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Preface

This preface introduces the ASB Example AMBA SYstem Techincal Reference Manual. 
It contains the following sections:

• About this manual on page vi

• Feedback on page x.
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. v



Preface 
About this manual

This document is a comprehensive manual for the behavioral HDL model of the ASB 
Example AMBA SYstem (EASY) It gives detailed information about the function of 
the whole system, each module in the system, and describes how to design a new system 
module.

This document refers to the Advanced System Bus (ASB). For information on the 
Advanced High-performance Bus (AHB) refer to the AHB Example AMBA SYstem 
Technical Reference Manual.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to the ASB Example AMBA 
SYstem (EASY).

Chapter 2 Microcontroller  

Read this chapter for a description the microcontroller, which is the main 
unit of the EASY system.

Chapter 3 ASB Modules  

Read this chapter for a description of the data sheets for the modules that 
are connected to the Advanced System Bus (ASB)

Chapter 4 APB Modules  

Read this chapter for a description of the modules that comprise the 
Advanced Peripheral Bus (APB).

Chapter 5 Test Interface Driver  

Read this chapter for a description of the use of the external AMBA Test 
Interface Driver module. It includes a description of the TICTalk 
command language.

Chapter 6 Designer’s Guide 

Read this chapter for a basic look at adding new modules to the EASY 
microcontroller.

Conventions

Conventions that this manual can use are described in:

• Typographical on page vii
vi Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



Preface 
• Timing diagrams

• Signals on page viii

• Numbering on page ix.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
signal names. Also used for terms in descriptive lists, where 
appropriate.

monospace Denotes text that you can enter at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You 
can enter the underlined text instead of the full command or option 
name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Timing diagrams

The figure named Key to timing diagram conventions on page viii explains the 
components used in timing diagrams. Variations, when they occur, have clear labels. 
You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. vii



Preface 
Key to timing diagram conventions

Single-bit signals are sometimes shown as HIGH and LOW at the same time and they 
look similar to the bus change shown in Key to timing diagram conventions. If a 
single-bit signal is shown like this then its value does not affect the accompanying 
description.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix A Denotes global Advanced eXtensible Interface (AXI) signals.

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Prefix R Denotes AXI read data channel signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
viii Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



Preface 
Prefix W Denotes AXI write data channel signals.

Numbering

The numbering convention is:

<size in bits>'<base><number> 

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is 
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Additional reading

This section lists publications by ARM and by third parties.

See http://infocenter.arm.com/help/index.jsp for access to ARM documentation.

ARM publications

This manual contains information that is specific to the Abbreviated device name 
AMBA SYstem (EASY). See the following documents for other relevant information:

• AMBA® Specification (Rev 2.0) (ARM IHI 0011)

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM7TDMI Data Sheet (ARM DDI 0029)

• AMBA ARM7TDMI Interface Data Sheet ((ARM DDI 045)

• Example AMBA SYstem User Guide (ARM DUI 0092)

• AHB Example AMBA SYstem Technical Reference Manual (ARM DDI 0170).

Other publications

This section lists relevant documents published by third parties:

• IEEE 1149.1 JTAG standard
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. ix



Preface 
Feedback

ARM welcomes feedback on the ASB Example AMBA SYstem and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and 
give:

• the product name

• a concise explanation.

Feedback on this manual

If you have any comments on this manual, send an e-mail to errata@arm.com. Give:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
x Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



Chapter 1 
Introduction

This chapter introduces the ASB Example AMBA SYstem (EASY). it contains the 
following:

• Overview on page 1-2.
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Introduction 
1.1 Overview

The EASY microcontroller comprises the building blocks needed to create an example 
system based on the low-power, generic design methodology of the Advanced 
Microcontroller Bus Architecture (AMBA).

The EASY microcontroller:

• enables custom devices to be developed in very short design cycles

• allows the resulting sub-components to be easily re-used in future designs. 

Note
 This document refers to the Advanced System Bus (ASB).For information on the 
Advanced High-performance Bus (AHB) refer to the AHB Example AMBA SYstem 
Technical Reference Manual.

1.1.1 EASY system blocks

The example design provides all the system modules needed to manage an AMBA 
system: 

• reset controller

• arbiter

• decoder. 

These system modules control the various aspects of the ASB. 

1.1.2 EASY components

The example design contains:

• Two bus masters, the ASB, and the Advanced Peripheral Bus.

• The ARM processor, to allow execution of the ARM code.

• The Test Interface Controller (TIC), to allow external control of the ASB during 
system test. 

• A minimum set of basic microcontroller peripherals. These are supported, and are 
implemented as low-power designs on the APB. They include: 

— an interrupt controller

— a remap and pause controller

— a 16-bit timer module.
1-2 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



Introduction 
• The Example Static Memory Interface (SMI). This demonstrates the minimum 
requirements for an External Bus Interface (EBI).

• A 1KB block of internal memory.

The EASY system consists of a microcontroller with some external memory as shown 
in Figure 1-1.

Figure 1-1 EASY system diagram
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Chapter 2 
Microcontroller

The microcontroller is the main unit of the EASY system. This chapter describes the 
microcontroller under the headings:

• Functional overview on page 2-2

• The AMBA system components on page 2-3

• Reference peripherals on page 2-5

• Example components on page 2-8

• System test methodology on page 2-9.
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 2-1



Microcontroller 
2.1 Functional overview

The modules of the EASY microcontroller are grouped in five classes:

AMBA system components These are used to control the general operation of the 
system.

Peripherals Low power peripherals, which are connected to the peripheral bus.

Example components 

Demonstration parts that are only simulation models.

System test methodology 

Modules used for testing the system.

Processor core  The ARM processor core that is built into the EASY 
microcontroller. 

With the exception of the processor core the above modules are fully described in this 
chapter. For details of the processor core, please refer to the relevant documentation.
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Microcontroller 
2.2 The AMBA system components

The Advanced Microcontroller Bus Architecture (AMBA) system comprises:

• reset controller

• arbiter

• decoder 

• Advanced System Bus (ASB) to Advanced Peripheral Bus (APB) Bridge. 

The functions of each component are described below.

2.2.1 Reset controller

The reset controller consists of a state machine which controls the BnRES signal. This 
signal indicates the current reset state of the AMBA bus and is used by all the other 
elements in the EASY microcontroller, primarily for power-on initialization. 

Note
 All other reset modes, such as standby or warm reset, must be implemented separately. 

2.2.2 Arbiter

The arbiter provides arbitration between bus masters competing for access to the ASB. 
Although there are only two bus masters in the EASY microcontroller (the ARM and 
the Test Interface Controller (TIC), the arbiter has provision for up to four masters. To 
extend the number of masters refer to Adding bus masters on page 6-2. The arbitration 
is currently assigned with a simple priority system, with the TIC as the highest priority, 
and the processor as the lowest reset default. The arbitration scheme is not defined in 
the AMBA Specification and can be dependent on implementation. 

2.2.3 Decoder

The decoder manages all transfers on the ASB bus. Each bus transfer requires three 
components to act:

• a bus master to start the transfer 

• the decoder to control the operation of the transfer

• a bus slave to accept a write transfer or control a read transfer.

The functions of these components are:

Bus Master This initiates a read or write transfer by driving BTRAN[1:0] (transfer 
type) and BA[31:0] (AMBA address bus) and control signals. This 
component drives BD[31:0] for a write transfer.
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 2-3



Microcontroller 
Decoder BTRAN is used to determine how the transfer should proceed, whether a 
slave should be selected, if and in which state slave responses (BWAIT, 
BERROR and BLAST) should be driven. The high order bits of BA are 
used to generate the corresponding slave select line (DSEL).

Bus Slave If selected, the slave will drive the slave responses. This component 
drives BD[31:0] for a write transfer.

Each transfer takes one or more cycles of the system clock (BCLK). The last cycle of 
each transfer occurs when BWAIT is driven LOW by the decoder or slave. 

Figure 2-1 The role of the decoder in the AMBA bus

The EASY system provides a configurable decoder block, with or without decode 
cycles. A decode cycle can be inserted to improve the performance of the system. 

Note
 In some systems, typically those with a low clock frequency, transfers may occur 
without the addition of a decode cycle.

For more information on ASB transfers, see the AMBA Specification. 

2.2.4 ASB to APB bridge

The ASB to APB bridge interface is an ASB slave. When accessed (in normal operation 
or system test) it initiates an access to the APB. All APB accesses are of the same 
duration (two BCLK cycles in the EASY). They also have their width fixed to one 
word, which means it is not possible to write only an 8-bit section of a 32-bit APB 
register. APB peripherals do not need a BCLK input as the APB access is timed with a 
strobe signal generated by the ASB to APB bridge interface. This makes APB 
peripherals low power consumption parts, because they are only strobed when accessed. 

For more information on the APB bus refer to the AMBA Specification.
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Microcontroller 
2.3 Reference peripherals

Figure 2-2 shows how the reference peripherals are interconnected within the Reference 
Peripherals Specification (RPS) block, and how they are connected to the bridge. 

Figure 2-2 Block diagram of the RPS block and bridge

The base addresses of each of the peripherals (timer, interrupt controller and remap and 
pause controller) are defined in the ASB to APB bridge interface (which selects the 
peripheral according to its base address). The whole APB address range is defined in 
the decoder (which selects the ASB to APB bridge interface according to its base 
address).

These base addresses can be implementation specific. The peripherals standard 
specifies only the register offsets (from an unspecified base address), register bit 
meaning and minimum supported function. Table 2-1 shows the three bases and their 
current addresses in the EASY microcontroller. 

Timer Interrupt 
Controller

Remap and 
Pause 

Controller

ASB to APB 
Bridge

Advanced Peripheral Bus (APB)

ASB

Remap and 
Pause control

Processor 
Interrupts

Interrupt 
Sources

RPS
Block

Peripheral Select Lines

Table 2-1 Peripherals base addresses

Peripheral EASY Base Address

Interrupt controller 0x80000000

Timer 0x84000000

Remap and pause controller 0x88000000
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Microcontroller 
Note
 When writing software or test patterns to run on the system, the absolute hex addresses 
must not be used within the code. Instead, define the base addresses in a header and then 
use the offset to this base address.

The APB data bus is split into two separate directions:

read (PRDATA) Data travels from the peripherals to the bridge.

write (PWDATA) Data travels from the bridge to the peripherals.

This simplifies driving the buses because turnaround time between the peripherals and 
bridge is avoided.

In the default system, because PWDATA is the only master on the bus, it is driven 
continuously by the bridge. PRDATA is tristated by all peripherals on the bus, and is 
only driven when they are selected by the bridge during APB read transfers.

It is possible to combine these two buses into a single bidirectional bus, but precautions 
must be taken to ensure that there is no bus clash between the bridge and the peripherals.

Inside the RPS module is an APB bus keeper model for simulation purposes only (it is 
not synthesizable). Bus keepers must be included on a real implementation to prevent 
PRDATA from floating, since a given peripheral might not drive all the data bits. 
Although bus keepers are important to ensure low power consumption on the APB read 
data bus, they should not be relied upon to hold valid values.In designs based on EASY, 
bus keepers should be instantiated from the appropriate cell library. 

2.3.1 Timer

The timer consists of two 16-bit periodic/free running down counters, a clock prescaler 
(divide by 1, 16 or 256) and a test veneer. When the counters underflow (passing zero 
value and reloading) they can generate Interrupt Requests (IRQs) which are connected 
to the interrupt controller. Both counter values can be loaded, read and controlled 
through addressable registers.

2.3.2 Interrupt controller

The interrupt controller contains a set of registers for using six IRQ sources and one 
Fast Interrupt Request (FIQ) source. These have the following functions:

• to enable or disable specific interrupt sources from triggering the ARM NIRQ or 
NFIQ interrupt lines

• to read the status of all interrupt sources at the inputs of the interrupt controller
2-6 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



Microcontroller 
• to read the status of the interrupt sources enabled to trigger the ARM interrupt 
lines

• to generate a software-triggered NIRQ signal to the ARM processor

• to isolate the interrupt controller for test.

The number of IRQ sources can easily be extended by increasing the number of IRQ 
registers.

2.3.3 Remap and pause controller

The remap and pause controller has three functions:

• Reset status. This enables software to determine whether the last reset was a 
Power On Reset. (POR) or a soft reset. The latter function is redundant in the 
EASY microcontroller, since it does not have a soft reset. It is implemented only 
as an example for systems that might provide a soft reset state.

• Remap memory. On reset the internal RAM is mapped out and bank 7 of the 
external memory is mapped into location 0x00000000 which is the boot location 
for the ARM processor. The reset memory map is cancelled by writing to a 
register in this peripheral.

• Pause mode. The EASY microcontroller only supports one simple power saving 
mode, called Pause. This halts all bus activity (but not the system clock) and waits 
for an interrupt signal from the interrupt controller before restarting the system.

The remap and pause controller also contains an ID register which is currently only a 
single bit. This block can be extended in many ways including support for 
software-generated resets, more sophisticated power saving modes and more detailed 
ID information.
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 2-7



Microcontroller 
2.4 Example components

The example components include the internal memory and the Static Memory Interface 
(SMI). 

Typically these blocks must be re-implemented according to the specific system 
requirements of the microcontroller being developed.

2.4.1 Internal memory

The internal memory is a very basic behavioral model of 1KB of zero wait state static 
memory, which is not synthesizable. The size of the memory can be extended by 
altering the MemSize setting in the HDL file behavioural/IntMem. If this is done the 
decoder must also be altered. Refer to Choosing a decoder implementation on 
page 6-5). 

2.4.2 Static memory interface

The SMI is a 32-bit External Bus Interface (EBI) that can connect up to 2GB of zero to 
four wait state Static Random Access Memory (SRAM) to the EASY microcontroller. 
However, the number of wait states is set as a constant in the HDL (before synthesis), 
and is set for all eight banks of SRAM. The Example SMI also supports four signals 
from the TIC. These override the SMI's normal operation during a system test and 
directly control the tristate drivers and latches on the XD and BD buses.
2-8 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D
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2.5 System test methodology

Each ASB slave, ASB master and APB peripheral should be tested in complete 
isolation. This means that components must be designed with test veneers that allow 
non-bus signals to be controlled and observed. When a component is tested, a special 
test bit is set. This test bit switches these multiplexed signals to test registers (accessible 
via the ASB), which effectively isolates each component from the rest of the system. 
Test vectors should be written to test the component in isolation, making as few 
assumptions about the rest of the system as possible. 

Figure 2-3 Simple test veneer example

A good example of this approach is provided by the test veneer for the ARM processor, 
which is described in the AMBA ARM7TDMI Interface Data Sheet. This approach is 
also used to test the peripherals on the APB bus. 

Under normal conditions, when the TIC is not in use, the current bus master performs 
transfers to and from any one of the following slaves: 

• internal memory 

• ASB to APB bridge interface (to access the peripherals) 

• external bus interface.

However, when test mode is entered, and the TIC is the current master, the following 
slaves can be accessed: 

• internal memory 

• ASB to APB bridge interface (to access the peripherals)

• ARM bus master (test veneer).

On chip 
output

Off chip connections 
do not require mux

Component 
Under Test

Test Register Test Register

Test mux 
(optional)Test mux

On chip input

Outut value 
during test

APB or ASB
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Note
 Bus masters can become slaves in the test mode. The SMI cannot be tested via the TIC. 
This is due to the method used to provide the test access to the ASB. During TIC testing, 
the normal function of the SMI is overridden, and it becomes a bidirectional channel 
between TBUS and BD. This means that during TIC testing the SMI cannot function as 
a slave.

The EBI cannot be tested via the TIC because of the way test access is provided to the 
ASB bus. The TIC is a state machine driven by the test request inputs (TREQA and 
TREQB). It also contains a latch that allows it to read address information from the test 
bus (TBUS) and drive it onto BA. However, it cannot drive BD. Instead, it overrides the 
normal function of the EBI, forcing it to provide a 32-bit, bidirectional channel between 
TBUS and BD. Thus in test mode the EBI cannot function as a slave. 

TBUS must be a 32-bit channel. Thus in a system which only supports a 16-bit or 8-bit 
external data bus, additional external pins such as external address lines must be forced 
into a special test mode in order to supply the full 32-bit bidirectional channel required. 

For more information on: 

• the test interface, see the AMBA Specification

• on applying test vectors to an EASY-based microcontroller, see the EASY User 
Guide. 
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Chapter 3 
ASB Modules

This chapter describes the data sheets for the modules that are connected to the 
Advanced System Bus (ASB). It contains the following:

• APB bridge on page 3-2

• Arbiter on page 3-17

• Decoder on page 3-26

• Reset controller on page 3-43

• Static memory interface on page 3-49

• Test interface controller on page 3-62

• AMBA ARM7TDMI interface on page 3-71.
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ASB Modules 
3.1 APB bridge

The APB bridge provides an interface between the ASB and the Advanced Peripheral 
Bus (APB). It continues the pipelining of the ASB by inserting wait cycles on the ASB 
only when they are needed. It inserts them for burst transfers or read transfers when the 
ASB must wait for the APB.

Figure 3-1 Block diagram of bridge module

The implementation of this block contains:

• a state machine, which is independent of the device memory map

• ASB address, and data bus latching

• combinatorial address decoding logic to produce PSELx signals.

To add new peripherals, or alter the system memory map only the address decode 
section needs to be modified.
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ASB Modules 
3.1.1 Hardware interface and signal description

This module converts ASB transactions to APB transactions.

Table 3-1 Signal descriptions for bridge module

Name Type Description

BCLK Input This clock times all bus transfers.

BnRES Input The bus reset signal is active LOW, and is used to reset the system and the bus. 

BA[31:0] Input The system address bus, which is driven by the current bus master.

BWRITE Input When HIGH this signal indicates a write transfer, when LOW, a read transfer. This 
signal is driven by the active bus master.

DSELPeri Input This signal indicates that the peripheral bus controller has been selected. It becomes 
valid during the BCLK HIGH phase before the data transfer, and remains active 
until the last BCLK HIGH phase of the transfer.

BD[31:0] Input/Output This is the bidirectional system data bus. The data bus is driven by the current bus 
master during write transfers, and by this block during read transfers from 
peripherals.

BWAIT Output This signal is driven by the selected bus slave during reads and writes to indicate 
whether the current transfer may complete. When selected, the peripheral bus 
controller drives this signal in the LOW phase of BCLK, and it is valid set up to the 
rising edge of BCLK.

BERROR Output A transfer error is indicated by the selected bus slave using the BERROR signal. 
This signal is not used by the bridge, so when selected, it is always driven LOW in 
the LOW phase of BCLK. It is valid set up to the rising edge of BCLK.

BLAST Output This signal is driven by the selected bus slave to indicate if the current transfer 
should be the last of a burst sequence. This signal is not used by the bridge, so when 
selected, it is always driven LOW in the LOW phase of BCLK. It is valid set up to 
the rising edge of BCLK.

PRDATA[31:0] Input The peripheral read data bus is driven by the selected peripheral bus slave during 
read cycles (when PWRITE is LOW).

PWDATA [31:0] Output The peripheral write data bus is continuously driven by this block, changing during 
write cycles (when PWRITE is HIGH).

PENABLE Output This enable signal is used to time all accesses on the peripheral bus. PENABLE 
goes HIGH on the second clock rising edge of the transfer, and LOW on the third 
(last) rising clock edge of the transfer.
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The timing and inputs and outputs of the module are shown in Figure 3-2 on page 3-5, 
Figure 3-3 on page 3-6 and Figure 3-4 on page 3-7.

Figure 3-2 on page 3-5 shows a single write cycle. There are four cycles between the 
start of the transfer on the ASB and the end of the transfer on the APB, but only one wait 
state is inserted on BWAIT. The write data (on BD) is sampled on the BCLK rising 
edge after it becomes valid.

PSELx Output There is one of these signals for each APB peripheral present in the system. The 
signal indicates that the slave device is selected, and that a data transfer is required. 

This signal has the same timing as the peripheral address bus. It becomes HIGH at 
the same time as PADDR, but will be set LOW at the end of the transfer.

PADDR[31:0] Output This is the APB address bus, which may be up to 32 bits wide and is used by 
individual peripherals for decoding register accesses to that peripheral. The address 
becomes valid after the first rising edge of the clock at the start of the transfer. If 
there is a following APB transfer, then the address will change to the new value, 
otherwise it will hold its current value until the start of the next APB transfer.

PWRITE Output This signal indicates a write to a peripheral when HIGH, and a read from a 
peripheral when LOW.

It has the same timing as the peripheral address bus. 

Table 3-1 Signal descriptions for bridge module  (continued)

Name Type Description
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Figure 3-2 APB write cycle

Figure 3-3 on page 3-6 shows a single APB read transfer. There are three cycles 
between the start of the transfer on the ASB and the end of the transfer on the APB, but 
only one wait state is inserted on BWAIT. The APB peripheral read data (PRDATA) is 
generated on the rising edge of BCLK, and sampled on the next falling edge of BCLK 

Address

ST_WRITE ST_IDLEST_IDLE ST_ENABLE

BCLK
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BWRITE

DSELPeri

BD[31:0]

BWAIT

PSEL
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PWDATA[31:0]

PWRITE

PENABLE

CurrentState

Address

Write
Data

Write
Data

ST_WWAIT
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 3-5



ASB Modules 
by the ARM core. If the APB peripherals used cannot generate PRDATA early enough 
to be sampled on the falling edge, then the bridge must be modified to insert an extra 
ASB wait state.

