
AMBA® DMA Controller DMA-330
Revision: r1p0

Technical Reference Manual
Copyright © 2007, 2009 ARM Limited. All rights reserved.
ARM DDI 0424B (ID112209)

AMBA DMA Controller DMA-330
Technical Reference Manual

Copyright © 2007, 2009 ARM Limited. All rights reserved.

Release Information

The Change history table lists the changes made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

19 December 2007 A Non-Confidential First issue for the r0p0 release

19 November 2009 B Non-Confidential First issue for the r1p0 release
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. ii
ID112209 Non-Confidential, Unrestricted Access

Contents
AMBA DMA Controller DMA-330 Technical
Reference Manual

Preface
About this book .. x
Feedback .. xiii

Chapter 1 Introduction
1.1 About the DMAC .. 1-2
1.2 Compliance .. 1-4
1.3 Features ... 1-5
1.4 Interfaces ... 1-6
1.5 Configurable options .. 1-7
1.6 Test features .. 1-8
1.7 Product documentation, design flow, and architecture .. 1-9
1.8 Product revisions ... 1-11
1.9 Terminology ... 1-12

Chapter 2 Functional Overview
2.1 Overview .. 2-2
2.2 DMAC interfaces .. 2-4
2.3 Operating states .. 2-8
2.4 Initializing the DMAC ... 2-11
2.5 Using the APB slave interfaces ... 2-13
2.6 Peripheral request interface ... 2-15
2.7 Using events and interrupts ... 2-23
2.8 Aborts .. 2-25
2.9 Security usage ... 2-29
2.10 Constraints and limitations of use .. 2-33
2.11 Programming restrictions ... 2-34
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. iii
ID112209 Non-Confidential, Unrestricted Access

Contents
Chapter 3 Programmers Model
3.1 About this programmers model .. 3-2
3.2 Register summary .. 3-5
3.3 Register descriptions ... 3-11

Chapter 4 Instruction Set
4.1 Instruction syntax conventions ... 4-2
4.2 Instruction set summary ... 4-3
4.3 Instructions .. 4-4
4.4 Assembler directives .. 4-20

Appendix A Signal Descriptions
A.1 Clocks and resets .. A-2
A.2 AXI signals ... A-3
A.3 APB signals ... A-6
A.4 Peripheral request interface ... A-7
A.5 Interrupt signals ... A-8
A.6 Tie-off signals .. A-9

Appendix B MFIFO Usage Overview
B.1 About MFIFO usage overview ... B-2
B.2 Aligned transfers .. B-3
B.3 Unaligned transfers .. B-5
B.4 Fixed transfers ... B-9

Appendix C Revisions

Glossary
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. iv
ID112209 Non-Confidential, Unrestricted Access

List of Tables
AMBA DMA Controller DMA-330 Technical
Reference Manual

Change history .. ii
Table 2-1 AXI characteristics for a DMA transfer .. 2-6
Table 2-2 Handshake rules ... 2-16
Table 3-1 DMAC control register summary ... 3-5
Table 3-2 DMA channel thread status register summary .. 3-6
Table 3-3 AXI status and loop counter register summary ... 3-7
Table 3-4 DMAC debug register summary .. 3-9
Table 3-5 DMAC configuration register summary ... 3-9
Table 3-6 Peripheral and component identification register summary .. 3-10
Table 3-7 DSR Register bit assignments .. 3-11
Table 3-8 DPC Register bit assignments .. 3-12
Table 3-9 INTEN Register bit assignments ... 3-13
Table 3-10 INT_EVENT_RIS Register bit assignments .. 3-14
Table 3-11 INTMIS Register bit assignments ... 3-15
Table 3-12 INTCLR Register bit assignments ... 3-16
Table 3-13 FSRD Register bit assignments .. 3-16
Table 3-14 FSRC Register bit assignments .. 3-17
Table 3-15 FTRD Register bit assignments .. 3-18
Table 3-16 FTRn Register bit assignments ... 3-19
Table 3-17 CSRn Register bit assignments .. 3-22
Table 3-18 CPCn Register bit assignments .. 3-23
Table 3-19 SARn Register bit assignments .. 3-24
Table 3-20 DARn Register bit assignments .. 3-25
Table 3-21 CCRn Register bit assignments .. 3-26
Table 3-22 Swap data ... 3-29
Table 3-23 LC0_n Register bit assignments ... 3-30
Table 3-24 LC1_n Register bit assignments ... 3-30
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. v
ID112209 Non-Confidential, Unrestricted Access

List of Tables
Table 3-25 DBGSTATUS Register bit assignments .. 3-31
Table 3-26 DBGCMD Register bit assignments .. 3-31
Table 3-27 DBGINST0 Register bit assignments .. 3-32
Table 3-28 DBGINST1 Register bit assignments .. 3-33
Table 3-29 CR0 Register bit assignments .. 3-34
Table 3-30 CR1 Registers bit assignments ... 3-35
Table 3-31 CR2 Register bit assignments .. 3-36
Table 3-32 CR3 Register bit assignments .. 3-37
Table 3-33 CR4 Register bit assignments .. 3-38
Table 3-34 CRD Registers bit assignments .. 3-39
Table 3-35 WD Register bit assignments .. 3-40
Table 3-36 Conceptual peripheral ID register bit assignments ... 3-41
Table 3-37 periph_id_0 Register bit assignments ... 3-42
Table 3-38 periph_id_1 Register bit assignments ... 3-42
Table 3-39 periph_id_2 Register bit assignments ... 3-42
Table 3-40 periph_id_3 Register bit assignments ... 3-42
Table 3-41 pcell_id Register bit assignments ... 3-43
Table 4-1 Instruction syntax summary .. 4-3
Table 4-2 DMAMOV CCR argument description and the default values .. 4-21
Table A-1 Clock and reset ... A-2
Table A-2 AXI-AW signals ... A-3
Table A-3 AXI-W signals ... A-3
Table A-4 AXI-B signals .. A-4
Table A-5 AXI-AR signals .. A-4
Table A-6 AXI-R signals .. A-4
Table A-7 Non-secure APB interface signals .. A-6
Table A-8 Secure APB interface signals ... A-6
Table A-9 Peripheral request interface .. A-7
Table A-10 Interrupt signals .. A-8
Table A-11 DMAC tie-off signals ... A-9
Table A-12 Interrupt and peripheral tie-off signals .. A-9
Table C-1 Differences between issue A and issue B ... C-1
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. vi
ID112209 Non-Confidential, Unrestricted Access

List of Figures
AMBA DMA Controller DMA-330 Technical
Reference Manual

Key to timing diagram conventions .. xi
Figure 1-1 Interfaces on the DMAC .. 1-2
Figure 1-2 Example system .. 1-2
Figure 2-1 DMAC block diagram .. 2-2
Figure 2-2 APB slave interfaces ... 2-4
Figure 2-3 AXI master interface connections ... 2-5
Figure 2-4 Peripheral request interface .. 2-7
Figure 2-5 Interrupt interface .. 2-7
Figure 2-6 Reset initialization interface .. 2-7
Figure 2-7 Thread operating states .. 2-8
Figure 2-8 Request and acknowledge buses on the peripheral request interface 2-15
Figure 2-9 Burst request signaling ... 2-21
Figure 2-10 Single and burst request signaling .. 2-21
Figure 2-11 Single transfers for a burst request ... 2-22
Figure 2-12 Abort process .. 2-27
Figure 3-1 DMAC summary register map ... 3-3
Figure 3-2 DSR Register bit assignments .. 3-11
Figure 3-3 DPC Register bit assignments .. 3-12
Figure 3-4 INTEN Register bit assignments ... 3-13
Figure 3-5 INT_EVENT_RIS Register bit assignments .. 3-14
Figure 3-6 INTMIS Register bit assignments ... 3-15
Figure 3-7 INTCLR Register bit assignments ... 3-15
Figure 3-8 FSRD Register bit assignments .. 3-16
Figure 3-9 FSRC Register bit assignments .. 3-17
Figure 3-10 FTRD Register bit assignments .. 3-17
Figure 3-11 FTRn Register bit assignments ... 3-19
Figure 3-12 CSRn Register bit assignments .. 3-21
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. vii
ID112209 Non-Confidential, Unrestricted Access

List of Figures
Figure 3-13 CPC Register bit assignments and address offsets .. 3-23
Figure 3-14 SARn Register bit assignments and address offsets .. 3-24
Figure 3-15 DARn Register bit assignments and address offsets .. 3-24
Figure 3-16 CCRn Register bit assignments and base address offsets ... 3-25
Figure 3-17 LC0_n Register bit assignments and base address offsets .. 3-29
Figure 3-18 LC1_n Register bit assignments and base address offsets .. 3-30
Figure 3-19 DBGSTATUS Register bit assignments .. 3-31
Figure 3-20 DBGCMD Register bit assignments .. 3-31
Figure 3-21 DBGINST0 Register bit assignments .. 3-32
Figure 3-22 DBGINST1 Register bit assignments .. 3-33
Figure 3-23 CR0 Register bit assignments .. 3-34
Figure 3-24 CR1 Register bit assignments .. 3-35
Figure 3-25 CR2 Register bit assignments .. 3-36
Figure 3-26 CR3 Register bit assignments .. 3-37
Figure 3-27 CR4 Register bit assignments .. 3-38
Figure 3-28 CRD Register bit assignments .. 3-38
Figure 3-29 WD Register bit assignments .. 3-40
Figure 3-30 periph_id Register bit assignments ... 3-41
Figure 3-31 pcell_id Register bit assignments ... 3-43
Figure 4-1 DMAADDH encoding .. 4-4
Figure 4-2 DMAEND encoding ... 4-4
Figure 4-3 DMAFLUSHP encoding .. 4-5
Figure 4-4 DMAGO encoding ... 4-6
Figure 4-5 DMAKILL encoding ... 4-7
Figure 4-6 DMALD[S|B] encoding .. 4-8
Figure 4-7 DMALDP<S|B> encoding ... 4-9
Figure 4-8 DMALP encoding .. 4-10
Figure 4-9 DMALPEND[S|B] encoding ... 4-11
Figure 4-10 DMAMOV encoding .. 4-12
Figure 4-11 DMANOP encoding ... 4-13
Figure 4-12 DMARMB encoding .. 4-14
Figure 4-13 DMASEV encoding ... 4-14
Figure 4-14 DMAST[S|B] encoding .. 4-15
Figure 4-15 DMASTP<S|B> encoding ... 4-16
Figure 4-16 DMASTZ encoding .. 4-17
Figure 4-17 DMAWFE encoding .. 4-17
Figure 4-18 DMAWFP encoding .. 4-18
Figure 4-19 DMAWMB encoding .. 4-19
Figure B-1 Simple aligned program .. B-3
Figure B-2 Aligned asymmetric program with multiple loads .. B-4
Figure B-3 Aligned asymmetric program with multiple stores ... B-4
Figure B-4 Aligned to unaligned program ... B-5
Figure B-5 Unaligned to aligned program ... B-6
Figure B-6 Unaligned to aligned with excess initial load ... B-7
Figure B-7 Aligned burst with unaligned MFIFO width ... B-8
Figure B-8 Fixed destination with aligned address ... B-9
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. viii
ID112209 Non-Confidential, Unrestricted Access

Preface

This preface introduces the AMBA DMA Controller DMA-330 Technical Reference Manual. It
contains the following sections:
• About this book on page x
• Feedback on page xiii.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. ix
ID112209 Non-Confidential, Unrestricted Access

Preface
About this book
This is the Technical Reference Manual (TRM) for the AMBA DMA Controller DMA-330.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for system designers, system integrators, and programmers who are
designing or programming a System-on-Chip (SoC) device that uses the DMA Controller
(DMAC).

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for a high-level view of the DMAC.

Chapter 2 Functional Overview
Read this for a description of the major interfaces and components of the DMAC.
The chapter also describes how they operate.

Chapter 3 Programmers Model
Read this for a description of the DMAC memory map and registers.

Chapter 4 Instruction Set
Read this for a description of the instruction set.

Appendix A Signal Descriptions
Read this for a description of the DMAC input and output signals.

Appendix B MFIFO Usage Overview
Read this for a description of how the DMAC uses the MFIFO.

Appendix C Revisions
Read this for a description of the technical changes between released issues of this
book.

 Glossary Read this for definitions of terms used in this book.

Conventions

Conventions that this book can use are described in:
• Typographical on page xi
• Timing diagrams on page xi
• Signals on page xi.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. x
ID112209 Non-Confidential, Unrestricted Access

Preface
Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing
diagrams. Variations, when they occur, have clear labels. You must not assume any timing
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. xi
ID112209 Non-Confidential, Unrestricted Access

Preface
Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:

• AMBA DMA Controller DMA-330 Implementation Guide (ARM DII 0192)

• AMBA DMA Controller DMA-330 Integration Manual (ARM DII 0193)

• AMBA Designer (FD001) User Guide (ARM DUI 0333)

• AMBA DMA Controller DMA-330 Supplement to AMBA Designer (FD001) User Guide
(ARM DSU 0009)

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406)

• AMBA AXI Protocol v1.0 Specification (ARM IHI 0022)

• AMBA 3 APB Protocol v1.0 Specification (ARM IHI 0024).

Other publications

This section lists relevant documents published by third parties:

• JEDEC Standard Manufacturer’s Identification Code, JEP106, http://www.jedec.org.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. xii
ID112209 Non-Confidential, Unrestricted Access

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DDI 0424B
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. xiii
ID112209 Non-Confidential, Unrestricted Access

Chapter 1
Introduction

This chapter introduces the DMA Controller (DMAC). It contains the following sections:
• About the DMAC on page 1-2
• Compliance on page 1-4
• Features on page 1-5
• Interfaces on page 1-6
• Configurable options on page 1-7
• Test features on page 1-8
• Product documentation, design flow, and architecture on page 1-9
• Product revisions on page 1-11
• Terminology on page 1-12.

Note
 The DMAC product designator is either PL330 or DMA-330 and depends on the product revision
as follows:

r0p0 PL330.

r1p0 or later DMA-330.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-1
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.1 About the DMAC
The DMAC is an Advanced Microcontroller Bus Architecture (AMBA) compliant peripheral
that is developed, tested, and licensed by ARM.

The DMAC provides an AXI interface to perform the DMA transfers and two APB interfaces
that control its operation. The DMAC implements TrustZone® secure technology with one APB
interface operating in the Secure state and the other operating in the Non-secure state. See the
ARM Architecture Reference Manual for more information about TrustZone technology.

The DMAC includes a small instruction set that provides a flexible method of specifying the
DMA operations. This enables it to provide greater flexibility than the fixed capabilities of a
Linked-List Item (LLI) based DMA controller. To minimize the program memory requirements,
the DMAC uses variable-length instructions.

Figure 1-1 shows the interfaces that are available on the DMAC.

Figure 1-1 Interfaces on the DMAC

Figure 1-2 shows an example system that contains a DMAC.

Figure 1-2 Example system

DMAC

Non-secure APB slave interface

Secure APB slave interface

Interrupts [x:0]Peripheral request interface [x:0]

AXI master interface

SMC

DMC DRAM

Flash
memory

Secure
APB slave
interface

AXI
master

interface

DMAC

AXI
Interconnect

AXI-APB
bridge

GPIO

Non-
secure

APB slave
interface

Peripheral
request
interface

Interrupt
outputs

AXI-APB
bridge

UART

Timer

ARM
CPU

ARM
CPU
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-2
ID112209 Non-Confidential, Unrestricted Access

Introduction
The example system contains:
• AXI bus masters:

— a DMAC
— two ARM processors.

• an AXI interconnect and two AMBA protocol bridge components
• AMBA slaves:

— a Dynamic Memory Controller (DMC)
— a Static Memory Controller (SMC)
— a Timer
— a General Purpose Input-Output (GPIO)
— a Universal Asynchronous Receiver-Transmitter (UART).

The AXI interconnect enables each bus master to access the slaves. The ARM processors can
access the APB interfaces of the DMAC by using the appropriate AXI to APB bridge
component.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-3
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.2 Compliance
The DMAC is compliant with the following standards and protocols:
• AMBA 3 AXI protocol
• AMBA 3 APB protocol.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-4
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.3 Features
The DMAC provides the following features:

• an instruction set that provides flexibility for programming DMA transfers

• a single AXI master interface that performs the DMA transfers

• dual APB slave interfaces, designated as secure and non-secure, for accessing registers in
the DMAC

• supports TrustZone technology

• supports multiple transfer types:
— memory-to-memory
— memory-to-peripheral
— peripheral-to-memory
— scatter-gather.

• configurable RTL that enables you to optimize the DMAC for the application

• programmable security state for each DMA channel

• signals the occurrence of various DMA events using the interrupt output signals.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-5
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.4 Interfaces
The DMAC has the following external interfaces:

• AMBA AXI master interface, for transfer of memory data to or from an AMBA slave

• AMBA 3 APB slave interface, for programming the DMAC.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-6
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.5 Configurable options
The DMAC has the following configurable options:
• AXI data bus width
• number of active AXI read transactions
• number of active AXI write transactions
• number of DMA channels
• depth of the internal data buffer
• number of lines in the instruction cache and how many words a line contains
• depth of the read instruction queue
• depth of the write instruction queue
• number of peripheral request interfaces
• request acceptance capability of a peripheral request interface
• number of interrupt output signals.

Note
 See the AMBA DMA Controller DMA-330 Supplement to AMBA Designer (FD001) User Guide
for information about how to configure these features and the values that you can assign.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-7
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.6 Test features
The DMAC does not provide test features.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-8
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.7 Product documentation, design flow, and architecture
This section describes the DMAC books, how they relate to the design flow, and the relevant
architectural standards and protocols.

See Additional reading on page xii for more information about the books described in this
section.

1.7.1 Documentation

The DMAC documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the
effects of functional options on the behavior of the DMAC. It is required at all
stages of the design flow. Some behavior described in the TRM might not be
relevant because of the way that the DMAC is implemented and integrated. If you
are programming the DMAC then contact:
• the implementer to determine the build configuration of the implementation
• the integrator to determine the signal configuration of the SoC that you are

using.
The TRM complements protocol specifications and relevant external standards.
It does not duplicate information from these sources.

User Guide
The User Guide (UG) describes:
• the available build configuration options and related issues in selecting

them
• how to use AMBA Designer to:

— configure the DMAC
— generate the Register Transfer Level (RTL).

The UG is a confidential book that is only available to licensees.

Implementation Guide
The Implementation Guide (IG) describes:
• the Out-Of-Box instructions
• the synthesis constraints.
The ARM product deliverables include reference scripts and information about
using them to implement your design.
The IG is a confidential book that is only available to licensees.

Integration Manual
The Integration Manual (IM) describes how to integrate the DMAC into a SoC.
It includes describing the signals that the integrator must tie off to configure the
macrocell for the required integration. Some of the integration is affected by the
configuration options used when implementing the DMAC.
The IM is a confidential book that is only available to licensees.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-9
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.7.2 Design flow

The DMAC is delivered as synthesizable RTL. Before it can be used in a product, it must go
through the following process:

1. Implementation. The implementer configures and synthesizes the RTL to produce a hard
macrocell.

2. Integration. The integrator connects the implemented design into an SoC. This includes
connecting it to a memory system and peripherals.

3. Programming. The system programmer develops the software required to control the
DMAC and tests the required application software.

Each stage of the process:
• can be performed by a different party
• can include options that affect the behavior and features at the next stage:

Build configuration
The implementer chooses the options that affect how the RTL source files are
pre-processed. They usually include or exclude logic that can affect the area or
maximum frequency of the resulting macrocell.

Configuration inputs
The integrator configures some features of the DMAC by tying inputs to
specific values. These configurations affect the start-up behavior prior to the
software taking control. They can also limit the options available to the
software. See Tie-off signals on page A-9.

Software control
The programmer updates the DMAC by programming particular values into
software-visible registers. This affects the behavior of the DMAC.

1.7.3 ARM architecture and protocol information

The DMAC complies with, or implements, the ARM specifications described in:
• Advanced Microcontroller Bus Architecture.

Advanced Microcontroller Bus Architecture

The DMAC complies with the:
• AMBA AXI protocol, see the AMBA AXI Protocol Specification
• AMBA 3 APB protocol, see the AMBA 3 APB Protocol Specification.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-10
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.8 Product revisions
This section describes the differences in functionality between the product revisions:

r0p0 First release.

r0p0 - r1p0 This release includes:
• precise lockup detection, see Watchdog abort on page 2-26
• no store before load, see Abort sources on page 2-25
• addition of the WD Register, see Watchdog Register on page 3-40.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-11
ID112209 Non-Confidential, Unrestricted Access

Introduction
1.9 Terminology
This manual uses the following terminology:

Configurable
A parameter of the DMAC that you can only change prior to the RTL being
generated. See the AMBA DMA Controller DMA-330 Supplement to AMBA
Designer (FD001) User Guide for information about configuring the DMAC.

Programmable
A parameter of the DMAC that you can change after the RTL is generated. See
Chapter 3 Programmers Model for information about programming the DMAC.

Initialization
A feature of the DMAC that is initialized when it exits from reset, depending on
the state of the Tie-off signals on page A-9. See Initializing the DMAC on
page 2-11.

DMA channel
A section of the DMAC that controls a DMA cycle by executing its own program
thread. You can configure the number of channels that the DMAC contains.

DMA cycle All the DMA transfers that the DMAC must perform, to transfer the programmed
number of data packets.

DMA manager
A section of the DMAC that manages the operation of the DMAC by executing
its own program thread.

DMA transfer
The action of transferring a single byte, halfword, or word.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 1-12
ID112209 Non-Confidential, Unrestricted Access

Chapter 2
Functional Overview

This chapter describes the major interfaces and components of the DMAC, and how it operates. It
contains the following sections:
• Overview on page 2-2
• DMAC interfaces on page 2-4
• Operating states on page 2-8
• Initializing the DMAC on page 2-11
• Using the APB slave interfaces on page 2-13
• Peripheral request interface on page 2-15
• Using events and interrupts on page 2-23
• Security usage on page 2-29
• Aborts on page 2-25
• Security usage on page 2-29
• Constraints and limitations of use on page 2-33
• Programming restrictions on page 2-34.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-1
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.1 Overview
Figure 2-1 shows a block diagram of the DMAC.

Figure 2-1 DMAC block diagram

The DMAC contains an instruction processing block that enables it to process program code that
controls a DMA transfer. The program code is stored in a region of system memory that the
DMAC accesses using its AXI interface. The DMAC stores instructions temporarily in a cache.
You can configure the line length and depth of the cache.

You can configure the DMAC with up to eight DMA channels, with each channel capable of
supporting a single concurrent thread of DMA operation. In addition, a single DMA manager
thread exists, and you can use it to initialize the DMA channel threads. The DMAC executes up
to one instruction for each AXI clock cycle. To ensure that it regularly executes each active
thread, it alternates by processing the DMA manager thread and then a DMA channel thread. It
uses a round-robin process when selecting the next active DMA channel thread to execute.

The DMAC uses variable-length instructions that consist of one to six bytes. It provides a
separate Program Counter (PC) register for each DMA channel. When a thread requests an
instruction from an address, the cache performs a look-up. If a cache hit occurs, then the cache
immediately provides the data. Otherwise, the thread is stalled while the DMAC uses the AXI
interface to perform a cache line fill. If an instruction is greater than 4 bytes, or spans the end of
a cache line, the DMAC performs multiple cache accesses to fetch the instruction.

Note
 When a cache line fill is in progress, the DMAC enables other threads to access the cache, but
if another cache miss occurs, this stalls the pipeline until the first line fill is complete.

When a DMA channel thread executes a load or store instruction, the DMAC adds the
instruction to the relevant read or write queue. The DMAC uses these queues as an instruction
storage buffer prior to it issuing the instructions on the AXI bus. The DMAC also contains a
Multi First-In-First-Out (MFIFO) data buffer that it uses to store data that it reads, or writes,
during a DMA transfer.

Note
 To meet your system requirements you can configure the:
• depth of the read queue

APB
memory
mapped
registers

AXI
master

interface

Register access for
the Non-secure state

DMA
data

transfer

Interrupts

DMAC

Register access for
the Secure state

Non-secure
APB slave
interface

Secure
APB slave
interface

Peripheral request interface 0

DMA
instruction
execution

engine

Reset
initialization

interface
Tie-offs

Interrupt
interface

MFIFO
data

buffer

Instruction
cache

Read
instruction

queue
Write

instruction
queue

Peripheral request interface 1
Peripheral request interface 2

Peripheral request interface n

...

Requests
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-2
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
• depth of the write queue
• depth of the MFIFO.

The DMAC provides multiple interrupt outputs to enable efficient communication of events to
external microprocessors. The peripheral request interfaces support the connection of
DMA-capable peripherals to enable memory-to-peripheral and peripheral-to-memory DMA
transfers to occur, without intervention from a microprocessor.

Dual APB interfaces enable the operation of the DMAC to be partitioned into the Secure state
and Non-secure state. You can use the APB interfaces to access status registers and also directly
execute instructions in the DMAC.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-3
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.2 DMAC interfaces
The DMAC contains the following interfaces:
• APB slave interfaces
• AXI master interface
• Peripheral request interfaces on page 2-6
• Interrupt interface on page 2-7
• Reset initialization interface on page 2-7.

2.2.1 APB slave interfaces

The DMAC provides the following APB interfaces:
• non-secure APB slave interface
• secure APB slave interface.

You can use these interfaces to access the registers that control the functionality of the DMAC.
Figure 2-2 shows the signal connections for both interfaces.

Figure 2-2 APB slave interfaces

The DMAC allocates 4KB of memory for each APB interface and implements the memory map
that Chapter 3 Programmers Model describes.

The same clock as the AXI domain clock, aclk, clock the APB interfaces. However, the DMAC
provides a clock enable signal, pclken, that enables both APB interfaces to operate at a slower
clock rate. The clock enable signal must be an integer divisor of aclk.

