
ETM9™

Revision: r2p2

Technical Reference Manual
Copyright © 1999-2002, 2006 ARM Limited. All rights reserved.
ARM DDI 0157G

ETM9
Technical Reference Manual

Copyright © 1999-2002, 2006 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Change history

Date Issue Confidentiality Change

14 December 1999 A Open Access ETM9 (Rev 0) release.

28 February 2000 B Open Access ETM9 (Rev 0a) release.

6 September 2000 C Open Access ETM9 (Rev 1) release.

15 January 2001 D Open Access ETM9 (Rev 2) release to NDA signatories only.

6 June 2001 E Open Access ETM9 (Rev 2a) release. Open Access.

20 August 2002 F Open Access ETM9 Revision: r2p2.

27 September 2006 G Non-Confidential Added content for DFT.
ii Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Web Address

http://www.arm.com
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. iii

iv Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Contents
ETM9 Technical Reference Manual

Preface
About this document ... xii
Feedback ... xvi

Chapter 1 Introduction
1.1 About the ETM9 .. 1-2
1.2 Product revisions .. 1-4

Chapter 2 Accessing ETM9 Registers
2.1 TAP interface .. 2-2
2.2 Programming and reading ETM9 registers ... 2-3

Chapter 3 Integrating the ETM9
3.1 About integrating the ETM9 .. 3-2
3.2 ARM interfacing .. 3-3
3.3 Clocks and resets ... 3-12
3.4 TAP interface wiring .. 3-16
3.5 System control signals .. 3-20
3.6 Trace port interfacing .. 3-26
3.7 Modes of operation of the trace port ... 3-32
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. v

Contents
Chapter 4 Memory Map Decode Interface
4.1 About the memory map decode interface ... 4-2
4.2 Memory map decode example ... 4-4

Chapter 5 Test Wrapper
5.1 About the ETM9 test wrapper ... 5-2

Chapter 6 ETM Integration Testing
6.1 About the ETM Integration Kit .. 6-2
6.2 Test system .. 6-8
6.3 ETM integration test program ... 6-14
6.4 Trace buffer integration test program ... 6-22
6.5 Simple demonstration test .. 6-24
6.6 Source compilation ... 6-25
6.7 Simulation ... 6-31
6.8 Test verification .. 6-33
6.9 Running the Trace Comparison Script ... 6-40
6.10 Troubleshooting .. 6-42

Chapter 7 Software Considerations for Trace
7.1 Tracing dynamically loaded images ... 7-2
7.2 Simple overlay support ... 7-4

Chapter 8 Physical Trace Port Signal Guidelines
8.1 About trace port signal quality .. 8-2
8.2 ASIC pad selection, placement, and package type 8-3
8.3 PCB design guidelines ... 8-4
8.4 EMI compliance .. 8-8
8.5 Further references .. 8-9

Appendix A Signal Descriptions
A.1 Signal descriptions ... A-2

Appendix B Integrating the EtmMuxDemux Block into ETM9
B.1 Using the EtmMuxDemux block ... B-2

Glossary
vi Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

List of Tables
ETM9 Technical Reference Manual

Change history .. ii
Table 1-1 ETM versions and variants .. 1-4
Table 1-2 ETM9 pin names ... 1-5
Table 3-1 Signal connections between ETM9 and ARM9 cores without Jazelle extensions 3-4
Table 3-2 ETM9 and Jazelle-enabled ARM9 cores signal connections 3-6
Table 3-3 ETMEN and PWRDOWN combinations .. 3-22
Table 3-4 SYSOPT bus settings ... 3-25
Table 3-5 Single-processor configurations .. 3-28
Table 3-6 Dual-processor trace port configurations .. 3-28
Table 3-7 TRACECLK behavior in available modes ... 3-32
Table 3-8 Paired signals in a multiplexed trace port connector ... 3-33
Table 4-1 Memory map decode example pseudo-HDL ... 4-5
Table 5-1 Scan configuration pins ... 5-4
Table 6-1 Additional components .. 6-6
Table 6-2 ETM7 signals .. 6-16
Table 6-3 ETM9 signals .. 6-18
Table 6-4 ETB signals ... 6-22
Table A-1 ETM9 signals .. A-2
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. vii

List of Tables
viii Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

List of Figures
ETM9 Technical Reference Manual

Key to timing diagram conventions .. xiv
Figure 1-1 Block diagram of the ETM9 ... 1-2
Figure 1-2 Signal diagram .. 1-3
Figure 2-1 ETM9 TAP structure .. 2-2
Figure 3-1 Coprocessor data bus connections ... 3-10
Figure 3-2 Synchronizing reset ... 3-14
Figure 3-3 TAP interface structure ... 3-16
Figure 3-4 Using ETM9 and ARM9 with an external scan chain .. 3-17
Figure 3-5 TDO output retiming for IEEE 1149.1 compatibility ... 3-18
Figure 3-6 Multiprocessor TAP structure .. 3-19
Figure 3-7 Combining DBGRQ inputs .. 3-20
Figure 3-8 Clock gating the ETM9 .. 3-21
Figure 3-9 Connecting PWRDOWN to cores that do not support the generic trace interface .. 3-22
Figure 3-10 Connecting PWRDOWN to cores that support the generic trace interface 3-22
Figure 3-11 Change in Context ID .. 3-24
Figure 3-12 Trace output circuit with inverted clock ... 3-30
Figure 3-13 Trace output circuit using falling-edge D-types ... 3-30
Figure 3-14 Multiplexing data trace signals .. 3-34
Figure 3-15 Multiplexed signal timing ... 3-34
Figure 3-16 Demultiplexing trace data signals ... 3-35
Figure 3-17 Demultiplexed signal timing .. 3-36
Figure 4-1 Memory map decode logic structure ... 4-2
Figure 4-2 Memory map decode example based on an ARM966E-S core 4-4
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ix

List of Figures
Figure 5-1 Scannable registers in ETM9 .. 5-2
Figure 5-2 Test wrapper ... 5-4
Figure 5-3 Testing SoC logic with test wrappers .. 5-5
Figure 6-1 ETMIK design flow .. 6-2
Figure 6-2 ETMIK directory structure ... 6-5
Figure 6-3 Design structure .. 6-7
Figure 6-4 HDL hierarchy ... 6-8
Figure 6-5 JTAG wiring .. 6-12
Figure 7-1 SDRAM example overlays .. 7-5
Figure 7-2 Mapping overlays to a physical address ... 7-6
Figure B-1 ETM to EtmMuxDemux connections .. B-2
x Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Preface

This preface introduces the ARM9 Embedded Trace Macrocell (ETM9) (r2p2) and its
reference documentation. It contains the following sections:

• About this document on page xii

• Feedback on page xvi.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. xi

Preface
About this document

This document is the ETM9 (r2p2) Technical Reference Manual. The product is
referred to as ETM9 throughout this manual.

Intended audience

This document has been written for hardware and software engineers who want to
incorporate an ARM core based product having instruction and data trace capability
into their hardware and/or software design.

This manual does not describe the operation of the ETM9. For information on how to
use the ETM9 read the Embedded Trace Macrocell Specification.

Product revision status

The rnpn identifier indicates the revision status of the product described in this
document, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Previous revisions are referred to using the old product revision status format.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ETM9. This chapter includes
the ETM9 block and functional diagrams.

Chapter 2 Accessing ETM9 Registers

Read this chapter for details of how to access the ETM9 registers.

Chapter 3 Integrating the ETM9

Read this chapter for details of how to integrate the ETM9 with an ARM9
microprocessor.

Chapter 4 Memory Map Decode Interface

Read this chapter for details of the Memory Map Decode interface used
to integrate the ETM9 with memory-mapped peripherals.

Chapter 5 Test Wrapper

Read this chapter for details of the ETM9 test wrapper.
xii Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Preface
Chapter 6 ETM Integration Testing

Read this chapter for details of how to validate the Trace macrocell in an
ASIC design.

Chapter 7 Software Considerations for Trace

Read this chapter for a description of the software issues that relate to the
ETM9.

Chapter 8 Physical Trace Port Signal Guidelines

Read this chapter for guidelines that ensure correct operation of the ETM
and the trace tools.

Appendix A Signal Descriptions

Read this appendix for a description of the ETM9 signals.

Appendix B Integrating the EtmMuxDemux Block into ETM9

Read this appendix for details of how to integrate the EtmMuxdemux
block into an ETM9.

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights ARM processor signal names, and interface elements,
such as menu names and buttons. Also used for terms in
descriptive lists, where appropriate.

italic Highlights special terminology, cross-references, and citations.

mono Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. xiii

Preface
Timing diagram conventions

This manual contains several timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labeled when they occur.
Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Valid (correct) sampling point
xiv Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Preface
ARM publications

This book contains information that is specific to the ETM9. Refer to the following
documents for other relevant information:

• Embedded Trace Macrocell Specification (ARM IHI 0014)

• ETM9 Revision:r2p2 Implementation Guide (ARM DII 0001)

• ARM7 Embedded Trace Macrocell (ETM7) Technical Reference Manual (ARM
DDI 0158)

• Multi-ICE User Guide (ARM DUI 0048)

• ARM Architecture Reference Manual (ARM DDI 0100).

Other publications

This section lists relevant documents published by third parties.

• Trace Port Analysis for ARM ETM Users Guide (Agilent Publications -
publication number E5903-97002).
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. xv

Preface
Feedback

ARM Limited welcomes feedback on the ETM9, and on the documentation.

Feedback on the ETM9

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on this book

If you have any comments about this document, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xvi Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 1
Introduction

This chapter introduces the ETM9 (r2p2). It contains the following section:

• About the ETM9 on page 1-2

• Product revisions on page 1-4.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ETM9

The ETM9 provides instruction and data trace for the ARM9 family of microprocessors.
This document describes the interface between an ARM9 Thumb family processor and
ETM9. For details of the interface between an ARM7 processor and ETM7, refer to the
ARM7 Embedded Trace Macrocell (ETM7) Technical Reference Manual. Elements of
the ETM that are common to both ETM7 and ETM9, such as the trace protocol and the
physical interface to the Trace Port Analyzer (TPA), are described in the Embedded
Trace Macrocell Specification. Where the expression ETM appears in the text it refers
to a nonspecific ETM (ETM7 or ETM9).

This document assumes that the ETM9 is an r2p2 version. For details of differences
between different revisions, see Product revisions on page 1-4.

The block diagram of the ETM9 is shown in Figure 1-1.

Figure 1-1 Block diagram of the ETM9

The signals diagram of the ETM9 is shown in Figure 1-2 on page 1-3 .
1-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Introduction
Figure 1-2 Signal diagram
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 1-3

Introduction
1.2 Product revisions

This manual is for r2p2 of the ETM9.

This sections includes the following information about previous revisions:

• ETM versions and variants

• Pin names on page 1-5

• Changes to the programmer’s model in Rev 0a on page 1-8

• Changes to the programmer’s model in Rev 1 on page 1-9

• Changes to the programmer’s model in Rev 2 on page 1-10

• Changes to the programmer’s model in Rev 2a on page 1-10

• Changes to the programmer’s model in r2p2 on page 1-11.

1.2.1 ETM versions and variants

The ETM is subject to continuous improvement in conjunction with the development of
the ARM processors. The history of ETM9 versions and variants is shown in Table 1-1.

Reference to protocol versions is deprecated in ETMs supporting architecture ETMv2
and above. Protocol versions mentioned in previous issues of this document are now
referred to by the corresponding architecture as shown in Table 1-1.

To indicate later revisions:

• ETM9 protocol versions 5 and 7 are equivalent to ETM9 protocol version 3.

Table 1-1 ETM versions and variants

ETM name Protocol version Architecture

ETM9 Rev 0 0 ETMv1.0

ETM9 Rev 0a 1 ETMv1.1

ETM9 Rev 1 2 ETMv1.2

ETM9 Rev 2 3 ETMv1.3

ETM9 Rev2a 5 ETMv1.3

ETM9 Rev 2p2 7 ETMv1.3
1-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Introduction
1.2.2 Pin names

Table 1-2 shows the pin names on the different revisions of ETM9.

Table 1-2 ETM9 pin names

Type ETM9 (Rev 0) signal ETM9 (Rev 0a) signal ETM9 (Rev 1) signal

ETM9 (Rev 2) and
ETM9 (Rev 2a) signal
ETM9 (Rev 2p2)
signal

Input TCK TCK TCK TCK

Input TCKEN TCKEN TCKEN TCKEN

Input nTRST nTRST nTRST nTRST

Input TDI TDI TDI TDI

Input TMS TMS TMS TMS

Input ARMTDO ARMTDO ARMTDO ARMTDO

Input nRESET nRESET nRESET nRESET

Input BIGEND BIGEND BIGEND BIGEND

Input GCLK CLK CLK CLK

Input HIVECS HIVECS HIVECS HIVECS

Input nWAIT CLKEN CLKEN CLKEN

Input IA[31:1] IA[31:1] IA[31:1] IA[31:0]

Input InMREQ InMREQ InMREQ InMREQ

Input ISEQ ISEQ ISEQ ISEQ

Input ITBIT ITBIT ITBIT ITBIT

Input - - - IJBIT

Input IABORT - - -

Input ID31To24[31:24] ID31To25[31:25] ID31To25[31:25] ID31To25[31:25]

Input ID15To8[15:8] ID15To11[15:11] ID15To11[15:11] ID15To11[15:11]

Input DA[31:0] DA[31:0] DA[31:0] DA[31:0]

Input DD[31:0] DD[31:0] DD[31:0] DD[31:0]
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 1-5

Introduction
Input DMAS[1:0] DMAS[1:0] DMAS[1:0] DMAS[1:0]

Input DMORE DMORE - -

Input DnMREQ DnMREQ DnMREQ DnMREQ

Input DnRW DnRW DnRW DnRW

Input DSEQ DSEQ DSEQ DSEQ

Input CHSD[1:0] CHSD[1:0] CHSD[1:0] CHSD[1:0]

Input CHSE[1:0] CHSE[1:0] CHSE[1:0] CHSE[1:0]

Input LATECANCEL LATECANCEL LATECANCEL LATECANCEL

Input PASS PASS PASS PASS

Input DABORT DABORT DABORT DABORT

Input DDIN[31:0] DDIN[31:0] DDIN[31:0] DDIN[31:0]

Input DBGACK DBGACK DBGACK DBGACK

Input INSTREXEC INSTREXEC INSTREXEC INSTREXEC

Input - - INSTRVALID INSTRVALID

Input - - - ZIFIRST

Input - - - ZILAST

Memory Map Decoder signals

Input Mmd[16:1] MMDIN[x:0]

x = 15 for large
configuration

x = 7 for mediumplus
configuration

x = 7 for medium
configuration

x = 3 for small
configuration.

MMDIN[x:0]

x = 15 for large
configuration

x = 7 for mediumplus
configuration

x = 7 for medium
configuration

x = 3 for small
configuration.

MMDIN[x:0]

x = 15 for large
configuration

x = 7 for mediumplus
configuration

x = 7 for medium
configuration

x = 3 for small
configuration.

Table 1-2 ETM9 pin names (continued)

Type ETM9 (Rev 0) signal ETM9 (Rev 0a) signal ETM9 (Rev 1) signal

ETM9 (Rev 2) and
ETM9 (Rev 2a) signal
ETM9 (Rev 2p2)
signal
1-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Introduction
Output MemMapRegO[7:0] MMDCTRL[7:0] MMDCTRL[7:0] MMDCTRL[7:0]

Output IAFeSetupO[31:1] MMDIA[31:1] MMDIA[31:1] MMDIA[31:1]

Output ITBITFeSetupO MMDITBIT MMDITBIT MMDITBIT

Output InMREQFeSetupO MMDInMREQ MMDInMREQ MMDInMREQ

Output DAMeSetupO[31:0] MMDDA[31:0] MMDDA[31:0] MMDDA[31:0]

Output DnRWMeSetupO MMDDnRW MMDDnRW MMDDnRW

Output DnMREQMeSetupO MMDDnMREQ MMDDnMREQ MMDDnMREQ

EmbeddedICE signals

Input EmbdIce1 RANGEOUT[0] RANGEOUT[0] RANGEOUT[0]

Input EmbdIce2 RANGEOUT[1] RANGEOUT[1] RANGEOUT[1]

External input signals

Input ExtIn[4:1] EXTIN[x:0]

x = 3 for large
configuration

x = 3 for mediumplus
configuration

x = 3 for medium
configuration

x = 1 for small
configuration.

EXTIN[x:0]

x = 3 for large
configuration

x = 3 for mediumplus
configuration

x = 3 for medium
configuration

x = 1 for small
configuration.

EXTIN[x:0]

x = 3 for large
configuration

x = 3 for mediumplus
configuration

x = 3 for medium
configuration

x = 1 for small
configuration.

Miscellaneous input signals

Input - - SYSOPT[7:0] SYSOPT[8:0]

Input - - PROCID[31:0] PROCID[31:0]

Input - - PROCIDWR PROCIDWR

External output signals

Output ExtOut[4:1] EXTOUT[3:0] EXTOUT[3:0] EXTOUT[3:0]

Table 1-2 ETM9 pin names (continued)

Type ETM9 (Rev 0) signal ETM9 (Rev 0a) signal ETM9 (Rev 1) signal

ETM9 (Rev 2) and
ETM9 (Rev 2a) signal
ETM9 (Rev 2p2)
signal
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 1-7

Introduction
Note
 The ETM9 r2p2 macrocell can implement WSI, WSO, MUXINSEL, MUXOUTSEL,
WSEI, WSEO, WEDGE, and SCANMODE. These are DFT signals and their use is
implementation defined. They are not directly tested by the test programs, but must be
tested if you intend to use these connections. See Table 5-1 on page 5-4.

1.2.3 Changes to the programmer’s model in Rev 0a

Rev 0a adds a small number of features to the programmer’s model described in this
section and fully documented in the third and fourth releases of the Embedded Trace
Macrocell Specification. The version is identified by the protocol version field of the
ETM configuration code register.

Output DBGRQ DBGRQ DBGRQ DBGRQ

Output TDO TDO TDO TDO

Output EtmPwrDwn PWRDOWN PWRDOWN PWRDOWN

Output ETMEN ETMEN ETMEN ETMEN

Output TRACECLK - - -

Output PIPESTAT[2:0] PIPESTAT[2:0] PIPESTAT[2:0] PIPESTAT[2:0]

Output TRACEPKT[15:0] TRACEPKT[15:0] TRACEPKT[15:0] TRACEPKT[15:0]

Output TRACESYNC TRACESYNC TRACESYNC TRACESYNC

Output ETMFIFOFULL FIFOFULL FIFOFULL FIFOFULL

Output - - PORTMODE[1:0] PORTMODE[1:0]

Output ETMPORTSIZE[2:0] PORTSIZE[2:0] PORTSIZE[2:0] PORTSIZE[2:0]

Output - CLKDIVTWOEN CLKDIVTWOEN CLKDIVTWOEN

Table 1-2 ETM9 pin names (continued)

Type ETM9 (Rev 0) signal ETM9 (Rev 0a) signal ETM9 (Rev 1) signal

ETM9 (Rev 2) and
ETM9 (Rev 2a) signal
ETM9 (Rev 2p2)
signal
1-8 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Introduction
Half-rate clocking

When you use half-rate clocking, the TPA samples trace data signals on both the rising
and falling edges of TRACECLK.

A pin, controlled by bit 13 of the ETM control register, is provided to enable the trace
clock to be divided by two when half-rate clocking is required. The external pin is
CLKDIVTWOEN, which enables the TRACECLK pin to be controlled. You must set
bit 13, using the trace software tools, to select the clocking mode required. On a TAP
reset this bit is LOW (see TAP reset on page 3-10).

Status register

ETM register 000 0100 has been added. This read-only register holds a single bit, the
pending overflow status bit, that indicates that an overflow has occurred, but that a
restart due to FIFO overflow reason code has not yet been issued as a result. The
debugger can use this bit to check for an overflow occurring around the time of a
breakpoint.

1.2.4 Changes to the programmer’s model in Rev 1

Rev 1 adds a small number of features to the programmer’s model. These are described
in this section and fully documented in the Embedded Trace Macrocell Specification.
The version is identified by the protocol version field of the ETM configuration code
register.

Context ID

You can use the PROCID bus and the PROCIDWR signal to allow tracing of different
context IDs or overlay numbers.

System options

Rev 1 of the ETM9 enables you to input system configuration options using the
SYSOPT bus. You can use these hard-wired inputs to change the operation of your trace
debug tools according to the ETM9 system configuration.

Trace port mode

You can configure the ETM9 outputs for three modes of operation:

• normal mode

• multiplexed mode

• demultiplexed mode.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 1-9

Introduction
These enable you to optimize the use of trace output pins in your particular ASIC
design.

Instruction tracing on/off

Using the EnOnOff bit of TraceEnable control register 1, in conjunction with preset
instruction addresses, enables you to turn tracing on and off at preset instruction
addresses. You can use this to inhibit or enable tracing for individual sections of code,
such as for subfunctions, ensuring that you only trace the instructions that you have to
trace.

