache sizes  (continued)

Cache size Index TAG

ByteWordIndexTAG

10 9 5 4 2 1 031
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3.2 Instruction cache

The ARM946E-S processor has a four-way set-associative instruction cache. You can 
choose the size of the instruction cache from any of the supported cache sizes. The 
instruction cache uses the physical address generated by the processor core. It uses a 
policy of allocate on read-miss, and is always reloaded one cache line (eight words) at 
a time, through the external interface.

3.2.1 Enabling and disabling the instruction cache

Caution
 You must not enable the instruction cache if your implementation is configured with 
zero size instruction cache. Enabling the instruction cache when no cache is present can 
lead to Unpredictable behavior.

You can enable the instruction cache by setting bit 12 of the CP15 Control Register. The 
cache is only enabled if the protection unit is already enabled, or if they are enabled 
simultaneously. When the instruction cache is enabled, a cachable read-miss places 
lines in the instruction cache.

You can enable the instruction cache and protection unit simultaneously with a single 
write to the CP15 Control Register, although you must program at least one protection 
region before you enable the protection unit. You can lock critical or frequently 
accessed instructions into the instruction cache.

3.2.2 Instruction cache operation

When enabled, the instruction cache operation is additionally controlled by the 
Cachable instruction (Ci) bit stored in the protection unit. This selectively enables or 
disables caching for different memory regions. The Ci bit affects instruction cache 
operation as follows:

Successful cache read 

Data is returned to the core only if the Ci bit is 1.

Unsuccessful cache read 

If the Ci bit is 1, a linefetch of eight words is performed. The 
linefetch starts with the requested address aligned to an 
eight-word boundary (that is, the linefetch starts with word 0). If 
the Ci bit is 0, a single-word external access is performed to fetch 
the requested instruction. The cache is not updated.
3-6 Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D



Caches 
You can disable the instruction cache by clearing bit 12 of the CP15 Control Register. 
This prevents all instruction cache look-ups and line fills, and forces all instruction 
fetches to be performed as single external accesses.

3.2.3 Instruction cache validity

The ARM946E-S processor does not support external memory snooping. Therefore if 
you write self-modifying code, the instructions in the instruction cache can become 
incoherent with external memory. Similarly, if you reprogram the protection regions, 
code might exist in the cache that should be in a noncachable region. In either of these 
cases you must flush the instruction cache.

You can flush the entire instruction cache by software in one operation, or you can flush 
individual cache lines by writing to the CP15 Cache Operations Register (register 7). 
The instruction cache is automatically flushed during reset. The instruction cache never 
has to be cleaned because its only source of data is from external memory. The 
ARM9E-S core cannot write to the instruction cache, except using the Cache Debug 
Index Register.

Flushing the entire cache

As shown in Table 2-19 on page 2-22, you can flush the entire instruction cache using 
an MCR instruction. In this case, the contents of the ARM Register transferred to CP15 
should be zero. You can use the following code segment to do this:

MOV r0, #0 ; Clear r0
MCR p15, 0, r0, c7, c5, 0 ; Flush entire ICache

Note
 • The use of r0 is arbitrary.

• Flushing the entire cache also flushes any locked-down code. If you want to 
preserve locked down code, you must flush lines individually, avoiding the locked 
down lines.

Flushing a single cache line

You can flush single cache lines. To do this, you must specify in Rd the address to be 
flushed from the cache. You can use the following code segment to do this:

LDR r0, =FlushAddress ; Load r0 with address FlushAddress
MCR p15, 0, r0, c7, c5, 1 ; Flush single cache line
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3.3 Data cache 

The ARM946E-S processor has a four-way set-associative data cache. You can choose 
the size of the data cache from any of the supported cache sizes. The data cache uses the 
physical address generated by the processor core. It uses an allocate on read-miss 
policy, and is always reloaded one cache line (eight words) at a time, through the 
external interface.

The data cache supports both write-back and write-through modes. For data stores that 
hit in the data cache, in write-back mode the cache line is updated and the dirty bit 
associated with the half cache line updated is set. This indicates that the internal version 
of the data differs from that in external memory. In write-through mode, a store that hits 
in the data cache causes the cache line to be updated but not marked as dirty, because 
the data store is also written to the write buffer to keep the external memory consistent. 
In both write-back and write-through modes, a store that misses in the cache is sent to 
the write buffer. When a linefetch causes a cache line to be evicted from the data cache, 
the dirty bit for each half of the victim line is read and, if the half-line contains valid and 
dirty data, it is written back to the write buffer before the linefill replaces it.

The Cachable data (Cd) and Bufferable data (Bd) bits control the behavior of the data 
cache. For this reason the protection unit must be enabled when the data cache is 
enabled.

3.3.1 Enabling and disabling the data cache 

Caution
 You must not enable the data cache if your implementation is configured with zero size 
data cache. Enabling the data cache when no cache is present can lead to Unpredictable 
behavior.

You can enable the data cache by setting bit 2 of the CP15 Control Register. The cache 
is only enabled if the protection unit is already enabled, or is enabled simultaneously, 
although you must program at least one protection region before you enable the 
protection unit. 

You can disable the data cache by clearing bit 2 of the CP15 Control Register.

The data cache is automatically disabled and flushed on reset.

When the data cache is disabled, cache searches are prevented. This marks all data 
accesses as noncachable, forcing the ARM946E-S processor to perform external 
accesses. The write buffer control is still decoded from the Bd and Cd bits. The Cd bit 
is forced to 0 (noncachable).
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3.3.2 Operation of the Bd and Cd bits

The Cd bit determines whether data being read must be placed in the data cache and 
used for subsequent reads. Typically, main memory is marked as cachable to reduce 
memory access time and therefore increase system performance. It is usual to mark 
input/output space as noncachable. For example, if a processor is polling a 
memory-mapped register in input/output space, it is important that the processor is 
forced to read data direct from the peripheral, and not a copy of initial data held in the 
data cache. 

The Bd and Cd bits affect writes that both hit and miss in the data cache. If the Bd and 
Cd bits are both 1, the area of memory is marked as write-back, and stores that hit in the 
data cache only update the cache, not external memory. If the Bd bit is 0 and the Cd bit 
is 1, the area of memory is marked as write-through, and stores that hit in the data cache 
update both the cache and external memory.

3.3.3 Data cache operation

When the data cache is enabled, it is searched when the processor performs a load or 
store. If the cache hits on a load, data is returned from the cache if the Cd bit is 1. If the 
cache read-misses, the Cd bit is examined. Table 3-2 shows the meaning of the values 
of the Cd bit.

Stores that hit in the cache update the cache line if the Cd bit is 1. Stores that miss the 
cache use the Cd and Bd bits to determine whether the write is buffered. A write miss 
is not loaded into the cache as a result of that miss.

Load and store multiples are broken up on 4KB boundaries (the minimum protection 
region size), enabling a protection check to be performed in case the Load Multiple (LDM) 
or Store Multiple (STM) crosses into a region with different protection properties.

Table 3-2 Meaning of Cd bit values

Cd bit value Meaning

1 Cachable data area and protection unit enabled. A linefill of eight words is 
performed and the data is written into the data cache.

0 A single or multiple external access is performed and the cache is not updated.
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3.3.4 Data cache validity

The ARM946E-S processor does not support memory translation so you can always 
consider the data in the data cache as valid within the context of the ARM946E-S 
processor. However, if you use external memory translation, and the mappings are 
changed, the data cache is no longer consistent with external memory, and you must 
flush it.

The ARM946E-S processor does not support external memory snooping. Any shared 
data memory space therefore, must not be cachable. Additionally, if you reprogram the 
data protection regions, data already in the cache might now be in a noncachable region, 
and you must flush it.

3.3.5 Data cache clean and flush

The data cache has flexible cleaning and flushing utilities that enable the following 
operations:

• You can invalidate the whole data cache (flush data cache) in one operation 
without writing back dirty data.

• You can invalidate individual lines without writing back any dirty data (flush data 
cache single entry). 

• You can perform cleaning on a line-by-line basis. The data is only written back 
through the write buffer when a dirty line is encountered, and the cleaned line 
remains in the cache (clean data cache single entry). You can clean cache lines 
using either their index within the data cache, or their address within memory.

• You can clean and flush individual lines in one operation, using either their index 
within the data cache, or their address within memory.

You perform the cleaning and flushing operations using CP15 register 7, in a similar 
way to the instruction cache. 

The format of Rd transferred to CP15 for all register 7 operations is shown in Figure 3-3.

Figure 3-3 Register 7, Rd format

Segment

Should be zero Index SBZ

N+1 N 5 4 031 30 29
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The value of N depends on the cache size, as shown in Table 3-3.

The value of N is derived from the following equation:

Where the number of sets x the line length in bytes is 128.

It is usual to clean the cache before flushing it, so that external memory is updated with 
any dirty data. The following code segment shows how you can clean and flush the 
entire cache (assuming a 4KB data cache):

MOV r1, #0 ; Initialize segment counter outer_loop
MOV r0, #0 ; Initialize line counter inner_loop
ORR r2, r1, r0 ; Generate segment and line address
MCR p15, 0, r2, c7, c14, 2 ; Clean and flush the line
ADD r0, r0, #0x20 ; Increment to next line
CMP r0, #0x400 ; Complete all entries in one segment?
BNE inner_loop ; If not branch back to inner_loop
ADD r1, r1, #0x40000000 ; Increment segment counter
CMP r1, #0x0 ; Complete all segments
BNE outer_loop ; If not branch back to outer_loop

; End of routine

Table 3-3 Calculating index addresses

Cache size Value of N

4KB 9

8KB 10

16KB 11

32KB 12

64KB 13

128KB 14

256KB 15

512KB 16

1MB 17

Number of sets x line length in by tes

cache size
+ 4N = log

2 ( )
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3.4 Cache lockdown

To provide predictable code behavior in embedded systems, a mechanism is provided 
for locking code into the caches. For example, you can use this feature to hold 
high-priority interrupt routines where there is a hard real-time constraint, or to hold the 
coefficients of a DSP filter routine to reduce external bus traffic.

You can lock down a region of the instruction cache or data cache by executing a short 
software routine, taking note of these requirements:

• the program must be held in a noncachable area of memory

• the cache must be enabled and interrupts must be disabled

• software must ensure that the code or data to be locked down is not already in the 
cache

• if the caches have been used after the last reset, the software must ensure that the 
cache in question is cleaned, if appropriate, and then flushed.

You can carry out lockdown in the data cache using CP15 register 9. Instruction cache 
lockdown uses both CP15 registers 7 and 9.

As described in About cache architecture on page 3-2, the ARM946E-S instruction 
cache and data cache each comprise four segments. You can perform lockdown with a 
granularity of one segment. Lockdown starts at segment zero, and can continue until 
three of the four segments are locked.

3.4.1 Locking down the caches

The procedures for locking down a segment in the instruction cache and data cache are 
slightly different. In both cases you must:

1. Put the cache into lockdown mode by programming register 9.

2. Force a linefill.

3. Lock the corresponding data in the cache.

Data cache lockdown

For the data cache: 

1. Write to CP15 register 9, setting DL to 1 (DL is bit 31, the load bit) and Dindex 
to 0 (Dindex are bits 1:0, the cache segment bits).

2. Initialize the pointer to the first of the words to be locked into the cache.
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3. Execute an LDR from that location. This forces a linefill from that location and the 
resulting eight words are captured in the cache.

4. Increment the pointer by 32 (number of bytes in a cache line).

5. Execute an LDR from that location. The resulting linefill is captured in the cache.

6. Repeat steps 4 and 5 until all words are loaded in the cache, or one quarter of the 
cache has been loaded.

7. Write to CP15 register 9, setting DL to 0 and Dindex to 1.

If there is more data to lockdown, at the final step, the DL bit must be left set and the 
process repeated. The DL bit must only be cleared when all the lockdown data has been 
loaded. The Dindex bits must be set to the next available segment.

Note
 The write to CP15 register 9 must not be executed until the linefill has completed. This 
is achieved by aligning the LDR to the last address of the line.

Instruction cache lockdown

For the instruction cache:

1. Write to CP15 register 9, setting IL to 1 (the load bit) and Iindex to 0 (the cache 
segment bits).

2. Initialize the pointer to the first of the words to be locked into the cache.

3. Force a linefill from that location by writing to CP15 register 7 (instruction cache 
preload).

4. Increment the pointer by 32 (number of bytes in a cache line).

5. Force a linefill from that location by writing to CP15 register 7. The resulting 
linefill is captured in the instruction cache.

6. Repeat steps 4 and 5 until all words are loaded in the cache, or one quarter of the 
cache has been loaded.

7. Write to CP15 register 9, setting IL to 0 and Iindex to 1.

If there are more instructions to lockdown, at the final step, the IL bit must be left set 
and the process repeated. The IL bit must only be cleared when all the lockdown 
instructions have been loaded. The Iindex bits must be set to the next available segment.
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The only significant difference between the sequence of operations for the data cache 
and instruction cache is that an MCR instruction must be used to force the linefill in the 
instruction cache, instead of an LDR. The rest of the sequence is the same as for data 
cache lockdown.

The MCR to perform the instruction cache fetch is a CP15 register 7 operation:

MCR p15, 0, Rd, c7, c13, 1
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Chapter 4 
Protection Unit

This chapter describes the ARM946E-S protection unit. It contains the following 
sections:

• About the protection unit on page 4-2

• Memory regions on page 4-3

• Overlapping regions on page 4-6.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. 4-1



Protection Unit 
4.1 About the protection unit

The protection unit enables you to partition memory and set individual protection 
attributes for each protection region. You can divide the address space into eight regions 
of variable size. Figure 4-1 shows a simplified block diagram of the protection unit.

Figure 4-1 Protection unit

The protection unit is programmed using CP15 registers 1, 2, 3, 5, and 6 (see Accessing 
CP15 registers on page 2-6).

4.1.1 Enabling the protection unit

Before the protection unit is enabled, you must program at least one valid protection 
region. If you do not do this the ARM946E-S processor can enter a state that is 
recoverable only by reset. 

Setting bit 0 of the CP15 register 1, the Control Register, enables the protection unit.

When the protection unit is disabled, all instruction fetches are noncachable and all data 
accesses are noncachable and nonbufferable.

Address comparators

hit Priority

encoder

Attribute registers

AttributesAbort

Address from ARM9E-S
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4.2 Memory regions

You can partition the address space into a maximum of eight regions. Each region is 
specified by the following:

• region base address

• region size 

• cache and write buffer configuration

• read and write access permissions.

The ARM architecture uses constants known as inline literals to perform address 
calculations. These constants are automatically generated by the assembler and 
compiler and are stored inline with the instruction code. To ensure correct operation, 
you must define an area of memory, from where code is to be executed, that enables both 
data and instruction accesses.

The base address and size properties are programmed using CP15 register 6. Table 4-1 
shows the format.

4.2.1 Region base address

The base address defines the start of the memory region. You must align this to a 
region-sized boundary. For example, if a region size of 8KB is programmed for a given 
region, the base address must be a multiple of 8KB.

Note
 If the region is not aligned correctly, this results in Unpredictable behavior.

Table 4-1 Protection Register format

Register bits Function

[31:12] Region base address

[11:6] Unused

[5:1] Region size

[0] Region enable

Reset to disable (0).
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4.2.2 Region size

The region size is specified as a five-bit value, encoding a range of values from 4KB to 
4GB. Table 4-2 shows the encoding.

Table 4-2 Region size encoding

Bit encoding Area size

b00000 to b01010 Reserved

b01011 4KB

b01100 8KB

b01101 16KB

b01110 32KB

b01111 64KB

b10000 128KB

b10001 256KB

b10010 512KB

b10011 1MB

b10100 2MB

b10101 4MB

b10110 8MB

b10111 16MB

b11000 32MB

b11001 64MB

b11010 128MB

b11011 256MB

b11100 512MB

b11101 1GB

b11110 2GB

b11111 4GB
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Note
 Any value less than b01011 programmed in CP15 register 6 bits [5:1] results in 
Unpredictable behavior.

4.2.3 Partition attributes

Each region has a number of attributes associated with it. These control how a memory 
access is performed when the processor core issues an address that falls within a given 
region. The attributes are:

• cachable

• bufferable (for data regions only)

• read/write permissions.

You specify this information by programming CP15 registers 2, 3, and 5 (see Chapter 2 
Programmer’s Model). If an access fails its protection check (for example, if a User 
mode application attempts to access a Privileged mode access only region), a memory 
abort occurs. The processor enters the abort exception mode, branching to the Data 
Abort or Prefetch Abort vector accordingly.

The cachable and bufferable bits in CP15 registers 2 and 3 are used together to select 
one of four cache and write buffer configurations. These are described in Chapter 6 Bus 
Interface Unit and Write Buffer, and specifically in The write buffer on page 6-13.
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4.3 Overlapping regions

You can program the protection unit with two or more overlapping regions. When 
overlapping regions are programmed, a fixed priority scheme is applied to determine the 
overlapping region attribute that is applied to the memory access (attributes for region 
7 take highest priority, those for region 0 take lowest priority). For example:

Region 2 Is programmed to be 4KB in size, starting from address 0x3000 
with DApn[3:0] set to b0010. (Privileged mode full access, User 
mode read only.)

Region 1 Is programmed to be 16KB in size, starting from address 0x0000 
with DApn[3:0] set to b0001. (Privileged mode access only.)

When the processor performs a data write to address 0x3010 while in User mode, the 
address falls into both region 1 and region 2, as shown in Figure 4-2. Because there is 
a clash, the attributes associated with region 2 are applied. Because you are only 
enabled to perform reads from this region, a Data Abort occurs.

Figure 4-2 Overlapping memory regions

4.3.1 Background regions

Overlapping regions increase the flexibility of how the eight regions can be mapped 
onto physical memory devices in the system. You can also use the overlapping 
properties to specify a background region. For example, you might have a number of 
physical memory areas sparsely distributed across the 4GB address space. If a 
programming error occurs therefore, it might be possible for the processor to issue an 
address that does not fall into any defined region.

