
VFP11™ Vector Floating-point
Coprocessor

for ARM1136JF-S processor r1p3

Technical Reference Manual
Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved.
ARM DDI 0274G

VFP11 Vector Floating-point Coprocessor
Technical Reference Manual

Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Change History

Date Issue Confidentiality Change

19 December 2002 A Non-Confidential First release

10 February 2003 B Non-Confidential First release for VFP11 r0p1 coprocessor

9 July 2003 C Non-Confidential First release for VFP11 r0p2 coprocessor

2 December 2003 D Non-Confidential FPINST2 reset state changed to Unpredictable

11 March 2005 E Non-Confidential First release for ARM1136JF-S r1p0 processor.

20 July 2005 F Non-Confidential Final draft of release for ARM1136JF-S r1p1 processor. Table 5-8 corrected.

06 December 2006 G Non-Confidential First release for r1p3. No change to functionality.
ii Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Web Address

http://www.arm.com
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. iii

iv Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Contents
VFP11 Vector Floating-point Coprocessor
Technical Reference Manual

Preface
About this document ... xii
Feedback .. xv

Chapter 1 Introduction
1.1 About the VFP11 coprocessor .. 1-2
1.2 Applications ... 1-3
1.3 Coprocessor interface ... 1-4
1.4 VFP11 coprocessor pipelines ... 1-5
1.5 Modes of operation ... 1-13
1.6 Short vector instructions ... 1-16
1.7 Parallel execution of instructions ... 1-17
1.8 VFP11 treatment of branch instructions .. 1-18
1.9 Writing optimal VFP11 code .. 1-19
1.10 Product revisions .. 1-20

Chapter 2 Register File
2.1 About the register file .. 2-2
2.2 Register file internal formats ... 2-3
2.3 Decoding the register file .. 2-5
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. v

Contents
2.4 Loading operands from ARM1136JF-S registers 2-6
2.5 Maintaining consistency in register precision ... 2-8
2.6 Data transfer between memory and VFP11 registers 2-9
2.7 Access to register banks in CDP operations .. 2-11

Chapter 3 Programmer’s Model
3.1 About the programmer’s model .. 3-2
3.2 Compliance with the IEEE 754 standard .. 3-3
3.3 ARMv5TE coprocessor extensions .. 3-10
3.4 VFP11 system registers ... 3-16

Chapter 4 Instruction Execution
4.1 About instruction execution .. 4-2
4.2 Serializing instructions .. 4-3
4.3 Interrupting the VFP11 coprocessor ... 4-4
4.4 Forwarding .. 4-5
4.5 Hazards .. 4-7
4.6 Operation of the scoreboards ... 4-8
4.7 Data hazards in full-compliance mode ... 4-15
4.8 Data hazards in RunFast mode .. 4-19
4.9 Resource hazards .. 4-20
4.10 Parallel execution ... 4-23
4.11 Execution timing ... 4-25

Chapter 5 Exception Handling
5.1 About exception processing ... 5-2
5.2 Bounced instructions .. 5-3
5.3 Support code .. 5-5
5.4 Exception processing ... 5-8
5.5 Input Subnormal exception ... 5-14
5.6 Invalid Operation exception .. 5-15
5.7 Division by Zero exception ... 5-18
5.8 Overflow exception ... 5-19
5.9 Underflow exception ... 5-20
5.10 Inexact exception .. 5-22
5.11 Input exceptions ... 5-23
5.12 Arithmetic exceptions ... 5-24

Glossary
vi Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

List of Tables
VFP11 Vector Floating-point Coprocessor
Technical Reference Manual

Change History ... ii
Table 2-1 VFP11 MCR instructions ... 2-6
Table 2-2 VFP11 MRC instructions ... 2-6
Table 2-3 VFP11 MCRR instructions .. 2-7
Table 2-4 VFP11 MRRC instructions .. 2-7
Table 2-5 Single-precision data memory images and byte addresses 2-9
Table 2-6 Double-precision data memory images and byte addresses 2-10
Table 2-7 Single-precision three-operand register usage ... 2-14
Table 2-8 Single-precision two-operand register usage .. 2-15
Table 2-9 Double-precision three-operand register usage .. 2-15
Table 2-10 Double-precision two-operand register usage .. 2-15
Table 3-1 Default NaN values ... 3-5
Table 3-2 QNaN and SNaN handling .. 3-6
Table 3-3 VFP11 system registers .. 3-16
Table 3-4 Accessing VFP11 system registers ... 3-17
Table 3-5 FPSID Register bit fields ... 3-18
Table 3-6 FPSCR Register bit fields ... 3-19
Table 3-7 Vector length and stride combinations .. 3-21
Table 3-8 FPEXC Register bit fields .. 3-23
Table 3-9 Media and VFP Feature Register 0 bit fields .. 3-26
Table 3-10 Media and VFP Feature Register 1 bit fields .. 3-27
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. vii

List of Tables
Table 4-1 Single-precision source register locking ... 4-9
Table 4-2 Single-precision source register clearing .. 4-10
Table 4-3 Double-precision source register locking .. 4-11
Table 4-4 Double-precision source register clearing for one-cycle instructions 4-12
Table 4-5 Double-precision source register clearing for two-cycle instructions 4-13
Table 4-6 FCMPS-FMSTAT RAW hazard .. 4-15
Table 4-7 FLDM-FADDS RAW hazard ... 4-16
Table 4-8 FLDM-short vector FADDS RAW hazard ... 4-16
Table 4-9 FMULS-FADDS RAW hazard ... 4-17
Table 4-10 Short vector FMULS-FLDMS WAR hazard .. 4-18
Table 4-11 Short vector FMULS-FLDMS WAR hazard in RunFast mode 4-19
Table 4-12 FLDM-FLDS-FADDS resource hazard ... 4-21
Table 4-13 FLDM-short vector FMULS resource hazard .. 4-21
Table 4-14 Short vector FDIVS-FADDS resource hazard, cycles 1 to 22 4-22
Table 4-15 Short vector FDIVS-FADDS resource hazard, cycles 23 to 36 4-22
Table 4-16 Parallel execution in all three pipelines ... 4-24
Table 4-17 Throughput and latency cycle counts for VFP11 instructions 4-25
Table 5-1 Exceptional short vector FMULD followed by load/store instructions 5-10
Table 5-2 Exceptional short vector FADDS with a FADDS in the pretrigger slot 5-11
Table 5-3 Exceptional short vector FADDD with an FMACS trigger instruction 5-12
Table 5-4 Possible Invalid Operation exceptions .. 5-15
Table 5-5 Default results for invalid conversion inputs ... 5-17
Table 5-6 Rounding mode overflow results .. 5-19
Table 5-7 LSA and USA determination ... 5-24
Table 5-8 FADD family bounce thresholds ... 5-25
Table 5-9 FMUL family bounce thresholds ... 5-27
Table 5-10 FDIV bounce thresholds ... 5-28
Table 5-11 FCVTSD bounce thresholds ... 5-30
Table 5-12 Single-precision float-to-integer bounce thresholds and stored results 5-31
Table 5-13 Double-precision float-to-integer bounce thresholds and stored results 5-32
viii Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

List of Figures
VFP11 Vector Floating-point Coprocessor
Technical Reference Manual

Figure 1-1 FMAC pipeline ... 1-6
Figure 1-2 DS pipeline .. 1-9
Figure 1-3 LS pipeline .. 1-10
Figure 2-1 Single-precision data format ... 2-3
Figure 2-2 Double-precision data format .. 2-4
Figure 2-3 Register file access ... 2-5
Figure 2-4 Register banks .. 2-11
Figure 3-1 FMDRR instruction format ... 3-10
Figure 3-2 FMRRD instruction format ... 3-11
Figure 3-3 FMSRR instruction format ... 3-12
Figure 3-4 FMRRS instruction format ... 3-14
Figure 3-5 Floating-Point System ID Register .. 3-18
Figure 3-6 Floating-Point Status and Control Register ... 3-19
Figure 3-7 Floating-Point Exception Register ... 3-23
Figure 3-8 Media and VFP Feature Register 0 ... 3-25
Figure 3-9 Media and VFP Feature Register 1 ... 3-27
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ix

List of Figures
x Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Preface

This preface introduces the VFP11 Vector Floating-point Coprocessor Technical
Reference Manual for the ARM1136JF-S processor. It contains the following sections:

• About this document on page xii

• Feedback on page xv.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. xi

Preface
About this document

This is the technical reference manual for the VFP11 coprocessor. From issue E, this
manual only describes the version of the VFP11 coprocessor included in the
ARM1136JF-S rev1 (r1p0 to r1p3) processor. See Product revisions on page 1-20 for
more information.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written for hardware and software engineers who are familiar with the
ARM architecture and with the ANSI/IEEE Std 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic. We recommend reading the relevant sections of the ARM
Architecture Reference Manual before reading this manual.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter to get an overview of the VFP11 coprocessor.

Chapter 2 Register File

Read this chapter to learn about the structure and operation of the VFP11
register file.

Chapter 3 Programmer’s Model

Read this chapter to learn about VFPv2 architecture compliance with the
IEEE 754 standard, the VFP11 status and control registers, and the
VFP11 coprocessor extensions.

Chapter 4 Instruction Execution

Read this chapter to learn about forwarding, hazards, and parallel
execution in the VFP11 instruction pipelines.
xii Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Preface
Chapter 5 Exception Handling

Read this chapter to learn about VFP11 exceptional conditions and how
they are handled in hardware and software.

Conventions

The typographical conventions used in this manual are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

< and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. The replaceable
terms appear in normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Further reading

This section lists publications by ARM Limited, and by third parties.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked
Questions list.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. xiii

Preface
ARM publications

This manual contains information that is specific to the VFP11 coprocessor. Refer to the
following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• the ARM1136JF-S and ARM1136J-S Technical Reference Manual (ARM
DDI0211)

• Application Note 98, VFP Support Code (ARM DAI 0098).

Other publications

This manual uses the terminology and conventions of:

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.
xiv Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Preface
Feedback

ARM Limited welcomes feedback both on the VFP11 coprocessor and its
documentation.

Feedback on the VFP11 coprocessor

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments about this manual, send email to errata@arm.com giving:

• the title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. xv

Preface
xvi Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Chapter 1
Introduction

This chapter introduces the VFP11 coprocessor. It contains the following sections:

• About the VFP11 coprocessor on page 1-2

• Applications on page 1-3

• Coprocessor interface on page 1-4

• VFP11 coprocessor pipelines on page 1-5

• Modes of operation on page 1-13

• Short vector instructions on page 1-16

• Parallel execution of instructions on page 1-17

• VFP11 treatment of branch instructions on page 1-18

• Writing optimal VFP11 code on page 1-19

• Product revisions on page 1-20.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the VFP11 coprocessor

The VFP11 coprocessor is an implementation of the ARM Vector Floating-point
Architecture (VFPv2). It provides low-cost floating-point computation that is fully
compliant with the ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic, referred to in this document as the IEEE 754 standard. The VFP11
coprocessor supports all addressing modes described in section C5 of the ARM
Architecture Reference Manual.

The VFP11 coprocessor is optimized for:

• high data transfer bandwidth through 64-bit split load and store buses

• fast hardware execution of a high percentage of operations on normalized data,
resulting in higher overall performance while providing full IEEE 754 standard
support when required

• hardware divide and square root operations in parallel with other arithmetic
operations to reduce the impact of long-latency operations

• near IEEE 754 standard compatibility in RunFast mode without support code
assistance, providing determinable run-time calculations for all input data

• low power consumption, small die size, and reduced kernel code.

The VFP11 coprocessor is an ARM enhanced numeric coprocessor that provides
IEEE 754 standard-compatible operations. Designed for the ARM11 family of cores,
the VFP11 coprocessor fully supports single-precision and double-precision add,
subtract, multiply, divide, multiply and accumulate, and square root operations.
Conversions between floating-point data formats and ARM integer word format are
provided, with special operations to perform the conversion in round-towards-zero
mode for high-level language support.

The VFP11 coprocessor provides a performance-power-area solution for embedded
applications and high performance for general-purpose applications.

Note
 • This manual describes only VFP11-specific implementation issues. Refer also to

the Vector Floating-point Architecture section of the ARM Architecture Reference
Manual.

• This manual only describes the implementation of the VFP11 for the
ARM1136JF-S processor. See Product revisions on page 1-20 for information
about other implementations of the VFP11.
1-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
1.2 Applications

The VFP11 coprocessor provides floating-point computation suitable for a wide
spectrum of applications such as:

• personal digital assistants and smartphones for graphics, voice compression and
decompression, user interfaces, Java interpretation, and Just In Time (JIT)
compilation

• games machines for three-dimensional graphics and digital audio

• printers and MultiFunction Peripheral (MFP) controllers for high-definition color
rendering

• set-top boxes for digital audio and digital video, and three-dimensional user
interfaces

• automotive applications for engine management and power train computations.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-3

Introduction
1.3 Coprocessor interface

The VFP11 coprocessor is integrated with an ARM1136JF-S processor through a
dedicated VFP coprocessor interface.

The VFP11 coprocessor uses coprocessor ID number 10 for single-precision
instructions and coprocessor ID number 11 for double-precision instructions. In some
cases, such as mixed-precision instructions, the coprocessor ID represents the
destination precision. In a system containing a VFP11 coprocessor, these coprocessor
ID numbers must not be used by another coprocessor.

Access to the VFP11 coprocessor is controlled by the ARM1136JF-S Coprocessor
Access Control Register. The coprocessor access rights must be configured correctly
before any VFP11 instructions can be executed. For more detailed information, refer to
the Technical Reference Manual for the ARM1136JF-S processor.
1-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
1.4 VFP11 coprocessor pipelines

The VFP11 coprocessor has three separate instruction pipelines:

• the Multiply and Accumulate (FMAC) pipeline

• the Divide and Square root (DS) pipeline

• the Load/Store (LS) pipeline.

Each pipeline can operate independently of the other pipelines and in parallel with
them. Each of the three pipelines shares the first two pipeline stages, Decode and Issue.
These two stages and the first cycle of the Execute stage of each pipeline remain in
lockstep with the ARM1136 pipeline stage but effectively one cycle behind the
ARM1136 pipeline. When the ARM1136 processor is in the Issue stage for a particular
VFP instruction, the VFP11 coprocessor is in the Decode stage for the same instruction.
This lockstep mechanism maintains in-order issue of instructions between the
ARM1136 processor and the VFP11 coprocessor.

The three pipelines can operate in parallel, enabling more than one instruction to be
completed per cycle. Instructions issued to the FMAC pipeline can complete out of
order with respect to operations in the LS and DS pipelines. This out-of-order
completion might be visible to the user when a short vector FMAC or DS operation
generates an exception, and an LS operation begins before the exception is detected.
The destination registers or memory of the LS operation reflect the completion of a
transfer. The destination registers of the exceptional FMAC or DS operation retain the
values they had before the operation started. This is described in more detail in Parallel
execution on page 4-23.

Except for divide and square root operations, the pipelines support single-cycle
throughput for all single-precision operations and most double-precision operations.
Double-precision multiply and multiply and accumulate operations have a two-cycle
throughput. The LS pipeline is capable of supplying two single-precision operands or
one double-precision operand per cycle, balancing the data transfer capability with the
operand requirements.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-5

Introduction
1.4.1 FMAC pipeline

Figure 1-1 shows the structure of the FMAC pipeline.

Figure 1-1 FMAC pipeline
1-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
FMAC pipeline instructions

The FMAC pipeline executes the following instructions:

FADD Add.

FSUB Subtract.

FMUL Multiply.

FNMUL Negated multiply.

FMAC Multiply and accumulate.

FNMAC Negated multiply and accumulate.

FMSC Multiply and subtract.

FNMSC Negated multiply and subtract.

FABS Absolute value.

FNEG Negation.

FUITO Convert unsigned integer to float.

FTOUI Convert float to unsigned integer.

FSITO Convert signed integer to float.

FTOSI Convert float to signed integer.

FTOUIZ Convert float to unsigned integer with forced round-towards-zero mode.

FTOSIZ Convert float to signed integer with forced round-towards-zero mode.

FCMP Compare.

FCMPE Compare (NaN exceptions).

FCMPZ Compare with zero.

FCMPEZ Compare with zero (NaN exceptions).

FCVTSD Convert from double-precision to single-precision.

FCVTDS Convert from single-precision to double-precision.

FCPY Copy register.

See Execution timing on page 4-25 for cycle counts. The FMAC family of instructions
(FMAC, FNMAC, FMSC, and FNMSC) perform a chained multiply and accumulate
operation. The product is computed, rounded according to the specified rounding mode
and destination precision, and checked for exceptions before the accumulate operation
is performed. The accumulate operation is also rounded according to the specified
rounding mode and destination precision and checked for exceptions. The final result is
identical to the equivalent sequence of operations executed in sequence. Exception
processing and status reporting also reflect the independence of the components of the
chained operations.

As an example, the FMAC instruction performs a chained multiply and add operation
with the following sequence of operations:

1. The product of the operands in the Fn and Fm registers is computed.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-7

Introduction
2. The product is rounded according to the current rounding mode and destination
precision and checked for exceptions.

3. The result is summed with the operand in the Fd register.

4. The sum is rounded according to the current rounding mode and destination
precision and checked for exceptions. If no exception conditions that require
support code are present, the result is written to the Fd register.

For example, the following two operations return the same result:

FMACS S0, S1, S2

FMULS TEMP, S1, S2
FADDS S0, S0, TEMP

1.4.2 DS pipeline

Figure 1-2 on page 1-9 shows the structure of the DS pipeline.
1-8 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
Figure 1-2 DS pipeline

DS pipeline instructions

The DS pipeline executes the following instructions:

FDIV Divide.

FSQRT Square root.

The VFP11 coprocessor executes divide and square root instructions for both
single-precision and double-precision operands with all IEEE 754 standard rounding
modes supported. The DS unit uses a shared radix-4 algorithm that provides a good
balance between speed and chip area. DS operations have a latency of 19 cycles for
single-precision operations and 33 cycles for double-precision operations. The
throughput is 15 cycles for single-precision operations and 29 cycles for
double-precision operations.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-9

Introduction
1.4.3 LS pipeline

The LS pipeline handles all of the instructions that involve data transfer to and from the
ARM1136JF-S processor, including loads, stores, moves to coprocessor system
registers, and moves from coprocessor system registers. It remains synchronized with
the ARM1136 LS pipeline for the duration of the instruction. Data written to the
ARM1136 processor is read from the VFP11 coprocessor register file in the Issue stage
and transferred to the ARM1136 processor in the next cycle and is latched on the
ARM1136 data cache1/data cache 2 cycle boundary. The transfer is made on a
dedicated 64-bit store data bus between the VFP11 coprocessor and the ARM1136
processor. Load data is written to the VFP11 coprocessor on a dedicated 64-bit load bus
between the ARM1136 processor and all coprocessors. Data is received by the VFP11
coprocessor in the Writeback stage. Data is written to the register file in the Writeback
stage, and available for forwarding to data processing operations in the same cycle.
Figure 1-3 shows the structure of the LS pipeline.

Figure 1-3 LS pipeline
1-10 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
LS pipeline instructions

The LS pipeline executes the following instructions:

FLD Load a single-precision, double-precision, or 32-bit integer value from
memory to the VFP11 register file.

FLDM Load up to 32 single-precision or integer values or 16 double-precision
values from memory to the VFP11 register file.

FST Store a single-precision, double-precision, or 32-bit integer value from
the VFP11 register file to memory.

FSTM Store up to 32 single-precision or integer values or 16 double-precision
values from the VFP11 register file to memory.

FMSR Move a single-precision or integer value from an ARM1136JF-S register
to a VFP11 single-precision register.

FMRS Move a single-precision or integer value from a VFP11 single-precision
register to an ARM1136JF-S register.

FMDHR Move an ARM1136JF-S register value to the upper half of a VFP11
double-precision register.

FMDLR Move an ARM1136JF-S register value to the lower half of a VFP11
double-precision register.

FMRDH Move the upper half of a double-precision value from a VFP11
double-precision register to an ARM1136JF-S register.

FMRDL Move the lower half of a double-precision value from a VFP11
double-precision register to an ARM1136JF-S register.

FMDRR Move two ARM1136JF-S register values to a VFP11 double-precision
register.

FMRRD Move a double-precision VFP11 register value to two ARM1136JF-S
registers.

FMSRR Move two ARM1136JF-S register values to two consecutively-numbered
VFP11 single-precision registers.

FMRRS Move two consecutively-numbered VFP11 single-precision register
values to two ARM1136JF-S registers.

FMXR Move an ARM1136JF-S register value to a VFP11 control register.

FMRX Move a VFP11 control register value to an ARM1136JF-S register.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-11

Introduction
FMSTAT Move N, C, Z, and V flags from the VFP11 FPSCR to the ARM1136JF-S
CPSR.
1-12 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
1.5 Modes of operation

The VFP11 coprocessor provides full IEEE 754 standard compatibility through a
combination of hardware and software. There are rare cases that require significant
additional compute time to resolve correctly according to the requirements of the IEEE
754 standard. For instance, the VFP11 coprocessor does not process subnormal input
values directly. To provide correct handling of subnormal inputs according to the IEEE
754 standard, a trap is made to support code to process the operation. Using the support
code for processing this operation can require hundreds of cycles. In some applications
this is unavoidable, because compliance with the IEEE 754 standard is essential to
proper operation of the program. In many other applications, strict compliance to the
IEEE 754 standard is unnecessary, while determinable runtime, low interrupt latency,
and low power are of more importance. To accommodate a variety of applications, the
VFP11 coprocessor provides four modes of operation, described in the following
sections:

• Full-compliance mode

• Flush-to-zero mode on page 1-14

• Default NaN mode on page 1-14

• RunFast mode on page 1-15.

1.5.1 Full-compliance mode

When the VFP11 coprocessor is in full-compliance mode, all operations that cannot be
processed according to the IEEE 754 standard use support code for assistance. The
operations requiring support code are:

• Any CDP operation involving a subnormal input when not in flush-to-zero mode.
Enable flush-to-zero mode by setting the FZ bit, FPSCR[24].

• Any CDP operation involving a NaN input when not in default NaN mode. Enable
default NaN mode by setting the DN bit, FPSCR[25].

• Any CDP operation that has the potential of generating an underflow condition
when not in flush-to-zero mode.

• Any CDP operation when Inexact exceptions are enabled. Enable Inexact
exceptions by setting the IXE bit, FPSCR[12].

• Any CDP operation that can cause an overflow while Overflow exceptions are
enabled. Enable Overflow exceptions by setting the OFE bit, FPSCR[10].

• Any CDP operation that involves an invalid arithmetic operation or an arithmetic
operation on a signaling NaN when Invalid Operation exceptions are enabled.
Enable Invalid Operation exceptions by setting the IOE bit, FPSCR[8].
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-13

Introduction
• A float-to-integer conversion that has the potential to create an integer that cannot
be represented in the destination integer format when Invalid Operation
exceptions are enabled.

The support code:

• determines the nature of the exception

• determines if processing is required to perform the computation

• calls a function to compute the result and status

• transfers control to the user trap handler if the enable bit is set for a detected
exception

• writes the result to the destination register, updates the FPSCR register, and
returns to the user code if no enabled exception is detected

• passes control to the user trap handler and supplies any specified intermediate
result for the exception if an enabled exception is detected.

Arithmetic exceptions on page 5-24 describes the conditions under which the VFP11
coprocessor traps to support code.

1.5.2 Flush-to-zero mode

Setting the FZ bit, FPSCR[24], enables flush-to-zero mode and increases performance
on very small inputs and results. In flush-to-zero mode, the VFP11 coprocessor treats
all subnormal input operands of arithmetic CDP operations as positive zeros in the
operation. Exceptions that result from a zero operand are signaled appropriately. FABS,
FNEG, FCPY, and FCMP are not considered arithmetic CDP operations and are not
affected by flush-to-zero mode. A result that is tiny, as described in the IEEE 754
standard, for the destination precision is smaller in magnitude than the minimum
normal value before rounding and is replaced with a positive zero. The IDC flag,
FPSCR[7], indicates when an input flush occurs. The UFC flag, FPSCR[3], indicates
when a result flush occurs.

1.5.3 Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In default NaN mode, the
result of any operation that involves an input NaN or generated a NaN result returns the
default NaN. Propagation of the fraction bits is maintained only by FABS, FNEG, and
FCPY operations, all other CDP operations ignore any information in the fraction bits
of an input NaN. See NaN handling on page 3-5 for a description of default NaNs.
1-14 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
1.5.4 RunFast mode

RunFast mode is the combination of the following conditions:

• the VFP11 coprocessor is in flush-to-zero mode

• the VFP11 coprocessor is in default NaN mode

• all exception enable bits are cleared.

In RunFast mode the VFP11 coprocessor:

• processes subnormal input operands as positive zeros

• processes results that are tiny before rounding, that is, between the positive and
negative minimum normal values for the destination precision, as positive zeros

• processes input NaNs as default NaNs

• returns the default result specified by the IEEE 754 standard for overflow, division
by zero, invalid operation, or inexact operation conditions fully in hardware and
without additional latency

• processes all operations in hardware without trapping to support code.

