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Preface

This preface introduces the ARM PrimeCell Vectored Interrupt Controller (PL192) and 
its reference documentation. It contains the following sections:

• About this document on page x

• Further reading on page xii

• Feedback on page xiii.
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Preface 
About this document

This document is the technical reference manual for the ARM PrimeCell Vectored 
Interrupt Controller (VIC).

Intended audience

This document has been written for hardware and software engineers implementing 
System-on-Chip designs. It provides the necessary information to enable designers to 
integrate the peripheral into a target system as quickly as possible. 

Organization

This document is organized as follows:

Chapter 1 Introduction 

Read this chapter for an introduction to the PrimeCell VIC and its 
features.

Chapter 2 Functional Overview 

Read this chapter for a description of the major functional blocks of the 
PrimeCell VIC.

Chapter 3 Programmer’s Model 

Read this chapter for a description of the registers and programming 
details of the PrimeCell VIC.

Chapter 4 Programmer’s Model for Test 

Read this chapter for a description of the test registers and signals of the 
PrimeCell VIC.

Appendix A Signal Descriptions 

Read this appendix for a description of the PrimeCell VIC signals.

Appendix B Example Code 

Read this appendix for a description of the PrimeCell VIC example code.

Appendix C Troubleshooting 

Read this appendix for a description of troubleshooting the PrimeCell 
VIC.
x Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Preface 
Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that may be entered at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or option 
name.

monospace italic 

Denotes arguments to commands and functions where the argument is to 
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also 
used for terms in descriptive lists, where appropriate.

monospace bold 

Denotes language keywords when used outside example code and ARM 
processor signal names.
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. xi



Preface 
Further reading

This section lists publications by ARM Limited.

ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at: 
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This document contains information that is specific to the ARM PrimeCell Vectored 
Interrupt Controller (PL192). Refer to the following documents for other relevant 
information:

• AMBA Specification (Rev 2.0) (ARM IHI 00011).
xii Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Preface 
Feedback

ARM Limited welcomes feedback both on the ARM PrimeCell Vectored Interrupt 
Controller (PL192), and on the documentation.

Feedback on the ARM PrimeCell Vectored Interrupt Controller (PL192)

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on this document

If you have any comments about this document, please send an email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. xiii
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Chapter 1 
Introduction

This chapter introduces the ARM PrimeCell Vectored Interrupt Controller (PL192). It 
contains the following sections:

• About the ARM PrimeCell Vectored Interrupt Controller (PL192) on page 1-2

• Release information on page 1-3.
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. 1-1



Introduction 
1.1 About the ARM PrimeCell Vectored Interrupt Controller (PL192)

The PrimeCell Vectored Interrupt Controller (VIC) is an Advanced Microcontroller Bus 
Architecture (AMBA) compliant, System-on-Chip (SoC) peripheral that is developed, 
tested, and licensed by ARM.

The PrimeCell VIC provides an interface to the interrupt system, and improves interrupt 
latency in two ways:

• moves the interrupt controller to the AMBA AHB bus

• provides vectored interrupt support for all interrupt sources

• provides support for the ARM v6 processor VIC port, compatible with ARM11 
and ARM1026EJ processors.

1.1.1 Features of the PrimeCell VIC

The PrimeCell VIC has the following features:

• compliance to the AMBA Specification (Rev 2.0) for easy integration into 
System-on-Chip (SoC) implementation

• support for 32 vectored IRQ interrupts

• fixed hardware interrupt priority levels

• programmable interrupt priority levels

• hardware interrupt priority level masking

• programmable interrupt priority level masking

• IRQ and FIQ generation

• AHB mapped for faster interrupt response

• software interrupt generation

• test registers

• raw interrupt status

• interrupt request status

• privileged mode support for restricted access

• interrupt controller daisy chaining (supports PL190, PL192, and AMBA 
Development Kit (ADK)) interrupt controller

• support for the ARM v6 processor VIC port in synchronous and asynchronous 
mode, enabling faster interrupt servicing when connected to an ARM11 or 
ARM1026EJ processor.
1-2 Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Introduction 
1.2 Release information

The following list shows the functional differences between the PL192 and PL190 
PrimeCell VICs:

• VIC port fully supported, both in synchronous and asynchronous modes.

• The programmers model is different between PL192 and PL190, so code is not 
backwards-compatible.

• 16 standard interrupts replaced with vectored interrupts to give 32 vectored 
interrupts.

• 16 software-programmable interrupt priority levels added, in addition to the 
hardware priority levels.

• Software-programmable interrupt priority level masking added, in addition to the 
hardware priority level masking.

• Register map changed

— VICDefVectAddr Register removed

— 16 x VICVectCntl Register removed

— 16 x VICVECTADDR Registers added

— 32 x VICVECTPRIORITY Registers added

— VICINTSSTATUS Register added

— VICINTSSTATUSCLEAR Register added.

• VICVECTPRIORITY Register added. This enables the priority level of each of 
the 33 interrupt sources to be programmed by software.

• VICINTSSTATUS and VICINTSSTATUSCLEAR Registers added. These 
enable a sampled version of the status of the interrupt sources to be read, and are 
used to check for interrupts that are cleared prematurely.

• Ports VICIRQINREG and VICFIQINREG added to enable the daisy-chained 
interrupts to be registered. If the interrupts are not registered, the latency for 
daisy-chained interrupts is decreased.

• Port VICIRQACKOUT added to enable daisy-chained VICs to receive the 
processor response to an interrupt. This saves the software overhead of writing to 
the VICADDRESS Register in the daisy-chained VIC that has generated the 
interrupt.
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. 1-3



Introduction 
1-4 Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Chapter 2 
Functional Overview

This chapter describes the major functional blocks of the ARM PrimeCell Vectored 
Interrupt Controller (PL192). It contains the following sections:

• PrimeCell VIC overview on page 2-2

• Operation on page 2-12

• Connectivity on page 2-16.
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. 2-1



Functional Overview 
2.1 PrimeCell VIC overview

The PrimeCell VIC provides a software interface to the interrupt system. In a system 
with an interrupt controller, software must determine the source that is requesting 
service and where its service routine is loaded. A VIC does both of these in hardware. 
It supplies the starting address (or vector address) of the service routine corresponding 
to the highest priority requesting interrupt source.

In an ARM processor based system, two levels of interrupt are available:

• Fast Interrupt Request (FIQ) for fast, low latency interrupt handling

• Interrupt Request (IRQ) for more general interrupts.

Only a single FIQ source at a time is generally used in a system, to provide a true 
low-latency interrupt. This has the following benefits:

• You can execute the interrupt service routine directly without determining the 
source of the interrupt.

• Interrupt latency is reduced. You can use the banked registers available for FIQ 
interrupts more efficiently, because a context save is not required.

The FIQ interrupt has the highest priority, followed by interrupt vector 0-31, and the 
daisy-chained interrupt. The priority of each of the vectored interrupts is programmable, 
enabling the order the interrupts are serviced in to be dynamically changed. This is done 
by programming the values in the vector priority registers. If multiple interrupts are set 
to the same programmed priority level, the fixed hardware priority levels are used to 
determine the order the interrupts on that level are serviced. This is also applicable when 
the priority registers are not programmed. Interrupt 0 has the highest hardware priority 
level, and the daisy-chained interrupt has the lowest. The software can control each 
request line to generate software interrupts.

The interrupt inputs must be level sensitive, active HIGH, and held asserted until the 
interrupt is cleared in the peripheral by the interrupt service routine. Edge-triggered 
interrupts are not compatible.

Note
 The PrimeCell VIC does not handle interrupt sources with transient behavior. For 
example, an interrupt is asserted and then deasserted before software can clear the 
interrupt source. In this case, the CPU acknowledges the interrupt and obtains the 
vectored address for the interrupt from the VIC, assuming that no other interrupt has 
occurred to overwrite the vectored address. However, when a transient interrupt occurs, 
the priority logic of the VIC is not set and lower priority interrupts are able to interrupt 
the transient interrupt service routine, assuming interrupt nesting is allowed. 
2-2 Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Functional Overview 
There are 32 vectored interrupts available, which can also be used as nonvectored 
interrupts if the system does not support interrupt vector addresses, but requires the 
interrupt priority and nesting features of the VIC. These interrupts can only generate an 
IRQ interrupt. The IRQ interrupts provide an address for an Interrupt Service Routine 
(ISR). Reading from the Vector Interrupt Address Register, VICADDRESS, provides 
the address of the ISR, and updates the interrupt priority hardware that masks out the 
current and any lower priority interrupt requests. Writing to the VICADDRESS 
Register indicates to the interrupt priority hardware that the current interrupt is serviced, 
enabling the masking of lower priority or the same priority interrupts to be removed and 
for the interrupts to become active.

Note
 After the VICADDRESS Register is read, the current and lower priority interrupts are 
masked from the nVICIRQ output. However, the values in the VICIRQSTATUS and 
VICRAWINTR Registers are not affected.

If the system does not support interrupt vector addresses, the VICVECTADDR 
Registers can be programmed with the number of the interrupt source ports they relate 
to, so that the source of the active interrupt can be easily determined.

A programmed interrupt request (for each of the 32 IRQ lines) enables you to generate 
an interrupt under software control. This register is typically used to downgrade an FIQ 
interrupt to an IRQ interrupt. This is done by clearing the FIQ and setting up a software 
IRQ instead.

Note
 The priority of the FIQ over IRQ is set by the ARM processor. The VIC can raise both 
an FIQ and an IRQ at the same time.

The IRQ and FIQ request logic has an asynchronous path to the nVICIRQ and 
nVICFIQ outputs respectively. This allows interrupts to be asserted when the VIC 
AHB clock (HCLK) is disabled in a low-power mode. It is expected that the power 
control logic enables the processor and VIC AHB clocks when an interrupt is received 
so that the interrupt service routine can be performed.
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. 2-3



Functional Overview 
By convention, for the IRQ interrupts, bits 1-5 must be used as defined in Table 2-1. Bit 
0 and bit 6 upwards are available for use as required. For the FIQ interrupt, the bits can 
be used as required.

Note
 This is only a recommended interrupt configuration, and there is no requirement that it 
is followed.

A space is reserved for the software interrupt so that it can be used without masking out 
a valid hardware interrupt. Any of the interrupt bits can be programmed through 
software using the VICSOFTINT Register but, by reserving a specific software 
interrupt bit, it is easier to differentiate between hardware and software interrupts.

The Comms RX and TX lines are debug channel interrupts used by the system 
processor, and are required in any system using these debug features.

Spaces are reserved for two timers, because a typical system has at least two timers.

Figure 2-1 on page 2-5 shows a block diagram of the PrimeCell VIC.

Table 2-1 Interrupt standard configuration

Bit Interrupt source

1 Software interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
2-4 Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Functional Overview 
Figure 2-1 VIC block diagram
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Functional Overview 
The main components of the PrimeCell VIC are described in the following sections:

• Interrupt request logic

• Nonvectored FIQ interrupt logic on page 2-7

• Vectored IRQ interrupt logic on page 2-7

• Interrupt priority logic on page 2-8

• Interrupt priority masking on page 2-10

• Vectored interrupts on page 2-11

• Software interrupts on page 2-11

• Interrupt service routine addresses on page 2-11.

2.1.1 Interrupt request logic

The interrupt request logic receives the interrupt requests from the peripheral and 
combines them with the software interrupt requests. It then masks out the interrupt 
requests which are not enabled, and routes the enabled interrupt requests to either 
IRQStatus or FIQStatus. Figure 2-2 shows a block diagram of the interrupt request 
logic.

Figure 2-2 Interrupt request logic

Interrupt request logic
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[31:0]
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[31:0]
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Functional Overview 
2.1.2 Nonvectored FIQ interrupt logic

The nonvectored FIQ interrupt logic generates the FIQ interrupt signal by combining 
the FIQ interrupt requests in the interrupt controller and any requests from 
daisy-chained interrupt controllers. Figure 2-3 shows a block diagram of the 
nonvectored FIQ interrupt logic.

Figure 2-3 Nonvectored FIQ interrupt logic

2.1.3 Vectored IRQ interrupt logic

There are 32 vectored interrupt blocks. The vectored interrupt blocks receive the IRQ 
interrupt requests and set VectIRQx if the following are true:

• the interrupt is active

• the interrupt's programmed priority level is not masked

• the interrupt is currently the highest priority requesting interrupt.

Each vectored interrupt block also provides a VectAddrx[31:0] output for use in the 
interrupt priority block. Figure 2-4 on page 2-8 shows a block diagram of the vectored 
IRQ interrupt logic.
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Functional Overview 
Figure 2-4 Vectored IRQ interrupt logic

2.1.4 Interrupt priority logic

The interrupt priority block prioritizes the interrupt requests using the programmed and 
hardware priority levels in the following order:

• vectored interrupt requests

• external interrupt requests (from daisy chain).

The highest-priority request generates an IRQ interrupt if the interrupt is not currently 
being serviced. Figure 2-5 on page 2-9 shows a block diagram of the interrupt priority 
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Note
 nVICIRQIN is the daisy-chained IRQ request input.
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Functional Overview 
Figure 2-5 Interrupt priority logic
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Functional Overview 
2.1.5 Interrupt priority masking

The PrimeCell VIC implements two forms of interrupt priority masking:

Hardware masking 

The hardware masking is applied whenever an interrupt is being serviced, 
either with a read from the VICADDRESS Register, or by asserting the 
VICIRQACK input when the VIC port is used. This prevents other 
active interrupts of an equal or lower priority generating a new IRQ while 
the interrupt service routine is being executed. When the interrupt routine 
has completed and the VICADDRESS Register has been written to, the 
interrupt mask is cleared to allow all enabled interrupt sources through.

Note
 The VICIRQSTATUS and VICRAWINTR Registers are not affected by 

this masking.

Software masking 

The software masking is applied using the value programmed into the 
VICSWPRIORITYMASK Register. This mask is applied continuously, 
and at the same time as the hardware mask when an interrupt is being 
serviced.

Note
 The values in the VICIRQSTATUS and VICRAWINTR Registers do not 

reflect the masking by the VICSWPRIORITYMASK Register.

If two interrupts with the same programmed priority level are asserted simultaneously, 
the interrupt connected to the lowest VICINTSOURCE is serviced first. If an interrupt 
occurs while another interrupt of the same priority level is being serviced, it is masked 
until the first interrupt service routine has completed, regardless of whether the second 
interrupt is connected to a lower VICINTSOURCE.

