
PrimeCell® Vectored Interrupt
Controller (PL190)

Revision: r1p2

Technical Reference Manual
Copyright © 2000, 2003-2004 ARM Limited. All rights reserved.
ARM DDI 0181E

PrimeCell Vectored Interrupt Controller (PL190)
Technical Reference Manual

Copyright © 2000, 2003-2004 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Change

30 June 2000 A First release

August 2000 B Small corrections to code examples

September 2000 C VICITIP1 & 2 changed to read-only. Changes to Figs 2-5 & 2-6

02 July 2003 D Incorporate errata, revision r1p1

30 November 2004 E Incorporate erratum, revision r1p2
ii Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Contents
PrimeCell Vectored Interrupt Controller (PL190)
Technical Reference Manual

Preface
About this manual .. x
Feedback ... xiv

Chapter 1 Introduction
1.1 About the VIC .. 1-2
1.2 Product revisions .. 1-3

Chapter 2 Functional Overview
2.1 About the VIC .. 2-2
2.2 Operation .. 2-9
2.3 Connectivity .. 2-11

Chapter 3 Programmer’s Model
3.1 About the programmer’s model ... 3-2
3.2 Summary of VIC registers ... 3-3
3.3 Register descriptions .. 3-6
3.4 Interrupt latency .. 3-18
3.5 Interrupt priority ... 3-21
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. iii

Contents
Chapter 4 Programmer’s Model for Test
4.1 VIC test harness overview .. 4-2
4.2 Scan testing .. 4-3
4.3 Summary of test registers ... 4-4

Appendix A Signal Descriptions
A.1 AMBA AHB signals ... A-2
A.2 Interrupt controller signals .. A-3
A.3 Daisy-chain signals ... A-4
A.4 Scan test control signals ... A-5

Appendix B Example Code
B.1 About the example code ... B-2

Glossary
iv Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

List of Tables
PrimeCell Vectored Interrupt Controller (PL190)
Technical Reference Manual

Change history .. ii
Table 2-1 Recommended interrupt standard configuration ... 2-3
Table 3-1 VIC register summary ... 3-3
Table 3-2 VICIRQSTATUS Register bit assignments ... 3-6
Table 3-3 VICFIQSTATUS Register bit assignments .. 3-6
Table 3-4 VICRAWINTR Register bit assignments ... 3-6
Table 3-5 VICINTSELECT Register bit assignments .. 3-7
Table 3-6 VICINTENABLE Register bit assignments .. 3-7
Table 3-7 VICINTENCLEAR Register bit assignments ... 3-7
Table 3-8 VICSOFTINT Register bit assignments .. 3-8
Table 3-9 VICSOFTINTCLEAR Register bit assignments ... 3-8
Table 3-10 VICPROTECTION Register bit assignments .. 3-9
Table 3-11 VICVECTADDR Register bit assignments .. 3-9
Table 3-12 VICDEFVECTADDR Register bit assignments ... 3-10
Table 3-13 VICVECTADDR Registers bit assignments .. 3-10
Table 3-14 VICVECTCNTL Registers bit assignments ... 3-11
Table 3-15 VICPERIPHID0 Register bit assignments ... 3-12
Table 3-16 VICPERIPHID1 Register bit assignments ... 3-13
Table 3-17 VICPERIPHID2 Register bit assignments ... 3-14
Table 3-18 VICPERIPHID3 Register bit assignments ... 3-14
Table 3-19 VICPCELLID0 Register bit assignments ... 3-15
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. v

List of Tables
Table 3-20 VICPCELLID1 Register bit assignments .. 3-16
Table 3-21 VICPCELLID2 Register bit assignments .. 3-16
Table 3-22 VICPCELLID3 Register bit assignments .. 3-17
Table 3-23 FIQ interrupt latency ... 3-18
Table 3-24 IRQ interrupt latency ... 3-19
Table 3-25 Fast IRQ interrupt latency ... 3-19
Table 4-1 Test registers memory map .. 4-4
Table 4-2 VICITCR Register bit assignments ... 4-4
Table 4-3 VICITIP1 Register bit assignments ... 4-5
Table 4-4 VICITIP2 Register bit assignments ... 4-5
Table 4-5 VICITOP1 Register bit assignments ... 4-6
Table 4-6 VICITOP2 Register bit assignments ... 4-6
Table A-1 AMBA AHB signal descriptions ... A-2
Table A-2 Interrupt controller signals .. A-3
Table A-3 Daisy-chain signals ... A-4
Table A-4 Scan test control signals ... A-5
vi Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

List of Figures
PrimeCell Vectored Interrupt Controller (PL190)
Technical Reference Manual

Key to timing diagram conventions ... xii
Figure 2-1 VIC block diagram ... 2-4
Figure 2-2 Interrupt request logic ... 2-5
Figure 2-3 Non-vectored FIQ interrupt logic ... 2-6
Figure 2-4 Non-vectored IRQ interrupt logic ... 2-6
Figure 2-5 Vectored interrupt block .. 2-7
Figure 2-6 Interrupt priority logic ... 2-8
Figure 2-7 Standalone interrupt controller connectivity .. 2-11
Figure 2-8 Daisy-chained interrupt controller connectivity .. 2-12
Figure 3-1 VICPROTECTION Register bit assignments .. 3-8
Figure 3-2 VICVECTCNTL Register bit assignments ... 3-10
Figure 3-3 Peripheral Identification Register bit allocation ... 3-12
Figure 3-4 VICPERIPHID0 Register bit assignments ... 3-12
Figure 3-5 VICPERIPHID1 Register bit assignments ... 3-13
Figure 3-6 VICPERIPHID2 Register bit assignments ... 3-13
Figure 3-7 VICPERIPHID3 Register bit assignments ... 3-14
Figure 3-8 PrimeCell Identification Register bit assignment ... 3-15
Figure 3-9 VICPCELLID0 Register bit assignments ... 3-15
Figure 3-10 VICPCELLID1 Register bit assignments ... 3-16
Figure 3-11 VICPCELLID2 Register bit assignments ... 3-16
Figure 3-12 VICPCELLID3 Register bit assignments ... 3-17
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. vii

List of Figures
Figure 4-1 VICITCR Register bit assignments ... 4-4
Figure 4-2 VICITIP1 Register bit assignments ... 4-5
Figure 4-3 VICITOP1 Register bit assignments ... 4-6
viii Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Preface

This preface introduces the PrimeCell Vectored Interrupt Controller (PL190) r1p2
Technical Reference Manual. It contains the following sections:

• About this manual on page x

• Feedback on page xiv.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ix

Preface
About this manual

This is the Technical Reference Manual for the ARM PrimeCell Vectored Interrupt
Controller (VIC).

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written for hardware and software engineers implementing
System-on-Chip (SoC) designs. It provides the necessary information to enable
designers to integrate the peripheral into a target system as quickly as possible. The
manual describes the VIC.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the VIC and its features.

Chapter 2 Functional Overview

Read this chapter for a description of the major functional blocks of the
VIC.

Chapter 3 Programmer’s Model

Read this chapter for a description of the registers and programming
details of the VIC.

Chapter 4 Programmer’s Model for Test

Read this chapter for a description of the test registers and signals of the
VIC.

Appendix A Signal Descriptions

Read this appendix for a description of the VIC signals.

Appendix B Example Code

Read this appendix for a description of the VIC example code.
x Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Preface
 Glossary Read the Glossary for definitions of terms used in this manual.

Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xii

• Signals on page xii

• Numbering on page xiii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects the register that is accessed.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. xi

Preface
Timing diagrams

The figure named Key to timing diagram conventions explains the components that
timing diagrams use. Variations, when they occur, have clear labels. You must not
assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Prefix A Denotes Advanced eXtensible Interface (AXI) global and address
channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix n Denotes active-LOW signals except in the case of AXI, AHB, or
Advanced Peripheral Bus (APB) reset signals.

Prefix P Denotes APB signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xii Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Preface
Prefix R Denotes AXI read channel signals.

Prefix W Denotes AXI write channel signals.

Suffix n Denotes AXI, AHB, and APB reset signals.

Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the Frequently Asked
Questions list.

ARM publications

This manual contains information that is specific to the ARM PrimeCell Vectored
Interrupt Controller (PL190). See the following documents for other relevant
information:

• AMBA Specification (Rev 2.0) (ARM IHI 00011).
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. xiii

Preface
Feedback

ARM Limited welcomes feedback, both on the ARM PrimeCell Vectored Interrupt
Controller (PL190) and its documentation.

Feedback on the product

If you have any comments or suggestions about the VIC, contact your supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send email to errata@arm.com giving:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
xiv Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Chapter 1
Introduction

This chapter introduces the ARM PrimeCell Vectored Interrupt Controller (VIC)
(PL190). It contains the following section:

• About the VIC on page 1-2

• Product revisions on page 1-3.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the VIC

The VIC is an Advanced Microcontroller Bus Architecture (AMBA) compliant
System-on-Chip (SoC) peripheral that is developed, tested, and licensed by ARM.

The VIC provides an interface to the interrupt system, and improves interrupt latency in
two ways:

• moves the interrupt controller to the AMBA AHB bus

• provides vectored interrupt support for high-priority interrupt sources.

1.1.1 Features of the VIC

The VIC has the following features:

• compliance to the AMBA Specification (Rev 2.0) onwards for easy integration into
SoC implementation

• support for 32 standard interrupts

• support for 16 vectored IRQ interrupts

• hardware interrupt priority

• IRQ and FIQ generation

• AHB mapped for faster interrupt response

• software interrupt generation

• test registers

• raw interrupt status

• interrupt request status

• interrupt masking

• privileged mode support

• vector interrupt controller daisy-chaining support.
1-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Introduction
1.2 Product revisions

This section describes differences in functionality between product revisions of the
VIC:

r1p-r1p2 Contains no change to functionality. See the Errata document for details
of erratum that have been fixed in this release.