Data controlled instruction tracing

You can now enable and disable the tracing of instructions based on the data access
being performed. Before Rev 1, if TraceEnable was based on data addresses the exact
instruction tracing was unpredictable. You can now trace all instructions that access a
particular address, without having to permanently enable instruction tracing.

1.2.5 Changes to the programmer’s model in Rev 2

ETM9 Rev 2 includes support for Java tracing. The changes made to the programmer’s
model for ETM9 (Rev 2) are fully documented in the Embedded Trace Macrocell
Specification. In summary, the changes are as follows:

ETM configuration code register

Protocol version 0011 supported.

System configuration register

Expanded to include bit 8, used to indicate FIFOFULL support.

Bit 7 of fifth address packet

Asserted when branching into Java state.

1.2.6 Changes to the programmer’s model in Rev 2a

ETM9 Rev 2a fixes several errata encountered in previous versions. The only change to
the programmer’s model is as follows:

ETM configuration code register

Protocol version 0101 supported.
1-10 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Introduction
1.2.7 Changes to the programmer’s model in r2p2

ETM9 r2p2 fixes several errata encountered in previous versions. The only change to
the programmer’s model is as follows:

ETM configuration code register

Protocol version 0111 supported.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 1-11

Introduction
1-12 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 2
Accessing ETM9 Registers

This chapter describes the mechanism for programming the registers used to set up the
trace and triggering facilities of the ETM9. It contains the following sections:

• TAP interface on page 2-2

• Programming and reading ETM9 registers on page 2-3.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 2-1

Accessing ETM9 Registers
2.1 TAP interface

The ETM9 is programmed using a TAP interface. The structure of the TAP interface is
shown in Figure 2-1.

Figure 2-1 ETM9 TAP structure

The ETM9 TAP is logically part of the ARM core that it is connected to. That is,
Multi-ICE only detects one TAP in a single ARM9 ETM system.

The ETM9 uses scan chain 6. For details, refer to the Embedded Trace Macrocell
Specification.

Address
decoderAddress

R/W
6

0

Data

0

31

Update

TDOTDI

ETM registers
2-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Accessing ETM9 Registers
2.2 Programming and reading ETM9 registers

All registers in the ETM9 are programmed through a JTAG interface. The interface is
an extension of the ARM TAP controller, and is assigned scan chain 6.

The scan chain consists of a 40-bit shift register comprising:

• a 32-bit data field

• a 7-bit address field

• a read/write bit.

The general arrangement of the ETM9 JTAG registers is shown in Figure 2-1 on
page 2-2.

The data to be written is scanned into the 32-bit data field, the address of the register
into the 7-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the read/write
bit. The 32-bit data field is ignored.

A read or a write takes place when the TAP controller enters the UPDATE-DR state.

For further details of ETM9 registers, see the Embedded Trace Macrocell Specification.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 2-3

Accessing ETM9 Registers
2-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 3
Integrating the ETM9

This chapter describes how the ETM9 macrocell is integrated with an ARM9
microprocessor. It contains the following sections:

• About integrating the ETM9 on page 3-2

• ARM interfacing on page 3-3

• Clocks and resets on page 3-12

• TAP interface wiring on page 3-16

• System control signals on page 3-20

• Trace port interfacing on page 3-26

• Modes of operation of the trace port on page 3-32.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-1

Integrating the ETM9
3.1 About integrating the ETM9

The ETM9 is designed to be connected directly to the ARM core that it is tracing, and
not to the main AMBA system bus. This is because it must closely track the instructions
that the ARM core is executing, and this information is only available on the ARM
processor pins.

Cached and other ARM products, such as ARM946E-S, ARM966E-S, and ARM920T
(Rev 1) provide a trace interface to bring out the required trace signals from the ARM
core to the periphery of the macrocell. This enables an ETM9 to be connected directly
to it without further modifications being required.

The trace interface is described in ETM9 to ARM9 connection guide on page 3-3.

A small amount of glue logic is required to connect the ETM9 to an ARM processor.
For example, glue logic is required if clock-gating is implemented (see Using the
PWRDOWN output on page 3-21), or to OR debug requests (see Debug request output
wiring on page 3-20). This glue logic is provided for most processors in the ETM
Integration Kit described in Chapter 6 ETM Integration Testing.
3-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
3.2 ARM interfacing

ARM interfacing is described under the following headings:

• ETM9 to ARM9 connection guide

• Data buses on page 3-9

• Coprocessor data bus connections on page 3-9.

3.2.1 ETM9 to ARM9 connection guide

The ETM9 port names are a mixture of those from the ARM9TDMI, ARM9E-S, and
ARM9EJ-S macrocells.

Table 3-1 on page 3-4 and Table 3-2 on page 3-6 show how the ETM9 must be
connected to different members of the ARM9 processor family.

Table 3-1 on page 3-4 shows ETM9 connections for the following macrocells:

• ARM9E-S

• ARM9TDMI

• ARM920T (Rev 1)

• ARM922T

• the generic trace interface on ARM946E-S and ARM966E-S.

Note
 • The ARM966E-S connections shown in Table 3-1 on page 3-4 are for a (Rev 1)

ARM966E-S (Rev 1) processor. If you are using a ARM966E-S (Rev 0)
processor, you must tie off the unused ETM9 inputs as described in the following
sections:

— INSTRVALID on page 3-9

— Using the context ID signals on page 3-23.

• The connections for the ARM922T (Rev 0) and ARM920T (Rev 1) processors are
identical.

• The External Inputs EXTIN[3:0] must be synchronous to the ETM9 CLK
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-3

Integrating the ETM9
Table 3-1 Signal connections between ETM9 and ARM9 cores without Jazelle extensions

ETM9 signal
name

ARM processor signal name

ARM9E-S ARM9TDMI
ARM920T (Rev 1)
and ARM922T

ARM946E-S and
ARM966E-S (Rev 1)
(generic trace
interface)

ARMTDO a - - - -

BIGEND CFGBIGEND BIGEND ETMBIGEND ETMBIGEND

CHSD[1:0] CHSD[1:0] CHSD[1:0] ETMCHSD[1:0] ETMCHSD[1:0]

CHSE[1:0] CHSE[1:0] CHSE[1:0] ETMCHSE[1:0] ETMCHSE[1:0]

CLK bc CLK GCLK ETMCLOCK CLK

CLKEN c CLKEN nWAIT ETMnWAIT ETMnWAIT

DA[31:0] DA[31:0] DA[31:0] ETMDA[31:0] ETMDA[31:0]

DABORT DABORT DABORT ETMDABORT ETMDABORT

DBGACK DBGACK DBGACK ETMDBGACK ETMDBGACK

DBGRQ d EDBGRQ EDBGRQ EDBGRQ EDBGRQ

DD[31:0] WDATA[31:0] DD[31:0] ETMDD[31:0] ETMWDATA[31:0]

DDIN[31:0] RDATA[31:0] DDIN[31:0] ETMDD[31:0] ETMRDATA[31:0]

DMAS[1:0] DMAS[1:0] DMAS[1:0] ETMDMAS[1:0] ETMDMAS[1:0]

DnMREQ DnMREQ DnMREQ ETMDnMREQ ETMDnMREQ

DnRW DnRW DnRW ETMDnRW ETMDnRW

DSEQ DSEQ DSEQ ETMDSEQ ETMDSEQ

ETMEN e - - - -

FIFOFULL - - - FIFOFULL f

HIVECS CFGHIVECS HIVECS ETMHIVECS ETMHIVECS

IA[0] g GND GND GND GND

IA[31:1] IA[31:1] IA[31:1] ETMIA[31:1] ETMIA[31:1]
3-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
ID15To11[15:11] INSTR[15:11] ID[15:11] ETMID15To8[15:11] ETMID15To8[15:11]

ID31To25[31:25] INSTR[31:25] ID[31:25] ETMID31To24[31:25] ETMID31To24[31:25]

IJBITg GND GND GND GND

InMREQ InMREQ InMREQ ETMInMREQ ETMInMREQ

INSTREXEC DBGINSTREXEC INSTREXEC ETMINSTREXEC ETMINSTREXEC

INSTRVALID DBGINSTRVALID VDD VDD ETMINSTRVALID

ISEQ ISEQ ISEQ ETMISEQ ETMISEQ

ITBIT ITBIT ITBIT ETMITBIT ETMITBIT

LATECANCEL LATECANCEL LATECANCEL ETMLATECANCEL ETMLATECANCEL

nRESET h DBGnTRST nTRST nTRST DBGnTRST

nTRST DBGnTRST nTRST nTRST DBGnTRST

PASS PASS PASS ETMPASS ETMPASS

PROCID[31:0] - - - ETMPROCID[31:0]

PROCIDWR - - - ETMPROCIDWR

PWRDOWN i - - ETMPWRDOWN !ETMENe

RANGEOUT[0] DBGRNG[0] RANGEOUT[0] ETMRNGOUT[0] ETMRNGOUT[0]

RANGEOUT[1] DBGRNG[1] RANGEOUT[1] ETMRNGOUT[1] ETMRNGOUT[1]

TCK CLK TCK TCK CLK

TCKEN DBGTCKEN VDD VDD DBGTCKEN

TDI DBGTDI TDI TDI DBGTDI

TDO DBGSDOUT SDOUTBS SDOUTBS DBGSDOUT

Table 3-1 Signal connections between ETM9 and ARM9 cores without Jazelle extensions (continued)

ETM9 signal
name

ARM processor signal name

ARM9E-S ARM9TDMI
ARM920T (Rev 1)
and ARM922T

ARM946E-S and
ARM966E-S (Rev 1)
(generic trace
interface)
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-5

Integrating the ETM9
Table 3-2 shows ETM9 connections for:

• ARM9EJ-S cores

• the generic trace interface on ARM926EJ-S.

TMS DBGTMS TMS TMS DBGTMS

ZIFIRST g GND GND GND GND

ZILAST g GND GND GND GND

a. See TAP interface wiring on page 3-16.
b. See Trace signal output timing on page 3-29.
c. See CLK and CLKEN on page 3-12.
d. See Debug request output wiring on page 3-20.
e. In cores supporting the generic trace interface, the ETMEN input to the core must be connected to an inverted version of

PWRDOWN. The ETMEN output is not connected to the core.
f. In revisions where FIFOFULL is supported.
g. See Memory interface signals on ETM9 (Rev 2 and above) on page 3-11.
h. See Clocks and resets on page 3-12.
i. See Using the PWRDOWN output on page 3-21.

Table 3-1 Signal connections between ETM9 and ARM9 cores without Jazelle extensions (continued)

ETM9 signal
name

ARM processor signal name

ARM9E-S ARM9TDMI
ARM920T (Rev 1)
and ARM922T

ARM946E-S and
ARM966E-S (Rev 1)
(generic trace
interface)

Table 3-2 ETM9 and Jazelle-enabled ARM9 cores signal connections

ETM9 signal name
ARM processor signal name

ARM9EJ-S ARM926EJ-S (generic trace interface)

ARMTDO a - -

BIGEND CFGBIGEND ETMBIGEND

CHSD[1:0] CHSD[1:0] ETMCHSD[1:0]

CHSE[1:0] CHSE[1:0] ETMCHSE[1:0]

CLK bc CLK CLK

CLKEN c CLKEN ETMnWAIT

DA[31:0] DA[31:0] ETMDA[31:0]
3-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
DABORT DABORT ETMDABORT

DBGACK DBGACK ETMDBGACK

DBGRQ d EDBGRQ EDBGRQ

DD[31:0] WDATA[31:0] ETMWDATA[31:0]

DDIN[31:0] RDATA[31:0] ETMRDATA[31:0]

DMAS[1:0] DMAS[1:0] ETMDMAS[1:0]

DnMREQ DnMREQ ETMDnMREQ

DnRW DnRW ETMDnRW

DSEQ DSEQ ETMDSEQ

ETMEN e - -

FIFOFULL - FIFOFULL

HIVECS CFGHIVECS ETMHIVECS

IA[0] f IA[0] ETMIA[0]

IA[31:1] IA[31:1] ETMIA[31:1]

ID15To11[15:11] INSTR[15:11] ETMID15To8[15:11]

ID31To25[31:25] INSTR[31:25] ETMID31To24[31:25]

IJBIT f IJBIT ETMIJBIT

InMREQ InMREQ ETMInMREQ

INSTREXEC DBGINSTREXEC ETMINSTREXEC

INSTRVALID DBGINSTRVALID ETMINSTRVALID

ISEQ ISEQ ETMISEQ

ITBIT ITBIT ETMITBIT

LATECANCEL LATECANCEL ETMLATECANCEL

nRESET g DBGnTRST DBGnTRST

Table 3-2 ETM9 and Jazelle-enabled ARM9 cores signal connections (continued)

ETM9 signal name
ARM processor signal name

ARM9EJ-S ARM926EJ-S (generic trace interface)
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-7

Integrating the ETM9
Note
 Earlier revisions of ETM9 (Rev 0a and below) also included the DMORE signal. This
signal is no longer required.

nTRST DBGnTRST DBGnTRST

PASS PASS ETMPASS

PROCID[31:0] - ETMPROCID[31:0]

PROCIDWR - ETMPROCIDWR

PWRDOWN h - !ETMENe

RANGEOUT[0] DBGRNG[0] ETMRNGOUT[0]

RANGEOUT[1] DBGRNG[1] ETMRNGOUT[1]

TCK CLK CLK

TCKEN DBGTCKEN DBGTCKEN

TDI DBGTDI DBGTDI

TDO DBGSDOUT DBGSDOUT

TMS DBGTMS DBGTMS

ZIFIRST f ZIFIRST ETMZIFIRST

ZILAST f ZILAST ETMZILAST

a. See TAP interface wiring on page 3-16.
b. See Trace signal output timing on page 3-29.
c. See CLK and CLKEN on page 3-12.
d. See Debug request output wiring on page 3-20.
e. In cores supporting the generic trace interface, the ETMEN input to the core must be connected

to an inverted version of PWRDOWN. The ETMEN output is not connected to the core.
f. See Memory interface signals on ETM9 (Rev 2 and above) on page 3-11.
g. See Clocks and resets on page 3-12.
h. See Using the PWRDOWN output on page 3-21.

Table 3-2 ETM9 and Jazelle-enabled ARM9 cores signal connections (continued)

ETM9 signal name
ARM processor signal name

ARM9EJ-S ARM926EJ-S (generic trace interface)
3-8 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
3.2.2 INSTRVALID

If you are using an ARM processor in which this signal is not available, such as
ARM9TDMI, ARM920T, or ARM966E-S (Rev 0), you must tie this ETM input HIGH.

3.2.3 Data buses

The ETM requires visibility of any data from either the memory system or coprocessors
to select between the two data buses based on the transfer direction, defined by DnRW.

The DDIN bus is sampled when:

• DnRW is LOW (for LDC data transfers, MRC register transfers, and LDR/LDM data
transfers)

• DnMREQ and PASS are both LOW (for LDC and STC data transfers).

The DD bus is sampled at all other times, such as for STR/STM transfers.

When ARM coprocessors are present in the system, you must ensure that a copy of the
coprocessor data transferred to and from memory is seen on the DD bus. See
Coprocessor data bus connections for details.

3.2.4 Coprocessor data bus connections

Figure 3-1 on page 3-10 shows the coprocessor data bus connections for an
ARM9E-S-based system having an ETM9.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-9

Integrating the ETM9
Figure 3-1 Coprocessor data bus connections

The logic that drives asel, bsel, and csel from the relevant ARM9TDMI, ARM9E-S, or
ARM9EJ-S pins is as follows:

on RISING CLK
asel = not(DnMREQ and DSEQ) and (not DnRW)
bsel = (not DnMREQ) and (not PASS)
csel = DnMREQ and DSEQ

You do not have to make any coprocessor data bus connections for the following
processors because the necessary support logic is included in the ARM macrocell:

• ARM920T

• ARM922T

• ARM926EJ-S

• ARM946E-S

• ARM966E-S.
3-10 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
Note
 The RDATA enable term, asel, is specially constructed to select the coprocessor output
data during MRC and STC operations. This is to allow the connection of the ARM ETM
module to the RDATA and WDATA buses of the ARM9E-S or the ARM9EJ-S cores
while still allowing tracing of MRC and STC data.

To ensure that tracing of coprocessor instructions functions correctly it is essential that:

• the ETM is directly connected to the data buses of the ARM9 processor core, as
described in Table 3-2 on page 3-6

• all output data from the coprocessor is visible on the data input bus of the
processor.

3.2.5 Memory interface signals on ETM9 (Rev 2 and above)

The Java trace support in ETM9 (Rev 2 and above) includes the following additional
memory interface signals:

• IA[0]
• IJBIT
• ZIFIRST
• ZILAST.

If these signals are not available on the trace port interface of the core, you must tie the
unused ETM inputs LOW.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-11

Integrating the ETM9
3.3 Clocks and resets

The ETM9 has two sets of clock, clock enable, and reset inputs:

Main system controls:

• CLK
• CLKEN
• nRESET.

Scan chain controls:

• TCK
• TCKEN
• nTRST.

These are described under the following headings:

• CLK and CLKEN

• ETM reset on page 3-13

• TCK and TCKEN on page 3-14

• TAP reset on page 3-14.

3.3.1 CLK and CLKEN

CLK is the master clock for the ETM9. The ETM9 only uses the rising edge of CLK,
so CLK is the inverse of GCLK when used with an ARM9TDMI, and CLK when used
with an ARM9E-S or an ARM9EJ-S macrocell.

CLKEN is a synchronous enable for CLK. All ARM9 interface signals are sampled on
the rising edge of CLK when CLKEN is HIGH, and all trace port outputs are generated
off the rising edge of CLK.

Note
 The trace port outputs can change on clock cycles when CLKEN is LOW.

If you dynamically stretch or gate the CLK signal, you cannot infer elapsed time from
the number of elapsed cycles when cycle-accurate tracing is enabled.

Connecting to an ARM9E-S or an ARM9EJ-S macrocell

You must connect the ETM9 signals, CLK and CLKEN, directly to the same signals
that drive CLK and CLKEN on the ARM9E-S or the ARM9EJ-S macrocell.
3-12 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
Connecting to an ARM9TDMI macrocell

When connecting ETM9 directly to an ARM9TDMI macrocell, you must make the
following connections:

• connect CLK to the inverse of GCLK

• connect CLKEN to nWAIT inputs.

Connecting to an ARM920T or ARM922T macrocell

When connecting ETM9 to an ARM920T macrocell, or ARM922T macrocell you must
make the following connections:

• connect CLK to the inverse of ETMCLOCK

• connect CLKEN to the ETMnWAIT ARM920T output.

The signals in the ARM920T ETM interface are driven off the rising edge of
ETMCLOCK. However, the signals cannot be captured off the rising edge of
ETMCLOCK because ETMCLOCK is exported from the ARM920T and is subject
to further insertion delays within the ETM. These timing problems are usually solved
by inverting ETMCLOCK, but timing analysis of the system is still required.

Connecting to an ARM946E-S, an ARM966E-S, or an ARM926EJ-S
macrocell

When connecting ETM9 to an ARM946E-S, an ARM966E-S, or an ARM926EJ-S
macrocell, you must make the following connections:

• connect CLK to the same signal that drives the core CLK input

• connect CLKEN to the ETMnWAIT processor output.

3.3.2 ETM reset

nRESET resets all of the ETM9 state, with the exception of the ETM control register,
and flushes the trace FIFO. You can connect nRESET to the same reset as the
processor. However, this prevents trace being used during a warm reset of the ARM9.
ARM Limited strongly recommends that you use the TAP reset, nTRST/DBGnTRST,
to reset the ETM9 state.

In systems where CLK and TCK are asynchronous, nTRST must be synchronized to
CLK. You can do this using the arrangement shown in Figure 3-2 on page 3-14.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-13

Integrating the ETM9
Figure 3-2 Synchronizing reset

Synchronizing nTRST to CLK enables nTRST to reset the ETM even when CLK is
running slowly, or is stopped.

3.3.3 TCK and TCKEN

TCK is the master clock for the ETM9 JTAG interface. TCKEN is a synchronous clock
enable signal.

In a system with an ARM9TDMI, ARM920T, or ARM922T macrocell, TCK is
generally a free-running clock, asynchronous to CLK. In these systems you must tie
TCKEN HIGH.

In systems containing the following processors, a single clock is used as both the main
system clock and the JTAG clock:

• ARM9E-S

• ARM946E-S

• ARM966E-S

• ARM9EJ-S

• ARM926EJ-S.

In these systems you must connect the single main clock to both CLK and TCK. You
can then use TCKEN to control the JTAG interface.

ETM9 is designed to function with fully asynchronous CLK and TCK inputs.
Synchronizing logic is included in the design to prevent metastability problems between
the two clock domains when running with asynchronous clocks.