Region 2

Region 1

0x4000

0x0000

0x3000

0x3010
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If the address issued by the processor falls outside any of the defined regions, the 
ARM946E-S protection unit is hard-wired to abort the access. You can override this 
behavior by programming region 0 to be a 4GB background region. In this way, if the 
address does not fall into any of the other seven regions, the access is controlled by the 
attributes you have specified for region 0.
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Chapter 5 
Tightly-Coupled Memory Interface

This chapter describes the Tightly-Coupled Memory (TCM) interface in the 
ARM946E-S processor. It contains the following sections:

• ARM946E-S TCM interface description on page 5-2

• Using CP15 Control Register on page 5-3

• Enabling the Instruction TCM during soft reset on page 5-7

• Data TCM accesses on page 5-8

• Instruction TCM accesses on page 5-9.

For details of the ARM9E-S interface signals referenced in this chapter, see the 
ARM9E-S Technical Reference Manual.
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5.1 ARM946E-S TCM interface description

The instruction and data Tightly-Coupled Memories (TCMs) are placed outside the 
ARM946E-S processor boundary. This enables greater flexibility in the memory 
attached to the ARM946E-S processor. The memories used must support single-cycle 
accesses from the ARM946E-S processor. They must be capable of returning data to the 
ARM9E-S core in a single cycle. This requirement applies to both the Instruction TCM 
and Data TCM. They are normally realized using synchronous SRAM.The Instruction 
TCM and Data TCM can both be of any size from 0 bytes to 1MB, although to ease 
implementation the size must be an integer power of two. The minimum size for a TCM 
when present is 4KB. The Instruction TCM and Data TCM can have different sizes.

To enable the Instruction TCM to be initialized, and for access to literal tables during 
execution, the data interface of the ARM9E-S core must be able to access the 
Instruction TCM. This means that the ARM946E-S processor must multiplex the 
instruction and data addresses before entering the Instruction TCM. It also means that 
the instruction data is routed to both the instruction and data interfaces of the core. See 
Instruction TCM accesses on page 5-9 for details of this data and address multiplexing.

Figure 5-1 shows a typical TCM read cycle. The enable signal, TCMEn, is either 
ITCMEn or DTCMEn, depending on whether instruction or data memory is being 
accessed. The TCM interface signals are described in TCM interface signals on 
page B-4.

Figure 5-1 TCM read cycle

The Instruction TCM is located at address 0x00000000 in the memory map. This 
simplifies the implementation of the design by removing the requirement for complex 
address comparators on both the instruction and data interfaces of the ARM9E-S core 
to generate the chip select logic for the Instruction TCM. 

D00TCMRData[31:0]

Addr 0TCMAdrs[17:0]

TCMEn

CLK

SRAM access

time
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5.2 Using CP15 Control Register

When out of reset, the behavior of the TCM is controlled by the state of the CP15 
Control Register.

5.2.1 Enabling the Instruction TCM

You can enable the Instruction TCM by setting bit 18 of the CP15 Control Register. You 
must use read-modify-write to access this register to preserve the contents of the bits not 
being modified. See Register 1, Control Register on page 2-11 for details of how to read 
and write the CP15 Control Register. When you have enabled the Instruction TCM, all 
future ARM9E-S instruction fetches and data accesses to the Instruction TCM address 
space cause the Instruction TCM to be accessed. Enabling the Instruction TCM greatly 
increases the performance of the ARM946E-S processor because the majority of 
accesses to it can be performed with no stall cycles. Accessing the AHB however, can 
cause several stall cycles for each access.You must take care to ensure that the 
Instruction TCM is appropriately initialized before it is enabled and used to supply 
instructions to the ARM9E-S core. If the core tries to execute instructions from 
uninitialized Instruction TCM, the behavior is Unpredictable.

5.2.2 Disabling the Instruction TCM

You can disable the Instruction TCM by clearing bit 18 of the CP15 Control Register. 
See Register 1, Control Register on page 2-11 for details of how to read and write the 
CP15 Control Register. When you have disabled the Instruction TCM, all future 
ARM9E-S instruction fetches access the AHB.The contents of the memory are 
preserved when it is disabled. If it is re-enabled, accesses to previously initialized 
memory locations return the preserved data.

5.2.3 Defining the physical and visible size of the Instruction TCM

You can determine the physical size of the Instruction TCM by using CP15 register 0. 
See Register 0, Tightly-coupled Memory Size Register on page 2-10 for more details.

You can determine the visible size of the Instruction TCM by using CP15 register 9. See 
Register 9, Tightly-coupled Memory Region Registers on page 2-26 for more details.

5.2.4 Initializing the Instruction TCM

You must initialize the Instruction TCM with the required code image before execution 
from the Instruction TCM.

You can initialize the Instruction TCM by writing to the memory from the ARM9E-S 
core data interface.
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The Instruction TCM load mode enables this to be done in an efficient manner. Using 
the load mode enables you to copy from an address in the data cache or external memory 
into the same address within the Instruction TCM.

The Instruction TCM load mode bit of CP15 register 1 inhibits reads from the 
Instruction TCM, forcing reads from addresses that are within the Instruction TCM 
address range to access either main memory, or the data cache. Writes to addresses that 
are within the Instruction TCM range are not affected by the Instruction TCM load 
mode bit. The procedure for initializing the Instruction TCM using the load TCM mode 
is:

1. Enable the Instruction TCM and Instruction load mode.

2. Load ARM registers from main memory, data cache, or Data TCM.

3. Store ARM registers into Instruction TCM.

4. Increment address pointers and repeat load/store steps until the code image has 
been copied.

A suggested assembler code sequence for this procedure is:

MOV R0, #0 ; Initialize pointer
LDR R1, =ImageTop ; Define end of code image
MRC p15, 0, R2, c1, c0, 0 ; Read Control Register
ORR R2, R2, #&C0000
MCR p15, 0, R2, c1, c0, 0 ; Enable Instruction TCM and Load Mode

CopyLoop
LDMIA R0, {R2 - R9} ; Load 8 registers from main memory
STMIA R0!, {R2 - R9} ; Store 8 regs into Instruction TCM
CMP R1, R0 ; Check if limit reached
BGT CopyLoop ; Repeat if more to do

SWP and SWPB operations to the Instruction TCM when it is in load mode have 
Unpredictable results. This is because the read accesses external memory or the data 
cache, and the write updates the Instruction TCM. 

SWP and SWPB operations must not be performed to addresses in the Instruction TCM 
space when it is in load mode.

5.2.5 Enabling the Data TCM

You can enable the Data TCM by setting bit 16 of the CP15 Control Register. See CP15 
register map summary on page 2-4 for details of how to read and write this register. 
When you have enabled the Data TCM all future read and write accesses to the Data 
TCM address space cause the Data TCM to be accessed.
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5.2.6 Disabling the Data TCM

You can disable the Data TCM by clearing bit 16 of the CP15 Control Register. When 
you have disabled the Data TCM all future reads and writes to the Data TCM address 
space access the AHB. Read and write accesses to Instruction TCM address space either 
use the Instruction TCM or access the AHB depending on whether Instruction TCM is 
enabled or not.

5.2.7 Defining the physical and visible size of the Data TCM

You can determine the physical size of the Data TCM by using CP15 register 0. See 
Register 0, Tightly-coupled Memory Size Register on page 2-10 for more details.

You can determine the visible size of the Data TCM by using CP15 register 9. See 
Register 9, Tightly-coupled Memory Region Registers on page 2-26 for more details.

Using CP15 register 9, you must ensure the base address of the Data TCM is a value 
other than 0x0.

5.2.8 Initializing the Data TCM

You must initialize the Data TCM with the required data image before use.

You can initialize the Data TCM by writing to the memory from the ARM9E-S core 
data interface.

The Data TCM load mode enables this to be done in an efficient manner. Using the load 
mode enables you to copy from an address in the data cache or external memory into 
the same address within the Data TCM.

The Data TCM load mode bit of CP15 register 1 inhibits reads from the Data TCM, 
forcing reads from addresses that are within the Data TCM address range to access 
either main memory or the data cache. Writes to addresses that are within the Data TCM 
range are not affected by the Data TCM load mode bit.

To initialize the Data TCM using the load mode:

1. Enable the Data TCM and Data TCM load mode.

2. Load ARM registers from main memory or data cache.

3. Store ARM registers into data RAM.

4. Increment address pointers and repeat the load and store steps until the data image 
has been copied.

A suggested assembler code sequence for this procedure is:
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LDR R0, #ImageStart ; Initialize pointer
LDR R1, =ImageTop ; Define end of data space
MRC p15, 0, R2, c1, c0, 0 ; Read Control Register
ORR R2, R2, #&30000
MCR p15, 0, R2, c1, c0, 0 ; Enable Data TCM and Load Mode

CopyLoop
LDMIA R0, {R2 - R9} ; Load 8 registers from main memory
STMIA R0!, {R2 - R9} ; Store 8 regs into Data TCM
CMP R1, R0 ; Check if limit reached
BGT CopyLoop ; Repeat if more to do

SWP and SWPB operations to the Data TCM while it is in load mode have Unpredictable 
results. This is because the read accesses external memory or the data cache, and the 
write updates the Data TCM. 

SWP and SWPB operations must not be performed to addresses in the Data TCM space 
while it is in load mode.
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5.3 Enabling the Instruction TCM during soft reset

Following a soft reset, you can use the Instruction TCM for the reset vector. This is 
achieved by using the INITRAM signal. If asserted this signal enables the Instruction 
TCM at reset. The address space allocated for the Instruction TCM defaults to the 
physical size of the Instruction TCM. To use the reset vector in the Instruction TCM, 
the memory contents must be preserved during reset. The VINITHI signal must be 
de-asserted so that the reset vector is located at address 0x00000000.The INITRAM 
signal does not affect the Data TCM, which is disabled at reset.

Note
 If HRESETn is asserted asynchronously during a soft reset, the firmware designer must 
ensure that all writes to the TCM have been completed and the TCM interfaces are 
idling at the time of HRESETn assertion. This is necessary for the following reasons:

• to ensure there are no pending writes in the pipeline which would be lost in the 
case of a reset

• to prevent any loss or corruption of TCM contents by an existing write on the 
TCM interface.

This can be done by executing a drain write buffer instruction, then entering Standby 
WFI mode before asserting HRESETn. Contact ARM Limited for more details.
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5.4 Data TCM accesses

Accesses to the Data TCM do not incur stall cycles unless a write to the Data TCM is 
completing. Figure 5-2 shows this access.

Figure 5-2 Data write followed by data read of Data TCM
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5.5 Instruction TCM accesses

The Instruction TCM provides deterministic behavior for time-critical operations, and 
is located at address 0x00000000 within the processor memory map.The Instruction 
TCM is implemented using single port synchronous compiled memory.

The protection unit does not have to be enabled for the Instruction TCM to be used.

If the protection unit is enabled then the access permissions programmed into the 
protection unit are applied to accesses to the Instruction TCM.

The Instruction TCM can be accessed for either instruction fetches or data accesses 
(read and write) from the ARM946E-S processor.

5.5.1 Instruction accesses to Instruction TCM

Instruction accesses to the Instruction TCM are single-cycle read accesses. No stall 
cycles are required for instruction accesses to the Instruction TCM unless there is a data 
access completing.

5.5.2 Data accesses to Instruction TCM

Data accesses to the Instruction TCM can either be reads or writes.

Data access to the Instruction TCM can introduce stall cycles to the ARM946E-S 
processor.

5.5.3 Stall cycles for Instruction TCM accesses

Simultaneous instruction fetch and data reads of the Instruction TCM incur a single stall 
cycle. This is because the Instruction TCM is a single port memory, which can only 
return a single word of memory per clock cycle. This is shown in Figure 5-3 on 
page 5-10.
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Figure 5-3 Simultaneous instruction fetch and data read of Instruction TCM

A data write to the Instruction TCM followed by a data read from the Instruction TCM 
incurs a single stall cycle. This is because the memory requires that the write address is 
pipelined to be in-line with the write data. The read address cannot then be applied until 
the next cycle, so requiring the stall. Figure 5-4 shows this sequence.

Figure 5-4 Data write followed by data read of Instruction TCM

Similarly, a data write operation followed by an instruction fetch incurs a stall cycle, as 
shown in Figure 5-5 on page 5-11.
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Figure 5-5 Data write followed by instruction fetch of Instruction TCM

A data read followed by an instruction fetch also requires a stall cycle. This stall is 
incurred as a result of the multiplexor switching being controlled by registered versions 
of the ARM9E-S data memory interface. The stall is therefore inserted for the data read 
cycle rather than the instruction read. Figure 5-6 shows the sequence.

Figure 5-6 Data read followed by instruction fetch

CLK

DnMREQ

DnRW

DA

CLKEN

ITCMAdrs

ITCMRData

ITCMWData

ITCMEn

D0

D0 I1

Data 0 D(I1)

Data 0

InMREQ

IA I1

CLK

DnMREQ

DnRW

DA

CLKEN

ITCMAdrs

ITCMRData

ITCMWData

ITCMEn

D0

D0 I0

D(I0)

InMREQ

IA I0

Data 0
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. 5-11



Tightly-Coupled Memory Interface 
Simultaneous instruction fetch and data write incurs a single stall cycle because of the 
pipelining of the data access to the data address. Figure 5-7 shows the sequence.

Figure 5-7 Simultaneous instruction fetch and data write

A data write followed by a simultaneous instruction fetch and data read incurs two stall 
cycles. The first stall is caused by the write still being active when the instruction fetch 
begins. The second stall is caused by the two reads required. This is shown in Figure 5-8 
on page 5-13.
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Figure 5-8 Data write followed by simultaneous instruction fetch and data read
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Chapter 6 
Bus Interface Unit and Write Buffer

This chapter describes the ARM946E-S Bus Interface Unit (BIU) and write buffer. It 
contains the following sections:

• About the BIU and write buffer on page 6-2

• AHB bus master interface on page 6-3

• Noncached Thumb instruction fetches on page 6-9

• AHB clocking on page 6-10

• The write buffer on page 6-13.
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6.1 About the BIU and write buffer

The ARM946E-S processor supports the Advanced Microprocessor Bus Architecture 
(AMBA) Advanced High-performance Bus (AHB) interface. The AHB is a new 
generation of AMBA interface that addresses the requirements of high-performance 
synthesizable designs, including:

• single clock edge operation (rising edge)

• unidirectional (nontristate) buses

• burst transfers

• split transactions

• single-cycle bus master handover.

See the AMBA Rev 2.0 AHB Specification for full details of this bus architecture.

The ARM946E-S BIU implements a fully-compliant AHB bus master interface and 
incorporates a write buffer to increase system performance. The BIU is the link between 
the ARM9E-S core with the caches and Tightly-Coupled Memory (TCM) and the 
external AHB memory. The AHB memory must be accessed for cache linefills and for 
initializing the TCMs, and to access code and data that are not within the cachable or 
TCM address regions.

When an AHB access is performed, the BIU and system controller handshake to ensure 
that the ARM9E-S core is stalled until the access has been performed. If you are using 
the write buffer, you might be able to enable the core to continue program execution. 
The BIU controls the write buffer and related stall behavior.
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6.2 AHB bus master interface

The ARM946E-S processor implements a fully compliant AHB bus master interface as 
defined in the AMBA Rev 2.0 Specification. See this document for a detailed description 
of the AHB protocol.

Note
 In all timing diagrams in this section, it is assumed that HCLK is the same frequency 
as CLK.

6.2.1 About AHB

The AHB architecture is based on separate cycles for address and data. The address and 
control for an access are broadcast from the rising edge of HCLK in the cycle before 
the data is expected to be read or written. During this data cycle, the address and control 
for the next transfer are driven out. This leads to a fully pipelined address architecture.

When an access is in its data cycle, a slave can extend an access by driving the 
HREADY signal LOW. This stretches the current data cycle, and therefore the 
pipelined address and control for the next transfer is also stretched. This provides a 
system where all AHB masters and slaves sample HREADY on the rising edge of 
HCLK to determine whether an access has completed and a new address can be 
sampled or driven out.
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6.2.2 Transfer type

Table 6-1 shows the transfer types that can be generated by the ARM946E-S processor 
from the HTRANS[1:0] signal.

Note
 BUSY transfers are inserted between certain sequences of NONSEQ and SEQ transfers. 
Examples of transfers that can cause BUSY transfers include multiple data reads during 
debug and coprocessor operations to uncachable areas of memory. LDM accesses to 
uncachable areas of memory might also cause BUSY transfers depending on the start 
address of the burst.

System designers must ensure that any AHB peripherals can handle BUSY transfers as 
defined in the AMBA Specification.

Table 6-1 AHB transfer types

Transfer type HTRANS[1:0] Description

IDLE b00 Indicates that no data transfer is required. The IDLE transfer is used when a bus 
master is granted the bus, but does not want to perform a data transfer. Slaves must 
always provide a zero wait state OKAY response to IDLE transfers and the transfer 
must be ignored by the slave.

BUSY b01 The BUSY transfer enables bus masters to insert idle cycles in the middle of bursts 
of transfers. This transfer indicates that the bus master is continuing with a burst of 
transfers, but the next transfer cannot take place immediately. When a master uses 
the BUSY transfer the address and control signals must reflect the next transfer in 
the burst.

The transfer must be ignored by the slave. Slaves must always provide a zero wait 
state OKAY response, in the same way that they respond to IDLE transfers.

Examples of where the ARM946E-S uses BUSY cycles are:

• during debug and coprocessor operations to uncachable areas of memory

• LDM accesses to uncachable areas of memory depending on the start address 
of the burst.

NONSEQ b10 Indicates the first transfer of a burst or a single transfer. The address and control 
signals are unrelated to the previous transfer. Single transfers on the bus are treated 
as bursts of one and therefore the transfer type is NONSEQUENTIAL.

SEQ b11 The remaining transfers in a burst are SEQUENTIAL and the address is related to 
the previous transfer. The control information is identical to the previous transfer. 
The address is equal to the address of the previous transfer plus the size (in bytes). 
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6.2.3 Burst sizes

The ARM946E-S processor supports the burst types shown in Table 6-2.

Incrementing bursts have an address increment of four, that is, word increment.

6.2.4 Linefetch transfers

The ARM946E-S processor is optimized to run with the instruction cache and data 
cache enabled. If a memory request (either instruction or data) to a cachable area misses 
in the cache the ARM946E-S processor performs a linefetch.

Figure 6-1 shows a linefetch transfer.