These changes have no effect on the information provided in this manual.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Chapter 2
Functional Overview

This chapter describes the major functional blocks of the VIC (PL190). It contains the
following sections:

• About the VIC on page 2-2

• Operation on page 2-9

• Connectivity on page 2-11.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-1

Functional Overview
2.1 About the VIC

The VIC provides a software interface to the interrupt system. In a system with an
interrupt controller, software must determine the source that is requesting service and
where its service routine is loaded. A VIC does both of these in hardware. It supplies
the starting address, or vector address, of the service routine corresponding to the
highest priority requesting interrupt source.

In an ARM system, two levels of interrupt are available:

Fast Interrupt reQuest (FIQ)

For fast, low latency interrupt handling.

Interrupt ReQuest (IRQ)

For more general interrupts.

Generally, you only use a single FIQ source at a time in a system to provide a true
low-latency interrupt. This has the following benefits:

• You can execute the interrupt service routine directly without determining the
source of the interrupt.

• It reduces interrupt latency. You can use the banked registers available for FIQ
interrupts more efficiently, because you do not require a context save.

The interrupt inputs must be level sensitive, active HIGH, and held asserted until the
interrupt service routine clears the interrupt. Edge-triggered interrupts are not
compatible.

The interrupt inputs do not have to be synchronous to HCLK.

Note
 The VIC does not handle interrupt sources with transient behavior. For example, an
interrupt is asserted and then deasserted before software can clear the interrupt source.
In this case, the CPU acknowledges the interrupt and obtains the vectored address for
the interrupt from the VIC, assuming that no other interrupt has occurred to overwrite
the vectored address. However, when a transient interrupt occurs, the priority logic of
the VIC is not set, and lower priority interrupts can interrupt the transient interrupt
service routine, assuming interrupt nesting is permitted.

There are 32 interrupt lines. The VIC uses a bit position for each different interrupt
source. The software can control each request line to generate software interrupts.
2-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Functional Overview
There are 16 vectored interrupts. These interrupts can only generate an IRQ interrupt.
The vectored and non-vectored IRQ interrupts provide an address for an Interrupt
Service Routine (ISR). Reading from the Vector Interrupt Address Register,
VICVECTADDR, provides the address of the ISR, and updates the interrupt priority
hardware that masks out the current, and any lower priority interrupt requests. Writing
to the VICVECTADDR Register indicates to the interrupt priority hardware that the
current interrupt is serviced, enabling lower priority or the same priority interrupts to be
removed, and for the interrupts to become active to go active.

The FIQ interrupt has the highest priority, followed by interrupt vector 0 to interrupt
vector 15. Non-vectored IRQ interrupts have the lowest priority. A programmed
interrupt request enables you to generate an interrupt under software control. This
register typically downgrades an FIQ interrupt to an IRQ interrupt.

Note
 • The ARM core sets the priority of the FIQ over IRQ.

• The VIC can raise both an FIQ and an IRQ at the same time.

The IRQ and FIQ request logic has an asynchronous path to the nVICIRQ and
nVICFIQ outputs respectively. This enables you to assert interrupts when the VIC
AHB clock, HCLK, is disabled in a low-power mode. It is expected that the power
control logic enables the processor and VIC AHB clocks when an interrupt is received,
so that the interrupt service routine can be performed.

By convention, for the IRQ interrupt, you are recommended to use bits 1 to 5 that
Table 2-1 defines. Bit 0 and bit 6 upwards are available for you to use. For the FIQ
interrupt, you can use all the bits.

Table 2-1 Recommended interrupt standard configuration

Bi
t

Interrupt source

1 Software interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-3

Functional Overview
A space is reserved for the software interrupt so that you can use it without masking out
a valid hardware interrupt. You can program any of the interrupt bits through software
using the VICSOFTINT Register but, by reserving a specific software interrupt bit, it is
easier to differentiate between hardware and software interrupts.

The Comms RX and TX lines are debug channel interrupts that the system processor
uses, and they are required in any system that uses these debug features.

Spaces are reserved for two timers because a typical system has at least two timers.

Figure 2-1 shows a block diagram of the VIC.

Figure 2-1 VIC block diagram

Interrupt

request

logic

AHB slave interface

Vectored interrupt 0

Vectored interrupt 15

Daisy

chain

Control logic

Vectored interrupt 1

VICINTSOURCE[31:0]
IRQ0

VectAddr0

Non-vectored FIQ

interrupt logic

Non-vectored IRQ

interrupt logic
IRQSTATUS[31:0]

FIQSTATUS[31:0]

IRQ1

VectAddr1

IRQn

VectAddrn

IRQ15

VectAddr15

IRQ vector

address and

priority logic

nVICIRQ

nVICFIQ

nVICIRQIN

VICVECTADDRIN

VICVECTADDROUT

nVICFIQIN

IRQ

VectAddrIn

VectAddrOut

HCLK

HSELVIC

HRESETn

HWRITE

HREADYIN

HREADYOUT

HRESP[1:0]

HTRANS

HADDR[11:2]

HRDATA[31:0]

HWDATA[31:0]

HSIZE[2:0]

HPROT
2-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Functional Overview
The following sections describe the main components of the VIC:

• Interrupt request logic

• Non-vectored FIQ interrupt logic

• Non-vectored IRQ interrupt logic on page 2-6

• Vectored interrupt block on page 2-6

• Interrupt priority logic on page 2-7.

2.1.1 Interrupt request logic

The interrupt request logic receives the interrupt requests from the peripheral and
combines them with the software interrupt requests. It then masks out the interrupt
requests that are not enabled, and routes the enabled interrupt requests to either
IRQSTATUS or FIQSTATUS. Figure 2-2 shows a block diagram of the interrupt
request logic.

Figure 2-2 Interrupt request logic

2.1.2 Non-vectored FIQ interrupt logic

The non-vectored FIQ interrupt logic generates the FIQ interrupt signal by combining
the FIQ interrupt requests in the interrupt controller and any requests from
daisy-chained interrupt controllers. Figure 2-3 on page 2-6 shows a block diagram of
the non-vectored FIQ interrupt logic.

Interrupt request logic

RawInterrupt

[31:0]

IntEnable

[31:0]

&VICINTSOURCE[31:0]

SoftInt

[31:0]

IntSelect

[31:0]

FIQSTATUS[31:0]

IRQSTATUS[31:0]
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-5

Functional Overview
Figure 2-3 Non-vectored FIQ interrupt logic

2.1.3 Non-vectored IRQ interrupt logic

The non-vectored IRQ interrupt logic combines the non-vectored interrupt requests to
generate the non-vectored IRQ interrupt signal. This signal is then sent to the IRQ
vector address and priority logic. Figure 2-4 shows a block diagram of the non-vectored
IRQ interrupt logic.

Figure 2-4 Non-vectored IRQ interrupt logic

2.1.4 Vectored interrupt block

There are 16 vectored interrupt blocks. The vectored interrupt blocks receive the IRQ
interrupt requests and set VECTIRQX if the following are true:

• the selected interrupt is active

• the selected interrupt is currently the highest requesting interrupt.

Each vectored interrupt block also provides a VECTADDRX[31:0] output that you can
use in the interrupt priority block. Figure 2-5 on page 2-7 shows a block diagram of two
of the vectored interrupt blocks.

Non-vectored FIQ interrupt logic

FIQSTATUS[31:0]

VICFIQIN

VICITOP1

FIQSTATUS[31:0]

nVICFIQ

Non-vectored IRQ interrupt logic

IRQSTATUS[31:0]IRQSTATUS[31:0] IRQ nVICIRQ
2-6 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Functional Overview
Figure 2-5 Vectored interrupt block

2.1.5 Interrupt priority logic

The interrupt priority block prioritizes the following requests:

• non-vectored interrupt requests

• vectored interrupt requests

• external interrupt requests.

The highest priority request generates an IRQ interrupt if the interrupt is not currently
being serviced. Figure 2-6 on page 2-8 shows a block diagram of the interrupt priority
logic.

Note
 nVICIRQIN is the daisy-chained IRQ request input.

Vector interrupt 0

IRQSTATUS[31:0]

Source Enable

VectorCntl[5:0]

Priority 0

PriorityOut

VectIRQ
VECTIRQ0

VectorAddr[31:0] VECTADDR0[31:0]

Vector interrupt 1

IRQSTATUS[31:0]

Source Enable

VectorCntl[5:0]

Priority 1

PriorityOut

VectIRQ
VECTIRQ1

VectorAddr[31:0] VECTADDR1[31:0]
PriorityOut
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-7

Functional Overview
Figure 2-6 Interrupt priority logic

2.1.6 Vectored interrupts

A vectored interrupt is only generated if the following are true:

• you enable it in the interrupt enable register, VICIntEnable

• you set it to generate an IRQ interrupt in the interrupt select register, VICIntSelect

• you enable it in the relevant vector control register, VICVectCntl[0-15].

This prevents multiple interrupts being generated from a single interrupt request if the
controller is incorrectly programmed.

2.1.7 Software interrupts

The software can control the source interrupt lines to generate software interrupts.
These interrupts are generated before interrupt masking, in the same way as external
source interrupts. You clear software interrupts by writing to the Software Interrupt
Clear Register, VICSoftIntClear. See Software Interrupt Clear Register on page 3-8.
This is normally done at the end of the interrupt service routine.

Interrupt priority logic

Hardware

priority

logic

VECTIRQ0

VECTIRQ1

VECTIRQn

VECTIRQ15

NONVECTIRQ

nVICIRQIN

IRQ VICITOP1

(I)
nVICIRQ

Default

VectorAddr[31:0]

VECTADDR0

VECTADDR1

VECTADDRn

VECTADDR15

VICVECTADDRIN

VectorAddr[31:0]

VICVECT

ADDROUT[31:0]
2-8 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Functional Overview
2.2 Operation

The following sections describe the operation of the VIC:

• Vectored interrupt flow sequence

• Simple interrupt flow.

2.2.1 Vectored interrupt flow sequence

The following procedure shows the sequence for the vectored interrupt flow:

1. An interrupt occurs.

2. The ARM processor branches to either the IRQ or FIQ interrupt vector.

3. If the interrupt is an IRQ, read the VICVectAddr Register and branch to the
interrupt service routine. You can do this using an LDR PC instruction. Reading the
VICVectorAddr Register updates the interrupt controllers hardware priority
register.