2.2.2 AXI master interface

The DMAC contains a single AXI master interface that enables it to transfer data from a source
AXI slave to a destination AXI slave.

The DMAC complies to the AMBA AXI protocol. See the AMBA AXI Protocol Specification
for more information.

Figure 2-3 on page 2-5 shows the AXI master interface external connections.

Non-secure
APB slave interface

pclken

paddr[31:0]

pwdata[31:0]
pwrite

psel
penable

prdata[31:0]

Secure
APB slave interface

spaddr[31:0]

spwdata[31:0]
spwrite

spsel
spenable sprdata[31:0]

pready

spready
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-4
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Figure 2-3 AXI master interface connections

Note
 In Figure 2-3:

• awcache[2] is tied LOW

• arcache[3] is tied LOW

• the DMAC does not support locked or exclusive accesses and therefore, arlock[1:0] and
awlock[1:0] are tied LOW

• the value of ID_MSB depends on the number of DMA channels in the configured DMAC

• the values of DATA_MSB and STRB_MSB depend on the data width of the configured
DMAC.

Global signals
aclk

aresetn

Read address channel

arvalid

araddr[31:0]
arlen[3:0]
arsize[2:0]
arburst[1:0]
arlock[1:0]
arcache[3:0]
arprot[2:0]

arid[ID_MSB:0]

arready

Write address channel

awvalid

awaddr[31:0]
awlen[3:0]
awsize[2:0]
awburst[1:0]
awlock[1:0]
awcache[3:0]
awprot[2:0]

awid[ID_MSB:0]

awready

Write channel

wvalid
wlast

wdata[DATA_MSB:0]
wstrb[STRB_MSB:0]

wid[ID_MSB:0]

wready

Buffered write
response channel

bvalid
bresp[1:0]

bid[ID_MSB:0]
bready

Read channel

rvalid
rlast

rdata[DATA_MSB:0]
rresp[1:0]

rid[ID_MSB:0]

rready
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-5
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
When a DMA channel thread accesses the AXI interface, the DMAC signals the AXI
identification tag to be the same number as the DMA channel. For example, when the program
thread for DMA channel 5 performs a DMA store operation, the DMAC sets AWID[2:0] and
WID[2:0] to b101.

When the DMA manager thread accesses the AXI interface, the DMAC signals the AXI
identification tag to be the same number as the number of DMA channels that the DMAC
provides. For example, if the DMAC is configured to provide eight DMA channels, when the
DMA manager performs a read operation, the DMAC sets ARID[3:0] to b1000.

AXI characteristics for a DMA transfer

Table 2-1 shows how the DMAC controls the AXI control signals, depending on the type of
DMA access it performs.

ARLEN and ARSIZE for instruction fetches

When performing an instruction fetch, the DMAC sets ARLEN and ARSIZE as follows:

Instruction cache length ≤ AXI data bus width
• ARLEN = 1
• ARSIZE = length of instruction cache in bytes.

Instruction cache length > AXI data bus width
• ARLEN = ratio of the length of an instruction cache line in bytes to the

width of the AXI data bus in bytes
• ARSIZE = width of AXI data bus in bytes.

2.2.3 Peripheral request interfaces

Figure 2-4 on page 2-7 shows the signals that a single peripheral request interface provides.

Table 2-1 AXI characteristics for a DMA transfer

Access type AxPROT AxLEN AxBURST AxSIZE AxCACHE

DMA channel load See Channel Control Registers on page 3-25

DMA channel store See Channel Control Registers on page 3-25

DMA manager
instruction fetch

Privileged.
Secure state from DNSa bit.
Instruction.

See ARLEN and
ARSIZE for
instruction
fetches

INCR

See ARLEN and
ARSIZE for
instruction
fetches

Cacheable
write-through,
allocate on
reads only.

DMA channel
instruction fetch

Privileged.
Secure state from CNSb bit.
Instruction.

a. The DSR Register contains the DNS bit. See DMA Manager Status Register on page 3-11.
b. The CSRn Register contains the CNS bit for DMA channel n. See Channel Status Registers on page 3-21.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-6
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Figure 2-4 Peripheral request interface

The peripheral request interface supports the connection of DMA-capable peripherals. You
must configure the number of peripheral request interfaces that you require, as the AMBA DMA
Controller DMA-330 Supplement to AMBA Designer (FD001) User Guide describes.

2.2.4 Interrupt interface

The interrupt interface enables efficient communications of events to an external
microprocessor. Figure 2-5 shows the signals that this interface provides.

Figure 2-5 Interrupt interface

You must configure the number of interrupts that you require, as the AMBA DMA Controller
DMA-330 Supplement to AMBA Designer (FD001) User Guide describes.

2.2.5 Reset initialization interface

This interface enables you to initialize the operating state of the DMAC as it exits from reset.
Figure 2-6 shows the tie-off signals that this interface provides.

Figure 2-6 Reset initialization interface

Peripheral
request
interface

daready

drtype[1:0]
drlast

drvalid

datype[1:0]
davalid

drready

Interrupt
interface

irq[n:0]
irq_abort

Reset
initialization

interface

boot_from_pc
boot_addr[31:0]

boot_manager_ns

boot_irq_ns[n:0]
boot_periph_ns[n:0]
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-7
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.3 Operating states
Figure 2-7 shows the operating states for the DMA manager thread and DMA channel threads.
The DMAC provides a separate state machine for each thread.

Figure 2-7 Thread operating states

Note
 In Figure 2-7, the DMAC permits that:
• only DMA channel threads can use states in bold italics
• arcs with no letter designator indicate state transitions for the DMA manager and DMA

channel threads, otherwise use is restricted as follows:
C DMA channel threads only.
M DMA manager thread only.

• states within the dotted line can transition to the Faulting completing, Faulting, or Killing
states.

After the DMAC exits from reset, it sets all DMA channel threads to the Stopped state, and the
status of boot_from_pc controls the DMA manager thread state:

boot_from_pc is LOW
DMA manager thread moves to the Stopped state.

boot_from_pc is HIGH
DMA manager thread moves to the Executing state.

The following sections describe the states:
• Stopped on page 2-9
• Executing on page 2-9
• Cache miss on page 2-10

Executing

Cache
miss

Updating
PC

Waiting
for event

At barrier

Waiting for
peripheral

Completing
Faulting

completing

Faulting Stopped

C

C

CC

C

C

C

C

M

Killing

C

C

C

ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-8
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
• Updating PC on page 2-10
• Waiting for event on page 2-10
• At barrier on page 2-10
• Waiting for peripheral on page 2-10
• Faulting completing on page 2-10
• Faulting on page 2-10
• Killing on page 2-10
• Completing on page 2-10.

2.3.1 Stopped

The thread has an invalid PC and it is not fetching instructions. Depending on the thread type,
you can cause the thread to move to the Executing state by:

DMA manager thread
With boot_from_pc HIGH and aresetn LOW then the DMA manager thread
moves to the Executing state after aresetn goes HIGH.

DMA channel thread
Programming the DMA manager thread to execute DMAGO for a DMA channel
thread in the Stopped state.

2.3.2 Executing

The thread has a valid PC and therefore the DMAC includes the thread when it arbitrates. The
thread can then change to one of the following states under the following conditions:

Stopped When the DMA manager thread executes DMAEND.

Cache miss When the instruction cache does not contain the next instruction for either
the DMA manager thread or the DMA channel thread.

Updating PC When the DMAC calculates the address of the next access in the cache.

Waiting for event When a thread executes DMAWFE.

At barrier When a DMA channel thread either:
• executes DMARMB, DMAWMB, or DMAFLUSHP
• updates control registers that affect alignment, see Updating DMA

channel control registers during a DMA cycle on page 2-34.

Waiting for peripheral
When a DMA channel thread executes DMAWFP.

Killing When a DMA channel thread executes DMAKILL.

Faulting completing
For a DMA channel thread when either:
• the thread executes an undefined or invalid instruction
• an AXI bus error occurs during an instruction fetch or data transfer.

Faulting For the DMA manager thread when either:
• the thread executes an undefined or invalid instruction
• an AXI bus error occurs during an instruction fetch.
For a DMA channel thread when a watchdog timeout abort occurs.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-9
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Completing When a DMA channel thread executes DMAEND.

2.3.3 Cache miss

The thread is stalled and the DMAC is performing a cache line fill. After it completes the cache
fill, the thread returns to the Executing state.

2.3.4 Updating PC

The DMAC is calculating the address of the next access in the cache. After it calculates the PC,
the thread returns to the Executing state.

2.3.5 Waiting for event

The thread is stalled and is waiting for the DMAC to execute DMASEV using the corresponding
event number. After the corresponding event occurs, the thread returns to the Executing state.

2.3.6 At barrier

A DMA channel thread is stalled and the DMAC is waiting for transactions on the AXI bus to
complete. After the AXI transactions complete, the thread returns to the Executing state.

2.3.7 Waiting for peripheral

A DMA channel thread is stalled and the DMAC is waiting for the peripheral to provide the
requested data. After the peripheral provides the data, the thread returns to the Executing state.

2.3.8 Faulting completing

A DMA channel thread is waiting for the AXI interface to signal that the outstanding load or
store transactions are complete. After the transactions complete, the thread moves to the
Faulting state.

2.3.9 Faulting

The thread is stalled indefinitely. The thread moves to the Stopped state when you use the
DBGCMD Register to instruct the DMAC to execute DMAKILL for that thread. See Debug
Command Register on page 3-31.

2.3.10 Killing

A DMA channel thread is waiting for the AXI interface to signal that the outstanding load or
store transactions are complete. After the transactions complete, the thread moves to the
Stopped state.

2.3.11 Completing

A DMA channel thread is waiting for the AXI interface to signal that the outstanding load or
store transactions are complete. After the transactions complete, the thread moves to the
Stopped state.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-10
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.4 Initializing the DMAC
The DMAC provides several tie-off signals that initialize its operating state when it exits from
reset. The following sections describe the initialization of the tie-offs:
• How to set the security state of the DMA manager
• How to set the location of the first instruction for the DMAC to execute
• How to set the security state for the interrupt outputs on page 2-12
• How to set the security state for a peripheral request interface on page 2-12.

2.4.1 How to set the security state of the DMA manager

The boot_manager_ns signal is the only method to set the security state of the DMA manager.
When the DMAC exits from reset, it reads the status of boot_manager_ns and sets the security
of the DMA manager as Table A-11 on page A-9 shows.

Note
 When set, the security state remains constant until a state transition on aresetn resets the
DMAC.

See DMA manager thread is in the Secure state on page 2-29 and DMA manager thread is in
the Non-secure state on page 2-29 for a description of how the security state of the DMA
manager affects how the DMAC operates.

2.4.2 How to set the location of the first instruction for the DMAC to execute

After the DMAC exits from reset, the status of the boot_from_pc signal controls if the DMAC
either:

• Enters the Executing state and:
— Updates the DPC Register using the address that boot_addr[31:0] provides, see

DMA Program Counter Register on page 3-12.
— Fetches and executes the instruction from the address that the DPC Register

contains.

Note
 — You must ensure that the state of the boot_addr[31:0] bus, points to a region in

system memory that contains the start address for the DMAC boot program.
— If you set boot_manager_ns so that the DMA manager operates in the Non-secure

state, the boot program must reside in a non-secure region of memory.

• Enters the Stopped state. You must then provide the first instruction to the DMAC by
using one of the slave APB interfaces.

Note
 If boot_manager_ns was HIGH when the DMAC exited reset then to send instructions

you must use the secure APB interface, see Security usage on page 2-29.

Table A-11 on page A-9 shows the function of boot_from_pc.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-11
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.4.3 How to set the security state for the interrupt outputs

The DMAC provides the boot_irq_ns[x:0] signals to enable you to assign each irq[x] signal to
a security state as Table A-12 on page A-9 shows.

Note
 When set, the security state of each irq[x] remains constant until a state transition on aresetn
resets the DMAC.

See Security usage on page 2-29 for a description of how the security state of the irq[x] signals
affects how the DMAC executes the DMAWFE and DMASEV instructions.

2.4.4 How to set the security state for a peripheral request interface

The DMAC provides the boot_periph_ns[x:0] signals to enable you to assign each peripheral
request interface to a security state as Table A-12 on page A-9 shows.

Note
 When set, the security state of each peripheral request interface remains constant until a state
transition on aresetn resets the DMAC.

See Security usage on page 2-29 for how the security state of the peripheral request interfaces
affects how a DMA channel thread executes the DMAWFP, DMALDP, DMASTP, or DMAFLUSHP
instructions.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-12
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.5 Using the APB slave interfaces
The APB slave interface connects the DMAC to the APB and enables a microprocessor to
access the registers that Chapter 3 Programmers Model describes. Using these registers, a
microprocessor can:
• access the status of the DMA manager thread
• access the status of the DMA channel threads
• enable or clear interrupts
• enable events
• issue an instruction for the DMAC to execute by programming the following debug

registers:
— DBGCMD Register, see Debug Command Register on page 3-31
— DBGINST0 Register, see Debug Instruction-0 Register on page 3-32
— DBGINST1 Register, see Debug Instruction-1 Register on page 3-33.

2.5.1 Issuing instructions to the DMAC using an APB interface

When the DMAC is operating in real-time, you can only issue the following limited subset of
instructions:

DMAGO Starts a DMA transaction using a DMA channel that you specify.

DMASEV Signals the occurrence of an event, or interrupt, using an event number that you
specify.

DMAKILL Terminates a thread.

You must ensure that you use the appropriate APB interface, depending on the security state in
which the boot_manager_ns initializes the DMAC to operate. For example, if the DMAC is in
the Secure state, you must issue the instruction using the secure APB interface, otherwise the
DMAC ignores the instruction. You can use the secure APB interface, or the non-secure APB
interface, to start or restart a DMA channel when the DMAC is in the Non-secure state.

Note
 Before you can issue instructions using the debug instruction registers or the DBGCMD
Register, you must read the DBGSTATUS Register to ensure that debug is idle, otherwise the
DMAC ignores the instructions. See Debug Command Register on page 3-31 and Debug Status
Register on page 3-30.

When the DMAC receives an instruction from an APB slave interface, it can take several clock
cycles before it can process the instruction, for example, if the pipeline is busy processing
another instruction.

Note
 Prior to issuing DMAGO, you must ensure that the system memory contains a suitable program for
the DMAC to execute, starting at the address that the DMAGO specifies.

Example 2-1 on page 2-14 shows the necessary steps to start a DMA channel thread using the
debug instruction registers.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-13
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Example 2-1 Using DMAGO with the debug instruction registers

1. Create a program for the DMA channel.

2. Store the program in a region of system memory.

Using one of the APB interfaces on the DMAC, program a DMAGO instruction:

3. Poll the DBGSTATUS Register to ensure that debug is idle, that is, the dbgstatus bit is 0.
See Debug Status Register on page 3-30.

4. Write to the DBGINST0 Register and enter the:
• Instruction byte 0 encoding for DMAGO.
• Instruction byte 1 encoding for DMAGO.
• Debug thread bit to 0. This selects the DMA manager thread. See Debug

Instruction-0 Register on page 3-32.

5. Write to the DBGINST1 Register with the DMAGO instruction byte [5:2] data, see Debug
Instruction-1 Register on page 3-33. You must set these four bytes to the address of the
first instruction in the program, that was written to system memory in step 2.

Instruct the DMAC to execute the instruction that the debug instruction registers contain by:

6. Writing zero to the DBGCMD Register. The DMAC starts the DMA channel thread and
sets the dbgstatus bit to 1. See Debug Command Register on page 3-31.
After the DMAC completes execution of the instruction, it clears the dbgstatus bit to 0.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-14
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.6 Peripheral request interface
Figure 2-8 shows that the peripheral request interface consists of a peripheral request bus and a
DMAC acknowledge bus that use the prefixes:
dr The peripheral request bus.
da The DMAC acknowledge bus.

Figure 2-8 Request and acknowledge buses on the peripheral request interface

Both buses use the valid and ready handshake that the AXI protocol describes. For more
information on the handshake process, see the AMBA AXI Protocol v1.0 Specification.

The peripheral uses drtype[1:0] to either:
• request a single transfer
• request a burst transfer
• acknowledge a flush request.

The DMAC uses datype[1:0] to either:
• signal when it completes the requested single transfer
• signal when it completes the requested burst transfer
• issue a flush request.

drlast enables the peripheral to notify the DMAC when the last DMA transfer commences.

Note
 If you configure the DMAC to provide more than one peripheral request interface, each
interface is assigned a unique identifier, _<x> where <x> represents the number of the interface.
See Peripheral request interface on page A-7 for information about how the identifier is
appended to the signal name.

The following sections describe:
• Mapping to a DMA channel
• Handshake rules on page 2-16
• Request acceptance capability configuration on page 2-16
• Peripheral length management on page 2-16
• DMAC length management on page 2-18
• Peripheral request interface timing diagrams on page 2-20.

2.6.1 Mapping to a DMA channel

The DMAC enables you to assign a peripheral request interface to any of the DMA channels.
When a DMA channel thread executes DMAWFP, the value programmed in the peripheral [4:0]
field specifies the peripheral associated with that DMA channel. See DMAWFP on page 4-18.

DMACPeripheral

drvalid
drtype[1:0]
drlast

daready

davalid
datype[1:0]

drready Peripheral
request
interface
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-15
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.6.2 Handshake rules

The DMAC uses the DMA handshake rules that Table 2-2 shows, when a DMA channel thread
is active, that is, not in the Stopped state. See Peripheral request interface timing diagrams on
page 2-20 for more information.

2.6.3 Request acceptance capability configuration

During configuration of the DMAC, you can set the number of simultaneous active requests that
a DMAC is able to accept, for each peripheral request interface. An active request is where the
DMAC has not started the requested AXI data transfers.

The DMAC has a request FIFO, for each peripheral interface, which it uses to capture the
requests from a peripheral. The depth of a FIFO depends on the number of simultaneous active
requests that the corresponding peripheral request interface is configured to support. To store
the state of an active request from the peripheral, the request FIFO uses two bits to store the state
of:

• drtype_<x>[0]. Indicates the request type, burst or single.

• drlast_<x>. Indicates if the peripheral is signaling the last data transfer of the DMA
transfer.

When a request FIFO is full then the DMAC sets the corresponding drready_<x> LOW to
signal that the peripheral must not send requests.

2.6.4 Peripheral length management

The peripheral request interface enables a peripheral to control the quantity of data that a DMA
cycle contains, without the DMAC being aware of how many data transfers it contains. The
peripheral controls the DMA cycle by using:
• drtype[1:0] to select a single or burst transfer
• drlast to notify the DMAC when it commences the final request in the current series.

Table 2-2 Handshake rules

Rule Descriptiona

1 drvalid can change from LOW to HIGH on any aclk cycle, but it must only change from HIGH to LOW when drready is
HIGH.

2 drtype can only change when either:
• drready is HIGH
• drvalid is LOW.

3 drlast can only change when either:
• drready is HIGH
• drvalid is LOW.

4 davalid can change from LOW to HIGH on any aclk cycle, but it must only change from HIGH to LOW when daready is
HIGH.

5 datype can only change when either:
• daready is HIGH
• davalid is LOW.

a. All signals are only permitted to change state when aclk changes state.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-16
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
When the DMAC executes a DMAWFP periph instruction, it halts execution of the thread and waits
for the peripheral to send a request. When the peripheral sends the request, the DMAC sets the
state of the request flags depending on the state of the following signals:

drtype_<x>[1:0] The DMAC sets the state of the request_type flag:
drtype_<x>[1:0]=b00

request_type<x> = Single.
drtype_<x>[1:0]=b01

request_type<x> = Burst.

drlast_<x> The DMAC sets the state of the request_last flag:
drlast_<x>=0 request_last<x> = 0.
drlast_<x>=1 request_last<x> = 1.

Note
 If the DMAC executes a DMAWFP single or DMAWFP burst instruction then the DMAC sets:
• the request_type<x> flag to Single or Burst, respectively
• the request_last<x> flag to 0.

DMALPFE is an assembler directive which forces the associated DMALPEND instruction to have its nf
bit set to 0. This creates a program loop that does not use a loop counter to terminate the loop.
The DMAC exits the loop when the request_last flag is set to 1.

The DMAC conditionally executes the following instructions, depending on the state of the
request_type and request_last flags:

DMALD, DMAST, DMALPEND
When these instructions use the optional B|S suffix then the DMAC executes a
DMANOP if the request_type flag does not match.

DMALDP<B|S>, DMASTP<B|S>
The DMAC executes a DMANOP if the request_type flag does not match the B|S
suffix.

DMALPEND When the nf bit is 0, the DMAC executes a DMANOP if the request_last flag is set.

Use the DMALDB, DMALDPB, DMASTB and DMASTPB instructions if you require the DMAC to issue a
burst transfer when the DMAC receives a burst request, that is, drtype_<x>[1:0] = b01. The
values in the CCRn Register control the amount of data that the DMAC transfers, see Channel
Control Registers on page 3-25.

Use the DMALDS, DMALDPS, DMASTS and DMASTPS instructions if you require the DMAC to issue a
single transfer when the DMAC receives a single request, that is, drtype_<x>[1:0] = b00. The
DMAC ignores the value of the src_burst_len and dst_burst_len fields in the CCRn Register and
sets the arlen[3:0] or awlen[3:0] buses to 0x0.

Example program for peripheral length management

Example 2-2 on page 2-18 shows a DMAC program that transfers 64 words from memory to
peripheral zero, when the peripheral sends a burst request, that is, drtype_<x>[1:0] = b01.
When the peripheral sends a single request, that is, drtype_<x>[1:0] = b00, then the DMAC
program transfers one word from memory to peripheral zero.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-17
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
To transfer the 64 words, the program instructs the DMAC to perform 16 AXI transfers. Each
AXI transfer consists of a 4-beat burst (SB=4, DB=4) that moves a word of data (SS=32,
DS=32).

Example 2-2 Peripheral length management program

Set up for burst transfers (4-beat burst, so SB4 and DB4), (word data width, so SS32 and DS32)
DMAMOV CCR SB4 SS32 DB4 DS32
DMAMOV SAR ...
DMAMOV DAR ...

Initialize peripheral ‘0’
DMAFLUSHP P0

Perform peripheral transfers
Outer loop - DMAC responds to peripheral requests until peripheral sets drlast_0 = 1
DMALPFE

Wait for request, DMAC sets request_type0 flag depending on the request type it receives
DMAWFP 0, periph

Set up loop for burst request: first 15 of 16 sets of transactions
Note: B suffix - conditionally executed only if request_type0 flag = Burst
DMALP 15

DMALDB
DMASTB

Only loop back if servicing a burst, otherwise treat as a NOP
DMALPENDB

Perform final transaction (16 of 16). Send the peripheral acknowledgement of burst request completion
DMALDB
DMASTPB P0

Perform transaction if the peripheral signals a single request
Note: S suffix - conditionally executed only if request_type0 flag = Single
DMALDS
DMASTPS P0

Exit loop if DMAC receives the last request, that is, drlast_0 = 1
DMALPEND

DMAEND

In Example 2-2, the program shows the use of the:

• DMAWFP periph instruction. The DMAC waits for either a burst or single request from the
peripheral.

• DMASTPB and DMASTPS instructions. The DMAC informs the peripheral when a transfer is
complete.

2.6.5 DMAC length management

DMAC length management is when the DMAC controls the total amount of data to transfer. The
peripheral uses the peripheral request interface to notify the DMAC when it requires the DMAC
to transfer data to or from the peripheral. The DMA channel thread controls how the DMAC
responds to the peripheral requests.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-18
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
The following constraints apply to DMAC length management:

• The total quantity of data for all the single requests from a peripheral must be less than the
quantity of data for a burst request for that peripheral.

Note
 The CCRn Register controls how much data is transferred for a burst request and a single

request. ARM recommends that you do not update a CCRn Register when a transfer is in
progress for channel n. See Channel Control Registers on page 3-25.

• When the peripheral sends a burst request then the peripheral must not send a single
request until the DMAC acknowledges that the burst request is complete.

Use the DMAWFP single instruction when you require the program thread to halt execution until
the peripheral request interface receives any request type. If the head entry in the request FIFO
is of request type:

Single The DMAC pops the entry from the FIFO and continues program execution.

Burst The DMAC leaves the entry in the FIFO and continues program execution.

Note
 The burst request entry remains in the request FIFO until the DMAC executes a

DMAWFP burst instruction or a DMAFLUSHP instruction.

Use the DMAWFP burst instruction when you require the program thread to halt execution until the
peripheral request interface receives a burst request. If the head entry in the request FIFO is of
request type:

Single The DMAC removes the entry from the FIFO and program execution remains
halted.

Burst The DMAC pops the entry from the FIFO and continues program execution.

Use the DMALDP instruction when you require the DMAC to send an acknowledgement to the
peripheral when it completes the AXI read transfers. Similarly, use the DMASTP instruction when
you require the DMAC to send an acknowledgement to the peripheral when it completes the
AXI write transfers. The DMAC uses the datype_<x>[1:0] bus to signal a transfer
acknowledgement to peripheral <x>.

Note
 The DMAC sends an acknowledgement for a read transaction when rvalid and rlast are HIGH
and for a write transaction when bvalid is HIGH. If your system is able to buffer AXI write
transfers then it might be possible for the DMAC to send an acknowledgement to the peripheral
but the transfer of write data to the end destination is still in progress.

Use the DMAFLUSHP instruction to reset the request FIFO for the peripheral request interface. After
the DMAC executes DMAFLUSHP, it ignores peripheral requests until the peripheral acknowledges
the flush request. This enables the DMAC and peripheral to synchronize with each other.

Example program for DMAC length management

Example 2-3 on page 2-20 shows a DMAC program that can transfer 1027 words when a
peripheral signals 16 consecutive burst requests and three consecutive single requests.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-19
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Example 2-3 DMAC length management program

Set up for AXI burst transfer (4-beat burst, so SB4 and DB4), (word data width, so SS32 and DS32)
DMAMOV CCR SB4 SS32 DB4 DS32
DMAMOV SAR ...
DMAMOV DAR ...