Figure 6-1 Linefetch transfer

Table 6-2 Supported burst types

Burst type
HBURST[2:0] 
encoding

Use

SINGLE b000 Single writes (STR/STRH/STRB)

Uncached single reads

Uncached instruction fetches

INCR b001 Store multiple (STM)

Uncached burst reads (LDM)

INCR4 b011 Dirty half-cache line Write-Back

INCR8 b101 Dirty cache line Write-Back

Cache linefetches
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A linefetch is a fixed length burst of eight words. The start address of a linefetch is 
aligned to an eight-word boundary. The ARM946E-S processor asserts the bus request 
HBUSREQ until the arbiter grants the AHB bus (HGRANT asserted). The bus request 
is then negated. This enables optimum system performance because the arbiter can 
accurately predict the end of the defined length burst.

6.2.5 Back to back linefetches

The ARM946E-S processor supports streaming of data and instructions (core execution 
is advanced during the linefetch). To enable for cache look-ups when crossing a cache 
line boundary the ARM946E-S processor must insert IDLE cycles onto the AHB bus. 
Figure 6-2 shows the effect of this. 

Figure 6-2 Back-to-back line fetches

6.2.6 Uncached transfers

If a memory request is made to an uncachable region, or the ARM946E-S cache is not 
enabled, the memory requests are serviced by the AHB interface. Sequential instruction 
fetches are treated as nonsequential reads. 

Figure 6-3 on page 6-7 shows uncached instruction fetches. Nonsequential uncached 
data operations exhibit similar bus timings.
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Figure 6-3 Nonsequential uncached accesses

6.2.7 Burst accesses

Uncached burst operations (STM/LDM instructions) are performed as incrementing bursts 
of undefined length on the AHB.

Figure 6-4 shows a data burst followed by an uncached instruction fetch.

Figure 6-4 Data burst followed by instruction fetch

6.2.8 Bursts crossing 1KB boundary

The AHB specification requires that bursts must not continue across a 1KB boundary. 
Linefetches and cache line Write-Backs cannot cross a 1KB boundary because the start 
address is aligned to either a four or eight-word boundary, and the burst length is fixed.

Uncached data bursts can cross a 1KB boundary. Figure 6-5 shows an example of this. 
The burst is restarted by inserting a nonsequential transfer as the boundary is crossed.

Figure 6-5 Crossing a 1KB boundary
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6.2.9 Uncached LDC operations

Coprocessor loads to its registers from memory are shown in Figure 6-6. DnMREQ, 
DMORE, CLKEN, and RDATA are internal ARM946E-S signals. See the ARM9E-S 
Technical Reference Manual for more information about these signals. The sequence 
assumes that the ARM946E-S processor has already been granted bus ownership.

Figure 6-6 Uncached LDC sequence

CLK

DnMREQ

DA

DMORE

HGRANT

HTRANS

HADDR

HBURST

HWRITE

HRDATA

RDATA

A0 A1 A2 A3

IDLE NSEQ BUSY SEQ BUSY SEQ BUSY SEQ IDLE

A0 A1 A2 A3

INCR

CLKEN

D0 D1 D2 D3

D0 D1 D2 D3
6-8 Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D



Bus Interface Unit and Write Buffer 
6.3 Noncached Thumb instruction fetches

Thumb instruction fetches are performed as 32-bit accesses on the AHB interface. To 
minimize bus loading, AHB transfers are only performed for nonsequential addresses 
and for sequential addresses that cross a word boundary. The word returned from main 
memory is latched so that both halfwords are available for the processor core.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. 6-9



Bus Interface Unit and Write Buffer 
6.4 AHB clocking

The ARM946E-S processor design uses a single rising-edge clock CLK to time all 
internal activity. In many systems in which the ARM946E-S processor is embedded, 
you might prefer to run the AHB at a lower rate. To support this requirement, the 
ARM946E-S processor requires a clock enable, HCLKEN, to time AHB transfers.

The HCLKEN input is driven HIGH around a rising edge of the ARM946E-S 
processor CLK to indicate that this rising-edge is also a rising-edge of HCLK so must 
be synchronous to the ARM946E-S processor CLK. 

When the ARM9E-S is running from Tightly-Coupled Memory (TCM) or performing 
writes using the write buffer, the ARM946E-S processor HCLKEN and HREADY 
inputs are not used to generate the SYSCLKEN core stall signal. The core is only 
stalled by TCM stall cycles or if the write buffer overflows. This means that the 
ARM9E-S is executing instructions at the faster CLK rate and is effectively decoupled 
from the HCLK domain AHB system.

If, however, you want to perform an AHB read access or unbuffered write, the core is 
stalled until the AHB transfer has completed. When the AHB system is being clocked 
by the lower rate HCLK, HCLKEN is examined to detect when to drive out the AHB 
address and control to start an AHB transfer. HCLKEN is then required to detect the 
following rising edges of HCLK so that the BIU knows the access has completed. 

If the slave being accessed at the HCLK rate has a multi-cycle response, the HREADY 
input to the ARM946E-S processor is driven LOW until the data is ready to be returned. 
The BIU must therefore perform a logical AND on the HREADY response with 
HCLKEN to detect that the AHB transfer has completed. When this is the case, the 
ARM9E-S core is enabled by reasserting SYSCLKEN.

Note
 When an AHB access is required, the core is stalled until the next HCLKEN pulse is 
received, before it can start the access, and then until the access has completed. This 
stall before the start of the access is a synchronization penalty and the worst case can be 
expressed in CLK cycles as the HCLK to CLK ratio minus 1.

6.4.1 CLK to HCLK skew

The ARM946E-S processor drives out the AHB address on the rising edge of CLK 
when the HCLKEN input is HIGH. The AHB outputs therefore have output hold and 
delay values relative to CLK. However, these outputs are used in the AHB system 
where transfers are timed using HCLK. Similarly, inputs to the ARM946E-S processor 
are timed relative to HCLK but are sampled within the ARM946E-S processor with 
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CLK. This leads to hold time issues, from CLK to HCLK on outputs, and from HCLK 
to CLK on inputs. To minimize this effect you must minimize the skew between HCLK 
and CLK.

Figure 6-7 shows the AHB clock relationships.

Figure 6-7 AHB clock relationships

Clock tree insertion at top level

Considering the skew issue in more detail, the ARM946E-S processor requires a clock 
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Figure 6-8 on page 6-12 shows an example of an AHB slave connected to the 
ARM946E-S processor.
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Figure 6-8 ARM946E-S CLK to AHB HCLK sampling

In Figure 6-8, the slave peripheral has an input setup and hold, and an output hold and 
valid time relative to HCLK. The ARM946E-S processor has an input setup and hold, 
and an output hold and valid time relative to CLK’, the clock at the bottom of the clock 
tree. You can use clock tree insertion to position HCLK to match CLK’ for optimal 
performance. 
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6.5 The write buffer

The ARM946E-S processor provides a write buffer to improve system performance. 
The write buffer has a 16-entry FIFO. Each entry can be either address or data. The type 
of entry is determined by the setting of an address/data flag. Each address entry is 
tagged with the size of transfer, as indicated by the ARM9E-S core (byte, halfword, or 
word). 

Write buffer behavior is controlled by the protection region attributes of the store being 
performed and the data cache and protection unit enable status. This control is 
represented by the data Cachable bit (Cd) and the write Buffer control bit (Bd) from the 
protection unit. These control bits are generated as follows:

Cd bit This is generated from the cachable attribute of the protection region 
AND the data cache enable AND the protection unit enable.

Bd bit This is generated from the bufferable attribute for the protection region 
AND the protection unit enable.

All accesses are initially noncachable and nonbufferable until you have programmed 
and enabled the protection unit. Therefore, you cannot use the write buffer while the 
protection unit is disabled.

On reset, all entries in the write buffer are invalidated.

6.5.1 Write buffer operation

The write buffer is used when the data cache hits and/or misses, depending on the mode 
of operation. Table 6-3 shows how the Cd and Bd bits control the behavior of the write 
buffer.

NCNB Data reads and writes are not cached, and can be externally 
aborted. Writes are not buffered, so the processor is stalled until 
the external access is performed. NCNB reads bypass the write 
buffer.

Table 6-3 Data write modes

Cd Bd Access mode

0 0 NCNB (noncachable, nonbufferable)

0 1 NCB (noncachable, bufferable)

1 0 WT (write-through)

1 1 WB (write-back)
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NCB Data reads and writes are not cached. Writes are buffered, and so 
cannot be externally aborted. Reads can be externally aborted. 
Reads cause the write buffer to drain. If the data cache hits for this 
type of access, there has been a programming error. data cache hits 
are ignored and the data cache line is not updated for a read. Swap 
instructions operating on data in an NCB region are made to 
perform NCNB type accesses and are not buffered.

WT Searches the data cache for reads and writes. Reads that miss in 
the data cache cause a line fill. Reads that hit in the data cache do 
not perform an external access. All writes are buffered, regardless 
of whether they hit or miss in the data cache. Writes that hit in the 
data cache update the cache but do not mark the cache line as dirty, 
because the write is also sent to the write buffer. Writes cannot be 
externally aborted. Data cache linefills cause the write buffer to 
drain before the linefill starts.

WB Searches the data cache for reads and writes. Reads that miss in 
the data cache cause a line fill. Reads that hit in the data cache do 
not perform an external access. Writes that miss in the data cache 
are buffered. Writes that hit in the data cache update the cache 
line, mark it as dirty, and do not send the data to the write buffer. 
Data cache write-backs are buffered. Writes (write-miss and 
write-back) cannot be externally aborted. Data cache linefills 
cause the write buffer to drain before the linefill starts.

6.5.2 Enabling and disabling the write buffer

You cannot directly enable or disable the write buffer. However, you can prevent the 
write buffer being used by setting the properties of a memory region to be NCNB, or by 
disabling the protection unit.

6.5.3 Self-modifying code

Instruction fetches and NCNB reads bypass the write buffer. If you write self-modifying 
code to a bufferable or cachable region, then it is essential that you drain the write buffer 
before fetching instructions from these addresses.
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Coprocessor Interface

This chapter describes the ARM946E-S pipelined coprocessor interface. It contains the 
following sections:

• About the coprocessor interface on page 7-2

• Coprocessor interface signals on page 7-3

• LDC/STC on page 7-10

• MCR/MRC on page 7-12

• Interlocked MCR on page 7-13

• CDP on page 7-14

• Privileged instructions on page 7-15

• Busy-waiting and interrupts on page 7-16.
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7.1 About the coprocessor interface

The ARM946E-S processor fully supports the connection of on-chip coprocessors 
through the external coprocessor interface and supports all classes of coprocessor 
instructions. 

The interface differs from the basic ARM9E-S coprocessor interface. To ease 
integration of an external coprocessor, the interface from the ARM946E-S processor to 
the coprocessor has been pipelined by a single clock cycle as shown in Figure 7-1.

Figure 7-1 Pipeline stages

This ensures that ARM946E-S interface outputs, which otherwise arrive late in the 
clock cycle, are driven out directly from registers to the external coprocessor. This 
significantly eases the implementation task for an external coprocessor.

ARM9E-S

Coprocessor

WritebackMemoryExecuteDecodeFetch

WritebackMemoryExecuteDecodeFetch
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7.2 Coprocessor interface signals

Table 7-1 describes the ARM946E-S coprocessor interface signals.

Table 7-1 Coprocessor interface signals

Name
Direction with respect to 
ARM946E-S processor 

Description

CPCLKEN

Coprocessor clock 
enable

Output Synchronous enable for coprocessor pipeline follower. When 
HIGH on the rising edge of CLK the pipeline follower logic is 
able to advance.

CPINSTR[31:0]

Coprocessor 
instruction data

Output The 32-bit coprocessor instruction bus over which instructions 
are transferred to the coprocessor pipeline follower.

CPDOUT[31:0]
Coprocessor read data

Output The 32-bit coprocessor read data bus for transferring data to the 
coprocessor.

CPDIN[31:0]

Coprocessor write data

Input The 32-bit coprocessor write data bus for transferring data from 
the coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in the Execute 
stage of the pipeline, and it must be executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a coprocessor 
instruction, then the coprocessor must cancel the instruction 
without changing any internal state. This signal is only asserted 
in cycles where the previous instruction caused a Data Abort to 
occur.

CHSDE[1:0]

Coprocessor 
handshake decode

Input The handshake signals from the Decode stage of the 
coprocessors pipeline follower. Indicates:

b10 = ABSENT 

b00 = WAIT

b01 = GO

b11 = LAST.

CHSEX[1:0]

Coprocessor 
handshake execute

Input The handshake signals from the Execute stage of the 
coprocessors pipeline follower. Indicates:

b10 = ABSENT 

b00 = WAIT

b01 = GO

b11 = LAST.
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7.2.1 Synchronizing the external coprocessor pipeline

A coprocessor connected to the ARM946E-S processor determines which instructions 
it needs to execute by implementing a pipeline follower in the coprocessor. Each 
instruction that enters the ARM9E-S pipeline also enters the coprocessor pipeline one 
clock cycle later. The interface to the coprocessor is pipelined and so the coprocessor 
pipeline follower operates one cycle behind the ARM9E-S core, sampling the 
CPINSTR[31:0] output bus from the ARM946E-S coprocessor interface. 

To hide the pipeline delay, a mechanism inside the interface block stalls the ARM9E-S 
core for a cycle by internally modifying the coprocessor handshake signals whenever an 
external coprocessor instruction is decoded. This enables the external coprocessor to 
catch up with the ARM9E-S core. 

After this initial stall cycle, the two pipelines can be considered synchronized. The 
ARM9E-S core then informs the coprocessor when instructions move from Decode into 
Execute, and whether the instruction has passed its condition codes and is to be 
executed.

Note
 Because the ARM946E-S processor hides the synchronization of the coprocessor 
pipeline follower, its coprocessor handshake interface is similar to that of the native 
ARM9E-S core. This implies that an ARM9E-S core designed pipeline follower can 
interface to the ARM946E-S processor without modification. The data path of the 
coprocessor differs however, because of the ARM946E-S pipelined output data 
CPDOUT[31:0].

CPTBIT

Coprocessor 
instruction Thumb bit

Output When HIGH indicates that the ARM946E-S processor is in 
Thumb state. When LOW indicates that the ARM946E-S 
processor is in ARM state. Sampled by the coprocessor 
pipeline follower.

nCPMREQ
Not coprocessor 
instruction request

Output When LOW on the rising edge of CLK and CPCLKEN is 
HIGH, the instruction on CPINSTR must enter the 
coprocessor pipeline.

nCPTRANS

Not coprocessor 
memory translate

Output When LOW indicates that the ARM946E-S processor is in 
User mode. When HIGH indicates that the ARM946E-S 
processor is in privileged mode. Sampled by the coprocessor 
pipeline follower.

Table 7-1 Coprocessor interface signals  (continued)

Name
Direction with respect to 
ARM946E-S processor 

Description
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7.2.2 External coprocessor clocking

The Coprocessor Data Processing (CDP) instruction is used for coprocessor instructions 
that do not operate on values in ARM registers or in main memory. One example is a 
floating-point multiply instruction for a floating-point accelerator processor. 

To enable coprocessors to continue execution of CDP instructions while the ARM9E-S 
core pipeline is stalled (for instance while waiting for an AHB transfer to complete), the 
coprocessor receives the free-running system clock CLK, and a clock enable signal 
CPCLKEN. If CPCLKEN is LOW around the rising edge of CLK then the ARM9E-S 
core pipeline is stalled and the coprocessor pipeline follower must not advance. 

This prevents any new instructions entering Execute within the coprocessor but enables 
a CDP instruction in Execute to continue execution. The coprocessor is only stalled when 
the current instruction leaves Execute and new instructions are required from the 
ARM946E-S interface.This goes some way towards decoupling the external 
coprocessor from the ARM9E-S memory interface.

There are three classes of coprocessor instructions:

• LDC/STC

• MCR/MRC

• CDP.

Examples of how a coprocessor executes these instruction classes are given in the 
following sections:

• LDC/STC on page 7-10

• MCR/MRC on page 7-12

• CDP on page 7-14.

7.2.3 Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor 
instruction, the handshake signals indicate the ABSENT state. In this 
case, the ARM9E-S core takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not 
immediately, the coprocessor handshake signals are driven to indicate 
that the ARM9E-S processor core must stall until the coprocessor can 
catch up. This is known as the busy-wait condition. In this case, the 
ARM9E-S processor core loops in an IDLE state waiting for 
CHSEX[1:0] to be driven to another state, or for an interrupt to occur. If 
CHSEX[1:0] changes to ABSENT, the undefined instruction trap is 
taken. If CHSEX[1:0] changes to GO or LAST, the instruction proceeds 
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as described here. If an interrupt occurs, the ARM9E-S processor is 
forced out of the busy-wait state. This is indicated to the coprocessor by 
the CPPASS signal going LOW. The instruction is restarted later and so 
the coprocessor must not commit to the instruction (it must not change 
any coprocessor state) until CPPASS is asserted HIGH, when the 
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction 
immediately, and that it requires at least another cycle of execution. Both 
the ARM9E-S processor core and the coprocessor must also consider the 
state of the CPPASS signal before actually committing to the instruction. 
For an LDC/STC instruction, the coprocessor instruction drives the 
handshake signals with GO when two or more words still have to be 
transferred. When only one more word is to be transferred, the 
coprocessor drives the handshake signals with LAST. During the Execute 
stage, the ARM9E-S processor core outputs the address for the LDC/STC 
instruction. Also in this cycle, DnMREQ is driven LOW, indicating to 
the ARM946E-S memory system that a memory access is required at the 
data end of the device. The timing for the data on CPDOUT and CPDIN 
is shown in Figure 7-6 on page 7-10.

LAST An LDC or STC instruction can be used for more than one item of data. If 
this is the case, possibly after busy waiting, the coprocessor drives the 
coprocessor handshake signals with a number of GO states, and in the 
penultimate cycle LAST (LAST indicating that the next transfer is the 
final one). If there is only one transfer, the sequence is 
[WAIT,[WAIT,...]],LAST. LAST is also usually driven for CDP 
instructions.

7.2.4 Coprocessor handshake encoding

Table 7-2 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are 
encoded.

Table 7-2 Handshake encoding

[1:0] Meaning

b10 ABSENT

b00 WAIT

b01 GO

b11 LAST
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Note
 If an external coprocessor is not attached in the ARM946E-S embedded system, the 
CHSDE[1:0] and CHSEX[1:0] handshake inputs must be tied off to indicate ABSENT.

7.2.5 Multiple external coprocessors

Figure 7-2 shows an example where VFP9 and two other coprocessors are connected to 
the ARM946E-S processor using the coprocessor interface logic block.