4. Stack the workspace so that you can re-enable IRQ interrupts.

5. Enable the IRQ interrupts so that a higher priority can be serviced.

6. Execute the Interrupt Service Routine (ISR).

7. Clear the requesting interrupt in the peripheral, or write to the VICSoftIntClear
Register if the request was generated by a software interrupt.

8. Disable the interrupts and restore the workspace.

9. Write to the VICVectAddr Register. This clears the respective interrupt in the
internal interrupt priority hardware.

10. Return from the interrupt. This re-enables the interrupts.

2.2.2 Simple interrupt flow

The following procedure describes how to use the interrupt controller without using
vectored interrupts or the interrupt priority hardware. For example, you can use it for
debugging:

1. An interrupt occurs.

2. Branch to the IRQ or FIQ interrupt vector.

3. Branch to the interrupt handler.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-9

Functional Overview
4. Interrogate the VICIRQStatus Register to determine the source that generated the
interrupt, and prioritize the interrupts if there are multiple active interrupt sources.
This takes a number of instructions to compute.

5. Branch to the correct ISR.

6. Execute the ISR.

7. Clear the interrupt. If a software interrupt generated the request, you must write
to the VICSoftIntClear Register.

8. Check the VICIRQStatus Register to ensure that no other interrupt is active. If
there is an active request, go to Step 4.

9. Return from the interrupt.

Note
 If you use this flow, do not read or write to the VICVectorAddr Register.
2-10 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Functional Overview
2.3 Connectivity

You normally use the VIC as a standalone interrupt controller. Where required, you can
daisy-chain a second VIC.

Note
 The interrupt latency increases if you use daisy-chaining. See Daisy-chained interrupts
on page 3-20.

The VIC connects to the processor as a standard AHB slave, with the FIQ and IRQ
signals connected to the FIQ and IRQ inputs on the processor. The interrupt request
lines from the peripheral connect to the VICINTSOURCE inputs of the VIC. To ensure
that you can read the vector address register in a single instruction, you must put the
VIC in the upper 4K of memory, at 0xFFFFF000. See Vector Address Register on
page 3-9.

Note
 If the VIC is located at a different address, interrupt latency increases.

The following sections describe the connectivity for the two options:

• Standalone interrupt controller

• Daisy-chained interrupt controller on page 2-12.

2.3.1 Standalone interrupt controller

If you use the VIC as a standalone interrupt controller, connect the signals as follows:

• tie nVICIRQIN and nVICFIQIN HIGH

• tie VICVECTADDRIN[31:0] LOW.

Figure 2-7 shows the connections between the VIC and the processor when you use it
as a standalone interrupt controller.

Figure 2-7 Standalone interrupt controller connectivity

VIC1
Daisy

chain
CPU

VICINTSOURCE[31:0]

nVICIRQIN

VICVECTADDRIN[31:0]

VICVECTADDROUT[31:0]

nVICFIQIN

nVICIRQ

nVICFIQ
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-11

Functional Overview
2.3.2 Daisy-chained interrupt controller

If you use the VIC in a daisy-chain, connect the signals between the VICs as follows:

• nVICIRQIN on the first VIC to the nVICIRQ output of the second VIC

• nVICFIQIN on the first VIC to the nVICFIQ output of the second VIC

• VICVECTADDRIN[31:0] on the first VIC to the VICVECTADDROUT[31:0]
of the second VIC.

Standalone interrupt controller on page 2-11 describes how to connect the final VIC in
the chain, the VIC furthest from the processor.

Figure 2-8 shows the connections between the VICs and the processor when you use
them in a daisy-chain.

Figure 2-8 Daisy-chained interrupt controller connectivity

Daisy

chain
CPUVIC0

VICINTSOURCE[31:0]

nVICIRQIN

VICVECTADDRIN[31:0]

VICVECTADDROUT[31:0]

nVICIRQ

nVICFIQ

Daisy

chain
VIC1

VICINTSOURCE[31:0]

nVICIRQIN

VICVECTADDRIN[31:0]

VICVECTADDROUT[31:0]

nVICFIQIN

nVICFIQ

nVICFIQIN

nVICIRQ
2-12 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Functional Overview
Daisy-chain interrupt priority

The interrupt priority in Figure 2-8 on page 2-12 is as follows:

1. FIQ

2. VIC0: VIRQ0, VIRQ1-VIRQ15, NonVectIRQ

3. VIC1: VIRQ0, VIRQ1-VIRQ15, NonVectIRQ

4. VICn: ...
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 2-13

Functional Overview
2-14 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Chapter 3
Programmer’s Model

This chapter describes the VIC (PL190) registers. It provides information that you
require to program the microcontroller. It contains the following sections:

• About the programmer’s model on page 3-2

• Summary of VIC registers on page 3-3

• Register descriptions on page 3-6

• Interrupt latency on page 3-18

• Interrupt priority on page 3-21.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-1

Programmer’s Model
3.1 About the programmer’s model

To ensure that you can read the vector address register in a single instruction, the VIC
base address must be 0xFFFFF000, that is the upper 4K of memory. See Vector Address
Register on page 3-9. Placing the VIC anywhere else in memory increases interrupt
latency because the ARM processor cannot access the VICVectorAddr Register using a
single instruction.

The read, LDR, instruction has a maximum address offset of 12 bits, equivalent to 4K,
meaning that it can read from an address up to 4K away from the current address with
a single read instruction. If the address to be read from is more than 4K away, you
require a second instruction to read in the full address value. This takes longer to
perform.When an interrupt occurs, the current address is either the IRQ or FIQ
exception vector location, 0x00000018 or 0x0000001C for normal low exception vectors.
A 4K offset from the exception address is the upper 4K of memory, so placing the VIC
in this area of memory enables the read of the VICADDRESS Register, at 0xFFFFFF00,
to be performed using an address offset with a single instruction. For example, at
location 0x18 LDR pc, [pc, #-0x120] to access VICADDRESS at location 0xFFFFFF00.

If you use a processor that supports high exception vectors, and you tie the HIVECS
configuration pin HIGH, you must put the VIC at 0xFFFEF000 to enable the exception
vectors that are located at 0xFFFFF000. The VIC is not located at 0x00000000, because this
is the standard location for the system memory. The offset of any particular register
from the base address is fixed.
3-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
3.2 Summary of VIC registers

Table 3-1 lists the VIC registers.

Table 3-1 VIC register summary

Register
Address
offset

Type
Reset
value

Description

VICIRQSTATUS 0x000 RO 0x00000000 See IRQ Status Register on page 3-6

VICFIQSTATUS 0x004 RO 0x00000000 See FIQ Status Register on page 3-6

VICRAWINTR 0x008 RO - See Raw Interrupt Status Register on page 3-6

VICINTSELECT 0x00C R/W 0x00000000 See Interrupt Select Register on page 3-7

VICINTENABLE 0x010 R/W 0x00000000 See Interrupt Enable Register on page 3-7

VICINTENCLEAR 0x014 Write - See Interrupt Enable Clear Register on page 3-7

VICSOFTINT 0x018 R/W 0x00000000 See Software Interrupt Register on page 3-8

VICSOFTINTCLEAR 0x01C WO - See Software Interrupt Clear Register on page 3-8

VICPROTECTION 0x020 R/W 0x0 See Protection Enable Register on page 3-8

VICVECTADDR 0x030 R/W 0x00000000 See Vector Address Register on page 3-9

VICDEFVECTADDR 0x034 R/W 0x00000000 See Default Vector Address Register on page 3-10

VICVECTADDR0 0x100 R/W 0x00000000 See Vector Address Registers on page 3-10

VICVECTADDR1 0x104 R/W 0x00000000

VICVECTADDR2 0x108 R/W 0x00000000

VICVECTADDR3 0x10C R/W 0x00000000

VICVECTADDR4 0x110 R/W 0x00000000

VICVECTADDR5 0x114 R/W 0x00000000

VICVECTADDR6 0x118 R/W 0x00000000

VICVECTADDR7 0x11C R/W 0x00000000

VICVECTADDR8 0x120 R/W 0x00000000

VICVECTADDR9 0x124 R/W 0x00000000
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-3

Programmer’s Model
VICVECTADDR10 0x128 R/W 0x00000000 See Vector Address Registers on page 3-10

VICVECTADDR11 0x12C R/W 0x00000000

VICVECTADDR12 0x130 R/W 0x00000000

VICVECTADDR13 0x134 R/W 0x00000000

VICVECTADDR14 0x138 R/W 0x00000000

VICVECTADDR15 0x13C R/W 0x00000000

VICVECTCNTL0 0x200 R/W 0x00 See Vector Control Registers on page 3-10

VICVECTCNTL1 0x204 R/W 0x00

VICVECTCNTL2 0x208 R/W 0x00

VICVECTCNTL3 0x20C R/W 0x00

VICVECTCNTL4 0x210 R/W 0x00

VICVECTCNTL5 0x214 R/W 0x00

VICVECTCNTL6 0x218 R/W 0x00

VICVECTCNTL7 0x21C R/W 0x00

VICVECTCNTL8 0x220 R/W 0x00

VICVECTCNTL9 0x224 R/W 0x00

VICVECTCNTL10 0x228 R/W 0x00

VICVECTCNTL11 0x22C R/W 0x00

VICVECTCNTL12 0x230 R/W 0x00

VICVECTCNTL13 0x234 R/W 0x00

VICVECTCNTL14 0x238 R/W 0x00

VICVECTCNTL15 0x23C R/W 0x00

VICPERIPHID0 0xFE0 RO 0x90 See Peripheral Identification Registers on page 3-11

Table 3-1 VIC register summary (continued)

Register
Address
offset

Type
Reset
value

Description
3-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
VICPERIPHID1 0xFE4 RO 0x11 See Peripheral Identification Registers on page 3-11

VICPERIPHID2 0xFE8 RO 0x04

VICPERIPHID3 0xFEC RO 0x00

VICPCELLID0 0xFF0 RO 0x0D See PrimeCell Identification Registers on page 3-14

VICPCELLID1 0xFF4 RO 0xF0

VICPCELLID2 0xFF8 RO 0x05

VICPCELLID3 0xFFC RO 0xB1

Table 3-1 VIC register summary (continued)

Register
Address
offset

Type
Reset
value

Description
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-5

Programmer’s Model
3.3 Register descriptions

This section describes the VIC registers.