Initialize peripheral '0'
DMAFLUSHP P0

Perform peripheral transfers
Burst request loop to transfer 1024 words
DMALP 16

Wait for the peripheral to signal a burst request. DMAC transfers 64 words for each burst request
DMAWFP 0, burst

Set up loop for burst request: first 15 of 16 sets of transactions
DMALP 15

DMALD
DMAST

DMALPEND

Perform final transaction (16 of 16). Send the peripheral acknowledgement of burst request completion
DMALD
DMASTPB 0

Finish burst loop
DMALPEND

Set up for AXI single transfer (word data width, so SS32 and DS32)
DMAMOV CCR SB1 SS32 DB1 DS32

Single request loop to transfer 3 words
DMALP 3

Wait for the peripheral to signal a single request. DMAC to transfer one word
DMAWFP 0, single

Perform transaction for single request and send completion acknowledgement to the peripheral
DMALDS
DMASTPS P0

Finish single loop
DMALPEND

Flush the peripheral, in case the single transfers were in response to a burst request
DMAFLUSHP 0

DMAEND

2.6.6 Peripheral request interface timing diagrams

The following sections provide examples of the functional operation of the peripheral request
interface using the rules that Handshake rules on page 2-16 describe:
• Burst request on page 2-21
• Single and burst request on page 2-21
• DMAC performs single transfers for a burst request on page 2-22.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-20
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Burst request

Figure 2-9 shows the DMA request timing when a peripheral requests a burst transfer.

Figure 2-9 Burst request signaling

In Figure 2-9:

T1 The DMAC detects a request for a burst transfer.

T3 - T6 The DMAC performs a burst transfer.

T7 The DMAC sets davalid HIGH and sets datype[1:0] to indicate that the burst
transfer is complete.

Single and burst request

Figure 2-10 shows the DMA request timing when a peripheral requests a single and a burst
transfer.

Figure 2-10 Single and burst request signaling

In Figure 2-10:

T1 The DMAC detects a request for a single transfer.

T3 The DMAC ignores the single transfer request because the DMA channel thread
had executed a DMAWFP burst instruction. See DMAWFP on page 4-18.

T5 The DMAC detects a request for a burst transfer.

T7 - T10 The DMAC performs a burst transfer.

drvalid

aclk

drtype[1:0] Burst

drready

davalid

datype[1:0]

daready

Ack

Data burstDMA activity on
the AXI data bus

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

drvalid

aclk

drtype[1:0] Single

drready

davalid

datype[1:0]

daready

Ack

Data burstDMA activity on
the AXI data bus

Burst

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-21
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
T11 The DMAC sets davalid HIGH and sets datype[1:0] to indicate that the burst
transfer is complete.

DMAC performs single transfers for a burst request

Figure 2-11 shows the DMA request timing when a peripheral requests a burst transfer, but the
DMAC has insufficient data remaining in the MFIFO to generate a burst and therefore
completes the request using single transfers.

Figure 2-11 Single transfers for a burst request

In Figure 2-11:

T1 The DMAC detects a request for a burst transfer.

T3 The MFIFO contains insufficient data for the DMAC to generate a burst transfer
and therefore, the DMAC performs a single transfer.

T4 The DMAC signals davalid and datype[1:0] to indicate completion of a single
transfer.

T5 - T10 The DMAC performs the remaining three single transfers.

T11 The DMAC signals davalid and datype[1:0] to request the peripheral to flush the
contents of any control registers that are associated with the current DMA cycle.

T12 The peripheral signals drvalid and drtype[1:0] to acknowledge the flush request.

T0

drvalid

aclk

drtype[1:0] Burst

drready

davalid

datype[1:0]

daready

Ack

DataDMA activity on
the AXI data bus

Ack Ack Ack Flush

Flush

Data Data Data

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-22
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.7 Using events and interrupts
The number of events and interrupts that the DMAC can support is configurable. Once the
configured number of event-interrupt resources is set then you must program the INTEN
Register to control if each event-interrupt resource is either an event or an interrupt, see
Interrupt Enable Register on page 3-13.

When the DMAC executes a DMASEV instruction it modifies the event-interrupt resource that you
specify. If the INTEN Register sets the event-interrupt resource to function as an:

Event The DMAC generates an event for the specified event-interrupt resource. When
the DMAC executes a DMAWFE instruction for the same event-interrupt resource
then it clears the event.

Interrupt The DMAC sets irq<event_num> HIGH, where event_num is the number of the
specified event-resource. To clear the interrupt you must write to the INTCLR
Register, see Interrupt Clear Register on page 3-15.

Therefore, if you require a DMAC to be able to signal two interrupt requests and generate five
events then the DMAC must be configured to support 7 event-interrupt resources. In this
example, the DMAC provides seven interrupt signals, irq[6:0], and therefore five of these
signals are not used.

Note
 See the AMBA DMA Controller DMA-330 Supplement to AMBA Designer (FD001) User Guide
for information about how to configure the number of events or interrupts that a DMAC
supports.

This section describes:
• Using an event to restart DMA channels
• Interrupting a microprocessor on page 2-24.

2.7.1 Using an event to restart DMA channels

When you program the INTEN Register to generate an event, you can use the DMASEV and DMAWFE
instructions to restart one or more DMA channels. See Interrupt Enable Register on page 3-13.

The following sections describe the DMAC behavior when the:
• DMAC executes DMAWFE before DMASEV
• DMAC executes DMASEV before DMAWFE on page 2-24.

DMAC executes DMAWFE before DMASEV

To restart a single DMA channel:

1. The first DMA channel executes DMAWFE and then stalls while it waits for the event to
occur.

2. The other DMA channel executes DMASEV using the same event number. This generates an
event, and the first DMA channel restarts. The DMAC clears the event, one aclk cycle
after it executes DMASEV.

You can program multiple channels to wait for the same event. For example, if four DMA
channels have all executed DMAWFE for event 12, then when another DMA channel executes
DMASEV for event 12, the four DMA channels all restart at the same time. The DMAC clears the
event, one clock cycle after it executes DMASEV.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-23
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
DMAC executes DMASEV before DMAWFE

If the DMAC executes DMASEV before another channel executes DMAWFE then the event remains
pending until the DMAC executes DMAWFE. When the DMAC executes DMAWFE it halts execution
for one aclk cycle, clears the event and then continues execution of the channel thread.

For example, if the DMAC executes DMASEV 6 and none of the other threads have executed
DMAWFE 6 then the event remains pending. If the DMAC executes DMAWFE 6 instruction for
channel 4 and then executes DMAWFE 6 instruction for channel 3, then:

1. The DMAC halts execution of the channel 4 thread for one aclk cycle.

2. The DMAC clears event 6.

3. The DMAC resumes execution of the channel 4 thread.

4. The DMAC halts execution of the channel 3 thread and the thread stalls while it waits for
the next occurrence of event 6.

2.7.2 Interrupting a microprocessor

The DMAC provides the irq[x] signals for use as active-high level-sensitive interrupts to
external microprocessors. When you program the INTEN Register to generate an interrupt, after
the DMAC executes DMASEV, it sets the corresponding irq[x] HIGH. See Interrupt Enable
Register on page 3-13.

An external microprocessor can clear the interrupt by writing to the Interrupt Clear Register on
page 3-15.

Note
 Executing DMAWFE does not clear an interrupt.

If you use the DMASEV instruction to notify a microprocessor when the DMAC completes a DMALD
or DMAST instruction then ARM recommends that you insert a memory barrier instruction before
the DMASEV. Otherwise the DMAC might signal an interrupt before the AXI transfers complete.
For example:

DMALD
DMAST

Issue a write memory barrier
Wait for the AXI write transfer to complete before the DMAC can send an interrupt

DMAWMB

The DMAC sends the interrupt
DMASEV
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-24
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.8 Aborts
This section describes:
• Abort types
• Abort sources
• Watchdog abort on page 2-26
• Abort handling on page 2-26.

2.8.1 Abort types

An abort can be classified as either precise or imprecise, depending on whether the DMAC
provides an abort handler with the precise state of the DMAC when the abort occurs. If an abort
is:

precise The DMAC updates the PC Register with the address of the instruction that
created the abort.

imprecise The PC Register might contain the address of an instruction which did not cause
the abort to occur.

2.8.2 Abort sources

The DMAC signals a precise abort under the following conditions:

• A DMA channel thread in the Non-secure state attempts to program its CCRn Register
and generate a secure AXI transaction. See Channel Control Registers on page 3-25.

• A DMA channel thread in the Non-secure state executes DMAWFE or DMASEV for an event that
is set as secure. The boot_irq_ns tie-offs initialize the security state for an event.

Note
 For each event, the INTEN Register controls if the DMAC generates an event or signals

an interrupt. See Interrupt Enable Register on page 3-13.

• A DMA channel thread attempts to execute DMAST but the DMAC calculates that when it
eventually performs the store, the MFIFO contains insufficient data to enable it to
complete the store.

• A DMA channel thread in the Non-secure state executes DMAWFP, DMALDP, DMASTP, or
DMAFLUSHP for a peripheral request interface that is set as secure. The boot_periph_ns
tie-offs initialize the security state for a peripheral request interface.

• A DMA manager thread in the Non-secure state executes DMAGO to attempt to start a secure
DMA channel thread.

• The DMAC receives an ERROR response on the AXI master interface when it performs
an instruction fetch.

• A thread executes an undefined instruction.

• A thread executes an instruction with an operand that is invalid for the configuration of
the DMAC.

Note
 When the DMAC signals a precise abort, the instruction that triggers the abort is not executed.
Instead, the DMAC executes a DMANOP.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-25
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
The DMAC signals an imprecise abort under the following conditions:

• the DMAC receives an ERROR response on the AXI master interface when it performs a
data load

• the DMAC receives an ERROR response on the AXI master interface when it performs a
data store

• a DMA channel thread executes DMALD or DMAST, and the MFIFO is too small to hold the
required amount of data

• a DMA channel thread executes DMAST but the thread has not executed sufficient DMALD
instructions

• a DMA channel thread locks up because of resource starvation, and this causes the
internal watchdog timer to time out.

2.8.3 Watchdog abort

The DMAC can lock up if one or more DMA channel programs are running and the MFIFO is
too small to satisfy the storage requirements of the DMA programs.

The DMAC contains logic to prevent it from remaining in a state where it is unable to complete
a DMA transfer.

The DMAC detects a lock up when all of the following conditions occur:

• load queue is empty

• store queue is empty

• all of the running channels are prevented from executing a DMALD instruction either because
the MFIFO does not have sufficient free space or another channel owns the load-lock.

When the DMAC detects a lockup it signals an interrupt and can also abort the contributing
channels. The DMAC behavior depends on the state of the wd_irq_only bit in the WD Register.
If:

wd_irq_only=0 The DMAC aborts all of the contributing DMA channels and sets
irq_abort HIGH

wd_irq_only=1 The DMAC sets irq_abort HIGH.

For more information see Resource sharing between DMA channels on page 2-36 and Watchdog
Register on page 3-40.

2.8.4 Abort handling

The architecture of the DMAC is not designed to recover from an abort and therefore, you must
use an external agent, such as a microprocessor, to terminate a thread when an abort occurs.
Figure 2-12 on page 2-27 shows the operating states for the DMA channel and DMA manager
threads after an abort occurs.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-26
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
Figure 2-12 Abort process

After an abort occurs, the action the DMAC takes depends on the thread type:

DMA channel thread
The thread immediately moves to the Faulting completing state. In this state, the
DMAC:
• sets irq_abort HIGH
• stops executing instructions for the DMA channel
• invalidates all cache entries for the DMA channel
• updates the CPCn Register to contain the address of the aborted instruction

provided that the abort was precise, see Channel Program Counter
Registers on page 3-23

• does not generate AXI accesses for any instructions remaining in the read
queue and write queue

• permits currently active AXI transactions to complete.

Note
 After the transactions for the DMA channel complete, the thread moves to

the Faulting state.

DMA channel thread DMA manager thread

Executing
program thread

Has an abort
occurred?

Yes

No

Active
AXI transactions

complete?
No

DMAKILL
executed?

Yes

No

Executing
program thread

Has an abort
occurred?

No

Thread moves to the
Faulting completing state

Thread moves to the
Faulting state

Thread moves to the
Stopped state

Yes

Yes
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-27
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
DMA manager thread
The thread immediately moves to the Faulting state and the DMAC sets
irq_abort HIGH.

The external agent can respond to the assertion of irq_abort by:

• Reading the status of the FSRD Register to determine if the DMA manager is Faulting. In
the Faulting state, the FSRD Register provides the cause of the abort. See Fault Status
DMA Manager Register on page 3-16.

• Reading the status of the FSRC Register to determine if a DMA channel is Faulting. In
the Faulting state, the FSRC Register provides the cause of the abort. See Fault Status
DMA Channel Register on page 3-16.

To enable a thread in the Faulting state to move to the Stopped state, the external agent must:

1. Program the DBGINST0 Register with the encoding for the DMAKILL instruction. See
Debug Instruction-0 Register on page 3-32.

2. Write to the DBGCMD Register. see Debug Command Register on page 3-31.

Note
 If the aborted thread is secure, you must use the secure APB interface to update these

registers.

After a thread in the Faulting state executes DMAKILL, it moves to the Stopped state.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-28
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.9 Security usage
When the DMAC exits from reset, the status of the configuration signals that Tie-off signals on
page A-9 describes, configures the security for:

DMA manager thread
The DNS bit in the DSR Register returns the security state of the DMA manager
thread. See DMA Manager Status Register on page 3-11.

Events and interrupts
The INS bit in the CR3 Register returns the security state of the event-interrupt
resources. See Configuration Register 3 on page 3-36.

Peripheral request interfaces
The PNS bit in the CR4 Register returns the security state of these interfaces. See
Configuration Register 4 on page 3-37.

Additionally, each DMA channel thread contains a dynamic non-secure bit, CNS, that is valid
when the channel is not in the Stopped state.

2.9.1 DMA manager thread is in the Secure state

If the DNS bit is 0, the DMA manager thread operates in the Secure state and it only performs
secure instruction fetches. When a DMA manager thread in the Secure state processes:

DMAGO It uses the status of the ns bit, to set the security state of the DMA channel thread
by writing to the CNS bit for that channel.

DMAWFE It halts execution of the thread until the event occurs. When the event occurs, the
DMAC continues execution of the thread, irrespective of the security state of the
corresponding INS bit.

DMASEV It sets the corresponding bit in the INT_EVENT_RIS Register, irrespective of the
security state of the corresponding INS bit. See Event-Interrupt Raw Status
Register on page 3-13.

2.9.2 DMA manager thread is in the Non-secure state

If the DNS bit is 1, the DMA manager thread operates in the Non-secure state, and it only
performs non-secure instruction fetches. When a DMA manager thread in the Non-secure state
processes:

DMAGO The DMAC uses the status of the ns bit, to control if it starts a DMA channel
thread. If:
ns = 0 The DMAC does not start a DMA channel thread and instead it:

1. Executes a NOP.
2. Sets the FSRD Register, see Fault Status DMA Manager

Register on page 3-16.
3. Sets the dmago_err bit in the FTRD Register, see Fault Type

DMA Manager Register on page 3-17.
4. Moves the DMA manager to the Faulting state.

ns = 1 The DMAC starts a DMA channel thread in the Non-secure state and
programs the CNS bit to be non-secure.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-29
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
DMAWFE The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to
control if it waits for the event. If:
INS = 0 The event is in the Secure state. The DMAC:

1. Executes a NOP.
2. Sets the FSRD Register, see Fault Status DMA Manager

Register on page 3-16.
3. Sets the mgr_evnt_err bit in the FTRD Register, see Fault Type

DMA Manager Register on page 3-17.
4. Moves the DMA manager to the Faulting state.

INS = 1 The event is in the Non-secure state. The DMAC halts execution of the
thread and waits for the event to occur.

DMASEV The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to
control if it creates the event-interrupt. If:
INS = 0 The event-interrupt resource is in the Secure state. The DMAC:

1. Executes a NOP.
2. Sets the FSRD Register, see Fault Status DMA Manager

Register on page 3-16.
3. Sets the mgr_evnt_err bit in the FTRD Register, see Fault Type

DMA Manager Register on page 3-17.
4. Moves the DMA manager to the Faulting state.

INS = 1 The event-interrupt resource is in the Non-secure state. The DMAC
creates the event-interrupt.

2.9.3 DMA channel thread is in the Secure state

When the CNS bit is 0, the DMA channel thread is programmed to operate in the Secure state
and it only performs secure instruction fetches.

When a DMA channel thread in the Secure state processes the following instructions:

DMAWFE The DMAC halts execution of the thread until the event occurs. When the event
occurs, the DMAC continues execution of the thread, irrespective of the security
state of the corresponding INS bit, in the CR3 Register.

DMASEV The DMAC creates the event-interrupt, irrespective of the security state of the
corresponding INS bit, in the CR3 Register.

DMAWFP The DMAC halts execution of the thread until the peripheral signals a DMA
request. When this occurs, the DMAC continues execution of the thread,
irrespective of the security state of the corresponding PNS bit, in the CR4
Register.

DMALDP, DMASTP
The DMAC sends a message to the peripheral to communicate that data transfer
is complete, irrespective of the security state of the corresponding PNS bit, in the
CR4 Register.

DMAFLUSHP The DMAC clears the state of the peripheral and sends a message to the
peripheral to resend its level status, irrespective of the security state of the
corresponding PNS bit, in the CR4 Register.

When a DMA channel thread is in the Secure state, it enables the DMAC to perform secure and
non-secure AXI accesses.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-30
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.9.4 DMA channel thread is in the Non-secure state

When the CNS bit is 1, the DMA channel thread is programmed to operate in the Non-secure
state and it only performs non-secure instruction fetches.

When a DMA channel thread in the Non-secure state processes the following instructions:

DMAWFE The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to
control if it waits for the event. If:
INS = 0 The event is in the Secure state. The DMAC:

1. Executes a NOP.
2. Sets the appropriate bit in the FSRC Register that corresponds to

the DMA channel number. See Fault Status DMA Channel
Register on page 3-16.

3. Sets the ch_evnt_err bit in the FTRn Register, see Fault Type
DMA Channel Registers on page 3-18.

4. Moves the DMA channel to the Faulting completing state.
INS = 1 The event is in the Non-secure state. The DMAC halts execution of the

thread and waits for the event to occur.

DMASEV The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to
control if it creates the event. If:
INS = 0 The event-interrupt resource is in the Secure state. The DMAC:

1. Executes a NOP.
2. Sets the appropriate bit in the FSRC Register that corresponds to

the DMA channel number. See Fault Status DMA Channel
Register on page 3-16.

3. Sets the ch_evnt_err bit in the FTRn Register, see Fault Type
DMA Channel Registers on page 3-18.

4. Moves the DMA channel to the Faulting completing state.
INS = 1 The event-interrupt resource is in the Non-secure state. The DMAC

creates the event-interrupt.

DMAWFP The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to
control if it waits for the peripheral to signal a request. If:
PNS = 0 The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.
2. Sets the appropriate bit in the FSRC Register that corresponds to

the DMA channel number. See Fault Status DMA Channel
Register on page 3-16.

3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type
DMA Channel Registers on page 3-18.

4. Moves the DMA channel to the Faulting completing state.
PNS = 1 The peripheral is in the Non-secure state. The DMAC halts execution

of the thread and waits for the peripheral to signal a request.

DMALDP, DMASTP
The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to
control if it sends an acknowledgement to the peripheral. If:
PNS = 0 The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-31
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2. Sets the appropriate bit in the FSRC Register that corresponds to
the DMA channel number. See Fault Status DMA Channel
Register on page 3-16.

3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type
DMA Channel Registers on page 3-18.

4. Moves the DMA channel to the Faulting completing state.
PNS = 1 The peripheral is in the Non-secure state. The DMAC sends a message

to the peripheral to communicate when the data transfer is complete.

DMAFLUSHP The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to
control if it sends a flush request to the peripheral. If:
PNS = 0 The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.
2. Sets the appropriate bit in the FSRC Register that corresponds to

the DMA channel number. See Fault Status DMA Channel
Register on page 3-16.

3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type
DMA Channel Registers on page 3-18.

4. Moves the DMA channel to the Faulting completing state.
PNS = 1 The peripheral is in the Non-secure state. The DMAC clears the state

of the peripheral and sends a message to the peripheral to resend its
level status.

When a DMA channel thread is in the Non-secure state, and a DMAMOV CCR instruction attempts
to program the channel to perform a secure AXI transaction, the DMAC:

1. Executes a DMANOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel
number. See Fault Status DMA Channel Register on page 3-16.

3. Sets the ch_rdwr_err bit in the FTRn Register, see Fault Type DMA Channel Registers on
page 3-18.

4. Moves the DMA channel thread to the Faulting completing state.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-32
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.10 Constraints and limitations of use
This section describes:
• DMA channel arbitration
• DMA channel prioritization
• Instruction cache latency.

2.10.1 DMA channel arbitration

The DMAC uses a round-robin scheme to service the active DMA channels. To ensure that the
DMAC continues to service the DMA manager, it always services the DMA manager prior to
servicing the next DMA channel.

It is not possible to alter the arbitration process of the DMAC.

2.10.2 DMA channel prioritization

The DMAC responds to all active DMA channels with equal priority. It is not possible to
increase the priority of a DMA channel over any other DMA channels.

2.10.3 Instruction cache latency

When a cache miss occurs, the latency to service the request is mainly dependent on the read
latency of the AXI bus. The latency that the DMAC adds is minimal.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-33
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.11 Programming restrictions
The following sections describe restrictions that apply when programming the DMAC:
• Fixed unaligned bursts
• Endian swap size restrictions
• Updating DMA channel control registers during a DMA cycle
• Resource sharing between DMA channels on page 2-36.

2.11.1 Fixed unaligned bursts

The DMAC does not support fixed unaligned bursts. If you program the following conditions,
the DMAC treats this as a programming error:

Unaligned read
• src_inc field is 0 in the CCRn Register, see Channel Control Registers on

page 3-25
• the SARn Register contains an address that is not aligned to the size of data

that the src_burst_size field contains, see Source Address Registers on
page 3-23.

Unaligned write
• dst_inc field is 0 in the CCRn Register, see Channel Control Registers on

page 3-25
• the DARn Register contains an address that is not aligned to the size of data

that the dst_burst_size field contains, see Destination Address Registers on
page 3-24.

2.11.2 Endian swap size restrictions

If you program the endian_swap_size field in the CCRn Register, to enable a DMA channel to
perform an endian swap then you must set the corresponding SARn Register and the
corresponding DARn Register to contain an address that is aligned to the value that the
endian_swap_size field contains. See Channel Control Registers on page 3-25, Source Address
Registers on page 3-23, and Destination Address Registers on page 3-24.

If you program the src_inc field in the CCRn Register to use a fixed address, you must program
the src_burst_size field to select a burst size that is greater than or equal to the value that the
endian_swap_size field specifies. Similarly, if you program the dst_inc field to select a fixed
destination address, you must program the dst_burst_size field to select a burst size that is
greater than or equal to the value that the endian_swap_size field specifies.

For transfers that use an incrementing destination address, you must program the CCRn Register
so that dst_burst_len×dst_burst_size ≥ endian_swap_size. For example, if
endian_swap_size = b010 (32-bit) and dst_burst_size = b001 (2 bytes per beat) then you can
program dst_burst_len = b0001-b1111 (2-16 data transfers). See Channel Control Registers on
page 3-25.

2.11.3 Updating DMA channel control registers during a DMA cycle

Prior to the DMAC executing a sequence of DMALD and DMAST instructions, the values you
program in to the CCRn Register, SARn Register, and DARn Register control the data byte lane
manipulation that the DMAC performs when it transfers the data from the source address to the
destination address. See Channel Control Registers on page 3-25, Source Address Registers on
page 3-23, and Destination Address Registers on page 3-24.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-34
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
You can update these registers during a DMA cycle but if you change certain register fields then
it can cause the DMAC to discard data. The following sections describe the register fields that
might have a detrimental impact on a data transfer:
• Updates that affect the destination address
• Updates that affect the source address.

Updates that affect the destination address

If you use a DMAMOV instruction to update the DARn Register or CCRn Register part way through
a DMA cycle then this might cause a discontinuity in the destination data stream.

A discontinuity occurs if you change either the:

• endian_swap_size field

• dst_inc bit

• dst_burst_size field when dst_inc = 0, that is, fixed-address burst

• DARn Register so that it modifies the destination byte lane alignment. For example, when
the bus width is 64 bits and you change bits [2:0] in the DARn Register.

When a discontinuity in the destination data stream occurs, the DMAC:

1. Halts execution of the DMA channel thread.

2. Completes all outstanding read and write operations for the channel. That is, as if the
DMAC was executing DMARMB and DMAWMB instructions.

3. Discards any residual MFIFO data for the channel.

4. Resumes execution of the DMA channel thread.

Updates that affect the source address

If you use a DMAMOV instruction to update the SARn Register or CCRn Register part way through
a DMA cycle then this might cause a discontinuity in the source data stream.

A discontinuity occurs if you change either the:

• src_inc bit

• src_burst_size field

• SARn Register so that it modifies the source byte lane alignment. For example, when the
bus width is 32 bits and you change bits [1:0] in the SARn Register.

When a discontinuity in the source data stream occurs, the DMAC:

1. Halts execution of the DMA channel thread.

2. Completes all outstanding read operations for the channel. That is, as if the DMAC was
executing DMARMB instruction.

3. Resumes execution of the DMA channel thread. No data is discarded from the MFIFO.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-35
ID112209 Non-Confidential, Unrestricted Access

Functional Overview
2.11.4 Resource sharing between DMA channels

DMA channel programs share the MFIFO data storage resource. You must not start a set of
concurrently running DMA channel programs with a resource requirement that exceeds the
configured size of the MFIFO. If you exceed this limit then the DMAC might lock up and
generate a Watchdog abort, see Watchdog abort on page 2-26.