RunFast mode enables the programmer to write code for the VFP11 coprocessor that
runs in a determinable time without support code assistance, regardless of the
characteristics of the input data. In RunFast mode, no user exception traps are available.
However, the exception flags in the FPSCR register are compliant with the IEEE 754
standard for Inexact, Overflow, Invalid Operation, and Division by Zero exceptions. The
underflow flag is modified for flush-to-zero mode. Each of these flags is set by an
exceptional condition and can by cleared only by a write to the FPSCR register.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-15

Introduction
1.6 Short vector instructions

The VFPv2 architecture supports execution of short vector instructions of up to eight
operations on single-precision data and up to four operations on double-precision data.
Short vectors are most useful in graphics and signal-processing applications. They
reduce code size, increase speed of execution by supporting parallel operations and
multiple transfers, and simplify algorithms with high data throughput. Short vector
operations issue the individual operations specified in the instruction in a serial fashion.
To eliminate data hazards, short vector operations begin execution only after all source
registers are available, and all destination registers are not targets of other operations.

See Chapter 4 Instruction Execution for more information on execution of short vector
instructions.
1-16 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
1.7 Parallel execution of instructions

The VFP11 coprocessor provides the ability to execute several floating-point operations
in parallel, while the ARM1136JF-S processor is executing ARM instructions. While a
short vector operation executes for a number of cycles in the VFP11 coprocessor, it
appears to the ARM1136 processor as a single-cycle instruction and is retired in the
ARM1136 processor before it completes execution in the VFP11 coprocessor. The three
pipelines are designed to operate independently of one another once initial processing
is completed. This makes it possible to issue a short vector operation and a load or store
multiple operation in the next cycle and have both executing at the same time, provided
no data hazards exist between the two instructions. With this mechanism, algorithms
that can be double-buffered can be written to hide much of the time to transfer data to
and from the VFP11 coprocessor under the arithmetic operations, resulting in a
significant improvement in performance. The separate DS pipeline enables both data
transfer operations and CDPs that are not to the DS pipeline to execute in parallel with
the divide. The DS block has a dedicated write port to the register file, and no special
care is required when executing operations in parallel with divide or square root
instructions. This is described further in Parallel execution on page 4-23.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-17

Introduction
1.8 VFP11 treatment of branch instructions

The VFP11 coprocessor does not directly provide branch instructions. Instead, the
result of a floating-point compare instruction can be stored in the ARM1136 condition
code flags using the FMSTAT instruction. This enables the ARM1136 branch
instructions and conditional execution capabilities to be used for executing conditional
floating-point code. See section C3 of the ARM Architecture Reference Manual for
information on the use of ARM11 conditional execution to test IEEE 754 standard
predicates.

In some cases, full IEEE 754 standard comparisons are not required. Simple
comparisons of single-precision data, such as comparisons to zero or to a constant, can
be done using an FMRS transfer and the ARM11 CMP and CMN instructions. This
method is faster in many cases than using an FCMP instruction followed by an FMSTAT
instruction. For more information, see Compliance with the IEEE 754 standard on
page 3-3 and Comparisons on page 3-6.
1-18 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Introduction
1.9 Writing optimal VFP11 code

The following guidelines provide significant performance increases for VFP11 code:

• Unless there is a read-after-write hazard, program most scalar operations to
immediately follow each other. Instead of a VFP11 FMAC instruction, use either
a single ARM11 instruction or a VFP11 load or store instruction after the
following instructions:

— a scalar double-precision multiply

— a multiply and accumulate

— a short vector instruction of length greater than one iteration.

• Avoid short vector divides and square roots. The VFP11 FMAC and DS pipelines
are unavailable until the final iteration of the short vector DS operation issues
from the Execute 1 stage. If the short vector DS operation can be separated, other
VFP11 instructions can be issued in the cycles immediately following the divide
or square root. See Parallel execution on page 4-23.

• The best performance for data-intensive applications requires double-buffering
looped short vector instructions. The register banks can be divided to provide
multiple independent working areas. To take advantage of the simultaneous
execution of data transfer and short vector arithmetic instructions, follow the
arithmetic instructions on one bank with load or store instructions on the other
bank.

• Moves to and from control registers are serializing. Avoid placing these in loops
or time-critical code.

• If fully compliant IEEE 754 standard comparisons are not required, avoid using
FCMPE and FCMPEZ. Using an FMRS instruction with an ARM11 CMP or
CMN can be faster for simple comparisons. See Comparisons on page 3-6.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 1-19

Introduction
1.10 Product revisions

This manual is for revision r1p3 of the VFP11 coprocessor. See Product revision status
on page xii for an explanation of revision numbering. This version of the VFP11
coprocessor is included in the r1p3 ARM1136JF-S processor release.

Note
 Previous releases of this manual described implementations of the VFP11 coprocessor
which were common to more than one ARM processor. However:

• the ARM1176JZF-S Technical Reference Manual (ARM DDI0301) includes a
full description of the version of the VFP11 coprocessor which forms part of that
processor

• the ARM1156T2F-S Technical Reference Manual (ARM DDI0290) includes a
full description of the version of the VFP11 coprocessor which forms part of that
processor.

This means that, from issue E, this VFP11 coprocessor manual refers only to the
coprocessor included with the ARM1136JF-S processor.

The changes made in the rev1 release of the VFP11 coprocessor are:

rev0 - rev1 Contains the following differences in functionality:

• addition of two Media and VFP Feature Registers

• update to the FPSID register to reflect the r1p0 release.

r1p0 - r1p3 There are no changes to the VFP11 coprocessor between releases r1p0
and r1p3. The release number change corresponds to a change in the
release number of the ARM1136JF-S processor, because of an errata-fix
release and a non-technical update.
1-20 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Chapter 2
Register File

This chapter describes implementation-specific features of the VFP11 coprocessor that
are useful to programmers. It contains the following sections:

• About the register file on page 2-2

• Register file internal formats on page 2-3

• Decoding the register file on page 2-5

• Loading operands from ARM1136JF-S registers on page 2-6

• Maintaining consistency in register precision on page 2-8

• Data transfer between memory and VFP11 registers on page 2-9

• Access to register banks in CDP operations on page 2-11.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-1

Register File
2.1 About the register file

The register file is organized in four banks of eight registers. Each 32-bit register can
store either a single-precision floating-point number or an integer.

Any consecutive pair of registers, [Reven+1]:[Reven], can store a double-precision
floating-point number. Because a load and store operation does not modify the data, the
VFP11 registers can also be used as secondary data storage by another application that
does not use floating-point values.

The register file can be configured as four circular buffers for use by short vector
instructions in applications requiring high data throughput, such as filtering and
graphics transforms. For short vector instructions, register addressing is circular within
each bank. Because load and store operations do not circulate, you can load or store
multiple banks, up to the entire register file, with a single instruction. Short vector
operations obey certain rules specifying the conditions under which the registers in the
argument list specify circular buffers or single-scalar registers. The LEN and STRIDE
fields in the FPSCR register specify the number of operations performed by short vector
instructions and the increment scheme within the circular register banks. See section C5
of the ARM Architecture Reference Manual for further information and examples.
2-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
2.2 Register file internal formats

The VFPv2 architecture provides the option of an internal data format that is different
from some or all of the external formats. In this implementation of the VFP11
coprocessor, data in the register file has the same format as data in memory. Load or
store operations for single-precision, double-precision, or integer data do not modify the
format as a consequence of the transfer. However, to ensure compatibility with future
VFP implementations, use FLDMX/FSTMX instructions when saving context and
restoring VFP11 registers. See section C5 of the ARM Architecture Reference Manual
for more information.

It is the responsibility of the programmer to be aware of the data type in each register.
The hardware does not perform any checking of the agreement between the data type in
the source registers and the data type expected by the instruction. Hardware always
interprets the data according to the precision implied in the instruction.

Accessing a register that has not been initialized or loaded with valid data is
Unpredictable. A way to detect access to an uninitialized register is to load all registers
with Signaling NaNs (SNaNs) in the precision of the initial access of the register and
enable the Invalid Operation exception.

2.2.1 Integer data format

The VFP11 coprocessor supports signed and unsigned 32-bit integers. Signed integers
are treated as two’s complement values. No modification to the data is implicit in a load,
store, or transfer operation on integer data. The format of integer data within the register
file is identical to the format in memory or in an ARM11 general-purpose register.

2.2.2 Single-precision data format

Figure 2-1 shows the single-precision bit fields.

Figure 2-1 Single-precision data format

The single-precision data format contains:

• the sign bit, S, bit[31]

• the exponent, bits[30:23]

• the fraction, bits[22:0].
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-3

Register File
The IEEE 754 standard defines the single-precision data format of the VFP11
coprocessor. Refer to the IEEE 754 standard for details about exponent bias, special
formats, and numerical ranges.

2.2.3 Double-precision data format

Double-precision format has a Most Significant Word (MSW) and a Least Significant
Word (LSW). Figure 2-2 shows the double-precision bit fields.

Figure 2-2 Double-precision data format

The MSW contains:

• the sign bit, S, bit[31]

• the exponent, bits[30:20]

• the upper 20 bits of the fraction, bits[19:0].

The LSW contains the lower 32 bits of the fraction.

The IEEE 754 standard defines the double-precision data format used in the VFP11
coprocessor. Refer to the IEEE 754 standard for details about exponent bias, special
formats, and numerical ranges.
2-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
2.3 Decoding the register file

Each register file access uses the five bits of the register number in the instruction word.
For single-precision and integer accesses, the most significant four bits are in the Fm,
Fn, or Fd field, and the least significant bit is the M, N, or D bit for each instruction
format. For instructions with double-precision operands or destinations, the M, N, and
D bit corresponding to a double-precision access must be zero. Figure 2-3 shows the
register file. See the ARM Architecture Reference Manual for instruction formats and
the positions of these bits.

Figure 2-3 Register file access
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-5

Register File
2.4 Loading operands from ARM1136JF-S registers

Floating-point data can be transferred between ARM1136 registers and VFP11 registers
using the MCR, MRC, MCRR, and MRRC coprocessor data transfer instructions. No
exceptions are possible on these transfer instructions.

MCR instructions transfer 32-bit values from ARM1136 registers to VFP11 registers as
Table 2-1 shows.

MRC instructions transfer 32-bit values from VFP11 registers to ARM1136 registers as
Table 2-2 shows.

Table 2-1 VFP11 MCR instructions

Instruction Operation Description

FMXR VFP11 system register = Rd Move from ARM1136 register Rd to VFP11 system register FPSIDa,
FPSCR, FPEXC, FPINST, or FPINST2.

FMDLR Dn[31:0] = Rd Move from ARM1136 register Rd to lower half of VFP11
double-precision register Dn.

FMDHR Dn[63:32] = Rd Move from ARM1136 register Rd to upper half of VFP11
double-precision register Dn.

FMSR Sn = Rd Move from ARM1136 register Rd to VFP11 single-precision or integer
register Sn.

a. Writing to the FPSID register does not change the contents of the FPSID but may be used as a serializing instruction.

Table 2-2 VFP11 MRC instructions

Instruction Operation Description

FMRX Rd = VFP11 system register Move from VFP11 system register FPSID, FPSCR, FPEXC, FPINST, or
FPINST2 to ARM1136 register Rd.

FMRDL Rd = Dn[31:0] Move from lower half of VFP11 double-precision register Dn to
ARM1136 register Rd.

FMRDH Rd = Dn[63:32] Move from upper half of VFP11 double-precision register Dn to
ARM1136 register Rd.

FMRS Rd = Sn Move from VFP11 single-precision or integer register Sn to ARM1136
register Rd.
2-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
MCRR instructions transfer 64-bit quantities from ARM1136 registers to VFP11
registers as Table 2-3 shows.

MRRC instructions transfer 64-bit quantities from VFP11 registers to ARM1136
registers as Table 2-4 shows.

Table 2-3 VFP11 MCRR instructions

Instruction Operation Description

FMDRR Dm[31:0] = Rd
Dm[63:32] = Rn

Move from ARM1136 registers Rd and Rn to lower and upper halves of
VFP11 double-precision register Dm.

FMSRR Sm = Rd S(m + 1) = Rn Move from ARM1136 registers Rd and Rn to consecutive VFP11
single-precision registers Sm and S(m + 1).

Table 2-4 VFP11 MRRC instructions

Instruction Operation Description

FMRRD Rd = Dm[31:0]
Rn = Dm[63:32]

Move from lower and upper halves of VFP11 double-precision register Dm to
ARM1136 registers Rd and Rn.

FMRRS Rd = Sm Rn = S(m + 1) Move from single-precision VFP11 registers Sm and S(m + 1) to ARM1136
registers Rd and Rn.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-7

Register File
2.5 Maintaining consistency in register precision

The VFP11 register file stores single-precision, double-precision, and integer data in the
same registers. For example, D6 occupies the same registers as S12 and S13. The usable
format of the register or registers depends on the last load or arithmetic instruction that
wrote to the register or registers.

The VFP11 hardware does not check the register format to see if it is consistent with the
precision of the current operation. Inconsistent use of the registers is possible but
Unpredictable. The hardware interprets the data in the format required by the instruction
regardless of the latest store or write operation to the register. It is the task of the
compiler or programmer to maintain consistency in register usage.
2-8 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
2.6 Data transfer between memory and VFP11 registers

The B bit in the CP15 c1 Control Register (see Section B2 of the ARM Architecture
Reference Manual), determines whether access to stored memory is little-endian or
big-endian. The ARM1136JF-S processor supports both little-endian and big-endian
access formats in memory.

The ARM1136 processor stores 32-bit words in memory with the Least Significant Byte
(LSB) in the lowest byte of the memory address regardless of the endianness selected.
For a store of a single-precision floating-point value, the LSB is located at the target
address with the lower two bits of the address cleared. The Most Significant Byte (MSB)
is at the target address with the lower two bits set. For best performance, all
single-precision data must be aligned in memory to four-byte boundaries, and
double-precision data must be aligned to eight-byte boundaries.

Table 2-5 shows how single-precision data is stored in memory and the address to
access each byte in both little-endian and big-endian formats. In this example, the target
address is 0x40000000.

Table 2-5 Single-precision data memory images and byte addresses

Single-precision
data bytes

Address in
memory

Little-endian
byte address

Big-endian
byte address

MSB, bits [31:24] 0x40000003 0x40000003 0x40000000

Bits [23:16] 0x40000002 0x40000002 0x40000001

Bits [15:8] 0x40000001 0x40000001 0x40000002

LSB, bits [7:0] 0x40000000 0x40000000 0x40000003
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-9

Register File
For double-precision data, the location of the two words that comprise the data are
stored in different locations for little-endian and big-endian data access formats.
Table 2-6 shows the data storage in memory and the address to access each byte in
little-endian and big-endian access modes. In this example, the target address is
0x40000000.

The memory image for the data is identical for both little-endian and big-endian within
data words. The ARM1136 hardware performs the address transformations to provide
both little-endian and big-endian addressing to the programmer.

Table 2-6 Double-precision data memory images and byte addresses

Double- precision
data bytes

Little-endian
address in memory

Little-endian
byte address

Big-endian address
in memory

Big-endian
byte address

MSB, bits [63:56] 0x40000007 0x40000007 0x40000003 0x40000000

Bits [55:48] 0x40000006 0x40000006 0x40000002 0x40000001

Bits [47:40] 0x40000005 0x40000005 0x40000001 0x40000002

Bits [39:32] 0x40000004 0x40000004 0x40000000 0x40000003

Bits [31:24] 0x40000003 0x40000003 0x40000007 0x40000004

Bits [23:16] 0x40000002 0x40000002 0x40000006 0x40000005

Bits [15:8] 0x40000001 0x40000001 0x40000005 0x40000006

LSB, bits [7:0] 0x40000000 0x40000000 0x40000004 0x40000007
2-10 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
2.7 Access to register banks in CDP operations

The register file is especially suited for short vector operations. The four register banks
function as four circular hardware queues. Short vector operations significantly improve
the performance of operations with high data throughput such as signal processing and
matrix manipulation functions.

2.7.1 About register banks

As Figure 2-4 shows, the register file is divided into four banks with eight registers in
each bank for single-precision instructions and four registers per bank for
double-precision instructions. CDP instructions access the banks in a circular manner.
Load and store multiple instructions do not access the registers in a circular manner but
treat the register file as a linearly ordered structure.

See ARM Architecture Reference Manual, Part C for more information on VFP
addressing modes.

Figure 2-4 Register banks

A short vector CDP operation that has a source or destination vector crossing a bank
boundary wraps around and accesses the first register in the bank.

Example 2-1 on page 2-12 shows the iterations of the following short vector add
instruction:

FADDS S11, S22, S31

In this instruction, the LEN field contains b101, selecting a vector length of six
iterations, and the STRIDE field contains b00, selecting a vector stride of one.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-11

Register File
Example 2-1 Register bank wrapping

FADDS S11, S22, S31 ; 1st iteration
FADDS S12, S23, S24 ; 2nd iteration. The 2nd source vector wraps around

; and accesses the 1st register in the 4th bank
FADDS S13, S16, S25 ; 3rd iteration. The 1st source vector wraps around

; and accesses the 1st register in the 3rd bank
FADDS S14, S17, S26 ; 4th iteration
FADDS S15, S18, S27 ; 5th iteration
FADDS S8, S19, S28 ; 6th and last iteration. The destination vector

; wraps around and writes to the 1st register in the
; 2nd bank

2.7.2 Operations using register banks

The register file organization supports four types of operations described in the
following sections:

• Scalar-only instructions

• Short vector-only instructions on page 2-13

• Short vector instructions with scalar source on page 2-13

• Scalar instructions in short vector mode on page 2-14.

See Floating-Point Status and Control Register, FPSCR on page 3-19 for details of the
LEN and STRIDE fields and the FPSCR register.

Scalar-only instructions

An instruction is a scalar-only operation if the operands are treated as scalars and the
result is a scalar.

Clearing the LEN field in the FPSCR register selects a vector length of one iteration.
For example, if the LEN field contains b000, then the following operation writes the
sum of the single-precision values in S21 and S22 to S12:

FADDS S12, S21, S22

Some instructions can operate only on scalar data regardless of the value in the LEN
field. These instructions are:

Compare operations

FCMPS/D, FCMPZS/D, FCMPES/D, and FCMPEZS/D.

Integer conversions
2-12 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
FTOUIS/D, FTOUIZS/D, FTOSIS/D, FTOSIZS/D, FUITOS/D, and
FSITOS/D.

Precision conversions

FCVTDS and FCVTSD.

Short vector-only instructions

Vector-only instructions require that the value in the LEN field is nonzero, and that the
destination and Fm registers are not in bank 0.

Example 2-2 shows the iterations of the following short vector instruction:

FMACS S16, S0, S8

In the example, the LEN field contains b011, selecting a vector length of four iterations,
and the STRIDE field contains b00, selecting a vector stride of one.

Example 2-2 Short vector instruction

FMACS S16, S0, S8 ; 1st iteration
FMACS S17, S1, S9 ; 2nd iteration
FMACS S18, S2, S10 ; 3rd iteration
FMACS S19, S3, S11 ; 4th and last iteration

Short vector instructions with scalar source

The VFPv2 architecture enables a vector to be operated on by a scalar operand. The
destination must be a vector, that is, not in bank 0, and the Fm operand must be in
bank 0.

Example 2-3 shows the iterations of the following short vector instruction with a scalar
source:

FMULD D12, D8, D2

In the example, the LEN field contains b001, selecting a vector length of two iterations,
and the STRIDE field contains b00, selecting a vector stride of one.

Example 2-3 Short vector instruction with scalar source

FMULD D12, D8, D2 ; 1st iteration
FMULD D13, D9, D2 ; 2nd and last iteration
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-13

Register File
This scales the two source registers, D8 and D9, by the value in D2 and writes the new
values to D12 and D13.

Scalar instructions in short vector mode

You can mix scalar and short vector operations by carefully selecting the source and
destination registers. If the destination is in bank 0, the operation is scalar-only
regardless of the value in the LEN field. You do not have to change the LEN field from
a nonzero value to b000 to perform scalar operations.

Example 2-4 shows the sequence of operations for the following instructions:

FABSD D4, D8
FADDS S0, S0, S31
FMULS S24, S26, S1

In the example, the LEN field contains b001, selecting a vector length of two iterations,
and the STRIDE field contains b00, selecting a vector stride of one.

Example 2-4 Scalar operation in short vector mode

FABSD D4, D8 ; vector DP ABS operation on regs (D8, D9) to (D4, D5)
FABSD D5, D9
FADDS S0, S0, S31 ; scalar increment of S0 by S31
FMULS S24, S26, S1 ; vector (S26, S27) scaled by S1 and written to (S24, S25)
FMULS S25, S27, S1

The tables that follow show the four types of operations possible in the VFPv2
architecture. In the tables, Any refers to the availability of all registers in the precision
for the specified operand. S refers to a scalar operand with only a single register. V refers
to a vector operand with multiple registers. Table 2-7 describes single-precision
three-operand register usage.

Table 2-7 Single-precision three-operand register usage

LEN field Fd Fn Fm Operation type

b000 Any Any Any S = S op S OR S = S S S

Nonzero 0-7 Any Any S = S op S OR S = S S S

Nonzero 8-31 Any 0-7 V = V op S OR V = V V S

Nonzero 8-31 Any 8-31 V = V op V OR V = V V V
2-14 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Register File
Table 2-8 describes single-precision two-operand register usage.

Table 2-9 describes double-precision three-operand register usage.

Table 2-10 describes double-precision two-operand register usage.

Table 2-8 Single-precision two-operand register usage

LEN field Fd Fm Operation type

b000 Any Any S = op S

Nonzero 0-7 Any S = op S

Nonzero 8-31 0-7 V = op S

Nonzero 8-31 8-31 V = op V

Table 2-9 Double-precision three-operand register usage

LEN field Fd Fn Fm Operation type

b000 Any Any Any S = S op S OR S = S S S

Nonzero 0-3 Any Any S = S op S OR S = S S S

Nonzero 4-15 Any 0-3 V = V op S OR V = V V S

Nonzero 4-15 Any 4-15 V = V op V OR V = V V V

Table 2-10 Double-precision two-operand register usage

LEN field Fd Fm Operation type

b000 Any Any S = op S

Nonzero 0-3 Any S = op S

Nonzero 4-15 0-3 V = op S

Nonzero 4-15 4-15 V = op V
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 2-15

Register File
2-16 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Chapter 3
Programmer’s Model

This chapter describes implementation-specific features of the VFP11 coprocessor that
are useful to programmers. It contains the following sections:

• About the programmer’s model on page 3-2

• Compliance with the IEEE 754 standard on page 3-3

• ARMv5TE coprocessor extensions on page 3-10

• VFP11 system registers on page 3-16.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-1

Programmer’s Model
3.1 About the programmer’s model

This section introduces the VFP11 implementation of the VFPv2 floating-point
architecture.

Note
 The ARM Architecture Reference Manual describes the VFPv1 architecture.

The VFP11 coprocessor implements all the instructions and modes of the VFPv2
architecture. The VFPv2 architecture adds the following features and enhancements to
the VFPv1 architecture:

• The ARM v5TE instruction set. This includes the MRRC and MCRR instructions
to transfer 64-bit data between the ARM1136JF-S processor and the VFP11
coprocessor. These instructions allow the transfer of a double-precision register
or two consecutively numbered single-precision registers to or from a pair of
ARM1136 registers. See Loading operands from ARM1136JF-S registers on
page 2-6 for syntax and usage of VFP MRRC and MCRR instructions.

• Default NaN mode. In default NaN mode, any operation involving one or more
NaN operands produces the default NaN as a result, rather than returning the NaN
or one of the NaNs involved in the operation. This mode is compatible with the
IEEE 754 standard but not with current handling of NaNs by industry.

• Addition of the input subnormal flag, IDC (FPSCR[7]). IDC is set whenever the
VFP11 coprocessor is in flush-to-zero mode and a subnormal input operand is
replaced by a positive zero. It remains set until cleared by writing to the FPSCR
register. A new Input Subnormal exception enable bit, IDE (FPSCR[15]), is also
added. When IDE is set, the VFP11 coprocessor traps to the Undefined trap
handler for an instruction that has a subnormal input operand.

• New functionality of the underflow flag, UFC (FPSCR[3]), in flush-to-zero
mode. In flush-to-zero mode, UFC is set whenever a result is below the threshold
for normal numbers before rounding, and the result is flushed to zero. UFC
remains set until cleared by writing to the FPSCR register. Setting the Underflow
exception enable bit, UFE (FPSCR[11]), does not cause a trap in flush-to-zero
mode.

• New functionality of the inexact flag, IXC (FPSCR[4]), in flush-to-zero mode. In
VFPv1, IXC is set when an input or result is flushed to zero. In VFPv2
architecture, the IDC and UFC flags provide this information. See Inexact
exception on page 5-22 for more information.

• Addition of RunFast mode. See RunFast mode on page 1-15 for details of
RunFast mode operation.
3-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
3.2 Compliance with the IEEE 754 standard

This section introduces issues related to compliance with the IEEE 754 standard:

• hardware and software components

• software-based components and their availability.

