
PrimeCell® Inter-Processor
Communications Module (PL320)

Revision: r0p0

Technical Reference Manual
Copyright © 2003, 2004. ARM Limited. All rights reserved.
ARM DDI 0306B

PrimeCell Inter-Processor Communications Module (PL320)
Technical Reference Manual

Copyright © 2003, 2004. ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Change

19 December 2003 A First release

22 June 2004 B Reclassify to open access for r0p0
ii Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Contents
PrimeCell Inter-Processor Communications
Module (PL320) Technical Reference Manual

Preface
About this manual .. x
Feedback ... xiv

Chapter 1 Introduction
1.1 About the IPCM ... 1-2

Chapter 2 Functional Overview
2.1 Functional description ... 2-2
2.2 Functional operation ... 2-4
2.3 Examples of messaging .. 2-18

Chapter 3 Programmer’s Model
3.1 About the programmer’s model ... 3-2
3.2 Register summary ... 3-6
3.3 Register descriptions .. 3-12

Chapter 4 Programmer’s Model for Test
4.1 Scan testing .. 4-2
4.2 Test registers .. 4-3
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. iii

Contents
Appendix A Signal Descriptions
A.1 AMBA AHB signals ... A-2
A.2 Non-AMBA signals ... A-3

Glossary
iv Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

List of Tables
PrimeCell Inter-Processor Communications
Module (PL320) Technical Reference Manual

Change history .. ii
Table 2-1 Channel ID to interrupt mapping ... 2-6
Table 2-2 Configuring number of mailboxes ... 2-12
Table 2-3 Configuring number of interrupts ... 2-14
Table 2-4 Configuring number of data registers .. 2-16
Table 3-1 IPCM register summary .. 3-6
Table 3-2 IPCMxSOURCE Register bit assignments .. 3-12
Table 3-3 IPCMxDSET Register bit assignments ... 3-12
Table 3-4 IPCMxDCLEAR Register bit assignments ... 3-13
Table 3-5 IPCMxDSTATUS Register bit assignments .. 3-13
Table 3-6 IPCMxMODE Register bit assignments .. 3-14
Table 3-7 IPCMxMSET Register bit assignments ... 3-15
Table 3-8 IPCMxMCLEAR Register bit assignments .. 3-15
Table 3-9 IPCMxMSTATUS Register bit assignments .. 3-16
Table 3-10 IPCMxSEND Register bit assignments ... 3-17
Table 3-11 IPCMxDR0-6 Register bit assignments ... 3-17
Table 3-12 IPCMMISx Register bit assignments ... 3-18
Table 3-13 IPCMRISx Register bit assignments ... 3-18
Table 3-14 IPCMCFGSTAT Register bit assignments .. 3-19
Table 3-15 IPCMPeriphID0 Register bit assignments ... 3-20
Table 3-16 IPCMPeriphID1 Register bit assignments ... 3-21
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. v

List of Tables
Table 3-17 IPCMPeriphID2 Register bit assignments .. 3-21
Table 3-18 IPCMPeriphID3 Register bit assignments .. 3-21
Table 3-19 IPCMPCellID0 Register bit assignments .. 3-22
Table 3-20 IPCMPCellID1 Register bit assignments .. 3-23
Table 3-21 IPCMPCellID2 Register bit assignments .. 3-23
Table 3-22 IPCMPCellID3 Register bit assignments .. 3-23
Table 4-1 IPCMTCR Register bit assignments ... 4-3
Table 4-2 IPCMTOR Register bit assignments ... 4-3
Table A-1 AMBA AHB common signals .. A-2
Table A-2 AMBA AHB slave signals .. A-2
Table A-3 IPCM configuration signals ... A-3
Table A-4 IPCM interrupt signals .. A-3
Table A-5 Scan test signals ... A-3
vi Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

List of Figures
PrimeCell Inter-Processor Communications
Module (PL320) Technical Reference Manual

Key to timing diagram conventions ... xii
Figure 2-1 IPCM block diagram .. 2-2
Figure 2-2 IPCM integration in a multiprocessing system .. 2-3
Figure 2-3 Basic operation ... 2-5
Figure 2-4 Mailbox interrupt mapping to IPCM interrupt outputs .. 2-11
Figure 2-5 Configuration, messaging from Core0 to Core1 .. 2-18
Figure 2-6 Messaging from Core0 to Core1 ... 2-19
Figure 2-7 Configuration, back-to-back messaging from Core0 to Core1 2-20
Figure 2-8 Back-to-back messaging from Core0 to Core1 ... 2-21
Figure 2-9 Configuration, messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge

2-22
Figure 2-10 Messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge 2-23
Figure 2-11 Configuration, Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1

2-25
Figure 2-12 Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1 2-25
Figure 3-1 IPCM register map .. 3-4
Figure 3-2 Mailbox0 register map ... 3-5
Figure 3-3 Interrupt0 register map .. 3-5
Figure 3-4 IPCMxMODE Register bit assignments .. 3-14
Figure 3-5 IPCMxSEND Register bit assignments ... 3-16
Figure 3-6 Mailbox status ... 3-18
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. vii

List of Figures
Figure 3-7 IPCMCFGSTAT Register bit assignments .. 3-19
Figure 3-8 Peripheral Identification Register bit assignments .. 3-20
Figure 3-9 PrimeCell Identification Register bit assignments ... 3-22
Figure 4-1 IPCMTCR Register bit assignments ... 4-3
viii Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Preface

This preface introduces the PrimeCell Inter-Processor Communications Module
Revision r0p0 PrimeCell Inter-Processor Communications Module (PL320) Technical
Reference Manual (TRM). It contains the following sections:

• About this manual on page x

• Feedback on page xiv.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. ix

Preface
About this manual

This is the TRM for the Inter-Processor Communications Module (IPCM).

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written for hardware engineers who have some experience of using
ARM SoC design flow and methodology. Prior experience of the PrimeCell IPCM is
not assumed.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the IPCM and its features.

Chapter 2 Functional Overview

Read this chapter for a description of the major functional blocks of the
IPCM.

Chapter 3 Programmer’s Model

Read this chapter for a description of the IPCM registers and
programming details.

Chapter 4 Programmer’s Model for Test

Read this chapter for a description of the logic in the IPCM for functional
verification and production testing.

Appendix A Signal Descriptions

Read this appendix for details of the IPCM signals.
x Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Preface
Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams

• Signals on page xii

• Numbering on page xiii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions on page xii explains the
components used in timing diagrams. Variations, when they occur, have clear labels.
You must not assume any timing information that is not explicit in the diagrams.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. xi

Preface
Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Prefix A Denotes Advanced eXtensible Interface (AXI) global and address
channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix n Denotes active-LOW signals except in the case of AXI, AHB or
Advanced Peripheral Bus (APB) reset signals.

Prefix P Denotes APB signals.

Prefix R Denotes AXI read channel signals.

Prefix W Denotes AXI write channel signals.

Suffix n Denotes AXI, AHB, and APB reset signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xii Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Preface
Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Limited
Frequently Asked Questions list.

ARM publications

This manual contains information that is specific to the IPCM. Refer to the following
documents for other relevant information:

• AMBA® Specification (Rev 2.0) (ARM IHI 0011)

• AMBA AXI Protocol Specification (ARM IHI 0022)

• DSP Integration Specification (ARM IHI 0026)

• Message Passing Software Integration Guide (ARM DII 0091)

• PrimeCell Inter-Processor Communications Module Implementation Guide
(ARM DII 0107).

• PrimeCell Inter-Processor Communications Module Integration Manual
(ARM DII 0108).

• PrimeCell Vectored Interrupt Controller (PL192) Technical Reference Manual
(ARM DDI 0273)

• PrimeCell Core Identification Module (PL321) r0p0 Technical Reference Manual
(ARM DDI 0327).
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. xiii

Preface
Feedback

ARM Limited welcomes feedback on the IPCM and its documentation.

Feedback on the IPCM

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send email to errata@arm.com giving:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
xiv Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Chapter 1
Introduction

This chapter introduces the Inter-Processor Communications Module (IPCM). It
contains the following section:

• About the IPCM on page 1-2.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the IPCM

The IPCM provides up to 32 mailboxes with control logic and interrupt generation to
support inter-processor communication. An AHB interface enables access from source
and destination cores.

The IPCM:

• sends interrupts to other cores

• passes small amounts of data to other cores.

The mailboxes within the IPCM can be available as floating resources between cores or
as dedicated resources to specific cores. A source core can have multiple mailboxes and
send messages in parallel.

The IPCM consists of the following:

• 1-32 programmable mailboxes, each comprising:

— a single 1-32-bit Mailbox Source Register

— a single 1-32-bit Mailbox Destination Register with separate Set, Clear, and
Status addresses

— a single 2-bit Mailbox Mode Register to enable Auto Acknowledge and
Auto Link modes

— a single 1-32-bit Mailbox Mask Register with separate Set, Clear, and
Status addresses to enable you to mask out individual mailbox interrupts for
cores requiring to poll rather than be interrupted

— a single 2-bit Mailbox Send Register to trigger mailbox interrupts to source
and destination cores

— 0-7 32-bit data registers to store the message.

• 1-32 sets of read-only interrupt status registers, one for each interrupt, each
comprising:

— 1-32-bit Raw Interrupt Status Register (each bit corresponds to each
mailbox)

— 1-32-bit Masked Interrupt Status Register (each bit corresponds to each
mailbox).

• A 32-bit Configuration Status Register

• Integration Test Registers for the interrupt outputs

• Peripheral and PrimeCell Identification Registers.
1-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Introduction
The IPCM is a highly configurable and programmable module. It has three configurable
parameters:

• 1-32 mailboxes

• 0-7 data registers per mailbox

• 1-32 interrupts.

These parameters reduce gate count by enabling you to configure the IPCM instance to
match the system requirements. The programmable features, such as source,
destination, mode, and mask, enable the configured IPCM to be used by different cores
in different ways, depending on the current application.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Chapter 2
Functional Overview

This chapter describes the major functional blocks of the IPCM. It contains the
following sections:

• Functional description on page 2-2

• Functional operation on page 2-4

• Examples of messaging on page 2-18.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-1

Functional Overview
2.1 Functional description

Figure 2-1 shows a block diagram of the IPCM.

Figure 2-1 IPCM block diagram

The IPCM contains three main functional blocks:

AHB interface

The AHB interface enables access from the system bus to the IPCM
registers.

Mailboxes and control logic

The mailbox and control logic block contains all the mailbox registers
and control logic.

Interrupt generation logic

The interrupt generation logic block generates the IPCM interrupt
outputs from the current status of all the IPCM mailboxes.

Figure 2-2 on page 2-3 shows the integration of the IPCM in a multiprocessing system.