Note
 Hardware priority levels only take effect when multiple interrupts are programmed to 
have the same priority level, and occur at the same time. In this case, vectored interrupt 
0 has the highest priority, and interrupt 31 has the lowest priority.
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2.1.6 Vectored interrupts

A vectored interrupt is only generated if the following are true:

• it is enabled in the Interrupt Enable Register, VICINTENABLE 

• it is set to generate an IRQ interrupt in the Interrupt Select Register, 
VICINTSELECT 

• the priority level of the interrupt is not masked out by the Software Priority Mask 
Register, VICSWPRIORITYMASK.

2.1.7 Software interrupts

The software can control the source interrupt lines to generate software interrupts. 
These interrupts are generated before interrupt masking, in the same way as external 
source interrupts. Software interrupts are cleared by writing to the Software Interrupt 
Clear Register, VICSOFTINTCLEAR (see Software Interrupt Clear Register, 
VICSOFTINTCLEAR on page 3-13). This is normally done at the end of the interrupt 
service routine.

2.1.8 Interrupt service routine addresses

The VICADDRESS Register provides the location of the interrupt service routine for 
the currently active interrupt, which is also made available on the 
VICVECTADDROUT output ports. This value reflects the relevant programmed value 
from one of the 32 VICVECTADDR Registers, or the address input from the 
daisy-chain interface. If no interrupt is currently active, the VICADDRESS Register 
holds the previous active interrupt address. This means that the address of the now 
non-active interrupt is the one presented to the CPU when:

• an interrupt has occurred

• the CPU has acknowledged the interrupt

• the interrupt source has gone inactive

• no other interrupt is active.

The vectored interrupt address registers must be programmed with the locations of the 
specific routines for each of the vectored interrupt sources. If multiple vectored 
interrupt sources use the same interrupt service routine, the same address must be 
programmed into their respective address registers.

For systems that cannot use the vector address information, the registers can be left with 
their default values, or programmed with the interrupt source number.
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2.2 Operation

The operation of the PrimeCell VIC is described in the following sections:

• Vectored interrupt flow sequence using AHB

• Nonvectored interrupt flow sequence using AHB

• FIQ interrupt flow sequence on page 2-13

• Vectored IRQ interrupt flow sequence using VIC port on page 2-14.

2.2.1 Vectored interrupt flow sequence using AHB

The following procedure shows the sequence for the vectored interrupt flow:

1. An interrupt occurs.

2. The ARM processor branches to the IRQ interrupt vector.

3. Read the VICADDRESS Register and branch to the interrupt service routine. 
This can be done using an LDR PC instruction. Reading the VICADDRESS 
Register updates the hardware priority register of the interrupt controller.

4. Stack the workspace so that IRQ interrupts can be re-enabled.

5. Enable the IRQ interrupts on the processor so that a higher priority can be 
serviced.

6. Execute the Interrupt Service Routine (ISR).

7. Clear the requesting interrupt in the peripheral, or write to the 
VICSOFTINTCLEAR Register if the request was generated by a software 
interrupt.

8. Disable the interrupts on the processor and restore the workspace.

9. Write to the VICADDRESS Register. This clears the respective interrupt in the 
internal interrupt priority hardware.

10. Return from the interrupt. This re-enables the interrupts.

2.2.2 Nonvectored interrupt flow sequence using AHB

The following procedure show the sequence for the nonvectored IRQ interrupt flow:

1. An IRQ interrupt occurs.

2. The ARM processor branches to the IRQ interrupt vector

3. Stack the workspace so that IRQ interrupts can be re-enabled later.
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4. Perform a dummy read to the VICADDRESS Register to set up priority status 
control in the VIC.

5. Read the VICIRQSTATUS Register and determine which interrupt sources have 
to be service.

6. Execute the ISR. At the beginning of the ISR, the interrupt of the processor can 
be re-enabled so that a higher priority interrupt can be serviced.

7. Clear the requesting interrupt in the peripheral, or write to the 
VICSOFTINTCLEAR Register if the request was generated by a software 
interrupt.

8. Disable the interrupt on the processor and restore the workspace.

9. Write to the VICADDRESS Register. This clears the respective interrupt in the 
internal interrupt priority hardware.

10. Return from the interrupt. This re-enables the interrupts.

2.2.3 FIQ interrupt flow sequence

The following procedure shows the sequence for the nonvectored FIQ interrupt flow.

1. An FIQ interrupt occurs.

2. The ARM processor branches to the FIQ interrupt vector.

3. Branch to the ISR.

4. Execute the ISR.

5. Clear the requesting interrupt in the peripheral, or write to the 
VICSOFTINTCLEAR Register if the request was generated by a software 
interrupt.

6. Disable the interrupts and restore the workspace.

7. Return from the interrupt. This re-enables the interrupts

Note
 If the above flow is used, you must not read or write to the VICADDRESS Register.
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2.2.4 Vectored IRQ interrupt flow sequence using VIC port

The PrimeCell VIC provides direct support for the VIC port on the ARM11 and 
ARM1026EJ processors. This interface is used to access the vectored interrupt address 
and acknowledge servicing of the interrupt without using the AHB, reducing interrupt 
latency. Using the VIC port to obtain the vectored interrupt address decreases the 
latency of the time it takes to service an interrupt, because the processor does not have 
to make an access out onto the AHB to read the VICADDRESS Register. The time of 
this access can vary depending on what access is currently happening on the AHB.

When a vectored IRQ is triggered, the CPU reads the address using the 
VICVECTADDROUT daisy-chain bus. This contains identical address information to 
the VICADDRESS Register.

To update the hardware priority register of the interrupt controller, and to clear a nested 
interrupt:

• the processor sets the VICIRQACK signal HIGH to indicate that the interrupt 
has been detected

• the VIC sets the VICVECTADDRV signal HIGH to indicate that the vector 
address value is valid and stable

• the processor samples the vector address and deasserts VICIRQACK

• the VIC deasserts both the nIRQ and VICVECTADDRV signals.

This sequence is equivalent to reading the VICADDRESS Register.

Note
 The AHB must be used at the end of the interrupt service routine to perform a write to 
the VICADDRESS Register to indicate that the interrupt has been serviced.

The following procedure shows the sequence for the vectored interrupt flow using the 
VIC port:

1. Ensure CP15 Register 1 VE (VIC Enable) bit is set in the ARM11/ARM1026EJ 
processor. If this bit is clear, the processor jumps to the legacy vector address 
(0x00000018 or 0xFFFF0018) and does not start the VICIRQACK to 
VICVECTADDRV handshake. If it is set, the processor drives the VIC port to 
obtain the IRQ vector address. The VE bit resets to 0.

2. An IRQ interrupt occurs.
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3. Perform handshaking with the VIC using the VICIRQACK and 
VICVECTADDRV signals to update the hardware priority register of the 
interrupt controller, which includes reading the vector address through the 
VICVECTADDROUT port. Branch to the interrupt service routine when the 
handshaking has finished. 

Note
 This operation is performed automatically by the processor when an IRQ is 

received.

4. Stack the workspace so that IRQ interrupts can be re-enabled.

5. Enable the IRQ interrupts so that a higher priority can be serviced.

6. Execute the ISR.

7. Clear the requesting interrupt in the peripheral, or write to the 
VICSOFTINTCLEAR Register if the request was generated by a software 
interrupt.

8. Disable the interrupts and restore the workspace.

9. Write to the VICADDRESS Register. This clears the respective interrupt in the 
internal interrupt priority hardware.

10. Return from the interrupt. This re-enables the interrupts.

FIQ support for the ARM11 and ARM1026EJ processors is the same as described in 
FIQ interrupt flow sequence on page 2-13, because the VIC port is not used.
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2.3 Connectivity

The PrimeCell VIC is normally used as a standalone interrupt controller. Where 
required, you can daisy-chain with another interrupt controller, such as a second PL192, 
a PL190, or an ADK interrupt controller.

Note
 The interrupt latency increases if daisy chaining is used.

The PrimeCell VIC is connected to the processor as a standard AHB slave, with the FIQ 
and IRQ signals connected to the FIQ and IRQ inputs on the processor. The interrupt 
request lines from the peripheral are connected to the VICINTSOURCE inputs of the 
PrimeCell VIC, with any unused interrupt inputs tied LOW. To ensure that the Vector 
Address Register (see Vector Address Register, VICADDRESS on page 3-15) can be 
read in a single instruction, the PrimeCell VIC must be located in the upper 4K of 
memory, at 0xFFFFF000 for normal exception vectors, or 0xFFFEF000 for high exception 
vectors. For more details information on the reason for this, see About the programmer’s 
model on page 3-2.

Note
 If the PrimeCell VIC is located at a different address (outside the 4K range of the 
exception vectors), interrupt latency is increased.

Because the ARM11 and ARM1026EJ processors access the interrupt address directly 
rather than using the VICADDRESS Register, the interrupt latency is not affected by 
the location of the VIC in the system memory map. This enables the VIC to be located 
at any free position in the memory map.

The connectivity for the various options is described in the following sections:

• Single interrupt controller connectivity to a processor without VIC port on 
page 2-17

• Daisy-chained interrupt controller connectivity to processor without VIC port on 
page 2-17

• Daisy-chained VIC mode on page 2-22

• VIC port connections on page 2-23

• Synchronous mode VIC port timing on page 2-25

• Asynchronous mode VIC port timing on page 2-26.
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2.3.1 Single interrupt controller connectivity to a processor without VIC port

If the PrimeCell VIC is used as a standalone interrupt controller connected to a 
processor that does not support the VIC port, connect the signals as follows:

• nVICIRQIN, nVICFIQIN, and nVICSYNCEN must be tied HIGH

• all bits of VICVECTADDRIN[31:0], VICIRQACK, VICIRQINREG, and 
VICFIQINREG must be tied LOW. 

Figure 2-6 shows the connections between the PrimeCell VIC and the processor when 
used as a standalone interrupt controller.

Figure 2-6 Single interrupt controller connectivity

2.3.2 Daisy-chained interrupt controller connectivity to processor without VIC port

If the PrimeCell VIC is used in a daisy chain connected to a processor without a VIC 
port, connect the signals between the VICs as follows:

• nVICIRQIN on VIC0 connects to the nVICIRQ output of VIC1

• nVICFIQIN on VIC0 connects to the nVICFIQ output of VIC1

• VICVECTADDRIN[31:0] on VIC0 connects to the 
VICVECTADDROUT[31:0] output of the VIC1

• nVICSYNCEN on all VICs tied must be tied HIGH

• VICVECTADDRV on all VICs must be left open
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• VICIRQACK on VIC0 must be tied LOW

• VICIRQACKOUT on VIC0 must be left open

• VICIRQACK input on VIC1 must be tied LOW

• VICIRQINREG/VICFIQINREG on all VICs must be tied LOW, assuming the 
timing for interrupt source to CPU is less than one clock cycle.

Connect the final VIC in the chain (the VIC furthest from the processor) as described in 
Single interrupt controller connectivity to a processor without VIC port on page 2-17.

Note
 It is recommended that no more than eight interrupt controllers are daisy-chained.

Figure 2-7 shows the connections between two PrimeCell VICs and the processor when 
used in a daisy chain. This configuration is referred to as VIC0 blocking mode.

Figure 2-7 Daisy-chained VIC0 blocking mode

In this mode, VIC0 is totally responsible for blocking lower level interrupts from the 
daisy chained VICs. Because the VICIRQACKOUT signal is not used in this 
configuration, ensure that the VICVECTPRIORITYDAISY Register of VIC0 is not 
changed to a higher priority while servicing an interrupt. This can allow lower-level 
VIC1 interrupts to break into the interrupt currently being serviced. 
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Note
 VIC0 (closest to the processor) must be located 4K from the processor exception 
vectors to reduce interrupt latency. Because only one VIC can be located in that region 
of memory, all other daisy-chained VICs (VIC1 onwards) must be located outside this 
region. This does not apply to ARM11 or ARM1026EJ processors, which can read the 
interrupt address directly.

If the PrimeCell VIC is used in a daisy-chain configuration in an implementation within 
a chip, you must determine if the delay from the interrupt source to nVICIRQ and 
nVICFIQ into the CPU is greater than one clock cycle:

• if the delay is less than one clock cycle, you can tie the ports VICIRQINREG 
and VICFIQINREG on all the VICs LOW

• if the delay is greater than one clock cycle, you must tie some or all of the 
VICIRQINREG and VICFIQINREG ports HIGH. 

Which VICIRQINREG and VICFIQINREG ports are tied HIGH depends on the 
delay across each VIC. The delays to be taken into account are as follows: 

• the delay from VICINTSOURCE to nVICIRQ and nVICFIQ (for example, 
VIC7) for the VIC furthest away from the processor

• the delay from nVICIRQIN and nVICFIQIN to nVICIRQ and nVICFIQ for 
subsequent VICs in the chain.

The VICIRQINREG and VICFIQINREG ports enable registers on the nVICIRQIN 
and nVICFIQIN input ports. The nVICIRQIN and nVICFIQIN input port 
connections originate from the previous daisy-chained VIC nVICIRQ and nVICFIQ. 

Figure 2-8 shows eight VICs in a daisy-chained configuration. Not all connections are 
shown, only those relevant for this example.

Figure 2-8 Daisy-chained interrupt controller connectivity
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Use Figure 2-8 on page 2-19 as an example, with the following assumptions:

• bus clock period is 6ns (approximately 166MHz)

• an IRQ interrupt occurs on VICINTSOURCE[0]

• the delay for VIC7 from VICINTSOURCE[0] to nVICIRQ of VIC7 is 2ns

• the delay from the nVICIRQ output of the previous VIC to the nVICIRQ output 
of the next VIC is 1ns, for example, the delay from nVICIRQ output of VIC7 to 
the nVICIRQ output of VIC6 is 1ns.

The delay from VICINTSOURCE[0] of VIC7 to the nIRQ into the CPU is 2ns + (1ns 
* 7) = 9ns, which is greater than the clock period of 6ns. You must pipeline the 
nVICIRQ path. Pipelining can be done by having all the VIC VICIRQINREG signals 
tied HIGH, however this adds a latency of seven clock cycles to the nVICIRQ. To 
achieve the optimum performance for the circuit in Figure 2-8 on page 2-19, you can tie 
the VICIRQINREG port HIGH on VIC4, which only adds a latency of one clock cycle. 
Therefore the delay from VICINTSOURCE[0] of VIC7 to the nVICIRQIN input of 
VIC4 is 2ns (VIC7) + 1ns (VIC6) + 1ns (VIC5) = 4ns and the delay though the other 
VICs to the CPU is (1ns * 5) = 5ns.