Also see Section C1 of the ARM Architecture Reference Manual for information about
VFP architecture compliance with the IEEE 754 standard.

3.2.1 An IEEE 754 standard-compliant implementation

The VFP11 hardware and support code together provide VFPv2 floating-point
instruction implementations that are compliant with the IEEE 754 standard. Unless an
enabled floating-point exception occurs, it appears to the program that the
floating-point instruction was executed by the hardware. If an exceptional condition
occurs that requires software support during instruction execution, the instruction takes
significantly more cycles than normal to produce the result. This is a common practice
in the industry, and the incidence of such instructions is typically very low.

3.2.2 Complete implementation of the IEEE 754 standard

The following operations from the IEEE 754 standard are not supplied by the VFP11
instruction set:

• remainder

• round floating-point number to integer-valued floating-point number

• binary-to-decimal conversions

• decimal-to-binary conversions

• direct comparison of single-precision and double-precision values.

For complete implementation of the IEEE 754 standard, the VFP11 coprocessor and
support code must be augmented with library functions that implement these
operations. See Application Note 98, VFP Support Code for details of support code and
the available library functions.

3.2.3 IEEE 754 standard implementation choices

Some of the implementation choices allowed by the IEEE 754 standard and used in the
VFPv2 architecture are described in Part C of the ARM Architecture Reference Manual.

Further implementation choices are made within the VFP11 coprocessor about which
cases are handled by the VFP11 hardware and which cases bounce to the support code.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-3

Programmer’s Model
To execute frequently encountered operations as fast as possible and minimize silicon
area, handling of rarely occurring values and some exceptions is relegated to the support
code. The VFP11 coprocessor supports two modes for handling rarely occurring values:

Full-compliance mode

Full-compliance mode with support code assistance is fully compliant
with the IEEE 754 standard. Full-compliance mode requires the
floating-point support code to handle certain operands and exceptional
conditions not supported in the hardware. Although the support code
gives full compliance with the IEEE 754 standard, it does increase the
runtime of an application and the size of kernel code.

RunFast mode

In RunFast mode, default handling of subnormal inputs, underflows, and
NaN inputs is not fully compliant with the IEEE 754 standard. No user
trap handlers are allowed in RunFast mode.

When flush-to-zero and default NaN modes are enabled, and all
exceptions are disabled, the VFP11 coprocessor operates in RunFast
mode. While the potential loss of accuracy for very small values is
present, RunFast mode removes a significant number of
performance-limiting stall conditions. By not requiring the floating-point
support code, RunFast mode enables increased performance of typical
and optimized code and a reduction in the size of kernel code. See
Hazards on page 4-7 for more information on performance
improvements in RunFast mode.

Supported formats

The supported formats are:

• Single-precision and double-precision. No extended format is supported.

• Integer formats:

— unsigned 32-bit integers

— two’s complement signed 32-bit integers.
3-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
NaN handling

Any single-precision or double-precision values with the maximum exponent field
value and a nonzero fraction field are valid NaNs. A most significant fraction bit of zero
indicates a Signaling NaN (SNaN). A one indicates a Quiet NaN (QNaN). Two NaN
values are treated as different NaNs if they differ in any bit. Table 3-1 shows the default
NaN values in both single and double precision.

Any SNaN passed as input to an operation causes an Invalid Operation exception and
sets the IOC flag, FPSCR[0]. If the IOE bit, FPSCR[8], is set, control passes to a user
trap handler if present. If IOE is not set, a default QNaN is written to the destination
register. The rules for cases involving multiple NaN operands are in the ARM
Architecture Reference Manual.

Processing of input NaNs for ARM floating-point coprocessors and libraries is defined
as follows:

• In full-compliance mode, NaNs are handled according to the ARM Architecture
Reference Manual. The hardware does not process the NaNs directly for
arithmetic CDP instructions, but traps to the support code for all NaN processing.
For data transfer operations, NaNs are transferred without raising the Invalid
Operation exception or trapping to support code. For the nonarithmetic CDP
instructions, FABS, FNEG, and FCPY, NaNs are copied, with a change of sign if
specified in the instructions, without causing the Invalid Operation exception or
trapping to support code.

• In default NaN mode, NaNs are handled completely within the hardware without
support code assistance. SNaNs in an arithmetic CDP operation set the IOC flag,
FPSCR[0]. NaN handling by data transfer and nonarithmetic CDP instructions is
the same as in full-compliance mode. Arithmetic CDP instructions involving NaN
operands return the default NaN regardless of the fractions of any NaN operands.

Table 3-1 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent 0xFF 0x7FF

Fraction bit [22] = 1

bits [21:0] are all zeros

bit [51] = 1

bits [50:0] are all zeros
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-5

Programmer’s Model
Table 3-2 summarizes the effects of NaN operands on instruction execution.

Comparisons

Comparison results modify condition code flags in the FPSCR register. The FMSTAT
instruction transfers the current condition code flags in the FPSCR register to the
ARM1136 CPSR register. Refer to the ARM Architecture Reference Manual for
mapping of IEEE 754 standard predicates to ARM conditions. The condition code flags
used are chosen so that subsequent conditional execution of ARM instructions can test
the predicates defined in the IEEE 754 standard.

Table 3-2 QNaN and SNaN handling

Instruction
type

Default
NaN
mode With QNaN operand With SNaN operand

Arithmetic CDP

Off INVa set. Bounce to support code to
process operation.

INVa set. Bounce to support code to
process operation.

On No bounce. Default NaN returns. IOCb set. If IOEc set, bounce to Invalid
Operation user trap handler. If IOE clear,
default NaN returns.

Nonarithmetic
CDP

Off
NaN passes to destination with sign changed as appropriate.

On

FCMP(Z)

Off INVa set. Bounce to support code to
process operation.

INVa set. Bounce to support code to
process operation.

On No bounce. Unordered compare. IOCb set. If IOEc set, bounce to Invalid
Operation user trap handler. If IOE clear,
unordered compare.

FCMPE(Z)

Off INVa set. Bounce to support code to
process operation.

INVa set. Bounce to support code to
process operation.

On IOCb set. If IOEc set, bounce to Invalid
Operation user trap handler. If IOE clear,
unordered compare.

IOCb set. If IOEc set, bounce to Invalid
Operation user trap handler. If IOE clear,
unordered compare.

Load/store
Off

All NaNs transferred. No bounce.
On

a. INV is the Input exception flag, FPEXC[7].
b. IOC is the Invalid Operation exception flag, FPSCR[0].
c. IOE is the Invalid Operation exception enable bit, FPSCR[8].
3-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
The VFP11 coprocessor handles most comparisons of numeric values in hardware,
generating the appropriate condition code depending on whether the result is less than,
equal to, or greater than. When the VFP11 coprocessor is not in flush-to-zero mode,
comparisons involving subnormal operands bounce to support code.

The VFP11 coprocessor supports:

Compare operations

The compare operations are FCMPS, FCMPZS, FCMPD, and FCMPZD.

In default NaN mode, a compare instruction involving a QNaN produces
an unordered result. An SNaN produces an unordered result and
generates an Invalid Operation exception. If the IOE bit, FPSCR[8], is
set, the Invalid Operation user trap handler is called. When the VFP11
coprocessor is not in default NaN mode, comparisons involving NaNs
bounce to support code.

Compare with exception operations

The compare with exception operations are FCMPES, FCMPEZS,
FCMPED, and FCMPEZD.

In default NaN mode, a compare with exception operation involving
either an SNaN or a QNaN produces an unordered result and generates
an Invalid Operation exception. When the VFP11 coprocessor is not in
default NaN mode, comparisons involving NaNs bounce to support code.

Some simple comparisons on single-precision data can be computed directly by the
ARM1136 processor. If only equality or comparison to zero is needed, and NaNs are
not an issue, performing the comparison in ARM1136 registers using CMP or CMN
instructions can be faster.

If branching on the state of the Z flag is needed, you can use the following instructions
for positive values:

FMRS Rx, Sn
CMP Rx, #0
BEQ label

If the input values can include negative numbers, including negative zero, you can use
the following code:

FMRS Rx, Sn
CMP Rx, #0x80000000
CMPNE Rx, #0
BEQ label

Using a temporary register is even faster:
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-7

Programmer’s Model
FMRS Rx, Sn
MOVS Rt, Rx, LSL #1
BEQ label

Comparisons with particular values are also possible. For example, to check if a positive
value is greater or equal to +1.0, use:

FMRS Rx,Sn
CMP Rx,#0x3F800000
BGE label

When comparisons are required for double-precision values, or when IEEE 754
standard comparisons are required, it is safer to use the FCMP and FCMPE instructions
with FMSTAT.

Underflow

In the generation of Underflow exceptions, the after rounding form of tininess and the
subnormalization loss form of loss of accuracy as described in the IEEE 754 standard
are used.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE
754 standard, are flushed to a positive zero, and the UFC flag, FPSCR[3], is set. Support
code is not involved. See Part C of the ARM Architecture Reference Manual for
information on flush-to-zero mode.

When the VFP11 coprocessor is not in flush-to-zero mode, any operation with a risk of
producing a tiny result bounces to support code. If the operation does not produce a tiny
result, it returns the computed result, and the UFC flag, FPSCR[3], is not set. The IXC
flag, FPSCR[4], is set if the operation is inexact. If the operation produces a tiny result,
the result is a subnormal or zero value, and the UFC flag, FPSCR[3], is set. See
Underflow exception on page 5-20 for more information on underflow handling.

Exceptions

Exceptions are taken in the VFP11 coprocessor in an imprecise manner. When
exception processing begins, the states of the ARM1136 processor and the VFP11
coprocessor might not be the same as when the exception occurred. Exceptional
instructions cause the VFP11 coprocessor to enter the exceptional state, and the next
VFP11 instruction triggers exception processing. After the issue of the exceptional
instruction and before exception processing begins, non-VFP11 instructions and some
VFP11 instructions can be executed and retired. Any source registers involved in the
exceptional instruction are preserved, and the destination register is not overwritten on
entry to the support code. If the detected exception enable bit is not set, the support code
returns to the program flow at the point of the trigger instruction after processing the
exception. If the detected exception enable bit is set, and a user trap handler is installed,
3-8 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
the support code passes control to the user trap handler. If the exception is overflow or
underflow, the intermediate result specified by the IEEE 754 standard is made available
to the user trap handler.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-9

Programmer’s Model
3.3 ARMv5TE coprocessor extensions

This section describes the syntax and usage of the four ARMv5TE architecture
coprocessor extension instructions: The instructions are described in the following
sections:

• FMDRR

• FMRRD on page 3-11

• FMSRR on page 3-12

• FMRRS on page 3-14.

Note
 These instructions are implementations of the MCRR and MRRC instructions,
described in Section A10 of the ARM Architecture Reference Manual.

3.3.1 FMDRR

FMDRR transfers data from two ARM1136 registers to a VFP11 double-precision
register. The ARM1136 registers do not have to be contiguous. Figure 3-1 shows the
format of the FMDRR instruction.

Figure 3-1 FMDRR instruction format

Syntax

FMDRR {<cond>} <Dm>, <Rd>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Dm> Specifies the destination double-precision VFP11 coprocessor register.

<Rd> Specifies the source ARM1136 register for the lower 32 bits of the
operand.

<Rn> Specifies the source ARM1136 register for the upper 32 bits of the
operand.
3-10 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
Architecture version

D variants only

Exceptions

None

Operation

if ConditionPassed(cond) then
Dm[upper half] = Rn
Dm[lower half] = Rd

Notes

Conversions In the programmer’s model, FMDRR does not perform any conversion of
the value transferred. Arithmetic instructions using either Rd or Rn treat
the value as an integer, whereas most VFP instructions treat the Dm value
as a double-precision floating-point number.

3.3.2 FMRRD

FMRRD transfers data in a VFP11 double-precision register to two ARM1136
registers. The ARM1136 registers do not have to be contiguous. Figure 3-2 shows the
format of the FMRRD instruction.

Figure 3-2 FMRRD instruction format

Syntax

FMRRD {<cond>} <Rd>, <Rn>, <Dm>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM1136 register for the lower 32 bits of the
operand.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-11

Programmer’s Model
<Rn> Specifies the destination ARM1136 register for the upper 32 bits of the
operand.

<Dm> Specifies the source double-precision VFP11 coprocessor register.

Architecture version

D variants only

Exceptions

None

Operation

if ConditionPassed(cond) then
Rn = Dm[upper half]
Rd = Dm[lower half]

Notes

Use of r15 If r15 is specified for <Rd> or <Rn>, the results are Unpredictable.

Conversions In the programmer’s model, FMRRD does not perform any conversion of
the value transferred. Arithmetic instructions using Rd and Rn treat the
contents as an integer, whereas most VFP instructions treat the Dm value
as a double-precision floating-point number.

3.3.3 FMSRR

FMSRR transfers data in two ARM1136 registers to two consecutively numbered
single-precision VFP11 registers, Sm and S(m + 1). The ARM1136 registers do not
have to be contiguous. Figure 3-3 shows the format of the FMSRR instruction.

Figure 3-3 FMSRR instruction format
3-12 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
Syntax

FMSRR {<cond>} <registers>, <Rd>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<registers> Specifies the pair of consecutively numbered single-precision destination
VFP11 registers, separated by a comma and surrounded by brackets. If m
is the number of the first register in the list, the list is encoded in the
instruction by setting Sm to the top four bits of m and M to the bottom bit
of m. For example, if <registers> is {S1, S2}, the Sm field of the
instruction is b0000 and the M bit is 1.

<Rd> Specifies the source ARM1136 register for the Sm VFP11
single-precision register.

<Rn> Specifies the source ARM1136 register for the S(m + 1) VFP11
single-precision register.

Architecture version

All

Exceptions

None

Operation

If ConditionPassed(cond) then
Sm = Rd
S(m + 1) = Rn

Notes

Conversions In the programmer’s model, FMSRR does not perform any
conversion of the value transferred. Arithmetic instructions using
Rd and Rn treat the contents as an integer, whereas most VFP
instructions treat the Sm and S(m + 1) values as single-precision
floating-point numbers.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-13

Programmer’s Model
Invalid register lists

If Sm is b1111 and M is 1 (an encoding of S31) the instruction is
Unpredictable.

3.3.4 FMRRS

FMRRS transfers data in two consecutively numbered single-precision VFP11 registers
to two ARM1136 registers. The ARM1136 registers do not have to be contiguous.
Figure 3-4 shows the format of the FMRRS instruction.

Figure 3-4 FMRRS instruction format

Syntax

FMRRS {<cond>} <Rd>, <Rn>, <registers>

where:

<cond> Is the condition under which the instruction is executed. If <cond> is
omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM1136 register for the Sm VFP11
coprocessor single-precision value.

<Rn> Specifies the destination ARM1136 register for the S(m + 1) VFP11
coprocessor single-precision value.

<registers> Specifies the pair of consecutively numbered single-precision VFP11
source registers, separated by a comma and surrounded by brackets. If m
is the number of the first register in the list, the list is encoded in the
instruction by setting Sm to the top four bits of m and M to the bottom bit
of m. For example, if <registers> is {S16, S17}, the Sm field of the
instruction is b1000 and the M bit is 0.

Architecture version

All
3-14 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
Exceptions

None

Operation

If ConditionPassed(cond) then
Rd = Sm
Rn = S(m + 1)

Notes

Conversions In the programmer’s model, FMRRS does not perform any
conversion of the value transferred. Arithmetic instructions using
Rd and Rn treat the contents as an integer, whereas most VFP11
instructions treat the Sm and S(m + 1) values as single-precision
floating-point numbers.

Invalid register lists

If Sm is b1111 and M is 1 (an encoding of S31) the instruction is
Unpredictable.

Use of r15 If r15 is specified for Rd or Rn, the results are Unpredictable.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-15

Programmer’s Model
3.4 VFP11 system registers

The VFPv2 architecture describes the following three system registers that must be
present in a VFP system:

• Floating-Point System ID Register, FPSID

• Floating-Point Status and Control Register, FPSCR

• Floating-Point Exception Register, FPEXC.

The VFP11 coprocessor provides sufficient information for processing all exceptional
conditions encountered by the hardware. In an exceptional situation, the hardware
provides:

• the exceptional instruction

• the instruction issued to the VFP11 coprocessor before detection of the exception

• exception status information:

— type of exception

— number of remaining short vector iterations after an exceptional iteration.

To support exceptional conditions, the VFP11 coprocessor provides two additional
registers:

• Floating-Point Instruction Register, FPINST

• Floating-Point Instruction Register 2, FPINST2.

Also, the FPEXC register contains additional bits to support exceptional conditions.

These registers are designed to be used with the support code software available from
ARM Limited. As a result, this document does not fully specify exception handling in
all cases.

From release r1p0, the coprocessor also provides two feature registers:

• Media and VFP Feature Register 0, MFVFR0

• Media and VFP Feature Register 1, MFVFR1

Table 3-3 lists the VFP11 system registers.

Table 3-3 VFP11 system registers

Register Access mode Access type Reset state See

Floating-Point System ID Register, FPSID Any Read-only 0x410120B3 page 3-18

Floating-Point Status and Control Register, FPSCR Any Read/write 0x00000000 page 3-19

Floating-Point Exception Register, FPEXC Privileged Read/write 0x00000000 page 3-22

Floating-Point Instruction Register, FPINST Privileged Read/write 0xEE000A00 page 3-24
3-16 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
Use the FMRX instruction to transfer the contents of VFP11 registers to ARM1136
registers and the FMXR instruction to transfer the contents of ARM1136 registers to
VFP11 registers.

Table 3-4 lists the ARM1136 processor modes for accessing the VFP11 system
registers.

Table 3-4 shows that a privileged ARM1136 mode is sometimes required to access a
VFP11 system register. When a privileged mode is required, an instruction that tries to
access a register in a non-privileged mode takes the Undefined Instruction trap.

The following sections describe the VFP11 system registers:

• Floating-Point System ID Register, FPSID on page 3-18

• Floating-Point Status and Control Register, FPSCR on page 3-19

• Floating-Point Exception Register, FPEXC on page 3-22

• Floating Point Instruction Registers, FPINST and FPINST2 on page 3-24.

Floating-Point Instruction Register 2, FPINST2 Privileged Read/write Unpredictable page 3-24

Media and VFP Feature Register 0, MVFR0 Any Read-only 0x11111111 page 3-25

Media and VFP Feature Register 1, MVFR1 Any Read-only 0x00000000 page 3-27

Table 3-3 VFP11 system registers (continued)

Register Access mode Access type Reset state See

Table 3-4 Accessing VFP11 system registers

FMXR/FMRX <reg> field

ARM1136JF-S processor mode

Register VFP11 coprocessor enabled VFP11 coprocessor disabled

FPSID b0000 Any mode Privileged mode

FPSCR b0001 Any mode Nonea

FPEXC b1000 Privileged mode Privileged mode

FPINST b1001 Privileged mode Privileged mode

FPINST2 b1010 Privileged mode Privileged mode

MVFR0 b0111 Any mode Privileged mode

MVFR1 b0110 Any mode Privileged mode

a. An instruction that tries to access FPSCR while the VFP11 coprocessor is disabled takes the Undefined Instruction trap.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-17

Programmer’s Model
3.4.1 Floating-Point System ID Register, FPSID

FPSID is a read-only register that identifies the VFP11 coprocessor. Figure 3-5 shows
the FPSID bit fields.

Figure 3-5 Floating-Point System ID Register

Table 3-5 describes the FPSID Register bit fields.

Table 3-5 FPSID Register bit fields

Bit Meaning Value

[31:24] Implementor 0x41 A (ARM Limited)

[23] Hardware/software 0 Hardware implementation

[22:21] FSTMX/FLDMX format b00 Format 1

[20] Precisions supported 0 Both single-precision and double-precision data supported

[19:16] Architecture version b0001 VFPv2 architecture

[15:8] Part number 0x20 VFP11

[7:4] Variant 0xB ARM11 VFP interface

[3:0] Revision 0x3 Fourth versiona

a. Value given for VFP supplied with rev1 (r1p0 to r1p3) releases of the ARM1136JF-S processor. Will
differ for other RTL releases, for example, with r0p2 release ofARM1136JF-S processor this field was
0x2, Third version.
3-18 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
3.4.2 Floating-Point Status and Control Register, FPSCR

FPSCR is a read/write register that can be accessed in both privileged and unprivileged
modes. All bits described as SBZ in Figure 3-6 are reserved for future expansion. They
must be initialized to zeros. To ensure that these bits are not modified, code other than
initialization code must use read/modify/write techniques when writing to FPSCR.
Failure to observe this rule can cause Unpredictable results in future systems.
Figure 3-6 shows the FPSCR bit fields.

Figure 3-6 Floating-Point Status and Control Register

Table 3-6 describes the FPSCR Register bit fields.

Table 3-6 FPSCR Register bit fields

Bit Name Meaning

[31] N Set if comparison produces a less than result

[30] Z Set if comparison produces an equal result

[29] C Set if comparison produces an equal, greater than, or unordered result

[28] V Set if comparison produces an unordered result

[27:26] - Should Be Zero

[25] DN Default NaN mode enable bit:

0 = default NaN mode disabled

1 = default NaN mode enabled.

[24] FZ Flush-to-zero mode enable bit:

0 = flush-to-zero mode disabled

1 = flush-to-zero mode enabled.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-19

Programmer’s Model
Vector length and stride control

FPSCR[18:16] is the LEN field and controls the vector length for VFP instructions that
operate on short vectors. The vector length is the number of iterations in a short vector
instruction.

[23:22] Rmode Rounding mode control field:

b00 = Round to nearest (RN) mode

b01 = Round towards plus infinity (RP) mode

b10 = Round towards minus infinity (RM) mode

b11 = Round towards zero (RZ) mode.

[21:20] Stride See Vector length and stride control

[19] - Should Be Zero

[18:16] LEN See Vector length and stride control

[15] IDE Input Subnormal exception enable bit

[14:13] - Should Be Zero

[12] IXE Inexact exception enable bit

[11] UFE Underflow exception enable bit

[10] OFE Overflow exception enable bit

[9] DZE Division by Zero exception enable bit

[8] IOE Invalid Operation exception enable bit

[7] IDC Input Subnormal cumulative flag

[6:5] - Should Be Zero

[4] IXC Inexact cumulative flag

[3] UFC Underflow cumulative flag

[2] OFC Overflow cumulative flag

[1] DZC Division by Zero cumulative flag

[0] IOC Invalid Operation cumulative flag

Table 3-6 FPSCR Register bit fields (continued)

Bit Name Meaning
3-20 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
FPSCR[21:20] is the STRIDE field and controls the vector stride. The vector stride is
the increment value used to select the registers involved in the next iteration of the short
vector instruction.

The rules for vector operation do not allow a vector to use the same register more than
once. LEN and STRIDE combinations that use a register more than once produce
Unpredictable results, as shown in Table 3-7. Some combinations that work normally in
single-precision short vector instructions cause Unpredictable results in
double-precision instructions.

Table 3-7 Vector length and stride combinations

LEN
Vector
length STRIDE

Vector
stride

Single-precision
vector instructions

Double-precision
vector instructions

b000 1 b00 - All instructions are scalar All instructions are scalar

b000 1 b11 - Unpredictable Unpredictable

b001 2 b00 1 Work normally Work normally

b001 2 b11 2 Work normally Work normally

b010 3 b00 1 Work normally Work normally

b010 3 b11 2 Work normally Unpredictable

b011 4 b00 1 Work normally Work normally

b011 4 b11 2 Work normally Unpredictable

b100 5 b00 1 Work normally Unpredictable

b100 5 b11 2 Unpredictable Unpredictable

b101 6 b00 1 Work normally Unpredictable

b101 6 b11 2 Unpredictable Unpredictable

b110 7 b00 1 Work normally Unpredictable

b110 7 b11 2 Unpredictable Unpredictable

b111 8 b00 1 Work normally Unpredictable

b111 8 b11 2 Unpredictable Unpredictable
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-21

Programmer’s Model
3.4.3 Floating-Point Exception Register, FPEXC

In a bounce situation, the FPEXC register records the exceptional status. The FPEXC
register information assists the support code in processing the exceptional condition or
reporting the condition to a system trap handler or a user trap handler.

You must save and restore the FPEXC register whenever changing the context. If the
EX flag, FPEXC[31], is set, then the VFP11 coprocessor is in the exceptional state, and
you must also save and restore the FPINST and FPINST2 registers. You can write the
context switch code to determine from the EX flag which registers to save and restore
or to simply save all three.

The EN bit, FPEXC[30], is the VFP enable bit. Clearing EN disables the VFP11
coprocessor. The VFP11 coprocessor clears the EN bit on reset.

The INV flag, FPEXC[7], signals Input exceptions. An Input exception is a condition
in which the hardware cannot process one or more input operands according to the
architectural specifications. This includes subnormal inputs when the VFP11
coprocessor is not in flush-to-zero mode and NaNs when the VFP11 coprocessor is not
in default NaN mode.

The UFC flag, FPEXC[3], is set whenever an operation has the potential to generate a
result that is below the minimum threshold for the destination precision.

The OFC flag, FPEXC[2], is set whenever an operation has the potential to generate a
result that, after rounding, exceeds the largest representable number in the destination
format.

