
PrimeCell® DMA Controller (PL330)
Revision: r0p0

Technical Reference Manual
Copyright © 2007 ARM Limited. All rights reserved.
ARM DDI 0424A

PrimeCell DMA Controller (PL330)
Technical Reference Manual

Copyright © 2007 ARM Limited. All rights reserved.

Release Information

The Change history table lists the changes made to this manual.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

19 December 2007 A Non-Confidential First issue for the r0p0 release
ii Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Contents
PrimeCell DMA Controller (PL330) Technical
Reference Manual

Preface
About this manual .. x
Feedback .. xv

Chapter 1 Introduction
1.1 About the DMAC ... 1-2
1.2 Terminology .. 1-5

Chapter 2 Functional Overview
2.1 Overview ... 2-2
2.2 DMAC interfaces ... 2-4
2.3 Operating states .. 2-10
2.4 Initializing the DMAC ... 2-14
2.5 Using the APB slave interfaces ... 2-16
2.6 Peripheral request interface .. 2-18
2.7 Using events and interrupts .. 2-23
2.8 Aborts .. 2-25
2.9 Security usage .. 2-29
2.10 Constraints and limitations of use ... 2-34
2.11 Programming restrictions .. 2-35
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. iii

Contents
Chapter 3 Programmers Model
3.1 About the programmers model ... 3-2
3.2 DMAC Register summary ... 3-4
3.3 DMAC Register descriptions .. 3-11

Chapter 4 Instruction Set
4.1 Instruction syntax conventions ... 4-2
4.2 Instruction set summary ... 4-3
4.3 Instructions ... 4-5
4.4 Assembler directives .. 4-25

Appendix A Signal Descriptions
A.1 Clocks and resets ... A-2
A.2 AXI signals .. A-3
A.3 APB signals .. A-7
A.4 Peripheral request interface ... A-9
A.5 Interrupt signals .. A-11
A.6 Tie-off signals ... A-12

Glossary
iv Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

List of Tables
PrimeCell DMA Controller (PL330) Technical
Reference Manual

Change history .. ii
Table 2-1 AXI characteristics for a DMA transfer .. 2-8
Table 2-2 Handshake rules ... 2-19
Table 3-1 DMAC Control Register summary ... 3-4
Table 3-2 DMA channel thread status register summary .. 3-6
Table 3-3 AXI status and loop counter register summary ... 3-7
Table 3-4 DMAC Debug Register summary .. 3-9
Table 3-5 DMAC Configuration Register summary ... 3-9
Table 3-6 Peripheral and PrimeCell Identification Register summary 3-10
Table 3-7 DS Register bit assignments ... 3-11
Table 3-8 DPC Register bit assignments .. 3-13
Table 3-9 INTEN Register bit assignments ... 3-14
Table 3-10 ES Register bit assignments ... 3-15
Table 3-11 INTSTATUS Register bit assignments .. 3-16
Table 3-12 INTCLR Register bit assignments ... 3-17
Table 3-13 FSM Register bit assignments .. 3-18
Table 3-14 FSC Register bit assignments ... 3-19
Table 3-15 FTM Register bit assignments .. 3-20
Table 3-16 FTC Register bit assignments ... 3-22
Table 3-17 CSn Register bit assignments ... 3-25
Table 3-18 CPCn Register bit assignments .. 3-27
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. v

List of Tables
Table 3-19 SA_n Register bit assignments ... 3-28
Table 3-20 DA_n Register bit assignments .. 3-29
Table 3-21 CC_n Register bit assignments .. 3-31
Table 3-22 Swap data ... 3-35
Table 3-23 LC0_n Register bit assignments ... 3-36
Table 3-24 LC1_n Register bit assignments ... 3-37
Table 3-25 DBGSTATUS Register bit assignments ... 3-37
Table 3-26 DBGCMD Register bit assignments ... 3-38
Table 3-27 DBGINST0 Register bit assignments ... 3-39
Table 3-28 DBGINST1 Register bit assignments ... 3-40
Table 3-29 CR0 Register bit assignments .. 3-41
Table 3-30 CR1 Registers bit assignments .. 3-43
Table 3-31 CR2 Register bit assignments .. 3-44
Table 3-32 CR3 Register bit assignments .. 3-44
Table 3-33 CR4 Register bit assignments .. 3-45
Table 3-34 CRDn Registers bit assignments .. 3-46
Table 3-35 periph_id Register bit assignments ... 3-48
Table 3-36 periph_id_0 Register bit assignments ... 3-49
Table 3-37 periph_id_1 Register bit assignments ... 3-49
Table 3-38 periph_id_2 Register bit assignments ... 3-49
Table 3-39 periph_id_3 Register bit assignments ... 3-50
Table 3-40 pcell_id Register bit assignments ... 3-50
Table 3-41 pcell_id_0 Register bit assignments ... 3-51
Table 3-42 pcell_id_1 Register bit assignments ... 3-52
Table 3-43 pcell_id_2 Register bit assignments ... 3-52
Table 3-44 pcell_id_3 Register bit assignments ... 3-52
Table 4-1 Instruction syntax summary .. 4-3
Table 4-2 DMAMOV CCR argument description and the default values 4-27
Table A-1 Clock and reset ... A-2
Table A-2 AXI-AW signals ... A-3
Table A-3 AXI-W signals ... A-4
Table A-4 AXI-B signals .. A-4
Table A-5 AXI-AR signals .. A-5
Table A-6 AXI-R signals .. A-5
Table A-7 Non-secure APB interface signals .. A-7
Table A-8 Secure APB interface signals ... A-7
Table A-9 Peripheral request interface .. A-9
Table A-10 Interrupt signals .. A-11
Table A-11 DMAC tie-off signals ... A-12
Table A-12 Interrupt and peripheral tie-off signals .. A-13
vi Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

List of Figures
PrimeCell DMA Controller (PL330) Technical
Reference Manual

Key to timing diagram conventions ... xii
Figure 1-1 Interfaces on the DMAC .. 1-2
Figure 1-2 Example system .. 1-3
Figure 2-1 DMAC block diagram .. 2-2
Figure 2-2 APB slave interfaces ... 2-4
Figure 2-3 AXI master interface connections ... 2-6
Figure 2-4 Peripheral request interface .. 2-9
Figure 2-5 Interrupt interface .. 2-9
Figure 2-6 Reset initialization interface .. 2-9
Figure 2-7 Thread operating states .. 2-10
Figure 2-8 Request and acknowledge buses on the peripheral request interface 2-18
Figure 2-9 Burst request signaling .. 2-20
Figure 2-10 Single and burst request signaling .. 2-21
Figure 2-11 Single transfers for a burst request ... 2-22
Figure 2-12 Abort process .. 2-27
Figure 2-13 Equation for the maximum number of consecutive DMALD 2-40
Figure 2-14 DMAC operating with four DMA channels ... 2-41
Figure 2-15 Equation for the maximum number of consecutive DMAST 2-41
Figure 3-1 DMAC summary register map ... 3-3
Figure 3-2 DS Register bit assignments ... 3-11
Figure 3-3 DPC Register bit assignments .. 3-13
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. vii

List of Figures
Figure 3-4 INTEN Register bit assignments ... 3-13
Figure 3-5 ES Register bit assignments ... 3-14
Figure 3-6 INTSTATUS Register bit assignments ... 3-16
Figure 3-7 INTCLR Register bit assignments .. 3-17
Figure 3-8 FSM Register bit assignments .. 3-18
Figure 3-9 FSC Register bit assignments .. 3-19
Figure 3-10 FTM Register bit assignments .. 3-20
Figure 3-11 FTC Register bit assignments .. 3-22
Figure 3-12 CSn Register bit assignments and address offsets .. 3-24
Figure 3-13 CPCn Register bit assignments and address offsets ... 3-27
Figure 3-14 SA_n Register bit assignments and address offsets .. 3-28
Figure 3-15 DA_n Register bit assignments and address offsets .. 3-29
Figure 3-16 CC_n Register bit assignments .. 3-30
Figure 3-17 LC0_n Register bit assignments ... 3-36
Figure 3-18 LC1_n Register bit assignments ... 3-36
Figure 3-19 DBGSTATUS Register bit assignments ... 3-37
Figure 3-20 DBGCMD Register bit assignments ... 3-38
Figure 3-21 DBGINST0 Register bit assignments ... 3-38
Figure 3-22 DBGINST1 Register bit assignments ... 3-39
Figure 3-23 CR0 Register bit assignments .. 3-40
Figure 3-24 CR1 Registers bit assignments .. 3-42
Figure 3-25 CR2 Registers bit assignments .. 3-43
Figure 3-26 CR3 Registers bit assignments .. 3-44
Figure 3-27 CR4 Registers bit assignments .. 3-45
Figure 3-28 CRDn Register bit assignments .. 3-46
Figure 3-29 periph_id Register bit assignments ... 3-48
Figure 3-30 pcell_id Register bit assignments ... 3-51
Figure 4-1 DMAADDH encoding .. 4-5
Figure 4-2 DMAEND encoding ... 4-6
Figure 4-3 DMAFLUSHP encoding .. 4-6
Figure 4-4 DMAGO encoding ... 4-7
Figure 4-5 DMALD[S|B] encoding .. 4-8
Figure 4-6 DMALDP<S|B> encoding ... 4-10
Figure 4-7 DMALP encoding .. 4-11
Figure 4-8 DMALPEND[S|B] encoding .. 4-12
Figure 4-9 DMAKILL encoding ... 4-14
Figure 4-10 DMAMOV encoding .. 4-15
Figure 4-11 DMANOP encoding .. 4-17
Figure 4-12 DMARMB encoding .. 4-17
Figure 4-13 DMASEV encoding ... 4-18
Figure 4-14 DMAST[S|B] encoding .. 4-19
Figure 4-15 DMASTP<S|B> encoding ... 4-20
Figure 4-16 DMASTZ encoding ... 4-21
Figure 4-17 DMAWFE encoding .. 4-22
Figure 4-18 DMAWFP<S|B|P> encoding ... 4-22
Figure 4-19 DMAWMB encoding ... 4-23
viii Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Preface

This preface introduces the PrimeCell DMA Controller (PL330) Technical Reference
Manual. It contains the following sections:

• About this manual on page x

• Feedback on page xv.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. ix

Preface
About this manual

This is the Technical Reference Manual (TRM) for the PrimeCell DMA Controller
(PL330).

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written for system designers, system integrators, and programmers who
are designing or programming a System-on-Chip (SoC) device that uses the DMA
Controller (DMAC).

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for a high-level view of the DMAC.

Chapter 2 Functional Overview

Read this chapter for a description of the major interfaces and
components of the DMAC. The chapter also describes how they operate.

Chapter 3 Programmers Model

Read this chapter for a description of the DMAC memory map and
registers.

Chapter 4 Instruction Set

Read this chapter for a description of the instruction set.

Appendix A Signal Descriptions

Read this appendix for a description of the DMAC input and output
signals.

 Glossary Read the Glossary for definitions of terms used in this manual.
x Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Preface
Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams

• Signals on page xii

• Numbering on page xiii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear
in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions on page xii explains the
components used in timing diagrams. Variations, when they occur, have clear labels.
You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. xi

Preface
Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix A Denotes global Advanced eXtensible Interface (AXI) signals.

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Prefix R Denotes AXI read data channel signals.

Prefix W Denotes AXI write data channel signals.
xii Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Preface
Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog® method of abbreviating constant numbers. For
example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Additional reading

This section lists publications by ARM and by third parties. You can access ARM
documentation at:

http://infocenter.arm.com/help/index.jsp

ARM publications

This manual contains information that is specific to the DMAC. See the following
documents for other relevant information:

• PrimeCell DMA Controller (PL330) Implementation Guide (ARM DII 0192)

• PrimeCell DMA Controller (PL330) Integration Manual (ARM DII 0193)

• AMBA® Designer (FD001) User Guide (ARM DUI 0333)

• AMBA Designer (FD001) PrimeCell DMA Controller (PL330) User Guide
Supplement (ARM DUI 0333 Supplement 6)

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition
(ARM DDI 0406)

• AMBA AXI Protocol v1.0 Specification (ARM IHI 0022)

• AMBA 3 APB Protocol v1.0 Specification (ARM IHI 0024).
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. xiii

Preface
Other publications

This section lists relevant documents published by third parties:

• JEDEC Solid State Technology Association, JEP106, Standard Manufacturer’s
Identification Code, obtainable at http://www.jedec.org.
xiv Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Preface
Feedback

ARM welcomes feedback on the DMAC and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send an e-mail to errata@arm.com. Give:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. xv

Preface
xvi Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Chapter 1
Introduction

This chapter introduces the DMA Controller (DMAC). It contains the following
sections:

• About the DMAC on page 1-2

• Terminology on page 1-5.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the DMAC

The DMAC is an Advanced Microcontroller Bus Architecture (AMBA) compliant
PrimeCell peripheral that is developed, tested, and licensed by ARM.

The DMAC provides an AXI interface to perform the DMA transfers and two APB
interfaces that control its operation. The DMAC implements TrustZone® secure
technology with one APB interface operating in the Secure state and the other operating
in the Non-secure state. See the ARM Architecture Reference Manual for more
information about TrustZone technology.

The DMAC includes a small instruction set that provides a flexible method of
specifying the DMA operations. This enables it to provide greater flexibility than the
fixed capabilities of a Linked-List Item (LLI) based DMA controller. To minimize the
program memory requirements the DMAC uses variable-length instructions.

Figure 1-1 shows the interfaces that are available on the DMAC.

Figure 1-1 Interfaces on the DMAC

Figure 1-2 on page 1-3 shows an example system that contains a DMAC.
1-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Introduction
Figure 1-2 Example system

The example system contains:

• AXI bus masters:

— a DMAC

— two ARM processors.

• an AXI interconnect and two AMBA protocol bridge components

• PrimeCell slaves:

— a Dynamic Memory Controller (DMC)

— a Static Memory Controller (SMC)

— a Timer

— a General Purpose Input-Output (GPIO)

— a Universal Asynchronous Receiver-Transmitter (UART).

The AXI interconnect enables each bus master to access the slaves. The ARM
processors can access the APB interfaces of the DMAC by using the appropriate AXI
to APB bridge component.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 1-3

Introduction
1.1.1 Features of the DMAC

The DMAC provides the following features:

• an instruction set that provides flexibility for programming DMA transfers

• single AXI master interface that performs the DMA transfers

• dual APB slave interfaces, designated as secure and non-secure, for accessing
registers in the DMAC

• supports TrustZone technology

• supports multiple transfer types:

— memory-to-memory

— memory-to-peripheral

— peripheral-to-memory

— scatter-gather

• configurable RTL that enables the DMAC to be optimized for the application

• programmable security state for each DMA channel

• signals the occurrence of various DMA events using the interrupt output signals.

1.1.2 Configurable features of the DMAC

When you implement the DMAC in your design you can configure the:

• AXI data bus width

• number of active AXI read transactions

• number of active AXI write transactions

• number of simultaneously active DMA channels

• depth of the internal data buffer

• number of lines in the instruction cache and how many words a line contains

• depth of the read instruction queue

• depth of the write instruction queue

• number of peripheral request interfaces

• number of interrupt output signals.

Note
 See the AMBA Designer (FD001) PrimeCell DMA Controller (PL330) User Guide
Supplement for information about how to configure these features and the values that
you can assign.
1-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Introduction
1.2 Terminology

This manual uses the following terminology:

Configurable

A parameter of the DMAC that you can only change, prior to the RTL
being generated. See the AMBA Designer (FD001) PrimeCell DMA
Controller (PL330) User Guide Supplement for information about
configuring the DMAC.

Programmable

A parameter of the DMAC that you can change, after the RTL is
generated. See Chapter 3 Programmers Model for information about
programming the DMAC.

Initialization

A feature of the DMAC that is initialized when it exits from reset,
depending on the state of the Tie-off signals on page A-12. See
Initializing the DMAC on page 2-14.

DMA channel

A section of the DMAC that controls a DMA cycle by executing its own
program thread. You can configure the number of channels that the
DMAC contains.

DMA cycle All the DMA transfers that the DMAC must perform, to transfer the
programmed number of data packets.

DMA manager

A section of the DMAC that manages the operation of the DMAC by
executing its own program thread.

DMA transfer

The action of transferring a single byte, halfword, or word.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 1-5

Introduction
1-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Chapter 2
Functional Overview

This chapter describes the major interfaces and components of the DMAC, and how it
operates. It contains the following sections:

• Overview on page 2-2

• DMAC interfaces on page 2-4

• Operating states on page 2-10

• Initializing the DMAC on page 2-14

• Using the APB slave interfaces on page 2-16

• Peripheral request interface on page 2-18

• Using events and interrupts on page 2-23

• Security usage on page 2-29

• Aborts on page 2-25

• Constraints and limitations of use on page 2-34

• Programming restrictions on page 2-35.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-1

Functional Overview
2.1 Overview

Figure 2-1 shows a diagram of the DMAC.

Figure 2-1 DMAC block diagram

The DMAC contains an instruction processing block that enables it to process program
code that controls a DMA transfer. The program code is stored in a region of system
memory that the DMAC accesses using its AXI interface. The DMAC stores
instructions temporarily in a cache whose line length and depth are configurable.

You can configure the DMAC with up to eight DMA channels, with each channel being
capable of supporting a single concurrent thread of DMA operation. In addition there is
a single DMA manager thread that you can use to initialize the DMA channel threads.
The DMAC executes up to one instruction for each AXI clock cycle. To ensure that it
regularly executes each active thread it alternates by processing the DMA manager
thread and then a DMA channel thread. It uses a round-robin process when selecting the
next active DMA channel thread to execute.

The DMAC uses variable-length instructions that consist of one to six bytes. It provides
a separate Program Counter (PC) register for each DMA channel. When a thread
requests an instruction from an address, the cache performs a look-up. If a cache hit
occurs then the cache immediately provides the data, otherwise the thread is stalled
while the DMAC uses the AXI interface to perform a cache line fill. If an instruction is
greater than 4 bytes, or spans the end of a cache line, then it performs multiple cache
accesses to fetch the instruction.
2-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
Note
 When a cache line fill is in progress, the DMAC enables other threads to access the
cache, but if another cache miss occurs, this stalls the pipeline until the first line fill is
complete.

When a DMA channel thread executes a load or store instruction the DMAC adds the
instruction to the relevant read queue or write queue. The DMAC uses these queues as
an instruction storage buffer prior to it issuing the instructions on the AXI bus. The
DMAC also contains a Multi First-In-First-Out (MFIFO) data buffer that it uses to store
data that it reads, or writes, during a DMA transfer.

Note
 To meet your system requirements you can configure the:

• depth of the read queue

• depth of the write queue

• depth of the MFIFO.

It provides multiple interrupt outputs to enable efficient communication of events to
external microprocessors. The peripheral request interfaces support the connection of
DMA-capable peripherals to enable memory-to-peripheral and peripheral-to-memory
DMA transfers to occur, without intervention from a microprocessor.

Dual APB interfaces enable the operation of the DMAC to be partitioned into the Secure
state and Non-secure state. You can use the APB interfaces to access status registers and
also directly execute instructions in the DMAC.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-3

Functional Overview
2.2 DMAC interfaces

The DMAC contains the following interfaces:

• APB slave interfaces

• AXI master interface on page 2-5

• Peripheral request interfaces on page 2-8

• Interrupt interface on page 2-9

• Reset initialization interface on page 2-9.

2.2.1 APB slave interfaces

The DMAC provides the following APB interfaces:

• non-secure APB slave interface

• secure APB slave interface.

Using these interfaces you can access the registers that control the functionality of the
DMAC. Figure 2-2 shows the signal connections for both interfaces.

Figure 2-2 APB slave interfaces

The DMAC allocates 4KB of memory for each APB interface and implements the
memory map that Chapter 3 Programmers Model describes.

The APB interfaces are clocked by the same clock as the AXI domain clock, aclk.
However, the DMAC provides a clock enable signal, pclken, that enables both APB
interfaces to operate at a slower clock rate. The clock enable signal must be an integer
divisor of aclk.
2-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
2.2.2 AXI master interface

The DMAC contains a single AXI master interface that enables it to transfer data from
a source AXI slave to a destination AXI slave.