3.3.1 IRQ Status Register

The read-only VICIRQSTATUS Register, with address offset of 0x000, provides the
status of interrupts [31:0] after IRQ masking. Table 3-2 lists the bit assignments for this
register.

3.3.2 FIQ Status Register

The read-only VICFIQSTATUS Register, with address offset of 0x004, provides the
status of the interrupts after FIQ masking. Table 3-3 lists the bit assignments for this
register.

3.3.3 Raw Interrupt Status Register

The read-only VICRAWINTR Register, with address offset of 0x008, provides the status
of the source interrupts, and software interrupts, to the interrupt controller. Table 3-4
lists the bit assignments for this register.

Table 3-2 VICIRQSTATUS Register bit assignments

Bits Name Function

[31:0] IRQStatus Shows the status of the interrupts after masking by the VICINTENABLE and VICINTSELECT
Registers. A HIGH bit indicates that the interrupt is active, and generates an interrupt to the
processor.

Table 3-3 VICFIQSTATUS Register bit assignments

Bits Name Function

[31:0] FIQStatus Shows the status of the interrupts after masking by the VICINTENABLE and VICINTSELECT
Registers. A HIGH bit indicates that the interrupt is active, and generates an interrupt to the
processor.

Table 3-4 VICRAWINTR Register bit assignments

Bits Name Function

[31:0] RawInterrupt Shows the status of the interrupts before masking by the enable registers. A HIGH bit indicates
that the appropriate interrupt request is active before masking.
3-6 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
3.3.4 Interrupt Select Register

The read/write VICINTSELECT Register, with address offset of 0x00C., selects whether
the corresponding interrupt source generates an FIQ or an IRQ interrupt. Table 3-5 lists
the bit assignments for this register.

3.3.5 Interrupt Enable Register

The read/write VICINTENABLE Register, with address offset of 0x010, enables the
interrupt request lines, by masking the interrupt sources for the IRQ interrupt. Table 3-6
lists the bit assignments for this register.

3.3.6 Interrupt Enable Clear Register

The write-only VICINTENCLEAR Register, with address offset of 0x014, clears bits in
the VICIntEnable Register. Table 3-7 lists the bit assignments for this register.

Table 3-5 VICINTSELECT Register bit assignments

Bits Name Function

[31:0] IntSelect Selects the type of interrupt for interrupt requests:

1 = FIQ interrupt

0 = IRQ interrupt.

Table 3-6 VICINTENABLE Register bit assignments

Bits Name Function

[31:0] IntEnable Enables the interrupt request lines:

1 = Interrupt enabled. Enables interrupt request to processor.

0 = Interrupt disabled.

On reset, all interrupts are disabled. A HIGH bit sets the corresponding bit in the VICINTENABLE
Register. A LOW bit has no effect.

Table 3-7 VICINTENCLEAR Register bit assignments

Bits Name Function

[31:0] IntEnable Clear Clears bits in the VICINTENABLE Register. A HIGH bit clears the corresponding bit in the
VICINTENABLE Register. A LOW bit has no effect.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-7

Programmer’s Model
3.3.7 Software Interrupt Register

The read/write VICSOFTINT Register, with address offset of 0x018, generates software
interrupts. Table 3-8 lists the bit assignments for this register.

3.3.8 Software Interrupt Clear Register

The write-only VICSOFTINTCLEAR Register, with address offset of 0x01C, clears bits
in the VICSoftInt Register. Table 3-9 lists the bit assignments for this register.

3.3.9 Protection Enable Register

The read/write VICPROTECTION Register, with address offset of 0x020, enables or
disables protected register access. Figure 3-1 shows the bit assignments for this register.

Figure 3-1 VICPROTECTION Register bit assignments

Table 3-8 VICSOFTINT Register bit assignments

Bits Name Function

[31:0] SoftInt Setting a bit generates a software interrupt for the specific source interrupt before interrupt masking.
A HIGH bit sets the corresponding bit in the VICSOFTINT Register. A LOW bit has no effect.

Table 3-9 VICSOFTINTCLEAR Register bit assignments

Bits Name Function

[31:0] SoftIntClear Clears bits in the VICSOFTINT Register. A HIGH bit clears the corresponding bit in the
VICSOFTINT Register. A LOW bit has no effect.

31 0

Undefined

Protection

1

3-8 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
Table 3-10 lists the bit assignments for this register.

Note
 If the bus master cannot generate accurate protection information, leave this register in
its reset state to enable User mode access.

3.3.10 Vector Address Register

The read/write VICVECTADDR Register, with address offset of 0x030, contains the
Interrupt Service Routine (ISR) address of the currently active interrupt. Table 3-11 lists
the bit assignments for this register.

Note
 Reading from this register provides the address of the ISR, and indicates to the priority
hardware that the interrupt is being serviced. Writing to this register indicates to the
priority hardware that the interrupt has been serviced. You must use this register as
follows:

• the ISR reads the VICVectAddr Register when an IRQ interrupt is generated

• at the end of the ISR, the VICVectAddr Register is written to, to update the
priority hardware.

Reading from or writing to the register at other times can cause incorrect operation.

Table 3-10 VICPROTECTION Register bit assignments

Bits Name Function

[31:1] - Read undefined. Write as zero.

[0] Protection Enables or disables protected register access. When enabled, only privileged mode accesses, reads
and writes, can access the interrupt controller registers. When disabled, both User mode and
Privileged mode can access the registers. This register is cleared on reset, and can only be accessed
in privileged mode.

Table 3-11 VICVECTADDR Register bit assignments

Bits Name Function

[31:0] VectorAddr Contains the address of the currently active ISR. Any writes to this register clear the interrupt.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-9

Programmer’s Model
3.3.11 Default Vector Address Register

The read/write VICDEFVECTADDR Register, with address offset of 0x034, contains
the default ISR address. Table 3-12 lists the bit assignments for this register

3.3.12 Vector Address Registers

The read/write VICVECTADDR[0-15] Registers span address locations 0x100-0x13C
and contain the ISR vector addresses. Table 3-13 lists the bit assignments for these
registers.

3.3.13 Vector Control Registers

The read/write VICVECTCNTL[0-15] Registers span address locations 0x200-0x23C
and select the interrupt source for the vectored interrupt. Figure 3-2 shows the bit
assignments for these registers.

Figure 3-2 VICVECTCNTL Register bit assignments

Table 3-12 VICDEFVECTADDR Register bit assignments

Bits Name Function

[31:0] Default VectorAddr Contains the address of the default ISR handler

Table 3-13 VICVECTADDR Registers bit assignments

Bits Name Function

[31:0] VectorAddr 0-15 Contains ISR vector addresses

31 0

Undefined

45

IntSourceE
3-10 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
Table 3-14 lists the bit assignments for these registers.

Note
 Vectored interrupts are only generated if the interrupt is enabled. The specific interrupt
is enabled in the VICIntEnable Register, and the interrupt is set to generate an IRQ
interrupt in the VICIntSelect Register. This prevents multiple interrupts being generated
from a single request if the controller is incorrectly programmed.

3.3.14 Peripheral Identification Registers

The read-only VICPeriphID0-3 Registers are four 8-bit registers, that span address
locations 0xFE0-0xFEC. You can treat the registers conceptually as a single 32-bit register.
The read-only registers provide the following options for the peripheral:

Part number [11:0]

This identifies the peripheral. The VIC uses the three-digit product code
0x90.

Designer [19:12]

This is the identification of the designer. ARM Limited is 0x41, ASCII A.

Revision number [23:20]

This is the revision number of the peripheral. The revision number starts
from 0.

Configuration [31:24]

This is the configuration option of the peripheral. The configuration value
is 0.

Figure 3-3 on page 3-12 shows the bit assignments for these registers.

Table 3-14 VICVECTCNTL Registers bit assignments

Bits Name Function

[31:6] - Read undefined. Write as zero.

[5] E Enables vector interrupt. This bit is cleared on reset.

[4:0] IntSource Selects interrupt source. You can select any of the 32 interrupt sources.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-11

Programmer’s Model
Figure 3-3 Peripheral Identification Register bit allocation

The following sections describe the four 8-bit Peripheral Identification Registers:

• VICPERIPHID0 Register

• VICPERIPHID1 Register on page 3-13

• VICPERIPHID2 Register on page 3-13

• VICPERIPHID3 Register on page 3-14.

VICPERIPHID0 Register

The read-only VICPERIPHID0 Register, with address offset of 0xFE0, is hard-coded,
and the fields within the register determine the reset value. Figure 3-4 shows the bit
assignments for this register.

Figure 3-4 VICPERIPHID0 Register bit assignments

Table 3-15 lists the bit assignments for this register.

Part number

Part

number 1

Part

number 0

Designer

0

Designer

Revision

numberConfiguration

Configuration Revision

number
Conceptual register bit assignment

Actual register bit assignment

7 0 7 4 3 0 7 4 3 0 7 0

31 24 23 20 19 16 15 12 11 8 7 0

Designer

1

31 0

Undefined

8 7

Partnumber0

Table 3-15 VICPERIPHID0 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:0] Partnumber0 These bits read back as 0x90
3-12 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
VICPERIPHID1 Register

The read-only VICPERIPHID1 Register, with address offset of 0xFE4, is hard-coded,
and the fields within the register determine the reset value. Figure 3-5 shows the bit
assignments for this register.

Figure 3-5 VICPERIPHID1 Register bit assignments

Table 3-16 lists the bit assignments for this register.

VICPERIPHID2 Register

The read-only VICPERIPHID2 Register, with address offset of 0xFE8, is hard-coded and
the fields within the register determine the reset value. Figure 3-6 shows the bit
assignments for this register.

Figure 3-6 VICPERIPHID2 Register bit assignments

31 0

Undefined

8 7 4 3

Partnumber1

Designer0

Table 3-16 VICPERIPHID1 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:4] Designer0 These bits read back as 0x1

[3:0] Partnumber1 These bits read back as 0x1

31 0

Undefined

8 7 4 3

Revision Designer1
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-13

Programmer’s Model
Table 3-17 lists the bit assignments for this register.