The IOC flag, FPEXC[0], is set whenever an operation has the potential to generate a
result that cannot be represented or is not defined.

Note
 To prevent an infinite loop of exceptions, the support code must clear the EX flag,
FPEXC[31], immediately on entry to the exception code. All exception flags must be
cleared before returning from exception code to user code.

Figure 3-7 on page 3-23 shows the FPEXC Register bit fields.
3-22 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
Figure 3-7 Floating-Point Exception Register

Table 3-8 describes the FPEXC Register bit fields.

Table 3-8 FPEXC Register bit fields

Bit Name Description

[31] EX Exception flag.

When EX is set, the VFP11 coprocessor is in the exceptional state. EX must be cleared by the
exception handling routine.

[30] EN VFP enable bit.

Setting EN enables the VFP11 coprocessor. Reset clears EN.

[29] - Should Be Zero.

[28] FP2V FPINST2 instruction valid flag.

Set when FPINST2 contains a valid instruction. FP2V must be cleared by the exception handling
routine.

[27:11] - Should Be Zero.

[10:8] VECITR Vector iteration count field.

VECITR contains the number of remaining short vector iterations after a potential exception was
detected in one of the iterations:

b000 = 1 iteration

b001 = 2 iterations

b010 = 3 iterations

b011 = 4 iterations

b100 = 5 iterations

b101 = 6 iterations

b110 = 7 iterations

b111 = 8 iterations.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-23

Programmer’s Model
3.4.4 Floating Point Instruction Registers, FPINST and FPINST2

The VFP11 coprocessor has two instruction registers:

• The FPINST register contains the exceptional instruction.

• The FPINST2 register contains the instruction that was issued to the VFP11
coprocessor before the exception was detected. This instruction was retired in the
ARM1136 processor and cannot be reissued. It must be executed by support code.

The FPINST and FPINST2 are accessible only in privileged modes.

The instruction in the FPINST register is in the same format as the issued instruction
but is modified in several ways. The condition code flags, FPINST[31:28], are forced
to b1110, the AL (always) condition. If the instruction is a short vector, the source and
destination registers that reference vectors are updated to point to the source and
destination registers of the exceptional iteration. See Exception processing for CDP
short vector instructions on page 5-9 for more information.

The instruction in the FPINST2 register is in the same format as the issued instruction
but is modified by forcing the condition code flags, FPINST2[31:28] to b1110, the AL
(always) condition.

[7] INV Input exception flag.

Set if the VFP11 coprocessor is not in flush-to-zero mode and an operand is subnormal or if the
VFP11 coprocessor is not in default NaN mode and an operand is a NaN.

[6:4] - Should Be Zero.

[3] UFC Potential underflow flag.

Set if the VFP11 coprocessor is not in flush-to-zero mode and a potential underflow condition
exists.

[2] OFC Potential overflow flag.

Set if the OFE bit, FPSCR[10], is set, the VFP11 coprocessor is not in RunFast mode, and a
potential overflow condition exists.

[1] - Should Be Zero.

[0] IOC Potential invalid operation flag.

Set if the IOE bit, FPSCR[8], is set, the VFP11 coprocessor is not in RunFast mode, and a potential
invalid operation condition exists.

Table 3-8 FPEXC Register bit fields (continued)

Bit Name Description
3-24 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
3.4.5 Media and VFP Feature Registers

The purpose of the Media and VFP Feature Registers is to provide information about
the features that the VFP unit contains.

The Media and VFP Feature Registers:

• are two 32-bit read-only registers

• when the VFP is enabled by the EN bit in the Floating Point Exception Register,
are accessible in any mode

• when the VFP is disabled by the EN bit, are accessible only in Privileged mode.

See Floating-Point Exception Register, FPEXC on page 3-22 for more information
about the EN bit.

Media and VFP Feature Register 0

Figure 3-8 shows the Media and VFP Feature Register 0 bit fields.

This register is first implemented in the rev1 (r1p0) release of the ARM1136JF-S
processor.

Figure 3-8 Media and VFP Feature Register 0
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-25

Programmer’s Model
Table 3-9 describes the Media and VFP Feature Register 0 bit fields.

The values in the Media and VFP Feature Register 0 are implementation defined.

Table 3-9 Media and VFP Feature Register 0 bit fields

Bit
range

Field
name

Function

[31:28] - Indicates the VFP hardware support level when user traps are disabled.

0x1, In ARM1136JF-S processors when Flush-to-Zero and Default_NaN and Round-to-Nearest are
all selected in FPSCR, the coprocessor does not require support code. Otherwise floating point
support code is required.

[27:24] - Indicates support for short vectors.

0x1, ARM1136JF-S processors support short vectors.

[23:20] - Indicates support for hardware square root.

0x1, ARM1136JF-S processors support hardware square root.

[19:16] - Indicates support for hardware divide.

0x1, ARM1136JF-S processors support hardware divide.

[15:12] - Indicates support for user traps.

0x1, ARM1136JF-S processors support software traps, support code is required.

[11:8] - Indicates support for double precision VFP.

0x1, ARM1136JF-S processors support v2.

[7:4] - Indicates support for single precision VFP.

0x1, ARM1136JF-S processors support v2.

[3:0] - Indicates support for the media register bank.

0x1, ARM1136JF-S processors support 16, 64-bit registers.
3-26 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Programmer’s Model
Media and VFP Feature Register 1

Figure 3-9 shows the Media and VFP Feature Register 1 bit fields.

This register is first implemented in the rev1 (r1p0) release of the ARM1136JF-S
processor.

Figure 3-9 Media and VFP Feature Register 1

Table 3-10 describes the Media and VFP Feature Register 0 bit fields.

The values in the Media and VFP Feature Register 1 are implementation defined.

Table 3-10 Media and VFP Feature Register 1 bit fields

Bit
range

Field
name

Function

[31:12] - Reserved. Read as zero.

[11:8] - Indicates support for media extension, single precision floating point instructions.

0x0, no support in ARM1136JF-S processors.

[7:4] - Indicates support for media extension, integer instructions.

0x0, no support in ARM1136JF-S processors.

[3:0] - Indicates support for media extension, load/store instructions.

0x0, no support in ARM1136JF-S processors.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 3-27

Programmer’s Model
3-28 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Chapter 4
Instruction Execution

This chapter describes the VFP11 instruction pipeline and its relationship with the
ARM processor instruction pipeline. It contains the following sections:

• About instruction execution on page 4-2

• Serializing instructions on page 4-3

• Interrupting the VFP11 coprocessor on page 4-4

• Forwarding on page 4-5

• Hazards on page 4-7

• Operation of the scoreboards on page 4-8

• Data hazards in full-compliance mode on page 4-15

• Data hazards in RunFast mode on page 4-19

• Resource hazards on page 4-20

• Parallel execution on page 4-23

• Execution timing on page 4-25.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-1

Instruction Execution
4.1 About instruction execution

Features of the VFP11 implementation of the instruction pipelines include the
following:

• The FMXR, FMRX, and FMSTAT instructions stall in the VFP11 LS pipeline
until all currently executing instructions are completed. You can use these
serializing instructions to:

— capture condition codes and exception status

— modify the mode of operation of subsequent instructions

— create an exception boundary.

See Serializing instructions on page 4-3.

• Load or store instructions that cause a Data Abort exception restart after interrupt
service. LDM and STM instructions detect exceptional conditions after the first
transfer and restart after interrupt service if reissued.

See Interrupting the VFP11 coprocessor on page 4-4.

• To reduce stall time, the VFP11 coprocessor forwards data:

— from load instructions to CDP instructions

— from CDP instructions to CDP instructions.

See Forwarding on page 4-5.

• In full-compliance mode, the VFP11 coprocessor implements full data hazard and
resource hazard detection.

RunFast mode guarantees no instruction bouncing for applications that require
less strict hazard detection.

See Hazards on page 4-7 and Operation of the scoreboards on page 4-8.

• The L/S, FMAC, and DS pipelines operate independently, enabling data transfer
and CDP operations to execute in parallel.

See Parallel execution on page 4-23.

Execution timing on page 4-25 describes VFP11 instruction throughput and latency.
4-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.2 Serializing instructions

A serializing instruction is one that stalls due to activity in the VFP11 pipelines without
the presence of a register or resource hazard. In general, an access to a VFP11 control
or status register is a serializing instruction.

The serializing instructions are FMRX and FMXR, including the FMSTAT instruction.
Serializing instructions stall the VFP11 coprocessor in the Issue stage and the ARM
processor in the Execute 2 stage until:

• the VFP11 pipeline is past the point of updating either the condition codes or the
exception status

• a write to a system register can no longer affect the operation of a current or
pending instruction.

An FMRX or FMSTAT instruction stalls until all prior floating-point operations are
completed, and the data to be written by the VFP11 coprocessor is valid. For example,
a compare operation updates the FPSCR register condition codes in the Writeback stage
of the compare.

An FMXR instruction stalls until all prior floating-point operations are past the point of
being affected by the instruction. For example, writing to the FPSCR register stalls until
the point when changing the control bits cannot affect any operation currently executing
or awaiting execution. Writing to the FPEXC, FPINST, or FPINST2 register stalls until
the pipeline is completely clear.

Uses of serializing instructions include:

• capturing condition codes and exception status

• delineating a block of instructions for execution with the ability to capture the
exception status of that block of instructions

• modifying the mode of operation of subsequent instructions, such as the rounding
mode or vector length.

While no instruction can change the contents of the FPSID register, you can access the
FPSID register with FMRX or FMXR as a general-purpose serializing operation or to
create an exception boundary.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-3

Instruction Execution
4.3 Interrupting the VFP11 coprocessor

Instructions are issued to the VFP11 coprocessor directly from the ARM prefetch unit.
The VFP11 coprocessor has no external interface beyond the ARM processor and
cannot be separately interrupted by external sources. Any interrupt that causes a change
of flow in the ARM1136JF-S processor is also reflected to the VFP11 coprocessor. Any
VFP instruction that is cancelled due to condition code failure in the ARM1136 pipeline
is also cancelled in the VFP11 pipeline.

If the interrupt is the result of a Data Abort condition, the load or store operation that
caused the abort restarts after interrupt processing is complete. Load and store multiple
instructions can detect some exception conditions and interrupt the operation after the
initial transfer. If the load or store instruction is reissued after interrupt processing, it
can restart with the initial transfer. The source data is guaranteed to be unchanged, and
no operations that depend on the load or store data can execute until the load or store
operation is complete.

When interrupt processing begins, there can be a delay before the VFP11 coprocessor
is available to the interrupt routine. Any prior short vector instruction that passes the
ARM1136 Execute 2 stage also passes the VFP11 Execute 1 stage and executes to
completion uninterrupted. The maximum delay during which the VFP11 coprocessor is
unavailable is equal to the time it takes to process a short vector of eight single-precision
divide or square root iterations. Such an operation can cause a delay of as many as 114
cycles after the short vector divide or square root enters the VFP11 Execute 1 stage.

In systems that require fast response time and access to the VFP11 coprocessor by the
service routine, avoid short vector divide and short vector square root operations. All
other instructions, including short vector instructions, have little or no impact. Limiting
the number of VFP11 registers that must be saved and used in the service routine also
reduces startup time. If the VFP11 coprocessor is not required in the service routine,
you can disable it with EN bit (FPEXC[30]). This eliminates the necessity of saving the
VFP11 coprocessor state. See Application Note 98, VFP Support Code.
4-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.4 Forwarding

In general, any forwarding operation reduces the stall time of a dependent instruction
by one cycle. The VFP11 coprocessor forwards data from load instructions to CDP
instructions and from CDP instructions to CDP instructions.

The VFP11 coprocessor does not forward in the following cases:

• from an instruction that produces integer data

• to a store instruction (FST, FSTM, MRC, or MRRC)

• to an instruction of different precision.

In the examples that follow, the stall counts given are based on two data transfer
assumptions:

• accesses by load operations result in cache hits and are able to deliver one or two
data words per cycle

• store operations write directly to the write buffer or cache and can transfer one or
two data words per cycle.

When these assumptions are valid, the VFP11 coprocessor operates at its highest
performance. When these assumptions are not valid, load and store operations are
affected by the delay required to access data. The examples below illustrate the
capabilities of the VFP11 coprocessor in ideal conditions.

In Example 4-1, the second FADDS instruction depends on the result of the first
FADDS instruction. The result of the first FADDS instruction is forwarded, reducing
the stall from eight cycles to seven cycles.

Example 4-1 Data forwarded to dependent instruction

FADDS S1, S2, S3
FADDS S8, S9, S1

In Example 4-2, there is no data forwarding of the double-precision FMULD data in D2
to the single-precision FADDS data in S5, even though S5 is the upper half of D2.

Example 4-2 Mixed-precision data not forwarded

FMULD D2, D0, D1
FADDS S12, S13, S5
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-5

Instruction Execution
In Example 4-3, the double-precision FSTD stalls for eight cycles until the result of the
FMULD is written to the register file. No forwarding is done from the FMULD to the
store instruction.

Example 4-3 Data not forwarded to store instruction

FMULD D1, D2, D3
FSTD D1, [Rx]
4-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.5 Hazards

The VFP11 coprocessor incorporates full hazard detection with a fully-interlocked
pipeline protocol. No compiler scheduling is required to avoid hazard conditions. The
source and destination scoreboards process interlocks caused by unavailable source or
destination registers or by unavailable data. The scoreboards stall instructions until all
data operands and destination registers are available before the instruction is issued to
the instruction pipeline.

The determination of hazards and interlock conditions is different in full-compliance
mode and RunFast mode. RunFast mode guarantees no bounce conditions and has a less
strict hazard detection mechanism, enabling instructions to begin execution earlier than
in full-compliance mode.

There are two VFP11 pipeline hazards:

• A data hazard is a combination of instructions that creates the potential for
operands to be accessed in the wrong order.

— A Read-After-Write (RAW) data hazard occurs when the pipeline creates
the potential for an instruction to read an operand before a prior instruction
writes to it. It is a hazard to the intended read-after-write operand access.

— A Write-After-Read (WAR) data hazard occurs when the pipeline creates
the potential for an instruction to write to a register before a prior
instruction reads it. It is a hazard to the intended write-after-read operand
access.

— A Write-After-Write (WAW) data hazard occurs when the pipeline creates
the potential for an instruction to write to a register before a prior
instruction writes to it. It is a hazard to the intended write-after-write
operand access.

• Resource hazard. See Resource hazards on page 4-20.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-7

Instruction Execution
4.6 Operation of the scoreboards

The VFP11 processor detects all hazard conditions that exist between issued and
executing instructions. It uses two scoreboards to ensure that all source and destination
registers for an instruction contain valid data and are available for reading or writing:

• The destination scoreboard contains a lock for each destination register for the
current operation.

• The source scoreboard contains a lock for each source register for the current
operation.

In the Decode stage of the VFP11 pipeline, the VFP11 coprocessor determines which
source and destination registers are involved in an operation and generates a lock mask
for them. In a short vector operation, the lock mask includes the registers involved in
every iteration of the operation. In the Issue stage, the VFP11 coprocessor checks and
updates the source and destination scoreboards. If it detects a hazard between the
instruction in the Issue stage and a prior instruction, the scoreboards are not updated,
and the instruction stalls in the Issue stage.

A VFP11 instruction can begin execution only when its source and destination registers
are free of locks. A short vector operation can begin only when the registers for all its
iterations are free of locks. When a short vector instruction proceeds in the pipeline
beyond the Issue stage, all the registers involved in the operation are locked.

The source scoreboard clears a source register lock in the first Execute 1 stage of the
pipeline or in the first Execute 1 stage of the iteration. In store multiple instructions, the
source scoreboard clears source register locks in the Execute stage in which the
instruction writes the store data to the ARM1136 processor.

The destination scoreboard clears the destination register lock in the cycle before the
result data is written back to the register file or is available for forwarding (Execute 7 in
the FMAC pipeline, Execute 4 in the DS pipeline). In a load operation, the destination
scoreboard normally clears the destination register lock in the Memory 2 stage. If the
load is delayed, the destination scoreboard clears the destination register lock in the
same cycle as the writeback to the register file.

4.6.1 Scoreboard operation when an instruction bounces

When a bounce occurs in full-compliance mode, support code is called to complete the
operation and to deliver the result and the exception status to the user trap handler. The
source scoreboard ensures that all source registers for the operation are preserved for
the support code. In a short vector operation, this includes the source registers for the
4-8 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
bounced iteration and for any iterations remaining after the bounced iteration. The
preserved source registers include the destination register for a multiply and accumulate
instruction.

Because RunFast mode guarantees that no bouncing is possible, source registers do not
have to be preserved after they are used by the instruction. For all scalar operations and
non-multiple store operations, no source registers are locked in RunFast mode. In short
vector operations, the length of the vector determines which source registers are locked.
When the vector length exceeds four single-precision iterations, the source scoreboard
locks the source registers for iterations 5 and above. When the vector length exceeds
two double-precision iterations, the source scoreboard locks the source registers for
iterations 3 and above.

4.6.2 Single-precision source register locking

In full-compliance mode, the source scoreboard locks all source registers in the Issue
stage of the instruction. In RunFast mode, the source scoreboard locks the source
registers for only iterations 5, 6, 7, and 8. Table 4-1 summarizes source register locking
in single-precision operations.

For the following single-precision short vector instruction, the LEN field contains b100,
selecting a vector length of five iterations:

FADDS S8, S16, S24

The FADDS instruction performs the following operations:

Table 4-1 Single-precision source register locking

LEN Vector length

Source registers locked in Issue stage

Full-compliance mode RunFast mode

b000 1 Iteration 1 registers -

b001 2 Iteration 1-2 registers -

b010 3 Iteration 1-3 registers -

b011 4 Iteration 1-4 registers -

b100 5 Iteration 1-5 registers Iteration 5 registers

b101 6 Iteration 1-6 registers Iteration 5-6 registers

b110 7 Iteration 1-7 registers Iteration 5-7 registers

b111 8 Iteration 1-8 registers Iteration 5-8 registers
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-9

Instruction Execution
FADDS S8, S16, S24
FADDS S9, S17, S25
FADDS S10, S18, S26
FADDS S11, S19, S27
FADDS S12, S20, S28

In full-compliance mode, the source scoreboard locks S16-S20 and S24-S28 in the
Issue stage of the instruction.

In RunFast mode, the source scoreboard locks only the fifth iteration source registers,
S20 and S28.

4.6.3 Single-precision source register clearing

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 stage of the iteration. In RunFast mode, the source registers
for only iterations 5, 6, 7, and 8 are locked, and the source scoreboard begins clearing
them in the second Execute 1 cycle of the instruction. Table 4-2 summarizes source
register clearing in single-precision operations.

For the following single-precision short vector instruction, the LEN field contains b100,
selecting a vector length of five iterations:

FADDS S8, S16, S24

The FADDS instruction performs the following operations:

Table 4-2 Single-precision source register clearing

Execute 1 cycle

Source registers cleared in Execute 1 stage of each iteration

Full-compliance mode RunFast mode

1 Iteration 1 registers -

2 Iteration 2 registers Iteration 5 registers

3 Iteration 3 registers Iteration 6 registers

4 Iteration 4 registers Iteration 7 registers

5 Iteration 5 registers Iteration 8 registers

6 Iteration 6 registers -

7 Iteration 7 registers -

8 Iteration 8 registers -
4-10 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
FADDS S8, S16, S24
FADDS S9, S17, S25
FADDS S10, S18, S26
FADDS S11, S19, S27
FADDS S12, S20, S28

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 cycle of the iteration.

In RunFast mode, the source scoreboard locks only the fifth iteration source registers,
S20 and S28. It clears S20 and S28 in the second Execute 1 cycle of the instruction.

4.6.4 Double-precision source register locking

In full-compliance mode, the source scoreboard locks all source registers in the Issue
stage of the instruction. In RunFast mode, the source scoreboard locks the source
registers for only iterations 3 and 4. Table 4-3 summarizes source register locking in
double-precision operations.

For the following double-precision, short vector instruction, the LEN field contains
b011, selecting a vector length of four iterations:

FADDD D4, D8, D12

The FADDD instruction performs the following operations:

FADDD D4, D8, D12
FADDD D5, D9, D13
FADDD D6, D10, D14
FADDD D7, D11, D15

In full-compliance mode, the source scoreboard locks D8-D11 and D12-D15 in the
Issue stage of the instruction.

Table 4-3 Double-precision source register locking

LEN
Vector
length

Source registers locked in Issue stage

Full-compliance mode RunFast mode

b000 1 Iteration 1 registers -

b001 2 Iteration 1-2 registers -

b010 3 Iteration 1-3 registers Iteration 3 registers

b011 4 Iteration 1-4 registers Iteration 3-4 registers
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-11

Instruction Execution
In RunFast mode, the source scoreboard locks only the third iteration source registers,
D10 and D14, and the fourth iteration source registers, D11 and D15.

4.6.5 Double-precision source register clearing

The number of Execute 1 cycles required to clear the source registers of a
double-precision instruction depends on the throughput of the instruction, as the
following sections show:

• Instructions with one-cycle throughput

• Instructions with two-cycle throughput on page 4-13.

Instructions with one-cycle throughput

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 stage of the iteration. In RunFast mode, the source registers
for only iterations 3 and 4 are locked, and the source scoreboard begins clearing them
in the first Execute 1 cycle of the instruction. Table 4-4 summarizes source register
clearing for double-precision one-cycle instructions such as FADDD and FABSD.

For the following one-cycle, double-precision short vector instruction, the LEN field
contains b011, selecting a vector length of four iterations:

FADDD D4, D8, D12

The FADDD performs the following operations:

FADDD D4, D8, D12
FADDD D5, D9, D13
FADDD D6, D10, D14
FADDD D7, D11, D15

Table 4-4 Double-precision source register clearing for one-cycle instructions

Execute 1
cycle

Source registers cleared in Execute 1 stage of each iteration

Full-compliance mode RunFast mode

1 Iteration 1 registers Iteration 3 registers

2 Iteration 2 registers Iteration 4 registers

3 Iteration 3 registers -

4 Iteration 4 registers -
4-12 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the Execute 1 cycle of the iteration.

In RunFast mode, the source scoreboard locks only the third iteration source registers,
D10 and D14, and the fourth iteration source registers, D11 and D15. It clears D10 and
D14 in the first Execute 1 cycle of the instruction and clears D11 and D15 in the second
Execute 1 cycle.

Instructions with two-cycle throughput

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the first Execute 1 cycle of the iteration. In RunFast mode, the source
registers for only iterations 3 and 4 are locked, and the source scoreboard begins
clearing them in the first Execute 1 cycle of the instruction. Table 4-5 summarizes
source register clearing for double-precision two-cycle instructions such as FMULD
and FMACD.

For the following two-cycle, double-precision, short vector instruction, the LEN field
contains b011, selecting a vector length of four iterations:

FMULD D4, D8, D12

The FMULD instruction performs the following operations:

FMULD D4, D8, D12
FMULD D5, D9, D13

Table 4-5 Double-precision source register clearing for two-cycle instructions

Execute 1
cycle

Source registers cleared in Execute 1 stage of each iteration

Full-compliance mode RunFast mode

1 Iteration 1 registers Iteration 3 registers

2 - -

3 Iteration 2 registers Iteration 4 registers

4 - -

5 Iteration 3 registers -

6 - -

7 Iteration 4 registers -

8 - -
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-13

Instruction Execution
FMULD D6, D10, D14
FMULD D7, D11, D15

In full-compliance mode, the source scoreboard clears the source registers of each
iteration in the first Execute 1 cycle of the iteration.

In RunFast mode, only the third iteration source registers, D10 and D14, and the fourth
iteration source registers, D11 and D15, are locked. The source scoreboard clears D10
and D14 in the first Execute 1 cycle and clears D11 and D15 in the third Execute 1 cycle
of the instruction.
4-14 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.7 Data hazards in full-compliance mode

The sections that follow give examples of data hazards in full-compliance mode:

• Status register RAW hazard example

• Load multiple-CDP RAW hazard example

• CDP-CDP RAW hazard example on page 4-17

• Load multiple-short vector CDP RAW hazard example on page 4-16

• Short vector CDP-load multiple WAR hazard example on page 4-17.

4.7.1 Status register RAW hazard example

In Example 4-4, the FMSTAT is stalled for four cycles in the Decode stage until the
FCMPS updates the condition codes in the FPSCR register. Two cycles later, the
FMSTAT writes the condition codes to the ARM1136 processor.

Example 4-4 FCMPS-FMSTAT RAW hazard

FCMPS S1, S2
FMSTAT

Table 4-6 shows the VFP11 pipeline stages for Example 4-4.

4.7.2 Load multiple-CDP RAW hazard example

In Example 4-5, the FADDS is stalled in the Issue stage for six cycles until the FLDM
makes its last transfer to the VFP11 coprocessor. S15 is forwarded from the load in
cycle 9 to the FADDS.

Example 4-5 FLDM-FADDS RAW hazard

FLDM [Rx], {S8-S15}

Table 4-6 FCMPS-FMSTAT RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

FCMPS D I E1 E2 E3 E4 - - - - -

FMSTAT - D D D D D I E M1 M2 W
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-15

Instruction Execution
FADDS S1, S2, S15

Table 4-7 shows the VFP11 pipeline stages for Example 4-5 on page 4-15.