The DMAC is compliant to the AMBA AXI protocol. For detailed information about
the AXI interface, see the AMBA AXI Protocol Specification.

Figure 2-3 on page 2-6 shows the AXI master interface external connections.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-5

Functional Overview
Figure 2-3 AXI master interface connections
2-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
Note
 In Figure 2-3 on page 2-6:

• awcache[2] is tied LOW

• arcache[3] is tied LOW

• the DMAC does not support locked or exclusive accesses and therefore
arlock[1:0] and awlock[1:0] are tied LOW

• the value of ID_MSB is dependent on the number of DMA channels in the
configured DMAC

• the values of DATA_MSB and STRB_MSB are dependent on the data width of
the configured DMAC.

When a DMA channel thread accesses the AXI interface the DMAC signals the AXI
identification tag to be the same number as the DMA channel. For example, when the
program thread for DMA channel 5 performs a DMA store operation then the DMAC
sets AWID[2:0] and WID[2:0] to b101.

When the DMA manager thread accesses the AXI interface the DMAC signals the AXI
identification tag to be the same number as the number of DMA channels that the
DMAC provides. For example, if the DMAC is configured to provide eight DMA
channels then when the DMA manager performs a read operation the DMAC sets
ARID[3:0] to b1000.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-7

Functional Overview
AXI characteristics for a DMA transfer

Table 2-1 lists how the DMAC controls the setting of the AXI control signals,
depending on the type of DMA access it performs.

ARLEN and ARSIZE for instruction fetches

When performing an instruction fetch, the DMAC sets ARLEN and ARSIZE as
follows:

Instruction cache length ≤ AXI data bus width

• ARLEN = 1.

• ARSIZE = length of instruction cache in bytes.

Instruction cache length > AXI data bus width

• ARLEN = ratio of the length of an instruction cache line in bytes
to the width of the AXI data bus in bytes.

• ARSIZE = width of AXI data bus in bytes.

2.2.3 Peripheral request interfaces

Figure 2-4 on page 2-9 shows the signals that a single peripheral request interface
provides.

Table 2-1 AXI characteristics for a DMA transfer

Access type AxPROT AxLEN AxBURST AxSIZE AxCACHE

DMA channel load Channel Control Registers on page 3-30

DMA channel store Channel Control Registers on page 3-30

DMA manager

instruction fetch

1. Privileged

2. Secure state

from DNSa bit

3. Instruction
See ARLEN
and ARSIZE
for
instruction
fetches

INCR

See ARLEN
and ARSIZE
for
instruction
fetches

Cacheable

write-through,

allocate on

reads only.
DMA channel

instruction fetch

1. Privileged

2. Secure state

from CNSb bit

3. Instruction

a. The DMA Status Register on page 3-11 contains the DNS bit.
b. The Channel Status Registers on page 3-24, corresponding to the DMA channel, contains the CNS bit.
2-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
Figure 2-4 Peripheral request interface

The peripheral request interface supports the connection of DMA-capable peripherals.
You must configure the number of peripheral request interfaces that you require, as the
AMBA Designer (FD001) PrimeCell DMA Controller (PL330) User Guide Supplement
describes.

2.2.4 Interrupt interface

The interrupt interface enables efficient communications of events to an external
microprocessor. Figure 2-5 shows the signal that this interface provides.

Figure 2-5 Interrupt interface

You must configure the number of interrupts that you require, as the AMBA Designer
(FD001) PrimeCell DMA Controller (PL330) User Guide Supplement describes.

2.2.5 Reset initialization interface

This interface enables you to initialize the operating state of the DMAC as it exits from
reset. Figure 2-6 shows the tie-off signals that this interface provides.

Figure 2-6 Reset initialization interface
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-9

Functional Overview
2.3 Operating states

Figure 2-7 shows the operating states for the DMA manager thread and DMA channel
threads. The DMAC provides a separate state machine for each thread.

Figure 2-7 Thread operating states

Note
 In Figure 2-7, the DMAC permits that:

• only DMA channel threads can use states in bold italics

• arcs with no letter designator indicate state transitions for the DMA manager and
DMA channel threads, otherwise use is restricted as follows:

C DMA channel threads only.

M DMA manager thread only.

• states within the dotted line can transition to the Faulting completing, Faulting, or
Killing states.
2-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
After the DMAC exits from reset it sets all DMA channel threads to the Stopped state
and the status of boot_from_pc controls the DMA manager thread state:

boot_from_pc is LOW

DMA manager thread moves to the Stopped state.

boot_from_pc is HIGH

DMA manager thread moves to the Executing state.

The states are described in:

• Stopped

• Executing

• Cache miss on page 2-12

• Updating PC on page 2-12

• Waiting for event on page 2-13

• At barrier on page 2-13

• Waiting for peripheral on page 2-13

• Faulting completing on page 2-13

• Faulting on page 2-13

• Killing on page 2-13

• Completing on page 2-13.

2.3.1 Stopped

The thread has an invalid PC and it is not fetching instructions. Depending on the thread
type, it can transition to the Executing state by:

DMA manager thread

Writing to the Debug Command Register on page 3-37.

DMA channel thread

Programming the DMA manager thread to execute DMAGO for a DMA
channel thread in the Stopped state.

2.3.2 Executing

The thread has a valid PC and therefore the DMAC includes the thread when it
arbitrates.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-11

Functional Overview
The DMAC can then change to one of the following states under the following
conditions:

Stopped If the DMA manager thread executes DMAEND.

Cache miss For any thread, when the instruction cache does not contain the next
instruction for that thread.

Updating PC

When the DMAC calculates the address of the next access in the cache.

Waiting for event

If any thread executes DMAWFE.

At barrier Either when:

• a DMA channel thread executes DMARMB, DMAWMB, or DMAFLUSHP

• the DMAC updates the MFIFO data buffer, or similar internal
control function.

Waiting for peripheral

If a DMA channel thread executes DMAWFP.

Killing If a DMA channel thread executes DMAKILL.

Faulting completing

If an AXI bus error occurs when the DMAC is performing a DMA
transfer. This state transition is only applicable to DMA channel threads.

Faulting Either:

• if an AXI bus error occurs when the DMAC fetches an instruction

• the DMAC executes an undefined instruction.

Completing When a DMA channel thread executes DMAEND.

2.3.3 Cache miss

The thread is stalled and the DMAC is performing a cache line fill. After it completes
the cache fill the thread returns to the Executing state.

2.3.4 Updating PC

The DMAC is calculating the address of the next access in the cache. After it calculates
the PC the thread returns to the Executing state.
2-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
2.3.5 Waiting for event

The thread is stalled and is waiting for the DMAC to execute DMASEV using the
corresponding event number. After the corresponding event occurs the thread returns to
the Executing state.

2.3.6 At barrier

A DMA channel thread is stalled and the DMAC is waiting for transactions on the AXI
bus to complete. After the AXI transactions complete the thread returns to the Executing
state.

2.3.7 Waiting for peripheral

A DMA channel thread is stalled and the DMAC is waiting for the peripheral to provide
the requested data. After the peripheral provides the data then the thread returns to the
Executing state.

2.3.8 Faulting completing

A DMA channel thread is waiting for the AXI interface to signal that the outstanding
load or store transactions are complete. After the transactions complete then the thread
moves to the Faulting state.

2.3.9 Faulting

The thread is stalled indefinitely. The thread moves to the Stopped state when you use
the Debug Command Register on page 3-37 to instruct the DMAC to execute DMAEND or
DMAKILL for that thread.

2.3.10 Killing

A DMA channel thread is waiting for the AXI interface to signal that the outstanding
load or store transactions are complete. After the transactions complete then the thread
moves to the Stopped state.

2.3.11 Completing

A DMA channel thread is waiting for the AXI interface to signal that the outstanding
load or store transactions are complete. After the transactions complete then the thread
moves to the Stopped state.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-13

Functional Overview
2.4 Initializing the DMAC

The DMAC provides several tie-off signals that initialize its operating state when it exits
from reset. The initialization of the tie-offs is described in:

• Setting the security state of the DMA manager

• Setting the location of the first instruction for the DMAC to execute

• Setting the security state for the interrupt outputs on page 2-15

• Setting the security state for a peripheral request interface on page 2-15.

2.4.1 Setting the security state of the DMA manager

The boot_manager_ns signal is the only method of setting the security state of the
DMA manager. When the DMAC exits from reset, it reads the status of
boot_manager_ns and sets the security of the DMA manager as Table A-11 on
page A-12 lists.

Note
 Once set, the security state remains constant until the DMAC is reset using a state
transition on aresetn.

See DMA manager thread is in the Secure state on page 2-29 and DMA manager thread
is in the Non-secure state on page 2-29 for how the security state of the DMA manager
affects how the DMAC operates.

2.4.2 Setting the location of the first instruction for the DMAC to execute

After the DMAC exits from reset, the status of the boot_from_pc signal controls if the
DMAC:

• enters the Executing state and:

— updates the DMA Program Counter Register on page 3-12 using the
address that boot_addr[31:0] provides

— fetches and executes the instruction from the address that the DMA
Program Counter Register on page 3-12 contains.

Note
 — You must ensure that the setting of the boot_addr[31:0] signals points to a

region in system memory that contains the boot program for the DMAC.

— Also, if you set boot_manager_ns so that the DMA manager operates in
the Non-secure state then the boot program must reside in a non-secure
region of memory.
2-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
• enters the Stopped state. You must then provide the first instruction to the DMAC
by using one of the slave APB interfaces.

Table A-11 on page A-12 lists the settings for boot_from_pc.

2.4.3 Setting the security state for the interrupt outputs

The DMAC provides the boot_irq_ns[x:0] signals to enable you to assign each irq[x]
signal to a security state as Table A-12 on page A-13 lists.

Note
 Once set, the security state of each irq[x] remains constant until the DMAC is reset
using a state transition on aresetn.

See Security usage on page 2-29 for how the security state of the irq[x] signals affects
how the DMAC executes the DMAWFE and DMASEV instructions.

2.4.4 Setting the security state for a peripheral request interface

The DMAC provides the boot_periph_ns[x:0] signals to enable you to assign each
peripheral request interface to a security state as Table A-12 on page A-13 lists.

Note
 Once set, the security state of each peripheral request interface remains constant until
the DMAC is reset using a state transition on aresetn.

See Security usage on page 2-29 for how the security state of the peripheral request
interfaces affects how a DMA channel thread executes the DMAWFP, DMALDP, DMASTP, or
DMAFLUSHP instructions.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-15

Functional Overview
2.5 Using the APB slave interfaces

The APB slave interface connects the DMAC to the APB and enables a microprocessor
to access the registers that Chapter 3 Programmers Model describes. Using these
registers, a microprocessor can:

• access the status of the DMA manager thread

• access the status of the DMA channel threads

• enable or clear interrupts

• enable events

• issue an instruction for the DMAC to execute by programming the following
debug registers:

— Debug Command Register on page 3-37

— Debug Instruction-0 Register on page 3-38

— Debug Instruction-1 Register on page 3-39.

The following section describes:

• Issuing instructions to the DMAC using an APB interface.

2.5.1 Issuing instructions to the DMAC using an APB interface

When the DMAC is operating in real-time then you can only issue a limited subset of
instructions as follows:

DMAGO Starts a DMA transaction using a DMA channel that you specify.

DMASEV Signals the occurrence of an event, or interrupt, using an event number
that you specify.

DMAKILL Terminates a thread.

You must ensure that you use the appropriate APB interface, depending on the security
state that the boot_manager_ns initializes the DMAC to operate in. For example, if the
DMAC is in the Secure state then you must issue the instruction using the secure APB
interface, otherwise the DMAC ignores the instruction. You can use the secure APB
interface, or the non-secure APB interface, to start or restart a DMA channel when the
DMAC is in the Non-secure state.

Note
 Before you can issue instructions using the debug instruction registers or the Debug
Command Register on page 3-37 you must read the Debug Status Register on page 3-37
to ensure that debug is idle.
2-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
When the DMAC receives an instruction from an APB slave interface it can take several
clock cycles before it can process the instruction, for example, if the pipeline is busy
processing another instruction.

Note
 Prior to issuing DMAGO, you must ensure that the system memory contains a suitable
program for the DMAC to execute, starting at the address that the DMAGO specifies.

Example 2-1 lists the necessary steps to start a DMA channel thread using the debug
instruction registers.

Example 2-1 Using DMAGO with the debug instruction registers

1. Create a program for the DMA channel.

2. Store the program in a region of system memory.

Using one of the APB interfaces on the DMAC, program a DMAGO instruction:

3. Poll the Debug Status Register on page 3-37 to ensure that debug is idle, that is,
the dbgstatus bit is 0.

4. Write to the Debug Instruction-0 Register on page 3-38 setting the:

• Instruction byte 0 encoding for DMAGO.

• Instruction byte 1 encoding for DMAGO.

• Debug thread bit to 0. This selects the DMA manager thread.

5. Write to the Debug Instruction-1 Register on page 3-39 with the DMAGO instruction
byte [5:2] data. You must set these four bytes to the address of the first instruction
in the program, that was written to system memory in step 2.

Instruct the DMAC to execute the instruction that the debug instruction registers contain
by:

6. Writing zero to the Debug Command Register on page 3-37. The DMAC starts
the DMA channel thread and sets the dbgstatus bit to 1.

After the DMAC completes execution of the instruction it clears the dbgstatus bit
to 0.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-17

Functional Overview
2.6 Peripheral request interface

Figure 2-8 shows that the peripheral request interface consists of a peripheral request
bus and a DMAC acknowledge bus that use the prefixes:

dr The peripheral request bus.

da The DMAC acknowledge bus.

Figure 2-8 Request and acknowledge buses on the peripheral request interface

Both buses use the valid/ready handshake that the AXI protocol describes. For more
information on the handshake process, see the AMBA AXI Protocol v1.0 Specification.

The peripheral uses drtype[1:0] to either:

• request a single transfer

• request a burst transfer

• acknowledge a flush request.

The DMAC uses datype[1:0] to either:

• signal when it completes the requested single transfer

• signal when it completes the requested burst transfer

• issue a flush request.

drlast enables the peripheral to notify the DMAC when the last DMA transfer
commences.

Note
 If you configure the DMAC to provide more than one peripheral request interface then
each interface is assigned a unique identifier, _<x>. Where <x> represents the number
of the interface. See Peripheral request interface on page A-9 for information about
how the identifier is appended to the signal name.
2-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
The following sections describe:

• Mapping to a DMA channel

• Handshake rules

• Peripheral length management on page 2-20

• DMAC length management on page 2-20

• Peripheral request interface timing diagrams on page 2-20.

2.6.1 Mapping to a DMA channel

The DMAC enables you to assign a peripheral request interface to any of the DMA
channels. When a DMA channel thread executes DMAWFP the value programmed in the
peripheral [4:0] field specifies the peripheral that is associated with that DMA channel.
See DMAWFP<S|B|P> on page 4-22.

2.6.2 Handshake rules

The DMAC uses the DMA handshake rules that Table 2-2 lists, when a DMA channel
thread is active, that is, not in the Stopped state.

Table 2-2 Handshake rules

Rule Descriptiona

1 drvalid can change from LOW to HIGH on any aclk cycle but it must only change from HIGH to LOW when
drready is HIGH.

2 drtype can only change when either:

• drready is HIGH

• drvalid is LOW.

3 drlast can only change when either:

• drready is HIGH

• drvalid is LOW.

4 davalid can change from LOW to HIGH on any aclk cycle but it must only change from HIGH to LOW when
daready is HIGH.

5 datype can only change when either:

• daready is HIGH

• davalid is LOW.

a. All signals are only permitted to change state when aclk changes state.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-19

Functional Overview
2.6.3 Peripheral length management

The peripheral request interface enables a peripheral to control the quantity of data that
a DMA cycle contains, without the DMAC being aware of how many data transfers that
it contains. The peripheral controls the DMA cycle by using:

• drtype[1:0] to select a single or burst transfer

• drlast to notify the DMAC when the last transfer commences.

2.6.4 DMAC length management

If you are using the peripheral request interface and the DMAC is controlling the
quantity of data in a DMA cycle then you must use the DMALDP<S|B> and DMASTP<S|B>
instructions. Using these instructions enables the DMAC to update datype[1:0], to
notify the peripheral when it completes the final DMA transfer.

2.6.5 Peripheral request interface timing diagrams

The following sections provide examples of the functional operation of the peripheral
request interface using the rules that Handshake rules on page 2-19 describe:

• Burst request

• Single and burst request on page 2-21

• DMAC performs single transfers for a burst request on page 2-22.

Burst request

Figure 2-9 shows the DMA request timing when a peripheral requests a burst transfer.

Figure 2-9 Burst request signaling
2-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
In Figure 2-9 on page 2-20:

T1 The DMAC detects a request for a burst transfer.

T3 - T6 The DMAC performs a burst transfer.

T7 The DMAC sets davalid HIGH and sets datype[1:0] to indicate that the
burst transfer is complete.

Single and burst request

Figure 2-10 shows the DMA request timing when a peripheral requests a single and a
burst transfer.

Figure 2-10 Single and burst request signaling

In Figure 2-10:

T1 The DMAC detects a request for a single transfer.

T3 The DMAC ignores the single transfer request because the DMA channel
thread had executed a DMAWFPB instruction. See DMAWFP<S|B|P> on
page 4-22.

T5 The DMAC detects a request for a burst transfer.

T7 - T10 The DMAC performs a burst transfer.

T11 The DMAC sets davalid HIGH and sets datype[1:0] to indicate that the
burst transfer is complete.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-21

Functional Overview
DMAC performs single transfers for a burst request

Figure 2-11 shows the DMA request timing when a peripheral requests a burst transfer
but the DMAC has insufficient data remaining in the MFIFO to generate a burst and
therefore completes the request using single transfers.

Figure 2-11 Single transfers for a burst request

In Figure 2-11:

T1 The DMAC detects a request for a burst transfer.

T3 The MFIFO contains insufficient data for the DMAC to generate a burst
transfer and therefore the DMAC performs a single transfer.

T4 The DMAC signals davalid and datype[1:0] to indicate completion of a
single transfer.

T5 - T10 The DMAC performs the remaining three single transfers.

T11 The DMAC signals davalid and datype[1:0] to request the peripheral to
flush the contents of any control registers that are associated with the
current DMA cycle.

T12 The peripheral signals drvalid and drtype[1:0] to acknowledge the flush
request.
2-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
2.7 Using events and interrupts

By programming the Interrupt Enable Register on page 3-13, you can use the DMASEV
instruction to either:

• generate an event, for the DMAC to process

• signal an interrupt using one of the irq[x] outputs.

Note
 The number of events or interrupts that the DMAC can generate depends on its
configuration. See the AMBA Designer (FD001) PrimeCell DMA Controller (PL330)
User Guide Supplement.

The following sections describe:

• Using an event to restart DMA channels

• Interrupting a microprocessor on page 2-24.

2.7.1 Using an event to restart DMA channels

When you program the Interrupt Enable Register on page 3-13 to generate an event,
you can use the DMASEV and DMAWFE instructions, to restart one or more DMA channels.

To restart a single DMA channel:

1. The first DMA channel executes DMAWFE and then stalls while it waits for the
event to occur.

2. The other DMA channel executes DMASEV using the same event number. This
generates an event and the first DMA channel restarts. The DMAC clears the
event, one clock cycle after it executes DMASEV.

You can program multiple channels to wait for the same event. For example, if four
DMA channels have all executed DMAWFE for event 12 then when another DMA channel
executes DMASEV for event 12, the four DMA channels all restart at the same time. The
DMAC clears the event, one clock cycle after it executes DMASEV.

Note
 Because the event only lasts for a single clock cycle, if one of the DMA channels does
not execute DMAWFE prior to the DMASEV occurring then that DMA channel must wait until
the appropriate event is generated again.