To have interrupts active while the bus clock is turned off, ensure that there is no 
pipelining between the interrupt source and the CPU. If the delay means that every VIC 
must have VICIRQINREG and VICFIQINREG ports tied HIGH, route their interrupt 
though VICINTSOURCE of VIC0, effectively bypassing the registers on the 
daisy-chained interrupts. Which VICs you choose to enable the pipelining depends on 
the manufacturing process and the way the VICs are placed in layout. The timing for 
the circuit described above is shown in Figure 2-9 on page 2-21. 
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Figure 2-9 Daisy-chained timing example

Note
 In Figure 2-9, the processor and bus clocks are synchronous and at the same frequency.

Figure 2-9 shows the timing for the daisy-chained example in Figure 2-8 on page 2-19. 
The timing of the VICINTSOURCE[0] for VIC7 to the nVICIRQIN of the VIC4 is 
shown occurring at clock time B2. VIC4 has the VICIRQINREG set HIGH so the 
nVICIRQ of the VIC4 does not go LOW until clock time B3. VICVECTADDROUT 
for each of the VICs is generated three clock cycles after the interrupt is received (two 
clock cycles for synchronization and one for priority decode). Because the 
nVICIRQIN for VIC4 is registered, the VICVECTADDROUT for VIC4 is not 
generated until clock time B6. 

The IRQ path through the VIC has a longer delay than the FIQ path so, depending on 
the delays, it is possible that the IRQ path requires pipelining and the FIQ path does not.

Caution
 If the bus clock is turned off, any VIC that has the VICIRQINREG and 
VICFIQINREG ports tied HIGH does not propagate the interrupt from the previous 
daisy-chained VIC until the bus clock is turned on by a system controller. It is therefore 
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mandatory that any interrupt that operates while the bus clock is turned off is, connected 
to a part of the chain that does not have any subsequent VICIRQINREG and 
VICFIQINREG ports tied HIGH. The interrupt (wake-up interrupt) can then activate 
the system controller to turn the bus clock on. In the example shown in Figure 2-8 on 
page 2-19, the wake-up interrupt can be connected to the VICINTSOURCE of either 
VIC0, VIC1, VIC2, VIC3, or VIC4 (the VIC4 daisy-chained nVICIRQIN is registered, 
not its VICINTSOURCE).

2.3.3 Daisy-chained VIC mode

In this mode, the VIC0 and the daisy-chained VIC are responsible for blocking 
lower-level or equal-level interrupts. This enables you to modify the 
VICVECTPRIORITYDAISY Register of VIC0 during the interrupt service routine. To 
change the VICVECTPRIORITYDAISY Register while servicing an interrupt, ensure 
that the VICIRQACKOUT between the VICs is connected. To enable higher priority 
interrupts from the daisy-chained VIC1 to be acknowledged while servicing a lower 
level interrupt, set the VICVECTPRIORITYDAISY Register of VIC0 to a higher level 
while servicing the lower-level interrupt. To clear the hardware priority register, the 
VICADDRESS Registers for all of the active VICs must be written to at the end of the 
interrupt service routine.

The generation of the VICIRQACKOUT signal depends on whether the VIC port 
connections are used. If the VIC port is used, the CPU IRQACK generates the signal. 
If not, a write to the VICADDRESS Register generates the VICIRQACKOUT signal. 
VICIRQACKOUT is only generated if a daisy-chained VIC has generated the IRQ 
being acknowledge.

Note
 This mode must be used with care. Ensure that the timing of the VICIRQACKOUT 
path is met across all the VICs in the daisy chain. If the timing cannot be met for the 
process being used, use the VIC0 blocking mode as shown in Figure 2-7 on page 2-18.

Figure 2-10 on page 2-23 shows the connections between two PrimeCell VICs and the 
processor when used in daisy-chained VIC blocking mode.
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Figure 2-10 Daisy-chained VIC blocking mode

Note
 When implementing the daisy chain, ensure the total propagation delay for 
VICIRQACK across the all the VICs is within one clock cycle. The time taken to read 
the VICADDRESS Register must be included in the total propagation delay.

2.3.4 VIC port connections

The VIC provides direct support for the ARM11 and ARM1026EJ processor VIC ports. 
This consists of an address input connected to the daisy chain VICVECTADDROUT 
output (which contains the address for the currently active vectored interrupt), a 
synchronous/asynchronous tie-off (nVICSYNCEN), and two handshaking signals 
(VICIRQACK and VICVECTADDRV). The connections between the VIC and a VIC 
port compatible processor are shown in Figure 2-11 on page 2-24.
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Figure 2-11 VIC port connectivity for synchronous mode

For synchronous mode, the nVICSYNCEN input is tied HIGH to indicate that the 
interface operates without synchronization of the handshaking signals. For 
asynchronous mode (ARM11 processor only), the nVICSYNCEN input is tied LOW 
to indicate that the interface handshaking signals are synchronized internally in the VIC 
before use. The ARM1026EJ processor runs synchronously to the system clock.

Note
 The ARM11 processor synchronous/asynchronous interface control port 
IRQADDRVSYNCEN must be tied off to the same value as nVICSYNCEN, to ensure 
that both the VIC and the processor are operating in the same mode. INTSYNCEN is 
always set to 0 because the PL192 VIC nVICFIQ and nVICIRQ outputs are 
asynchronous, that is, there are combinational paths from the VICINTSOURCE inputs 
to these outputs.

These connections enable the ARM11 and ARM1026EJ processors to read the vectored 
interrupt address more quickly than through the VICADDRESS Register, which would 
require an AHB read transfer to be performed.

If the PrimeCell VIC is used in a daisy chain, all other signal connections are as shown 
in Figure 2-7 on page 2-18. The VICVECTADDROUT port is not used as part of the 
daisy chain for VIC 0 (closest to the processor) when multiple VICs are used.
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2.3.5 Synchronous mode VIC port timing

In synchronous mode, the ARM11 and ARM1026EJ processors can run at any multiple 
of the bus clock frequency. The interface between the ARM11 and ARM1026EJ 
processor and VIC handles this by using handshaking. 

Figure 2-12 shows the minimum timing for an active IRQ when the processor and bus 
clocks are the same.

Figure 2-12 VIC port timing example, processor and bus clocks synchronous and same frequency

When the CPU detects the nIRQ signal is active, it asserts the VICIRQACK input at 
bus clock time B5 to indicate that it is ready to service the interrupt. The time taken for 
the CPU to respond to the interrupt depends on the current state of the processor, but the 
interrupt is always synchronized so the timing shown is the minimum possible. The VIC 
then asserts the output VICVECTADDRV, indicating that the value on the address bus 
is stable and does not change until after the processor acknowledges sampling the 
address value (to avoid a higher priority interrupt changing the address value). The 
vector address is sampled by the processor at B7, when it has detected that 
VICVECTADDRV is asserted. VICIRQACK is then deasserted, and one cycle later 
both VICVECTADDRV and nIRQ are deasserted to prevent the processor sampling 
the IRQ a second time before the VIC has cleared the interrupt. The processor only 
samples nIRQ while VICVECTADDRV is deasserted.

Figure 2-13 on page 2-26 shows the basic timing for an active IRQ when the processor 
clock is twice the frequency of the bus clock, and the interrupt acknowledge is asserted 
on the falling edge of the bus clock.
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Figure 2-13 VIC port timing example, processor clock synchronous and twice bus clock frequency

Because the processor clock is running at twice the speed of the bus clock, the 
VICIRQACK response from the processor is valid earlier than when the processor and 
bus clocks are the same, at time P8. The VICVECTADDRV output is asserted at time 
B6 after the address has been generated and the processor acknowledge has been 
detected. This is the same as when the clocks are at the same frequency, because of the 
synchronization logic required on the nIRQ path. The vector address value is then 
sampled on processor clock edge P12, and the acknowledge is deasserted. The nIRQ 
and address valid outputs are deasserted on bus clock edge B7, after the acknowledge 
signal has been sampled.

VICVECTADDR[31:0] is generated from nIRQ which is then synchronized to the bus 
clock (two clock cycles) and then though the priority logic (one clock cycle) into the 
address generation logic which produces the address. 

2.3.6 Asynchronous mode VIC port timing

The ARM11 processor can operate using a clock that is asynchronous to the system bus 
clock. In this mode, the operation of the interrupt interface is slightly different, to 
account for the synchronization that must occur between the control signals of the two 
devices.

Figure 2-14 on page 2-27 shows the basic timing for an active IRQ when operating in 
asynchronous mode.
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Figure 2-14 VIC port timing example, processor and bus clocks asynchronous

The nIRQ output is asserted on bus clock edge B2, causing the VICIRQACK 
processor output to be asserted after a synchronization delay. This response is then 
synchronized back to the bus clock, and the VICVECTADDRV output is asserted at 
B7. When the processor has detected the response from the VIC, it samples the vector 
address and deasserts the VICIRQACK output to indicate that the address has been 
sampled. The VICVECTADDRV output is deasserted after a bus clock 
synchronization delay, along with the nIRQ output. From this point, the address might 
change to indicate the vector for a higher priority active interrupt.

Note
 Because of the synchronization delays required by both the processor and the VIC, the 
handshaking process takes longer when running in asynchronous mode.
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Chapter 3 
Programmer’s Model 

This chapter describes the ARM PrimeCell VIC (PL192) registers, and provides details 
needed when programming the microcontroller. It contains the following sections:

• About the programmer’s model on page 3-2

• Summary of PrimeCell VIC registers on page 3-3

• Register descriptions on page 3-9

• Interrupt latency on page 3-23

• Example interrupt latency calculations on page 3-27

• ARM7TDMI IRQ interrupts using AHB on page 3-35

• Interrupt priority on page 3-36.
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3.1 About the programmer’s model

To ensure that the Vector Address Register (see Vector Address Register, VICADDRESS 
on page 3-15) can be read in a single instruction, the PrimeCell VIC base address must 
be 0xFFFFF000, the upper 4K of memory. Placing the PrimeCell VIC anywhere else in 
memory increases interrupt latency because the ARM processor is unable to access the 
VICADDRESS Register using a single instruction.

The read (LDR) instruction has a maximum address offset of 12 bits, equivalent to 4K, 
meaning that it can read from an address up to 4K away from the current address with 
a single read instruction. If the address to be read from is more than 4K away, a second 
instruction is required to read in the full address value, and takes longer to be performed.

When an interrupt occurs, the current address is either the IRQ or FIQ exception vector 
location (0x00000018 or 0x0000001C for normal low exception vectors). A 4K offset from 
the exception address is the upper 4K of memory, so placing the VIC in this area of 
memory allows the read of the VICADDRESS Register (at 0xFFFFFF00) to be performed 
using an address offset with a single instruction. For example at location 0x18 LDR pc, 
[pc, #-0x120] to access VICADDRESS at location 0xFFFFFF00.

If a processor supporting high exception vectors is used and the HIVECS configuration 
pin is tied HIGH, the VIC must be located at 0xFFFEF000 to allow for the exception 
vectors which are located at 0xFFFFF000. The VIC is not located at 0x00000000, because 
this is the standard location for the system memory.

The offset of any particular register from the base address is fixed.

Note
 Because the ARM11 and ARM1026EJ processors can access the interrupt address 
directly rather than using the VICADDRESS Register, the interrupt latency is not 
affected by the location of the VIC in the system memory map.
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3.2 Summary of PrimeCell VIC registers

The PrimeCell VIC registers are shown in Table 3-1.

Table 3-1 PrimeCell VIC register summary

Address Type Width Reset value Name Description

VIC base 
+0x000

Read 32 0x00000000 VICIRQSTATUS IRQ Status Register

VIC base 
+0x004

Read 32 0x00000000 VICFIQSTATUS FIQ Status Register

VIC base 
+0x008

Read 32 - VICRAWINTR Raw Interrupt Status Register

VIC base 
+0x00C

Read/write 32 0x00000000 VICINTSELECT Interrupt Select Register

VIC base 
+0x0010

Read/write 32 0x00000000 VICINTENABLE Interrupt Enable Register

VIC base 
+0x014

Write 32 - VICINTENCLEAR Interrupt Enable Clear Register

VIC base 
+0x018

Read/write 32 0x00000000 VICSOFTINT Software Interrupt Register

VIC base 
+0x01C

Write 32 - VICSOFTINTCLEAR Software Interrupt Clear Register

VIC base 
+0x020

Read/write 1 0x0 VICPROTECTION Protection Enable Register

VIC base 
+0x024

Read/write 16 0xFFFF VICSWPRIORITY 
MASK

Software Priority Mask Register

VIC base 
+0x028

Read/write 4 0xF VICPRIORITYDAISY Vector Priority Register for Daisy 
Chain

VIC base 
+0x100

Read/write 32 0x00000000 VICVECTADDR0 Vector Address 0 Register

VIC base 
+0x104

Read/write 32 0x00000000 VICVECTADDR1 Vector Address 1 Register

VIC base 
+0x108

Read/write 32 0x00000000 VICVECTADDR2 Vector Address 2 Register
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VIC base 
+0x10C

Read/write 32 0x00000000 VICVECTADDR3 Vector Address 3 Register

VIC base 
+0x110

Read/write 32 0x00000000 VICVECTADDR4 Vector Address 4 Register

VIC base 
+0x114

Read/write 32 0x00000000 VICVECTADDR5 Vector Address 5 Register

VIC base 
+0x118

Read/write 32 0x00000000 VICVECTADDR6 Vector Address 6 Register

VIC base 
+0x11C

Read/write 32 0x00000000 VICVECTADDR7 Vector Address 7 Register

VIC base 
+0x120

Read/write 32 0x00000000 VICVECTADDR8 Vector Address 8 Register

VIC base 
+0x124

Read/write 32 0x00000000 VICVECTADDR9 Vector Address 9 Register

VIC base 
+0x128

Read/write 32 0x00000000 VICVECTADDR10 Vector Address 10 Register

VIC base 
+0x12C

Read/write 32 0x00000000 VICVECTADDR11 Vector Address 11 Register

VIC base 
+0x130

Read/write 32 0x00000000 VICVECTADDR12 Vector Address 12 Register

VIC base 
+0x134

Read/write 32 0x00000000 VICVECTADDR13 Vector Address 13 Register

VIC base 
+0x138

Read/write 32 0x00000000 VICVECTADDR14 Vector Address 14 Register

VIC base 
+0x13C

Read/write 32 0x00000000 VICVECTADDR15 Vector Address 15 Register

VIC base 
+0x140

Read/write 32 0x00000000 VICVECTADDR16 Vector Address 16 Register

VIC base 
+0x144

Read/write 32 0x00000000 VICVECTADDR17 Vector Address 17 Register

VIC base 
+0x148

Read/write 32 0x00000000 VICVECTADDR18 Vector Address 18 Register

Table 3-1 PrimeCell VIC register summary (continued)