Figure 7-2 Connecting multiple coprocessors

The handshaking signals from the coprocessors can be combined by ANDing bit 1, and 
ORing bit 0.

In the case of coprocessors that have handshaking signals CHSDECP1, CHSEXCP1, 
CHSDECP2, CHSEXCP2, and CHSDEVFP9, CHSEXVFP9 use:

CHSDE[1] = CHSDECP1[1] AND CHSDECP2[1] AND CHSDEVFP9[1]

CHSDE[0] = CHSDECP1[0] OR CHSDECP2[0] OR CHSDEVFP9[0]

CHSEX[1] = CHSEXCP1[1] AND CHSEXCP2[1] AND CHSEXVFP9[1]

CHSEX[0] = CHSEXCP1[0] OR CHSEXCP2[0] OR CHSEXVFP9[0]
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Figure 7-3 shows example components of the handshaking logic in the coprocessor 
interface logic block.

Figure 7-3 Example handshake logic blocks

For connecting to the CPDIN[31:0] signals, there are two options for interfacing the 
coprocessor data buses to the ARM946E-S processor:

• The coprocessor drives its data bus to logic 0 when not selected. This enables a 
simple OR connection scheme as shown in Figure 7-4 on page 7-9. This is the 
recommended method of coprocessor data bus interfacing.
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Figure 7-4 Driving the coprocessors data buses to logic 0

• Multiplexing the coprocessor data bus, as shown in Figure 7-5. For coprocessors 
that do not drive data buses to logic 0 a multiplexor circuit is required. 
Multiplexor control is determined by the coprocessor decoding the coprocessor 
number field Bits [11:7] in the MRC/STC instruction in the correct pipeline stage.

Figure 7-5 Multiplexing the coprocessors data buses
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7.3 LDC/STC

The LDC and STC instructions are used respectively to transfer data to and from external 
coprocessor registers and memory. In the case of the ARM946E-S processor, the 
memory can be either cache, Tightly-Coupled Memory (TCM) or AHB depending on 
the address range of the access and the protection unit settings.

Figure 7-6 shows the cycle timing for these operations.

Figure 7-6 LDC/STC cycle timing

In this example, four words of data are transferred. The number of words transferred is 
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

As with all other instructions, the ARM9E-S core performs the main decode off the 
rising edge of the clock during the Decode stage. From this, the core commits to 
executing the instruction and so performs an instruction fetch. The coprocessor 
instruction pipeline keeps in step with the ARM9E-S core by monitoring nCPMREQ. 
This is a registered version of the ARM9E-S core instruction memory request signal 
InMREQ. 

At the rising edge of CLK, if CPCLKEN is HIGH, and nCPMREQ is LOW, an 
instruction fetch is taking place, and CPINSTR[31:0] contains the fetched instruction 
on the next rising edge of the clock, when CPCLKEN is HIGH. 

This means that:

• the last instruction fetched must enter the Decode stage of the coprocessor 
pipeline
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• the instruction in the Decode stage of the coprocessor pipeline must enter its 
Execute stage

• the fetched instruction must be sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline must 
not advance.

During the Execute stage, the condition codes are compared with the flags to determine 
whether the instruction really executes or not. The output CPPASS is asserted, HIGH, 
if the instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the 
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, 
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor 
instruction.

Another output, CPLATECANCEL, cancels a coprocessor instruction when the 
instruction preceding it caused a Data Abort. This is valid on the rising edge of CLK on 
the cycle that follows the first Execute cycle of any coprocessor instruction. This is the 
only cycle in which CPLATECANCEL can be asserted.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor 
handshake signals CHSDE[1:0] or CHSEX[1:0]:

• If a new instruction is entering the Execute stage in the next cycle, it examines 
CHSDE[1:0].

• If the currently executing coprocessor instruction requires another Execute cycle, 
it examines CHSEX[1:0]. 
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7.4 MCR/MRC

These cycles look very similar to STC/LDC. Figure 7-7 shows an example with a 
busy-wait state. First nCPMREQ is driven LOW to denote that the instruction on 
CPINSTR[31:0] is entering the Decode stage of the pipeline. This causes the 
coprocessor to decode the new instruction and drive CHSDE[1:0]. In the next cycle 
nCPMREQ is driven LOW to denote that the instruction has now been issued to the 
Execute stage. If the condition codes pass, and the instruction is to be executed, the 
CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is examined (it is 
ignored in all other cases). 

Figure 7-7 MCR/MRC transfer timing with busy-wait

For any successive Execute cycles the CHSEX[1:0] handshake bus is examined. When 
the LAST condition is observed, the instruction is committed. In the case of a MCR, the 
CPDOUT[31:0] bus is driven with the registered data. In the case of a MRC, 
CPDIN[31:0] is sampled at the end of the ARM9E-S core Memory stage and written 
to the destination register during the next cycle.
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7.5 Interlocked MCR

If the data for a MCR operation is not available inside the ARM9E-S core pipeline during 
its first Decode cycle, then the ARM9E-S core pipeline interlocks for one or more 
cycles until the data is available. An example of this is where the register being 
transferred is the destination from a preceding LDR instruction.

In this situation the MCR instruction enters the Decode stage of the coprocessor pipeline, 
and then remains there for a number of cycles before entering the Execute stage. 
Figure 7-8 shows an example of an interlocked MCR that also has a busy-wait state. 

Figure 7-8 Interlocked MCR/MRC timing with busy-wait
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7.6 CDP

CDP instructions normally execute in a single cycle. Like all the previous examples, 
nCPMREQ is driven LOW to signal when an instruction is entering the Decode and 
then the Execute stage of the pipeline:

• if the instruction really is to be executed, the CPPASS signal is driven HIGH 
during the Execute cycle

• if the coprocessor can execute the instruction immediately it drives CHSDE[1:0] 
with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0] 
with WAIT and then CHSEX[1:0] with LAST.

Figure 7-9 shows a canceled CDP because of the previous instruction causing a Data 
Abort.

Figure 7-9 Late canceled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute 
by CPASS. In the following cycle CPLATECANCEL is asserted. This causes the 
coprocessor to terminate execution of the CDP instruction and no state changes are made 
to the coprocessor.
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7.7 Privileged instructions

The coprocessor restricts certain instructions for use in privileged modes only. To do 
this, the coprocessor tracks the nCPTRANS output. Figure 7-10 shows how 
nCPTRANS changes after a mode change.

Figure 7-10 Privileged instructions

The first two CHSDE[1:0] responses are ignored by the ARM9E-S core because it is 
only the final CHSDE[1:0] response, as the instruction moves from Decode into 
Execute, that counts. This enables the coprocessor to change its response when 
nCPTRANS changes.
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7.8 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution 
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor 
instruction. To do so, the coprocessor associated with the Decode stage drives WAIT 
onto CHSDE[1:0]. When the instruction concerned enters the Execute stage of the 
pipeline, the coprocessor drives WAIT onto CHSEX[1:0] for as many cycles as 
necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor might be interrupted while busy-waiting, 
causing the instruction to be abandoned. Abandoning execution is done through 
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait 
cycle. 

If it is HIGH, the instruction must still be executed. If it is LOW, the instruction must 
be abandoned.

Figure 7-11 shows a busy-waited coprocessor instruction being abandoned because of 
an interrupt. CPLATECANCEL is also asserted as a result of the Execute interruption.

Figure 7-11 Busy-waiting and interrupts
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Chapter 8 
ETM Interface

This chapter describes the ARM946E-S Embedded Trace Macrocell (ETM) interface. 
It contains the following sections:

• About the ETM interface on page 8-2

• Enabling the ETM interface on page 8-3

• ARM946E-S trace support features on page 8-4.
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8.1 About the ETM interface

The ARM946E-S processor supports the connection of an optional external Embedded 
Trace Macrocell (ETM) to provide real-time tracing of ARM946E-S instructions and 
data in an embedded system.

The ETM interface is primarily one way. To provide code tracing, the ETM block must 
be able to monitor various ARM9E-S inputs and outputs. The required ARM9E-S 
inputs and outputs are collected and driven out from the ARM946E-S processor from 
the ETM interface registers, as shown in Figure 8-1.

The ETM interface outputs are pipelined by a single clock cycle to provide early output 
timing and to isolate any ETM input load from the critical ARM946E-S processor 
signals. The latency of the pipelined outputs does not affect ETM trace behavior, 
because all outputs are delayed by the same amount.

Figure 8-1 ARM946E-S ETM interface
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PWRDOWNETMEN
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8.2 Enabling the ETM interface

The ETM interface on the ARM946E-S processor is enabled by the top-level pin  
ETMEN. When this input is HIGH, the ETM interface is enabled and the outputs are 
driven so that an external ETM can begin code tracing.

When the ETMEN input is driven LOW, the ETM interface outputs are held at their last 
value before the interface was disabled.

The ETMEN input is usually driven by the ETM, and driven HIGH when the ETM is 
programmed using its TAP controller.

It is recommended that the ETMEN input is connected to the PWRDOWN output of 
the ETM9 macrocell through an inverter as shown in Figure 8-1 on page 8-2.

Note
 If an ETM is not used in an embedded ARM946E-S design, the ETMEN input must be 
tied LOW to save power.
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8.3 ARM946E-S trace support features

The ARM946E-S processor includes the following trace support features:

• ETMFIFOFULL

• Register 15, Trace Control Register

• Register 13, Trace Process Identifier Register.

8.3.1 ETMFIFOFULL

The signal, ETMFIFOFULL, is an input to the ARM946E-S processor driven by the 
ETM9. Whenever the programmed upper watermark of the ETM FIFO is reached, 
ETMFIFOFULL is asserted. The ARM946E-S processor uses ETMFIFOFULL to 
stall the ARM9E-S core, preventing trace loss. The ARM9E-S core remains stalled until 
ETMFIFOFULL is deasserted.

The ARM946E-S processor can only stall on instruction boundaries enabling any 
current AHB transfers to complete. You must take this into consideration when 
programming the ETM FIFO watermark. If the current instruction is either an LDM or an 
STM, the FIFO might have to accept up to 16 words after the assertion of 
ETMFIFOFULL.

Note
 Using ETMFIFOFULL to stall the ARM946E-S processor affects real-time operating 
performance.

8.3.2 Register 15, Trace Control Register

The Trace Control Register enables nIRQ and nFIQ interrupt priority over 
ETMFIFOFULL to be programmed. The operation of this register is described in 
Register 15, Trace Control Register on page 2-35.

8.3.3 Register 13, Trace Process Identifier Register

The ARM946E-S processor contains a Trace Process Identifier Register that enables 
real-time trace tools to identify the currently executing process in multi-tasking 
environments. The operation of this register is described in Register 13, Trace Process 
Identifier Register on page 2-28.
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Chapter 9 
Debug Support

This chapter describes the ARM946E-S debug interface. It contains the following 
sections:

• About the debug interface on page 9-2

• Debug systems on page 9-5

• The JTAG state machine on page 9-8

• Scan chains on page 9-13

• Debug access to the caches on page 9-18

• Debug interface signals on page 9-20

• Determining the core and system state on page 9-25.

The ARM9E-S EmbeddedICE-RT logic is also discussed in this chapter including:

• Overview of EmbeddedICE-RT on page 9-26

• Disabling EmbeddedICE-RT on page 9-28

• The debug communication channel on page 9-29

• Monitor mode debugging on page 9-33.
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9.1 About the debug interface

Debug support is implemented using the ARM9E-S core embedded within the 
ARM946E-S processor. The ARM946E-S processor debug interface is based on IEEE 
Std. 1149.1-1990, Standard Test Access Port and Boundary-Scan Architecture. See this 
standard for an explanation of the terms used in this chapter and for a description of the 
TAP controller states.

The ARM9E-S core within the ARM946E-S processor contains hardware extensions 
for advanced debugging features. These make it easier to develop application software, 
operating systems, and the hardware itself. The ARM9E-S core supports two debug 
modes:

• Halt mode

• Monitor mode.

9.1.1 Halt mode

The debug extensions enable you to force the core to be stopped and placed in debug 
state by:

• a given instruction fetch (breakpoint)

• a data access (watchpoint)

• an external debug request.

In debug state, the core and ARM946E-S processor memory system are effectively 
stopped, and isolated from the rest of the system. This is known as halt mode operation 
and enables you to examine the internal state of the ARM9E-S core, ARM946E-S 
processor, and external AHB state, while all other system activity continues as normal. 
When debug has been completed, the ARM9E-S restores the core and system state, and 
resumes program execution.

The examination of the internal state of the ARM946E-S processor uses a JTAG-style 
interface, that enables you to serially insert instructions into the instruction pipeline. 
This exports the contents of the ARM9E-S core registers. The exported data is serially 
shifted out without affecting the rest of the system.

9.1.2 Monitor mode

The ARM9E-S also supports monitor mode where on a breakpoint or watchpoint, an 
internal Instruction Abort or Data Abort is generated.

When used in conjunction with a debug monitor program activated by the abort 
exception entry, you can debug the ARM946E-S processor while the execution of 
critical interrupt service routines continues. 
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The debug monitor program typically communicates with the debug host over the 
ARM946E-S debug communication channel. Real-time debug is described in Monitor 
mode debugging on page 9-33.

9.1.3 Debug clocks

You must synchronize the system and test clocks externally to the ARM946E-S 
processor. The ARM Multi-ICE debug agent directly supports one or more cores within 
an ASIC design. To synchronize off-chip debug clocking with the ARM946E-S 
processor you must use a three-stage synchronizer. The off-chip device (for example, 
Multi-ICE) issues a TCK signal, and waits for the RTCK (Returned TCK) signal to 
come back. Synchronization is maintained because the off-chip device does not 
progress to the next TCK until after RTCK is received. 

Figure 9-1 shows this synchronization.

Figure 9-1 Clock synchronization
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Note
 In Figure 9-1 on page 9-3, CLK and UnGatedClk must have the same clock frequency.
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9.2 Debug systems

The ARM946E-S processor forms one component of a debug system that interfaces 
from the high-level debugging performed by the user to the low-level interface 
supported by the ARM946E-S processor. Figure 9-2 shows a typical debug system.

Figure 9-2 Typical debug system

A debug system typically has three parts:

• The debug host

• The protocol converter on page 9-6

• ARM946E-S debug target on page 9-6.

The debug host and the protocol converter are system-dependent.

9.2.1 The debug host

The debug host is a computer that is running a software debugger, such as armsd. The 
debug host enables you to issue high-level commands such as setting breakpoints or 
examining the contents of memory.

Debug

host

Protocol

converter

Debug

target

Host computer running ARM or third party toolkit

For example, Multi-ICE

Development system containing ARM946E-S
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9.2.2 The protocol converter

An interface, such as a parallel port, connects the debug host to the ARM946E-S 
processor development system. The messages broadcast over this connection must be 
converted to the interface signals of the ARM946E-S processor. The protocol converter 
performs the conversion.

9.2.3 ARM946E-S debug target

The ARM9E-S core within the ARM946E-S processor has hardware extensions that 
ease debugging at the lowest level. The debug extensions:

• enable you to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

Figure 9-3 on page 9-7 shows the following major blocks of the ARM9E-S:

ARM9E-S CPU core 

This includes hardware support for debug. 

EmbeddedICE-RT logic 

This is a set of registers and comparators used to generate debug 
exceptions (such as breakpoints). This unit is described in Overview of 
EmbeddedICE-RT on page 9-26.

TAP controller  

This controls the action of the scan chains using a JTAG serial interface.
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Figure 9-3 ARM9E-S block diagram

The ARM9E-S debug model is extended within the ARM946E-S processor by the 
addition of scan chain 15. This is used for debug access to the CP15 register bank, to 
enable you to configure the system state within the ARM946E-S processor while in 
debug state, for instance to enable or disable the TCM before performing a debug load 
or store. 
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9.3 The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state 
machine. Figure 9-4 shows the state transitions that occur in the TAP controller, with 
the state names and their numbers. State numbers are output from the ARM946E-S 
processor on DBGTAPSM[3:0].

Figure 9-4 TAP controller state transitions1

1. From IEEE Std. 1149.1-2001. Copyright 2001 IEEE. All rights reserved.
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9.3.1 Reset

The JTAG interface includes a state-machine controller (the TAP controller). To force 
the TAP controller into the correct state after first applying power to the device you 
must apply a reset pulse to the DBGnTRST signal, or you must cycle the JTAG state 
machine through the TEST-LOGIC-RESET state. If you do not intend using the JTAG 
interface, you can tie the DBGnTRST input permanently LOW. 

Note
 A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. Forces exit from debug state. The boundary scan chain cells do not intercept any 
of the signals passing between the external system and the core. 

2. The IDCODE instruction is selected. If the TAP controller is put into the 
SHIFT-DR state and TCK is pulsed, the contents of the ID Register are clocked 
out of TDO.

9.3.2 Instruction Register

The Instruction Register is four bits in length. There is no parity bit. The fixed value 
loaded into the Instruction Register during the CAPTURE-IR controller state is b0001.

9.3.3 Public instructions

Table 9-1 lists the public instructions that are supported.

Table 9-1 Public instructions

Instruction Binary code

EXTEST b0000

SCAN_N b0010

INTEST b1100

IDCODE b1110

BYPASS b1111

SAMPLE/PRELOAD b0011

RESTART b0100
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In this section it is assumed that TDI and TMS are sampled on the rising edge of TCK 
and all output transitions on TDO occur as a result of the falling edge of TCK.

EXTEST (b0000)

The selected scan chain is placed in test mode by the EXTEST instruction. The 
EXTEST instruction connects the selected scan chain between TDI and TDO.

When the Instruction Register is loaded with the EXTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output 
scan cells to the system are captured by the scan cells. 

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
on TDO, while new test data is shifted in on the TDI input. This data is applied 
immediately to the system logic and system pins. 

SCAN_N (b0010)

This instruction connects the Scan Path Select Register between TDI and TDO. 

During the CAPTURE-DR state, the fixed value b10000 is loaded into the register. 

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
Scan Path Select Register. 

In the UPDATE-DR state, the scan register of the selected scan chain is connected 
between TDI and TDO, and remains connected until a subsequent SCAN_N instruction 
is issued. On reset, scan chain 3 is selected by default. The Scan Path Select Register is 
five bits long in this implementation, although no finite length is specified.