An event only lasts longer than a single clock cycle when a DMA channel executes
DMASEV and no other DMA channel has executed a DMAWFE using the same event number.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-23

Functional Overview
2.7.2 Interrupting a microprocessor

The DMAC provides the irq[x] signals for use as active-high level-sensitive interrupts
to external microprocessors. When you program the Interrupt Enable Register on
page 3-13 to generate an interrupt, then after the DMAC executes DMASEV it sets the
corresponding irq[x] HIGH.

An external microprocessor can clear the interrupt by writing to the Interrupt Clear
Register on page 3-17.

Note
 Executing DMAWFE does not clear an interrupt.
2-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
2.8 Aborts

This section describes:

• Abort types

• Abort sources

• Watchdog abort on page 2-26

• Abort handling on page 2-26.

2.8.1 Abort types

An abort can be defined as either precise or imprecise depending on whether the DMAC
provides an abort handler with the precise state of the DMAC when an abort occurs.

precise The DMAC updates the PC Register with the address of the instruction
that created the abort.

imprecise The PC Register might contain the address of an instruction that did not
cause the abort occur.

2.8.2 Abort sources

The DMAC signals a precise abort under the following conditions:

• A DMA channel thread in the Non-secure state attempts to program the Channel
Control Registers on page 3-30 and generate a secure AXI transaction.

• A DMA channel thread in the Non-secure state executes DMAWFE or DMASEV for an
event that is set as secure. The boot_irq_ns tie-offs initialize the security state for
an event.

Note
 For each event, the Interrupt Enable Register on page 3-13 controls if the DMAC

generates an event or signals an interrupt.

• A DMA channel thread in the Non-secure state executes DMAWFP, DMALDP, DMASTP,
or DMAFLUSHP for a peripheral request interface that is set as secure. The
boot_periph_ns tie-offs initialize the security state for a peripheral request
interface.

• A DMA manager thread in the Non-secure state executes DMAGO to attempt to start
a secure DMA channel thread.

• The DMAC receives an ERROR response on the AXI master interface when it
performs an instruction fetch.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-25

Functional Overview
• A thread executes an undefined instruction.

• A thread executes an instruction with an operand that is invalid for the
configuration of the DMAC.

Note
 When the DMAC signals a precise abort the instruction that triggers the abort is not
executed, instead the DMAC executes a DMANOP.

The DMAC signals an imprecise abort under the following conditions:

• The DMAC receives an ERROR response on the AXI master interface when it
performs a data load.

• The DMAC receives an ERROR response on the AXI master interface when it
performs a data store.

• A DMA channel thread executes DMALD and the MFIFO is too small to store the
data.

• A DMA channel thread executes DMAST and the MFIFO contains insufficient data
to complete the data transfer.

• A DMA channel thread locks up due to resource starvation and this causes the
internal watchdog timer to time out.

2.8.3 Watchdog abort

The DMAC contains logic to determine when one or more channels have locked up due
to resource starvation. For example, if the MFIFO or load/store queues are full this
might prevent the DMAC from executing instructions. The DMAC aborts the DMA
channel thread if the lock-up condition persists for 1024 aclk cycles.

2.8.4 Abort handling

The architecture of the DMAC is not designed to recover from an abort and therefore
you must use an external agent, such as a microprocessor, to terminate a thread when an
abort occurs. Figure 2-12 on page 2-27 shows the operating states for the DMA channel
and DMA manager threads after an abort occurs.
2-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
Figure 2-12 Abort process

After an abort occurs then the action the DMAC takes depends on the thread type:

DMA channel thread

The thread immediately moves to the Faulting completing state. In this
state the DMAC:

• sets irq_abort HIGH

• stops executing instructions for the DMA channel

• invalidates all cache entries for the DMA channel
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-27

Functional Overview
• updates the Channel Program Counter Registers on page 3-26 to
contain the address of the aborted instruction provided that the
abort was precise

• does not generate AXI accesses for any instructions remaining in
the read queue and write queue

• permits currently active AXI transactions to complete.

Note
 After the transactions for the DMA channel complete the thread

moves to the Faulting state.

DMA manager thread

The thread immediately moves to the Faulting state and the DMAC sets
irq_abort HIGH.

The external agent can respond to the assertion of irq_abort by:

• reading the status of Fault Status DMA Manager Register on page 3-18 to
determine if the DMA manager is Faulting. When in the Faulting state the Fault
Status DMA Manager Register on page 3-18 provides the cause of the abort.

• reading the status of Fault Status DMA Channel Register on page 3-19 to
determine if a DMA channel is Faulting. When in the Faulting state the Fault
Type DMA Channel Registers on page 3-21 provides the cause of the abort.

To enable a thread in the Faulting state to move to the Stopped state, the external agent
must:

1. Program the Debug Instruction-0 Register on page 3-38 with the encoding for the
DMAKILL instruction.

2. Write to the Debug Command Register on page 3-37.

Note
 If the aborted thread is secure then you must use the secure APB interface to

update these registers.

After a thread in the Faulting state executes DMAKILL it moves to the Stopped state.
2-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
2.9 Security usage

When the DMAC exits from reset, the status of the configuration signals that Tie-off
signals on page A-12 describes, configures the security for the:

• DMA manager thread. The DNS bit in the DMA Status Register on page 3-11
provides the security state of the DMA manager thread.

• irq[x] signals. The INS bit in the Configuration Register 3 on page 3-44 provides
the security state of these signals.

• Peripheral request interfaces. The PNS bit in the Configuration Register 4 on
page 3-45 provides the security state of these interfaces.

Additionally, each DMA channel thread has a dynamic non-secure bit, CNS, that is
valid when the channel is not in the Stopped state.

2.9.1 DMA manager thread is in the Secure state

If the DNS bit is 0, the DMA manager thread operates in the Secure state and it only
performs secure instruction fetches. When a DMA manager thread in the Secure state
processes:

DMAGO It uses the security setting that the ns bit provides, to set the security state
of the DMA channel thread by writing to the CNS bit for that channel.

DMAWFE It halts execution of the thread until the event occurs. When the event
occurs, the DMAC continues execution of the thread, irrespective of the
security state of the corresponding INS bit.

DMASEV It signals the appropriate irq[x], irrespective of the security state of the
corresponding INS bit.

2.9.2 DMA manager thread is in the Non-secure state

If the DNS bit is 1, the DMA manager thread operates in the Non-secure state and it
only performs non-secure instruction fetches. When a DMA manager thread in the
Non-secure state processes:

DMAGO It uses the security setting that the ns bit provides, to control if it starts a
DMA channel thread:

ns = 0 The DMAC does not start a DMA channel thread and instead
it:

1. Executes a NOP.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-29

Functional Overview
2. Sets the Fault Status DMA Manager Register on
page 3-18.

3. Sets the dmago_err bit in the Fault Type DMA Manager
Register on page 3-20.

4. Moves the DMA manager to the Faulting state.

ns = 1 The DMAC starts a DMA channel thread in the Non-secure
state and programs the CNS bit to be non-secure.

DMAWFE It halts execution of the thread until the event occurs. When the event
occurs, the DMAC only continues execution of the thread if the
corresponding INS bit is in the Non-secure state. If the INS bit is in the
Secure state the DMAC:

1. Executes a NOP.

2. Sets the Fault Status DMA Manager Register on page 3-18.

3. Sets the mgr_evnt_err bit in the Fault Type DMA Manager
Register on page 3-20.

4. Moves the DMA manager to the Faulting state.

DMASEV It only signals the appropriate irq[x] if the corresponding INS bit is in the
Non-secure state. If the INS bit is in the Secure state the DMAC:

1. Executes a NOP.

2. Sets the Fault Status DMA Manager Register on page 3-18.

3. Sets the mgr_evnt_err bit in the Fault Type DMA Manager
Register on page 3-20.

4. Moves the DMA manager to the Faulting state.

2.9.3 DMA channel thread is in the Secure state

When the CNS bit is 0, the DMA channel thread is programmed to operate in the Secure
state and it only performs secure instruction fetches.

When a DMA channel thread in the Secure state processes the following instructions:

DMAWFE It halts execution of the thread until the event occurs. When the event
occurs, the DMAC continues execution of the thread, irrespective of the
security state of the corresponding INS bit.

DMASEV It signals the appropriate irq[x], irrespective of the security state of the
corresponding INS bit.

DMAWFP It halts execution of the thread until the peripheral signals a DMA
request. When this occurs, the DMAC continues execution of the thread,
irrespective of the security state of the corresponding PNS bit.
2-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
DMALDP, DMASTP

It sends a message to the peripheral to communicate that data transfer is
complete, irrespective of the security state of the corresponding PNS bit.

DMAFLUSHP It clears the state of the peripheral and sends a message to the peripheral
to resend its level status, irrespective of the security state of the
corresponding PNS bit.

When a DMA channel thread is in the Secure state it enables the DMAC to perform
secure and non-secure AXI accesses.

2.9.4 DMA channel thread is in the Non-secure state

When the CNS bit is 1, the DMA channel thread is programmed to operate in the
Non-secure state and it only performs non-secure instruction fetches.

When a DMA channel thread in the Non-secure state processes the following
instructions:

DMAWFE It halts execution of the thread until the event occurs. When the event
occurs, the DMAC only continues execution of the thread if the
corresponding INS bit is in the Non-secure state. If the INS bit is in the
Secure state the DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the Fault Status DMA Channel Register
on page 3-19 corresponding to the DMA channel number.

3. Sets the ch_evnt_err bit in the Fault Type DMA Channel Registers
on page 3-21.

4. Moves the DMA channel to the Faulting completing state.

DMASEV It only signals the appropriate irq[x] if the corresponding INS bit is in the
Non-secure state. If the INS bit is in the Secure state the DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the Fault Status DMA Channel Register
on page 3-19 corresponding to the DMA channel number.

3. Sets the ch_evnt_err bit in the Fault Type DMA Channel Registers
on page 3-21.

4. Moves the DMA channel to the Faulting completing state.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-31

Functional Overview
DMAWFP It halts execution of the thread until the peripheral signals a DMA
request. When this occurs, the DMAC only continues execution of the
thread if the corresponding PNS bit is in the Non-secure state. If the PNS
bit is in the Secure state the DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the Fault Status DMA Channel Register
on page 3-19 corresponding to the DMA channel number.

3. Sets the ch_periph_err bit in the Fault Type DMA Channel
Registers on page 3-21.

4. Moves the DMA channel to the Faulting completing state.

DMALDP, DMASTP

It only sends a message to the peripheral to communicate that data
transfer is complete, if the corresponding PNS bit is in the Non-secure
state. If the PNS bit is in the Secure state the DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the Fault Status DMA Channel Register
on page 3-19 corresponding to the DMA channel number.

3. Sets the ch_periph_err bit in the Fault Type DMA Channel
Registers on page 3-21.

4. Moves the DMA channel to the Faulting completing state.

DMAFLUSHP It only clears the state of the peripheral and sends a message to the
peripheral to resend its level status, if the corresponding PNS bit is in the
Non-secure state. If the PNS bit is in the Secure state the DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the Fault Status DMA Channel Register
on page 3-19 corresponding to the DMA channel number.

3. Sets the ch_periph_err bit in the Fault Type DMA Channel
Registers on page 3-21.

4. Moves the DMA channel to the Faulting completing state.

When a DMA channel thread is in the Non-secure state and a DMAMOV CCR instruction
attempts to perform a secure AXI transaction then the DMAC:

1. Executes a DMANOP.

2. Sets the appropriate bit in the Fault Status DMA Channel Register on page 3-19
that corresponds to the DMA channel number.

3. Sets the ch_rdwr_err bit in the Fault Type DMA Channel Registers on page 3-21.
2-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
4. Moves the DMA channel thread to the Faulting completing state.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-33

Functional Overview
2.10 Constraints and limitations of use

This section describes:

• DMA channel arbitration

• DMA channel prioritization

• Instruction cache latency.

2.10.1 DMA channel arbitration

The DMAC uses a round-robin scheme to service the active DMA channels. To ensure
that the DMAC continues to service the DMA manager then it always services the DMA
manager prior to it servicing the next DMA channel.

It is not possible to alter the arbitration process of the DMAC.

2.10.2 DMA channel prioritization

The DMAC responds to all active DMA channels with equal priority. It is not possible
to increase the priority of a DMA channel over any other DMA channels.

2.10.3 Instruction cache latency

When a cache miss occurs, the latency to service the request is mainly dependent on the
read latency of the AXI bus. The latency that the DMAC adds is minimal.
2-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
2.11 Programming restrictions

The following sections describe restrictions that apply when programming the DMAC:

• Fixed unaligned bursts

• Endian swap size restrictions

• Updating DMA channel control registers during a DMA cycle on page 2-36

• Full MFIFO causes DMAC watchdog to abort a DMA channel on page 2-36.

2.11.1 Fixed unaligned bursts

The DMAC does not support fixed unaligned bursts. It is a programming error if you
program the following conditions:

Unaligned read

• src_inc field is 0 in the Channel Control Registers on page 3-30

• the Source Address Registers on page 3-27 contains an address that
is not aligned to the size of data that the src_burst_size field
contains.

Unaligned write

• dst_inc field is 0 in the Channel Control Registers on page 3-30

• the Destination Address Registers on page 3-29 contains an
address that is not aligned to the size of data that the dst_burst_size
field contains.

2.11.2 Endian swap size restrictions

If you program the endian_swap_size field in the Channel Control Registers on
page 3-30 to enable a DMA channel to perform an endian swap then you must set the
Source Address Registers on page 3-27 and Destination Address Registers on
page 3-29, to contain an address that is aligned to the value that the endian_swap_size
field contains.

Also, if you program the src_inc field in the Channel Control Registers on page 3-30 to
use a fixed address then you must program the src_burst_size field to select a burst size
that is equal or greater than the value that the endian_swap_size field specifies.
Similarly, if you program the dst_inc field to select a fixed destination address then you
must program the dst_burst_size field to select a burst size that is equal or greater than
the value that the endian_swap_size field specifies.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-35

Functional Overview
2.11.3 Updating DMA channel control registers during a DMA cycle

Prior to a DMA cycle commencing, the values you program in to the Channel Control
Registers on page 3-30, Source Address Registers on page 3-27, and Destination
Address Registers on page 3-29 control the data byte lane manipulation that the DMAC
performs when it transfers the data from the source address to the destination address.

If during a DMA cycle, you update the Destination Address Registers on page 3-29 or
certain fields in the Channel Control Registers on page 3-30 then the DMAC creates a
new entry in the MFIFO. To enable the DMAC to transfer the previous entry in the
MFIFO, it waits for active AXI transactions for that DMA channel to complete. After
the AXI transactions complete, the DMAC deletes the entry in the MFIFO and
therefore, any remaining data associated with the entry is no longer accessible to the
DMAC. The DMAC then uses the new entry in the MFIFO to store the AXI transactions
for that DMA channel.

Note
 The DMAC creates a new entry in the MFIFO when the destination data becomes
non-contiguous because updates occur to:

• Destination Address Registers on page 3-29

• the following fields in the Channel Control Registers on page 3-30:

— src_inc

— dst_inc

— dst_burst_size, when dst_inc is set to 0

— endian_swap_size.

2.11.4 Full MFIFO causes DMAC watchdog to abort a DMA channel

You must take care when programming the DMAC that you do not perform too many
load instructions that might completely fill the MFIFO, prior to then issuing store
instructions to empty the MFIFO. When the MFIFO is full and the current or next
instruction that updates the MFIFO is a load then the DMAC cannot perform any more
DMA transfers and the internal watchdog aborts the DMA channel.

The following sections describe the following lock-up situations:

• Single DMA channel and lock-up situation

• Multiple DMA channels and lock-up situation on page 2-38.

Single DMA channel and lock-up situation

Example 2-2 on page 2-37 shows a program that causes the DMAC to lock-up, when it
is configured with a read queue depth of 2 and an MFIFO depth of 8.
2-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
Example 2-2 Program that causes the DMAC to lock-up

Set up for 8-beat 32-bit transactions to both source and destination
DMAMOV CCR, SS32 SB8 DS32 DB8

Load data from source
DMALD
DMALD
DMALD
DMALD

Store data to destination
DMAST
DMAST
DMAST
DMAST
DMAEND

In Example 2-2:

1. The DMAC fetches the first DMALD into the read queue. It executes the instruction
and completely fills the MFIFO. After the instruction completes it removes the
DMALD from the read queue.

2. The DMAC fetches the second DMALD into the read queue. It executes the
instruction but because the MFIFO is full the AXI read transaction does not
complete and the instruction remains in the read queue.

3. The DMAC fetches the third DMALD into the read queue. It executes the instruction
but because the MFIFO is full the AXI read transaction does not complete and the
instruction remains in the read queue.

4. The read queue is now full and therefore the DMAC cannot fetch any more
instructions. Because the DMAC cannot execute a DMAST instruction then it locks
up and after the watchdog times out, the thread aborts.

Example 2-3 shows a rewritten version of Example 2-2 that prevents the DMAC from
locking-up.

Example 2-3 Previous program rewritten to prevent the DMAC from locking-up

Set up for 8-beat 32-bit transactions to both source and destination
DMAMOV CCR, SS32 SB8 DS32 DB8

Move data from source to destination
DMALD
DMAST
DMALD
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-37

Functional Overview
DMAST
DMALD
DMAST
DMALD
DMAST
DMAEND

In Example 2-3 on page 2-37, the load and store operations are interleaved and this
enables the DMAC to empty the MFIFO and therefore it does not lock up.

Note
 By using the loop instructions the program in Example 2-3 on page 2-37 can be written
as:

Set up transactions to both source and destination
DMAMOV CCR, SS32 SB8 DS32 DB16
Move data from source to destination
DMALP 4

DMALD
DMAST

DMALPEND
DMAEND

Multiple DMA channels and lock-up situation

Example 2-4 shows a program that functions correctly when only a single DMA
channel is active but causes the DMAC to lock-up when several DMA channels are
active. The DMAC is configured with a read queue depth of 2 and an MFIFO depth of 8.

Example 2-4 Program that causes the DMAC to lock-up with multiple active DMA
channels

Set up transactions to both source and destination
DMAMOV CCR, SS32 SB8 DS32 DB16
Move data from source to destination
DMALP 4

DMALD(1)

DMALD(2)

DMAST
DMALPEND
DMAEND
2-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
When only a single DMA channel is active and executes the program in Example 2-4
on page 2-38 then:

1. The DMAC fetches the DMALD (1) into the read queue. It executes the instruction
and half fills the MFIFO. After the instruction completes it removes the DMALD (1)
from the read queue.

2. The DMAC fetches the DMALD (2) into the read queue. It executes the instruction
and completely fills the MFIFO. After the instruction completes it removes the
DMALD (2) from the read queue.

3. The DMAC fetches the DMAST into the write queue. It executes the instruction and
empties the MFIFO. After the instruction completes it removes the DMAST from the
write queue.

4. The DMAC repeats step 1 to step 3 for three more times until the loop count
terminates and the DMA transaction completes successfully.

When multiple DMA channels are active and executing similar program code to that
shown in Example 2-4 on page 2-38 then:

1. The DMAC fetches the DMALD (1) into the read queue. It executes the instruction
and half fills the MFIFO. After the instruction completes it removes the DMALD (1)
from the read queue.

2. The DMAC fetches the DMALD (2) into the read queue. It executes the instruction
and completely fills the MFIFO. After the instruction completes it removes the
DMALD (2) from the read queue.

If the DMAC arbitrates and another DMA channel starts to load data:

3. The DMAC fetches the DMALD (1) into the read queue. It executes the instruction but
because the MFIFO is full the AXI read transaction does not complete and the
instruction remains in the read queue.

4. The DMAC fetches the DMALD (2) into the read queue. It executes the instruction but
because the MFIFO is full the AXI read transaction does not complete and the
instruction remains in the read queue.

If the DMAC arbitrates and another DMA channel starts to load data:

5. The DMAC cannot fetch any more DMALD instructions because the read queue is
full and the MFIFO remains full. The DMAC is locked-up and any outstanding
DMA transactions fail to complete. The DMAC aborts the thread after the
watchdog times out.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-39

Functional Overview
To prevent the DMAC from filling the MFIFO and causing a lock-up to occur you must
ensure that the number of DMALD instructions that can be fetched before the DMAC
fetches and executes a DMAST instruction is less than, or equal to, the read queue depth +
number of complete bursts that the MFIFO can store. Figure 2-13 shows this as an
equation.

