ARM940T

(Rev 0)

Technical Reference Manual

ARM

ARMDDI 0092B

ARM940T
Technical Reference Manual

© Copyright ARM Limited 1998. All rights reserved.

Release information

Change history

Description Issue Change
February 1998 A Technical amendments and reformatting
September 1998 B First full release.

Proprietary notice
ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, ARM7TDMI,
ARMO9TDMI, TDMI and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fithess for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality status
This document is Open Access (no restriction on distribution).

Product status

The information in this document is Final (information on a developed product).

Web address

http:\\ww. arm com

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Preface

About this document

This document is areference manual for the ARM940T microprocessor.

The document describes silicon revisions 0, Ob and Oc. Apart from bug fixes, these
revisions have the same specification except that revision Ob and Oc include the
BURSTJ1:0] signal, which is described within. The BURST[1:0] signal does not
appear on revision O silicon.

Intended audience

This document has been written for experienced hardware engineers and software
engineers who may or may not have previous experience of ARM products.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. iii

Typographical conventions
The following typographical conventions are used in this document:

bold highlights signal names and menu options within text, internal
signals are further identified by italics.

italic highlights ARM-specific terminology, cross references and
references to other publications.

typewiter identifies file and program names, source code, and text (such
as commands) that may be entered at the keyboard.

typewriter italic identifiesargumentsto commands or functions which should
be replaced by a specific value.

typewiter bold identifieslanguage keywordswhen used outside example code.

iv © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Related publications

ARM Architecture Reference Manual (ARM DDI 0100).
ARMOYTDMI Technical Reference Manual (ARM DDI 0091).
AMBA Specification (ARM IHI 0001).

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved.

Further reading

IEEE Std. 1149.1- 1990, “Standard Test Access Port and Boundary-Scan Architecture”.

Vi

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Feedback on this manual

If you have any comments or suggestions about this document, please send an email to
errat a@rm comgiving:

the document title

the document number

the page number(s) to which your comments refer
a concise explanation of your comments.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

vii

Feedback on this product

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

viii © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Contents

ARM940T Technical Reference Manual

Chapter 1

Chapter 2

Chapter 3

Preface

AbOUL thiS dOCUMENTeiiiiiiiieiiieeceee e
Related publiCations............ooiiiiiii e
Further reading........cooocviiie e
Feedback on this manualccccoviiiiii e
Feedback on this producCt............ccoccuiiiie e

Overview

11 INTFOAUCTION ... s
1.2 The ARMOZ0T ...ttt
13 Processor block diagram............cccceoeiiiiiiiiniiiiie e

Programmer’s Model

2.1 INEFOTUCTION ...
2.2 ARMO40T CP15 regiStersSccoivvveieei e
Protection Unit

3.1 [(geTo (U T3 170 o ISR
3.2 Enabling the protection unitcooccoieiiiiiiiienieee e
3.3 MEMOTY FEQIONSvvvieeeiiiiiiiie e e e ettt e e e et e e e e e e e s saae e e e
3.4 OVerlapping rEGIONSccoeciiieeeeeiieee e s e e e

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Caches and Write Buffer

41
4.2
4.3
4.4
4.5
4.6

[a1 (oo [T 1] o FN
Cache architecture
INSIIUCTION CACKNEttt e e e e e e e e e e
DAtA CACNE ..vvuiiiiiiieieieeee e
The WHEE DUTEI ...
CaChe I0CK OWN ...t

Clock Modes

51
5.2
5.3
54
55

INEFOAUCTION ...
OVEIVIBW. ...ttt ittt ettt
FaStBUS MOEccuiiiiiiiieiie e
Sychronous mode
ASYNCAIONOUS MOE........eiiiiiiiiieie et 5-3

Bus Interface Unit

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

INEFOAUCTION ... 6-1
ASB transfers 6-1
Burst accesses .6-2
Buffered writes ... 6-4
LDM operations from a non-cached regioncccoeovieeeeiiiiiiiee e e 6-5
STM operation to a non-cached region ... 6-7

External aborts
SWP instruction
Memory access order

ARM940T Coprocessor Interface

7.1
7.2
7.3
7.4
7.5
7.6
7.7

OVEBIVIBW. ...ttt e ettt e e e e e e e e e e e e e e e e eeeeese st aeaeeeaeeeeeeessrasaannnns
LDC/STC ...uvvvvvvvvrvreeenen.
MCR/MRCccvvvveeeen. .
INtErIOCKEA MCRottt e e e e e e e e e e e e e e aes

Privileged instructions...................
Busy-waiting and interrupts

Debug Support

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

OVEBIVIBW. ..ttt ettt ettt e et e e s bt e e e ib e e e sne e e sabeeeenbreenae
Debug systems..........ccccceeeeeinnns
Debug interface signals..........cccccoevvveveeeiiinnnn.
Scan chains and JTAG interface
The JTAG State MacChiNeuuiiiie e
TSt LA FEOISIEISeeieeieiieiiie ettt e e e ee s
ARM940T core clocks
Clock switching during debug
Clock switching during test.........cccovcvveveeeinns

Determining the core and System Statecccceeviiiiiiieiiiiiiie e 8-27
EXit from debug State..........c.ueiiiiiiiii e 8-31

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendix A

8.12 The PC’s behavior during debug
8.13 EmbeddedICE...........ccooevviiiiiiiiennee
8.14 Vector catching
8.15 Single stepping
8.16 Debug communications channel

8.17 The debugger’s view of the cache ..., 8-49
TrackingICE

9.1 OVEIVIBW ...ttt ettt e sat et ettt et ettt e e anbe e e sbe e e s beee s 9-2
9.2 TiMING FEQUIFEMENTSeiieiiiciiiiie e ettt e s e e s e e e e e et ee e e e st ee e e s staeeeeeaans 9-3
9.3 TraCKiNGICE OQULPULSuvvieiiiiiiiee s eeieie et e st e e e ete e e e e entvae e e e sntvanaeeean 9-4
Test Issues

10.1 [l o]o (8 od 1 o] o [PPSR 10-1
10.2 Scan chain O bit Orderooiiii e 10-3

Instruction Cycle Summary and Interlocks

11.1 [a1(goTo [UTox1To] o H RO RSRRSPPRPPPNt
11.2 Instruction cycle times
11.3 101 (=] (o Tod LTS

ARM940T AC Characteristics
12.1 o] (oo (U T3 170 o SRRSO
12.2 ARMO940T timing diagrams..................

12.3 ARMO940T timing parameters

ARMO940T Signal Descriptions

Al AMBA SIGNAIS.....eeiieeiiiie ettt e et aeee s
A.2 Coprocessor interface signals............

A3 JTAG and TAP controller signals

A4 DEBUG SIGNAIS ..eeiiiiee e a e
A5 Miscellan@ous SIGNAIScoiiiiiiiii e

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. Xi

Xii © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 1
Overview

1.1 Introduction

This chapter introduces the ARM940T processor.

1.2 The ARM940T

The ARM940T is amember of the ARM9 Thumb family of general-purpose
microprocessors. The ARM940T is targeted at embedded control applications where
high performance, low die size, and low power are al important. The ARM940T
supports both the 32-bit ARM and 16-bit Thumb instruction sets, allowing the user to
trade of f between high performance and high code density. The ARM940T supportsthe
ARM debug architecture and includes logic to assist in both hardware and software
debug. The ARM940T also includes support for coprocessors.

The ARM940T isaHarvard cache architecture processor. The separate instruction and
data cachesin thisdesign are 4KB each in size, with a4-word line length. A protection
unit allows the memory to be segmented and protected in a simple manner, and isideal
for embedded control applications. Thereis no virtual to physical address mapping. A
writeback cache scheme and write buffer are used to optimize performance and
minimize bus traffic, thus reducing system power consumption.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 1-1

Overview

The processor core within ARM940T isan ARM9TDMI. This processor coreisa
Harvard architecture device implemented using afive-stage pipeline consisting of
fetch, decode, execute, memory and write stages, and can be provided as a stand-alone
core which may be embedded into more complex devices.

The ARM940T interface to therest of the system isvia unified address and data buses.

This interface is compatible with the Advanced Microcontroller Bus Architecture

(AMBA) bus scheme. For coprocessor support, the instruction and data buses are

exported along with simple handshaking signals. The ARM940T aso has a

‘TrackinglCE’ mode which allows an approach similar to a conventional ICE mode of
operation.

1.3 Processor block diagram

<
External
coproc ¢ J
interface | N . <
» otection
q unit/CP15 » D Cache
< ~ control
| Cache > « ‘
control i AL
4 TA[31:0]
ARMOTDMI -
Processor core 4 A
: DD[31:0]
A v TD[31:0
310, (Integral EmbeddedICE) [
g Data cache
—>
Instruction y
cache
A 4
> < . _
AMBA interface \éVrlte
> < uffer
v

JTAG
BA[31:0] Bcontrol BD[31:0] Interface[4:0]

Figure 1-1 ARM940T block diagram

1-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 2

Programmer’s Model

This chapter describes the programmer’s model for the ARM940T.

2.1 Introduction

The ARM940T cache processor macrocell is built around the ARM9TDMI processor
core. The ARMOTDMI processor core implements ARM Architecture V4T, which
includes the 32-bit ARM instruction set and the 16-bit Thumb instruction set. The ARM
Architecture V4T programmer’s model is described inARM Ar chitecture Reference
Manual, and implementation-specific information is described inAREIOTDMI

Technical Reference Manual.

The ARM940T has two coprocessors, CP14 and CP15, which extend the programmer’:
model. A coprocessor interface allows additional coprocessors to be attached to add
floating point, DSP, graphics acceleration, or other application-specific functionality.

CP14 is described 816 Debug communications channel on page 8-45; CP15 is
described below, in sectidhi? ARM940T CP15 registers.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 2-1

Programmer’s Model

2.2 ARM940T CP15 registers

2.2.1 CPi15register

map summary

Aswith all cached ARM processors, the ARM940T includes coprocessor 15 (CP15) for
system control. The structure of CP15 is very similar to that of other cached ARM
processors such as the ARM720T, and the ARM710T:

Register 0 is read only. All writes to this register are ignored.
Register 7 is write only. Reads of this register are unpredictable.
All other registers are read/write.

A read from or write to a reserved registetUi$DEFINED.

A summary of the register map is giverTable 2-1 CP15 register map:

Table 2-1 CP15 register map

Register Functions

0 1D code

1 Control

2 Cacheable

3 Write buffer control

5 Protection region access permissions
6 Protection region base/ size control
7 Cache operations

9 Cachelock down

15 Test

4,8,10-14 Reserved

2-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

2.2.2 Register0

31

Programmer’s Model

Thisisaread-only register which returns a 32-bit ID code.

24 23 16 15 4 3 0

Implementor

Architecture version Part number Revision

0x41 =A=ARM

0x2 = Architecture 4T 0x940 0x0

2.2.3 Register 1: Control register

This contains the global control bits of the ARM940T. All reserved bits should either
be written with zero or one, as indicated, or written using read-modify-write. The
reserved bits have an UNPREDICTABLE value when read.

All defined bits in the control register are set to zero at reset.

Table 2-2 CP15 register 1
Register Bit Functions
0 Protection unit enable (P)
1 Reserved (should be zero)
2 D Cache enable bit (D)
3.6 Reserved (should be one)
7 Big-end bit (E)
811 Reserved (should be zero)
12 | Cache enable bit (1)
13 Alternate vectors select (V)
14:29 Reserved (should be zero)
30 nFastBus select (nF)
31 Asynchronous clocking select (iA)

* Bit 0 enables the protection unit (S8leapter 4 Caches and Write Buffer)
e Bits 2 and 12 enable the cachsseChapter 4 Caches and Write Buffer)

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 2-3

Programmer’s Model

« Bit 7 selects the endian configuration of the ARM940T. Setting bit 7 selects a
big-endian configuration. Clearing bit 7 selects a little—endian configuration. Bit 7
is cleared during reset.

Bit 13 selects the location of the vector table. During reset, the bit is cleared and the
vector table is located at address 0x00000000. When bit 13 is set, the vector table is
relocated to address 0xffff0000.

Bits 30 and 31 determine the clocking mode of the processor.

Table 2-3 Clocking modes

Clocking mode nFASTBUS ASYNC
FastBus mode 0 0
Reserved 0 1
Synchronous 1 0
Asynchronous 1 1

Clocking modes are discusseddhapter 7 ARM940T Coprocessor Interface.

2-4

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Programmer’s Model

2.2.4 Register 2: Cacheable registers

These registers contain the cacheabl e attributes for the eight areas of memory.
Individual control is provided for the | and D caches.
« If the opcode_2 field = 0, the data-cacheable bits are programmed:
MCR/ MRC p15, 0, Rd, c2,c0,0 Wite/ Read data-cacheable bits
« |If the opcode_2 field = 1 the instruction-cacheable bits are programmed:
MCR/ MRC p15,0,Rd, c2,c0,1 Wite/Read instruction cacheable bits

The format for the cacheable bits in data and instruction regions is the same, and is
given inTable 2-4 Cacheable bits register format. Setting a bit makes an area
cacheable, clearing it makes it non-cacheable. Sed.&l&d\fite buffer operation. All
defined bits in the cacheable registers are set to zero at reset.

Table 2-4 Cacheable bits register format

Register bit Functions

7 Cacheable bit (C_7) for area 7
6 Cacheable hit (C_6) for area 6
5 Cacheable hit (C_5) for area 5
4 Cacheable hit (C_4) for area 4
3 Cacheable bit (C_3) for area 3
2 Cacheable bit (C_2) for area 2
1 Cacheable bit (C_1) for area 1
0 Cacheable hit (C_0) for area0

The use of register 2 is discussedhapter 3 Protection Unit.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-5

Programmer’s Model

2.2.5 Register 3: Write buffer control register

This register contains the write buffer control (bufferable) attribute for the eight areas
of memory. Setting a bit makes an area bufferable, clearing a bit makes an area
unbuffered. For cacheable regions, this determines the type of cache operations. See
4.5.1 Write buffer operation.

MCR/ MRC p15,0,Rd, c3,c0,0 Wite/ Read data-cacheable bits
The opcode 2 field should be 0 as the write buffer only operates on data regions.
Thisonly appliesto the D Cache.

All defined bits in the write buffer control register are set to zero at reset.

Table 2-5 CP15 register map

Register bit Function

7 Write buffer control bit (B_d7) for dataarea 7
6 Write buffer control bit (B_d6) for data area 6
5 Write buffer control bit (B_d5) for dataarea 5
4 Write buffer control bit (B_d4) for data area 4
3 Write buffer control bit (B_d3) for dataarea 3
2 Write buffer control bit (B_d2) for data area 2
1 Write buffer control bit (B_d1) for dataarea 1
0 Write buffer control bit (B_dO) for dataarea 0

The use of register 3isdiscussed in Chapter 3 Protection Unit.

2-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Programmer’s Model

2.2.6 Register 5: Instruction and data space protection registers

These registers contain the access permission bitsfor theinstruction and data protection
regions. The opcode 2 field of aMRC/MCR determines whether theinstruction or data
access permissions are to be programmed:

MCR/ MRC p15, 0, Rd, c5,co0,0 Wite/ Read data space access perm ssions
MCR/ MRC p15,0,Rd, c5,co,1 Wite/ Read instruction space access perm ssions

Each register contains the access permission bits, apn[1:0], for the eight areas of
instruction or data memory.

All defined bits in the protection registers are set to zero at reset.

Table 2-6 Protection space register format

Register bit Function

15:14 ap7[1:0] bits of area7
13:12 ap6[1:0] bits of area 6
11:10 ap5[1:0] bits of area5
9.8 ap4[1:0] bits of area 4
7:6 ap3[1:0] bitsof area 3
54 ap2[1:0] bits of area 2
32 apl1[1:0] bitsof area 1
1.0 ap0[1:0] bits of area 0

The values of the lapn[1:0] and Dapn[1:0] bits define the access permission for each
area of memory. The encoding is shown in Table 2-7 Permission encoding.

Table 2-7 Permission encoding

I/Dapn[1:0] Permission

00 No access

01 Privileged mode access only

10 Privileged mode full access, user mode read only
11 Full access

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-7

Programmer’s Model

The use of register 5 discussed in Chapter 3 Protection Unit.

2.2.7 Register 6: Protection region base / size registers
Thisregister can define 16 programmable regions (eight instruction, eight data) in
memory. These registers define the base and size of each of the eight areas of memory.
Individual control is provided for the instruction and data memory regions. The values
are ignored when the protection unit is disabled.
On reset, only the region enable bit for each region isreset to 0, al other bits are
undefined. At least one instruction and data memory region must be programmed
before the protection unit isenabled including its size, base address, access permissions,
cache and write buffer enables.
The opcode 2 field defines whether the data or instruction protection regions are to be
programmed. The CRm field selects the region number.
Table 2-8 CP15 data protection region registers
ARM instruction Protection region register
MCR/MRC p15, 0, Rd, c6, c7, 0 Data memory region 7
MCR/MRC p15, 0, Rd, c6, c6, 0 Data memory region 6
MCR/MRC p15, 0, Rd, c6, c5, 0 Data memory region 5
MCR/MRC p15, 0, Rd, c6, c4, 0 Data memory region 4
MCR/MRC p15, 0, Rd, c6, c3, 0 Data memory region 3
MCR/MRC p15, 0, Rd, c6, c2, 0 Data memory region 2
MCR/MRC p15, 0, Rd, c6, c1, 0 Data memory region 1
MCR/MRC p15, 0, Rd, c6, c0, 0 Data memory region 0
Table 2-9 CP15 instruction protection region registers
ARM instruction Protection region register
MCR/MRC p15, 0, Rd, c6, c7, 1 Instruction memory region 7
MCR/MRC p15, 0, Rd, c6, c6, 1 Instruction memory region 6
MCR/MRC p15, 0, Rd, c6, c5, 1 Instruction memory region 5
MCR/MRC p15, 0, Rd, c6, c4, 1 Instruction memory region 4
2-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Programmer’s Model

Table 2-9 CP15 instruction protection region registers

ARM instruction Protection region register
MCR/MRC p15, 0, Rd, c6, c3, 1 Instruction memory region 3
MCR/MRC p15, 0, Rd, c6, c2, 1 I nstruction memory region 2
MCR/MRC p15, 0, Rd, c6, cl1, 1 Instruction memory region 1
MCR/MRC p15, 0, Rd, c6, c0, 1 Instruction memory region 0

Each protection region register has the format shown in Table 2-10 CP15 protection
region register format.

Table 2-10 CP15 protection region register format

Register bit Function

31:12 Base address

11:6 Unused

5:1 Areasize

0 Region enable. Reset to disable (0).

The region base must be aligned to an ‘area size’ boundary, where the area size is
defined in its respective protection region register. The behawitD&FINED if this
is not the case.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-9

Programmer’s Model

Example base setting

An 8KB size region must be aligned to an 8KB boundary—bits [31:12] = 0x00002.
Area sizes are given fable 2-11. Register 6 is discussed@mapter 3 Protection Unit.

Table 2-11 Area size encoding

Bit encoding Area size
00000 to 01010 Reserved
01011 4KB
01100 8KB
01101 16KB
01110 32KB
01111 64KB
10000 128KB
10001 256KB
10010 512KB
10011 iMB
10100 2MB
10101 4MB
10110 8MB
10111 16MB
11000 32MB
11001 64MB
11010 128MB
11011 256MB
11100 512MB
11101 1GB
11110 2GB
11111 4GB

2-10

© Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

2.2.8 Register 7

Programmer’s Model

A write to this register allows the caches to be flushed, and an | Cache line to be pre-
fetched. A read from this register returns an UNPREDICTABLE value. A subset of the
Architecture V4 functions, as defined in the ARM Ar chitecture Reference Manual, is
implemented, see Table 2-12 Cache operations through register 7. “Data” means the

value transferred in the Rd.