AHB

interface

SCANENABLE

SCANINHCLK

SCANOUTHCLK

IPCMINT[31:0]

Mailboxes

and control

logic

Interrupt

generation

logic

HCLK

HRESETn

HADDR[11:2]

HREADY

HSEL

HWRITE

HSIZE[2:0]

HWDATA[31:0]

HRDATA[31:0]

HREADYOUT

HRESP[1:0]

IPCM

MBOXNUM[5:0]

INTNUM[5:0]

DATANUM[2:0]

HTRANS
2-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Figure 2-2 IPCM integration in a multiprocessing system

For information on the Core Identification Module (CIM), see the ARM PrimeCell Core
Identification Module (PL321) r0p0 Technical Reference Manual.

Core0

APB bridge

CIM0

Interrupt

controller0

Local AHB

Core1

APB bridge

CIM1

Interrupt

controller1

Core2

APB bridge

CIM2

Interrupt

controller2

IPCM

IPCMINT[31:0]

IPCMINT[0] IPCMINT[1] IPCMINT[2]

Shared AHB

COREID=0x00 COREID=0x01 COREID=0x02

Local AHB Local AHB

IPCMINT[31:0]
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-3

Functional Overview
2.2 Functional operation

The IPCM generates interrupts under software control. These interrupts normally have
data associated with them and can be directed to one or more of up to 32 different
interrupt outputs. Each interrupt output corresponds directly to a bit in every Mailbox
Source, Mailbox Destination, and Mailbox Mask Register in every mailbox in the
IPCM. These registers therefore control which interrupt lines are asserted when
messages are sent and acknowledged.

You connect the interrupt outputs to the system interrupt controllers during integration.
One or more interrupt outputs can connect to each interrupt controller. Normally the
IPCM has at least one interrupt output connected to every interrupt controller in the
system, enabling any core to send a message to any other core. When more than one
IPCM interrupt is connected to the same interrupt controller, different types of message
can be indicated on different interrupt lines, and therefore handled by different ISRs.

A multi-core system normally has at least one IPCM instantiated. More can be
instantiated if required. Because the IPCM is configurable, you can have several
differently configured IPCMs instantiated in the same system.

The operation of the IPCM is described in more detail in the following sections:

• Basic operation

• Channel ID on page 2-5

• Using mailboxes on page 2-7.

2.2.1 Basic operation

Figure 2-3 on page 2-5 shows an example system in which the IPCM is integrated so
that IPCMINT[0] is connected to the interrupt controller for Core0 and IPCMINT[1]
is connected to the interrupt controller for Core1.
2-4 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Figure 2-3 Basic operation

The IPCM operates as follows:

1. Core0 has a message to send to Core1. Core0 claims the mailbox by setting bit 0
in the Mailbox Source Register. Core0 then sets bit 1 in the Mailbox Destination
Register, enables the interrupts and programs the message into the Mailbox Data
Registers. Finally, Core0 sends the message by writing 01 to the Mailbox Send
Register. This asserts the interrupt to Core1.

2. When Core1 is interrupted, it reads the Masked Interrupt Status Register for
IPCMINT[1] to determine which mailbox contains the message. Core1 reads the
message in that mailbox, then clears the interrupt and asserts the acknowledge
interrupt by writing 10 to the Mailbox Send Register.

3. Core0 is interrupted with the acknowledge message, completing the operation.
Core0 then decides whether to retain the mailbox to send another message or
release the mailbox, freeing it up for other cores in the system to use it.

2.2.2 Channel ID

The Channel ID is defined as the one-hot encoded value that corresponds to a specific
interrupt output from the IPCM. An IPCM configured to have 32 interrupt outputs has
32 corresponding Channel IDs. The Channel ID programs the Mailbox Source, Mailbox
Destination, and Mailbox Mask Registers.

Core0 Core1

IPCM

Interrupt

controller0

Interrupt

controller1

AHB

IPCMINT[0] IPCMINT[1]
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-5

Functional Overview
Table 2-1 shows how Channel IDs map to 32 interrupt outputs.

Table 2-1 Channel ID to interrupt mapping

Channel ID Interrupt output

0x00000001 IPCMINT[0]

0x00000002 IPCMINT[1]

0x00000004 IPCMINT[2]

0x00000008 IPCMINT[3]

0x00000010 IPCMINT[4]

0x00000020 IPCMINT[5]

0x00000040 IPCMINT[6]

0x00000040 IPCMINT[7]

0x00000100 IPCMINT[8]

0x00000200 IPCMINT[9]

0x00000400 IPCMINT[10]

0x00000800 IPCMINT[11]

0x00001000 IPCMINT[12]

0x00002000 IPCMINT[13]

0x00004000 IPCMINT[14]

0x00008000 IPCMINT[15]

0x00010000 IPCMINT[16]

0x00020000 IPCMINT[17]

0x00040000 IPCMINT[18]

0x00080000 IPCMINT[19]

0x00100000 IPCMINT[20]

0x00200000 IPCMINT[21]

0x00400000 IPCMINT[22]

0x00800000 IPCMINT[23]
2-6 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Note
 The configured number of interrupt outputs defines the width of the Channel ID.

In a system that has one IPCM interrupt per core, each core has a single Channel ID that
defines it within the IPCM. Some systems can have multiple IPCM interrupts per core,
and therefore multiple Channel IDs per core.

2.2.3 Using mailboxes

This section describes:

• Defining source core on page 2-8

• Defining destination core on page 2-8

• Using the Mailbox Mask Register on page 2-8

• Using the Mailbox Send Register on page 2-9

• Mailbox Data Registers on page 2-9

• Setting mode on page 2-9

• Interrupts and status Registers on page 2-10

• Configuration Status Register on page 2-12

• Usage constraints on page 2-16.

0x01000000 IPCMINT[24]

0x02000000 IPCMINT[25]

0x04000000 IPCMINT[26]

0x08000000 IPCMINT[27]

0x10000000 IPCMINT[28]

0x20000000 IPCMINT[29]

0x40000000 IPCMINT[30]

0x80000000 IPCMINT[31]

Table 2-1 Channel ID to interrupt mapping (continued)

Channel ID Interrupt output
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-7

Functional Overview
Defining source core

A core must obtain a mailbox to send a message. To do this the core writes one of its
Channel IDs to the Mailbox Source Register and then reads the Mailbox Source
Register back again to check whether the write was successful. The Mailbox Source
Register must only contain a one-hot encoded value, that is, a single Channel ID. The
software must ensure that only a one-hot encoded number is written to the Mailbox
Source Register. You can only clear the Mailbox Source Register after it is programmed.
Any writes other than 0x00000000 are ignored. This mechanism guarantees that only a
single core has control of the mailbox at any one time.

A core gives up a mailbox, when it is no longer required, by clearing the Mailbox
Source Register. Clearing the Mailbox Source Register also clears all the other registers
in the mailbox. This guarantees that a mailbox is always cleared when it is newly
allocated.

Defining destination core

The Mailbox Destination Register has separate Set and Clear write locations to enable
you to set individual bits in the Mailbox Destination Register without using
read-modify-write transfers. You can set a single bit in the Mailbox Destination Register
by writing that bit to the Destination Set Register. This causes the hardware to OR that
bit with the current Mailbox Destination Register value. Similarly, you can clear a
single bit in the Mailbox Destination Register by writing that bit to the Destination Clear
Register.

When the source core defines the mode of a mailbox, it defines which other cores are to
receive the message by programming the OR of all the Channel IDs into the Mailbox
Destination Register. If a core has more than one Channel ID only one is used per
message. You can only write to the Mailbox Destination Register after the Mailbox
Source Register is defined.

Using the Mailbox Mask Register

The Mailbox Mask Register uses separate Set and Clear registers for modification
similar to the Mailbox Destination Register. The Mailbox Mask Register enables the
interrupt outputs. To enable interrupts for a particular mailbox, a core writes its Channel
ID to the Mask Set location. The interrupt for that mailbox can be masked out by writing
the same Channel ID to the Mask Clear location. You can only write to the Mailbox
Mask Register locations after the Mailbox Source Register is defined.
2-8 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Using the Mailbox Send Register

A message is sent by setting bit 0 of the Mailbox Send Register. This triggers the
interrupt to the destination core. Clearing this bit clears the interrupt to the destination
core. The acknowledge message is sent to the source core by setting bit 1 of the Mailbox
Send Register. Clearing this bit clears the interrupt to the source core. You can use one
write to clear bit 0 and set bit 1 in the Mailbox Send Register, although this is not
mandatory. You cannot set bit 1 then clear bit 0 because 11 is an invalid value for the
Mailbox Send Register. The Mailbox Send Register can only be written to after the
Mailbox Source Register is defined.

Mailbox Data Registers

The Mailbox Data Registers are general-purpose 32-bit registers that contain the
message and can only be written to after the Mailbox Source Register is defined. The
Mailbox Data Registers are normally written to before sending the message.

Setting mode

The Mailbox Mode Register controls how the acknowledge interrupt is sent back to the
source core, and whether the current mailbox is linked to the next mailbox in the IPCM.
The Mailbox Mode Register has two bits and you can only write to it after the Mailbox
Source Register is defined.

Auto Acknowledge

In Auto Acknowledge mode, an acknowledge interrupt is automatically sent to the
source core after the final destination core has cleared its interrupt. Destination cores
must clear their interrupts by writing their Channel ID value to the Destination Clear
location. This clears their Channel ID from the Mailbox Destination Register. When the
Mailbox Destination Register finally reaches zero, indicating that all destination cores
have cleared their interrupts, the mailbox automatically detects this, clears bit 0 and sets
bit 1 of the Mailbox Send Register. The source core then receives the acknowledge
interrupt. The data associated with an Auto Acknowledge is the same as that for the
original message. You can use Auto Acknowledge mode for 1-32 destination cores.

Note
 You can use Auto Acknowledge when the system contains just two cores, a source core
and a destination core.

When Auto Acknowledge mode is disabled, the acknowledge interrupt is optional. The
destination core must clear its interrupt by clearing bit 0 of the Mailbox Send Register.
Only when the destination core sets bit 1 of the Mailbox Send Register does the source
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-9

Functional Overview
core obtain its acknowledge interrupt, indicating that the destination core has finished
with the message. You can only disable Auto Acknowledge mode when there is only
one destination core, where there is also a possibility of updating the message for the
acknowledge.

Auto Link

Auto Link provides a mechanism to link mailboxes together so that when a message is
acknowledged in one mailbox, the next message is sent from the linked mailbox instead
of interrupting the source core. When Auto Link is enabled, the destination core clears
bit 0 and sets bit 1 of the Mailbox Send Register in the usual way, but the acknowledge
interrupt to the source core is masked out and Mailbox Send Register bit 0 is set in the
next mailbox, sending that message.