Figure 3-3 APB read cycle

Figure 3-4 on page 3-7 shows an APB write followed by an APB read. Two wait states 
are added before the APB read, this allows the APB write transfer time to end before 
the read starts.
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Read
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Figure 3-4 APB burst cycle

Write Address
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3.1.2 Peripheral memory map

The bridge controls the memory map for the peripherals, and generates a select signal 
for each peripheral. The default system memory map is shown in Figure 3-5.

Figure 3-5 Peripheral memory map

3.1.3 Function and operation of block

The APB bridge responds to transaction requests from the currently enabled ASB 
master. The ASB transactions are converted into APB transactions. The state machine, 
shown in Figure 3-6 on page 3-9, controls:

• the ASB transactions with the slave response signals 

• the register enables for the PADDR and PWDATA buses 

• the tristate driver controls for the BD bus.

It also produces the PENABLE signal. This design uses the DSELPeri signal from a 
centralized decoder to select the peripheral bus controller as an ASB slave.

The individual PSELx signals are decoded from BA, using the state machine to enable 
the outputs while the APB transaction is being performed.

If an undefined location is accessed, operation of the system continues as normal, but 
no peripherals are selected.

Address               Peripheral Memory Map

Undefined

Interrupt Controller

Counter Timers

Remap & Pause

0x80000000

0x84000000

0x88000000

0x8C000000

0xBFFFFFFF
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Figure 3-6 State machine for APB controller

ST_IDLE 

The ST_IDLE state is entered from:

• reset, when the system is initialized

• ST_IDLE when there are no peripheral transactions being performed.

The APB buses and PWRITE are driven with the last values they had, and the PSEL 
and PENABLE lines are all set to zero. 

The next state is:

• ST_READ for a read transfer, when DSELPeri is HIGH and BWRITE is LOW

• ST_WWAIT for a write transfer, when both DSELPeri and BWRITE are 
HIGH.

A wait state (setting BWAIT HIGH) is always inserted on exit from ST_IDLE when 
DSELPeri is HIGH.

ST_IDLE

ST_READ ST_WRITE

ST_ENABLE

!DSELPeri

!BWRITE & 
DSELPeri

!DSELPeri
!BnRES

BWRITE & 
DSELPeri

!BWRITE
& DSELPeri

BWRITE & 
DSELPeri & 
PrevDSEL

ST_WWAITBWRITE
& DSELPeri 
& !PrevDSEL
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ST_READ

The ST_READstate is entered from:

• ST_IDLE during a nonsequential read cycle 

• ST_ENABLE during a sequential read cycle. 

The address is decoded and driven onto PADDR, the relevant PSEL line is driven, and 
PWRITE is driven LOW. 

The next state will always be ST_ENABLE.

ST_WWAIT

The ST_WWAIT state is entered from 

• ST_IDLE during a nonsequential write cycle 

• ST_ENABLE when there has been a single address cycle between two 
consecutive nonsequential writes. 

Adding this state to a WRITE operation allows time for BD to be driven with the write 
data, ready to be sampled on the next rising edge of the clock. 

The next state will always be ST_WRITE.

ST_WRITE

The ST_WRITEstate is entered from:

• ST_WWAIT during a nonsequential write cycle

• ST_ENABLE during a sequential write cycle.

If a single write is being performed then BWAIT is set LOW. For a burst of writes, 
BWAIT is set HIGH (to delay the ASB transfer).

As for ST_READ, the address is decoded and PSEL is driven, but PWRITE is driven 
HIGH. The next state will always be ST_ENABLE.

ST_ENABLE

The ST_ENABLEstate is entered from

• ST_READ during a read cycle

• ST_WRITE during a write cycle.
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If the reset transaction is a sequential read cycle, a wait cycle is added to allow the APB 
line to finish the current transaction before starting the read cycle. If the next transaction 
is a sequential write, no wait state is added as one will be inserted in the ST_WRITE 
state. 

For nonsequential writes, where DSELPeri is not held constantly HIGH (for example, 
when decode cycles are being inserted by the decoder), a wait state is inserted to allow 
time for BD to be driven with valid data.

The next state is: 

• ST_READ or ST_WRITE for a burst transfer

• ST_WWAIT for a burst of nonsequential writes with decode cycles

• ST_IDLE for the last cycle in a burst, or for a single read or write cycle.

3.1.4 System description

The following paragraphs give a detailed description of how the HDL code for the 
bridge is set out. A simple system block diagram, with information about the main parts 
of the HDL code, is followed by details of all of the registers, and signals used in the 
system. This part should be read together with the HDL code.

Figure 3-7 shows the APB bridge module block diagram.

Figure 3-7 APB bridge module block diagram

The APB bridge system comprises: 

• the state machine which is used to control the generation of the output signals

Output Bus 
Drivers

APB 
Bridge 
Module
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APB Output 
Drivers
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Drivers

Input Bus 
Latches

Address 
Decoder
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• the address decoding which is used to generate the APB peripheral select lines.

All registers used in the system are clocked from the rising edge of the system clock 
BCLK. Enable signals are used to control the loading of the registers. All registers use 
the asynchronous reset BnRES.

A diagram of the APB bridge HDL file is shown in Figure 3-8.

Figure 3-8 APB bridge module system diagram

The main parts and processes in the code are: 

• Address decoder on page 3-13.
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DSEL
PrevDSEL

CurrentState
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• Next state logic on page 3-14.

• State machine on page 3-14.

• Current state decoding on page 3-14.

• PWRITEInt generation on page 3-15.

• Registered BA on page 3-15.

• Internal PENABLE generation on page 3-15.

• BD tristate enable on page 3-15.

• Slave response tristate enable on page 3-15.

• PWDATA generation on page 3-15.

• APB output signals on page 3-15.

• Tristate output drivers on page 3-16.

Each of these is explained in the following paragraphs.

Constant and signal definitions

The constant PADDRWIDTH sets the width of the peripheral address bus that is used, 
up to a maximum of 32 bits wide. This size depends on the size of address that is needed 
by the peripherals in the system. The default value is a 16-bit address bus.

The next five constants are the state machine states. They are explicitly defined so that 
the ST_ENABLE state bit is not used by any other state, ensuring that there is no 
chance of getting any glitches on the PENABLE line. The signals that are used inside 
the module are then defined.

Address decoder

The address decoder decodes the current address on BA, and generates the internal 
PSELxInt signals that are used to drive the output ports on the APB. Constants are set 
with the address values for the peripherals (default uses bits 29:26 of the address), 
which are then compared with the current value of BA and the relevant peripheral select 
line is set. 

For addresses outside the specified ranges, none of the PSELxInt lines will be set, but 
the read/write transfer will continue as normal.

Registered DSELPeri

A rising edge registered copy of DSELPeri is required to generate NextState and 
BWAITInt, which is called PrevDSEL.
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Next state logic

The next state logic is the combinational part of the state machine. The next state of the 
state machine is calculated using the current state of the state machine and the 
DSELPeri and BWRITE inputs to the bridge. Figure 3-6 on page 3-9 shows the 
operation of the state machine.

The system resets into the ST_IDLE state, and stays in this state until a transfer is 
requested. If the current cycle is a read or a write, the next state becomes ST_READ or 
ST_WWAIT, which is followed by ST_ENABLE, or ST_WRITE and ST_ENABLE. 
If the transfer is only a single read or write operation, the system goes back to the 
ST_IDLE state. If the transfer is a burst of reads or writes, the next state becomes 
ST_READ or ST_WRITE, and this continues until the transfer ends. For bursts of 
nonsequential writes, the state machine changes from ST_ENABLE to ST_WAIT to 
allow time for the write data to become valid on BD.

State machine

With the state machine register NextState is loaded into CurrentState on the rising 
edge of BCLK.

Current state decoding

The current state decoding is used to generate two signals, BWAITInt and APBEn.

BWAITInt is set HIGH during four possible conditions:

• the start of the first APB transfer, when DSELPeri is set HIGH and the current 
state is still ST_IDLE

• during a burst of sequential writes when the current state is ST_WRITE and 
DSELPeri is still set HIGH

• during a burst of sequential reads when the current state is ST_ENABLE and the 
next state will be ST_READ.

• during a burst of nonsequential writes when the current state is ST_ENABLE, 
DSELPeri is HIGH but PrevDSEL is LOW.

This signal is then used to drive the external BWAIT signal.

APBEn is set HIGH when a read or a write is being performed on the APB. The APBEn 
signal is then used to enable the PWRITE, PADDR and PSEL outputs.
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PWRITEInt generation

The signal PWRITEInt is a registered version of BWRITE. BWRITE is captured on 
the rising edge of BCLK when APBEn is HIGH with reset clearing it to zero.

Registered BA

The signal PADDRInt is a rising edge registered version of BA(PADDRWidth-1:0). It 
is captured on the rising edge of BCLK when APBEn is HIGH, with reset clearing 
PADDRInt to all zeros.

Internal PENABLE generation

PENABLEInt is generated from one of the Current State registers. This should be 
changed if the state encoding of the state machine is altered.

BD tristate enable

The BD tristate enable is used to enable BD to be driven with the peripheral output data 
during a read cycle. It is set when PWRITEInt is LOW and PENABLEInt is HIGH, 
indicating a peripheral read.

Slave response tristate enable

The slave response signals BWAIT, BERROR and BLAST are only driven by the slave 
when it is selected (that is DSELPeri is HIGH), and during the LOW phase of BCLK, 
so these two inputs are used to generate the slave response enable signal.

PWDATA generation

The output signal PWDATA is a registered version of BD for a write cycle. In order to 
minimize the number of signal changes on PWDATA, the enable is only set when 
NextState is ST_WRITE. 

APB output signals

In this part all the APB output ports are driven with their internal signals.

PADDR, PWRITE and PENABLE are driven directly by PADDRInt and 
PWRITEInt and PENABLEInt respectively.
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The PSEL ports are registered versions of the PSELInt signals set on the rising edge 
of BCLK. The signals are registered when APBEn is HIGH (read or write cycle), and 
reset to zero when:

• BnRES is LOW

• at the end of the last APB transfer

• in the ST_WWAIT state.

Tristate output drivers

The BD and slave response signals are all tristated, so can only be driven at the correct 
times to avoid any drive clashes by using the enable signals created earlier.

BD is driven with the current value of PRDATA when BDEn is HIGH.

BWAIT is driven with the current value of BWAITInt when BWELEn is HIGH. The 
module does not use the other two slave response signals BERROR and BLAST, which 
are driven LOW.
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3.2 Arbiter

The AMBA bus specification is a multi-master bus standard. As a result, a bus arbiter 
is needed to ensure that only one bus master has access to the bus at any particular point 
in time. Each bus master can request the bus, the arbiter decides which has the highest 
priority and issues a grant signal accordingly.

Every system must have a default bus master which is granted use of the bus during 
reset, or when no other bus master requires the bus.

Figure 3-9 Arbiter block diagram

The arbiter included in the EASY design can support up to four bus masters, although 
only two are used. The operation of the arbiter is described under the following 
headings:

• Signal descriptions.

• Abitration process on page 3-18.

• Signal timing on page 3-19.

• Arbitration priorities on page 3-21.

• System description on page 3-22.

3.2.1 Signal descriptions

The signals are described in Table 3-2 on page 3-18.

Note
 In systems that only have the ARM and the Test Interface Controller as potential bus 
masters, the unused AREQxxx lines must be tied LOW.

Arbiter
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BWAIT
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BCLK
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AGNT002

AGNT001

AGNTTIC

AGNTARM
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3.2.2 Abitration process

The ASB arbitration is controlled by the AREQ, AGNT, BLOK and BWAIT signals.

Table 3-2 Signal descriptions

Name Type Description

BCLK Input This clock times all bus transfers. Both the LOW phase and HIGH 
phase of BCLK are used to control transfers on the bus.

BnRES Input The bus reset signal is active LOW and is used to reset the system 
and the bus.

BWAIT Input This signal is driven by the selected bus slave to indicate whether 
the current transfer may complete. If BWAIT is HIGH a further 
bus cycle is required. If BWAIT is LOW then the transfer may 
complete in the current bus cycle. BWAIT is used by the arbiter 
to determine when a turnaround cycle is happening on the bus.

BLOK Input A shared bus lock signal driven by the currently granted bus 
master. When HIGH this signal indicates that the current transfer 
and the next transfer are to be indivisible and no other bus master 
should be granted the bus.

AREQarm Input Request from the ARM processor indicating that it requires the 
bus. This signal must be set up to the falling edge of BCLK.

AREQtic Input Request from the test interface controller.

AREQ001 Input Request from the bus master 001.

AREQ002 Input Request from the bus master 002.

Pause Input This signal allows the processor system to enter a low-power, 
wait-for-interrupt state, when the system does not require the 
processors to be active.

AGNTarm Output Grant signal to the ARM processor. When HIGH, this signal 
indicates that the ARM bus master is granted the bus. This signal 
changes during the LOW phase of BCLK and remains valid 
through the HIGH phase.

AGNTtic Output Grant signal to the test interface controller.

AGNT001 Output Grant signal to bus master 001.

AGNT002 Output Grant signal to bus master 002.
3-18 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



ASB Modules 
When an ASB master requires use of the bus, it sets its AREQ output line HIGH. This 
is sampled by the arbiter, on the falling edge of BCLK, and the AGNT outputs change 
according to the arbitration priority scheme used by the system.

The BLOK and BWAIT signals are used to extend the granted period to allow masters 
to finish transfers before bus master handover begins. If BLOK is set HIGH by the 
current master, and a higher priority master requests the bus, handover will not start 
until BLOK is set LOW, showing that the locked transfer has finished.

If BLOK is set HIGH after handover has begun, it is ignored, as it is too late to have an 
effect on the handover process.

If BWAIT is set HIGH after the handover process has begun, then the AGNT lines 
change as normal, but the new ASB master must allow the current master to finish the 
bus transfer (BWAIT LOW) before taking control of the bus. 

3.2.3 Signal timing

The arbitration signal timing depends on: 

• the priorities of the masters requesting the bus 

• the status of BLOK when the request lines change 

• the status of BWAIT during the handover cycle. 

This is shown in Figure 3-10 on page 3-20, and Figure 3-11 on page 3-21, where master 
A has a higher priority than master B. The masters read their AGNT inputs and gain 
control of the bus on the rising edge of BCLK.

Figure 3-10 on page 3-20 shows a normal grant handover where the higher priority 
master is granted the bus for two cycles before handing it back to the lower priority 
master. During bus master handover BLOK is not driven and therefore the arbiter 
ignores this signal until the new master has control of the bus.
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Figure 3-10 Arbitration timing

Figure 3-11 on page 3-21 shows the effect of the BLOK signal, as the grant to the lower 
priority master is held until the BLOK signal is released. If one current transfer is 
extended (BWAIT is HIGH), then the AGNT lines are set to their new values, but the 
masters in the system must monitor the BWAIT signal and wait until it is LOW before 
gaining control of the bus.
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Figure 3-11 Arbitration timing with BLOK set and turnaround cycle

3.2.4 Arbitration priorities

During reset, when BnRES is LOW, the arbiter grants use of the bus to the default bus 
master, and holds all other grant signals inactive.

The following arbitration priorities (from highest to lowest) are implemented in the 
default system:

• Test interface controller (highest)

• Bus master1

• Bus master 2

• ARM processor (lowest).

There are four different methods for a bus master to be granted the bus at that time:

• if it is the highest priority master requesting the bus at that time

• if it is the standard master selected during reset

• if it is the standard master selected during pause mode (when Pause is set HIGH)

• if it is the default master selected when no masters are requesting the bus.
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AGNTB
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ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 3-21



ASB Modules 
3.2.5 System description

The following paragraphs give a detailed description of how the HDL code for the 
system arbiter is set out. A simple system block diagram, with information about the 
main parts of the HDL code, is followed by details of all the registers, and signals used 
in the system. This part should be read together with the HDL code.

Figure 3-12 Arbiter module block diagram

The arbiter comprises the two versions of the AGNT output signals (new and old) and 
the output select that drives the AGNT lines with one of the internal AGNT values.

All registers used in the system are clocked from the same signal, the system clock 
BCLK, from either the rising or the falling edge. Enable signals are used to control the 
loading of the registers. All registers use the asynchronous reset BnRES.

A diagram of the arbiter HDL file is shown in Figure 3-13 on page 3-23. 
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Figure 3-13 Arbiter module system diagram

The parts and processes in the code are described in the following sections: 

• Arbitration scheme.

• Stored previous AGNT outputs on page 3-24.

• AGNT comparator on page 3-24.

• MaskBLOK generation on page 3-24.

• AGNT output selection control on page 3-24.

• AGNT output select on page 3-24.

• AGNT output drivers on page 3-25.

Arbitration scheme

This part defines the arbitration scheme that is used by the system, the default being a 
priority based system. The order that the inputs are checked in the if statement is the 
priority order of the system. AREQtic is the first input that is checked, then Pause (also 
the TIC), AREQ001, and through to the lowest priority. As the TIC is the highest 
priority master, if the AREQtic is HIGH, AGNTticNew will be driven HIGH no matter 
what values the other AREQ inputs have. If AREQarm is set HIGH, AGNTarmNew 
will only be set if all other AREQ inputs are LOW, as the ARM is the lowest priority 
master.

The AGNTarmNew output is set during reset when BnRES is LOW and when no other 
AREQ lines are set HIGH.

Falling edge registers are used to hold the generated AGNTNew values.

AGNT
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BWAIT
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Stored previous AGNT outputs

The current AGNT outputs are not a direct reflection of the AREQ, BnRES and Pause 
inputs to the Arbiter. This is due to delays during the bus master handover, when 
BLOK, or BWAIT are set.

This means that the AGNT outputs have to be held at their current values during the 
handover process, and this is done by the AGNTPrev registers, which sample the 
AGNT outputs on the rising edge of the system clock.

AGNT comparator

The AGNT 4-bit comparator is used to compare the AGNTNew and the AGNTPrev 
signals to detect a bus master handover, and it sets AGNTChange HIGH when they are 
different.

MaskBLOK generation

The MaskBLOK register is used to mask out the BLOK signal to the AGNTSel latch, 
so that the AGNTNew signals are held on the outputs during handover no matter what 
the status of BLOK is during the handover cycle.

AGNT output selection control

The AGNTSelNext signal is used to feed the AGNTSel latch, which is transparent 
when BCLK is LOW. A latch is used due to the timing of BLOK. AGNTSel is used to 
select either the AGNTNew or AGNTPrev signals to be driven onto the AGNT 
outputs.

During bus master handover BLOK must be ignored (as shown in Figure 3-10 on 
page 3-20). This is done using MaskBLOK in the generation of AGNTSelNext. If 
BLOK is set HIGH, AGNTSelNext will be driven LOW, but during handover 
MaskBLOK will also be HIGH, keeping AGNTSelNext driven HIGH. 

During reset (when BnRES is HIGH), AGNTSel will be driven LOW, which selects the 
AGNTPrev signals to be driven onto the AGNT outputs.

AGNT output select

A 4-bit multiplexor is used to select either the AGNTNew or AGNTPrev signals to 
drive the iAGNT signals with, depending on the value of AGNTSel. If the value of 
AGNTSel is HIGH, AGNTNew is selected. If it is LOW, AGNTPrev is selected.
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AGNT output drivers

The external AGNT ports are continuously driven with their internal iAGNT signals.
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3.3 Decoder

3.3.1 Overview

The decoder performs three functions:

• it generates the slave select signals (DSELx) for each of the bus slaves, indicating 
that a read or write access to that slave is required

• it generates the slave response signals (BWAIT, BLAST and BERROR) during 
Address-only transfers, when no slave is selected

• it can act as a simple protection unit which prevents attempts to access a protected 
area of the memory map.

Two implementations of the decoder are provided in one HDL file, using the value of 
DECEN to select between them:

• Decoder with decode cycles. This is the default mode, and is used in fast systems 
where the decoder might not have enough time to decode the address and assert 
the corresponding DSELx signal in a single clock HIGH phase. This 
implementation automatically inserts a decode cycle:

— at the start of a nonsequential transfer

— on a sequential transfer when BLAST has been asserted

— when 1KB memory boundaries are reached.

• Decoder without decode cycles. This implementation requires that all accesses 
can be decoded within a single bus cycle, and therefore will only be suitable for 
slow systems where this can be safely achieved.

A block diagram of the decoder is shown in Figure 3-14 on page 3-27.
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Figure 3-14 Decoder block diagram

3.3.2 Signal description

This section describes the signals that interface to the decoder.

Decoder
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Select Signals

Table 3-3 Signal descriptions

Name Type Description

BCLK Input This clock times all bus transfers. Both the LOW phase and HIGH phase of BCLK are 
used to control transfers on the bus.

BnRES Input The bus reset signal is active LOW, and is used to reset the system.

BSIZE[1:0] Input The transfer size signals indicate the size of the transfer, which may be byte, halfword 
or word.

BTRAN[1:0] Input These signals indicate the type of the next transaction, which may be address-only, 
nonsequential or sequential. These signals are driven by a bus master when its respective 
AGNTx signal is asserted.