INTEST (b1100)

The selected scan chain is placed in test mode by the INTEST instruction. The INTEST 
instruction connects the selected scan chain between TDI and TDO.

When the Instruction Register is loaded with the INTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the 
output scan cells, and the value of the data applied from the system logic to the input 
scan cells is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
on the TDO signal pin, while new test data is shifted in on the TDI signal pin.
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IDCODE (b1110)

The IDCODE instruction connects the Device Identification Register (or ID Register) 
between TDI and TDO. The ID Register is a 32-bit register that enables the 
manufacturer, part number, and version of a component to be determined through the 
TAP. The ID Register is loaded from the TAPID[31:0] input bus. This must be tied to a 
constant value that represents the unique JTAG IDCODE for the device.

When the Instruction Register is loaded with the IDCODE instruction, all the scan cells 
are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code is captured by the ID 
Register. 

In the SHIFT-DR state, the previously captured device identification code is shifted out 
of the ID Register on the TDO signal pin, while data is shifted in on the TDI signal pin 
into the ID Register. 

In the UPDATE-DR state, the ID Register is unaffected.

BYPASS (b1111)

The BYPASS instruction connects a 1-bit shift register (the Bypass Register) between 
TDI and TDO.

When the BYPASS instruction is loaded into the Instruction Register, all the scan cells 
are placed in their normal (system) mode of operation. This instruction has no effect on 
the system pins. 

In the CAPTURE-DR state, a 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the Bypass Register on TDI and out on 
TDO after a delay of one TCK cycle. The first bit shifted out is a 0. 

The Bypass Register is not affected in the UPDATE-DR state. 

Note
 All unused instruction codes default to the BYPASS instruction.

SAMPLE/PRELOAD (b0011)

When the Instruction Register is loaded with the SAMPLE/PRELOAD instruction, all 
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on 
the rising edge of TCK. Normal system operation is unaffected. 
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In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan on the 
TDO signal pin, while new data is shifted in on the TDI signal pin to preload the 
boundary scan parallel input latch. This data is not applied to the system logic or system 
pins while the SAMPLE/PRELOAD instruction is active. 

You must use this instruction to preload the Boundary Scan Register with known data 
prior to selecting INTEST or EXTEST instructions.

RESTART (b0100)

This instruction restarts the processor on exit from debug state. The RESTART 
instruction connects the Bypass Register between TDI and TDO and the TAP controller 
behaves as if the BYPASS instruction is loaded. The processor resynchronizes back to 
the memory system when the RUN-TEST/IDLE state is entered.
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9.4 Scan chains

The ARM946E-S processor supports 32 scan chains. Three scan chains are used inside 
the ARM946E-S processor. These enable testing, debugging, and programming of the 
EmbeddedICE-RT watchpoint units.

Table 9-2 shows the supported scan chains.

9.4.1 Scan chain 1

This scan chain is primarily used for debugging and provides access to the core 
instruction and data buses. These are arranged as shown in Table 9-3.

The three control bits are:

• SYSSPEED

• WPTANDBKPT

• a reserved bit.

Table 9-2 ARM946E-S scan chain allocations

Scan chain 
number

Function

16-31 Unassigned

15 Control coprocessor

4-14 Reserved

3 External boundary scan

2 EmbeddedICE-RT logic programming

1 Debug

0 Reserved

Table 9-3 Scan chain 1 bits

Bits Function

[66:35] Data values

[34:32] Control bits

[31:0] Instruction values
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While debugging, the value placed in the SYSSPEED control bit determines if the 
ARM9E-S core executes the instruction at system speed.

After the ARM946E-S processor has entered debug state, the first time SYSSPEED is 
captured and scanned out tells the debugger whether the core has entered debug state 
because of a breakpoint (SYSSPEED clear) or a watchpoint (SYSSPEED set). A 
watchpoint and a breakpoint can occur simultaneously. When a watchpoint condition 
occurs, the WPTANDBKPT bit must be examined by the debugger to determine 
whether the instruction currently in the Execute stage of the pipeline is breakpointed. If 
it is, WPTANDBKPT is set, otherwise it is clear.

9.4.2 Scan chain 2

Scan chain 2 enables access to the EmbeddedICE-RT Logic Registers. Table 9-4 shows 
the order of the scan chain from the DBGTDI input to the DBGTDO output.

No action occurs during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 36:32 specify the 
address of the EmbeddedICE-RT Register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of 
bit 37 (0 = read, 1 = write).

9.4.3 Scan chain 15

Scan chain 15 enables debug access to the CP15 register bank and enables the cache to 
be interrogated. Scan chain 15 is 39 bits long.

Table 9-4 Scan chain 2 bits

Bits Function

[37] Read = 0, write = 1

[36:32] Register address

[31:0] Data value
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Table 9-5 shows the order of scan chain 15 from the DBGTDI input to the DBGTDO 
output.

Table 9-6 shows the mapping of the CP15 Register address field of scan chain 15 to 
CP15 Registers.

Table 9-5 Scan chain 15 bits

Bits Contents

[38] Read = 0, write = 1

[37:32] CP15 register address

[31:0] CP15 data value

Table 9-6 Mapping of scan chain 15 address field to CP15 registers

Address 
[37]

[36:33] [32]
Register 
number

Register name
Register 
type

0 b0000 0 C0.ID ID Register Read

0 b0000 1 C0.C Cache type Read

0 b0001 0 C1 Control Read/write

0 b0010 0 C2.D Data cachable bits Read/write

0 b0010 1 C2.I Instruction cachable bits Read/write

0 b0011 0 C3 Write buffer control Read/write

0 b0100 0 C0.M Tightly-coupled memory size Read

0 b0101 0 C5.D Data space access permissions Read/write

0 b0101 1 C5.I Instruction address access permissions Read/write

1 <CRm>a 0 C6.[7:0] Memory region protection Read/write

0 b0111 0 C7.FD Flush data cache Read/write

0 b0111 1 C7.FI Flush instruction cache Read/write

0 b1110 0 C7.FD.s Flush data cache single (uses C15.C.Ind) Read/write

0 b1110 1 C7.FI.s Flush instruction cache single (uses C15.C.Ind) Read/write

1 b1010 1 C7.CD.s Clean data cache single (uses C15.C.Ind) Read/write
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In the SHIFT-DR state of the TAP state machine, the read/write bit, the register address 
and the register value for writing, are shifted in.

For a write, the register value is updated when the UPDATE-DR state is reached.

For reading, return to SHIFT-DR through CAPTURE-DR to shift out the register value.

9.4.4 Scan Chain Debug Status Register

In situations where the AHB clock frequency is significantly less than the debugger 
clock frequency, cache maintenance operations initialized by the debug scan chain (scan 
chain 15) might not be registered by the ARM946E-S processor. 

This situation can be prevented by providing status information to the debugger. Cache 
maintenance operations (cache flush and cache clean) are read/write accesses. By 
reading back from the same scan chain register address that initiated the maintenance 

0 b1001 0 C9.D Data cache lock-down Read/write

0 b1001 1 C9.I Instruction cache lock-down Read/write

1 b1000 1 C9.Dram Data TCM size/location Read/write

1 b1001 1 C9.Iram Instruction TCM size/location Read/write

0 b1101 1 C13.TPID Trace process identifier Read/write

0 b1111 0 C15.State Test state Read/write

0 b1111 1 C15.TAG TAG BIST control Read/write

1 b1111 1 C15.RAM Cache RAM BIST control Read/write

1 b1101 0 C15.C.Ind Cache index (address/segment) Read/write

0 b1010 0 C15.DC Data cache read/write (uses C15.C.Ind) Read/write

0 b1010 1 C15.IC Instruction cache read/write (uses C15.C.Ind) Read/write

0 b1011 0 C15.DT Data tag read/write (uses C15.C.Ind) Read/write

0 b1011 1 C15.IT Instruction tag read/write (uses C15.C.Ind) Read/write

1 b1110 1 C15.Mem TCM BIST control Read/write

a. For CP15 register 6, CRm corresponds to the region number (b0000 to b0111).

Table 9-6 Mapping of scan chain 15 address field to CP15 registers  (continued)

Address 
[37]

[36:33] [32]
Register 
number

Register name
Register 
type
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operation, a status bit is returned to the debugger. If the bit is set, the operation has been 
completed and the debug sequence can continue. If the bit is cleared, the requested 
operation has not been completed. 

The status bit is implemented for the debug scan chain operations shown in Table 9-7.

Table 9-7 shows the complete list of operations that can be initiated from the debug scan 
chain.

Table 9-8 shows the status bit associated with each cache maintenance operation.

Table 9-7 Status bit mapping of scan chain 15 address field to CP15 registers

Address 
[37]

[36:33] [32]
Register 
number

Register name
Register 
type

0 b0111 0 C7.FD Flush data cache Read/write

0 b0111 1 C7.FI Flush instruction cache Read/write

0 b1110 0 C7.FD.s Flush data cache single (uses C15.C.Ind) Read/write

0 b1110 1 C7.FI.s Flush instruction cache single (uses C15.C.Ind) Read/write

1 b1010 1 C7.CD.s Clean data cache single (uses C15.C.Ind) Read/write

0 b1011 1 C15.IT Instruction tag read/write (uses C15.C.Ind) Read/write

1 b1110 1 C15.Mem TCM BIST control Read/write

Table 9-8 Correlation between status bits and cache operations

Status bits Cache maintenance operation

[31:19] Unpredictable

[18] Flush instruction cache busy

[17] Flush instruction cache single busy

[16:11] Unpredictable

[10] Flush data cache busy

[9] Flush data cache single busy

[8] Unpredictable

[7] Clean data cache single busy

[6:0] Unpredictable
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9.5 Debug access to the caches

It is desirable for the debugger to examine the contents of the instruction and data 
caches during debug operations. This is achieved in two steps:

1. The debugger determines if valid addresses are stored in the cache and forms TAG 
addresses from the TAG contents and the TAG index.

2. The debugger uses the generated addresses to either access main memory, or to 
read individual entries using the CP15 scan chain.

9.5.1 Debug access to the caches, Step 1

This is done by reading the instruction cache and data cache TAG arrays using scan 
chain 15. The debugger must do this for each entry set within the cache. Figure 9-5 
shows the format of the data returned.

Figure 9-5 TAG address format

The TAG address is formed from the TAG contents and the TAG index used to 
interrogate the TAG. This ensures that the data format returned is consistent regardless 
of cache size.

9.5.2 Debug access to the caches, Step 2

Reading individual entries using the CP15 scan chain can be useful where an entry has 
been marked as dirty, because this indicates that there is an inconsistency between the 
cache contents and main memory.

For the data cache, the debugger can execute system speed accesses that hit in the cache 
and, therefore, return the cache contents. Writes to the data cache from the processor 
core by this method result in the dirty bits being set for write-back regions, and main 
memory is updated for write-through regions.
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If the CP15 scan chain is used for updating the data cache, only the cache contents are 
updated. Writes are not made to main memory. For this method you must first program 
the Index/Set Register with the required cache index, set, and word values. Figure 9-6 
shows the format of the Cache Index Register.

Figure 9-6 Cache Index Register format

Note
 Although 27 bits are specified for the TAG address, only those bits required for the TAG 
implemented are used.

The Cache Index Register is also used for writing to the instruction cache. This is useful 
for setting software breakpoints within code already in the cache. This means that you 
do not have to flush the cache and reload the entry.

Note
 There is no mechanism for detecting that the instruction cache has been updated in this 
way. The debugger must restore the original cache contents after executing the 
breakpoint.

SBZ
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IndexSBZ
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31 30 29 N + 1 N 5 4 2 1 0
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9.6 Debug interface signals

There are four primary external signals associated with the debug interface:

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the 
ARM946E-S processor to enter debug state

• DBGACK flag is used by the ARM946E-S processor to inform the system that it 
is in debug state.

9.6.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of a cycle. To apply 
a breakpoint to that instruction, you must assert the breakpoint signal by the end of the 
same cycle, as shown in Figure 9-7.

Figure 9-7 Breakpoint timing

You can build external logic, such as additional breakpoint comparators, to extend the 
breakpoint functionality of the EmbeddedICE-RT logic. The output from the external 
logic must be applied to the DBGIEBKPT input. This signal is logically ORed with the 
internally-generated breakpoint signal before being applied to the ARM9E-S core 
control logic. The timing of the input makes it unlikely that data-dependent external 
breakpoints are possible.

A breakpointed instruction is enabled to enter the Execute stage of the pipeline, but any 
state change as a result of the instruction is prevented. All writes from previous 
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the 
breakpointed instruction. The latched breakpoint signal forces the processor to start the 
debug sequence.
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9.6.2 Breakpoints and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the 
Prefetch Abort takes priority and the breakpoint is ignored. This is because, if there is 
a Prefetch Abort, instruction data might be invalid, the breakpoint might have been 
data-dependent, and as the data might be incorrect, the breakpoint might have been 
triggered incorrectly.

SWI and undefined instructions are treated in the same way as any other instruction that 
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI 
or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt 
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded. 
When the interrupt has been serviced, the execution flow is returned to the original 
program. Where the previously breakpointed instruction is fetched again, and if the 
breakpoint is still set, the processor enters debug state when the instruction reaches the 
Execute stage of the pipeline.

When the processor has entered halt mode debug state, it is important that additional 
interrupts do not affect the instructions executed. For this reason, as soon as the 
processor enters halt mode, interrupts are disabled, although the state of the I and F bits 
in the Program Status Register (PSR) are not affected

9.6.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise, because 
of the nature of the pipeline. 

You can build external logic, such as external watchpoint comparators, to extend the 
functionality of the EmbeddedICE-RT logic. The output of the external logic must be 
applied to the DBGDEWPT input. This signal is logically ORed with the 
internally-generated watchpoint signal before being applied to the ARM9E-S core 
control logic. The timing of the input makes it unlikely that data-dependent external 
watchpoints can be implemented.

After a watchpointed access, the next instruction in the processor pipeline is always 
enabled to complete execution. Where this instruction is a single-cycle data-processing 
instruction, entry into debug state is delayed for one cycle while the instruction 
completes. The timing of debug entry following a watchpointed load in this case is 
shown in Figure 9-8 on page 9-22.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. 9-21



Debug Support 
Figure 9-8 Watchpoint entry with data processing instruction

Note
 Although instruction 5 enters the Execute stage, it is not executed, and there is no state 
update as a result of this instruction. When the debugging session is complete, normal 
continuation involves a return to instruction 5, the next instruction in the code sequence 
that has not yet been executed.

The instruction following the instruction that generated the watchpoint might modify 
the Program Counter (PC). If this happens, you cannot determine the instruction that 
caused the watchpoint. Figure 9-9 on page 9-23 shows the timing for debug entry after 
a watchpoint, where the next instruction is a branch.

When the processor has entered debug state, you can interrogate the ARM9E-S core to 
determine its state. In the case of a watchpoint, the PC contains a value that is five 
instructions on from the address of the next instruction to be executed. Therefore, if on 
entry to debug state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the 
processor restarted, execution flow returns to the next instruction in the code sequence.
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Figure 9-9 Watchpoint entry with branch

9.6.4 Watchpoints and exceptions

If a watchpointed data access also causes an abort, the watchpoint condition is 
registered and the exception entry sequence performed, and then the processor enters 
debug state. 

If there is an interrupt pending, the ARM9E-S core enables the exception entry 
sequence to occur and then enters debug state.

9.6.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
enters debug state when the instruction at the execution stage of the pipeline has 
completely finished executing (when memory and write stages of the pipeline have 
completed). While waiting for the instruction to finish executing, no more instructions 
are issued to the Execute stage of the pipeline.

Note
 If EDBGRQ is asserted while the processor is operating in monitor mode, the processor 
enters debug state as if operating in halt mode.
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9.6.6 Actions of the ARM9E-S in debug state

When the ARM9E-S core is in debug state, both memory interfaces indicate internal 
cycles. This ensures that the tightly-coupled memory within the ARM946E-S 
processor, and the AHB interface, are both at a steady state, enabling the rest of the 
AHB system to ignore the ARM9E-S core and function as normal. Because the rest of 
the system continues operation, the ARM9E-S core ignores aborts and interrupts.

The HRESETn signal must be held stable during debug. This is because if the system 
applies a reset (HRESETn is driven LOW) to the ARM946E-S processor, the state of 
the ARM9E-S core changes without the knowledge of the debugger.
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9.7 Determining the core and system state

When the ARM946E-S processor is in debug state, you can examine the core and 
system state by forcing load or store multiple instructions into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug from Thumb state or ARM state, by examining 
bit 4 of the EmbeddedICE-RT Debug Status Register. When bit 4 is set, the core has 
entered debug from Thumb state.
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9.8 Overview of EmbeddedICE-RT

The ARM9E-S EmbeddedICE-RT logic provides integrated on-chip debug support for 
the ARM9E-S core within the ARM946E-S processor.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller. 
Figure 9-10 shows the relationship between the core, EmbeddedICE-RT, and the TAP 
controller, showing only the signals that are pertinent to EmbeddedICE-RT. 

Figure 9-10 The ARM9E-S, TAP controller, and EmbeddedICE-RT

The EmbeddedICE-RT logic comprises:

• two real-time watchpoint units

• two independent registers:

— the Debug Control Register

— the Debug Status Register

• debug communication channel.
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The Debug Control Register and the Debug Status Register provide overall control of 
EmbeddedICE-RT operation.

You can program one or both watchpoint units to halt the execution of instructions by 
the core. Execution halts when the values programmed into EmbeddedICE-RT match 
the values currently appearing on the address bus, data bus, and various control signals.

Note
 You can mask bits so that their values do not affect the comparison. 

You can configure each watchpoint unit to be either a watchpoint (monitoring data 
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints 
can be data-dependent in halt mode debug.
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9.9 Disabling EmbeddedICE-RT

 You can disable EmbeddedICE-RT by setting the DBGEN input LOW.

Caution
 Hard wiring the DBGEN input LOW permanently disables debug access.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to 
the core, and DBGACK from the ARM946E-S processor is always LOW.
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9.10 The debug communication channel

The ARM9E-S EmbeddedICE-RT logic contains a communication channel for passing 
information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communication channel comprises:

• a 32-bit Communication Data Read Register 

• a 32-bit Wide Communication Data Write Register

• a 6-bit wide Communication Channel Status Register for synchronized 
handshaking between the processor and the asynchronous debugger. 