Table 2-12 Cache operations through register 7

Function Data ARM instruction

Flush | Cache Should be zero MCR p15, 0, Rd, c7, c5,0
Flush | Cache single entry Index/segment MCR p15, 0, Rd, ¢7,¢c5, 1
Flush D Cache Should be zero MCR p15, 0, Rd, c7, c6, 0
Flush D Cache single entry Index/segment MCR p15, 0, Rd, c7, c6, 1
Clean D Cache entry Index/segment MCR p15, 0, Rd, c7, c10, 1
Prefetch | Cacheline Address MCR p15, 0, Rd, ¢7, c13, 1
Clean and Flush D Cache entry Index/segment MCR p15, 0, Rd, c7, c14, 1

Where the required value is an Index/Segment, the format is:

Table 2-13 CP15 register 7 index/segment data format

Rd bit position Function
31:26 Index

25:6 Should be zero
54 Segment

3.0 Should be zero

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved.

2-11

Programmer’s Model

For the | Cache prefetch operation, the dataformat is:

Table 2-14 CP15 Register 7 prefetch address format

Rd bit position Function

316 Address bits 31:6
54 Cache segment
3.0 Should be zero

The use of register 7 is discussed in Chapter 4 Caches and Write Buffer.

2.2.9 Register 9: Programming lockdown registers

These registers allow regions of the cache to be locked down. The format is:

Table 2-15 Programming the lockdown registers

ARM instructions Lockdown register
MCR/MRC p15, 0, Rd, c9, c0, 0 Data lockdown control
MCR/MRC p15, 0, Rd, c9, c0, 1 Instruction lockdown control

The format of the registers, Rd, transferred during this operation, is shown below:
All defined bitsin the lockdown registers are set to zero at reset.

Table 2-16 Lockdown register format

Register bit Function
31 Load hit
30:6 Reserved
5:0 Cache index

Note

The segment number is not specified because cachelinesarelocked down acrossall four
segments (16-word granularity). The use of register 9 isdiscussed in Chapter 4 Caches
and Write Buffer.

2-12 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Programmer’s Model

2.2.10 Register 15: Test register

This register controls features intended for use during silicon production testing only.
The DTRRobin and ITRRobin hits set the respective cachesinto a pseudo round-robin
replacement mode.

All defined bitsin the test register are set to zero at reset.

Table 2-17 CP15 register 15

Register bit Function

1.0 Reserved

2 DTRRobin test mode
3 ITRRobin test mode
314 Reserved

Thisregister isfor production test purposes only, and should not be used for any other
purpose.

2.2.11 Reserved registers

Accessing areserved register is UNPREDICTABLE.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-13

Programmer’s Model

2-14 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 3
Protection Unit

3.1 Introduction

This chapter describes the ARM940T protection unit. This unit allows memory to be
partitioned, and individual attributes to be set for each protection region. Both the
instruction address space and the data address space may be divided into eight regions
of variable size. The protection unit is programmed via CP15 registers 1, 2, 3, 5and 6.
Theinformation in this chapter is organized as follows:

« Enabling the protection unit

e Memory regions

« Overlapping regions.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 3-1

Protection Unit

3.2 Enabling the protection unit

Before the protection unit is enabled, valid protection regions must be programmed. If
they are not programmed, the ARM940T can enter a state that is recoverable only by
reset. Setting bit 0 of the CP15 register 1, the control register, enables the protection
unit.

When the protection unit is disabled, al instruction fetches are non-cacheable and all
data accesses are non-cacheabl e and non-bufferable. This resultsin very poor system
performance, so software should define memory regions and enable the protection unit
soon after reset.

3.3 Memory regions

Both the instruction and data address spaces may be partitioned into a maximum of
eight regions. Each region is specified by:

* abase address

* asize field

» cache and write buffer configuration

« read/write access permissions

The ARM architecture uses constants with code to do address calculations. These are

calledinline literals. For correct operation, any area of memory from which code will
be executed should be defined for both the instruction and data address spaces.

The base address and size properties are programmed via CP15 register 6, the format of
which is shown iffable 3-1 Protection register format:

Table 3-1 Protection register format

Register bit Function

31:12 Base address

11:6 Unused

5:1 Areasize

0 Region enable, reset to disable (0)

3-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

3.3.1 Area size

Protection Unit

Theareasizeisspecified asa5-bit value, encoding arange of valuesfrom 4KB to 4GB.
The encoding is shown below in Table 3-2 Region size encoding:

Table 3-2 Region size encoding

Bit encoding Area size
00000 to 01010 Reserved
01011 4KB
01100 8KB
01101 16KB
01110 32KB
01111 64KB
10000 128KB
10001 256KB
10010 512KB
10011 iMB
10100 2MB
10101 4MB
10110 8vVB
10111 16MB
11000 32MB
11001 64MB
11010 128MB
11011 256MB
11100 512MB
11101 1GB
11110 2GB
11111 4GB

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

Protection Unit

Note

Any value less than ‘01011’ programmedRd[5: 1] will result in unpredictable
behavior.

3.3.2 Base address

The base address defines the start of the memory region. This must be aligned to the
region size. If not, this results WNPREDICTABLE behavior. For example, if a region

size of 8KB is programmed for a given region, the base address must be a multiple of
8KB.

Each region has a number of attributes associated with it. These control how a memory
access is performed when the processor core issues an address which falls within a
given region.

3.3.3 Region attributes

The attributes are:

e cacheable

« bufferable (for data regions only)
» read/write permissions.

This information is specified by programming CP15 registers 2, 3 and Glfapier 2
Programmer’s Modél If an access failsits protection check (for example, if auser
mode application attempts to access a privileged mode access only region), a memory
abort occurs. The processor entersthe abort exception mode, branching to the dataabort
or prefetch abort vector accordingly.

The cacheable and bufferable bitsin CP15 registers 2 and 3 are together used to select
one of four cache and write buffer configurations. Theseare described in Chapter 4and
specifically in 4.5.1 Write buffer operation

3-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Protection Unit

3.4 Overlapping regions

The protection unit may be programmed such that two, or more, regionsoverlap. Inthis

case, a fixed priority scheme applies to determine which region’s attributes should be
applied to the memory access. Attributes for region 7 take highest priority, and region
0 take lowest priority.

A block diagram showing the protection unit is giverrigure 3-1.

Address Comparators
Attribute
Registers
hit
Priori - = -
Encodtgr
Abort Attributes
Address from ARM9TDMI
Figure 3-1 ARM940T protection unit
Consider the following:
Dataregion 2 is programmed to be 4KB in size, starting from address

0x3000 with Dap[1:0]=10
(Privileged mode full access, user mode read only).

Dataregion 1 is programmed to be 16KB in size, starting from address 0x0
with Dap[1:0]=01
(Privileged mode access only).

If the processor attempts to perform a data store to address 0x3010 while in user modke
the address falls into both region 1 and region 2, as shokigune 3-2. As there is a
clash, the attributes associated with region 2 are applied, because of the fixed priority
scheme. In this case, the user is only allowed to perform reads from this region, and s
a data abort occurs.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 3-5

Protection Unit

0X4000 A
Region 2
0X3010 ——— I &
0X3000
Region 1
0X0 v

Figure 3-2 Overlapping memory regions

3.4.1 Background regions

Overlapping regions increase the flexibility of how the eight regions may be mapped
onto physical memory devices in the system. The overlapping properties may also be
used to specify a background region. For example, there may be a number of physical
memory areas sparsely distributed across the 4GB address space. If aprograming error
occurstherefore, it may be possible for the processor to issue an address which does not
fall into any defined region.

If the address issued by the processor does not fall into any of the defined regions, the
ARMOY40T protection unit is hardwired to abort the access. Y ou may override this
behavior by programming region 0 to be a 4GB background region. In thisway, if the
address does not fall into any of the other seven regions, the accessis controlled by the
attributes the user has specified for region 0.

3-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 4
Caches and Write Buffer

4.1 Introduction

To reduce the effective memory access time, the ARM940T employs an Instruction
Cache (I Cache), aData Cache (D Cache) and a Write Buffer. The following sections
describe the features and behavior of each of these blocks. The information in this
chapter is organized as follows:

» Cache architecture
 Instruction cache

« Data cache

* The write buffer

» Cache lock down.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 4-1

Caches and Write Buffer

4.2 Cache architecture

The ARM940T uses:

e a4kKB Instruction cache
» a4KB Data cache

* an 8-word write buffer.

Each cache comprises four, fully associative 1KB segments which support single cycle
reads, and either one or two-cycle writes depending on the sequentiality of the access.

Each cache segment consists of 64 CAM rows to select one of 64 RAM lines of four
words in length. On an | Cache or D Cache access, a segment is selected and the access
address is compared with the 64 TAGs in the CAM. If a match occurs, the cache has
‘hit’. The row line corresponding to the match is then enabled so the data can be
accessed. If none of the row TAGs match, the access has missed. External memory must
be accessed unless the access is a buffered write, in which case the write buffer is used.

If a read access from a cacheable memory region misses in the cache, one of the 64
segment row lines is selected as a target into which to load new data (allocate on
read-miss replacement policy). This selection is performed by a randomly clocked
target row counter. Critical or frequently accessed instructions and/or data may be
locked down in the | Cache and D Cache respectively, by restricting the range of the
target counter. Locked down lines are immune to replacement and remain in the cache
until they are unlocked, or flushed.

Figure 4-2 4KB cache used for ARM940T instruction and data caches shows the 4KB
Instruction Cache or Data Cache architecture:

« Address bits 5 to 4 select one of the four cache segments
« Bits 3 to 2 select a word in the cache line.

The CAM allows 64 address TAGs to be stored for an address that selects a given
segment (64-way associativity). This reduces the chance of an address sequence in, for
example, a program loop that constantly selects the same segment from replacing data
that will be required again in a later iteration of the loop. The overhead for this high
associativity is the need to store a larger TAG, in this case 26 bits pé¥ioee 4-1
ARMO40T Instruction/Data cache address mapping shows how the address space
accesses the 4KB | Cache and 4KB D Cache.

4-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

Two additional bits are used on each segment row line:

« Thevalid bit is set once the cache line has been written with valid data. Only a

valid line can return a hit during a CAM lookup. On reset,
cleared.

all the valid bits are

« Thedirty bit is associated with write operations in the D Cache and is used to
indicate that a cache line contains data that differs from data stored at the address i
external memory (data can only be marked dirty if it resides in a writeback

protection region).

ADDRESS MAPPING -
ALL gL s 6|5 4/3 2[1 0
_ol Word |
InLing
> ggghe ~<— | Word Aligned
i :0] not used
F— Address TAG sored in CAM ————————> SOA[L0] no

Figure 4-1 ARM940T Instruction/Data cache address mapping

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved.

4-3

Caches and Write Buffer

WDATA 32

i

e S
WordO %\\\\
ROW Word1l § ™ ™ ™
SRS ~ Word2
CAM
Tl Word3
‘ ~ ~
- RAM.)
63 17~ -~
A[31:6]
l T Segd Segl] Segd Seg3
A[31.2] — 55

B

32

Figure 4-2 4KB cache used for ARM940T instruction and data caches

4-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

4.3 Instruction cache

The ARM940T has a4KB Instruction Cache (I Cache) comprising 16 bytes (four
words) arranged as four 64-way associative segments.

The | Cache uses the physical address generated by the processor core. It employsa
policy of ‘allocate on read-miss’ and is always reloaded one cache line (four words) at
a time, through the external interface.

The | Cache operation may be enabled or disabled by the CP15 control register, and i
always disabled on reset. When enabled, the | Cache operation is further controlled b
the (GCi)Gated Cacheable data bit stored in the protection unit, which selectively
enables/disables caching for different memory regions. The GCi bits have the
protection unit enable factored into them such that GCi = 1 only when a cacheable
region is accessed AND the protection unit is enabled.

The | Cache and protection unit can be enabled with a single write to the CP15 control
register, although at least one protection region should be programmed before the
protection unit is enabled. Critical or frequently accessed instructions can be locked
down into the | Cache with a granularity of 64 bytes.

Note

Instructions in this lockdown region are immune to replacement, and remain in the
| Cache, although they are not immune to being flushed.

4.3.1 Instruction cache operation

When the | Cache is enabled, it is searched when the processor requests an instructic

Successful cache read:
Data is returned to the core regardless of the state of the GCi bit.

Unsuccessful cache read:
The GCi bit is examined:

If this bit is 1, a cacheable code area and protection unit enabled — a
linefetch of four words is performed. The data is written into a
randomly chosen line in the | Cache.

If this bit is 0, a single-word external access is performed to fetch the
requested instruction. The cache is not updated.

Locked down code is always found on | Cache searches. Lines containing locked dowr
code cannot be selected for replacement during a linefetch.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-5

Caches and Write Buffer

4.3.2 Instruction cache validity

The ARM940T does not support external memory snooping. If, therefore, self-
modifying code is written, the instructions in the | Cache may become invalid.
Similarly, if theinstruction protection regions are reprogrammed, code may exist in the
cache which should now be in a non-cacheable region. In either of these cases, the

I Cache must be flushed by the programmer.

Theentirel Cache can beinvalidated (flushed) by software in one operation, or flushed
one line at atime by writing to the CP15 cache operations register (register 7). The

| Cache is automatically flushed in hardware during reset. The | Cache never needs to
be cleaned asits only source of datais from external memory (the processor only ever
performs reads from the | Cache).

4.3.3 Flushing the entire cache

As shown in Table 2-12 Cache operations through register 7 on page 2-11, the entire |
Cache can be flushed through the use of an MCR instruction. In this case, the contents
of the ARM register transferred to CP15 should be zero. The code segment shown
below may be used. Note that the use of RO is arbitrary:

MV RO, #0; Clear RO

MCR pl5, RO, c¢7,c5, 0O; Flush entire | Cache

Flushing the entire cache also flushes any locked down code. If the | Cache contains
locked down code, the programmer must flush linesindividually, avoiding the lines
used for the locked down code.

4.3.4 Flushing a single cache line

A single cache line may be flushed. To do this, the cache line must be specified in Rd.
Asthe ARM940T | Cache comprises four segments, each with 64 lines, both the
segment and line number index must be specified. The format of Rd for this operation
isshown in Table 4-1 CP15 Register 7:

Table 4-1 CP15 Register 7

Rd bit position Function
31:26 Index

25:6 Should be zero
54 Segment

3.0 Should be zero

4-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

For example, the following code sequence may be used to flush line 25 of segment 2in
the | Cache.
MOV RO, #0x64000000; Specify line 25

ORR RO, RO, #0x20; Specify cache segment 2,
; R0O=0x64000020

MCR p15, 0, RO, c¢7, c5, 1; Flush the | Cache line

4.3.5 Instruction cache enable/disable and reset

Thel Cacheisenabled by setting bit 12 of the CP 15 control register. The cacheisonly
enabled if the protection unit isalready enabled, or isenabled simultaneously. When the
I Cache is enabled, a cacheable read-miss causes lines to be placed in the | Cache.

Thel Cache can be disabled by clearing bit 12 of the CP15 control register. Thishasthe
effect of preventing all | Cache look-ups and linefills, and forces all instruction fetches
to be performed by single external accesses.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-7

Caches and Write Buffer

4.4 Data cache

The ARM940T has a4KB Data Cache (D Cache) comprising 256 lines of 16 bytes
(bytes words), arranged as four 64-way associative segments. The D Cache uses the
physical address generated by the processor core. It employs an allocate on read-miss
policy, and is aways reloaded a cache line (four words) at atime through the external
interface.

The D Cache supports both Write-back (WB) and Write-Through (WT) modes. For data
storesthat hitinthe D Cache, in WB mode the cache lineis updated, and an additional

dirty bit associated with the cache lineis set. Thisindicates that the internal version of
the data differs from that in the external memory. In WT mode, a store that hitsin the

D Cache causes the cache line to be updated but not marked as dirty, as the data store

is also written to the write buffer to keep the external memory consistent. In both WB

and WT modes, a store that missesin the cache is sent to the write buffer. When aline
fetch causesacachelineto be evicted from the D Cache, the dirty bit for thevictimline
isread and if the line contains valid and dirty data, it is written back to the write buffer
before the line fill replacesiit.

The Gated Cacheable Data (GCd) bit and the Gated Write Buffer Control (GBd) bit
control the D Cache behavior. For thisreason the protection unit must be enabled when
the D Cacheis enabled.

4.4.1 Gated cacheable data bit

The GCd hit determines whether data being read should be placed in the D Cache and
used for subsequent reads. Typically, main memory is marked as cacheable to reduce
memory access time and therefore increase system performance. Input/output spaceis
usually marked as non-cacheabl e. For example, if aprocessor ispolling ahardware flag
ininput/output space, it isimportant that the processor isforced to read datadirect from
the external peripheral, and not from a copy of initial data held in the D Cache.

4.4.2 Gated write buffer control bit

The GBd and GCd hits affect writes that both hit and missin the D Cache. For details
of theways these bits are decoded to perform different types of writes, see 4.5 Thewrite
buffer on page 4-12.

48

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

4.4.3 Datacache operation

When the D Cacheisenabled, it is searched when the processor performs adataload or
store. If the cache hits on aload, datais returned to the core regardless of the state of
the GCd hit. If the cache read misses, the GCd bit is examined:

If the GCd bit is 1:
Cacheable data area and protection unit enabled. A linefill of four
words is performed, and the data is written into arandomly chosen
linein the D Cache.

If the GCd bit is 0:
A single or multiple external accessis performed and the cacheis not
updated.

Stores that hit in the cache always update the cache line, regardless of the GCd bit.
Stores that miss the cache use the GCd and GBd bits to determine whether the writeis
buffered (see 4.5 The write buffer on page 4-12).

Non-cacheable load multiples and non-cacheable non-bufferable (NCNB) store
multiples are broken up on 4KB boundaries (the minimum protection region size),
allowing a protection check to be performed in case the LDM or STM crossesinto a
region with different protection properties.

D Cache lock down is supported with 16-word granularity. Data that is locked down
always hits on D Cache searches, and lines containing locked down data cannot be
selected for replacement during alinefill.

Back-to-back stores from adjacent store instructions to the same segment within the D
Cache cause a cache stall, requiring two cycles for the cache write. A burst of stores
from a single store multiple instruction does not cause stalls and allows one write cycle
to be performed. Single back-to-back stores to different segments are also performed
without a stall, allowing one write cycle.

4.4.4 Datacache validity

The ARM940T does not support memory translation so the datain the D Cache can
always be considered valid within the context of the ARM940T. However, if external
memory translation is used, and the mappings are changed, the D Cache datais no
longer consistent with external memory, and the D Cache must be flushed by the
programmer.

The ARM940T does not support external memory snooping. Any shared data memory
spacetherefore, should not be cacheable. Additionally, if the dataprotectionregionsare
reprogrammed, data already in the cache may now be in a non-cacheable region, and
the cache must be flushed.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-9

Caches and Write Buffer

4.4.5 Data cache clean and/or flush

The D Cache has flexible cleaning and flushing utilities. The whole D Cache can be
invalidated (Flush D Cache) in one operation without writing back dirty data. I ndividual
D Cache lines can also be invalidated without writing back any dirty data (Flush D
Cache Single Entry). Cleaning is performed on a line-by-line basis where the datais
only written back through the write buffer when a dirty line is encountered, and the
cleaned line remains in the cache (Clean D Cache Single Entry). Lastly, aline may be
cleaned and flushed in one operation (Clean and Flush D Cache Single Entry).