In this mode, a source core can allocate multiple mailboxes to itself, link them together
by setting the Auto Link bits and preload messages in all the mailboxes. When the first
message is sent, it is not acknowledged until all the messages have been sent. There is
no restriction on the destinations of these messages or whether Auto Acknowledge is
enabled when Auto Link is used. In the IPCM, Mailbox0 can be linked to Mailbox1,
which in turn can be linked to Mailbox2, up to Mailbox31. For example, if you want to
link Mailbox0, Mailbox1, and Mailbox2, set the Auto Link bits in Mailbox0 and
Mailbox1. Do not set the Auto Link bit in Mailbox2, to enable the acknowledge
interrupt to be sent back to the source core.

When Auto Link is disabled, the source core is interrupted if an acknowledge interrupt
is sent that has no effect on any other mailbox.

Note
 When using Auto Link with Auto Acknowledge, the mailbox automatically sets
Mailbox Send Register bit 1 in the first mailbox to send the acknowledge back to the
source core but, because Auto Link is also set, the mailbox automatically sets Mailbox
Send Register bit 0 in the linked mailbox.

Interrupts and status Registers

When a core receives an IPCM interrupt, it determines which mailbox triggered it by
reading the Masked Interrupt Status Register related to that interrupt line. Each Masked
Interrupt Status Register contains up to 32 bits, each bit referring to a single mailbox.

If a core is using a mailbox in polled mode, it can use the Raw Interrupt Status Register
to indicate which mailbox requires attention.
2-10 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
In Figure 2-4, each mailbox contains up to seven data registers to hold the message.
Every mailbox instance with a single IPCM must have the same number of data
registers.

Figure 2-4 Mailbox interrupt mapping to IPCM interrupt outputs

Each mailbox can generate up to 32 interrupts, one for each Channel ID. The number
of interrupts defines the number of bits in the Mailbox Source Register, Mailbox
Destination Register, and Mailbox Mask Register. For example, in Figure 2-4, the
IPCM has 32 interrupt outputs. Mailbox0 generates bit 0 of the IPCMMIS0-31 buses,
while Mailbox31 generates bit 31 of the IPCMMIS0-31 buses.

31

Source

0

31

Destination

0

31

Mask

0

Mode Data0 Send

Data6
Mailbox31

IPCMMIS31[31]

IPCMMIS0[31]

31

Source

0

31

Destination

0

31

Mask

0

Mode Data0 Send

Data6
Mailbox0

IPCMMIS31[0]

IPCMMIS0[0]

IPCMINT[31]

IPCMINT[0]

IPCMMIS31[31:0]

IPCMMIS0[31:0]
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-11

Functional Overview
Multiple mailboxes are grouped together as shown in Figure 2-4 on page 2-11 to form
the 32-bit IPCM interrupt bus, IPCMINT[31:0]. All the interrupt bits from each
mailbox relating to a single Channel ID are grouped together to form the masked
interrupt status buses, IPCMMIS0[31:0] to IPCMMIS31[31:0]. The bits within these
buses are then ORed together to form the IPCM interrupt bus, IPCMINT[31:0].

Configuration Status Register

The three configurable parameters for the IPCM are:

• number of mailboxes, 1-32

• number of data registers per mailbox, 0-7

• number of interrupts, 1-32.

The configuration options that you choose define the read-only Configuration Status
Register, enabling software to determine the IPCM configuration by reading this
register. This enables a generic IPCM software driver to determine how to use each
IPCM instance within a system.

To define the IPCM configuration, tie off the MBOXNUM, INTNUM, and
DATANUM input pins as follows:

Number of mailboxes

Program the number of active mailboxes by tying off the MBOXNUM
input bus (Table 2-2).

Table 2-2 Configuring number of mailboxes

Number of
mailboxes

MBOXNUM

1 6'b000001

2 6'b000010

3 6'b000011

4 6'b000100

5 6'b000101

6 6'b000110

7 6'b000111

8 6'b001000

9 6'b001001
2-12 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
10 6'b001010

11 6'b001011

12 6'b001100

13 6'b001101

14 6'b001110

15 6'b001111

16 6'b010000

17 6'b010001

18 6'b010010

19 6'b010011

20 6'b010100

21 6'b010101

22 6'b010110

23 6'b010111

24 6'b011000

25 6'b011001

26 6'b011010

27 6'b011011

28 6'b011100

29 6'b011101

30 6'b011110

31 6'b011111

32 6'b100000

Table 2-2 Configuring number of mailboxes (continued)

Number of
mailboxes

MBOXNUM
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-13

Functional Overview
Note
 Any setting of MBOXNUM other than the values shown in Table 2-2 on

page 2-12 is unsupported.

Number of interrupts

Program the number of active interrupt outputs by tying off the INTNUM
input bus (Table 2-3).

Table 2-3 Configuring number of interrupts

Number of
mailboxes

INTNUM

1 6'b000001

2 6'b000010

3 6'b000011

4 6'b000100

5 6'b000101

6 6'b000110

7 6'b000111

8 6'b001000

9 6'b001001

10 6'b001010

11 6'b001011

12 6'b001100

13 6'b001101

14 6'b001110

15 6'b001111

16 6'b010000

17 6'b010001

18 6'b010010

19 6'b010011
2-14 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Note
 Any setting of INTNUM other than the values shown in Table 2-3 on

page 2-14 is unsupported.

20 6'b010100

21 6'b010101

22 6'b010110

23 6'b010111

24 6'b011000

25 6'b011001

26 6'b011010

27 6'b011011

28 6'b011100

29 6'b011101

30 6'b011110

31 6'b011111

32 6'b100000

Table 2-3 Configuring number of interrupts (continued)

Number of
mailboxes

INTNUM
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-15

Functional Overview
Number of data registers in each mailbox

Program the number of active data registers in each mailbox by tying off
the DATANUM input bus (Table 2-4).

Note
 Any setting of DATANUM other than the values shown in Table 2-4 is

unsupported.

Usage constraints

There are several valid use models for a mailbox and some constraints under which they
can be used. Messages can be sent to:

Multiple cores If a message is sent to multiple cores, you must use the Auto
Acknowledge feature and data must not be modified for the
acknowledge. Destination cores must clear their interrupts by
writing their Channel ID to the Destination Clear Register.

Single core If there is only a single destination core, the Auto Acknowledge
mode is optional. If you disable the Auto Acknowledge mode, the
acknowledge is optional, although an acknowledge normally
happens, and the Mailbox Data Register can optionally be
updated. When Auto Acknowledge is disabled, the destination
core must clear its interrupt by clearing bit 0 of the Mailbox Send
Register.

Table 2-4 Configuring number of data registers

Number of
mailboxes

DATANUM

0 3’b000

1 3'b001

2 3'b010

3 3'b011

4 3'b100

5 3'b101

6 3'b110

7 3'b111
2-16 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
You can only use the Auto Link feature when there is an acknowledge. You can use the
Auto Link feature with either:

Auto Acknowledge enabled

The mailbox automatically sets the acknowledge when the final
destination core clears its interrupt.

Auto Acknowledge disabled

The destination core must send the acknowledge.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-17

Functional Overview
2.3 Examples of messaging

The following messaging examples are described in this section:

• Messaging from Core0 to Core1

• Back-to-back messaging from Core0 to Core1 on page 2-20

• Messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge on page 2-22

• Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1 on
page 2-24.

2.3.1 Messaging from Core0 to Core1

In this example system, there are two cores and four mailboxes. Core0 is the source core
and Core1 is the destination core. Core0 uses Channel ID1 and Core1 uses Channel ID2.
Core0 sends a message to Core1 using Mailbox0. This example assumes that the IPCM
is not in integration test mode. Mailboxes 1-3 are inactive and Auto Acknowledge and
Auto Link are disabled. Figure 2-5 shows the configuration.

Figure 2-5 Configuration, messaging from Core0 to Core1

Figure 2-6 on page 2-19 shows the messaging sequence.

Core0

Interrupt

controller0

Core1

Interrupt

controller1

IPCM

Minimum

conf iguration:

MBOXNUM =4

INTNUM =2

DATANUM =1

IPCMINT[0] IPCMINT[1] IPCMINT[31:0]

AHB bus
2-18 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Figure 2-6 Messaging from Core0 to Core1

In this example, the following sequence occurs:

1. Core0 gains control of Mailbox0 and identifies itself as the source core by setting
bit 0 in the IPCM0SOURCE Register.

2. Core0 enables interrupts to Core0 and Core1 by setting bits 0 and 1 in the
IPCM0MSTATUS Register.

3. Core0 defines the destination core by setting bit 1 in the IPCM0DSTATUS
Register.

4. Core0 programs the data payload, DA7A0000.

5. Core0 sets Mailbox Send Register bit 0 to trigger the Mailbox0 interrupt to Core1.

6. Core1 reads the IPCMRIS1 Register to determine which mailbox caused the
interrupt. In this case, only Mailbox0 is indicated.

7. Core1 reads the data payload.

8. Core1 optionally updates the data payload with the Acknowledge data, DA7A1111.

9. Core1 clears bit 0 and sets bit 1 in the IPCM0SEND Register to clear its interrupt
and provide the Manual Acknowledge interrupt back to Core0.

10. Core0 reads the IPCMRIS0 Register to determine which mailbox caused the
interrupt. Again, only Mailbox0 is indicated.

11. Core0 reads the Acknowledge payload data.

IPCM0SOURCE[1:0]

IPCM0DSTATUS[1:0]

IPCM0MODE

IPCM0MSTATUS[1:0]

IPCM0SEND[1:0]

IPCM0DR0[31:0]

IPCMRIS0[3:0]

IPCMRIS1[3:0]

IPCMINT[3:0]

0

0

00000000

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

0

0

3

1 0

02

1 2 0

2 1 0

1 0

1 0

DA7A0000 DA7A1111 00000000

15

0 0
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-19

Functional Overview
12. Core0 clears bit 1 in the Mailbox Send Register to clear its interrupt.

13. Core0 releases ownership of the mailbox by clearing the IPCM0SOURCE
Register, which in turn clears the IPCM0DSTATUS, IPCM0MSTATUS, and
IPCM0DR0 Registers.

Note
 Core0 can hold on to the mailbox to send another data message by not clearing the
IPCM0SOURCE Register at step 13.

2.3.2 Back-to-back messaging from Core0 to Core1

In this example system, there are two cores and four mailboxes. Core0 is the source core
and Core1 is the destination core. Core0 uses Channel ID1 and Core1 uses Channel ID2,
as in Back-to-back messaging from Core0 to Core1. Core0 sends a message to Core1,
obtains an acknowledge, and sends another message to Core1, which is also
acknowledged. This example assumes that the IPCM is not in integration test mode.
Mailboxes 1-3 are inactive and Auto Acknowledge and Auto Link are disabled.
Figure 2-7 shows the configuration.