The DMAC includes a mechanism called the load-lock to ensure that the shared MFIFO
resource is used correctly. The load-lock is either owned by one channel, or it is free. The
channel that owns the load-lock can execute DMALD instructions successfully. A channel that does
not own the load-lock pauses at a DMALD instruction until it takes ownership of the load-lock.

A channel claims ownership of the load lock when:
• it executes a DMALD or DMALDP instruction
• no other channel currently owns the load-lock.

A channel releases ownership of the load-lock when any of the following occur:
• it executes a DMAST, DMASTP, or DMASTZ
• it reaches a barrier, that is, it executes DMARMB or DMAWMB
• it waits, that is, it executes DMAWFP or DMAWFE
• it terminates normally, that is, it executes DMAEND
• it aborts for any reason, including DMAKILL.

The MFIFO resource usage of a DMA channel program is measured in MFIFO entries, and rises
and falls as the program proceeds. The MFIFO resource requirement of a DMA channel
program is described using a static requirement and a dynamic requirement which are affected
by the load-lock mechanism.

ARM defines the static requirement to be the maximum number of MFIFO entries that a channel
is currently using before that channel does one of the following:
• executes a WFP or WFE instruction
• claims ownership of the load-lock.

ARM defines the dynamic requirement to be the difference between the static requirement and
the maximum number of MFIFO entries that a channel program uses at any time during its
execution.

To calculate the total MFIFO requirement, add the largest dynamic requirement to the sum of
all the static requirements.

To avoid DMAC lock-up the total MFIFO requirement of the set of channel programs must be
not larger than the configured MFIFO depth.

See Appendix B MFIFO Usage Overview for more information.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 2-36
ID112209 Non-Confidential, Unrestricted Access

Chapter 3
Programmers Model

This chapter describes the programmers model. It contains the following sections:
• About this programmers model on page 3-2
• Register summary on page 3-5
• Register descriptions on page 3-11.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-1
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.1 About this programmers model
The following information applies to the DMAC registers:

• The base address is not fixed, and can be different for any particular system
implementation. The offset of each register from the base address is fixed.

• Do not attempt to access reserved or unused address locations. Attempting to access these
location can result in Unpredictable behavior.

• Unless otherwise stated in the accompanying text:
— do not modify undefined register bits
— ignore undefined register bits on reads
— all register bits are reset to a logic 0 by a system or power-on reset.

• Access type in Table 3-1 on page 3-5 to Table 3-6 on page 3-10 are described as follows:
RW Read and write.
RO Read only.
WO Write only.

3.1.1 Register map

The register map of the DMAC spans a 4KB region, see Figure 3-1 on page 3-3.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-2
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Figure 3-1 DMAC summary register map

In Figure 3-1, the register map consists of the following sections:

Control registers
Use these registers to control the DMAC.

DMA channel thread status registers
These registers provide the status of the DMA channel threads.

AXI and loop counter status registers
These registers provide the AXI bus transfer status and the loop counter status,
for each DMA channel thread.

Debug registers
These registers enable:
• you to send instructions to a thread when debugging the program code

0x000

Configuration

Debug

AXI and loop counter status

DMA channel thread status

Control

Component ID

0x100

0x13C

0x05C

0xD00

0xD0C

0xE14

0xFE0

0x400

0x4FC

0xE00

0xFFF
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-3
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
• system firmware to send instructions to the DMA manager thread as Issuing
instructions to the DMAC using an APB interface on page 2-13 describes.

Configuration registers
These registers enable system firmware to discover the configuration of the
DMAC and control the behavior of the watchdog.

Component ID registers
These registers enable system firmware to identify an AMBA peripheral.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-4
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.2 Register summary
The following tables show the DMAC registers in base offset order:
• DMAC control register summary
• DMA channel thread status register summary on page 3-6
• AXI status and loop counter register summary on page 3-7
• DMAC debug register summary on page 3-9
• DMAC configuration register summary on page 3-9
• Peripheral and component identification register summary on page 3-10.

Table 3-1 shows the control registers and provides information about their address offsets,
access permissions when using the secure and non-secure APB interfaces, and a brief
description.

Table 3-1 DMAC control register summary

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionthread is
securea

thread is
non-securea

0x000 DSR RO Read As
Zero
(RAZ)

RO 0x0 DMA Manager Status Register on page 3-11

0x004 DPC RO RAZ RO 0x0 DMA Program Counter Register on page 3-12

0x008 -
0x01C

- - - - - Reserved

0x020 INTEN RW RAZ RW 0x0 Interrupt Enable Register on page 3-13

0x024 INT_EVENT_RIS RO RAZ RO 0x0 Event-Interrupt Raw Status Register on
page 3-13

0x028 INTMIS RO RAZ RO 0x0 Interrupt Status Register on page 3-14

0x02C INTCLR WO RAZ WO 0x0 Interrupt Clear Register on page 3-15

0x030 FSRD RO RAZ RO 0x0 Fault Status DMA Manager Register on
page 3-16

0x034 FSRC RO RAZ RO 0x0 Fault Status DMA Channel Register on
page 3-16

0x038 FTRD RO RAZ RO 0x0 Fault Type DMA Manager Register on
page 3-17

0x03C - - - - - Reserved
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-5
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-2 shows the DMA channel thread status registers and provides information about their
address offsets, access permissions when using the secure and non-secure APB interfaces, and
a brief description.

Fault Type DMA Channel Registers on page 3-18

0x040

0x044

0x048

0x04C

0x050

0x054

0x058

0x05C

FTR0
FTR1
FTR2
FTR3
FTR4
FTR5
FTR6
FTR7

RO RAZ RO 0x0 Fault type for DMA channel 0
Fault type for DMA channel 1
Fault type for DMA channel 2
Fault type for DMA channel 3
Fault type for DMA channel 4
Fault type for DMA channel 5
Fault type for DMA channel 6
Fault type for DMA channel 7

0x060 -
0x0FC

- - - - - Reserved

a. You must use the boot_manager_ns signal to set the security state for the DMA manager thread. See the DMA Manager Status Register on
page 3-11 for information about the security state of the DMA manager thread.

Table 3-1 DMAC control register summary (continued)

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionthread is
securea

thread is
non-securea

Table 3-2 DMA channel thread status register summary

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionchannel is
securea

channel is
non-securea

Channel Status Registers on page 3-21

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

CSR0
CSR1
CSR2
CSR3
CSR4
CSR5
CSR6
CSR7

RO RAZ RO 0x0 Channel status for DMA channel 0
Channel status for DMA channel 1
Channel status for DMA channel 2
Channel status for DMA channel 3
Channel status for DMA channel 4
Channel status for DMA channel 5
Channel status for DMA channel 6
Channel status for DMA channel 7
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-6
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-3 shows the AXI status and loop counter registers and provides information about their
address offsets, access permissions when using the secure and non-secure APB interfaces, and
a brief description.

Channel Program Counter Registers on page 3-23

0x104

0x10C

0x114

0x11C

0x124

0x12C

0x134

0x13C

CPC0
CPC1
CPC2
CPC3
CPC4
CPC5
CPC6
CPC7

RO RAZ RO 0x0 Channel PC for DMA channel 0
Channel PC for DMA channel 1
Channel PC for DMA channel 2
Channel PC for DMA channel 3
Channel PC for DMA channel 4
Channel PC for DMA channel 5
Channel PC for DMA channel 6
Channel PC for DMA channel 7

0x140 -
0x3FC

- - - - - Reserved

a. The security state for the channel is set by the security of the DMAGO instruction and the security state of the DMA
manager thread. See the relevant Channel Status Registers on page 3-21 for information about the security state of
the channel.

Table 3-2 DMA channel thread status register summary (continued)

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionchannel is
securea

channel is
non-securea

Table 3-3 AXI status and loop counter register summary

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionchannel is
securea

channel is
non-securea

Source Address Registers on page 3-23

0x400

0x420

0x440

0x460

0x480

0x4A0

0x4C0

0x4E0

SAR0
SAR1
SAR2
SAR3
SAR4
SAR5
SAR6
SAR7

RO RAZ RO 0x0 Source address for DMA channel 0
Source address for DMA channel 1
Source address for DMA channel 2
Source address for DMA channel 3
Source address for DMA channel 4
Source address for DMA channel 5
Source address for DMA channel 6
Source address for DMA channel 7

Destination Address Registers on page 3-24

0x404

0x424

0x444

0x464

0x484

0x4A4

0x4C4

0x4E4

DAR0
DAR1
DAR2
DAR3
DAR4
DAR5
DAR6
DAR7

RO RAZ RO 0x0 Destination address for DMA channel 0
Destination address for DMA channel 1
Destination address for DMA channel 2
Destination address for DMA channel 3
Destination address for DMA channel 4
Destination address for DMA channel 5
Destination address for DMA channel 6
Destination address for DMA channel 7
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-7
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Channel Control Registers on page 3-25

0x408

0x428

0x448

0x468

0x488

0x4A8

0x4C8

0x4E8

CCR0
CCR1
CCR2
CCR3
CCR4
CCR5
CCR6
CCR7

RO RAZ RO 0x0 Channel control for DMA channel 0
Channel control for DMA channel 1
Channel control for DMA channel 2
Channel control for DMA channel 3
Channel control for DMA channel 4
Channel control for DMA channel 5
Channel control for DMA channel 6
Channel control for DMA channel 7

Loop Counter 0 Registers on page 3-29

0x40C

0x42C

0x44C

0x46C

0x48C

0x4AC

0x4CC

0x4EC

LC0_0
LC0_1
LC0_2
LC0_3
LC0_4
LC0_5
LC0_6
LC0_7

RO RAZ RO 0x0 Loop counter 0 for DMA channel 0
Loop counter 0 for DMA channel 1
Loop counter 0 for DMA channel 2
Loop counter 0 for DMA channel 3
Loop counter 0 for DMA channel 4
Loop counter 0 for DMA channel 5
Loop counter 0 for DMA channel 6
Loop counter 0 for DMA channel 7

Loop Counter 1 Registers on page 3-30

0x410

0x430

0x450

0x470

0x490

0x4B0

0x4D0

0x4F0

LC1_0
LC1_1
LC1_2
LC1_3
LC1_4
LC1_5
LC1_6
LC1_7

RO RAZ RO 0x0 Loop counter 1 for DMA channel 0
Loop counter 1 for DMA channel 1
Loop counter 1 for DMA channel 2
Loop counter 1 for DMA channel 3
Loop counter 1 for DMA channel 4
Loop counter 1 for DMA channel 5
Loop counter 1 for DMA channel 6
Loop counter 1 for DMA channel 7

0x414-0x41C - - - - - Reserved

0x434-0x43C - - - - - Reserved

0x454-0x45C - - - - - Reserved

0x474-0x47C - - - - - Reserved

0x494-0x49C - - - - - Reserved

0x4B4-0x4BC - - - - - Reserved

0x4D4-0x4DC - - - - - Reserved

0x4F4-0xCFC - - - - - Reserved

a. The security state for the channel is set by the security of the DMAGO instruction and the security state of the DMA manager thread.
See the relevant Channel Status Registers on page 3-21 for information about the security state of the channel.

Table 3-3 AXI status and loop counter register summary (continued)

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionchannel is
securea

channel is
non-securea
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-8
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-4 shows the debug registers and provides information about their address offsets, access
permissions when using the secure and non-secure APB interfaces, and a brief description.

Table 3-5 shows the configuration registers and provides information about their address
offsets, access permissions when using the secure and non-secure APB interfaces, and a brief
description.

Table 3-6 on page 3-10 shows the Peripheral Identification Registers and Component
Identification Registers.

Table 3-4 DMAC debug register summary

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionthread is
securea

thread is
non-securea

0xD00 DBGSTATUS RO RAZ RO 0x0 Debug Status Register on page 3-30

0xD04 DBGCMD WO RAZ WO - Debug Command Register on page 3-31

0xD08 DBGINST0 WO RAZ WO - Debug Instruction-0 Register on page 3-32

0xD0C DBGINST1 WO RAZ WO - Debug Instruction-1 Register on page 3-33

0xD10 -0xDFC - - - - - Reserved

a. You must use the boot_manager_ns signal to set the security state for the DMA manager thread. See the DMA Manager Status Register
on page 3-11 for information about the security state of the DMA manager thread.

Table 3-5 DMAC configuration register summary

Offset Name Secure
RW

Non-secure RW when:

Reset Descriptionthread is
securea

thread is
non-securea

0xE00 CR0 RO RAZ RO -b Configuration Register 0 on page 3-33

0xE04 CR1 RO RAZ RO -b Configuration Register 1 on page 3-35

0xE08 CR2 RO RAZ RO -b Configuration Register 2 on page 3-36

0xE0C CR3 RO RAZ RO -b Configuration Register 3 on page 3-36

0xE10 CR4 RO RAZ RO -b Configuration Register 4 on page 3-37

0xE14 CRD RO RAZ RO -b DMA Configuration Register on page 3-38

0xE18 -0xE7C - - - - - Reserved

0xE80 WD RW RAZ RW - Watchdog Register on page 3-40

0xE84 -0xFDC - - - - - Reserved

a. You must use the boot_manager_ns signal to set the security state for the DMA manager thread. See the DMA Manager Status
Register on page 3-11 for information about the security state of the DMA manager thread.

b. Configuration-dependent.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-9
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-6 Peripheral and component identification register summary

Offset Name Type Reset Description

0xFE0-0xFEC periph_id_n RO Configuration-dependent Peripheral Identification Registers on page 3-41

0xFF0-0xFFC pcell_id_n RO Configuration-dependent Component Identification Registers 0-3 on page 3-43
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-10
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3 Register descriptions
This section describes the DMAC registers. A summary of each register is shown in the previous
section, that is, Register summary on page 3-5.

3.3.1 DMA Manager Status Register

The DSR Register characteristics are:

Purpose Returns information about the status of the DMA manager thread.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-2 shows the DSR Register bit assignments.

Figure 3-2 DSR Register bit assignments

Table 3-7 shows the DSR Register bit assignments.

31 10 9 8 4 3 0

Undefined

DNS

Wakeup event DMA status

Table 3-7 DSR Register bit assignments

Bits Name Function

[31:10] - Read undefined.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-11
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.2 DMA Program Counter Register

The DPC Register characteristics are:

Purpose Provides the value of the program counter for the DMA manager thread.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-3 shows the DPC Register bit assignments.

Figure 3-3 DPC Register bit assignments

Table 3-8 shows the DPC Register bit assignments.

[9] DNS Provides the security status of the DMA manager thread:
0 = DMA manager operates in the Secure state
1 = DMA manager operates in the Non-secure state.

Note
 You must use the boot_manager_ns signal to set the secure state of the DMA manager thread.

[8:4] Wakeup_event When the DMA manager thread executes a DMAWFE instruction, it waits for the following event to occur:
b00000 = event[0]
b00001 = event[1]
b00010 = event[2]
.
.
.
b11111 = event[31].

[3:0] DMA status The operating state of the DMA manager:
b0000 = Stopped
b0001 = Executing
b0010 = Cache miss
b0011 = Updating PC
b0100 = Waiting for event
b0101-b1110 = reserved
b1111 = Faulting.
See Operating states on page 2-8 for more information.

Table 3-7 DSR Register bit assignments (continued)

Bits Name Function

31 0

pc_mgr

Table 3-8 DPC Register bit assignments

Bits Name Function

[31:0] pc_mgr Program counter for the DMA manager thread
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-12
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.3 Interrupt Enable Register

The INTEN Register characteristics are:

Purpose When the DMAC executes a DMASEV instruction, each bit of the INTEN
Register controls if the DMAC signals:
• the specified event to all of the threads
• an interrupt using the corresponding irq.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-4 shows the INTEN Register bit assignments.

Figure 3-4 INTEN Register bit assignments

Table 3-9 shows the INTEN Register bit assignments.

3.3.4 Event-Interrupt Raw Status Register

The INT_EVENT_RIS Register characteristics are:

Purpose Returns the status of the event-interrupt resources.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

event_irq_select
for event 0

event_irq_select
for event 31

event_irq_select
for event 1
event_irq_select
for event 2

Table 3-9 INTEN Register bit assignments

Bits Name Function

[31:0] event_irq_select Program the appropriate bit to control how the DMAC responds when it executes DMASEV:
Bit [N] = 0 If the DMAC executes DMASEV for the event-interrupt resource N then the DMAC signals

event N to all of the threads. Set bit [N] to 0 if your system design does not use irq[N] to
signal an interrupt request.

Bit [N] = 1 If the DMAC executes DMASEV for the event-interrupt resource N then the DMAC sets
irq[N] HIGH. Set bit [N] to 1 if your system designer requires irq[N] to signal an interrupt
request.

Note
 See DMASEV on page 4-14 for information about selecting an event number.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-13
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-5 shows the INT_EVENT_RIS Register bit assignments.

Figure 3-5 INT_EVENT_RIS Register bit assignments

Table 3-10 shows the INT_EVENT_RIS Register bit assignments.

3.3.5 Interrupt Status Register

The INTMIS Register characteristics are:

Purpose Provides the status of the active interrupts in the DMAC.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-6 on page 3-15 shows the INTMIS Register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

DMASEV [0] active

DMASEV [31] active

DMASEV [1] active
DMASEV [2] active

Table 3-10 INT_EVENT_RIS Register bit assignments

Bits Name Function

[31:0] DMASEV active Returns the status of the event-interrupt resources:
Bit [N] = 0 Event N is inactive or irq[N] is LOW.
Bit [N] = 1 Event N is active or irq[N] is HIGH.

Note
 When the DMAC receives an event request, the INTEN Register controls if the DMAC:

• signals an interrupt using the appropriate irq
• sends the event to all of the threads, see Interrupt Enable Register on page 3-13.

Note
 The DMAC clears bit [N] when either:
• the INTEN Register is programmed to process the event and the DMAC executes a DMAWFE instruction

for that event
• the INTEN Register is programmed to signal an interrupt and you write to the corresponding bit in the

INTCLR Register, see Interrupt Clear Register on page 3-15.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-14
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Figure 3-6 INTMIS Register bit assignments

Table 3-11 shows the INTMIS Register bit assignments.

3.3.6 Interrupt Clear Register

The INTCLR Register characteristics are:

Purpose Provides the status of the active interrupts in the DMAC.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-7 shows the INTCLR Register bit assignments.

Figure 3-7 INTCLR Register bit assignments

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

irq_status for irq[0]

irq_status for irq[31]

irq_status for irq[1]

irq_status for irq[2]

Table 3-11 INTMIS Register bit assignments

Bits Name Function

[31:0] irq_status Provides the status of the interrupts that are active in the DMAC:
Bit [N] = 0 Interrupt N is inactive and therefore irq[N] is LOW.
Bit [N] = 1 Interrupt N is active and therefore irq[N] is HIGH.

Note
 You must use the INTCLR Register to set bit [N] to 0, see Interrupt Clear Register.

Note
 Bit [N] is 0 if the INTEN Register programs DMASEV to signal an event, see Interrupt Enable Register on page 3-13.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

irq_clr for irq[0]

irq_clr for irq[31]

irq_clr for irq[1]

irq_clr for irq[2]
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-15
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-12 shows the INTCLR Register bit assignments.

3.3.7 Fault Status DMA Manager Register

The FSRD Register characteristics are:

Purpose Provides the fault status of the DMA manager.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-8 shows the FSRD Register bit assignments.

Figure 3-8 FSRD Register bit assignments

Table 3-13 shows the FSRD Register bit assignments.

3.3.8 Fault Status DMA Channel Register

The FSRC Register characteristics are:

Purpose Provides the fault status for the DMA channels.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-9 on page 3-17 shows the FSRC Register bit assignments.

Table 3-12 INTCLR Register bit assignments

Bits Name Function

[31:0] irq_clr Controls the clearing of the irq outputs:
Bit [N] = 0 The status of irq[N] does not change.
Bit [N] = 1 The DMAC sets irq[N] LOW if the INTEN Register programs the DMAC to signal an interrupt.

Otherwise, the status of irq[N] does not change. See Interrupt Enable Register on page 3-13.

31 1 0

fs_mgr

Reserved

Table 3-13 FSRD Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined.

{0] fs_mgr Provides the fault status of the DMA manager. Read as:
0 = the DMA manager thread is not in the Faulting state
1 = the DMA manager thread is in the Faulting state. See Fault Type DMA Manager Register on page 3-17 for
information about the type of fault that occurred.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-16
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Figure 3-9 FSRC Register bit assignments

Table 3-14 shows the FSRC Register bit assignments.

3.3.9 Fault Type DMA Manager Register

The FTRD Register characteristics are:

Purpose Provides the type of fault that occurred to move the DMA manager to the
Faulting state.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-1 on page 3-5.

Figure 3-10 shows the FTRD Register bit assignments.

Figure 3-10 FTRD Register bit assignments

31 8 7 6 5 4 3 2 1 0

.

.

.

fault_status for
DMA channel 0
fault_status for
DMA channel 1
fault_status for
DMA channel 2

fault_status for
DMA channel 7

Reserved

Table 3-14 FSRC Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.

[7:0] fault_status Each bit provides the fault status of the corresponding channel. Read as:
Bit [N] = 0 No fault is present on DMA channel N.
Bit [N] = 1 DMA channel N is in the Faulting or Faulting completing state. See Fault Type DMA Channel

Registers on page 3-18 for information about the type of fault that occurred.

31 6 5 4 3 2 1 0

Reserved

1617

dmago_err
Reserved

operand_invalid
undef_instr

mgr_evnt_err

Reserved

instr_fetch_err

1530 29

dbg_instr
Reserved
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-17
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-15 shows the FTRD Register bit assignments.

3.3.10 Fault Type DMA Channel Registers

The FTRn Register characteristics are:

Purpose Provides the type of fault that occurred to move a DMA channel to the
Faulting state.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
FTRn Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-1 on page 3-5.

Table 3-15 FTRD Register bit assignments

Bits Name Function

[31] - Read undefined.

[30] dbg_instr If the DMA manager aborts, this bit indicates if the erroneous instruction was read from the system
memory or from the debug interface:
0 = instruction that generated an abort was read from system memory
1 = instruction that generated an abort was read from the debug interface.

[29:17] - Read undefined.

[16] instr_fetch_err Indicates the AXI response that the DMAC receives on the RRESP bus, after the DMA manager
performs an instruction fetch:
0 = OKAY response
1 = EXOKAY, SLVERR, or DECERR response.

[15:6] - Read undefined.

[5] mgr_evnt_err Indicates if the DMA manager was attempting to execute DMAWFE or DMASEV with inappropriate security
permissions:
0 = DMA manager has appropriate security to execute DMAWFE or DMASEV
1 = a DMA manager thread in the Non-secure state attempted to execute either:
• DMAWFE to wait for a secure event
• DMASEV to create a secure event or secure interrupt.

[4] dmago_err Indicates if the DMA manager was attempting to execute DMAGO with inappropriate security permissions:
0 = DMA manager has appropriate security to execute DMAGO
1 = a DMA manager thread in the Non-secure state attempted to execute DMAGO to create a DMA channel
operating in the Secure state.

[3:2] - Read undefined.

[1] operand_invalid Indicates if the DMA manager was attempting to execute an instruction operand that was not valid for
the configuration of the DMAC:
0 = valid operand
1 = invalid operand.

[0] undef_instr Indicates if the DMA manager was attempting to execute an undefined instruction:
0 = defined instruction
1 = undefined instruction.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-18
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Depending on the fault type, the DMAC abort is categorized as:

Precise abort With the thread in the faulting state, you can read the CPCn Register to
determine the value of the program counter that caused the fault to occur.
See Channel Program Counter Registers on page 3-23.

Imprecise abort The program counter register, CPCn Register, does not contain the address
of the instruction that caused the fault to occur.

Figure 3-11 shows the FTRn Register bit assignments.

Figure 3-11 FTRn Register bit assignments

Table 3-16 shows the FTRn Register bit assignments.

31 8 7 6 5 4 2 1 01819 17 16 15 1213 11

data_read_err
data_write_err
instr_fetch_err

Reserved

mfifo_err
ch_rdwr_err
ch_periph_err
ch_evnt_err

Reserved
operand_invalid
undef_instr

0

0x040Address offset

Channel <n> 1

0x044

2

0x048

3

0x04C

4

0x050

5

0x054

6

0x058

7

0x05C

FTR<n> Register address mapping:

30 29

dbg_instr
lockup_err

14

st_data_unavailable

ReservedReserved

Table 3-16 FTRn Register bit assignments

Bits Name Function

[31] lockup_err Indicates if the DMA channel has locked-up because of resource starvation:
0 = DMA channel has adequate resources
1 = DMA channel has locked-up because of insufficient resources.
This fault is an imprecise abort.

[30] dbg_instr If the DMA channel aborts, this bit indicates if the erroneous instruction was read from the system
memory or from the debug interface:
0 = instruction that generated an abort was read from system memory
1 = instruction that generated an abort was read from the debug interface.
This fault is an imprecise abort but the bit is only valid when a precise abort occurs.

[29:19] - Reserved, read undefined.

[18] data_read_err Indicates the AXI response that the DMAC receives on the RRESP bus, after the DMA channel
thread performs a data read:
0 = OKAY response
1 = EXOKAY, SLVERR, or DECERR response.
This fault is an imprecise abort.

[17] data_write_err Indicates the AXI response that the DMAC receives on the BRESP bus, after the DMA channel
thread performs a data write:
0 = OKAY response
1 = EXOKAY, SLVERR, or DECERR response.
This fault is an imprecise abort.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-19
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
[16] instr_fetch_err Indicates the AXI response that the DMAC receives on the RRESP bus, after the DMA channel
thread performs an instruction fetch:
0 = OKAY response
1 = EXOKAY, SLVERR, or DECERR response.
This fault is a precise abort.

[15:14] - Reserved, read undefined.