Note

Flushing the entire D Cache will also flush any locked down code, without resetting the
victim counter range.

The cleaning and flushing utilities are performed using CP15 register 7, in asimilar
manner to that described previoudy in 4.3 Instruction cache on page 4-5 for | Cache.
Theformat of Rd transferred to CP15 isas shown in Table 4-1 CP15 Register 7 on page
4-6 for all register 7 operations. It is usual for the cache to be cleaned before being
flushed, so that external memory is updated with any dirty data.

4-10

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

The code segment bel ow shows how the entire cache can be cleaned and flushed:
MOV Rl, #0; Initialize line counter Rl outer_| oop

MOV RO, #0; Initialize segnent counter, RO inner_|oop
ORR R2, R1, RO; Make segnent and |ine address

MCR p15, 0, R2, c¢7, cl4, 1; Cean and flush that line
ADD RO, RO, #0x10; Increnment segnent counter

CWP RO, #0x40; Conplete all 4 segnents?

BNE i nner _| oop; If not, branch back to inner_I|oop
ADD R1, R1, #0x04000000; Increnment |ine counter

CMVMP R1, #0x0; Conplete all lines?

BNE out er_l ooplf not, branch back to outer_| oop

4.4.6 Data cache enable/disable and reset

The D Cache is automatically disabled and flushed on reset. If the D Cacheis
subsequently disabled, further D Cache searches are prevented. This has the effect of
making all data accesses non-cacheabl e and forcing the ARM940T to perform external
accesses. The write buffer control is still decoded from the GBd and the GCd hit, the
latter being forced to O (non-cacheable) when the D Cache is disabled.

Writing to the CP15 control register bit 2 enablesthe D Cache. Thisshould only bedone
if bit 0isaready set, enabling the protection unit. These two bits can be written to at
the same time, enabling the D Cache and protection unit. The D Cache can be disabled
by clearing bit 2 of the CP15 control register.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-11

Caches and Write Buffer

45 The write buffer

The ARM940T provides awrite buffer to increase system performance. The write
buffer can buffer up to eight words of data and four separate non-sequential addresses.
On reset, the buffer is flushed.

Write buffer behavior is controlled by the protection region attributes of the store being
performed, and the D Cache and protection unit enable status. This control is
represented by the following bits:

GCd bit Gated Cacheable Data (GCd) bit. The GCd bit is generated
from the cacheabl e attribute of the protection region AND
the D Cache enable AND the protection unit enable.

GBd bit Gated Write Buffer Control (GBd) bit. The GBd bit is
generated from the bufferable attribute of the protection
region AND the protection unit enable.

All accesses areinitially non-cacheable and non-bufferabl e until the protection unit has
been programmed and enabled. It follows that the write buffer cannot be used while the
protection unit is disabled.

4-12

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

45.1 Write buffer operation

Caches and Write Buffer

The write buffer is used when the D Cache hits and/or misses, depending on the mode
of operation. Table 4-2 Data write modes shows how the GCd and GBd bits determine
the behavior of the write buffer:

Table 4-2 Data write modes

GCd

GBd Access mode

NCNB Non-cacheable, non-bufferable

NCB Non-cacheable, bufferable

WT Write-through

WB Write-back

NCNB

NCB

WT

wB

Data reads and writes are not cached, and may be externally aborted.
Writes are not buffered; the processor is stalled during the external
access.

Data reads and writes are not cached. Writes are buffered, and so
cannot be externally aborted. Reads can be externally aborted.

If the D Cache hits for this type of access, there has been a
programming error. This error istreated like awrite-through, in that
the D Cachelineis updated and the datais buffered.

Swap instructions operation on datain an NCB region are made to
perform NCNB type accesses and are not buffered.

Searches the D Cache for reads and writes. Reads which missin the
D Cache cause alinefill. Reads which hit in the D Cache do not
perform an external access. All writes are buffered, regardless of
whether they hit or missin the D Cache. Writeswhich hit in the D
Cache update the cache but do not mark the cache line asdirty, asthe
write is also sent to the Write Buffer. Writes cannot be externally
aborted.

Searches the D Cache for reads and writes. Reads which missin the
D Cache cause alinefill. Reads which hit in the D Cache do not
perform an external access. Writes which missin the D Cache are
buffered. Writeswhich hit in the D Cache update the cache line, mark
it asdirty, and do not send the datato the write buffer. D Cache write-
backs are buffered. Writes (write-miss and write-back) may not be
externally aborted.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-13

Caches and Write Buffer

4.5.2 Enabling/disabling the write buffer

Thewrite buffer cannot be directly enabled or disabled. However, setting the properties
of amemory region to be NCNB or disabling the protection unit prevents the write
buffer being used.

4-14 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

46 Cachelock down

To provide a predictable code behavior in embedded systems, a mechanism for locking
code and datainto the Instruction and Data caches respectively isprovided. Thisfeature
may be used, for example, to hold high-priority interrupt routines where there isa hard
real-time constraint, or to hold the co-efficients of aDSPfilter routinein order to reduce
external bus traffic.

Locking down aregion of the | Cache or D Cache is achieved by executing a short
software routine, taking note of these requirements:;

« the program should be held in a non-cached area of memory
» the cache should be enabled and interrupts should be disabled

« software must ensure that the code or data to be locked down is not already in the
cache

« if the caches have been used since the last reset, the software must ensure that tt
cache in question is cleaned, if appropriate, and then flushed.

Lock down in the D Cache is achieved through use of CP15 register 9. | Cache lock
down uses both CP15 registers 7 and 9.

As described id.2 Cache architecture on page 4-2, the ARM940T | and D Caches
comprise four segments, each with 64 lines of four words each. Each segment is 1KB
in size. Lock down can be performed with a granularity of one line across each of the
four segments; the smallest space which may be locked down is 16 words. Lock dowr
starts at line zero, and can continue until 63 of the 64 lines are locked.

4.6.1 Locking down the caches

The procedure for locking down a line in the | Cache and the D Cache are slightly
different. In both cases:

1. The cache must be put into lock down mode by programming register 9.
2. Aline fill must be forced.
3. The corresponding data must be locked in the cache.

If more than one line is to be locked, a software loop must repeat this procedure.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-15

Caches and Write Buffer

Data cache lock down

For the D Cache, the procedureis as follows:

1
2.
3.

6.
7.

Write to CP15 register 9, setting DL=1 and Dindex=0.
Initialize the pointer to the first of the 16 words to be locked.

Execute an LDR from that location. This forces alinefill from that location, and
the resulting four words are captured by the cache.

Increment the pointer by 16 to select cache bank 1.

Execute an LDR from that location. The resulting linefill is captured in cache
bank 2.

Repeat steps 1 to 5 for cache banks 3 and 4.
Write to CP15 register 9, setting DL=0 and Dindex=1.

If there were more datato lock down, at the final step, step 7, the DL bit should be | eft
HIGH, Dindex incremented by 1 line, and the process repeated. The DL bit should only
be set LOW when all the lock down data has been loaded.

4-16

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Caches and Write Buffer

Instruction cache lock down

For the | Cache, this procedureis as follows:

1. Writeto CP15 register 9, setting IL=1 and lindex=0.

2. Initialize the pointer to the first of the sixteen wordsto lock down.
3. Forcealinefill from that location by writing to CP15 register 7.
4. Increment the pointer by 16 to select cache segment 1.
5

Force alinefill from that location by writing to CP15 register 7. The resulting
linefill is captured in segment 1.

6. Repeat for cache segments 3 and 4.
7. Writeto CP15 register 9, setting IL=0 and lindex=1.

If there were more datato lock down, at thefinal step 7, the IL bit should be left HIGH,
lindex increment by 1 line and the processrepeated. ThelL bit should be set LOW when
all the lock down data had been loaded.

Performing lock down in the | Cache involves asimilar sequence of operations, except
that the IL and lindex of CP15 register 9 are accessed.

Theonly significant differencein the sequence of operationsisthat an MCR instruction
must be used to force the linefill inthe | Cache, instead of an LDR, Thisis dueto the
Harvard nature of the processor. During the MCR, thevalue set up inthe pointer register
is output on the instruction address bus, and amemory accessis forced. Asthis misses
in the cache (due to earlier flushing), alinefill occurs.

Therest of the sequence of operationsis exactly the same as for D Cache lock down.

The MCR to perform the | Cache lookup is a CP15 register 7 operation:
MCR p15, 0, Rd, c7, c13, 1

A macro used to lock down code in the instruction cache is given below:
; Subroutine | ock_i _cache
Rl contains start address of code to be | ocked down

The subroutine perforns a | ock-down of instructions in the
| Cache

It first reads the current |ock_down index and then | ocks
down t he nunber of |ines requested.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 4-17

Caches and Write Buffer

; Note that this subroutine nust be located in a non-cacheabl e

; region of menmory in order to work, or these instructions

; thensel ves will be locked into the cache. Interrupts should al so

; be di sabl ed.
; The subroutine should be called via the ‘BL’ instruction.

; This subroutine returns the next free cache line number in RO,

; 0in RO.
; if an error occurs.

lock_i_cache
STMFD R13!, {R1-R3}; save corrupted registers
BICR1, R1, #0x3f; align address to cache line
MRCp15, 0, R3, ¢9, c0, 1; get current instruction cache index
ANDR2, R2, #0x3f; mask off unwanted bits
ADDR3, R2, RO; Check to see if current index
CMP R3, #0x3f; plus line count is greater than 63
; If so, branch to error as
; more lines are being locked down
; than permitted
ORR2, R2, #0x80000000; set lock bit, r2 contains the cache
; line number to lock down
lock_loop
MCR p15, 0, R2, ¢9, c0, 1 ; write lock down register

MCR p15, 0, R1, c7, c13, 1, force line fetch from external
memory

ADD R1, R1, #16; add 4 words to address
MCRp15, 0, R1, c7, c13, 1; force line fetch from external memory
ADDR1, R1, #16; add 4 words to address
MCRp15, 0, R1, c7, c13, 1, force line fetch from external memory
ADDR1, R1, #16; add 4 words to address
MCRp15, 0, R1, c7, c13, 1; force line fetch from external memory
ADDR1, R1, #16; add 4 words to address

ADDR2, R2, #0x1; increment cache line in lock down

; register

SUBSRO, RO, #0x1; decrement line count and set flags
BNElock_loop; if rO! = 0 then branch round

BICRO, R2, #0x80000000; clear lock bit in lockdown register

4-18 © Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

error

Caches and Write Buffer

MCRp15, 0, RO, ¢9, c0, 1; restrict victimcounter to lines
; r0 to 63

LDMFD R13!, {R1-R3}; restore corrupted registers and return
MOVPC, LR, RO contains the first free cache line
; number

LDRRO, =0; make rO0 = 0 to indicate error
LDMFD R13!, {R1-R3}; restore corrupted registers and return
MOVPC, LR

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 4-19

Caches and Write Buffer

4-20 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 5
Clock Modes

5.1 Introduction
This chapter describes the different clock modes available on the ARM940T. The
information in this chapter is organized as follows:
* Overview
+ FastBus mode
e Sychronous mode
e Asynchronous mode.

5.2 Overview

The ARM940T has two main clock inplBE€LK andFCLK, which allow flexible
clocking configurations. There are three different modes of operation, selected using
bits 30 and 31 of CP15 register 1, the control register. The three modes are FastBus,
Synchronous and AsynchronoCL K andCPCLK reflect which clock is currently
selected.

The ARM940T is a pseudo-static design and both clocks can be stopped. Typically
when accessing slow memory systems or peripherals, wait states will be applied using
theBWAIT signal, refer to th@MBA Specification for more details.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 5-1

Clock Modes

5.3 FastBus mode

In this mode of operation the BCLK input is used for controlling the internal
ARMOYTDMI, cache operations and the external memory interface. The FCLK inputis
ignored. This modeistypicaly used in systems with high speed memory.

5.4 Sychronous mode

This modeistypically used in systems with low speed memory. In this mode both the
BCLK and FCLK inputs are used. BCLK is used to control the AMBA memory
interface. FCLK isused to control the internal ARM9TDMI processor core and any
cache operations. FCL K must have a higher frequency and must also be an integer
multiple of BCLK, withaBCLK transition only when FCLK isHIGH. An exampleis
shown in Figure 5-1 Sychronous clocking mode:

O | B
e [TLTUTL UL LU

Figure 5-1 Sychronous clocking mode

BCLK

If the ARM940T performs an external access, for example, acache missor acacheline
fill, the ARM940T will switch to BCLK to perform the access. The delay when
switching from FCLK toBCLK isaminimum of one FCLK phase and a maximum of
one BCLK cycle. An example of the clock switching is shownin Figure 5-2 Switching
from FCLK to BCLK in sychronous mode. The delay when switching from BCLK to
FCLK isamaximum of one FCLK phase.

we [

L

Figure 5-2 Switching from FCLK to BCLK in sychronous mode

Care must betaken if BCLK is stopped by the system so that when BCLK is restarted
it does not violate any of the above restrictions.

5-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Clock Modes

5.5 Asynchronous mode

This mode istypically used in systems with low speed memory. In this mode of
operation both the BCLK and FCLK inputs are used. BCLK isused to control the
AMBA memory interface. FCLK isused to control theinternal ARM9TDMI processor
core and any cache operations. The onerestriction isthat FCLK must have a higher
frequency than BCLK. An exampleis shown in Figure 5-3 Asynchronous clocking

mode:
BCLK J ’ B
\ \ \

o LU L LT

Figure 5-3 Asynchronous clocking mode

If the ARM940T performs an external access, for example, acache missor acacheline
fill, ARM940T will switch to BCLK to perform the access. The delay when switching
from FCLK and BCLK isaminimum of one BCLK cycle, and amaximum of oneand
ahalf BCLK cycles. An example of the clock switching is shown in Figure 5-3
Asynchronous clocking mode. When switching from BCLK to FCLK the minimum
delay isone FCLK cycle and the maximum delay isone and a half FCLK cycles. An
exampl e of the clock switching is shown in Figure 5-4 Switching from FCLK to BCLK
in asynchronous mode;

BCLK

e Y
\

\ \

ECLK \ \

[

I

aiaigigtall
(i B

Figure 5-4 Switching from FCLK to BCLK in asynchronous mode

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 5-3

Clock Modes

5-4

© Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

Chapter 6
Bus Interface Unit

6.1 Introduction

The ARM940T has an Advanced Microprocessor Bus Architecture (AMBA) interface.
This chapter describes the different type of behavior on thisinterface.

6.2 ASB transfers

When accessing the Advanced System bus (ASB), the ARM940T does not use the non-
sequential transfer. Instead, an address-only transfer, followed by a sequential transfer,

isused. This easesthe AMBA decoder design considerably, particularly for high speed
designs.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 6-1

Bus Interface Unit

BCLK

\
1 1 1 1

]

\
1
BTRAN[l;O] — A-TRAN ——S-TRAN ——— A-TRAN —— A-TRAN —— A-TRAN —— A-TRAN —— S-TRAN —— A-TRAN —
\ \ \ \ \ \ \ \
| \ ! ‘ \ I \ \
BA[31:O] — LDR ADDRESS = 0x100 LDR ADDRESS = 0x104
{ } } } } { } }
\ \ \ \ \ \ \ \
| | Lo | | | | Lol
BD[31:0] DATA DATA
\ \ \ \ \ \
\ \ \ \ \ \
\ \ \ \ \

r- £

PWAT www

Figure 6-1 Sequential LDR accesses

Figure 6-1 Sequential LDR accesses showsthe ARM940T ASB activity whentwo LDR
instructions are executed. In this example, the LDR instructions are accessing a non-
cacheable region of memory. As can be seen, there are two sets of address-only
transfers, followed by sequential transfers, even though the two addresses are
sequentialy related.

6.3 Burst accesses

To help implement an efficient memory system, the ARM940T supports burst
transfers. Burst transfers are used for cache linefills, and for buffered writes caused by
cachelinesthat have been evicted or cleaned. In each case, atransfer of four wordswill
take place.

The bus BURST[1:0] indicates when a transfer of four words is going to take place.
BURSTJ1:0] can be factored into both the arbiter and decoder of the AMBA system,
and can be used to prevent a new bus master taking control of the ASB, giving a more
efficient transfer.

6-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Bus Interface Unit

The code of BURST[1:0Q] is shown below:

Table 6-1 BURST[1:0] encoding

BURST Transfer

(1] [0]

0 0 No sequential information available (default)
0 1 Reserved

1 0 Current access is part of a4-word transfer

1 1 Reserved

Figure 6-2 shows a cache linefill followed by a buffered write where a cache line has

been evicted.
\ \ \ \ \ \ \ \ \ \
| |
BURST[l;O] 4‘ ‘ ‘ 10 = 4 Word transfer ‘ ‘ ‘I 10 i 4 Word transfer ‘
1 f f f f f f f f f
\ \ \ \ \ \ \ \ \ \
BTRAN[]_;()] — A-TRAN — S-TRAN — S-TRAN — S-TRAN — S-TRAN — A-TRAN — A-TRAN — S-TRAN — S-TRAN — S-TRAN -
\ | | | | | | | | |
BA[31:0] 44 0x100 ‘ 0x104 l ‘ 0x108 ‘ Oxlqc m 0x1.80 ‘ 0x184 l‘
\ \ \ \ \ \ \ \ \ \
Il oA o
sop), ———— g T]
\ \ \ \ \ \ \ \ \ \
BWRITE \ \ \ \ \ \ \I f f f
T | | | | | | | | |
\ \ \ \ \ \ \ \ \ \
Figure 6-2 Cache line fill
Note

A cacheline can only be evicted from the D Cache when a protection region is marked
as awriteback area, and the dirty bit of the line has been set.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 6-3

Bus Interface Unit

BURST]1:0] only indicates a four-word transfer when either a cache line fill takes
place, or when aline within awriteback protection region has been evicted. In all other
circumstances, BURST(1:0] indicates single word transfers. Thisistrue for LDM and
STM instructions, regardless of the number of registers being transferred.

Cache linefills are performed by reading four words of data aligned to a 4-word
boundary. The word of data aligned onto the 4-word boundary is always fetched first.
The ARM940T supports streaming, so when the addressed word is fetched, it is
transferred to the cache and to the ARMO9TDMI simultaneoudly. If the next accessis
sequential, subsequent words may also be streamed to the ARM9TDMI.

6.4 Buffered writes

The write buffer buffers eight words of data at up to four non-related addresses. The
write buffer is used for memory which is marked as one of the following:

* A non-cacheable, buffered region (NCB)
« A writeback region (WB)
e A write-through region (WT).

Refer to sectiod.5.1 Write buffer operation on page 4-13.

The write buffer imon-merging, so even if two separate buffered external memory

writes are performed which are sequentially related, they will still take two address
locations within the buffer, and are treated as non-sequential accesses. This is also true
for non-word writes to the same word address—in this instance two address and two
data locations would be used within the write buffer.

The write buffer will split any accesses caused by a STM instruction on 4-word
boundaries. Each set of words will use one address location within the write buffer. This
mechanism allows privileges to be rechecked in the instance where the access crosses
a memory region and the memory region privileges may change, therefore protecting
any regions of reserved memory.