Address Type Width Reset value Name Description
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VIC base 
+0x14C

Read/write 32 0x00000000 VICVECTADDR19 Vector Address 19 Register

VIC base 
+0x150

Read/write 32 0x00000000 VICVECTADDR20 Vector Address 20 Register

VIC base 
+0x154

Read/write 32 0x00000000 VICVECTADDR21 Vector Address 21 Register

VIC base 
+0x158

Read/write 32 0x00000000 VICVECTADDR22 Vector Address 22 Register

VIC base 
+0x15C

Read/write 32 0x00000000 VICVECTADDR23 Vector Address 23 Register

VIC base 
+0x160

Read/write 32 0x00000000 VICVECTADDR24 Vector Address 24 Register

VIC base 
+0x164

Read/write 32 0x00000000 VICVECTADDR25 Vector Address 25 Register

VIC base 
+0x168

Read/write 32 0x00000000 VICVECTADDR26 Vector Address 26 Register

VIC base 
+0x16C

Read/write 32 0x00000000 VICVECTADDR27 Vector Address 27 Register

VIC base 
+0x170

Read/write 32 0x00000000 VICVECTADDR28 Vector Address 28 Register

VIC base 
+0x174

Read/write 32 0x00000000 VICVECTADDR29 Vector Address 29 Register

VIC base 
+0x178

Read/write 32 0x00000000 VICVECTADDR30 Vector Address 30 Register

VIC base 
+0x17C

Read/write 32 0x00000000 VICVECTADDR31 Vector Address 31 Register

VIC base 
+0x200

Read/write 4 0xF VICVECTPRIORITY0 Vector Priority 0 Register

VIC base 
+0x204

Read/write 4 0xF VICVECTPRIORITY1 Vector Priority 1 Register

VIC base 
+0x208

Read/write 4 0xF VICVECTPRIORITY2 Vector Priority 2 Register

Table 3-1 PrimeCell VIC register summary (continued)

Address Type Width Reset value Name Description
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VIC base 
+0x20C

Read/write 4 0xF VICVECTPRIORITY3 Vector Priority 3 Register

VIC base 
+0x210

Read/write 4 0xF VICVECTPRIORITY4 Vector Priority 4 Register

VIC base 
+0x214

Read/write 4 0xF VICVECTPRIORITY5 Vector Priority 5 Register

VIC base 
+0x218

Read/write 4 0xF VICVECTPRIORITY6 Vector Priority 6 Register

VIC base 
+0x21C

Read/write 4 0xF VICVECTPRIORITY7 Vector Priority 7 Register

VIC base 
+0x220

Read/write 4 0xF VICVECTPRIORITY8 Vector Priority 8 Register

VIC base 
+0x224

Read/write 4 0xF VICVECTPRIORITY9 Vector Priority 9 Register

VIC base 
+0x228

Read/write 4 0xF VICVECTPRIORITY10 Vector Priority 10 Register

VIC base 
+0x22C

Read/write 4 0xF VICVECTPRIORITY11 Vector Priority 11 Register

VIC base 
+0x230

Read/write 4 0xF VICVECTPRIORITY12 Vector Priority 12 Register

VIC base 
+0x234

Read/write 4 0xF VICVECTPRIORITY13 Vector Priority 13 Register

VIC base 
+0x238

Read/write 4 0xF VICVECTPRIORITY14 Vector Priority 14 Register

VIC base 
+0x23C

Read/write 4 0xF VICVECTPRIORITY15 Vector Priority 15 Register

VIC base 
+0x240

Read/write 4 0xF VICVECTPRIORITY16 Vector Priority 16 Register

VIC base 
+0x244

Read/write 4 0xF VICVECTPRIORITY17 Vector Priority 17 Register

VIC base 
+0x248

Read/write 4 0xF VICVECTPRIORITY18 Vector Priority 18 Register

Table 3-1 PrimeCell VIC register summary (continued)

Address Type Width Reset value Name Description
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VIC base 
+0x24C

Read/write 4 0xF VICVECTPRIORITY19 Vector Priority 19 Register

VIC base 
+0x250

Read/write 4 0xF VICVECTPRIORITY20 Vector Priority 20 Register

VIC base 
+0x254

Read/write 4 0xF VICVECTPRIORITY21 Vector Priority 21 Register

VIC base 
+0x258

Read/write 4 0xF VICVECTPRIORITY22 Vector Priority 22 Register

VIC base 
+0x25C

Read/write 4 0xF VICVECTPRIORITY23 Vector Priority 23 Register

VIC base 
+0x260

Read/write 4 0xF VICVECTPRIORITY24 Vector Priority 24 Register

VIC base 
+0x264

Read/write 4 0xF VICVECTPRIORITY25 Vector Priority 25 Register

VIC base 
+0x268

Read/write 4 0xF VICVECTPRIORITY26 Vector Priority 26 Register

VIC base 
+0x26C

Read/write 4 0xF VICVECTPRIORITY27 Vector Priority 27 Register

VIC base 
+0x270

Read/write 4 0xF VICVECTPRIORITY28 Vector Priority 28 Register

VIC base 
+0x274

Read/write 4 0xF VICVECTPRIORITY29 Vector Priority 29 Register

VIC base 
+0x278

Read/write 4 0xF VICVECTPRIORITY30 Vector Priority 30 Register

VIC base 
+0x27C

Read/write 4 0xF VICVECTPRIORITY31 Vector Priority 31 Register

VIC base 
+0xF00

Read/write 32 0x00000000 VICADDRESS Vector Address Register

VIC base 
+0xFE0

Read 8 0x92 VICPERIPHID0 Peripheral Identification Register 
bits 7:0

VIC base 
+0xFE4

Read 8 0x11 VICPERIPHID1 Peripheral Identification Register 
bits 15:8

Table 3-1 PrimeCell VIC register summary (continued)

Address Type Width Reset value Name Description
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VIC base 
+0xFE8

Read 8 0x04 VICPERIPHID2 Peripheral Identification Register 
bits 23:16

VIC base 
+0xFEC

Read 8 0x00 VICPERIPHID3 Peripheral Identification Register 
bits 31:24

VIC base 
+0xFF0

Read 8 0x0D VICPCELLID0 PrimeCell Identification Register 
bits 7:0

VIC base 
+0xFF4

Read 8 0xF0 VICPCELLID1 PrimeCell Identification Register 
bits 15:8

VIC base 
+0xFF8

Read 8 0x05 VICPCELLID2 PrimeCell Identification Register 
bits 23:16

VIC base 
+0xFFC

Read 8 0xB1 VICPCELLID3 PrimeCell Identification Register 
bits 31:24

Table 3-1 PrimeCell VIC register summary (continued)

Address Type Width Reset value Name Description
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3.3 Register descriptions

The following registers are described in this section:

• IRQ Status Register, VICIRQSTATUS

• FIQ Status Register, VICFIQSTATUS on page 3-10

• Raw Interrupt Status Register, VICRAWINTR on page 3-11

• Interrupt Select Register, VICINTSELECT on page 3-11

• Interrupt Enable Register, VICINTENABLE on page 3-12

• Interrupt Enable Clear Register, VICINTENCLEAR on page 3-13

• Software Interrupt Register, VICSOFTINT on page 3-13

• Software Interrupt Clear Register, VICSOFTINTCLEAR on page 3-13

• Protection Enable Register, VICPROTECTION on page 3-14

• Vector Address Register, VICADDRESS on page 3-15

• Software Priority Mask Register, VICSWPRIORITYMASK on page 3-15

• Vector Address Registers, VICVECTADDR[0-31] on page 3-16

• Vector Priority Registers, VICVECTPRIORITY[0-31] and 
VICVECTPRIORITYDAISY on page 3-16

• Peripheral Identification Registers, VICPERIPHID0-3 on page 3-17

• PrimeCell Identification Registers, VICPCELLID0-3 on page 3-20.

3.3.1 IRQ Status Register, VICIRQSTATUS

The VICIRQSTATUS Register provides the status of interrupts [31:0] after IRQ 
masking. Because of the use of dual-stage synchronization logic, the VICIRQSTATUS 
Register takes two clock cycles to update. This register can be accessed with zero wait 
states. 

Note
 To access the sampled status of the interrupts, use the ISS bit in the VICITCR Register 
(see Test Control Register, VICITCR on page 4-4).
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Table 3-2 shows the bit assignment of the VICIRQSTATUS Register.

Note
 When a system has multiple VICs, and the VICIRQSTATUS Register is used to 
determine which interrupt source must be served (instead of using the VIC port or 
reading the VICADDRESS Register), the interrupt handler might have to read the 
VICIRQSTATUS Register of all the VICs in the system. This is because the interrupt 
status from daisy-chained VICs cannot be observed from the VICIRQSTATUS Register 
for the first VIC connected to the processor.

3.3.2 FIQ Status Register, VICFIQSTATUS

The VICFIQSTATUS Register provides the status of the interrupts after FIQ masking. 
The VICFIQSTATUS Register is 32 bits wide. There is normally only one FIQ in the 
system. You can allow more than one interrupt source to generate a FIQ. The FIQ 
handler can then read this register to determine which FIQ interrupt source is active. 
Because of the use of dual-stage synchronization logic, the VICFIQSTATUS Register 
takes two clock cycles to update. This register can be accessed with zero wait states.

Table 3-3 shows the bit assignment of the VICFIQSTATUS Register.

Table 3-2 VICIRQSTATUS Register bit assignments

Bits Name Type Function

[31:0] IRQStatus Read Shows the status of the interrupts after masking by the VICINTENABLE and 
VICINTSELECT Registers:

0 = interrupt is inactive (reset)

1 = interrupt is active.

There is one bit of the register for each interrupt source.

Table 3-3 VICFIQSTATUS Register bit assignments

Bits Name Type Function

[31:0] FIQStatus Read Shows the status of the FIQ interrupts after masking by the VICINTENABLE and 
VICINTSELECT Registers:

0 = interrupt is inactive (reset)

1 = interrupt is active. 

There is one bit of the register for each interrupt source.
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Note
 This register is 32 bits wide to allow the FIQ to be placed on any of the input interrupt 
lines, but a typical system only contains one FIQ interrupt source.

When a system has multiple VICs, and the FIQ source can be located on a daisy-chained 
VIC, the interrupt handler might have to read the VICFIQSTATUS Register of all the 
VICs in the system. This is because the interrupt status from daisy-chained VICs cannot 
be observed from the VICFIQSTATUS Register for the first VIC connected to the 
processor.

3.3.3 Raw Interrupt Status Register, VICRAWINTR

The VICRAWINTR Register provides the unmasked status of the interrupt sources 
(either hardware or software). Because of the use of dual-stage synchronization logic, 
the VICRAWINTR Register takes two clock cycles to update. This register can be 
accessed with zero wait states.

Table 3-4 shows the bit assignment of the VICRAWINTR Register.

3.3.4 Interrupt Select Register, VICINTSELECT

The VICINTSELECT Register selects whether the corresponding interrupt source 
generates an FIQ or IRQ interrupt. This register can be accessed with zero wait states.

Table 3-4 VICRAWINTR Register bit assignments

Bits Name Type Function

[31:0] RawInterrupt Read Shows the status of the interrupts before masking by the Enable Registers:

0 = interrupt is inactive before masking

1 = interrupt is active before masking.

Because this register provides a direct view of the raw interrupt inputs, the reset value 
is unknown. 

There is one bit of the register for each interrupt source.
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Table 3-5 shows the bit assignment of the VICINTSELECT Register.

Note
 A standard system only has one FIQ source, so only one bit of this register must be set 
HIGH. This register must only be modified when the relevant interrupts are disabled. 
Changing the type of an interrupt when it is currently active and enabled can result in 
unpredictable behavior.

3.3.5 Interrupt Enable Register, VICINTENABLE

The VICINTENABLE Register enables the interrupt request lines, by unmasking the 
interrupt sources for the IRQ interrupt. This register can be accessed with zero wait 
states.

Table 3-6 shows the bit assignment of the VICINTENABLE Register.

Table 3-5 VICINTSELECT Register bit assignments

Bits Name Type Function

[31:0] IntSelect Read/write Selects type of interrupt for interrupt request:

0 = IRQ interrupt (reset)

1 = FIQ interrupt. 

There is one bit of the register for each interrupt source.

Table 3-6 VICINTENABLE Register bit assignments

Bits Name Type Function

[31:0] IntEnable Read/write Enables the interrupt request lines, which allow the interrupts to reach the processor.

Read:

0 = interrupt disabled (reset)

1 = interrupt enabled.

The interrupt enable can only be set using this register. The VICINTENCLEAR 
Register must be used to disable the interrupt enable.

Write:

0 = no effect

1 = interrupt enabled.

On reset, all interrupts are disabled. 

There is one bit of the register for each interrupt source.
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3.3.6 Interrupt Enable Clear Register, VICINTENCLEAR

The VICINTENCLEAR Register clears bits in the VICINTENABLE Register, and 
masks out the interrupt sources for the IRQ interrupt. This register can be accessed with 
zero wait states. 

Table 3-7 shows the bit assignment of the VICINTENCLEAR Register.

3.3.7 Software Interrupt Register, VICSOFTINT

The VICSOFTINT Register is used to generate software interrupts. This register can be 
accessed with zero wait states. 

Table 3-8 shows the bit assignment of the VICSOFTINT Register.

3.3.8 Software Interrupt Clear Register, VICSOFTINTCLEAR

The VICSOFTINTCLEAR Register clears bits in the VICSOFTINT Register.This 
register can be accessed with zero wait states.

Table 3-7 VICINTENCLEAR Register bit assignments

Bits Name Type Function

[31:0] IntEnable Clear Write Clears corresponding bits in the VICINTENABLE Register:

0 = no effect

1 = interrupt disabled in VICINTENABLE Register. 

There is one bit of the register for each interrupt source.