[13] st_data_unavailable Indicates if the MFIFO did not contain the data to enable the DMAC to perform the DMAST:
0 = MFIFO contains all the data to enable the DMAST to complete
1 = previous DMALDs have not put enough data in the MFIFO to enable the DMAST to complete.
This fault is a precise abort.

[12] mfifo_err Indicates if the MFIFO prevented the DMA channel thread from executing DMALD or DMAST. Depending
on the instruction:
DMALD 0 = MFIFO contains sufficient space

1 = MFIFO is too small to hold the data that DMALD requires.
DMAST 0 = MFIFO contains sufficient data

1 = MFIFO is too small to store the data to enable DMAST to complete.
This fault is an imprecise abort.

[11:8] - Reserved, read undefined.

[7] ch_rdwr_err Indicates if a DMA channel thread, in the Non-secure state, attempts to program the CCRn Register
to perform a secure read or secure write:
0 = a DMA channel thread in the Non-secure state is not violating the security permissions
1 = a DMA channel thread in the Non-secure state attempted to perform a secure read or secure write.
This fault is a precise abort.

[6] ch_periph_err Indicates if a DMA channel thread, in the Non-secure state, attempts to execute DMAWFP, DMALDP,
DMASTP, or DMAFLUSHP with inappropriate security permissions:
0 = a DMA channel thread in the Non-secure state is not violating the security permissions
1 = a DMA channel thread in the Non-secure state attempted to execute either:
• DMAWFP to wait for a secure peripheral
• DMALDP or DMASTP to notify a secure peripheral
• DMAFLUSHP to flush a secure peripheral.
This fault is a precise abort.

[5] ch_evnt_err Indicates if the DMA channel thread attempts to execute DMAWFE or DMASEV with inappropriate security
permissions:
0 = a DMA channel thread in the Non-secure state is not violating the security permissions
1 = a DMA channel thread in the Non-secure state attempted to execute either:
• DMAWFE to wait for a secure event
• DMASEV to create a secure event or secure interrupt.
This fault is a precise abort.

Table 3-16 FTRn Register bit assignments (continued)

Bits Name Function
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-20
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.11 Channel Status Registers

The CSRn Register characteristics are:

Purpose Provides the status of the DMA program on a DMA channel.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
CSRn Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-2 on page 3-6.

Figure 3-12 shows the CSRn Register bit assignments.

Figure 3-12 CSRn Register bit assignments

[4:2] - Reserved, read undefined.

[1] operand_invalid Indicates if the DMA channel thread was attempting to execute an instruction operand that was not
valid for the configuration of the DMAC:
0 = valid operand
1 = invalid operand.
This fault is a precise abort.

[0] undef_instr Indicates if the DMA channel thread was attempting to execute an undefined instruction:
0 = defined instruction
1 = undefined instruction.
This fault is a precise abort.

Table 3-16 FTRn Register bit assignments (continued)

Bits Name Function

31 22 21 20 16 15 14 13 9 8 4 3 0

CNS

Reserved

dmawfp_periph
dmawfp_b_ns

Undefined Channel
status

Wakeup
number

0

0x100Address offset

Channel <n> 1

0x108

2

0x110

3

0x118

4

0x120

5

0x128

6

0x130

7

0x138

CSR<n> Register address mapping:

CSR<n> Register bit assignment:

Reserved
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-21
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-17 shows the CSRn Register bit assignments.

Table 3-17 CSRn Register bit assignments

Bits Name Function

[31:22] - Reserved, read undefined.

[21] CNS The channel non-secure bit provides the security of the DMA channel:
0 = DMA channel operates in the Secure state
1 = DMA channel operates in the Non-secure state.

Note
 The DMAGO instruction determines the security state of a DMA channel. See DMAGO on page 4-5.

[20:16] - Reserved, read undefined.

[15] dmawfp_periph When the DMA channel thread executes DMAWFP this bit indicates if the periph operand was set:
0 = DMAWFP executed with the periph operand not set
1 = DMAWFP executed with the periph operand set.
See DMAWFP on page 4-18.

[14] dmawfp_b_ns When the DMA channel thread executes DMAWFP this bit indicates if the burst or single operand were set:
0 = DMAWFP executed with the single operand set
1 = DMAWFP executed with the burst operand set.
See DMAWFP on page 4-18.

[13:9] - Reserved, read undefined.

[8:4] Wakeup number If the DMA channel is in the Waiting for event state or the Waiting for peripheral state then these bits
indicate the event or peripheral number that the channel is waiting for:
b00000 = DMA channel is waiting for event, or peripheral, 0
b00001 = DMA channel is waiting for event, or peripheral, 1
b00010 = DMA channel is waiting for event, or peripheral, 2
.
.
.
b11111 = DMA channel is waiting for event, or peripheral, 31.

[3:0] Channel status The channel status encoding is:
b0000 = Stopped
b0001 = Executing
b0010 = Cache miss
b0011 = Updating PC
b0100 = Waiting for event
b0101 = At barrier
b0110 = reserved
b0111 = Waiting for peripheral
b1000 = Killing
b1001 = Completing
b1010-b1101 = reserved
b1110 = Faulting completing
b1111 = Faulting.
See Operating states on page 2-8 for more information.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-22
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.12 Channel Program Counter Registers

The CPCn Register characteristics are:

Purpose Provides the value of the program counter for the DMA channel thread.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
CPCn Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-2 on page 3-6.

Figure 3-13 shows the CPCn Register bit assignments.

Figure 3-13 CPC Register bit assignments and address offsets

Table 3-18 shows the CPCn Register bit assignments.

3.3.13 Source Address Registers

The SARn Register characteristics are:

Purpose Provides the address of the source data for a DMA channel.
The DMAC writes the initial source address value to the SA Register
when the DMA channel thread executes a DMAMOV SAR instruction. If a
DMAMOV CCR instruction programs the source address to increment, each
time the DMA channel executes DMALD, it updates the value to indicate the
address that the next DMALD must use. See DMAMOV on page 4-12 for more
information.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
SARn Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-3 on page 3-7.

Figure 3-14 on page 3-24 shows the SARn Register bit assignments.

31 0

pc_chnl

0

0x104Address offset

Channel n 1

0x10C

2

0x114

3

0x11C

4

0x124

5

0x12C

6

0x134

7

0x13C

CPCn Register address mapping:

CPCn Register bit assignment:

Table 3-18 CPCn Register bit assignments

Bits Name Function

[31:0] pc_chnl Program counter for the DMA channel n thread, where n depends on the address of the register as Figure 3-13
shows.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-23
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Figure 3-14 SARn Register bit assignments and address offsets

Table 3-19 shows the SARn Register bit assignments.

3.3.14 Destination Address Registers

The DARn Register characteristics are:

Purpose Provides the address for the destination data for a DMA channel.
The DMAC writes the initial destination address value to the DA Register
when the DMA channel thread executes a DMAMOV DAR instruction. If a
subsequent DMAMOV CCR instruction programs the destination address to
increment then each time the DMA channel executes DMAST it updates the
value to indicate the address that the next DMAST must use. See DMAMOV
on page 4-12 for more information.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
DARn Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-3 on page 3-7.

Figure 3-15 shows the DARn Register bit assignments.

Figure 3-15 DARn Register bit assignments and address offsets

31 0

src_addr

0

0x400

1

0x420

2

0x440

3

0x460

4

0x480

5

0x4A0

6

0x4C0

7

0x4E0

Register address mapping:

SARn Register bit assignments:

Address offset

Channel n

Register name SAR0 SAR1 SAR2 SAR3 SAR4 SAR5 SAR6 SAR7

Table 3-19 SARn Register bit assignments

Bits Name Function

[31:0] src_addr Address of the source data for DMA channel n, where n depends on the address of the register as Figure 3-14
shows.

31 0

dst_addr

0

0x404Address offset

Channel n 1

0x424

2

0x444

3

0x464

4

0x484

5

0x4A4

6

0x4C4

7

0x4E4

Register address mapping:

DARn Register bit assignments:

Register name DAR0 DAR1 DAR2 DAR3 DAR4 DAR5 DAR6 DAR7
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-24
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-20 shows the DARn Register bit assignments.

3.3.15 Channel Control Registers

The CCRn Register characteristics are:

Purpose Controls the AXI transactions that the DMAC uses for a DMA channel.
The DMAC writes to the corresponding CC Register when a DMA
channel thread executes a DMAMOV CCR instruction.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
CCRn Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-3 on page 3-7.

Figure 3-16 shows the CCRn Register bit assignments.

Figure 3-16 CCRn Register bit assignments and base address offsets

Table 3-20 DARn Register bit assignments

Bits Name Function

[31:0] dst_addr Address for the destination data for DMA channel n, where n depends on the address of the register as Figure 3-15
on page 3-24 shows.

31 28 27 25 24 22 21 18 17 15 14 13 11 10 8 7 4 3 1 0

endian_swap_size

dst_cache_ctrl

dst_prot_ctrl src_cache_ctrl

dst_incdst_burst_size

src_burst_size

dst_burst_
len

src_inc

src_burst_
len

src_prot_ctrl

Source controlDestination control
CCRn Register bit assignments:

0

0x408Address offset

Channel n 1

0x428

2

0x448

3

0x468

4

0x488

5

0x4A8

6

0x4C8

7

0x4E8

Register address mapping:

Register name CCR0 CCR1 CCR2 CCR3 CCR4 CCR5 CCR6 CCR7

30

reserved
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-25
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-21 shows the CCRn Register bit assignments.

Table 3-21 CCRn Register bit assignments

Bits Name Function

[31] - Reserved, read undefined

[30:28] endian_swap_size See Endian swap size on page 3-28.

[27:25] dst_cache_ctrl Programs the state of AWCACHE[3,1:0]a when the DMAC writes the destination data.
Bit [27] 0 = AWCACHE[3] is LOW

1 = AWCACHE[3] is HIGH.
Bit [26] 0 = AWCACHE[1] is LOW

1 = AWCACHE[1] is HIGH.
Bit [25] 0 = AWCACHE[0] is LOW

1 = AWCACHE[0] is HIGH.

Note
 AWCACHE[2] is tied LOW by the DMAC.
Setting AWCACHE[3,1]=b10 violates the AXI protocol. See the AMBA AXI Protocol Specification.

[24:22] dst_prot_ctrl Programs the state of AWPROT[2:0]a when the DMAC writes the destination data.
Bit [24] 0 = AWPROT[2] is LOW

1 = AWPROT[2] is HIGH.
Bit [23] 0 = AWPROT[1] is LOW

1 = AWPROT[1] is HIGH.
Bit [22] 0 = AWPROT[0] is LOW

1 = AWPROT[0] is HIGH.

Note
 Only DMA channels in the Secure state can program AWPROT[1] LOW, that is a secure access. If a
DMA channel in the Non-secure state attempts to set AWPROT[1] LOW then the DMA channel
aborts.

[21:18] dst_burst_len For each burst, these bits program the number of data transfers that the DMAC performs when it writes
the destination data:
b0000 = 1 data transfer
b0001 = 2 data transfers
b0010 = 3 data transfers
.
.
.
b1111 = 16 data transfers.
The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction
is the product of dst_burst_len and dst_burst_size.

Note
 These bits control the state of AWLEN[3:0].
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-26
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
[17:15] dst_burst_size For each beat within a burst, it programs the number of bytes that the DMAC writes to the destination:
b000 = writes 1 byte per beat
b001 = writes 2 bytes per beat
b010 = writes 4 bytes per beat
b011 = writes 8 bytes per beat
b100 = writes 16 bytes per beat
b101-b111 = reserved.
The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction
is the product of dst_burst_len and dst_burst_size.

Note
 These bits control the state of AWSIZE[2:0].

[14] dst_inc Programs the burst type that the DMAC performs when it writes the destination data:
0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.
1 = Incrementing-address burst. The DMAC signals AWBURST[0] HIGH.

[13:11] src_cache_ctrl Set the bits to control the state of ARCACHE[2:0]a when the DMAC reads the source data.
Bit [13] 0 = ARCACHE[2] is LOW

1 = ARCACHE[2] is HIGH.
Bit [12] 0 = ARCACHE[1] is LOW

1 = ARCACHE[1] is HIGH.
Bit [11] 0 = ARCACHE[0] is LOW

1 = ARCACHE[0] is HIGH.

Note
 The DMAC ties ARCACHE[3] LOW.
Setting ARCACHE[2:1]=b10 violates the AXI protocol. See the AMBA AXI Protocol Specification.

[10:8] src_prot_ctrl Programs the state of ARPROT[2:0]a when the DMAC reads the source data.
Bit [10] 0 = ARPROT[2] is LOW

1 = ARPROT[2] is HIGH.
Bit [9] 0 = ARPROT[1] is LOW

1 = ARPROT[1] is HIGH.
Bit [8] 0 = ARPROT[0] is LOW

1 = ARPROT[0] is HIGH.

Note
 Only DMA channels in the Secure state can program ARPROT[1] LOW, that is, a secure access. If a
DMA channel in the Non-secure state attempts to set ARPROT[1] LOW, the DMA channel aborts.

Table 3-21 CCRn Register bit assignments (continued)

Bits Name Function
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-27
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Note
 The DMAC does not generate:
• Locked or exclusive accesses.
• WRAP transfers. Therefore, ARBURST[1] and AWBURST[1] are always LOW.

Endian swap size

Table 3-22 on page 3-29 defines whether data can be swapped between little-endian (LE) and
byte-invariant big-endian (BE-8) formats, and if so, also defines the natural width of the data
independently of the source and destination transaction sizes. This enables unaligned data

[7:4] src_burst_len For each burst, these bits program the number of data transfers that the DMAC performs when it reads
the source data:
b0000 = 1 data transfer
b0001 = 2 data transfers
b0010 = 3 data transfers
.
.
.
b1111 = 16 data transfers.
The total number of bytes that the DMAC reads into the MFIFO when it executes a DMALD instruction
is the product of src_burst_len and src_burst_size.

Note
 These bits control the state of ARLEN[3:0].

[3:1] src_burst_size For each beat within a burst, it programs the number of bytes that the DMAC reads from the source:
b000 = reads 1 byte per beat
b001 = reads 2 bytes per beat
b010 = reads 4 bytes per beat
b011 = reads 8 bytes per beat
b100 = reads 16 bytes per beat
b101-b111 = reserved.
The total number of bytes that the DMAC reads into the MFIFO when it executes a DMALD instruction
is the product of src_burst_len and src_burst_size.

Note
 These bits control the state of ARSIZE[2:0].

[0] src_inc Programs the burst type that the DMAC performs when it reads the source data:
0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.
1 = Incrementing-address burst. The DMAC signals ARBURST[0] HIGH.

a. See the AMBA AXI Protocol Specification for information about this AXI signal.

Table 3-21 CCRn Register bit assignments (continued)

Bits Name Function
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-28
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
streams to use the full bus-width, and to be correctly transformed, irrespective of the source and
destination address alignments. The format is identical to AxSIZE, except that b000 indicates
that no swap must occur.

Note
 See Endian swap size restrictions on page 2-34 for information about some restrictions that
apply when you use this feature.

3.3.16 Loop Counter 0 Registers

The LC0_n Register characteristics are:

Purpose Provides the status of loop counter zero for the DMA channel. The DMAC
updates this register when it executes DMALPEND[S|B], and the DMA
channel thread is programmed to use loop counter zero. See
DMALPEND[S|B] on page 4-10.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
LC0_n Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-3 on page 3-7.

Figure 3-17 shows the LC0_n Register bit assignments.

Figure 3-17 LC0_n Register bit assignments and base address offsets

Table 3-22 Swap data

Endian swap size Description

b000 No swap, 8-bit data

b001 Swap bytes within 16-bit data

b010 Swap bytes within 32-bit data

b011 Swap bytes within 64-bit data

b100 Swap bytes within 128-bit data

b101 Reserved

b110 Reserved

b111 Reserved

31 8 7 0

loop counter iterationUndefined

0

0x40CAddress offset

Channel n 1

0x42C

2

0x44C

3

0x46C

4

0x4CC

5

0x4AC

6

0x4CC

7

0x4EC

Register address mapping:

Register name LC0_0 LC0_1 LC0_2 LC0_3 LC0_4 LC0_5 LC0_6 LC0_7
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-29
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-23 shows the LC0_n Register bit assignments.

3.3.17 Loop Counter 1 Registers

The LC1_n Register characteristics are:

Purpose Provides the status of loop counter one for the DMA channel. The DMAC
updates this register when it executes DMALPEND[S|B], and the DMA
channel thread is programmed to use loop counter one. See
DMALPEND[S|B] on page 4-10.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC. The DMAC provides a
LC1_n Register for each DMA channel that it contains.

Attributes See the register summary in Table 3-3 on page 3-7.

Figure 3-18 shows the LC1_n Register bit assignments.

Figure 3-18 LC1_n Register bit assignments and base address offsets

Table 3-24 shows the LC1_n Register bit assignments.

3.3.18 Debug Status Register

The DBGSTATUS Register characteristics are:

Purpose Provides the debug status of the DMAC.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Table 3-23 LC0_n Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] Loop counter iterations Loop counter iterations

31 8 7 0

loop counter iterationUndefined

0

0x410Address offset

Channel n 1

0x430

2

0x450

3

0x470

4

0x490

5

0x4B0

6

0x4D0

7

0x4F0

Register address mapping:

Register name LC1_0 LC1_1 LC1_2 LC1_3 LC1_4 LC1_5 LC1_6 LC1_7

Table 3-24 LC1_n Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] Loop counter iterations Loop counter iterations
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-30
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Attributes See the register summary in Table 3-4 on page 3-9.

Figure 3-19 shows the DBGSTATUS Register bit assignments.

Figure 3-19 DBGSTATUS Register bit assignments

Table 3-25 shows the DBGSTATUS Register bit assignments.

3.3.19 Debug Command Register

The DBGCMD Register characteristics are:

Purpose Controls the execution of debug commands in the DMAC as Issuing
instructions to the DMAC using an APB interface on page 2-13 describes.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-4 on page 3-9.

Figure 3-20 shows the DBGCMD Register bit assignments.

Figure 3-20 DBGCMD Register bit assignments

Table 3-26 shows the DBGCMD Register bit assignments.

31 1 0

Undefined

dbgstatus

Table 3-25 DBGSTATUS Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined.

[0] dbgstatus The debug status encoding is:
0 = Idle
1 = Busy.

31 1 0

Undefined

dbgcmd

2

Table 3-26 DBGCMD Register bit assignments

Bits Name Function

[31:2] - Reserved. Write as zero.

[1:0] dbgcmd The debug encoding is as follows:
b00 = execute the instruction that the DBGINST [1:0] Registers contain
b01 = reserved
b10 = reserved
b11 = reserved.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-31
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.20 Debug Instruction-0 Register

The DBGINST0 Register characteristics are:

Purpose Controls the debug instruction, channel, and thread information for the
DMAC. See Issuing instructions to the DMAC using an APB interface on
page 2-13 for more information.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-4 on page 3-9.

Figure 3-21 shows the DBGINST0 Register bit assignments.

Figure 3-21 DBGINST0 Register bit assignments

Table 3-27 shows the DBGINST0 Register bit assignments.

31 24 23 16 15 8 7 1 0

Instruction byte 1 Instruction byte 0 Channel
number Reserved

Debug thread

1011

Reserved

Table 3-27 DBGINST0 Register bit assignments

Bits Name Function

[31:24] Instruction byte 1 Instruction byte 1.

[23:16] Instruction byte 0 Instruction byte 0.

[15:11] - Reserved. Write as zero.

[10:8] Channel number DMA channel number:
b000 = DMA channel 0
b001 = DMA channel 1
b010 = DMA channel 2
.
.
.
b111 = DMA channel 7.

[7:1] - Reserved. Write as zero.

[0] Debug thread The debug thread encoding is as follows:
0 = DMA manager thread
1 = DMA channel.

Note
 When set to 1, the Channel number field selects the DMA channel to debug.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-32
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.21 Debug Instruction-1 Register

The DBGINST1 Register characteristics are:

Purpose Controls the upper bytes of the debug instruction for the DMAC. See
Issuing instructions to the DMAC using an APB interface on page 2-13 for
more information.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-4 on page 3-9.

Figure 3-22 shows the DBGINST1 Register bit assignments.

Figure 3-22 DBGINST1 Register bit assignments

Table 3-28 shows the DBGINST1 Register bit assignments.

3.3.22 Configuration Register 0

The CR0 Register characteristics are:

Purpose Provides the status of the tie-off control signals. It contains the following
information about the configuration of the DMAC:
• the number of DMA channels that it contains
• the number of peripheral request interfaces it provides
• the number of irq signals it provides.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-23 on page 3-34 shows the CR0 Register bit assignments.

31 24 23 16 15 8 7 0

Instruction byte 5 Instruction byte 4 Instruction byte 3 Instruction byte 2

Table 3-28 DBGINST1 Register bit assignments

Bits Name Function

[31:24] Instruction byte 5 Instruction byte 5

[23:16] Instruction byte 4 Instruction byte 4

[15:8] Instruction byte 3 Instruction byte 4

[7:0] Instruction byte 2 Instruction byte 2
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-33
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Figure 3-23 CR0 Register bit assignments

Table 3-29 shows the CR0 Register bit assignments.

31 16 12 11 7 6 34 2 1 0

Undefined

17

num_events Reserved num_
chnls

boot_en

22 21

Reserved
mgr_ns_at_rst

periph_req

num_periph_req

Table 3-29 CR0 Register bit assignments

Bits Name Function

[31:22] - Reserved, read undefined.

[21:17] num_events Number of interrupt outputs that the DMAC provides:
b00000 = 1 interrupt output, irq[0]
b00001 = 2 interrupt outputs, irq[1:0]
b00010 = 3 interrupt outputs, irq[2:0]
.
.
.
b11111 = 32 interrupt outputs, irq[31:0].

[16:12] num_periph_req Number of peripheral request interfaces that the DMAC provides:
b00000 = 1 peripheral request interface
b00001 = 2 peripheral request interfaces
b00010 = 3 peripheral request interfaces
.
.
.
b11111 = 32 peripheral request interfaces.

Note
 This field is only valid when the periph_req bit is set to 1.

[11:7] - Reserved, read undefined.

[6:4] num_chnls Number of DMA channels that the DMAC supports:
b000 = 1 DMA channel
b001 = 2 DMA channels
b010 = 3 DMA channels
.
.
.
b111 = 8 DMA channels.

[3] - Reserved, read undefined.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-34
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.23 Configuration Register 1

The CR1 Register characteristics are:

Purpose Provides information about the instruction cache configuration.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-24 shows the CR1 Register bit assignments.

Figure 3-24 CR1 Register bit assignments

Table 3-30 shows the CR1 Register bit assignments.

[2] mgr_ns_at_rst Indicates the status of the boot_manager_ns signal when the DMAC exited from reset:
0 = boot_manager_ns was LOW
1 = boot_manager_ns was HIGH.

[1] boot_en Indicates the status of the boot_from_pc signal when the DMAC exited from reset:
0 = boot_from_pc was LOW
1 = boot_from_pc was HIGH.

[0] periph_req Supports peripheral requests:
0 = the DMAC does not provide a peripheral request interface
1 = the DMAC provides the number of peripheral request interfaces that the num_periph_req field
specifies.

Table 3-29 CR0 Register bit assignments (continued)

Bits Name Function

31 8 7 4 3 2 0

Undefined

Reserved
num_i-cache_lines

i-cache_len

Table 3-30 CR1 Registers bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-35
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.24 Configuration Register 2

The CR2 Register characteristics are:

Purpose Provides the value of the boot address that boot_addr[31:0] configures.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-25 shows the CR2 Register bit assignments.

Figure 3-25 CR2 Register bit assignments

Table 3-31 shows the CR2 Register bit assignments.

3.3.25 Configuration Register 3

The CR3 Register characteristics are:

Purpose Provides the security state of the event-interrupt resources that are
initialized when the DMAC exits from reset.

[7:4] num_i-cache_lines Number of i-cache lines:
b0000 = 1 i-cache line
b0001 = 2 i-cache lines
b0010 = 3 i-cache lines
.
.
.
b1111 = 16 i-cache lines.

[3] - Reserved, read undefined.

[2:0] i-cache_len The length of an i-cache line:
b000-b001 = reserved
b010 = 4 bytes
b011 = 8 bytes
b100 = 16 bytes
b101 = 32 bytes
b110-b111 = reserved.

Table 3-30 CR1 Registers bit assignments (continued)

Bits Name Function

31 0

boot_addr

Table 3-31 CR2 Register bit assignments

Bits Name Function

[31:0] boot_addr Provides the value of boot_addr[31:0] when the DMAC exited from reset
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-36
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-26 shows the CR3 Register bit assignments.

Figure 3-26 CR3 Register bit assignments

Table 3-32 shows the CR3 Register bit assignments.

3.3.26 Configuration Register 4

The CR4 Register characteristics are:

Purpose Provides the security state of the peripheral request interfaces that is
initialized when the DMAC exits from reset.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-27 on page 3-38 shows the CR4 Register bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

INS for
event-interrupt[0]
INS for
event-interrupt[1]
INS for
event-interrupt[2]

INS for
event-interrupt[31]

Table 3-32 CR3 Register bit assignments

Bits Name Function

[31a:0] INS Provides the security state of an event-interrupt resource:
Bit [N] = 0 Assigns event<N> or irq[N] to the Secure state.
Bit [N] = 1 Assigns event<N> or irq[N] to the Non-secure state.

Note
 The boot_irq_ns[x:0] signals initialize the bits in this register when the DMAC exits from reset. See Table A-12
on page A-9 for more information.

a. If you configure the DMAC to provide less than 32 event-interrupt resources then the upper bits are undefined and read as zero.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-37
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Figure 3-27 CR4 Register bit assignments

Table 3-33 shows the CR4 Register bit assignments.

3.3.27 DMA Configuration Register

The CRD Register characteristics are:

Purpose Provides information about the configuration of the data buffer, data
width, and write interleave capability of the DMAC.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-28 shows the CRD Register bit assignments.