Figure 2-7 Configuration, back-to-back messaging from Core0 to Core1

Figure 2-8 on page 2-21 shows the messaging sequence.

Core0

Interrupt

controller0

Core1

Interrupt

controller1

IPCM

Minimum

conf iguration:

MBOXNUM=4

INTNUM=2

DATANUM=1

IPCMINT[0] IPCMINT[1] IPCMINT[31:0]

AHB bus
2-20 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Figure 2-8 Back-to-back messaging from Core0 to Core1

In this example, the following sequence occurs:

1. Core0 gains control of Mailbox0 and identifies itself as the source core by setting
bit 0 in the IPCM0SOURCE Register.

2. Core0 enables interrupts to Core0 and Core1 by setting bits 0 and 1 in the
IPCM0MSTATUS Register.

3. Core0 defines the destination core by setting bit 1 in the IPCM0DSTATUS
Register.

4. Core0 programs the data payload, DA7A0000.

5. Core0 sets bit 0 of the IPCM0SEND Register to send the interrupt to the
destination core.

6. Core1 reads the IPCMRIS1 Register and reads the data payload.

7. Core1 optionally updates the data payload for the Acknowledge, DA7A1111.

8. Core1 clears bit 0 and sets bit 1 in the IPCM0SEND Register to provide the
Manual Acknowledge back to Core0.

9. Core0 reads the IPCMRIS0 Register and reads the data payload.

10. Core0 programs the data payload for the next message, DA7A2222.

11. Core0 clears bit 1 and sets bit 0 of the IPCM0SEND Register to send the interrupt
to the destination core.

IPCM0SOURCE[1:0]

IPCM0DSTATUS[1:0]

IPCM0MODE[1:0]

IPCM0MSTATUS[1:0]

IPCM0SEND[1:0]

IPCM0DR0[31:0]

IPCMRIS0[3:0]

IPCMRIS1[3:0]

IPCMINT[3:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

0

00000000

0

0

0

0

0

3

1 0

02

1 2 1

2 1 2

1 0

1 0

DA7A0000 DA7A1111 00000000

2 0

DA7A2222 DA7A3333

1 0

1 0

1 0

00
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-21

Functional Overview
12. Core1 reads the IPCMRIS1 Register and reads the data payload.

13. Core1 optionally updates the data payload for the Acknowledge, DA7A3333.

14. Core1 clears bit 0 and sets bit 1 in the IPCM0SEND Register to provide the
Manual Acknowledge back to Core0.

15. Core0 reads the IPCMRIS0 Register and reads the data payload.

16. Core0 clears the interrupt and releases ownership of the mailbox by clearing the
IPCM0SOURCE Register, which in turn clears the IPCM0DSTATUS,
IPCM0MSTATUS, IPCM0SEND, and IPCM0DR0 Registers.

2.3.3 Messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge

In this example system, there are four cores and four mailboxes:

• Core0 uses Channel ID1

• Core1 uses Channel ID2

• Core2 uses Channel ID4

• Core3 uses Channel ID8.

Core0 is the source core and sends a message to three destination cores, 1, 2, and 3. This
example assumes that the IPCM is not in integration test mode. Mailboxes 1-3 are
inactive and Auto Link is disabled. Figure 2-9 shows the configuration.

Figure 2-9 Configuration, messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge

Figure 2-10 on page 2-23 shows the messaging sequence.

Core2

Interrupt

controller2

Core3

Interrupt

controller3

IPCM

Minimum

conf iguration:

MBOXNUM =1

INTNUM =4

DATANUM =1

IPCMINT[2] IPCMINT[3] IPCMINT[31:0]

Core0

Interrupt

controller0

Core1

Interrupt

controller1

IPCMINT[0] IPCMINT[1]

AHB bus
2-22 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Figure 2-10 Messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge

In this example, the following sequence occurs:

1. Core0 gains control of Mailbox0 and identifies itself as the source core by setting
bit 0 in the IPCM0SOURCE Register.

2. Core0 sets Mailbox Mode Register bit 0 to put the mailbox into Auto
Acknowledge mode.

3. Core0 enables interrupts to Core0, Core1, Core2, and Core3 by setting bits 0, 1,
2, and 3 in the IPCM0MSTATUS Register.

4. Core0 defines the destination cores by setting bits 1, 2, and 3 in the
IPCM0DSTATUS Register.

5. Core0 programs the data payload, DA7A0000.

6. Core0 sets bit 0 of the IPCM0SEND Register to send the interrupts to the
destination cores.

7. Core1 reads the IPCMRIS1 Register and reads the data payload.

8. Core1 clears bit 1 in the IPCM0DSTATUS Register.

9. Core3 reads the IPCMRIS3 Register and reads the data payload.

10. Core3 clears bit 3 in the IPCM0DSTATUS Register.

IPCM0SOURCE[1:0]

IPCM0DSTATUS[1:0]

IPCM0MODE

IPCM0MSTATUS[3:0]

IPCM0SEND[1:0]

IPCM0DR0[31:0]

IPCMRIS0[3:0]

IPCMRIS1[3:0]

IPCMINT[3:0]

0

0

00000000

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

0

0

F

1 0

0E

1

E C 4

1 0

DA7A0000 00000000

15

2 0

1 0

1 0

IPCMRIS2[3:0] 0 1 0

IPCMRIS3[3:0] 0 1 0

C 4

01

00

16
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-23

Functional Overview
11. Core2 reads the IPCMRIS2 Register and reads the data payload.

12. Core2 clears bit 2 in the IPCM0DSTATUS Register. As the final Mailbox
Destination Register bit is cleared, the mailbox automatically detects this, clears
Mailbox Send Register bit 0 and sets Mailbox Send Register bit 1 to provide the
Auto Acknowledge back to the source core, Core0. The data registers are not
updated in Auto Acknowledge mode.

13. Core0 reads Status0 and reads the data payload.

14. Core0 clears the interrupt and releases ownership of the mailbox by clearing the
IPCM0SOURCE register, which in turn clears the IPCM0SEND and IPCM0DR0
Registers.

Note
 If Core0 has another message to send, it can maintain ownership of the mailbox by
keeping the IPCM0SOURCE Register set, and updating the IPCM0DSTATUS,
IPCM0MODE, IPCM0MSTATUS, and IPCM0DR0 Registers with the new message at
step 14.

2.3.4 Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1

In this example system, there are two cores and four mailboxes. Core0 is the source core
and Core1 is the destination core. Core0 uses Channel ID1 and Core1 uses Channel
ID2. Core0 sets up Mailbox0 and Mailbox1 in Auto Link mode, and sends a message
to Core1. Core1 responds to each interrupt separately and acknowledges both. Core0
only obtains an acknowledge interrupt when Core1 has finished with the final message.
This example assumes that the IPCM has interrupts enabled and is not in integration test
mode. Mailboxes 2-3 are inactive and Auto Acknowledge is disabled. Figure 2-11 on
page 2-25 shows the configuration.
2-24 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
Figure 2-11 Configuration, Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1

Figure 2-12 shows the messaging sequence.

Figure 2-12 Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1

Core0

Interrupt

controller0

Core1

Interrupt

controller1

IPCM

Minimum

conf iguration:

MBOXNUM =4

INTNUM =2

DATANUM =1

IPCMINT[0] IPCMINT[1] IPCMINT[31:0]

AHB bus

IPCM0SOURCE[1:0]

IPCM0DSTATUS[1:0]

IPCM0MODE[1:0]

IPCM0MSTATUS[1:0]

IPCM0SEND[1:0]

IPCM0DR0[31:0]

IPCMRIS0[3:0]

IPCMRIS1[3:0]

IPCMINT[3:0]

0

0

00000000

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0

0

0

3

1

2

1

2 1

1 0

DA7A0000

15

2 0

2

0

2

16 17 18

IPCM1SOURCE[1:0]

IPCM1DSTATUS[1:0]

IPCM1MODE[1:0]

IPCM1MSTATUS[1:0]

IPCM1SEND[1:0]

IPCM1DR0[31:0]

0

0

00000000

0

0

3

1

2

1

DA7A1111

2 0

0

2

0

0

19 20 21

0

20
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-25

Functional Overview
In this example, the following sequence occurs:

1. Core0 gains control of Mailbox0 and sets bit 0 in the IPCM0SOURCE Register.

2. Core0 gains control of Mailbox1 and sets bit 0 in the IPCM1SOURCE Register.

3. Core0 links Mailbox0 to Mailbox1 by setting bit 1 in the IPCM0MODE Register.

4. Core0 enables interrupts to Core0 and Core1 by setting bits 0 and 1 in the
IPCM0MSTATUS Register.

5. Core0 defines the destination core of Mailbox0 by setting bit 1 in the
IPCM0DSTATUS Register.

6. Core0 programs the data payload of Mailbox0 by setting the IPCM0DR0 Register
to DA7A0000.

7. Core0 enables interrupts to Core0 and Core1 by setting bits 0 and 1 in the
IPCM1MSTATUS Register.

8. Core0 defines the destination core of Mailbox1 by setting bit 1 in the
IPCM1DSTATUS Register.

9. Core0 programs the data payload of Mailbox1 by setting Data1 to DA7A1111.

10. Core0 sets bit 1 in the IPCM0SEND Register to send the message in Mailbox0.

11. Core1 reads the IPCMRIS1 Register and reads the data payload in Mailbox0.

12. Core1 clears bit 0 and sets bit 1 in the IPCM0SEND Register to provide the
Manual Acknowledge back to Core0.

Note
 There is no acknowledge interrupt to Core0.

13. The message in Mailbox1 is automatically sent, triggered by bit 1 in the
IPCM0SEND Register going HIGH and Auto Link mode being active.

14. Core1 reads the IPCMRIS1 Register and reads the data payload in Mailbox1.

15. Core1 clears bit 0 and sets bit 1 in the IPCM1SEND Register to provide the
Manual Acknowledge back to Core0.

Note
 This sends the acknowledge interrupt to Core0.
2-26 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Functional Overview
16. Core0 reads the IPCMRIS0 Register indicating that Mailbox1 has an
acknowledge message. This indicates that the linked messages have all been sent.
Core0 also reads the optional acknowledge data payload in Mailbox0.

17. Core0 clears bit 1 in the IPCM0SEND Register.

18. Core0 reads the optional acknowledge data payload in Core1.

19. Core0 clears bit 1 in the IPCM1SEND Register.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 2-27

Functional Overview
2-28 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Chapter 3
Programmer’s Model

This chapter describes the IPCM registers and gives details required when
programming the device. It contains the following sections:

• About the programmer’s model on page 3-2

• Register summary on page 3-6

• Register descriptions on page 3-12.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-1

Programmer’s Model
3.1 About the programmer’s model

The following applies to the IPCM registers:

• The base address of the IPCM is not fixed and can be different for any particular
system implementation. However, the offset of any particular register from the
base address is fixed.