3.3.4 TAP reset

nTRST is the TAP controller reset, used to asynchronously reset the TAP controller. It
also resets the ETM control register.

nRESET

CLK

nTRST

R

CLK

R R

QD QD QD
ETMnRESET
3-14 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
Note
 ARM Limited recommends that either:

• TCK is inhibited when nTRST is deasserted

• nTRST is deasserted synchronously to TCK.

This ensures that the TAP state machine cannot enter an unknown state because of reset
hold violations. You must hold TMS HIGH during a TAP reset.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-15

Integrating the ETM9
3.4 TAP interface wiring

Both the ARM9 microprocessor and the ETM9 provide scan chain expansion inputs.
These are:

• SDOUTBS on the ARM9TDMI macrocell (DBGSDOUT on the ARM9E-S
macrocell and the ARM9EJ-S macrocell)

• ARMTDO on ETM9.

In each case this input is routed through to TDO when an unimplemented scan chain is
selected. This enables the ARM9 and ETM9 TAP controllers to run in parallel, with a
single TDO output.

ARMTDO is connected to TDO when the ETM scan chain, scan chain 6, is not
selected.

ARM Limited recommends connectivity as shown in Figure 3-3.

Figure 3-3 TAP interface structure

Note
 For clarity, nTRST is omitted from figures relating to the TAP interface. You must
connect nTRST to all TAPs on the chip. See the Multi-ICE User Guide for details.
3-16 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
If your ASIC includes a further scan chain controlled by the ARM TAP controller, then
the TDO of this scan chain can be connected into the otherwise unused ARMTDO
input on the ETM9. This is shown in Figure 3-4.

Figure 3-4 Using ETM9 and ARM9 with an external scan chain

3.4.1 IEEE 1149.1 compatibility

The TDO output from the ETM changes on the rising edge of TCK, when TCKEN is
HIGH. For ARM9TDMI and ARM920T systems, you must add an external falling edge
D-type flip-flop, as shown in Figure 3-5 on page 3-18, to ensure full compatibility with
IEEE 1149.1.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-17

Integrating the ETM9
Figure 3-5 TDO output retiming for IEEE 1149.1 compatibility

You do not have to do anything for systems based on the ARM9E-S macrocell or the
ARM9EJ-S macrocell, because the synchronization and adaptive clocking logic ensures
that this register is not required.

You must take care if you add this register and use the ARMTDO input to the ETM.
This input must change around the rising edge of TCK. If it does not, it is incorrectly
delayed by one cycle.

3.4.2 Multiprocessor TAP structure

If you want your multiprocessor-compatible run control products, such as Multi-ICE, to
work correctly when used with more than one ARM processor on a chip, ARM Limited
recommends that you connect the processors as a serial TAP structure. The presence of
an ETM9 on any or all of the ARM processors does not affect this. The TAP structure
for a dual-processor ARM processor system is shown in Figure 3-6 on page 3-19.

ETM9

D QTDO

TCK

ARM9TDMI

SDOUTBS
3-18 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
Figure 3-6 Multiprocessor TAP structure

Note
 For clarity, nTRST is omitted from figures relating to the TAP interface. You must
connect nTRST to all TAPs on the chip. See the Multi-ICE User Guide for details.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-19

Integrating the ETM9
3.5 System control signals

System control signal interfacing is described under the following headings:

• Debug request output wiring

• Using the PWRDOWN output on page 3-21

• FIFOFULL on page 3-23

• Using the context ID signals on page 3-23

• Using the system options bus on page 3-24.

3.5.1 Debug request output wiring

When the trigger condition occurs, you can set the ETM9 to assert DBGRQ until
DBGACK is observed under the control of bit 9 in the ETM control register.

Note
 ARM9 processors take at least one cycle to respond to EDBGRQ. This means that the
ARM processor can execute a few instructions after the trigger condition is detected but
before the system has stopped. Some debug tools can report an unrecognized breakpoint
as a result.

You must connect the DBGRQ output of the ETM9 to the EDBGRQ input of the ARM
processor. If this input is already in use, for example a DBGRQ input is present on the
device, the DBGRQ signals must be ORed together as shown in Figure 3-7.

Figure 3-7 Combining DBGRQ inputs

DBGRQ

ARM ETM9

EDBGRQ DBGRQ

ASIC
3-20 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
3.5.2 Using the PWRDOWN output

The ETM9 provides an output called PWRDOWN. When HIGH this indicates that the
ETM is not currently enabled, so you can stop the CLK input and hold the other ETM9
signals stable. You can use this to reduce system power consumption when trace is not
being used. When a TAP reset (nTRST) occurs, PWRDOWN is automatically forced
HIGH until the ETM9 control register has been programmed.

You can use the PWRDOWN output directly to gate the ETM9 CLK input. This is
shown in Figure 3-8.

Figure 3-8 Clock gating the ETM9

The PWRDOWN signal is changed synchronously to TCK. Because PWRDOWN
changes many cycles before trace is enabled, this does not cause any metastability
problems if you use PWRDOWN to gate the ETM9 clock. If using PWRDOWN in this
way causes problems with static timing analysis, you can synchronize PWRDOWN to
CLK before using it to gate the ETM9 clock.

The PWRDOWN output is controlled by the ARM debug tools, and is automatically
cleared at the start of a debug session.

The ARM920T (Rev 1), and ARM922T macrocells implement this logic internally by
providing an ETMPWRDOWN input to the trace interface, causing the clock and data
outputs to the ETM to be stopped.

You must connect the PWRDOWN output from ETM9 to the ETMPWRDOWN input
to these cores, as shown in Figure 3-9 on page 3-22.

CLK

ARM ETM9

CLK

CLK

PWRDOWN TCK
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-21

Integrating the ETM9
Figure 3-9 Connecting PWRDOWN to cores that do not support the generic trace interface

The following cores support the generic trace interface:

• ARM926EJ-S

• ARM946E-S

• ARM966E-S.

On these cores, the trace outputs are prevented from switching using an ETMEN core
input. You must tie the ETMEN input to the inverted PWRDOWN output from ETM9,
as shown in Figure 3-10.

Figure 3-10 Connecting PWRDOWN to cores that support the generic trace interface

For more information, see the Technical Reference Manual for your processor.The
ETMEN output from ETM9 must only be used to disable the trace port, not to disable
ETM9 itself. See Dual-processor tracing on page 3-27 for more information. Table 3-3
lists the possible combinations of ETMEN and PWRDOWN.

ETM9

PWRDOWN ETMEN

ARM9

Table 3-3 ETMEN and PWRDOWN combinations

ETMEN PWRDOWN Description

0 1 ETM in low power state. All functionality disabled.

0 0 ETM trace port disabled. Other ETM functionality, such as EXTOUT generation and
assertion of DBGRQ on trigger, continues as normal.

1 0 All ETM functionality enabled.

1 1 UPREDICTABLE
3-22 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
3.5.3 FIFOFULL

This signal changes on the rising edge of CLK and is active HIGH. When asserted it
indicates that:

• the trace tools user has enabled the ETM FIFO full detection

• the FIFO currently has less than a programmed number of bytes of space
available.

You can use FIFOFULL to stall the ARM core, so that more trace data is not generated
until the FIFO has drained. It is recommended that you implement this by controlling
the CLKEN input to the ARM core, rather than gating the clock. If the clock is gated
there is a risk of system lock-up, because stopping the clock prevents the FIFO from
draining, and prevents FIFOFULL from being deasserted.

If CLKEN is supported you can increase the accuracy of the tracing by slowing down
the processor when the trace port bandwidth is exceeded. This enables you to slow down
non real-time areas of code while critical regions remain unaffected. The Embedded
Trace Macrocell Specification describes how this is achieved in more detail. Briefly
however, you specify, within the ETM, the address regions in which FIFOFULL can
be asserted.

If the system designer is not able to support the use of this signal no harm results, even
if the FIFOFULL logic inside the ETM is programmed and enabled, because the logic
does not have any direct effect on the behavior of the ETM. However, if FIFOFULL is
not used, there is a risk of some trace data being lost while the FIFO drains.

Note
 To maintain interrupt response time in the system, you might have to override
FIFOFULL assertion when nIRQ and/or nFIQ are asserted.

3.5.4 Using the context ID signals

ETM9 (Rev1) supports tracing of context IDs or overlay identifiers, using the
PROCID[31:0] and PROCIDWR signals.

Note
 Context ID was previously known as process ID. This has been changed to avoid
confusion with the Fast Context Switch Extensions (FCSE) field, sometimes referred to
as the FCSE process ID.

A change in Context ID is indicated by asserting PROCIDWR in the same cycle as the
new Context ID is provided on PROCID[31:0] as shown in Figure 3-11 on page 3-24.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-23

Integrating the ETM9
Figure 3-11 Change in Context ID

The following processors provide a 32-bit register in the system control coprocessor
(CP15) that contains the current context ID:

• ARM926EJ-S

• ARM946E-S

• ARM966E-S (Rev1).

The macrocell has output signals that correspond to this register called
ETMPROCID[31:0] and ETMPROCIDWR. These must be connected directly to the
PROCID[31:0] and PROCIDWR ETM inputs.Earlier ARM cores do not provide
these signals directly, but it is possible for the context ID register to be put into a
peripheral or another coprocessor, subject to software toolkit compatibility.

Note
 If you are using a processor that does not provide these signals, you must tie the unused
ETM9 inputs LOW.

Future versions of the ARM trace debug tools will support the context ID extensions, to
allow tracing of dynamically loaded memory and overlay systems. See Chapter 7
Software Considerations for Trace for more details.

3.5.5 Using the system options bus

The system options bus is a 9-bit input bus called SYSOPT[8:0]. This is provided on
ETM (Rev 1) and above. It enables you to specify whether certain trace features, such
as half-rate clocking, are implemented on the ASIC. You must tie each of the bits of the
3-24 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
bus to either GND or VDD, depending on the features supported. The trace debug tools
must read the state of this input bus using the JTAG interface, and adapt the user options
offered accordingly. The bit meanings of the SYSOPT bus are shown in Table 3-4.

Note
 If the correct input is not supplied to the SYSOPT bus, the operation of the trace tools
might be unreliable.

Table 3-4 SYSOPT bus settings

Bit number Description

8 If HIGH, system stalling using FIFOFULL is supported

7 If HIGH, demultiplexed trace data format is supported

6 If HIGH, multiplexed trace data format is supported

5 If HIGH, normal trace data format is supported

4 If HIGH, full-rate clocking is supported

3 If HIGH, half-rate clocking is supported

2:0 Maximum port width supported:000 = 4-bit only001 = 4/8-bit only010 = 4/8/16-bit
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-25

Integrating the ETM9
3.6 Trace port interfacing

Trace port interfacing is described under the following headings:

• Trace port logic

• Single-processor tracing

• Dual-processor tracing on page 3-27

• Trace signal output timing on page 3-29

• PCB design guidelines on page 3-31.

See Modes of operation of the trace port on page 3-32 for details of trace port operation.

3.6.1 Trace port logic

The trace information from the ETM9 is broadcast on the following signals:

• PIPESTAT
• TRACESYNC
• TRACEPKT.

Note
 During simulation, Xs might be seen on TRACESYNC and TRACEPKT, even when
tracing is enabled. This is normal behavior.

In addition, three configuration signals are provided:

• ETMEN
• PORTSIZE
• PORTMODE.

You can use these to configure the external logic connected to the trace port, under the
control of the debugger.

3.6.2 Single-processor tracing

Some chips might not dedicate 16 pins to the TRACEPKT bus. Under some
circumstances you might be able to reuse miscellaneous output signals from the chip as
trace port pins. To enable this the ETM9 has the following outputs:

• ETMEN
• PORTSIZE[2:0].

Example 3-1 on page 3-27 shows one way in which the TRACEPKT pins can be
shared with the ASIC pins.
3-26 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
Example 3-1 Re-using TRACEPKT pins

You can use the PORTSIZE and ETMEN signals to control on-chip logic to select
between the normal ASIC output signals and the ETM9 trace port signals. This enables
you to control the port width of the trace, and the number of pins used, from the
debugger.

At reset, the ETM9 is disabled (ETMEN LOW) and a 4-bit port is selected
(PORTSIZE = 000). This ensures that normal operation of the ASIC is undisturbed.

When the debug session starts, the debug tools can control ETMEN and PORTSIZE
by programming the ETM control register.

The configuration in Example 3-1 does not multiplex the TRACEPKT[3:0] or other
trace port signals. This provides a minimum-size trace port at all times. In addition,
routing for the normal ASIC logic outputs on the board is prevented from compromising
the carefully-controlled routing requirements for the high-speed trace port signals
(TRACECLK in particular).

3.6.3 Dual-processor tracing

Where there are multiple ARM processors on a single chip, it is recommended that each
ARM processor has its own dedicated ETM.

The principle of controlling the port width, described in Single-processor tracing on
page 3-26, can be extended to support dual-processor systems without dedicating a
large number of pins to the trace signals.

ASIC outputs/
TRACEPKT[15:4]

ETM9

PORTSIZE, ETMEN

1

0

Logic

TRACEPKT[15:0]

TRACEPKT[3:0]ASIC outputs

ASIC
logic
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-27

Integrating the ETM9
The recommended dual trace configuration uses 21 pins on the ASIC, because this
matches the 20 data pins and 1 clock pin defined in the trace connector specification.
These pins are configured as 20 data pins and a single clock pin (assuming that both
processors are clocked off a single clock).

This enables a number of configurations. Possible configurations for a single processor
are shown in Table 3-5.

You can, therefore, set a single trace port to enable the configurations shown in
Table 3-6.

Pseudo-HDL to implement this is as follows:

if (PORTSIZE_B = 21)
TRACE_DATA <= {PIPESTAT_B, TRACESYNC_B, TRACEPKT_B[15:0]}

else if (PORTSIZE_A = 13) and (PORTSIZE_B = 9)
TRACE_DATA <= {PIPESTAT_B, TRACESYNC_B, TRACEPKT_B[3:0],

PIPESTAT_A, TRACESYNC_A, TRACEPKT_A[7:0]}
else if (PORTSIZE_A = 9) and (PORTSIZE_B = 13)

TRACE_DATA <= {PIPESTAT_A, TRACESYNC_A, TRACEPKT_A[3:0],
PIPESTAT_B, TRACESYNC_B, TRACEPKT_B[7:0]}

else
-- select A as the "master" for all other combinations.
TRACE_DATA <= {PIPESTAT_A, TRACESYNC_A, TRACEPKT_A[15:0]}

end if

Table 3-5 Single-processor configurations

TRACEPKT PIPESTAT TRACESYNC Total

16 trace packet 3 status 1 sync 20 data pins

8 trace packet 3 status 1 sync 12 data pins

4 trace packet 3 status 1 sync 8 data pins

Table 3-6 Dual-processor trace port configurations

Processor A Processor B

20 data No trace

12 data 8 data

8 data 12 data

No trace 20 data
3-28 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
The Embedded Trace Macrocell Specification documents the target system connector
pin allocations for single and dual-processor configurations. Support for the
dual-processor pinouts is dependent on the debug tools and the TPA.

It is not recommended that you connect a single ETM9 to multiple ARM9 processors,
because there is no general mechanism available to control the logic that selects which
processor is connected to the single ETM.

3.6.4 Trace signal output timing

The trace connection to the TPA requires a clock, TRACECLK, to be exported from
the ASIC. This is not generated by the ETM9, but must be generated by the system
implementer. It is essential that you balance the clock to provide sufficient hold time on
the trace data signals. The required hold times are defined in the Embedded Trace
Macrocell Specification. It is essential that you maintain these hold times to guarantee
reliable trace functionality.

It is recommended that the trace data signals are shifted by a clock phase from
TRACECLK. This ensures that, on TRACECLK transitions, the trace data signals are
stable, with a sufficient setup and hold time around the clock edge. Most TPAs require
approximately 3ns of data valid time and a hold time in the range 1 to 2ns, for reliable
acquisition.

The ETM also supports a half-rate clocking mode, controlled by the CLKDIVTWOEN
ETM9 output. When asserted, you should drive TRACECLK from the ETM clock,
CLK, divided by two. When the debugger selects this mode, it also tells the TPA that it
must sample the trace data signals on both edges of the clock, instead of only the rising
edge.

Note
 You do not have to implement half-rate clocking, and for low-speed systems (for
example, less than 50MHz) the normal clocking mode is adequate. The primary purpose
of half-rate clocking is to reduce the signal transition rate on the TRACECLK pin of
the ASIC. This might be necessary to reduce electrical interference, to maintain
TRACECLK signal integrity when using low drive strength pads, or for systems with
very high clock speeds.

Figure 3-12 on page 3-30 shows an example circuit that implements both half-rate
clocking and shifting of the trace data with respect to the clock.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-29

Integrating the ETM9
Figure 3-12 Trace output circuit with inverted clock

If your design flow does not enable you to invert the clock, you can also use falling edge
D-types to retime the trace data signals, as shown in Figure 3-13.

Figure 3-13 Trace output circuit using falling-edge D-types

TRACECLK

ETM9

CLKDIVTWOEN

CLK

D Q

Q 1

0

PWRDOWN

1

0

PIPESTAT

TRACEPKT
TRACESYNC

CLK

TRACECLK

ETM9

CLKDIVTWOEN

CLK

D Q

Q 1

0

PWRDOWN

1

0

PIPESTAT

TRACEPKT
TRACESYNC

CLK
3-30 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
It is recommended that you analyze carefully the timing of the trace data and clock
signals to ensure the optimum setup and hold timing on the pins of the ASIC. It is also
advisable to do detailed simulations of the output pads, package (for example, bond
wires), PCB tracking, and logic analyzer loads to ensure the setup and hold times and
signal integrity are met for the analyzer.

3.6.5 PCB design guidelines

See Chapter 8 Physical Trace Port Signal Guidelines for information about output pad
selection and PCB design, including:

• trace signal termination

• PCB track lengths

• pad drive strength.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-31

Integrating the ETM9
3.7 Modes of operation of the trace port

Normal mode tracing is the only mode of operation directly supported by Rev 0/0a of
the ETM.The PORTMODE output bus, which is available in ETM9 Rev.1 and later
revisions, provides a copy of the contents of bits [17:16] of the ETM control register.
This bus enables the optional on-chip logic (the EtmMuxDemux block) to configure
how the trace port signals from the ETM (PIPESTAT, TRACEPKT, and
TRACESYNC) are mapped onto the trace port pins of the ASIC. The three modes of
operation are described in the following sections:

• Normal trace port signals

• Multiplexed trace port signals on page 3-33

• Demultiplexed trace port signals on page 3-34.

Note
 The HDL for configuring the trace port in any one of these three modes of operation is
not part of the ETM9 macrocell HDL. It is provided in an additional file
ETM9/EtmMuxDemux.v in the ETM9 HDL directory. To include the EtmMuxDemux block with
your ETM9 refer to Appendix B Integrating the EtmMuxDemux Block into ETM9.

Table 3-3 on page 3-22 shows the behavior of TRACECLK in the available modes.

3.7.1 Normal trace port signals

Normal mode tracing is the only mode of operation directly supported by Rev 0/0a of
the ETM. Both normal and half-rate clocking can be supported in this mode, and for
very high speed designs (greater than 100MHz) half-rate clocking is recommended to
maintain the signal integrity of the clock.

Table 3-7 TRACECLK behavior in available modes

PORTMODE CLKDIVTWO TRACECLK Data capture

00 (Normal) 0 CLK speed Rising edge of TRACECLK

00 (Normal) 1 Half CLK speed Both edges of TRACECLK

01 (Multiplexed) 0 CLK speed Both edges of TRACECLK

10 (Demultiplexed) 0 Half CLK speed Rising edge of TRACECLK

10 (Demultiplexed) 1 Quarter CLK speed Both edges of TRACECLK
3-32 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
3.7.2 Multiplexed trace port signals

This mode of operation multiplexes two trace data signals onto a single trace output pin.
This means that the TPA must capture the data on both edges of TRACECLK. This
scheme is only recommended for low-frequency designs (for example, less than
50MHz). This is because it is difficult to maintain the required setup and hold between
TRACECLK and the trace data signals to the TPA.Half-rate clocking is not supported
in this mode, because it already relies on the TPA capturing the state of the trace data
pins twice per trace clock cycle.

The Embedded Trace Macrocell Specification provides the trace connector pinout for
this mode of operation.

You must pair up the trace signals as shown in Table 3-8. Each row contains a separate
pair of signals. One signal occurs on the rising edge of TRACECLK and the other on
the falling edge.

Figure 3-14 on page 3-34 shows the logic to implement multiplexed data trace signals.