BA[31:0] Input The system address bus, which is driven by the active bus master.

Remap Input When LOW, the internal memory is not part of the system memory map, and external 
memory is mapped from address 0x00000000 which normally contains the system startup 
code. In normal operation this signal is HIGH, allowing the use of the internal memory.

BWAIT Input/Output This signal is driven by the selected bus slave to indicate if the current transfer may 
complete. If BWAIT is HIGH a further bus cycle is required, if BWAIT is LOW then 
the transfer may complete in the current bus cycle. When no slave is selected this signal 
is driven by the bus decoder.
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3.3.3 Memory map

The decoder controls the memory map of the system, and generates a slave select signal 
for each memory region.

The Remap signal is used to provide a different memory map at reset, when ROM is 
required at address 0, and during normal operation, when RAM may be used at address 
0.

The Remap signal is typically provided by a remap and pause peripheral, which drives 
Remap LOW at reset. The signal is driven HIGH only after a particular address in the 
remap and pause peripheral is accessed.

Figure 3-15 on page 3-29 shows both the normal and reset memory maps.

BERROR Input/Output A transfer error is indicated by the selected bus slave using the BERROR signal. When 
BERROR is HIGH a bus error has occurred. When BERROR is LOW, the transfer is 
successful. When no slave is selected, this signal is driven by this module.

BLAST Input/Output This signal is driven by the selected bus slave to indicate whether the current transfer 
should be the last of a burst sequence. When BLAST is HIGH, the decoder must allow 
sufficient time for address decoding. When BLAST is LOW, the next transfer may 
continue a burst sequence. When no slave is selected this signal is driven by the bus 
decoder.

DSELx Output These are the select signals from the bus decoder to each individual bus slave, which 
indicate that the slave device is selected, and a data transfer is required. There is a 
DSELx signal for each ASB bus slave. This signal becomes valid during the HIGH 
phase before the data transfer is required, and remains active until the last HIGH phase 
of the transfer.

Table 3-3 Signal descriptions  (continued)

Name Type Description
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Figure 3-15 Memory map

3.3.4 Function and operation of block

At the start of every transfer on the bus, the decoder can perform a number of actions. 
The decoder is able to determine when a transfer is about to start by examining the 
BWAIT signal, which will be LOW when the previous transfer is completing.
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The actions the decoder may take depend on the type of transfer as shown in Table 3-4.

Figure 3-16 on page 3-31 shows the timing of a nonsequential access using a decoder 
that inserts wait states. The wait state is necessary because the address arrives after the 
falling edge of BCLK.

Table 3-4 Types of transfer

Transfer type Decoder action

Nonsequential transfer For a decoder that implements decode cycles, the decoder inserts a single 
decode cycle to allow the address bus to stabilize and the new address to be 
decoded. For the first cycle, the decoder drives BWAIT HIGH and negates all 
DSELx signals. In the second cycle, the decoder asserts the appropriate 
DSELx, and the selected slave becomes responsible for driving the slave 
transfer response. For a decoder that does not implement decode cycles, the 
decoder asserts the DSELx signal during the first cycle (see Figure 3-17 on 
page 3-32).

Sequential transfer with BLAST LOW The decoder drives the appropriate DSELx signal, and the selected slave is 
responsible for driving the slave transfer response.

Sequential transfer with BLAST HIGH. For a decoder that implements the decode cycles, the decoder inserts a single 
decode cycle to allow the address bus to stabilize and the new address to be 
decoded. For the first cycle, the decoder drives BWAIT HIGH and negates all 
DSELx signals. In the second cycle, the decoder asserts the appropriate 
DSELx, and the selected slave becomes responsible for driving the slave 
transfer response. For a decoder that does not implement decode cycles, the 
decoder asserts the DSELx signal during the first cycle (see Figure 3-17 on 
page 3-32).

Address-only transfer The decoder does not generate any DSELx signals, and drives a slave transfer 
response of BWAIT LOW.
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Figure 3-16 Decoder with decode cycles

Figure 3-17 on page 3-32 shows the timing of a nonsequential access using a decoder 
that does not insert wait states. The wait state is not necessary because the address is 
valid before the falling edge of BCLK.

Decoder response Slave response

Control

Address

N_TRAN

Decode
Cycle

Previous
Transfer Non-Sequential Transfer

BWAIT
BERROR

BLAST

BWRITE

DSEL

BA[31:0]

BTRAN[1:0]

BCLK

S_SLAVECurrent
State

S_ADDRESS S_DECODE
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 3-31



ASB Modules 
Figure 3-17 Decoder without decode cycles

Slave response signals

The decoder block monitors bus activity, and determines when a transfer to a slave 
device is required. When a transfer is required, a slave select signal is generated from 
the address bus decode.

When no slave is selected, the decoder must provide the slave response signals 
(BWAIT, BLAST and BERROR) in order for the bus to remain synchronized. The 
decoder will drive these signals during the address-only cycle (as indicated by the 
BTRAN[1:0] signals which are driven by the bus master), and the decode cycle, which 
occurs at the start of every nonsequential transfer and may also be requested by a slave 
device using the BLAST signal.
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The decoder with decode cycles will provide the following responses:

The decoder without decode cycles does not provide the decode cycle response.

When a slave is selected it must provide a response on the BWAIT, BERROR and 
BLAST signals.

Internal decoder signals

The three internal decoder signals DecError, DecLast and DecBlast are required by 
the state machines:

• DecError is used by both state machines, with and without decode cycles. It is 
asserted when an access is made to an undefined region in the memory map.

• DecLast is only needed by the state machine with decode cycles. It is asserted 
when the last address in a 1KB boundary is accessed, and is dependent on the size 
of the transfer (byte, halfword or word).

• DecBlast is only needed by the state machine with decode cycles. It is asserted 
when the slave response signals indicate the last transfer in a burst, when both 
BWAIT and BERROR are LOW, and BLAST is HIGH.

Decoder state machine

There are two possible implementations of the decoder, depending on the performance 
requirements of the system design. One implementation inserts decode cycles, and the 
other does not. The state machine for the decoder with decode cycles has an extra state, 
ST_DECODE.

The decoder state machine is clocked off the falling edge of the bus clock, BCLK. 
Therefore, it is necessary for the decoder to use latched versions of the BWAIT and 
BLAST signals (only valid during LOW phase of BCLK) during the next state 
generation.

Table 3-5 Decoder with decode cycle response combinations

Condition BWAIT BLAST BERROR

Address-only cycle 0 0 0

Error 0 0 1

Decode cycle 1 0 0
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The decoder will drive: 

• an address-only cycle response when in the ST_ADDRESS state 

• a decode cycle response when in the ST_DECODE state

• an error transfer response when in the ST_ERROR state. 

The decoder will not drive the slave response signals in the ST_SLAVE state as this is 
the responsibility of the selected slave.

Figure 3-18 shows the state machine of the decoder with decode cycles.

Figure 3-18 Decoder with decode cycles state machine

ST_ADDRESS

The no transfer state is entered when no data transfer is occurring on the bus, or during 
a reset condition. The ST_ADDRESS state is only exited when a transfer is about to 
occur (N-TRAN or S-TRAN), as indicated by the BTRAN signals. If the transfer is 
nonsequential, the next state will be ST_DECODE to allow time to decode the address, 
but if the transfer is sequential, and DecError is not asserted, the next state is 
ST_SLAVE.
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ST_DECODE

The ST_DECODE state is only entered for a single cycle when address decode is 
occurring. During normal operation, the next state will always be ST-SLAVE. If 
however, the current address gives an error then the next state will be ST_ERROR. 
BWAIT is driven HIGH during this state.

ST_SLAVE

The ST_SLAVE state is used when a transfer is occurring to a slave and may be entered 
from either the ST_DECODE or the ST_ADDRESS state. The state machine will 
remain in the ST_SLAVE state when BWAIT is driven HIGH by the slave, giving the 
slave time to finish the transfer. 

When BWAIT driven is LOW by the slave, the next state is:

• ST_ADDRESS if the transfer type is address-only 

• ST_DECODE if the transfer type is nonsequential or if DecBlast or DecLast 
have been asserted. However, if the transfer type is sequential and BLAST or 
DecLast have not been asserted, the next state remains as ST_SLAVE.

ST_ERROR

The ST_ERROR state is used when an error occurs and is entered when DecError is 
asserted. The state machine remains in the ST_ERROR state when the transfer type is 
sequential, and DecLast is not asserted, as the current address will still be to an invalid 
location. 

The next state becomes ST_ADDRESS if the transfer type is address-only, or 
ST_DECODE if the transfer type is nonsequential, or if it is sequential and DecLast is 
asserted.
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Figure 3-19 Decoder without decode cycles state machine

ST_ADDRESS

The no transfer state is entered when no data transfer is occurring on the bus, or during 
a reset condition. The ST_ADDRESS state is only exited when a transfer is about to 
occur (N-TRAN or S-TRAN), as indicated by the BTRAN signals. If DecError is 
asserted, the next state is ST_ERROR, if it is not asserted then the next state is 
ST_SLAVE.

ST_SLAVE

The ST_SLAVE state is used when a transfer is occurring to a slave and may be entered 
from either the ST_ERROR or the ST_ADDRESS state. 

The state machine will remain in the ST_SLAVE state when BWAIT is HIGH. When 
BWAIT is LOW the next state becomes:

• ST_ADDRESS if the transfer type is address-only

• ST_ERROR if DecError has been asserted
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• ST_SLAVE if DecError has not been asserted.

ST_ERROR

The ST_ERROR state is entered when DecError is asserted. The state machine 
remains in the ST_ERROR state when the transfer type is sequential or nonsequential, 
and DecError is asserted. The next state is ST_ADDRESS if the transfer type is 
address-only, or ST_SLAVE if the transfer type is sequential or nonsequential and 
DecError is not asserted.

Address decoder

The address decoder section must be changed to implement a different memory map. 
The default system memory maps are shown in Figure 3-15 on page 3-29.

Signals other than the address bus may be used to affect the address map. For example 
Remap creates two different memory maps depending on the current state of the 
system.

Reset operation

During a reset condition, when BnRES is LOW, the decoder block asynchronously 
removes all slave select signals, and initializes to the ST_ADDRESS state.

3.3.5 System description

The following paragraphs give a detailed description of how the HDL code for the 
system decoder is set out. A simple system block diagram, with information about the 
main parts of the HDL code, is followed by details of all of the registers, and signals 
used in the system. This part should be read together with the HDL code.

A simple block diagram of the whole system is shown in Figure 3-20 on page 3-38.
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Figure 3-20 Decoder module block diagram

The decoder comprises the state machine which is used to control the generation of the 
output signals, and the address decoding which is used to determine which ASB slave 
is to be selected for the current transfer.

All registers used in the system are clocked from the same signal, the system clock 
BCLK, from either the rising or the falling edge. All registers use the asynchronous 
reset BnRES.

A diagram of the decoder HDL file is shown in Figure 3-21 on page 3-39.
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Figure 3-21 Decoder module system diagram

The main sections and processes in the code are: 

• Constant and signal definitions on page 3-40.

• ASB address decoding on page 3-40.

• Address decoding of 1K boundaries on page 3-40.

• Internal DSEL generation on page 3-40.

• DecLast generation register on page 3-41.

• Input slave response registers on page 3-41.

• Next state logic on page 3-41.

• State machine on page 3-42.

• Current state decoding on page 3-42.

• DSelEn generation on page 3-42.

• Slave response tristate enable on page 3-42.

• DSELx output port drivers on page 3-42.

• Tristate slave response output drivers on page 3-42.

Each of these is now explained in more detail in the following paragraphs.
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Constant and signal definitions

The constant DECEN is used to define the mode of the decoder, with or without decode 
states. This is the only part of the HDL file that needs to be altered to switch between 
modes, and should be set to the correct value before synthesis or simulation. 

Note
 The simulation buswatcher must be aware of the decoder type being used in the system, 
which enables it to ignore late arriving ASB signals during the decode cycles. The HDL 
contains a BUS _DEC_EN constant, which should be set to the same value as the 
decoder’s constant.

The next four constants are the state machine states. The state bits are explicitly defined 
to minimize the number of pin changes during normal system operation, so only one bit 
changes between ST_SLAVE and ST_ADDRESS, and ST_SLAVE and 
ST_DECODE. 

The signals that are used inside the module are then defined.

ASB address decoding

Address decoding of BA is performed on every change of BA and Remap, setting the 
internal signals DSELxInt with the relevant values. DecError is also generated in this 
section if the current address is not defined in the system memory map.

To change the system memory map, the generation of the DSELxInt signals should be 
changed, using the required number of BA pins for each address area.

Address decoding of 1K boundaries

This part is used to determine if the current transfer should be set to the last of a burst 
when the next sequential transfer would cross a 1K boundary. BSIZE is used to set 
DecLastMux when the current transfer is the last word, halfword or byte before a 1K 
boundary.

Internal DSEL generation

A late arriving, or changing address input will make the decoded DSELx lines invalid 
for a short time. Registers are used to store these values during sequential transfers to 
create cleaner DSELx outputs. The DSELxReg registers hold the previous DSELxDec 
values. SeqEn is used to generate the DSELxInt output drives from the DSELxDec, or 
DSELxReg signals, according to the transfer type, and CurrentState.
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DecLast generation register

This register is used to hold the value of DecLast while the current address changes, so 
that the decode cycle is inserted after the current transfer has finished, and before the 
first transfer over the 1K boundary.

Input slave response registers

Both versions of the decoder use the BWAIT input to determine the next state of the 
state machine. This is captured on the rising edge of BCLK and is used in the generation 
of NextState and DecBlast.

All three slave response inputs are used to generate the DecBlast signal for the decoder 
with decode cycles, so the BERROR and BLAST inputs need to be registered. As they 
are only used together, a single register can be used on the output of combinational logic 
of the BERROR and BLAST inputs, and this can be combined with the output of the 
BWAIT register. This is preferable to using three registers and then combining the 
outputs of all three of them.

The DECEN constant is used on the DecBlast signal to hold its value LOW when the 
decoder without decode cycles is being used. This allows the DecBlast generation logic 
to be removed during synthesis.

The BTRAN input is latched for use in the generation of SeqEn.

Next state logic

This is the combinational part of the state machine, the next state generation. The next 
state of the state machine is calculated on the basis of: 

• the current state of the state machine 

• the BTRAN inputs

• the DecError and DecBlast signals.

The DECEN constant is used to change the operation of the state machine for the two 
different decoders, enabling and disabling different parts of the next state logic 
depending on the value of DECEN.

The system resets into the ST_ADDRESS state, and stays in this state until a transfer 
occurs. The next state becomes ST_SLAVE, if the current transfer is to a valid address 
in the memory map, and ST_ERROR if not to a valid location. The state machine 
without decode cycles stays in ST_SLAVE for the duration of the transfer, with the 
decoder with decode cycles alternating between ST_DECODE, and ST_SLAVE to 
allow time for the address to be decoded.
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State machine

With these registers NextState is loaded into CurrentState on the falling edge of 
BCLK.

Current state decoding

The slave response output signals are generated in this part of the code, depending on 
the current state of the state machine. Internal versions of the signals are used to drive 
the tristate outputs.

If the current state is ST_ADDRESS the BWAIT, BERROR and BLAST signals are 
driven LOW. BWAITInt is set HIGH during ST_DECODE (if used), and 
BERRORInt is set HIGH during ST_ERROR. The outputs are high impedance while 
the current state is ST_SLAVE to allow the slave to drive them.

DSelEn generation

DSelEn is used to enable the internal DSELxInt signals to be driven onto the DSELx 
output ports. Because the value of NextState can change on either side of the rising 
edge of BCLK, and the DSELx outputs have to become valid during the HIGH phase 
of BCLK. A latch has to be used to set DSelEn during the HIGH phase of BCLK, and 
to hold its value during the LOW phase of BCLK.

Slave response tristate enable

The BWELEn signal is used to enable the tristate outputs of the slave response signals. 
It is driven HIGH during the LOW phase of BCLK, when DSelEn is also LOW.

DSELx output port drivers

In this part the DSELx output ports are driven with a combination of the internally 
generated DSELxInt signals and the DSELEn enable signal.

Tristate slave response output drivers

The three slave response signals are driven with their internal versions when the 
BWELEn enable signal is HIGH, and are tristated at all other times.
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3.4 Reset controller

The AMBA specification defines a single reset signal, BnRES, which indicates the 
current reset status of the system.

This section describes the AMBA Reset Controller, which drives the BnRES signal. 
The AMBA reset controller is shown in Figure 3-22.

Figure 3-22 Reset controller block diagram

The source of the POReset signal is implementation dependent.

3.4.1 Signal timing

Assertion (the falling edge) of BnRES is asynchronous to BCLK. De-assertion (the 
rising edge) of BnRES is synchronous to the falling edge of BCLK. BnRES is only 
asserted during a Power-On Reset condition, caused by the assertion of the POReset 
signal. The POReset input is an asynchronous input, and hence a synchronizing d-type 
is required to eliminate propagation of metastable values. Figure 3-23 on page 3-44 
shows the operation of the BnRES signal with respect to the state machine states and 
an example POReset input signal.

Table 3-6 Signal descriptions

Name Type Description

BCLK Input This clock times all bus transfers. Both the LOW phase and HIGH 
phase of BCLK are used to control transfers on the bus.

POReset Input Power on reset input. This signal causes a cold reset when HIGH. 
May be asserted asynchronously to BCLK.

BnRES Output Reset output. This signal indicates the current reset status.

Reset
ControllerBCLK

POReset
BnRES
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Figure 3-23 BnRES timing

3.4.2 Use of BnRES

BnRES is used to indicate a reset condition. BnRES is asserted LOW and is used to 
indicate that all bus and system states should be initialized. This signal is suitable as an 
asynchronous clear into state machine flip-flops, and for resetting any peripheral 
register states that requires initialization.

During reset, the arbiter grants the bus to the default bus master and holds all other grant 
signals inactive. The decoder negates all select signals, and drives the slave response 
signals LOW.

3.4.3 Bus reset state machine

The reset controller comprises a state machine running off the falling edge of BCLK. 
The BnRES signal directly reflects the bit 0 of the state number shown in Figure 3-24 
on page 3-45, which shows the state machine used in the system.
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Figure 3-24 State machine for reset controller

ST_POR

This power on reset state initializes all of the system state and ensures that one tristate 
driver is enabled on the AMBA system bus. Any peripheral state that is initialized on 
reset is initialized in this state.

The ST_POR state should be preserved by a power on reset cell or controller, until the 
system bus clock is running and stable, and the system power supply has reached its 
correct operating voltage (within its allowed limits). This major reset is forced as an 
asynchronous start-up condition and must be recognized by all master and slave devices 
on the system bus. This state is exited synchronously to the system clock BCLK. If 
there is a clock valid signal in the system, this should be used in the reset controller to 
prevent the ST_POR state from being exited until the clock is valid.

ST_INI

The ST_INI state is used to hold the BnRES signal asserted (LOW) for some extra 
clock cycles after the POReset signal is de-asserted. In the current implementation this 
state is maintained for at least two clock cycles, but this period can be increased if 
necessary. This state, and the ST_RUN below, are all entered and exited synchronously 
to the bus clock.

ST_RUN

ST_RUN is the normal system operation mode: the bus arbiter allocates resources, 
normal transactions are allowed and the bus clock runs at the normal speed.

3.4.4 System description

The following paragraphs give a detailed description of how the HDL code for the 
system reset controller is set out. A simple system block diagram, with information 
about the main parts of the HDL code, is followed by details of all of the registers, and 
signals used in the system. This part should be read together with the HDL code.

A simple block diagram of the whole system is shown in Figure 3-25 on page 3-46.
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Figure 3-25 Reset controller module block diagram

The reset controller comprises the state machine, which is used to control the generation 
of the reset output signal, and the counting register that is used to hold the system in the 
ST_INI state for two clock cycles.

All registers used in the system are clocked from the same signal, the falling edge of the 
system clock BCLK. 

A diagram of the reset controller HDL file is shown in Figure 3-26.

Figure 3-26 Reset controller module system diagram

The main parts and processes in the code are described in the following sections:

• Constant and signal definitions on page 3-47

• Asynchronous input reset synchronization on page 3-47

• Next state logic on page 3-47

• State machine on page 3-47

• ResCount register on page 3-47

• Output driver on page 3-48.
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Constant and signal definitions

The three constants are the state machine states. The state bits are explicitly defined to 
allow one bit of the state machine to be used as the BnRES signal (bit 0), reducing the 
complexity of the module, and avoiding the chance of glitches on the BnRES output.

Asynchronous input reset synchronization

POReset is first passed through the falling edge triggered register, to avoid 
metastability, due to the arrival time of the input. It generates the SyncPOR signal, 
which is then used as the input to NextState and the reset for the ResCount register.

Next state logic

This is the combinational part of the state machine, the next state generation. Based on 
the current state of the state machine, the SyncPOR input, and the ResCount register 
output, the next state of the state machine is calculated.

The system resets into the ST_POR state, and stays in this state until the external 
POReset input signal becomes LOW. The next state then becomes ST_INI, and this is 
held until the two cycle delay produced by ResCount is over. Then, the system moves 
into the ST_RUN state, which is held until the system power is removed, or the external 
POReset signal is set again. 