• Reserved or unused address locations must not be accessed because this can result
in unpredictable behavior of the device.

• Reserved or unused bits of registers must be written as zero, and ignored on read
unless otherwise stated in the relevant text.

• All register bits are reset to a 0 by a system or power-on reset unless otherwise
stated in the relevant text.

• All registers support read and write accesses unless otherwise stated in the
relevant text. A write updates the contents of a register and a read returns the
contents of the register.

Note
 Only Mailbox0 and the Interrupt Status registers for Interrupt0 are fully expanded for
clarity. However, Mailboxes 1-31 at offsets 0x040-0x7FC, and Interrupt 1-31 at offsets
0x808-0x8FC also exist, depending on your configuration.

Because of the highly configurable nature of the IPCM, all the registers shown here
might not be available in every configuration of the IPCM. Any writes to unavailable
registers are ignored and any reads of unavailable registers return 0x00000000.

MBOXNUM defines which Mailbox Registers are available. For example, when
MBOXNUM is set to 1, only Mailbox0 Registers is available. When MBOXNUM is
set to 32, all Mailbox Registers are available.

INTNUM defines the bit width of the IPCMxSOURCE, IPCMxDCLEAR,
IPCMxDSET, IPCMxDSTATUS, IPCMxMCLEAR, IPCMxMSET, and
IPCMxMSTATUS Registers. For example, when INTNUM is set to 1, the registers
listed above are all only a single bit wide (bit0). Setting INTNUM to 32 sets the
registers to 32 bits wide.

Secondly, INTNUM defines which IPCMRISx and IPCMMISx registers are available.
For example, when INTNUM is set to 1, only the IPCMRIS0 and IPCMMIS0 Registers
are available. When INTNUM is set to 32, all IPCMRIS0 to IPCMRIS31 Registers and
IPCMMIS0 to IPCMMIS31 registers are available.
3-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
Finally, INTNUM also defines which interrupt outputs are active. Although
IPCMINT[31:0] is always 32 bits wide, INTNUM defines which bits can be set. For
example, when INTNUM is set to 1, only IPCMINT[0] can be set. When INTNUM
is set to 32, all IPCMINT[31:0] bits can be set.

DATANUM defines which IPCMxDATAn registers are available, where x is defined by
MBOXNUM. Setting DATANUM to 0 means there are no IPCMxDATAn Registers
available. Setting DATANUM to 1 means the IPCMxDATA0 Registers are available.
Setting DATANUM to 7, means all IPCMxDATA0 to IPCMDATA6 Registers are
available.

Figure 3-1 on page 3-4 shows the IPCM register map.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-3

Programmer’s Model
Figure 3-1 IPCM register map

Figure 3-2 on page 3-5 shows the register map for Mailbox0.

Mailbox0

Reserved for Mailbox1

Interrupt0

Reserved for Interrupt1

Reserved for Mailbox2

Reserved for Mailbox3

Reserved for Mailbox4

Reserved for Mailbox5

Reserved for Mailbox6

Reserved for Mailbox7

Reserved for Mailbox8

Reserved for Mailbox9

Reserved for Mailbox10

Reserved for Mailbox11

Reserved for Mailbox12

Reserved for Mailbox13

Reserved for Mailbox14

Reserved for Mailbox15

Reserved for Mailbox16

Reserved for Mailbox17

Reserved for Mailbox18

Reserved for Mailbox19

Reserved for Mailbox20

Reserved for Mailbox21

Reserved for Mailbox22

Reserved for Mailbox23

Reserved for Mailbox24

Reserved for Mailbox25

Reserved for Mailbox26

Reserved for Mailbox27

Reserved for Mailbox28

Reserved for Mailbox29

Reserved for Mailbox30

Reserved for Mailbox31

Reserved for Interrupt2

Reserved for Interrupt3

Reserved for Interrupt4

Reserved for Interrupt5

Reserved for Interrupt6

Reserved for Interrupt8

Reserved for Interrupt7

Reserved for Interrupt9

Reserved for Interrupt10

Reserved for Interrupt11

Reserved for Interrupt12

Reserved for Interrupt13

Reserved for Interrupt14

Reserved for Interrupt15

Reserved for Interrupt16

Reserved for Interrupt17

Reserved for Interrupt18

Reserved for Interrupt19

Reserved for Interrupt20

Reserved for Interrupt21

Reserved for Interrupt22

Reserved for Interrupt23

Reserved for Interrupt24

Reserved for Interrupt25

Reserved for Interrupt26

Reserved for Interrupt27

Reserved for Interrupt28

Reserved for Interrupt29

Reserved for Interrupt30

Reserved for Interrupt31

Configuration Status Register

Reserved

Integration Test Control Register

Integration Test Output Register

Reserved

Peripheral Identification Register 0

Peripheral Identification Register 1

Peripheral Identification Register 2

Peripheral Identification Register 3

PrimeCell Identification Register 0

PrimeCell Identification Register 1

PrimeCell Identification Register 2

PrimeCell Identification Register 3

0x000

0x040
0x080

0x0C0
0x100

0x140
0x180

0x1C0
0x200

0x240
0x280

0x2C0
0x300

0x340
0x380

0x3C0
0x400

0x440
0x480

0x4C0
0x500

0x540
0x580

0x5C0

0x600
0x640

0x680
0x6C0

0x700
0x740

0x780
0x7C0

0x800
0x808

0x810
0x818

0x820
0x828

0x830

0x838

0x840
0x848

0x850
0x858

0x860
0x868

0x870
0x878

0x880
0x888

0x890
0x898

0x8A0
0x8A8

0x8B0
0x8B8

0x8C0
0x8C8

0x8D0
0x8D8

0x8E0
0x8E8

0x8F0

0x8F8
0x900

0x904
0xF00

0xF04
0xF08

0xFE0
0xFE4

0xFE8
0xFEC

0xFF0
0xFF4

0xFF8
0xFFC
3-4 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
Figure 3-2 Mailbox0 register map

Figure 3-3 shows the register map for each Interrupt0.

Figure 3-3 Interrupt0 register map

Mailbox Source Registers
0x000

Mailbox Destination Set Registers

Mailbox Destination Clear Registers

0x004

0x00C

0x008

Mailbox Destination Status Registers

Mailbox Mode Registers 0x010

Mailbox Mask Set Registers

Mailbox Mask Clear Registers

0x014

0x01C

0x018

Mailbox Mask Status Registers

Mailbox Send Registers
0x020

Mailbox Data Register 0

Mailbox Data Register 1

0x024

0x02C

0x028

Mailbox Data Register 2

Mailbox Data Register 3

Mailbox Data Register 4

Mailbox Data Register 5

Mailbox Data Register 6

0x030

0x034

0x03C

0x038

Masked Interrupt Status Registers
0x800

Raw Interrupt Status Registers
0x804
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-5

Programmer’s Model
3.2 Register summary

All register addresses in the IPCM are fixed relative to the IPCM base address.
Table 3-1 summarizes the IPCM registers.

Table 3-1 IPCM register summary

Name
Base
offset

Type
Reset
value

Description

IPCM0SOURCE 0x000 RW 0x00000000 See Mailbox Source Registers on page 3-12

IPCM0DSET 0x004 WO - See Mailbox Destination Set Registers on page 3-12

IPCM0DCLEAR 0x008 WO - See Mailbox Destination Clear Registers on page 3-13

IPCM0DSTATUS 0x00C RO 0x00000000 See Mailbox Destination Status Registers on
page 3-13

IPCM0MODE 0x010 RW 0x0 See Mailbox Mode Registers on page 3-13

IPCM0MSET 0x014 WO - See Mailbox Mask Set Registers on page 3-14

IPCM0MCLEAR 0x018 WO - See Mailbox Mask Clear Registers on page 3-15

IPCM0MSTATUS 0x01C RO 0x00000000 See Mailbox Mask Status Registers on page 3-15

IPCM0SEND 0x020 RW 0x0 See Mailbox Send Registers on page 3-16

IPCM0DR0 0x024 RW 0x00000000 See Mailbox Data Registers on page 3-17

IPCM0DR1 0x028 RW 0x00000000 See Mailbox Data Registers on page 3-17

IPCM0DR2 0x02C RW 0x00000000 See Mailbox Data Registers on page 3-17

IPCM0DR3 0x030 RW 0x00000000 See Mailbox Data Registers on page 3-17

IPCM0DR4 0x034 RW 0x00000000 See Mailbox Data Registers on page 3-17

IPCM0DR5 0x038 RW 0x00000000 See Mailbox Data Registers on page 3-17

IPCM0DR6 0x03C RW 0x00000000 See Mailbox Data Registers on page 3-17

- 0x040-0x0
7C

- - Reserved for Mailbox1

- 0x080-0x0
BC

- - Reserved for Mailbox2

- 0x0C0-0x0
FC

- - Reserved for Mailbox3
3-6 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
- 0x100-0x1
3C

- - Reserved for Mailbox4

- 0x140-0x1
7C

- - Reserved for Mailbox5

- 0x180-0x1
BC

- - Reserved for Mailbox6

- 0x1C0-0x1
FC

- - Reserved for Mailbox7

- 0x200-0x2
3C

- - Reserved for Mailbox8

- 0x240-0x2
7C

- - Reserved for Mailbox9

- 0x280-0x2
BC

- - Reserved for Mailbox10

- 0x2C0-0x2
FC

- - Reserved for Mailbox11

- 0x300-0x3
3C

- - Reserved for Mailbox12

- 0x340-0x3
7C

- - Reserved for Mailbox13

- 0x380-0x3
BC

- - Reserved for Mailbox14

- 0x3C0-0x3
FC

- - Reserved for Mailbox15

- 0x400-0x4
3C

- - Reserved for Mailbox16

- 0x440-0x4
7C

- - Reserved for Mailbox17

- 0x480-0x4
BC

- - Reserved for Mailbox18

Table 3-1 IPCM register summary (continued)