These registers are located in fixed locations in the EmbeddedICE-RT logic register 
map and are accessed from the processor using MCR and MRC instructions to coprocessor 
14.

In addition to the communication channel registers, the processor can access one bit of 
the 32-bit debug status register for use in the real-time debug configuration.

9.10.1 Debug Communication Channel Registers

CP14 contains four registers. These have the register allocations shown in Table 9-9.

9.10.2 Debug Communication Channel Status Register

The Debug Communication Channel Status Register is read-only. It controls 
synchronized handshaking between the processor and the debugger. Figure 9-11 on 
page 9-30 shows the Debug Communication Channel Status Register. 

Table 9-9 Coprocessor 14 register map

Register name Register number Notes

Communication channel status C0 Read-only

Communication channel data read C1 For reads

Communication channel data write C1 For writes

Debug status C2 Read/write
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Figure 9-11 Debug Communication Channel Status Register

Each register bit functions as follows:

Bits [31:28] Contain a fixed pattern that denotes the EmbeddedICE-RT version 
number (in this case b0101).

Bits [27:2] Are reserved.

Bit 1 Denotes whether the communication channel data write register is 
available (from the point of view of the processor). If, from the 
point of view of the processor, the communication channel data 
write register is free (W is 0), new data can be written.

If the register is not free (W is 1), the processor must poll until W 
is 0. 

From the point of view of the debugger, when W is 1, some new 
data has been written that can then be scanned out.

Bit 0 Denotes whether there is new data in the communication channel 
data read register. If R is 1, there is new data that can be read using 
an MRC instruction.

From the point of view of the debugger, if R is 0, the 
communication channel data read register is free, and new data 
can be placed there through the scan chain. If R is 1, this denotes 
that data previously placed there through the scan chain has not 
been collected by the processor, and so the debugger must wait.

From the point of view of the debugger, the registers are accessed using the scan chain 
in the usual way. From the point of view of the processor, these registers are accessed 
using coprocessor register transfer instructions as follows:

MRC p14, 0, Rd, c0, c0

This returns the debug communication channel status register into Rd.

MCR p14, 0, Rn, c1, c0

This writes the value in Rn to the communication channel data write register.

MRC p14, 0, Rd, c1, c0

31 30 29 28 27

00 11 Should be zero W R

2 1 0
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This returns the debug data read register into Rd.

You are advised to access this data using SWI instructions when in Thumb state because 
the Thumb instruction set does not contain coprocessor instructions.

9.10.3 Communications using the communication channel

You can send and receive messages using the communication channel.

Sending a message to the debugger

When the processor has to send a message to the debugger, it must check the 
communication channel data write register is free for use by reading the W bit of the 
Debug Communication Channel Status Register:

• If the W bit is clear, the Communication Channel Data Write Register is clear.

• If the W bit is set, previously written data has not been read by the debugger. The 
processor must continue to poll the Control Register until the W bit is clear.

When the W bit is clear, a message can be sent by a register transfer to coprocessor 14. 
While the data transfer occurs from the processor to the Communication Channel Data 
Write Register, the W bit is set in the Debug Communication Channel Status Register. 

The debugger sees both the R and W bits when it polls the Debug Communication 
Channel Status Register through the JTAG interface. When the debugger sees that the 
W bit is set, it can read the Communication Channel Data Write Register, and scan the 
data out. The action of reading this data register clears the Debug Communication 
Channel Status Register W bit. At this point, the communications process can begin 
again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger polls the R bit of the Debug 
Communication Channel Status Register: 

• if the R bit is clear, the Communication Channel Data Read Register is free, and 
data can be placed there for the processor to read

• if the R bit is set, previously deposited data has not yet been collected, so the 
debugger must wait.

When the Communication Channel Data Read Register is free, data can be written to it 
using the JTAG interface. This sets the R bit in the Debug Communication Channel 
Status Register. 
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The processor polls the Debug Communication Channel Status Register. If the R bit is 
set, there is data that can be read using an MRC instruction to coprocessor 14. Reading the 
Communication Channel Data Register clears the R bit in the Debug Communication 
Channel Status Register. When the debugger polls this register and sees that the R bit is 
clear, the data has been taken, and the process can now be repeated.
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9.11 Monitor mode debugging

The ARM9E-S within ARM946E-S processor contains logic that enables you to debug 
a system without stopping the core entirely. This enables the continued servicing of 
critical interrupt routines while the core is being interrogated by the debugger. Setting 
bit 4 of the Debug Control Register enables the real-time debug features of ARM9E-S. 
When this bit is set, the EmbeddedICE-RT logic is configured so that a breakpoint or 
watchpoint causes the ARM to enter abort mode, taking the Prefetch Abort or Data 
Abort vectors respectively. You must be aware of a number of restrictions when the 
ARM is configured for monitor mode debugging:

• Breakpoints/watchpoints cannot be data-dependent. No support is provided for 
the range and chain functionality. Breakpoints/watchpoints can only be based on:

— instruction/data addresses

— external watchpoint conditioner (DBGEXT)

— User/Privileged mode access

— read/write access (watchpoints)

— access size (breakpoints).

• The single-step hardware is not enabled.

• External breakpoints/watchpoints are not supported.

• You can use the vector catching hardware, but must not configure it to catch the 
Prefetch or Data Abort exceptions.

• If EDBGRQ is asserted while the processor is operating in monitor mode, the 
processor enters debug state as if operating in halt mode.

The fact that an abort has been generated by the monitor mode is recorded in the Abort 
Status Register in coprocessor 14 (see Scan Chain Debug Status Register on page 9-16).

The monitor mode enable bit does not put the ARM946E-S processor into debug state. 
For this reason, it is necessary to change the contents of the watchpoint registers while 
external memory accesses are taking place, rather than changing them when in debug 
state where the core is halted.

If there is a possibility of false matches occurring during changes to the watchpoint 
registers (caused by old data in some registers and new data in others) you must:

1. Disable the watchpoint unit by setting EmbeddedICE-RT disable, bit 5 in the 
Debug Control Register.

2. Change the other registers.

3. Re-enable the watchpoint unit by clearing the EmbeddedICE-RT disable bit in the 
Debug Control Register.
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9.11.1 Debug in depth

A more detailed description of the ARM9E-S debug features and JTAG interface is 
provided in the ARM9E-S Technical Reference Manual, Appendix D Debug in Depth.
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Test Support

This chapter describes the test methodology used for the ARM946E-S processor 
synthesized logic and memory. It contains the following sections:

• About the ARM946E-S processor test methodology on page 10-2

• Scan insertion and ATPG on page 10-3

• BIST of memory arrays on page 10-5.
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10.1 About the ARM946E-S processor test methodology

To achieve a high level of fault coverage, you can use scan insertion and ATPG 
techniques on the ARM9E-S core and ARM946E-S processor control logic as part of 
the synthesis flow. You can use Built-In Self Test (BIST) to provide high fault coverage 
of the compiled RAMs (cache and TCM).
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10.2 Scan insertion and ATPG

This technique is covered in detail in the ARM946E-S Implementation Guide. Scan 
insertion requires that all register elements are replaced by scannable versions that are 
then connected up into a number of large scan chains. These scan chains are used to set 
up data patterns on the combinatorial logic between the registers, and capture the logic 
outputs. The logic outputs are then scanned out while the next data pattern is scanned in. 

You can use Automatic Test Pattern Generation (ATPG) tools to create the necessary 
scan patterns to test the logic, after the scan insertion has been performed. With this 
technique you can achieve very high fault coverage for the standard cell combinatorial 
logic, typically in the 95-99% range.

Scan insertion does have an impact on the area and performance of the synthesized 
design, because of the larger scan register elements and the serial routing between them. 
However, to minimize these effects, the scan insertion is performed early in the 
synthesis cycle and the design re-optimized with the scan elements in place.

10.2.1 ARM946E-S INTEST wrapper

In addition to the auto-inserted scan chains, the ARM946E-S processor optionally 
includes a dual-purpose INTEST scan chain wrapper. This facilitates ATPG and 
provides an additional method for activating BIST of the compiled RAM.

ATPG 

You can use the INTEST scan chain to enable an ATPG tool to access the ARM946E-S 
processor top-level inputs and outputs in an embedded design. This wrapper adds a scan 
source for each ARM946E-S processor input and a capture cell for each output. The 
ATPG tools use this scan chain in addition to the ones created by scan insertion, to test 
the logic from a given input pin to any register that it connects to, and from any registers 
whose outputs end up at a pin.

Note
 The order of this scan chain is predetermined and must be maintained through synthesis 
and place and route of the macrocell. 

BIST activation

To enable the BIST hardware to be activated by scan means, the INTEST wrapper has 
a second operational mode. When the SERIALEN input is true, serialized MCR 
instructions to initiate BIST operation are scanned in through this scan chain. The 
instructions target the CP15 BIST Register. After a predetermined number of clock 
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cycles (depending on the size of the test), the appropriate MRC instruction is scanned in 
to read the BIST Control Register to check the test result. The INTEST wrapper enables 
the full range of BIST operations to be applied as detailed in BIST of memory arrays on 
page 10-5. The flow for generating the serialized patterns from ARM assembler source 
is supplied with the ARM946E-S implementation scripts.

TESTMODE

This signal is used to prevent the cache from being inadvertently flushed when scan 
patterns are shifted through the scan chains. It must only be asserted during scan test of 
the ARM946E-S processor.
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10.3 BIST of memory arrays

Caution
 Code for running the BIST must not be placed in the Instruction TCM or in a cacheable 
location, because this can cause invalid or dirty data to be introduced into program 
execution. Also, caches must be flushed after running the BIST.

Adding a simple memory test controller enables you to perform an exhaustive test of the 
memory arrays. You can activate BIST operation using an MCR to the CP15 BIST Control 
Register. 

When you perform a BIST operation on compiled RAM, the functional enable for all 
RAMs is automatically disabled, forcing all memory accesses to all TCM and cache 
address ranges to go to the AHB. This enables you to run BIST operations in the 
background (for instance the Instruction TCM can be have BIST applied, while code is 
executed over the AHB).

Serial scan access to the CP15 BIST operations is also provided for production test 
purposes, using a special mode of operation of the INTEST wrapper. See ARM946E-S 
INTEST wrapper on page 10-3.

You can also perform limited BIST in debug state by using scan chain 15 to access the 
CP15 BIST Control Register. This is not necessarily recommended as the BIST 
operation corrupts the contents of the TCM being tested.

You can achieve full programmer control over the BIST mechanism through five 
registers that are mapped to CP15 register 15 address space. For details of the MCR/MRC 
instructions used to access these registers, see Register 15, BIST Control Registers on 
page 2-29.

10.3.1 BIST algorithm

The BIST test algorithm is a 6N test. Figure 10-1 on page 10-7 shows the test flow. The 
first pass starts from the bottom of the memory to be tested. A fixed value is written into 
each memory address to be tested and the address is incremented until the top of 
memory is reached.

The second pass starts from the bottom of the memory to be tested. In the second pass 
the fixed pattern is checked. If the pattern match fails then the BIST fail flags are set and 
the test fails. If the pattern match is successful then the inverse pattern is written to each 
memory address. If the pattern match fails then the BIST fail flags are set and the test 
fails. The address is incremented until the top of memory is reached.
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The third pass starts from the top of memory. The inverse pattern is checked, a fixed 
value is written into each memory address to be tested. The pattern is then checked. If 
the pattern match fails on either check, then the BIST fail flags are set and the test fails. 
The address is decremented until the bottom of the area of memory under test is 
reached.
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Figure 10-1 Test flow for BIST
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10.3.2 BIST Control Register

The CP15 register 15 BIST Control Register controls the operation of the compiled 
RAM memory BIST. Before initiating a BIST operation, an MCR is first performed to the 
BIST Control Register to set up the size of the test and enable the RAM to be tested. An 
additional MCR is required to initiate the test.

You can access the current status of a BIST operation and the result of a completed test 
by performing an MRC to the BIST Control Register. This returns flags to indicate that a 
test is:

• running

• paused

• failed

• completed.

When the test result has been read you can return the memory to functional operation. 
You must first clear the BIST enable by writing to the BIST Control Register. You must 
then re-enable the memory array by writing to CP15 register 1. 

Note
 Clearing the functional memory array enable when BIST is enabled prevents you from 
trying to run from cache or TCM following a BIST operation, without having first 
flushed the cache memory and reprogrammed the RAM. This is necessary because the 
BIST algorithm corrupts all tested memory locations.

10.3.3 BIST Address and General Registers

The BIST Control Register enables you to perform standard BIST operations on each 
RAM block and to optionally specify the size of the test. Additional registers are 
required, however, to provide the following functionality:

• testing of the BIST hardware

• changing the seed data for BIST 

• providing a nonzero starting address for BIST 

• peek and poke of the RAM

• returning an address location for a failed BIST.

This additional functionality is most useful for debugging faulty silicon during 
production test. The exception to this is the start address for a BIST operation. It is 
possible to perform periodic BIST operations on RAM during the execution of a 
program rather than in one go. This requires a start address that is incremented by the 
size of the test each time a test is activated.
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Note
 It is recommended that you do not write application code that relies on the presence of 
the BIST Address and General Registers. ARM Limited. does not guarantee to support 
these registers in future versions of the ARM946E-S processor.

Table 10-1 and Table 10-2 show how the registers are used. The pause bits from the 
BIST Control Register provide extra decode of these registers.

10.3.4 Pause modes

It is recommended that you use the following production test sequence for the compiled 
RAM:

1. Test each RAM using a full test.

2. Test the BIST hardware for each RAM.

Table 10-1 Instruction BIST Address and General Registers

BIST Register
IBIST 
pause

Read Write

IBIST Address Register 0 IBIST fail address IBIST start address

IBIST Address Register 1 IBIST fail address IBIST peek/poke address

IBIST General Register 0 IBIST fail data IBIST seed data

IBIST General Register 1 IBIST peek data IBIST poke data

Table 10-2 Data BIST Address and General Registers

BIST Register
DBIST 
pause

Read Write

DBIST Address Register 0 DBIST fail address DBIST start address

DBIST Address Register 1 DBIST fail address DBIST peek/poke address

DBIST General Register 0 DBIST fail data DBIST seed data

DBIST General Register 1 DBIST peek data DBIST poke data
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To enable testing of the BIST hardware, it is necessary to deliberately corrupt data in 
the RAM. This can be done by the ATPG tool if it recognizes the RAM parameters. 
Alternatively a pause mechanism enables you to halt the BIST test, enabling you to 
corrupt data within the RAM. The sequence for this is:

1. Use an MCR instruction to write the address for the location to be corrupted to the 
relevant BIST Address Register.

2. Use an MCR instruction to write the corrupted data to the BIST General Register. 

You can restart the test using an MCR instruction to the BIST Control Register and then 
check to see that the corrupted data causes the test to fail. You can read the address at 
which the BIST operation failed and data from the BIST Address and General Registers.

In addition to controlling the addressing within the address and general registers, the 
pause bit also controls the progression of the BIST algorithm as described in Auto 
pause.

Note
 It is recommended that you do not write application code that relies on the presence of 
the BIST pause mode. ARM Limited does not guarantee to support this feature in future 
versions of the ARM946E-S processor.

Auto pause

If you set the pause bit in the BIST control register before you activate the test, the test 
runs in auto pause mode, where the BIST operation pauses at a predetermined point in 
the BIST algorithm. The test pauses after the first pass through RAM.

You can poll the BIST Control Register to detect when a test has paused (the running 
flag is clear). You can then corrupt the data, as described in Pause modes on page 10-9, 
before you restart the BIST test.

Note
 Auto pause only operates after the first pass of the BIST operation.

10.3.5 Running a test

To start a test, perform the following:

1. Write to the BIST Control Register with relevant pause bit and start strobe bits 
cleared, enable bits set, and a suitable size value. The TCM is disabled for normal 
core accesses from this time onwards.
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2. Write suitable values to the BIST start address and pattern data registers.

3. Write the BIST Control Register with the BIST start strobe bit set, and the pause 
bit cleared (for Normal mode) or set (for Auto pause mode).

The test runs, and the BIST running flag is set. If a failure occurs, the test hardware 
stores the failed address and data, and then goes to the idle state. At this point the 
running flag is cleared, the completion flag is set, and the fail flag set. If the test 
completes without failures, the BIST running flag is cleared and the completion flag is 
set. If the test is paused using auto pause, the BIST running flag is cleared, and is set 
again when the test is restarted.

Note
 The completion and fail flags retain their state between test invocations. They are only 
reset when a new test is started.
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. 10-11



Test Support 
10-12 Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. ARM DDI 0201D



Appendix A 
AC Parameters

This appendix lists the AC timing parameters for the ARM946E-S processor. It contains 
the following section:

• Timing diagrams on page A-2.
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A.1 Timing diagrams

The timing diagrams in this section are:

• Clock, reset, and AHB enable timing

• AHB bus request and grant related timing on page A-3

• AHB bus master timing on page A-4

• Coprocessor interface timing on page A-5

• Debug interface timing on page A-7

• JTAG interface timing on page A-9

• DBGSDOUT to DBGTDO timing on page A-10

• Exception and configuration timing on page A-11

• TCM interface timing on page A-12

• ETM interface timing on page A-13.

Each timing diagram is followed by a table showing timing parameters. All figures are 
expressed as percentages of the CLK period at maximum operating frequency. 

Note
 The figures quoted are relative to the rising clock edge after the clock skew for internal 
buffering has been added. Inputs given a 0% hold figure therefore require a positive hold 
relative to the top-level clock input. The amount of hold required is equivalent to the 
internal clock skew.

Figure A-1 shows the clock, reset, and AHB enable timing parameters.

Figure A-1 Clock, reset, and AHB enable timing
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AC Parameters 
Table A-1 shows the timing parameter definitions for clock, reset, and AHB enable.

Figure A-2 shows the AHB bus request and grant related timing parameters.

Figure A-2 AHB bus request and grant related timing

Table A-2 shows  the parameter definitions for AHB bus request and grant timing.