State machine

With these two registers, NextState is loaded into CurrentState on the falling edge of 
BCLK. There is no reset used as the signal NextState already includes a reset, and 
CurrentState will get set on the very first falling edge of BCLK.

ResCount register

This falling edge register is used to hold the state machine in the ST_INI state for two 
cycles. The ResCountMux signal is used to set the register depending on the values of 
CurrentState and ResCount. When the current state is ST_INI, and ResCount is 
LOW, then the mux term is set HIGH, also setting the register HIGH on the next falling 
edge of BCLK. This then allows NextState to be set to ST_RUN, and the BnRES 
output becomes HIGH on the next falling edge of the clock. SyncPOR is used as the 
reset for the ResCount register. Figure 3-27 on page 3-48 shows the timing of these 
signals:
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Figure 3-27 Delayed state change timing diagram

Output driver

This section drives the BnRES output port with bits 0 of CurrentState ANDed together 
with the inverse of the active HIGH POReSet input.
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3.5 Static memory interface

The AMBA Static Memory Interface (SMI) is an example design which shows the basic 
requirements of an External Bus Interface (EBI) in an AMBA system. It is not intended 
to be an off-the-shelf EBI for a real system. Such an EBI design would have to take 
process, package and varying external delays into account.

The SMI connects the AMBA ASB to the external memory bus of an AMBA 
Microcontroller. This allows the connection of up to eight 256MB banks of 32-bit wide 
static memory (for example, SRAM and ROM) and also provides 32-bit test access to 
the AMBA system in conjunction with the TIC. This design comprises four functional 
blocks:

• the bus latches and drivers

• the clock and enable logic

• the bank select logic

• the memory wait state counter.

Figure 3-28 Static memory interface block diagram
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Table 3-7 Signal descriptions

Name Type Description

BCLK Input This clock times all bus transfers. Both the LOW phase and HIGH phase of BCLK are 
used to control transfers on both the ASB and APB.

BnRES Input The bus reset signal is active LOW and is used to reset the system and the bus.

BA[30:0] Input The system address bus (excluding the most significant bit). The addresses change 
during the BCLK HIGH phase before the transfer to which they refer and remain valid 
until the last BCLK HIGH phase of the transfer.

BWRITE Input When HIGH this signal indicates a write transfer and when LOW a read transfer. This 
signal has the same timing as the address bus.

BSIZE[1:0] Input These signals indicate the size of the transfer which may be byte, halfword or word. 
These signals have the same timing as the address bus.

DSELExtMem Input When HIGH, this signal indicates that the SMI is selected. This signal has the same 
timing as the address bus.

Remap Input When LOW this forces the memory in bank 7 to be mapped to all locations in the 
SMI’s address range. This bank should contain the system’s start-up program (boot 
ROM/BIOS). In normal operation this signal is HIGH.

BD Input/Output This is the bidirectional system data bus. The data bus is driven by this block during 
read transfers from external memory, or during system test.

BWAIT Input/Output This slave response is driven HIGH by this block during the LOW phase of BCLK, 
when the SMI is selected and the external memory has not completed its current 
transfer.

BERROR Output The SMI does not support this slave response (this is not a general rule for EBIs). It is 
driven LOW when the SMI is selected during the LOW phase of BCLK.

BLAST Output The SMI does not support this slave response (this is not a general rule for EBIs). It is 
driven LOW when the SMI is selected during the LOW phase of BCLK.

TestMode Output Indicates that the test controller has taken control of the bus. Used to enable the 
external data bus XD.

Ticinen Output When LOW, this indicates that the SMI should enable the test bus (TBUS) to drive BD. 
In the case of the SMI, the test bus is identical to the data bus XD.

Ticouten Input When this signal is LOW, the SMI’s latched version of BD drives TBUS.

TicoutLen Input When this signal is LOW, the BD latch is transparent during the BCLK HIGH phase.
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3.5.1 Functional description

The SMI has five functions in the example system that are described in the following 
sections:

• External bus control on page 3-52

• Memory bank select on page 3-53

• Memory write control on page 3-54

• Configurable memory access wait states on page 3-55

• System test access on page 3-55.

XWAIT Input When HIGH during the BCLK LOW phase of a transfer, this signal will force the 
AMBA bus to wait. The current transfer will complete once XWAIT is LOW, and the 
wait states for the transfer are complete. This signal will normally be tied LOW in the 
default system.

XnGBE Input External global bus enable. When this signal is driven HIGH, the external address and 
data bus will be driven to high impedance. This should be used in conjunction with 
XWAIT. Under normal conditions this signal should be driven LOW.

XD[31:0] Input/Out This is the bidirectional external data bus. In normal operation it is driven by the 
external bus when XOEN is LOW, and by this block when XOEN is HIGH. During 
system test this becomes the test bus TBUS and its direction is controlled by the TIC 
signals.

XA[30:0] Output The external address bus is driven when XnGBE is LOW. The bus becomes valid 
during the BCLK LOW phase of the transfer and remains valid throughout the rest of 
the transfer.

XCLK Output External clock for peripherals off-chip.

XCSN[7:0] Output These signals are active LOW chip enables for each of the eight banks (0-7) of static 
memory. XCSN[7] should be connected to the memory containing the startup program 
(boot ROM/BIOS) for the system.

XOEN Output This is the output enable for devices on the external bus. This is LOW during reads 
from external memory, during which time the selected bank should drive the XD bus.

XWEN[3:0] Output This is the active LOW memory write enable. For little-endian systems, XWEN[0] 
controls writes to the least significant byte and XWEN[3], the most significant. The 
example system is configured to be little-endian. The SMI is configured to have a 
minimum of one wait state when writing to memory. XWEN becomes valid in the 
BCLK HIGH phase of the first cycle of the transfer and remains valid during the 
BCLK LOW phase of the second cycle.

Table 3-7 Signal descriptions  (continued)

Name Type Description
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External bus control

In normal operation (not in system test mode), to perform a read from the external 
memory, the XnGBE signal must be LOW, to enable driving of the address and data 
buses (XA and XD). The latched address (taken from BA) is driven onto XA. If XOEN 
is LOW (indicating a read) XD is driven to a high impedance, to allow the read data to 
be applied.

Figure 3-29 shows the timing of a read from memory with zero wait states. Note that 
the data must be valid on the XD bus in time for the signal to propagate on-chip so that 
the BD bus becomes valid before the next falling edge of BCLK. If this setup time 
cannot be achieved, the access will require wait states.

Figure 3-29 Zero wait memory read

To perform a write to the external memory, XOEN must be HIGH, to allow XD to be 
driven by the SMI with a latched version of BD. 

The SMI requires at least one wait state to be added for a write to memory, to allow for 
the timing of the XWEN write enable signal relative to the XA and XD buses. When 
XWEN is LOW, XA must be stable, and on the rising edge of XWEN, XD must be 
valid.

Figure 3-30 on page 3-53, shows the timing of a write to memory with a single wait 
state.
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Figure 3-30 Memory write with one wait state

Memory bank select

The XCSN chip select lines are controlled by the values of BA, Remap, and 
DSELExtMem. A falling edge registered version of DSELExtMem is used, and a 
latched version of BA is used (transparent when BCLK is LOW), so XCSN is 
effectively generated on the falling edge of BCLK.

Table 3-8 on page 3-53 shows the relationship between the three inputs and the 
generated value of XCSN.

BCLK

BWAIT

XA[30:0]

BD[31:0]

XD[31:0]

XCSN[x]

XWEN[y]

Wait cycle Write cycle

Table 3-8 XCSN coding

Inputs Output

DSELExtMem Remap BA[30:28] XCSN[7:0]

0 X XXX 11111111

1 0 XXX 01111111

1 1 000 11111110
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XCSN[7:0] is also held in the "11111111" state asynchronously during reset.

Memory write control

The 4-bit XWEN write enable signal allows the four bytes in the 32-bit wide word to 
be written independently. The byte assignments are:

• XWEN[0] controls XD[7:0]

• XWEN[1] controls XD[15:8]

• XWEN[2] controls XD[23:16]

• XWEN[0] controls XD[31:24].

The SMI controls XWEN for writes in word (32-bit), halfword (16-bit) and byte 
quantities. The SMI uses BSIZE[1:0] and BA[1:0] to select the width and order of each 
write to memory. This information must be valid before XWEN is asserted.

Table 3-9 on page 3-54 shows the bytes selected according to the BSIZE and BA[1:0] 
inputs.

1 1 001 11111101

1 1 010 11111011

1 1 011 11110111

1 1 100 11101111

1 1 101 11011111

1 1 110 10111111

1 1 111 01111111

Table 3-9 XWEN coding

BSIZE[1:0] BA[1:0] XWEN[3:0]

10 (word) XX 0000

01 (half word) 0X 1100

01 (half word) 1X 0011

Table 3-8 XCSN coding (continued)

Inputs Output

DSELExtMem Remap BA[30:28] XCSN[7:0]
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Configurable memory access wait states

The SMI only supports global (the same for every bank) wait states for read and write 
accesses. This is configurable (in the HDL model, not in synthesized hardware) between 
zero and three waits for reads, and between one and three for writes. Figure 3-30 on 
page 3-53 shows a memory transfer with one wait state. A transfer with more wait states 
causes further wait cycles. The address and data information remains valid until the 
access cycle is completed. For writes, the XWEN signal is extended, going LOW 
during the first wait, and not going HIGH until the final cycle of the transfer. Before 
synthesis, the wait states can be selected by altering the 2-bit wide constants 
READWAIT and WRITEWAIT. WRITEWAIT must be value 01 or greater. The SMI 
also allows transfer wait to be extended indefinitely. This is done by asserting XWAIT 
HIGH. To wait the current transfer, XWAIT must be asserted before the rising edge of 
BCLK in the last waited cycle of the access.

Note
 If the transfer is zero wait state, XWAIT should be asserted before the transfer 
commences to allow a BWAIT HIGH cycle to be inserted.

The transfer cannot complete until XWAIT is LOW for at least one cycle.

System test access

During system test the SMI is controlled by three active LOW signals from the TIC:

• Ticinen (test data in enable) 

• Ticouten (test data out enable) 

• TicoutLen (test data out latch). 

For more information on system test, refer to the AMBA Specification. For the SMI, 
BCLK is used as TCLK, and XD as TBUS. The TIC signals control the data bus drivers 
and the latch directly. It is necessary to override the normal operation of the interface 
when in test mode. This is done with the TestMode signal from the TIC.

00 (byte) 00 1110

00 (byte) 01 1101

00 (byte) 10 1011

00 (byte) 11 0111

Table 3-9 XWEN coding (continued)

BSIZE[1:0] BA[1:0] XWEN[3:0]
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3.5.2 System description

The following paragraphs give a detailed description of how the HDL code for the 
module is set out. A simple system block diagram, with information about the main 
parts of the HDL code, is followed by details of all the registers, and signals used in the 
system. This section should be read together with the HDL code.

A simple block diagram of the whole system is shown below in Figure 3-31.

Figure 3-31 Static memory interface module block diagram

The static memory interface module comprises the input latches and registers, the wait 
state counter used to insert wait states, and the external memory control signal 
generation.

All registers used in the system are clocked from the system clock BCLK, from either 
the rising or the falling edge. Enable signals are used to control the loading of the 
registers. All registers use the asynchronous reset BnRES.

A diagram of the static memory interface HDL file is shown in Figure 3-32 on 
page 3-57. 
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Figure 3-32 Static memory interface module system diagram

The main sections and processes in the code are described in the following sections:

• Constant and signal definitions on page 3-58

• Registered input signals on page 3-58

• Wait state counter on page 3-58

• Start generation on page 3-58

• iXA generation on page 3-59

• XWENNext generation on page 3-59.
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• XDInt generation on page 3-59

• iXOEN generation on page 3-59

• Output enables on page 3-59

• External bus output port drivers on page 3-60

• Tristate output drivers on page 3-60.

Constant and signal definitions

The constants READWAIT and WRITEWAIT are used to set the number of wait 
states that are inserted when a read and write transfer is performed. The value of zero to 
three (one to three for writes) is set for all transfers to all memory banks, and although 
configurable in the HDL code, it is permanently set when synthesized.

The next set of constants are used in the generation of the write enable (XWEN) output 
signals, and are chosen depending on the current values of BA and BSIZE. XWENX is 
used when there is an error on one of the BSIZE or BA inputs. The signals that are used 
inside the module are then defined.

Registered input signals

This section is used to generate registered versions of the input signals BWRITE and 
DSELExtMem, as some parts of the module need to use the registered versions to 
generate the correct timing on the outputs.

Wait state counter

The counter state machine is made up of two parts, the NextWait value generation and 
the register to hold the current wait count value. As soon as the external memory is 
selected with DSELExtMem being set HIGH, NextWait is loaded with the value of 
READWAIT or WRITEWAIT, depending on the type of access that is being 
performed. This is then loaded into the register on the next falling edge of BCLK, and 
is decremented every falling clock edge until it reaches zero.

Start generation

The Start signal is used to indicate the start of a transfer to, or from the external 
memory, and is generated by a register. The input signal to the register is split up into 
iBWAIT and StartNext. The iBWAIT signal is used to generate the BWAIT output 
and is used by other sections. iBWAIT is set HIGH when CurrentWait is not equal to 
zero, and is set to XWAIT when CurrentWait equals zero. This allows waits generated 
by the memory to be passed onto the ASB. This signal is then passed through to the 
register when the external memory has been selected, generating the StartNext signal.
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The Start signal is fed back into the wait state counter to make it decrement the wait 
count value while the system is waiting for the transfer, and is also used in the 
generation of the enables for XWEN and BD.

iXA generation

The external memory address bus is a direct copy of the lowest 30 bits of the ASB 
address bus, but delayed by half a clock cycle. A latched version of BA is used to 
generate an internal version of XA, which is fed to the input of a tristate buffer 
connected to the XA bus. On reset iXA is LOW. Latches are used to generate XA with 
the correct timing, due to the possibility of BA becoming valid after the falling edge of 
BCLK. For systems with a slow clock, if BA is always valid before the falling edge of 
the clock, falling edge triggered registers can be used instead of latches.

XWENNext generation

The memory write enable signals are generated when the SMI is selected for a write 
transfer, and it is the start of transfer. BA and BSIZE are then decoded, as in Table 3-9 
on page 3-54, to generate the XWENNext signals, which are passed onto the XWEN 
registers.

XDInt generation

Due to the timing requirements between the ASB data bus and the external memory data 
bus, transparent latches are used to connect BD to XD. During a memory write cycle, 
XDInt is a latched version of BD. It is held until the start of the next transfer, when the 
new data value is latched before use. On reset XDInt is set LOW.

iXOEN generation

The internal version of the output enable signal is generated from the registered 
BWRITE and DSELExtMem inputs to create the correct timing for the external bus. 
It is set LOW during reads, and HIGH at all other times.

Output enables

This section contains the output enables that are used to enable the internal versions of 
the output signals.

The XDEn and BDEn signals are generated from internal signals and the system test 
signals generated by the TIC module. This allows the external bus to be used either as 
a test interface or an external memory connection.
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BWELEn is set HIGH when the external memory is selected, BCLK is LOW and 
BnRES is HIGH.

External bus output port drivers

This section contains the signals that are directly driven onto the outputs without being 
tristated. XCLK is just a direct copy of the system clock BCLK, with the same timing.

XCSN is generated from DESLReg, Remap and iXA. The top three bits of the address 
are decoded as shown in Table 3-8 on page 3-53. The boot ROM is selected on any 
external memory access, when Remap is LOW. On reset, or when the external memory 
is not selected, all XCSN bits are HIGH.

A register is used to generate XWEN from the internal signal, with all bits set HIGH on 
reset.

XOEN is directly driven by the internal signal iXOEN.

Tristate output drivers

The tristate outputs used in the system are driven in this section. These include:

• the ASB data bus 

• the three slave response signals

• the external address and data buses.
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3.6 Example system external memory

The external memory devices and their configurations are described below.

3.6.1 Memory devices 

Two types of memory devices are used for external memory in the example system:

• a simple model of a SRAM, arranged 32KBx8, with active LOW write enable, 
output enable and chip select inputs

• a simple model of an EPROM arranged as 16KBx8, with active LOW output 
enable and chip select inputs.

The demonstration memory models used in the example system are behavioral 
only, and include no data timing checks.

3.6.2 Memory connection 

The memory is configured as:

• 7 banks of SRAM, accessed by chip selects XCSN[6:0]
• 1 bank of boot ROM, accessed by chip select XCSN[7].

All SRAM and ROM banks are four bytes wide. Byte, halfword and word access is 
provided by the write enable XWEN[3:0] lines.
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3.7 Test interface controller

 Test Interface Controller (TIC) is a state machine that provides an AMBA bus master 
for system test. It controls the External Bus Interface (EBI) to sample or drive the ASB 
data bus BD.

The AMBA TIC is an ASB bus master that accepts test vectors from the external test 
bus (the 32-bit external data bus, if available) and initiates bus transfers. The TIC latches 
address vectors from the test bus and drives the ASB address bus.

Typically, the TIC is the highest priority AMBA bus master, which ensures test access 
under all conditions.

The TIC model also supports address incrementing and control vectors. This means that 
the addresses for burst transfers can automatically be generated by the TIC.

Figure 3-33 Test interface controller block diagram
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Figure 3-33 on page 3-62 represents a TIC block in a system where the external 32-bit 
data bus becomes the test bus when performing test mode accesses. 16-bit and 8-bit data 
bus systems require, for example, 16 or 24 address lines to be reconfigured as 
bidirectional test port signals for test mode access. Such systems would use the 
TestMode signal to force the EBI into this state.

Table 3-10 Signal descriptions

Name Type Description

BCLK Input System (bus) clock. This clock times all bus transfers. In the example system this clock also 
operates in test mode as TCLK.

BnRES Input This active LOW signal indicates the reset status of the bus and is driven by the reset controller.

BWAIT Input This signal indicates when current transfer will complete. It is valid on the rising edge of 
BCLK. It must be used together with the other slave response lines BERROR and BLAST.

BERROR Input This signal is used with BWAIT and BLAST to form the retract term in the bus master state 
machine.

BLAST Input This signal is used with BERROR and BWAIT to form the retract term.

BD[31:0] Input In test mode, the data bus is used to load values into the TICs address latch during address 
vectors. The TIC then drives the system address bus BA with this value during subsequent 
single/burst read-write vectors.

AGNTTic Input Grant signal that grants the bus to the test controller.

AREQTic Output Request from the TIC, indicating that this master requires the bus. This signal must be set up 
to the falling edge of BCLK. The arbiter should treat this signal as the highest priority request 
line (over and above any complex arbitration scheme it might support).

BSIZE[1:0] Output These signals indicate the size of the transfer. By default the transfer size is always a word (32 
bits), but this may be changed using the control vector. These signals have the same timing as 
the address bus.

BTRAN[1:0] Output These signals indicate the type of the next transaction, which in this master may be 
Address-only or Sequential. They are valid during the HIGH phase before the transfer to which 
they refer.

BLOK Input Bus lock signal. By default the TIC does not perform locked transfers. The control vector may 
be used to force the TIC to perform locked transfers.

BPROT[1:0] Output These signals deal with address location access protection control. By default the TIC signals 
indicate supervisor mode transfers, but this may be changed using the control vector. They 
have the same timing as the address bus.

BA[31:0] Output System address bus. The addresses become valid during the HIGH phase before the transfer to 
which they refer, and remain valid until the last HIGH phase of the transfer.
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3.7.1 Functional description

The TIC has two fundamental modes of operation:

• ASB bus master

• system test.

The ASB bus master is selected when an AMBA system is in low power mode (if 
supported). When granted as the low power master, the TIC performs no test functions 
but keeps the AMBA bus in a state such that:

• no data transfers occur (BTRAN = A-TRAN)

• the bus is available to be granted to another master when requested (BLOK = 
LOW).

BWRITE Output When HIGH, this signal indicates a write transfer, when LOW, a read. This signal has the same 
timing as the address bus.

TREQA Input Test request A. This signal is used, in combination with TREQB, to control access to the 
system bus from the test bus.

TREQB Input Test request B. This signal is used, in combination with TREQA, to control access to the 
system bus from the test bus.

TACK Output Test acknowledge. This signal is used to indicate that the test interface has been granted access 
to the system bus. It is also used to indicate transfer delays (transfers with wait cycles).

TestMode Output Indicates that the test controller has taken control of the bus. It should be used to enable the 
external 32-bit test bus (for EBIs that need the TBUS to be specifically enabled) and to select 
the system clock source for test (TCLK).

Ticinen Output This active LOW signal indicates that the EBI should drive TBUS onto BD.

TicoutLen Output When LOW, the BD latch in the EBI should be transparent.

Ticouten Output This active LOW signal indicates that the EBI should drive its latched version of BD onto the 
external TBUS.

Table 3-10 Signal descriptions  (continued)

Name Type Description
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For system test, an external tester is used to drive the external pins TREQA and 
TREQB.

Note
 During test at least one of TREQA and TREQB must be HIGH. If both are LOW this 
indicates end of test.