Name
Base
offset

Type
Reset
value

Description
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-7

Programmer’s Model
- 0x4C0-0x4
FC

- - Reserved for Mailbox19

- 0x500-0x5
3C

- - Reserved for Mailbox20

- 0x540-0x5
7C

- - Reserved for Mailbox21

- 0x580-0x5
BC

- - Reserved for Mailbox22

- 0x5C0-0x5
FC

- - Reserved for Mailbox23

- 0x600-0x6
3C

- - Reserved for Mailbox24

- 0x640-0x6
7C

- - Reserved for Mailbox25

- 0x680-0x6
BC

- - Reserved for Mailbox26

- 0x6C0-0x6
FC

- - Reserved for Mailbox27

- 0x700-0x7
3C

- - Reserved for Mailbox28

- 0x740-0x7
7C

- - Reserved for Mailbox29

- 0x780-0x7
BC

- - Reserved for Mailbox30

- 0x7C0-0x7
FC

- - Reserved for Mailbox31

IPCMMIS0 0x800 RO 0x00000000 See Masked Interrupt Status Registers on page 3-17

IPCMRIS0 0x804 RO 0x00000000 See Raw Interrupt Status Registers on page 3-18

- 0x808-0x8
0C

- - Reserved for Interrupt1

Table 3-1 IPCM register summary (continued)

Name
Base
offset

Type
Reset
value

Description
3-8 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
- 0x810-0x8
14

- - Reserved for Interrupt2

- 0x818-0x8
1C

- - Reserved for Interrupt3

- 0x820-0x8
24

- - Reserved for Interrupt4

- 0x828-0x8
2C

- - Reserved for Interrupt5

- 0x830-0x8
34

- - Reserved for Interrupt6

- 0x838-0x8
3C

- - Reserved for Interrupt7

- 0x840-0x8
44

- - Reserved for Interrupt8

- 0x848-0x8
4C

- - Reserved for Interrupt9

- 0x850-0x8
54

- - Reserved for Interrupt10

- 0x858-0x8
5C

- - Reserved for Interrupt11

- 0x860-0x8
64

- - Reserved for Interrupt12

- 0x868-0x8
6C

- - Reserved for Interrupt13

- 0x870-0x8
74

- - Reserved for Interrupt14

- 0x878-0x8
7C

- - Reserved for Interrupt15

- 0x880-0x8
84

- - Reserved for Interrupt16

Table 3-1 IPCM register summary (continued)

Name
Base
offset

Type
Reset
value

Description
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-9

Programmer’s Model
- 0x888-0x8
8C

- - Reserved for Interrupt17

- 0x890-0x8
94

- - Reserved for Interrupt18

- 0x898-0x8
9C

- - Reserved for Interrupt19

- 0x8A0-0x8
A4

- - Reserved for Interrupt20

- 0x8A8-0x8
AC

- - Reserved for Interrupt21

- 0x8B0-0x8
B4

- - Reserved for Interrupt22

- 0x8B8-0x8
BC

- - Reserved for Interrupt23

- 0x8C0-0x8
C4

- - Reserved for Interrupt24

- 0x8C8-0x8
CC

- - Reserved for Interrupt25

- 0x8D0-0x8
D4

- - Reserved for Interrupt26

- 0x8D8-0x8
DC

- - Reserved for Interrupt27

- 0x8E0-0x8
E4

- - Reserved for Interrupt28

- 0x8E8-0x8
EC

- - Reserved for Interrupt29

- 0x8F0-0x8
F4

- - Reserved for Interrupt30

- 0x8F8-0x8
FC

- - Reserved for Interrupt31

IPCMCFGSTAT 0x900 RO - See Configuration Status Register on page 3-18

Table 3-1 IPCM register summary (continued)

Name
Base
offset

Type
Reset
value

Description
3-10 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
- 0x904-0xE
FC

- - Reserved

IPCMTCR 0xF00 RW 0x0 See Integration Test Control Register on page 4-3

IPCMTOR 0xF04 RW 0x00000000 See Integration Test Output Register on page 4-3

- 0xF08-0xF
DF

- - Reserved

IPCMPeriphID0 0xFE0 RO 0x20 See Peripheral Identification Register 0 on page 3-20

IPCMPeriphID1 0xFE4 RO 0x13 See Peripheral Identification Register 1 on page 3-21

IPCMPeriphID2 0xFE8 RO 0x04 See Peripheral Identification Register 2 on page 3-21

IPCMPeriphID3 0xFEC RO 0x00 See Peripheral Identification Register 3 on page 3-21

IPCMPCellID0 0xFF0 RO 0x0D See PrimeCell Identification Register 0 on page 3-22

IPCMPCellID1 0xFF4 RO 0xF0 See PrimeCell Identification Register 1 on page 3-23

IPCMPCellID2 0xFF8 RO 0x05 See PrimeCell Identification Register 2 on page 3-23

IPCMPCellID3 0xFFC RO 0xB1 See PrimeCell Identification Register 3 on page 3-23

Table 3-1 IPCM register summary (continued)

Name
Base
offset

Type
Reset
value

Description
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-11

Programmer’s Model
3.3 Register descriptions

This section describes the IPCM registers. Table 3-1 on page 3-6 provides cross
references to individual registers.

Note
 In the register names, x denotes a value of 0-31.

Mailbox Destination Registers and Mailbox Mask Registers have separate Set, Clear,
and Status addresses.

3.3.1 Mailbox Source Registers

The read/write IPCMxSOURCE Registers define which core the message came from.
The register is programmed with the Channel ID to identify which interrupt line to send
the acknowledge interrupt through bit-wise encoding and can only be programmed to
this value from 0x00000000. When the register is programmed, it must be cleared to
0x00000000 before it can be reprogrammed.

Note
 The software must ensure that IPCMxSOURCE is only programmed to a one-hot
encoded value.

Table 3-2 lists the register bit assignments.

3.3.2 Mailbox Destination Set Registers

The write-only IPCMxDSET Registers set bits in the Mailbox Destination Registers.
They can only be written to after the Mailbox Source Register is defined.

Table 3-3 lists the register bit assignments.

Table 3-2 IPCMxSOURCE Register bit assignments

Bit Name Function

[31:0] Source Set to define which core is the source and which interrupt line is asserted for the acknowledge interrupt

Table 3-3 IPCMxDSET Register bit assignments

Bit Name Function

[31:0] Destination Set Used to set bits in the IPCMxDSTATUS Registers
3-12 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
3.3.3 Mailbox Destination Clear Registers

The write-only IPCMxDCLEAR Registers clear bits in the Mailbox Destination
Registers. They can only be written to after the Mailbox Source Register is defined.

Table 3-4 lists the register bit assignments.

3.3.4 Mailbox Destination Status Registers

The read-only IPCMxDSTATUS Registers contain the current status of the Mailbox
Destination Registers.

When set, the Mailbox Destination Registers determine which cores to send the
message to through bit-wise encoding using the Channel ID for each core. For cores that
use multiple Channel IDs, only a single Channel ID is used per message.

The Mailbox Destination Registers are cleared in Auto Acknowledge Mode by
destination cores to clear the mailbox interrupts to each core. When not in Auto
Acknowledge mode, the Mailbox Destination Registers are only cleared by the source
core when the mailbox is being reassigned. The Mailbox Destination Registers are
cleared automatically by the mailbox regardless of which mode it is in when the
Mailbox Source Register is cleared.

Table 3-5 lists the register bit assignments.

3.3.5 Mailbox Mode Registers

The read/write IPCMxMODE Registers define how the mailbox is used. The registers
can only be written to when the mailbox is assigned, indicated by a bit in the Mailbox
Source Register being set.

Table 3-4 IPCMxDCLEAR Register bit assignments

Bit Name Function

[31:0] Destination Clear Used to clear bits in the Mailbox Destination
Registers

Table 3-5 IPCMxDSTATUS Register bit assignments

Bit Name Function

[31:0] Destination Status Gives the status of the Mailbox Destination Register.

Defines which interrupt output to assert for the message.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-13

Programmer’s Model
The Auto Acknowledge bit provides an acknowledge interrupt back to the source core
when the Mailbox Destination Register has been cleared. The Auto Acknowledge
indicates when all cores that have received a message have cleared their interrupts. The
Auto Acknowledge bit must always be set when there is more than one destination core.

The Auto Link bit links adjacent mailboxes together to enable multiple messages to be
sent sequentially by the source core without the requirement for the source core to be
interrupted between messages. Instead of an acknowledge interrupt being sent back to
the source core, which can be done manually by a single destination core or
automatically using Auto Acknowledge, the linked mailbox message is sent. The order
of linking is fixed. Mailbox0 links to Mailbox1, which can link to Mailbox2, up to
Mailbox31.

The IPCMxMODE Registers are cleared when the Mailbox Source Register is cleared.

Figure 3-4 shows the register bit assignments.

Figure 3-4 IPCMxMODE Register bit assignments

Table 3-6 lists the register bit assignments.

3.3.6 Mailbox Mask Set Registers

The write-only IPCMxMSET Registers set bits in the Mailbox Mask Registers. They
can only be written to after the Mailbox Source Register is defined.

Undefined

31 2 1 0

Auto Link

Auto Acknowledge

Table 3-6 IPCMxMODE Register bit assignments

Bit Name Function

[31:2] - Read undefined. Write as zero.

[1] Auto Link Set to enable Auto Link.

[0] Auto Acknowledge Set to enable Auto Acknowledge.
3-14 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
Table 3-7 lists the register bit assignments.

3.3.7 Mailbox Mask Clear Registers

The write-only IPCMxMCLEAR Registers clear bits in the Mailbox Mask Registers.
They can only be written to after the Mailbox Source Register is defined.

Table 3-8 lists the register bit assignments.

3.3.8 Mailbox Mask Status Registers

The read-only IPCMxMSTATUS Registers contain the current status of the Mailbox
Mask Registers. Each core is assigned its own bit.

When set, the Mailbox Mask Registers enable the interrupts to each core through
bit-wise encoding for each of the Channel IDs. These bits reset to 0, disabling the
interrupts.

When cleared, the Mailbox Mask Registers disable the interrupts, enabling the cores to
use polling rather than interrupts for messaging.

The Mailbox Mask Registers are all cleared when the Mailbox Source Register is
cleared.

Table 3-7 IPCMxMSET Register bit assignments

Bit Name Function

[31:0] Mask Set Used to set bits in the Mailbox Mask Register

Table 3-8 IPCMxMCLEAR Register bit assignments

Bit Name Function

[31:0] Mask Clear Used to clear bits in the Mailbox Mask Register
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-15

Programmer’s Model
Table 3-9 lists the register bit assignments.

3.3.9 Mailbox Send Registers

The read/write IPCMxSEND Registers send the message to either the source or
destination cores.

The Mailbox Send Register bits can only be written to after the Mailbox Source Register
is defined:

• setting bit 0 generates an interrupt to the destination core(s)

• setting bit 1 generates an interrupt to the source core.

Note
 Setting both bits 0 and 1 is not valid and can give unpredictable results. Clearing any
send bit clears the interrupt generated by that mailbox.

In Auto Acknowledge mode, when the Mailbox Destination Status Register changes
from being non-zero to zero and the Mailbox Send Register currently contains 01, the
mailbox automatically changes the register to 10, triggering the Auto Acknowledge
interrupt back to the source core.