Figure 6-3 shows the write buffer behavior for the following code sequence:
MoV R11, #0x10c; set pointer

MoV R12, #0x20c; set pointer

STM A Rl1l, {RO-R5}; store 6 registers

STM A R12, {R6-Rl0}; store 5 registers

6-4

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Bus Interface Unit

In this code, apointer has been set to address 0x10c. A store multiple of six registersis
then executed. Thisinstruction uses six dataregisters, and three addressregisterswithin
the write buffer. A further store to address 0x20c is then executed using the remaining
address location. Theinternal ARM9TDM I isthen stalled until an address register

becomes free.
ARMOTDMI Data Register
DD[3L:0] empy| R6 [R5 | Ra | R3[| R2[R1] Ro » BD[3L0]
A A
ARMYTDMI R - BA[31:0]
DA[3L:0] » 0x20c | 0x120 | 0x110 | Ox10c inégg”rlgr‘\?er
Address Register
Figure 6-3 Write buffer allocation
Note

When acachelineis evicted from the D Cache to the write buffer, it only uses one
address register, as cache lines are aligned to 4-word boundaries.

6.5 LDM operations from a non-cached region

An LDM instruction can transfer all 16 general-purpose registersin one instruction. If
thisinstruction is executed, and the address being accessed liesin a non-cacheable
region of memory, a16-word sequential load will take place onthe AMBA interface. If
the access crosses a 4K B boundary, the access will be split. This allows the region
properties to be checked in the instance where there is atransition between memory

protection regions. Figure 6-4 LDM operation on page 6-6 shows a LDM operation
crossing a4K B boundary.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 6-5

Bus Interface Unit

BCLK

\
| 00 = Word transfer
|

00 = Word 1ransfer
|

BURST[L:0]

I

\
\
Il
T
[
‘

L*44

\ \ \

\ ﬂ \
f f f i f f
[[[[[[

L*44

BTRAN[1:0] *S\Eﬁlfsﬂ mﬁN mN—mN—@ﬁN S\EF S&F Sﬂ—s\ﬂp
| | | | | | | | | |
BA[31:0] ’ ‘ 0x09998 ‘ ‘ 0x0999C ‘ m 0><1Q000 ‘ 0x10004 ‘ 0x10008 ‘
\ \ \ \ \ \ \ \ \ \
v L L Y e D v i
BD[31:0] DATA ——DATA DATA —— DATA ——DATA
\ L 0y \ \ \ \ N
\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \
BWRITE
| | | | | | | | | |
\ \ \ \ \ \ \ \ \ \
Figure 6-4 LDM operation
Note
In Figure 6-4, the BURST[1:0] busisonly indicating word transfers during the LDM
operation.

Asthe LDM transfer takes place on the ASB, the time taken to complete the operation
is dependent on the BCLK frequency, any bus arbitration and the speed of the slave
being accessed. An LDM instruction must therefore be completed before an interrupt
can be serviced.

6-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Bus Interface Unit

6.6 STM operation to a non-cached region

An STM instruction can transfer all 16 general-purpose registersin one instruction. If
thisinstruction is executed, and the address being accessed lies in a non-cacheable
region of memory, a 16-word sequential write will take place on the AMBA interface.
If the access crosses a 4K B boundary, the access will be split. This alows the region
propertiesto be checked in the case where thereisatransition between memory regions.
Figure 6-5 show an STM operation crossing a4KB boundary:

BCLK

00 = Word transfer
Il

BURST[1:0] ’ 00 = Word transfer

\

[

Il

T

\

]
—STRAN-

\—f

\
[
Il
T
\
1
— S-TRAN —

\—f
\

Li=4

\ \ \ \
[[[[
Il Il Il Il
T T T T T
\ \ \ \ \
:
BTRAN[L:0] — S-TRAN — S-TRAN — A-TRAN — A-TRAN — A-TRAN —

] |E
5 Y

)>
i
o
p3
Z
UJ
n
o
p3
=
»
N
Y
b
=

k]
[

\ \ \ \ \
BA[31:0] ’ l\ 0x3998 ‘\ \ 0x399C \ m 0x4000 ‘\ 0x4004 \ 0x4008 ||
\ \ \ \ \ \ \
\ | | | | |
BD[31:0] ﬁ—{ DATA‘ H | | DATA‘ | | H DATA‘ H DATA‘ H DATA‘ [
\ \ \ \ \ \ \ \ \
f f f f f f f f f f
BWRITE | | | | | | | | | |
\ \ \ \ \ \ \ \ \ \
Figure 6-5 STM operation
Note
In Figure 6-5, BURST[1:0] busis only indicating word transfers during the STM
operation.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 6-7

Bus Interface Unit

6.7 External aborts

External abortswill beignored for buffered write operations or for cachelinefills. Inall
other cases, the external abort will cause the abort exception to be taken.

6.8 SWRP instruction

The Swvap (SWP) instruction results in aread operation being followed by awrite
operation. When a SWP instruction is executed on the ARM940T, the behavior is
dependent on the memory region being accessed, and it is up to the programmer to
ensure correct operation.

Typicaly for multi-master operations, the SWP instruction is used for passing
semaphores between the masters. For this type of operation, the semaphore must be
stored in a non-cacheable non-bufferable (NCNB) or non-cacheable bufferable (NCB)
region of memory. When an SWP instruction is executed, any cache line fills will
complete and the write buffer will drain before the SWP instruction memory accesses
take place. During the SWP access, the BL OK signal will go HIGH to indicate that the
two memory accesses are indivisible.

For SWP instructions which access a NCB region of memory, any cache line fills will
complete, and the write buffer will drain before the read takes place. During the read,
BLOK will be driven HIGH. The write operation then takes place as an unbuffered
write. Thisisto alow external aborts to be taken.

When an SWP instruction accesses a cacheable region of memory, the accessis
protected asanormal data access. The BLOK signal will remain LOW throughout this
operation.

If aregion of memory is changed from being cacheable to non-cacheable and the cache
is not flushed, it is possible for a cache hit to occur for the read access of the SWP
instruction. Thisis a programming error and should be avoided.

6-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Bus Interface Unit

6.9 Memory access order

If a simultaneous data access and instruction fetch both cause cache misses, the data
access will take precedence and be completed first. Typically, instructions tend to
require frequent sequential accesses and data requires infrequent non-sequential
accesses. This type of behavior results in more efficient ASB usage, and improves the
chances at streaming line fill words to the ARM9TDMI core.

Figure 6-6 shows how missesin boththe | Cache and D Cacheresult in external access,
with the data access taking placefirst, followed by the instruction fetch.

BCLK

\
T T I T T
BTRAN[L:0] — ATRAN——S-TRAN —— A-TRAN —— A-TRAN —— A-TRAN —— A-TRAN —— S-TRAN —— A-TRAN —
\ \ \ \
| \ I
1
\
|
\
\
I
\
\
|
\

I
10 = opcode fetch

BPROT[L:0]

f
\

0x4098¢

f
-
DAT;
L

}444%

>

BD[31:0]

f
|
BA[31.0] —m
\
\
f
\
\

\

\

BRWTE ——— ‘
\ \

Figure 6-6 Simultaneous cache misses

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 6-9

Bus Interface Unit

6-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 7
ARMO940T Coprocessor Interface

The ARM940T supports the connection of on-chip coprocessors through an external
coprocessor interface. All types of coprocessor instruction are supported. This chapter
describes the ARM940T coprocessor interface:

* Overview

« LDC/STC

« MCR/MRC

e Interlocked MCR
- CDP

« Privileged instructions
» Busy-waiting and interrupts.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-1

ARMO940T Coprocessor Interface

7.1 Overview

The ARM940T coprocessor interface allows specially designed coprocessor hardware
to be attached to the ARM940T. Example uses include:

» Attachment of accelerators for floating point math, DSP, 3-D graphics, encryption
or decryption

e The ARM instruction set supports the connection of 16 coprocessors, numbered 0
to 15, to an ARM processor.

7.1.1 Internal coprocessors

The ARM940T contains two internal coprocessors; CP14 for debug control and CP15
for cache and protection unit control. This means that coprocessors attached externally
to the ARM940T cannot be assigned coprocessor numbers 15 or 14. Some other
coprocessor numbers have been allocated by ARM for internal usage. Please contact
ARM for a full list of reserved coprocessor numbers.

The register map of CP15 is described. WARM940T CP15registerson page 2-2. The
functionality of CP14 is described 8116 Debug communications channel on page
8-45.

7.1.2 External coprocessors

Coprocessors determine which instructions they need to execute by pgiedre

follower in the coprocessor. As each instruction arrives from memory, it enters both the
ARM pipeline and the coprocessor’s pipeline. To avoid a critical path for the instruction
being latched by the coprocessor, the coprocessor pipeline should operate one clock
phase behind the ARM940T pipeline. The ARM940T then informs the coprocessor
when instructions move from decode into execute, and whether the instruction needs to
be executed.

To enable coprocessors to continue execution of coprocessor data operations while the
ARMO940T pipeline is stalled (for instance waiting for a cache line fill to occur), the
coprocessor should monitor a cla€lPCLK, and a clock stall signalCPWAIT. If
NCPWAIT is LOW on the rising edge &PCLK, the ARM940T pipeline is stalled

and the coprocessor pipeline should not advance.

7-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Coprocessor
Pipeline

CPCLK

nCPWAIT

Coproc
Clock

ARM940T Coprocessor Interface

Figure 7-1 ARM940T coprocessor clocking indicates the timing for these signals and
when the coprocessor pipeline should advance its state. In this diagram, Coproc Clock
shows the result of ORing CPCL K with the inverse of N"CPWAIT. Thisisone
technique for generating a clock which reflects the ARM9TDMI pipeline advancing.

| J
iy

B T I B

Figure 7-1 ARM940T coprocessor clocking

Coprocessor instructions

These are three classes of coprocessor instructions:

LDC/STC L oad/Store from/to coprocessor register to memory.
MCR/MRC Register transfer between coprocessor and ARM processor core.
CDP Coprocessor data operation.

The remainder of this chapter gives examples of how a coprocessor should execute
these instruction classes.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 7-3

ARMO940T Coprocessor Interface

7.2

ARM Processor
Pipeline

Coprocessor Pipeline

CPCLK

NCPMREQ

CPID[27:0]

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC

CPDIN[31:0]
sTC

DNMREQ
(ARM940T
Internal)

DMORE
(ARM940T
Internal)

DA[31:0]
(ARM940T
Internal)

LDC/STC

The cycletiming for this operation is shown in Figure 7-2.

L

Interface Signals

I I I |
Execute Execute Execute Execute
<~ Decode > (GO) (GO) (GO) (LAST)
I I I
Execute Execute Execute Execute
<~ Decode —> (GO) (GO) ‘ (GO) (LAST) =

—> | «— Memory —»

<—Memory > <— Write —>

<+— Write —»

I

(

|

\

|

X Ignored

L R e

K A+C

Figure 7-2 ARM940T LDC / STC cycle timing

In this example, four words of data are transferred. The number of wordstransferredis
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

7-4

© Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

ARM940T Coprocessor Interface

Aswith al other instructions, the ARM940T processor core performs the main

instruction decode off the rising edge of the clock during the decode stage. From this,

the core commits to executing the instruction, and so performs an instruction fetch. The
coprocessor’s instruction pipeline should keep in step with the ARM940T by
monitoringCPM REQ, a latched copy of the ARM9TDMI instruction memory request
signalnlMREQ. WhenevenCPMREQ is LOW, an instruction fetch is occurring and
CPID will be updated with fetched instruction in the next cycle. This means that the
instruction currently oi€PID should enter the decode stage of the coprocessor
pipeline, and that the instruction in the decode stage of the coprocessor’s pipeline
should enter its execute stage.

During the execute stage, the condition codes are combined with the flags to determin
whether the instruction should be executed or not. The oGIPRASS is asserted
(HIGH) if the instruction in the execute stage of the coprocessor pipeline is:

e acoprocessor instruction
« has passed its condition codes.

If a coprocessor instruction busy-wai®@PPASSis asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting,
CPPASS:Is driven LOW, and the coprocessor should stop execution of the coprocessot
instruction.

A further outputCPLATECANCEL, is used to cancel a coprocessor instruction when
the instruction preceding it caused a data abort. This is valid on the rising edge of
CPCLK on the cycle after the first execute cycle of the coprocessor instructions.
CPLATECANCEL will only be asserted during the first memory cycle of a
coprocessor instruction’s execution.

On the falling edge of the clock, the ARM940T processor core examines the
coprocessor handshake signald SDE[1:0] or CHSEX[1:0]:

« If a new instruction is entering the execute stage in the next cycle, it examines
CHSDEJ[1:0]

« Ifthe coprocessor instruction currently in execute requires another execute cycle, it
examinesCHSEX[1:0].

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached which can execute the coprocessol
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9TDMI processor core takes the undefined instruction
exception.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-5

ARMO940T Coprocessor Interface

WAIT

GO

LAST

If there is a coprocessor attached that can execute the instruction but
not immediately, the coprocessor handshake signals should be driven
to indicate that the ARMOTDMI processor core should stall until the
coprocessor can catch up. This is known ashimy“wait’ condition.

In this case, the ARMOTDMI processor core loops in an idle state,
waiting for CHSEX[1:0] to be driven to another state, or for an
interrupt to occur.

If CHSEX[1:0] changes to ABSENT, the undefined instruction
exception will be taken.

If CHSEX][1:0] changes to GO or LAST, the instruction will proceed
as described below.

If an interrupt occurs, the ARM9TDMI processor core is forced out
of the busy-wait state. This is indicated to the coprocessor by the
CPPASS signal going LOW. The instruction will be restarted at a
later date and so the coprocessor must not commit to the instruction
(change any of the coprocessor states) until it hasGBBASS

HIGH and when the handshake signals indicate the GO or LAST
condition.

The GO state indicates that the coprocessor can execute the
instruction immediately, and that it requires another cycle of
execution. Both the ARM9TDMI processor core and the coprocessor
must also consider the state of @BPASS signal before actually
committing to the instruction. For an LDC or STC instruction, the
coprocessor instruction should drive the handshake signals with GO
when two or more words still need to be transferred. When only one
further word is required, the coprocessor should drive the handshake
signals with the LAST condition.

In phase 2 of the execute stage, the ARM9TDMI processor core
outputs the address for the LDC/STC. Also in this pHas®) REQ

is driven LOW, indicating to the memory system that a memory
access is required at the data end of the device. The timing for the data
on CPDOUT](31:0] for an LDC andCPDIN[31:0] for an STC is as
shown inFigure 7-2 ARM940T LDC/ STC cycletiming on page 7-4.

An LDC or STC can be used for more than one item of data. If this is
the case, possibly after busy waiting, the coprocessor should drive the
coprocessor handshake signals with a number of GO states, and in the
penultimate cycle LAST. The LAST indicating that the next transfer

is the final one. If there was only one transfer, the sequence would be
[WAIT,[WAIT,...]],LAST.

7-6

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Coprocessor Interface

7.2.1 Coprocessor Handshake Encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are
encoded.

Table 7-1 Handshake encoding

[2:0]
ABSENT 10
WAIT 00
GO 01
LAST 11

If a coprocessor is not attached to the ARM940T, then the handshake signals must be
driven with “10” ABSENT.

If multiple coprocessors are to be attached to the interface, the handshaking signals ce
be combined by ANDing bit 1, and ORing bit 0. In the case of two coprocessors which
have handshaking signal31SDE1, CHSEX1 andCHSDE2, CHSEX2 respectively:

CHSDE[1]<= CHSDE1[1] AND CHSDE2[1]
CHSDE[0]<= CHSDE1{0] OR CHSDE2[0]
CHSEX[1]<= CHSEX1[1] AND CHSEX2[1]
CHSEX[0]<= CHSEX1[0] OR CHSEX2[0]

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-7

ARMO940T Coprocessor Interface

7.3 MCR/MRC

These cycleslook very similar to STC/LDC. An example, with abusy-wait state, is
shown in Figure 7-3.
| |

ARM Processor | Execute Execute ‘ |

_ | I
Pipeline #Dec‘c’de* k(W‘A|T)4 k(LA‘ST)” “Me"‘wry» &Wr‘lte% ‘ ‘
Coprocessor Pipeline |+~ Decode —»| k%ve;;f;)e» ‘ kfli(zcself;» |+~ Memory —» | +— Write —»| ‘
I I I I I I I
Interface Signals |
CPCLK J l ‘ L
I I I I I I I
CPID[31:0] MRe | I I I I I
I I I I I I I
I I I i i i i
NCPMREQ \ | H | I, I \ | | | |
I I I I I I I
CPPASS | | , I I \ | | |
I I I I I I I
I I I I I I I
CPLATECANCEL | | \ ‘ ‘ I | | |
I I I I I I I
CHSDE[1:0] o war | I I I | |
I I I I I I I
| | | | | | |
CHSEX[1:0] | [LAST ‘ Ignored ‘ | | |
I I I I I I I
CPDOUTI[31:0] I | | [\ [[
MCR i i i i | i i
I I I I I I
CPDIN[31:0] /—‘——\
MRC ! ! ! L ! !
I

Figure 7-3 ARM940T MCR / MRC transfer timing

7-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Coprocessor Interface

First nCPM REQ isdriven LOW to denote that the instruction on CPID is entering the
decode stage of the pipeline. This should cause the coprocessor to decode the new
instruction and drive CHSDE[1:0] as required.

Inthenext cyclenCPM REQ isdriven LOW to denotethat theinstruction has now been
issued to the execute stage. If the condition codes pass, and the instructionisto be
executed, the CPPASS signal is driven HIGH and the CHSDE[1:0] handshake busis
examined (it isignored in all other cases).

For any successive execute cycles the CHSEX[1:0] handshake busis examined. When
the LAST condition is observed, the instruction is committed. In the case of an MCR,
the CPDOUT](31:0] busis driven with the register data. In the case of anMRC,
CPDIN[31:0] issampled at the end of the ARM940T memory stage and written to the
destination register during the next cycle.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 7-9

ARMO940T Coprocessor Interface

7.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9TDMI pipeline
during itsfirst decode cycle, the ARM940T pipeline interlock for one or more cycles
until the datais available. An example of thisiswhere the register being transferred is
the destination from a preceding LDR instruction. In this situation the MCR instruction
will enter the decode stage of the coprocessor pipeline, and remain there for a number
of cycles before entering the execute stage. Figure 7-4 gives an example of an
interlocked MCR.

| |
ARM Processor o Decode | | de _» | «_Execute
inali (interlock) ecode (WAIT)
Pipeline ‘ |

‘ \ \
Execute 8 >
(LAST) |+ Memory = <— Write

Execute Execute

<—Decode —»> ‘ <—Decode —» ‘ - (WAIT) —> ‘F (LAST)
\

[
\ \
\ \ \ \
Interface Signals
cPoLK J | | | | |
\ \
| |
\
\
\
\

—» <«—Memory — <«— Write —»>

|

Coprocessor Pipeline

CPID[31:0] | K “{;Sfé’ H

NCPMREQ ,7_\ \ ”7‘ \ U

\ \ \ i \ \ \
CPPASS | | | | , ‘ \ | | |

\ \ \ \ \ \ \
CPLATECANCEL | |] L | |

\ \ \ \ \ \ \
CHSDE[1:0] | ‘ K war | | wAT | X ‘ ‘ ‘ \

i i i i i i i

| | | | | | |
CHSEX[l:O] | x LAST x Ignored X

CPDOUTI[31:0] |
MCR

]

CPDIN[31:0]
MRC

C

.
L
|

Figure 7-4 ARM940T interlocked MCR

7-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Coprocessor Interface

7.5 CDP

CDPs normally execute in asingle cycle. Like all the previous cycles, nNCPMREQ is

driven LOW to signal when an instruction is entering the decode and then the execute

stage of the pipeline:

« If the instruction is to be executed, BEPASS signal is driven HIGH during
phase 2 of the execute stage

« If the coprocessor can execute the instruction immediately it dBM&DE[1:0]
with LAST

« If the instruction requires a busy-wait cycle, the coprocessor dZiM&DE[1:0]
with WAIT and thenCHSEX[1:0] with LAST.