4.7.3 Load multiple-short vector CDP RAW hazard example

In Example 4-6, the short vector FADDS is stalled in the Issue stage until the FLDM
loads all source registers required by the FADDS. In this case, the FADDS is stalled for
three cycles. Because the FADDS depends on the FLDM for only one register, S7, it
does not have to wait for completion of the FLDM. The S7 data is forwarded in cycle
6. The LEN field contains b011, selecting a vector length of four iterations. The
STRIDE field contains b00, selecting a vector stride of one. The first source vector uses
registers S7, S0, S1, and S2, and the only FADDS source register loaded by the FLDM
is S7. This example is based on the assumption that the remaining source and
destination registers are available to the FADDS in cycle 6.

Example 4-6 FLDM-short vector FADDS RAW hazard

FLDM [R2], {S7-S14}
FADDS S16, S7, S25

Table 4-8 shows the VFP11 pipeline stages of the FLDM and the first iteration of the
short vector FADDS for Example 4-6.

Table 4-7 FLDM-FADDS RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FLDM D I E M1 M2 W W W W - - - - - - -

FADDS - D I I I I I I I E1 E2 E3 E4 E5 E6 E7

Table 4-8 FLDM-short vector FADDS RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FLDM D I E M1 M2 W W W W - - - - - - - -

FADDS - D I I I I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W
4-16 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.7.4 CDP-CDP RAW hazard example

In Example 4-7, the FADDS is stalled in the Issue stage for seven cycles until the
FMULS data is written and forwarded in cycle 10 to the Issue stage of the FADDS.

Example 4-7 FMULS-FADDS RAW hazard

FMULS S4, S1, S0
FADDS S5, S4, S3

Table 4-9 shows the VFP11 pipeline stages of Example 4-7.

4.7.5 Short vector CDP-load multiple WAR hazard example

In Example 4-8, the load multiple FLDMS creates a WAR hazard to the source registers
of the FMULS. The LEN field contains b011, selecting a vector length of four
iterations, and the STRIDE field contains b00, selecting a vector stride of one. The
VFP11 coprocessor stalls the FLDMS until the FMULS clears the scoreboard locks for
all the source registers, S16-S19 and S24-S27.

Example 4-8 Short vector FMULS-FLDMS WAR hazard

FMULS S8, S16, S24
FLDMS [R2], {S16-S27}

Table 4-10 on page 4-18 shows the VFP11 pipeline stages for the first iteration of
Example 4-8.

Table 4-9 FMULS-FADDS RAW hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

FMULS D I E1 E2 E3 E4 E5 E6 E7 W -

FADDS - D I I I I I I I I EI
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-17

Instruction Execution
Table 4-10 Short vector FMULS-FLDMS WAR hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FMULS D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W - - -

FLDMS - D I I I I I E M1 M2 W W W W W W
4-18 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.8 Data hazards in RunFast mode

In RunFast mode, source registers for the FMAC and FMUL family of instructions are
locked:

• when the vector length exceeds four iterations in single-precision instructions

• when the vector length exceeds two iterations in double-precision instructions.

No source registers are locked for scalar instructions.

4.8.1 Short vector CDP-load multiple WAR hazard example

Example 4-9 is the same as Example 4-8 on page 4-17. The LEN field contains b011,
selecting a vector length of four iterations, and the STRIDE field contains b00, selecting
a vector stride of one. Executing these instructions in RunFast mode reduces the cycle
count of the FLDMS by four cycles.

Example 4-9 Short vector FMULS-FLDMS WAR hazard in RunFast mode

FMULS S8, S16, S24
FLDMS R2, {S16-S27}

Table 4-11 shows that the VFP11 coprocessor does not stall the FLDMS operation.

Table 4-11 Short vector FMULS-FLDMS WAR hazard in RunFast mode

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13

FMULS D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W

FLDMS - D I E M1 M2 W W W W W W -
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-19

Instruction Execution
4.9 Resource hazards

A resource hazard exists when the pipeline required for an instruction is unavailable due
to a prior instruction. VFP11 resource stalls are possible in the following cases:

• A data transfer operation following an incomplete data transfer operation can
cause a resource stall. The ARM1136 processor can stall each data transfer
because of unavailable data caused by memory latency or a cache miss, increasing
the latency of the data transfer instruction and stalling any following data transfer
instructions.

• An arithmetic operation following either a short vector arithmetic operation or a
double-precision multiply or multiply and accumulate operation can cause a
resource stall. The latency for a double-precision multiply or multiply and
accumulate operation is two cycles, causing a single-cycle stall for an arithmetic
operation that immediately follows.

• A single-precision divide or square root operation stalls subsequent DS
operations for 15 cycles. A double-precision divide or square root operation stalls
subsequent DS operations for 29 cycles.

• A short vector divide or square root operation requires the FMAC pipeline for the
first cycle of each iteration and stalls any following CDP operation. The following
CDP operation stalls until the final iteration of the short vector divide or square
root operation completes the Execute 1 stage.

The LS pipeline is separate from the FMAC and DS pipelines. No resource hazards exist
between data transfer instructions and arithmetic instructions.

The sections that follow give examples of resource hazards:

• Load multiple-load-CDP resource hazard example

• Load multiple-short vector CDP resource hazard example on page 4-21

• Short vector CDP-CDP resource hazard example on page 4-22.

4.9.1 Load multiple-load-CDP resource hazard example

In Example 4-10, the FLDM is executing two transfers to the VFP11 coprocessor. The
FLDS is stalled behind the FLDM until the FLDM enters the final Execute cycle. The
FADDS is stalled for one cycle until the FLDS begins execution.

Example 4-10 FLDM-FLDS-FADDS resource hazard

FLDM [R2], {S8-S10}
FLDS [R4], S16
4-20 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
FADDS S2, S3, S4

Table 4-12 shows the pipeline stages for Example 4-10 on page 4-20.

4.9.2 Load multiple-short vector CDP resource hazard example

In Example 4-11, no resource hazard exists for the FMULS due to the FLDM in the
prior cycle. The FMULS is issued to the VFP11 coprocessor in the cycle following the
issue of the FLDM, and executes in parallel with it.

The LEN field contains, b011, selecting a vector length of four iterations. The STRIDE
field contains b00, selecting a vector stride of one.

Example 4-11 FLDM-short vector FMULS resource hazard

FLDM [R2], {S8-S10}
FMULS S16, S24, S4

Table 4-13 shows the pipeline stages for Example 4-11.

Table 4-12 FLDM-FLDS-FADDS resource hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13

FLDM D I E M1 M2 W W - -

FLDS - D D I E M1 M2 W -

FADDS - - - D I E1 E2 E3 E4 E5 E6 E7 W

Table 4-13 FLDM-short vector FMULS resource hazard

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FLDM D I E M1 M2 W W - -

FMULS - D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-21

Instruction Execution
4.9.3 Short vector CDP-CDP resource hazard example

In Example 4-12, a short vector divide is followed by a FADDS instruction. The short
vector divide has b001 in the LEN field, selecting a vector length of two iterations. It
requires the Execute 1 stage of the FMAC pipeline for the first cycle of each iteration
of the divide, resulting in a stall of the FADDS until the final iteration of the divide
completes the first Execute 1 cycle. The divide iterates for 14 cycles in the Execute 1
and Execute 2 stages of the DS pipeline, shown in Table 4-14 as E1. The first and shared
Execute 1 cycle for each divide iteration is designated as E1’.

Example 4-12 Short vector FDIVS-FADDS resource hazard

FDIVS S8, S10, S12
FADDS S0, S0, S1

Table 4-14 and Table 4-15 show the pipeline stages for Example 4-12.

Table 4-14 Short vector FDIVS-FADDS resource hazard, cycles 1 to 22

Instruction cycle number, cycles 1 to 22

Instruction 1 2 3 4 . . . 16 17 18 19 20 21 22

FDIVS D I E1’ E1 . . . E1 E1 E1’ E1 E1 E1 E1

FADDS - - D D . . . D D I E1 E2 E3 E4

Table 4-15 Short vector FDIVS-FADDS resource hazard, cycles 23 to 36

Instruction cycle number, cycles 23 to 36

Instruction 23 24 25 26 . . . 30 31 32 33 34 35 36

FDIVS E1 E1 E1 E1 . . . E1 E1 E1 E2 E3 E4 W

FADDS E5 E6 E7 W . . . - - - - - - -
4-22 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.10 Parallel execution

The VFP11 coprocessor is capable of execution in each of the three pipelines
independently of the others and without blocking issue or writeback from any pipeline.
Separate LS, FMAC, and DS pipelines allow for parallel operation of CDP and data
transfer instructions. Scheduling instructions to take advantage of the parallelism that
occurs when multiple instructions execute in the VFP11 pipelines can result in a
significant improvement in program execution time.

A data transfer operation can begin execution if:

• no data hazards exist with any currently executing operations

• the LS pipeline is not currently stalled by the ARM1136 processor or busy with a
data transfer multiple.

A CDP can be issued to the FMAC pipeline if:

• no data hazards exist with any currently executing operations

• the FMAC pipeline is available (no short vector CDP is executing and no
double-precision multiply is in the first cycle of the multiply operation)

• no short vector operation with unissued iterations is currently executing in either
the FMAC or DS pipeline.

A divide or square root instruction can be issued to the DS pipeline if:

• no data hazards exist with any currently executing operations

• the DS pipeline is available (no current divide or square root is executing in the
DS pipeline E1 stage)

• no short vector operation with unissued iterations is executing in the FMAC
pipeline.

Example 4-13 on page 4-24 shows a case of the VFP11 coprocessor executing
instructions in parallel in each of the three pipelines:

• a load multiple in the L/S pipeline

• a divide in the DS pipeline

• a short vector add in the FMAC pipeline.

In this example, the LEN field contains b011, selecting a vector length of four iterations,
and the STRIDE field contains b00, for a vector stride of one.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-23

Instruction Execution
Example 4-13 Parallel execution in all three pipelines

FLDM [R4], {S4-S13}
FDIVS S0, S1, S2
FADDS S16, S20, S24

Table 4-16 shows the pipeline progression of the three instructions.

In Example 4-13, no data hazards exist between any of the three instructions. The load
multiple is able to begin execution immediately, and data is transferred to the register
file beginning in cycle 6. Because the destination is in bank 0, the FDIVS is a scalar
operation and requires one cycle in the FMAC pipeline E1 stage. If the FDIVS were a
short vector operation, the FADDS could not begin execution until the last FDIVS
iteration passed the FMAC E1 pipeline stage. The FADDS is a short vector operation
and requires the FMAC pipeline E1 stage for cycles 5-8.

Note
 E1’ is the first cycle in E1 and is in both FMAC and DS blocks. Subsequent E1 cycles
represent the iteration cycles and occupy both E1 and E2 stages in the DS block.

Table 4-16 Parallel execution in all three pipelines

Instruction cycle number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FLDM D I E M1 M2 W W W W W - - - - -

FDIVS - D I E1’ E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1

FADDS - - D I E1 E1 E1 E1 E2 E3 E4 E5 E6 E7 W
4-24 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Instruction Execution
4.11 Execution timing

Complex instruction dependencies and memory system interactions make it impossible
to describe briefly the exact cycle timing of all instructions in all circumstances. The
timing described in Table 4-17 is accurate in most cases. For precise timing, you must
use a cycle-accurate model of the ARM1136JF-S processor.

In Table 4-17, throughput is defined as the cycle after issue in which another instruction
can begin execution. Instruction latency is the number of cycles after which the data is
available for another operation. Forwarding reduces the latency by one cycle for
operations that depend on floating-point data. Table 4-17 shows the throughput and
latency for all VFP11 instructions.

Table 4-17 Throughput and latency cycle counts for VFP11 instructions

Instructions

Single-precision Double-precision

Throughput Latency Throughput Latency

FABS, FNEG, FCVT, FCPY 1 4 1 4

FCMP, FCMPE, FCMPZ, FCMPEZ 1 4 1 4

FSITO, FUITO, FTOSI, FTOUI, FTOUIZ, FTOSIZ 1 8 1 8

FADD, FSUB 1 8 1 8

FMUL, FNMUL 1 8 2 9

FMAC, FNMAC, FMSC, FNMSC 1 8 2 9

FDIV, FSQRT 15 19 29 33

FLDa 1 4 1 4

FSTa 1a System-
dependent

1 System-
dependent

FLDMa Xb Xb + 3 Xb Xb + 3

FSTMa Xb System-
dependent

Xb System-
dependent

FMSTAT 1 2 - -

FMSR/FMSRRc 1 4 - -

FMDHR/FMDHC/FMDRRc - - 1 4

FMRS/FMRRSc 1 2 - -
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 4-25

Instruction Execution
FMRDH/FMRDL/FMRRDc - - 1 2

FMXRd 1 4 - -

FMRXd 1 2 - -

a. The cycle count for a load instruction is based on load data that is cached and available to the ARM1136 processor from the
cache. The cycle count for a store instruction is based on store data that is written to the cache and/or write buffer immediately.
When the data is not cached or the write buffer is unavailable, the number of cycles also depends on the memory subsystem.

b. The number of cycles represented by X is (N/2) if N is even or (N/2 + 1) if N is odd.
c. FMDRR and FMRRD transfer one double-precision data per transfer. FMSRR and FMRRS transfer two single-precision data

per transfer.
d. FMXR and FMRX are serializing instructions. The latency depends on the register transferred and the current activity in the

VFP11 coprocessor when the instruction is issued.

Table 4-17 Throughput and latency cycle counts for VFP11 instructions (continued)

Instructions

Single-precision Double-precision

Throughput Latency Throughput Latency
4-26 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Chapter 5
Exception Handling

This chapter describes VFP11 exception processing. It contains the following sections:

• About exception processing on page 5-2

• Bounced instructions on page 5-3

• Support code on page 5-5

• Exception processing on page 5-8

• Input Subnormal exception on page 5-14

• Invalid Operation exception on page 5-15

• Division by Zero exception on page 5-18

• Overflow exception on page 5-19

• Underflow exception on page 5-20

• Inexact exception on page 5-22

• Input exceptions on page 5-23

• Arithmetic exceptions on page 5-24.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-1

Exception Handling
5.1 About exception processing

The VFP11 coprocessor handles exceptions imprecisely with respect to both the state
of the ARM1136JF-S processor and the state of the VFP11 coprocessor. It detects an
exceptional instruction after the instruction passes the point for exception handling in
the ARM1136 processor. It then enters the exceptional state and signals the presence of
an exception by refusing to accept a subsequent VFP instruction. The instruction that
triggers exception handling bounces to the ARM1136 processor. The bounced
instruction is not necessarily the instruction immediately following the exceptional
instruction. Depending on sequence of instructions that follow, the bounce can occur
several instructions later.

The VFP11 coprocessor can generate exceptions only on arithmetic operations. Data
transfer operations between the ARM1136 processor and the VFP11 coprocessor, and
instructions that copy data between VFP11 registers, FCPY, FABS, and FNEG, cannot
produce exceptions.

In full-compliance mode the VFP11 hardware and support code together process
exceptions according to the IEEE 754 standard. VFP11 exception processing includes
calling user trap handlers with intermediate operands specified by the IEEE 754
standard. In RunFast mode, the VFP11 coprocessor generates the default, or trap
disabled, value when an overflow, invalid operation, division by zero, or inexact
condition occurs. RunFast mode does not provide for user trap handlers.

For descriptions of each of the exception flags and their bounce characteristics, see the
sections Input Subnormal exception on page 5-14 to Arithmetic exceptions on
page 5-24.
5-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.2 Bounced instructions

Normally, the VFP11 hardware executes floating-point instructions completely in
hardware. However, the VFP11 coprocessor can, under certain circumstances, refuse to
accept a floating-point instruction, causing the ARM Undefined Instruction exception.
This is known as bouncing the instruction.

There are three reasons for bouncing an instruction:

• a prior instruction generates a potential or actual floating-point exception that
cannot be properly handled by the VFP11 coprocessor, such as a potential
underflow when the VFP11 coprocessor is not in flush-to-zero mode

• a prior instruction generates a potential or actual floating-point exception when
the corresponding exception enable bit is set in the FPSCR, such as a square root
of a negative value when the IOE bit, FPSCR[8], is set

• the current instruction is Undefined.

When a floating-point exception is detected, the VFP11 hardware sets the EX flag,
FPEXC[31], and loads the FPINST register with a copy of the exceptional instruction.
The VFP11 coprocessor is now in the exceptional state. The instruction that bounces as
a result of the exceptional state is referred to as the trigger instruction.

See Exception processing on page 5-8.

5.2.1 Potential or actual exception that the VFP11 coprocessor cannot handle

Three exceptional conditions cannot be handled by the VFP11 hardware:

• an operation that might underflow when the VFP11 coprocessor is not in
flush-to-zero mode

• an operation involving a subnormal operand when the VFP11 coprocessor is not
in flush-to-zero mode

• an operation involving a NaN when the VFP11 coprocessor is not in default NaN
mode.

For these conditions the VFP11 coprocessor relies on support code to process the
operation. See Underflow exception on page 5-20 and Input exceptions on page 5-23.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-3

Exception Handling
5.2.2 Potential or actual exception with the exception enable bit set

The VFP11 coprocessor evaluates the instruction for exceptions in the E1 and E2
pipeline stages. No means exist to signal exceptions to the ARM1136 processor after
the E2 stage. The VFP11 coprocessor enters the exceptional state when it detects that
an instruction has a potential to generate a floating-point exception while the
corresponding exception enable bit is set. Such an instruction is called a potentially
exceptional instruction.

An example of an instruction that generates an actual exception is a division of a normal
value by zero when the Division by Zero exception enable bit, FPSCR[9], is set. This
mechanism provides support for the IEEE 754 trap mechanism and provides
programmers a means of halting execution on certain conditions.

As an example of an instruction that generates a potential exception, if the overflow
exception enable bit, FPSCR[10], is set, and the initial exponent for a multiply operation
is the maximum exponent for a normal value in the destination precision, the VFP11
coprocessor bounces the instruction pessimistically. Since the impact on the exponent
due to mantissa overflow and rounding is not known in the E1 or E2 stages of the FMAC
pipeline, the decision to bounce must be made based on the potential for an exception.
Support code performs the multiply operation and determines the exception status. If
the multiply operation results in an overflow, the processor jumps to the Overflow user
trap handler. If the operation does not result in an overflow, it writes the computed result
to the destination, sets the appropriate flags in the FPSCR, and returns to user code.
5-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.3 Support code

The VFP11 coprocessor provides floating-point functionality through a combination of
hardware and software support.

When an instruction bounces, software installed on the ARM Undefined Instruction
vector determines why the VFP11 coprocessor rejected the instruction and takes
appropriate remedial action. This software is called the VFP support code. The support
code has two components:

• a library of routines that perform floating-point arithmetic functions

• a set of exception handlers that process exceptional conditions.

See Application Note 98, VFP Support Code for details of support code. Support code
is provided with the RealView Compilation Tools, or for the ARM Developer Suite as
an add-on downloadable from the ARM web site.

The remedial action is performed as follows:

1. The support code starts by reading the FPEXC register. If the EX flag,
FPEXC[31], is set, a potential exception is present. If not, an illegal instruction is
detected. See Illegal instructions on page 5-6.

The contents of the FPEXC register must be retained throughout exception
processing. Any VFP11 coprocessor activity might change FPEXC register bits
from their state at the time of the exception.

2. The support code writes to the FPEXC register to clear the EX flag. Failure to do
this can result in an infinite loop of exceptions when the support code next
accesses the VFP11 hardware.

3. The support code reads the FPINST register to determine the instruction that
caused the potential exception.

4. The support code decodes the instruction in the FPINST register, reads its
operands, including implicit information such as the rounding mode and vector
length in the FPSCR register, executes the operation, and determines whether a
floating-point exception occurred.

5. If no floating-point exception occurred, the support code writes the correct result
of the operation and sets the appropriate flags in the FPSCR register.

If one or more floating-point exceptions occurred, but all of them were disabled,
the support code determines the correct result of the instruction, writes it to the
destination register, and sets the corresponding flags in the FPSCR register.

If one or more floating-point exceptions occurred, and at least one of them was
enabled, the support code computes the intermediate result specified by the
IEEE 754 standard, if required, and calls the user trap handler for that exception.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-5

Exception Handling
The user trap handler can provide a result for the instruction and continue
program execution, generate a signal or message to the operating system or the
user, or simply terminate the program.

6. If the potentially exceptional instruction specified a short vector operation, the
hardware does not execute any vector iterations after the one that encountered the
potentially exceptional condition. The support code repeats steps 4 and 5 for any
such iterations. See Exception processing for CDP short vector instructions on
page 5-9 for more details.

7. If the FP2V flag, FPEXC[28], is set, the FPINST2 register contains another VFP
instruction that was issued between the potentially exceptional instruction and the
trigger instruction. This instruction is executed by the support code in the same
manner as the instruction in the FPINST register. The FP2V flag must be cleared
before returning to user code. See Floating Point Instruction Registers, FPINST
and FPINST2 on page 3-24 for more on FPINST2.

8. The support code finishes processing the potentially exceptional instruction and
returns to the program containing the trigger instruction. The ARM1136
processor re-fetches the trigger instruction from memory and reissues it to the
VFP11 coprocessor. Unless another bounce occurs, the trigger instruction is
executed. Returning in this fashion is called retrying the trigger instruction.

The support code can be written to use the VFP11 hardware for its internal calculations,
provided that:

• recursive bounces are prevented or handled correctly

• care is taken to restore the state of the original program before returning to it.

Restoring the state of the original program can be difficult if the original program was
executing in FIQ mode or in Undefined instruction mode. It is legitimate for support
code to disallow or restrict the use of VFP11 instructions in these two processor modes.

5.3.1 Illegal instructions

If there is not a potential floating-point exception from an earlier instruction, the current
instruction can still be bounced if it is architecturally Undefined in some way. When this
happens, the EX flag, FPEXC[31], is not set. The instruction that caused the bounce is
contained in the memory word pointed to by r14_undef – 4.

It is possible that both conditions for an instruction to be bounced occur simultaneously.
This happens when an illegal instruction is encountered and there is also a potential
floating-point exception from an earlier instruction. When this happens, the EX flag is
set, and the support code processes the potential exception in the earlier instruction. If
and when it returns, it causes the illegal instruction to be retried and the sequence of
events described in the paragraph above occurs.
5-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
The following instruction types are architecturally Undefined (see ARM Architecture
Reference Manual, Rev E, Part C):

• instructions with opcode bit combinations defined as reserved in the architecture
specification

• load or store instructions with Undefined P, W, and U bit combinations

• FMRX/FMXR instructions to or from a control register that is not defined

• User mode FMRX/FMXR instructions to or from a control register that can be
accessed only in a privileged mode

• double precision operations with odd register numbers.

Certain instruction types do not have architecturally-defined behavior and are
Unpredictable:

• load or store multiple instructions with a transfer count of zero or greater than 32,
and any combination of initial register and transfer count such that an attempt is
made to transfer a register beyond S31 for single-precision transfers, or D15 for
double-precision transfers

• a short vector instruction with a combination of precision, length, and stride that
causes the vector to wrap around and make more than one access to the same
register

• a short vector instruction with overlapping source and destination register
addresses that are not exactly the same.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-7

Exception Handling
5.4 Exception processing

The ARM1136JF-S/VFP11 interface specifies that an exceptional instruction that
bounces to support code must signal on a subsequent coprocessor instruction. This is
known as imprecise exception handling. It means that when the exception is processed,
the VFP11 and ARM1136 user states might be different from their states when the
exceptional instruction executed. Parallel execution of VFP11 CDP instructions and
data transfer instructions allows the VFP11 and ARM1136 register files and memory to
be modified outside of the program order.

5.4.1 Determination of the trigger instruction

The issue timing of VFP11 instructions affects the determination of the trigger
instruction. The last iteration of a short vector CDP can be followed in the next cycle by
a second CDP instruction. If there is no hazard, the VFP11 coprocessor accepts the
second CDP instruction before the exception status of the last iteration of the short
vector CDP is known. The second CDP instruction is said to be in the pretrigger slot
and is retained in the FPINST2 register for the support code.

The following rules determine which instruction is the trigger instruction:

• The first nonserializing instruction after the exceptional condition has been
detected is the trigger instruction.

• An instruction that accesses the FPSCR register in any processor mode is a trigger
instruction.

• An instruction that accesses the FPEXC, FPINST, or FPINST2 register in a
privileged mode is not a trigger instruction.

• An instruction that accesses the FPSID register in any mode is not a trigger
instruction.

• A data processing instruction that reaches the LS pipeline Execute stage or a CDP
instruction that reaches the FMAC or DS pipeline E1 stage is not the trigger
instruction. There can be several of these if the exceptional instruction is a
sufficiently long short vector instruction, and the exception is detected on a later
iteration.
5-8 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.4.2 Exception processing for CDP scalar instructions

When the VFP11 coprocessor detects an exceptional scalar CDP instruction, it loads the
FPINST register with the instruction word for the exceptional instruction and flags the
condition in the FPEXC register. It blocks the exceptional instruction from further
execution and completes any instructions currently executing in the FMAC and DS
pipelines.