Table 3-8 Paired signals in a multiplexed trace port connector

Connector groups
Signals sampled on the
rising edge of TRACECLK
(B, D, F)

Signals sampled on the
falling edge of TRACECLK
(A, C, E)

All signals
are paired
for a
10-pin
trace port
connector

These
signals are
paired for
a 4-pin
trace port
connector

These
pins are
paired for
a 6-pin
trace port
connector

PIPESTAT[0] TRACESYNC

PIPESTAT[1] TRACEPKT[1]

PIPESTAT[2] TRACEPKT[2]

TRACEPKT[0] TRACEPKT[3]

TRACEPKT[4] TRACEPKT[5]

TRACEPKT[6] TRACEPKT[7]

TRACEPKT[8] TRACEPKT[9]

TRACEPKT[10] TRACEPKT[11]

TRACEPKT[12] TRACEPKT[13]

TRACEPKT[14] TRACEPKT[15]
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-33

Integrating the ETM9
Figure 3-14 Multiplexing data trace signals

Figure 3-15 shows the timing of the multiplexed signals.

Figure 3-15 Multiplexed signal timing

Sufficient delays must be present in the switching of the trace data pins with respect to
both edges of TRACECLK. You can achieve this by ensuring that TRACECLK is
taken from the root of the ASIC clock tree. It is recommended that you carry out careful
analysis to verify the timing on the pins of the ASIC.

3.7.3 Demultiplexed trace port signals

This scheme is recommended in systems that reuse general ASIC pins for trace, or for
high-speed systems where the switching frequency of the off-chip trace signals is
unacceptable. Figure 3-16 on page 3-35 shows logic to implement a demultiplexed
trace port.
3-34 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
Figure 3-16 Demultiplexing trace data signals

Figure 3-17 on page 3-36 shows the timings for demultiplexed trace data signals.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-35

Integrating the ETM9
Figure 3-17 Demultiplexed signal timing

Quarter-rate clocking can be supported with demultiplexed trace data signals. However,
you must take care to produce a clean trace clock. The following Verilog is an example
of how a quarter-rate clock might be produced:

always @(posedge CLK or negedge nRESET)
if (nRESET == 1'b0)
begin
State <= 2'b00;
QuarterTraceClk <= 1'b0;
end

else
case (State[1:0])

2'b00 : begin
3-36 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Integrating the ETM9
State <= 2'b01;
HalfTraceClk <= 1'b0;
QuarterTraceClk <= 1'b0;
end

2'b01 : begin
State <= 2'b10;
HalfTraceClk <= 1'b1;
QuarterTraceClk <= 1'b1;

end
2'b10 : begin

State <= 2'b11;
HalfTraceClk <= 1'b0;
QuarterTraceClk <= 1'b1;

end
2'b11 : begin

State <= 2'b00;
HalfTraceClk <= 1'b1;
QuarterTraceClk <= 1'b0;

end
default : begin

State <= 2'bXX;
HalfTraceClk <= 1'bX;
QuarterTraceClk <= 1'bX;

end

This scheme ensures that the delay from the system clock to TRACECLK is minimized
and ensures that there are no registers clocked from the data output of other registers.
This also ensures transitions of QuarterTraceClk occur on the rising edge of
HalfTraceClk. This helps static timing analysis.

In demultiplexed mode, the TPA must examine the two cycles of trace data in parallel
to determine whether a trigger has occurred. It must also check for the trace disabled
pipeline status in both cycles of data. In each pair of trace cycles, the first cycle is output
on Port B and the second on Port A.

3.7.4 Operation with asynchronous TCK

You can use the ETM9 in systems that have a fully asynchronous TCK and CLK. All
synchronization issues are taken care of in the ETM9. All groups of signals are
synchronous to the relevant clock:

• ARM9 interface CLK
• Trace port CLK
• JTAG port TCK.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 3-37

Integrating the ETM9
Slow system clock speeds

The ETM9 contains synchronizing D-types to synchronize between the TCK timing
domain and the CLK timing domain. When the system clock speed is very slow, this
synchronization time causes a delay of several cycles before you can disable tracing.
3-38 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 4
Memory Map Decode Interface

This chapter discusses the Memory Map Decode Interface used in the ETM9. It
contains the following sections:

• About the memory map decode interface on page 4-2

• Memory map decode example on page 4-4.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 4-1

Memory Map Decode Interface
4.1 About the memory map decode interface

When you implement an ASIC or ASSP, there are usually a number of memory-mapped
peripherals and areas of external and internal RAM, ROM, and flash, for example.

The Memory Map Decode (MMD) outputs allow simple, low-cost decoding of this
address map using ASIC-specific logic. This logic drives the MMDIN inputs to the
ETM, making them available to you as ETM resources, in a similar way to the address
comparator and address range comparator resources.

The structure of the MMD logic is shown in Figure 4-1.

Figure 4-1 Memory map decode logic structure

In Figure 4-1, Other signals are:

• MMDIA[]
• MMDDA[]
• MMDDnMREQ
• MMDDnRW
• MMDInMREQ.

If no MMD logic is implemented, you must tie the MMDIN inputs to ground. The
MMDCTRL bus comes from the memory map decode control register in the ETM,
programmed by the Trace debug tools. These allow you to specify the value to be
programmed into this 8-bit register.

CLK

Address
comparators

Combinational
logic

ETM9

MMDCTRL[] MMDIN[15:0]
Other
signals

ARM bus
interface

signals
4-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Memory Map Decode Interface
4.1.1 Signal descriptions

The MMD signals are as follows:

MMDDnMREQ Pipelined version of DnMREQ.

MMDDnRW Pipelined version of DnRW.

MMDInMREQ Pipelined version of InMREQ.

MMDDA[31:0] Pipelined version of DA[31:0].

MMDIA[31:1] Pipelined version of IA[31:1].

MMDCTRL[7:0] Memory map decode control signals.

MMDIN[15:0] Decoded MMD resource inputs.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 4-3

Memory Map Decode Interface
4.2 Memory map decode example

Figure 4-2 shows a memory map decode example based on an ARM966E-S system.

Figure 4-2 Memory map decode example based on an ARM966E-S core
4-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Memory Map Decode Interface
The combinational logic used to decode memory map addresses in Figure 4-2 on
page 4-4 is shown in pseudo-HDL format in Table 4-1.

Table 4-1 Memory map decode example pseudo-HDL

Logic expression Comment

MMDIN[0] = (MMDIA[31:24] = 0x00) AND NOT(MMDInMREQ) I-SRAM

MMDIN[1] = (MMDIA[31:24] = 0x04) AND NOT(MMDInMREQ) D-SRAM

MMDIN[2] = (MMDDA[31:24] = 0x08) AND NOT(MMDDnMREQ) Data access to flash

MMDIN[3] = (MMDIA[31:24] = 0x08) AND NOT(MMDInMREQ) Instruction access to flash

MMDIN[4] = (MMDDA[31:20] = 0x100) AND NOT(MMDDnMREQ) Three unbuffered peripherals

MMDIN[5] = (MMDDA[31:20] = 0x101) AND NOT(MMDDnMREQ)

MMDIN[6] = (MMDDA[31:20] = 0x102) AND NOT(MMDDnMREQ)

MMDIN[7] = (MMDDA[31:20] = 0x200) AND NOT(MMDDnMREQ) Two buffered peripherals

MMDIN[8] = (MMDDA[31:20] = 0x201) AND NOT(MMDDnMREQ)

MMDIN[9] = (MMDDA[31:28] = 0x4) AND NOT(MMDDnMREQ) Off-chip SDRAM

MMDIN[10] = (MMDDA[31:28] = 0x600) AND NOT(MMDDnMREQ) Off-chip buffered peripherals

MMDIN[11] = (MMDDA[31:28] = 0x601) AND NOT(MMDDnMREQ)

MMDIN[12] = (MMDDA[31:28] = 0x602) AND NOT(MMDDnMREQ)

MMDIN[13] = (MMDDA[31:28] = 0x603) AND NOT(MMDDnMREQ)

MMDIN[14] = (MMDDA[31:28] = 0x604) AND NOT(MMDDnMREQ)
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 4-5

Memory Map Decode Interface
4-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 5
Test Wrapper

This chapter describes the ETM9 test wrapper. It contains the following section:

• About the ETM9 test wrapper on page 5-2.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 5-1

Test Wrapper
5.1 About the ETM9 test wrapper

The scan chain in the ETM9 test wrapper can be used in conjunction with other scan
chains that have been inserted in the design for manufacturing test coverage using
Automatic Test Pattern Generation (ATPG) techniques.

5.1.1 Scan insertion and ATPG

This technique is covered in detail in the ETM9 Revision2p2 Implementation Guide.
Scan insertion requires that all register elements are replaced by scannable versions that
are then connected up into a number of scan chains as shown in Figure 5-1. These scan
chains are used to set up data patterns on the combinatorial logic between the registers,
and capture the logic outputs. The logic outputs are then scanned out while the next data
pattern is scanned in.

Figure 5-1 Scannable registers in ETM9

ATPG tools are used to create the necessary scan patterns to test the logic, when the scan
insertion has been performed. This technique enables very high fault coverage to be
achieved for the standard cell combinatorial logic, typically in the 95-99% range.
5-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Test Wrapper
Scan insertion does have an impact on the area and performance of the synthesized
design, because of the larger scan register elements and the serial routing between them.
To minimize these effects the scan insertion is performed early in the synthesis cycle
and the design re-optimized with the scan elements in place.

ETM9 test wrapper

A test wrapper can be used to improve test coverage where an ASIC contains a
black-box macrocell, that is, where there is no internal visibility of the ETM9. For logic
to be testable, the input to the logic must be controllable using a scan chain, and so must
be driven by a register. The output of the logic must also be observable through a scan
chain, and so must be registered.

If the ETM9 is integrated into an ASIC as a black box, the test tools do not have
visibility of the internal core scan chains and cannot create vectors to cover any logic
between the last register in the core and the next register in the ASIC. This is known as
a test shadow and leads to a reduction in test coverage.

The addition of a test wrapper enables this shadow logic to be tested. The test wrapper
is a scan chain around the periphery of the ETM9 that connects to each input and output.
The test wrapper scan chain can be used in two modes:

• INTEST

• EXTEST.

In INTEST mode, all ETM9 inputs are driven using the test wrapper scan chain, and all
ETM9 outputs are observable through the test wrapper scan chain. This enables a
complete set of ATPG vectors to be produced for the macrocell in isolation.

In EXTEST mode, all ETM9 outputs are driven using the test wrapper scan chain. All
ETM9 inputs are observable through the test wrapper scan chain. This enables the logic
surrounding the ETM9 to be tested without the test tools requiring internal visibility of
the macrocell.

Figure 5-2 on page 5-4 shows the DFT features available through the test wrapper.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 5-3

Test Wrapper
Figure 5-2 Test wrapper

Table 5-1 shows how to set the scan configuration pins.

Table 5-1 Scan configuration pins

Signal Normal INTEST EXTEST Description

SCANENABLE 0 T 0 SCANENABLE enables scan logic inside the ETM only.

WSEI 0 T T WSEI enables input signals and, in conjunction with WSEO,
permits launch capture speed testing of synthesizeable devices.

WSEO 0 T 1 WSEO enables output signals and, in conjunction with WSEI,
permits launch capture speed testing of synthesizeable devices.

MUXINSEL 0 1 0 MUXINSEL is similar to the INTEST pin on the core and
enables INTEST mode.

MUXOUTSEL 0 0 1 MUXOUTSEL is similar to the EXTEST pin on the core and
enables EXTEST mode.

SCANMODE 0 1 1 SCANMODE = 1 selects the clock signal CLK for all registers.

SCANIN[2:0] 0 T 0 SCANIN[2:0} are the inputs to the three balanced scan chains
in the device. There are approximately 800 cells in each chain.

WSI 0 T T WSI is the serial input data for the test wrapper scan chain.
5-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Test Wrapper
Note
 In Table 5-1 on page 5-4:

• A T indicates that these inputs are controlled by the tester. The tester determines
the state of these signals.

• Table 5-1 on page 5-4 does not show the test interface outputs, SCANOUT[2:0].

Figure 5-3 shows how to use test wrappers to test SoC logic with both the ETM and a
processor.

Figure 5-3 Testing SoC logic with test wrappers

WEDGE 0 1 1 WEDGE changes on which edge of the clock WSO changes.

The default value is:

WEDGE = 1, WSO changes on a rising clock edge.

nTRSTa 1 T T nTRST is the TAP controller reset.

nRESETb 1 T T nRESET is the ETM reset signal.

a. See TAP reset on page 3-14 and Chapter 6 ETM Integration Testing.
b. See ETM reset on page 3-13 and Chapter 6 ETM Integration Testing.

Table 5-1 Scan configuration pins (continued)

Signal Normal INTEST EXTEST Description
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 5-5

Test Wrapper
5-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 6
ETM Integration Testing

ETMIK is an environment to demonstrate the correct integration of an ETM with an
ARM core. This chapter describes the kit.

Note
 This chapter describes the operation of the ETM Integration Kit for the ETM7 and
ETM9 but this chapter should only be used for ETM9 integration testing. Refer to the
appropriate ETM7 Technical Reference Manual if you wish to perform ETM7
integration testing. The procedure for using the ETM7 Integration Kit is not maintained
in the ETM9 Technical Reference Manual.

This chapter contains:

• About the ETM Integration Kit on page 6-2

• Test system on page 6-8

• Source compilation on page 6-25

• Verilog source compilation on page 6-26

• Test program compilation on page 6-28

• Simulation on page 6-31

• Test verification on page 6-33.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-1

ETM Integration Testing
6.1 About the ETM Integration Kit

The ETMIK is an environment to demonstrate the correct integration of an ETM with
an ARM core. The kit includes examples for various ARM cores and also shows how
to connect the ETM to an ARM Embedded Trace Buffer (ETB).

Note
 This chapter refers to ETM7 and ETM9 components of the ETMIK.

ETMIK comprises:

• the HDL files for each configuration

• an example test bench based on an AMBA AHB system

• test programs to verify the correct integration of the system.

The cores, ETM, ETB, and AHB wrappers are not included with the ETMIK. These are
supplied separately.

6.1.1 Design flow

An outline of the design flow when using the ETMIK is shown in Figure 6-1. The stages
shown are described in Chapter 3 Integrating the ETM9.

Figure 6-1 ETMIK design flow
6-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
6.1.2 Supported configurations

The ETMIK is supplied with HDL files for various ARM cores. Each of these has the
option to include an on-chip ETB. The supported configurations are:

• ARM7TDMI rev 3 (AHB wrapped) with ETM7 rev 1A

• ARM7TDMI rev 4 (AHB wrapped) with ETM7 rev 1A

• ARM7TDMI-S rev 4 (AHB wrapped) with ETM7 rev 1A

• ARM720T rev 3 (AHB wrapped) with ETM7 rev 1A

• ARM720T rev 4(AHB wrapped) with ETM7 rev 1A

• ARM920T rev 1 (AHB wrapped) with ETM9 r2p2

• ARM922T rev 0 (AHB wrapped) with ETM9 r2p2

• ARM926EJ-S rev 0 with ETM9 r2p2

• ARM946E-S rev 1 with ETM9 r2p2

• ARM966E-S rev 1 with ETM9 r2p2

• ARM966E-S rev 2 with ETM9 r2p2.

The test bench is suitable for modification to support cores not directly supported by the
ETMIK.

Configurations indicated as being AHB wrapped require the ARM AHB wrappers to
convert the memory interface to that of an AHB-compliant device because the test
bench is based on an AHB system.

6.1.3 Directory structure

Figure 6-2 on page 6-5 shows the ETMIK directory structure. It is based on the ARM
SoC directory structure:

Test program

EtmIntKit/design/logical/tbench/tests/results contains the results
files for the test programs. EtmIntKit/design/logical/tbench/tests/src
contains the source files for the test programs.

HDL source

EtmIntKit/design/logical/arm_and_etm/verilog and its subdirectories
contain the HDL files for demonstrating the connection of an ARM core
and ETM. Those prefixed with ARM contain files specific to the
implementation of the named processor core.

EtmIntKit/design/logical/ElementsAHB and its subdirectories contain the
HDL files for the AHB components of the test bench.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-3

ETM Integration Testing
EtmIntKit/design/logical/ahb_wrapper/verilog/rtl_source is a
placeholder to insert the HDL files for an AHB wrapper. The AHB
wrappers are not supplied with the ETMIK.

EtmIntKit/design/logical/etb is placeholder to insert the HDL files for
the ETB. The ETB is not supplied with the ETMIK and must be installed
here if used.

Simulation

EtmIntKit/design/logical/tbench contains scripts to help set up the
environment for running the simulation. The subdirectories contain extra
scripts to help run a simulation with a specific simulator.

EtmIntKit/design/logical/tbench/verilog and its subdirectories contain
the behavioral HDL files for use within the simulation.

Verification scripts

EtmIntKit/bin contains Perl scripts to verify the ETM traced program
execution correctly.

Documents

EtmIntKit/documentation contains files related to the ETMIK.

Libraries

EtmIntKit/libraries/ARM/DSM is a placeholder to install the Design
Sign-Off Models (DSM) required for use with the ETMIK. The DSMs are
not supplied with the ETMIK.
6-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
Figure 6-2 ETMIK directory structure
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-5

ETM Integration Testing
6.1.4 Additional components required

Table 6-1 shows components that are not supplied. In Table 6-1 ***** is a
simulator/platform specific number. These additional components must be unpacked as
required and put into the appropriate locations as detailed in Source compilation on
page 6-25. 1

6.1.5 Design structure

The structure of the ETMIK is shown in Figure 6-3 on page 6-7.

Table 6-1 Additional components

Description Part number

ARM7TDMI (Rev 3) Design Simulation Model (DSM) AT010-MS-*****

ARM7TDMI (Rev 4) Design Simulation Model (DSM) AT010-MS-*****

ARM7TDMI-S DSM AT080-MS-*****

ARM720T (Rev 3) DSM AT070-MS-*****

ARM720T (Rev 4) DSM AT070-MS-*****

ARM920T (Rev 1) DSM AT090-MS-*****

ARM922T (Rev 0) DSM AT070-MS-*****

ARM926EJ-S (Rev 0) DSM AT230-MS-*****

ARM946E-S (Rev 1) DSM AT210-MS-*****

ARM966E-S (Rev 1) DSM AT200-MS-*****

ARM966E-S (Rev 2) DSM AT200-MS-*****

ARM ETM7 (Rev 1A) DSM TM03*-MS-*****

ARM ETM9 (r2p2) DSM TM02*-MS-*****

ARM AHB Wrappers (Rev 1) BU030-BU-00001

ARM Embedded Trace Buffer TM060-MN-22100
6-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
Figure 6-3 Design structure

The system is constructed from an AHB-enabled core, connected to the ETM. The trace
outputs from the ETM are connected through a module, EtmMuxDemux, that converts the
trace depending on the current trace port mode. The trace outputs are also connected to
an optional on-chip trace buffer (ETB). This buffer is used to store trace output for
transfer over a JTAG interface, and is also accessible across the AHB.

The test bench comprises:

• some external memory for program and data storage

• the ARM BST to control the JTAG interface. The BST is equivalent to a
Multi-ICE device in a hardware system

• the ETM Monitor that takes the trace output and stores it to a file. The ETM
Monitor is equivalent to a Trace Port Analyzer.

It is intended that this system is an example. It must be replaced by your ASIC design.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-7

ETM Integration Testing
6.2 Test system

This section describes the structure of the test programs, test system and test bench
supplied with the ETMIK. Read ETM integration test program on page 6-14 to
determine whether the test program needs adapting for your system.The HDL is split
into the hierarchical structure shown in Figure 6-4.

Figure 6-4 HDL hierarchy

6.2.1 The system test bench

The test bench is located in
EtmIntKit/design/logical/tbench/verilog/rtl_source/system.v. It instantiates some
external memory, the BST, EtmMonitor and a Tube used for displaying messages to the
screen.

The external memory

This is a dynamically allocating memory model, with an AHB-compliant interface. On
startup, it loads the file rom.hex which contains the program to run in the system. It also
implements a bad memory location which returns an ERROR response on the AHB.
This enables memory aborts to be tested, and is at address 0x02000000.

When testing aborts in your ASIC, you must direct the test to a region of memory where
aborts can be generated.
6-8 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
The Boundary Scan Trickbox (BST)

The BST is used to control the JTAG port, similar to the way a Multi-ICE device does
in a hardware system. In this test, it is used to program the ETM and ETB and to control
the ARM core during debug. It reads a file called JTAGbsi that contains instructions to
control the BST.

The commands that you scan into the JTAG port must be included in the source code of
the test. The TOBST assembler macro indicates the start of the BST instructions in the test.

A script called bintobst is provided. This script first extracts the BST instructions from
the assembled binary image of the test. It then uses a program called parse_bsi.pl to
process the high level commands into a form that the BST can accept.

If the JTAGbsi file read by the BST is incorrect, it can cause the following types of
problems:

• The ARM does not enter debug state

• The ETM is not programmed correctly

• The ARM does not exit debug state, or restarts at the wrong address.

Many of these problems can be caused by the BST incorrectly identifying the type of
ARM processor (ARM7 family or ARM9 family) that it is talking to. The test program
therefore requires that the PROC variable is defined. This variable controls the size of
JTAG TAP controller.