Figure 7-5 ARM940T late cancelled CDP on page 7-12 shows a CDP which is cancelled
due to the previous instruction causing a data abort. The CDP instruction enters the
execute stage of the pipeline, and is signalled to execl@®BASS. In the following
phaseCPLATECANCEL is asserted. This causes the coprocessor to terminate
execution of the CDP instruction, and for it to cause no state changes to the coprocesst

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-11

ARMO940T Coprocessor Interface

LDR with Data Abort

CDP: ARM Processor
Pipeline

CDP: Coprocessor Pipeline

CPCLK

CPCLK

<«—— Execute —»

\
<«——Decode —>

‘<— Decode —» ‘ <+—— Execute —» ‘ -

|
Men‘m Exception
Y Entry Start

<+——Execute —»

|
Exception
Continues

Memory

(LateCancelled) >‘

-~

|

/—Interface Signals 7
| |
|

CPID[31:0]

NCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

IR

CHSEX[1:0]

DAbort
(ARMO940T

Internal)

Figure 7-5 ARM940T late cancelled CDP

7-12

© Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

ARM940T Coprocessor Interface

7.6 Privileged instructions

The coprocessor may restrict certain instructions for use in privileged modes only. To
do this, the coprocessor should track the n"CPTRANS output. Figure 7-6 shows how
NCPTRANS changes after a mode change.

| . . |
Mode Change <— Execute —» k('zc’;ecf:lze) S k(EC);?:T:t:f) —» | «— Memory —» | «— Write —» ‘

CDP: ARM Processor ‘ [I ‘ \ |

<—Decode —» | «— Decode —» | «— Decode —» | «— Execute — | <— Memory —» | <— Write —

\
\
Pipeline ‘ ‘ ‘ ‘
\
\

CDP: Coprocessor Pipeline <+—Decode — <«+—Decode — <+—Decode — <+— Execute —» <+—Memory — <+— Write —>

\ \ \
\
|
\
/
\

CPCLK

L_

-

CPCLK

L_

\ \ \
N
pEp e

C_J
0
vl
b
S

—

CPID[31:0]

NCPMREQ \

NCPTRANS ’ old Mode

New Mode

CPPASS ‘

CPLATECANCEL ‘

CHSDE[1:0] ‘ Ignored X gnored K LasT

\
T
i
|
|
|
|
\
\
\
\
\
\
T
i
|
|
|

CHSEX[1:0] ‘

\ \ \ \ \ \ \
Figure 7-6 ARM940T privileged instructions

Note

Thefirst two CHSDE responses are ignored by the ARM940T sinceit isonly the final
CHSDE response, as the instruction moves from decode into execute, that is relevant.
This allows the coprocessor to change its response as nCPTRANS changes.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-13

ARMO940T Coprocessor Interface

7.7

Busy-waiting and interrupts

The coprocessor is permitted to stall (or ‘busy-wait’) the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the decode stage instruction
should drive WAIT inCHSDE[1:0]. When the instruction concerned enters the execute
stage of the pipeline, the coprocessor may drive WAIT Grt&EX][1:0] for as many
cycles as required to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor may be interrupted while busy-waiting,
causing the instruction to be abandoned. Abandoning execution is done through
CPPASS. The coprocessor should monitor the stat€BPASS during every busy-

wait cycle. If it is HIGH, the instruction should still be executed. If it is LOW, the
instruction should be abandoné&tgure 7-7 shows a busy-waited coprocessor
instruction being abandoned due to an interrupt.

7-14

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Coprocessor Interface

I I I I |

ARM Processor kDec‘ode _, |« Execute_ | Execute | Execute < Execute || Exception | |

Pipeline ‘ (WAIT) (WAIT) (WAIT) Interrupted Entry ‘
| | | | |

Execute Execute Execute Execute

Coprocessor Pipeline |+ Decode = <= waim) | (wAIm) | T waIm) | wWAIT) | " Abandoned” |
\ \ \ \ \ \

\
Interface Signals
CPCLK J ’ ’ l l
| |
\ \

|
\ \ \ \ \
CPID[31:0] X CPInstr | [| [I |

NCPMREQ \

CPPASS [|, ‘ ‘ ‘ \

CPLATECANCEL ! ! \ | | , ! ! !

CHSDE[lZO] | WAIT | X | | | | |
\ \ \ \ \ \ \

CHSEX[1:0] | | X war | X warT | wair | Ignored | |
\ \ \ \ \ \ \
l l l l l l l

CPDOUT[31:0]
MCR | | | | | | |

CPDIN[31:0] | | | | | | |
MRC

Figure 7-7 ARM940T busy waiting and interrupts

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-15

ARMO940T Coprocessor Interface

7-16 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 8

Debug Support

This chapter describes the debug support for the ARM940T, including the

Embedded| CE hardware:

Overview

Debug systems

Debug interface signals

Scan chains and JTAG interface
The JTAG state machine

Test data registers

ARM940T core clocks

Clock switching during debug
Clock switching during test
Determining the core and system state
Exit from debug state

The PC'’s behavior during debug
EmbeddedICE

Vector catching

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

8-1

Debug Support

8.1

Overview

« Single stepping
* Debug communications channel

The debugger’s view of the cache.

Debug support is implemented by using the ARM9TDMI processor core embedded
within the ARM940T. Throughout this chapter therefore, ARMOTDMI refers to this
core.

The ARM940T debug interface is based on IEEE Std. 1149.1- 19@0dard Test
Access Port and Boundary-Scan Architectu@ase refer to this standard for an
explanation of the terms used in this chapter and for adescription of the TAP controller
states.

The ARM940T contains hardware extensions for advanced debugging features. These
are intended to ease the user’s development of application software, operating systems,
and the hardware itself.

The debug extensions allow the core to be stopped by one of the following:
e agiven instruction fetch (breakpoint)

e adata access (watchpoint)

« asynchronously by a debug request.

When this happens, the ARM940T is said to beelnug state. At this point, the core’s
internal state and the system’s external state may be examined. Once examination is
complete, the core and system state may be restored and program execution resumed.

The ARM940T is forced into debug state either by a request on one of the external
debug interface signals, or by an internal functional unit known asnthedded| CE
macrocell. Once in debug state, the core isolates itself from the memory system.
The core can then be examined while all other system activity continues as normal.

The ARM940T internal state is examined via a JTAG-style serial interface, which
allows instructions to be serially inserted into the core’s pipeline without using the
external data bus. Thus, when in debug state, a store-multiple (STM) could be inserted
into the instruction pipeline, and this would export the contents of the ARM9TDMI
registers. This data can be serially shifted out without affecting the rest of the system.

8-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.2 Debug systems

The ARM940T forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARMO940T. Such asystem typically has three parts:

e the debug host

The debug host is a computer, for example a PC, running a software debugger suc
as ADW. The debug host allows the user to issue high-level commands such as “se
breakpoint at location XX”, or “examine the contents of memory from 0x0 to
0x100".

« the protocol converter

The debug host is connected to the ARM940T development system via an interface
(an RS232 interface, for example). The messages broadcast over this connection
must be converted to the interface signals of the ARM940T, and this function is
performed by the protocol converter (for example, Multi-ICE).

* the ARM940T

The ARM940T, with hardware extensions to ease debugging, is the lowest level of
the system. The debug extensions allow the user to stall the core from program
execution, examine its internal state and the state of the memory system, and ther
resume program execution.

Debug Host computer running armsd/ADW

N\

For example, Multi-ICE

Protocol
converter

x\‘m@

Debug | Development system
target containing ARM940T

Figure 8-1 Typical debug system

The debug host and the protocol converter are system dependent. The remainder of th
chapter describes the hardware debug extensions of ARM940T.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-3

Debug Support

8.3 Debug interface signals

There are four primary external signals associated with the debug interface:

« |EBKPT, DEWPT, andEDBGRQ, with which the system requests the
ARM9TDMI to enter debug state

« DBGACK, which the ARM9TDMI uses to flag back to the system when it is in
debug state.

8.3.1 Entry into debug state on breakpoint

Any instruction being fetched for memory is latched at the end of phase 2. To apply a

breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
following phasel. This minimizes the set-up time, giving the EmbeddedICE hardware

an entire phase in which to perform the comparison. This is shokigure 8-2

Breakpoint timing.

External logic, such as additional breakpoint comparators, may be built to extend the
functionality of the EmbeddedICE macrocell. Their output should be applied to the
|EBKPT input. This signal is ORed with the internally generd&eebkpoint signal

before being applied to the ARM9TDMI core control logic.

A breakpointed instruction is allowed to enter the execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All writes from previous
instructions complete as normal.

The decode cycle of the debug entry sequence occurs during the execute cycle of the
breakpointed instruction. The latchBdeakpoint signal forces the processor to start
the debug sequence.

8-4

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

GCLK

IA[31:0]

ID[31:0]

Breakpt

DBGACK

8.3.2

F1

D1

F2

E1

D2

FI

Ddebug

wi

M2

El

Edebug

Debug Support

- |

Figure 8-2 Breakpoint timing

Breakpoints and exceptions

A breakpointed instruction may have a prefetch abort associated with it. If so, the
prefetch abort takes priority and the breakpoint isignored. (If there is a prefetch abort,
instruction data may be invalid; the breakpoint may have been data-dependant, and as
the data may be incorrect, the breakpoint may have been triggered incorrectly.)

SWI and undefined instruction are treated in the same way as any other instruction
which may have a breakpoint set on it. Therefore, the breakpoint takes priority over the
SWI or undefined instruction.

On aninstruction boundary, if there isabreakpointed instruction and aninterrupt (| RQ
or FI1Q), theinterrupt is taken and the breakpointed instruction is discarded. Once the
interrupt has been serviced, the execution flow is returned to the original program.
This meansthat theinstruction which was previously breakpointed isfetched again, and
if the breakpoint is still set, the processor enters the debug state once it reaches the
execute stage of the pipeline.

Once the processor has entered debug state, it isimportant that further interrupts do not
affect the instructions executed. For this reason, as soon as the processor enters the
debug state, interrupts are disabled, although the state of the | and F bitsin the PSR are
not affected.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-5

Debug Support

8.3.3 Watchpoints

Entry into debug state following a watchpointed memory accessisimprecise. Thisis
necessary because of the nature of the pipeline and thetiming of theW atchpoint signal.

After awatchpointed access, the next instruction in the processor pipelineisaways
allowed to complete execution. Where thisinstruction isasingle-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. Thetiming of debug entry following awatchpointed load in this caseis
shown in Figure 8-3 Watchpoint entry with data processing instruction:

Ddebug Edebug
\
F1 D1 E1l M1 V\‘/l
F2 D2 E2 I\A‘Z w2
FDp DI:Dp EDp MDp WDp
|
S 0 o 0 o s P Py Py Y le -
o10) [g N N g B N s N o Y .y
] | Ly Ly | /
\
DA[31:0] l l \ /
| /
DD[31:0] [] |
\

Watchpoint m
| N

DBGACK l I
\

Figure 8-3 Watchpoint entry with data processing instruction

Note

Although instruction 4 enters the execute state, it is not executed, and thereis no state
update as aresult of thisinstruction. Once the debugging session is complete, normal
continuation would involve areturn to instruction 4, the next instruction in the code
seguence which has not yet been executed.

8-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

GCLK

IA[31:1

ID[31.0]

DA[31:0]

DD[31:0]

Watchpoint

DBGACK

Debug Support

Theinstruction following the instruction which generated the watchpoint could have
maodified the PC. If thishas happened, it will not be possibleto determinetheinstruction
which caused thewatchpoint. A timing diagram showing debug entry after awatchpoint
where the next instruction is a branch is shown in Figure 8-4 Watchpoint entry with
branch on page 8-7. However, it is always possible to restart the processor.

Once the processor has entered debug state, the ARM940T core may be interrogated to
determine its state. In the case of awatchpoint, the PC contains avaluethat is six
instructions on from the address of the next instruction to be executed. Therefore, if on
entry to debug state, in ARM state, the instruction:

SUB PC, PC, #0x20

isscanned in and the processor isrestarted. Execution flow would then return to the next
instruction in the code sequence.

Ddebug Edebug
\
Fldr Didr Eldr Midr widr
[R R A R
J ’ ’ ’ wil w2 widr wDp wa w5 L
\
| [l A ” A+d A+8 T] T+4 T+C T+10 H
(LS N L N N /
L1 L] L L L L L L

—
| I

\

Figure 8-4 Watchpoint entry with branch

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-7

Debug Support

8.3.4 Watchpoints and exceptions

If thereisan abort with the dataaccess aswell asawatchpoint, the watchpoint condition
islatched, the exception entry sequence performed, and then the processor enters debug
state. If thereis an interrupt pending, again the ARM940T allows the exception entry
sequence to occur and then enters debug state.

8.3.5 Debug request

A debug request can take place through the Embedded| CE hardware or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
reguest takes priority over any pending interrupt. Following synchronization, the core
will enter debug state when the instruction at the execution stage of the pipeline has
completely finished executing (once memory and write stages of the pipeline have
completed). While waiting for the instruction to finish executing, no more instructions
will be issued to the execute stage of the pipeline.

8.3.6 Actions of the ARM940T in debug state

Once the ARM940T isin debug state, internally both memory interfaces will indicate
internal cycles. Since the rest of the system continues operation, the ARM940T will
ignore aborts and interrupts.

8.4 Scan chains and JTAG interface

There are six scan chains inside the ARM940T. These allow testing, debugging and
programming of the Embedded| CE watchpoint units. The scan chains are controlled by
aJTAG-style Test Access Port (TAP) controller. In addition, support is provided for an
optional seventh scan chain. Thisisintended to be used for an external boundary scan
chain around the pads of apackaged device. The signals provided for thisscan chain are
described later.

The seven scan chains of the ARM940T arereferred to asscan chain0, 1, 2, 3,4, 5and
15.

Note

The ARM940T TAP controller supports 32 scan chains. Scan chains 0 to 15 have been
reserved for use by ARM. Any extension scan chains should be implemented in the
remaining space. The SCREG[4:0] signalsindicate which scan chainis being accessed.

8-8

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

8.5 The JTAG state machine

Theprocessof serial test and debug isbest explained in conjunction withthe JTAG state
machine. Figure 8-5 Test access port (TAP) controller state transitions shows the state

transitions that occur in the TAP controller.

tms=1

tms=0

Debug Support

The state numbers are al so shown on the diagram. These are output from the ARM 940T
onthe TAPSM[3:0] hits.

Test-Logic Reset
OxF

1
Run-Test/Idle
0xC

tms=1

tms=1

Select-DR-Scan
0x7

tms=0

Capture-DR
0x6

tms=0

Exitl-DR
Oox1

tms=0

Select-IR-Scan
Ox4

tms=0

Capture-IR
OxE

tms=0

Shift-IR ’
OxA

tms=0

tms=1

Exitl-IR
0x9

tms=0

0xB

tms=0

tms=1

Exit2-DR Exit2-IR
0x0 0x8
tms=1 tms=1

Update-DR Update-IR

0x5 0xD

tms=1 tms=0 tms=1 tms=0
¢
¢

Figure 8-5 Test access port (TAP) controller state transitions

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

8-9

Debug Support

85.1 Reset

The JTAG interface includes a state-machine controller (the TAP controller). In order
to force the TAP controller into the correct state after power-up of the device, a reset
pulse must be applied to thenTRST signal. If the JTAG interfaceisto beused, nTRST
must be driven LOW, and then HIGH again. If the boundary scan interface is not to be
used, the nTRST input may be tied permanently LOW.

Note

A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected—the boundary scan chain ceilst ddercept any of
the signals passing between the external system and the core.

2. The IDCODE instruction is selected. If the TAP controller is put into the
Shift-DR state and CK is pulsed, the contents of the ID register are clocked out
of TDO.

8.5.2 Pullup resistors

The IEEE 1149.1 standard effectively requifédl andTM S to have internal pullup
resistors. In order to minimize static current draw, these resistonstditted to the
ARM940T. Accordingly, the four inputs to the test interface TtB®, TDI andTM S
signals plusl CK) must all be driven to valid logic levels to achieve normal circuit
operation.

8.5.3 Instruction register

The instruction register is four bits in length. There is no parity bit. The fixed value
loaded into the instruction register during the CAPTURE-IR controller state is 0001.

8-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.5.4 Public instructions

The following public instructions are supported:

Table 8-1 Public instructions

Instruction Binary code
EXTEST 0000
SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
CLAMP 0101
HIGHZ 0111
CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100

Note

The EXTEST, HIGHZ and CLAMPZ instructions for scan chains 0-15 are reserved for
production test purpose only and should not be used.

In the descriptions that follow, TDI and TM S are sampled on the rising edge of TCK
and all output transitions on TDO occur as aresult of the falling edge of TCK.
EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction.
The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register isloaded with the EXTEST instruction, all the scan cells
are placed in their test mode of operation.

Inthe CAPTURE-DR state, inputs from the system logic and outputs from the output
scan cells to the system are captured by the scan cells.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-11

Debug Support

Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan chain
viaTDO, while new test datais shifted in viathe TDI input. Thisdatais applied
immediately to the system logic and system pins.

SCAN_N (0010)
This instruction connects the Scan Path Select register between TDI and TDO.

During the CAPTURE-DR state, the fixed value 10000 is |oaded into the register.

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

Inthe UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO, and remains connected until asubsequent SCAN_N instruction
isissued. On reset, scan chain 3 is selected by default. The scan path select register is
five bits long in thisimplementation, although no finite length is specified.

INTEST (1100)

The selected scan chainis placed in test mode by the INTEST instruction. The INTEST
instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells
are placed in their test mode of operation.

Inthe CAPTURE-DR state, the value of the data applied from the core logic to the
output scan cells, and the value of the data applied from the system logic to the input
scan cellsis captured.

Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan chain
viathe TDO pin, while new test datais shifted in viathe TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register)
between TDI and TDO. The ID register is a 32-hit register that allows the
manufacturer, part number and version of a component to be determined through the
TAP.

When the instruction register is loaded with the IDCODE instruction, all the scan cells
are placed in their normal (system) mode of operation.

Inthe CAPTURE-DR state, thedeviceidentification codeis captured by the D register.

8-12

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

Inthe SHIFT-DR state, the previously captured deviceidentification codeis shifted out
of the ID register viathe TDO pin, while datais shifted in viathe TDI pininto the ID
register.

Inthe UPDATE-DR state, the ID register is unaffected.

BYPASS (1111)

TheBY PASSinstruction connectsa 1-bit shift register (the BY PASSregister) between
TDI and TDO.

When the BY PASS instruction is loaded into the instruction register, all the scan cells
areplaced in their normal (system) mode of operation. Thisinstruction has no effect on
the system pins.

Inthe CAPTURE-DR state, alogic O is captured by the bypass register.

Inthe SHIFT-DR state, test datais shifted into the bypass register via TDI and out via
TDO after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

Note

All unused instruction codes default to the BY PASS instruction.

CLAMP (0101)

Thisinstruction connects a 1-bit shift register (the BY PASS register) between TDI and
TDO.

When the CLAMP instruction isloaded into the instruction register, the state of all the
output signalsis defined by the values previously loaded into the currently loaded scan
chain.