When entering test mode, the TIC requests the bus. Once it is granted as the current bus 
master test mode is entered, and the TACK signal is pulled HIGH.

Clocking issues

When not in test mode an AMBA system is clocked by BCLK. The source of BCLK 
is not defined in the AMBA standard and may be from an off-chip source or more likely 
an on-chip PLL for low power consumption. In both cases TREQA is synchronized in 
the TIC by the rising edge of BCLK.

When test mode is entered the AMBA system will be clocked by TCLK, generated 
from an external source. Then TREQA and TREQB signals should be set up to the 
rising edge of TCLK.

The switch over from an internal BCLK source to an external TCLK source is not 
handled by the TIC. If an external BCLK source is used BCLK and TCLK can be 
identical.

Note
 The Example AMBA System uses an externally generated BCLK (BCLK=TCLK).

Table 3-11 Basic TIC operation

Inputs Outputs

TREQA TREQB TACK TIC mode

0 0 0 Acting as ASB bus master

1 0 0 Entering test mode

1 1 1 Test mode entered, ADDRESS vector.

X X X During test (see note)

0 0 Leaving test mode
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This data sheet details one form of TIC that assumes an external clock can be used to 
drive the system during test. If this is not feasible it is possible for a TIC to run vectors 
at a much slower rate than BCLK. This possibility is not covered in this document.

Test mode

In test mode the signal TestMode is driven HIGH. This forces BCLK to be driven from 
an external source (TCLK) and the EBI to provide a 32-bit bidirectional channel 
through which values can be read and written to BD. This 32-bit channel is referred to 
as TBUS, though in systems with a 32-bit external data bus TBUS will be identical to 
the external data bus. 

In AMBA systems which do not have a full 32-bit external data bus, address pins may 
have special test functionality (connecting bidirectional pads that can act as inputs 
during system test) to provide a TBUS connection.

The TREQA and TREQB signals should both be high on entering test mode. They are 
used to control the TIC which allows values to be read or written to any address location 
inside the microcontroller (it cannot perform read or writes to external memory as the 
external bus is occupied by the test bus, TBUS). This is done by applying TIC vectors, 
of which there are three basic types: 

• READ data

• WRITE data

• ADDRESS vector.

Before a READ or WRITE vector can access a location the appropriate address must 
have been loaded. Therefore, the first vector should be an ADDRESS type at the 
beginning of testing.

The state machine diagram, shown in Figure 3-34 on page 3-67, illustrates one 
relationship between TREQA, TREQB and the test vector type.

Table 3-12 TIC vectors

TREQA TREQB Vector

1 1 ADDRESS vector. This must be the first and last vector in a test sequence. It is also used as a 
turnaround cycle after a write vector.

1 0 WRITE data. This must be followed by a turnaround cycle.

0 1 READ data.

0 0 End of test. This must be proceeded by an ADDRESS vector.
3-66 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



ASB Modules 
Figure 3-34 State machine

When the vectors are applied the TACK signal is monitored. This is normally HIGH. 
However, if the transfer initiated by the previous vector is not complete, TACK will go 
LOW off the falling edge of TCLK. When this occurs, the next vector is held until 
TACK goes HIGH. This is shown inFigure 3-36 on page 3-68. Vector 1 starts a transfer 
with one wait cycle, vector 2 is held while the transfer completes.
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Figure 3-35 TIC vectors and AMBA transfers

Figure 3-36 Vectors and waited transfers

Although all vector types are applied as above, the timing characteristics for TBUS and 
the number of each vector type applied is vector dependent. The types of vectors are:
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• READ.
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ADDRESS vector

Only one ADDRESS vector is required for an address transfer. The TBUS must be 
driven with the address value required during the ADDRESS vector transfer (that is 
transfer 2 shown in Figure 3-36 on page 3-68). This value is latched from BD by the 
TIC, driven onto BA by the end of the ADDRESS vector transfer, and is held for 
subsequent READ or WRITE vectors.

During an ADDRESS vector, the TIC drives BTRAN as A-TRAN, and no locations are 
accessed in the microcontroller.

WRITE vector

Only one WRITE vector is required for each write transfer. As with the ADDRESS 
vector, the value to be written should be driven on TBUS during the transfer for the 
WRITE vector. The TIC drives BTRAN as S-TRAN, and asserts BWRITE, causing a 
write transfer to the address location set up by the last ADDRESS vector.

READ vector

Unlike ADDRESS or WRITE vectors, the READ vector TBUS activity does not take 
place during its corresponding AMBA transfer. During the read transfer period, the 
TBUS should be undriven. The value read by the READ vector is driven out on TBUS 
in the cycle following the transfer. The read vectors are shown in Figure 3-37.

Figure 3-37 Read vectors and turnaround
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READ vector (1)
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Here two reads are done from the same address location. Since TBUS is driven in the 
cycle following the read 2 transfer, the READ vector 2 can not be followed by a WRITE 
or an ADDRESS vector (this would require TBUS to be driven by the tester in the cycle 
following the read 2 transfer). Thus a turnaround vector is needed. Turnaround is 
indicated byTREQA=1, TREQB=1, which is identical to an ADDRESS vector. 
However, no address change occurs since TBUS is not driven and BD is not latched 
onto BA. The turnaround vector may be followed by ADDRESS vectors (or any other 
type of vector) in which case the address will change in subsequent cycles.
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3.8 AMBA ARM7TDMI interface

The AMBA ARM7TDMImodule interfaces between the ARM7TDMI and the ASB 
bus, allowing the ARM7TDMI to become an ASB bus master. The module also includes 
a test interface, allowing the ARM7TDMI to be selected as a bus slave and test via the 
TIC interface. If, however, an alternative test approach is to be used, the test logic can 
be removed from the AMBA interface.

The top level block diagram is shown in Figure 3-38 on page 3-72, which shows how 
the wrapper interfaces to the ARM7TDMI. A number of the ASB input signals are 
routed through the wrapper before becoming inputs to the ARM7TDMI, and the 
ARM7TDMI outputs are also routed through the wrapper before being driven onto the 
ASB.
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Figure 3-38 Block diagram for ARM7TDMI AMBA master logic
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3.8.1 Signal description

Table 3-13 ASB signal descriptions

Name Type Description

ARMNFIQ Input ARMNFIQ is the ARM fast interrupt request, and is routed to the nFIQ input on 
the ARM CPU.

ARMNIRQ Input ARMNIRQ is the ARM interrupt request, which is routed to the nIRQ input on the 
ARM CPU.

COMMRX Output Communications channel receive. When LOW, this signal denotes that the 
communications channel receive buffer is empty. The communications channel 
allows serial communication of bytes between the processor and an external device, 
using the JTAG port as the serial connection.

COMMTX Output Communications channel transmit. When HIGH, this signal denotes that the 
communications channel transmit buffer is empty.

AGNT Input AGNT is a signal from the bus arbiter that indicates that the bus master will be 
granted the bus when BWAIT is LOW.

This signal changes during the LOW phase of BCLK and remains valid through the 
HIGH phase.

BCLK Input System (bus) clock. This clock times all bus transfers. The clock has two distinct 
phases. Phase 1 in which BCLK is LOW, and phase 2 in which BCLK is HIGH.

BnRES Input This active LOW signal indicates the reset status of the bus and is driven by the reset 
controller.

DSELARM Input DSELARM is a signal from the bus decoder to a bus slave, indicating that the slave 
device is selected and that a data transfer is required. For this module, the signal is 
used to put the ARM core into a test mode so that vectors can be written in and out 
of the core.

This signal becomes valid during the BCLK HIGH phase before the data transfer is 
required, and remains active until the last BCLK HIGH phase of the transfer.

BA Output BA is the system address bus, which is driven by the current bus master.

The addresses become valid during the BCLK HIGH phase before the transfer to 
which they refer, and remain valid until the last BCLK HIGH phase of the transfer.

BD[31:0] Input/Output BD[31:0] is the bidirectional system data bus.
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BERROR Input A transfer error is indicated by the selected bus slave using the BERROR signal. 
When BERROR is HIGH, a transfer error has occurred. When BERROR is LOW, 
the transfer is successful. This signal is also used in combination with the BLAST 
signal to indicate a bus retract operation.

When no bus transfer is taking place, this signal is driven by the system decoder.

The selected bus slave drives this signal in the LOW phase of BCLK and is valid 
set up to the rising edge of BCLK.

BLAST Input BLAST is driven by the selected bus slave to indicate whether the current transfer 
should be the last of a burst sequence. When BLAST is HIGH the next bus transfer 
must allow for sufficient time for address decoding. When BLAST is LOW, the next 
transfer may continue a burst sequence. This signal is also used in combination with 
the BERROR signal to indicate a bus retract operation.

When no bus transfer is taking place, this signal is driven by the bus decoder.

The selected bus slave drives this signal in the LOW phase of BCLK and is valid 
set up to the rising edge of BCLK.

BWAIT Input BWAIT is driven by the selected bus slave to indicate whether the current transfer 
may complete. If BWAIT is HIGH, a further bus cycle is required. If BWAIT is 
LOW the transfer may complete in the current bus cycle.

When no bus transfer is taking place this signal is driven by the system decoder.

The selected bus slave drives this signal in the LOW phase of BCLK and is valid 
set up to the rising edge of BCLK.

BWRITE Output When HIGH this signal indicates a write cycle, and when LOW a read cycle.

This signal has the same timing as the address bus.

AREQ Output AREQ indicates to the arbiter that the block requires the bus. In this module, this 
signal is permanently tied HIGH by default, indicating that the ARM CPU requires 
the bus at all times.

AREQ must be set up to the falling edge of BCLK.

BTRAN[1:0] Output These signals indicate the type of the next transaction, which may be address-only, 
nonsequential or sequential.

These signals are driven by this block when AGNT is asserted, and are valid during 
the BCLK HIGH phase before the transfer to which they refer.

BLOK Output When HIGH, this signal indicates that the following transfer is to be indivisible, and 
that no other bus master should be given access to the bus.

The signal is driven by this block when granted, and becomes valid during the 
BCLK HIGH phase before the transfer to which it refers. It remains valid until the 
last BCLK HIGH phase of the last locked transfer.

Table 3-13 ASB signal descriptions (continued)

Name Type Description
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3.8.2 Overview of the wrapper blocks

Figure 3-39 on page 3-76 shows the modules that make up the ARM7TDMI AMBA 
interface.

BSIZE[1:0] Output These signals indicate the size of the transfer, which may be byte, halfword or word.

These signals have the same timing as the address bus.

BPROT[1:0] Output These signals provide additional information about a bus access, and are primarily 
intended for use by a bus protection unit or by the decoder. The signals indicate 
whether the transfer is an opcode fetch or data access, as well as whether the transfer 
is a supervisor mode access, or user mode access.

These signals have the same timing as the address bus.

nTRST Input nTRST is part of the IEEE 1149.1 JTAG standard. When LOW, it resets the JTAG 
interface.

TCK Input The JTAG clock (Test clock). This is part of the IEEE 1149.1 JTAG standard.

TMS Input Test mode select. This is part of the IEEE 1149.1 JTAG standard.

TDI Input Test data in. This is part of the IEEE 1149.1 JTAG standard.

TDO Output Test data out. This is part of the IEEE 1149.1 JTAG standard.

Table 3-13 ASB signal descriptions (continued)

Name Type Description
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Figure 3-39 Main modules of the ARM7TDMI AMBA interface
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A7TDBus The data bus control block is used to route both the input and 
output data from the ARM core. The ARM core unidirectional 
DIN and DOUT buses are used and are combined together to form 
the bidirectional BD[31:0].

A7TWrapTri The tristate buffer module is used to control the driving of all the 
ASB output signals. If the bus master is to be used in a design 
which does not use tristate buses then this module can be modified 
to generate the appropriate signals.

A7TWrapTest The test module includes the following functions:

• The main test state machine to control the application of the 
test vectors.

• A 28-bit test register to store the value of the control inputs 
during test.

• An output mux to select either the control outputs or the 
address to be driven onto the data bus.

A7TWrapCtl The control inputs block switches a number of control signals 
between the values required for normal operation and the values 
applied during test. If the test logic is removed then this module is 
not required.

Table 3-14 shows how the ARM7TDMI macrocell signals are connected.

Table 3-14 Connections of ARM7TDMI signals

Name Description Type Connected to

A[31:0] Addresses Output BA[31:0] via a tristate buffer.

ABE Address bus enable Input Tied HIGH to drive the address and control 
signals at all times. The tristate control of the 
address and control signals is provided using a 
tristate buffer external to the ARM macrocell.

ABORT Memory abort Input Latched version of BERROR.

ALE Address latch enable Input Tied HIGH to allow pipelined addresses from the 
core.

APE Address pipeline enable Input Tied HIGH to allow pipelined addresses from the 
core.

BIGEND Big endian configuration Input Default configuration is tied LOW for Little 
Endian operation.
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BL[3:0] Byte latch control Input Tied HIGH to latch all 32 bits of the data bus when 
the core is clocked.

BREAKPT Breakpoint Input Tied LOW as there is no external debug logic.

BUSDIS Bus disable Output Only used for test.

BUSEN Data bus configuration Input Tied LOW to use the unidirectional data buses.

COMMRX Communications channel receive Output Connected to system output COMMRX.

COMMTX Communications channel transmit Output Connected to system output COMMTX.

CPA Coprocessor absent Input Tied HIGH as there is no external coprocessor.

CPB Coprocessor busy Input Tied HIGH as there is no external coprocessor.

D[31:0] Data Bus Inout Unconnected as the unidirectional data buses are 
used.

DBE Data bus enable Input Tied HIGH to drive the data buses at all times. 
Tristate control of the data bus is provided using a 
tristate buffer external to the ARM macrocell.

DBGACK Debug acknowledge Output Only used for test.

DBGEN Debug enable Input Tied HIGH to allow use of JTAG debug.

DBGRQ Debug request Input Tied LOW as there is no external debug logic.

DBGRQI Internal debug request Output Only used for test.

DIN[31:0] Data input bus Input Comes from BD.

DOUT[31:0] Data output bus Output Used to drive BD.

DRIVEBS Boundary scan cell enable Output Unconnected output.

ECAPCLK Extest capture clock Output Unconnected output.

ECAPCLKBS Extest capture clock for boundary 
scan

Output Unconnected output.

ECLK External clock output Output Unconnected output.

EXTERN[1:0] External input Input Tied LOW as there is no external debug logic.

HIGHZ Output Only used for test.

Table 3-14 Connections of ARM7TDMI signals (continued)

Name Description Type Connected to
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ICAPCLKBS Intest capture clock Output Unconnected output.

IR[3:0] TAP controller Instruction register Output Unconnected output.

ISYNC Synchronous interrupts Input Tied HIGH for synchronous interrupts.

LOCK Locked operation Output Used to form BLOK.

MAS[1:0] Memory access size Output Used to form BSIZE.

MCLK Memory clock input Input Main clock input connected to BCLK.

nCPI Not coprocessor instruction Output Only used for test.

nENIN NOT enable input Input Tied LOW to enable data buses.

nENOUT Not enable output Output Only used for test.

nENOUTI Not enable output Output Only used for test.

nEXEC Not executed Output Only used for test.

nFIQ Not fast interrupt request Input Connected to system ARMNFIQ.

nHIGHZ Not HIGHZ Output Unconnected output.

nIRQ Not interrupt request Input Connected to system ARMNIRQ.

nM[4:0] Not processor mode Output Only used for test.

nMREQ Not memory request Output Used to form BTRAN[1].

nOPC Not opcode fetch Output Used to form BPROT.

nRESET Not reset Input From system BnRES.

nRW Not read/write Output Used to form BWRITE.

nTDOEN NotTDO enable Output Only used for test.

nTRANS Not memory translate Output Used to from BPROT.

nTRST Not test reset Input From system nTRST.

nWAIT Not wait Input Generated from the main state machine in 
combination with the system BWAIT signal.

PCLKBS Boundary scan update clock Output Unconnected output.

Table 3-14 Connections of ARM7TDMI signals (continued)

Name Description Type Connected to
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3.8.3 Default signal configurations

Within the wrapper, there are a number of control signals that are tied to default values.

The following configurations exist:

• BIGEND is tied LOW for little-endian operation, but may be tied HIGH for big 
endian operation.

• ISYNC is tied HIGH for synchronous interrupts, but may be tied LOW if 
asynchronous interrupts are used.

RANGEOUT[1:0] EmbeddedICE macrocell Output Only used for test.

RSTCLKBS Boundary scan reset clock Output Unconnected output.

SCREG[3:0] Scan chain register Output Only used for test.

SDINBS Boundary scan serial input data Output Unconnected output.

SDOUTBS Boundary scan serial output data Input Tied LOW as no external scan chains 
implemented.

 SEQ Sequential address Output Used to form BTRAN[1:0].

SHCLKBS Boundary scan shift clock, phase 1 Output Unconnected output.

SHCLK2BS Boundary scan shift clock, phase 2 Output Unconnected output.

TAPSM[3:0] TAP controller state machine Output Unconnected output.

TBE Test bus enable Input Tied HIGH to drive outputs.

TBIT Thumb state Output Only used for test.

TCK Test clock Input From system TCK.

TCK1 Output Unconnected output.

TCK2 Output Unconnected output.

TDI Input From system TDI.

TDO Test data output Output To system TDO.

TMS Input From system TMS.

Table 3-14 Connections of ARM7TDMI signals (continued)

Name Description Type Connected to
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• The debug input signals (BREAKPT, DBGEN, DBGRQ and EXTERN[1:0]) 
are tied to fixed values. To implement additional debug logic external to the core, 
these signals may be used.

• The coprocessor signals (CPA, CPB) are tied HIGH, but will be required if an 
external coprocessor is to be added.

• If an additional boundary scan is to be added, the SDOUTBS input will be 
required.

3.8.4 Description of the wrapper blocks

This section contains a detailed description of each of the following blocks:

• ARM7TWrap

• ARM7TWrapMSM

• A7TDBus on page 3-82

• A7TWrapTri on page 3-82

• A7TWrapTest on page 3-83.

ARM7TWrap

This top-level module is purely structural, and connects together all the other modules 
with the wrapper.

The default signal configurations described above are tied off at this level and if they are 
required externally to the wrapper, they can be routed to the ports of this block.

If the test interface is to be removed, it can be done by removing it from this module and 
tying the unconnected output signals that are generated to appropriate levels, as 
described within the HDL code.

ARM7TWrapMSM

The main state machine is used to determine when the core is clocked and when the 
various output signals can be driven onto the ASB bus. The state machine has eight 
states, which are described below:

IDLE When in the IDLE state, the ARM does not require the ASB, so 
can be clocked freely. The ARM is not granted, so drive onto the 
ASB is disabled.

BUSIDLE When in the BUSIDLE state, the ARM is granted ownership of 
the ASB but does not require it. The ARM is clocked freely and 
nMREQ/SEQ are used to generate the BTRAN signals.
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HOLD In the HOLD state, the ARM wishes to use the ASB but is not 
granted its ownership. The ARM is waited until it regains bus 
ownership. BTRAN is forced to ATRAN to provide the 
ATRAN-STRAN combination required during master ownership 
changeover.

HANDOVER In the HANDOVER state, the ARM has just gained ownership of 
the bus. The ARM is still waited as no data will be returned this 
cycle. BTRAN is forced to STRAN to form the second half of the 
ATRAN-STRAN cycle sequence.

ACTIVE In the ACTIVE state, the ARM is actively performing bus 
transactions. The ARM’s wait input is derived from the ASB 
BWAIT signal. The output data is driven if the transfer is a write 
cycle.

RETRACT In the RETRACT state, the core is not clocked as the transfer 
cannot complete. The state machine will insert an ATRAN cycle 
as the first part of the ATRAN-STRAN sequence required to retry 
the transfer.

CPRTIDLE In the CPRTIDLE state, the ARM is performing a CPRT while not 
granted ASB ownership. The core is clocked, but none of the 
output signals are driven onto the ASB.

CPRTBUSIDLE In the CPRTBUSIDLE state, the ARM is performing a CPRT 
while granted the bus.

A7TDBus

The data bus control block is used to route both the input and output data from the ARM 
core.

The ARM core unidirectional DIN and DOUT buses are used. On the input side this 
block provides a transparent latch that is used to reduce the input hold time required by 
the core. On the output side, this block selects the output data either from the ARM core 
or, in test mode, from the test module.

A7TWrapTri

The tristate buffer module is used to control the driving of all the ASB output signals. 
If the bus master is to be used in a design that does not use tristate buses, this module 
can be modified to generate the appropriate signals.
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The data bus is driven either during a write transfer (as indicated by the main state 
machine), or when the core is being tested (and either the address or the control signal 
outputs are being read).

The address and control signals are driven from this module, as controlled by the main 
state machine.

The tristate control for the BTRAN signals is simply derived from the grant signal, 
AGNT.

This block also contains the tristate drivers for the transfer response signals (BWAIT, 
BLAST and BERROR), which are only used when the core is being tested. When 
selected for test, these signals have a fixed zero, wait-state, no-error response. If the test 
logic is removed, these tristate drivers may also be removed.

A7TWrapTest

The test module includes the following functions:

• The main test state machine to control the application of the test vectors.

• A 28-bit test register to store the value of the control inputs during test.