Another problem that can arise is that the parse_bsi.pl script can have difficulty
assembling the ARM instructions to be executed in Debug state. The ARMINST command
specifies an instruction to execute. The armasm program (not provided in the ETMIK) is
called to assemble the ARM instruction. The resulting instruction bit pattern is then
turned into a BST scan command. This instruction is scanned into the ARM and
executed at debug speed. For details of exactly how this works, refer to the appropriate
ARM core Technical Reference Manual.

Other problems can arise if armasm is not available, or if the version available is too old.
You must use the armasm program that is provided with the unix version of the ARM
Developer Suite (ADS) or SDT 2.50 (SDT 2.11a is not supported).

EtmMonitor

The EtmMonitor module simulates the operation of a Trace Port Analyzer. It captures
the data coming from the trace port of the ETM and stores it to a log file, log.etmraw.
Analysis of this file is performed in Test verification on page 6-33
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-9

ETM Integration Testing
Tube

This is an AHB-compliant module to print messages to the screen during simulation.
ASCII bytes are written to it, and when a string termination character is written, the
message is displayed. If a CTRL+D character is written, the simulation is terminated
after a few cycles, to allow the ETM FIFO to drain. The Tube is located at address
0xC0000000 in the memory map.

6.2.2 HDL hierarchy

The lowest level is where the ARM core and ETM are instantiated. This module (in
ARM<core>_AND_ETM<x>.v) is an example of how to correctly connect the ETM to the
respective core. It follows the instantiations described in Chapter 3 Integrating the
ETM9. It also demonstrates how to correctly interface the EtmMuxDemux module and the
ETB. If the ETB is not required, the ETB define must not be defined. Refer to Verilog
source compilation on page 6-26.

The ARM<core>_AND_ETM<x> module does not require changing, so all unused inputs and
most outputs are brought out in the port declaration.

ETM outputs and inputs

The following ETM-related signals are brought out. The following ETM-related signals
are outputs:

• CLKDIVTWOEN
• ETMEN
• EXTOUT
• MMDA
• MMDCTRL
• MMDMAS
• MMDnMREQ
• MMDnOPC
• MMDnRW
• PIPESTATA
• PIPESTATB
• PORTMODE
• PORTSIZE
• PWRDOWN
• TRACECLK
• TRACEPKTA
• TRACEPKTB
6-10 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
• TRACESYNCA
• TRACESYNCB.

These ETM-related signals are inputs:

• ARMTDO
• EXTIN
• MMDIN
• SYSOPT.

The memory map decode and external logic signals are provided so that any external
logic can be connected to the ETM, and the trace port is connected to higher hierarchical
levels. The inputs are either tied LOW or configured as shown in the
ARM<core>_ETM<x>_AMBA.v file, and must be connected as is appropriate to your system.

Note
 The ETM7 CLK and CLKEN signals are not connected as described in the ETM7
Technical Reference Manual for the ARM7TDMI. This is because the ETB AHB
interface and ARM7TDMI AHB wrapper can cause a deadlock situation. Therefore the
signal MCLKEN is brought out from the AHB wrapper, and is connected to the ETM
CLKEN input. The ETM CLK input and ETB CLK input are now driven by HCLK
(rather than !MCLK). This enables the ETM and ETB to continue operation even when
the ARM7TDMI is stalled. This strategy is implemented whether or not an ETB is
present. This modification to the AHB wrapper and other changes made are detailed in
AHB wrappers on page 6-13.

ARM core

The bus interface to the core is treated as an AHB device. If the core is not already AHB
enabled, an AHB wrapper is integrated. All signals not connected to the ETM or JTAG
port are brought out to the higher level.

Embedded Trace Buffer

All ETB signals not connected to the ETM trace port or JTAG port are brought out to
the higher level. This includes the entire AHB and BIST interfaces. If the ETB define is
not present, the ETB port signals are not included.

Note
 The ETB AHB interface must not be used in a system based on the ARM720T (Rev 3)
core because the interaction of the ARM720T (Rev 3) AHB wrapper and the ETB can
cause a situation where deadlock occurs.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-11

ETM Integration Testing
EtmMuxDemux

The EtmMuxDemux module takes the standard trace port interface from the ETM and, using
the PORTMODE and CLKDIVTWOEN outputs, converts the trace to the correct port
mode. This is transmitted over the trace port A and B connections, as described in
Section ETM outputs and inputs on page 6-10.

JTAG interface

The JTAG interface is connected as described in TAP interface wiring on page 3-16. A
common TCK controls all the JTAG ports on the core, ETM and ETB. If an ETB is
connected, the JTAG port is connected as in Figure 6-5.

Figure 6-5 JTAG wiring

Note
 The test program and test verification scripts assume this wiring structure. If you modify
this by adding any custom external scan chains, the test program also needs
modification. The test verification configuration also needs changing. This is described
in Trace Comparison Scripts on page 6-33.

On the ARM926EJ-S, ARM946E-S, and ARM966E-S cores, the TCKEN signal must
be tested. On all other cores, it must be held HIGH. To test the ETM TCKEN pin is
correctly connected, the system-wide TCKEN signal is generated by a Linear Shift
Feedback Register (LFSR). This is unlikely to be implemented in your ASIC, so another
method for testing this pin must be used when testing your ASIC design.

ARMcore_ETMx_AMBA

This module instantiates the ARMcore_AND_ETMx module, along with the other AHB
system components. These include the Arbiter, which only deals with one AHB master
except in an ARM926EJ-S system. Also included is the decoder which is customized
6-12 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
for this system and the AHB multiplexors. This module also controls the default signal
assignments for the ARM core, ETM, and ETB. It is intended this module is an example
and must be replaced by your ASIC design.

AHB wrappers

The ARM7TDMI, ARM720T (Rev 3), ARM920T, and ARM922T cores all require
AHB wrappers to function within the test bench. The ARM AHB wrappers can be used
with the ARM720T (Rev 3) and ARM920T cores. The ARM922T core uses the same
wrapper as the ARM920T core.

The ARM7TDMI wrapper is a modified version of the AHB wrapper release. This is to
enable the internal MCLKEN signal to be used when connecting the ETM. The
following signals are also brought out from the wrapper, so default assignments or other
devices can be connected to them.

• xBIGEND
• xBREAKPT
• xCPA
• xCPB
• xDBGEN
• xEXTERN0
• xEXTERN1
• xISYNC
• xSDOUTBS
• xDBGRQ.

Therefore the supplied files in
EtmIntKit/design/logical/arm_and_etm/verilog/rtl_source/ARM7TDMIr3 or
EtmIntKit/design/logical/arm_and_etm/verilog/rtl_source/ARM7TDMIr4 must be used
in place of the standard ARM7TDMI wrapper. These files must be left in their respective
directories.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-13

ETM Integration Testing
6.3 ETM integration test program

The test program supplied in EtmIntKit/design/logical/tbench/tests/src/test.s tests
all the major interconnects between the ETM and the ARM core. It interacts with the
test bench to control certain pins on the ETM. You do not have to modify the program
unless you are adding any of the following functionality to the ETM:

• Memory Map Decode logic

• External Inputs (EXTIN inputs)

• External outputs (EXTOUT outputs)

• External Scan chain connected to ARMTDO.

If your ASIC design requires any of these, then you must add custom testing to the test
program. Regions are indicated within the test program for implementing your own
tests.

6.3.1 Test program breakdown

At the start of the test, the core comes out of reset and enters an infinite loop. After a
short delay, the core is forced into debug state by asserting the debug request bit in the
debug control register using the JTAG interface. During this the ETM is programmed to
trace continuously, including PROCID. If present, the ETB is also programmed to
capture the trace output. Once the ETM is programmed, the core is enabled to start
executing from the end of the vector table.

Note
 The test program uses an absolute address to restart the processor. Therefore when you
use HIVECS you must edit the test program, near line 817, to point to address
0xFFFF0020.

The first task of the program is to cause an ETM trigger to be output which causes the
external debug request pin on the core to be asserted. The core enters debug and the
EmbeddedICE watchpoints are programmed by the BST. When the core returns from
debug state, the main part of the test is executed. This involves testing coprocessor
instructions and changing the PROCID signals, testing the data interface with multiple
loads and stores, switching the core between ARM and Thumb state, testing data and
Prefetch Aborts, and on Jazelle enabled cores switching between ARM and Java state.

After this section is complete, the watchpoint signals are tested by activating both
EmbeddedICE watchpoint units. While the core is in debug after the second watchpoint,
the ETM is programmed to stop tracing and de-assert the ETMEN signal, which will
stop any more trace output. To test the ETMEN is correctly connected, another trigger
packet is activated, causing the core to re-enter debug state. If the ETB is present, this
section of the test reads out the contents of the traced data over the JTAG port. This is a
6-14 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
time-consuming stage of the test as the data has to be shifted out serially. The data is
stored in the log.dsm_bst file which is the normal log file produced by the BST. Details
of how to extract the trace data from this file are given in Test verification on page 6-33.
The core then returns from debug state.

Note
 The EmbeddedICE watchpoint units are not tested on an ARM9TDMI based core
(ARM920T and ARM922T). See the ARM9TDMI errata document for an explanation.

If an ETB is present, the core then reads the data write pointer register, to check if any
trace data has been stored. If the pointer is zero, this indicates no tracing has occurred,
or an AHB bus failure, and the test fails.

Note
 The ETB AHB section of the test does not run on an ARM720T (Rev 3)-based system
because the interaction of the ARM720T (Rev 3) AHB wrapper and the ETB can cause
a situation where deadlock occurs.

If the test runs to completion, the message ** TEST COMPLETED - Now proceed to Test
Verification ** is displayed on the Tube.

The presence of this message does not indicate correct connection of the core, ETM and
ETB. The trace output needs to be verified, as described in Test verification on
page 6-33.

Note
 • If FIFOFULL stalling is supported by your processor then the test program has

to know the threshold at which the ETM stalls the core to enable the internal FIFO
to empty. A preprocessor define is included in the Make file, which has to be set
to indicate the configuration of the ETM. The threshold is then set to the
maximum size of the FIFO to avoid any loss of trace. If FIFOFULL stalling is
not supported, the test program inserts multiple NOP (No OPeration) instructions
to prevent FIFO overflow within the ETM. This is required to ensure the entire
program is traced by the ETM and to verify full functionality.

• The number of NOPs used is suited to using a medium configuration ETM, and
trace data is likely to be lost if a small configuration is used

• Not all cores support the full functionality of the test program, so sections are
included and excluded based on the core in use.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-15

ETM Integration Testing
6.3.2 Adapting the test program

The test program does not test all of the pins on the ETM. Some are
implementation-dependent and some are not tested because of complexity. Table 6-2
describes how each pin of the ETM7 is tested, and if not, how it can be tested.

Table 6-2 ETM7 signals

Signals How tested

CLK, CLKEN, nRESET If any of these are not correctly connected, the test can fail
at either run time or during test verification.

TCK, TCKEN, TDI, TDO, TMS, nTRST If any of these are not correctly connected, the test can fail
at either runtime or during test verification.

ARMTDO This pin is not directly tested. It must be tested if an
external scan chain is connected to the ETM. This can be
performed by reading some data from the external scan
chain using the JTAG interface.

A[31:0], RDATA[31:0], WDATA[31:0], nMREQ, SEQ
nRW, MAS[1:0], nOPC, nEXEC

These are tested by performing multiple memory accesses.
If incorrectly connected, the test verification indicates
incorrect data.

ABORT This is tested by causing data and prefetch aborts. If this is
not correctly connected, this is indicated during test
verification by the absence of abort tracing.

TBIT This bit is tested by switching between ARM and Thumb
state. Test verification indicates incorrect transitions if this
is incorrectly connected.

INSTRVALID This pin is not directly tested. It is used to increase the
accuracy of timing at the point that an interrupt is taken,
and cannot be easily tested.

nCPI, CPA, CPB These coprocessor signals are tested by transferring data to
and from a coprocessor. Test verification indicates if these
are incorrectly connected by not tracing coprocessor
instructions properly. These are not tested on the
ARM7TDMI and ARM7TDMI-S cores because this test
bench does not include a coprocessor.

DBGRQ, DBGACK These debug signals are tested by asserting DBGRQ to
send the core into debug, and checking DBGACK is
asserted in response. If any of these are not correctly
connected, the test fails at either run time or during test
verification.
6-16 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
RANGEOUT0, RANGEOUT1 These are tested by activating the EmbeddedICE
watchpoint units within the ARM core. If any of these are
not correctly connected, the test fails at runtime. These are
not tested on the ARM920T or ARM922T cores. See the
ARM9TDMI errata document for an explanation.

BIGEND If this signal is connected incorrectly, this is indicated
during test verification.

PROCID[31:0], PROCIDWR These are tested by toggling all the bits in the Process ID
register. If any of these are not correctly connected, this is
indicated during test verification. These are not tested on
the ARM7TDMI and ARM7TDMI-S cores because they
do not exist.

PIPESTAT[2:0], TRACEPKT[15:0], TRACESYNC These trace port signals are tested by analyzing the trace
output. If any of these are not correctly connected, this are
indicated during test verification.

PWRDOWN This is used to gate the CLK input to the ETM. If this is not
correctly connected, the test fails at either run time or
during test verification.

ETMEN This is tested by the test bench and the test program. If this
is not correctly connected, the test fails at either runtime or
during test verification.

PORTMODE[1:0], CLKDIVTWOEN The EtmMuxDemux block incorrectly formats the data if these
signals are incorrectly connected. If any of these are not
correctly connected, this is indicated during test
verification.

PORTSIZE[2:0] These are only tested when using the ETB. If incorrectly
connected, this is indicated during test verification. If not
using the ETB, the use of PORTSIZE is implementation
defined and is not tested by the test program.

Table 6-2 ETM7 signals (continued)

Signals How tested
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-17

ETM Integration Testing
Table 6-3 lists how each pin of the ETM9 is tested, and if not, how it may be tested.

FIFOFULL This is not tested because a complementary signal is not
available on the ARM7TDMI, ARM7DMI-S, or
ARM720T cores.

MMDA[31:0], MMDn, MREQ, MMDnRW,
MMDnOPC, MMDMAS[1:0], MMDCTRL[7:0],
MMDIN[15:0], EXTOUT[3:0], EXTIN[3:0]

These are external signals whose use is
implementation-defined. They are not tested by the test
program, but must be tested if you intend to use these
connections. Appropriate locations for these modifications
are indicated in the test program.

SYSOPT[7:0] The test program reads the ETM System Configuration
register through the JTAG port to verify it is connected as
expected. If this is not correctly connected, the test fails at
run time. The file log.dsm_bst indicates the stage at which
the test failed.

Table 6-2 ETM7 signals (continued)

Signals How tested

Table 6-3 ETM9 signals

Signals How tested

CLK, CLKEN, nRESET If any of these are not correctly connected, the test fails at
either runtime or during test verification.

TCK, TCKEN, TDI, TDO, TMS, nTRST If any of these are not correctly connected, the test fails at
either runtime or during test verification. In ARM926EJ-S,
ARM946E-S and ARM966E-S-based systems, TCKEN is
generated by a Linear Feedback Shift Register (LFSR) to
ensure the connection is correct.

ARMTDO This pin is not directly tested. It must be tested if an
external scan chain is connected to the ETM. This may be
performed by reading some data from the external scan
chain using the JTAG interface.

DA[31:0], DD[31:0], DDIN[31:0], DnMREQ, DSEQ,
DnRW, DMAS[1:0], IA[31:0], ID31To25[31:25],
ID15To11[15:11], InMREQ, ISEQ, INSTREXEC

These are tested by performing multiple memory accesses.
If incorrectly connected, the test verification indicates
incorrect data.

DABORT This pin is not directly tested. It is used by the ETM to
control data comparator behavior, and cannot easily be
tested.
6-18 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
ITBIT This bit is tested by switching between ARM and Thumb
state. Test verification indicates incorrect transitions if this
is incorrectly connected.

IJBIT, ZIFIRST, ZILAST These pins are tested by switching between ARM and Java
state. Test verification indicates incorrect transitions if this
is incorrectly connected. This is only tested on an
ARM926EJ-S core because it supports Java. They are not
tested on ARM920T, ARM922T, ARM946E-S, or
ARM966E-S cores and must be tied LOW.

INSTRVALID This pin is not directly tested. It is used to increase the
accuracy of timing at the point an interrupt is taken, and
cannot be easily tested. The ARM920T or ARM922T cores
do not support this signal.

CHSD[1:0], CHSE[1:0] These coprocessor signals are tested by transferring data to
and from a coprocessor. Test verification indicates if these
are incorrectly connected by not tracing coprocessor
instructions properly.

LATECANCEL This coprocessor signal is tested by causing a Data Abort in
the instruction preceding a coprocessor instruction. If it is
connected incorrectly, this is indicated during test
verification.

PASS If this is not correctly connected, the test fails during test
verification.

DBGRQ, DBGACK These debug signals are tested by asserting DBGRQ to
send the core into debug, and checking DBGACK is
asserted in response. If any of these are not correctly
connected, the test may fail at either run time or during test
verification.

RANGEOUT[1:0] These are tested by activating the EmbeddedICE
watchpoint units within the ARM core. If any of these are
not correctly connected, the test fails at runtime.

BIGEND, HIVECS If these pins are connected incorrectly, this is indicated
during test verification.

PROCID[31:0], PROCIDWR These are tested by toggling all the bits in the Process ID
register. If any of these are not correctly connected, this is
indicated during test verification.

Table 6-3 ETM9 signals (continued)

Signals How tested
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-19

ETM Integration Testing
PIPESTAT[2:0], TRACEPKT[15:0], TRACESYNC These trace port signals are tested by analyzing the trace
output. If any of these are not correctly connected, this is
indicated during test verification.

PWRDOWN This is used to gate the CLK input to the ETM. If this is not
correctly connected, the test fails at either runtime or during
test verification.

ETMEN This is tested by the test bench and the test program. If this
is not correctly connected, the test fails at either runtime or
during test verification.

PORTMODE[1:0], CLKDIVTWOEN The ETMMuxDemux module incorrectly formats the data if
these signals are incorrectly connected. If any of these are
not correctly connected, this is indicated during test
verification.

PORTSIZE[2:0] These are only tested when using the ETB. If incorrectly
connected, this is indicated during test verification. If not
using the ETB, the use of PORTSIZE is implementation
defined. This pin is not tested by the test program.

FIFOFULL This is tested by enabling FIFOFULL stalling on the
ETM9. This signal is not tested on the ARM920T or
ARM922T cores, because they do not support FIFOFULL
stalling. If it is incorrectly connected, ETM FIFO overflow
occurs. See Running the Trace Comparison Script on
page 6-40 for details on how to check if FIFO overflow has
occurred.

Table 6-3 ETM9 signals (continued)

Signals How tested
6-20 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
MMDA[31:0], MMDn, MREQ, MMDnRW,
MMDnOPC, MMDMAS[1:0], MMDCTRL[7:0],
MMDIN[15:0], EXTOUT[3:0], EXTIN[3:0]

These are external signals whose use is
implementation-defined. They are not tested by the test
program, but must be tested if you intend to use these
connections. Appropriate locations for these modifications
are indicated in the test program.

SYSOPT[7:0] The test program reads the ETM System Configuration
register through the JTAG port to verify it is connected as
expected. If this is not correctly connected, the test fails at
run time. The file log.dsm_bst indicates the stage at which
the test failed.

WSI, WSO, MUXINSEL, MUXOUTSEL, WSEI,
WSEO, WEDGE, SCANMODE

These are Design For Test signals whose use is
implementation defined. They are not directly tested by the
test programs, but must be tested if you intend to use these
connections.

Table 6-3 ETM9 signals (continued)

Signals How tested
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-21

ETM Integration Testing
6.4 Trace buffer integration test program

The test program supplied in EtmIntKit/design/logical/tbench/tests/src/tbtest.s
tests the AHB interface of the ETB. Table 6-4 lists the signals tested by the test program.

The test performs reads and writes to the accessible trace buffer registers, then exercises
all the data and address pins available to the trace buffer RAM. It also checks the AHB
handshaking signals by performing different types of transfer to and from the trace
buffer RAM. The ETM interface is not exercised because this is performed by the ETM
integration test.

If the test is successful, the message ** TEST COMPLETED ** is displayed using the Tube.
If unsuccessful, the message ** TEST FAILED ** is displayed. Test verification is not
required when running this test.

Table 6-4 ETB signals

Signal name Test description

HCLK, HWRITE, HTRANS[1:0], HSIZE[2:0],
HADDR[31:0], HWDATA[31:0], HREADY,
HSELREG, HSELMEM, HRESETn, HREADYMEM,
HRESPMEM[1:0], HRDATAMEM[31:0]

These are tested by performing multiple accesses to the
ETB over the AHB bus during the ETB integration test. If
any of these are not correctly connected, the test fails.