Figure 2-13 Equation for the maximum number of consecutive DMALD

For a DMAC that contains four active DMA channels that are executing similar
program code to that shown in Example 2-4 on page 2-38 then using the equation in
Figure 2-13 the read queue depth required to prevent lock-up occurring can be
calculated as follows:

Consecutive DMALD 8

MFIFO depth 8

Source burst size 8, and therefore:

Read queue depth 7, or larger.

Figure 2-14 on page 2-41 shows a DMAC operating with four active DMA channels
that are each executing similar code to that shown in Example 2-4 on page 2-38. Using
a read queue depth of 7 and an MFIFO depth of 8, the DMAC can execute the program
without a lock-up condition occurring.

Note
 • Figure 2-14 on page 2-41 shows a worst-case scenario where the DMAC

arbitrates and selects a different DMA channel after executing every instruction.

• The scheduler uses a round-robin arbitration scheme but can bypass a DMA
channel when the channel is not ready. Figure 2-14 on page 2-41 shows DMA
channel 0 being bypassed after the DMAC executes the final DMALD (1)
instruction.
2-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Functional Overview
Figure 2-14 DMAC operating with four DMA channels

In Figure 2-14 it can be seen that the write queue depth must be configured to be 4 or
greater. The write queue depth can be calculated using the equation shown in
Figure 2-15.

Figure 2-15 Equation for the maximum number of consecutive DMAST

Note
 In Figure 2-14, when the DMAC executes DMAST for DMA channel 0, it writes the
destination data but it can only provide half of the intended data. This occurs because
the DMAC could not complete the DMALD (2) as the MFIFO was full.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 2-41

Functional Overview
2-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Chapter 3
Programmers Model

This chapter describes the memory map and registers of the DMAC. It contains the
following sections:

• About the programmers model on page 3-2

• DMAC Register summary on page 3-4

• DMAC Register descriptions on page 3-11.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-1

Programmers Model
3.1 About the programmers model

The DMAC has 4KB of memory allocated to it from a base address of 0x000 to a
maximum address of 0xFFF. Figure 3-1 on page 3-3 shows that the register map address
range is split into the following regions:

Control registers

Use these registers to control the DMAC.

DMA channel thread status registers

These registers provide the status of the DMA channel threads.

AXI and loop counter status registers

These registers provide the AXI bus transfer status and the loop counter
status, for each DMA channel thread.

Debug registers

These registers enable:

• you to send instructions to a thread when debugging the program
code

• system firmware to send instructions to the DMA manager thread
as Issuing instructions to the DMAC using an APB interface on
page 2-16 describes.

Configuration registers

These registers enable system firmware to discover the configuration of
the DMAC.

PrimeCell ID registers

These registers enable system firmware to identify a PrimeCell
component.
3-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Figure 3-1 DMAC summary register map
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-3

Programmers Model
3.2 DMAC Register summary

Table 3-1 lists the control registers and provides information about their address offsets,
access permissions when using the secure and non-secure APB interfaces, and a brief
description.

Table 3-1 DMAC Control Register summary

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionthread is

securea

thread is

non-securea

DS 0x000 RO Read As
Zero
(RAZ)

RO 0x0 DMA Status Register on page 3-11

DPC 0x004 RO RAZ RO 0x0 DMA Program Counter Register on
page 3-12

- 0x008 -

0x01C

- - - - Reserved

INTEN 0x020 R/W RAZ R/W 0x0 Interrupt Enable Register on page 3-13

ES 0x024 RO RAZ RO 0x0 Event Status Register on page 3-14

INTSTATUS 0x028 RO RAZ RO 0x0 Interrupt Status Register on page 3-16

INTCLR 0x02C WO RAZ WO 0x0 Interrupt Clear Register on page 3-17

FSM 0x030 RO RAZ RO 0x0 Fault Status DMA Manager Register on
page 3-18

FSC 0x034 RO RAZ RO 0x0 Fault Status DMA Channel Register on
page 3-19

FTM 0x038 RO RAZ RO 0x0 Fault Type DMA Manager Register on
page 3-20

- 0x03C - - - - Reserved
3-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Fault Type DMA Channel Registers on page 3-21

FTC0

FTC1

FTC2

FTC3

FTC4

FTC5

FTC6

FTC7

0x040

0x044

0x048

0x04C

0x050

0x054

0x058

0x05C

RO RAZ RO 0x0 Fault type for DMA channel 0

Fault type for DMA channel 1

Fault type for DMA channel 2

Fault type for DMA channel 3

Fault type for DMA channel 4

Fault type for DMA channel 5

Fault type for DMA channel 6

Fault type for DMA channel 7

- 0x060 -

0x0FC

- - - - Reserved

a. You must use the boot_manager_ns signal to set the security state for the DMA manager thread. See the DMA Status Register
on page 3-11 for information about the security state of the DMA manager thread.

Table 3-1 DMAC Control Register summary (continued)

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionthread is

securea

thread is

non-securea
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-5

Programmers Model
Table 3-2 lists the DMA channel thread status registers and provides information about
their address offsets, access permissions when using the secure and non-secure APB
interfaces, and a brief description.

Table 3-2 DMA channel thread status register summary

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionchannel is

securea

channel is

non-securea

Channel Status Registers on page 3-24

CS0

CS1

CS2

CS3

CS4

CS5

CS6

CS7

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

RO RAZ RO 0x0 Channel status for DMA channel 0

Channel status for DMA channel 1

Channel status for DMA channel 2

Channel status for DMA channel 3

Channel status for DMA channel 4

Channel status for DMA channel 5

Channel status for DMA channel 6

Channel status for DMA channel 7

Channel Program Counter Registers on page 3-26

CPC0

CPC1

CPC2

CPC3

CPC4

CPC5

CPC6

CPC7

0x104

0x10C

0x114

0x11C

0x124

0x12C

0x134

0x13C

RO RAZ RO 0x0 Channel PC for DMA channel 0

Channel PC for DMA channel 1

Channel PC for DMA channel 2

Channel PC for DMA channel 3

Channel PC for DMA channel 4

Channel PC for DMA channel 5

Channel PC for DMA channel 6

Channel PC for DMA channel 7

- 0x140 -

0x3FC

- - - - Reserved

a. The security setting for the channel is set by the security of the DMAGO instruction and the security state of the DMA manager
thread. See the relevant Channel Status Registers on page 3-24 for information about the security state of the channel.
3-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-3 lists the AXI status and loop counter registers and provides information about
their address offsets, access permissions when using the secure and non-secure APB
interfaces, and a brief description.

Table 3-3 AXI status and loop counter register summary

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionchannel is

securea

channel is

non-securea

Source Address Registers on page 3-27

SA_0

SA_1

SA_2

SA_3

SA_4

SA_5

SA_6

SA_7

0x400

0x420

0x440

0x460

0x480

0x4A0

0x4C0

0x4E0

RO RAZ RO 0x0 Source address for DMA channel 0

Source address for DMA channel 1

Source address for DMA channel 2

Source address for DMA channel 3

Source address for DMA channel 4

Source address for DMA channel 5

Source address for DMA channel 6

Source address for DMA channel 7

Destination Address Registers on page 3-29

DA_0

DA_1

DA_2

DA_3

DA_4

DA_5

DA_6

DA_7

0x404

0x424

0x444

0x464

0x484

0x4A4

0x4C4

0x4E4

RO RAZ RO 0x0 Destination address for DMA channel 0

Destination address for DMA channel 1

Destination address for DMA channel 2

Destination address for DMA channel 3

Destination address for DMA channel 4

Destination address for DMA channel 5

Destination address for DMA channel 6

Destination address for DMA channel 7

Channel Control Registers on page 3-30

CC_0

CC_1

CC_2

CC_3

CC_4

CC_5

CC_6

CC_7

0x408

0x428

0x448

0x468

0x488

0x4A8

0x4C8

0x4E8

RO RAZ RO 0x0 Channel control for DMA channel 0

Channel control for DMA channel 1

Channel control for DMA channel 2

Channel control for DMA channel 3

Channel control for DMA channel 4

Channel control for DMA channel 5

Channel control for DMA channel 6

Channel control for DMA channel 7
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-7

Programmers Model
Loop Counter 0 Registers on page 3-35

LC0_0

LC0_1

LC0_2

LC0_3

LC0_4

LC0_5

LC0_6

LC0_7

0x40C

0x42C

0x44C

0x46C

0x48C

0x4AC

0x4CC

0x4EC

RO RAZ RO 0x0 Loop counter 0 for DMA channel 0

Loop counter 0 for DMA channel 1

Loop counter 0 for DMA channel 2

Loop counter 0 for DMA channel 3

Loop counter 0 for DMA channel 4

Loop counter 0 for DMA channel 5

Loop counter 0 for DMA channel 6

Loop counter 0 for DMA channel 7

Loop Counter 1 Registers on page 3-36

LC1_0

LC1_1

LC1_2

LC1_3

LC1_4

LC1_5

LC1_6

LC1_7

0x410

0x430

0x450

0x470

0x490

0x4B0

0x4D0

0x4F0

RO RAZ RO 0x0 Loop counter 1 for DMA channel 0

Loop counter 1 for DMA channel 1

Loop counter 1 for DMA channel 2

Loop counter 1 for DMA channel 3

Loop counter 1 for DMA channel 4

Loop counter 1 for DMA channel 5

Loop counter 1 for DMA channel 6

Loop counter 1 for DMA channel 7

- 0x414-0x41C - - - - Reserved

- 0x434-0x43C - - - - Reserved

- 0x454-0x45C - - - - Reserved

- 0x474-0x47C - - - - Reserved

- 0x494-0x49C - - - - Reserved

- 0x4B4-0x4BC - - - - Reserved

- 0x4D4-0x4DC - - - - Reserved

- 0x4F4-0xCFC - - - - Reserved

a. The security setting for the channel is set by the security of the DMAGO instruction and the security state of the DMA manager
thread. See the relevant Channel Status Registers on page 3-24 for information about the security state of the channel.

Table 3-3 AXI status and loop counter register summary (continued)

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionchannel is

securea

channel is

non-securea
3-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-4 lists the debug registers and provides information about their address offsets,
access permissions when using the secure and non-secure APB interfaces, and a brief
description.

Table 3-5 lists the configuration registers and provides information about their address
offsets, access permissions when using the secure and non-secure APB interfaces, and
a brief description.

Table 3-4 DMAC Debug Register summary

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionthread is

securea

thread is

non-securea

DBGSTATUS 0xD00 RO RAZ RO 0x0 Debug Status Register on page 3-37

DBGCMD 0xD04 WO RAZ WO - Debug Command Register on page 3-37

DBGINST0 0xD08 WO RAZ WO - Debug Instruction-0 Register on
page 3-38

DBGINST1 0xD0C WO RAZ WO - Debug Instruction-1 Register on
page 3-39

a. You must use the boot_manager_ns signal to set the security state for the DMA manager thread. See the DMA Status Register
on page 3-11 for information about the security state of the DMA manager thread.

Table 3-5 DMAC Configuration Register summary

Name
Base
offset

Secure
R/W

Non-secure R/W when:
Reset
value

Descriptionthread is

securea

thread is

non-securea

CR0 0xE00 RO RAZ RO -b Configuration Register 0 on page 3-40

CR1 0xE04 RO RAZ RO -b Configuration Register 1 on page 3-42

CR2 0xE08 RO RAZ RO -b Configuration Register 2 on page 3-43

CR3 0xE0C RO RAZ RO -b Configuration Register 3 on page 3-44

CR4 0xE10 RO RAZ RO -b Configuration Register 4 on page 3-45

CRDn 0xE14 RO RAZ RO -b Configuration Register Dn on page 3-46

a. You must use the boot_manager_ns signal to set the security state for the DMA manager thread. See the DMA Status
Register on page 3-11 for information about the security state of the DMA manager thread.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-9

Programmers Model
Table 3-6 lists the Peripheral Identification Registers and PrimeCell Identification
Registers.

b. Configuration-dependent.

Table 3-6 Peripheral and PrimeCell Identification Register summary

Name Base offset Type Reset value Description

periph_id_n 0xFE0-0xFEC RO Configuration-dependent Peripheral Identification Registers 0-3 on page 3-48

pcell_id_n 0xFF0-0xFFC RO Configuration-dependent PrimeCell Identification Registers 0-3 on page 3-50
3-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
3.3 DMAC Register descriptions

This section describes the registers that the DMAC contains.

3.3.1 DMA Status Register

The DS Register provides information about the configuration and current state of the
DMAC. Table 3-1 on page 3-4 lists the address base offset, reset value, and access type
for this register.

Figure 3-2 shows the register bit assignments.

Figure 3-2 DS Register bit assignments

Table 3-7 lists the register bit assignments.

Table 3-7 DS Register bit assignments

Bits Name Function

[31:10] - Read undefined.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-11

Programmers Model
3.3.2 DMA Program Counter Register

The DPC Register provides the value of the program counter for the DMA manager
thread. Table 3-1 on page 3-4 lists the address base offset, reset value, and access type
for this register.

Figure 3-3 on page 3-13 shows the register bit assignments.

[9] DNS Provides the secure state of the DMA manager thread:

0 = DMA manager operates in the Secure state

1 = DMA manager operates in the Non-secure state.

Note
 You must use the boot_manager_ns signal to set the secure state of the DMA manager
thread.

[8:4] Wakeup_event When the DMAC executes a DMAWFE instruction it waits for the following event to occur:

b00000 = event[0]

b00001 = event[1]

b00010 = event[2]

.

.

.

b11111 = event[31].

[3:0] DMA status The operating state of the DMA manager:

b0000 = Stopped

b0001 = Executing

b0010 = Cache miss

b0011 = Updating PC

b0100 = Waiting for event

b0101-b1110 = reserved

b1111 = Faulting.

See Operating states on page 2-10 for more information.

Table 3-7 DS Register bit assignments (continued)

Bits Name Function
3-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Figure 3-3 DPC Register bit assignments

Table 3-8 lists the register bit assignments.

3.3.3 Interrupt Enable Register

When the DMAC executes a DMASEV instruction, each bit of the INTEN Register controls
if the DMAC signals:

• the specified event to all of the threads

• an interrupt using the corresponding irq.

Table 3-1 on page 3-4 lists the address base offset, reset value, and access type for this
register.

Figure 3-4 shows the register bit assignments.

Figure 3-4 INTEN Register bit assignments

Table 3-8 DPC Register bit assignments

Bits Name Function

[31:0] pc_mgr Program counter for the DMA manager thread
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-13

Programmers Model
Table 3-9 lists the register bit assignments.

3.3.4 Event Status Register

The ES Register provides the status of the event/interrupt requests that are active in the
DMAC. Table 3-1 on page 3-4 lists the address base offset, reset value, and access type
for this register.

Note
 The DMAC only generates an event request when a thread executes a DMASEV instruction.

Figure 3-5 shows the register bit assignments.

Figure 3-5 ES Register bit assignments

Table 3-10 on page 3-15 lists the register bit assignments.

Table 3-9 INTEN Register bit assignments

Bits Name Function

[31:0] event_irq_select Program the appropriate bit to control how the DMAC responds when it executes DMASEV:

Bit [N] = 0 If executing DMASEV for event N then the DMAC signals event N to all of the
threads.

Bit [N] = 1 If executing DMASEV for event N then the DMAC sets irq[N] HIGH.

Note
 See DMASEV on page 4-18 for information about selecting an event number.
3-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-10 ES Register bit assignments

Bits Name Function

[31:0] DMASEV active Provides the status of the events and interrupts that are active in the DMAC:

Bit [N] = 0 Event N is inactive or irq[N] is LOW.

Bit [N] = 1 Event N is active or irq[N] is HIGH.

Note
 When the DMAC receives an event request, the Interrupt Enable Register on

page 3-13 controls if the DMAC signals:

• an interrupt using the appropriate irq

• the event to all of the threads.

Note
 The DMAC clears bit [N] when either:

• the INTEN Register is programmed to process the event and the DMAC executes a DMAWFE
instruction for that event

• the INTEN Register is programmed to signal an interrupt and you write to the
corresponding bit in the Interrupt Clear Register on page 3-17.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-15

Programmers Model
3.3.5 Interrupt Status Register

The INTSTATUS Register provides the status of the active interrupts in the DMAC.
Table 3-1 on page 3-4 lists the address base offset, reset value, and access type for this
register.

Figure 3-6 shows the register bit assignments.

Figure 3-6 INTSTATUS Register bit assignments

Table 3-11 lists the register bit assignments.

Table 3-11 INTSTATUS Register bit assignments

Bits Name Function

[31:0] irq_status Provides the status of the interrupts that are active in the DMAC:

Bit [N] = 0 Interrupt N is inactive and therefore irq[N] is LOW.

Bit [N] = 1 Interrupt N is active and therefore irq[N] is HIGH.

Note
 You must use the Interrupt Clear Register on page 3-17 to set bit [N] to 0.

Note
 Bit [N] is 0 if the Interrupt Enable Register on page 3-13 programs DMASEV to signal an event.
3-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
3.3.6 Interrupt Clear Register

Each bit in the INTCLR Register controls the clearing of an interrupt. Table 3-1 on
page 3-4 lists the address base offset, reset value, and access type for this register.

Figure 3-7 shows the register bit assignments.

Figure 3-7 INTCLR Register bit assignments

Table 3-12 lists the register bit assignments.

Table 3-12 INTCLR Register bit assignments

Bits Name Function

[31:0] irq_clr Controls the clearing of the irq outputs:

Bit [N] = 0 The status of irq[N] does not change.

Bit [N] = 1 The DMAC sets irq[N] LOW if Interrupt Enable Register on page 3-13 programs the
DMAC to signal an interrupt. Otherwise the status of irq[N] does not change.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-17

Programmers Model
3.3.7 Fault Status DMA Manager Register

The FSM Register provides the fault status of the DMA manager. Table 3-1 on page 3-4
lists the address base offset, reset value, and access type for this register.

Figure 3-8 shows the register bit assignments.

Figure 3-8 FSM Register bit assignments

Table 3-13 lists the register bit assignments.

Table 3-13 FSM Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined.

{0] fs_mgr Provides the fault status of the DMA manager. Read as:

0 = the DMA manager thread is not in the Faulting state

1 = the DMA manager thread is in the Faulting state. See Fault Type DMA Manager Register on
page 3-20 for information about the type of fault that occurred.
3-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
3.3.8 Fault Status DMA Channel Register

The FSC Register provides the fault status for the DMA channels. Table 3-1 on page 3-4
lists the address base offset, reset value, and access type for this register.

Figure 3-9 shows the register bit assignments.

Figure 3-9 FSC Register bit assignments

Table 3-14 lists the register bit assignments.

Table 3-14 FSC Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.

[7:0] fault_status Each bit provides the fault status of the corresponding channel. Read as:

Bit [N] = 0 No fault is present on DMA channel N.

Bit [N] = 1 DMA channel N is in the Faulting or Faulting completing state. See Fault Type
DMA Channel Registers on page 3-21 for information about the type of fault that
occurred.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-19

Programmers Model
3.3.9 Fault Type DMA Manager Register

The FTM Register provides the type of fault that occurred to move the DMA manager
to the Faulting state. Table 3-1 on page 3-4 lists the address base offset, reset value, and
access type for this register.

Figure 3-10 shows the register bit assignments.

Figure 3-10 FTM Register bit assignments

Table 3-15 lists the register bit assignments.

Table 3-15 FTM Register bit assignments

Bits Name Function

[31] - Read undefined.

[30] dbg_instr If the DMA manager aborts then this bit indicates if the erroneous instruction was read from
the debug interface:

0 = instruction that generated an abort was read from system memory

1 = instruction that generated an abort was read from the debug interface.

[29:17] - Read undefined.

[16] instr_fetch_err Indicates the AXI response that the DMAC receives on the RRESP or BRESP buses, after
the DMA manager performs an instruction fetch:

0 = OKAY response

1 = EXOKAY, SLVERR, or DECERR response.