VICPERIPHID3 Register

The read-only VICPERIPHID3 Register, with address offset of 0xFEC., is hard-coded
and the fields within the register determine the reset value. Figure 3-7 shows the bit
assignments for this register.

Figure 3-7 VICPERIPHID3 Register bit assignments

Table 3-18 lists the bit assignments for this register.

3.3.15 PrimeCell Identification Registers

The read-only VICPCELLID0-3 Registers are four 8-bit registers that span address
locations 0xFF0-0xFFC. You can treat them conceptually as a single 32-bit register. Use
the register as a standard cross-peripheral identification system. on page 3-15 shows the
bit assignment for these registers.

Table 3-17 VICPERIPHID2 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:4] Revision These bits read back as 0x1

[3:0] Designer1 These bits read back as 0x0

31 0

Undefined

8 7

Configuration

Table 3-18 VICPERIPHID3 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:0] Configuration These bits read back as 0x0
3-14 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
Figure 3-8 PrimeCell Identification Register bit assignment

The four 8-bit registers are described in the following subsections:

• VICPCELLID0 Register

• VICPCELLID1 Register

• VICPCELLID2 Register on page 3-16

• VICPCELLID3 Register on page 3-16.

VICPCELLID0 Register

The read-only VICPCELLID0 Register, with address offset of 0xFF0, is hard-coded and
the fields within the register determine the reset value. Figure 3-9 shows the bit
assignments for this register.

Figure 3-9 VICPCELLID0 Register bit assignments

Table 3-19 lists the bit assignments for this register.

VICPCELLID1 Register

The read-only VICPCELLID1 Register, with address offset of 0xFF4, is hard-coded and
the fields within the register determine the reset value. Figure 3-10 on page 3-16 shows
the bit assignments for this register.

VICPCELLID3

Conceptual register bit assignment

Actual register bit assignment

7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

VICPCELLID2 VICPCELLID1 VICPCELLID0

VICPCELLID3 VICPCELLID2 VICPCELLID1 VICPCELLID0

31 0

Undefined

8 7

VICPCellID0

Table 3-19 VICPCELLID0 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:0] VICPCellID0 These bits read back as 0x0D
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-15

Programmer’s Model
Figure 3-10 VICPCELLID1 Register bit assignments

Table 3-20 lists the bit assignments for this register.

VICPCELLID2 Register

The read-only VICPCELLID2 Register, with address offset of 0xFF8, is hard-coded and
the fields within the register determine the reset value. Figure 3-11 shows the bit
assignments for this register.

Figure 3-11 VICPCELLID2 Register bit assignments

Table 3-21 lists the bit assignments for this register.

VICPCELLID3 Register

The read-only VICPCELLID3 Register, with address offset of 0xFFC, is hard-coded and
the fields within the register determine the reset value. Figure 3-12 on page 3-17 shows
the bit assignments for this register.

31 0

Undefined

8 7

VICPCellID1

Table 3-20 VICPCELLID1 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:0] VICPCellID1 These bits read back as 0xF0

31 0

Undefined

8 7

VICPCellID2

Table 3-21 VICPCELLID2 Register bit assignments

Bits Name Function

[31:8] - Read undefined

[7:0] VICPCellID2 These bits read back as 0x05
3-16 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
Figure 3-12 VICPCELLID3 Register bit assignments

Table 3-22 lists the bit assignments for this register.

31 0

Undefined

8 7

VICPCellID3

Table 3-22 VICPCELLID3 Register bit assignments

Bits Name Type Function

[31:8] - - Read undefined

[7:0] VICPCellID3 RO These bits read back as 0xB1
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-17

Programmer’s Model
3.4 Interrupt latency

The calculations in this section show the number of cycles required to service interrupts,
using the following types of interrupt:

• FIQ interrupts

• IRQ interrupts on page 3-19

• Fast IRQ interrupts on page 3-19

• Daisy-chained interrupts on page 3-20.

Note
 The calculations are based on the assumption that the ISRs are in zero wait state
memory.

3.4.1 FIQ interrupts

FIQ interrupts have the highest priority in the VIC, and are not nested. In FIQ mode,
seven 32-bit registers are banked into the system. This enables the VIC to process the
interrupt as quickly as possible. Table 3-23 lists the worst case cycles for FIQ interrupts.

Note
 For the best results, start the FIQ handler at the FIQ vector address, 0x1c.

Table 3-23 FIQ interrupt latency

Event Worst case (cycles)

Interrupt synchronization. 3

Worst case instruction execution. This assumes that a standard
switch reduces STM and LDM. You can reduce this to 7 cycles to avoid
data aborts.

7

Entry to first instruction. 2

Total. 12
3-18 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
3.4.2 IRQ interrupts

In IRQ mode, you can nest interrupt levels lower than the highest priority FIQ interrupt
level. To provide this nesting, the return address, stored in the Link Register (LR), and
the status register, stored in the Saved Processor Status Register (SPSR) must be
available before more IRQ interrupts can be accepted. This increases the interrupt
latency, but provides a scalable nested interrupt system. Table 3-24 lists the worst case
cycles for IRQ interrupts.

3.4.3 Fast IRQ interrupts

Fast IRQ mode is similar to IRQ mode, except that the highest-level IRQ interrupt
handler assumes that no other IRQ interrupt occurs during its operation, and therefore,
you do not require LR and SPSR. Table 3-25 lists the worst case cycles for fast IRQ
interrupts.

Table 3-24 IRQ interrupt latency

Event Worst case (cycles)

Interrupt synchronization 3

Worst case interrupt disable period 10

Entry to first instruction 2

Nesting, assuming single-state AHB 10

Total 25

Table 3-25 Fast IRQ interrupt latency

Event Worst case (cycles)

Interrupt synchronization 3

Worst case interrupt disable period 10

Entry to first instruction 2

Load IRQ vector into PC 5

Total 20
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-19

Programmer’s Model
3.4.4 Daisy-chained interrupts

Because of the additional read required to read both the primary VICVectAddr Register
and the daisy-chained VICVectAddr Register, the worst-case latency of the primary
VIC increases by one cycle, to 26 cycles. The worst-case latency for the secondary,
daisy-chained VIC increases by two cycles, to 27 cycles. This latency applies to any
number of secondary VICs. See Daisy-chained vectored interrupt service routine on
page B-6 for more information.
3-20 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model
3.5 Interrupt priority

The hardware regulates the interrupt priority. FIQ interrupts have the highest priority,
followed by vectored interrupt 0 to vectored interrupt 15. Non-vectored interrupts have
the lowest priority.

To reduce interrupt latency, you can re-enable the IRQ interrupts in the processor after
the Interrupt Service Routine (ISR) is entered. See Interrupt latency on page 3-18. In
this case, the current ISR is interrupted, and the higher-priority ISR is executed. The
VIC then only enables a higher priority interrupt than the interrupt currently being
serviced. If a higher priority interrupt goes active, the current ISR is interrupted and the
higher-priority ISR is executed.

Before the interrupt enable bits in the processor can be re-enabled, the LR and SPSR
must be saved, preferably on a software stack. When the ISR is exited, you must disable
the interrupts, reload the LR and SPSR, and write to the Vector Address Register,
VICVectAddr. See Vectored interrupt service routine on page B-6.

When you daisy-chain VICs, the interrupt priority is as follows:

• FIQ interrupts

• primary VIC vectored interrupts

• primary VIC non-vectored interrupts

• daisy-chained VIC vectored interrupts

• daisy-chained VIC non-vectored interrupts.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 3-21

Programmer’s Model
3-22 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Chapter 4
Programmer’s Model for Test

This chapter describes the additional logic for functional verification and provisions
made for production testing. It contains the following sections:

• VIC test harness overview on page 4-2

• Scan testing on page 4-3

• Summary of test registers on page 4-4.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 4-1

Programmer’s Model for Test
4.1 VIC test harness overview

The additional logic for functional verification and production testing enables:

• capture of input signals to the block

• stimulation of the output signals.

The integration vectors provide a way of verifying that the VIC is correctly wired into
a system. Do this by separately testing two groups of signals:

AMBA signals

Test these by checking the connections of all the address and data bits.

Intra-chip signals

The tests for these signals are system-specific, and enable you to write the
necessary tests. Additional logic is implemented enabling you to
read/write to each intra-chip input/output signal.

Test registers control these test features, and enable you to test the VIC in isolation from
the rest of the system using only transfers from the AMBA AHB.

Off-chip test vectors are supplied using a 32-bit parallel External Bus Interface (EBI)
and converted to internal AMBA bus transfers. The Test Interface Controller (TIC)
AMBA bus master module controls the application of test vectors.
4-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model for Test
4.2 Scan testing

The VIC simplifies:

• insertion of scan test cells

• use of Automatic Test Pattern Generation (ATPG).

This provides an alternative method of manufacturing test.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 4-3

Programmer’s Model for Test
4.3 Summary of test registers

Table 4-1 lists how the VIC test registers are memory-mapped.

4.3.1 Test Control Register

The read/write VICITCR Register, with address offset of 0x300, is a single-bit test
control register. The ITEN bit in this register controls the input test multiplexors.
Figure 4-1shows the bit assignments for this register.

Figure 4-1 VICITCR Register bit assignments

Table 4-2 lists the bit assignments for this register.

Table 4-1 Test registers memory map

Register
Address
offset

Type Reset value Description

VICITCR 0x300 R/W - See Test Control Register

VICITIP1 0x304 RO 0x0 See Integration Test Input Registers on page 4-5

VICITIP2 0x308 RO -

VICITOP1 0x30C RO 0x0 See Integration Test Output Registers on page 4-6

VICITOP2 0x310 RO 0x00000000

31 0

Undefined

1

ITEN

Table 4-2 VICITCR Register bit assignments

Bits Name Description

[31:1] - Read undefined. Write as zero.

[0] ITEN Integration test enable:

0 = normal mode

1 = test mode.
4-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Programmer’s Model for Test
4.3.2 Integration Test Input Registers

The read-only VICITIP1 Register, with address offset of 0x304, is a 2-bit register that
returns the values of the nVICIRQIN and nVICFIQIN inputs. Figure 4-2 shows the
bit assignments for this register.