Table 3-8 VICSOFTINT Register bit assignments

Bits Name Type Function

[31:0] SoftInt Read/write Setting a bit HIGH generates a software interrupt for the selected source before interrupt 
masking.

Read:

0 = software interrupt inactive (reset)

1 = software interrupt active.

Write:

0 = no effect

1 = software interrupt enabled.

There is one bit of the register for each interrupt source.
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Table 3-9 shows the bit assignment of the VICSOFTINTCLEAR Register.

3.3.9 Protection Enable Register, VICPROTECTION

The VICPROTECTION Register enables or disables protected register access, stopping 
register accesses when the processor is in User mode. This register can be accessed with 
zero wait states.

Table 3-10 shows the bit assignment of the VICPROTECTION Register.

Note
 If a system bus master accessing the VIC cannot generate accurate protection 
information, leave this register in its reset state to allow User mode access.

Table 3-9 VICSOFTINTCLEAR Register bit assignments

Bits Name Type Function

[31:0] SoftIntClear Write Clears corresponding bits in the VICSOFTINT Register:

0 = no effect

1 = software interrupt disabled in the VICSOFTINT Register. 

There is one bit of the register for each interrupt source.

Table 3-10 VICPROTECTION Register bit assignments

Bits Name Type Function

[31:1] Reserved - Reserved, read as zero, do not modify.

[0] Protection Read/write Enables or disables protected register access:

0 = protection mode disabled (reset)

1 = protection mode enabled.

When enabled, only privileged mode accesses (reads and writes) can access the 
interrupt controller registers, that is, when HPROT[1] is set HIGH for the current 
transfer.

When disabled, both user mode and privileged mode can access the registers.

This register can only be accessed in privileged mode, even when protection mode 
is disabled.
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3.3.10 Vector Address Register, VICADDRESS

The VICADDRESS Register contains the Interrupt Service Routine (ISR) address of 
the currently active interrupt. If no interrupt is currently active, the register holds the 
ISR address of the last active interrupt. This register can be accessed with zero wait 
states.

Table 3-11 shows the bit assignment of the VICADDRESS Register.

Note
 Reading from this register provides the address of the ISR, and indicates to the priority 
hardware that the interrupt is being serviced. Writing to this register indicates to the 
priority hardware that the interrupt has been serviced. The register must be used as 
follows:

• the ISR reads the VICADDRESS Register when an IRQ interrupt is generated

• at the end of the ISR, the VICADDRESS Register is written to, to update the 
priority hardware.

Reading or writing to this register at other times can cause incorrect operation.

3.3.11 Software Priority Mask Register, VICSWPRIORITYMASK

The VICSWPRIORITYMASK Register contains the mask value for the interrupt 
priority levels. This register can be accessed with zero wait states. 

Table 3-11 VICADRESS Register bit assignments

Bits Name Type Function

[31:0] VectAddr Read/write Contains the address of the currently active ISR, with reset value 0x00000000.

A read of this register returns the address of the ISR and sets the current interrupt as 
being serviced. A read must only be performed while there is an active interrupt.

A write of any value to this register clears the current interrupt. A write must only be 
performed at the end of an interrupt service routine.
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Table 3-12 shows the bit assignment of the VICSWPRIORITYMASK Register.

3.3.12 Vector Address Registers, VICVECTADDR[0-31]

The VICVECTADDR[0-31] Registers contain the ISR vector addresses. These registers 
can be accessed with one wait state.

Table 3-13 shows the bit assignment of the VICVECTADDR[0-31] Registers.

Note
 These registers must only be updated when the relevant interrupts are disabled. 
Receiving an interrupt while the vector address is being written to can result in 
unpredictable behavior.

If the system does not support interrupt vector addresses, the VICVECTADDR 
Registers can be programmed with the numbers of the interrupt source ports they relate 
to, so that the source of the active interrupt can be easily determined.

3.3.13 Vector Priority Registers, VICVECTPRIORITY[0-31] and VICVECTPRIORITYDAISY

The VICVECTPRIORITY[0-31] and VICVECTPRIORITYDAISY Registers select 
the interrupt priority level for the 32 vectored interrupt sources, and the daisy chain 
input. The value can be from 0-15. The default values have all interrupts on the same 
priority level, 15, which is the lowest. This enables any of the vectored interrupts to be 
promoted to a higher priority with one simple register write. These registers can be 
accessed with one wait state.

Table 3-12 VICSWPRIORITYMASK Register bit assignments

Bits Name Type Function

[31:16] Reserved - Reserved, read as zero, do not modify.

[15:0] SWPriorityMask Read/write Controls software masking of the 16 interrupt priority levels:

0 = interrupt priority level is masked

1 = interrupt priority level is not masked (reset).

Each bit of the register is applied to each of the 16 interrupt priority levels.

Table 3-13 VICVECTADDR[0-31] Register bit assignments

Bits Name Type Function

[31:0] VectorAddr 0-31 Read/write Contains ISR vector addresses.
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Table 3-14 shows the bit assignment of the VICVECTPRIORITY[0-31] and 
VICVECTPRIORITYDAISY Registers.

Note
 Hardware priority levels only take effect when multiple interrupts are programmed to 
have the same priority level and occur at the same time. In this case, vectored interrupt 
0 has the highest priority, and interrupt 31 has the lowest priority.

If the VIC is used as part of a daisy-chain configuration in VIC0 mode, ensure that the 
interrupt service routine does not change the VICVECTPRIORITYDAISY register to a 
higher priority. 

3.3.14 Peripheral Identification Registers, VICPERIPHID0-3

The VICPERIPHID0-3 Registers are four 8-bit registers, that span address locations 
0xFE0-0xFEC. The registers can conceptually be treated as a single 32-bit register. The 
read-only registers provide the following options of the peripheral: 

Part number [11:0] 

This identifies the peripheral. The three digit product code 0x192 is used 
for the PrimeCell VIC.

Designer [19:12] 

This is the identification of the designer. ARM Limited is 0x41 (ASCII 
A).

Revision number [23:20] 

This is the revision number of the peripheral. The revision number starts 
from 0 and the value is revision-dependent.

Configuration [31:24] 

This is the configuration option of the peripheral. The configuration value 
is 0.

Table 3-14 VICVECTPRIORITY[0-31] and VICVECTPRIORITYDAISY Register bit assignments

Bits Name Type Function

[31:4] Reserved - Reserved, read as zero, do not modify.

[3:0] VectPriority Read/write Selects vectored interrupt priority level. You can select any of the 16 
vectored interrupt priority levels by programming the register with the 
hexadecimal value of the priority level required, from 0-15.
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Figure 3-1 shows the bit assignment for the VICPeriphID0-3 Registers.

Figure 3-1 Peripheral Identification Register bit assignment

The four 8-bit peripheral identification registers are described in the following sections:

• VICPERIPHID0 Register

• VICPERIPHID1 Register on page 3-19

• VICPERIPHID2 Register on page 3-19

• VICPERIPHID3 Register on page 3-20.

VICPERIPHID0 Register

The VICPERIPHID0 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-15 shows the bit assignment of the VICPERIPHID0 Register.

31 24 23 20 19 16 15 12 11 8 7 0

Part number

Part
number 1

Part
number 0Designer 1 Designer 0

Designer

Revision
numberConfiguration

7 00347034707

Configuration Revision
number

Conceptual register bit assignment

Actual register bit assignment

Table 3-15 VICPERIPHID0 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:0] Partnumber0 Read These bits read back as 0x192.
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VICPERIPHID1 Register

The VICPERIPHID1 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-16 shows the bit assignment of the VICPERIPHID1 Register.

VICPERIPHID2 Register

The VICPERIPHID2 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-17 shows the bit assignment of the VICPERIPHID2 Register.

Table 3-16 VICPERIPHD1 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:4] Designer0 Read These bits read back as 0x1.

[3:0] Partnumber1 Read These bits read back as 0x1.

Table 3-17 VICPERIPHID2 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:4] Revision Read These bits read back as the revision number, which 
can be between 0 and 15.

[3:0] Designer1 Read These bits read back as 0x4.
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VICPERIPHID3 Register

The VICPERIPHID3 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-18 shows the bit assignment of the VICPERIPHID3 Register.

3.3.15 PrimeCell Identification Registers, VICPCELLID0-3

The VICPCELLID0-3 Registers are four 8-bit registers, that span address locations 
0xFF0-0xFFC. The read-only register can conceptually be treated as a single 32-bit 
register. The register is used as a standard cross-peripheral identification system. 
Figure 3-2 shows the bit assignment for the VICPCELLID0-3 Registers.

Figure 3-2 PrimeCell Identification Register bit assignment

Table 3-18 VICPERIPHID3 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:2] Configuration Read These bits read back as 0x0.

[1:0] Configuration Read Indicates the number of interrupts supported:

00 = 32 (default)

01 = 64

10 = 128

11 = 256.

31 24 23 16 15 8 7 0

VICPCELLID3

7 0070707

Conceptual register bit assignment

Actual register bit assignment

VICPCELLID2 VICPCELLID1 VICPCELLID0

VICPCELLID3 VICPCELLID2 VICPCELLID1 VICPCELLID0
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The four 8-bit registers are described in the following subsections:

• VICPCELLID0 Register

• VICPCELLID1 Register

• VICPCELLID2 Register

• VICPCELLID3 Register on page 3-22.

VICPCELLID0 Register

The VICPCELLID0 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-19 shows the bit assignment of the VICPCELLID0 Register.

VICPCELLID1 Register

The VICPCELLID1 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-20 shows the bit assignment of the VICPCELLID1 Register.

VICPCELLID2 Register

The VICPCELLID2 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-21 shows the bit assignment of the VICPCELLID2 Register.

Table 3-19 VICPCELLID0 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:0] VICPCellID0 Read These bits read back as 0x0D.

Table 3-20 VICPCELLID1 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:0] VICPCellID1 Read These bits read back as 0xF0.

Table 3-21 VICPCELLID2 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:0] VICPCellID2 Read These bits read back as 0x05.
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VICPCELLID3 Register

The VICPCELLID3 Register is hard-coded and the fields within the register determine 
the reset value. Table 3-22 shows the bit assignment of the VICPCELLID3 Register.

Table 3-22 VICPCELLID3 Register bit assignments

Bits Name Type Function

[31:8] - - Reserved, read as zero, do not modify.

[7:0] VICPCellID3 Read These bits read back as 0xB1.
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3.4 Interrupt latency

Using the VIC port to acknowledge the servicing of an IRQ interrupt reduces the 
interrupt latency, because the processor does not need to do an AHB access to obtain 
the address for the ISR. The speed of the handshaking between the VIC and processor 
depends on the clock frequencies used, and whether the clocks are synchronous or 
asynchronous. Because the timing for each core differs, see the relevant ARM processor 
Technical Reference Manual for information on the instruction cycle times. The 
processor used and its configuration also influence the time for the interrupts to be 
serviced. 

Caution
 For accurate timing of interrupts, run code on a cycle-accurate ARM model.

The ARM architecture defines several exceptions to be handled by the processor. The 
two exceptions that are the main concern are the interrupt and fast interrupt exceptions, 
triggered by the IRQ and FIQ signals respectively.

The IRQ and FIQ signals are generated by the VIC external to the ARM core to signal 
real-world events. The speed of response to these signals is known as interrupt latency. 
The factors influencing interrupt latency are described in this section, using an FIQ as 
an example.

Interrupt latency is described in more detail in the following sections:

• Core latency

• Memory systems and cycle types on page 3-24

• Tightly-coupled memory on page 3-25

• Caches on page 3-26

• Compiler optimizations on page 3-26.

Note
 For examples of interrupt latency, see Example interrupt latency calculations on 
page 3-27.

3.4.1 Core latency

Several factors influence latency, including the functionality of the ARM core itself, so 
choosing the ARM core with the right characteristics for a particular application is 
important. The choice of memory, the partitioning of software and the optimization of 
that code are also important.
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As an example, this section describes an ARM7TDMI and its behavior in response to 
the FIQ signal.

The FIQ signal is asserted by a device peripheral to the ARM core. The signal is asserted 
asynchronously to the core and therefore must be synchronized. This requires up to a 
maximum of four processor cycles. When the signal is synchronized, the core 
completes the instruction currently in the execution stage of the pipeline, flushes the 
subsequent instructions and begins loading the instruction pipeline with the instruction 
located at the FIQ interrupt vector.

The instruction that takes the longest to complete is the LoaD Multiple (LDM) instruction, 
when all 16 registers are to be loaded, including the program counter. The instruction 
takes 20 processor cycles to execute in a system where both instructions and data are 
read from zero wait-state memory.

This gives a total of 26 cycles as the maximum interrupt latency for FIQ in a system. 
However, another aspect can extend the latency in this situation. If the memory 
controller detects accesses to nonexistent memory locations, for example if the LDM is 
attempting to load the register values from nonexistent memory, it can generate an abort 
signal. This causes the processor to enter the exception processing routine for data 
aborts before entering the FIQ interrupt processing routine. The data abort exception 
handler is a higher priority than FIQ, but execution passes to the FIQ handler 
immediately and returns to the abort handler on exit from the FIQ handler. This enables 
the data abort context to be preserved with minimum delay for FIQ handling.

The worst case for an ARM7TDMI processor connected to an ideal memory system, 
and including data abort entry, is 29 processor cycles.

3.4.2 Memory systems and cycle types

The example in Core latency on page 3-23 assumes zero wait-state memory as the basis 
for the calculation. This enables cycles that are internal to the core or access the memory 
system to be reguarded as they span equal time units. The figures quoted for cores are 
usually made on this basis.

In most systems it is not practical to implement zero-wait state memory or, at best, to 
implement zero-wait state memory for only a small part of the total system memory. To 
understand the effects of different memory types on interrupt response, consider the 
type of cycles being executed by the processor during execution of an instruction and 
the way the memory system responds to the different cycle types.

The two cycle types used to access memory are sequential and nonsequential cycles:

• sequential accesses are related to the previous memory access

• nonsequential accesses are not necessarily related to the previous memory access.
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Because many memory types are organized internally as a group of cells, sequential 
accesses can often be performed more efficiently, because most of the decoding for the 
cell location has already been performed by the nonsequential access.