[15:6] - Read undefined.
3-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
3.3.10 Fault Type DMA Channel Registers

An FTC Register provides the type of fault that occurred to move a DMA channel to the
Faulting state. The DMAC provides a FTCn Register for each DMA channel that it
contains. Table 3-1 on page 3-4 lists the address base offset, reset value, and access type
for this register.

Figure 3-11 on page 3-22 shows the register bit assignments and the address base
offsets for each FTCn Register.

[5] mgr_evnt_err Indicates if the DMA manager was attempting to execute DMAWFE or DMASEV with
inappropriate security permissions:

0 = DMA manager has appropriate security to execute DMAWFE or DMASEV

1 = a DMA manager thread in the Non-secure state attempted to execute either:

• DMAWFE to wait for a secure event

• DMASEV to create a secure event or secure interrupt.

[4] dmago_err Indicates if the DMA manager was attempting to execute DMAGO with inappropriate security
permissions:

0 = DMA manager has appropriate security to execute DMAGO

1 = a DMA manager thread in the Non-secure state attempted to execute DMAGO to create a
DMA channel operating in the Secure state.

[3:2] - Read undefined.

[1] operand_invalid Indicates if the DMA manager was attempting to execute an instruction operand that was
not valid for the configuration of the DMAC:

0 = valid operand

1 = invalid operand.

[0] undef_instr Indicates if the DMA manager was attempting to execute an undefined instruction:

0 = defined instruction

1 = undefined instruction.

Table 3-15 FTM Register bit assignments (continued)

Bits Name Function
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-21

Programmers Model
Figure 3-11 FTC Register bit assignments

Table 3-16 lists the register bit assignments.

Table 3-16 FTC Register bit assignments

Bits Name Function

[31] lockup_err Indicates if the DMA channel has locked-up due to resource starvation:

0 = DMA channel has adequate resources

1 = DMA channel has locked-up due to insufficient resources.

[30] dbg_instr If the DMA channel aborts then this bit indicates if the erroneous instruction was read from
the debug interface:

0 = instruction that generated an abort was read from system memory

1 = instruction that generated an abort was read from the debug interface.

[29:19] - Reserved, read undefined.

[18] data_read_err Indicates the AXI response that the DMAC receives on the RRESP or BRESP buses, after
the DMA channel thread performs a data read:

0 = OKAY response

1 = EXOKAY, SLVERR, or DECERR response.

[17] data_write_err Indicates the AXI response that the DMAC receives on the RRESP or BRESP buses, after
the DMA channel thread performs a data write:

0 = OKAY response

1 = EXOKAY, SLVERR, or DECERR response.
3-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
[16] instr_fetch_err Indicates the AXI response that the DMAC receives on the RRESP or BRESP buses, after
the DMA channel thread performs an instruction fetch:

0 = OKAY response

1 = EXOKAY, SLVERR, or DECERR response.

[15:13] - Reserved, read undefined.

[12] mfifo_err Indicates if the MFIFO prevented the DMA channel thread from executing DMALD or DMAST.
Depending on the instruction:

DMALD 0 = MFIFO has sufficient space

1 = MFIFO has insufficient space to store the date that DMALD requires.

DMAST 0 = MFIFO contains sufficient data

1 = MFIFO is too small to store the data to enable DMAST to complete.

[11:8] - Reserved, read undefined.

[7] ch_rdwr_err Indicates if a DMA channel thread in the Non-secure state was attempting to perform a
secure read or secure write:

0 = a DMA channel thread in the Non-secure state is not violating the security permissions

1 = a DMA channel thread in the Non-secure state attempted to perform a secure read or
secure write.

[6] ch_periph_err Indicates if a DMA channel thread in the Non-secure state was attempting to execute DMAWFP,
DMALDP, DMASTP, or DMAFLUSHP with inappropriate security permissions:

0 = a DMA channel thread in the Non-secure state is not violating the security permissions

1 = a DMA channel thread in the Non-secure state attempted to execute either:

• DMAWFP to wait for a secure peripheral

• DMALDP or DMASTP to notify a secure peripheral

• DMAFLUSHP to flush a secure peripheral.

[5] ch_evnt_err Indicates if the DMA channel thread was attempting to execute DMAWFE or DMASEV with
inappropriate security permissions:

0 = a DMA channel thread in the Non-secure state is not violating the security permissions

1 = a DMA channel thread in the Non-secure state attempted to execute either:

• DMAWFE to wait for a secure event

• DMASEV to create a secure event or secure interrupt.

Table 3-16 FTC Register bit assignments (continued)

Bits Name Function
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-23

Programmers Model
3.3.11 Channel Status Registers

A CS Register provides the status of the DMA program on a DMA channel. The DMAC
provides a CSn Register for each DMA channel that it contains. Table 3-2 on page 3-6
lists the reset value and access type for this register.

Figure 3-12 shows the register bit assignments and the address base offsets for each CSn
Register.

Figure 3-12 CSn Register bit assignments and address offsets

[4:2] - Reserved, read undefined.

[1] operand_invalid Indicates if the DMA channel thread was attempting to execute an instruction operand that
was not valid for the configuration of the DMAC:

0 = valid operand

1 = invalid operand.

[0] undef_instr Indicates if the DMA channel thread was attempting to execute an undefined instruction:

0 = defined instruction

1 = undefined instruction.

Table 3-16 FTC Register bit assignments (continued)

Bits Name Function
3-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-17 lists the register bit assignments.

Table 3-17 CSn Register bit assignments

Bits Name Function

[31:22] - Reserved, read undefined.

[21] CNS The channel non-secure bit provides the security of the DMA channel:

0 = DMA channel operates in the Secure state

1 = DMA channel operates in the Non-secure state.

Note
 The DMAGO instruction determines the security state of a DMA channel. See DMAGO on
page 4-6.

[20:16] - Reserved, read undefined.

[15] dmawfp_periph When the DMA channel thread executes DMAWFP<S|B|P> on page 4-22 this bit indicates
if the p operand was set:

0 = DMAWFP executed with the p operand not set

1 = DMAWFP executed with the p operand set.

[14] dmawfp_b_ns When the DMA channel thread executes DMAWFP<S|B|P> on page 4-22 this bit indicates
if the b or s operand were set:

0 = DMAWFP executed with the s operand set

1 = DMAWFP executed with the b operand set.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-25

Programmers Model
3.3.12 Channel Program Counter Registers

A CPC Register provides the value of the program counter for the DMA channel thread.
The DMAC provides a CPCn Register for each DMA channel that it contains. Table 3-2
on page 3-6 lists the reset value and access type for this register.

Figure 3-13 on page 3-27 shows the register bit assignments and the address base
offsets for each CPCn Register.

[13:9] - Reserved, read undefined.

[8:4] Wakeup number If the DMA channel is in the Waiting for event state or the Waiting for peripheral state then
these bits indicate the event or peripheral number that the channel is waiting for:

b00000 = DMA channel is waiting for event, or peripheral, 0

b00001 = DMA channel is waiting for event, or peripheral, 1

b00010 = DMA channel is waiting for event, or peripheral, 2

.

.

.

b11111 = DMA channel is waiting for event, or peripheral, 31.

[3:0] Channel status The channel status encoding is:

b0000 = Stopped

b0001 = Executing

b0010 = Cache miss

b0011 = Updating PC

b0100 = Waiting for event

b0101 = At barrier

b0110 = Queue busy

b0111 = Waiting for peripheral

b1000 = Killing

b1001 = Completing

b1010-b1101 = reserved

b1110 = Faulting completing

b1111 = Faulting.

See Operating states on page 2-10 for more information.

Table 3-17 CSn Register bit assignments (continued)

Bits Name Function
3-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Figure 3-13 CPCn Register bit assignments and address offsets

Table 3-18 lists the register bit assignments.

3.3.13 Source Address Registers

An SA Register provides the address of the source data for a DMA channel. The DMAC
provides a SA_n Register for each DMA channel that it contains. Table 3-3 on page 3-7
lists the reset value and access type for this register.

The DMAC writes the initial source address value to the SA Register when the DMA
channel thread executes a DMAMOV SAR instruction. If a subsequent DMAMOV CCR instruction
programs the source address to increment then each time the DMA channel executes
DMALD it updates the value to indicate the address that the next DMALD must use. See
DMAMOV on page 4-15 for more information.

Figure 3-14 on page 3-28 shows the register bit assignments and the address base
offsets for each SA_n Register.

Table 3-18 CPCn Register bit assignments

Bits Name Function

[31:0] pc_chnl Program counter for the DMA channel n thread, where n depends on the address of the register as
Figure 3-13 shows.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-27

Programmers Model
Figure 3-14 SA_n Register bit assignments and address offsets

Table 3-19 lists the register bit assignments.

Table 3-19 SA_n Register bit assignments

Bits Name Function

[31:0] src_addr Address of the source data for DMA channel n, where n depends on the address of the register as
Figure 3-14 shows.
3-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
3.3.14 Destination Address Registers

A DA Register provides the address for the destination data for a DMA channel. The
DMAC provides a DA_n Register for each DMA channel that it contains. Table 3-3 on
page 3-7 lists the reset value and access type for this register.

The DMAC writes the initial destination address value to the DA Register when the
DMA channel thread executes a DMAMOV DAR instruction. If a subsequent DMAMOV CCR
instruction programs the destination address to increment then each time the DMA
channel executes DMAST it updates the value to indicate the address that the next DMAST
must use. See DMAMOV on page 4-15 for more information.

Figure 3-15 shows the register bit assignments and the address base offsets for each
DA_n Register.

Figure 3-15 DA_n Register bit assignments and address offsets

Table 3-20 lists the register bit assignments.

Table 3-20 DA_n Register bit assignments

Bits Name Function

[31:0] dst_addr Address for the destination data for DMA channel n, where n depends on the address of the register
as Figure 3-15 shows.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-29

Programmers Model
3.3.15 Channel Control Registers

A CC Register controls the AXI transactions that the DMAC uses for a DMA channel.
The DMAC provides a CC_n Register for each DMA channel that it contains. Table 3-3
on page 3-7 lists the reset value and access type for this register.

The DMAC writes to the corresponding CC Register when a DMA channel thread
executes a DMAMOV CCR instruction.

Figure 3-16 shows the register bit assignments and the address base offsets for each
CC_n Register.

Figure 3-16 CC_n Register bit assignments
3-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-21 lists the register bit assignments.

Table 3-21 CC_n Register bit assignments

Bits Name Function

[31:28] endian_swap_size See Endian swap size on page 3-35.

[27:25] dst_cache_ctrl Programs the state of AWCACHE[3,1:0]a when the DMAC writes the destination data.

Bit [27] 0 = AWCACHE[3] is LOW

1 = AWCACHE[3] is HIGH.

Bit [26] 0 = AWCACHE[1] is LOW

1 = AWCACHE[1] is HIGH.

Bit [25] 0 = AWCACHE[0] is LOW

1 = AWCACHE[0] is HIGH.

Note
 AWCACHE[2] is tied LOW by the DMAC.

Setting AWCACHE[3,1]=b10 violates the AXI protocol. See the AMBA AXI Protocol
Specification.

[24:22] dst_prot_ctrl Programs the state of AWPROT[2:0]a when the DMAC writes the destination data.

Bit [24] 0 = AWPROT[2] is LOW

1 = AWPROT[2] is HIGH.

Bit [23] 0 = AWPROT[1] is LOW

1 = AWPROT[1] is HIGH.

Bit [22] 0 = AWPROT[0] is LOW

1 = AWPROT[0] is HIGH.

Note
 Only DMA channels in the Secure state can program AWPROT[1] LOW, that is a secure
access. If a DMA channel in the Non-secure state attempts to set AWPROT[1] LOW then
the DMA channel aborts.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-31

Programmers Model
[21:18] dst_burst_len For each burst, these bits program the number of data transfers that the DMAC performs
when it writes the destination data:

b0000 = 1 data transfer

b0001 = 2 data transfers

b0010 = 3 data transfers

.

.

.

b1111 = 16 data transfers.

Note
 These bits control the status of AWLEN[3:0].

[17:15] dst_burst_size Programs the burst size that the DMAC uses when it writes the destination data:

b000 = 1 byte

b001 = 2 bytes

b010 = 4 bytes

b011 = 8 bytes

b100 = 16 bytes

b101 = 32 bytes

b110 = 64 bytes

b111 = 128 bytes.

Note
 These bits control the status of AWSIZE[2:0].

[14] dst_inc Programs the burst type that the DMAC performs when it writes the destination data:

0 = fixed-address burst. The DMAC signals AWBURST[0] LOW.

1 = incrementing-address burst. The DMAC signals AWBURST[0] HIGH.

Table 3-21 CC_n Register bit assignments (continued)

Bits Name Function
3-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
[13:11] src_cache_ctrl Set the bits to control the state of ARCACHE[2:0]a when the DMAC reads the source
data.

Bit [13] 0 = ARCACHE[2] is LOW

1 = ARCACHE[2] is HIGH.

Bit [12] 0 = ARCACHE[1] is LOW

1 = ARCACHE[1] is HIGH.

Bit [11] 0 = ARCACHE[0] is LOW

1 = ARCACHE[0] is HIGH.

Note
 ARCACHE[3] is tied LOW by the DMAC.

Setting ARCACHE[2:1]=b10 violates the AXI protocol.

[10:8] src_prot_ctrl Programs the state of ARPROT[2:0]a when the DMAC reads the source data.

Bit [24] 0 = ARPROT[2] is LOW

1 = ARPROT[2] is HIGH.

Bit [23] 0 = ARPROT[1] is LOW

1 = ARPROT[1] is HIGH.

Bit [22] 0 = ARPROT[0] is LOW

1 = ARPROT[0] is HIGH.

Note
 Only DMA channels in the Secure state can program ARPROT[1] LOW, that is a secure
access. If a DMA channel in the Non-secure state attempts to set ARPROT[1] LOW then
the DMA channel aborts.

Table 3-21 CC_n Register bit assignments (continued)

Bits Name Function
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-33

Programmers Model
Note
 The DMAC does not generate:

• locked or exclusive accesses.

• WRAP transfers. Therefore, ARBURST[1] and AWBURST[1] are always LOW.

[7:4] src_burst_len For each burst, these bits program the number of data transfers that the DMAC performs
when it reads the source data:

b0000 = 1 data transfer

b0001 = 2 data transfers

b0010 = 3 data transfers

.

.

.

b1111 = 16 data transfers.

Note
 These bits control the status of ARLEN[3:0].

[3:1] src_burst_size Programs the burst size that the DMAC uses when it reads the source data:

b000 = 1 byte

b001 = 2 bytes

b010 = 4 bytes

b011 = 8 bytes

b100 = 16 bytes

b101 = 32 bytes

b110 = 64 bytes

b111 = 128 bytes.

Note
 These bits control the status of ARSIZE[2:0].

[0] src_inc Programs the burst type that the DMAC performs when it reads the source data:

0 = fixed-address burst. The DMAC signals ARBURST[0] LOW.

1 = incrementing-address burst. The DMAC signals ARBURST[0] HIGH.

a. See the AMBA AXI Protocol Specification for information about this AXI signal.

Table 3-21 CC_n Register bit assignments (continued)

Bits Name Function
3-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Endian swap size

Table 3-22 defines whether data can be swapped between little-endian (LE) and
byte-invariant big-endian (BE-8) formats, and if so, also defines the natural width of the
data independently of the source and destination transaction sizes. This enables
unaligned data streams to use the full bus-width and to be correctly transformed
irrespective of the source and destination address alignments. The format is identical to
AxSIZE, except that b000 indicates that no swap must occur.

Note
 See Endian swap size restrictions on page 2-35 for information about some restrictions
that apply when you use this feature.

3.3.16 Loop Counter 0 Registers

An LC0 Register provides the status of loop counter zero for the DMA channel. The
DMAC updates this register when it executes DMALPEND[S|B] on page 4-11 and the
DMA channel thread is programmed to use loop counter zero. The DMAC provides a
LC0_n Register for each DMA channel that it contains. Table 3-3 on page 3-7 lists the
reset value and access type for this register.

Figure 3-17 on page 3-36 shows the register bit assignments and the address base
offsets for each LC0_n Register.

Table 3-22 Swap data

Endian swap size Description

b000 No swap, 8-bit data

b001 Swap bytes within 16-bit data

b010 Swap bytes within 32-bit data

b011 Swap bytes within 64-bit data

b100 Swap bytes within 128-bit data

b101 Reserved

b110 Reserved

b111 Reserved
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-35

Programmers Model
Figure 3-17 LC0_n Register bit assignments

Table 3-23 lists the register bit assignments.

3.3.17 Loop Counter 1 Registers

An LC1 Register provides the status of loop counter one for the DMA channel. The
DMAC updates this register when it executes DMALPEND[S|B] on page 4-11 and the
DMA channel thread is programmed to use loop counter one. The DMAC provides a
LC1_n Register for each DMA channel that it contains. Table 3-3 on page 3-7 lists the
reset value and access type for this register.

Figure 3-18 shows the register bit assignments and the address base offsets for each
LC1_n Register.

Figure 3-18 LC1_n Register bit assignments

Table 3-23 LC0_n Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] Loop counter iterations Loop counter iterations
3-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-24 lists the register bit assignments.

3.3.18 Debug Status Register

The DBGSTATUS Register provides the debug status of the DMAC. Table 3-4 on
page 3-9 lists the address base offset, reset value, and access type for this register.

Figure 3-19 shows the register bit assignments.

Figure 3-19 DBGSTATUS Register bit assignments

Table 3-25 lists the register bit assignments.

3.3.19 Debug Command Register

The DBGCMD Register controls the execution of debug commands in the DMAC as
Issuing instructions to the DMAC using an APB interface on page 2-16 describes.
Table 3-4 on page 3-9 lists the address base offset, reset value, and access type for this
register.

Figure 3-20 on page 3-38 shows the register bit assignments.

Table 3-24 LC1_n Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] Loop counter iterations Loop counter iterations

Table 3-25 DBGSTATUS Register bit assignments

Bits Name Function

[31:1] - Reserved, read undefined.

[0] dbgstatus The debug status encoding is:

0 = Idle

1 = Busy.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-37

Programmers Model
Figure 3-20 DBGCMD Register bit assignments

Table 3-26 lists the register bit assignments.

3.3.20 Debug Instruction-0 Register

The DBGINST0 Register controls the debug instruction, channel, and thread
information for the DMAC. See Issuing instructions to the DMAC using an APB
interface on page 2-16 for more information. Table 3-4 on page 3-9 lists the address
base offset, reset value, and access type for this register.

Figure 3-21 shows the register bit assignments.

Figure 3-21 DBGINST0 Register bit assignments

Table 3-26 DBGCMD Register bit assignments

Bits Name Function

[31:2] - Reserved. Write as zero.

[1:0] dbgcmd The debug encoding is as follows:

b00 = execute the instruction that the DBGINST [1:0] Registers contain

b01 = reserved

b10 = reserved

b11 = reserved.
3-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-27 lists the register bit assignments.

3.3.21 Debug Instruction-1 Register

The DBGINST1 Register controls the upper bytes of the debug instruction for the
DMAC. See Issuing instructions to the DMAC using an APB interface on page 2-16 for
more information. Table 3-4 on page 3-9 lists the address base offset, reset value, and
access type for this register.

Figure 3-22 shows the register bit assignments.

Figure 3-22 DBGINST1 Register bit assignments

Table 3-27 DBGINST0 Register bit assignments

Bits Name Function

[31:24] Instruction byte 1 Instruction byte 1.

[23:16] Instruction byte 0 Instruction byte 0.

[15:11] - Reserved. Write as zero.

[10:8] Channel number DMA channel number:

b000 = DMA channel 0

b001 = DMA channel 1

b010 = DMA channel 2

.

.

.

b111 = DMA channel 7.

[7:1] - Reserved. Write as zero.

[0] Debug thread The debug thread encoding is as follows:

0 = DMA manager thread

1 = DMA channel.

Note
 When set to 1, the Channel number field selects the DMA channel to debug.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-39

Programmers Model
Table 3-28 lists the register bit assignments.