Figure 4-2 VICITIP1 Register bit assignments

Table 4-3 lists the bit assignments for this register.

The VICITIP2 Register, with address offset of 0x308, is a read-only register. It is a 32-bit
register that returns the value of the VICVECTADDRIN input. Table 4-4 lists the bit
assignments for this register.

31 0

Undefined

5

nVICIRQIN

6

Undefined

78

nVICFIQIN

Table 4-3 VICITIP1 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7] nVICIRQIN Reads return the value on nVICIRQIN when the VICITCR Register is LOW

[6] nVICFIQIN Reads return the value on nVICFIQIN when the VICITCR Register is LOW

[5:0] - Read undefined

Table 4-4 VICITIP2 Register bit assignments

Bits Name Description

[31:0] VICVECTADDRIN Reads return the value on VICVECTADDRIN when the VICITCR Register is LOW.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. 4-5

Programmer’s Model for Test
4.3.3 Integration Test Output Registers

The read-only VICITOP1 Register, with address offset of 0x30C, is a 32-bit register that
controls the nVICIRQ and nVICFIQ outputs. Figure 4-3 shows the bit assignments for
this register.

Figure 4-3 VICITOP1 Register bit assignments

Table 4-5 lists the bit assignments for this register.

The read-only VICITOP2 Register, with address offset of 0x310, is a 32-bit register that
controls the VICVECTADDROUT output. Table 4-6 lists the bit assignments for this
register.

31 0

Undefined

5

VICIRQ

6

Undefined

78

VICFIQ

Table 4-5 VICITOP1 Register bit assignments

Bits Name Description

[31:8] - Read undefined.

[7] VICIRQ Reads return the value on the internal VICIRQ line. This is the pre-inverted
version of the final output, and is inverted to create the final nVICIRQ output.

[6] VICFIQ Reads return the value on the internal VICFIQ line. This is the pre-inverted
version of the final output, and is inverted to create the final nVICFIQ output.

[5:0] - Read undefined.

Table 4-6 VICITOP2 Register bit assignments

Bits Name Description

[31:0] VICVECTADDROUT Reads return the value on the VICVECTADDROUT lines.
4-6 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Appendix A
Signal Descriptions

This appendix describes the signals that interface with the ARM PrimeCell Vectored
Interrupt Controller (PL190). It contains the following sections:

• AMBA AHB signals on page A-2

• Interrupt controller signals on page A-3

• Daisy-chain signals on page A-4

• Scan test control signals on page A-5.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 AMBA AHB signals

The VIC module is connected to the AMBA AHB as a bus slave. Table A-1 lists the
AHB signals that are used and produced.

Table A-1 AMBA AHB signal descriptions

Name Type
Source/
destination

Description

HCLK Input Clock source AMBA AHB bus clock. Times all bus transfers. All signal timings are
related to the rising edge of HCLK.

HRESETn Input Reset controller AHB bus reset, active LOW.

HADDR[11:2] Input Master System address bus.

HTRANS Input Master Transfer type. This can be NONSEQUENTIAL, SEQUENTIAL,
IDLE, or BUSY. You must connect this signal to HTRANS[1] on the
AHB interface. HTRANS[0] is not used.

HWRITE Input Master Transfer direction. Indicates a write transfer when HIGH, and a read
transfer when LOW.

HSIZE[2:0] Input Master Size of the transfer. This must be a word, 32-bit, for the VIC,
HSIZE[2:0] = 0b010.

HPROT Input Master Memory access protection type. This can be User mode (0) or
privileged mode (1). You must connect this signal to HPROT[1] on the
AHB interface. HPROT[3], HPROT[2] and HPROT[0] are not used.

HWDATA[31:0] Input Master Write data bus. Transfers data from bus master to bus slaves during
write operations.

HSELVIC Input Decoder Slave select signal. This is a combinatorial decode of the address bus. It
indicates that the current transfer is intended for the selected slave.

HRDATA[31:0] Output Slave Read data bus. Transfers data from bus slaves to bus master during read
operations.

HREADYIN Input External slave Transfer done signal, generated by an alternate slave. When HIGH,
indicates that a transfer is complete. You can drive it LOW to extend a
transfer.

HREADYOUT Output Slave Transfer done signal, generated by the VIC. When HIGH, indicates that
a transfer is complete. You can drive it LOW to extend a transfer.

HRESP[1:0] Output Slave Transfer response. This provides additional transfer status information.
The response can be OKAY, ERROR, RETRY, or SPLIT. The VIC
responds with either OKAY or ERROR.
A-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Signal Descriptions
A.2 Interrupt controller signals

Table A-2 lists the signals for the VIC that interface to the processor interrupt sources.

Table A-2 Interrupt controller signals

Name Type
Source/
destination

Description

VICINTSOURCE [31:0] Input Peripheral interrupt request Interrupt source input

nVICIRQ Output Interrupt controller Interrupt request to processor

nVICFIQ Output Interrupt controller Fast interrupt request to processor
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. A-3

Signal Descriptions
A.3 Daisy-chain signals

You use daisy-chain signals when two or more VICs are daisy-chained. See
Daisy-chained interrupt controller on page 2-12. Table A-3 lists the daisy-chain
signals.

Table A-3 Daisy-chain signals

Name Type
Source/
destination

Description

VICVECTADDRIN [31:0] Input External interrupt

controller

Connects to the VICVECTADDROUT[31:0] signal
of the previous VIC if you use daisy-chaining.
Connects to logic 0 if the VIC is not daisy-chained.

VICVECTADDROUT [31:0] Output Interrupt controller Connects to the VICVECTADDRIN[31:0] signal of
the next VIC if you use daisy-chaining. Left
unconnected if the VIC is not daisy-chained.

nVICIRQIN Input External interrupt

controller

Connects to the nVICIRQ signal of the previous VIC
if you use daisy-chaining. Connects to logic 1 if the
VIC is the last in the daisy-chain, or if VIC is not
daisy-chained.

nVICFIQIN Input External interrupt

controller

Connects to the nVICFIQ signal of the previous VIC
if you use daisy-chaining. Connects to logic 1 if the
VIC is the last in the daisy-chain, or if VIC is not
daisy-chained.
A-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Signal Descriptions
A.4 Scan test control signals

Table A-4 lists the internal scan test control signals.

Table A-4 Scan test control signals

Name Type Source/ destination Description

SCANENABLE Input Scan controller Scan enable

SCANINHCLK Input Scan controller Scan data input for HCLK domain

SCANOUTHCLK Output Scan controller Scan data output for HCLK domain
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. A-5

Signal Descriptions
A-6 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Appendix B
Example Code

This appendix provides examples of the code required when setting up the ARM
PrimeCell Vectored Interrupt Controller (PL190). It contains the following section:

• About the example code on page B-2.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. B-1

Example Code
B.1 About the example code

This section provides the following examples of code:

• Enable interrupts

• Disable interrupts

• Interrupt polling on page B-3

• Generate software interrupt on page B-3

• Clear software interrupt on page B-3

• FIQ interrupt initialization on page B-4

• FIQ interrupt handler on page B-4

• Simple interrupt initialization on page B-4

• Simple interrupt service routine on page B-5

• Vectored interrupt initialization on page B-5

• Vectored interrupt service routine on page B-6

• Daisy-chained vectored interrupt service routine on page B-6

• Highest level vectored IRQ interrupt service routine on page B-7.

B.1.1 Enable interrupts

Example B-1 gives an example of the enable interrupt code.

Example B-1 Enable interrupts

 LDR r0, =IntCntlBase ; where IntCntlBase is a predefined constant
 ; for example, IntCntlBase EQU 0xFFFFF000
 MOV r1, #<interrupt to enable>
 STR r1, [r0, #IntEnableOffset]

B.1.2 Disable interrupts

Example B-2 gives an example of the disable interrupt code.

Example B-2 Disable interrupts

 LDR r0, =IntCntlBase
 MOV r1, #<interrupt to disable>
 STR r1, [r0, #IntEnableClearOffset]
B-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Example Code
B.1.3 Interrupt polling

Example B-3 gives an example of the interrupt polling code.

Example B-3 Interrupt polling

 LDR r0, =IntCntlBase
Loop LDR r1, [r0, #RawInterruptOffset]

 CMP r1, #0
 BEQ loop

 ; Scan r1 for source of interrupt & branch to relevant routine

B.1.4 Generate software interrupt

Example B-4 gives an example of the generate software interrupt code.

Example B-4 Generate software interrupt

 ; Generate software interrupt on interrupt request line 1

 LDR r0, =IntCntlBase
 MOV r1, #2 ; Interrupt source/request 1
 STR r1, [r0, #SoftIntOffset]

B.1.5 Clear software interrupt

Example B-5 gives an example of the clear software interrupt code.

Example B-5 Clear software interrupt

 ; Clear software interrupt on interrupt request line 1.

 LDR r0, =IntCntlBase ; where IntCntlBase is a predefined constant,
 ; for example, IntCntlBase EQU 0xFFFFF000
 MOV r1, #2
 STR r1, [r0, #SoftIntClearOffset]
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. B-3

Example Code
B.1.6 FIQ interrupt initialization

Example B-6 gives an example of the FIQ interrupt initialization code.

Example B-6 FIQ interrupt initialization

 LDR r0, =IntCntlBase
 MOV r1, #<interrupt_to_enable>
 STR r1, [r0, #IntSelectOffset] ; Select FIQ interrupt and clear other FIQs

 STR r1, [r0, #IntEnableOffset] ; Enable interrupt

 MRS CPSR_c, #(DISABLE_IRQ + MODE_SYS_32) ; Enable FIQ interrupts

B.1.7 FIQ interrupt handler

Example B-7 gives an example of the FIQ interrupt handler code.

Example B-7 FIQ interrupt handler

 ; IRQ and FIQ interrupts are automatically masked until return from interrupt performed

0x1c ; Interrupt service routine
; Clear interrupt request

 SUBS pc, r14, #4

B.1.8 Simple interrupt initialization

Example B-8 shows how you can use the interrupt controller without using vectored
interrupts, or the interrupt priority hardware. For example, you can use it for debugging.