Table A-1 Timing parameter definitions for clock, reset, and AHB enable

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tishen HCLKEN input setup to rising CLK 85% -

Tihhen HCLKEN input hold from rising CLK 0% -

Tisrst HRESETn de-assertion input setup to rising CLK 90% -

Tihrst HRESETn de-assertion input hold from rising CLK 0% -

T
ohlck

T
ohreq

CLK

HBUSREQ

HLOCK

T
ovreq

T
isgnt

HGRANT

T
ihgnt

T
ovlck

Table A-2 Parameter definitions for AHB bus request and grant timing

Symbol Parameter Min Max

Tovreq Rising CLK to HBUSREQ valid - 30%

Tohreq HBUSREQ hold time from rising CLK 0% -

Tovlck Rising CLK to HLOCK valid - 30%

Tohlck HLOCK hold time from rising CLK 0% -

Tisgnt HGRANT input setup to rising CLK 50% -

Tihgnt HGRANT input hold from rising CLK 0% -
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Figure A-3 shows the AHB bus master timing parameters.

Figure A-3 AHB bus master timing

Table A-3 shows the parameter definitions for AHB bus master timing.
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Table A-3 Parameter definitions for AHB bus master timing

Symbol Parameter Min Max

Tovtr Rising CLK to HTRANS[1:0] valid - 30%

Tohtr HTRANS[1:0] hold time from rising CLK 0% -

Tova Rising CLK to HADDR[31:0] valid - 30%

Toha HADDR[31:0] hold time from rising CLK 0% -

Tovctl Rising CLK to AHB control signals valid - 30%

Tohctl AHB control signals hold time from rising CLK 0% -

Tovwd Rising CLK to HWDATA[31:0] valid - 30%
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AC Parameters 
Figure A-4 shows the coprocessor interface timing parameters.

Figure A-4 Coprocessor interface timing

Tohwd HWDATA[31:0] hold time from rising CLK 0% -

Tisrdy HREADY input setup to rising CLK 50% -

Tihrdy HREADY input hold from rising CLK 0% -

Tisrsp HRESP[1:0] input setup to rising CLK 50% -

Tihrsp HRESP[1:0] input hold from rising CLK 0% -

Tisrd HRDATA[31:0] input setup to rising CLK 40% -

Tihrd HRDATA[31:0] input hold from rising CLK 0% -

Table A-3 Parameter definitions for AHB bus master timing  (continued)

Symbol Parameter Min Max

T
ohcprd
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ovcprd
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ovcplc
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iscphs
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ohcpid
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ohcpen

CLK

CPCLKEN

CPINSTR[31:0]
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nCPMREQ
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CPTBIT

CHSDE[1:0]

CHSEX[1:0]
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CPPASS

CPDOUT[31:0]
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ohcpctl
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ovcpctl

WAIT/GO

LAST/ABSENT

T
ihcphs

T
ohcplc

T
ovcpps

T
ohcpps

CPDIN[31:0]
STC/MRC

data

T
ihcpwr

T
iscpwr
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Table A-4 shows the parameter definitions for coprocessor interface timing.

Figure A-5 on page A-7 shows the debug interface timing parameters.

Table A-4 Parameter definitions for coprocessor interface timing

Symbol Parameter Min Max

Tovcpen Rising CLK to CPCLKEN valid - 30%

Tohcpen CPCLKEN hold time from rising CLK 0% -

Tovcpid Rising CLK to CPINSTR[31:0] valid - 30%

Tohcpid CPINSTR[31:0] hold time from rising CLK 0% -

Tovcpctl Rising CLK to transaction control valid - 30%

Tohcpctl Transaction control hold time from rising CLK 0% -

Tiscphs Coprocessor handshake input setup to rising CLK 50% -

Tihcphs Coprocessor handshake input hold from rising CLK 0% -

Tovcplc Rising CLK to CPLATECANCEL valid - 30%

Tohcplc CPLATECANCEL hold time from rising CLK 0% -

Tovcpps Rising CLK to CPPASS valid - 30%

Tohcpps CPPASS hold time from rising CLK 0% -

Tovcprd Rising CLK to CPDOUT[31:0] valid - 30%

Tohcprd CPDOUT[31:0] hold time from rising CLK 0% -

Tiscpwr CPDIN[31:0] input setup to rising CLK 50% -

Tihcpwr CPDIN[31:0] input hold from rising CLK 0% -
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Figure A-5 Debug interface timing

Table A-5 shows the parameter definitions for debug interface timing.
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Table A-5 Parameter definitions for debug interface timing

Symbol Parameter Min Max

Tovdbgack Rising CLK to DBGACK valid - 60%

Tohdbgack DBGACK hold time from rising CLK 0% -

Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 80%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK 0% -
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Figure A-6 on page A-9 shows the JTAG interface timing parameters.

Tovdbgrqi Rising CLK to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from rising CLK 0% -

Tovdbgstat Rising CLK to DBGINSTREXEC valid - 30%

Tohdbgstat CLK hold time from rising DBGINSTREXEC 0% -

Tovdbgcomm Rising CLK to communication channel outputs valid - 60%

Tohdbgcomm Communication channel outputs hold time from rising CLK 0% -

Tisdbgen DBGEN input setup to rising CLK 35% -

Tihdbgen DBGEN input hold from rising CLK 0% -

Tisedbgrq EDBRQ input setup to rising CLK 20% -

Tihedbgrq EDBRQ input hold from rising CLK 0% -

Tisdbgext DBGEXT input setup to rising CLK 15% -

Tihdbgext DBGEXT input hold from rising CLK 0% -

Tisiebkpt DBGIEBKPT input setup to rising CLK 50% -

Tihiebkpt DBGIEBKPT input hold from rising CLK 0% -

Tisdewpt DBGDEWPT input setup to rising CLK 50% -

Tihdewpt DBGDEWPT input hold from rising CLK 0% -

Table A-5 Parameter definitions for debug interface timing  (continued)

Symbol Parameter Min Max
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Figure A-6 JTAG interface timing

Table A-6 shows the parameter definitions for JTAG interface timing.
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Table A-6 Parameter definitions for JTAG interface timing

Symbol Parameter Min Max

Tovir Rising CLK to DBGIR[3:0] valid - 25%

Tohir DBGIR[3:0] hold time from rising CLK 0% -

Tovdbgsm Rising CLK to debug state valid - 30%

Tohdbgsm Debug state hold time from rising CLK 0% -

Tovtdoen Rising CLK to DBGnTDOEN valid - 40%

Tohtdoen DBGnTDOEN hold time from rising CLK 0% -
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A combinatorial path timing parameter exists from the DBGSDOUT input to 
DBGTDO output, as shown in Figure A-7.

Figure A-7 DBGSDOUT to DBGTDO timing

Table A-7 shows the parameter definitions for DBGSDOUT to DBGTDO timing.

Tovsdin Rising CLK to DBGSDIN valid - 20%

Tohsdin DBGSDIN hold time from rising CLK 0% -

Tovtdo Rising CLK to DBGTDO valid - 65%

Tohtdo DBGTDO hold time from rising CLK 0% -

Tisntrst DBGnTRST de-asserted input setup to rising CLK 25% -

Tihntrst DBGnTRST input hold from rising CLK 0% -

Tistdi Tap state control input setup to rising CLK 25% -

Tihtdi Tap state control input hold from rising CLK 0% -

Tistcken DBGTCKEN input setup to rising CLK 50% -

Tihtcken DBGTCKEN input hold from rising CLK 0% -

Tistapid TAPID[3:0] input setup to rising CLK 35% -

Tihtapid TAPID[3:0] input hold from rising CLK 0% -

Table A-6 Parameter definitions for JTAG interface timing  (continued)

Symbol Parameter Min Max

DBGSDOUT

DBGTDO

T
tdsd

T
tdsh

Table A-7 Parameter definitions for DBGSDOUT to DBGTDO timing

Symbol Parameter Min Max

Ttdsd DBGTDO delay from DBGSDOUTBS changing - 30%

Ttdsh DBGTDO hold time from DBGSDOUTBS changing 0% -
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Figure A-8 shows the exception and configuration timing parameters.

Figure A-8 Exception and configuration timing

Table A-8 shows the parameter definitions for exception and configuration timing.

Note
 The VINTHI and INITRAM signals are specified as 90% of the cycle because it is for 
input configuration during reset and can be considered static.

Figure A-9 on page A-12 shows the TCM interface timing parameters.
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Table A-8 Parameter definitions for exception and configuration timing

Symbol Parameter Min Max

Tovbigend Rising CLK to BIGENDOUT valid - 30%

Tohbigend BIGENDOUT hold time from rising CLK 0% -

Tisint Interrupt input setup to rising CLK 15% -

Tihint Interrupt input hold from rising CLK 0% -

Tishivecs VINITHI input setup to rising CLK 90% -

Tihhivecs VINITHI input hold from rising CLK 0% -

Tisinitram INITRAM input setup to rising CLK 90% -

Tihinitram INITRAM input hold from rising CLK 0% -
ARM DDI 0201D Copyright © 2001-2003, 2007 ARM Limited. All rights reserved. A-11



AC Parameters 
Figure A-9 TCM interface timing

Table A-9 shows the parameter definitions for TCM interface timing.

Figure A-10 on page A-13 shows the ETM interface timing parameters.
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Table A-9 Parameter definitions for TCM interface timing

Symbol Parameter Min Max

Tovatcm Rising CLK to TCMAdrs[17:0] valid - 90%

Tohatcm TCMAdrs[17:0] hold time from rising CLK 0% -

Toventcm Rising CLK to TCMEn valid - 90%

Tohentcm TCMEn hold time from rising CLK 0% -

Tovtcmctl Rising CLK to TCM control signals valid - 90%

Tohtcmctl TCM control signals hold time from rising CLK 0%

Tistcmrd TCMRData[31:0] input setup to rising CLK 30% -

Tihtcmrd TCMRData[31:0] input hold from rising CLK 0% -

Tovtcmwd Rising CLK to TCMWData[31:0] valid - 90%

Tohtcmwd TCMWData[31:0] hold time from rising CLK 0% -
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Figure A-10 ETM interface timing
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Table A-10 shows the parameter definitions for ETM interface timing.

Table A-10 Parameter definitions for ETM interface timing

Symbol Parameter Min Max

Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK 0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%

Tohetmictl ETM instruction control hold time from rising CLK 0% -

Tovetmstat Rising CLK to INSTREXEC valid - 30%

Tohetmstat INSTREXEC hold time from rising CLK 0% -

Tovetmdata Rising CLK to ETM data interface valid - 30%

Tohetmdata ETM data interface hold time from rising CLK 0% -

Tovetmnwait Rising CLK to nWAIT valid - 30%

Tohetmnwait nWAIT hold time from rising CLK 0% -

Tovetmdctl Rising CLK to ETM data control valid - 30%

Tohetmdctl ETM data control hold time from rising CLK 0% -

Tovetmcfg Rising CLK to ETM configuration valid - 30%

Tohetmcfg ETM configuration hold time from rising CLK 0% -

Tovetmcpif Rising CLK to ETM coprocessor signals valid - 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK 0% -

Tovetmdbg Rising CLK to ETM debug signals valid - 30%

Tohetmdbg ETM debug signals hold time from rising CLK 0% -

Tisetmen EN input setup to rising CLK 50% -

Tihetmen EN input hold from rising CLK 0% -

Tisfifofull ETMFIFOFULL input setup to rising CLK 50% -

Tihfifofull ETMFIFOFULL input hold from rising CLK 0% -
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Appendix B 
Signal Descriptions

This appendix describes the interfaces to the ARM946E-S processor. It contains the 
following sections:

• Signal properties and requirements on page B-2

• Clock interface signals on page B-3

• TCM interface signals on page B-4

• AHB signals on page B-5

• Coprocessor interface signals on page B-7

• Debug signals on page B-9

• JTAG signals on page B-10

• Miscellaneous signals on page B-11

• ETM interface signals on page B-12

• INTEST wrapper signals on page B-14.
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Signal Descriptions 
B.1 Signal properties and requirements

 To ensure ease of integration of the ARM946E-S processor into embedded applications 
and to simplify synthesis flow, the following design techniques have been used:

• a single rising edge clock times all activity

• all signals and buses are unidirectional

• all inputs are required to be synchronous to the single clock.

These techniques simplify the definition of the top-level ARM946E-S processor signals 
because all outputs change from the rising edge and all inputs are sampled with the 
rising edge of the clock. In addition, all signals are either input or output only, because 
bidirectional signals are not used.

Note
 You must use external logic to synchronize asynchronous signals, for example, interrupt 
sources, before applying them to the ARM946E-S processor. 
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B.2 Clock interface signals

Table B-1 shows the ARM946E-S clock interface signals.

Table B-1 Clock interface signals

Name Direction Description

CLK

System clock

Input This clock times all operations in the ARM946E-S processor design. All 
outputs change from the rising edge and all inputs are sampled on the rising 
edge. The clock can be stretched in either phase. 

Using the HCLKEN signal, this clock also times AHB operations.

Using the DBGTCKEN signal, this clock also times debug operations.

HCLKEN Input Synchronous enable for AHB transfers. When HIGH indicates that the next 
rising edge of CLK is also a rising edge of HCLK in the AHB system that 
the ARM946E-S processor is embedded in. Must be tied HIGH in systems 
where CLK and HCLK are intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic accessed using the JTAG interface. 
When HIGH on the rising edge of CLK the debug logic can advance.

GateTheCLK Output Clock control signal for Wait For Interrupt. When asserted, the CLK input 
can be stopped to minimize power.a 

 UnGatedCLK Input Free-running clock that is only used to wake-up the processor from the 
power-saving mode.

a. When CLK is disabled, generating a debug request within the ARM946E-S processor does not re-enable the core.
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B.3 TCM interface signals

Table B-2 shows the ARM946E-S TCM interface signals.

Table B-2 TCM interface signals

Signal Direction Description

DTCMAdrs[17:0] Output Data TCM address. This is a word address.

DTCMWData[31:0] Output Write data to the TCM.

DTCMRData[31:0] Input Read data from the TCM.

DTCMEn Output Data TCM enable.

DTCMWEn[3:0] Output Data TCM write enables. There is one write enable for each byte.

PhyDTCMSize[3:0] Input Encoded size of the Data TCM. The encoding for these signals is given 
in Table 2-8 on page 2-11.

ITCMAdrs[17:0] Output Instruction TCM address. This is a word address.

ITCMWData[31:0] Output Write data to the Instruction TCM.

ITCMRData[31:0] Input Read data from the Instruction TCM.

ITCMEn Output Instruction TCM enable.

ITCMWEn[3:0] Output Instruction TCM write enables. There is one write enable for each byte.

PhyITCMSize[3:0] Input Encoded size of the Instruction TCM. The encoding for these signals is 
given in Table 2-8 on page 2-11.
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B.4 AHB signals

Table B-3 shows the ARM946E-S AHB signals.

Table B-3 AHB signals

Name Direction Description

HADDR[31:0]

Address bus

Output The 32-bit AHB system address bus.

HBURST[2:0]

Burst type

Output Indicates if the transfer forms part of a burst. The ARM946E-S processor supports:

• SINGLE transfer cycle (b000)

• incremental burst cycles:

— INCR(b001)

— INCR4(b011)

— INCR8(b101).

HBUSREQ

Bus request

Output Indicates that the ARM946E-S processor requires the bus.

HGRANT
Bus grant

Input Indicates that the ARM946E-S processor is currently the highest priority master. 
Ownership of the address/control signals changes at the end of a transfer when 
HREADY is HIGH, so the ARM946E-S processor gets access to the bus when both 
HREADY and HGRANT are HIGH.

HLOCK

Request locked 
transfers

Output When HIGH, indicates that the ARM946E-S processor requires locked access to 
the bus and no other master must be granted until this signal has gone LOW. 
Asserted by the ARM946E-S processor when executing SWP instructions to AHB 
address space.

HPROT[3:0]

Protection control

Output Indicates that the ARM946E-S processor transfer is an:

• opcode fetch (b---0)

• data access (b---1). 

Indicates if the transfer is:

• User mode access (b--0-)

• Supervisor mode access (b--1-). 

Indicates that an access is:

• nonbufferable (b-0--)

• bufferable (b-1--). 

Indicates that an access is:

• noncachable (b0---)

• cachable (b1---)
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HRDATA[31:0]
Read data bus

Input The 32-bit read data bus transfers data from a selected bus slave to the ARM946E-S 
processor during read operations.

HREADY

Transfer done

Input When HIGH indicates that a transfer has finished on the bus. This signal can be 
driven LOW by the selected bus slave to extend a transfer.

HRESETn

Not reset

Input This is the active LOW reset signal for initializing the ARM946E-S processor 
system state. This signal can be asserted asynchronously but must be deasserted 
synchronously.

HRESP[1:0]
Transfer response

Input The transfer response from the selected slave provides additional information on 
the status of the transfer. The response can be:

• OKAY (b00)

• ERROR (b01)

• RETRY (b10)

• SPLIT (b11).

HSIZE[2:0]

Transfer size

Output Indicates the size of an ARM946E-S processor transfer. This can be:

• Byte (b000)

• Halfword (b001)

• Word (b010). 

Bit 2 is tied LOW.

HTRANS[1:0]
Transfer type

Output Indicates the type of ARM946E-S processor transfer. This can be:

• IDLE (b00)

• BUSY (b01)

• NONSEQ (b10)

• SEQ (b11).

HWDATA[31:0]

Write data bus

Output The 32-bit write data bus transfers data from the ARM946E-S processor to a 
selected bus slave during write operations.

HWRITE

Transfer direction

Output When HIGH indicates a write transfer. When LOW indicates a read transfer.

Table B-3 AHB signals  (continued)

Name Direction Description
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B.5 Coprocessor interface signals

Table B-4 shows the ARM946E-S coprocessor interface signals.

Table B-4 Coprocessor interface signals

Name Direction Description

CPCLKEN

Coprocessor clock enable

Output Synchronous enable for coprocessor pipeline follower. When HIGH on the 
rising edge of CLK the pipeline follower logic can advance.

CPINSTR[31:0]

Coprocessor instruction data

Output The 32-bit coprocessor instruction bus used to transfer instructions to the 
coprocessor pipeline follower.

CPDOUT[31:0]
Coprocessor read data

Output The 32-bit coprocessor read data bus for transferring data to the 
coprocessor.

CPDIN[31:0]

Coprocessor write data

Input The 32-bit coprocessor write data bus for transferring data from the 
coprocessor.

CPPASS Output Indicates that there is a coprocessor instruction in the Execute stage of the 
pipeline, that must be executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a coprocessor instruction, then 
the coprocessor must cancel the instruction without changing any internal 
state. This signal is only asserted in cycles where the previous instruction 
causes a Data Abort to occur.