3.3.22 Configuration Register 0

The CR0 Register provides the status of the tie-off control signals and information about
the configuration of the DMAC:

• the number of DMA channels that it contains

• the number of peripheral request interfaces it provides

• the number of irq signals it provides.

Table 3-5 on page 3-9 lists the address base offset, reset value, and access type for this
register.

Figure 3-23 shows the register bit assignments.

Figure 3-23 CR0 Register bit assignments

Table 3-28 DBGINST1 Register bit assignments

Bits Name Function

[31:24] Instruction byte 5 Instruction byte 5

[23:16] Instruction byte 4 Instruction byte 4

[15:8] Instruction byte 3 Instruction byte 4

[7:0] Instruction byte 2 Instruction byte 2
3-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-29 lists the register bit assignments.

Table 3-29 CR0 Register bit assignments

Bits Name Function

[31:22] - Reserved, read undefined.

[21:17] num_events Number of interrupt outputs that the DMAC provides:

b00000 = 1 interrupt output, irq[0]
b00001 = 2 interrupt outputs, irq[1:0]

b00010 = 3 interrupt outputs, irq[2:0]

.

.

.

b11111 = 32 interrupt outputs, irq[31:0].

[16:12] num_periph_req Number of peripheral request interfaces that the DMAC provides:

b00000 = 1 peripheral request interface

b00001 = 2 peripheral request interfaces

b00010 = 3 peripheral request interfaces

.

.

.

b11111 = 32 peripheral request interfaces.

Note
 This field is only valid when the periph_req bit is set to 1.

[11:7] - Reserved, read undefined.

[6:4] num_chnls Number of DMA channels that the DMAC supports:

b000 = 1 DMA channel

b001 = 2 DMA channels

b010 = 3 DMA channels

.

.

.

b111 = 8 DMA channels.

[3] - Reserved, read undefined.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-41

Programmers Model
3.3.23 Configuration Register 1

The CR1 Register provides information about the instruction cache configuration.
Table 3-5 on page 3-9 lists the address base offset, reset value, and access type for this
register.

Figure 3-24 shows the register bit assignments.

Figure 3-24 CR1 Registers bit assignments

[2] mgr_ns_at_rst Indicates the status of the boot_manager_ns signal when the DMAC exited from reset:

0 = boot_manager_ns was LOW

1 = boot_manager_ns was HIGH.

[1] boot_en Indicates the status of the boot_from_pc signal when the DMAC exited from reset:

0 = boot_from_pc was LOW

1 = boot_from_pc was HIGH.

[0] periph_req Supports peripheral requests:

0 = the DMAC does not provide a peripheral request interface

1 = the DMAC provides the number of peripheral request interfaces that the num_periph_req
field specifies.

Table 3-29 CR0 Register bit assignments (continued)

Bits Name Function
3-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Table 3-30 lists the register bit assignments.

3.3.24 Configuration Register 2

The CR2 Register provides the value of the boot address that boot_addr[31:0]
configures. Table 3-5 on page 3-9 lists the address base offset, reset value, and access
type for this register.

Figure 3-25 shows the register bit assignments.

Figure 3-25 CR2 Registers bit assignments

Table 3-30 CR1 Registers bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.

[7:4] num_i-cache_lines Number of i-cache lines:

b0000 = 1 i-cache line

b0001 = 2 i-cache lines

b0010 = 3 i-cache lines

.

.

.

b1111 = 16 i-cache lines.

[3] - Reserved, read undefined.

[2:0] i-cache_len The length of an i-cache line:

b000-b001 = reserved

b010 = 4 bytes

b011 = 8 bytes

b100 = 16 bytes

b101 = 32 bytes

b110-b111 = reserved.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-43

Programmers Model
Table 3-31 lists the register bit assignments.

3.3.25 Configuration Register 3

The CR3 Register provides the security state of the interrupt outputs that is initialized
when the DMAC exits from reset. Table 3-5 on page 3-9 lists the address base offset,
reset value, and access type for this register.

Figure 3-26 shows the register bit assignments.

Figure 3-26 CR3 Registers bit assignments

Table 3-32 lists the register bit assignments.

Table 3-31 CR2 Register bit assignments

Bits Name Function

[31:0] boot_addr Provides the value of boot_addr[31:0] when the DMAC exited from reset.

Table 3-32 CR3 Register bit assignments

Bits Name Function

[31a:0] INS Provides the security state of the interrupt outputs:

Bit [N] = 0 Assigns irq[N] to the Secure state.

Bit [N] = 1 Assigns irq[N] to the Non-secure state.

Note
 The boot_irq_ns[x:0] signals initialize the bits in this register, when the DMAC exits from reset. See
Table A-12 on page A-13 for more information.

a. If you configure the DMAC to provide less than 32 irq outputs then the upper bits are undefined and read as zero.
3-44 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
3.3.26 Configuration Register 4

The CR4 Register provides the security state of the peripheral request interfaces that is
initialized when the DMAC exits from reset. Table 3-5 on page 3-9 lists the address
base offset, reset value, and access type for this register.

Figure 3-27 shows the register bit assignments.

Figure 3-27 CR4 Registers bit assignments

Table 3-33 lists the register bit assignments.

Table 3-33 CR4 Register bit assignments

Bits Name Function

[31a:0] PNS Provides the security state of the peripheral request interfaces:

Bit [N] = 0 Assigns peripheral request interface N to the Secure state.

Bit [N] = 1 Assigns peripheral request interface N to the Non-secure state.

Note
 The boot_periph_ns tie-off signals initialize the bits in this register, when the DMAC exits from
reset. See Table A-12 on page A-13 for more information.

a. If you configure the DMAC to provide less than 32 peripheral request interfaces then the upper bits are undefined and read as
zero.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-45

Programmers Model
3.3.27 Configuration Register Dn

The CRDn Register provides information about the configuration of the data buffer,
data width, and write interleave capability of the DMAC. Table 3-5 on page 3-9 lists the
address base offset, reset value, and access type for this register.

Figure 3-28 shows the register bit assignments.

Figure 3-28 CRDn Register bit assignments

Table 3-34 lists the register bit assignments.

Table 3-34 CRDn Registers bit assignments

Bits Name Function

[31:30] - Reserved, read undefined.

[29:20] data_buffer_dep The number of lines that the data buffer contains:

b000000000 = 1 line

b000000001 = 2 lines

.

.

.

b111111111 = 1024 lines.

[19:16] rd_q_dep The depth of the read queue:

b0000 = 1 line

b0001 = 2 lines

.

.

.

b1111 = 16 lines.

[15] - Reserved, read undefined.
3-46 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
[14:12] rd_cap Read issuing capability that programs the number of outstanding read transactions:

b000 = 1

b001 = 2

.

.

.

b111 = 8.

[11:8] wr_q_dep The depth of the write queue:

b0000 = 1 line

b0001 = 2 lines

.

.

.

b1111 = 16 lines.

[7] - Reserved, read undefined.

[6:4] wr_cap Write issuing capability that programs the number of outstanding write transactions:

b000 = 1

b001 = 2

.

.

.

b111 = 8.

[3] - Reserved, read undefined.

[2:0] data_width The data bus width of the AXI interface:

b000 = reserved

b001 = reserved

b010 = 32-bit

b011 = 64-bit

b100 = 128-bit

b101-b111 = reserved.

Table 3-34 CRDn Registers bit assignments (continued)

Bits Name Function
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-47

Programmers Model
3.3.28 Peripheral Identification Registers 0-3

The periph_id Registers are four 8-bit read-only registers, that span address locations
0xFE0-0xFEC. The registers can conceptually be treated as a single register that holds a
32-bit peripheral ID value. An external master reads them to discover the version of the
DMAC. None of the registers 0-3 can be read when the DMAC is in reset.

Table 3-35 lists the register bit assignments.

Figure 3-29 shows the correspondence between bits of the periph_id registers and the
conceptual 32-bit Peripheral ID Register.

Figure 3-29 periph_id Register bit assignments

The following subsections describe the periph_id Registers:

• Peripheral Identification Register 0 on page 3-49

• Peripheral Identification Register 1 on page 3-49

Table 3-35 periph_id Register bit assignments

Bits Name Description

[31:25] - Reserved, read undefined.

[24] integration_cfg Configuration options are peripheral-specific.

See Peripheral Identification Register 3 on page 3-50.

[23:20] - The peripheral revision number is revision-dependent. See Table 3-38 on page 3-49.

[19:12] designer Designer’s ID number. This is 0x41 for ARM.

[11:0] part_number Identifies the peripheral. This is 0x330 for the DMAC.
3-48 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
• Peripheral Identification Register 2

• Peripheral Identification Register 3 on page 3-50.

Peripheral Identification Register 0

The periph_id_0 Register is hard-coded and the fields in the register control the reset
value. Table 3-36 lists the register bit assignments.

Peripheral Identification Register 1

The periph_id_1 Register is hard-coded and the fields in the register control the reset
value. Table 3-37 lists the register bit assignments.

Peripheral Identification Register 2

The periph_id_2 Register is hard-coded and the fields in the register control the reset
value. Table 3-38 lists the register bit assignments.

Table 3-36 periph_id_0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] part_number_0 These bits read back as 0x30

Table 3-37 periph_id_1 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:4] designer_0 These bits read back as 0x1

[3:0] part_number_1 These bits read back as 0x3

Table 3-38 periph_id_2 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.

[7:4] revision These bits read back as:

• 0x0 for r0p0.

[3:0] designer_1 These bits read back as 0x4.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-49

Programmers Model
Peripheral Identification Register 3

The periph_id_3 Register is hard-coded and the fields in the register control the reset
value. Table 3-39 lists the register bit assignments.

3.3.29 PrimeCell Identification Registers 0-3

The pcell_id Registers are four eight-bit wide registers, that span address locations
0xFF0-0FFC. The registers can conceptually be treated as a single register that holds a
32-bit PrimeCell ID value. You can use the register for automatic BIOS configuration.
The pcell_id Register is set to 0xB105F00D. You can access the register with one wait
state. Table 3-40 lists the register bit assignments.

Figure 3-30 on page 3-51 shows the register bit assignments.

Table 3-39 periph_id_3 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined.

[7:1] - Reserved for future use, read undefined.

[0] integration_cfg Reads back as 0 to indicate that the DMAC does not contain any integration test logic.

Table 3-40 pcell_id Register bit assignments

pcell_id_0-3 register

Bits Reset value Register Bits Description

- - pcell_id_3 [31:8] Read undefined

[31:24] 0xB1 pcell_id_3 [7:0] These bits read back as 0xB1

- - pcell_id_2 [31:8] Read undefined

[23:16] 0x05 pcell_id_2 [7:0] These bits read back as 0x05

- - pcell_id_1 [31:8] Read undefined

[15:8] 0xF0 pcell_id_1 [7:0] These bits read back as 0xF0

- - pcell_id_0 [31:8] Read undefined

[7:0] 0x0D pcell_id_0 [7:0] These bits read back as 0x0D
3-50 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Programmers Model
Figure 3-30 pcell_id Register bit assignments

The following subsections describe the pcell_id Registers:

• PrimeCell Identification Register 0

• PrimeCell Identification Register 1 on page 3-52

• PrimeCell Identification Register 2 on page 3-52

• PrimeCell Identification Register 3 on page 3-52.

Note
 You cannot read these registers when aresetn is active and the DMAC is in reset.

PrimeCell Identification Register 0

The pcell_id_0 Register is hard-coded and the fields in the register control the reset
value. Table 3-41 lists the register bit assignments.

Table 3-41 pcell_id_0 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] pcell_id_0 These bits read back as 0x0D
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 3-51

Programmers Model
PrimeCell Identification Register 1

The pcell_id_1 Register is hard-coded and the fields in the register control the reset
value. Table 3-42 lists the register bit assignments.

PrimeCell Identification Register 2

The pcell_id_2 Register is hard-coded and the fields in the register control the reset
value. Table 3-43 lists the register bit assignments.

PrimeCell Identification Register 3

The pcell_id_3 Register is hard-coded and the fields in the register control the reset
value. Table 3-44 lists the register bit assignments.

Table 3-42 pcell_id_1 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] pcell_id_1 These bits read back as 0xF0

Table 3-43 pcell_id_2 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] pcell_id_2 These bits read back as 0x5

Table 3-44 pcell_id_3 Register bit assignments

Bits Name Function

[31:8] - Reserved, read undefined

[7:0] pcell_id_3 These bits read back as 0xB1
3-52 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Chapter 4
Instruction Set

This chapter describes the instruction set of the DMAC. It contains the following
sections:

• Instruction syntax conventions on page 4-2

• Instruction set summary on page 4-3

• Instructions on page 4-5

• Assembler directives on page 4-25.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-1

Instruction Set
4.1 Instruction syntax conventions

The following conventions are used in assembler syntax prototype lines and their
subfields:

< > Any item bracketed by < and > is mandatory. A description of the item
and of how it is encoded in the instruction is supplied by subsequent text.

[] Any item bracketed by [and] is optional. A description of the item and
of how its presence or absence is encoded in the instruction is supplied by
subsequent text.

spaces Single spaces are used for clarity, to separate items. When a space is
obligatory in the assembler syntax, two or more consecutive spaces are
used.
4-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
4.2 Instruction set summary

The DMAC instructions:

• use a DMA prefix, to provide a unique name-space

• have 8-bit opcodes that might use a variable data payload of 0, 8, 16, or 32-bits

• use suffixes that are consistent.

Table 4-1 lists a summary of the instruction syntax.

Table 4-1 Instruction syntax summary

Mnemonic Instruction
Thread usage:
• M = DMA manager
• C = DMA channel

Description

DMAADDH Add Halfword - C See DMAADDH on page 4-5

DMAEND End M C See DMAEND on page 4-5

DMAFLUSHP Flush and notify Peripheral - C See DMAFLUSHP on page 4-6

DMAGO Go M - See DMAGO on page 4-6

DMALD Load - C See DMALD[S|B] on page 4-8

DMALDP Load Peripheral - C See DMALDP<S|B> on page 4-9

DMALP Loop - C See DMALP on page 4-10

DMALPEND Loop End - C See DMALPEND[S|B] on page 4-11

DMALPFE Loop Forever - C See DMALPFE on page 4-13

DMAKILL Kill M C See DMAKILL on page 4-14

DMAMOV Move - C See DMAMOV on page 4-15

DMANOP No operation M C See DMANOP on page 4-17

DMARMB Read Memory Barrier - C See DMARMB on page 4-17

DMASEV Send Event M C See DMASEV on page 4-18

DMAST Store - C See DMAST[S|B] on page 4-19

DMASTP Store and notify Peripheral - C See DMASTP<S|B> on page 4-20

DMASTZ Store Zero - C See DMASTZ on page 4-21
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-3

Instruction Set
DMAWFE Wait For Event M C See DMAWFE on page 4-21

DMAWFP Wait For Peripheral - C See DMAWFP<S|B|P> on page 4-22

DMAWMB Write Memory Barrier - C See DMAWMB on page 4-23

Table 4-1 Instruction syntax summary (continued)

Mnemonic Instruction
Thread usage:
• M = DMA manager
• C = DMA channel

Description
4-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
4.3 Instructions

The following sections describe the instructions that a DMAC can execute.

4.3.1 DMAADDH

Add Halfword adds an immediate 16-bit value to the Source Address Registers on
page 3-27 or Destination Address Registers on page 3-29, for the DMA channel thread.
This enables the DMAC to support 2D DMA operations.

Figure 4-1 shows the instruction encoding.

Figure 4-1 DMAADDH encoding

Assembler syntax

DMAADDH <address_register>, <16-bit immediate>

where:

<address_register> Selects the address register to use. It must be either:

SA Source Address Registers on page 3-27 and sets ra to 0.

DA Destination Address Registers on page 3-29 and sets ra
to 1.

<16-bit immediate> The immediate value to be added to the <address_register>.

Operation

You can only use this instruction in a DMA channel thread.

4.3.2 DMAEND

End signals to the DMAC that the DMA sequence is complete. After all DMA transfers
are complete for the DMA channel then the DMAC moves the channel to the Stopped
state. When the DMAC receives DMAEND for a channel that is suspended, because of a
previous abort, it moves the channel to the Stopped state. In all cases, it also flushes data
from the MFIFO and invalidates all cache entries for the thread.

Figure 4-2 on page 4-6 shows the instruction encoding.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-5

Instruction Set
Figure 4-2 DMAEND encoding

Assembler syntax

DMAEND

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

4.3.3 DMAFLUSHP

Flush Peripheral clears the state in the DMAC that describes the contents of the
peripheral and sends a message to the peripheral to resend its level status.

Figure 4-3 shows the instruction encoding.

Figure 4-3 DMAFLUSHP encoding

Assembler syntax

DMAFLUSHP <peripheral>

where:

<peripheral> 5-bit immediate, value 0-31.

Operation

You can only use this instruction in a DMA channel thread.

4.3.4 DMAGO

When the DMA manager executes Go for a DMA channel that is in the Stopped state,
it performs the following steps on the DMA channel:

• moves a 32-bit immediate into the program counter
4-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
• sets its security state

• updates it to the Executing state.

Note
 If a DMA channel is not in the Stopped state when the DMA manager executes DMAGO
then the DMA manager thread aborts.

Figure 4-4 shows the instruction encoding.

Figure 4-4 DMAGO encoding

Assembler syntax

DMAGO <channel_number>, <32-bit_immediate> [, ns]

where:

<channel_number> Selects a DMA channel. It must be one of:

C0 DMA channel 0.

C1 DMA channel 1.

C2 DMA channel 2.

C3 DMA channel 3.

C4 DMA channel 4.

C5 DMA channel 5.

C6 DMA channel 6.

C7 DMA channel 7.

Note
 If you provide a channel number that is not available

for your configuration of the DMAC then the DMA
manager thread aborts.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-7

Instruction Set
<32-bit_immediate> The immediate value that is written to the Channel Program
Counter Registers on page 3-26, for the selected
<channel_number>.

[ns] • If ns is present, the DMA channel operates in the
Non-secure state.

• Otherwise the execution of the instruction depends on the
security state of the DMA manager:

DMA manager is in the Secure state
DMA channel operates in the Secure state.

DMA manager is in the Non-secure state
DMAC aborts.

Operation

You can only use this instruction with the DMA manager thread.

4.3.5 DMALD[S|B]

Load instructs the DMAC to perform a DMA load, using AXI transactions that the
Source Address Registers on page 3-27 and Channel Control Registers on page 3-30
specify. It places the read data into the MFIFO and tags it with the corresponding
channel number. DMALD is an unconditional instruction but DMALDS and DMALDB are
conditional on the setting of request_flag. If the src_inc bit in the Channel Control
Registers on page 3-30 is set to incrementing then the DMAC updates the Source
Address Registers on page 3-27 after it executes DMALD[S|B].

Note
 The value of request_flag is set by the DMAC when it executes a DMAWFP instruction.
See DMAWFP<S|B|P> on page 4-22.

Figure 4-5 shows the instruction encoding.

Figure 4-5 DMALD[S|B] encoding
4-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
Assembler syntax

DMALD[S|B]

where:

[S] If S is present then the assembler sets bs to 0 and x to 1. The instruction
is conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a DMA load.

request_flag = Burst
The DMAC performs a DMANOP.

[B] If B is present then the assembler sets bs to 1 and x to 1. The instruction
is conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a DMANOP.

request_flag = Burst
The DMAC performs a DMA load.

If you do not specify the S or B operand then the assembler sets bs to 0 and x to 0, and
the DMAC always executes a DMA load.

Operation

You can only use this instruction in a DMA channel thread. If you specify the S or B
operand then execution of the instruction is conditional on the setting of request_flag
matching that of the instruction as Assembler syntax describes.

4.3.6 DMALDP<S|B>

Load and notify Peripheral instructs the DMAC to perform a DMA load, using AXI
transactions that the Source Address Registers on page 3-27 and Channel Control
Registers on page 3-30 specify. It places the read data into a FIFO that is tagged with
the corresponding channel number and after it receives the last data item, it updates
datype[1:0] to indicate to the peripheral that the data transfer is complete. If the src_inc
bit in the Channel Control Registers on page 3-30 is set to incrementing then the
DMAC updates the Source Address Registers on page 3-27 after it executes
DMALDP<S|B>.