• An output mux to select either the control outputs or the address to be driven onto 
the data bus.

The state diagram for the main test state machine is shown in Figure 3-40 on page 3-84.
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Figure 3-40 Main test state machine state diagram

The DSEL signal is used to control when test vectors are applied, and therefore the 
transitions through the test state machine.

CTRL_IN In the CTRL_IN state, the write vector on the data bus is used to 
load a test register, which determines the values of the control 
signal that will be applied to the core when it is clocked,
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DATA_IN The DATA_IN state is entered when the core is performing a read 
transfer. The data for the read is supplied from BD. The core is 
clocked in this state.

DATA_OUT The DATA_OUT state is used for write transfers, and the output 
data from the core is driven onto BD. The core is also clocked in 
this state.

During the STAT_OUT and the ADDR_OUT states, the output status signals and then 
the address bus are driven onto BD, so that they can be read externally. The address and 
status signals from the core are checked after each transfer.

The core will then pass via the TURNAROUND state back to the CTRL_IN state.

To exit from test, an extra read vector is required after the ADDR_OUT state, and this 
will force the test state machine back to the INACTIVE state. This in turn will cause all 
the core input and output signals to revert to their normal mode of operation.

The test module also includes a 28-bit test register that is loaded during the CTRL_IN 
state, and determines the value on the control inputs when the core is clocked. This 
occurs during either DATA_IN or DATA_OUT. Table 3-15 shows the control input bit 
positions.

Table 3-15 ARM7TDMI control input bit positions

Signal Description Bit position Comments

SDOUTBS Boundary scan serial output data 27

TBE Test bus enable 26

APE Address pipeline enable 25

BL[3:0] Byte latch control [24:21] ANDed with MclkEnable, and should only be valid 
during data access cycle.

TMS Test mode select 20

TDI Test data in 19

TCK Test clock 18 ANDed with MclkEnable and BCLK.

nTRST Not test reset. 17

EXTERN1 External input 1. 16

EXTERN0 External input 0. 15

DBGRQ Debug request 14
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The final part of the test control logic is the output mux. This determines which signals 
are driven onto the BD bus:

• During DATA_OUT the core DOUT bus is driven onto BD.

• During ADDR_OUT the address bus is driven onto BD.

• During STAT_OUT the status outputs are driven onto BD.

BREAKPT Breakpoint 13

DBGEN Debug enable 12

ISYNC Synchronous interrupts. 11

BIGEND Big endian configuration 10

CPA Coprocessor absent 9

CPB Coprocessor busy 8

ABE Address bus enable 7 This should normally be set HIGH, as, if the address 
bus is tristated (ABE LOW), then it will not be 
possible to read address values.

ALE Address latch enable 6

DBE Data bus enable 5 ANDed with MclkEnable.

nFIQ Not fast interrupt request. 4

nIRQ Not interrupt request. 3

ABORT Memory abort 2 AMBA BERROR signal must be latched, as it is 
only valid at the end of phase 1.

nWAIT Not wait 1 ANDed with MclkEnable, so that the core state can 
only change during the data access cycle.

nRESET Not reset 0

Table 3-15 ARM7TDMI control input bit positions  (continued)

Signal Description Bit position Comments
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Table 3-16 shows the bit positions of the status output signals when driven onto the data 
bus.

Table 3-16 ARM7TDMI status bit positions

Signal Description Bit position Comment

BUSDIS Bus Disable 31

SCREG[3:0] Scan chain register [30:27] These signals are not important to the 
normal functioning of the core, but are 
included in this test vector to give a slight 
improvement in fault coverage during scan 
and debug testing.

HIGHZ HIGHZ instruction in TAP controller 26

nTDOEN not TDO enable 25

DBGRQI Internal debug request 24

RANGEOUT0 ICEbreaker Rangeout0 23

RANGEOUT1 ICEbreaker Rangeout1 22

COMMRX Communications channel receive 21

COMMTX Communications channel transmit 20

DBGACK Debug acknowledge 19

TDO Test data out 18 This value is often tristate (as indicated by 
nTDOEN), so will usually be masked out.

nENOUT Not enable output. 17 nENOUT is only valid during the data 
access cycle, so MclkEnable is used to 
clock a transparent latch that will capture the 
correct state.

nENOUTI Not enable output 16 nENOUT is only valid during the data 
access cycle, so MclkEnable is used to 
clock a transparent latch that will capture the 
correct state.

TBIT Thumb state 15

nCPI Not coprocessor instruction 14

nM[4:0] Not processor mode [13:9]

nTRANS Not memory translate 8
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A7TWrapCtl

The A7TWrapCtl control block is part of the AMBA test harness and switches a number 
of control signals between the values required for normal operation and the values 
applied during test. If the test logic is removed then this module is not required.

3.8.5 Removal of the test interface

The test interface logic may be removed by removing the A7TWrapTest module from 
the top level of the wrapper design. It is then necessary to tie the outputs which were 
originally generated from this block to fixed values and this is described in the HDL 
code.

The removal of the test interface means that the TestStatOut signal should be static. 
This signal is used in the A7TDbus block to switch the output data between the core, 
and the test logic. Therefore it should be confirmed that this mux has either been 
removed automatically during synthesis, or has been removed from the RTL code.

It is also possible to remove the three tristate drivers for BWAIT, BLAST and 
BERROR in the A7TWrapTri block.

nEXEC Not executed 7

LOCK Locked operation 6

MAS[1:0] Memory access size [5:4]

nOPC Not opcode fetch 3

nRW Not read/write 2

nMREQ Not memory request 1

SEQ Sequential address 0

Table 3-16 ARM7TDMI status bit positions  (continued)

Signal Description Bit position Comment
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Chapter 4 
APB Modules

This chapter describes the modules that comprise the Advanced Peripheral Bus (APB). 
It contains the following:

• Interrupt controller on page 4-2

• Remap and pause controller on page 4-15

• Timer on page 4-24.
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4.1 Interrupt controller

The interrupt controller consists of:

• source status and interrupt request status

• separate enable set and enable clear registers to allow independent bit enable 
control of interrupt sources

• level-sensitive interrupts

• programmable interrupt source available.

Figure 4-1 Interrupt controller module block diagram

4.1.1 Hardware interface and signal description

The interrupt controller module is connected to the APB bus. Table 4-1 shows the signal 
descriptions for the interrupt controller.

Interrupt 
ControllerPWRITE

BnRES

BCLK

IRQESource0

FIQESource

IRQESource[5:2]

NIRQ

NFIQ

PENABLE

PSELIC

PADDR[8:2]

PWDATA[5:0]
PRDATA[7:0]

Table 4-1 APB signal descriptions for interrupt controller

Name Type Description

BCLK In This clock times all bus transfers. Both the LOW phase and HIGH phase of BCLK are 
used to control transfers.

BnRES In The bus reset signal is active LOW and is used to reset the system. 

PENABLE In This enable signal is used to time all accesses on the peripheral bus. 

PSELIC In When HIGH, this signal indicates that this module has been selected by the APB bridge. 
This selection is a decode of the system address bus BA.
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4.1.2 Interrupt controller

The interrupt controller provides a simple software interface to the interrupt system. 
Certain interrupt bits are defined for the basic functionality required in any system. The 
remaining bits are available for use by other devices in any particular implementation. 
In an ARM system, two levels of interrupt are available:

• Fast Interrupt Request (FIQ) for fast, low latency interrupt handling

• Interrupt Request (IRQ) for more general interrupts.

Ideally, in an ARM system, only a single FIQ source would be in use at any particular 
time. This provides a true low-latency interrupt, because a single source ensures that the 
interrupt service routine may be executed directly without the need to determine the 
source of the interrupt. It also reduces the interrupt latency because the extra banked 
registers, which are available for FIQ interrupts, may be used to maximum efficiency 
by preventing the need for a context save.

PADDR[8:2] In This is the peripheral address bus, which is used for decoding register accesses. The 
addresses become valid before PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.

PWRITE In This signal indicates a write when HIGH and a read when LOW. It has the same timing as 
the peripheral address bus. 

PWDATA[5:0] In The write peripheral data bus is driven by the bridge at all times.

PRDATA[7:0] Out The read peripheral data bus is driven by this block during read cycles (when PWRITE is 
LOW and PSELIC is HIGH).

FIQESource In FIQ interrupt signal into the interrupt module. This active HIGH signal indicates that a fast 
interrupt request has been generated.

IRQESource0 

IRQESource[5:2]
In IRQ interrupt signals into the interrupt module. These active HIGH signals indicate that 

interrupt requests have been generated. (IRQESource[1] is internally generated in the 
interrupt controller module and is used to provide a software triggered IRQ). 

NFIQ Out Active LOW fast interrupt request input to the ARM core.

NIRQ Out Active LOW interrupt request input to the ARM core.

Table 4-1 APB signal descriptions for interrupt controller (continued)

Name Type Description
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Separate interrupt controllers are used for FIQ and IRQ. Only a single bit position is 
defined for FIQ, which is intended for use by a single interrupt source, while up to 32 
bits are available in the IRQ controller. The standard configuration only makes six 
interrupt request lines available. This can be extended to up to 32 sources by altering the 
IRQSize constant and increasing the width of the PWDATA and PRDATA lines to the 
interrupt controller.

The IRQ interrupt controller uses a bit position for each different interrupt source. Bit 
positions are defined for a software programmed interrupt, a communications channel 
and counter-timers. Bit 0 is unassigned in the IRQ controller so that it may share the 
same interrupt source as the FIQ controller.

All interrupt source inputs must be active HIGH and level sensitive. Any inversion or 
latching required to provide edge sensitivity must be provided at the generating source 
of the interrupt

No hardware priority scheme nor any form of interrupt vectoring is provided, because 
these functions can be provided in software.

A programmed interrupt register is also provided to generate an interrupt under software 
control. Typically this may be used to downgrade a FIQ interrupt to an IRQ interrupt.

Interrupt control

The interrupt controller provides interrupt status, raw interrupt status and an enable 
register. The enable register is used to determine whether or not an active interrupt 
source should generate an interrupt request to the processor.

The raw interrupt status indicates whether or not the appropriate interrupt source is 
active prior to masking and the interrupt status indicates whether or not the interrupt 
source is causing a processor interrupt.

The enable register has a dual mechanism for setting and clearing the enable bits. This 
allows enable bits to be set or cleared independently, with no knowledge of the other 
bits in the enable register.

When writing to the enable set location, each data bit that is HIGH sets the 
corresponding bit in the enable register. All other bits of the enable register are 
unaffected. Conversely, the enable clear location is used to clear bits in the enable 
register while leaving other bits unaffected.

Figure 4-2 on page 4-5 shows the structure for a single segment of the interrupt 
controller.
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Figure 4-2 Single bit slice of the interrupt controller

The IRQ controller will usually have a larger number of bit slices, where the exact size 
is dependent on the system implementation.

The FIQ interrupt controller consists of a single bit slice, located on bit 0.

4.1.3 Interrupt controller memory map

The base address of the interrupt controller is not fixed and may be different for any 
particular system implementation. However, the offset of any particular register from 
the base address is fixed.

Set

Clear

Enable Set

External Interrupt

Test Interrupt

Source Select

Enable Clear

Enable

Status

Raw Status

Active LOW 
interrupt 
outputOther Interrupt 

Bit Slices

Table 4-2 Memory map of the interrupt controller APB peripheral

Address Read Location Write Location

IntBase + 0x000 IRQStatus

IntBase + 0x004 IRQRawStatus

IntBase + 0x008 IRQEnable IRQEnableSet

IntBase + 0x00C IRQEnableClear

IntBase + 0x010 IRQSoft

IntBase + 0x100 FIQStatus

IntBase + 0x104 FIQRawStatus

IntBase + 0x108 FIQEnable FIQEnableSet
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4.1.4 Interrupt controller register descriptions

The following registers are provided for both FIQ and IRQ interrupt controllers:

Enable Read-only. The enable register is used to mask the interrupt input 
sources and defines which active sources will generate an 
interrupt request to the processor. This register is read-only, and its 
value can only be changed by the enable set and enable clear 
locations. If certain bits within the interrupt controller are not 
implemented, the corresponding bits in the enable register must 
be read as undefined.

An enable bit value of 1 indicates that the interrupt is enabled and 
will allow an interrupt request to reach the processor. An enable 
bit value of 0 indicates that the interrupt is disabled. On reset, all 
interrupts are disabled.

EnableSet Write-only. This location is used to set bits in the interrupt 
enable register. When writing to this location, each data bit that is 
HIGH causes the corresponding bit in the enable register to be set. 
Data bits that are LOW have no effect on the corresponding bit in 
the enable register.

EnableClear Write-only. This location is used to clear bits in the interrupt 
enable register. When writing to this register, each data bit that is 
HIGH causes the corresponding bit in the enable register to be 
cleared. Data bits that are LOW have no effect on the 
corresponding bit in the interrupt enable register.

RawStatus Read-only. This location provides the status of the interrupt 
sources to the interrupt controller. A HIGH bit indicates that the 
appropriate interrupt request is active prior to masking.

IntBase + 0x10C FIQEnableClear

IntBase + 0x014 IRQTestSource IRQTestSource

IntBase + 0x018 IRQSourceSel IRQSourceSel

IntBase + 0x114 FIQTestSource FIQTestSource

IntBase + 0x118 FIQSourceSel FIQSourceSel

Table 4-2 Memory map of the interrupt controller APB peripheral (continued)

Address Read Location Write Location
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Status Read-only. This location provides the status of the interrupt 
sources after masking. A HIGH bit indicates that the interrupt is 
active and will generate an interrupt to the processor.

The following register is also provided:

Soft Write only. A write to bit 1 of this register sets or clears a 
programmed interrupt. Writing to this register with bit 1 set HIGH 
generates a programmed interrupt, while writing to it with bit 1 set 
LOW clears the programmed interrupt. The value of this register 
may be determined by reading bit 1 of the source status register. 
Bit 0 of this register is not used.

Two extra read/write registers are defined for both FIQ and IRQ to allow testing of the 
interrupt controller module using the AMBA test methodology. They must not be 
accessed during normal operation.

TestSource Same size as RawStatus, and used to load RawStatus with test 
data.

SourceSel 1-bit wide (bit 0). When set, the value in TestSource is 
multiplexed into RawStatus.

4.1.5 Interrupt registers standard configuration

The FIQ interrupt controller is one bit wide and is located on bit 0. The source of this 
interrupt is implementation dependent.

The interrupt controller will be customized to fit into each application. The following is 
an example minimum set of interrupt bits assigned in a system.

Bits 1 to 5 in the IRQ interrupt controller are defined in the standard EASY world. Bit 
0 and Bits 6 up to 31 are available for use as required. Bit 0 is left available so that the 
FIQ source may also be routed to the IRQ controller in an identical bit position.

Table 4-3 Example of IRQ sources

Bit Interrupt Source

0

1 Programmed Interrupt

2 Comms Rx
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4.1.6 System description

This part gives a detailed description of how the HDL code for the system interrupt 
controller is set out. A simple system block diagram, with information about the main 
parts of the HDL code, is followed by details of all the registers, and signals used in the 
system. This section should be read together with the HDL code.

Figure 4-3 shows the interrupt controller module block diagram.

Figure 4-3 Interrupt controller module block diagram

The main parts of the interrupt controller are the interrupt registers and test registers that 
are used to control the use of the interrupt input signals to generate the interrupt outputs 
to the ARM core.

All registers used in the system are clocked from the rising edge of the system clock 
BCLK. Enable signals are used to control the loading of the registers, and multiplexor 
signals are used to remove the combinational logic from the register statement. All 
registers use the asynchronous reset BnRES.

3 Comms Tx

4 Timer 1

5 Timer 2

Table 4-3 Example of IRQ sources (continued)

Bit Interrupt Source

Interrupt Controller Module

Interrupt 
Control and 

Output 
Generation

Output 
Data 
Driver

FIQ 
Enable 

Registers

IRQ Test 
Registers IRQ 

Enable 
Registers

FIQ Test 
Registers

Programm
ed IRQ 
Register

ARM Core 
Interrupt 
Drivers
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Two diagrams are used to show the interrupt controller HDL file. Figure 4-2 on page 4-5 
shows the layout of the bit slices that are used for bit 0 of the FIQ and bits 0 and 2:5 of 
the IRQ, while Figure 4-3 on page 4-8 shows the layout of the whole system:

Figure 4-4 Interrupt controller slice system diagram

Figure 4-4 shows a diagram of a single interrupt controller slice. Figure 4-5 on 
page 4-10 shows the use of each interrupt slice within the whole system. Interrupt bit 1 
(IRQSoft) is implemented differently to the other interrupt slices (bits 0, and 2 to 5).
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Sel
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Status

PADDR
PWDATA
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Figure 4-5 Interrupt controller module system diagram

The main sections and processes in the code are:

• Constant and signal definitions on page 4-11.

• General signals on page 4-11.

• IRQTestSource register on page 4-11.

• IRQSourceSel register on page 4-12.

• IRQSource multiplexer on page 4-12.

• IRQSoft register on page 4-12.

• IRQRawStatus signal on page 4-12.

• IRQEnable register on page 4-12.

• IRQStatus signal on page 4-13.

• FIQTestSource register on page 4-13.

• IRQSourceSel register on page 4-12.

IRQ 
Enable

(1)

IRQ Raw 
Status(1)

IRQStatus

IRQ 
Soft

PADDR
PWDATA

FIQESource

IRQESource0

IRQESource(5:2)

NFIQ

NIRQ

IRQRawStatus
IRQEnable
FIQStatus

FIQRawStatus
FIQEnable

IRQTestSource0
IRQTestSource
IRQSourceSel

FIQTestSource
FIQSourceSel

PADDR

PRDATA

FIQ

IRQ(0)

IRQ(5:2)

PSELIC

PWRITE

PRDAT
AIntReg

PRDAT
AEn
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• FIQSource multiplexer on page 4-13.

• FIQRawStatus signal on page 4-13.

• FIQEnable register on page 4-13.

• FIQStatus signal on page 4-13.

• Output data generation on page 4-13.

• Interrupt outputs to ARM core on page 4-14.

• Tri-state driver for data bus on page 4-14.

The above sections and processes are now explained in more detail in the following 
paragraphs.

Constant and signal definitions

The first two constants that are specified (IRQSIZE and FIQSIZE), are used to set the 
number of IRQ and FIQ lines that are used in the system. The defaults are for six IRQ 
lines and one FIQ line. These constants should only be changed when the number of 
interrupt input sources are changed.

The other constants are used to set the relative addresses of the interrupt controller 
registers from the base address.

The signals that are used inside the module are then defined.

General signals

The signal Addr is used to simplify the address checking logic that is synthesized, by 
setting the unused address bits LOW, so that they are ignored during address checking. 
This signal is then used instead of PADDR for all address checking.

SetClear is used to control the setting or clearing of the enable registers. This variable 
is just a direct copy of bit 2 of the address bus PADDR (LOW when address is 
EnableSet, HIGH when address is EnableClear for both IRQ and FIQ addresses).

Enable is used in the generation of the enable signals for all of the registers used in the 
system. It is a combination of the APB signals PENABLE, PSELIC and PWRITE.

IRQTestSource register

The IRQTestSource register is used to test the interrupt controller. It consists of 
registers for all bits of the IRQ system that are used (currently bits 0 and 2:5), and are 
set when a value is written to the IRQTestSource address. They are all reset to LOW.
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IRQSourceSel register

The IRQSourceSel register is used to control the IRQRawStatus selection. It stores 
the value that was written to the IRQSourceSel address. It is reset to LOW.

IRQSource multiplexer

The IRQSource multiplexer is used to generate the intermediate signal IRQSource 
(which is used to generate IRQRawStatus). It uses the current value of IRQSourceSel 
to select between the external interrupt input signals IRQESource, and the current 
value of the test signals IRQTestSource.

IRQSoft register

IRQSoft is the software programmable interrupt register. Writes to bit 1 of the IRQSoft 
address are used to set and clear this interrupt source, and the default reset state is LOW.

IRQRawStatus signal

The IRQRawStatus signal is used to combine the IRQSource and IRQSoft signals, 
and is the value obtained when the IRQRawStatus address is read.

IRQEnable register

This section is used to generate the Enable signals that are used to control how the 
interrupt signals are used in the interrupt controller.

The IRQEnableEn signal is used to enable the generation of IRQEnableNext and 
IRQEnable, and is set HIGH when a value is written to the IRQEnableSet or 
IRQEnableClear locations.

The IRQEnableNext term is used to control the setting and clearing of the IRQEnable 
register, using the SetClear signal to determine how to use the value that has been 
written. To set bits in the IRQEnable register, the new next value becomes a logical OR 
of the written value and the current value of IRQEnable, ensuring that only the required 
bits are changed. To clear bits in the register, the new next value becomes a logical AND 
of the inverted written value and the current value of IRQEnable, therefore clearing the 
enables for the required bits. The next value is only generated when the IRQEnableEn 
signal is HIGH, as this is the only time that the signal is required to be loaded into the 
IRQEnable register. The next value becomes valid after the rising edge of BCLK, due 
to the timing of the Enable signal.