TCK, TCKEN, nTRST, TDI, TMS, TDO These are tested by programming the ETB in the ETM
integration test. If any of these are not correctly connected,
the test fails at either run time or during test verification.

nRESET, CLK If any of these are not correctly connected, the test fails.

PORTSIZE, TRACEOUTPUT[23:0],
PROTOCOL[1:0], TRACEVALID, TRIGGER

These are tested during the ETM integration test to ensure
the ETB is correctly connected to the ETM. If any of these
are not correctly connected, the test fails at either run time
or during test verification.

SBYPASS, SWEN These are statically configured for each core configuration
for use during the ETM integration test. If any of these are
not correctly connected, the test fails at either run time or
during test verification.

BISTCS, BISTDI[23:0], BISTA[N:0],
BISTWEBUS[3:0], BISTWE, BISTEN, BISTDO[23:0]

These are external BIST signals whose use is
implementation defined. These are not directly tested by
the test programs, but must be tested if you intend to use
these connections.

ACQCOMP, FULL These are external signals whose use is implementation
defined. These are not directly tested by the test programs,
but must be tested if you intend to use these connections.
6-22 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
Note
 This test must not be run on an ARM720T (Rev3) based system because the interaction
of the ARM720T (Rev3) AHB wrapper and the ETB can cause a situation where
deadlock occurs.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-23

ETM Integration Testing
6.5 Simple demonstration test

A test program is supplied with the ETMIK to demonstrate the structure of a test in
which the ETM is programmed to enable tracing. The process is as follows:

1. The program starts in an infinite loop at the reset vector, while the BST programs
the core debug control register to enter debug state.

2. The ETM is then programmed to enable tracing, and the core is restarted to
execute the code at the end of the vector table.

3. A few instructions are then executed to trace some code.

The source code is contained in EtmIntKit/design/logical/tbench/tests/simpletest.s.

If the test completes, the message ** TEST COMPLETED ** is displayed. Otherwise, the
message ** TEST FAILED ** is displayed.

No test verification is required for this test because it is provided as an introduction to
ETM programming. The ETM integration test must be run to verify ETM integration.
6-24 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
6.6 Source compilation

There are three stages to ensure the system is ready for simulation:

1. Environment set up

2. Verilog source compilation

3. Test program compilation.

6.6.1 Environment set up

A dotcshrc file is supplied in EtmIntKit to set up the tools used by the ETMIK. This is
located in the base directory, and must be modified to point to the local location of your
tools.These sections require modification:

• the simulator you intend to use and its location

• the location of your ADS tools.

After the dotcshrc file has been modified, you must source it using:

source dotcshrc

ModelGen Design Signoff models

If you are using ModelGen Design Signoff Models (DSMs),these must also be set up.
Follow the instructions supplied with the DSM for the ARM core, and ETM. Install the
DSMs in the EtmIntKit/libraries/ARM/DSM directory. If your DSMs use SWIFT models,
you must ensure they are all installed to the same LMC_HOME location.

Embedded Trace Buffer

If you are using the ETB, this must be installed. Unpack the deliverables for the ETB to
the EtmIntKit/design/logical/etb directory.

AHB Wrappers

If you are using an ARM7TDMI-S, ARM720T(Rev 3), ARM920T, or ARM922T core,
you must unpack the AHB wrappers. After unpacking the wrappers, copy the HDL files
from the relevant core directory to the directory:
EtmIntKit/design/logical/ahb_wrapper/verilog/rtl_source.

The ARM7TDMI wrapper contained in the AHB wrapper deliverable requires
modifications as described in AHB wrappers on page 6-13. These modifications have
already been performed, and the modified files are provided with the ETMIK in the
EtmIntKit/design/logical/arm_and_etm/verilog/rtl_source/ARM7TDMIr3 and
EtmIntKit/design/logical/arm_and_etm/verilog/rtl_source/ARM7TDMIr4 directories.
These files must be left in their respective directories.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-25

ETM Integration Testing
Test bench environment

In the EtmIntKit/design/logical/tbench directory, a script named setup<core> is
supplied to aid in the set up of the DSMs and other environment variables for each core
supported. The following modifications are required:

• Set the ARM core, and ETM DSM sections to mimic the settings required in the
DSM setup. If your DSMs use SWIFT models, you must ensure they are all
installed to the same LMC_HOME location.

• Ensure the rom.hex and JTAGbsi files are linked in the correct directory for the
simulator you are using.

• Set the MG_LIB environment variable to point to a version of the ModelManager to
support all the DSMs you are using. The models might be built with different
versions of ModelGen tools. You must set the MG_LIB variable for the latest version
of the ModelManager. The README supplied with the DSM shows the version
of ModelGen tools used.

• Update the LD_LIBRARY_PATH environment variable as detailed in the script if you
are using the Verilog-XL or Verilog-NC simulators.

• If the ARM core DSM does not have Executed Instruction Sequence (EIS)
logging enabled by default it must be enabled, and this can be performed by
setting an environment variable. If your core does require EIS tracing to be
enabled, there is a relevant section in the script

• If you are implementing the ETB, ensure the environment variable DIR_ETB points
to the correct location and the EtbDefs.v file is linked to the
EtmIntKit/design/logical/arm_and_etm/verilog/rtl_source/include directory.

After you have modified the relevant file, it must be sourced to set up the environment,
for example:

source setup922T

6.6.2 Verilog source compilation

The environment for using the simulators and the DSMs has already been set up. This
section describes how to compile the model with the following simulators:

• Using ModelSim on page 6-27

• Using Cadence Verilog-NC on page 6-27

• Using Cadence Verilog-XL on page 6-28

• Using VCS on page 6-28.
6-26 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
Using ModelSim

Change to the EtmIntKit/design/logical/tbench/mti directory.

A script called compile_mti is supplied to ease the compilation of the system. It must be
passed a parameter indicating the core for which the test bench is being compiled. This
must be one of the following:

• 7TDMIr3

• 7TDMIr4

• 7TDMIS

• 720Tr3

• 720Tr4

• 920T

• 922T

• 926EJS

• 946ES

• 966ESr1

• 966ESr2

• remove

The compile script compile_mti automatically removes all compilation and simulation
files already present in the directory and then compiles the HDL files for the chosen
core.

There is a system<core>.vc file present for each configuration that sets any defines
required by the code and sets the locations of the HDL files required for compilation.
ModelSim enables .vc files to access unix environment variables so these files do not
require editing except to define the ETM configuration and whether the ETB is present.
The file reports where to make these changes. The remove option does not perform the
compile stage and just removes the compilation and simulation files already present.

To compile the HDL, type a command similar to:

compile_mti 922T

Using Cadence Verilog-NC

This section describes how to compile the model using Verilog-NC.

Change to the EtmIntKit/design/logical/tbench/nc directory.

The compile script compile_nc automatically removes all compilation and simulation
files already present in the directory and then compiles the HDL files for the chosen
core.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-27

ETM Integration Testing
There is a system.vc file which sets any defines required by the code and sets the
locations of the HDL files required for compilation. NC does not permit.vc files to
access unix environment variables so this file must be modified as detailed in the file.

To compile the HDL, type:

compile_nc

Using Cadence Verilog-XL

The Verilog-XL simulator has no compilation phase, but because it does not enable .vc
files to access unix environment variables. You must modify
EtmIntKit/design/logical/tbench/xl/system.vc as detailed within the file.

Using VCS

This section describes how to compile the model using VCS.

Change to the EtmIntKit/design/logical/tbench/vcs directory.

A script called compile_vcs is supplied to ease the compilation of the system which you
must edit to suit your system. In the VCS compile line, the ARM core pli.tab must be
directed to the environment variable indicating the location of your ARM core DSM,
for example:

$DIR_ARM7TDMI/pli.tab.

This compile script automatically removes all compilation and simulation files already
present in the directory and then compiles the HDL files for the chosen core.

There is a system.vc file which sets any defines required by the code and sets the
locations of the HDL files required for compilation. VCS does not permit.vc files to
access unix environment variables so this file must be modified as detailed in the file.

To compile the HDL, type:

compile_vcs

6.6.3 Test program compilation

A Make file is provided in EtmIntKit/design/logical/tbench/tests to enable
compilation of the test program using the ADS tools. Your configuration must be
customized as follows:

• Specify the correct test to the SRCFILE parameter. Use test.s if running the ETM
integration test, or tbtest.s for the ETB integration test, or simpletests.s for the
simple demonstration test.
6-28 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
• Define the correct CPU type in the ASFLAGS parameter for the target processor.
Choose the appropriate value for your system:

— ARM7TDMI for an ARM7TMDI, ARM7TMDI-S, or ARM720T
processor

— ARM9TDMI for an ARM920T, or ARM922T processor

— ARM9E for an ARM926EJ-S, ARM946E-S, or ARM966E-S processor.

• Select the ASDEF1 parameter for the target processor. These defines are used to
determine which sections of the test program are compiled. Choose the
appropriate values for your system:

— PROC SETS "ARM7TDMI" and ARCH SETS "ARMv4T" for an ARM7TDMI

— PROC SETS "ARM720Tr3" and ARCH SETS "ARMv4T" for an ARM720T (Rev 3)

— PROC SETS "ARM720Tr4" and ARCH SETS "ARMv4T" for an ARM720T (Rev 4)

— PROC SETS "ARM9TDMI" and ARCH SETS "ARMv4T" for an ARM920T or
ARM922T

— PROC SETS "ARM9ES" and ARCH SETS "ARMv5TE" for an ARM946E-S or
ARM966E-S

— PROC SETS "ARM9EJS" and ARCH SETS "ARMv5TEJ" for an ARM926EJ-S.

• The ASDEF2 parameter defines where the Tube resides and which memory location
responds with an error to test data and prefetch aborts. If you change the memory
map or model this must be modified.

• The ASDEF3 parameter defines the port size and port mode for the ETM.

• The ASDEF4 parameter defines if half rate clocking is used by the ETM.

• The ASDEF5 parameter defines the ETM configuration. This must take a value of
either small, medium, mediumplus, or large. This is used within the test program to
set the threshold at which FIFOFULL stalling occurs.

• The ASDEF6 to ASDEF9 parameters are used within the test program to verify the
ETM SYSOPT bus is correctly connected. Set these options for your system
implementation, defining which ETM features are supported.

• The ASDEF10 parameter is required if a ETB is present in the system. Comment out
this line if it is not required.

If you are using SDT 2.50, then you must adjust the rule in the Make file for
bin/test.bin. You can do this by uncommenting the appropriate rule from the two that
appear towards the end of the Make file. You must also comment out the default ADS
rule.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-29

ETM Integration Testing
To compile the program, in EtmIntKit/design/logical/tbench/tests type:

make

This produces some intermediate files, and most importantly the results/test.hex file
required by the memory model and the results/test.bsi file used by the BST to control
the JTAG port. These are linked to the correct location by the setup<core> script in Test
bench environment on page 6-26.
6-30 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
6.7 Simulation

This section describes how to simulate the supplied test bench with the following
scripts:

ModelSim A simple script is supplied to run a command-line simulation of the test
bench. In the directory EtmIntKit/design/logical/tbench/mti type:

sim_mti

Verilog-NC The compilation stage of a Verilog-NC simulation generates a script that
can be used to run a command-line simulation. In the directory
EtmIntKit/design/logical/tbench/nc type:

RUN_NC

Verilog-XL A simple script is supplied to run a command-line simulation of the test
bench. In the directory EtmIntKit/design/logical/tbench/xl type:

sim_xl

Using VCS A simple script is supplied to run a command-line simulation of the test
bench. In the directory EtmIntKit/design/logical/tbench/vcs type:

sim_vcs

6.7.1 Analyzing the ETM integration test simulation results

The simulation displays the message ** TEST COMPLETED - Now proceed to Test
Verification ** if it runs to completion. Then proceed to Test verification on page 6-33.

If the simulation fails, this is shown in a number of ways:

• The message ** UNEXPECTED EXCEPTION has occurred: ** is displayed.This means
the simulation failed because an exception occurred at the wrong time. This can
be an IRQ, FIQ, SWI, or an undefined instruction. The test also calls the handler
to display this message if a part of the test fails. In this situation, a number can
also be displayed after the semicolon in the message. This indicates the stage of
the test at which it failed. Numbers 1 to 4 indicate a failure to enter debug at the
correct moment, and 5 indicates the ETB failed to capture any data (or there is a
ETB malfunction). The failure to enter debug can be caused by a number of
reasons:

— incorrectly wired ETM

— incorrect setup of scan chains, either in wiring or software

— incorrectly programmed ETM

— incorrectly programmed EmbeddedICE watchpoints.

The failure of the ETB can be caused by any of the following:

— incorrectly wired ETB
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-31

ETM Integration Testing
— incorrect set-up of scan chains, either in wiring or in software

— incorrectly programmed ETB.

• The test terminates because of BST failure.

This means the BST either ran out of code to execute, or when testing the values
of registers an incorrect value was found. If the BST runs out of code, this means
the core entered debug too many times, which is caused by incorrect wiring or an
access which causes the core to enter debug being effected too many times.

The files log.dsm_bst and log.bst_tube can indicate the location and reason for
this failure.

• The test never terminates.

This can be caused by the core being halted, or executing bad instructions which
cause failure. The most common cause of this is that the test program is compiled
for the wrong core.

When using the ETB, the contents of the Trace RAM are read out using the JTAG port
which consumes the majority of the time taken for the test. This must not be
misinterpreted as a non-terminating test.

If any of these do occur, the cause of failure must be investigated, then the relevant
compilation and simulation stages must be repeated.

6.7.2 Analyzing the ETB Integration test simulation results

If the test is successful, the message ** TEST COMPLETED ** is displayed on the Tube. If
unsuccessful, the message ** TEST FAILED ** is displayed. Test verification is not
required when running this test.

If the test fails, this is probably due to a wiring fault, or the test is incorrectly set up for
the correct location of the ETB.
6-32 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
6.8 Test verification

This section describes the process of verifying the operation of the test program,
ensuring the ETM correctly traced the processor. The steps involved are:

1. Change to the directory: EtmIntKit/design/logical/tbench/<simulator>.

2. Modify the EtmCompare.cfg file as instructed within the file.

3. Run EtmCompare from the command line.

4. Check the output produced for errors. If any are produced, consult the rest of this
section which describes the operation of the test verification scripts:

6.8.1 Trace Comparison Scripts

The following Perl scripts are provided in the EtmIntKit/bin directory:

Decomp.pl Trace decompression script.

Convert.pl Converts an EIS output to an intermediate format.

EtmBufExtract.pl Extracts the ETB output in a BST log into the compressed trace
format.

EtmModeConv.pl Converts the ETM trace depending on the port mode used.

EtmCompare Compares the decompressed trace and EIS.

Note
 Decomp.pl, Convert.pl, EtmBufExtract.pl, and EtmModeConv.pl do not have to be run
manually because they are run automatically by EtmCompare.

6.8.2 Decompressor

The Perl script Decomp.pl takes the output from the EtmMonitor.v Verilog block, and an
image of the code being executed, and produces a decompressed trace. It uses a number
of Perl modules, Image4b.pm, ImageAxf.pm, CF.pm, Coproc.pm, Output.pm, and Trigger.pm.

The command for manually invoking the decompression script is:

Decomp.pl [options] compressedFile imageFile

The command-line options can appear in any order. The options are:

-arch <Name> When ARMV5T is specified, enables decompression of ARMv5T
instructions.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-33

ETM Integration Testing
-base <HexValue> Allows the base of a binary image to be specified, if it is not 0x0.

-a Indicates that data address tracing is enabled (can be used with
-d).

-d Indicates that data tracing is enabled (can be used with -a).

-PortSize <size> Specifies the port width setting of the trace. <size> must be 4, 8,
or 16.

-c <FileName> Specifies an optional coprocessor map file.

-m Specifies whether coprocessor CPRT tracing is enabled.

The hex format of the image file is the same as the format used to be read directly into
HDL memories (using $readmemh).

Typical decompressor script usage

The following is an example of typical decompressor script usage:

Decomp.pl -PortSize 8 -arch ARMV4T -a -d -m log.etm rom.hex

The image file format supported is hex (see the rom.hex file produced). These files can
be generated using the fromelf program provided with the ARM tools, followed by the
bin2hex Perl script provided. For example:

fromelf -bin -output test.bin test.elf
bin2hex test.bin test.hex

6.8.3 Executed Instruction Stream converter

A Perl script called Convert.pl is provided to take an Executed Instruction Stream (EIS)
output file from an ARM model (ARM7TDMI, ARM9TDMI, ARM9E-S, or
ARM9EJ-S) convert it into a format similar to that of the decompressed trace. It uses
two Perl modules (EISBase.pm, and one of either ARM7MG.pm, ARM9MG.pm, or ARM9vhd.pm).
The command for invoking the EIS converter script is:

Convert.pl [options]

The options can appear in any order. The options are:

-eis<FileName> The name of the EIS file (normally log.eis).

-unc <FileName> The name of the file produced (normally log.eis_unc).
6-34 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
-eistype <EisFormat>

The EIS format must be ARM7TDMI, ARM9TDMI, or ARM9x.
ARM9x is the default and must be used for all ARM9 cores other
than ARM9TDMI, ARM920T, and ARM922T.

Typical EIS converter script usage

The following is an example of typical decompressor script usage:

Convert.pl -eis log.eis -unc log.eis_unc -eistype ARM9x

6.8.4 Trace Buffer Extraction Script

This Perl script takes the BST log file and extracts data that is read from the ETB. The
command for manually invoking the script is:

EtmBufExtract.pl [options]

The options can appear in any order. The options are:

-bst <log_file>

BST log file. If omitted, the default file log.dsm_bst is used.

-out <log_file>

File to output trace. If omitted, the default file log.tracebuffer is used.

-size <size> Specifies the selected port width and must be 4, 8, or 16 (default is 16 if
not specified).

To ensure the log.dsm_bst file is properly formatted for trace capture, it searches for a
line that contains PRINTF TBCAPT. After this point every time the command GET 3 is
executed, the script extracts the data from the value of variable 3. It makes no attempt
to interpret the data, and produces incorrect data if the wrong port size is selected. When
the line PRINTF TBCAPTEND is encountered, data extraction stops.

6.8.5 ETM Port Mode Conversion Script

The EtmMonitor HDL module outputs the trace data from the ETM on every clock edge
and from both trace ports from the EtmMuxDemux module. The trace decompression script
only takes trace data formatted as for a normal port mode. Therefore this script,
EtmModeConv.pl, converts the trace output depending on the port mode in use. The
command for invoking the script is:

EtmModeConv.pl [options]
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-35

ETM Integration Testing
The options can appear in any order. The options are:

-trace <trace_file> The name of the compressed trace file (default is log.etm)

-out <output_file> The name of the file the converted trace is written to (default is
log.etmnew).

-half If specified, this option declares that half-rate clocking was used.

-mode <port_mode> This sets the port mode in use during tracing. <port_mode> can
take the value of 0 for normal mode (default), 1 for multiplexed
mode, or 2 for demultiplexed mode.

6.8.6 EtmCompare

The EtmCompare Perl script compares the decompressed trace with the converted EIS
output, using the ETM programming information in the JTAGbsi and log.dsm_bst files,
to verify that the trace is correct. It uses no modules. The command for invoking the
trace comparison script is:

EtmCompare [options]

The EtmCompare script can take a large number of options. The options used in the
validation process are:

-TRACE_DATA_ADDRESSES 1

Specifies data address tracing is enabled.

-TRACE_DATA 1 Specifies coprocessor register transfer tracing is enabled.

-TRACE_CPRT 1 Specifies coprocessor register transfer tracing is enabled.

-PORT_SIZE <size> Specifies the selected port width. This option is always required.
<size> must be 4, 8, or 16.

-trace <trace_file> The name of the compressed trace file (default is log.etm).

-image <image_file> The name of the memory image file (default is rom.hex).

-eis <FileName> The name of the EIS file (default is log.eis).

-c <coproc_map> The name of the coprocessor map to pass to Decomp.pl. This file is
necessary for the decompressor to successfully decompress traces
involving coprocessor memory transfers (ARM instructions LDC,
LDCL, STC, and STCL). It is not necessary if no external coprocessors
are installed in the system (CP15 does not use these instructions).

-ETM_BR_BCAST Enables branch broadcast checking.
6-36 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
-base <address> Base address for image in rom.hex (default is 0). A common
alternative is 0xFFFF0000, if HIVECS is in use.

-eistype <EisFormat>

The EIS format, which must be ARM7TDMI, ARM9TDMI, or
ARM9x. ARM9x is the default and must be used for all ARM9
cores other than ARM9TDMI, ARM920T, and ARM922T.

-arch <arch> The architecture version (ARMv4T or ARMv5TE).

-BigEnd This option is required if the test was run with the processor in
big-endian mode and tracing is controlled using data comparators.