CHSDE[1:0]

Coprocessor handshake 
decode

Input The handshake signals from the Decode stage of the coprocessor pipeline 
follower. Indicates:

• ABSENT (b10)

• WAIT (b00)

• GO (b01)

• LAST (b11).

CHSEX[1:0]
Coprocessor handshake 
execute

Input The handshake signals from the Execute stage of the coprocessor pipeline 
follower. Indicates:

• ABSENT (b10)

• WAIT (b00)

• GO (b01)

• LAST (b11).
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CPTBIT
Coprocessor instruction 
Thumb bit

Output When HIGH indicates that the ARM946E-S processor is in Thumb state. 
When LOW indicates that the ARM946E-S processor is in ARM state. 
Sampled by the coprocessor pipeline follower.

nCPMREQ

Not coprocessor instruction 
request

Output When LOW on the rising edge of CLK and CPCLKEN is HIGH, the 
instruction on CPINSTR must enter the coprocessor pipeline.

nCPTRANS

Not coprocessor memory 
translate

Output When LOW indicates that the ARM946E-S processor is in User mode. 
When HIGH indicates that the ARM946E-S processor is in Privileged 
mode. Sampled by the coprocessor pipeline follower.

Table B-4 Coprocessor interface signals  (continued)

Name Direction Description
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B.6 Debug signals

Table B-5 shows the ARM946E-S debug signals.

Table B-5 Debug signals

Name Direction Description

COMMRX

Communication 
channel receive

Output When HIGH denotes that the communication channel receive buffer contains 
valid data waiting to be read.

COMMTX
Communication 
channel transmit

Output When HIGH, denotes that the communication channel transmit buffer is empty 
waiting for data to be written.

DBGACK

Debug acknowledge

Output When HIGH indicates that the processor is in debug state.

DBGDEWPT
Data watchpoint

Input Asserted by external hardware to halt execution of the processor for debug 
purposes. If HIGH at the end of a data memory request cycle, it causes the 
ARM946E-S processor to enter debug state.

DBGEN

Debug enable

Input This signal enables the debug features of the ARM9E-S core. If you intend to 
use the ARM9E-S debug features, tie this signal HIGH. Drive this signal LOW 
only when debugging is not required.

DBGEXT[1:0]

EmbeddedICE-RT 
external input

Input Input to the EmbeddedICE-RT logic enables breakpoints/watchpoints to be 
dependent on external conditions.

DBGIEBKPT

Instruction breakpoint

Input Asserted by external hardware to halt execution of the processor for debug 
purposes. If HIGH at the end of an instruction fetch, it causes the ARM946E-S 
processor to enter debug state if that instruction reaches the Execute stage of the 
processor pipeline.

DBGINSTREXEC
Instruction executed

Output Indicates that the instruction in the Execute stage of the processors pipeline has 
been executed.

DBGRNG[1:0]

EmbeddedICE-RT 
Rangeout

Output Indicates that the corresponding EmbeddedICE-RT watchpoint register has 
matched the conditions currently present on the address, data, and control buses. 
This signal is independent of the state of the watchpoint enable control bit.

DBGRQI

Internal debug request

Output Represents the debug request signal that is presented to the core debug logic. 
This is a combination of EDBGRQ and bit 1 of the Debug Control Register.

EDBGRQ

External debug request

Input An external debugger can force the processor into debug state by asserting this 
signal.
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B.7 JTAG signals

Table B-6 shows the ARM946E-S JTAG signals.

Table B-6 JTAG signals

Name Direction Description

DBGIR[3:0]

TAP Controller 
Instruction Register

Output These four bits reflect the current instruction loaded into the TAP Controller 
Instruction Register. These bits change when the TAP controller is in the 
UPDATE-IR state.

DBGnTRST
Not test reset

Input This is the active LOW reset signal for the EmbeddedICE internal state. This 
signal can be asserted asynchronously but must be deasserted synchronously.

DBGnTDOEN

Not DBGTDO enable

Output When LOW, the serial data is being driven out of the DBGTDO output. 
Normally used as an output enable for a DBGTDO signal pin in a packaged 
part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan chain currently selected by 
the TAP controller. These bits change when the TAP controller is in the 
UPDATE-DR state.

DBGSDIN
External scan chain 
serial input data

Output Contains the serial data to be applied to an external scan chain.

DBGSDOUT

External scan chain 
serial data output

Input Contains the serial data out of an external scan chain. When an external scan 
chain is not connected, this signal must be tied LOW.

DBGTAPSM[3:0]

TAP controller state 
machine

Output This bus reflects the current state of the TAP controller state machine.

DBGTDI Input Test data input for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

TAPID[31:0]
Boundary scan ID code

Input Specifies the ID code value shifted out on DBGTDO when the IDCODE 
instruction is entered into the TAP controller.
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B.8 Miscellaneous signals

Table B-7 shows the miscellaneous signals on the ARM946E-S processor.

Table B-7 Miscellaneous signals

Name Direction Description

BIGENDOUT Output When HIGH, the ARM946E-S processor treats bytes in 
memory as being in big-endian format. When LOW, memory is 
treated as little-endian.

nFIQ

Not fast interrupt request

Input This is the Fast Interrupt Request signal. This signal must be 
synchronous to CLK.

nIRQ
Not interrupt request

Input This is the Interrupt Request signal. This signal must be 
synchronous to CLK.

VINITHI

Exception vector location 
at reset

Input Determines the reset location of the exception vectors. When 
LOW, the vectors are located at 0x00000000. When HIGH, the 
vectors are located at 0xFFFF0000.

TESTMODE Input Prevents the cache from being inadvertently flushed when scan 
patterns are shifted through the scan chains. Must only be 
asserted during scan test of the ARM946E-S processor.

INITRAM Input Determines if the Instruction TCM is enabled at reset. If HIGH, 
it is enabled, if LOW, it is disabled.

DCacheSize[3:0] Input Encoded size of the data cache. The encoding for these signals 
is given in Table 2-5 on page 2-9.

ICacheSize[3:0] Input Encoded size of the instruction cache. The encoding for these 
signals is given in Table 2-5 on page 2-9.
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B.9 ETM interface signals

Table B-8 shows the ARM946E-S ETM interface signals.

Table B-8 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. This signal must be tied 
LOW if an ETM is not used.

ETMFIFOFULL Input Indication that the ETM FIFO is FULL, and that trace data might 
be lost. The ARM946E-S stalls on the next instruction boundary. 
This signal must be tied low if an ETM is not used.

ETMBIGEND Output Big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMInMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMIABORT Output Instruction Abort for the ETM.

ETMDA[31:0] Output Data address for the ETM.

ETMDMAS[1:0] Output Data size indication for the ETM.

ETMDMORE Output More sequential data indication for the ETM.

ETMDnMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read/write for the ETM.

ETMDSEQ Output Sequential data indication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write data for the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARM9E-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.
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ETMRNGOUT[1:0] Output Watchpoint register match indication for the ETM.

ETMID31To25[31:25] Output Instruction data field for the ETM.

ETMID15To11[15:11] Output Instruction data field for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signals for the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signals for the ETM.

ETMPASS Output Coprocessor instruction execute indication for the ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID[31:0] Output Process identifier for the ETM.

ETMPROCIDWR Output ETMPROCID write strobe.

ETMINSTRVALID Output Instruction valid indication for the ETM.

Table B-8 ETM interface signals  (continued)

Name Direction Description
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B.10 INTEST wrapper signals

The INTEST wrapper is optionally added as part of the synthesis process. That is, it 
does not form part of the source RTL. The signals associated with this wrapper are 
therefore redundant but remain for backward compatibility with ARM946E-S Rev 0. 
The signals, SI, SO, SCANEN, TESTEN, SERIALEN, and INnotEXTEST are 
therefore unconnected and have no function.
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This glossary describes some of the terms used in this manual. Where terms can have 
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it must halt execution of an attempted illegal 
memory access. An abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction or data memory. An abort is classified 
as a Prefetch Abort, a Data Abort, or an External Abort.

See also Data Abort, External Abort, and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data 
Abort exception. Different abort models behave differently with regard to load and store 
instructions that specify base register write-back.

Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors 
such as an ARM core to high-performance peripherals, DMA controllers, on-chip 
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports 
multi-master bus management to maximize system performance. 

See also Advanced Microcontroller Bus Architecture.
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Advanced Microcontroller Bus Architecture(AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running 
with multiple masters and slaves. It is an on-chip bus specification that details a strategy 
for the interconnection and management of functional blocks that make up a 
System-on-Chip (SoC). It aids in the development of embedded processors with one or 
more CPUs or signal processors and multiple peripherals. AMBA complements a 
reusable design methodology by defining a common backbone for SoC modules. AHB 
conforms to this standard.

See also Advanced High-performance Bus.

Aligned Refers to data items stored so that their address is divisible by the highest power of two 
that divides their size. Aligned words and halfwords therefore have addresses that are 
divisible by four and two respectively. The terms word-aligned and halfword-aligned 
therefore refer to addresses that are divisible by four and two respectively. The terms 
byte-aligned and doubleword-aligned are defined similarly.

AMBA See Advanced Microcontroller Bus Architecture.

Architecture The organization of hardware and/or software that characterizes a processor and its 
attached components, and enables devices with similar characteristics to be grouped 
together when describing their behavior, for example, Harvard architecture, instruction 
set architecture, ARMv6 architecture.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

See also Thumb state.

Base register A register specified by a load or store instruction that is used to hold the base value for 
the address calculation for the instruction. Depending on the instruction and its 
addressing mode, an offset can be added to or subtracted from the base register value to 
form the virtual address that is sent to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address 
calculation so that the modified address is changed to the next higher or lower 
sequential address in memory. This means that it is not necessary to fetch the target 
address for successive instruction transfers and enables faster burst accesses to 
sequential memory. 

Big-endian Memory organization in which the least significant byte of a word is at a higher address 
than the most significant byte. 

See also Little-endian and Endianness.
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Block address An address that comprises a tag, an index, and a word field. The tag bits identify the way 
that contains the matching cache entry for a cache hit. The index bits identify the set 
being addressed. The word field contains the word address that can be used to identify 
specific words, halfwords, or bytes within the cache entry.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is halted unconditionally. Breakpoints are inserted by programmers 
to allow inspection of register contents, memory locations, and/or variable values at 
fixed points in the program execution to test that the program is operating correctly. 
Breakpoints are removed after the program is successfully tested. See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, 
there is no requirement to supply an address for any of the transfers after the first one. 
This increases the speed at which the group of transfers can occur. Bursts over AHB 
buses are controlled using the HBURST signals to specify if transfers are single, 
four-beat, eight-beat, or 16-beat bursts, and to specify how the addresses are 
incremented.

Cache A block of on-chip or off-chip fast access memory locations, situated between the 
processor and main memory, used for storing and retrieving copies of often used 
instructions and/or data. This is done to increase the average speed of memory accesses 
and therefore to increase processor performance. 

Cache hit A memory access that can be processed at high speed because the instruction or data 
that it addresses is already held in the cache.

Cache line The basic unit of storage in a cache. It is always a power of two words in size (usually 
4 or 8 words), and is required to be aligned to a suitable memory boundary.

See also Cache terminology.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown enables 
critical instructions and/or data to be loaded into the cache so that the cache lines 
containing them are not subsequently reallocated. This ensures that all subsequent 
accesses to the instructions or data concerned are cache hits, and therefore complete as 
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction or data 
it addresses is not in the cache and a main memory access is required. 

Cache set A cache set is a group of cache lines (or blocks). A set contains all the ways that can be 
addressed with the same index. The number of cache sets is always a power of two.

Cast out See Victim.

Central Processing Unit (CPU)
The part of a processor that contains the ALU, the registers, and the instruction decode 
logic and control circuitry. Also commonly known as the processor core.
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Clean A cache line that has not been modified while it is in the cache is said to be clean. To 
clean a cache is to write dirty cache entries into main memory. If a cache line is clean, 
it is not written on a cache miss because the next level of memory contains the same 
data as the cache.

See also Dirty.

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the 
main CPU cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

CPU See Central Processing Unit.

Data Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Data Abort is attempting to access invalid data 
memory.

See also Abort, External Abort, and Prefetch Abort.

Data Cache (DCache)
A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often used data. This is done to 
greatly increase the average speed of memory accesses and therefore to increase 
processor performance.

DCache See Data Cache.

Debug Communications Channel
The hardware used for communicating between the software running on the processor, 
and an external host, using the debug interface. When this communication is for debug 
purposes, it is called the Debug Communications Channel.

Debugger A debugging system that includes a program, used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.

An application that monitors and controls the operation of a second application. Usually 
used to find errors in the application program flow.

Dirty A cache line in a Write-Back cache that has been modified while it is in the cache is said 
to be dirty. A cache line is marked as dirty by setting the dirty bit. If a cache line is dirty, 
it must be written to memory on a cache miss because the next level of memory contains 
data that has not been updated. The process of writing dirty data to main memory is 
called cache cleaning.

See also Clean.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging 
in real-time.
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Embedded Trace Macrocell (ETM)
A hardware macrocell that outputs instruction and data trace information on a trace port.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data 
word are stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell.

Exception An event that occurs during program operation that makes continued normal operation 
inadvisable or impossible, and so makes it necessary to change the flow of control in a 
program. Exceptions can be caused by error conditions in hardware or software. The 
processor can respond to exceptions by running appropriate exception handler code that 
attempts to remedy the error condition, and either restarts normal execution or ends the 
program in a controlled way.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors 
are configured, that contains the first instruction of the corresponding interrupt service 
routine.

External Abort An indication from an external memory system to a core that it must halt execution of 
an attempted illegal memory access. An External Abort is caused by the external 
memory system as a result of attempting to access invalid memory.

See also Abort, Data Abort, and Prefetch Abort.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts 
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state, 
memory and input/output locations can be examined and altered by the JTAG interface. 
See also Monitor mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the 
top of the address space, rather than at the bottom.

Host A computer that provides data and other services to another computer. Especially, a 
computer providing debugging services to a target being debugged.

ICache See Instruction Cache.

Index register A register specified in some load or store instructions. The value of this register is used 
as an offset to be added to or subtracted from the base register value to form the virtual 
address, which is sent to memory. Some addressing modes optionally enable the index 
register value to be shifted prior to the addition or subtraction.
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Instruction Cache (ICache)
A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often used instructions. This is 
done to increase the average speed of memory accesses and therefore to increase 
processor performance.

Invalidate To mark a cache line as being not valid by clearing the valid bit. This must be done 
whenever the line does not contain a valid cache entry. For example, after a cache flush 
all lines are invalid.

Little-endian Memory organization where the least significant byte of a word is at a lower address 
than the most significant byte.

See also Big-endian and Endianness.

Load/store architecture
A processor architecture where data-processing operations only operate on register 
contents, not directly on memory contents.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
comprises several macrocells (such as an ARM processor, an Embedded Trace 
Macrocell, and a memory block) plus application-specific logic.

Monitor mode One of two mutually exclusive debug modes. In monitor mode the ARM1136JF-S 
processor enables a software abort handler provided by the debug monitor or operating 
system debug task. When a breakpoint or watchpoint is encountered, this enables vital 
system interrupts to continue to be serviced while normal program execution is 
suspended. 

See also Halt mode.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the 
pipeline before the preceding instructions have finished executing. Prefetching an 
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Prefetch Abort can be caused by the external or 
internal memory system as a result of attempting to access invalid instruction memory. 

See also Data Abort, External Abort and Abort

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional 
components such as memory, and interfaces. These are combined as a single macrocell, 
that can be fabricated on an integrated circuit. 

Read Reads are defined as memory operations that have the semantics of a load. That is, the 
ARM instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB, 
LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM, 
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LDR, LDRSH, LDRH, LDRSB, LDRB, and POP. Java instructions that are accelerated 
by hardware can cause a number of reads to occur, according to the state of the Java 
stack and the implementation of the Java hardware acceleration. 

Region A partition of instruction or data memory space.

Register A temporary storage location used to hold binary data until it is ready to be used. 

Reserved A field in a control register or instruction format is reserved if the field is to be defined 
by the implementation, or produces Unpredictable results if the contents of the field are 
not zero. These fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be 
written as zero and are read as zero.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan 
technology using a standard JTAG TAP interface. Each device contains at least one TAP 
controller containing shift registers that form the chain connected between TDI and 
TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces 
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces 
Unpredictable results.

Should Be Zero or Preserved (SBZP)
Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the 
same value back that has been previously read from the same field on the same 
processor.

Tag The upper portion of a block address used to identify a cache line within a cache. The 
block address from the CPU is compared with each tag in a set in parallel to determine 
if the corresponding line is in the cache. If it is, it is said to be a cache hit and the line 
can be fetched from cache. If the block address does not correspond to any of the tags 
it is said to be a cache miss and the line must be fetched from the next level of memory.

TAP See Test Access Port.
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Test Access Port (TAP)
The collection of four mandatory terminals and one optional terminal that form the 
input/output and control interface to a JTAG boundary-scan architecture. The 
mandatory terminals are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to 
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating 
in Thumb state.

Unaligned Memory accesses that are not appropriately word-aligned or halfword-aligned.

See also Aligned.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM 
Architecture Reference Manual for more information on ARM exceptions.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. Unpredictable instructions must not halt 
or hang the processor, or any part of the system.

Vector operation An operation involving more than one destination register, perhaps involving different 
source registers in the generation of the result for each destination.

Victim A cache line, selected to be discarded to make room for a replacement cache line that is 
required as a result of a cache miss. The way in which the victim is selected for eviction 
is processor-specific. A victim is also known as a cast out.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to enable inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

WB See Write-back.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM 
instructions SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and 
SWPB, and the Thumb instructions STM, STR, STRH, STRB, and PUSH. Java 
instructions that are accelerated by hardware can cause a number of writes to occur, 
according to the state of the Java stack and the implementation of the Java hardware 
acceleration.

Write-back(WB) In a write-back cache, data is only written to main memory when it is forced out of the 
cache on line replacement following a cache miss. Otherwise, writes by the processor 
only update the cache. (Also known as copyback).
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Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the Data Cache and 
main memory, whose purpose is to optimize stores to main memory. Each entry in the 
write buffer can contain the address of a data item to be stored to main memory, the data 
for that item, and a sequential bit that indicates if the next store is sequential or not.

Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache 
is updated. 

WT See Write-through.
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