The IRQEnable register is cleared on reset, and set to IRQEnableNext on the rising 
edge of BCLK and when IRQEnableEn is set HIGH.
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IRQStatus signal

IRQStatus is a combination of the enable lines and the interrupt sources, and is used in 
the generation of the NIRQ output to the ARM core. It is also the value that is read from 
the IRQStatus address.

FIQTestSource register

This section is the same as for the IRQ, but is only one bit wide in the default system.

FIQSourceSel register

This section is the same as for the IRQ.

FIQSource multiplexer

This section is the same as for the IRQ, but is only one bit wide in the default system.

FIQRawStatus signal

The FIQRawStatus signal is a direct copy of the FIQSource multiplexer output in the 
default single bit system, and is the value obtained when the FIQRawStatus address is 
read.

FIQEnable register

This section is the same as for the IRQ, but is only one bit wide in the default system.

FIQStatus signal

This section is the same as for the IRQ, but is only one bit wide in the default system.

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB data bus. The value of Addr is compared with all of the 
register addresses, and the value of PRDATAInt is set accordingly. This is then stored 
in the PADDRIntReg register to help decrease the output propagation time by using a 
registered output, rather than an output with the combinational delay of the large 
multiplexer. This register also synchronizes the reading of all raw interrupt inputs to the 
rising edge of the clock.
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Interrupt outputs to ARM core

This section drives the NIRQ and NFIQ outputs according to the values of the Status 
signals. As the outputs are active LOW, then they are set LOW when any of the interrupt 
lines are HIGH. For the NIRQ line this is done by comparing the current value of 
IRQStatus with zero, and setting NIRQ HIGH if they are equal. As there is only one 
FIQ interrupt line, then this is inverted to generate NFIQ.

Tri-state driver for data bus

PRDATAEnNext is used as the input to the PRDATAEn register, and is set during the 
second clock cycle of a read when PENABLE is HIGH. The enable register is used to 
reduce the read output setup time, by removing the combinational logic delay of the 
PRDATAEnNext generation and replacing it with the D to Q setup time of a rising edge 
register.

The APB data bus is driven with the current internal version when the enable signal is 
HIGH, and tristated at all other times.
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4.2 Remap and pause controller

The reset and pause module provides:

• defined boot behavior with power on reset detection

• wait for interrupt pause mode

• an identification register.

A block diagram of the remap and pause module is shown in Figure 4-6.

Figure 4-6 Remap and pause module block diagram

4.2.1 Hardware interface and signal description

The remap and pause module is connected to the APB bus. Table 4-4 describes the APB 
signals used and produced.

Remap and 
Pause

PWRITE

BnRES

BCLK

NIRQ

NFIQ

Remap

PausePENABLE

PSELRPC

PADDR[5:2]

PWDATA[0]

PRDATA[7:0]

Table 4-4 APB signal descriptions for remap and pause controller

Name Type Description

BCLK Input This clock times all bus transfers. Both the LOW phase and HIGH phase of BCLK are used 
to control transfers.

BnRES Input The bus reset signal is active LOW and is used to reset the system.

PENABLE Input This enable signal is used to time all accesses on the peripheral bus. 

PSELRPC Input When HIGH, this signal indicates that this module has been selected by the APB bridge. 
This selection is a decode of the system address bus BA.

PADDR[5:2] Input This is the peripheral address bus, which is used for decoding register accesses. The 
addresses become valid before PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.
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4.2.2 Remap and pause

The remap and pause control is the combination of four separate functions:

Pause Defines a method of allowing the processor system to enter a 
low-power, wait for interrupt state, when the system does not 
require the processor to be active.

Identification Provides an indication of the system configuration.

Reset memory map Provides a method of overlaying the system base memory at reset.

Reset status Provides an indication of the cause of the most recent reset 
condition. A minimum implementation is defined.

PWRITE Input This signal indicates a write when HIGH and a read when LOW. It has the same timing as 
the peripheral address bus. 

PWDATA[0] Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[7:0] Output The read peripheral data bus is driven by this block during read cycles (when PWRITE is 
LOW and PSELRPC is HIGH).

NFIQ Input NFIQ interrupt input from the interrupt controller.

NIRQ Input NIRQ interrupt input from the interrupt controller.

Pause Output The Pause signal is HIGH when in the wait for interrupt Pause mode, and LOW at all other 
times.

Remap Output The Remap signal is LOW while the reset memory map is in use, and is HIGH when the 
normal memory map is in use.

Table 4-4 APB signal descriptions for remap and pause controller (continued)

Name Type Description
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4.2.3 Remap and pause memory map

The base address of the remap and pause controller memory is not fixed and may be 
different for any particular system implementation. However, the offset of any particular 
register from the base address is fixed.

4.2.4 Remap and pause register descriptions

Pause

Pause register Write-only. Writing to the pause location causes the system to 
enter a wait for interrupt state, by setting the Pause output HIGH.

The exact effect of writing to this location is not defined, but 
typically this would prevent the processor from fetching further 
instructions until the receipt of an interrupt or a power on reset. 
Further registers may be added to provide more sophisticated 
power-saving modes. 

Identification

ID register Read-only. The ID register provides identification information 
about the system. Only a single-bit implementation (bit 0) is 
required, which is used to indicate if there is further ID 
information.

ID bit 0 flag Identification bit. 

0 - no further ID information

1 - further ID information is available

Table 4-5 Memory map of the Remap and pause controller APB peripheral

Address Read Location Write Location

RemapBase + 0x00 Pause

RemapBase + 0x10 Identification

RemapBase + 0x20 ClearResetMap

RemapBase + 0x30 ResetStatus ResetStatusSet

RemapBase + 0x34 ResetStatusClear
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If the bottom bit of the ID register is set, further bits are required to provide more 
detailed system identification information.

Reset memory map

ClearResetMap register 

Write-only. Writing to the clear reset memory map location 
changes the system memory map. It changes from that required 
during boot-up to that required during normal operation. This is 
done by setting the Remap output to HIGH. Once the reset 
memory map has been cleared and the normal memory map is in 
use, there is no method of resuming the reset memory map, other 
than undergoing a power on reset condition. A typical system 
implementation is to map the system ROM to location 0 at reset, 
but to change the memory map after reset, such that RAM is 
located at location 0 for normal operation. In a system where such 
remapping does not occur, writing to this register has no effect.

Reset status

ResetStatus register Read-only. The ResetStatus register provides the reset status. 
Only one bit of this register is defined in this specification and this 
is bit 0, which provides the power on reset status. Further bits in 
the ResetStatus register may be implemented to provide more 
detailed reset information.The Status register has a dual 
mechanism for setting and clearing bits, allowing independent bits 
to be altered with no knowledge of the other bits in the register. 
This is done by using the ResetStatusClear and the 
ResetStatusSet registers.

The single bit defined in this specification is the power on reset 
bit, which may be used to determine if the most recent reset was 
caused by initial power on, or if a warm reset has occurred.

POR bit 0 flag Power on reset bit.

0 - no POR since flag was last cleared

1- POR
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ResetStatusClear register 

Write-only. This location is used to clear reset status flags. When 
writing to this register each data bit which is HIGH causes the 
corresponding bit in the ResetStatus register to be cleared. Data 
bits which are LOW have no effect on the corresponding bit in the 
ResetStatus register.

ResetStatusSet register 

Write-only. This location is used to set reset status flags. When 
writing to this register each data bit which is HIGH causes the 
corresponding bit in the ResetStatus register to be set. Data bits 
which are LOW have no effect on the corresponding bit in the 
ResetStatus register. This register has no function in the minimal 
reference microcontroller specification, because the power on 
reset status bit cannot be set by software. This register is included 
in the specification to ensure the reset status functionality can be 
expanded.

4.2.5 System description

This part gives a detailed description of how the HDL code for the module is set out. A 
simple system block diagram, with information about the main parts of the HDL code, 
is followed by details of all the registers and signals used in the system. This section 
should be read together with the HDL code.

A simple block diagram of the whole system is shown in Figure 4-6 on page 4-15.

Figure 4-7 Remap and pause module block diagram
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The main parts of the remap and pause module are the Remap and Pause registers that 
are used to control the operation of the system, and the ResetStatus register,

All registers used in the system are clocked from the rising edge of the system clock 
BCLK. Enable signals are used to control the loading of the registers, and a multiplexor 
signal is used to remove the combinational logic from the Pause register statement. All 
registers use the asynchronous reset BnRES.

A diagram of the remap and pause HDL file is shown in Figure 4-8.

Figure 4-8 Remap and pause module system diagram

The main sections and processes in the code are:

• Constant and signal definitions on page 4-21.

• General signals on page 4-21.

• ResetStatus register on page 4-21.

• Remap output register on page 4-21.

• Pause output register on page 4-22.

• Output data generation on page 4-22.

• Tri-state driver for data bus on page 4-23.
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The above sections are now explained in more detail in the following paragraphs.

Constant and signal definitions

The constant REGSIZE is used to set the maximum size of the registers used in the 
system. The only two registers that can be read and are multi-bit are the Identification 
and ResetStatus registers, so REGSIZE is set the same as the larger of these two 
registers. The default system only uses a single bit for Identification and ResetStatus, 
so REGSIZE is set to 1. The extra unused bits in these two registers (if they are of 
different sizes) must be set to LOW. 

The constant IDENTIFICATION holds the identification information about the 
system. 

The other constants are used to set the relative addresses of the registers from the base 
address.

The signals that are used inside the module are then defined.

General signals

The signal Addr is used to simplify the address checking logic that is synthesized, by 
setting the unused address bits LOW, so that they are ignored during address checking. 
This signal is then used instead of PADDR for all address checking.

ResetStatus register

This section contains the ResetStatus register, that is used to show power on reset status 
only in the default system. The single bit gets set HIGH on reset, and set LOW if the 
ResetStatusClear address is written to with bit 0 set HIGH (bits that are LOW will have 
no effect on the value of ResetStatus). The default system does not allow the register 
to be set HIGH again through the ResetStatusSet address.

If Identification is larger than ResetStatus, then the ResetStatus register should only 
be used to set the bits needed, and an extra statement should be used to set the unused 
bits to LOW.

Remap output register

The Remap Output register is used to hold the value of Remap, which is used to 
determine the memory map that is used by the system. It is set LOW on reset, and is set 
HIGH when the ClearResetMap address is written to with any value. Once set HIGH, 
it can only be set LOW by a system reset.
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Pause output register

The Pause Output register is used to hold the value of Pause, which is used to make 
the system enter a wait for interrupt state. It is synchronously set HIGH (on the rising 
edge of BCLK) when the Pause address is written to, and is asynchronously set LOW 
by BnRES, NFIQ or NIRQ. Once set HIGH, it can only be set LOW with a reset or an 
interrupt.

Figure 4-9 shows the operation of setting and clearing the Pause registered output:

Figure 4-9 Pause signal timing

An asynchronous clear is used on the register. This means there is a totally 
asynchronous path from the interrupt source to this register, which allows the system 
clock to be stopped during a low power mode when pause mode is entered.

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB data bus. The value of Addr is compared with all of the 
register addresses, and the value of PRDATAInt is set accordingly. This is then stored 
in the PADDRIntReg register to help decrease the output propagation time by using a 
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registered output, rather than an output with the combinational delay of the large 
multiplexer. This register also synchronizes the reading of all raw interrupt inputs to the 
rising edge of the clock.

Tri-state driver for data bus

PRDATAEnNext is used as the input to the PRDATAEn register, and is set during the 
second clock cycle of a read when PENABLE is HIGH. The enable register is used to 
reduce the read output setup time, by removing the combinational logic delay of the 
PRDATAEnNext generation and replacing it with the D to Q setup time of a rising edge 
register.

The APB data bus is driven with the current internal version when the enable signal is 
HIGH, and tristated at all other times.
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4.3 Timer

The timer module consists of:

• two instantiations of the free-running counters (FRCs)

• system clock prescale and test clock generation.

Figure 4-10 Timer module block diagram

4.3.1 Hardware interface and signal description

The two sets of signals associated with the timer module are: 

• the external connections to the rest of the EASY world

• the internal connections from the timers module to the two FRC modules.

The signal descriptions for the timer are listed in Table 4-6.
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Table 4-6 APB signal descriptions for timer

Name Type Description

BCLK In This clock times all bus transfers. Both the LOW phase and HIGH phase of BCLK are used 
to control transfers.

BnRES In The bus reset signal is active LOW and is used to reset the system.

PENABLE In This strobe signal is used to time all accesses on the peripheral bus. 

PSELCT In When HIGH, this signal indicates that this module has been selected by the APB bridge. 
This selection is a decode of the system address bus BA.

PADDR[5:2] In This is the peripheral address bus, which is used for decoding register accesses. The 
addresses become valid before PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.
4-24 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



APB Modules 
PWRITE In This signal indicates a write when HIGH and a read when LOW. It has the same timing as 
the peripheral address bus. 

PWDATA[15:0] In This signal indicates a write when HIGH and a read when LOW. It has the same timing as 
the peripheral address bus. It becomes valid before PENABLE goes HIGH and remains 
valid after PENABLE goes LOW.

PRDATA[15:0] Out The read peripheral data bus is driven by this block during read cycles (when PWRITE is 
LOW and PSELCT is HIGH).

INTCT1 Out Active HIGH interrupt signal to the interrupt controller module. This signal indicates an 
interrupt has been generated by timer 1, having been decremented to zero.

INTCT2 Out Active HIGH interrupt signal to the interrupt controller module. This signal indicates an 
interrupt has been generated by timer 2, having been decremented to zero.

Table 4-7 Signal descriptions for FRC

Name Type Description

BCLK In Direct connection from timers module

BnRES In Direct connection from timers module

PENABLE In Direct connection from timers module

PSELCT In Direct connection from timers module

PADDR[4:2] In Direct connection from timers module

PWRITE In Direct connection from timers module

PWDATA[15:0] In Direct connection from timers module

Frcsel In FRC register select, driven high when a register in this FRC is addressed (one of two 
different outputs from timer)

Enable0 In Counter clock enable, divide by 1

Enable1 In Counter clock enable, divide by 16

Table 4-6 APB signal descriptions for timer  (continued)

Name Type Description
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 4-25



APB Modules 
4.3.2 Timer introduction

Two timers are defined as the minimum provided within a system, although this may be 
expanded easily. The same principle of simple expansion has been applied to the 
register configuration, allowing more complex timers to be used. These are, from the 
programmer's model, compatible with those already defined.

Two modes of operation are available:

• Free-running mode. The timer wraps after reaching its zero value, and continues 
to count down from the maximum value. This is the default mode.

• Periodic timer mode. The counter generates an interrupt at a constant interval.

4.3.3 Timer operation

The timer is loaded by writing to the Load register and, if enabled, counts down to zero. 
When zero is reached, an interrupt is generated. The interrupt may be cleared by writing 
to the Clear register.

After reaching a zero count, if the timer is operating in free-running mode it continues 
to decrement from its maximum value. If periodic timer mode is selected, the timer 
reloads from the Load register and continues to decrement. In this mode the timer 
effectively generates a periodic interrupt. The mode is selected by a bit in the Control 
register.

At any point, the current timer value may be read from the Value register.

The timer is enabled by a bit in the Control register. At reset, the timer is disabled, the 
interrupt is cleared, and the Load register is set to zero. The mode and prescale value 
are set to free running, and clock divide of 1 respectively.

Enable2 Out Counter clock enable, divide by 256

Intfrc Out Interrupt output from the counter, generated when 16 bit counter reaches zero (one of two 
different inputs to timer)

Dataout Out Read data output used to generate PRDATA for register reads (one of two different inputs to 
Timer)

Table 4-7 Signal descriptions for FRC  (continued)

Name Type Description
4-26 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



APB Modules 
Figure 4-11 Timer operation

e timer clock is generated by a prescale unit. The timer clock may be one of the 
following:

• the system clock

• the system clock divided by 16, generated by 4 bits of prescale

• the system clock divided by 256, generated by a total of 8 bits of prescale.

Figure 4-12 Prescale unit
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4.3.4 Timer memory map

The base address of the timers is not fixed and may be different for any particular system 
implementation. However, the offset of any particular register from the base address is 
fixed.

4.3.5 Timer register descriptions

Load Read-write register. (Timer1Load, Timer2Load). The Load 
register contains the initial value to be loaded into the timer and is 
also used as the reload value in periodic timer mode. This register 
is the same width as the counter (default is 16 bits).

Value Read-only register. (Timer1Value, Timer2Value). The Value 
location gives the current value of the timer. 

Clear Write-only register. (Timer1Clear, Timer2Clear). Writing to the 
Clear location clears an interrupt generated by the counter timer.

Control Read-write register. (Timer1Control, Timer2Control). The 
Control register provides enable/disable, mode and prescale 
configurations for the timer.

Table 4-8 Memory map of the time APB peripheral

Address
Read 
Location

Write 
Location

TimerBase + 0x00 Timer1Load Timer1Load

TimerBase + 0x04 Timer1Value

TimerBase + 0x08 Timer1Control Timer1Control

TimerBase + 0x0C Timer1Clear

TimerBase + 0x20 Timer2Load Timer2Load

TimerBase + 0x24 Timer2Value

TimerBase + 0x28 Timer2Control Timer2Control

TimerBase + 0x2C Timer2Clear

TimerBase + 0x10 Timer1Test Timer1Test

TimerBase + 0x30 Timer2Test Timer2Test
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Figure 4-13 The control register

4.3.6 Test register

wo special registers are provided for validation purposes: Timer1Test and Timer2Test. 
These locations should not be accessed during normal operation.

Both registers are read-write and are 2 bits wide:

0 00Prescale00ModeEnable
31 8 7 6 5 4 1 023

Undefined
Must be written as zero
Read as Undefined

See below for bits 3-2

Undefined
Must be written as zero
Read as Undefined
Mode Bit
0 - free running mode
1 - periodic timer mode
Enable Bit
0 - timer disabled
1 - timer enabled
Undefined
Must be written as zero
Read as UndefinedBit 3 Bit 2 Clock 

divided by
Stages of 
prescale

0

0

1

1

0

4

8

Undefined

0

1

0

1 Undefined

1

16

256

Undefined

Table 4-9 Test register bit functions

Bit Name Function

0 Test Counter Test 
Mode

1 TestClksel Test Clock 
Select
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The counter test mode bit is stored in a register in both FRCs, but the test clock select 
bit is stored in a single register in the timer, but can be accessed from either test address.

When the counter test mode bit is set, the 16-bit counter of the selected timer is divided 
into four separate 4-bit counters that continually loop round from 15 to 0. This ensures 
the correct counting sequence is performed. Clearing this bit (default) brings the 
selected timer back to normal operation.

When the test clock select bit is set in either of the two test registers, a special test clock 
(NOT PENABLE ANDed with PSELCT) is fed into the prescale unit instead of the 
system clock (therefore both counters have to be using the same clock source, normal 
or test). Clearing this bit (default) selects the system clock as the prescale clock input 
(normal operation).

4.3.7 System description

This part gives a detailed description of how the HDL code for the timers block is set 
out. A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of all the registers, and signals used in the system. This 
section should be read together with the HDL code.

A simple block diagram of the whole system is shown in Figure 4-15 on page 4-32. 
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Figure 4-14 Timer module block diagram

Most of the system is contained in the two instances of the FRCs (the registers, counters 
and interrupt generation), but the three different speed clock enables that are used by the 
counters are generated in the timer module and passed to the FRCs.

All registers used in the system are clocked from the rising edge of the system clock 
BCLK. Enable signals are used to control the loading of the registers, and multiplexor 
signals are used to remove the combinational logic from the register statement. Most 
registers use the asynchronous reset BnRES, although is some cases a synchronous 
reset is used.

Timer system description

A diagram of the timer’s HDL file is shown in Figure 4-15 on page 4-32
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Figure 4-15 Timer module system diagram

The main sections and processes in the code are:

• Address decoder.

• TestClkSel register.

• Clock prescaler on page 4-33.

• Output enable generation on page 4-33.

• Output data generation on page 4-34.

• Tri-state driver for data bus on page 4-34.

• Free running counter blocks on page 4-34.

The above sections are now explained in more detail in the following paragraphs.

Address decoder

This section is used to generate select lines (FrcSel1 and 2) to the FRCs based on the 
current address on PADDR (as there are two instantiations of an identical FRC module, 
then part of the address decoding has to be done at the previous system level), and the 
TestSel signal which is used to indicate an access to either of the Test registers.

TestClkSel register

The TestClkSel register is used to store the current value of bit 1 of both test registers 
(the test clock select bit). A read or write to either test register address will access this 
single register.
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Clock prescaler

The 8-bit Prescale registers are used to generate the two prescale signals of divide by 
16 and divide by 256, by decrementing the current value of the registers. The enable 
signal PreScaleEn is used to control the operation of the registers, which by default is 
always set, but in test clock mode is a combination of PENABLE and PSELCT, 
allowing an output clock pulse to be generated for each read or write access to any of 
the timers registers.

Output enable generation

These three different clock rate signals (equivalent to the system clock, the system clock 
divided by 16, and the system clock divided by 256) are used to enable the timer clocks 
in the two FRC modules, based on the amount of prescale that is required.

Enable0 is a registered version of the PreScaleEn signal, which allows alignment of 
Enable0 with PENABLE while the test clock is in use.