Figure 3-28 CRD Register bit assignments

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

PNS for
PRPHL_REQ 0
PNS for
PRPHL_REQ 1
PNS for
PRPHL_REQ 2

PNS for
PRPHL_REQ 31

Table 3-33 CR4 Register bit assignments

Bits Name Function

[31a:0] PNS Provides the security state of the peripheral request interfaces:
Bit [N] = 0 Assigns peripheral request interface N to the Secure state.
Bit [N] = 1 Assigns peripheral request interface N to the Non-secure state.

Note
 The boot_periph_ns tie-off signals initialize the bits in this register when the DMAC exits from reset. See
Table A-12 on page A-9 for more information.

a. If you configure the DMAC to provide fewer than 32 peripheral request interfaces, the upper bits are undefined and read as zero.

31 16 15 8 7 6 4 3 2 0

Undefined

data_buffer_dep

Reserved Reserved

data_
width

30 29 20 19 14

wr_q_deprd_q_dep

Reserved

12 11

wr_caprd_cap
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-38
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Table 3-34 shows the CRD Register bit assignments.

Table 3-34 CRD Registers bit assignments

Bits Name Function

[31:30] - Reserved, read undefined.

[29:20] data_buffer_dep The number of lines that the data buffer contains:
b000000000 = 1 line
b000000001 = 2 lines
.
.
.

b111111111 = 1024 lines.

[19:16] rd_q_dep The depth of the read queue:
b0000 = 1 line
b0001 = 2 lines
.
.
.

b1111 = 16 lines.

[15] - Reserved, read undefined.

[14:12] rd_cap Read issuing capability that programs the number of outstanding read transactions:
b000 = 1
b001 = 2
.
.
.

b111 = 8.

[11:8] wr_q_dep The depth of the write queue:
b0000 = 1 line
b0001 = 2 lines
.
.
.

b1111 = 16 lines.

[7] - Reserved, read undefined.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-39
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.28 Watchdog Register

The WD Register characteristics are:

Purpose Controls the watchdog behavior.

Usage constraints ARM recommends that you only update this register when all the DMA
channel threads are in the Stopped state.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-5 on page 3-9.

Figure 3-29 shows the WD Register bit assignments.

Figure 3-29 WD Register bit assignments

Table 3-35 shows the WD Register bit assignments.

[6:4] wr_cap Write issuing capability that programs the number of outstanding write transactions:
b000 = 1
b001 = 2
.
.
.

b111 = 8.

[3] - Reserved, read undefined.

[2:0] data_width The data bus width of the AXI interface:
b000 = reserved
b001 = reserved
b010 = 32-bit
b011 = 64-bit
b100 = 128-bit
b101-b111 = reserved.

Table 3-34 CRD Registers bit assignments (continued)

Bits Name Function

31 1 0

wd_irq_only

Reserved

Table 3-35 WD Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined.

[0] wd_irq_only Controls how the DMAC responds when it detects a lock-up condition:
0 = the DMAC aborts all of the contributing DMA channels and sets irq_abort HIGH
1 = the DMAC sets irq_abort HIGH. See Watchdog abort on page 2-26 for more information.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-40
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.29 Peripheral Identification Registers

The periph_id_[3:0] Register characteristics are:

Purpose Provides information about the configuration and version of the
peripheral.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-6 on page 3-10.

These registers can conceptually be treated as a single register that holds a 32-bit peripheral ID
value. Figure 3-30 shows the correspondence between bits [7:0]of the periph_id registers and
the conceptual 32-bit Peripheral ID Register.

Figure 3-30 periph_id Register bit assignments

Table 3-36 shows the bit assignments for the conceptual 32-bit peripheral ID register.

The following subsections describe the periph_id registers:
• Peripheral Identification Register 0 on page 3-42
• Peripheral Identification Register 1 on page 3-42
• Peripheral Identification Register 2 on page 3-42
• Peripheral Identification Register 3 on page 3-42.

31 24 23 16 15 8 7 0

7 0 7 4 3 0 7 4 3 0 7 0

periph_id_0

revision

designer part number

designer_1 designer_0 part_
number_1 part_ number_0Reserved

periph_id_1periph_id_2periph_id_3

Conceptual 32-bit Peripheral ID register

1

integration_cfg

Table 3-36 Conceptual peripheral ID register bit assignments

Bits Name Description

[31:25] - Reserved, read undefined.

[24] integration_cfg Identifies if the DMAC contains integration test logic. See Table 3-40 on page 3-42.

[23:20] revision Identifies the RTL revision of the peripheral. See Table 3-39 on page 3-42.

[19:12] designer Identifies the designer. This is 0x41 for ARM.

[11:0] part_number Identifies the peripheral. The part number for the DMAC is 0x330.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-41
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
Peripheral Identification Register 0

The periph_id_0 Register is hard-coded and the fields in the register control the reset value.
Table 3-37 shows the bit assignments.

Peripheral Identification Register 1

The periph_id_1 Register is hard-coded and the fields in the register control the reset value.
Table 3-38 shows the bit assignments.

Peripheral Identification Register 2

The periph_id_2 Register is hard-coded and the fields in the register control the reset value.
Table 3-39 shows the bit assignments.

Peripheral Identification Register 3

The periph_id_3 Register is hard-coded and the fields in the register control the reset value.
Table 3-40 shows the bit assignments.

Table 3-37 periph_id_0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] part_number_0 Returns 0x30

Table 3-38 periph_id_1 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:4] designer_0 Returns 0x1

[3:0] part_number_1 Returns 0x3

Table 3-39 periph_id_2 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.

[7:4] revision Identifies the revision:
• 0x0 for r0p0
• 0x1 for r1p0.

[3:0] designer_1 Returns 0x4.

Table 3-40 periph_id_3 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:1] - Reserved for future use, read undefined

[0] integration_cfg Returns 0 to indicate that the DMAC does not contain integration test logic
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-42
ID112209 Non-Confidential, Unrestricted Access

Programmers Model
3.3.30 Component Identification Registers 0-3

The pcell_id_[3:0] Register characteristics are:

Purpose When concatenated, these four registers return 0xB105F00D.

Usage constraints No usage constraints.

Configurations Available in all configurations of the DMAC.

Attributes See the register summary in Table 3-6 on page 3-10.

These registers can be treated conceptually as a single register that holds a 32-bit component
identification value. You can use the register for automatic BIOS configuration.

Figure 3-31 shows the register bit assignments.

Figure 3-31 pcell_id Register bit assignments

Table 3-41 shows the register bit assignments.

7 0 7 0 7 0 7 0

Conceptual 32-bit component ID register

31 24 23 16 15 8 7 0

0x0D0xF00x050xB1

pcell_id_3 pcell_id_2 pcell_id_1 pcell_id_0

Table 3-41 pcell_id Register bit assignments

Conceptual 32-bit component ID register pcell_id_[3:0] Registers

Bits Reset value Register Bits Description

[31:24] 0xB1
pcell_id_3 [31:8] Read undefined

[7:0] Returns 0xB1

[23:16] 0x05
pcell_id_2 [31:8] Read undefined

[7:0] Returns 0x05

[15:8] 0xF0
pcell_id_1 [31:8] Read undefined

[7:0] Returns 0xF0

[7:0] 0x0D
pcell_id_0 [31:8] Read undefined

[7:0] Returns 0x0D
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 3-43
ID112209 Non-Confidential, Unrestricted Access

Chapter 4
Instruction Set

This chapter describes the instruction set of the DMAC. It contains the following sections:
• Instruction syntax conventions on page 4-2
• Instruction set summary on page 4-3
• Instructions on page 4-4
• Assembler directives on page 4-20.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-1
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.1 Instruction syntax conventions
The following conventions are used in assembler syntax prototype lines and their subfields:

< > Any item bracketed by < and > is mandatory. A description of the item and of how
it is encoded in the instruction is supplied by subsequent text.

[] Any item bracketed by [and] is optional. A description of the item and of how
its presence or absence is encoded in the instruction is supplied by subsequent
text.

spaces Single spaces are used for clarity, to separate items. When a space is obligatory
in the assembler syntax, two or more consecutive spaces are used.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-2
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.2 Instruction set summary
The DMAC instructions:
• use a DMA prefix, to provide a unique name-space
• have 8-bit opcodes that might use a variable data payload of 0, 8, 16, or 32 bits
• use suffixes that are consistent.

Table 4-1 shows a summary of the instruction syntax.

Table 4-1 Instruction syntax summary

Mnemonic Instruction
Thread usage:
• M = DMA manager
• C = DMA channel

Description

DMAADDH Add Halfword - C See DMAADDH on page 4-4

DMAEND End M C See DMAEND on page 4-4

DMAFLUSHP Flush and notify Peripheral - C See DMAFLUSHP on page 4-5

DMAGO Go M - See DMAGO on page 4-5

DMAKILL Kill M C See DMAKILL on page 4-7

DMALD Load - C See DMALD[S|B] on page 4-7

DMALDP Load Peripheral - C See DMALDP<S|B> on page 4-8

DMALP Loop - C See DMALP on page 4-9

DMALPEND Loop End - C See DMALPEND[S|B] on page 4-10

DMALPFE Loop Forever - C See DMALPFE on page 4-12

DMAMOV Move - C See DMAMOV on page 4-12

DMANOP No operation M C See DMANOP on page 4-13

DMARMB Read Memory Barrier - C See DMARMB on page 4-13

DMASEV Send Event M C See DMASEV on page 4-14

DMAST Store - C See DMAST[S|B] on page 4-15

DMASTP Store and notify Peripheral - C See DMASTP<S|B> on page 4-16

DMASTZ Store Zero - C See DMASTZ on page 4-17

DMAWFE Wait For Event M C See DMAWFE on page 4-17

DMAWFP Wait For Peripheral - C See DMAWFP on page 4-18

DMAWMB Write Memory Barrier - C See DMAWMB on page 4-19
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-3
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.3 Instructions
The following sections describe the instructions that a DMAC can execute.

4.3.1 DMAADDH

Add Halfword adds an immediate 16-bit value to the SARn Register or DARn Register, for the
DMA channel thread. This enables the DMAC to support 2D DMA operations. See Source
Address Registers on page 3-23 and Destination Address Registers on page 3-24.

Note
 The immediate unsigned 16-bit value is zero-extended before the DMAC adds it to the address,
using 32-bit addition. The DMAC discards the carry bit so that addresses wrap from 0xFFFFFFFF
to 0x00000000.

Figure 4-1 shows the instruction encoding.

Figure 4-1 DMAADDH encoding

Assembler syntax

DMAADDH <address_register>, <16-bit immediate>

where:

<address_register> Selects the address register to use. It must be either:
SA SARn Register and sets ra to 0.
DA DARn Register and sets ra to 1.

<16-bit immediate> The immediate value to be added to the <address_register>.

Operation

You can only use this instruction in a DMA channel thread.

4.3.2 DMAEND

End signals to the DMAC that the DMA sequence is complete. After all DMA transfers are
complete for the DMA channel, the DMAC moves the channel to the Stopped state. It also
flushes data from the MFIFO and invalidates all cache entries for the thread.

Figure 4-2 shows the instruction encoding.

Figure 4-2 DMAEND encoding

0

7 6 5 4 3 2 1 0

0 1 0 1 0 1 ra

15 8 7

imm[7:0]

23 16

imm[15:8]

0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-4
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Assembler syntax

DMAEND

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

4.3.3 DMAFLUSHP

Flush Peripheral clears the state in the DMAC that describes the contents of the peripheral and
sends a message to the peripheral to resend its level status.

Figure 4-3 shows the instruction encoding.

Figure 4-3 DMAFLUSHP encoding

Assembler syntax

DMAFLUSHP <peripheral>

where:

<peripheral> 5-bit immediate, value 0-31.

Operation

You can only use this instruction in a DMA channel thread.

4.3.4 DMAGO

When the DMA manager executes Go for a DMA channel that is in the Stopped state, it
performs the following steps on the DMA channel:
• moves a 32-bit immediate into the program counter
• sets its security state
• updates it to the Executing state.

Note
 If a DMA channel is not in the Stopped state when the DMA manager executes DMAGO then the
DMAC does not execute DMAGO but instead it executes DMANOP.

Figure 4-4 on page 4-6 shows the instruction encoding.

1

7 6 5 4 3 2 1 0

0 0 1 1 0 1 0

15 11 10 9 8 7

periph[4:0] 0 00
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-5
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Figure 4-4 DMAGO encoding

Assembler syntax

DMAGO <channel_number>, <32-bit_immediate> [, ns]

where:

<channel_number> Selects a DMA channel. It must be one of:
C0 DMA channel 0.
C1 DMA channel 1.
C2 DMA channel 2.
C3 DMA channel 3.
C4 DMA channel 4.
C5 DMA channel 5.
C6 DMA channel 6.
C7 DMA channel 7.

Note
 If you provide a channel number that is not available for your

configuration of the DMAC, the DMA manager thread aborts.

<32-bit_immediate> The immediate value that is written to the CPCn Register for the selected
<channel_number>. See Channel Program Counter Registers on page 3-23.

[ns] • If ns is present, the DMA channel operates in the Non-secure state.
• Otherwise, the execution of the instruction depends on the security

state of the DMA manager:
DMA manager is in the Secure state

DMA channel operates in the Secure state.
DMA manager is in the Non-secure state

DMAC aborts.

Operation

You can only use this instruction with the DMA manager thread.

0

7 6 5 4 3 2 1 0

1 0 1 0 0 0 ns

15 14 13 12 11 10 8 7

cn[2:0]0 000 0

1647

imm[31:0]
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-6
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.3.5 DMAKILL

Kill instructs the DMAC to immediately terminate execution of a thread. Depending on the
thread type, the DMAC performs the following steps:

DMA manager thread
1. Invalidates all cache entries for the DMA manager.
2. Moves the DMA manager to the Stopped state.

DMA channel thread
1. Moves the DMA channel to the Killing state.
2. Waits for AXI transactions, with an ID equal to the DMA channel number,

to complete.
3. Invalidates all cache entries for the DMA channel.
4. Remove all entries in the MFIFO for the DMA channel.
5. Remove all entries in the read buffer queue and write buffer queue for the

DMA channel.
6. Moves the DMA channel to the Stopped state.

Figure 4-5 shows the instruction encoding.

Figure 4-5 DMAKILL encoding

Assembler syntax

DMAKILL

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

Note
 You must not use the DMAKILL instruction in DMA channel programs. To issue a DMAKILL
instruction, use the DBGINST0 Register. See Debug Instruction-0 Register on page 3-32.

4.3.6 DMALD[S|B]

Load instructs the DMAC to perform a DMA load, using AXI transactions that the Source
Address Registers on page 3-23 and Channel Control Registers on page 3-25 specify. It places
the read data into the MFIFO and tags it with the corresponding channel number. DMALD is an
unconditional instruction but DMALDS and DMALDB are conditional on the state of the request_type
flag. If the src_inc bit in the Channel Control Registers on page 3-25 is set to incrementing, the
DMAC updates the Source Address Registers on page 3-23 after it executes DMALD[S|B].

Note
 The DMAC sets the value of request_type when it executes a DMAWFP instruction. See DMAWFP
on page 4-18.

Figure 4-6 on page 4-8 shows the instruction encoding.

1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-7
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Figure 4-6 DMALD[S|B] encoding

Assembler syntax

DMALD[S|B]

where:

[S] If S is present, the assembler sets bs to 0 and x to 1. The instruction is conditional
on the state of the request_type flag:
request_type = Single

The DMAC performs a DMALD instruction and it sets arlen[3:0]=0x0 so
that the AXI read transaction length is one. The DMAC ignores the
value of the src_burst_len field in the Channel Control Registers on
page 3-25.

request_type = Burst
The DMAC performs a DMANOP instruction. The DMAC increments the
channel PC to the next instruction. No state change occurs.

[B] If B is present, the assembler sets bs to 1 and x to 1. The instruction is conditional
on the state of the request_type flag:
request_type = Single

The DMAC performs a DMANOP instruction. The DMAC increments the
channel PC to the next instruction. No state change occurs.

request_type = Burst
The DMAC performs a DMALD instruction.

If you do not specify the S or B operand, the assembler sets bs to 0 and x to 0, and the DMAC
always executes a DMA load.

Operation

You can only use this instruction in a DMA channel thread. If you specify the S or B operand,
execution of the instruction is conditional on the state of request_type matching that of the
instruction as Assembler syntax describes.

4.3.7 DMALDP<S|B>

Load and notify Peripheral instructs the DMAC to perform a DMA load, using AXI transactions
that the Source Address Registers on page 3-23 and Channel Control Registers on page 3-25
specify. It places the read data into a FIFO that is tagged with the corresponding channel number
and after it receives the last data item, it updates datype[1:0] to indicate to the peripheral that
the data transfer is complete. If the src_inc bit in the Channel Control Registers on page 3-25 is
set to incrementing, the DMAC updates the Source Address Registers on page 3-23 after it
executes DMALDP<S|B>.

Figure 4-7 on page 4-9 shows the instruction encoding.

x

7 6 5 4 3 2 1 0

0 0 0 0 0 1 bs
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-8
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Figure 4-7 DMALDP<S|B> encoding

Assembler syntax

DMALDP<S|B> <peripheral>

where:

<S> When S is present, the assembler sets bs to 0. The instruction is conditional on the
state of the request_type flag:
request_type = Single

The DMAC performs a DMALDP instruction and it sets arlen[3:0]=0x0
so that the AXI read transaction length is one. The DMAC ignores the
value of the src_burst_len field in the Channel Control Registers on
page 3-25.

request_type = Burst
The DMAC performs a DMANOP.

 When B is present, the assembler sets bs to 1. The instruction is conditional on
the state of the request_type flag:
request_type = Single

The DMAC performs a DMANOP.
request_type = Burst

The DMAC performs a load using a burst DMA transfer.

<peripheral> 5-bit immediate, value 0-31.

Note
 The DMAC sets the value of the request_type flag when it executes a DMAWFP instruction. See
DMAWFP on page 4-18.

Operation

You can only use this instruction in a DMA channel thread. Execution of the instruction is
conditional on the state of the request_type flag matching that of the instruction, as Assembler
syntax describes.

4.3.8 DMALP

Loop instructs the DMAC to load an 8-bit value into the Loop Counter Register you specify.
This instruction indicates the start of a section of instructions, and you set the end of the section
using the DMALPEND instruction. See DMALPEND[S|B] on page 4-10. The DMAC repeats the set
of instructions that you insert between DMALP and DMALPEND until the value in the Loop Counter
Register reaches zero.

1

7 6 5 4 3 2 1 0

0 0 1 0 0 1 bs

15 11 10 9 8 7

periph[4:0] 0 00
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-9
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Note
 The DMAC saves the value of the PC for the instruction that follows DMALP. After the DMAC
executes DMALPEND, and the Loop Counter Register is not zero, this enables it to execute the first
instruction in the loop.

Figure 4-8 shows the instruction encoding.

Figure 4-8 DMALP encoding

Assembler syntax

DMALP <loop_iterations>

where:

<loop_iterations>

is a value that specifies the number of loops to perform, range 1-256.

Note
 The assembler determines the Loop Counter Register to use and either:

• sets lc to 0, and the DMAC writes the value loop_iterations minus 1 to the Loop Counter
0 Registers on page 3-29.

• sets lc to 1, and the DMAC writes the value loop_iterations minus 1 to the Loop Counter
1 Registers on page 3-30.

Operation

You can only use this instruction in a DMA channel thread.

4.3.9 DMALPEND[S|B]

Loop End indicates the last instruction in the program loop but the behavior of the DMAC
depends on whether DMALP or DMALPFE starts the loop. If a loop starts with:

DMALP The loop has a defined loop count and DMALPEND[S|B] instructs the DMAC to read
the value of the Loop Counter Register. If a Loop Counter Register returns:
Zero The DMAC executes a DMANOP and therefore exits the loop.
Non-zero The DMAC decrements the value in the Loop Counter Register and

updates the thread PC to contain the address of the first instruction in
the program loop, that is, the instruction that follows the DMALP.

DMALPFE The loop has a undefined loop count and the DMAC uses the state of the
request_last flag to control when it exits the loop. If the request_last flag is:
0 The DMAC updates the thread PC to contain the address of the first

instruction in the program loop, that is, the instruction that follows the
DMALP.

1 The DMAC executes a DMANOP and therefore exits the loop.

0

7 6 5 4 3 2 1 0

0 0 1 0 0 0 lc

15 8 7

iter[7:0]
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-10
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Figure 4-9 shows the instruction encoding.

Figure 4-9 DMALPEND[S|B] encoding

Assembler syntax

DMALPEND[S|B]

where:

[S] If S is present and the loop starts with DMALP then the assembler sets bs to 0 and x
to 1. The instruction is conditional on the state of the request_type flag:
request_type = Single

The DMAC executes the DMALPEND instruction.
request_type = Burst

The DMAC performs a DMANOP and therefore exits the loop.

[B] If B is present and the loop starts with DMALP then the assembler sets bs to 1 and x
to 1. The instruction is conditional on the state of the request_type flag:
request_type = Single

The DMAC performs a DMANOP and therefore exits the loop.
request_type = Burst

The DMAC executes the DMALPEND instruction.

If you do not specify the S or B operand, the assembler sets bs to 0 and x to 0, and the DMAC
always executes the DMALPEND instruction.

Note
 You must not specify the S or B operand when a loop starts with DMALPFE. If you do, the assembler
issues a warning message and sets bs to 0 and x to 0. The DMAC uses the state of the
request_last flag to control when it exits the loop.

Note
 The DMAC sets the value of the:

• request_type flag when it executes a DMAWFP instruction, see DMAWFP on page 4-18

• request_last flag to 1 when the corresponding peripheral sets drlast HIGH, to signal the
last peripheral request. See Peripheral length management on page 2-16 for more
information.

To correctly assign the additional bits in the DMALPEND instruction, that Figure 4-9 shows, the
assembler determines the values for:

backwards_jump[7:0] Sets the relative location of the first instruction in the program loop. The
assembler calculates the value for backwards_jump[7:0] by subtracting
the address of the first instruction in the loop from the address of the
DMALPEND instruction.

x

7 6 5 4 3 2 1 0

0 0 1 nf 1 lc bs

15 8 7

backwards_jump[7:0]
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-11
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
nf Sets it to:
• 0 if DMALPFE started the program loop
• 1 if DMALP started the program loop.

lc Sets it to:
• 0 if the Loop Counter 0 Registers on page 3-29 contains the loop

counter value
• 1 if the Loop Counter 1 Registers on page 3-30 contains the loop

counter value
• 1 if DMALPFE started the program loop.

Operation

You can only use this instruction in a DMA channel thread. If you specify the S or B operand,
execution of the instruction is conditional on the state of the request_type flag matching that of
the instruction, as Assembler syntax on page 4-11 describes.

4.3.10 DMALPFE

The assembler uses Loop Forever to configure certain bits in DMALPEND. See DMALPEND[S|B]
on page 4-10.

Note
 When the assembler encounters DMALPFE, it does not create an instruction for the DMAC, but
instead, it modifies the behavior of DMALPEND. The insertion of DMALPFE in program code identifies
the start of the loop.

Assembler syntax

DMALPFE

4.3.11 DMAMOV

Move instructs the DMAC to move a 32-bit immediate into the following registers:
• Source Address Registers on page 3-23
• Destination Address Registers on page 3-24
• Channel Control Registers on page 3-25.

Figure 4-10 shows the instruction encoding.

Figure 4-10 DMAMOV encoding

0

7 6 5 4 3 2 1 0

1 0 1 1 1 1 0

15 14 13 12 11 10 8 7

rd[2:0]0 000 0

1647

imm[31:0]
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-12
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Assembler syntax

DMAMOV <destination_register>, <32-bit_immediate>

where:

<destination_register>

The valid registers are:
SAR Selects the Source Address Registers on page 3-23 and sets rd to b000.
CCR Selects the Channel Control Registers on page 3-25 and sets rd to

b001.
DAR Selects the Destination Address Registers on page 3-24 Register and

sets rd to b010.

<32-bit_immediate>

A 32-bit value that is written to the specified destination register.

Note
 See DMAMOV CCR on page 4-21 for information about using the assembler to

program the various fields that the Channel Control Registers on page 3-25
contains.

Operation

You can only use this instruction in a DMA channel thread.

4.3.12 DMANOP

No Operation does nothing. You can use this instruction for code alignment purposes.

Figure 4-11 shows the instruction encoding.

Figure 4-11 DMANOP encoding

Assembler syntax

DMANOP

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

4.3.13 DMARMB

Read Memory Barrier forces the DMA channel to wait until all of the executed DMALD
instructions for that channel have been issued on the AXI interface and have completed. This
enables write-after-read sequences to the same address location with no hazards.

Figure 4-12 on page 4-14 shows the instruction encoding.

0

7 6 5 4 3 2 1 0

0 0 0 1 1 0 0
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-13
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Figure 4-12 DMARMB encoding

Assembler syntax

DMARMB

Operation

You can only use this instruction in a DMA channel thread.

4.3.14 DMASEV

Send Event instructs the DMAC to modify an event-interrupt resource. Depending on how you
program the Interrupt Enable Register on page 3-13, this either:

• generates event <event_num>

Note
 Typically, you use DMAWFE to stall a thread and then another thread executes DMASEV, using

the appropriate event number, to unstall the waiting thread. See Using an event to restart
DMA channels on page 2-23.

• signals an interrupt using irq<event_num>.

Figure 4-13 shows the instruction encoding.

Figure 4-13 DMASEV encoding

Assembler syntax

DMASEV <event_num>

where:

<event_num> 5-bit immediate, value 0-31.

Note
 The DMAC aborts the thread if you select an event_num that is not available for your
configuration of the DMAC.

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread. See
Using events and interrupts on page 2-23 for more information.