-tbtube <address> Alternate tube address (default 0x03000000) EtmCompare looks for a
write of control-D (0x04) to this location to signify the end of the
test and terminate the comparison. This option is not necessary if
you turn tracing off before the end of the test.

-ProcIdEarly <n> Indicates the number of cycles ProcIDs are earlier in the trace than
the EIS (default is 2).

-randomProcID Instructs EtmCompare not to check ProcID values.

-ForceComp Force comparison even if decompressor fails.

-jinfo <info_file> Specify the Java bytecode information file to use.

-debug Output internal debugging information.

-StartBst This option forces the script to check the programming of the
ETM on startup if it is used to trace a core out of reset.

-tap <n> This sets the TAP number of the ETM along the scan chain. '1' is
the first device on the scan chain.

-MayStopEarly This enables EtmCompare to let the trace finish prematurely, for
example if tracing was not stopped.

-cycleacc Cycle-accurate information.

-FifoMustNotOverflow

This option indicates that the ETM FIFO must not overflow. If
overflow occurs when this options is set, an error is displayed.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-37

ETM Integration Testing
-PORT_MODE <port_mode>

This sets the port mode in use during tracing. <port_mode> can take
the value of 0 for normal mode (default), 1 for multiplexed mode,
or 2 for demultiplexed mode.

-HALF_RATE If specified, this option declares that half-rate clocking was used.

-TraceBuffer If specified, this option instructs the script to extract the trace data
from the BST log file, using the EtmBufExtract.pl script. The port
mode conversion is therefore not performed if this option is
selected.

-EtmModeConv This must be specified to run the port mode conversion script. If
the Trace Buffer extraction script is being run, this switch is
ignored.

The following options are also available, but are not normally used:

-etmNoComp Only run Decomp.pl and Convert.pl. Do not compare their outputs.

-noDecomp Do not run Decomp.pl.

-noConvert Do not run Convert.pl.

The EtmCompare program invokes the Decomp and Convert programs automatically. This
can be suppressed using -noDecomp and/or -noConvert.

Because the number of options to be passed to EtmCompare can be quite large, EtmCompare
looks for a plain text file named EtmCompare.cfg on startup. You must specify one
command-line option per line. They are added to the beginning of the options passed on
the command line. If you specify an option twice, in EtmCompare.cfg and on the
command line, the command-line value is used. This enables you to save your default
command line in EtmCompare.cfg and to override any selected nonstandard options on
the command line. An example EtmCompare.cfg is included in the simulation directory
tbench/<simulator>.

Details on how to run EtmCompare with the example system are given in Running the
Trace Comparison Script on page 6-40.

Problems with EtmCompare

When you access areas of uninitialized memory, unknown values can be traced by the
ETM. These unknown values are propagated through the ETM, but are converted to
known values in the EtmMonitor module. This is because the Perl libraries used by the
scripts cannot understand X values.
6-38 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
The side effect of this is that EtmCompare can generate errors when comparing the
decompressed trace with the converted EIS file. You can avoid these errors by ensuring
that memory addresses are initialized before they are read.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-39

ETM Integration Testing
6.9 Running the Trace Comparison Script

The options passed to EtmCompare depend on the configuration of your system. You must
modify and use the EtmCompare.cfg configuration file supplied in the simulator
directory.

Note
 When you run simulations with the ETM Integration Kit and use HIVECS, that causes
the processor to boot from 0xFFFF0000, you must modify EtmCompare.cfg to use:

-base 0xFFFF0000

This is necessary to enable EtmCompare to use Decomp.pl with HIVECS.

The sections which require modification are clearly shown within the configuration file,
and must be set as appropriate. To run the script, type EtmCompare at the command line
in the directory EtmIntKit/design/logical/tbench/<simulator>.

Here is an example of typical EtmCompare output:

EtmCompare: Revision $Revision: 1.50
$EtmCompare: Running EtmModeConv.pl -trace log.etmraw -out log.etm -mode 0
EtmCompare: Mode Conversion return code = 0
EtmCompare: Running Decomp.pl -PortSize 16 -arch ARMV4T -a -d -m log.etm rom.hex
EtmCompare: Decomp return code = 0
EtmCompare: Running Convert.pl -eis log.eis -unc log.eis_unc -eistype ARM7TDMI
EtmCompare: Convert return code = 0
EtmCompare: Comparing log.trc_unc and log.eis_unc …EtmCompare: 0 error(s)

If no errors are found, the trace comparison has been successful.

If EtmCompare indicates the ETM FIFO overflowed, this can be because of a number of
reasons.

If using a core that does not support FIFOFULL stalling (ARM7TDMI, ARM720T,
ARM920T, or ARM922T), the test program inserts NOP instructions to avoid overflow.
This is suited for using a medium configuration ETM.

If overflow does occur, increase the number of NOPs before the overflow occurs, which
gives the ETM FIFO more time to empty. On cores that do support FIFOFULL stalling
(ARM926EJ-S, ARM946E-S, and ARM966E-S), overflow indicates incorrect wiring
of the ETM FIFOFULL signal.

Note
 If using a small configuration ETM, overflow is likely to occur because LDM and STM
instructions are performed with data tracing enabled.
6-40 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
When the test runs to completion and the trace comparison scripts confirm the program
has been correctly traced, the ETM is correctly verified.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-41

ETM Integration Testing
6.10 Troubleshooting

If errors are found by the trace comparison scripts, you can use the log files produced
by the simulation and EtmCompare to discover where the fault lies:

• Log files

• EtmCompare Errors

• Information messages on page 6-43.

6.10.1 Log files

This section lists the log files produced by the simulation and EtmCompare:

log.eis The EIS trace produced by the ARM core.

log.eis_unc The EIS trace in an uncompressed format suitable for EtmCompare. This
file is produced by the Convert.pl script.

log.etmraw The file produced by the EtmMonitor module containing raw trace data.

log.etm The properly formatted trace file produced by the EtmModeConv.pl script
from the log.etmraw file.

log.trc_unc The ETM trace in an uncompressed format suitable for EtmCompare. This
file is produced by the Decomp.pl script.

log.tube A log of messages printed by the BST (This is not the same as the tube
used for displaying messages to the screen).

log.dsm_bst A log of all the commands executed by the BST. This is useful for
checking what the BST executed during a test, to discover whether the
JTAG port is correctly connected.

log.diff Displays the comparison between the EIS trace and the ETM trace. Errors
are noted in the leftmost column, which can be used to determine the
cause of failure. A brief description of each error is given in EtmCompare
Errors.

6.10.2 EtmCompare Errors

There are two types of message produced in the left-most column of the file log.diff.

• error messages

• information messages.

Messages that begin with ERROR are error messages. They are classified as follows:

ERROR + A line appeared in the trace when TraceEn was off.
6-42 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

ETM Integration Testing
ERROR - A line failed to appear in the trace when TraceEn was on.

ERROR -VD A line appeared with no data tracing when ViewData was on.

ERROR M A line appeared in the trace on cue, but after adjustment for data tracing
and so on, failed to match that from the EIS. This is followed by two lines
indicating the actual text that EtmCompare compared, after modifications
(for example by ViewData).

ERROR PIDM A ProcID of the wrong size or value was broadcast.

ERROR E< An exception (not an IRQ, FIQ, or Prefetch Abort) occurred, but the trace
indicated it an instruction early. INF3 messages are printed when an IRQ,
FIQ, or Prefetch Abort occurs.

ERROR INT+ An interrupted instruction was incorrectly traced due to the previous
instruction being traced (ARM7TDMI-based system).

ERROR SYNC Synchronizing encountered in log.trc_unc. This means the decompressor
could not understand the trace protocol error).

ERROR ? Could not understand a line in log.trc_unc or log.eis_unc.

6.10.3 Information messages

Messages that begin with INF are information messages. They are classified as follows:

INF1 A purely informational message, either to debug what EtmCompare is
thinking or to mark cases of interest.

INF2 A special case that is allowed by the specification.

INF3 A known and documented specification violation.

EtmIntKit/documentation/EtmCompare.txt gives a full description of the different types
of INF messages.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 6-43

ETM Integration Testing
6-44 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 7
Software Considerations for Trace

This chapter describes software issues relating to the ETM9. It contains the following
sections:

• Tracing dynamically loaded images on page 7-2

• Simple overlay support on page 7-4.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 7-1

Software Considerations for Trace
7.1 Tracing dynamically loaded images

Support for dynamically-loaded images with the ETM9 (Rev 0/0a) is only possible with
instrumented code, collusion of the OS, and additional support in the debugger.

ETM9 (Rev 1) and above includes specific hardware support for tracing context IDs and
overlay numbers. However, software support is still required.

7.1.1 Why dynamically-loaded code requires special hardware and software support

When a debugger is debugging a system it talks to the system mainly in terms of
addresses on the system (possibly virtual) memory. To be useful to its user it must
translate between these addresses and locations in the images loaded on the system.
This enables it to present a symbolic or source level view of the code running on the
system to the user.

In a simple statically linked and loaded system the system runs a single image. The user
tells the debugger the name of this image, and the image describes the mapping between
target addresses as image locations. The debugger requires no further information to
debug the image.

Many systems, including Operating Systems (OS) such as WinCE, Linux, or Epoc32,
load part or all of their software dynamically. This can have several effects:

• the address at which an image is loaded might not be known until it is loaded

• at different times different images might be loaded at the same address

• in a complex system the debugger might not even know what images are
candidates to be loaded until they are loaded.

To debug such a system the debugger must be able to ask the target system what images
are loaded and where. At present ARMs debugger cannot ask such questions.

The problem is more difficult when using trace, because trace contains historical
information. When analyzing a trace the debugger has to know what images were
loaded when the trace data was collected, rather than what images are loaded now.
Additionally, even without a valid image, you can do some very basic, but sometimes
useful interactive debugging, such as single-stepping instructions. The compression
algorithm used for trace data means that the debugger cannot start to decode trace data
unless the images that were loaded when it was generated are available.

In particular, you must remember that, for ALL embedded trace solutions to work, an
image of the code being executed must be available to the trace decompression software
of the debugger. This is because the instructions being executed are not output, because
of the data bandwidth that is required, and so only the minimum of address information
7-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Software Considerations for Trace
is traced. This means that, given a (compressed) address issued by the trace port, the
tools must be able to know what instructions are at and around that point. This enables
the target address of direct branches (B and BL instructions in the case of ARM) to be
implied. Virtual memory and software paging, (effectively self-modifying code) for
example, make this hard because the debugger probably does not know where the code
ends up being executed from.

For a device with a full MMU, and an operating system that loads application and OS
code into arbitrary locations in RAM, a way of telling the debugger what the code image
for a particular trace sequence is required. The side-effect of this is that the closer to a
physical address that can be supplied the better. For the ARM920T core the chosen
solution is to output the modified virtual address on the trace interface.

7.1.2 ETM9 (Rev 1 and above) hardware support

ETM9 (Rev 1) and above provides the ability to trace a variable length context identifier
field, whenever tracing is enabled, and as part of the periodic address output. This
enhancement enables simpler cooperation between the target operating system and the
trace debug tools.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 7-3

Software Considerations for Trace
7.2 Simple overlay support

A system for supporting simple overlays is possible that does not require specific
support within the trace debug tools. This solution is based on the requirement that the
memory space into which the overlays are loaded exists in multiple places in the
memory map.This system works in the same way that the Tightly Coupled Memory
(TCM) address space can be used to alias a TCM address range throughout the whole
TCM address space. That is, some of the unused address bits are don’t care when
determining the memory to be accessed.

For example, if you have 16KB of SRAM, bits [13:0] of the address determine the
32-bit word to access and bits [31:24] determine when to access that particular block.
However, if bits [15:14] are in the address decoder, four copies of the memory block
exist in the memory map. In other words the same word can be accessed using four
different addresses. That is, when bits [15:14] of the address are 00, 01, 10, or 11 as
shown in Figure 7-1 on page 7-5.
7-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Software Considerations for Trace
Figure 7-1 SDRAM example overlays

If this 16KB block is to hold overlays, you can use bits [15:14] to indicate which of four
possible overlays are loaded into this memory block. The value of bits [15:14] of the
program counter is traced by the ETM. In the trace tools a static image of the code being
executed, with the four possible overlays statically linked (using scatter loading in the
ARM tools) into the appropriate 16KB blocks of memory space, enables the trace
decompression tools to successfully decompress the trace.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 7-5

Software Considerations for Trace
When the overlay manager loads and calls a new overlay, it copies the code into RAM
and then jumps to the overlay. Bits [15:14] of the address, loaded into the PC, are set
appropriately. The physical address identifies the location in memory. The virtual
address uniquely identifies the data to access and the location within that overlay.

Figure 7-2 Mapping overlays to a physical address
7-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Software Considerations for Trace
7.2.1 Overlay support on ARM926EJ-S, ARM946E-S, and ARM966E-S macrocells

ARM926EJ-S, ARM946E-S, and ARM966E-S macrocells support tightly-coupled
instruction and data RAM on the core. This is aliased to multiple addresses in the
processor address map so that overlay support is automatic for code loaded into this
space.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 7-7

Software Considerations for Trace
7-8 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Chapter 8
Physical Trace Port Signal Guidelines

This chapter contains some signal guidelines that can ensure correct operation of the
ETM and trace tools. It contains the following sections:

• About trace port signal quality on page 8-2

• ASIC pad selection, placement, and package type on page 8-3

• PCB design guidelines on page 8-4

• EMI compliance on page 8-8

• Further references on page 8-9.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 8-1

Physical Trace Port Signal Guidelines
8.1 About trace port signal quality

Guaranteed operation of the TPA or logic analyzer depends on correct design of the
ASIC and of the target PCB.

When integrating an ETM into an ASIC, the quality and timing of the trace port signals
to the TPA are critical for reliable operation. Some of the issues to consider are:

• output pad selection

• PCB track lengths

• PCB track termination

• setup and hold times for the trace data signals with respect to TRACECLK.

The importance of these issues is directly proportional to the operating frequency. At
frequencies greater than 100MHz, careful SPICE analysis of the system including the
characteristics of the package and the chosen TPA is recommended.
8-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Physical Trace Port Signal Guidelines
8.2 ASIC pad selection, placement, and package type

The position and type of ASIC pad that you select depends on the following factors:

• the ability to minimize the noise and coupling between trace and other signals

• the ability to drive the external load.

The quality of the TRACECLK signal, as observed by the TPA, has the greatest effect
on the reliability of the system. It is vital that TRACECLK transitions move cleanly
through the threshold region of the input circuitry of the TPA, without glitches or
ringing.

With certain types of package and pin placement (for example, pads on the corner or the
edge of a package), the signal coupling between the trace data signals and the trace
clock can be significant. If this problem is encountered during simulations, place GND
or static I/O signals on both sides of the TRACECLK signal.

The quality of the package, and specifically the presence or absence of a ground plane
in the package, can significantly affect the quality of the output signal. In general, ASIC
pads are specified in terms of current drive and signal slew rate. For calculating the PCB
signal quality you are likely to also have to determine:

• the signal rise and fall times

• the pad output impedance.

Note
 Matched impedance output pads give a significantly improved performance.

You must also consider the pad placement, to ensure that the PCB tracking to the trace
port connector is possible. You are recommended to place the pads so that they are:

• on the outside of the package

• grouped together

• in the same order as the connector.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 8-3

Physical Trace Port Signal Guidelines
8.3 PCB design guidelines

Two implementations are possible:

A dedicated trace port

The TPA or logic analyzer is the only load on the trace port
signals. See Dedicated trace port.

A shared trace port

The trace pins are shared with other functions, and therefore there
are stubs on the PCB tracks of the development board and an
increased load on the output driver. See Shared trace port on
page 8-6.

8.3.1 Dedicated trace port

This is the preferred implementation for connecting a TPA to a trace port. The TPA is
the only load on the nodes connected to target ASIC pins, so the only factor affecting
operation is signal integrity at the TPA connector.

If you know the characteristics of your PCB tracks, use the actual trace impedance and
propagation delay. If you do not have access to this information, use the following
guidelines for microstrip (track on outer layer over a ground plane) on FR4 PCB:

• Propagation speed is typically 160ps/inch (approximately 63ps/cm).

• The impedance of a 0.005-inch wide track as a microstrip is between 70Ω to 75Ω
on a typical six-layer foil construction board. The impedance of a track reduces
as the width of the track increases.

To design the target system effectively, you must know:

• the characteristic impedance and signal edge rates of the ETM output drivers

• the actual setup and hold provided by the ASIC ETM outputs with reference to
the ETM TRACECLK.

If you do not know the characteristics of the signals from your ASIC, consult your ASIC
vendor. It is difficult to provide any general rule because ETM output drivers and
timings vary between ASIC vendors.
8-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Physical Trace Port Signal Guidelines
PCB track length

You must match all TRACECLK, PIPESTAT[2:0], TRACESYNC, and
TRACEPKT[15:0] track lengths between the ASIC and the trace port connector within
100ps. Overall differences in track lengths directly impact setup and hold requirements
as follows:

• if the clock is delayed compared to the data, you must increase the setup
specification by the additional clock delay

• if any data is delayed compared to the clock, you must add the delay to the setup
requirement

• if data paths are such that data has both greater than and less than delays compared
with the clock, you must add the difference to both the setup and hold
specification.

Signal quality

The primary variable that characterizes signal quality is the rise time of a signal
compared to its propagation time. It is this relationship that affects the track length, and
this is where the minimum signal rise and fall time becomes important.

To ensure accurate data acquisition, you must minimize all reflections, overshoot, and
undershoot. Aim to keep the one-way propagation time for all tracks at less than one
third of the signal rise time.

As the fabrication process for your ASIC improves, your output driver is likely to
improve and your rise and fall times are likely to decrease. If you cannot keep the
propagation time for all tracks below one third of the signal rise time, some form of
signal termination is required. This can be either of the following:

Series termination (Recommended method.) The series resistor must be placed as
close as possible to the ASIC pin (half an inch or closer). The
value of this series resistor plus the output impedance of the signal
driver must closely match the impedance of the PCB track.

Parallel or matched AC termination

If you cannot use series termination, add parallel or matched AC
termination on each signal track at the TPA target header. This
requires significantly more power from the ASIC, and the AC
termination must closely match the frequency and rise time of the
terminated signal. In practice therefore, parallel termination is
rarely possible.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 8-5

Physical Trace Port Signal Guidelines
If the total track length is one rise time propagation delay or greater in length, follow
standard high-speed design practices to minimize cross talk between the clock and the
data signals. (The total track length is the target PCB track length plus any PCB track
on the TPA buffer board.)

Note
 ASIC output pads with an output impedance that is matched to the PCB track might be
available from your ASIC vendor. If these are used, the signal quality of the trace port
signals is significantly improved.

8.3.2 Shared trace port

Some applications might not have enough pins available for trace, so you might have to
multiplex trace signals with other functions. This has the effect of increasing the load
on the trace signals, unless a specific trace-only development board is built.

When an ETM output pin is multiplexed with other functions, the addition of the TPA
target header can add a stub to the PCB track on the target system. When this happens,
the following additional constraints apply. (The goal is to minimize the effect of the
TPA target header on non TPA-based signal usage and maintain the integrity of the trace
measurements.):

Signal does not require termination in normal operation or is parallel-terminated

This means that a full voltage swing signal travels down the track.
Ensure that the propagation delay of the stub added for the TPA
target header is 20 per cent or less of the overall rise and fall time
of the signal.

Signal is series terminated for normal operation

This means that a one-half voltage swing signal begins each
transition on the track and propagates down the track until it is
terminated at the target node. This case is potentially very
problematic. The one-half voltage swing signal can maintain the
TPA input at its threshold voltage for longer than the required rise
and fall time. To prevent this, you must move the TPA target
header to within one fifth of the rise time of the target end of the
track. If this is not possible, you must slow down the rise and fall
times until this requirement can be met.

Sometimes, board layout constraints make it impossible to keep
the stubs to the trace target header to less than 20 per cent of the
rise and fall time. If length and speed requirements do not enable
the rise and fall times to be increased to meet the design
8-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Physical Trace Port Signal Guidelines
requirements in this case, you can adjust the thresholds used by
the TPA or LA, if supported. The target system must be able to
provide:

• sufficient noise margin around an altered threshold

• sufficient setup and hold times because these are now
reduced.

Note
 It is unlikely that any TPA supplier can guarantee support for this

mode of operation.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 8-7

Physical Trace Port Signal Guidelines
8.4 EMI compliance

If you follow the guidelines in Trace signal output timing on page 3-29, the trace port
pins, including the TRACECLK, are inactive. This means that the trace port does not
affect your EMI compliance testing. The trace port pins are active only when the trace
debug tools are connected to the target.