Enable1 and 2 are generated from the outputs of the PreScale registers and the current 
state of Enable0, using PreScale(3) to generate the divide by 16 Enable1 signal, and 
PreScale(7) for the divide by 256 Enable2 signal.

Figure 4-16 and Figure 4-17 on page 4-34 show the timing of these enable signals:

Figure 4-16 Timer module counter enable timing - system clock selected
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Figure 4-17 Timer module counter enable timing - test clock selected

Output data generation

This section is used to decode the current address during a read and generate the correct 
data to be driven onto the APB data bus. The value of PADDR is compared with all of 
the register addresses, and the value of PRDATAInt is set accordingly. This is then 
stored in the PADDRIntReg register to help decrease the output propagation time by 
using a registered output rather than an output with the combinational delay of the large 
multiplexer. This register also synchronizes the reading of all raw interrupt inputs to the 
rising edge of the clock.

Tri-state driver for data bus

PRDATAEnNext is used as the input to the PRDATAEn register, and is set during the 
second clock cycle of a read when PENABLE is HIGH. The enable register is used to 
reduce the read output setup time, by removing the combinational logic delay of the 
PRDATAEnNext generation and replacing it with the D to Q setup time of a rising edge 
register.

The APB data bus is driven with the current internal version when the enable signal is 
HIGH, and tristated at all other times.

Free running counter blocks

Two instances of the identical counter modules are included in the timers module.

4.3.8 FRC system description

A diagram of the FRC HDL file is shown in Figure 4-18 on page 4-35.
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Figure 4-18 FRC module system diagram

The main sections and processes in the code are:

• Register select decoder on page 4-36.

• Control register on page 4-36.

• Test register on page 4-36.

• Load register on page 4-36.

• Counter load pulse generation on page 4-36.

• Counter enable on page 4-36.

• 16-bit count down on page 4-36.

• Counter register on page 4-37.

• Interrupt generation on page 4-37.

• Output data generation on page 4-37.

The above sections are now explained in more detail in the following paragraphs.
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Register select decoder

This section generates the Testsel and Regsel signals from the current address and state 
of the input port Frcsel, which are then used in the generation of new values for the 
Load, Control and Test registers, and the ReadSel signal.

Control register

The Control register is split into two parts, as only bits 7:6 and 3:2 are used. 

Test register

This is bit 0 (counter test mode) of the Test register, refer to Test register on page 4-29, 
which splits the counter up into four 4-bit counters when enabled.

Load register

The Load register contains the current load value that has been written to the timers 
module, which is passed straight through to the Count registers when written to, and is 
also loaded into the Count registers when periodic mode is enabled.

Counter load pulse generation

When a new value is written to the Load register, this must be passed to the Count 
register. An extra pulse is added to CountEn, when a load operation is performed, to 
clock the load data in.

Counter enable

The Enable0/1/2 input is selected according to the values of the prescale bits in the 
Control register (bits 2 and 3), and this is then combined with the Enable signal 
(Ctrl(7)) and the additional Load register pulse to generate the final enable line to the 
counter registers, CountEn.

16-bit count down

The counter is split up into four 4-bit parts (nibbles) to allow efficient testing. Eight 
separate processes are used in this section to decrement the counter, and to generate the 
carry signals from one nibble to the next. The operation of this is shown in Figure 4-19 
on page 4-38.
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The lowest nibble of the counter must always count down, so it has no carry in signal. 
The other three nibbles only count down when all of the previous nibbles have reached 
zero, so they each have a separate carry in signal that is generated by the previous 
nibble. When test mode is selected (Test HIGH), all four nibbles decrement together.

Carry(4) from the most significant nibble is used to generate the interrupt output, and 
to make the counter read from the Load register when periodic mode is set.

Counter register

The Counter register uses two control signals. CountEn is used to enable the register 
around the rising edge of BCLK, and is generated from the input enable lines. 
CountCtrl is used as a select on the input multiplexor value, to set it to NextCount for 
normal operation, or to Load when the counter has reached zero and is in periodic mode 
or if the Load register has just been written to.

Interrupt generation

This generates the final interrupt output for the timer, which is set when the counter 
reaches zero (equivalent to Carry(4) being set), and the interrupt is then held until it is 
cleared by a write to the TimerClear address. The iIntfrcNext signal is used to hold 
this value, and is also used to clear the interrupt. 

The internal interrupt iIntfrc signal is driven onto the output port Intfrc, which is then 
converted to INTCT1/2 at the timer module outputs.

Output data generation

This uses the value of ReadSel to drive DataOut with a combination of the Count, 
Load, Control and Test registers, which is then passed on to PRDATA in the timer 
module when any of the FRCs registers are read from.
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Figure 4-19 FRC module decrement diagram
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Chapter 5 
Test Interface Driver

This chapter describes the use of the external AMBA Test Interface Driver module (the 
TICBOX). It includes a description of the TICTalkcommand language. For more 
information about AMBA and the Test Interface protocol please refer to the AMBA 
Specification. The chapter contains the following:

• Introduction on page 5-2

• TICBOX usage on page 5-3

• TICTalk command language on page 5-6.
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5.1 Introduction

You should be familiar with AMBA and its test interface protocol. If not, please refer to 
the AMBA Specification for further information.

ICBOX is a module external to an AMBA system that drives the test interface lines to 
gain access to the ASB bus and then applies test vectors from a test input file (see 
Figure 5-1). This test input file is the output from running a C program written with the 
TICTalk command language.

Figure 5-1 TICBOX connection to an AMBA system

In order to gain access to the ASB bus, the TICBOX will signal a test request (driving 
TREQA HIGH and TREQB LOW). Once the request is granted (TACK driven 
HIGH), the test input file is read and translated by the TICBOX into AMBA test 
interface transactions.

The TICBOX applies test vectors to the system every time the TACK line indicates the 
system is ready. On read cycles the value is masked and then compared with an expected 
value (also masked), and an error message is asserted if the comparison fails.
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5.2 TICBOX usage

The TICBOX model communicates with the rest of the system through the following 
connections:

Table 5-1 TICBOX connections

Signal Name Type Function

TCLK Input This is the system clock BCLK in test mode. All the test 
interface transactions are timed using this signal.

START Input When this signal is active (HIGH), it indicates that the 
TICBOX should request mastership of the AMBA system 
by driving TREQA and TREQB both HIGH after the 
next falling edge of TCLK.

TREQA Output Test Bus Request A. Indicates test vector mode. Please 
refer to the test interface chapter in the AMBA 
Specification for further information about the test 
protocol. It is driven early in the LOW phase of TCLK 
and held to the falling edge of TCLK.

TREQB Output Test Bus Request B. Indicates test vector mode. Please 
refer to the Test Interface chapter on the AMBA 
Specification for further information about the test 
protocol. It is driven early in the LOW phase of TCLK 
and held to the falling edge of TCLK.

TACK Input Test Acknowledge. Indicates that the test bus has been 
granted and also that a test access has been completed.

TBUS[31:0] Input/Output 32-bit bidirectional test port.
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The TICBOX also requires two variables to be defined through generics:

The use of the TICBOX is very simple: once the test interface signals TCLK, TREQA, 
TREQB, TACK and TBUS[31:0] are connected to the AMBA system and the Test 
Input File (in TIF format) is created (see TICTalk command language on page 5-6), the 
simulation environment (test bench) should assert the START signal to indicate that the 
TICBOX should request mastership of the bus.

At this point the TICBOX will generate TIC vectors as specified on the TIF until the 
end of the file is reached. The TICBOX will then signal end of test by driving TREQA 
and TREQB both LOW. The test bench should at this point drive the START signal 
LOW to halt the simulation.

Example 5-1 A typical simulation output while running a TIC program

#    Time: 2603 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Addressing location 80000614

#    Time: 2703 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Writing data 00000005

#    Time: 3003 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Addressing location 80000618

#    Time: 3103 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Reading. Expected: 00000010. Mask 0000003F

Table 5-2 TICBOX variables

Variable VHDL Type Description

FileName string This is the name of the test input file (in TIF format) to 
be read by the TICBOX. For VHDL the default name is 
infile.tif, and for Verilog is infile.sim.

HaltOnMismatch boolean If set (TRUE for VHDL, variable defined for Verilog), 
the simulation will stop if, on a read vector sequence, 
the expected value and the read value don’t match. If 
cleared (FALSE for VHDL, variable undefined for 
Verilog), the TICBOX will issue a warning message 
reporting that a mismatch has occurred, but simulation 
will continue running until the end.
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#    Time: 3403 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Addressing location 8000061c

#    Time: 3703 ns  Iteration: 0  Instance:/u_ticbox
# ** Warning: Error on vector read. Expected: 00000010 Actual: 00000011 Mask: 
0000003F
#    Time: 3753 ns  Iteration: 0  Instance:/u_ticbox

#    Time: 4003 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Addressing location 80000584

#    Time: 4303 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Writing data 00000000

#    Time: 4603 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Addressing cycle at end

#    Time: 4903 ns  Iteration: 0  Instance:/u_ticbox
# ** Note: ; Exiting Test Mode

#    Time: 5203 ns  Iteration: 0  Instance:/u_ticbox
# ** Failure: Vector run completed : halting simulation
#    Time: 77703 ns  Iteration: 0  Instance:/u_ticbox
# Break at ticbox.vhd line 288

In the above example you will note that an error read has occurred, but the error message 
is broadcast later in the simulation. This is because there is an elapsed time between 
when the read is requested, and when the information arrives to the TICBOX to be 
compared with the expected value. The simulation has been run with the 
HaltOnMismatch variable set to FALSE, and therefore the program does not stop after 
the error has been detected.
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5.3 TICTalk command language

TICTalk is a very simple set of commands that allows the development of validation 
programs for the AMBA blocks. The TICTalk language is a small library of C functions. 
Once a TICTalk program is compiled and run, it produces a test input file in what is 
called the TIC Interface Format (TIF) which may be applied using the TICBOX module 
to test the desired block.

The AMBA test interface is able to perform the following actions:

• write address vector

• write test vector

• burst write of test vectors

• read test vector

• burst read of test vectors

• change from writes to reads and vice-versa.

The TICTalk language performs these actions by combining together a number of basic 
commands. These commands are described in the following section.

5.3.1 TICTalk commands

The basic TICTalk commands are:

• Write address vector (A)

• Write test vector (W) on page 5-7

• Read test vector (R) on page 5-7

• Burst read vector (B) on page 5-7

• Repeat last command (L) on page 5-7

• Include the string message into the TIF (C) on page 5-7

• Exit test mode (E) on page 5-7.

The above commands are described in the following paragraphs.

Write address vector (A)

The A (int32 address_vector) command is used to address a new location in the 
system. It will always be followed by a write test vector, or a read test vector command 
in order to perform the required action (write or read data) at that location. 
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Write test vector (W)

The W(int32 write_vector) command generates a data vector write. It can be used after 
an address vector (single write), another write test vector (burst write) or a read test 
vector (change from reads to writes).

Read test vector (R)

The R (int32 expected_value, int32 mask_value) command generates a data vector 
read. The read value is masked with the specified mask_value and compared with the 
expected_value. If the comparison is false, an error message will be broadcast. It can be 
used after an address vector (single read), a write test vector (change from writes to 
reads) and to indicate the last read on a burst, but not after another read test vector. To 
signal a burst sequence of reads, the burst read vector command should be used instead.

Burst read vector (B)

The B (int32 expected_value, int32 mask_value) command is similar to the read test 
vector. The only difference is that it can only be used if the next action is another read. 
This is because, in this case, a change of bus direction is not needed. Otherwise the 
function performed is the same.

Repeat last command (L)

The L (int32 number_of_loops) command signals that the last action should be 
repeated the specified number of times. This is useful when, for example, a burst of 
reads or writes from the same address location needs to be performed.

Include the string message into the TIF (C)

The C (char * message) command is used to add extra simulation comments.

Exit test mode (E)

The E() command should always be used at the end of a program so the TICBOX can 
signal end of test.

5.3.2 Programming with TICTalk commands

The possible combinations that are available when using the TICTalk commands are:

Single Writes:

The command sequence will be: A-W A-W A-W, and so on.
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Single Reads:

The command sequence will be: A-R A-R A-R, and so on.

Burst of Writes:

The command sequence will be: A-W-W-W, and so on. 

If the value to be written is always the same, the command sequence could also be 
A-W-L, specifying on the L command the number of writes required.

Burst of Reads:

This is a special case. After the A command, B (burst read vector) should be used on 
consecutive reads, and only on the last read of the burst do we apply the R command. 
Therefore the sequence will be: A-B-B-B-R A-B-B-....-B-R, and so on.

If the value to be read is expected always to be the same, or there is no need to check it 
against an expected value, the sequence could also be A-B-L-R, with the L command 
specifying the number of reads required.

Change from Reads to Writes:

This change can only be made after a R command (R-W), and not after a B command.

Change from Writes to Reads:

If the change is for a single read, the sequence W-R is used. On the other hand if the 
change is for a read burst, the W-B sequence is used (W-B-B-...-B-R).

5.3.3 The TICTalk file

Example 5-2 Example 5-2 C program using the TICTalk commands

#define CT1Load  Counter_Base + 0x00
#define CT1Value Counter_Base + 0x04
#define CT1Control Counter_Base + 0x08
#define CT1Clear  Counter_Base + 0x0C 
#define CT1Test Counter_Base + 0x10 

#define MaskAll      0x00000000
#define NoMask 0xFFFFFFFF
#define MaskControl0x000000CC
#define MaskValue 0x0000FFFF
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#define DUMMY0x12345678

#include “header.h”
#include “ticmacros.h”

int main()

{ 
  A(CT1Load)
  W(0x55555555)
  A(CT1Control)
  W(0x000000C0) /* Counter Enabled, Periodic Mode, Prescale 0 */
  A(CT1Value)
  R(0x55555547, MaskValue)
  A(CT1Load)
  W(0xDADADADA)
  B(0xDADADADA, MaskValue)    /* Read CT1Value */
  R(0x000000C0, MaskControl)  /* Read CT1Control */
  A(CT1Value)
  R(0xAAAAAAB8, MaskAll)
  W(0x000000C4)          /* Write to CT1Control */
  W(DUMMY)               /* Write to CT1Clear   */
  L(5)                   /* Repeat last write 5 times */
  E()
}

It can be seen that the TICTalk commands accept 32-bit integers as arguments. These 
can be specified using the #define directive, immediate values or normal C variables. 
This C-like approach provides the flexibility to develop more elaborate tests and new 
extended functions. For example, the basic commands could be used to build a pair of 
functions for reading and writing vectors that automatically take care of bus turnaround 
and address vectors.

The ticmacros.h file includes all the macro definitions for each command. These macros 
are expanded to generate a test input file in a format that can be read by the TICBOX.

The header.h file contains the base address definitions for the different blocks in the 
system. Here is where the Counter_Base constant should be defined. This ensures 
portability of the test program to other systems with different peripheral address 
mapping.

5.3.4 Generating a test input file format

To generate a TIF file, the TICTalk program should be C compiled (using gcc for 
example) in the following manner:

gcc -ansi source_file ticmacros.c -o object_file
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Afterwards the object_file should be run and its output redirected to a file with the same 
name as the generic variable FileName defined on the TICBOX, for example:

object_file > infile.tif

This output file should then be copied or linked to the directory where the TICBOX 
model exists.

5.3.5 TIF format

The TIF is very similar to the TICTalk file, with the difference that all the constant 
definitions have been substituted with their hexadecimal values and each line reflects a 
single test cycle. The previous example compiled and executed will output the 
following TIF. Lines preceded with a semicolon (;) are comments that the simulator will 
print on the screen while the test is being executed.

Example 5-3 Example 5-3 TIF format

; Addressing location 84000000
A 84000000
; Writing data 55555555
W 55555555
; Addressing location 84000008
A 84000008
; Writing data 000000C0
W 000000C0
; Addressing location 84000004
A 84000004
; Reading. Expected: 55555547.  Mask: 0000FFFF
R 55555547 0000FFFF
A ZZZZZZZZ
; Addressing location 84000000
A 84000000
; Writing data DADADADA
W DADADADA
; Reading. Expected: DADADADA  Mask: 0000FFFF
R DADADADA 0000FFFF
; Reading. Expected: 000000C0.  Mask: 000000CC
R 000000C0 000000CC
A ZZZZZZZZ
; Addressing location 84000004
A 84000004
; Reading. Expected: AAAAAAB8.  Mask: 00000000
R AAAAAAB8 00000000
A ZZZZZZZZ
; Writing data 000000C4
W 000000C4
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; Writing data 12345678
W 12345678
; Looping for 5 cycles
L 5
; Addressing cycle at end
A 00000000
; Exiting Test Mode
E ZZZZZZZZ
ARM DDI 0138D Copyright © 1998-1999 ARM Limited. All rights reserved. 5-11



Test Interface Driver 
5-12 Copyright © 1998-1999 ARM Limited. All rights reserved. ARM DDI 0138D



Chapter 6 
Designer’s Guide

This chapter takes a basic look at adding new modules to the EASY microcontroller. 
Since AMBA has been designed specifically to be modular, little change needs to be 
made to other elements when a component is added or removed. The chapter contains 
the following:

• Adding bus masters on page 6-2

• Adding ASB slaves on page 6-3

• Adding APB peripherals on page 6-4

• Choosing a decoder implementation on page 6-5.
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6.1 Adding bus masters

For bus masters, only two blocks require changes:

• the arbiter

• the decoder.

The arbiter currently has facilities for up to two more masters without any modification. 
A new master needs to be connected to the appropriate AREQx and AGNTx signals. 
This can be done by altering the top level HDL file, which connects all ASB modules 
together. 

Note
 If a system requires more than four masters, the HDL file arbiter will also have to be 
modified.

Modifications to the decoder are described in Choosing a decoder implementation on 
page 6-5.

6.1.1 Arbiter modifications

When modifying the arbiter the following rules must be followed:

• The ARM core should be the default master (granted on reset), and granted when 
no masters are requesting the bus.

• The Test Interface Controller (TIC) should have the highest priority (to allow test 
access under all conditions).

Only one master should tie its AREQx permanently HIGH.

Currently the ARM bus master always asserts AREQx, thus no other bus master should 
constantly request the bus. Consequently the ARM must be the lowest priority master, 
as masters of lower priority than the ARM will never get granted.

If more sophisticated round-robin type arbitration schemes are used, the latter point will 
no longer be valid. Alternative arbitration schemes are not considered further in this 
document.

6.1.2 Bus master requirements

New designs of bus master must drive all the relevant signals at appropriate times. For 
more information consult the AMBA Specificationand the AMBA ARM7TDMI Interface 
Data Sheet.
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6.2 Adding ASB slaves

When a slave is added, only the decoder needs to be modified. This will add a DSELx 
signal for the new slave, which must also be added to the ASB top level HDL file.

6.2.1 Decoder modifications

This block is quite easily modified. When adding new DSELx lines, care should be 
taken to:

• plan the slave position in the memory map

• consider any issues concerning the remapping of memory to allow the external 
boot ROM to appear at location zero

• decode as few address lines as possible (to keep the decoders gate count low)

• ensure that all areas of address space have one and only one slave selected

• comment memory map changes in the HDL.

The decoder may be extended to allow for more complex memory map handling. This 
is not considered further in this document.

6.2.2 Slave requirements

These vary according to the function of the slave. Special cases like external bus 
interfaces (which must also consider the requirements of the TIC), or the ASB to APB 
bridge interface have more complex requirements. For more information consult the 
AMBA Specification.
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6.3 Adding APB peripherals

When adding a peripheral, the HDL file APBif needs to be modified. The changes will 
add a PSELx signal, which will also have to be added to the APB top level HDL file 
where the new peripheral should be instantiated. If the peripheral requires connections 
to ASB components or pads, these signals will also have to be added to the ASB top 
level HDL file.

6.3.1 APB bridge modifications

When adding new PSELx lines similar steps should be taken to those outlined in 
Decoder modifications on page 6-3 although reset memory map will not be an issue for 
peripherals.

6.3.2 Peripheral requirements 

When designing APB peripherals, ensure that the resulting hardware has a low power 
consumption. The following guidelines should be followed where possible:

• Do not use BCLK in peripherals unless absolutely necessary (its use will 
dramatically increase power consumption).

• Ensure that peripherals cannot drive PRDATA[31:0] during reset (by including a 
BnRES term on the output enable control.

Designers familiar with conventional circuits connected to free-running clocks may find 
this design approach difficult. However, it will result in small circuits with low power 
consumption.
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6.4 Choosing a decoder implementation

The EASY microcontroller is provided with two different decoder implementations. 
The choice between one of the two implementations will be system-dependent, as both 
models share the same port names.

6.4.1 Decoder with decode cycles

This is the default model. This implementation automatically inserts a decode cycle 
under the following circumstances:

• at the start of a non-sequential transfer

• on a sequential transfer when BLAST has been asserted

• when 1K memory boundaries are reached. 

This decoder is used on fast systems where the decoder might not have enough time to 
decode the address and assert the corresponding DSEL signal in a single clock HIGH 
phase. 

6.4.2 Decoder without decode cycles

This implementation attempts to decode the address bus on every cycle and therefore 
will only be suitable for slow systems where this can be safely achieved. 
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