0

7 6 5 4 3 2 1 0

0 0 0 1 0 0 1

0

7 6 5 4 3 2 1 0

0 0 1 1 0 1 0

15 8 7

event_num[4:0]

1011

0 00

9

ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-14
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.3.15 DMAST[S|B]

Store instructs the DMAC to transfer data from the FIFO to the location that the Destination
Address Registers on page 3-24 specifies, using AXI transactions that the DA Register and
Channel Control Registers on page 3-25 specify. If the dst_inc bit in the Channel Control
Registers on page 3-25 is set to incrementing, the DMAC updates the Destination Address
Registers on page 3-24 after it executes DMAST[S|B].

Figure 4-14 shows the instruction encoding.

Figure 4-14 DMAST[S|B] encoding

Assembler syntax

DMAST[S|B]

where:

[S] If S is present, the assembler sets bs to 0 and x to 1. The instruction is conditional
on the state of the request_type flag:
request_type = Single

The DMAC performs a DMAST instruction and it sets awlen[3:0]=0x0 so
that the AXI write transaction length is one. The DMAC ignores the
value of the dst_burst_len field in the Channel Control Registers on
page 3-25.

request_type = Burst
The DMAC performs a DMANOP instruction. The DMAC increments the
channel PC to the next instruction. No state change occurs.

[B] If B is present, the assembler sets bs to 1 and x to 1. The instruction is conditional
on the state of the request_type flag:
request_type = Single

The DMAC performs a DMANOP instruction. The DMAC increments the
channel PC to the next instruction. No state change occurs.

request_type = Burst
The DMAC performs a DMAST instruction.

If you do not specify the S or B operand, the assembler sets bs to 0 and x to 0, and the DMAC
always executes a DMA store.

Note
 The DMAC sets the value of the request_type flag when it executes a DMAWFP instruction. See
DMAWFP on page 4-18.

Operation

You can only use this instruction in a DMA channel thread. If you specify the S or B operand,
execution of the instruction is conditional on the state of the request_type flag matching that of
the instruction as Assembler syntax describes.

x

7 6 5 4 3 2 1 0

0 0 0 0 1 0 bs
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-15
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
The DMAC only commences the burst when the MFIFO contains all of the data necessary to
complete the burst transfer.

4.3.16 DMASTP<S|B>

Store and notify Peripheral instructs the DMAC to transfer data from the FIFO to the location
that the Destination Address Registers on page 3-24 specifies, using AXI transactions that the
DA Register and Channel Control Registers on page 3-25 specify. It uses the DMA channel
number to access the appropriate location in the FIFO. After the DMA store is complete, and
the DMAC has received a buffered write response, it updates datype[1:0], to notify the
peripheral that the data transfer is complete. If the dst_inc bit in the Channel Control Registers
on page 3-25 is set to incrementing, the DMAC updates the Destination Address Registers on
page 3-24 after it executes DMASTP<S|B>.

Figure 4-15 shows the instruction encoding.

Figure 4-15 DMASTP<S|B> encoding

Assembler syntax

DMASTP<S|B> <peripheral>

where:

<S> Sets bs to 0. This instructs the DMAC to perform:
• a single DMA store operation if request_type is programmed to Single

Note
 The DMAC ignores the state of the dst_burst_len field in the Channel

Control Registers on page 3-25 and always performs an AXI transfer with
a burst length of one.

• a DMANOP if request_type is programmed to Burst.

 Sets bs to 1. This instructs the DMAC to perform:
• the DMA store if request_type is programmed to Burst
• a DMANOP if request_type is programmed to Single.

<peripheral> 5-bit immediate, value 0-31.

Note
 The DMAC sets the value of the request_type flag when it executes a DMAWFP instruction. See
DMAWFP on page 4-18.

Operation

You can only use this instruction in a DMA channel thread.

The DMAC only commences the burst when the MFIFO contains all of the data necessary to
complete the burst transfer.

1

7 6 5 4 3 2 1 0

0 0 1 0 1 0 bs

15 11 10 9 8 7

periph[4:0] 0 00
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-16
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.3.17 DMASTZ

Store Zero instructs the DMAC to store zeros, using AXI transactions that the Destination
Address Registers on page 3-24 and Channel Control Registers on page 3-25 specify. If the
dst_inc bit in the Channel Control Registers on page 3-25 is set to incrementing, the DMAC
updates the Destination Address Registers on page 3-24 after it executes DMASTZ.

Figure 4-16 shows the instruction encoding.

Figure 4-16 DMASTZ encoding

Assembler syntax

DMASTZ

Operation

You can only use this instruction in a DMA channel thread.

4.3.18 DMAWFE

Wait For Event instructs the DMAC to halt execution of the thread until the event, that event_num
specifies, occurs. When the event occurs, the thread moves to the Executing state and the
DMAC clears the event. See Using events and interrupts on page 2-23.

Figure 4-17 shows the instruction encoding.

Figure 4-17 DMAWFE encoding

Assembler syntax

DMAWFE <event_num>[, invalid]

where:

<event_num> 5-bit immediate, value 0-31.

[invalid] Sets i to 1. If invalid is present, the DMAC invalidates the instruction cache for
the current DMA thread. If invalid is not present then the assembler sets i to 0
and the DMAC does not invalidate the instruction cache for the current DMA
thread.

Note
 • The DMAC aborts the thread if you select an event_num that is not

available for your configuration of the DMAC.
• To ensure cache coherency, you must use invalid when a processor writes

the instruction stream for a DMA channel.

0

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0

0

7 6 5 4 3 2 1 0

0 0 1 1 0 1 1

15 8 7

event_num[4:0]

1011

i 00

9

ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-17
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

4.3.19 DMAWFP

Wait For Peripheral instructs the DMAC to halt execution of the thread until the specified
peripheral signals a DMA request for that DMA channel.

Figure 4-18 shows the instruction encoding.

Figure 4-18 DMAWFP encoding

Assembler syntax

DMAWFP <peripheral>, <single|burst|periph>

where:

<peripheral> 5-bit immediate, value 0-31.

Note
 The DMAC aborts the thread if you select a peripheral number that is not

available for your configuration of the DMAC.

<single> Sets bs to 0 and p to 0. This instructs the DMAC to continue executing the DMA
channel thread after it receives a single or burst DMA request. The DMAC sets
the request_type to Single, for that DMA channel.

<burst> Sets bs to 1 and p to 0. This instructs the DMAC to continue executing the DMA
channel thread after it receives a burst DMA request. The DMAC sets the
request_type to Burst.

Note
 The DMAC ignores single burst DMA requests, as Figure 2-10 on page 2-21

shows.

<periph> Sets bs to 0 and p to 1. This instructs the DMAC to continue executing the DMA
channel thread after it receives a single or burst DMA request. The DMAC sets
the request_type to:
Single When it receives a single DMA request.
Burst When it receives a burst DMA request.

Operation

You can only use this instruction in a DMA channel thread.

p

7 6 5 4 3 2 1 0

0 0 1 1 0 0 bs

15 8 7

peripheral[4:0]

1011

0 00

9

ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-18
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.3.20 DMAWMB

Write Memory Barrier forces the DMA channel to wait until all of the executed DMAST
instructions for that channel have been issued on the AXI interface and have completed. This
permits read-after-write sequences to the same address location with no hazards.

Figure 4-19 shows the instruction encoding.

Figure 4-19 DMAWMB encoding

Assembler syntax

DMAWMB

Operation

You can only use this instruction in a DMA channel thread.

1

7 6 5 4 3 2 1 0

0 0 0 1 0 0 1
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-19
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.4 Assembler directives
The assembler provides the following additional commands:
• DCD
• DCB
• DMALP
• DMALPFE on page 4-21
• DMAMOV CCR on page 4-21.

4.4.1 DCD

Assembler directive to place a 32-bit immediate in the instruction stream.

Syntax

DCD imm32

4.4.2 DCB

Assembler directive to place an 8-bit immediate in the instruction stream.

Syntax

DCB imm8

4.4.3 DMALP

Assembler directive to insert an iterative loop.

Syntax

DMALP [<LC0>|<LC1>] <loop_iterations>

where:

<loop_iterations>

An 8-bit value that specifies the number of loops to perform.

Note
 For clarity in writing assembler instructions, the 8-bit value is the actual number

of iterations of the loop to be executed. The assembler decrements this by one to
create the actual value, 0-255, that the DMAC uses.

[LC0] If LC0 is present, the DMAC stores <loop_iterations> in the Loop Counter 0
Registers on page 3-29.

[LC1] If LC1 is present, the DMAC stores <loop_iterations> in the Loop Counter 1
Registers on page 3-30.

Note
 If LC0 or LC1 is not present, the assembler determines the Loop Counter Register to use.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-20
ID112209 Non-Confidential, Unrestricted Access

Instruction Set
4.4.4 DMALPFE

Assembler directive to insert a repetitive loop.

Syntax

DMALPFE

Enables the assembler to clear the nf bit that is present in DMALPEND. See DMALPEND[S|B] on
page 4-10.

4.4.5 DMAMOV CCR

Assembler directive that enables you to program the Channel Control Registers on page 3-25
using the format that Syntax shows.

Syntax

DMAMOV CCR, [SB<1-16>] [SS<8|16|32|64|128>] [SA<I|F>]
[SP<imm3>] [SC<imm4>]
[DB<1-16>] [DS<8|16|32|64|128>] [DA<I|F>]
[DP<imm3>] [DC<imm4>]
[ES<8|16|32|64|128>]

Table 4-2 shows the argument descriptions and the default values.

Table 4-2 DMAMOV CCR argument description and the default values

Syntax Description Options Default

SA Source address increment. Sets the value of ARBURST[0]. I = Increment
F = Fixed

I

SS Source burst size in bits. Sets the value of ARSIZE[2:0]. 8, 16, 32, 64, or 128 8

SB Source burst length. Sets the value of ARLEN[3:0]. 1 to 16 1

SP Source protection. 0 to 7a 0

SC Source cache. 0 to 15ab 0

DA Destination address increment. Sets the value of AWBURST[0]. I = Increment
F = Fixed

I

DS Destination burst size in bits. Sets the value of AWSIZE[2:0]. 8, 16, 32, 64, or 128 8

DB Destination burst length. Sets the value of AWLEN[3:0]. 1 to 16 1

DP Destination protection. 0 to 7a 0

DC Destination cache. 0 to 15ac 0

ES Endian swap size, in bits. 8, 16, 32, 64, or 128 8

a. You must use decimal values when programming this immediate value.
b. Because ARCACHE[3] is tied LOW by the DMAC, the assembler always sets bit 3 to 0 and uses bits [2:0] of your chosen value

for SC. See CCRn Register bit assignments on page 3-26.
c. Because AWCACHE[2] is tied LOW by the DMAC, the assembler always sets bit 2 to 0 and uses bit [3] and bits [1:0] of your

chosen value for DC. See CCRn Register bit assignments on page 3-26.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. 4-21
ID112209 Non-Confidential, Unrestricted Access

Appendix A
Signal Descriptions

This appendix lists and describes the DMAC signals. It contains the following sections:
• Clocks and resets on page A-2
• AXI signals on page A-3
• APB signals on page A-6
• Peripheral request interface on page A-7
• Interrupt signals on page A-8
• Tie-off signals on page A-9.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-1
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.1 Clocks and resets
Table A-1 shows the clock and reset signals.

Table A-1 Clock and reset

Name Type
Source/
destination

Description

aclk Input Clock source AXI clock.

aresetn Input Reset source DMAC active-LOW reset:
0 = apply DMAC reset
1 = do not apply DMAC reset.

pclken Input Clock generator Clock enable signal that enables the APB interfaces to operate at either:
• the aclk frequency
• a divided integer multiple of aclk that is aligned to aclk.

Note
 If you do not use pclken then you must tie it HIGH. This results in aclk clocking the

APB interfaces.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-2
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.2 AXI signals
The following sections describe the AXI interface signals:
• Write address, AXI-AW, channel signals
• Write data, AXI-W, channel signals
• Write response, AXI-B, channel signals on page A-4
• Read address, AXI-AR, channel signals on page A-4
• Read data, AXI-R, channel signals on page A-4.

A.2.1 Write address, AXI-AW, channel signals

Table A-2 shows the AXI write address signals.

The DMAC does not support locked or exclusive accesses and therefore awlock[1:0] is tied
LOW.

A.2.2 Write data, AXI-W, channel signals

Table A-3 shows the AXI write data signals.

Table A-2 AXI-AW signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

awaddr[31:0] AWADDR[31:0]

awburst[1:0] AWBURST[1:0]

awid[ID_MSB:0]b

b. The value of ID_MSB is set when you configure the DMAC.

AWID[ID_MSB:0]

awlen[3:0] AWLEN[3:0]

awprot[2:0] AWPROT[2:0]

awready AWREADY

awsize[2:0] AWSIZE[2:0]

awvalid AWVALID

Table A-3 AXI-W signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

wdata[DATA_MSB:0]b

b. The value of DATA_MSB, ID_MSB, and STRB_MSB are set when you
configure the DMAC.

WDATA[DATA_MSB:0]

wid[ID_MSB:0]b WID[ID_MSB:0]

wlast WLAST

wready WREADY

wstrb[STRB_MSB:0]b WSTRB[STRB_MSB:0]

wvalid WVALID
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-3
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.2.3 Write response, AXI-B, channel signals

Table A-4 shows the AXI write response signals.

A.2.4 Read address, AXI-AR, channel signals

Table A-5 shows the AXI read address signals.

The DMAC does not support locked or exclusive accesses and therefore arlock[1:0] is tied
LOW.

A.2.5 Read data, AXI-R, channel signals

Table A-6 shows the AXI read data signals.

Table A-4 AXI-B signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

bid[ID_MSB:0]b

b. The value of ID_MSB is set when you configure the DMAC.

BID[ID_MSB:0]

bready BREADY

bresp[1:0] BRESP[1:0]

bvalid BVALID

Table A-5 AXI-AR signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

araddr[31:0] ARADDR[31:0]

arburst[1:0] ARBURST[1:0]

arid[ID_MSB:0]b

b. The value of ID_MSB is set when you configure the DMAC.

ARID[ID_MSB:0]

arlen[3:0] ARLEN[3:0]

arprot[2:0] ARPROT[2:0]

arready ARREADY

arsize[2:0] ARSIZE[2:0]

arvalid ARVALID

Table A-6 AXI-R signals

Signal AMBA equivalenta

rdata[DATA_MSB:0]b RDATA[DATA_MSB:0]

rid[ID_MSB:0]b RID[ID_MSB:0]

rlast RLAST
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-4
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
rready RREADY

rresp[1:0] RRESP[1:0]

rvalid RVALID

a. See the AMBA AXI Protocol Specification for a description of these signals.
b. The value of DATA_MSB and ID_MSB are set when you configure the DMAC.

Table A-6 AXI-R signals (continued)

Signal AMBA equivalenta
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-5
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.3 APB signals
The DMAC provides the following APB interfaces:
• Non-secure APB interface
• Secure APB interface.

A.3.1 Non-secure APB interface

Table A-7 shows the signals that the non-secure APB interface provides.

A.3.2 Secure APB interface

Table A-8 shows the signals that the secure APB interface provides.

Table A-7 Non-secure APB interface signals

Signal AMBA equivalenta

a. See the AMBA 3 APB Protocol Specification for a description of these signals.

paddr[31:0] PADDR

penable PENABLE

prdata[31:0] PRDATA

pready PREADY

psel PSELx

pwdata[31:0] PWDATA

pwrite PWRITE

Table A-8 Secure APB interface signals

Signal AMBA equivalenta

a. See the AMBA 3 APB Protocol Specification for a description of these signals.

spaddr[31:0] PADDR

spenable PENABLE

sprdata[31:0] PRDATA

spready PREADY

spsel PSELx

spwdata[31:0] PWDATA

spwrite PWRITE
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-6
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.4 Peripheral request interface
Table A-9 shows the peripheral request interface signals that the DMAC provides, after you
configure it to have one or more peripheral request interfaces.

Note
 You can configure a DMAC to not have any peripheral request interfaces. See the AMBA DMA
Controller DMA-330 Supplement to AMBA Designer (FD001) User Guide for more
information.

Table A-9 Peripheral request interface

Namea Type
Source/
destination

Description

daready_<x> Input Peripheral Indicates if the peripheral can accept the information that the DMAC provides on
datype_<x>[1:0]:
0 = peripheral not ready
1 = peripheral ready.

datype_<x>[1:0] Output Peripheral Indicates the type of acknowledgement, or request, that the DMAC signals:
b00 = the DMAC has completed the single DMA transfer
b01 = the DMAC has completed the burst DMA transfer
b10 = DMAC requesting the peripheral to perform a flush request
b11 = reserved.

davalid_<x> Output Peripheral Indicates when the DMAC provides valid control information:
0 = no control information is available
1 = datype_<x>[1:0] contains valid information for the peripheral.

drlast_<x> Input Peripheral Indicates that the peripheral is sending the last data transfer for the current DMA
transfer:
0 = last data request is not in progress
1 = last data request is in progress.

Note
 The DMAC only uses this signal when drtype_<x>[1:0] is b00 or b01.

drready_<x> Output Peripheral Indicates if the DMAC can accept the information that the peripheral provides on
drtype_<x>[1:0]:
0 = DMAC not ready
1 = DMAC ready.

drtype_<x>[1:0] Input Peripheral Indicates the type of acknowledgement, or request, that the peripheral signals:
b00 = single level request
b01 = burst level request
b10 = acknowledging a flush request that the DMAC requested
b11 = reserved.

drvalid_<x> Input Peripheral Indicates when the peripheral provides valid control information:
0 = no control information is available
1 = drtype_<x>[1:0] and drlast_<x> contain valid information for the DMAC.

a. Where <x> is the number for a peripheral request interface. The valid numbers for x depend on the configuration of the DMAC.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-7
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.5 Interrupt signals
Table A-10 shows the interrupt signals.

Table A-10 Interrupt signals

Name Type Destination Description

irq[x:0]a Output Processor Active HIGH interrupt output. The DMAC sets irq<N> HIGH when it executes a DMASEV
instruction for event N, if the Interrupt Enable Register on page 3-13 is programmed to signal
an interrupt for event N.
Use the Interrupt Clear Register on page 3-15 to set irq<N> LOW.

irq_abort Output Processor The DMAC sets this signal HIGH when an abort occurs and it remains HIGH if any thread is
in the Faulting completing state or Faulting state.
If none of the threads are in the Faulting completing state or Faulting state, the DMAC sets
this signal LOW.

a. The valid numbers for x depend on the configuration of the DMAC.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-8
ID112209 Non-Confidential, Unrestricted Access

Signal Descriptions
A.6 Tie-off signals
Table A-11 shows the tie-off signals that all configurations of the DMAC contain.

Table A-12 shows the tie-off signals that control the security state of the interrupt outputs and
peripheral request interfaces when the DMAC exits from reset.

Table A-11 DMAC tie-off signals

Name Type Source Description

boot_addr[31:0] Input Tie-off Configures the address location that contains the first instruction the DMAC executes,
when it exits from reset.

Note
 The DMAC only uses this address when boot_from_pc is HIGH.

boot_from_pc Input Tie-off Controls the location in which the DMAC executes its initial instruction, after it exits from
reset:
0 = DMAC waits for an instruction from either APB interface
1 = DMA manager thread executes the instruction that is located at the address that
boot_addr[31:0] provides.

boot_manager_ns Input Tie-off When the DMAC exits from reset, this signal controls the security state of the DMA
manager thread:
0 = assigns DMA manager to the Secure state
1 = assigns DMA manager to the Non-secure state.

Table A-12 Interrupt and peripheral tie-off signals

Name Type Source Description

boot_irq_ns[x:0]a Input Tie-off Controls the security state of an event-interrupt resource, when the DMAC exits from
reset:
boot_irq_ns[x] is LOW

The DMAC assigns event<x> or irq[x] to the Secure state.
boot_irq_ns[x] is HIGH

The DMAC assigns event<x> or irq[x] to the Non-secure state.

boot_periph_ns[x:0]a Input Tie-off Controls the security state of a peripheral request interface, when the DMAC exits from
reset:
boot_periph_ns[x] is LOW

The DMAC assigns peripheral request interface x to the Secure state.
boot_periph_ns[x] is HIGH

The DMAC assigns peripheral request interface x to the Non-secure
state.

Note
 Some configurations of the DMAC might not provide these signals because the DMAC
does not contain a peripheral request interface. See Peripheral request interface on
page A-7.

a. The width of this bus depends on the configuration of the DMAC. See the AMBA DMA Controller DMA-330 Supplement to AMBA Designer
(FD001) User Guide for information about the bus widths that the DMAC permits.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. A-9
ID112209 Non-Confidential, Unrestricted Access

Appendix B
MFIFO Usage Overview

This appendix shows MFIFO usage for some example DMA channel programs. It contains the
following sections:
• About MFIFO usage overview on page B-2
• Aligned transfers on page B-3
• Unaligned transfers on page B-5
• Fixed transfers on page B-9.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-1
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
B.1 About MFIFO usage overview
The MFIFO is a shared resource that is utilized on a first-come-first-served basis by all currently
active channels. To a program, it appears as a set of variable-depth parallel FIFOs, one per
channel, with the restriction that the total depth of all the FIFOs cannot exceed the configured
size of the MFIFO. The width of the AXI master interface sets the MFIFO width and the MFIFO
depth is configurable.

The DMAC is capable of realigning data from the source to the destination. For example, the
DMAC shifts the data by two byte lanes when it reads a word from address 0x103 and writes to
address 0x205. All byte manipulations occur when data enters the MFIFO (as a result of an AXI
read due to a DMALD instruction) so that the DMAC does not need to manipulate the data when it
removes it from the MFIFO (as a result of an AXI write due to a DMAST instruction). Therefore
the storage and packing of the data in the MFIFO is determined by the destination address and
transfer characteristics.

When a program specifies that incrementing transactions are to be performed to the destination,
the DMAC packs data into the MFIFO to minimise the usage of the MFIFO entries. For
example, a DMAC with a 64-bit AXI data bus where the program loads two 32-bit words from
address 0x100 and the destination address is set to 0x200. In this case, the DMAC packs the two
words into a single 64-bit entry in the MFIFO.

In certain situations, the number of entries required to store the data loaded from a source is not
a simple calculation of amount of source data divided by MFIFO width. The calculation of the
number of entries required is not simple when any of the following occur:
• the source address is not aligned to the AXI bus width
• the destination address is not aligned to the AXI bus width
• the transactions are to a fixed destination, that is, a non-incrementing address.

The DMALD and DMAST instructions each specify that an AXI transaction is to be performed. The
amount of data transferred by an AXI transaction depends on the values programmed in to the
CCRn Register and the address of the transaction. See the AMBA AXI Protocol Specification for
information about unaligned transfers.

The following sections provide several example DMAC programs together with illustrations of
the MFIFO usage:
• Aligned transfers on page B-3
• Unaligned transfers on page B-5
• Fixed transfers on page B-9.

Note
 • These sections show MFIFO usage in the following ways:

— a graph of the number of MFIFO entries versus time
— a diagram of the byte-lane manipulation that the DMAC performs when data enters

the MFIFO.

• All the examples use a DMAC configuration with a 64-bit AXI data bus. The numbers 0
and 7 in the MFIFO diagrams indicate the byte lanes in the MFIFO.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-2
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
B.2 Aligned transfers
The following sections show examples of:
• Simple aligned program
• Aligned asymmetric program with multiple loads
• Aligned asymmetric program with multiple stores on page B-4.

B.2.1 Simple aligned program

In this program the source address and destination address are aligned with the AXI data bus
width.

DMAMOV CCR, SB4 SS64 DB4 DS64
DMAMOV SAR, 0x1000
DMAMOV DAR, 0x4000

DMALP 16
DMALD ; shown as a in Figure B-1
DMAST ; shown as b in Figure B-1

DMALPEND

DMAEND

Figure B-1 shows the MFIFO usage for this program.

Figure B-1 Simple aligned program

In Figure B-1, each DMALD requires four entries and each DMAST removes four entries.

This example has a static requirement of zero MFIFO entries and a dynamic requirement of four
MFIFO entries.

B.2.2 Aligned asymmetric program with multiple loads

The following program performs four loads for each store and the source address and
destination address are aligned with the AXI data bus width.

DMAMOV CCR, SB1 SS64 DB4 DS64
DMAMOV SAR, 0x1000
DMAMOV DAR, 0x4000

DMALP 16
DMALD ; shown as a in Figure B-2 on page B-4
DMALD ; shown as b in Figure B-2 on page B-4
DMALD ; shown as c in Figure B-2 on page B-4
DMALD ; shown as d in Figure B-2 on page B-4
DMAST ; shown as e in Figure B-2 on page B-4

DMALPEND

DMAEND

0

4
a a a a

b b b b

Data from
DMALD

a a a a a a a a
07

Data for
DMAST

DMALD

DMAST

a a a a a a a a
a a a a a a a a
a a a a a a a a
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-3
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
Figure B-2 shows the MFIFO usage for this program.

Figure B-2 Aligned asymmetric program with multiple loads

In Figure B-2, each DMALD requires one entry and each DMAST removes four entries.

This example has a static requirement of zero MFIFO entries and a dynamic requirement of four
MFIFO entries.

B.2.3 Aligned asymmetric program with multiple stores

The following program performs four stores for each load and the source address and
destination address are aligned with the AXI data bus width.

DMAMOV CCR, SB4 SS64 DB1 DS64
DMAMOV SAR, 0x1000
DMAMOV DAR, 0x4000

DMALP 16
DMALD ; shown as a in Figure B-3
DMAST ; shown as b in Figure B-3
DMAST ; shown as c in Figure B-3
DMAST ; shown as d in Figure B-3
DMAST ; shown as e in Figure B-3

DMALPEND

DMAEND

Figure B-3 shows the MFIFO usage for this program.

Figure B-3 Aligned asymmetric program with multiple stores

In Figure B-3, each DMALD requires four entries and each DMAST removes one entry.

This example has a static requirement of zero MFIFO entries and a dynamic requirement of four
MFIFO entries.