It then examines the pipeline for a trigger instruction:

• If there is a VFP CDP instruction or a load or store instruction in the VFP11 Issue
stage, it is the trigger instruction and is bounced in the cycle after the exception is
detected.

• If there is no VFP instruction in the VFP11 Issue stage, the VFP11 coprocessor
waits until one is issued. The next VFP instruction is the trigger instruction and is
bounced.

When the ARM1136 processor returns from exception processing, it retries the trigger
instruction.

5.4.3 Exception processing for CDP short vector instructions

For short vector instructions, any iteration might be exceptional. If an exceptional
condition is detected for a vector iteration, the vector iterations issued before the
exceptional iteration are allowed to complete and retire.

When a short vector iteration is found to be potentially exceptional, the following
operations occur:

1. The EX flag, FPEXC[31], is set.

2. The source and destination register addresses are modified in the instruction word
to point to the source and destination registers of the potentially exceptional
iteration.

3. The FPINST register is loaded with the operation instruction word.

4. The VECITR field, FPEXC[10:8], is written with the number of iterations
remaining after the potentially exceptional iteration.

5. The exceptional condition flags are set in the FPEXC.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-9

Exception Handling
5.4.4 Examples of exception detection for vector instructions

In Example 5-1, the FMULD instruction is a short vector operation with b011 in the
LEN field for a length of four iterations and b00 in the STRIDE field for a vector stride
of one. A potential Underflow exception is detected on the third iteration.

Example 5-1 Exceptional short vector FMULD followed by load/store instructions

FMULD D8, D12, D8 ; Short vector double-precision multiply of length 4
FLDD D0, [R5] ; Load of 1 double-precision register
FSTMS R3, {S2-S9} ; Store multiple of 8 single-precision registers
FLDS S8, [R9] ; Load of 1 single-precision register

A double-precision multiply requires two cycles in the Execute 2 stage. The exception
on the third iteration is detected in cycle 8. Before the FMULD exception is detected,
the FLDD enters the Decode stage in cycle 2, and the FSTMS enters the Decode stage
in cycle 3. The FLDD and the FSTMS complete execution and retire. The FLDS stalls
in the Decode stage due to a resource conflict with the FSTMS and is the trigger
instruction. It is bounced in cycle 9 and can be retried after exception processing.
FPINST2 is invalid, and the FP2V flag, FPEXC[28], is not set.

Table 5-1 shows the pipeline stages for Example 5-1.

After exception processing begins, the FPEXC register fields contain the following:

EX 1 The VFP11 coprocessor is in the exceptional state.
EN 1
FP2V 0 FPINST2 does not contain a valid instruction.
VECITR 000 One iteration remains after the exceptional iteration.
INV 0
UFC 1 Exception detected is a potential underflow.
OFC 0

Table 5-1 Exceptional short vector FMULD followed by load/store instructions

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FMULD D8, D12, D8 D I E1 E2 E1 E2 E1 E2 - - - - - - - -

FLDD D0, [R5] - D I E M1 M2 W - - - - - - - - -

FSTMS R3, {S2-S9} - - D I E M1 M2 W W W W - - - - -

FLDS S8, [R9] - - - D D D D I * - - - - - - -
5-10 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
IOC 0

The FPINST register contains the FMULD instruction with the following fields
modified to reflect the register address of the third iteration.

Fd/D 1010/0 Destination of the third exceptional iteration is D10.
Fm/M 1010/0 Fm source of the third exceptional iteration is D10.
Fn/N 1110/0 Fn source of the third exceptional iteration is D14.

The FPINST2 register contains invalid data.

In Example 5-2, the first FADDS is a short vector operation with b001 in the LEN field
for a vector length of two iterations and b00 in the STRIDE field for a vector stride of
one. A potential Invalid Operation exception is detected in the second iteration. The
second FADDS progresses to the Execute 1 stage and is captured in the FPINST2
register with the condition field changed to AL, the FP2V flag set, and is not the trigger
instruction. The FMULS is the trigger instruction and bounces in cycle 6. It can be
retried after exception processing.

Example 5-2 Exceptional short-vector FADDS with a FADDS in the pretrigger slot

FADDS S24, S26, S28 ; Vector single-precision add of length 2
FADDS S3, S4, S5 ; Scalar single-precision add
FMULS S12, S16, S16 ; Short vector single-precision multiply

Table 5-2 shows the pipeline stages for Example 5-2.

After exception processing begins, the FPEXC register fields contains the following:

EX 1 The VFP11 coprocessor is in the exceptional state.
EN 1
FP2V 1 FPINST2 contains a valid instruction.
VECITR 111 No iterations remaining after exceptional iteration.
INV 0

Table 5-2 Exceptional short vector FADDS with a FADDS in the pretrigger slot

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FADDS S24, S26, S28 D I E1 E1 E2 - - - - - - - - - - -

FADDS S3, S4, S5 - D D I E1 - - - - - - - - - - -

FMULS S12, S16, S16 - - - D I * - - - - - - - - - -
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-11

Exception Handling
UFC 0
OFC 0
IOC 1 Exception detected is a potential invalid operation.

The FPINST register contains the FADDS instruction with the following fields
modified to reflect the register address of the second iteration:

Fd/D 1100/1 Destination is of the second exceptional iteration is S25.
Fn/N 1101/1 Fn source is of the second exceptional iteration is S27.
Fm/M 1110/1 Fm source is of the second exceptional iteration is S29.

The FPINST2 register contains the instruction word for the second FADDS with the
condition field changed to AL.

In Example 5-3, FADDD is a short vector instruction with b011 in the LEN field for a
vector length of four iterations and b00 in the STRIDE field for a vector stride of one.
It has a potential Overflow exception in the first iteration, detected in cycle 4. The
following FMACS is stalled in the Decode stage. The FMACS is the trigger instruction
and can be retried after exception processing. FPINST2 is invalid and the FP2V flag is
not set.

Example 5-3 Exceptional short vector FADDD with an FMACS trigger instruction

FADDD D4, D4, D12 ; Short vector double-precision add of length 4
FMACS S0, S3, S2 ; Scalar single-precision mac

Table 5-3 shows the pipeline stages for Example 5-3.

After exception processing begins, the FPEXC register fields contain the following:

EX 1 The VFP11 coprocessor is in the exceptional state.
EN 1
FP2V 0 FPINST2 does not contain a valid instruction.
VECITR 010 Three iterations remain.
INV 0
UFC 0

Table 5-3 Exceptional short vector FADDD with an FMACS trigger instruction

Instruction cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FADDD D4, D4, D12 D I E1 E2 - - - - - - - - - - - -

FMACS S0, S3, S2 - D D I * - - - - - - - -
5-12 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
OFC 1 Exception detected is a potential overflow.
IOC 0

The FPINST register contains the FADDD instruction with the following fields
modified to reflect the register address of the first iteration:

Fd/D 0100/0 Destination of exceptional iteration is D4.
Fn/N 0100/0 Fn source of the first exceptional iteration is D4.
Fm/M 1100/0 Fm source of the first exceptional iteration is D12.

FPINST2 contains invalid data.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-13

Exception Handling
5.5 Input Subnormal exception

The IDC flag, FPSCR[7], is set whenever a floating-point operand is subnormal. The
behavior of the VFP11 coprocessor with a subnormal input operand is a function of the
FZ bit, FPSCR[24]. If FZ is not set, the VFP11 coprocessor bounces on the presence of
a subnormal input. If FZ is set, the IDE bit, FPSCR[15], determines whether a bounce
occurs.

5.5.1 Exception enabled

Setting the IDE bit enables Input Subnormal exceptions. An Input Subnormal exception
sets the EX flag, FPEXC[31], the IDC flag, FPSCR[7], and calls the Input Subnormal
user trap handler. The source and destination registers for the instruction are unchanged
in the VFP11 register file.

5.5.2 Exception disabled

Clearing the IDE bit disables Input Subnormal exceptions. In flush-to-zero mode, the
result of the operation, with the subnormal input replaced with a positive zero, is
completed and written to the register file. Any appropriate flags in the FPSCR register
are set.
5-14 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.6 Invalid Operation exception

An operation is invalid if the result cannot be represented, or if the result is not defined.

Table 5-4 shows the operand combinations that produce Invalid Operation exceptions.
In addition to the conditions in Table 5-4, any CDP instruction other than FCPY, FNEG,
or FABS causes an Invalid Operation exception if one or more of its operands is an
SNaN (see Table 3-1 on page 3-5).

Table 5-4 Possible Invalid Operation exceptions

Instruction Invalid Operation exceptions

FADD (+infinity) + (–infinity) or (–infinity) + (+infinity).

FSUB (+infinity) – (+infinity) or (–infinity) – (–infinity).

FCMPE/FCMPEZ Any NaN operand

FMUL/FNMUL Zero ° ±infinity or ±infinity ° zero.a

FDIV Zero/zero or infinity/infinity.a

FMAC/FNMAC Any condition that can cause an Invalid Operation exception for FMUL or FADD can cause an
Invalid Operation exception for FMAC and FNMAC. The product generated by the FMAC or
FNMAC multiply operation is considered in the detection of the Invalid Operation exception for the
subsequent sum operation.

FMSC/FNMSC Any of the conditions that can cause an Invalid Operation exception for FMUL or FSUB can cause
an Invalid Operation exception for FMSC and FNMSC. The product generated by the FMSC or
FNMSC multiply operation is considered in the detection of the Invalid Operation exception for the
subsequent difference operation.

FSQRT Source is less than 0.

FTOUI Rounded result would lie outside the range 0 ≤ result < 232.

FTOSI Rounded result would lie outside the range –231 ≤ result < 231.

a. In flush-to-zero mode, a subnormal input is treated as a positive zero for detecting an Invalid Operation exception.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-15

Exception Handling
5.6.1 Exception enabled

Setting the IOE bit, FPSCR[8], enables Invalid Operation exceptions.

The VFP11 coprocessor causes a bounce to support code for all the invalid operation
conditions listed in Table 5-4 on page 5-15. Any arithmetic operation involving an
SNaN also causes a bounce to support code. The VFP11 coprocessor detects most
Invalid Operations exceptions conclusively but some are detected based on the
possibility of an invalid operation. The potentially invalid operations are:

• FTOUI with a negative input. A small negative input might round to a zero, which
is not an invalid condition.

• A float-to-integer conversion with a maximum exponent for the destination
integer and any rounding mode other than round-towards-zero. The impact of
rounding is unknown in the Execute 1 stage.

• An FMAC family operation with an infinity in the A operand and a potential
product overflow when an infinity with the sign of the product would result in an
invalid condition.

When the VFP11 coprocessor detects a potentially invalid condition, the EX flag,
FPEXC[31], and the IOC flag, FPEXC[0], are set. The IOC flag in the FPSCR register,
FPSCR[0], is not set by the hardware and must be set by the support code before calling
the Invalid Operation user trap handler.

The support code determines the exception status of all bounced instructions. If an
invalid condition exists, the Invalid Operation user trap handler is called. The source and
destination registers for the instruction are valid in the VFP11 register file.

5.6.2 Exception disabled

If the IOE bit is not set, the VFP11 coprocessor writes a default NaN into the destination
register for all operations except integer conversion operations.

Conversion of a floating-point value that is outside the range of the destination integer
is an invalid condition rather than an overflow condition. When an invalid condition
exists for a float-to-integer conversion, the VFP11 coprocessor delivers a default result
to the destination register and sets the IOC flag, FPSCR[0]. Table 5-5 on page 5-17
shows the default results for input values after rounding.

If the VFP11 coprocessor is not in default NaN mode, an arithmetic instruction with an
SNaN operand sets the IOC flag and causes a bounce to support code.
5-16 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
Note
 A negative input to an unsigned conversion that does not round to a true zero in the
conversion process sets the IOC flag, FPEXC[0].

Table 5-5 Default results for invalid conversion inputs

FTOUIS and FTOUID FTOSIS and FTOSID

Input value
after rounding Result

FPSCR IOC
flag set? Result

FPSCR IOC
flag set?

x 232 0xFFFFFFFF Yes 0x7FFFFFFF Yes

231 ≤ x < 232 Integer No 0x7FFFFFFF Yes

0 ≤ x < 231 Integer No Integer No

0 ≥ x ≥ –231 0x00000000 Yes Integer No

x < –231 0x00000000 Yes 0x80000000 Yes

NaN 0x00000000 Yes 0x00000000 Yes

+infinity 0xFFFFFFFF Yes 0x7FFFFFFF Yes

–infinity 0x00000000 Yes 0x80000000 Yes
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-17

Exception Handling
5.7 Division by Zero exception

The Division by Zero exception is generated for a division by zero of a normal or
subnormal value. In flush-to-zero mode, a subnormal input is treated as a positive zero
for detection of a division by zero. What happens depends on whether or not the Invalid
Operation exception is enabled.

5.7.1 Exception enabled

If the DZE bit, FPSCR[9], is set, the Division by Zero user trap handler is called. The
source and destination registers for the instruction are unchanged in the VFP11 register
file.

5.7.2 Exception disabled

Clearing the DZE bit disables Division by Zero exceptions. A correctly signed infinity
is written to the destination register, and the DZC flag, FPSCR[1], is set.
5-18 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.8 Overflow exception

When the OFE bit, FPSCR[10], is set, the hardware detects overflow pessimistically
based on the preliminary calculation of the final exponent value. If the OFE bit is not
set, the hardware detects overflow conclusively.

5.8.1 Exception enabled

Setting the OFE bit enables overflow exceptions. The VFP11 coprocessor detects most
overflow conditions conclusively, but it detects some based on the possibility of
overflow. The initial computation of the result exponent might be the maximum
exponent or one less than the maximum exponent of the destination precision. Then the
possibility of overflow due to significand overflow or rounding exists, but cannot be
known in the first Execute stage. The VFP11 coprocessor bounces on such cases and
uses the support code to determine the exceptional status of the operation. If there is no
overflow, the support code writes the computed result to the destination register and
does not set the OFC flag, FPSCR[2]. If there is an overflow, the intermediate result is
written to the destination register, OFC is set, and the Overflow user trap handler is
called. The support code sets or clears the IXC flag, FPSCR[4], as appropriate. When
the VFP11 coprocessor detects a potential overflow condition, the EX flag, FPEXC[31],
and the OFC flag, FPEXC[2], are set. The OFC flag in the FPSCR register, FPSCR[2],
is not set by the hardware and must be set by the support code before calling the user
trap handler. The source and destination registers for the instruction are unchanged in
the VFP11 register file. See Arithmetic exceptions on page 5-24 for the conditions that
cause an overflow bounce.

5.8.2 Exception disabled

Clearing the OFE bit disables overflow exceptions. A correctly signed infinity or the
largest signed finite number for the destination precision is written to the destination
register as Table 5-6 shows. The OFC and IXC flags, FPSCR[2] and FPSCR[4], are set.

Table 5-6 Rounding mode overflow results

Rounding mode Result

Round to nearest Infinity, with the sign of the intermediate result.

Round towards zero Largest magnitude value for the destination size, with the sign of the intermediate result.

Round towards
plus infinity

Positive infinity if positive overflow. Largest negative value for the destination size if negative
overflow.

Round towards
minus infinity

Largest positive value for the destination size if positive overflow. Negative infinity if negative
overflow.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-19

Exception Handling
5.9 Underflow exception

Underflow is detected pessimistically in non-RunFast mode. If the potential underflow
is confirmed by the support code for an operation with a floating-point result, an
underflow exception is generated. How this is confirmed depends on whether the
VFP11 coprocessor is in flush-to-zero mode.

If the FZ bit is set, all underflowing results are forced to a positive signed zero and
written to the destination register. The UFC flag is set in the FPSCR. No trap is taken.
If the Underflow exception enable bit is set, it is ignored.

If the FZ bit is not set what happens next depends on whether the Underflow exception
is enabled.

5.9.1 Exception enabled

Setting the UFE bit, FPSCR[11], enables Underflow exceptions. The VFP11
coprocessor detects most underflow conditions conclusively, but it detects some based
on the possibility of an underflow. The initial computation of the result exponent might
be below a threshold for the destination precision. In this case, the possibility of
underflow due to massive cancellation exists, but cannot be known in the first Execute
stage. The VFP11 coprocessor bounces on such cases and uses the support code to
determine the exceptional status of the operation. Underflow is confirmed if the result
of the operation after rounding is less in magnitude than the smallest normalized
number in the destination format. If there is no underflow, either catastrophic or to a
subnormal result, the support code writes the computed result to the destination register
and returns without setting the UFC flag, FPSCR[3]. If there is underflow, regardless of
any accuracy loss, the intermediate result is written to the destination register, UFC is
set, and the Underflow user trap handler is called. The support code sets or clears the
IXC flag, FPSCR[4], as appropriate.

When the VFP11 coprocessor detects a potential underflow condition, the EX flag,
FPEXC[31], and the UFC flag, FPEXC[3], are set. The UFC flag in the FPSCR register
is not set by the hardware and must be set by the support code before calling the user
trap handler. The source and destination registers for the instruction are valid in the
VFP11 register file. See section Arithmetic exceptions on page 5-24 for the conditions
that cause an underflow bounce.
5-20 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.9.2 Exception disabled

Clearing the UFE bit, FPSCR[11], disables Underflow exceptions. When the FZ bit,
FPSCR[24], is not set, the VFP11 coprocessor bounces on potential underflow cases in
the same fashion as described in Exception enabled on page 5-20. The correct result is
written to the destination register, setting the appropriate exception flags.

When the FZ bit is set, the VFP11 coprocessor makes the determination of underflow
before rounding and flushes any result that underflows. A result that underflows returns
a positive zero to the destination register and sets the UFC flag, FPSCR[3].

Note
 The determination of an underflow condition in flush-to-zero mode is made before
rounding rather than after. This means that the VFP11 coprocessor might not return the
minimum normal value when rounding would have produced it. Instead, it flushes to
zero an intermediate value with the minimum exponent for the destination precision, a
fraction of all ones, and a round increment. If the intermediate value was the minimum
normal value before the underflow condition test is made, it is not flushed to zero.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-21

Exception Handling
5.10 Inexact exception

The result of an arithmetic operation on two floating-point values can have more
significant bits than the destination register can contain. When this happens, the result
is rounded to a value that the destination register can hold and is said to be inexact.

The Inexact exception occurs whenever:

• a result is not equal to the computed result before rounding

• an untrapped Overflow exception occurs

• an untrapped Underflow exception occurs, and there is loss of accuracy.

Note
 The Inexact exception occurs frequently in normal floating-point calculations and does
not indicate a significant numerical error except in some specialized applications.
Enabling the Inexact exception by setting the IXE bit, FPSCR[12], can significantly
reduce the performance of the VFP11 coprocessor.

The VFP11 coprocessor handles the Inexact exception differently from the other
floating-point exceptions. It has no mechanism for reporting inexact results to the
software, but can handle the exception without software intervention as long as the IXE
bit, FPSCR[12], is cleared, disabling Inexact exceptions.

5.10.1 Exception enabled

If the IXE bit, FPSCR[12], is set, all CDP instructions are bounced to the support code
without any attempt to perform the calculation. The support code is then responsible for
performing the calculation, determining if any exceptions have taken place, and
handling them appropriately. If it detects an Inexact exception, it calls the Inexact user
trap handler.

Note
 If an Overflow or Underflow exception is also detected, it takes priority over the Inexact
exception.

5.10.2 Exception disabled

If the IXE bit, FPSCR[12], is not set, the VFP11 coprocessor writes the result to the
destination register and sets the IXC flag, FPSCR[4].
5-22 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.11 Input exceptions

The VFP11 hardware processes most input operands without support code assistance.
However, the hardware is incapable of processing some operands and bounces to
support code to process the instruction. An arithmetic operation bounces with an Input
exception when it has either of the following:

• a NaN operand or operands, and default NaN mode is not enabled

• a subnormal operand or operands, and flush-to-zero mode is not enabled.

Note
 In default NaN mode, an SNaN input to an arithmetic operation causes an Invalid
Operation exception. When the IOE bit, FPSCR[8], is set, the instruction bounces to the
Invalid Operation user trap handler. When the IOE bit is clear, and the VFP11
coprocessor is not in default NaN mode, the instruction bounces to the support code.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-23

Exception Handling
5.12 Arithmetic exceptions

This section describes the conditions under which the VFP11 coprocessor bounces an
arithmetic instruction based on the potential for the exception. It is the task of the
support code to determine the actual exception status of the instruction. The support
code must return either the result and appropriate exception status bits, or the
intermediate result and a call to a user trap handler.

The following sections describe the circumstances in which arithmetic exceptions
occur:

• FADD and FSUB

• FCMP, FCMPZ, FCMPE, and FCMPEZ on page 5-26

• FMUL and FNMUL on page 5-26

• FMAC, FMSC, FNMAC, and FNMSC on page 5-28

• FDIV on page 5-28

• FSQRT on page 5-29

• FCPY, FABS, and FNEG on page 5-29

• FCVTDS and FCVTSD on page 5-30

• FUITO and FSITO on page 5-30

• FTOUI, FTOUIZ, FTOSI, and FTOSIZ on page 5-30.

5.12.1 FADD and FSUB

In an addition or subtraction, the exponent is initially the larger of the two input
exponents. For clarity, we define the operation as a Like-Signed Addition (LSA) or an
Unlike-Signed Addition (USA). Table 5-7 specifies how this distinction is made. In the
table, + indicates a positive operand, and – indicates a negative operand.

Table 5-7 LSA and USA determination

Instruction
Operand A
sign

Operand B
sign

Operation
type

FADD + + LSA

FADD + – USA

FADD – + USA

FADD – – LSA

FSUB + + USA
5-24 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
Because it is possible for an LSA operation to cause the exponent to be incremented if
the significand overflows, overflow bounce ranges for an LSA are more pessimistic than
they are for a USA. The LSA ranges are made slightly more pessimistic to incorporate
FMAC instructions (see FMAC, FMSC, FNMAC, and FNMSC on page 5-28).

Underflow bounce ranges for a USA are more pessimistic than they are for an LSA.
This is to accommodate a massive cancellation in which the result exponent is smaller
than the larger operand exponent by as much as the length of the significand. The
overflow range for a USA is slightly pessimistic (it is set to the LSA overflow range) to
reduce the number of logic terms. Table 5-8 shows the USA and LSA values and
conditions. The exponent values in Table 5-8 are in biased format.

FSUB + – LSA

FSUB – + LSA

FSUB – – USA

Table 5-7 LSA and USA determination (continued)

Instruction
Operand A
sign

Operand B
sign

Operation
type

Table 5-8 FADD family bounce thresholds

Initial result
exponent value

Float value

Condition when not in flush-to-zero mode

DPa SPb SP DP

>0x7FF - DP overflow - Bounce

0x7FF - DP overflow, NaN, or
infinity

- Bounce

0x7FE - DP overflow - Bounce

0x7FD - DP overflow - Bounce

0x7FC - DP normal - Normal

>0x47F >0xFF SP overflow Bounce Normal

0x47F 0xFF SP NaN or infinity Bounce Normal

0x47E 0xFE SP overflow Bounce Normal
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-25

Exception Handling
5.12.2 FCMP, FCMPZ, FCMPE, and FCMPEZ

Compare operations do not generate potential exceptions.

5.12.3 FMUL and FNMUL

Detection of a potential exception is based on the initial product exponent, which is the
sum of the multiplicand and multiplier exponents. Table 5-9 on page 5-27 shows the
result for specific values of the initial product exponent. The exponent values in
Table 5-9 on page 5-27 are in biased format. The exponent can be incremented by a
significand overflow condition, which is the cause for the additional bounce values near

0x47D 0xFD SP overflow Bounce Normal

0x47C 0xFC SP normal Normal Normal

0x3FF 0x7F e = 0 bias value Normal Normal

0x3A0 0x20 SP normal (LSA) Minimum (USA) Normal

0x39F 0x1F SP underflow (USA) Bounce (USA) or normal (LSA) Normal

0x381 0x01 SP normal (LSA) MIN (LSA) Normal

0x380 0x00 SP subnormal Bounce Normal

<0x380 <0x00 SP underflow Bounce Normal

0x040 - DP normal (USA) - Normal (LSA) or minimum (USA)

0x03F - DP underflow (USA) - Normal (LSA) or bounce (USA)

0x001 - DP normal (LSA) - Minimum (LSA) or bounce (USA)

0x000 - DP subnormal - Bounce

<0x000 - DP underflow - Bounce

a. DP = double-precision.
b. SP = single-precision.

Table 5-8 FADD family bounce thresholds (continued)

Initial result
exponent value

Float value

Condition when not in flush-to-zero mode

DPa SPb SP DP
5-26 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
the real overflow threshold. The one additional value in the bounce range makes the
FMUL and FNMUL overflow detection ranges identical to those in Table 5-8 on
page 5-25.

Table 5-9 FMUL family bounce thresholds

Initial product
exponent value

Float value

Condition in full-compliance mode

DPa

a. DP = double-precision.

SPb

b. SP = single-precision.