Example B-8 Simple interrupt initialization

 LDR r0, =IntCntlBase
 MOV r1, #<interrupt_to_enable>
 LDR r2, [r0, #IntSelectOffset] ; Select IRQ interrupt
 BIC r2, r2, r1
 STR r2, [r0, #IntSelectOffset]
 STR r1, [r0, #IntEnableOffset] ; Enable interrupt

 MRS CPSR_c, #(DISABLE_IRQ + MODE_SYS_32) ; Enable FIQ interrupts
B-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Example Code
B.1.9 Simple interrupt service routine

Example B-9 shows how you can use the interrupt controller without using vectored
interrupts, or the interrupt priority hardware. For example, you can use it for debugging.

Example B-9 Simple interrupt service routine

 ; This interrupt service routine assumes that there are no vectored interrupts. It also
; assumes that interrupts are disabled until the interrupt service routine has been exited.

 ; IRQ interrupts are masked until a return from interrupt is performed
 ; The FIQ interrupt is enabled

0x18 B IRQ_ISR ; Branch to interrupt service routine

IRQ_ISR
 STMFD sp!, {r0, r1} ; Store r0 and r1
 LDR r0, [IntCntlBase]
 LDR r1, [r0, #IRQStatusOffset] ; Discover source of interrupt

 Scan r1 for source of interrupt & branch to relevant routine ISR
 Interrupt service routine
 Clear interrupt request

 LDMFD sp!, {r0, r1} ; Restore r0 and r1
 SUBS pc, r14, #4 ; Exit from IRQ

B.1.10 Vectored interrupt initialization

Example B-10 gives an example of the vectored interrupt initialization code.

Example B-10 Vectored interrupt initialization

 LDR r0, =IntCntlBase
 MOV r1, #<interrupt_to_enable>
 STR r1, [r0, #IntEnableClearOffset] ; Disable interrupt

 LDR r2, =default_vector_address ; Set default vector address
 STR r2, [r0, #DefaultVectorAddressOffset] ; Setup and enable vectored interrupt 15
 MOV r2, #vector_address ; Set vector address
 STR r2, [r0, #VectorAddr15Offset]
 MOV r2, #interrupt_source ; Set interrupt source
 ORR r2, r2, #0x20 ; and enabled vector interrupt
 STR r2, [r0, #VectorCntl15Offset]
 LDR r2, [r0, #IntSelectOffset] ; Select IRQ interrupt
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. B-5

Example Code
 BIC r2, r2, r1
 STR r2, [r0, #IntSelectOffset]
 STR r1, [r0, #IntEnableOffset] ; Enable interrupt
 MRS CPSR_c, #(DISABLE_IRQ + MODE_SYS_32) ; Enable FIQ interrupts

B.1.11 Vectored interrupt service routine

Example B-11 gives an example of the vectored interrupt service routine code.

Example B-11 Vectored interrupt service routine

0x18 LDR pc, [pc, #-0xff0] ; Load Vector into PC
; ...

vector_handler
; Code to enable interrupt nesting
STMFD r13!, {r12, r14} ; stack lr_irq and r12 [plus other regs used below, if appropriate]
MRS r12, spsr ; Copy spsr into r12...
STMFD r13!, {r12} ; and save to stack

; Read from VICIRQStatus to determine the source of the interrupt
MSR cpsr_c, #0x1f ; Switch to SYS mode, re-enable IRQ
STMFD r13!, {r0-r3, r14} ; stack lr_sys and r0-r3

; Interrupt service routine...
; NOTE: ADS 1.2 requires preservation of 8-byte stack alignment with respect to all external
; interfaces. See ADS 1.2 Developer Guide - Section 2.3.3
; ...

BL 2nd_level_handler ; this corrupts lr_sys and r0-r3
; ...

; Add code to clear the interrupt source; Code to exit handler
LDMFD r13!, {r0-r3, r14} ; unstack lr_sys and r0-r3
MSR cpsr_c, #0x92 ; Disable IRQ, and return to IRQ mode
LDMFD r13!, {r12} ; unstack r12...
MSR spsr_cxsf, r12 ; and restore spsr...
LDMFD r13!, {r12, r14} ; unstack registers
LDR r1, =VectorAddr
STR r0, [r1] ; Acknowledge VIRQ serviced
SUBS pc, lr, #4 ; Return from ISR

B.1.12 Daisy-chained vectored interrupt service routine

Example B-12 on page B-7 gives an example of the daisy-chained vectored interrupt
service routine code.
B-6 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Example Code
Example B-12 Daisy-chained vectored interrupt service routine

0x18 LDR pc, [pc, #-0xff0] ; Load vector into PC

vector_handler ; Code to enable interrupt nesting. First, stack off registers you know will be
corrupted STMFD r13!, {r0-r3, r12, r14} ; Use r12 to stack off the spsr MRS r12, spsr
; Copy spsr to r12 STMFD r13!, {r12} ; Stack spsr in r12 ; Change from IRQ mode to System

mode, and re-enable interrupts MSR cpsr_c, #0x1F ; Branch to the function that: ;
1. Clears the peripheral interrupt. Do this first ; 2. Performs the interrupt function

; Stack the link register of System mode

STMFD SP!, {lr} BL some_interrupt_code LDMFD SP!, {lr} ; When the interrupt has
finished, disable interrupts so that you can update the VIC and your

; mode without worrying about being interrupted MSR cpsr_c, #0x92 ; Disable
interrupts and return to IRQ mode ; Acknowledge that the IRQ has finished being serviced. You can
do this because the interrupts

; are now disabled, so the ARM core runs this section of code up until the end,
uninterrupted LDR r12, =VectorAddr ; VectorAddr should be = 0xFFFFF030 STR r0,
[r12] ; Not important what r0 contains ; Stacking operations - first, restore the spsr
using r12 as a temporary register LDMFD r13!, {r12} ; Pop the spsr off the stack MSR
spsr_cxsf, r12 ; and restore it ; Pop remaining registers off the stack. This corresponds

to the first STMFD of this function LDMFD r13!, {r0-r3, r12, r14} ; Return from the
interrupt handler SUBS pc, lr, #4

B.1.13 Highest level vectored IRQ interrupt service routine

Example B-13 gives an example of the highest level vectored IRQ interrupt service
routine code.

Example B-13 Highest level vectored IRQ interrupt service routine

0x18 LDR pc, [pc, #-0xff0] ; Load vector into PC

highest_priority_vector_handler

Interrupt_service_routine

; Code to exit handler
STR r0, VectorAddr ; Acknowledge Vectored IRQ has

 ; finished
SUBS pc, r14, #4 ; Return from IRQ
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. B-7

Example Code
B-8 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Glossary

This glossary describes some of the terms used in ARM manuals. Where terms can have
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that the value associated with a memory access is
invalid. An abort can be caused by the external or internal memory system as a result of
attempting to access invalid instruction or data memory. An abort is classified as either
a Prefetch or Data Abort, and an internal or External Abort.

See also Data Abort, External Abort and Prefetch Abort.

Advanced eXtensible Interface (AXI)
This is a bus protocol that supports separate address/control and data phases, unaligned
data transfers using byte strobes, burst-based transactions with only start address issued,
separate read and write data channels to enable low-cost DMA, ability to issue multiple
outstanding addresses, out-of-order transaction completion, and easy addition of
register stages to provide timing closure.The AXI protocol also includes optional
extensions to cover signaling for low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes
a number of features that make it very suitable for high speed sub-micron interconnect.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors
such as an ARM core to high-performance peripherals, DMA controllers, on-chip
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports
multi-master bus management to maximize system performance.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running
with multiple masters and slaves. It is an on-chip bus specification that details a strategy
for the interconnection and management of functional blocks that make up a
System-on-Chip (SoC). It aids in the development of embedded processors with one or
more CPUs or signal processors and multiple peripherals. AMBA complements a
reusable design methodology by defining a common backbone for SoC modules. AHB,
APB, and AXI conform to this standard.

Advanced Peripheral Bus (APB)
The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is designed
for use with ancillary or general-purpose peripherals such as timers, interrupt
controllers, UARTs, and I/O ports. Connection to the main system bus is through a
system-to-peripheral bus bridge that helps to reduce system power consumption.

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AHB-Lite AHB-Lite is a subset of the full AHB specification. It is intended for use in designs
where only a single AHB master is used. This can be a simple single AHB master
system or a multi-layer AHB system where there is only one AHB master on a layer.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Architecture The organization of hardware and/or software that characterizes a processor and its
attached components, and enables devices with similar characteristics to be grouped
together when describing their behavior, for example, Harvard architecture, instruction
set architecture, ARMv6 architecture.

ARM instruction A word that specifies an operation for an ARM processor to perform. ARM instructions
must be word-aligned.

ASIC See Application Specific Integrated Circuit.

ATPG See Automatic Test Pattern Generation.
Glossary-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Glossary
Automatic Test Pattern Generation (ATPG)
The process of automatically generating manufacturing test vectors for an ASIC design,
using a specialized software tool.

AXI See Advanced eXstensible Interface.

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst
comprises four beats.

See also Burst.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AHB
buses are controlled using the HBURST signals to specify if transfers are single,
four-beat, eight-beat, or 16-beat bursts, and to specify how the addresses are
incremented.

See also Beat.

Byte An 8-bit data item.

Core A core is that part of a processor that contains the ALU, the datapath, the
general-purpose registers, the Program Counter, and the instruction decode and control
circuitry.

Data Abort An indication from a memory system to the core of an attempt to access an illegal data
memory location. An exception must be taken if the processor attempts to use the data
that caused the abort.

See also Abort, External Abort, and Prefetch Abort.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

DMA See Direct Memory Access.

Event 1 (Simple) An observable condition that can be used by an ETM to control aspects of a
trace.

2 (Complex) A boolean combination of simple events that is used by an ETM to control
aspects of a trace.

Exception A fault or error event that is considered serious enough to require that program
execution is interrupted. Examples include attempting to perform an invalid memory
access, external interrupts, and undefined instructions. When an exception occurs,
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. Glossary-3

Glossary
normal program flow is interrupted and execution is resumed at the corresponding
exception vector. This contains the first instruction of the interrupt handler to deal with
the exception.