Data from
4 × DMALD

a a a a a a a a
07

Data for
DMAST

DMALD

DMAST

b b b b b b b b
c c c c c c c c
d d d d d d d d

0

4

a
b

c
d

e

a
b

c
d

a
b

c
d

e e

Data from
DMALD

a a a a a a a a
07

Data for
4 × DMAST

DMALD

DMAST

a a a a a a a a
a a a a a a a a
a a a a a a a a

0

4

d
c

b

a

e
d

c
b

a

d
c

b

a

e e
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-4
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
B.3 Unaligned transfers
The following sections show examples of:
• Aligned source address to unaligned destination address
• Unaligned source address to aligned destination address on page B-6
• Unaligned source address to aligned destination address, with excess initial load on

page B-7
• Aligned burst size, unaligned MFIFO on page B-8.

B.3.1 Aligned source address to unaligned destination address

In this program the source address is aligned with the AXI data bus width but the destination
address is unaligned. The destination address is not aligned to the destination burst size so the
first DMAST instruction removes less data than the first DMALD instruction reads. Therefore, a final
DMAST of a single word is required to clear the data from the MFIFO.

DMAMOV CCR, SB4 SS64 DB4 DS64
DMAMOV SAR, 0x1000
DMAMOV DAR, 0x4004

DMALP 16
DMALD ; shown as a1, ... a, an in Figure B-4
DMAST ; shown as b in Figure B-4

DMALPEND

DMAMOV CCR, SB4 SS64 DB1 DS32
DMAST ; shown as c in Figure B-4

DMAEND

Figure B-4 shows the MFIFO usage for this program.

Figure B-4 Aligned to unaligned program

The first DMALD instruction loads four doublewords but because the destination address is
unaligned, the DMAC shifts them by four bytes and therefore it uses five entries in the MFIFO.
Each DMAST requires only four entries of data and therefore the extra entry remains in use for the
duration of the program until it is emptied by the last DMAST.

Data from
DMALD

a1 a1 a1 a1

07

Data for
first DMAST

DMALD

DMAST

a1 a1 a1 a1 a1 a1 a1 a1

a1 a1 a1 a1 a1 a1 a1 a1

a1 a1 a1 a1 a1 a1 a1 a1

0

5

1

a1

b

a a an

b b b
c a a a a a1 a1 a1 a1

a a a a a a a a
a a a a a a a a
a a a a a a a a

an an an an

Data for
15 × DMAST

Data for
last DMAST

.

.

.

ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-5
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
This example has a static requirement of one MFIFO entry and a dynamic requirement of four
MFIFO entries.

B.3.2 Unaligned source address to aligned destination address

In this program the source address is unaligned with the AXI data bus width but the destination
address is aligned. The source address is not aligned to the source burst size so the first DMALD
instruction reads in less data than the DMAST requires. Therefore, an extra DMALD is required to
satisfy the first DMAST.

DMAMOV CCR, SB4 SS64 DB4 DS64
DMAMOV SAR, 0x1004
DMAMOV DAR, 0x4000

DMALD ; shown as a in Figure B-5

DMALP 15
DMALD ; shown as b1, ... b, bn in Figure B-5
DMAST ; shown as c in Figure B-5

DMALPEND

DMAMOV CCR, SB1 SS32 DB4 DS64
DMALD ; shown as d in Figure B-5
DMAST ; shown as e in Figure B-5

DMAEND

Figure B-5 shows the MFIFO usage for this program.

Figure B-5 Unaligned to aligned program

Note
 The DMALD shown as d does not increase the MFIFO usage because it loads four bytes into an
MFIFO entry that the DMAC has already allocated to this channel.

0

4
a

b1

c

b bn

c c
d

e

8

Data from
DMALD

a a a a a a a a
07

Data for
first DMAST

DMALD

DMAST

a a a a a a a a
a a a a a a a a
b1 b1 b1 b1 a a a a

b1 b1 b1 b1 b1 b1 b1 b1

b1 b1 b1 b1 b1 b1 b1 b1

b1 b1 b1 b1 b1 b1 b1 b1

b b b b b1 b1 b1 b1Data for
14 × DMAST .

.

.
bn bn bn bn bn bn bnbn

bn bn bn bn bn bn bn bn

bn bn bn bn bn bn bn bn

d d d d bn bn bn bn

Data for
last DMAST
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-6
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
The first DMALD instruction does not load sufficient data to enable the DMAC to execute a DMAST
and therefore the program includes an additional DMALD, prior to the start of the loop. After the
first DMALD, the subsequent DMALDs align with the source burst size. This optimizes the
performance but it requires a larger number of MFIFO entries.

This example has a static requirement of four MFIFO entries and a dynamic requirement of four
MFIFO entries.

B.3.3 Unaligned source address to aligned destination address, with excess initial load

This program is an alternative to that described in Unaligned source address to aligned
destination address on page B-6. The program uses a different sequence of source bursts which
might be less efficient but requires fewer MFIFO entries.

DMAMOV CCR, SB5 SS64 DB4 DS64
DMAMOV SAR, 0x1004
DMAMOV DAR, 0x4000
DMALD ; shown as a in Figure B-6
DMAST ; shown as b in Figure B-6

DMAMOV CCR, SB4 SS64 DB4 DS64
DMALP 14

DMALD ; shown as c and cn in Figure B-6
DMAST ; shown as d in Figure B-6

DMALPEND

DMAMOV CCR, SB3 SS64 DB4 DS64
DMALD ; shown as e in Figure B-6

DMAMOV CCR, SB1 SS32 DB4 DS64
DMALD ; shown as f in Figure B-6
DMAST ; shown as g in Figure B-6

DMAEND

Figure B-6 shows the MFIFO usage for this program.

Figure B-6 Unaligned to aligned with excess initial load

0

5

1

a

b

c c cn

d

e

d d

f

g

4

Data from
DMALD

a a a a a a a a

07

Data for
first DMAST

DMALD

DMAST

a a a a a a a a
a a a a a a a a

c c c a a a a
c c c c c c c c
c c c c c c c c
c c c c c c c c

e e e e cn cn cn cn

Data for
14 × DMAST .

.

.

e e e e e e e e
e e e e e e e e
f f f f e e e e

Data for
last DMAST

a a a a a a a a

c

ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-7
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
Note
 The DMALD shown as f does not increase the MFIFO usage because it loads four bytes into an
MFIFO entry that the DMAC has already allocated to this channel.

The first DMALD instruction loads five beats of data to enable the DMAC to execute the first DMAST.
After the first DMALD, the subsequent DMALDs are not aligned to the source burst size, for example
the second DMALD reads from address 0x1028. After the loop, the final two DMALDs read the data
required to satisfy the final DMAST.

This example has a static requirement of one MFIFO entry and a dynamic requirement of four
MFIFO entries.

B.3.4 Aligned burst size, unaligned MFIFO

In this program the destination address, which is narrower than the MFIFO width, aligns with
the burst size but does not align with the MFIFO width.

DMAMOV CCR, SB4 SS32 DB4 DS32
DMAMOV SAR, 0x1000
DMAMOV DAR, 0x4004

DMALP 16
DMALD ; shown as a in Figure B-7
DMAST ; shown as b in Figure B-7

DMALPEND

DMAEND

Figure B-7 shows the MFIFO usage for this program.

Figure B-7 Aligned burst with unaligned MFIFO width

If the DMAC configuration has a 32-bit AXI data bus width then this program requires four
MFIFO entries. However, in this example the DMAC has a 64-bit AXI data bus width and,
because the destination address is not 64-bit aligned, it requires three rather than the expected
two MFIFO entries.

This example has a static requirement of zero MFIFO entries and a dynamic requirement of
three MFIFO entries.

0

3
a a a a

b b b b

Data from
DMALD

a a a a
07

Data for
DMAST

DMALD

DMAST

a a a a a a a a
a a a a
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-8
ID112209 Non-Confidential, Unrestricted Access

MFIFO Usage Overview
B.4 Fixed transfers
The following section shows an example of a:
• Fixed destination with aligned address.

B.4.1 Fixed destination with aligned address

In this program the source address and destination address are aligned with the AXI data bus
width, and the destination address is fixed.

DMAMOV CCR, SB2 SS64 DB4 DS32 DAF
DMAMOV SAR, 0x1000
DMAMOV DAR, 0x4000

DMALP 16
DMALD ; shown as a in Figure B-8
DMAST ; shown as b in Figure B-8

DMALPEND

DMAEND

Figure B-8 shows the MFIFO usage for this program.

Figure B-8 Fixed destination with aligned address

Each DMALD in the program loads two 64-bit data transfers into the MFIFO. Because the
destination address is a 32-bit fixed address then the DMAC splits each 64-bit data item across
two entries in the MFIFO.

This example has a static requirement of zero MFIFO entries and a dynamic requirement of four
MFIFO entries.

0

4
a a a a

b b b b

Data from
DMALD

a a a a
07

Data for
DMAST

DMALD

DMAST

a a a a
a a a a
a a a a
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. B-9
ID112209 Non-Confidential, Unrestricted Access

Appendix C
Revisions

This appendix describes the technical changes between released issues of this book.

Table C-1 Differences between issue A and issue B

Change Location Affects

Changed product designator from PL330 to DMA-330 Throughout book r1p0

Updated description about how a DMA manager thread
can move from the Stopped state to the Executing state

Stopped on page 2-9 All revisions

Updated description about how a thread can move from
the Executing state to the:
• At barrier state
• Faulting completing state
• Faulting state

Executing on page 2-9 All revisions

Updated description about which instruction moves the
thread to the Stopped state

Faulting on page 2-10 All revisions

Added information about boot_manager_ns when the
DMAC enters the Stopped state

How to set the location of the first instruction for the
DMAC to execute on page 2-11

All revisions

Added subsection about peripheral acceptance request
capability

Request acceptance capability configuration on
page 2-16

All revisions

Updated description and added example program code • Peripheral length management on page 2-16
• DMAC length management on page 2-18

All revisions
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. C-1
ID112209 Non-Confidential, Unrestricted Access

Revisions
Updated description and added additional examples of
how to use events and interrupts

Using events and interrupts on page 2-23 All revisions

Added the store before load abort Abort sources on page 2-25 r1p0

Updated the conditions that can cause a precise abort or
an imprecise abort

All revisions

Added the precise lockup detection abort Watchdog abort on page 2-26 r1p0

Updated description for DMASEV Security usage on page 2-29 All revisions

Added information about
dst_burst_len×dst_burst_size ≥ endian_swap_size

Endian swap size restrictions on page 2-34 All revisions

Updated information about data discontinuity Updating DMA channel control registers during a DMA
cycle on page 2-34

All revisions

Updated information about programming restrictions for
the MFIFO

Resource sharing between DMA channels on page 2-36 All revisions

Updated the RTL register names • DMA Manager Status Register on page 3-11
• Event-Interrupt Raw Status Register on page 3-13
• Interrupt Status Register on page 3-14
• Fault Status DMA Manager Register on page 3-16
• Fault Status DMA Channel Register on page 3-16
• Fault Type DMA Manager Register on page 3-17
• Fault Type DMA Channel Registers on page 3-18
• Channel Status Registers on page 3-21
• Source Address Registers on page 3-23
• Destination Address Registers on page 3-24
• Channel Control Registers on page 3-25
• DMA Configuration Register on page 3-38

All revisions

Updated the description of the instr_fetch_err bit • Table 3-15 on page 3-18
• Table 3-16 on page 3-19

All revisions

Added the st_data_unavailable bit Fault Type DMA Channel Registers on page 3-18 r1p0

Added information about precise and imprecise aborts Fault Type DMA Channel Registers on page 3-18 All revisions

Updated the function of the Channel status field when the
value is b0110

Channel Status Registers on page 3-21 All revisions

Updated the description and the valid states of the
dst_burst_size field and src_burst_size field

Channel Control Registers on page 3-25 All revisions

Updated the description of the bit numbers for the
src_prot_ctrl field

Channel Control Registers on page 3-25 All revisions

Updated the description of the INS field Configuration Register 3 on page 3-36 All revisions

Added the WD Register Watchdog Register on page 3-40 r1p0

Updated the options of the revision field Peripheral Identification Register 2 on page 3-42 All revisions

Updated addition description DMAADDH on page 4-4 All revisions

Removed description for suspended channels DMAEND on page 4-4 r1p0

Table C-1 Differences between issue A and issue B (continued)

Change Location Affects
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. C-2
ID112209 Non-Confidential, Unrestricted Access

Revisions
Updated the functionality when a DMA channel is not in
the Stopped state

DMAGO on page 4-5 All revisions

Updated the description of the S and B parameters DMALD[S|B] on page 4-7 All revisions

Updated the description of the S parameter DMALDP<S|B> on page 4-8 All revisions

Updated the description of the instruction DMALPEND[S|B] on page 4-10 All revisions

Updated the description of the S and B parameters DMAST[S|B] on page 4-15 All revisions

Updated the description of the invalid parameter DMAWFE on page 4-17 All revisions

Updated the instruction syntax DMAWFP on page 4-18 All revisions

Removed DMALPEND instruction Assembler directives on page 4-20 All revisions

Updated the description and options for the SS and DS
parameters

DMAMOV CCR on page 4-21 All revisions

Added example MFIFO usage description Appendix B MFIFO Usage Overview All revisions

Table C-1 Differences between issue A and issue B (continued)

Change Location Affects
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. C-3
ID112209 Non-Confidential, Unrestricted Access

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data transfers
using byte strobes, burst-based transactions with only start address issued, separate read and write
data channels to enable low-cost DMA, ability to issue multiple outstanding addresses, out-of-order
transaction completion, and easy addition of register stages to provide timing closure.

The AXI protocol also includes optional extensions to cover signaling for low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes a number
of features that make it very suitable for high speed sub-micron interconnect.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA is the ARM
open standard for on-chip buses. It is an on-chip bus specification that describes a strategy for the
interconnection and management of functional blocks that make up a System-on-Chip (SoC). It aids
in the development of embedded processors with one or more CPUs or signal processors and
multiple peripherals. AMBA complements a reusable design methodology by defining a common
backbone for SoC modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or general-purpose
peripherals such as timers, interrupt controllers, UARTs, and I/O ports. Connection to the main
system bus is through a system-to-peripheral bus bridge that helps to reduce system power
consumption.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. Glossary-1
ID112209 Non-Confidential, Unrestricted Access

Glossary
Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size
is said to be aligned. Aligned words and halfwords have addresses that are divisible by four and
two respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses
that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

AXI See Advanced eXtensible Interface.

AXI channel order and interfaces
The block diagram shows:
• the order in which AXI channel signals are described
• the master and slave interface conventions for AXI components.

AXI terminology The following AXI terms are general. They apply to both masters and slaves:

Active read transaction
A transaction for which the read address has transferred, but the last read data has
not yet transferred.

Active transfer

A transfer for which the xVALID1 handshake has asserted, but for which
xREADY has not yet asserted.

Active write transaction
A transaction for which the write address or leading write data has transferred, but
the write response has not yet transferred.

Completed transfer
A transfer for which the xVALID/xREADY handshake is complete.

Payload The non-handshake signals in a transfer.

Transaction An entire burst of transfers, comprising an address, one or more data transfers and
a response transfer (writes only).

Transmit An initiator driving the payload and asserting the relevant xVALID signal.

Transfer A single exchange of information. That is, with one xVALID/xREADY
handshake.

AXI
interconnect

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

AXI slave
interface

AXI master
interface

AXI
master

AXI
slave

AXI master
interface

AXI slave
interface

1. The letter x in the signal name denotes an AXI channel as follows:
AW Write address channel.
W Write data channel.
B Write response channel.
AR Read address channel.
R Read data channel.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. Glossary-2
ID112209 Non-Confidential, Unrestricted Access

Glossary
The following AXI terms are master interface attributes. To obtain optimum performance, they
must be specified for all components with an AXI master interface:

Combined issuing capability
The maximum number of active transactions that a master interface can generate.
It is specified for master interfaces that use combined storage for active write and
read transactions. If not specified then it is assumed to be equal to the sum of the
write and read issuing capabilities.

Read ID capability
The maximum number of different ARID values that a master interface can
generate for all active read transactions at any one time.

Read ID width
The number of bits in the ARID bus.

Read issuing capability
The maximum number of active read transactions that a master interface can
generate.

Write ID capability
The maximum number of different AWID values that a master interface can
generate for all active write transactions at any one time.

Write ID width
The number of bits in the AWID and WID buses.

Write interleave capability
The number of active write transactions for which the master interface is capable
of transmitting data. This is counted from the earliest transaction.

Write issuing capability
The maximum number of active write transactions that a master interface can
generate.

The following AXI terms are slave interface attributes. To obtain optimum performance, they
must be specified for all components with an AXI slave interface:

Combined acceptance capability
The maximum number of active transactions that a slave interface can accept. It
is specified for slave interfaces that use combined storage for active write and
read transactions. If not specified then it is assumed to be equal to the sum of the
write and read acceptance capabilities.

Read acceptance capability
The maximum number of active read transactions that a slave interface can
accept.

Read data reordering depth
The number of active read transactions for which a slave interface can transmit
data. This is counted from the earliest transaction.

Write acceptance capability
The maximum number of active write transactions that a slave interface can
accept.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. Glossary-3
ID112209 Non-Confidential, Unrestricted Access

Glossary
Write interleave depth
The number of active write transactions for which the slave interface can receive
data. This is counted from the earliest transaction.

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst
comprises four beats.

See also Burst.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also Little-endian and Endianness.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and TDO,
through which test data is shifted. Processors can contain several shift registers to enable you to
access selected parts of the device.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is
no requirement to supply an address for any of the transfers after the first one. This increases
the speed at which the group of transfers can occur. Bursts over AMBA are controlled using
signals to indicate the length of the burst and how the addresses are incremented.

See also Beat.

Cache A block of on-chip or off-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often used instructions and/or data. This
is done to greatly increase the average speed of memory accesses and so improve processor
performance.

Cache hit A memory access that can be processed at high speed because the instruction or data that it
addresses is already held in the cache.

Cache line The basic unit of storage in a cache. It is always a power of two words in size (usually four or
eight words), and is required to be aligned to a suitable memory boundary.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it
addresses is not in the cache and a main memory access is required.

Coherency See Memory coherency.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

DMA See Direct Memory Access.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are
stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

Halfword A 16-bit data item.

Illegal instruction An instruction that is architecturally Undefined.

Instruction cache A block of on-chip fast access memory locations, situated between the processor and main
memory, used for storing and retrieving copies of often used instructions. This is done to greatly
increase the average speed of memory accesses and so improve processor performance.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. Glossary-4
ID112209 Non-Confidential, Unrestricted Access

Glossary
Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also Big-endian and Endianness.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value that was
most recently written to that location. Memory coherency is made difficult when there are
multiple possible physical locations that are involved, such as a system that has main memory,
a write buffer and a cache.

Microprocessor See Processor.

Processor A processor is the circuitry in a computer system required to process data using the computer
instructions. It is an abbreviation of microprocessor. A clock source, power supplies, and main
memory are also required to create a minimum complete working computer system.

Region A partition of instruction or data memory space.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These
fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be written as 0
and read as 0.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and TDO,
through which test data is shifted. Processors can contain several shift registers to enable you to
access selected parts of the device.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data
size is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM Architecture
Reference Manual for more information about ARM exceptions.

UNP See Unpredictable.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have any
value. For writes, writing to this location causes unpredictable behavior, or an unpredictable
change in device configuration. Unpredictable instructions must not halt or hang the processor,
or any part of the system.

Word A 32-bit data item.
ARM DDI 0424B Copyright © 2007, 2009 ARM Limited. All rights reserved. Glossary-5
ID112209 Non-Confidential, Unrestricted Access

	AMBA DMA Controller DMA-330 Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Conventions
	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	Introduction
	1.1 About the DMAC
	1.2 Compliance
	1.3 Features
	1.4 Interfaces
	1.5 Configurable options
	1.6 Test features
	1.7 Product documentation, design flow, and architecture
	1.7.1 Documentation
	1.7.2 Design flow
	1.7.3 ARM architecture and protocol information

	1.8 Product revisions
	1.9 Terminology

	Functional Overview
	2.1 Overview
	2.2 DMAC interfaces
	2.2.1 APB slave interfaces
	2.2.2 AXI master interface
	2.2.3 Peripheral request interfaces
	2.2.4 Interrupt interface
	2.2.5 Reset initialization interface

	2.3 Operating states
	2.3.1 Stopped
	2.3.2 Executing
	2.3.3 Cache miss
	2.3.4 Updating PC
	2.3.5 Waiting for event
	2.3.6 At barrier
	2.3.7 Waiting for peripheral
	2.3.8 Faulting completing
	2.3.9 Faulting
	2.3.10 Killing
	2.3.11 Completing

	2.4 Initializing the DMAC
	2.4.1 How to set the security state of the DMA manager
	2.4.2 How to set the location of the first instruction for the DMAC to execute
	2.4.3 How to set the security state for the interrupt outputs
	2.4.4 How to set the security state for a peripheral request interface

	2.5 Using the APB slave interfaces
	2.5.1 Issuing instructions to the DMAC using an APB interface

	2.6 Peripheral request interface
	2.6.1 Mapping to a DMA channel
	2.6.2 Handshake rules
	2.6.3 Request acceptance capability configuration
	2.6.4 Peripheral length management
	2.6.5 DMAC length management
	2.6.6 Peripheral request interface timing diagrams

	2.7 Using events and interrupts
	2.7.1 Using an event to restart DMA channels
	2.7.2 Interrupting a microprocessor

	2.8 Aborts
	2.8.1 Abort types
	2.8.2 Abort sources
	2.8.3 Watchdog abort
	2.8.4 Abort handling

	2.9 Security usage
	2.9.1 DMA manager thread is in the Secure state
	2.9.2 DMA manager thread is in the Non-secure state
	2.9.3 DMA channel thread is in the Secure state
	2.9.4 DMA channel thread is in the Non-secure state

	2.10 Constraints and limitations of use
	2.10.1 DMA channel arbitration
	2.10.2 DMA channel prioritization
	2.10.3 Instruction cache latency

	2.11 Programming restrictions
	2.11.1 Fixed unaligned bursts
	2.11.2 Endian swap size restrictions
	2.11.3 Updating DMA channel control registers during a DMA cycle
	2.11.4 Resource sharing between DMA channels

	Programmers Model
	3.1 About this programmers model
	3.1.1 Register map

	3.2 Register summary
	3.3 Register descriptions
	3.3.1 DMA Manager Status Register
	3.3.2 DMA Program Counter Register
	3.3.3 Interrupt Enable Register
	3.3.4 Event-Interrupt Raw Status Register
	3.3.5 Interrupt Status Register
	3.3.6 Interrupt Clear Register
	3.3.7 Fault Status DMA Manager Register
	3.3.8 Fault Status DMA Channel Register
	3.3.9 Fault Type DMA Manager Register
	3.3.10 Fault Type DMA Channel Registers
	3.3.11 Channel Status Registers
	3.3.12 Channel Program Counter Registers
	3.3.13 Source Address Registers
	3.3.14 Destination Address Registers
	3.3.15 Channel Control Registers
	3.3.16 Loop Counter 0 Registers
	3.3.17 Loop Counter 1 Registers
	3.3.18 Debug Status Register
	3.3.19 Debug Command Register
	3.3.20 Debug Instruction-0 Register
	3.3.21 Debug Instruction-1 Register
	3.3.22 Configuration Register 0
	3.3.23 Configuration Register 1
	3.3.24 Configuration Register 2
	3.3.25 Configuration Register 3
	3.3.26 Configuration Register 4
	3.3.27 DMA Configuration Register
	3.3.28 Watchdog Register
	3.3.29 Peripheral Identification Registers
	3.3.30 Component Identification Registers 0-3

	Instruction Set
	4.1 Instruction syntax conventions
	4.2 Instruction set summary
	4.3 Instructions
	4.3.1 DMAADDH
	4.3.2 DMAEND
	4.3.3 DMAFLUSHP
	4.3.4 DMAGO
	4.3.5 DMAKILL
	4.3.6 DMALD[S|B]
	4.3.7 DMALDP<S|B>
	4.3.8 DMALP
	4.3.9 DMALPEND[S|B]
	4.3.10 DMALPFE
	4.3.11 DMAMOV
	4.3.12 DMANOP
	4.3.13 DMARMB
	4.3.14 DMASEV
	4.3.15 DMAST[S|B]
	4.3.16 DMASTP<S|B>
	4.3.17 DMASTZ
	4.3.18 DMAWFE
	4.3.19 DMAWFP
	4.3.20 DMAWMB

	4.4 Assembler directives
	4.4.1 DCD
	4.4.2 DCB
	4.4.3 DMALP
	4.4.4 DMALPFE
	4.4.5 DMAMOV CCR

	Signal Descriptions
	A.1 Clocks and resets
	A.2 AXI signals
	A.2.1 Write address, AXI-AW, channel signals
	A.2.2 Write data, AXI-W, channel signals
	A.2.3 Write response, AXI-B, channel signals
	A.2.4 Read address, AXI-AR, channel signals
	A.2.5 Read data, AXI-R, channel signals

	A.3 APB signals
	A.3.1 Non-secure APB interface
	A.3.2 Secure APB interface

	A.4 Peripheral request interface
	A.5 Interrupt signals
	A.6 Tie-off signals

	MFIFO Usage Overview
	B.1 About MFIFO usage overview
	B.2 Aligned transfers
	B.2.1 Simple aligned program
	B.2.2 Aligned asymmetric program with multiple loads
	B.2.3 Aligned asymmetric program with multiple stores

	B.3 Unaligned transfers
	B.3.1 Aligned source address to unaligned destination address
	B.3.2 Unaligned source address to aligned destination address
	B.3.3 Unaligned source address to aligned destination address, with excess initial load
	B.3.4 Aligned burst size, unaligned MFIFO

	B.4 Fixed transfers
	B.4.1 Fixed destination with aligned address

	Revisions
	Glossary