SP DP

>0x7FF - DP overflow - Bounce

0x7FF - DP NaN or infinity - Bounce

0x7FE - DP maximum normal - Bounce

0x7FD - DP normal - Bounce

0x7FC - DP normal - Normal

>0x47F >0xFF SP overflow Bounce Normal

0x47F 0xFF SP NaN or infinity Bounce Normal

0x47E 0xFE SP maximum normal Bounce Normal

0x47D 0xFD SP normal Bounce Normal

0x47C 0xFC SP normal Normal Normal

0x3FF 0x7F e = 0 bias value Normal Normal

0x381 0x01 SP normal Normal Normal

0x380 0x00 SP subnormal Bounce Normal

<0x380 <0x00 SP underflow Bounce Normal

0x001 - DP normal - Normal

0x000 - DP subnormal - Bounce

<0x000 - DP underflow - Bounce
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-27

Exception Handling
5.12.4 FMAC, FMSC, FNMAC, and FNMSC

The FMAC family of operations adds to the potential overflow range by generating
significand values from zero up to but not including four. In this case it is possible for
the final exponent to require incrementing by two to normalize the significand.

The bounce thresholds for the FADD family in Table 5-8 on page 5-25 and for the
FMUL family in Table 5-9 on page 5-27 incorporate this additional factor. Those ranges
are used to detect potential exceptions for the FMAC family.

5.12.5 FDIV

The thresholds for divide are simple and based only on the difference of the exponents
of the dividend and the divisor. It is not possible in a divide operation for the significand
to overflow and cause an increment of the exponent. However, it is possible for the
significand to require a single bit left shift and the exponent to be decremented for
normalization. To reduce logic complexity, the overflow ranges are the same as those of
the LSA operations in FADD and FSUB on page 5-24. The underflow ranges include
the minimum normal exponent, 0x01 for single-precision and 0x001 for
double-precision. Table 5-10 shows the FDIV bounce thresholds. The exponent values
shown in Table 5-10 are in biased format.

Table 5-10 FDIV bounce thresholds

Initial quotient
exponent value

Float value

Condition in full-compliance mode

DPa SPb SP DP

>0x7FF - DP overflow - Bounce

0x7FF - DP NaN or infinity - Bounce

0x7FE - DP maximum normal - Bounce

0x7FD - DP normal - Bounce

0x7FC - DP normal - Normal

>0x47F >0xFF SP overflow Bounce Normal

0x47F 0xFF SP NaN or infinity Bounce Normal

0x47E 0xFE SP maximum normal Bounce Normal

0x47D 0xFD SP normal Bounce Normal

0x47C 0xFC SP normal Normal Normal
5-28 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
5.12.6 FSQRT

It is not possible for FSQRT to overflow or underflow.

5.12.7 FCPY, FABS, and FNEG

It is not possible for FCPY, FABS, or FNEG to bounce for any operand.

0x3FF 0x7F e = 0 bias value Normal Normal

0x382 0x02 SP normal Normal Normal

0x381 0x01 SP normal Bounce Normal

0x380 0x00 SP subnormal Bounce Normal

<0x380 <0x00 SP underflow Bounce Normal

0x002 - DP normal - Normal

0x001 - DP normal - Bounce

0x000 - DP subnormal - Bounce

<0x000 - DP underflow - Bounce

a. DP = double-precision.
b. SP = single-precision.

Table 5-10 FDIV bounce thresholds (continued)

Initial quotient
exponent value

Float value

Condition in full-compliance mode

DPa SPb SP DP
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-29

Exception Handling
5.12.8 FCVTDS and FCVTSD

Only the FCVTSD operation is capable of overflow or underflow. To reduce logic
complexity, the overflow ranges are the same as the LSA ranges. Table 5-11 lists the
FCVTSD bounce conditions. The exponent values shown in Table 5-11 are in biased
format.

5.12.9 FUITO and FSITO

It is not possible to generate overflow or underflow in an integer-to-float conversion.

5.12.10 FTOUI, FTOUIZ, FTOSI, and FTOSIZ

Float-to-integer conversions generate Invalid Operation exceptions rather than
Overflow or Underflow exceptions. To support signed conversions with
round-towards-zero rounding in the maximum range possible for C, C++, and Java
compiled code, the thresholds for pessimistic bouncing are different for the various
rounding modes.

Table 5-12 on page 5-31 shows the single-precision float-to-integer bounce range and
the results returned for exceptional conditions. The exponent values shown in
Table 5-12 on page 5-31 are in biased format.

Table 5-11 FCVTSD bounce thresholds

Double-precision operand
exponent value

Float value
FCVTSD condition
in full-compliance mode

>0x47F SPa overflow Bounce

0x47F SP NaN or infinity Bounce

0x47E SP maximum normal Bounce

0x47D SP normal Bounce

0x47C SP normal Normal

0x3FF e = 0 bias value Normal

0x381 SP normal Normal

0x380 SP subnormal Bounce

<0x380 SP underflow Bounce

a. SP = single-precision.
5-30 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
Table 5-13 on page 5-32 shows the double-precision float-to-integer bounce range and
the results returned for exceptional conditions.

Table 5-12 and Table 5-13 on page 5-32, use the following notation:

In the VFP Response column, the response notations are:

all These input values are bounced for all rounding modes.

S These input values are bounced for signed conversions in all rounding
modes.

SnZ These input values are bounced for signed conversions in all rounding
modes except round-towards-zero.

U These input values are bounced for unsigned conversions in all rounding
modes.

UnZ These input values are bounced for unsigned conversions in all rounding
modes except round-towards-zero.

In the Unsigned results and Signed results columns, the rounding mode notations are:

N Round-to-nearest mode.

P Round-towards-plus-infinity mode.

M Round-towards-minus infinity mode.

Z Round-towards-zero mode.

Table 5-12 Single-precision float-to-integer bounce thresholds and stored results

Floating-point
value Integer value

Unsigned
result Status

Signed
result Status

VFP11
response

NaN - 0x00000000 Invalid 0x00000000 Invalid Bounce all

0x7F800000 +infinity 0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x7F7FFFFF to
0x4F800000

+maximum SPa
to 232

0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x4F7FFFFF to
0x4F000000

232 – 28 to 231 0xFFFFFF00 to
0x80000000

Valid 0x7FFFFFFF Invalid Bounce S UnZ

0x4EFFFFFF to
0x4E800000

231 – 27 to 230 0x7FFFFF80 to
0x40000000

Valid 0x7FFFFF80 to
0x40000000

Valid Bounce SnZ
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-31

Exception Handling
0x4E7FFFFF to
0x00000000

230 – 26 to +0 0x3FFFFFC0 to
0x00000000

Valid 0x3FFFFFC0 to
0x00000000

Valid No bounce

0x80000000 to
0xCE7FFFFF

–0 to –230 + 26 0x00000000 Invalidb 0x00000000 to
0xC0000040

Valid Bounce U

0xCE800000 to
0xCEFFFFFF

–230 to –231 + 27 0x00000000 Invalid 0xC0000000 to
0x80000080

Valid Bounce U

0xCF000000 –231 0x00000000 Invalid 0x80000000 Valid Bounce U SnZ

0xCF000000 to
0xFF7FFFFF

–231 to
–maximum SP

0x00000000 Invalid 0x80000000 Invalid Bounce all

0xFF800000 –infinity 0x00000000 Invalid 0x80000000 Invalid Bounce all

a. SP = single-precision.
b. A negative input value that rounds to a zero result returns zero and is not invalid.

Table 5-12 Single-precision float-to-integer bounce thresholds and stored results (continued)

Floating-point
value Integer value

Unsigned
result Status

Signed
result Status

VFP11
response

Table 5-13 Double-precision float-to-integer bounce thresholds and stored results

Floating-point
value Integer value Unsigned result Status Signed result Status

VFP11
response

NaN - 0x00000000 Invalid 0x00000000 Invalid Bounce all

0x7FF00000 00000000 +infinity 0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x7FEFFFFF FFFFFFFF
to
0x41F00000 00000000

+maximum
DPa to 232 0xFFFFFFFF Invalid 0x7FFFFFFF Invalid Bounce all

0x41EFFFFF FFFFFFFF

to

0x41EFFFFF FFF00000

232 – 221

to

232 – 2–1

0xFFFFFFFF N, P

0xFFFFFFFF Z, M

Invalid

Valid
0x7FFFFFFF Invalid

Bounce
S UnZ

0x41EFFFFF FFEFFFFF

to

0x41EFFFFF FFE00001

232 – 2–1 – 221

to

232 – 20 + 2–21

0xFFFFFFFF P

0xFFFFFFFF N,Z,M

Invalid

Valid
0x7FFFFFFF Invalid

Bounce
S UnZ
5-32 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Exception Handling
0x41EFFFFF FFE00000
to
0x41E00000 00000000

232 – 20 to 231 0xFFFFFFFF to
0x80000000

Valid 0x7FFFFFFF Invalid
Bounce
S UnZ

0x41DFFFFF FFFFFFFF

to

0x41DFFFFF FFE00000

231 – 222

to

231 – 2–1

0x80000000 N, P

0x7FFFFFFF Z, M

Valid

Valid

0x7FFFFFFF N, P

0x7FFFFFFF Z, M

Invalid

Valid

Bounce
SnZ

0x41DFFFFF FFDFFFFF

to

0x41DFFFFF FFC00001

231–2–1–2–22
to

231–20+2–22

0x80000000 P

0x7FFFFFFF N,Z,M

Valid

Valid

0x7FFFFFFF P

0x7FFFFFFF N,Z,M

Invalid

Valid

Bounce
SnZ

0x41DFFFFF FFC00000
to
0x41D00000 00000000

231 – 20 to 230 0x7FFFFFFF to
0x40000000

Valid
0x7FFFFFFF to
0x40000000

Valid
Bounce
SnZ

0x41CFFFFF FFFFFFFF

to

0x00000000 00000000

230 – 223 to +0

0x40000000 N, P

0x3FFFFFFF Z, M to
0x00000000

Valid

Valid

0x40000000 N, P

0x3FFFFFFF Z, M to
0x00000000

Valid

Valid
Bounce
none

0x80000000 00000000

to

0xC1CFFFFF FFFFFFFF

–0 to
–230+2–23 0x00000000b Invalid

0x00000000 to
0xC0000001 Z, P

0xC0000000 N, M

Valid

Valid
Bounce U

0xC1D00000 00000000

to

0xC1DFFFFF FFFFFFFF

–230 to
–231+2–22

0x00000000 Invalid

0xC0000000 to
0x80000001 Z, P

0x80000000 N, M

Valid

Valid
Bounce U

0xC1E00000 00000000 –231 0x00000000 Invalid 0x80000000 Valid Bounce
U SnZ

0xC1E00000 00000001

to

0xC1E00000 00100000

–231 – 2–21 to
–231 – 2–1

0x00000000 Invalid

0x80000000 N, Z, P

0x80000000 M

Valid

Invalid

Bounce
U SnZ

Table 5-13 Double-precision float-to-integer bounce thresholds and stored results (continued)

Floating-point
value Integer value Unsigned result Status Signed result Status

VFP11
response
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. 5-33

Exception Handling
0xC1E00000 00100001

to

0xC1E00000 001FFFFF

–231–2–1–2–21

to

231–20+2–21

0x00000000 Invalid

0x80000000 Z, P

0x80000000 N, M

Valid

Invalid

Bounce
U SnZ

0xC1E00000 00200000
to
0xFFEFFFFF FFFFFFFF

231 – 20 to
–maximum DP

0x00000000 Invalid 0x80000000 Invalid Bounce all

0xFFF00000 00000000 –infinity 0x00000000 Invalid 0x00000000 Invalid Bounce all

a. DP = double-precision.
b. A negative input value that rounds to a zero result returns zero and is not invalid.

Table 5-13 Double-precision float-to-integer bounce thresholds and stored results (continued)

Floating-point
value Integer value Unsigned result Status Signed result Status

VFP11
response
5-34 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Glossary

This glossary defines some of the terms used in this manual.

Arithmetic
instruction

Any VFPv2 Coprocessor Data Processing (CDP) instruction except FCPY, FABS, and
FNEG.

See also CDP instruction.

Bounce The VFP11 coprocessor bounces an instruction when it fails to signal the acceptance of
a valid VFP instruction to the ARM11 processor. This action initiates Undefined
Instruction processing by the ARM11 processor. The VFP support code is called to
complete the instruction that was found to be exceptional or unsupported by the VFP11
coprocessor.

See also Trigger instruction, Potentially exceptional instruction, and Exceptional state.

CDP instruction Coprocessor data processing instruction. For the VFP11 coprocessor, CDP instructions
are arithmetic instructions and FCPY, FABS, and FNEG.

See also Arithmetic instruction.

Default NaN mode A mode in which all operations that result in a NaN return the default NaN, regardless
of the cause of the NaN result. This mode is compliant with the IEEE 754 standard but
implies that all information contained in any input NaNs to an operation is lost.

Denormalized value See Subnormal value.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Glossary-1

Glossary
Disabled exception An exception is disabled when its exception enable bit in the FPCSR is not set. For these
exceptions, the IEEE 754 standard defines the result to be returned. An operation that
generates an exception condition can bounce to the support code to produce the result
defined by the IEEE 754 standard. The exception is not reported to the user trap handler.

Enabled exception An exception is enabled when its exception enable bit in the FPCSR is set. When an
enabled exception occurs, a trap to the user handler is taken. An operation that generates
an exception condition might bounce to the support code to produce the result defined
by the IEEE 754 standard. The exception is then reported to the user trap handler.

Exceptional state When a potentially exceptional instruction is issued, the VFP11 coprocessor sets the EX
bit, FPEXC[31], and loads a copy of the potentially exceptional instruction in the
FPINST register. If the instruction is a short vector operation, the register fields in
FPINST are altered to point to the potentially exceptional iteration. When in the
exceptional state, the issue of a trigger instruction to the VFP11 coprocessor causes a
bounce.

See also Bounce, potentially exceptional instruction, and trigger instruction.

Exponent The component of a floating-point number that normally signifies the integer power to
which two is raised in determining the value of the represented number.

Fd The destination register and the accumulate value in triadic operations. Sd for
single-precision operations and Dd for double-precision.

Flush-to-zero mode In this mode, the VFP11 coprocessor treats the following values as positive zeros:

• arithmetic operation inputs that are in the subnormal range for the input precision

• arithmetic operation results, other than computed zero results, that are in the
subnormal range for the input precision before rounding.

The VFP11 coprocessor does not interpret these values as subnormal values or convert
them to subnormal values.

The subnormal range for the input precision is –2Emin < x < 0 or 0< x < 2Emin.

Fm The second source operand in dyadic or triadic operations. Sm for single-precision
operations and Dm for double-precision

Fn The first source operand in dyadic or triadic operations. Sn for single-precision
operations and Dn for double-precision.

Fraction The floating-point field that lies to the right of the implied binary point.
Glossary-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Glossary
IEEE 754 standard IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. The
standard that defines data types, correct operation, exception types and handling, and
error bounds for floating-point systems. Most processors are built in compliance with
the standard in either hardware or a combination of hardware and software.

Illegal instruction An instruction that is architecturally Undefined.

Infinity In the IEEE 754 standard format to represent infinity, the exponent is the maximum for
the precision and the fraction is all zeros.

Input exception A VFP exception condition in which one or more of the operands for a given operation
are not supported by the hardware. The operation bounces to support code for
processing.

Intermediate result An internal format used to store the result of a calculation before rounding. This format
can have a larger exponent field and fraction field than the destination format.

MCR/MCRR A class of data transfer instructions that transfer 32-bit or 64-bit quantities from ARM
registers to VFP11 registers.

MRC/MRRC A class of data transfer instructions that transfer 32-bit or 64-bit quantities from VFP11
registers to ARM registers.

NaN Not a number. A symbolic entity encoded in a floating-point format that has the
maximum exponent field and a nonzero fraction. An SNaN causes an invalid operand
exception if used as an operand and a most significant fraction bit of zero. A QNaN
propagates through almost every arithmetic operation without signaling exceptions and
has a most significant fraction bit of one.

Potentially
exceptional
instruction

An instruction that is determined, based on the exponents of the operands and the sign
bits, to have the potential to produce an overflow, underflow, or invalid condition. After
this determination is made, the instruction that has the potential to cause an exception
causes the VFP11 coprocessor to enter the exceptional state and bounce the next trigger
instruction issued.

See also Bounce, Trigger instruction, and Exceptional state.

Register banks Four banks of registers for both scalar and short vector floating-point operations. In
single-precision operations, each bank contains eight single-precision registers. In
double-precision operations, each bank contains four double-precision registers.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Glossary-3

Glossary
Rounding mode The IEEE 754 standard requires all calculations to be performed as if to an infinite
precision. For example, a multiply of two single-precision values must accurately
calculate the significand to twice the number of bits of the significand. To represent this
value in the destination precision, rounding of the significand is often required. The
IEEE 754 standard specifies four rounding modes:

• In round-to-nearest mode, the result is rounded at the halfway point, with the tie
case rounding up if it would clear the least significant bit of the significand,
making it even.

• Round-towards-zero mode chops any bits to the right of the significand, always
rounding down, and is used by the C, C++, and Java languages in integer
conversions.

• Round-towards-plus-infinity mode and round-towards-minus-infinity mode are
used in interval arithmetic.

RunFast mode In RunFast mode, hardware handles exceptional conditions and special operands.
RunFast mode is enabled by enabling default NaN and flush-to-zero modes and
disabling all exceptions. In RunFast mode, the VFP11 coprocessor does not bounce to
the support code for any legal operation or any operand, but supplies a result to the
destination. For all inexact and overflow results and all invalid operations that result
from operations not involving NaNs, the result is as specified by the IEEE 754 standard.
For operations involving NaNs, the result is the default NaN.

Scalar operation A VFP coprocessor operation involving a single source register and a single destination
register.

See also Vector operation.

Short vector
operation

A VFP coprocessor operation involving more than one destination register and perhaps
more than one source register in the generation of the result for each destination.

Significand The component of a binary floating-point number that consists of an explicit or implicit
leading bit to the left of the implied binary point and a fraction field to the right.

Stride The stride field, FPSCR[21:20], specifies the increment applied to register addresses in
short vector operations. A stride of 00, specifying an increment of +1, causes a short
vector operation to increment each vector register by +1 for each iteration, while a stride
of 11 specifies an increment of +2.

Subnormal value A value in the range (–2Emin < x < 2Emin), except for 0. In the IEEE 754 standard format
for single-precision and double-precision operands, a subnormal value has a zero
exponent and a nonzero fraction field. The IEEE 754 standard requires that the
generation and manipulation of subnormal operands be performed with the same
precision as normal operands.
Glossary-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Glossary
Support code Software that must be used to complement the hardware to provide compatibility with
the IEEE 754 standard. The support code has a library of routines that performs
supported functions, such as divide with unsupported inputs or inputs that might
generate an exception as well as operations beyond the scope of the hardware. The
support code has a set of exception handlers to process exceptional conditions in
compliance with the IEEE 754 standard.

Tiny A nonzero result or value that is between the positive and negative minimum normal
values for the destination precision.

Trap A exceptional condition that has the respective exception enable bit set in the FPSCR
register. The user trap handler is executed.

Trigger instruction The VFP coprocessor instruction that causes a bounce at the time it is issued. A
potentially exceptional instruction causes the VFP11 coprocessor to enter the
exceptional state. A subsequent instruction, unless it is an FMXR or FMRX instruction
accessing the FPEXC, FPINST, or FPSID register, causes a bounce, beginning
exception processing. The trigger instruction is not necessarily exceptional, and no
processing of it is performed. It is retried at the return from exception processing of the
potentially exceptional instruction.

See also Bounce, Potentially exceptional instruction, and Exceptional state.

UND See Undefined.

Undefined (UND) Indicates an instruction that generates an Undefined instruction trap. See the ARM
Architecture Reference Manual for more information on ARM exceptions.

UNP See Unpredictable.

Unpredictable (UNP)
For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Unsupported values Specific data values that are not processed by the VFP coprocessor hardware but
bounced to the support code for completion. These data can include infinities, NaNs,
subnormal values, and zeros. An implementation is free to select which of these values
is supported in hardware fully or partially, or requires assistance from support code to
complete the operation. Any exception resulting from processing unsupported data is
trapped to user code if the corresponding exception enable bit for the exception is set.

Vector operation A VFP coprocessor operation involving more than one destination register, perhaps
involving different source registers in the generation of the result for each destination.

See also Scalar operation.
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Glossary-5

Glossary
Glossary-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Index
A
Arithmetic exception 5-24–5-34

support code 5-24
ARM v5TE instruction set 3-2
ARM11 pipeline 4-4
ARM11 processor

executing conditional VFP code
1-18

memory formats 2-9, 2-10
transferring VFP11 data 2-6–2-7
Undefined Instruction exception

5-3
using for float comparisons 1-18,

1-19, 3-7
VFP11 exception processing 5-2,

5-6

B
Binary-to-decimal conversions 3-3
Bounce thresholds

FADD instructions 5-25
FCVTSD instruction 5-30
FDIV instructions 5-28
float-to-integer conversions 5-31,

5-32
FMAC instructions 5-28
FMUL instructions 5-27

Bounced instructions
arithmetic exceptions 5-24
EX flag 5-3, 5-6
exception processing 5-2
FPEXC register 3-22
full-compliance mode 4-8
illegal instructions 5-6
Inexact exception 5-22
Input exception 5-23
Input Subnormal exception 5-14
overflow bounce ranges 5-25–5-34
Overflow exception 5-19
recursive 5-6
RunFast mode 4-7, 4-9
scalar CDP instructions 5-9
scoreboard operation 4-8

support code 5-5, 5-8, 5-16
tiny result 3-8
trigger instruction 5-3, 5-9
Undefined Instruction exception

5-3
underflow bounce ranges

5-25–5-34
Underflow exception 5-20, 5-21
VFPv2 architecture 3-3

Branch instructions 1-18

C
C condition code flag, FPSCR register

description 3-19
CDP instruction 1-10, 1-17, 4-23
Circular register bank addressing 2-2,

2-11
Comparing single-precision and

double-precision values 3-3
Condition code flags

CPSR register 3-6
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Index-1

Index
FPINST register 3-24
FPINST2 register 3-24
FPSCR register 3-6, 4-3
serializing instructions 4-3

Context switch
saving and restoring registers 3-22

Coprocessor ID number 10
single-precision instructions 1-4

Coprocessor ID number 11
double-precision instructions 1-4

D
Data hazard

definition 4-7
short vector instructions 1-16

Decimal-to-binary conversions 3-3
Default NaN

Invalid Operation exception 5-16
RunFast mode 1-14, 1-15

Default NaN mode 1-14, 1-15
comparisons 3-7
enabling 1-13
IEEE 754 standard compliance 3-2
performance enhancement 3-4
RunFast mode 3-4

Default NaN mode enable bit
description 3-19
full-compliance mode 1-13

Destination registers
short vector instructions 1-16

Destination scoreboard 4-7, 4-8
Divide and square root (DS) pipeline

1-8
instructions 1-9
latency 1-9
parallel operation 4-23
resource hazards 4-20

Division by Zero cumulative flag
description 3-20

Division by Zero exception 5-18
enabling 5-18
flush-to-zero mode 5-18
Invalid Operation exception 5-18
RunFast mode 1-15

Division by zero exception
RunFast mode 1-15

Division by Zero exception enable bit

description 3-20
DN bit

description 3-19
full-compliance mode 1-13

Double-precision data
comparing with single-precision

data 3-3
default NaN values 3-5
exponent bias 2-4
exponent bits 2-4
format 2-3, 2-4, 2-8, 3-4
fraction 2-4
memory format 2-10
minimum normal exponent 5-28
numerical ranges 2-4
register bank format 2-11
sign bit 2-4
special formats 2-4
transferring 3-2
valid NaNs 3-5

Double-precision instructions
absolute value 5-12
bounce thresholds of float-to-integer

conversions 5-31
coprocessor ID number 1-4
divide 1-9
DS pipeline latency 1-9
Fm, Fn, and Fd fields 2-5
multiply 5-10
M, N, and D bits 2-5
square root 1-9
three-operand 2-15
throughput 1-9, 4-25
two-operand 2-15
VFP11 support 1-2

DZC flag
description 3-20
Division by Zero exception 5-18

DZE bit
description 3-20
Division by Zero exception 5-18

E
EN bit 3-22

description 3-23
during interrupt servicing 4-4

Endian format 2-9

EX flag
description 3-23
bounced instructions 5-3, 5-5
illegal instructions 5-6
Input Subnormal exception 5-14
potential Underflow exception 5-20
preventing infinite exception loop

3-22, 5-5
short vector exception processing

5-9
EX flag‚ FPEXC register 3-22
EX flag‚ FPSCR register

Invalid Operation exception 5-16
Exception flag

description 3-23
Exceptional state 3-22, 3-23, 5-2, 5-3
Exceptions

arithmetic exception 5-24
copy instructions 5-2
data transfer instructions 5-2
detection 1-5
Division by Zero exception 5-18
IEEE 754 standard compliance 5-2,

5-5
imprecise exception handling 5-8
Inexact exception 5-22
Input exception 5-23
Invalid Operation exception 5-15
Overflow exception 5-19
Underflow exception 5-20
user trap handlers 5-2