Note

This instruction should only be used when scan chain 0 is the currently selected scan
chain.

Inthe CAPTURE-DR state, alogic O is captured by the bypass register.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-13

Debug Support

In the SHIFT-DR state, test datais shifted into the bypass register viaTDI and out via
TDO after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

Thisinstruction connects a 1-hit shift register (the BY PASS register) between TDI and
TDO.

When the HIGHZ instruction isloaded into the instruction register and scan chain O is
selected, al ARM9TDMI outputs are driven to the high impedance state, and the
externa HIGHZ signal isdriven HIGH. Thisisasif the ARM9TDMI signal TBE had
been driven LOW.

Inthe CAPTURE-DR state, alogic 0 is captured by the bypass register. In the
SHIFT-DR state, test data is shifted into the bypass register viaTDI and out viaTDO
after adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

Thisinstruction connects a 1-bit shift register (the BY PASS register) between TDI and
TDO.

When the CLAMPZ instruction is loaded into the instruction register and scan chain 0
is selected, al the 3-state outputs (as described above) are placed in their inactive state,
but the data supplied to the outputsis derived from the scan cells. The purpose of this
instruction isto ensure that, during production test, each output can be disabled when
itsdatavalueiseither alogic O or logic 1.

Inthe CAPTURE-DR state, alogic 0 is captured by the bypass register.

In the SHIFT-DR state, test datais shifted into the bypass register via TDI and out via
TDO &fter adelay of one TCK cycle. Thefirst bit shifted out will be a zero.

The bypass register is not affected in the UPDATE-DR state.

8-14

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, &l
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on
the rising edge of TCK. Normal system operation is unaffected.

Inthe SHIFT-DR state, the sampled test datais shifted out of the boundary scan viathe
TDO pin, while new datais shifted in viathe TDI pin to preload the boundary scan
parallel input latch. Note that this datais not applied to the system logic or system pins
while the SAMPLE/PRELOAD instruction is active.

Thisinstruction should be used to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

RESTART (0100)

Thisinstructionisused to restart the processor on exit from debug state. The RESTART
instruction connects the bypass register between TDI and TDO and the TAP controller
behaves asif the BY PASS instruction had been loaded. The processor will

resynchronize back to the memory system once the RUN-TEST/ IDLE stateis entered.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-15

Debug Support

8.6 Test dataregisters

The following test data registers may be connected between TDI and TDO:
* Bypass register

* ID code resister

« Instruction register

» Scan chain select register

* Scanchains 0, 1, 2, 4 and 5.

These are described in turn below.

8.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path between
TDI andTDO.
Length 1 bit

Operating mode When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred fidi to TDO in the
SHIFT-DR state with a delay of ofieCK cycle. There is no parallel
output from the bypass register. A logic 0 is loaded from the parallel
input of the bypass register in CAPTURE-DR state.

8-16 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.6.2 ARMO940T device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 hits

Operating mode When the IDCODE instruction is current, the ID register is selected
asthe seria path between TDI and TDO. Thereisno parallel output
from the ID register. The 32-bit identification code is loaded into the
register fromits parallel inputs during the CAPTURE-DR state.

The |EEE format of the ID register is as follows:

Table 8-2 ID code register

8.6.3 Instruction register

Bits Contents
31-28 Version number
27-12 Part number
11-1 Manufacturer identity
0 1

The ARM940T ID code is OxOfOf Of Of .

Purpose Changes the current TAP instruction.

Length 4 bits

Operating mode When in SHIFT-IR state, the instruction register is selected as the
seria path between TDI and TDO.

During the CAPTURE-IR state, the value 0001 binary isloaded into thisregister. This
is shifted out during SHIFT-IR (least significant bit first), while anew instruction is
shifted in (least significant bit first). During the UPDATE-IR state, the value in the
instruction register becomes the current instruction. On reset, IDCODE becomes the
current instruction.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-17

Debug Support

8.6.4 Scan chain select register

Purpose Changes the current active scan chain.
Length 5 hits

Operating mode After SCAN_N has been selected as the current instruction, when in
SHIFT-DR state, the Scan Chain Select register is selected as the
seria path between TDI and TDO.

During the CAPTURE-DR state, the value 10000 binary is loaded into this register.
Thisis shifted out during SHIFT-DR (least significant bit first), while anew valueis
shifted in (least significant bit first).

During the UPDATE-DR state, the value in the register selects a scan chain to become
the currently active scan chain. All further instructions such as INTEST then apply to
that scan chain.

The currently selected scan chain only changes when a SCAN_N instruction is
executed, or areset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chainisreflected on the SCREG[4: 0] output
bus. The TAP controller may be used to drive external scan chains in addition to those
within the ARM940T macrocell. The external scan chain must be assigned a number
and control signalsfor it, and can be derived from SCREG[4:0], IR[3:0],
TAPSM[3:0], TCK1and TCK2.

The list of scan chain numbers allocated by ARM are shown in Table 8-3 Scan chain
number allocation. An external scan chain may take any other number. The serial data
stream applied to the external scan chain is made present on SDINBS. The seria data
back from the scan chain must be presented to the TAP controller on the SDOUTBS
input.

8-18

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

The scan chain present between SDINBS and SDOUTBS will be connected between
TDI and TDO whenever scan chain 3 is selected, or when any of the unassigned scan
chain numbers is selected. If there is more than one external scan chain, a multiplexor
must be built externally to apply the desired scan chain output to SDOUTBS. The
multiplexor can be controlled by decoding SCREG[4:0].

Table 8-3 Scan chain number allocation

Scan Chain Number Function

0 Macrocell scan test

1 Debug

2 EmbeddedlI CE macrocell programming
3 External boundary scan

4 | Cache CAM

5 D Cache CAM

6-14 Reserved

15 Control coprocessor

16-31 Unassigned

8.6.5 Scan chains 0, 1, 2, 3, 4, 5, and 15

These allow serial access to the core logic, and to the Embedded| CE hardware for
programming purposes. Each scan cell can perform two basic functions—capture and
shift.

Scan chain 0

Purpose Primarily for inter-device testing (EXTEST), and testing the
ARM9TDMI core (INTEST). Scan chain 0 is selected via the
SCAN_N instruction.

Length 184 bits

INTEST allows serial testing of the core. The TAP controller must be placed in the
INTEST mode after scan chain 0 has been selected.

During CAPTURE-DR, the current outputs from the core’s logic are captured in the
output cells.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-19

Debug Support

During SHIFT-DR, this captured datais shifted out while anew serial test patternis
scanned in, thus applying known stimuli to the inputs.

During RUN-TEST/IDLE, the coreis clocked. Normally, the TAP controller should
only spend one cyclein RUN-TEST/IDLE. The whole operation may then be repeated.

EXTEST alows inter-device testing, useful for verifying the connections between
devicesinthe design. The TAP controller must be placed in EXTEST mode after scan
chain 0 has been selected.

During CAPTURE-DR, the current inputs to the core’s logic from the system are
captured in the input cells.

During SHIFT-DR, this captured data is shifted out while a new serial test pattern is
scanned in, thus applying known values on the core’s outputs.

During RUN-TEST/IDLE, the core is not clocked.

The operation may then be repeated.

Scan chain 1

Purpose Primarily for debugging. Scan chain 1 is selected via the SCAN_N
TAP controller instruction.

Length 67 bits

This scan chain is 67 bits long, 32 bits for data values, 32 bits for instruction data, and
3 control bits, SYSSPEED, WPTANDBKPT, aBDEN. The three control bits serve
four different purposes:

« Under normal INTEST test conditions, tB®EN signal can be captured and
examined.

< While debugging, the value placed in the SYSSPEED control bit determines
whether the ARM9TDMI synchronizes back to system speed before executing the
instruction.

« After the ARM9TDMI has entered debug state, the first time SYSSPEED is
captured and scanned out, its value tells the debugger whether the core has entered
debug state due to a breakpoint (SYSSPEED LOW), or a watchpoint (SYSSPEED
HIGH). It is possible to have a watchpoint and breakpoint condition occur
simultaneously. When a watchpoint condition occurs the WPTANDBKPT bit must
be examined by the debugger to determine whether the instruction currently in the
execute stage of the pipeline is breakpointed. If so, WPTANDBKPT will be HIGH,
otherwise it will be LOW.

8-20

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

Scan chain 2

Purpose Allows access to the Embedded| CE hardware registers. The order of
the scan chain from TDI to TDO is:
read/write,
register address bits 4 to 0,
data values bits 31 to O.

Length 38 hits

To accessthis seria register, scan chain 2 must first be selected viathe SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.

During SHIFT-DR, adatavaueis shifted into the serial register. Bits 32 to 36 specify
the address of the Embedded| CE hardware register to be accessed.

During UPDATE-DR, thisregister is either read or written depending on the value of it
37 (0 = read).

Scan chain 3
Purpose Allows the ARM9TDMI to control an external boundary scan chain.
Length User defined.

Scan chain 3 is provided so that an optional external boundary scan chain may be
controlled viathe ARMOTDMI. Typically this would be used for a scan chain around
the pad ring of a packaged device. The following control signals are provided and are
generated only when scan chain 3 has been selected. These outputs are inactive at all
other times.

DRIVEBS Thisisused to switch the scan cells from system mode to test mode.
Thissignal is asserted whenever either the INTEST, EXTEST,
CLAMP or CLAMPZ instruction is selected.

PCLKBS Thisisthe update clock, generated in the UPDATE-DR state.
Typically the value scanned into the chain will be transferred to the
cell output on the rising edge of thissignal.

ICAPCLKBS, ECAPCLKBS
These are the capture clocks used to sample data into the scan cells
during INTEST and EXTEST respectively. These clocks are
generated in the CAPTURE-DR state.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-21

Debug Support

SHCLK1BS, SHCLK?2BS
These are non-overlapping clocks generated in the SHIFT-DR state
that are used to clock the master and slave element of the scan cells
respectively. When the state machine is not in the SHIFT-DR state,
both these clocks are LOW.

nHIGHZ This signal may be used to drive the outputs of the scan cellsto the
high impedance state. This signal is driven LOW when the HIGHZ
instruction is loaded into the instruction register, and HIGH at al
other times.

In addition to these control outputs, SDINBS output and SDOUTBS input are also
provided. When an external scan chainisin use, SDOUTBS should be connected to the
serial data output and SDINBS should be connected to the seria datainput.

Scan chain 4

Purpose Allows access to the | Cache CAM array. The scan chain has two
modes of operation.

In addressing mode, the order of the scan chain TDI to TDO is:
CAM index bits5to 0,

segment select bits 1 to O,

20 bits which should be LOW.

In reading mode, the order of the scan chain TDI to TDO is:
valid hit,

dirty bit,

address bits 25to 0.

Length 28 hits

To access this serial register, scan chain 4 must first be selected viathe SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

During SHIFT-DR, a CAM index can be addressed by shifting data into the serial
register in the addressing mode format. Bits 27 to 20 define the cache segment and
CAM index to be accessed.

During UPDATE-DR, the addressed CAM index dataistransferred to the serial register
in the reading mode format.

8-22

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

Scan chain 5

Purpose Allows access to the D cache CAM array. The scan chain has two
modes of operation,

In addressing mode, the order of the scan chain TDI to TDO is.
CAM index bits5to 0,

segment select bits 1 to 0,

20 bits which should be LOW.

In reading mode, the order of the scan chain TDI to TDO is:
vaid hit,

dirty bit,

address bits 25 to 0.

Length 28 hits

To accessthis seria register, scan chain 4 must first be selected viathe SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

During SHIFT-DR, a CAM index can be addressed by shifting data into the serial
register in the addressing mode format. Bits 27 to 20 define the cache segment and
CAM index to be accessed.

During UPDATE-DR, the addressed CAM index dataistransferred to the serial register
in the reading mode format.

Scan chain 15

Purpose Allows access to the control coprocessor registers. The order of the
scan chain TDI to TDO is:
read/write,
address bits5 to 0,

32 hitsregister value.
Length 39 hits

To accessthisserial register, scan chain 15 must first be selected viathe SCAN_N TAP
controller instruction. the TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.

During SHIFT-DR, adatavaueis shifted into the serial register. Bits 32 to 37 specify
the address of the Embedded| CE hardware register to be accessed.

During SHIFT-DR, thisregister is either read or written depending on the value of
bit 38 (0 = read).

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-23

Debug Support

8.7 ARM940T core clocks

The source GCLK applied to theinternal ARM9TDMI busis dependent on the current
selected clock mode and the operation being performed. Refer to Chapter 5 Clock
Modes for further details.

The ARM9TDMI core has two clocks, the memory clock GCLK, and an internally
TCK generated clock, DCLK. During normal operation, the coreisclocked by GCLK,
and internal logic holds DCLK LOW. When the ARM940T isin the debug state, the
coreisclocked by DCLK under control of the TAP state machine, and GCLK may free
run. The selected clock is output on the ECLK signal for use by the external system.

Note
When the core is being debugged and is running from DCLK, nWAIT has no effect.

There are two cases in which the clocks switch—during debugging and during testing.

8-24 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.8 Clock switching during debug

GCLK

DBGACK

DCLK

ECLK

When the ARMOTDMI enters debug state, it must switch from GCLK to DCLK. This
is handled automatically by logic in the ARM9TDMI. On entry to debug state, the
ARMOYTDMI asserts DBGACK inthe HIGH phase of GCLK. The switch between the
two clocks occurs on the next falling edge of GCLK.

H L

Sy | L

Figure 8-6 Clock switching on entry to debug state

The ARMOTDMI isforced to use DCLK asthe primary clock until debugging is
complete. On exit from debug, the core must be allowed to synchronize back to GCLK.
This must be done in the following sequence. The final instruction of the debug
sequence must be shifted into the instruction data bus scan chain, and clocked in by
asserting DCLK. At this point, RESTART must be clocked into the TAP controller
register.

The ARMOTDMI will now automatically resynchronize back to GCLK whenthe TAP
controller enters to the RUN-TEST/IDLE mode and start fetching instructions from
memory at GCLK speed. For more information, refer to 8.11 Exit from debug state.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-25

Debug Support

8.9 Clock switching during test

When under serial test conditions - when test patterns are being applied to the core
through the JTAG interface - the ARM9TDMI must be clocked using DCLK . Entry
into test is less automati ¢ than debug and some care must be taken.

On theway into test GCLK must be held LOW. The TAP controller can now be used
to perform serial testing on the ARMO9TDMI. If scan chain 0 and INTEST are selected,
DCLK isgenerated while the state machineisin RUN-TEST/IDLE state.

During EXTEST, DCLK is nhot generated.

On exit fromtest, RESTART must be selected asthe TAP controller instruction. When
thisisdone, GCLK can be allowed to resume. After INTEST testing, care should be
taken to ensurethat the coreisin asensibl e state before switching back. The safest way
to do thisisto either select RESTART and then cause a system reset, or to insert

MOV PC, #0 into the instruction pipeline before switching back.

8-26 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.10 Determining the core and system state

When the ARM9TDM I isin debug state, the core and system state may be examined.
Thisis done by forcing load and store multiples into the pipeline.

Before the core and system state can be examined, the debugger must first determine

whether the processor was in Thumb or ARM state when it entered debug. Thisis

achieved by examining bit 4 of the EmbeddedICE hardware’s Debug Status register. |
this is HIGH, the core was in Thumb state when it entered debug.

8.10.1 Determining the core state

If the processor has entered debug state from Thumb state, the simplest course of actic
is for the debugger to force the core back into ARM state. Once this is done, the
debugger can always execute the same sequence of instructions to determine the
processor’s state.

To force the processor into ARM state, the following sequence of Thumb instructions
should be executed on the core:

STR RO, [R1] ; Save RO before use

MOV RO, PC ; Copy PCinto R1

STR RO, [R1] ; Save the PCin Rl

BX PC ; Junp into ARM state
MOV R8, R8 ;. NOP
MOV R8, R8 ;. NOP

The above use of RO as the base register for the stores is for illustration only—any
register could be used.

Since all Thumb instructions are only 16 bits long, the simplest course of action when
shifting them into scan chain 1 is to repeat the instruction twice on the instruction data
bus bits. For example, the encoding8ir RO is 0x4700. If 0x47004700 is shifted into

the 32 bits of the instruction data bus of scan chain 1, then the debugger does not hay
to keep track of from which half of the bus the processor expects to read instructions.

From this point on, the processor state can be determined by the sequences of ARM
instructions described below.

Once the processor is in ARM state, typically the first instruction executed would be:
STM A RO, {RO-R15}

This causes the contents of the registers to be made visible on the data bus. These valt
can then be sampled and shifted out.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-27

Debug Support

After determining the values in the current bank of registers, it may be desirable to
access banked registers. This can only be done by changing mode. Normally, a mode
change may only occur if the coreis already in a privileged mode. However, whilein
debug state, a mode change from any mode into any other mode may occur. Note that
the debugger must restore the original mode before exiting debug state.

For example, assume that the debugger has been asked to return the state of the USER
mode and FIQ mode registers, and debug state was entered in supervisor mode.

The instruction sequence could be:
STM A RO, {RO-R15} ; Save current registers
MRS RO, CPSR

STR RO, R1 ; Save CPSR to determine current node
BIC RO, Ox1F ; Clear node bits

ORR RO, 0x10 ; Sel ect USER node

MSR CPSR, RO ; Enter USER node

STM A RO, {R13-R14} ; Save registers not previously visible
ORR RO, 0x01 ; Sel ect FIQ node

MSR CPSR, RO ; Enter FIQ node

STM A R1, {R8-R14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower

than system speed since between each core clock, 67 scan clocks occur in order to shift
inaninstruction, or shift out data. Executing instructions more slowly than usual isfine

for accessing the core’s state since the ARM9TDMI is fully static. However, this same
method cannot be used for determining the state of the rest of the system.

While in debug state, only the following instructions may be inserted into the
instruction pipeline for execution:

« all data processing operations

« all load, store, load multiple and store multiple instructions

+ MSR and MRS.

8-28

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.10.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously. Thus, the ARMOTDMI must be forced to
synchronize back to system speed. The 33rd bit of scan chain 1, SY SSPEED, controls
this.

A legal debug instruction may be placed in theinstruction data bus of scan chain 1 with
bit 33 (the SY SSPEED bit) LOW. Thisinstruction will then be executed at debug speed.
To execute an instruction at system speed, aNOP (such as MOV R0, R0) must be
scanned in as the next instruction with bit 33 set HIGH.

After the system speed instructions have been scanned into the instruction data bus and
clocked into the pipeline, the RESTART instruction must be loaded into the TAP
controller. Thiswill cause the ARM9TDMI to automatically resynchronize back to
GCLK when the TAP controller enters RUN-TEST/IDLE state, and execute the
instruction at system speed. Debug state will be re-entered once the instruction
completes execution, when the processor will switch itself back to theinternally
generated DCL K. When the instruction has completed, DBGACK will be HIGH. At
this point INTEST can be selected in the TAP controller, and debugging can resume.

Note

When preforming system-speed accesses, the caches will operate asusual, for example,
performing cache lookups, linefills and evicting lines. To prevent the contents of the
caches being altered, it is necessary to disable them first.

To determine whether a system speed instruction has compl eted, the debugger must

look at SY SCOMP (bit 3 of the debug status register). To access memory, the

ARM9YTDMI must access memory through the data businterface, asthisaccess may be

stalled indefinitely by nWAIT. The only way to determine whether the memory access

has completed, is to examine the SYSCOMP bit—when this bit is HIGH the instruction
has completed.