It might be useful to carry out some testing with the trace port enabled, to determine the
effect of the trace port switching on overall system noise.
8-8 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Physical Trace Port Signal Guidelines
8.5 Further references

Many TPA vendors provide models for download from the internet. These models
enable you to use SPICE-like tools to analyze the signal integrity at the point that it is
sampled by the TPA or logic analyzer:

Agilent The Agilent web site enables you to download data on their TPA and LA
products. You can use the search engine on the web site to look for pages
and documents that refer to ETM. For example, the document Trace Port
Analysis for ARM ETM (Agilent document number E5903-97002)
contains equivalent models for Agilent TPA and Logic Analyzer
products.

Tektronix The Textronix web site has a number of documents relating to the use of
their Logic Analyzers for acquiring trace. For example, the document
P6434 Mass Termination Probe (Tektronix document number
070-9793-02) provides models for the equivalent load of the Logic
Analyzer probe.

Other vendors

Details about TPA vendors are added to this document as they become
known to ARM Limited. You can also contact your chosen vendor
directly for the latest information.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. 8-9

Physical Trace Port Signal Guidelines
8-10 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Appendix A
Signal Descriptions

This chapter describes the signals used in the ARM9 Embedded Trace Macrocell
(ETM9). It contains the following section:

• Signal descriptions on page A-2.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 Signal descriptions

The signal descriptions for ETM9 (Rev 2 and above) are shown in Table A-1.

Table A-1 ETM9 signals

Type Signal name Clock domain Description

Input ARMTDO TCK The TDO output signal from the ARM macrocell, or from an
external scan chain.

Input BIGEND - The signal driving the ARM BIGEND/CFGBIGEND input. When
HIGH the processor treats bytes in memory as big-endian format.
When LOW memory is treated as little-endian.

For processors that permit the system control processor to change
the endian behavior this signal toggles with the change. Otherwise
this is a static configuration signal.

Input CHSD[1:0] CLK The coprocessor handshake Decode bus driven into the ARM
macrocell.

Input CHSE[1:0] CLK The coprocessor handshake Execute bus driven into the ARM
macrocell.

Input CLK - This clock times most operations in the ETM9. All outputs change
from the rising edge and all inputs are sampled on the rising edge.
You can stretch the clock in either phase. You can add synchronous
wait states using the CLKEN signal.

Note
 For processors where TCK and CLK are asynchronous the signals
in the TCK domain are completely unrelated to CLK.

Output CLKDIVTWOEN TCK If HIGH, indicates that the ETM9 is in half-rate clocking mode.

Input CLKEN CLK The ETM9 can be stalled by driving CLKEN LOW. This signal
must be held HIGH at all other times. The CLKEN signal drives the
ARM macrocell nWAIT/CLKEN input.

Input DA[31:0] CLK The processor data address bus driven by the ARM macrocell.

Input DABORT CLK The Data Abort signal driven into the ARM macrocell. The
DABORT signal tells the processor that the requested data memory
access is not allowed.

Input DBGACK CLK The debug acknowledge signal driven by the ARM macrocell. When
HIGH this signal indicates that the ARM macrocells in debug state.

Output DBGRQ CLK Debug request. You can use this signal to stop the ARM processor.
A-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Signal Descriptions
Input DD[31:0] CLK The DD/WDATA bus driven by the ARM macrocell.

Input DDIN[31:0] CLK The DDIN/RDATA bus driven into the ARM macrocell.

Input DMAS[1:0] CLK The data memory access size bus driven by the ARM macrocell.
These encode the size of a data memory access in the following
cycle.

Input DnMREQ CLK The data memory request signal driven by the ARM macrocell. If
LOW at the end of a cycle then the processor requires a data memory
access in the following cycle.

Input DnRW CLK The data read write signal driven by the ARM macrocell. If LOW at
the end of a cycle then any data memory access in the following
cycle is a read. If HIGH then it is a write.

Input DSEQ CLK The data sequential address signal driven by the ARM macrocell. If
HIGH at the end of the cycle then any data memory access in the
following cycle is sequential from the last data memory access.

Output ETMEN TCK This output is HIGH when the debugger has enabled the ETM.

Input EXTIN[3:0] CLK External inputs to the ETM. For example, from signals of interest
within the ASIC. Different sizes are described in Changes to the
programmer’s model in Rev 2 on page 1-10

Note
 The External Inputs EXTIN[3:0] must be synchronous to the ETM9
CLK

Output EXTOUT[3:0] CLK External outputs from the ETM. Can be used to trigger hardware
inside the ASIC, or external equipment such as a logic analyzer.

Output FIFOFULL CLK When enabled, this indicates that there is less than a
user-programmed number of bytes in the ETM9 FIFO.

Input HIVECS - The signal driving the ARM HIVECS/CFGHIVECS input. When
LOW the ARM exception vectors start at address 0x0000 0000. When
HIGH the ARM exception vectors start at address 0xFFFF 0000.

For processors that permit the system control processor to change
the HIVECS setting this signal toggles with the change. Otherwise
this is a static configuration signal.

Input IA[31:0] CLK The instruction address bus driven by the ARM macrocell.

Table A-1 ETM9 signals (continued)

Type Signal name Clock domain Description
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. A-3

Signal Descriptions
Input ID15To11[15:11] CLK A section from the ID/INSTR input bus driven into the ARM
macrocell.

Input ID31To25[31:25] CLK A section from the ID/INSTR input bus driven into the ARM
macrocell.

Input IJBIT CLK The IJBIT signal driven by the ARM macrocell. When HIGH,
denotes that the ARM processor is in Java state. When LOW the
processor is in ARM or Thumb state. This signal is valid with the
address.

Input InMREQ CLK The InMREQ signal driven by the ARM macrocell. If LOW at the
end of the cycle then the processor requires an instruction memory
access during the following cycle.

Input INSTREXEC CLK The INSTREXEC/DBGINSTREXEC pipeline status signal driven
by the ARM macrocell. The instruction executed signal indicates
that the instruction in the Execute stage of the pipeline follower of
the ETM9 has been executed.

Input INSTRVALID CLK The DBGINSTRVALID pipeline status signal driven by the ARM
macrocell. The instruction valid signal indicates that the instruction
in the Execute stage is valid, and has not been flushed.

Input ISEQ CLK The ISEQ signal driven by the ARM macrocell. If HIGH at the end
of the cycle then any instruction memory access during the following
cycle is sequential from the last instruction memory access.

Input ITBIT CLK The ITBIT signal driven by the ARM macrocell. When HIGH,
denotes that the ARM processor is in Thumb state. When LOW the
processor is in ARM state. This signal is valid with the address.

Input LATECANCEL CLK The coprocessor late cancel signal driven by the ARM macrocell. If
HIGH during the first memory cycle of a coprocessor instruction,
then the coprocessor must cancel the instruction without changing
any internal state. This signal is only asserted in cycles where the
previous instruction accessed memory and a Data Abort occurred.

Output MMDCTRL[7:0] CLK A control bus, used to reconfigure the memory map decode logic.

Output MMDDA[31:0] CLK The ARM DA[31:0] signal, pipelined for the memory map decode
interface.

Output MMDInMREQ CLK The ARM InMREQ signal, pipelined for the memory map decode
interface.

Table A-1 ETM9 signals (continued)

Type Signal name Clock domain Description
A-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Signal Descriptions
Output MMDDnMREQ CLK The ARM DnMREQ signal, pipelined for the memory map decode
interface.

Output MMDDnRW CLK The ARM DnRW signal, pipelined for the memory map decode
interface.

Output MMDIA[31:1] CLK The ARM IA[31:1] signal, pipelined for the memory map decode
interface.

Input MMDIN CLK Decoded MMD resources. Different sizes are described in Pin
names on page 1-5.

Output MMDITBIT CLK The ARM ITBIT signal, pipelined for the memory map decode
interface.

Input MUXINSEL TCK 1 = Test wrapper in INTEST mode

Selects the test wrapper scan chain as the source for ETM9 inputs. If
MUXINSEL is set to 1 MUXOUTSEL must be set to 0.

Input MUXOUTSEL TCK 1 = Test wrapper in EXTEST mode.

Selects the test wrapper scan chain as the source for ETM9 outputs.
If MUXOUTSEL is set to 1 MUXINSEL must be set to 0.

Input nRESET CLK Active LOW ETM9 reset.

Input nTRST TCK Active LOW JTAG test reset.

Input PASS CLK The PASS coprocessor signal driven by the ARM macrocell. This
signal indicates that the instruction in the Execute stage of the
pipeline follower of the ETM9 is executed.

Output PIPESTAT[2:0] CLK Indicates the pipeline status of the ARM macrocell.

Output PORTMODE[1:0] CLK This output bus enables the on-chip trace port output logic to be
configured for normal, multiplexed, or demultiplexed modes of
operation.

Output PORTSIZE[2:0] CLK Indicates the currently selected port size in use on the
TRACEPKT[15:0] bus.

000 = 4-bit port

001 = 8-bit port

010 = 16-bit port

011 to 111 = reserved.

Table A-1 ETM9 signals (continued)

Type Signal name Clock domain Description
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. A-5

Signal Descriptions
Input PROCID[31:0] CLK This bus provides a copy of the current context ID or overlay number
from the ARM system control coprocessor or peripheral.

Input PROCIDWRIn CLK This signal must be asserted whenever the PROCID bus changes.
This causes the ETM to output the new context ID at the next
available opportunity.

Output PWRDOWN TCK When HIGH, indicates that the ETM9 can be powered down.

Input

Input

RANGEOUT[0],
RANGEOUT[1]

CLK The RANGEOUT[0], RANGEOUT[1], and DBGRNG[1:0]
EmbeddedICE signals driven by the ARM macrocell. The
EmbeddedICE RANGEOUT signals indicate that the
corresponding watchpoint unit has matched the conditions currently
present on the address, control and data buses. These signals are
independent of the state of the enable control bit of the watchpoint
unit.

Input SCANMODE CLK or TCK Selects between functional mode and test mode:

Functional mode TCK

Scan mode CLK

Input SYSOPT[8:0] - Indicates to the debug tools the system options that have been
implemented. Bits are tied HIGH or LOW, as appropriate, as part of
the integration process.

Input TCK TCK Test clock.

Input TCKEN TCK Synchronous enable for test clock.

Input TDI TCK Test data input.

Output TDO TCK Test data output.

Input TMS TCK Test mode select.

Output TRACEPKT[15:0] CLK The trace packet port.

Output TRACESYNC CLK A synchronization signal, indicating the start of a branch sequence
on the trace packet port.

Input WEDGE TCK Controls which edge the wrapper chain output activates on:

1 = activate on rising edge

0 = activate on falling edge.

Input WSEI TCK Enables scanning of data through the test wrapper scan chain inputs.

Table A-1 ETM9 signals (continued)

Type Signal name Clock domain Description
A-6 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Signal Descriptions
Input WSEO TCK Enables scanning of data through the test wrapper scan chain
outputs.

Input WSI TCK Serial input data for the test wrapper scan chain.

Output WSO TCK Serial output data from the test wrapper scan chain.

Input ZIFIRST CLK Asserted when in Java state on the first ARM instruction to be traced.
(No more than two instructions are ever traced for a bytecode.)a

Input ZILAST CLK Asserted when in Java state on the last ARM instruction to be traced.
(No more than two instructions are ever traced for a bytecode.)a

a. If only one ARM instruction is traced in Java state, both ZIFIRST and ZILAST are asserted.

Table A-1 ETM9 signals (continued)

Type Signal name Clock domain Description
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. A-7

Signal Descriptions
A-8 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Appendix B
Integrating the EtmMuxDemux Block into ETM9

This appendix describes how to integrate the EtmMuxDemux block into an ETM9. It
contains the following section:

• Using the EtmMuxDemux block on page B-2.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. B-1

Integrating the EtmMuxDemux Block into ETM9
B.1 Using the EtmMuxDemux block

The EtmMuxDemux module takes the standard trace port interface from the ETM9 and,
using the CLK, PWRDOWN, ETMnRESET, PORTMODE, and CLKDIVTWOEN
outputs, converts the trace to the correct port mode. The example HDL for configuring
the trace port is not part of the ETM9 macrocell HDL. It is provided in an additional file
ETM9/EtmMuxDemux.v in the ETM9 HDL directory.

Figure B-1 ETM to EtmMuxDemux connections

Refer to Clocks and resets on page 3-12 for more information on CLK and nRESET.

Note
 • When instantiating your EtmMuxDemux module, ensure that you wire all 16

TRACEPKT signals to all 16 TRACEPKTetm[15:0] signals.

• Ensure that the EtmMuxDemux CLK input is wired to the ETM CLK and not the core
clock.

• Ensure that EtmMuxDemux nRESET is wired to the ETM nRESET and not the core
reset.
B-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Glossary

This glossary describes some of the terms used in technical documents from ARM
Limited.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only
supports a subset of the functionality provided by the AMBA AXI protocol. The full
AMBA AHB protocol specification includes a number of features that are not
commonly required for master and slave IP developments and ARM Limited
recommends only a subset of the protocol is usually used. This subset is defined as the
AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA
is the ARM open standard for on-chip buses. It is an on-chip bus specification that
details a strategy for the interconnection and management of functional blocks that
make up a System-on-Chip (SoC). It aids in the development of embedded processors
with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC
modules.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that
helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

AMBA See Advanced Microcontroller Bus Architecture.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function.
It can be custom-built or mass-produced.

Application Specific Standard Part/Product (ASSP)
An integrated circuit that has been designed to perform a specific application function.
Usually consists of two or more separate circuit functions combined as a building block
suitable for use in a range of products for one or more specific application markets.

ASIC See Application Specific Integrated Circuit.

ASSP See Application Specific Standard Part/Product.

ATPG See Automatic Test Pattern Generation.

Automatic Test Pattern Generation (ATPG)
The process of automatically generating manufacturing test vectors for an ASIC design,
using a specialized software tool.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock
that results to control the operating state of the macrocell.

Debugger A debugging system that includes a program, used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

Design Simulation Model (DSM)
A functional simulation model of the device that is derived from the Register Transfer
Level (RTL) but that does not reveal its internal structure. The DSM does not model any
features added during synthesis such as internal scan chains. The DSM provides higher
speed for functional simulation than that of the Sign-Off Model (SOM).

DSM See Design Simulation Model.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction and
data trace information on a trace port. The ETM provides processor driven trace through
a trace port compliant to the ATB protocol.

ETM See Embedded Trace Macrocell.
Glossary-2 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

Glossary
Half-rate clocking (ETM)
Dividing the trace clock by two so that the TPA can sample trace data signals on both
the rising and falling edges of the trace clock. The primary purpose of half-rate clocking
is to reduce the signal transition rate on the trace clock of an ASIC for very high-speed
systems.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
comprises several macrocells (such as a processor, an ETM, and a memory block) plus
application-specific logic.

Modified Virtual Address (MVA)
A Virtual Address produced by the ARM processor can be changed by the current
Process ID to provide a Modified Virtual Address (MVA) for the MMUs and caches.

See also Fast Context Switch Extension.

MVA See Modified Virtual Address.

SCREG The currently selected scan chain number in an ARM TAP controller.

SPICE Simulation Program with Integrated Circuit Emphasis. An accurate transistor-level
electronic circuit simulation tool that can predict how an equivalent real circuit behaves
for given circuit conditions.

TAP See Test access port.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is TRST. This signal is
mandatory in ARM cores because it is used to reset the debug logic.

Trace driver A Remote Debug Interface target that controls a piece of trace hardware. That is, the
trigger macrocell, trace macrocell, and trace capture tool.

Trace hardware A term for a device that contains an Embedded Trace Macrocell.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a
low-cost product designed specifically for trace acquisition, or a logic analyzer.
ARM DDI 0157G Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. Glossary-3

Glossary
Glossary-4 Copyright © 1999-2002, 2006 ARM Limited. All rights reserved. ARM DDI 0157G

	ETM9 Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Product revision status
	Using this manual
	Timing diagram conventions
	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ETM9
	Feedback on this book

	Introduction
	1.1 About the ETM9
	1.2 Product revisions
	1.2.1 ETM versions and variants
	1.2.2 Pin names
	1.2.3 Changes to the programmer’s model in Rev 0a
	Half-rate clocking
	Status register

	1.2.4 Changes to the programmer’s model in Rev 1
	Context ID
	System options
	Trace port mode
	Instruction tracing on/off
	Data controlled instruction tracing

	1.2.5 Changes to the programmer’s model in Rev 2
	1.2.6 Changes to the programmer’s model in Rev 2a
	1.2.7 Changes to the programmer’s model in r2p2

	Accessing ETM9 Registers
	2.1 TAP interface
	2.2 Programming and reading ETM9 registers

	Integrating the ETM9
	3.1 About integrating the ETM9
	3.2 ARM interfacing
	3.2.1 ETM9 to ARM9 connection guide
	3.2.2 INSTRVALID
	3.2.3 Data buses
	3.2.4 Coprocessor data bus connections
	3.2.5 Memory interface signals on ETM9 (Rev 2 and above)

	3.3 Clocks and resets
	3.3.1 CLK and CLKEN
	Connecting to an ARM9E-S or an ARM9EJ-S macrocell
	Connecting to an ARM9TDMI macrocell
	Connecting to an ARM920T or ARM922T macrocell
	Connecting to an ARM946E-S, an ARM966E-S, or an ARM926EJ-S macrocell

	3.3.2 ETM reset
	3.3.3 TCK and TCKEN
	3.3.4 TAP reset

	3.4 TAP interface wiring
	3.4.1 IEEE 1149.1 compatibility
	3.4.2 Multiprocessor TAP structure

	3.5 System control signals
	3.5.1 Debug request output wiring
	3.5.2 Using the PWRDOWN output
	3.5.3 FIFOFULL
	3.5.4 Using the context ID signals
	3.5.5 Using the system options bus

	3.6 Trace port interfacing
	3.6.1 Trace port logic
	3.6.2 Single-processor tracing
	3.6.3 Dual-processor tracing
	3.6.4 Trace signal output timing
	3.6.5 PCB design guidelines

	3.7 Modes of operation of the trace port
	3.7.1 Normal trace port signals
	3.7.2 Multiplexed trace port signals
	3.7.3 Demultiplexed trace port signals
	3.7.4 Operation with asynchronous TCK
	Slow system clock speeds

	Memory Map Decode Interface
	4.1 About the memory map decode interface
	4.1.1 Signal descriptions

	4.2 Memory map decode example

	Test Wrapper
	5.1 About the ETM9 test wrapper
	5.1.1 Scan insertion and ATPG
	ETM9 test wrapper

	ETM Integration Testing
	6.1 About the ETM Integration Kit
	6.1.1 Design flow
	6.1.2 Supported configurations
	6.1.3 Directory structure
	6.1.4 Additional components required
	6.1.5 Design structure

	6.2 Test system
	6.2.1 The system test bench
	The external memory
	The Boundary Scan Trickbox (BST)
	EtmMonitor
	Tube

	6.2.2 HDL hierarchy
	ETM outputs and inputs
	ARM core
	Embedded Trace Buffer
	EtmMuxDemux
	JTAG interface
	ARMcore_ETMx_AMBA
	AHB wrappers

	6.3 ETM integration test program
	6.3.1 Test program breakdown
	6.3.2 Adapting the test program

	6.4 Trace buffer integration test program
	6.5 Simple demonstration test
	6.6 Source compilation
	6.6.1 Environment set up
	ModelGen Design Signoff models
	Embedded Trace Buffer
	AHB Wrappers
	Test bench environment

	6.6.2 Verilog source compilation
	Using ModelSim
	Using Cadence Verilog-NC
	Using Cadence Verilog-XL
	Using VCS

	6.6.3 Test program compilation

	6.7 Simulation
	6.7.1 Analyzing the ETM integration test simulation results
	6.7.2 Analyzing the ETB Integration test simulation results

	6.8 Test verification
	6.8.1 Trace Comparison Scripts
	6.8.2 Decompressor
	Typical decompressor script usage

	6.8.3 Executed Instruction Stream converter
	Typical EIS converter script usage

	6.8.4 Trace Buffer Extraction Script
	6.8.5 ETM Port Mode Conversion Script
	6.8.6 EtmCompare
	Problems with EtmCompare

	6.9 Running the Trace Comparison Script
	6.10 Troubleshooting
	6.10.1 Log files
	6.10.2 EtmCompare Errors
	6.10.3 Information messages

	Software Considerations for Trace
	7.1 Tracing dynamically loaded images
	7.1.1 Why dynamically-loaded code requires special hardware and software support
	7.1.2 ETM9 (Rev 1 and above) hardware support

	7.2 Simple overlay support
	7.2.1 Overlay support on ARM926EJ-S, ARM946E-S, and ARM966E-S macrocells

	Physical Trace Port Signal Guidelines
	8.1 About trace port signal quality
	8.2 ASIC pad selection, placement, and package type
	8.3 PCB design guidelines
	8.3.1 Dedicated trace port
	PCB track length
	Signal quality

	8.3.2 Shared trace port

	8.4 EMI compliance
	8.5 Further references

	Signal Descriptions
	A.1 Signal descriptions

	Integrating the EtmMuxDemux Block into ETM9
	B.1 Using the EtmMuxDemux block

	Glossary