F
Fast interrupt (FIQ) mode 5-6
FDIV instruction 4-24
FLD instruction 4-24
Floating-Point Exception Register

see FPEXC Register
Floating-Point Instruction Register

see FPINST Register
Floating-Point Instruction Register 2

see FPINST2 Register
Floating-point multiply and accumulate

(FMAC) pipeline 1-6, 1-7
during short vector DS pipeline

operations 1-19
instructions 1-7
Index-2 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Index
parallel operation 4-23
resource hazards 4-20

Floating-Point Status and Control
Register

see FPSCR Register
Floating-Point System ID Register

see FPSID Register
Float-to-integer bounce range

double-precision 5-31
single-precision 5-30

Float-to-integer conversion
full-compliance mode 1-14
high-level language support 1-2
invalid condition 5-16
Invalid Operation exception 5-16,

5-30
Flush-to-zero bit

full-compliance mode 1-13
Underflow exception 5-20, 5-21

Flush-to-zero mode 1-15
comparisons 3-7
Division by Zero exception 5-18
enabling 1-13, 1-14
IDC flag 1-14, 3-2
Input exception 5-23
Input Subnormal exception 5-14
IXC flag 3-2
performance enhancement 3-4
RunFast mode 3-4
subnormal input 1-13, 1-14, 3-22
tiny result 1-14, 3-8
UFC flag, FPSCR register 1-14,

3-2, 3-8, 5-21
UFE bit 3-2
Underflow exception 5-21
VFPv2 architecture 3-2

Flush-to-zero mode enable bit
description 3-19
underflow exception 5-20

FMDRR instruction
integer data 3-11

FMRRD instruction
integer data 3-12

FMRRS instruction
integer data 3-15

FMSRR instruction
integer data 3-13

Forwarding
from CDP instructions 4-2, 4-5

from integer-producing instructions
4-5

from load instructions 4-2, 4-5
latency reduction 4-5, 4-25
mixed-precision data 4-5
to store instructions 4-5, 4-6

FPEXC register 3-16
accessing 3-17, 4-3, 5-8
bit fields 3-22
bounced instructions 5-3
changing context 3-22
exception flags 5-9
exception processing example 5-10,

5-11, 5-12
exception processing sequence 5-9
FMXR,FMRX reg field code 3-17
illegal instructions 5-6
MCR instructions 2-6
MRC instructions 2-6
support code 3-22, 5-5, 5-6

FPINST register 3-16, 3-24, 5-3, 5-9
accessing 3-17, 4-3, 5-8
bounced instructions 5-3
changing context 3-22
condition code flags 3-24
exception processing example 5-13
exceptionprocessing example 5-11,

5-12, 5-13
FMXR, FMRX reg field code 3-17
format 3-24
MCR instructions 2-6
MRC instructions 2-6
reading by support code 5-5
short vector exception 5-9

FPINST2 instruction valid flag
description 3-23

FPINST2 register 3-16, 3-24
accessing 3-17, 4-3, 5-8
changing context 3-22
condition code flags 3-24
exception processing example 5-10,

5-11, 5-12
FMXR, FMRX reg field code 3-17
format 3-24
FP2V flag 5-6
MCR instructions 2-6
MRC instructions 2-6
pretrigger slot 5-8
support code 5-8

FPSCR exception flags
clearing 1-15
IEEE 754 standard compliance 1-15

FPSCR register
accessing 3-17, 3-19, 4-3
bit fields 3-19
clearing IDC flag 3-2
clearing UFC flag 3-2
condition code flags 3-6, 4-3, 4-15
FMXR, FMRX reg field code 3-17
LEN field 2-2, 2-12, 3-20
MCR instructions 2-6
MRC instructions 2-6
reading by support code 5-5
rounding mode 5-5
STRIDE field 2-2, 3-21
support code 1-14, 5-16, 5-20
vector length 5-5
writing by support code 5-5

FPSID register 3-16
accessing 3-17, 4-3, 5-8
FMXR,FMRX reg field code 3-17
format 3-18
MCR instructions 2-6
MRC instructions 2-6

FP2V flag
description 3-23
bounced instructions 5-6
exception processing example 5-10,

5-11, 5-12
Full-compliance mode

exception processing 5-2
IEEE 754 standard compliance

1-13, 3-4, 5-2
interlocks 4-7
Invalid Operation exception 1-13
NaN input 1-13
NaN processing 3-5
overflow 1-13
register locking 4-9, 4-10, 4-11,

4-13, 4-14
scoreboard operation 4-9, 4-10,

4-11, 4-13, 4-14
support code 1-13
underflow 1-13

FZ bit
description 3-19
full-compliance mode 1-13
Input Subnormal exception 5-14
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Index-3

Index
small inputs and results 1-14
Underflow exception 5-20, 5-21

H
Hazards

detection 4-7, 4-8
full-compliance mode 4-7
RunFast mode 4-7
scoreboard operation 4-8
see also Control hazard
see also Data hazard
see also RAR hazard
see also RAW hazard
see also Resource hazard
see also WAR hazard
see also WAW hazard

I
IDC flag

description 3-20
flush-to-zero mode 1-14, 3-2
Input Subnormal exception 5-14
VFPv2 architecture 3-2

IDE bit
description 3-20
Input Subnormal exception 5-14
VFPv2 architecture 3-2

IEEE 754 standard comparisons 3-8
IEEE 754 standard compliance 1-2,

1-13, 3-3
branch instructions 1-18, 1-19
default NaN mode 1-13, 3-2
exceptions 3-9, 5-2, 5-5
flush-to-zero mode 1-13
full-compliance mode 1-13, 3-4,

5-2
rounding modes 1-9
RunFast mode 1-2, 1-13, 1-15, 3-4
subnormal inputs 1-13
Underflow exception 3-8
VFPv2 architecture 3-3
VFP11 instruction set 3-3

Imprecise exception handling 3-8, 5-2,
5-8

Inexact cumulative flag

description 3-20
Inexact exception 5-22

enabling 5-22
full-compliance mode 1-13
Overflow exception 5-22
RunFast mode 1-15
support code 1-13, 5-22
Underflow exception 5-22

Inexact exception enable bit
full-compliance mode 1-13

Inexact operation
RunFast mode 1-15

Input exception 3-22
flush-to-zero mode 5-23
NaN input 3-22, 5-23
subnormal input 3-22, 5-23
support code 5-23

Input exception flag
description 3-24
exception processing example 5-10,

5-11, 5-12
Input Subnormal cumulative flag

description 3-20
Input Subnormal exception

enabling 5-14
flush-to-zero mode 5-14
VFPv2 architecture 3-2

Input Subnormal exception enable bit
description 3-20
VFPv2 architecture 3-2

Instructions
CDP 1-10, 1-17, 4-23
FDIV 4-24
FLD 4-24
MCR 1-10
MRC 1-10
MRCC 1-10

Integer data
format 2-3, 3-4
forwarding 4-5

Integer instructions
Fm, Fn, and Fd fields 2-5
M, N, and D bits 2-5

Integer-to-float conversion
high-level language support 1-2
overflow 5-30
underflow 5-30

Integer-valued float 3-3
Interlocks 4-7

INV flag
description 3-24
exception processing example 5-10,

5-11, 5-12
INV flag‚ FPEXC register 3-22
Invalid operation

RunFast mode 1-15
Invalid Operation cumulative flag 5-16

description 3-20
RunFast mode 3-5

Invalid operation cumulative flag
RunFast mode 3-24

Invalid Operation exception 5-15–5-17
default NaN 5-16
enabling 5-16
example 5-11
float-to-integer conversion 5-16
full-compliance mode 1-13, 1-14,

3-5
QNaN compare with exception 3-7
RunFast mode 1-15
SNaN 2-3, 5-15
SNaN compare with exception 3-7
SNaN comparison 3-7
SNaN input 3-5
support code 1-13, 5-15, 5-16

Invalid Operation exception enable bit
5-16

description 3-20
full-compliance mode 1-13
SNaN comparison 3-7

IOC flag, FPEXC register
description 3-24
exception processing example 5-11,

5-12, 5-13
float-to-integer conversion 5-17
Invalid Operation exception 5-16
potential Invalid Operation

exception 3-22
IOC flag, FPSCR register

description 3-20
Invalid Operation exception 5-16
RunFast mode 3-5

IOE bit
description 3-20
full-compliance mode 1-13
Invalid Operation exception 5-16
SNaN comparison 3-7

IXC flag
Index-4 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Index
description 3-20
flush-to-zero mode 3-2
Inexact exception 5-22
Overflow exception 5-19
underflow condition 3-8
Underflow exception 5-20
VFPv2 architecture 3-2

IXE bit
description 3-20
bounced instructions 5-22
full-compliance mode 1-13
Inexact exception 5-22

L
LEN field 2-2

description 3-20
scalar instruction in short vector

mode 2-14
scalar-only instruction 2-12
short vector instruction with scalar

source 2-13
short vector-only instruction 2-13

Load and store (LS) pipeline 1-10
instructions 1-11
parallel operation 4-23
resource hazards 4-20

M
MCR instruction 1-10
Media and VFP Feature Register 0

see MVFR0 Register
Memory formats

big-endian 2-9, 2-10
little-endian 2-9, 2-10

Mixed-precision data 4-5
Mixed-precision instructions 1-4
MRC instruction 1-10
MRCC instruction 1-10
MVFR0 Register 3-25
MVFR1 Register 3-27

N
N condition code flag, FPSCR register

description 3-19
NaN

data tranfer instructions 3-5
default NaN values 3-5
nonarithmetic CDP instructions 3-5
see QNaN
see SNaN
support code 3-5
valid 3-5

NaN input
full-compliance mode 1-13
RunFast mode 1-14, 1-15, 3-4
support code 1-13

NaN result
RunFast mode 1-14

O
OFC flag, FPEXC register

description 3-24
exception processing example 5-10,

5-12, 5-13
potential Overflow exception 3-22

OFC flag, FPSCR register
description 3-20
Overflow exception 5-19

OFE bit
description 3-20
full-compliance mode 1-13
Overflow exception 5-19

Overflow
full-compliance mode 1-13
negative 5-19
positive 5-19
potential 3-24
rounding 5-19
round-to-nearest mode 5-19
round-towards-minus-infinity mode

5-19
round-towards-plus-infinity mode

5-19
round-towards-zero mode 5-19
significand 5-19, 5-25

Overflow bounce ranges 5-25–5-34
Overflow cumulative flag 5-19

description 3-20
Overflow exception 5-19

enabling 5-19

example 5-12
full-compliance mode 1-13
Inexact exception 5-22
pessimistic detection 5-19
potential 5-19
RunFast mode 1-15
support code 1-13, 5-19
user trap handler 5-19

Overflow exception enable bit 5-19
description 3-20
full-compliance mode 1-13
Overflow exception 5-19

Overflow operation
RunFast mode 1-15

P
Pessimistic detection of exceptions

Overflow exception 5-19
Pipelines

DS 1-17, 4-20, 4-23
FMAC 1-5, 4-23
LS 1-5, 1-10, 4-23
operating in parallel 1-5
stages 1-5

Potential invalid operation
definition 3-22

Potential Invalid Operation exception
enable bit

exception processing example 5-13
Potential Invalid Operation flag 5-16

exception processing example 5-11,
5-12

float-to-integer conversion 5-17
Potential invalid operation flag 3-22

description 3-24
Potential overflow

definition 3-22
Potential overflow condition 3-24
Potential overflow flag 3-22

exception processing example 5-10,
5-12, 5-13

Potential overflow flag, FPEXC register
description 3-24

Potential Underflow exception
definition 3-22

Potential underflow flag 3-22
description 3-24
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Index-5

Index
Potentially invalid operations 5-16
Pretrigger slot 5-8

Q
QNaN

compare with exception 3-7
definition 3-5

R
RAW hazard

see Read-after-write hazard
Read-after-write (RAW) hazard 1-19

definition 4-7
example 4-15, 4-16, 4-17

Registers
FPEXC 3-22
FPINST 3-24
FPINST2 3-24
FPSCR 3-19
FPSID 3-18
MVFR0 3-25
MVFR1 3-27

Remainder 3-3
Remainder operation 3-3
Resource hazard 4-7, 4-20

conditions 4-20
example 4-20, 4-21, 4-22

Rmode field
description 3-20

Rounding float to integer-valued float
3-3

Rounding mode 5-5
Rounding mode control field

description 3-20
Round-towards-zero mode 1-2
RunFast mode 1-15

bounce conditions 4-7
definition 1-15, 3-4
division by zero operation 1-15
exception processing 5-2
IEEE 754 standard compliance 1-2,

1-13, 1-15, 3-4
inexact operation 1-15
interlocks 4-7
invalid operation 1-15

IOC flag, FPEXC register 3-24
NaN processing 3-5
OFC flag, FPEXC register 3-24
overflow operation 1-15
performance enhancement 3-4
register locking 4-9, 4-10, 4-11,

4-12, 4-13, 4-14
scoreboard operation 4-9, 4-10,

4-11, 4-12, 4-13, 4-14

S
Scalar instruction

vector length 2-12, 2-14
Scoreboard

lock mask 4-8
register locking 4-8

Short vector instructions 2-13
circular register bank addressing

2-2
clearing registers 4-8
crossing register bank boundary

2-11
data hazard 1-16
divide instructions 1-19
divide iterations 4-4
double-precision vector length 1-16
exception processing 3-24, 5-6, 5-9,

5-10, 5-11, 5-12
interrupt processing 4-4
latency 4-4
locking registers 4-8
mixing with scalar instructions 2-14
number of operations 2-2
programming guidelines 1-19
register bank addressing 2-2
register locking 4-9
scoreboard operation 4-8, 4-9
single-precision vector length 1-16
square root instructions 1-19, 4-4
Undefined 5-7
Unpredictable 5-7
vector length 2-13, 3-20, 3-21
vector stride 2-13, 2-14, 3-21

Signaling NaN
see SNaN

Single-precision data

comparing with double-precision
data 3-3

default NaN values 3-5
exponent bias 2-4
exponent bits 2-3
format 2-3, 2-8, 3-4
fraction 2-3
memory format 2-9
minimum normal exponent 5-28
NaNs 3-8
numerical ranges 2-4
register bank format 2-11
sign bit 2-3
special formats 2-4
transfering 3-2
transfering to ARM processor 2-6
valid NaNs 3-5

Single-precision instructions
add 5-11
bounce thresholds of float-to-integer

conversions 5-30
coprocessor ID number 1-4
divide 1-9
Fm, Fn, and Fd fields 2-5
multiply 5-11
multiply and accumulate 5-12
M, N, and D bits 2-5
square root 1-9
three operand 2-14
throughput 1-9, 4-25
two-operand 2-15
VFP11 support 1-2

SNaN
compare 3-7
compare with exception 3-7
definition 3-5
Invalid Operation exception 3-5,

5-15
register access detection 2-3
RunFast mode 3-5

Source registers
short vector instructions 1-16

Source scoreboard 4-7, 4-8
STRIDE field 2-2

description 3-21
scalar instruction in short vector

mode 2-14
short vector instruction with scalar

source 2-13
Index-6 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

Index
short vector-only instructions 2-13
Subnormal input

flush-to-zero mode 1-13, 1-14, 3-22
IDC flag 3-2
RunFast mode 1-15, 3-4
support code 1-13

Support code 3-3, 5-5
arithmetic exception 5-24
bounced instructions 5-16
clearing EX flag 3-22
computing intermediate result 5-5
decoding FPINST instruction 5-5
exception handlers 5-5
executing FPINST2 instruction 5-6
floating-point function library 5-5
FPEXC register 3-16, 3-22
FPINST register 3-16
FPINST2 register 3-16, 3-24, 5-8
FPSCR register 1-14
full-compliance mode 1-13, 3-4,

3-5
IEEE 754 standard compliance 1-2,

1-14, 3-3, 3-4, 5-2
illegal instructions 5-6
Inexact exception 1-13, 5-22
infrequently occurring values 3-4
Input exception 5-23
Invalid Operation exception 1-13,

5-15, 5-16
IXC flag 5-19, 5-20
library functions 3-3
NaN input 1-13
NaN processing 3-5
Overflow exception 1-13, 5-19
overflow processing 3-9
preventing infinite exception loops

5-6
processing exceptions 5-6
reading FPEXC register 5-5
reading FPINST register 5-5
RunFast mode 1-2, 1-14, 1-15, 3-4,

3-5
setting FPSCR register flags 5-5
subnormal input 1-13
tininess 3-8
Underflow exception 5-20
underflow processing 3-8, 3-9
using VFP11 hardware for

calculations 5-6

writing FPEXC register 5-5
System control registers

FPSID 3-18
System trap handler 3-22

Undefined trap handler 3-2

T
Tiny result

flush-to-zero mode 1-14, 3-8
RunFast mode 1-15

Trigger instruction 3-8, 5-3, 5-9
determination 5-8
retrying 5-6

U
UFC flag, FPEXC register

description 3-24
exception processing example 5-10,

5-12
potential Underflow exception 3-22
potential underflow exception 5-20

UFC flag, FPSCR register
description 3-20
flush-to-zero mode 1-14, 3-2, 3-8,

5-20, 5-21
Potential underflow condition 5-20
Underflow exception 5-20

UFE bit
description 3-20
flush-to-zero mode 3-2
Underflow exception 5-20, 5-21

Undefined Instruction exception 5-3
Undefined trap handler

subnormal input 3-2
Underflow

exception 5-20
full-compliance mode 1-13
pessimistic determination 5-20
potential 3-24
RunFast mode 3-4

Underflow bounce ranges 5-25–5-34
Underflow cumulative flag 5-20

description 3-20
flush-to-zero mode 3-2
see UFC flag, FPSCR register

Underflow exception 5-20
VFPv2 functionality 3-2

Underflow cumulative flag, FPSCR
register

flush-to-zero mode 5-20
Underflow exception

enabling 5-20
example 5-10
flush-to-zero mode 5-21
IEEE 754 standard compliance 3-8
Inexact exception 5-22
IXC flag 3-8
pessimistic detection 5-20
rounding 5-21
support code 5-20
UFC flag, FPSCR register 3-8
user trap handler 5-20
VFPv2 architecture 3-2

Underflow exception enable bit
description 3-20

User trap handler 3-9, 3-22, 5-2
arithmetic exceptions 5-24
bounced instruction 5-5
Invalid Operation exception 3-5,

3-6, 3-7
RunFast mode 3-4

V
V condition code flag, FPSCR register

description 3-19
VECITR

FPEXC bit field 5-20
VECITR field

description 3-23
exception processing example 5-10,

5-11, 5-12
short vector exception processing

5-9
Vector iteration count field

description 3-23
exception processing example 5-10
exeption processing example 5-11

Vector length 3-20, 4-3, 5-5
Vector stride 3-21
VFP

feature registers 3-25
VFP enable bit 3-22
ARM DDI 0274G Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. Index-7

Index
description 3-23
VFPv2 architecture 1-2

compared to VFPv1 3-2
flush-to-zero mode 3-2
IDC flag 3-2
IDE bit 3-2
IEEE 754 standard compliance 3-3
Input Subnormal exception 3-2
instructions 3-3
internal data format 2-3
programmer’s model 3-2
short vector operations 1-16, 2-13,

2-14
UFC flag, FPSCR register 3-2
Underflow exception 3-2

VFP11 instruction set
IEEE 754 standard compliance 3-3

VFP11 pipeline
interlocks 4-7
interrupts 4-4
see Divide and square root pipeline
see Floating-point multiply and

accumulate pipeline
see Load and store pipeline
serializing instructions 4-3
source and destination register

determination 4-8
VFP11 pipeline hazards

see Read-after read (RAR) hazard
see Read-after-write (RAW) hazard
see Resource hazard
see Write-after-read (WAR) hazard
see Write-after-write (WAW) hazard

W
WAR hazard

see Write-after-read hazard
WAW hazard

see Write-after-write hazard
Write-after-read (WAR) hazard

definition 4-7
example 4-17, 4-19

Write-after-write (WAW) hazard
definition 4-7

Z
Z condition code flag, FPSCR register

description 3-19
branching 3-7
Index-8 Copyright © 2002-2003, 2005-2006 ARM Limited. All rights reserved. ARM DDI 0274G

	VFP11 Vector Floating-point Coprocessor Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Further reading

	Feedback
	Feedback on the VFP11 coprocessor
	Feedback on this manual

	Introduction
	1.1 About the VFP11 coprocessor
	1.2 Applications
	1.3 Coprocessor interface
	1.4 VFP11 coprocessor pipelines
	1.4.1 FMAC pipeline
	1.4.2 DS pipeline
	1.4.3 LS pipeline

	1.5 Modes of operation
	1.5.1 Full-compliance mode
	1.5.2 Flush-to-zero mode
	1.5.3 Default NaN mode
	1.5.4 RunFast mode

	1.6 Short vector instructions
	1.7 Parallel execution of instructions
	1.8 VFP11 treatment of branch instructions
	1.9 Writing optimal VFP11 code
	1.10 Product revisions

	Register File
	2.1 About the register file
	2.2 Register file internal formats
	2.2.1 Integer data format
	2.2.2 Single-precision data format
	2.2.3 Double-precision data format

	2.3 Decoding the register file
	2.4 Loading operands from ARM1136JF-S registers
	2.5 Maintaining consistency in register precision
	2.6 Data transfer between memory and VFP11 registers
	2.7 Access to register banks in CDP operations
	2.7.1 About register banks
	2.7.2 Operations using register banks

	Programmer’s Model
	3.1 About the programmer’s model
	3.2 Compliance with the IEEE 754 standard
	3.2.1 An IEEE 754 standard-compliant implementation
	3.2.2 Complete implementation of the IEEE 754 standard
	3.2.3 IEEE 754 standard implementation choices

	3.3 ARMv5TE coprocessor extensions
	3.3.1 FMDRR
	3.3.2 FMRRD
	3.3.3 FMSRR
	3.3.4 FMRRS

	3.4 VFP11 system registers
	3.4.1 Floating-Point System ID Register, FPSID
	3.4.2 Floating-Point Status and Control Register, FPSCR
	3.4.3 Floating-Point Exception Register, FPEXC
	3.4.4 Floating Point Instruction Registers, FPINST and FPINST2
	3.4.5 Media and VFP Feature Registers

	Instruction Execution
	4.1 About instruction execution
	4.2 Serializing instructions
	4.3 Interrupting the VFP11 coprocessor
	4.4 Forwarding
	4.5 Hazards
	4.6 Operation of the scoreboards
	4.6.1 Scoreboard operation when an instruction bounces
	4.6.2 Single-precision source register locking
	4.6.3 Single-precision source register clearing
	4.6.4 Double-precision source register locking
	4.6.5 Double-precision source register clearing

	4.7 Data hazards in full-compliance mode
	4.7.1 Status register RAW hazard example
	4.7.2 Load multiple-CDP RAW hazard example
	4.7.3 Load multiple-short vector CDP RAW hazard example
	4.7.4 CDP-CDP RAW hazard example
	4.7.5 Short vector CDP-load multiple WAR hazard example

	4.8 Data hazards in RunFast mode
	4.8.1 Short vector CDP-load multiple WAR hazard example

	4.9 Resource hazards
	4.9.1 Load multiple-load-CDP resource hazard example
	4.9.2 Load multiple-short vector CDP resource hazard example
	4.9.3 Short vector CDP-CDP resource hazard example

	4.10 Parallel execution
	4.11 Execution timing

	Exception Handling
	5.1 About exception processing
	5.2 Bounced instructions
	5.2.1 Potential or actual exception that the VFP11 coprocessor cannot handle
	5.2.2 Potential or actual exception with the exception enable bit set

	5.3 Support code
	5.3.1 Illegal instructions

	5.4 Exception processing
	5.4.1 Determination of the trigger instruction
	5.4.2 Exception processing for CDP scalar instructions
	5.4.3 Exception processing for CDP short vector instructions
	5.4.4 Examples of exception detection for vector instructions

	5.5 Input Subnormal exception
	5.5.1 Exception enabled
	5.5.2 Exception disabled

	5.6 Invalid Operation exception
	5.6.1 Exception enabled
	5.6.2 Exception disabled

	5.7 Division by Zero exception
	5.7.1 Exception enabled
	5.7.2 Exception disabled

	5.8 Overflow exception
	5.8.1 Exception enabled
	5.8.2 Exception disabled

	5.9 Underflow exception
	5.9.1 Exception enabled
	5.9.2 Exception disabled

	5.10 Inexact exception
	5.10.1 Exception enabled
	5.10.2 Exception disabled

	5.11 Input exceptions
	5.12 Arithmetic exceptions
	5.12.1 FADD and FSUB
	5.12.2 FCMP, FCMPZ, FCMPE, and FCMPEZ
	5.12.3 FMUL and FNMUL
	5.12.4 FMAC, FMSC, FNMAC, and FNMSC
	5.12.5 FDIV
	5.12.6 FSQRT
	5.12.7 FCPY, FABS, and FNEG
	5.12.8 FCVTDS and FCVTSD
	5.12.9 FUITO and FSITO
	5.12.10 FTOUI, FTOUIZ, FTOSI, and FTOSIZ

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