By the use of system speed load multiples and debug store multiples, the state of the
system’s memory can be passed to the debug host.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-29

Debug Support

8.10.3 Instructions which may have the SYSSPEED bit set

The only valid instructions on which to set this bit are:
* loads

* stores

* load multiple

e store multiple.

When the ARM940T returns to debug state after a system speed access, the SYSSPEED
bit is set HIGH.

8-30 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.11 Exit from debug state

Leaving debug state involves restoring the ARM940T internal state, causing a branch
tothe next instruction to be executed, and synchronizing back to GCLK . After restoring
theinternal state, a branch instruction must be loaded into the pipeline. For details on
calculating the branch, see 8.12 The PC’s behavior during debag page 8-34.

Bit 33 of scan chain 1 isused to force the ARM940T to resynchronize back to GCLK.
The penultimateinstruction in the debug sequenceisabranch to theinstruction at which
execution isto resume. Thisisscanned in with bit 33 set LOW. The coreisthen clocked
to load the branch into the pipeline. The final instruction to be scanned inisan NOP
(suchasMOV RO, RO), with bit 33 set HIGH. The coreis then clocked to load this
instruction into the pipeline, and the RESTART instruction is selected in the TAP
controller. When the state machine enters the RUN-TEST/IDLE state, the scan chain
will revert back to system mode and clock resynchronization to GCLK will occur
within the ARM940T. Normal operation will then resume, with instructions being
fetched from memory.

Thedelay, until the state machineisin RUN-TEST/IDLE state, allows conditionsto be
set up in other devices in a multiprocessor system without taking immediate effect.
When RUN-TEST/IDLE state is subsequently entered, all the processors resume
operation simultaneoudly.

The function of DBGACK isto tell the rest of the system when the ARM940T isin
debug state. This can be used to inhibit peripherals such as watchdog timers that have
real time characteristics. DBGACK can a so be used to mask out memory accesses that
are caused by the debugging process. For example, when the ARM940T enters debug
state after a breakpoint, the instruction pipeline contains the breakpointed instruction
plus two other instructions which have been prefetched. On entry to debug state, the
pipelineis flushed. On exit from debug state, the pipeline must then be refilled toits
previous state. Because of the debugging process, more memory accesses occur than
would normally be expected. Any system peripheral that may be sensitive to the number
of memory accesses can be inhibited through the use of DBGACK.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-31

Debug Support

For example, consider aperipheral that simply countsthe number of instruction fetches.
This device should return the same answer after a program has run both with and
without debugging. Figure 8-7 Debug exit sequence shows the behavior of the
ARMO940T on exit from debug state.

e [|| PﬁﬁﬁﬁﬁwﬁJ
el = 3

|
IA[31:1] ’ l o | e UMI l
ID[31:0] D_D_D%Di
DBGACK \,l

Figure 8-7 Debug exit sequence

It can be seen in Figure 8-8 Debug state entry that the final instruction fetch occursin
the cycle after DBGACK goes HIGH, and thisis the point at which the instruction
counter should bedisabled. Figure 8-7 Debug exit sequence showsthat thefirst memory
access that the instruction fetch that the counter has not seen before occursin the cycle
after DBGACK goes LOW, and so thisisthe point at which the counter should be re-
enabled.

8-32

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

e L[] UTJJEL
IA[3L:1 E

)
oo] HHHH]?LE
IEBKPT (ﬂ

M

DBGACK
ory Cycles l Internal Cycles

L=

-

INMREQ
ISEQ

Mel

— L34 - = =

Figure 8-8 Debug state entry

Note that when a system speed access from debug state occurs, the ARM940T
temporarily dropsout of debug state, and DBGACK goesLOW. If there are peripherals
that are sensitive to the number of memory accesses, they must beled to believethat the
ARMOA0T isstill in debug state. By programming the Embedded| CE hardware control
register, the value of DBGACK can be forced HIGH.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-33

Debug Support

8.12 The PC'’s behavior during debug

8.12.1 Breakpoint

8.12.2 Watchpoint

To force the ARM940T to branch back to the place at which program flow was
interrupted by debug, the debugger must keep track of what happens to the PC. There
are six cases:

* breakpoint

e watchpoint

« watchpoint when another exception occurs

« watchpoint when the next instruction is breakpoint
« debug request

» system speed accesses.

These are explained below:

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address. The normal way to exit from debug state after a
breakpoint is to remove the breakpoint, and branch back to the previously breakpointed
address.

For example, if the ARM940T entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of —7 addresses must
occur (four for debug entry, plus two for the instructions, plus one for the final branch).
The following sequence shows ARM instructions scanned into scan chain 1. This is
MSB first, and so the first digit represents the value to be scanned into the SYSSPEED
bit, followed by the instruction.

0 EAFFFFF9 ; B -7 addresses (two’s complement)

1 E1A00000 ; NOP (MOV RO, R0), SYSSPEED bit is set

For small branches, the final branch could be replaced with a subtract with the PC as
the destination (SUB PC, PC, #28 for ARM code in the above example).

Returning to the program execution after entering debug statefrom awatchpoint isdone
in the same way as the procedure described in 8.12.1 Breakpoint above. Debug entry
adds four addressesto the PC, and every instruction adds one address. The differenceis
that the instruction after that which caused the watchpoint has executed. The next
instruction after that is the return instruction.

8-34

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.12.3 Watchpoint with another exception

If awatchpoint access simultaneously causes a data abort, the ARM940T will enter
debug state in abort mode. Entry into debug is held off until the core has changed into
abort mode, and fetched the instruction from the abort vector.

A similar sequenceisfollowed when an interrupt, or any other exception, occursduring
awatchpointed memory access. The ARM940T will enter debug state in the

exception’s mode, and the debugger must check to see whether this happened. The
debugger can deduce whether an exception occurred by looking at the current and
previous mode (in the CPSR and SPSR), and the value of the PC. If an exception did
take place, the user should be given the choice of whether to service the exception
before debugging.

For example, suppose an abort occurred on a watchpoint access and ten instructions h
been executed to determine this, the following sequence could be used to return
program execution.

0 EAFFFFFC ; B —15 addresses (two’s complement)

1 E1A00000 ; NOP (MOV RO, RO), SYSSPEED bit is set

Thiswill forceabranch back to the abort vector, causing theinstructionsat that location
to be refetched and executed. Note that after the abort service routine, the instruction
that caused the abort and watchpoint will be re-executed. Thiswill cause the watchpoint
to be generated and the ARM940T will enter debug state again.

8.12.4 Watchpoint and breakpoint

It is possible to have awatchpoint and breakpoint condition occurring simultaneously.
This can happen when theinstruction causes awatchpoint, and thefollowing instruction
has been breakpointed. In this instance, the PC will have been advanced by four
addresses, but due to the breakpointed instruction not being executed, theinstruction to
be executed upon exit from debug state is at PC -5 addresses.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-35

Debug Support

8.12.5 Debug request

Entry into debug state viaadebug request is similar to a breakpoint. However, unlike a
breakpoint, the last instruction in the execution stage of the pipeline will have
completed execution and so must not be refetched on exit from debug state. Therefore,
entry to debug state adds three addresses to the PC, and every instruction executed in
debug state adds one.

For example, the following sequence handles a situation in which the user has invoked
a debug request, and decides to return to program execution immediately:

0 EAFFFFFD ; B -5 addresses (2's complement)
1 E1A00000 ; NOP (MOV RO, R0O), SYSSPEED bit is set

This restores the PC, and restarts the program from the next instruction.

8.12.6 System speed accesses

If asystem speed access is performed during debug state, the value of the PC is
increased by five addresses. Since system speed instructions accessthe memory system,
it is possiblefor abortsto take place. If an abort occurs during a system speed memory
access, the ARM940T enters abort mode before returning to debug state.

Thisissimilar to an aborted watchpoint. However, this occurrence is more difficult to
resolve, because the abort was not caused by an instruction in the main program, and
the PC does not point to the instruction that caused the abort. An abort handler usually
looks at the PC to determine the instruction that caused the abort, and hence the abort
address. In this case, the value of the PC isinvalid, but the debugger will know the
address of the location that was being accessed. Thus the debugger can be written to
help the abort handler fix the memory system.

8.12.7 Summary of return address calculations

The calculation of the branch return address can be summarized as;
-(4+ N +59)

where N isthe number of debug speed instructions executed (including the final
branch), and Sis the number of system speed instructions executed.

8-36

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.13 EmbeddedICE

The EmbeddedI CE hardwareisintegral to the ARM9TDMI processor core. It hastwo
hardware breakpoint/watchpoint units that may be configured to monitor either the
instruction memory interface or the data memory interface. Each watchpoint unit set
has a value and mask register, with an address, data and control field.

Becausethe ARM9TDM I processor core has aHarvard Architecture, the user needsto

specify whether the watchpoint registers examine the instruction interface or the data
interface. Thisis specified by bit 3inthe control field of the watchpoint register. When

bit 3 is set, the datainterface is examined. When it is clear, the instruction interfaceis
examined. There can be no “don’t care” case for this bit because the comparators cann
compare the values on both interfaces simultaneously. Therefore, bit 3 of the control
mask registers is always clear and cannot be programmed HIGH. Bit 3 also determine:
whether thd BREAKPT or DBREAKPT signal should be driven by the result of the
comparison, as shown Figure 8-9 ARM940T Embedded| CE overview on page 8-39.

The ARM940T EmbeddedICE unit has logic that allows single stepping through code.
This reduces the work required by an external debugger, and removes the need to flus
the instruction cache. There is also hardware to allow efficient trapping of accesses tc
the exception vectors. These blocks of logic free the two general-purpose hardware
breakpoint/watchpoint units for use by the programmer or debugger.

The general arrangement of the EmbeddedICE hardware is shé&iguie 8-9
ARM940T EmbeddedI CE overview on page 8-39.

8.13.1 Register map
The EmbeddedICE register map is shown below:

Table 8-4 ARM940T EmbeddedICE register map

Address Width Function

00000 4 Debug control

00001 5 Debug status

00010 8 Vector catch control

00100 6 Debug comms control
00101 32 Debug comms data

01000 32 Watchpoint 0 address value
01001 32 Watchpoint 0 address mask

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-37

Debug Support

Table 8-4 ARM940T EmbeddedICE register map (continued)

Address Width Function

01010 32 Watchpoint O data value
01011 32 Watchpoint 0 data mask
01100 9 Watchpoint O control value
01101 8 Watchpoint O control mask
10000 32 Weatchpoint 1 address value
10001 32 Weatchpoint 1 address mask
10010 32 Watchpoint 1 data value
10011 32 Watchpoint 1 data mask
10100 9 Watchpoint 1 control value
10101 8 Watchpoint 1 control mask

8-38 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

Scan Chain
Register
et R/W Update
4
5/ Address
Address / Decoder
0 Enable
31 >
0 0 o
o o o .
2 = | Control = Breakpoint
e e D Control =3 —
32 o 5 » o Rangeout>
Data / % % ID [31:0] %
DD [31:0]
>
> > 7l >
g 5y) 5y
3 S 1A [31:0] S
a A DA [31:0] A
0
Value Mask Comparator
Registers
TDI TDO

Figure 8-9 ARM940T EmbeddedICE overview

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-39

Debug Support

8.13.2 Control registers

The format of the control registers depends on how bit 3 is programmed. If bit 3is
programmed to be 1, the breakpoint comparators examine the data address, data and
control signals.

In this case, the format of the register is as shown in Figure 8-10 Watchpoint control
register for data comparison.

Note
Bit 8 and bit 3 cannot be masked.

8 7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN EXTERN DnTRANS | 1 DMAS[1] DMASI0] DnRW

Figure 8-10 Watchpoint control register for data comparison

The bits have the following functions:

Table 8-5 Watchpoint control register for data comparison bit functions

Bit Function

DnRW Compares against the data not read/write signal from the corein order to
detect the direction of the data bus activity. nRW is 0 for aread, and 1 for a
write

DMAS[1:0] Comparesagainst the DMAS[1:0] signal from the core in order to detect the
size of the data bus activity.

DnTRANS Compares against the data not trandate signal from the core in order to
determine between a user mode (DnTRANS = 0) data transfer, and a
privileged mode (DNTRANS = 1) transfer.

EXTERN Is an external input into the Embedded| CE hardware that allows the
watchpoint to be dependent upon some external condition. The EXTERN
input for watchpoint 0 islabelled EXTERNO, and the EXTERN input for
watchpoint 1 islabelled EXTERN1.

8-40 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

8

Debug Support

Table 8-5 Watchpoint control register for data comparison bit functions

Bit

Function

CHAIN

Can be connected to chain output of another watchpoint in order to

implement, for example, debugger requests of the form “breakpoint on
address YYY only when in process XXX".

In the ARM940T EmbeddedICE hardware, tR#HAINOUT output of
watchpoint 1 is connected to tB#1AIN input of watchpoint 0. The
CHAINOUT output is derived from a latch; the address/control field
comparator drives the write enable for the latch and the input to the latch is
the value of the data field comparator. TWH#AINOUT latch is cleared

when the control value register is written or windrRST is LOW.

RANGE

Can be connected to the range output of another watchpoint register. In the
ARMO940T EmbeddedICE hardware, tRANGEOUT output of

watchpoint 1 is connected to tRANGE input of watchpoint 0. This allows
two watchpoints to be coupled for detecting conditions that occur
simultaneously—for example, for range-checking.

ENABLE

If a watchpoint match occurs, thBREAK PT of DBREAKPT signal will
only be asserted when the ENABLE bit is set. This bit only exists in the
value register; it cannot be masked.

If bit 3 of the control register is programmed to O, the comparators will examine the
instruction address, instruction data and instruction control buses. In this case bits[1:0]

of the mask register must be set to “don’t care” (programmed to 11). The format of the
register in this case is as showrFigure 8-11 Watchpoint control register for

instruction comparison.

5 4 3 2 1 0

ENABLE

RANGE

CHAIN

EXTERN INTRANS 0 ITBIT X X

Figure 8-11 Watchpoint control register for instruction comparison

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-41

Debug Support

Table 8-6 Watchpoint control register for instruction comparison bit functions

Bit

Function

ITBIT

Compares against the Thumb state signal from the core to determine between a
Thumb (ITBIT =1) instruction fetch or an ARM (ITBIT = 0) fetch.

INTRANS

Compares against the not trang ate signal from the core in order to determine
between auser mode (InTRANS = 0) instruction fetch, and a privileged mode
(INTRANS = 1) fetch.

EXTERN

Isan external input into the Embedded| CE hardware that allows the watchpoint
to be dependent upon some external condition. The EXTERN input for
watchpoint O islabelled EXTERNO, and the EXTERN input for watchpoint 1
islabelled EXTERNL1.

CHAIN

Can be connected to chain output of another watchpoint in order to implement,

for example, debugger requests of the form “breakpoint on address YYY only
when in process XXX".

In the ARM940T EmbeddedICE hardware, te#HAINOUT output of

watchpoint 1 is connected to t@#1AIN input of watchpoint 0. The

CHAINOUT output is derived from a latch; the address/control field
comparator drives the write enable for the latch, and the input to the latch is the
value of the data field comparator. TBElAINOUT latch is cleared when the
control value register is written, or whemRST is LOW.

RANGE

Can be connected to the range output of another watchpoint register. In the
ARMO940T EmbeddedICE hardware, tRANGEOUT output of watchpoint

1 is connected to tHRANGE input of watchpoint 0. This allows two

watchpoints to be coupled for detecting conditions that occur simultaneously—
for example, for range-checking.

ENABLE

If a watchpoint match occurs, thBREAKPT of DBREAKPT signal will
only be asserted when the ENABLE bit is set. This bit only exists in the value
register; it cannot be masked.

8-42

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.13.3 Debug control register

The ARM940T debug control register is four bits wide and is shown in Figure 8-12
Debug control register. Bit 3 controls the single-step hardware. Thisis explained in
more detail in 8.15 Single stepping on page 8-44.

3 2 1 0

Single step INTDIS DBGRQ DBGACK

Figure 8-12 Debug control register

8.13.4 Debug status register

The debug status register isfive bitswide. If it is accessed for awrite (with the read/
write bit set HIGH), the status bits are written. If it is accessed for aread (with the read/
write bit LOW), the status bits are read.

4 3 2 1 0

ITBIT NnMREQ IFEN DBGRQ DBGACK

Figure 8-13 Debug status register
The function of each bit in this register is as follows:

Bitsland 0 Allow the values on the synchronized versions of DBGRQ and
DBGACK to be read.

Bit 2 Allowsthe state of the coreinterrupt enable signal (I FEN) to beread.
Sincethe capture clock for the scan chain may be asynchronousto the
processor clock, the DBGACK output from the core is synchronized
before being used to generate the IFEN status bit.

Bit 3 Allows the state of the nM REQ signal from the core (synchronized
to TCK) to be read. This allows the debugger to determine that a
memory access from the debug state has compl eted.

Bit4 Allows ITBIT to be read. This enables the debugger to determine
what state the processor isin, and hence which instructions to
execute.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-43

Debug Support

8.13.5 Vector catch register

The ARM940T EmbeddedI CE unit controls logic to enable accesses to the exception
vectors to be trapped in an efficient manner. Thisis controlled by the Vector Catch
register, as shown in Figure 8-14 \ector catch register. The functionality is described
in 8.14 Vector catching, below.

5 4 3 2 1 0

FIQ

IRQ

Reserved D_Abort P_Abort SWI Undef Reset

Figure 8-14 Vector catch register

8.14 Vector catching

The ARM940T Embeddedl CE macrocell contains logic that allows efficient trapping
of fetches from the vectors during exceptions. Thisis controlled by the Vector Catch
register. If one of the bitsin this register is set HIGH and the corresponding exception
occurs, the processor enters debug state asif a breakpoint has been set on an instruction
fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction whilebit 2 of the V ector Catch
register is set, the ARM940T fetches an instruction from location 0x8. The vector catch
hardware detects this access and forces the Breakpoint signal HIGH into the
ARMOY40T control logic. This, in turn, forces the ARM940T to enter debug state.

The behavior of this hardware is independent of the watchpoint comparators, leaving
them free for general use. The vector catch register is sensitive only to fetches from the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the Vector Catch register
is set, the processor is not forced to enter debug state.

8.15 Single stepping

The ARM940T Embedded! CE unit contains logic that allows efficient single stepping
through code. This|eaves the hardware watchpoint comparators free for general use.

Thisfunction is enabled by setting bit 3 of the Debug Control register. The state of this
bit should only be altered while the processor isin debug state. If the processor exits
debug state and this bit is HIGH, the processor fetches an instruction, executes it, and
then immediately re-enters debug state. This happens independently of the watchpoint
comparators. If a system-speed data access is performed while in debug state, the
debugger must ensure that the control bit is clear first.

8-44

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.16 Debug communications channel

The ARM940T Embedded| CE hardware contains acommunication channel for passing
information between the target and the host debugger. Thisisimplemented as
coprocessor 14.

The communications channel consists of a 32-bit wide Comms Data Read register, a
32-bit wide Comms Data Write register and a 6-bit wide Comms Control register for
synchronized handshaking between the processor and the asynchronous debugger.
These registers are located in fixed locations in the Embedded| CE register map (as
shownin Figure 8-9 ARM940T Embedded| CE overview on page 8-39) and are accessed
from the processor via MCR and MRC instructions to coprocessor 14.

8.16.1 Debug comms channel registers

The Debug Comms Control register isread only, and allows synchronized handshaking
between the processor and the debugger.

31] 30 29 28 1

0 0 1 0 \W R

Figure 8-15 Debug comms control register

The function of each register bit is described below:

Bits 31:28 Contain afixed pattern that denotes the Embedded| CE hardware
version number, in this case 0010.
Bits 27:2 Unused.
Bit 1 Denotes from the processor’s point of view, whether the Comms Data

Write register is free.