The Mailbox Send Registers are cleared when the Mailbox Source Register is cleared.

Figure 3-5 shows the register bit assignments.

Figure 3-5 IPCMxSEND Register bit assignments

Table 3-9 IPCMxMSTATUS Register bit assignments

Bit Name Function

[31:0] Mask Status Gives the status of the Mailbox Mask Registers.

For each bit position:

1 = Mailbox interrupt enabled

0 = Mailbox interrupt disabled, polling used instead.

Undefined

31 2 1 0

Send
3-16 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
Table 3-10 lists the register bit assignments.

3.3.10 Mailbox Data Registers

The read/write IPCMxDR0-6 Registers hold the message. The Mailbox Data Registers
can only be written to after the Mailbox Source Register is defined and are cleared when
the Mailbox Source Register is cleared.

Table 3-11 lists the register bit assignments.

3.3.11 Masked Interrupt Status Registers

The read-only IPCMMISx Registers contain the current mailbox status for every
interrupt identified by the address encoding. This enables each core to read a single
register to determine which mailbox caused the interrupt. For example, if Core0 is
mapped to Channel ID0, it reads IPCMMIS0 to determine which mailboxes require
attention.

Figure 3-6 on page 3-18 shows how Mailbox0 status is presented to Core0 through the
use of two status registers, IPCMMIS0 and IPCMRIS0.

Table 3-10 IPCMxSEND Register bit assignments

Bit Name Function

[31:2] - Read undefined. Write as zero.

[1:0] Send Send message: 00 = inactive 01 = send
message to destination core(s) 10 = send
message to source core 11 = invalid,
unpredictable behavior

Table 3-11 IPCMxDR0-6 Register bit assignments

Bit Name Function

[31:0] Data Message data
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-17

Programmer’s Model
Figure 3-6 Mailbox status

The Masked Interrupt Status Registers identify which mailbox triggered the interrupt.
This value is the logical AND of the raw interrupt status with the Mailbox Mask Status
Registers. All Masked Interrupt Status Register outputs are ORed together to form the
IPCMINT[31:0] interrupt output bus.

Table 3-12 lists the register bit assignments.

3.3.12 Raw Interrupt Status Registers

The read-only IPCMRISx Registers indicate the unmasked interrupt status of each
mailbox for each core.

Table 3-13 lists the register bit assignments.

3.3.13 Configuration Status Register

The read-only IPCMCFGSTAT Register indicates the hardware configuration options
chosen for implementation of the IPCM.

Figure 3-7 on page 3-19 shows the register bit assignments.

IPCM0MASK[0]

IPCM0SEND[0]

IPCM0DEST[0]

IPCM0SEND[1]

IPCM0SOURCE[0]

IPCMMIS0[0]

IPCMRIS0[0]

Table 3-12 IPCMMISx Register bit assignments

Bit Name Function

[31:0] MaskIntStat Masked interrupt status

Table 3-13 IPCMRISx Register bit assignments

Bit Name Function

[31:0] RawIntStat Raw interrupt status
3-18 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
Figure 3-7 IPCMCFGSTAT Register bit assignments

Table 3-14 lists the register bit assignments.

3.3.14 Peripheral Identification Registers

The IPCMPeriphID0-3 Registers are four 8-bit registers, that span address locations
0xFE0-0xFEC. You can conceptually treat the registers as a single 32-bit register. The
read-only registers provide the following options of the peripheral:

PartNumber[11:0] This is used to identify the peripheral. The product code 0x320 is
used for the IPCM.

DesignerID[19:12] This is the identification of the designer. ARM Limited is 0x41
(ASCII A).

Revision[23:20] This is the revision number of the peripheral. The revision number
starts from 0 and is revision dependent.

Configuration[31:24]

This is the configuration option of the peripheral. The
configuration value is 0.

Figure 3-8 on page 3-20 shows the register bit assignments.

Undefined

31 22 21 16 15 14 13 8 7 3 2 0

Mailboxes Interrupts Undefined
Data

Words

Undefined

Table 3-14 IPCMCFGSTAT Register bit assignments

Bit Name Function

[31:22] - Read undefined

[21:16] Mailboxes Returns the value of the MBOXNUM input pins

[15:14] - Read undefined

[13:8] Interrupts Returns the value of the INTNUM input pins

[7:3] - Read undefined

[2:0] Data Words Returns the value of the DATANUM input pins
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-19

Programmer’s Model
Figure 3-8 Peripheral Identification Register bit assignments

Note
 When you design a system memory map then you must remember that the register has
a 4KB-memory footprint. All memory accesses to the peripheral identification registers
must be 32-bit, using the LDR and STR instructions.

The Peripheral Identification Registers are described in the following subsections:

• Peripheral Identification Register 0

• Peripheral Identification Register 1 on page 3-21

• Peripheral Identification Register 2 on page 3-21

• Peripheral Identification Register 3 on page 3-21.

Peripheral Identification Register 0

The hard-coded IPCMPeriphID0 Register defines the reset value. Table 3-15 lists the bit
assignments for the IPCMPeriphID0 Register.

Part number

Part

number 1

Part

number 0

Designer

0

Designer

Revision

numberConfiguration

Configuration Revision

number
Conceptual register bit assignment

Actual register bit assignment

7 0 7 4 3 0 7 4 3 0 7 0

31 24 23 20 19 16 15 12 11 8 7 0

Designer

1

Table 3-15 IPCMPeriphID0 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:0] PartNumber0 These bits read back as 0x20
3-20 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
Peripheral Identification Register 1

The hard-coded IPCMPeriphID1 Register defines the reset value. Table 3-16 lists the bit
assignments for the IPCMPeriphID1 Register.

Peripheral Identification Register 2

The hard-coded IPCMPeriphID2 Register defines the reset value. Table 3-17 lists the bit
assignments for the IPCMPeriphID2 Register.

Peripheral Identification Register 3

The hard-coded IPCMDPeriphID3 Register defines the reset value. Table 3-18 lists the
bit assignments for the IPCMPeriphID3 Register.

Table 3-16 IPCMPeriphID1 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:4] Designer0 These bits read back as 0x1

[3:0] PartNumber1 These bits read back as 0x3

Table 3-17 IPCMPeriphID2 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:4] Revision These bits read back as 0x0

[3:0] Designer1 These bits read back as 0x4

Table 3-18 IPCMPeriphID3 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:0] Configuration These bits read back as 0x00
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-21

Programmer’s Model
3.3.15 PrimeCell Identification Registers

The IPCMPCellID0-3 Registers are four 8-bit registers, that span address locations
0xFF0-0xFFC. You can conceptually treat the registers as a single 32-bit register. The
register is used as a standard cross-peripheral identification system.

Figure 3-9 shows the register bit assignments.

Figure 3-9 PrimeCell Identification Register bit assignments

The four PrimeCell Identification Registers are described in the following subsections:

• PrimeCell Identification Register 0

• PrimeCell Identification Register 1 on page 3-23

• PrimeCell Identification Register 2 on page 3-23

• PrimeCell Identification Register 3 on page 3-23.

PrimeCell Identification Register 0

The hard-coded IPCMPCellID0 Register defines the reset value. Table 3-19 lists the bit
assignments for the IPCMPCellID0 Register.

IPCMPCellID3

Conceptual register bit assignment

Actual register bit assignment

7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

IPCMPCellID2 IPCMPCellID1 IPCMPCellID0

IPCMPCellID0IPCMPCellID1IPCMPCellID2IPCMPCellID3

Table 3-19 IPCMPCellID0 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:0] IPCMPCellID0 These bits read back as 0x0D
3-22 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model
PrimeCell Identification Register 1

The hard-coded IPCMPCellID1 Register defines the reset value. Table 3-20 lists the bit
assignments for the IPCMPCellID1 Register.

PrimeCell Identification Register 2

The hard-coded IPCMPCellID2 Register defines the reset value. Table 3-21 lists the bit
assignments for the IPCMPCellID2 Register.

PrimeCell Identification Register 3

The hard-coded IPCMPCellID3 Register defines the reset value. Table 3-22 lists the bit
assignments for the IPCMPCellID3 Register.

Table 3-20 IPCMPCellID1 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:0] IPCMPCellID1 These bits read back as 0xF0

Table 3-21 IPCMPCellID2 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:0] IPCMPCellID2 These bits read back as 0x05

Table 3-22 IPCMPCellID3 Register bit assignments

Bits Name Description

[31:8] - Read undefined

[7:0] IPCMPCellID3 These bits read back as 0xB1
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 3-23

Programmer’s Model
3-24 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Chapter 4
Programmer’s Model for Test

This chapter describes the additional logic for functional verification and production
testing. It contains the following sections:

• Scan testing on page 4-2

• Test registers on page 4-3.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 4-1

Programmer’s Model for Test
4.1 Scan testing

The IPCM enables:

• the automatic insertion of scan test cells

• the use of Automatic Test Pattern Generation (ATPG).

This is the recommended method of manufacturing test.

During scan testing, ensure that the SCANENABLE signal is driven HIGH. For normal
use ensure that SCANENABLE is driven LOW.
4-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Programmer’s Model for Test
4.2 Test registers

The input configuration pin INTNUM defines the bit width of the IPCMTOR register.
For example, when INTNUM is set to 1, IPCMTOR is only a single bit wide (bit 0).
Setting INTNUM to 32 sets IPCMTOR to 32 bits wide.

The IPCM test registers are memory-mapped as shown in IPCM register map on
page 3-4 and Table 3-1 on page 3-6. The address offset is from the base address.

4.2.1 Integration Test Control Register

The read/write IPCMTCR Register controls the IPCM integration test mode. When
ITEN=1, the IPCM is placed in integration test mode. Figure 4-1 shows and Table 4-1
lists the register bit assignments.

Figure 4-1 IPCMTCR Register bit assignments

4.2.2 Integration Test Output Register

The read/write IPCMTOR Register enables the output port signals of the IPCM to be
driven directly rather than from their normal internal logic source when in integration
test mode, that is, when ITEN=1 in the IPCMTCR Register. Table 4-2 lists the register
bit assignments.

Table 4-1 IPCMTCR Register bit assignments

Bit Name Function

[31:1] - Read undefined. Write as zero.

[0] ITEN Integration test enable: 0 =
integration test mode disabled 1 =
integration test mode enabled.

Undefined

31 1 0

ITEN

Table 4-2 IPCMTOR Register bit assignments

Bit Name Function

[31:0] IntTest IPCMINT[31:0] output
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. 4-3

Programmer’s Model for Test
4-4 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Appendix A
Signal Descriptions

This appendix describes the signals that interface with the IPCM. It contains the
following sections:

• AMBA AHB signals on page A-2

• Non-AMBA signals on page A-3.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 AMBA AHB signals

Table A-1 lists the AMBA AHB common signals.