Exception vector See Interrupt vector.

External Abort An indication from an external memory system to a core that the value associated with
a memory access is invalid. An external abort is caused by the external memory system
as a result of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort.

High vectors Alternative locations for exception vectors. The high vector address range is near the
top of the address space, rather than at the bottom.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors
are configured, that contains the first instruction of the corresponding interrupt handler.

Microprocessor See Processor.

Multi-master An AMBA bus sharing scheme (not in AMBA Lite) where different masters can gain a
bus lock (Grant) to access the bus in an interleaved fashion.

Prefetch Abort An indication from a memory system to the core that an instruction has been fetched
from an illegal memory location. An exception must be taken if the processor attempts
to execute the instruction. A Prefetch Abort can be caused by the external or internal
memory system as a result of attempting to access invalid instruction memory.

See also Data Abort, External Abort and Abort.

Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.

Read Reads are defined as memory operations that have the semantics of a load. That is, the
ARM instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB,
LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM,
LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Java instructions that are accelerated by hardware can cause a number of reads to occur,
according to the state of the Java stack and the implementation of the Java hardware
acceleration.
Glossary-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Glossary
Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines
the data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

Unpredictable Means that you cannot rely on the behavior of the ETM. Such conditions have not been
validated. When applied to the programming of an event resource, only the output of
that event resource is Unpredictable.Unpredictable behavior can affect the behavior of
the entire system, because the ETM is capable of causing the core to enter debug state,
and external outputs can be used for other purposes.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM
instructions SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and
SWPB, and the Thumb instructions STM, STR, STRH, STRB, and PUSH.

Java instructions that are accelerated by hardware can cause a number of writes to occur,
according to the state of the Java stack and the implementation of the Java hardware
acceleration.
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. Glossary-5

Glossary
Glossary-6 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Index
A
AMBA AHB signals A-2

B
Block diagram 2-4

C
Clear software interrupt code B-3
Code

clear software interrupt B-3
daisy-chained vectored interrupt

service routine B-6
disable interrupts B-2
enable interrupts

Enable interrupts code B-2
FIQ interrupt handler B-4
FIQ interrupt initialization B-4
generate software interrupt B-3

highest level vectored IRQ interrupt
service routine B-7

interrupt polling B-3
simple interrupt initialization B-4
simple interrupt service routine B-5
vectored interrupt initialization B-5
vectored interrupt service routine

B-6
Code examples B-2
Conventions

numerical xiii
signal naming xii
timing diagram xii
typographical xi

D
Daisy-chain 2-5, 2-11, 3-20

signals A-4
Daisy-chained

interrupt controller 2-12

vectored interrupt service routine
code B-6

Default Vector Address Register 3-10
Disable interrupts code B-2

F
Fast interrupt request 2-2
Fast IRQ 3-19
Features 1-2
FIQ 2-2, 3-18
FIQ interrupt handler code B-4
FIQ interrupt initialization code B-4
FIQ Status Register 3-6
Further reading xiii

G
Generate software interrupt code B-3
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. Index-1

Index
H
HADDR A-2
HCLK A-2
Highest level vectored IRQ interrupt

service routine code B-7
HPROT A-2
HRDATA A-2
HREADYIN A-2
HREADYOUT A-2
HRESETn A-2
HRESP A-2
HSELVIC A-2
HSIZE A-2
HTRANS A-2
HWDATA A-2
HWRITE A-2

I
Integration Test Input Registers 4-5
Integration Test Output Registers 4-6
Interrupt controller signals A-3
Interrupt Enable Clear Register 3-7
Interrupt Enable Register 3-7
Interrupt flow sequence

standard 2-9
vectored 2-9

Interrupt latency 1-2, 2-2, 2-11, 3-18
Interrupt masking 2-8
Interrupt polling code B-3
Interrupt priority 2-3, 3-21
Interrupt priority logic 2-7
Interrupt Priority Register 2-9
Interrupt request 2-2, 2-5
Interrupt Select Register 3-7
Interrupt service routine 2-8, 2-9
IRQ 2-2, 2-9, 3-19
IRQ Status Register 3-6
ISR 2-9

N
Non-vectored FIQ interrupt 2-5
Non-vectored interrupt 2-3
Non-vectored IRQ interrupt 2-6
Numerical conventions xiii

nVICFIQ A-3
nVICFIQIN A-4
nVICIRQ A-3
nVICIRQIN A-4

P
Peripheral Identification Registers

3-11
PrimeCell Identification Registers

3-14
Product revision status x
Protection Enable Register 3-8

R
Raw Interrupt Status Register 3-6
Registers

VICDEFVECTADDR 3-10
VICFIQSTATUS 3-6
VICINTENABLE 3-7
VICINTSELECT 3-7
VICIRQSTATUS 3-6
VICITCR 4-4
VICITOP 4-6
VICPCELLID 3-14
VICPERIPHID 3-11
VICPROTECTION 3-8
VICRAWINTR 3-6
VICSOFTING 3-8
VICSOFTINTCLEAR 3-8
VICVECTADDR 3-9, 3-10
VICVECTCNTL 3-10
VIDINTENCLEAR 3-7

Revision
status x

S
Scan test control signals A-5
Scan testing 4-3
SCANENABLE A-5
SCANINHCLK A-5
SCANOUTHCLK A-5
Signal naming conventions xii
Signals

AMBA AHB A-2
daisy-chain A-4
interrupt controller A-3
test control signals A-5

Simple interrupt initialization code B-4
Simple interrupt service routine code

B-5
Software interrupt 2-2, 2-8, 2-9
Software Interrupt Clear Register 3-8
Software Interrupt Register 3-8
Standalone interrupt controller 2-11

T
Test Control Register 4-4
Test harness 4-2
Test registers 4-4
Timing diagram conventions xii
Typographical conventions xi

V
Vector Address Register 3-9
Vector Address Registers 3-10
Vector Control Registers 3-10
Vectored interrupt 2-3, 2-8
Vectored interrupt blocks 2-6
Vectored interrupt initialization code

B-5
Vectored interrupt service routine code

B-6
VIC registers 3-3
VICDEFVECTADDR Register 3-10
VICFIQSTATUS Register 3-6
VICINTENABLE Register 3-7
VICINTSELECT Register 3-7
VICINTSOURCE A-3
VICIRQSTATUS Register 3-6
VICITCR Register 4-4
VICITIP 4-5
VICITOP Register 4-6
VICPCELLID Register 3-14
VICPERIPHID Register 3-11
VICPROTECTION Register 3-8
VICRAWINTR Register 3-6
VICSOFTING Register 3-8
VICSOFTINTCLEAR Register 3-8
Index-2 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

Index
VICVECTADDR Register 3-9, 3-10
VICVECTADDRIN A-4
VICVECTADDROUT A-4
VICVECTCNTL Register 3-10
VIDINTENCLEAR Register 3-7
ARM DDI 0181E Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. Index-3

Index
Index-4 Copyright © 2000, 2003-2004 ARM Limited. All rights reserved. ARM DDI 0181E

	PrimeCell Vectored Interrupt Controller (PL190) Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Further reading

	Feedback
	Feedback on the product
	Feedback on this manual

	Introduction
	1.1 About the VIC
	1.1.1 Features of the VIC

	1.2 Product revisions

	Functional Overview
	2.1 About the VIC
	2.1.1 Interrupt request logic
	2.1.2 Non-vectored FIQ interrupt logic
	2.1.3 Non-vectored IRQ interrupt logic
	2.1.4 Vectored interrupt block
	2.1.5 Interrupt priority logic
	2.1.6 Vectored interrupts
	2.1.7 Software interrupts

	2.2 Operation
	2.2.1 Vectored interrupt flow sequence
	2.2.2 Simple interrupt flow

	2.3 Connectivity
	2.3.1 Standalone interrupt controller
	2.3.2 Daisy-chained interrupt controller

	Programmer’s Model
	3.1 About the programmer’s model
	3.2 Summary of VIC registers
	3.3 Register descriptions
	3.3.1 IRQ Status Register
	3.3.2 FIQ Status Register
	3.3.3 Raw Interrupt Status Register
	3.3.4 Interrupt Select Register
	3.3.5 Interrupt Enable Register
	3.3.6 Interrupt Enable Clear Register
	3.3.7 Software Interrupt Register
	3.3.8 Software Interrupt Clear Register
	3.3.9 Protection Enable Register
	3.3.10 Vector Address Register
	3.3.11 Default Vector Address Register
	3.3.12 Vector Address Registers
	3.3.13 Vector Control Registers
	3.3.14 Peripheral Identification Registers
	3.3.15 PrimeCell Identification Registers

	3.4 Interrupt latency
	3.4.1 FIQ interrupts
	3.4.2 IRQ interrupts
	3.4.3 Fast IRQ interrupts
	3.4.4 Daisy-chained interrupts

	3.5 Interrupt priority

	Programmer’s Model for Test
	4.1 VIC test harness overview
	4.2 Scan testing
	4.3 Summary of test registers
	4.3.1 Test Control Register
	4.3.2 Integration Test Input Registers
	4.3.3 Integration Test Output Registers

	Signal Descriptions
	A.1 AMBA AHB signals
	A.2 Interrupt controller signals
	A.3 Daisy-chain signals
	A.4 Scan test control signals

	Example Code
	B.1 About the example code
	B.1.1 Enable interrupts
	B.1.2 Disable interrupts
	B.1.3 Interrupt polling
	B.1.4 Generate software interrupt
	B.1.5 Clear software interrupt
	B.1.6 FIQ interrupt initialization
	B.1.7 FIQ interrupt handler
	B.1.8 Simple interrupt initialization
	B.1.9 Simple interrupt service routine
	B.1.10 Vectored interrupt initialization
	B.1.11 Vectored interrupt service routine
	B.1.12 Daisy-chained vectored interrupt service routine
	B.1.13 Highest level vectored IRQ interrupt service routine

	Glossary
	Index
	A
	B
	C
	D
	F
	G
	H
	I
	N
	P
	R
	S
	T
	V