Figure 4-6 on page 4-10 shows the instruction encoding.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-9

Instruction Set
Figure 4-6 DMALDP<S|B> encoding

Assembler syntax

DMALDP<S|B> <peripheral>

where:

<S> When S is present the assembler sets bs to 0. The instruction is
conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a load using a single DMA transfer.

request_flag = Burst
The DMAC performs a DMANOP.

 When B is present the assembler sets bs to 1. The instruction is
conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a DMANOP.

request_flag = Burst
The DMAC performs a load using a burst DMA transfer.

<peripheral> 5-bit immediate, value 0-31.

Operation

You can only use this instruction in a DMA channel thread. Execution of the instruction
is conditional on the setting of request_flag matching that of the instruction as
Assembler syntax describes.

4.3.7 DMALP

Loop instructs the DMAC to load an 8-bit value into the Loop Counter Register you
specify. This instruction indicates the start of a section of instructions, and you set the
end of the section using the DMALPEND instruction. See DMALPEND[S|B] on page 4-11.
The DMAC repeats the set of instructions that you insert between DMALP and DMALPEND
until the value in the Loop Counter Register reaches zero.
4-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
Note
 The DMAC saves the value of the PC for the instruction that follows DMALP. After the
DMAC executes DMALPEND, and the Loop Counter Register is not zero, this enables it to
execute the first instruction in the loop.

Figure 4-7 shows the instruction encoding.

Figure 4-7 DMALP encoding

Assembler syntax

DMALP <loop_iterations>

where:

<loop_iterations>

An 8-bit value that specifies the number of loops to perform.

Note
 The assembler determines the Loop Counter Register to use and either:

• Sets lc to 0. The DMAC writes the value, loop_iterations minus 1, to the Loop
Counter 0 Registers on page 3-35.

• Sets lc to 1. The DMAC writes the value, loop_iterations minus 1, to the Loop
Counter 1 Registers on page 3-36.

Operation

You can only use this instruction in a DMA channel thread.

4.3.8 DMALPEND[S|B]

Loop End indicates the last instruction in the program loop and instructs the DMAC to
read the value of the Loop Counter Register. Depending on the value returned it either:

Value is zero DMAC executes a DMANOP.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-11

Instruction Set
Value is non-zero DMAC decrements the value in the Loop Counter Register and
updates the thread PC to contain the address of the first instruction
in the program loop, that is, the instruction that follows the DMALP
or DMALPFE, that corresponds to the DMALPEND.

Figure 4-8 shows the instruction encoding.

Figure 4-8 DMALPEND[S|B] encoding

Assembler syntax

DMALPEND[S|B]

where:

[S] If S is present then the assembler sets bs to 0 and x to 1. The instruction
is conditional on the setting of request_flag:

request_flag = Single
The DMAC continues executing the instructions in the loop.

request_flag = Burst
The DMAC performs a DMANOP.

[B] If B is present then the assembler sets bs to 1 and x to 1. The instruction
is conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a DMANOP.

request_flag = Burst
The DMAC continues executing the instructions in the loop.

Note
 If you do not specify the S or B operand then the assembler sets bs to 0 and x to 0, and
the DMAC always executes the instructions in the program loop.
4-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
Note
 To correctly assign the additional bits in the DMALPEND instruction, that Figure 4-8 on
page 4-12 shows, the assembler determines the values for:

backwards_jump[7:0] Sets the relative location of the first instruction in the program
loop.

nf Sets it to:

• 0 if DMALPFE started the program loop

• 1 if DMALP started the program loop.

lc Sets it to:

• 0 if the Loop Counter 0 Registers on page 3-35 contains the
loop counter value

• 1 if the Loop Counter 1 Registers on page 3-36 contains the
loop counter value.

Operation

You can only use this instruction in a DMA channel thread. If you specify the S or B
operand then execution of the instruction is conditional on the setting of request_flag
matching that of the instruction as Assembler syntax on page 4-12 describes.

4.3.9 DMALPFE

Loop Forever is used by the assembler to configure certain bits in DMALPEND. See
DMALPEND[S|B] on page 4-11.

Note
 When the assembler encounters DMALPFE it does not create an instruction for the DMAC
but instead it modifies the behavior of DMALPEND. The insertion of DMALPFE in program
code identifies the start of the loop.

Assembler syntax

DMALPFE
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-13

Instruction Set
4.3.10 DMAKILL

Kill instructs the DMAC to immediately terminate execution of a thread. Depending on
the thread type the DMAC performs the following steps:

DMA manager thread
1. Invalidates all cache entries for the DMA manager.

2. Moves the DMA manager to the Stopped state.

DMA channel thread
1. Moves the DMA channel to the Killing state.

2. Waits for AXI transactions, with an ID equal to the DMA channel
number, to complete.

3. Invalidates all cache entries for the DMA channel.

4. Remove all entries in the MFIFO for the DMA channel.

5. Remove all entries in the read buffer queue and write buffer queue
for the DMA channel.

6. Moves the DMA channel to the Stopped state.

Figure 4-9 shows the instruction encoding.

Figure 4-9 DMAKILL encoding

Assembler syntax

DMAKILL

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

Note
 Programs for the DMAC must not use DMAKILL. Only use the Debug Instruction-0
Register on page 3-38 to issue this instruction.
4-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
4.3.11 DMAMOV

Move instructs the DMAC to move a 32-bit immediate into the following registers:

• Source Address Registers on page 3-27

• Destination Address Registers on page 3-29

• Channel Control Registers on page 3-30.

Figure 4-10 shows the instruction encoding.

Figure 4-10 DMAMOV encoding

Assembler syntax

DMAMOV <destination_register>, <32-bit_immediate>

where:

<destination_register>

The valid registers are:

SAR Selects the Source Address Registers on page 3-27 and sets rd
to b000.

CCR Selects the Channel Control Registers on page 3-30 and sets
rd to b001.

DAR Selects the Destination Address Registers on page 3-29
Register and sets rd to b010.

<32-bit_immediate>

A 32-bit value that is written to the specified destination register.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-15

Instruction Set
Note
 See DMAMOV CCR on page 4-27 for information about using the

assembler to program the various fields that the Channel Control
Registers on page 3-30 contains.

Operation

You can only use this instruction in a DMA channel thread.
4-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
4.3.12 DMANOP

No Operation does nothing. You can use this instruction for code alignment purposes.

Figure 4-11 shows the instruction encoding.

Figure 4-11 DMANOP encoding

Assembler syntax

DMANOP

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

4.3.13 DMARMB

Read Memory Barrier forces the DMA channel to wait until all active AXI read
transactions associated with that channel are complete. This enables write-after-read
sequences to the same address location with no hazards.

Figure 4-12 shows the instruction encoding.

Figure 4-12 DMARMB encoding

Assembler syntax

DMARMB

Operation

You can only use this instruction in a DMA channel thread.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-17

Instruction Set
4.3.14 DMASEV

Send Event instructs the DMAC to signal an event. Depending on how you program the
Interrupt Enable Register on page 3-13 this either:

• generates event <event_num>

Note
 Typically, you use DMAWFE to stall a thread and then another thread executes

DMASEV, using the appropriate event number, to unstall the waiting thread. See
Using an event to restart DMA channels on page 2-23.

• signals an interrupt using irq<event_num>.

Note
 The DMAC aborts the thread if you select an event_num that is not available for

your configuration of the DMAC.

Figure 4-13 shows the instruction encoding.

Figure 4-13 DMASEV encoding

Assembler syntax

DMASEV <event_num>

where:

<event_num> 5-bit immediate, value 0-31.

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.
4-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
4.3.15 DMAST[S|B]

Store instructs the DMAC to transfer data from the FIFO to the location that the
Destination Address Registers on page 3-29 specifies, using AXI transactions that the
DA Register and Channel Control Registers on page 3-30 specify. If the dst_inc bit in
the Channel Control Registers on page 3-30 is set to incrementing then the DMAC
updates the Destination Address Registers on page 3-29 after it executes DMAST[S|B].

Figure 4-14 shows the instruction encoding.

Figure 4-14 DMAST[S|B] encoding

Assembler syntax

DMAST[S|B]

where:

[S] If S is present then the assembler sets bs to 0 and x to 1. The instruction
is conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a single DMA store.

Note
 The DMAC ignores the setting of the dst_burst_len field in the

Channel Control Registers on page 3-30 and always performs
an AXI transfer with a burst length of one.

request_flag = Burst
The DMAC performs a DMANOP.

[B] If B is present then the assembler sets bs to 1 and x to 1. The instruction
is conditional on the setting of request_flag:

request_flag = Single
The DMAC performs a DMANOP.

request_flag = Burst
The DMAC performs a DMA store.

If you do not specify the S or B operand then the assembler sets bs to 0 and x to 0, and
the DMAC always executes a DMA store.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-19

Instruction Set
Operation

You can only use this instruction in a DMA channel thread. If you specify the S or B
operand then execution of the instruction is conditional on the setting of request_flag
matching that of the instruction as Assembler syntax on page 4-19 describes.

The DMAC only commences the burst when the MFIFO contains all of the data
necessary to complete the burst transfer.

4.3.16 DMASTP<S|B>

Store and notify Peripheral instructs the DMAC to transfer data from the FIFO to the
location that the Destination Address Registers on page 3-29 specifies, using AXI
transactions that the DA Register and Channel Control Registers on page 3-30 specify.
It uses the DMA channel number to access the appropriate location in the FIFO. After
the DMA store is complete, and the DMAC has received a buffered write response, it
updates datype[1:0], to notify the peripheral that the data transfer is complete. If the
dst_inc bit in the Channel Control Registers on page 3-30 is set to incrementing then
the DMAC updates the Destination Address Registers on page 3-29 after it executes
DMASTP<S|B>.

Figure 4-15 shows the instruction encoding.

Figure 4-15 DMASTP<S|B> encoding

Assembler syntax

DMASTP<S|B> <peripheral>

where:

<S> Sets bs to 0. This instructs the DMAC to perform:

• a single DMA store operation if request_flag is programmed to
Single

Note
 The DMAC ignores the setting of the dst_burst_len field in the

Channel Control Registers on page 3-30 and always performs an
AXI transfer with a burst length of one.

• a DMANOP if request_flag is programmed to Burst.
4-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
 Sets bs to 1. This instructs the DMAC to perform:

• the DMA store if request_flag is programmed to Burst

• a DMANOP if request_flag is programmed to Single.

<peripheral> 5-bit immediate, value 0-31.

Operation

You can only use this instruction in a DMA channel thread.

The DMAC only commences the burst when the MFIFO contains all of the data
necessary to complete the burst transfer.

4.3.17 DMASTZ

Store Zero instructs the DMAC to store zeros, using AXI transactions that the
Destination Address Registers on page 3-29 and Channel Control Registers on
page 3-30 specify. If the dst_inc bit in the Channel Control Registers on page 3-30 is
set to incrementing then the DMAC updates the Destination Address Registers on
page 3-29 after it executes DMASTZ.

Figure 4-16 shows the instruction encoding.

Figure 4-16 DMASTZ encoding

Assembler syntax

DMASTZ

Operation

You can only use this instruction in a DMA channel thread.

4.3.18 DMAWFE

Wait For Event instructs the DMAC to halt execution of the thread until the event, that
event_num specifies, occurs. When the event occurs, the thread moves to the Executing
state and the DMAC clears the event.

Figure 4-17 on page 4-22 shows the instruction encoding.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-21

Instruction Set
Figure 4-17 DMAWFE encoding

Assembler syntax

DMAWFE <event_num>[, invalid]

where:

<event_num> 5-bit immediate, value 0-31.

[invalid] If invalid is present the DMAC invalidates the instruction cache for the
current DMA thread.

Note
 • The DMAC aborts the thread if you select an event_num that is not

available for your configuration of the DMAC.

• To ensure cache coherency, you must use invalid when a processor
writes the instruction stream for a DMA channel.

Operation

You can use the instruction with the DMA manager thread and the DMA channel thread.

4.3.19 DMAWFP<S|B|P>

Wait For Peripheral instructs the DMAC to halt execution of the thread until the
specified peripheral signals a DMA request for that DMA channel.

Figure 4-18 shows the instruction encoding.

Figure 4-18 DMAWFP<S|B|P> encoding

Assembler syntax

DMAWFP<S|B|P> <peripheral>
4-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
where:

<S> Sets bs to 0 and p to 0. This instructs the DMAC to continue executing the
DMA channel thread after it receives a single or burst DMA request. The
DMAC sets the request_flag to single, for that DMA channel.

 Sets bs to 1 and p to 0. This instructs the DMAC to continue executing the
DMA channel thread after it receives a burst DMA request. The DMAC
sets the request_flag to burst.

Note
 The DMAC ignores single burst DMA requests, as Figure 2-10 on

page 2-21shows.

<P> Sets bs to 0 and p to 1. This instructs the DMAC to continue executing the
DMA channel thread after it receives a single or burst DMA request. The
DMAC sets the request_flag to:

Single When it receives a single DMA request.

Burst When it receives a burst DMA request.

<peripheral> 5-bit immediate, value 0-31.

Note
 The DMAC aborts the thread if you select a peripheral number that is not

available for your configuration of the DMAC.

Operation

You can only use this instruction in a DMA channel thread.

4.3.20 DMAWMB

Write Memory Barrier forces the DMA channel to wait until all active AXI write
transactions associated with that channel have completed. This enables read-after-write
sequences to the same address location with no hazards.

Figure 4-19 shows the instruction encoding.

Figure 4-19 DMAWMB encoding
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-23

Instruction Set
Assembler syntax

DMAWMB

Operation

You can only use this instruction in a DMA channel thread.
4-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
4.4 Assembler directives

The assembler provides the following additional commands:

• DCD

• DCB

• DMALP

• DMALPFE on page 4-26

• DMALPEND on page 4-26

• DMAMOV CCR on page 4-27.

4.4.1 DCD

Assembler directive to place a 32-bit immediate in the instruction stream.

Syntax

DCD imm32

4.4.2 DCB

Assembler directive to place an 8-bit immediate in the instruction stream.

Syntax

DCB imm8

4.4.3 DMALP

Assembler directive to insert an iterative loop.

Syntax

DMALP [<LC0>|<LC1>] <loop_iterations>

where:

<loop_iterations>

An 8-bit value that specifies the number of loops to perform.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-25

Instruction Set
Note
 For clarity in writing assembler instructions, the 8-bit value is the actual

number of iterations of the loop to be executed. The assembler
decrements this by one to create the actual value (0-255) that the DMAC
uses.

[LC0] If LC0 is present then the DMAC stores <loop_iterations> in the Loop
Counter 0 Registers on page 3-35.

[LC1] If LC1 is present then the DMAC stores <loop_iterations> in the Loop
Counter 1 Registers on page 3-36.

Note
 If LC0 or LC1 is not present then the assembler determines the Loop Counter Register
to use.

4.4.4 DMALPFE

Assembler directive to insert a repetitive loop.

Syntax

DMALPFE

Enables the assembler to clear the nf bit that is present in DMALPEND. See DMALPEND.

4.4.5 DMALPEND

Assembler directive that indicates the end of a loop.

Syntax

DMALPEND

To correctly assign the additional bits in the DMALPEND instruction, that Figure 4-8 on
page 4-12 shows, the assembler determines the values for:

backwards_jump[7:0] Sets the relative location of the first instruction in the program
loop.

nf Sets it to:

• 0 if DMALPFE started the program loop

• 1 if DMALP started the program loop.
4-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Instruction Set
lc Sets it to:

• 0 if the Loop Counter 0 Registers on page 3-35 contains the
loop counter value

• 1 if the Loop Counter 1 Registers on page 3-36 contains the
loop counter value.

4.4.6 DMAMOV CCR

Assembler directive that enables you to program the Channel Control Registers on
page 3-30 using the format that Syntax shows.

Syntax

DMAMOV CCR, [SB<1-16>] [SS<1|2|4|8|16|32|64|128>] [SA<I|F>]
[SP<imm3>] [SC<imm4>]
[DB<1-16>] [DS<1|2|4|8|16|32|64|128>] [DA<I|F>]
[DP<imm3>] [DC<imm4>]
[ES<8|16|32|64|128>]

Table 4-2 lists the argument descriptions and the default values.

Table 4-2 DMAMOV CCR argument description and the default values

Syntax Description Options Default

SA Source address increment. Sets the value of ARBURST[0]. I = Increment

F = Fixed

I

SS Source burst size in bytes. Sets the value of ARSIZE[2:0]. 1, 2, 4, 8, 16, 32, 64, or 128 8

SB Source burst length. Sets the value of ARLEN[3:0]. 1 to 16 1

SP Source protection. 0 to 7a 0

SC Source cache. 0 to 15ab 0

DA Destination address increment. Sets the value of AWBURST[0]. I = Increment

F = Fixed

I

DS Destination burst size in bytes. Sets the value of AWSIZE[2:0]. 1, 2, 4, 8, 16, 32, 64, or 128 8

DB Destination burst length. Sets the value of AWLEN[3:0]. 1 to 16 1

DP Destination protection. 0 to 7a 0

DC Destination cache. 0 to 15ac 0

ES Endian swap size, in bits. 8, 16, 32, 64, or 128 8
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. 4-27

Instruction Set
a. You must use decimal values when programming this immediate value.
b. Because ARCACHE[3] is tied LOW by the DMAC then the assembler always sets bit 3 to 0 and uses bits [2:0] of your

chosen value for SC. See CC_n Register bit assignments on page 3-31.
c. Because AWCACHE[2] is tied LOW by the DMAC then the assembler always sets bit 2 to 0 and uses bit [3] and bits [1:0]

of your chosen value for DC. See CC_n Register bit assignments on page 3-31.
4-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Appendix A
Signal Descriptions

This appendix lists and describes the DMAC signals. It contains the following sections:

• Clocks and resets on page A-2

• AXI signals on page A-3

• APB signals on page A-7

• Peripheral request interface on page A-9

• Interrupt signals on page A-11

• Tie-off signals on page A-12.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 Clocks and resets

Table A-1 lists the clock and reset signals.

Table A-1 Clock and reset

Name Type
Source/
destination

Description

aclk Input Clock source AXI clock.

aresetn Input Reset source DMAC active-LOW reset:

0 = apply DMAC reset

1 = do not apply DMAC reset.

pclken Input Clock

generator

Clock enable signal that enables the APB interfaces to operate at either:

• the aclk frequency

• a divided integer multiple of aclk that is aligned to aclk.

Note
 If pclken is not used then it must be tied HIGH. This results in the APB

interfaces being clocked directly by aclk.
A-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Signal Descriptions
A.2 AXI signals

The following sections describe the AXI interface signals:

• Write address (AXI-AW) channel signals

• Write data (AXI-W) channel signals on page A-4

• Write response (AXI-B) channel signals on page A-4

• Read address (AXI-AR) channel signals on page A-5

• Read data (AXI-R) channel signals on page A-5.

A.2.1 Write address (AXI-AW) channel signals

Table A-2 lists the AXI write address signals.

The DMAC does not support locked or exclusive accesses and therefore awlock[1:0] is
tied LOW.

Table A-2 AXI-AW signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

awaddr[31:0] AWADDR[31:0]

awburst[1:0] AWBURST[1:0]

awid[ID_MSB:0]b

b. The value of ID_MSB is set during configuration of the DMAC.

AWID[ID_MSB:0]

awlen[3:0] AWLEN[3:0]

awprot[2:0] AWPROT[2:0]

awready AWREADY

awsize[2:0] AWSIZE[2:0]

awvalid AWVALID
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-3

Signal Descriptions
A.2.2 Write data (AXI-W) channel signals

Table A-3 lists the AXI write data signals.

A.2.3 Write response (AXI-B) channel signals

Table A-4 lists the AXI write response signals.

Table A-3 AXI-W signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

wdata[DATA_MSB:0]b

b. The value of DATA_MSB, ID_MSB, and STRB_MSB are set during
configuration of the DMAC.