The LDM instruction in the example fetches data from memory to load into the ARM core 
registers from sequential memory locations. This enables sequential cycles to be used 
for most of the memory accesses. Memory controllers can use the sequential accesses 
to fetch the data more efficiently from certain types of memory. However, the 
nonsequential accesses normally incur wait states. In addition, the events occurring 
during the execution of the LDM cause instructions to be loaded from the interrupt vector 
locations for the data abort and FIQ handlers. The data for example might be in SDRAM 
and the exception handlers in Flash memory.

Extend the example to take into account the effects of a real memory system that has a 
memory controller connected directly to the ARM7TDMI, and consider the number of 
memory accesses and the type of memory access. The type of access is important, 
because different access times are possible for sequential and nonsequential accesses.

3.4.3 Tightly-coupled memory

To improve system performance and enable the processor to access data and/or 
instructions without incurring wait states, there are two possible approaches:

• introduce caches to the system

• include a small amount of zero wait-state memory tightly coupled to the core for 
use in the most time-critical sections of the system operation.

The inclusion of tightly coupled memory interfaces in ARM cores such as the 
ARM966E-S simplifies the design of systems in which code and data must be accessed 
as quickly as possible by the core. In systems that incorporate Tightly Coupled Memory 
(TCM), the system partitioning can be explicit so that those parts of the software that 
are the most critical to system performance can be placed in memory locations which 
facilitate efficient execution of the application. For example, the FIQ handler can be 
placed in TCM so that the worst case interrupt response time is minimized by using zero 
wait-state memory.

In the sequence of events in processing a FIQ on the ARM966E-S, when the current 
instruction completes, the write buffer is drained and the FIQ vector is generated to start 
loading the FIQ handler code into the execution pipeline.

If the FIQ handler is located in program memory attached to the AMBA bus, this 
sequence of events includes at least one nonsequential memory access and therefore 
incurs wait states. Additionally, if a data abort exception is generated during the 
completion of the instruction, before execution of the FIQ handler code, fetching the 
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abort vector code introduces a further nonsequential access. In a system without TCM, 
the number of nonsequential memory accesses can therefore add significantly to the 
worst case interrupt latency. 

In an embedded system where there is flash memory and SRAM, it might be more 
efficient to copy the FIQ handler into SRAM and patch the interrupt vector rather than 
leave it in FlashRAM.

3.4.4 Caches

Caches are local fast storage for the core CPU. They enable systems with a large 
disparity between core execution speed and memory access speed to have portions of 
code and data available to the core without the performance penalty of fetching from 
memory. However, filling the cache incurs a memory overhead.

3.4.5 Compiler optimizations

The longest possible ARM instruction with the added overhead of a data abort is used 
to indicate one extreme. If an application does not include such an instruction or a data 
abort does not occur, the worst case for a given application is fewer cycles.

It is possible to reduce the maximum number of registers that a compiler restores using 
the LDM instruction. This reduces the number of cycles before the FIQ instruction handler 
can begin to load. The side effect is a small increase in code size over the minimum 
requirement, because more than one LDM might be required for a given code sequence. 
The standard compiler switch -split_ldm is used to reduce the number of registers 
transferred to 4 for STM and LDM. 
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3.5 Example interrupt latency calculations

The calculations in this section show the number of cycles required to service interrupts, 
using the following types of interrupt and processor:

• ARM7TDMI FIQ interrupt latency during LDM

• ARM9 FIQ interrupt latency during LDM on page 3-28

• ARM10 FIQ interrupt latency during LDM on page 3-31

• Interrupts in ARM1026EJ and ARM11 cores on page 3-31

• IRQ during IRQ in an example ARMv5 system on page 3-32

• IRQ during IRQ in an example ARMv6 system on page 3-33.

Note
 The calculations are based on the following assumptions:

• the ISRs are in zero wait state memory

• no other masters are on the same bus (that is, the master is always granted control 
of the bus)

• the accesses are from noncached memory

• the processor is running at the same speed as the bus

• large LDM/STMs are allowed

• data aborts are allowed

• instruction aborts are allowed.

Changes in these assumptions can affect the resulting interrupt latency.

3.5.1 ARM7TDMI FIQ interrupt latency during LDM

FIQ interrupts have the highest priority in the PrimeCell VIC, and are not nested. In FIQ 
mode, seven 32-bit registers are banked into the system. This enables the PrimeCell VIC 
to process the interrupt as quickly as possible.

Table 3-23 on page 3-28 shows the typical worst case cycles for FIQ interrupts. The 
values in the table are based on the ARM7TDMI rev 4 core, with the following 
assumptions made:

• FIQ occurs at start of LDM

• LDM causes a data abort

• memory system consists entirely of zero wait state components
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• LDM restores 16 registers including PC.

Note
 For best results, start the FIQ handler at the FIQ vector address, 0x0000001c or 
0xFFFF001c. For information on compiler switch options, see the ARM Development 
Suite Compiler, Linker and Utilities Guide.

The ARM7TDMI-S core requires two cycles less, because the synchronizer only 
requires two cycles.

3.5.2 ARM9 FIQ interrupt latency during LDM

Table 3-24 on page 3-29 shows the typical worst case cycles for FIQ interrupts. The 
values in the table are based on the ARM966E-S rev 2 core, with the following 
assumptions made:

• FIQ occurs at start of LDM

• LDM causes a data abort

• FIQ and data abort handlers in zero wait state TCM, LDM data in zero wait state 
TCM

Table 3-23 ARM7TDMI FIQ interrupt latency

Event Worst case

Request passes through synchronizer. 4 cycles

Longest instruction to complete worst case instruction execution.

Note
 If the standard compiler switch -split_ldm is used to reduce the number of 
registers transferred to 4 for STM and LDM, this can be reduced to 8 cycles.

20 cycles

Data abort entry. 3 cycles

FIQ entry. 2 cycles

Total 29 cycles
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• LDM restores 16 registers including PC.

Table 3-25 shows the typical worst case cycles for FIQ interrupts. The values in the 
table are based on the ARM946E-S rev 1.1 core, with the following assumptions made:

• FIQ occurs at start of LDM

• LDM causes a data abort

• FIQ and data abort handlers in zero wait state TCM, LDM data in zero wait state 
TCM

• LDM restores 16 registers including PC.

Table 3-24 ARM966E-S Rev 2 FIQ interrupt latency

Event Worst case

LDM completes 16 cycles

LDM status transfer 1 cycle

Data abort detection 2 cycles

Data abort entry 2 cycles

Prepare for FIQ entry, fetch, and decode 3 cycles

Total 24 cycles

Additional considerations:

Write buffer drain 5 cycles

Total for additional consideration 5 cycles

Table 3-25 ARM946E-S Rev 1.1 FIQ interrupt latency

Event Worst case

LDM completes 16 cycles

LDM status transfer 1 cycle

Data abort detection 2 cycles

Data abort entry 2 cycles

Prepare for FIQ entry, fetch, and decode 3 cycles

Total 24 cycles

Additional considerations:
ARM DDI 0273A Copyright © 2002 ARM Limited. All rights reserved. 3-29



Programmer’s Model 
Table 3-26 shows the typical worst case cycles for FIQ interrupts. The values in the 
table are based on the ARM926EJ-S rev 0.3 core, with the following assumptions made:

• FIQ occurs at start of LDM

• LDM causes a data abort

• memory system consists entirely of zero wait state components

• LDM restores 16 registers including PC.

Write buffer drain 5 cycles

Cache line fills (worst case 3) 48 cycles

Total for additional consideration 53 cycles

Table 3-26 ARM926EJ-S FIQ interrupt latency

Event Worst case

LDM completes 16 cycles

LDM status transfer 1 cycle

Data abort detection 2 cycles

Data abort entry 2 cycles

Prepare for FIQ entry, fetch, and decode 3 cycles

Total 24 cycles

Additional considerations:

Write buffer drain 5 cycles

Cache line fills (worst case 3) 48 cycles

Page table walks (worst case 2) 4 cycles

Total for additional consideration 57 cycles

Table 3-25 ARM946E-S Rev 1.1 FIQ interrupt latency (continued)

Event Worst case
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3.5.3 ARM10 FIQ interrupt latency during LDM

Table 3-27 on page 3-31 shows the typical worst case cycles for FIQ interrupts. The 
values in the table are based on the ARM1026EJ-S rev 1 core, with the following 
assumptions made:

• FIQ occurs at start of LDM

• LDM causes a data abort

• memory system consists entirely of zero wait state components

• LDM restores 16 registers including PC.

3.5.4 Interrupts in ARM1026EJ and ARM11 cores

Because of the complex inter-instruction dependencies, it is not possible to describe the 
exact behavior of all the ARM1026EJ/ARM11 instructions in all circumstances. 
Table 3-23 on page 3-28 to Table 3-27 are accurate in most cases but must not be used 
instead of running code on a cycle-accurate ARM model. 

Two of the performance-enhancing architectural features of the ARM10 and ARM11 
cores make it particularly difficult to count the number of cycles an instruction takes:

• branch prediction 

• independent load/store unit.

Table 3-27 ARM1026EJ-S FIQ interrupt latency

Event Worst case

LDM completes 16 cycles

LDM status transfer 1 cycle

Data abort detection 2 cycles

Data abort entry 2 cycles

Prepare for FIQ entry, fetch, and decode 3 cycles

Total 24 cycles

Additional considerations:

Write buffer drain 32-bit AHB 8 cycles

Cache line fills (worst case 3) 32-bit AHB 42 cycles

Total for additional consideration 50 cycles
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The latencies described here assume the following:

• no outstanding data dependencies between an instruction and a previous 
instruction

• the instruction does not encounter any resource conflicts

• all data accesses hit the DCache and do not cross protection region boundaries

• all instruction accesses hit in the ICache.

Note
 ARM11 (v6 architecture) processors have new instructions to accelerate the handling of 
exceptions:

• Store Return State (SRS)

• Return From Exception (RFE)

• Change Processor State (CPS).

The ARM11 processors can also be set into a low interrupt latency configuration 
reducing interrupt latency. See the ARM1136JF-S Technical Reference Manual for 
more information.

This section gives an extended example to show how the combination of new facilities 
of the ARM11 core improve interrupt latency. The example is not necessarily realistic, 
but shows the main points.

Timings are roughly consistent with ARM10 core, with the pipeline reload penalty 
being three cycles. It is assumed that pipeline reloads are combined to execute as 
quickly as possible and, in particular, that if an interrupt is detected during an instruction 
that has set a new value for the PC, after that value has been determined and written to 
the PC but before the resulting pipeline refill is completed, the pipeline refill is 
abandoned and the interrupt entry sequence started as soon as possible.

Similarly, if a higher-priority IRQ is detected during an exception entry sequence that 
does not disable IRQs, after the updates to R14, the Saved Program Status Register 
(SPSR), the Current Program Status Register (CPSR), and the PC but before the 
pipeline refill has completed, the pipeline refill is abandoned and the higher level IRQ 
entry sequence is started as soon as possible.

3.5.5 IRQ during IRQ in an example ARMv5 system

In ARMv5 systems, all IRQ interrupts come through the same vector, at address 
0x00000018 or 0xFFFF0018. The code at this vector must obtain the address of the correct 
handler from the VIC, branch to it, and store the registers to be overwritten by the 
interrupt service routine. 

Example code to do this is shown below (the cycles relate to ARM1026EJ timing):
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IRQ2handler  LDR     PC, [R8,#HandlerAddress];(6 cycles / 7 cycles is scaled 
register offset used and no conflicts on AHB bus.) (No VIC port - VIC would 
supply address thus reducing this latency)...IRQ1handler  ... Include code to 
actually process the interrupt ...  STR     R0, [R8,#AckFinished]  SUBS    PC, 
R14, #4...IRQ0handler  STMIA   R13, {R0-R3}    ;(4 cycles as R0-R3 used in next 
instructions)  MOV     R0, LR ;(1 cycle)  MRS     R1, SPSR ;(1 cycle)  ADD     
R2, R13, #8      ;(1 cycle)  MRS     R3, CPSR ;(1 cycle)  BIC     R3, R3, 
#0x1F   ;(1 cycle)  ORR     R3, R3, #0x13   ; = Supervisor mode number  
(1 cycles)  MSR     CPSR_c, R3 ;(4 cycle)  STMFD   R13!, {R0,R1}   ;(2 cycle)  
LDMIA   R2, {R0,R1}     ;(2 cycle)  STMFD   R13!, {R0,R1}   ;(2 cycle)  LDMDB   
R2, {R0,R1}      ;(2 cycle)  BIC     R3, R3, #0x80   ; = I bit;(1 cycles)  
MSR     CPSR_c, R3  ;(4 cycles)  ... IRQs are now re-enabled, with 
original R2, R3, R14, SPSR on stack  ... Include code to stack any more 
registers required, process the interrupt  ... and unstack extra registers  ADR     
R2, #VICADDRESS  MRS     R3, CPSR  ORR     R3, R3, #0x80    ; = I bit  MSR     
CPSR_c, R3  STR     R0, [R2,#AckFinished]  LDR     R14, [R13,#12]   ; Original 
SPSR value  MSR     SPSR_fsxc, R14  LDMFD   R13!, {R2,R3,R14}  ADD     R13, R13, 
#4  SUBS    PC, R14, #4...

The major problem with this is the length of time IRQs are disabled at the start of the 
lower-priority IRQs. The worst-case interrupt latency for the IRQ0 interrupt occurs if a 
lower-priority IRQ2 has just fetched its handler address, and is approximately:

• 3 cycles for the pipeline refill after the LDR PC instruction fetches the handler 
address

• + 27 cycles to get to and execute the MSR instruction that re-enables IRQs

• + 3 cycles to re-enter the IRQ exception

• + 6 cycles for the LDR PC instruction at IRQ2handler

This gives a total of 39 cycles.

Note
 IRQs must be disabled for the final store to acknowledge the end of the handler to the 
VIC. If not, badly-timed further IRQs, each occurring close to the end of the end of the 
previous handler, can cause unlimited growth of the locked-down stack.

3.5.6 IRQ during IRQ in an example ARMv6 system

Using the VIC and the new instructions, there is no longer any requirement for 
everything to go through the single IRQ vector, and the changeover to a different stack 
occurs much more smoothly. The code is similar to the example shown below:

IRQ1handler  ... Include code to actually process the interrupt ...  STR     R0, 
[R8,#AckFinished]  SUBS    PC, R14, #4...IRQ2handler  SUB     R14, R14, #4  ;(1 
cycle)  SRSFD   R13_svc!      ;(1 cycle)  CPSIE   f, #0x13      ; = Supervisor 
mode (1 cycle)  STMFD   R13!, {R2,R3} ;(2 cycles)  ... IRQs are now 
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re-enabled, with original R2, R3, R14, SPSR on stack  ... Include code to stack 
any more registers required, process the interrupt  ... and unstack extra 
registers  LDMFD   R13!, {R2,R3}  ADR     R14, #VICADDRESS  CPSID   f  STR     
R0, [R14,#AckFinished]  RFEFD   R13!...