Table A-2 lists the AMBA AHB slave signals.

Table A-1 AMBA AHB common signals

Name Type Source/destination Description

HCLK Input Clock controller Clock input for all IPCM flops

HRESETn Input Reset controller AHB bus reset, active LOW

Table A-2 AMBA AHB slave signals

Name Type Source/destination Description

HADDR[11:2] Input Send or receive core AHB System address bus

HRDATA[31:0] Output Send or receive core AHB Read data bus

HREADY Input Send or receive core AHB Transfer completed input. When HIGH, this signal
indicates that a transfer has finished on the bus.

HREADYOUT Output Send or receive core AHB Transfer done output. When HIGH, this signal indicates
that a transfer has finished on the bus. This signal can be
driven LOW to extend a transfer. The IPCM is always zero
wait state, therefore this signal is always driven HIGH.

HRESP[1:0] Output Send or receive core AHB The transfer response provides additional information on
the status of a transfer. The IPCM always provides an
OKAY response.

HSEL Input Send or receive core AHB Slave select signal for IPCM control and status registers

HSIZE[2:0] Input Send or receive core AHB Transfer size signal. This signal indicates the size of the
current transfer, which can be byte (8-bit), halfword
(16-bit), or word (32-bit). The IPCM only supports 32-bit
transfers.

HTRANS Input Send or receive core AHB Indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE, or BUSY.
The IPCM only uses HTRANS[1].

HWDATA[31:0] Input Send or receive core AHB Write data bus

HWRITE Input Send or receive core AHB Transfer direction signal. When HIGH, this signal indicates
a write and, when LOW, a read
A-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Signal Descriptions
A.2 Non-AMBA signals

Table A-4 lists the IPCM configuration signals.

Table A-4 shows the IPCM interrupt signal.

Note
 The configuration of the IPCM is defined by tieing off the MBOXNUM, INTNUM,
and DATANUM input pins, as described in Configuration Status Register on page 2-12.

Table A-5 lists the scan test signals.

Table A-3 IPCM configuration signals

Name Type Source/destination Description

DATANUM[2:0] Input Tied off Number of data registers in each mailbox

INTNUM[5:0] Input Tied off Number of interrupts

MBOXNUM[5:0] Input Tied off Number of mailboxes

Table A-4 IPCM interrupt signals

Name Type Source/destination Description

IPCMINT[31:0] Output Vectored interrupt controller IPCM interrupt, active HIGH

Table A-5 Scan test signals

Name Type Source/destination Description

SCANENABLE Input Scan controller Scan enable

SCANINHCLK Input Scan controller Scan data input for HCLK domain

SCANOUTHCLK Output Scan controller Scan data output for HCLK domain
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. A-3

Signal Descriptions
A-4 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Glossary

This glossary describes some of the terms used in ARM manuals. Where terms can have
several meanings, the meaning presented here is intended.

Advanced eXtensible Interface (AXI)
This is a bus protocol that supports separate address/control and data phases, unaligned
data transfers using byte strobes, burst-based transactions with only start address issued,
separate read and write data channels to enable low-cost DMA, ability to issue multiple
outstanding addresses, out-of-order transaction completion, and easy addition of
register stages to provide timing closure.The AXI protocol also includes optional
extensions to cover signaling for low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes
a number of features that make it very suitable for high speed sub-micron interconnect.

Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors
such as an ARM core to high-performance peripherals, DMA controllers, on-chip
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports
multi-master bus management to maximize system performance.

See also Advanced Microcontroller Bus Architecture.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running
with multiple masters and slaves. It is an on-chip bus specification that details a strategy
for the interconnection and management of functional blocks that make up a
System-on-Chip (SoC). It aids in the development of embedded processors with one or
more CPUs or signal processors and multiple peripherals. AMBA complements a
reusable design methodology by defining a common backbone for SoC modules. AHB
conforms to this standard.

Advanced Peripheral Bus (APB)
The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is designed
for use with ancillary or general-purpose peripherals such as timers, interrupt
controllers, UARTs, and I/O ports. Connection to the main system bus is through a
system-to-peripheral bus bridge that helps to reduce system power consumption.

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

ATPG See Automatic Test Pattern Generation.

Automatic Test Pattern Generation (ATPG)
The process of automatically generating manufacturing test vectors for an ASIC design,
using a specialized software tool.

AXI See Advanced eXtensible Interface.

Byte An 8-bit data item.

Core A core is that part of a processor that contains the ALU, the datapath, the
general-purpose registers, the Program Counter, and the instruction decode and control
circuitry.

DNM See Do Not Modify.

Do Not Modify (DNM)
In Do Not Modify fields, the value must not be altered by software. DNM fields read as
Unpredictable values, and must only be written with the same value read from the same
field on the same processor.

Halfword A 16-bit data item.
Glossary-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Glossary
Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Word A 32-bit data item.
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. Glossary-3

Glossary
Glossary-4 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

Index
A
AHB interface 2-2
AHB slave signals A-2

B
Block diagram 2-2

C
Channel ID 2-5
Configurable parameters 1-3
Control logic 2-2
Conventions

numerical xiii
signal naming xii
timing diagram xi
typographical xi

Customization
number of data registers 2-16

number of interrupts 2-14

D
DATANUM A-3

F
Features 1-2

G
Global signals A-2

H
HADDR A-2
HCLK A-2
HRDATA A-2

HREADY A-2
HREADYOUT A-2
HRESETn A-2
HRESP A-2
HSEL A-2
HSIZE A-2
HTRANS A-2
HWDATA A-2
HWRITE A-2

I
Interrupt generation logic 2-2
INTNUM A-3
IPCM signals A-3
IPCMCFGSTAT Register 3-18
IPCMINT A-3
IPCMMISx Registers 3-17
IPCMPCellD0 Register 3-22
IPCMPCellD0-3 Registers 3-22
IPCMPCellD1 Register 3-23
IPCMPCellD2 Register 3-23
ARM DDI 0306B Copyright © 2003, 2004. ARM Limited. All rights reserved. Index-1

Index
IPCMPCellD3 Register 3-23
IPCMPeriphID0 Register 3-20
IPCMPeriphID0-3 Registers 3-19
IPCMPeriphID1 Register 3-21
IPCMPeriphID2 Register 3-21
IPCMPeriphID3 Register 3-21
IPCMRISx Registers 3-18
IPCMTCR Register 4-3
IPCMTOR Register 4-3
IPCMxDCLEAR Registers 3-13
IPCMxDR0-6 Registers 3-17
IPCMxDSET Registers 3-12
IPCMxDSTATUS Registers 3-13
IPCMxMCLEAR Registers 3-15
IPCMxMODE Registers 3-13
IPCMxMSET Registers 3-14
IPCMxMSTATUS Registers 3-15
IPCMxSEND Registers 3-16
IPCMxSOURCE Registers 3-12

M
Mailboxes 2-2

Auto Acknowledge mode 2-9
Auto Link mode 2-10
configuration status 2-12
data 2-9
destination core 2-8
interrupts 2-10
mask 2-8
mode 2-9
send 2-9
source core 2-8
usage constraints 2-16

MBOXNUM A-3
Messaging

back-to-back 2-20
Core0 to Core1 2-18
using Auto Acknowledge 2-22
using Auto Link 2-24

N
Numerical conventions xiii

O
Operation 2-4
Overview 1-2

P
Product revision status x
Programmer’s model 3-2

R
Register descriptions 3-12
Registers

IPCMCFGSTAT 3-18
IPCMMISx 3-17
IPCMPCellID0 3-22
IPCMPCellID0-3 3-22
IPCMPCellID1 3-23
IPCMPCellID2 3-23
IPCMPCellID3 3-23
IPCMPeriphID0 3-20
IPCMPeriphID0-3 3-19
IPCMPeriphID1 3-21
IPCMPeriphID2 3-21
IPCMPeriphID3 3-21
IPCMRISx 3-18
IPCMTCR 4-3
IPCMTOR 4-3
IPCMxDCLEAR 3-13
IPCMxDR0-6 3-17
IPCMxDSET 3-12
IPCMxDSTATUS 3-13
IPCMxMCLEAR 3-15
IPCMxMODE 3-13
IPCMxMSET 3-14
IPCMxMSTATUS 3-15
IPCMxSEND 3-16
IPCMxSOURCE 3-12

Revision
status x

S
Scan test signals A-3
Scan testing 4-2

SCANENABLE A-3
SCANINHCLK A-3
SCANOUTHCLK A-3
Signal descriptions A-1
Signal naming conventions xii
System diagram 2-3

T
Test registers 4-3
Timing diagram conventions xi
Typographical conventions xi
Index-2 Copyright © 2003, 2004. ARM Limited. All rights reserved. ARM DDI 0306B

	PrimeCell Inter-Processor Communications Module (PL320) Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Further reading

	Feedback
	Feedback on the IPCM
	Feedback on this manual

	Introduction
	1.1 About the IPCM

	Functional Overview
	2.1 Functional description
	2.2 Functional operation
	2.2.1 Basic operation
	2.2.2 Channel ID
	2.2.3 Using mailboxes

	2.3 Examples of messaging
	2.3.1 Messaging from Core0 to Core1
	2.3.2 Back-to-back messaging from Core0 to Core1
	2.3.3 Messaging from Core0 to Cores 1, 2, and 3 using Auto Acknowledge
	2.3.4 Auto Link messaging from Core0 to Core1 using Mailbox0 and Mailbox1

	Programmer’s Model
	3.1 About the programmer’s model
	3.2 Register summary
	3.3 Register descriptions
	3.3.1 Mailbox Source Registers
	3.3.2 Mailbox Destination Set Registers
	3.3.3 Mailbox Destination Clear Registers
	3.3.4 Mailbox Destination Status Registers
	3.3.5 Mailbox Mode Registers
	3.3.6 Mailbox Mask Set Registers
	3.3.7 Mailbox Mask Clear Registers
	3.3.8 Mailbox Mask Status Registers
	3.3.9 Mailbox Send Registers
	3.3.10 Mailbox Data Registers
	3.3.11 Masked Interrupt Status Registers
	3.3.12 Raw Interrupt Status Registers
	3.3.13 Configuration Status Register
	3.3.14 Peripheral Identification Registers
	3.3.15 PrimeCell Identification Registers

	Programmer’s Model for Test
	4.1 Scan testing
	4.2 Test registers
	4.2.1 Integration Test Control Register
	4.2.2 Integration Test Output Register

	Signal Descriptions
	A.1 AMBA AHB signals
	A.2 Non-AMBA signals

	Glossary
	Index
	A
	B
	C
	D
	F
	G
	H
	I
	M
	N
	O
	P
	R
	S
	T