WDATA[DATA_MSB:0]

wid[ID_MSB:0]b WID[ID_MSB:0]

wlast WLAST

wready WREADY

wstrb[STRB_MSB:0]b WSTRB[STRB_MSB:0]

wvalid WVALID

Table A-4 AXI-B signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

bid[ID_MSB:0]b

b. The value of ID_MSB is set during configuration of the DMAC.

BID[ID_MSB:0]

bready BREADY

bresp[1:0] BRESP[1:0]

bvalid BVALID
A-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Signal Descriptions
A.2.4 Read address (AXI-AR) channel signals

Table A-5 lists the AXI read address signals.

The DMAC does not support locked or exclusive accesses and therefore arlock[1:0] is
tied LOW.

A.2.5 Read data (AXI-R) channel signals

Table A-6 lists the AXI read data signals.

Table A-5 AXI-AR signals

Signal AMBA equivalenta

a. See the AMBA AXI Protocol Specification for a description of these signals.

araddr[31:0] ARADDR[31:0]

arburst[1:0] ARBURST[1:0]

arid[ID_MSB:0]b

b. The value of ID_MSB is set during configuration of the DMAC.

ARID[ID_MSB:0]

arlen[3:0] ARLEN[3:0]

arprot[2:0] ARPROT[2:0]

arready ARREADY

arsize[2:0] ARSIZE[2:0]

arvalid ARVALID

Table A-6 AXI-R signals

Signal AMBA equivalenta

rdata[DATA_MSB:0]b RDATA[DATA_MSB:0]

rid[ID_MSB:0]b RID[ID_MSB:0]

rlast RLAST

rready RREADY

rresp[1:0] RRESP[1:0]

rvalid RVALID
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-5

Signal Descriptions
a. See the AMBA AXI Protocol Specification for a description of these signals.
b. The value of DATA_MSB and ID_MSB are set during configuration of the DMAC.
A-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Signal Descriptions
A.3 APB signals

The DMAC provides the following APB interfaces:

• Non-secure APB interface

• Secure APB interface.

A.3.1 Non-secure APB interface

Table A-7 lists the signals that the non-secure APB interface provides.

A.3.2 Secure APB interface

Table A-8 lists the signals that the secure APB interface provides.

Table A-7 Non-secure APB interface signals

Signal AMBA equivalenta

a. See the AMBA 3 APB Protocol Specification for a description of these signals.

paddr[31:0] PADDR

penable PENABLE

prdata[31:0] PRDATA

pready PREADY

psel PSELx

pwdata[31:0] PWDATA

pwrite PWRITE

Table A-8 Secure APB interface signals

Signal AMBA equivalenta

spaddr[31:0] PADDR

spenable PENABLE

sprdata[31:0] PRDATA

spready PREADY
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-7

Signal Descriptions
spsel PSELx

spwdata[31:0] PWDATA

spwrite PWRITE

a. See the AMBA 3 APB Protocol Specification for a description of these signals.

Table A-8 Secure APB interface signals (continued)

Signal AMBA equivalenta
A-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Signal Descriptions
A.4 Peripheral request interface

Table A-9 lists the peripheral request interface signals that the DMAC provides, after
you configure it to provide one or more peripheral request interfaces.

Note
 You can configure the DMAC to contain no peripheral request interfaces. See the AMBA
Designer (FD001) PrimeCell DMA Controller (PL330) User Guide Supplement for
more information.

Table A-9 Peripheral request interface

Namea Type
Source/
destination

Description

daready_<x> Input Peripheral Indicates if the peripheral can accept the information that the DMAC is
providing on datype_<x>[1:0]:

0 = peripheral not ready

1 = peripheral ready.

datype_<x>[1:0] Output Peripheral Indicates the type of acknowledgement, or request, that the DMAC is
signaling:

b00 = the DMAC has completed the single DMA transfer

b01 = the DMAC has completed the burst DMA transfer

b10 = DMAC requesting the peripheral to perform a flush request

b11 = reserved.

davalid_<x> Output Peripheral Indicates when the DMAC is providing valid control information:

0 = no control information is available

1 = datype_<x>[1:0] contains valid information for the peripheral.

drlast_<x> Input Peripheral Indicates that the peripheral is sending the last data transfer for the current
DMA transfer:

0 = last data request is not in progress

1 = last data request is in progress.

Note
 The DMAC only uses this signal when drtype_<x>[1:0] is b00 or b01.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-9

Signal Descriptions
drready_<x> Output Peripheral Indicates if the DMAC can accept the information that the peripheral is
providing on drtype_<x>[1:0]:
0 = DMAC not ready.

1 = DMAC ready.

drtype_<x>[1:0] Input Peripheral Indicates the type of acknowledgement, or request, that the peripheral is
signaling:

b00 = single level request

b01 = burst level request

b10 = acknowledging a flush request that the DMAC requested

b11 = reserved.

drvalid_<x> Input Peripheral Indicates when the peripheral is providing valid control information:

0 = no control information is available

1 = drtype_<x>[1:0] and drlast_<x> contain valid information for the
DMAC.

a. Where <x> is the number for a peripheral request interface. The valid numbers for x depend on the configuration of the DMAC.

Table A-9 Peripheral request interface (continued)

Namea Type
Source/
destination

Description
A-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Signal Descriptions
A.5 Interrupt signals

Table A-10 lists the interrupt signals.

Table A-10 Interrupt signals

Name Type Destination Description

irq[x:0]a Output Processor Active HIGH interrupt output. The DMAC sets irq<N> HIGH when it executes
a DMASEV instruction for event N, if the Interrupt Enable Register on page 3-13 is
programmed to signal an interrupt for event N.

Use the Interrupt Clear Register on page 3-17 to set irq<N> LOW.

irq_abort Output Processor The DMAC sets this signal HIGH when an abort occurs and it remains HIGH if
any thread is in the Faulting completing state or Faulting state.

If all threads are in not in the Faulting completing state or Faulting state then the
DMAC sets this signal LOW.

a. The valid numbers for x depend on the configuration of the DMAC.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-11

Signal Descriptions
A.6 Tie-off signals

Table A-11 lists the tie-off signals that all configurations of the DMAC contain.

Table A-11 DMAC tie-off signals

Name Type Source Description

boot_addr[31:0] Input Tie-off Configures the address location that contains the first instruction that the
DMAC executes, when it exits from reset.

Note
 The DMAC only uses this address when boot_from_pc is HIGH.

boot_from_pc Input Tie-off Controls the location of where the DMAC executes its initial instruction, after
it exits from reset:

0 = DMAC waits for an instruction from either APB interface

1 = DMA manager thread executes the instruction that is located at the address
that boot_addr[31:0] provides.

boot_manager_ns Input Tie-off When the DMAC exits from reset, this signal controls the security state of the
DMA manager thread:

0 = assigns DMA manager to the Secure state

1 = assigns DMA manager to the Non-secure state.
A-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Signal Descriptions
Table A-12 lists the tie-off signals that control the security state of the interrupt outputs
and peripheral request interfaces when the DMAC exits from reset.

Table A-12 Interrupt and peripheral tie-off signals

Name Type Source Description

boot_irq_ns[x:0]a Input Tie-off Controls the security state of the interrupt outputs when the DMAC exits
from reset:

boot_irq_ns[x] is LOW

The DMAC assigns irq[x] to the Secure state.

boot_irq_ns[x] is HIGH
The DMAC assigns irq[x] to the Non-secure state.

boot_periph_ns[x:0]a Input Tie-off Controls the security state of the peripheral request interface when the
DMAC exits from reset:

boot_periph_ns[x] is LOW

The DMAC assigns peripheral request interface x to the
Secure state.

boot_periph_ns[x] is HIGH
The DMAC assigns peripheral request interface x to the
Non-secure state.

Note
 Some configurations of the DMAC might not provide these signals
because the DMAC does not contain a peripheral request interface. See
Peripheral request interface on page A-9.

a. The width of this bus depends on the configuration of the DMAC. See the AMBA Designer (FD001) PrimeCell DMA
Controller (PL330) User Guide Supplement for information about the bus widths that the DMAC permits.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. A-13

Signal Descriptions
A-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Glossary

This glossary describes some of the terms used in technical documents from ARM.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data
transfers using byte strobes, burst-based transactions with only start address issued,
separate read and write data channels to enable low-cost DMA, ability to issue multiple
outstanding addresses, out-of-order transaction completion, and easy addition of
register stages to provide timing closure.

The AXI protocol also includes optional extensions to cover signaling for low-power
operation.

AXI is targeted at high performance, high clock frequency system designs and includes
a number of features that make it very suitable for high speed sub-micron interconnect.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA
is the ARM open standard for on-chip buses. It is an on-chip bus specification that
describes a strategy for the interconnection and management of functional blocks that
make up a System-on-Chip (SoC). It aids in the development of embedded processors
with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC
modules.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that
helps to reduce system power consumption.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the
data size is said to be aligned. Aligned words and halfwords have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

AXI See Advanced eXtensible Interface.

AXI channel order and interfaces
The block diagram shows:

• the order in which AXI channel signals are described

• the master and slave interface conventions for AXI components.

AXI terminology The following AXI terms are general. They apply to both masters and slaves:

Active read transaction

A transaction for which the read address has transferred, but the last read
data has not yet transferred.

Active transfer

A transfer for which the xVALID1 handshake has asserted, but for which
xREADY has not yet asserted.

Active write transaction

A transaction for which the write address or leading write data has
transferred, but the write response has not yet transferred.
Glossary-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Glossary
Completed transfer

A transfer for which the xVALID/xREADY handshake is complete.

Payload The non-handshake signals in a transfer.

Transaction An entire burst of transfers, comprising an address, one or more data
transfers and a response transfer (writes only).

Transmit An initiator driving the payload and asserting the relevant xVALID
signal.

Transfer A single exchange of information. That is, with one xVALID/xREADY
handshake.

The following AXI terms are master interface attributes. To obtain optimum
performance, they must be specified for all components with an AXI master interface:

Combined issuing capability

The maximum number of active transactions that a master interface can
generate. This is specified instead of write or read issuing capability for
master interfaces that use a combined storage for active write and read
transactions.

Read ID capability

The maximum number of different ARID values that a master interface
can generate for all active read transactions at any one time.

Read ID width

The number of bits in the ARID bus.

Read issuing capability

The maximum number of active read transactions that a master interface
can generate.

Write ID capability

The maximum number of different AWID values that a master interface
can generate for all active write transactions at any one time.

1. The letter x in the signal name denotes an AXI channel as follows:

AW Write address channel.

W Write data channel.

B Write response channel.

AR Read address channel.

R Read data channel.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. Glossary-3

Glossary
Write ID width

The number of bits in the AWID and WID buses.

Write interleave capability

The number of active write transactions for which the master interface is
capable of transmitting data. This is counted from the earliest transaction.

Write issuing capability

The maximum number of active write transactions that a master interface
can generate.

The following AXI terms are slave interface attributes. To obtain optimum
performance, they must be specified for all components with an AXI slave interface:

Combined acceptance capability

The maximum number of active transactions that a slave interface can
accept. This is specified instead of write or read acceptance capability for
slave interfaces that use a combined storage for active write and read
transactions.

Read acceptance capability

The maximum number of active read transactions that a slave interface
can accept.

Read data reordering depth

The number of active read transactions for which a slave interface can
transmit data. This is counted from the earliest transaction.

Write acceptance capability

The maximum number of active write transactions that a slave interface
can accept.

Write interleave depth

The number of active write transactions for which the slave interface can
receive data. This is counted from the earliest transaction.

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst
comprises four beats.

See also Burst.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory.

See also Little-endian and Endianness.
Glossary-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Glossary
Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement
boundary scan technology using a standard JTAG TAP interface. Each device contains
at least one TAP controller containing shift registers that form the chain connected
between TDI and TDO, through which test data is shifted. Processors can contain
several shift registers to enable you to access selected parts of the device.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AMBA
are controlled using signals to indicate the length of the burst and how the addresses are
incremented.

See also Beat.

Byte An 8-bit data item.

Cache A block of on-chip or off-chip fast access memory locations, situated between the
processor and main memory, used for storing and retrieving copies of often used
instructions and/or data. This is done to greatly increase the average speed of memory
accesses and so improve processor performance.

Cache hit A memory access that can be processed at high speed because the instruction or data
that it addresses is already held in the cache.

Cache line The basic unit of storage in a cache. It is always a power of two words in size (usually
four or eight words), and is required to be aligned to a suitable memory boundary.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it
addresses is not in the cache and a main memory access is required.

Coherency See Memory coherency.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

DMA See Direct Memory Access.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

Halfword A 16-bit data item.

Illegal instruction An instruction that is architecturally Undefined.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. Glossary-5

Glossary
Instruction cache A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often used instructions. This is
done to greatly increase the average speed of memory accesses and so improve
processor performance.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored
at increasing addresses in memory.

See also Big-endian and Endianness.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value
that was most recently written to that location. Memory coherency is made difficult
when there are multiple possible physical locations that are involved, such as a system
that has main memory, a write buffer and a cache.

Microprocessor See Processor.

Miss See Cache miss.

Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.

Region A partition of instruction or data memory space.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and
TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines
the data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM
Architecture Reference Manual for more information about ARM exceptions.

UNP See Unpredictable.
Glossary-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

Glossary
Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Word A 32-bit data item.
ARM DDI 0424A Copyright © 2007 ARM Limited. All rights reserved. Glossary-7

Glossary
Glossary-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DDI 0424A

	PrimeCell DMA Controller (PL330) Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Typographical
	Timing diagrams
	Signals
	Numbering

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this product
	Feedback on this manual

	Introduction
	1.1 About the DMAC
	1.1.1 Features of the DMAC
	1.1.2 Configurable features of the DMAC

	1.2 Terminology

	Functional Overview
	2.1 Overview
	2.2 DMAC interfaces
	2.2.1 APB slave interfaces
	2.2.2 AXI master interface
	AXI characteristics for a DMA transfer
	ARLEN and ARSIZE for instruction fetches

	2.2.3 Peripheral request interfaces
	2.2.4 Interrupt interface
	2.2.5 Reset initialization interface

	2.3 Operating states
	2.3.1 Stopped
	2.3.2 Executing
	2.3.3 Cache miss
	2.3.4 Updating PC
	2.3.5 Waiting for event
	2.3.6 At barrier
	2.3.7 Waiting for peripheral
	2.3.8 Faulting completing
	2.3.9 Faulting
	2.3.10 Killing
	2.3.11 Completing

	2.4 Initializing the DMAC
	2.4.1 Setting the security state of the DMA manager
	2.4.2 Setting the location of the first instruction for the DMAC to execute
	2.4.3 Setting the security state for the interrupt outputs
	2.4.4 Setting the security state for a peripheral request interface

	2.5 Using the APB slave interfaces
	2.5.1 Issuing instructions to the DMAC using an APB interface

	2.6 Peripheral request interface
	2.6.1 Mapping to a DMA channel
	2.6.2 Handshake rules
	2.6.3 Peripheral length management
	2.6.4 DMAC length management
	2.6.5 Peripheral request interface timing diagrams
	Burst request
	Single and burst request
	DMAC performs single transfers for a burst request

	2.7 Using events and interrupts
	2.7.1 Using an event to restart DMA channels
	2.7.2 Interrupting a microprocessor

	2.8 Aborts
	2.8.1 Abort types
	2.8.2 Abort sources
	2.8.3 Watchdog abort
	2.8.4 Abort handling

	2.9 Security usage
	2.9.1 DMA manager thread is in the Secure state
	2.9.2 DMA manager thread is in the Non-secure state
	2.9.3 DMA channel thread is in the Secure state
	2.9.4 DMA channel thread is in the Non-secure state

	2.10 Constraints and limitations of use
	2.10.1 DMA channel arbitration
	2.10.2 DMA channel prioritization
	2.10.3 Instruction cache latency

	2.11 Programming restrictions
	2.11.1 Fixed unaligned bursts
	2.11.2 Endian swap size restrictions
	2.11.3 Updating DMA channel control registers during a DMA cycle
	2.11.4 Full MFIFO causes DMAC watchdog to abort a DMA channel
	Single DMA channel and lock-up situation
	Multiple DMA channels and lock-up situation

	Programmers Model
	3.1 About the programmers model
	3.2 DMAC Register summary
	3.3 DMAC Register descriptions
	3.3.1 DMA Status Register
	3.3.2 DMA Program Counter Register
	3.3.3 Interrupt Enable Register
	3.3.4 Event Status Register
	3.3.5 Interrupt Status Register
	3.3.6 Interrupt Clear Register
	3.3.7 Fault Status DMA Manager Register
	3.3.8 Fault Status DMA Channel Register
	3.3.9 Fault Type DMA Manager Register
	3.3.10 Fault Type DMA Channel Registers
	3.3.11 Channel Status Registers
	3.3.12 Channel Program Counter Registers
	3.3.13 Source Address Registers
	3.3.14 Destination Address Registers
	3.3.15 Channel Control Registers
	Endian swap size

	3.3.16 Loop Counter 0 Registers
	3.3.17 Loop Counter 1 Registers
	3.3.18 Debug Status Register
	3.3.19 Debug Command Register
	3.3.20 Debug Instruction-0 Register
	3.3.21 Debug Instruction-1 Register
	3.3.22 Configuration Register 0
	3.3.23 Configuration Register 1
	3.3.24 Configuration Register 2
	3.3.25 Configuration Register 3
	3.3.26 Configuration Register 4
	3.3.27 Configuration Register Dn
	3.3.28 Peripheral Identification Registers 0-3
	Peripheral Identification Register 0
	Peripheral Identification Register 1
	Peripheral Identification Register 2
	Peripheral Identification Register 3

	3.3.29 PrimeCell Identification Registers 0-3
	PrimeCell Identification Register 0
	PrimeCell Identification Register 1
	PrimeCell Identification Register 2
	PrimeCell Identification Register 3

	Instruction Set
	4.1 Instruction syntax conventions
	4.2 Instruction set summary
	4.3 Instructions
	4.3.1 DMAADDH
	Assembler syntax
	Operation

	4.3.2 DMAEND
	Assembler syntax
	Operation

	4.3.3 DMAFLUSHP
	Assembler syntax
	Operation

	4.3.4 DMAGO
	Assembler syntax
	Operation

	4.3.5 DMALD[S|B]
	Assembler syntax
	Operation

	4.3.6 DMALDP<S|B>
	Assembler syntax
	Operation

	4.3.7 DMALP
	Assembler syntax
	Operation

	4.3.8 DMALPEND[S|B]
	Assembler syntax
	Operation

	4.3.9 DMALPFE
	Assembler syntax

	4.3.10 DMAKILL
	Assembler syntax
	Operation

	4.3.11 DMAMOV
	Assembler syntax
	Operation

	4.3.12 DMANOP
	Assembler syntax
	Operation

	4.3.13 DMARMB
	Assembler syntax
	Operation

	4.3.14 DMASEV
	Assembler syntax
	Operation

	4.3.15 DMAST[S|B]
	Assembler syntax
	Operation

	4.3.16 DMASTP<S|B>
	Assembler syntax
	Operation

	4.3.17 DMASTZ
	Assembler syntax
	Operation

	4.3.18 DMAWFE
	Assembler syntax
	Operation

	4.3.19 DMAWFP<S|B|P>
	Assembler syntax
	Operation

	4.3.20 DMAWMB
	Assembler syntax
	Operation

	4.4 Assembler directives
	4.4.1 DCD
	Syntax

	4.4.2 DCB
	Syntax

	4.4.3 DMALP
	Syntax

	4.4.4 DMALPFE
	Syntax

	4.4.5 DMALPEND
	Syntax

	4.4.6 DMAMOV CCR
	Syntax

	Signal Descriptions
	A.1 Clocks and resets
	A.2 AXI signals
	A.2.1 Write address (AXI-AW) channel signals
	A.2.2 Write data (AXI-W) channel signals
	A.2.3 Write response (AXI-B) channel signals
	A.2.4 Read address (AXI-AR) channel signals
	A.2.5 Read data (AXI-R) channel signals

	A.3 APB signals
	A.3.1 Non-secure APB interface
	A.3.2 Secure APB interface

	A.4 Peripheral request interface
	A.5 Interrupt signals
	A.6 Tie-off signals

	Glossary