The worst-case interrupt latency for a IRQ1 now occurs if the IRQ1 occurs during an 
IRQ2 interrupt entry sequence, just after it disables IRQs, and is approximately:

• 3 cycles for the pipeline refill for the IRQ2's exception entry sequence

• + 5 cycles to get to and execute the CPSIE instruction that re-enables IRQs

• + 3 cycles to re-enter the IRQ exception

This gives a total of 11 cycles.

Note
 In the ARMv5 system, the potential additional interrupt latency caused by a long LDM or 
STM being in progress when the IRQ is detected is only significant because the memory 
system can stretch its cycles considerably. Otherwise, it is dwarfed by the number of 
cycles lost because of FIQs being disabled at the start of a lower-priority interrupt 
handler. In ARMv6, this is still the case, but it is much closer.
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3.6 ARM7TDMI IRQ interrupts using AHB

In IRQ mode, interrupt levels can be nested lower than the highest priority FIQ interrupt 
level. To provide this nesting, the return address, stored in the Link Register (LR), and 
the status register, stored in the SPSR must be available before further IRQ interrupts 
can be accepted. This increases the interrupt latency, but provides a scalable nested 
interrupt system. Table 3-28 shows the typical worst case cycles for IRQ interrupts. 

Table 3-28 ARM7TDMI IRQ interrupt latency

Event Worst case

Interrupt synchronization 4 cycles

Worst case interrupt disable period (sequence LDR, STMFD, MRS, MSR) 20 cycle

Entry to first instruction 2 cycles

Nesting (assuming single-state AHB) 10 cycles

Total 36 cycles
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3.7 Interrupt priority

The interrupt priority is regulated by both hardware and software. FIQ interrupts have 
the highest priority, followed by the vectored interrupts 0-31, and the daisy-chained 
interrupt has the lowest priority. The priority order of the vectored interrupts is 
programmable.

To reduce interrupt latency (see Interrupt latency on page 3-23), you can re-enable the 
IRQ interrupts in the processor after the Interrupt Service Routine (ISR) is entered. In 
this case, the current ISR is interrupted and the higher-priority ISR is executed. The 
PrimeCell VIC then only allows interrupts of a higher priority to interrupt a 
lower-priority ISR. If a higher-priority interrupt goes active, the current ISR is 
interrupted and the higher-priority ISR is executed.

Before the interrupt enable bits in the processor can be re-enabled, the LR and SPSR 
must be saved, preferably on a software stack. When the ISR is exited, the interrupts 
must be disabled, the LR and SPSR reloaded, and the VICADDRESS Register written 
to (see Vectored interrupt service routine on page B-5).
3-36 Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Chapter 4 
Programmer’s Model for Test 

This chapter describes the additional logic for functional verification and provisions 
made for production testing. It contains the following sections:

• PrimeCell VIC test harness overview on page 4-2

• Scan testing on page 4-3

• Test registers on page 4-4.
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4.1 PrimeCell VIC test harness overview

The additional logic for functional verification and production testing allows:

• capture of input signals to the block

• stimulation of the output signals.

The integration vectors provide a way of verifying that the PrimeCell VIC is correctly 
wired into a system. This is done by separately testing two groups of signals:

AMBA signals 

These are tested by checking the connections of all the address and data 
bits.

Intra-chip signals 

The tests for these signals are system-specific, and enable you to write the 
necessary tests. Additional logic is implemented allowing you to read and 
write to each intra-chip input/output signal.

These test features are controlled by test registers. This allows you to test the PrimeCell 
VIC in isolation from the rest of the system using only transfers from the AMBA AHB.

Off-chip test vectors are supplied using a 32-bit parallel External Bus Interface (EBI) 
and converted to internal AMBA bus transfers. The application of test vectors is 
controlled through the Test Interface Controller (TIC) AMBA bus master module.
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4.2 Scan testing

The PrimeCell VIC is designed to simplify:

• insertion of scan test cells 

• use of Automatic Test Pattern Generation (ATPG).

This provides an alternative method of manufacturing test.
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4.3 Test registers

The PrimeCell VIC test registers are memory-mapped as shown in Table 4-1.

The following registers are described in this section:

• Test Control Register, VICITCR

• Integration Test Input Register 1, VICITIP1 on page 4-5

• Integration Test Input Register 2, VICITIP2 on page 4-6

• Integration Test Output Register 1, VICITOP1 on page 4-6

• Integration Test Output Register 2, VICITOP2 on page 4-7

• Sampled Interrupt Source Status Register, VICINTSSTATUS on page 4-8

• Sampled Interrupt Source Status Clear Register, VICINTSSTATUSCLEAR on 
page 4-8.

4.3.1 Test Control Register, VICITCR

VICITCR is a 2-bit Test Control Register. The ITEN bit in this register controls the 
input test multiplexors. The ISS bit controls sampling of the interrupt source inputs. 
This register must only be used in test mode. The register can be accessed with zero wait 
states.

Table 4-1 Test registers memory map

Address Type Width Reset value Name Description

VIC base + 
0x300

Read/write 2 0b00 VICITCR Test Control Register

VIC base + 
0x304

Read/write 5 0x000 VICITIP1 Test Input Register 1

VIC base + 
0x308

Read/write 32 - VICITIP2 Test Input Register 2

VIC base + 
0x30C

Read/write 4 0x000 VICITOP1 Test Output Register 1

VIC base + 
0x310

Read/write 32 0x00000000 VICITOP2 Test Output Register 2

VIC base + 
0x314

Read 32 0x00000000 VICINTSSTATUS Sampled Interrupt Source Status 
Register

VIC base + 
0x318

Write 32 - VICINTSSTATUS
CLEAR

Sampled Interrupt Source Status Clear 
Register
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Table 4-2 shows the bit assignment of the VICITCR Register.

4.3.2 Integration Test Input Register 1, VICITIP1

VICITIP1 is a 5-bit register used to control and read the values of the nVICIRQIN, 
nVICFIQIN, and VICIRQACK inputs. It is also used to read the values set on the 
VICIRQREG and VICFIQREG ports. This register must only be used in test mode. 
The read value in VICITIP1 always takes two clock cycles to update, because of the use 
of dual flip-flop synchronization logic which avoids metastability problems. For 
example, when a new value is written into this register, an immediate read from the 
register returns the old value. After two cycles, a read from this register returns the 
updated value. The register can be accessed with zero wait states.

Table 4-3 shows the bit assignment of the VICITIP1 Register.

Table 4-2 VICITCR Register bit assignments

Bits Name Type Description

[31:2] Reserved - Reserved, read as zero, do not modify.

[1] ISS Read/write Interrupt sampled status enable:

0 = normal mode (reset)

1 = interrupt sampling enabled.

[0] ITEN Read/write Integration test enable:

0 = normal mode (reset)

1 = test mode.

Table 4-3 VICITIP1 Register bit assignments

Bits Name Type Description

[31:11] Reserved - Reserved, read as zero, do not modify.

[10] VICFIQINREG Read This bit is read only and returns the value that is set on the VICFIQINREG port.

[9] VICIRQINREG Read This bit is read only and returns the value that is set on the VICIRQINREG port.

[8] VICIRQACK Read/ 
write

Read the value of the VICIRQACK input when the VICITCR ITEN bit is LOW.

Read the value of this field when the VICITCR ITEN bit is HIGH.

Write sets input to written value when the VICITCR ITEN bit is HIGH.
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4.3.3 Integration Test Input Register 2, VICITIP2

VICITIP2 is a 32-bit register used to control and read the value of the 
VICVECTADDRIN input. This register must only be used in test mode. The register 
can be accessed with zero wait states.

Table 4-4 shows the bit assignment of the VICITIP2 Register.

4.3.4 Integration Test Output Register 1, VICITOP1

VICITOP1 is a 4-bit register that is used to control and read the values of the following 
outputs:

• nVICIRQ 

• nVICFIQ 

• VICVECTADDRV
• VICIRQACKOUT.

This register must only be used in test mode. The read value in VICITOP1 always takes 
two clock cycles to update, because of the use of dual flip-flop synchronization logic 
that avoids metastability problems. For example, when a new value is written into this 

[7] nVICIRQIN Read/ 
write

Read the value of the nVICIRQIN input when the VICITCR ITEN bit is LOW. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets input to written value when the VICITCR ITEN bit is HIGH.

[6] nVICFIQIN Read/ 
write

Read the value of the nVICFIQIN input when the VICITCR ITEN bit is LOW. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets input to written value when the VICITCR ITEN bit is HIGH.

[5:0] Reserved - Reserved, read as zero, do not modify.

Table 4-3 VICITIP1 Register bit assignments (continued)

Bits Name Type Description

Table 4-4 VICITIP2 Register bit assignments

Bits Name Type Description

[31:0] VICVECTADDRIN Read/ 
write

Read the value of the VICVECTADDRIN input when the VICITCR ITEN bit 
is LOW. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets input to written value when the VICITCR ITEN bit is HIGH.
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register, an immediate read from the register returns the old value. After two cycles, a 
read from this register returns the updated value. The register can be accessed with zero 
wait states.

Table 4-5 shows the bit assignment of the VICITOP1 Register.

4.3.5 Integration Test Output Register 2, VICITOP2

VICITOP2 is a 32-bit register that controls the VICVECTADDROUT output. This 
register must only be used in test mode. The register can be accessed with zero wait 
states.

Table 4-5 VICITOP1 Register bit assignments

Bits Name Type Description

[31:10] Reserved - Reserved, read as zero, do not modify.

[9] VICIRQACKOUT Read/ 
write

Read the value of the VICIRQACKOUT output when the VICITCR ITEN bit 
is LOW. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets output to written value when the VICITCR ITEN bit is HIGH.

[8] VICVECTADDRV Read/ 
write

Read the value of the VICVECTADDRV output when the VICITCR ITEN bit 
is LOW. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets output to written value when the VICITCR ITEN bit is HIGH.

[7] VICIRQ Read/ 
write

Read the value of the internal VICIRQ signal when the VICITCR ITEN bit is 
LOW. This is the pre-inverted version of the final output, and is inverted to 
create the final nVICIRQ output. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets output to written value when the VICITCR ITEN bit is HIGH.

[6] VICFIQ Read/ 
write

Read the value of the internal VICFIQ signal when the VICITCR ITEN bit is 
LOW. This is the pre-inverted version of the final output, and is inverted to 
create the final nVICFIQ output. 

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets output to written value when the VICITCR ITEN bit is HIGH.

[5:0] Reserved - Reserved, read as zero, do not modify.
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Table 4-6 shows the bit assignment of the VICITOP2 Register.

4.3.6 Sampled Interrupt Source Status Register, VICINTSSTATUS

VICINTSSTATUS is a 32-bit register that shows the sampled status of the raw interrupt 
source inputs, that can be used to detect interrupt sources that are deasserted before they 
have been serviced. This register must only be used in test mode. The register captures 
any interrupts that have occurred since the VICINTSSTATUSCLEAR was last written 
to. The VICINTSSTATUS Register enables you to determine if an interrupt has been 
asserted and then deasserted without software managing to service the interrupt. The 
register only gives the sampled status of the 32 interrupts connected to the VIC, and not 
the daisy-chained nVICIRQIN. Read the VICINTSSTATUS Register of the 
daisy-chained VIC to determine which interrupts have been active. The register can be 
accessed with zero wait states.

Table 4-7 shows the bit assignment of the VICINTSSTATUS Register.

4.3.7 Sampled Interrupt Source Status Clear Register, VICINTSSTATUSCLEAR

VICINTSSTATUSCLEAR is a 32-bit register that clears bits in the VICINTSSTATUS 
Register. This register must only be used in test mode.The register can be accessed with 
zero wait states.

Table 4-6 VICITOP2 Register bit assignments

Bits Name Type Description

[31:0] VICVECTADDROUT Read/ 
write

Read the value of the VICVECTADDROUT output when the VICITCR 
ITEN bit is LOW.

Read the value of this field when the VICITCR ITEN bit is HIGH. 

Write sets output to written value when the VICITCR ITEN bit is HIGH.

Table 4-7 VICINTSSTATUS Register bit assignments

Bits Name Type Description

[31:0] IntSStatus Read Shows the sampled status of the raw interrupt source inputs when the 
VICITCR ISS bit is HIGH.

After reset, or when the VICITCR ISS bit is LOW, returns zero.
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Table 4-8 shows the bit assignment of the VICINTSSTATUSCLEAR Register.

Table 4-8 VICINTSSTATUSCLEAR Register bit assignments

Bits Name Type Description

[31:0] IntSStatus Read Clears corresponding bits in the VICINTSSTATUS Register when the 
VICITCR ISS bit is HIGH:

0 = no effect

1 = interrupt status cleared in VICINTSSTATUS Register.

Writes of any value have no effect when the VICITCR ISS bit is LOW.
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Appendix A 
Signal Descriptions

This appendix describes the signals that interface with the ARM PrimeCell Vectored 
Interrupt Controller (PL192). It contains the following sections:

• AMBA AHB signals on page A-2

• Interrupt controller signals on page A-4

• Daisy chain signals on page A-5

• VIC port signals on page A-6

• Scan test control signals on page A-7.
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A.1 AMBA AHB signals

The PrimeCell VIC module is connected to the AMBA AHB as a bus slave. Table A-1 
shows the AHB signals that are used and produced.

Table A-1 AMBA AHB signal descriptions

Name Type
Source/
destination

Description

HCLK Input Clock source AMBA AHB bus clock, used to time all bus transfers. All signal timings 
are related to the rising edge of HCLK.

HRESETn Input Reset controller AHB bus reset, active LOW.

HADDR[11:2] Input Master System address bus.

HTRANS[1:0] Input Master Transfer type, which can be NONSEQUENTIAL, SEQUENTIAL, 
IDLE, or BUSY. This signal must be connected to HTRANS[1] on the 
AHB interface. HTRANS[0] is not used.

HWRITE Input Master Transfer direction. Indicates a write transfer when HIGH, and a read 
transfer when LOW.

HSIZE[2:0] Input Master Size of the transfer, which must be word (32-bit) for the VIC 
(HSIZE[2:0] = 0b010).

HPROT[3:0] Input Master Memory access protection type, which can be User mode (0) or 
privileged mode (1). This signal must be connected to HPROT[1] on 
the AHB interface. HPROT[3], HPROT[2] and HPROT[0] are not 
used.

HWDATA[31:0] Input Master Write data bus, used to transfer data from bus master to bus slaves 
during write operations.

HSELVIC Input Decoder Slave select signal, which is a combinatorial decode of the address bus. 
It indicates that the current transfer is intended for the selected slave.

HRDATA[31:0] Output Slave Read data bus, used to transfer data from bus slaves to bus master during 
read operations.
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HREADYIN Input External slave Transfer done signal, generated by an alternate slave. When HIGH, 
indicates that a transfer is complete. Can be driven LOW to extend a 
transfer.

HREADYOUT Output Slave Transfer done signal, generated by the VIC. When HIGH, indicates that 
a transfer is complete. Can be driven LOW to extend a transfer. 

HRESP[1:0] Input Slave Transfer response, which provides additional transfer status 
information. The response can be OKAY, ERROR, RETRY or SPLIT. 
The PrimeCell VIC responds with either OKAY or ERROR.

Table A-1 AMBA AHB signal descriptions (continued)

Name Type
Source/
destination

Description
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A.2 Interrupt controller signals

Table A-2 shows the signals for the PrimeCell VIC that interface to the processor 
interrupt sources.

Table A-2 Interrupt controller signals

Name Type
Source/
destination

Description

VICINTSOURCE [31:0] Input Peripheral interrupt request Interrupt source input

nVICIRQ Output Interrupt controller Interrupt request to processor

nVICFIQ Output Interrupt controller Fast interrupt request to processor
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A.3 Daisy chain signals

The daisy chain signals are used when two or more VICs are daisy-chained (see 
Daisy-chained interrupt controller connectivity to processor without VIC port on 
page 2-17). Table A-3 shows the daisy chain signals.

Table A-3 Daisy chain signals

Name Type
Source/
destination

Description

VICVECTADDRIN [31:0] Input External interrupt 
controller

Connects to the VICVECTADDROUT[31:0] signal 
of the previous VIC if daisy chaining is used.

Connects to logic 0 if the VIC is not daisy-chained.

VICVECTADDROUT [31:0] Output Interrupt controller Connects to the VICVECTADDRIN[31:0] signal of 
the next VIC if daisy chaining is used.

Left unconnected if the VIC is not daisy-chained.

nVICIRQIN Input External interrupt 
controller

Connects to the nVICIRQ signal of the previous VIC 
if daisy chaining is used.

Connects to logic 1 if the VIC is the last in the daisy 
chain, or if VIC is not daisy-chained.

nVICFIQIN Input External interrupt 
controller

Connects to the nVICFIQ signal of the previous VIC 
if daisy chaining is used.

Connects to logic 1 if the VIC is the last in the daisy 
chain, or if VIC is not daisy-chained.

VICFIQINREG Input System Tied HIGH if you wish to register the daisy-chained 
nVICFIQIN input into the VIC. 

Tied LOW if you do not wish to register the 
nVICFIQIN into the VIC.

VICIRQINREG Input System Tied HIGH if you wish to register the daisy-chained 
nVICIRQIN input into the VIC. 

Tied LOW if you do not wish to register the 
nVICIRQIN into the VIC.

VICIRQACKOUT Output External interrupt 
controller

Interrupt acknowledge from the processor which has 
passed through the VICs in the daisy chain. Used 
during the processor/VIC handshaking after an IRQ is 
generated.
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A.4 VIC port signals

The VIC port signals are shown in Table A-4.

Table A-4 VIC port signals

Name Type
Source/
destination

Description

VICVECTADDRV Output ARM11 or 
ARM1026EJ 
processor

Indicates that the VICVECTADDROUT bus contains 
a stable value. Used during the processor/VIC 
handshaking after an IRQ is generated.

nVICSYNCEN Input System Used to indicate that the VIC port must operate in 
asynchronous mode when tied LOW (only used with a 
ARM11 or ARM1026EJ processor which must also be 
set to asynchronous mode). Standard synchronous 
operation used when tied HIGH.

Tie the port HIGH if the VIC port is not used by the 
system processor.

VICIRQACK Input ARM11 or 
ARM1026EJ 
processor

Interrupt acknowledge from the processor. Used 
during the processor/VIC handshaking after an IRQ is 
generated.
A-6 Copyright © 2002 ARM Limited. All rights reserved. ARM DDI 0273A



Signal Descriptions 
A.5 Scan test control signals

The internal scan test control signals are shown in Table A-5.

Table A-5 Scan test control signals

Name Type Source/ destination Description

SCANENABLE Input Scan controller Scan enable

SCANINHCLK Input Scan controller Scan data input for HCLK domain

SCANOUTHCLK Output Scan controller Scan data output for HCLK domain
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Appendix B 
Example Code

This appendix provides examples of the code required when setting up the ARM 
PrimeCell Vectored Interrupt Controller (PL192). It contains the following section:

• About the example code on page B-2.
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B.1 About the example code

The following examples of code are provided in this section:

• Enable interrupts

• Disable interrupts

• Interrupt polling on page B-3

• Generate software interrupt on page B-3

• Clear software interrupt on page B-3

• FIQ interrupt initialization on page B-3

• FIQ interrupt handler on page B-4

• Vectored interrupt initialization on page B-4

• Vectored interrupt service routine on page B-5

• Daisy-chained vectored interrupt service routine on page B-5

• Highest level vectored IRQ interrupt service routine on page B-6.

B.1.1 Enable interrupts

See Example B-1 for an example of the enable interrupt code.

Example B-1 Enable interrupts

       LDR    r0, =IntCntlBase                    ;(where IntCntlBase is a
                                                  ;predefined constant, e.g.
                                                  ;IntCntlBase EQU 0xFFFFF000)
       MOV    r1, #<interrupt to enable>
       STR    r1, [r0, #IntEnableOffset]

B.1.2 Disable interrupts

See Example B-2 for an example of the disable interrupt code.

Example B-2 Disable interrupts

       LDR    r0, =IntCntlBase
       MOV    r1, #<interrupt to disable>
       STR    r1, [r0, #IntEnableClearOffset]
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B.1.3 Interrupt polling

See Example B-3 for an example of the interrupt polling code.

Example B-3 Interrupt polling

       LDR    r0, =IntCntlBase
Loop   LDR    r1, [r0, #RawInterruptOffset]

   CMP   r1, #0
       BEQ    loop
       Scan r1 for source of interrupt & branch to relevant routine

B.1.4 Generate software interrupt

See Example B-4 for an example of the generate software interrupt code.

Example B-4 Generate software interrupt

       ;Generate software interrupt on interrupt request line 1.
       LDR    r0, =IntCntlBase
       MOV    r1, #2 ;Interrupt source/request 1
       STR    r1, [r0, #SoftIntOffset]

B.1.5 Clear software interrupt

See Example B-5 for an example of the clear software interrupt code.

Example B-5 Clear software interrupt

       ;Clear software interrupt on interrupt request line 1.
       LDR    r0, =IntCntlBase                    ;(where IntCntlBase is a
                                                  ;predefined constant, e.g.
                                                  ;IntCntlBase EQU 0xFFFFF000)
       MOV    r1, #2
       STR    r1, [r0, #SoftIntClearOffset]

B.1.6 FIQ interrupt initialization

See Example B-6 on page B-4 for an example of the FIQ interrupt initialization code.
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Example B-6 FIQ interrupt initialization

       LDR    r0, =IntCntlBase
       MOV    r1, #<interrupt_to_enable>
       STR    r1, [r0, #IntSelectOffset]      ;Select FIQ interrupt and clear
                                              ;other FIQs

       STR    r1, [r0, #IntEnableOffset]      ;Enable interrupt

       MRS    CPSR_c, #(DISABLE_IRQ + MODE_SYS_32) ;Enable FIQ interrupts

B.1.7 FIQ interrupt handler

See Example B-7 for an example of the FIQ interrupt handler code.

Example B-7 FIQ interrupt handler

       ;IRQ and FIQ interrupts are automatically masked until return from 
       ;interrupt performed.
0x1c   Interrupt service routine
       Clear interrupt request
       SUBS    pc, r14, #4

B.1.8 Vectored interrupt initialization

See Example B-8 for an example of the vectored interrupt initialization code.

Example B-8 Vectored interrupt initialization

       LDR    r0, =IntCntlBase
       MOV    r1, #<interrupt_to_enable>
       STR    r1, [r0, #IntEnableClearOffset] ;Disable interrupt
              ;Setup and enable vectored interrupt 15
       MOV    r2, #vector_address             ;Set vector address
       STR    r2, [r0, #VectorAddr15Offset]
       MOV    r2, #vector_priority            ;Set vector priority level
       STR    r2, [r0, #VectorPriority15Offset]
       MOV    r2, #interrupt_source           ;Set interrupt source
       LDR    r2, [r0, #IntSelectOffset]      ;Select IRQ interrupt
       BIC    r2, r2, r1
       STR    r2, [r0, #IntSelectOffset]
       STR    r1, [r0, #IntEnableOffset]      ;Enable interrupt
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       MSR    CPSR_c, #(ENABLE_IRQ + MODE_SYS_32) ;Enable IRQ interrupts

B.1.9 Vectored interrupt service routine

See Example B-9 for an example of the vectored interrupt service routine code.

Example B-9 Vectored interrupt service routine

0x18    LDR pc,    [pc, #-0x120]    ;Load Vector into PC
;.......................................................

vector_handler
       ; Code to enable interrupt nesting
       STMFD r13!, {r12, r14}       ; stack lr_irq and r12 [plus other regs used below, if appropriate]
       MRS r12, spsr                ; Copy spsr into r12...
       STMFD r13!, {r12}            ; and save to stack

; Add code to clear the interrupt source
; Read from VICIRQSTATUS to determine the source of the interrupt
       MSR cpsr_c, #0x1f            ; Switch to SYS mode, re-enable IRQ
       STMFD r13!, {r0-r3, r14}     ; stack lr_sys and r0-r3

; Interrupt service routine...
; NOTE: ADS 1.2 requires preservation of 8-byte stack alignment
; with respect to all external interfaces
; See ADS 1.2 Developer Guide - Section 2.3.3
; ...
       BL 2nd_level_handler         ; this will corrupt lr_sys and r0-r3
; ...

; Code to exit handler
       LDMFD r13!, {r0-r3, r14}     ; unstack lr_sys and r0-r3
       MSR cpsr_c, #0x92            ; Disable IRQ, and return to IRQ mode
       LDMFD r13!, {r12}            ; unstack r12...
       MSR spsr_cxsf, r12           ; and restore spsr...
       LDMFD r13!, {r12, r14}       ; unstack registers
       LDR r1, =VectorAddr
       STR r0, [r1]                 ; Acknowledge Vectored IRQ has been serviced
       SUBS pc, lr, #4              ; Return from ISR

B.1.10 Daisy-chained vectored interrupt service routine

See Example B-10 on page B-6 for an example of the daisy-chained vectored interrupt 
service routine code.
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Example B-10 Daisy-chained vectored interrupt service routine

0x18   LDR    pc, [pc, #-0x120]               ;Load vector into PC

daisy_vector_handler
       ;Code to enable interrupt nesting
       STMFD  sp!, {r12,r14}                  ;Stack workspace
       LDR    r12, VectorAddrDaisyVIC         ;Read VectorAddrDaisyVIC to
                                              ;ensure hardware priority logic is
                                              ;enabled correctly
       LDR    r12,[r12]
       MRS    r12, spsr                       ;Save SPSR into r12
       MSR    cpsr_c, #0x1F                   ;Reenable IRQ, go to system mode

       Interrupt_service_routine

       ;Code to exit handler
       MSR    cpsr_c, #0x52                   ;Disable IRQ, move to IRQ mode
       MSR    spsr, r12                       ;Restore SPSR from r12
       LDMFD  sp!, {r12,r14}                  ;Restore registers

   STR    r0, VectorAddrDaisyVIC
       SUBS   pc, r14, #4                     ;Return from IRQ

B.1.11 Highest level vectored IRQ interrupt service routine

See Example B-11 for an example of the highest level vectored IRQ interrupt service 
routine code.

Example B-11 Highest level vectored IRQ interrupt service routine

0x18   LDR    pc, [pc, #-0x120]               ;Load vector into PC

highest_priority_vector_handler

       Interrupt_service_routine

       ;Code to exit handler
       STR    r0, VectorAddr                  ;Acknowledge Vectored IRQ has 
                                              ;finished
       SUBS   pc, r14, #4                     ;Return from IRQ
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Appendix C 
Troubleshooting

This appendix describes how to troubleshoot the ARM PrimeCell Vectored Interrupt 
Controller (PL192). It contains the following section:

• Troubleshooting on page C-2.
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Troubleshooting 
C.1 Troubleshooting

Table C-1 lists typical problems and suggested remedies.

Table C-1 Troubleshooting

Problem Suggested remedy

No interrupts are generated. Check that the connected interrupt sources have been 
enabled in the VICINTENABLE register.

No interrupts are generated but 
VICIRQSTATUS is non-zero.

The priority stack cannot be activated by another 
interrupt and is not reset at the end of ISR. Ensure that 
a write is performed to the VICADDRESS Register at 
the end of the ISR. You can also reset the priority stack 
by software in the initialization code by writing to the 
VICADDRESS Register 16 times.

Interrupt nesting is happening by 
itself.

If using a debugger, this can be set to read a whole 
bank of registers at a time. If it is reading the 
VICADDRESS register, the VIC performs interrupt 
nesting because it thinks the system processor has just 
started the ISR for the currently active interrupt. The 
debugger must be set to avoid reading the 
VICADDRESS register.

An interrupt occurs, but none of the 
enabled sources are asserted.

The interrupt source might have been asserted for only 
a short amount of time, enough to set off an IRQ/FIQ, 
but not long enough to be disabled properly during the 
ISR. The test mode VICINTSSTATUS register can be 
used to view a sampled version of the interrupt 
sources. This has a bit for each of the interrupt source 
inputs, which are set HIGH when an interrupt is 
asserted, and can only be set LOW using the 
VICINTSSTATUSCLEAR register, enabling the 
detection of interrupts that are deasserted early.
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