If, from the processor’s point of view, the Comms Data Write register
is free (W=0), new data may be written.

If it is not free (W=1), the processor must poll until W=0.

If, from the debugger’s point of view, W=1, some new data has been
written which may then be scanned out.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-45

Debug Support

BitO Denotes whether there is some new data in the Comms Data Read
register. If, from the processor’s point of view, R=1, there is some
new data which may be read via an MRC instruction.
If, from the debugger’s point of view, R=0, the Comms Data Read
register is free and new data may be placed there through the scan
chain.
If R=1, this denotes that data previously placed there through the scan
chain has not been collected by the processor, and so the debugger
must wait.

From the debugger’s point of view, the registers are accessed via the scan chain in the
usual way. From the processor, these registers are accessed via coprocessor register
transfer instructions. The following instructions should be used:

MRC pl14, 0, Rd, cO, cO

Returns the Debug Comms Control register into Rd.

MCR p14, 0, Rn, cl1, cO

Writes the value in Rn to the Comms Data Write register.

MRC pl14, 0, Rd, cl1, cO
Returns the Debug Data Read register into Rd.

The Thumb instruction set does not support coprocessor instructions (must be in ARM
state).

8.16.2 Communications viathe comms channel

Communication can take place over the Debug Comms channel by either an interrupt
driven mechanism or through software polling.

The interrupt driven mechanism requires the COMMTX and COMMRX signals to be
factored into an interrupt controller. The Comms Channel will only be accessed
therefore, when the write channel has become free or the read channel has received data,
allowing efficient communication.

Software polling requires no external hardware configuration. The program must
examine the Debug Comms Control Register to determine if data has been received or
if the write channel has become empty. Only when such an event has occurred will the
Debug Comms Write or Read register be accessed.

8-46

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.16.3 Software polling communication

Sending a message to EmbeddedICE

When the processor wishesto send amessage to Embedded| CE hardware, it must check
that the Comms Data Write register is free for use by finding out whether the W bit of
the Debug Comms Control register is clear.

It reads the Debug Comms Control register to check status of the W hit:

- |Ifthe W bit is set, previously written data has not been read by the debugger
e The processor must continue to poll the control register until the W bit is clear
e If W bit is clear, the Comms Data Write register is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14
As the data transfer occurs from the processor to the Comms Data Write register, the V
bit is set in the Debug Comms Control register.

The debugger sees a synchronized version of both the R and W bit when it polls the
Debug Comms Control register through the JTAG interface. When the debugger sees
that the W bit is set, it can read the Comms Data Write register, and scan the data ou
The action of reading this data register clears the Debug Comms Control register W bit
At this point, the communications process may begin again.

Receiving a message from EmbeddedICE

Message transfer from the debugger to the processor is similar to sending a message
EmbeddedICE. In this case, the debugger polls the R bit of the Debug Comms Contro
register:

< Ifthe R bitis LOW, the Data Read register is free, and data can be placed there fol
the processor to read

« Ifthe R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the Comms Data Read register is free, data is written there via the JTAG
interface. The action of this write sets the R bit in the Debug Comms Control register.

When the processor polls this register, it sees an MCLK synchronized version. If the R
bit is set, there is data waiting to be collected; this can be read via an MRC instruction
to coprocessor 14. The action of this load clears the R bit in the Debug Comms Contro
register. When the debugger polls this register and sees that the R bit is clear, the dat
has been taken, and the process may now be repeated.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-47

Debug Support

8.16.4 Interrupt driven communications

To implement interrupt driven communication, the signals COMMRX and COMMTX
must be factored into any interrupt controller being used. If no interrupt controller is
being used, the signals can be applied to a NOR gate with the output driving nlRQ.

When an interrupt occurs, the program must examine the Debug Comms Control
register to determineif an event occurred. If the W bit is clear, new data can be written

into the Debug Comms Writeregister. If the R bit is set, new datahas been received and
can be read.

If the W bit is set and the R bit clear, the Debug Comms channel was not the source of
the interrupt.

8-48 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

8.17 The debugger’s view of the cache

When in debug state, the debugger is able to see the state of the memory system,
including the caches. The debugger needsto be able to control the cache, consequently
all of CP15 registers are accessibl e through the scan chain. Scan chain 15 is reserved
for this use. This scan chain is 38 bits long, and has a structure similar to the
Embedded| CE macrocell scan chain 2. The format of scan chain 15 is shown below in
Table 8-7. An access viathis scan chain allows any of CP15 registers to be read or
written.

Table 8-7 Scan chain 15 format

Scan chain bit Function

38 R/W (Write=1)
37:32 Register address
31.0 Register value

On entry to debug state, the debugger should extract and save the state of CP15. It is
advisable then to switch off the cache to prevent any debug accesses to memory from
altering the state of the caches. The mapping of the 6-bit address field to the CP15
register is as shown in Table 8-8. For CP register 6, CRm corresponds to the region
number.

Table 8-8 Scan access mapping to CP15 register

Register address CP15 register
37 36:33 32

0 0000 0 0

0 0001 0 1

0 0010 0 2 (Data)

0 0010 1 2 (Instruction)
0 0011 0 3

0 0101 0 5 (Data)

0 0101 1 5 (Instruction)
0 1001 0 9 (Data)

0 1001 1 9 (Instruction)

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 8-49

Debug Support

Table 8-8 Scan access mapping to CP15 register

Register address CP15 register
37 36:33 32

0 1111 0 15

1 <CRm> 0 6 (Data)

1 <CRm> 1 6 (Instruction)

The contents of the caches is determined by:
1. Extracting the contents of the CAMs
2. Determining the contents of the RAMs.

The CAM arrays are read via scan chain 4 for the | Cache, and scan chain 5 for the
D Cache. The format of these scan chainsisidentical and has two modes:

Addressing The CAM index and segment are specified. The format of the scan
chain is as shown in Table 8-9 Scan chain 4 and 5 addressing mode.

Reading The contents of the CAM entry are read back. The format of the data
read back is shown in Table 8-10 Scan chains 4 and 5 reading mode.
When the | Cache CAM isread, the dirty bit will always be read as
zero.

The addressing mode format is used when scanning in data to address the CAM. After
UPDATE-DR, the data read from the CAM array isin the reading mode format.

Table 8-9 Scan chain 4 and 5 addressing mode

Scan chain bit Write function
27:22 CAM index
21:20 Segment select
19:.0 Should be zero

8-50 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Debug Support

Table 8-10 Scan chains 4 and 5 reading mode

Scan chain bit Write function
27 Valid

26 Dirty

25.0 Address

The debugger must index through all the entriesin the CAM (0-63) to determine the
26-bit TAG addresses. When this information is extracted, the contents of the cache
RAM array can be determined.

For the Data cache
Thisis achieved by taking each TAG address, padding the bottom 4-
bitswith zeros, setting bits 5 and 6 to indicate the same segment that
the TAG was scanned from, and performing a system-speed 4-word
LDM tothat address, with the cache switched on. Asthe TAG address
isknown, a cache hit occurs, and the four words in the RAM line are
returned.

If a system-speed access from a TAG address is performed with the
cache switched off, the external data corresponding to that addressis
returned. For cache lines which are marked as valid and dirty
therefore, it is possible to determine the value of the cached data and
the external datain main memory.

For the Instruction cache
For the instruction cache, the system-speed LDM should be
performed with the cache switched off. This ensuresthat the external
memory system is accessed. Asit isimpossible to change the datain
the instruction cache, the | Cache and external memory are
guaranteed coherent.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-51

Debug Support

8-52 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 9
TrackingICE

This chapter describes how Trackingl CE mode is used by the ARM940T:
« Timing requirements
e TrackinglCE outputs.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved.

9-1

TrackingICE

9.1

Overview

When in Trackingl CE mode, anumber of the ARM940T outputstrack the inputsto the
ARMOTDMI processor core embedded within the ARM940T. An ARMOTDMI test
chip can then be connected to the outputs, which will precisely track the ARM9TDMI

processor coreinsidethe ARM940T. Thisenablesall outputs of the ARMOTDMI to be
observed.

Figure 9-1 gives an overview of how atracking ARM9TDMI is attached to an
ARM940T.

ARM940T

ARMOTDMI 0

ARMOTDMI

T8l

TRACK

[N
A A 4

Figure 9-1 Using TrackingICE

Thetracking ARM9TDM I operatesone clock phase behind the actual ARM9TDMI (on
the inverted clock); all required inputs to the ARM9TDMI are latched inside the
ARMO940T and are then brought out on various outputs. Thetracking ARM9TDMI can
be directly attached to these outputs.

9-2

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

TrackingICE

9.2 Timing requirements

To enable the ARM9TDMI processor core to be tracked correctly, all inputs must be
synchronousto the ARM9TDM I processor clock. Theseinputsinclude TCK, whichin
tracking mode is latched on the falling edge of GCLK before it is driven onto the
ARMO40T tracking outputs. All other TCK relative signals, TDI, TMSand
SDOUTRBS, are latched on rising GCLK before they are driven onto the ARM940T
tracking outputs.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 9-3

TrackingICE

9.3 TrackingICE outputs

The following ARM940T outputs are re-used when the ARM940T isin Trackingl CE

mode:

Table 9-1 ARM940T in TrackingICE

ARMO940T output

Attach to tracking ARM9TDMI input

IR[3:2] CHSE[1:0]
IR[1:0] CHSDJ[1:0]
SCREG[3][4] niRQ
SCREG[2][3] nFIQ
SCREG[1][2] DABORT
SCREG[0][1] IABORT
TAPSM[3] EXTERN1
TAPSM[2] EXTERNO
TAPSM[1] DEWPT
TAPSM[0] IEBKPT
ICAPCLKBS HIVECS
ECAPCLKBS EDBGGQ
PCLKBS nWAIT
RSTCLKBS NRESET
SHCLK1BS TDI
SHCLK2BS TMS
TCK1 GCLK
TCK2 TCK
SDIN SDOUTBS

9-4

© Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

TrackingICE

The remaining input connections to the ARM9TDMI are:
* |D bus attaches to th@PI D bus

« DD bus attaches to t@PDOUT bus

e BIGEND input attaches to tH@l GENDOUT.

These can still be attached to a coprocessor when the ARM940T is in tracking mode.
The only difference in behavior is th@PDOUT mirrors the ARM940TDD bus on
every cycle, not just for coprocessor data transfers. The following conditions apply:

e Thel SYNC andnTRST inputs should be common between the ARM940T and the
tracking ARMOTDMI

« |ABE andDABE should be HIGH so that the address outputs of the tracking
ARM9TDMI can be observed

« DDBE should be LOW to prevent a drive clash on the bidirectibDimabus. It is
not necessary for the tracking ARM9TDMI to drive B bus since€CPDOUT is
driven with the data from all memory access cycles.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 9-5

TrackinglCE

9-6

© Copyright ARM Limited 1998. All rights reserved.

ARMDDI 0092B

Chapter 10

Test Issues

This chapter examines the test issues for the ARM940T and lists the scan chain 0
bit order.

10.1 Introduction

The ARM940T processor core supports parallel and serial test methodologies. The
parallel test patternsare derived from assembler ARM code programswrittento achieve
a high fault location coverage.

The ARM940T processor core has a fully JTAG-compatible scan chain which
intersects al the inputs and outputs. This allows the test patterns to be serialized and
injected to the processor viathe JTAG interface. Both the parallel and serial test patterns
are supplied to ARM940T processor core licensees. The scan chain also supports
EXTEST, alowing the connections between the ARM940T processor core and other
JTAG-compatible peripherals to be tested.

The ARM940T supports parallel and AMBA test. The ARM940T parallel patterns are
generated in asimilar way to thosefor the ARM9TDMI processor core. The AMBA test
methodology involves using the main system data bus to apply vectors to the device
under test. Each test vector has to be built up in 32-bit multiples on the inputs of the
device (because the AMBA data bus from the ARM940T is 32 bits wide). This means
that a number of latches are required in the AMBA veneer.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 10-1

Test Issues

The ARM940T AMBA test wrapper also provides ahigh level of controllability over
the caches. This allows the caches to be tested independently of the ARMSTDMI
processor core. The addressesinthe CAM array may beread and written. The CAM hit
bits may be read and the data in the RAM may be read and written.

10-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

10.2 Scan chain O bit order

Test Issues

Table 10-1 Scan chain 0 bit order

Number Signal Direction
1 ID[Q] Input

2 ID[1] Input

331 ID[2:30] Input

32 ID[31] Input

33 SYSSPEED Internal

34 WPTANDBKPT Internal

35 DDEN Output

36 DDJ[31] Bidirectional
37 DDJ[30] Bidirectional
38:67 DD[29:1] Bidirectional
68 DDI[0] Bidirectional
69 DA[31] Output

70 DA[30] Output
71:99 DA[29:1] Output

100 DA[OQ] Output

101 IA[31] Output

102 IA[30] Output
103:131 1A[29:2] Output

132 1A[1] Output

133 IEBKPT Input

134 DEWPT Input

135 EDBGRQ Input

136 EXTERNO Input

137 EXTERN1 Input

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

10-3

Test Issues

Table 10-1 Scan chain 0 bit order (continued)

Number Signal Direction
138 COMMRX Output
139 COMMTX Output
140 DBGACK Output
141 RANGEOUTO Output
142 RANGEOUT1 Output
143 DBGRQI Output
144 DDBE Input
145 INMREQ Output
146 DNMREQ Output
147 DnRW Output
148 DMAS[1] Output
149 DMAS[0] Output
150 PASS Output
151 LATECANCEL Output
152 ITBIT Output
153 INTRANS Output
154 DnTRANS Output
155 NRESET Input
156 nWAIT Input
157 IABORT Input
158 IABE Input
159 DABORT Input
160 DABE Input
161 nFlQ Input
162 nIRQ Input

10-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Test Issues

Table 10-1 Scan chain 0 bit order (continued)

Number Signal Direction
163 ISYNC Input
164 BIGEND Input
165 HIVECS Input
166 CHSD[]] Input
167 CHSDI[0] Input
168 CHSE[1] Input
169 CHSE[0] Input
170 ISEQ Output
171 InM[4] Output
172 INM[3] Output
173 InM[2] Output
174 InM[1] Output
175 InM[Q] Output
176 DnM[4] Output
177 DnM[3] Output
178 DnM[2] Output
179 DnM[1] Output
180 DnM[Q] Output
181 DSEQ Output
182 DMORE Output
183 DLOCK Output
184 ECLK Output
185 INSTREXEC Output

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

10-5

Test Issues

10-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Chapter 11
Instruction Cycle Summary and Interlocks

11.1 Introduction

This chapter gives the instruction cycle times and shows the timing diagrams for
interlock timing. All signals quoted are ARM9TDMI signals, and are internal to the
ARMOYA0T. In all casesit is assumed that all accessess are from cached regions of
memory.

If an instruction causes an external access, either when prefetching instructions or when
accessing data, the instruction will take more cycles to complete execution. The
additional number of cycles is dependent on the system implementation.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 11-1

Instruction Cycle Summary and Interlocks

11.2 Instruction cycle times

Key to tables

Table 11-1 Symbols used in tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses
m Isinthe range O to 3, depending on early termination
(see 11.2.1 Multiplier cycle counts on page 11-5)
n The number of words transferred in an LDM/STM/LDC/STC
C Coprocessor register transfer (C-cycle)
I Internal cycle (I-cycle)
N Non-sequential cycle (N-cycle)
S Sequential cycle (S-cycle)

Table 11-2 summarizes the ARM940T instruction cycle counts and bus activity when
executing the ARM instruction set.

Table 11-2 Instruction cycle bus times

Instruction Cycles Instruction Data Comment
bus bus

Data Op 1 1S 1 Normal case

Data Op 2 1s+1l 2l With register
controlled shift

LDR 1 1S IN Normal case, not
loading PC

LDR 2 1s+1l IN+1 Not loading PC and
following instruction
uses loaded word (1
cycleload-use
interlock)

11-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Instruction Cycle Summary and Interlocks

Table 11-2 Instruction cycle bus times (continued)

Instruction Cycles Instruction Data Comment
bus bus

LDR 3 1S+2I IN+2I Loaded byte,
halfword, or
unaligned word used
by following
instruction (2 cycle
|oad-use interlock)

LDR 5 25+21+1N IN+4 PC is destination
register

STR 1 1S IN All cases

LDM 2 1S+1l 1S+l Loading 1 Register,
not the PC

LDM n 1S+(n-1)I IN+(n-1)S Loading n registers,
n> 1, not loading the
PC

LDM n+4 2S+IN+(n+1)I IN+(n-1)S+4l Loading n registers
including the PC, n>
0

STM 2 1S+ IN+1I Storing 1 Register

ST™M n 1S+(n-1)I IN+(n-1)S Storing n registers, n
>1

SWP 2 1S+1l 2N Normal case

SWP 3 1S+2] 2N+1I L oaded byte used by
following instruction

B, BL, BX 3 2S+1IN 3l All cases

SWI, Undefined 3 2S+1IN 3l All cases

CDP b+1 1S+hl (2+b)l All cases

LDC, STC b+n 1S+(b+n-1)I bl+1N+(n-1)S All cases

MCR b+1 1S+bl bl+1C All cases

MRC b+1 1S+hbl bl+1C Normal case

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

11-3

Instruction Cycle Summary and Interlocks

Table 11-2 Instruction cycle bus times (continued)

Instruction Cycles Instruction Data Comment
bus bus
MRC b+2 1S+(b+1)I (b+hHI+1C Followinginstruction
uses transferred data
MUL, MLA 2+m 1S+(1+m)l (2+myl All cases
SMULL, UMULL,S 3+m 1S+(2+m)l (3+m)l All cases
MLAL, UMLAL

11-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Instruction Cycle Summary and Interlocks

Table 11-3 shows the instruction cycle times from the perspective of the data bus.

Table 11-3 Data bus instruction times

Instruction Cycle time
LDR IN

STR IN
LDM,STM IN+(n-1)S
SWP IN+1S
LDC, STC IN+(n-1)S
MCR,MRC 1C

11.2.1 Multiplier cycle counts

The number of cyclesthat amultiply instruction takes to compl ete depends on which
instruction it is, and on the value of the multiplier-operand. The multiplier-operand is
the contents of the register specified by bits[11:8] of the ARM multiply instructions, or
bits [2:0] of the Thumb multiply instructions.

e For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, mis:
1 if bits [31:8] of the multiplier operand are all zero or one
2 if bits [31:16] of the multiplier operand are all zero or one
3 if bits [31:24] of the multiplier operand are all zero or all one

4 otherwise.
e For ARM UMULL, UMLAL, m is:

1 if bits [31:8] of the multiplier operand are all zero
2 if bits [31:16] of the multiplier operand are all zero
3 if bits [31:24] of the multiplier operand are all zero

4 otherwise.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 11-5

Instruction Cycle Summary and Interlocks

11.3

Interlocks

Pipeline interlocks occur when the data required for an instruction is not available due
to the incomplete execution of an earlier instruction. When an interlock occurs,
instruction fetches stop on the instruction memory interface of the ARM940T. Four
examples of thisare given below.

Example 1

In thisfirst example, the following code sequence is executed:
LDR RO, [Ri]
ADD R2, RO, R1

The ADD instruction cannot start until the datais returned from the load. The ADD
instruction therefore, has to delay entering the execute stage of the pipeline by one
cycle. The behavior on the instruction memory interfaceis shownin Figure 11-1.

Fldr DIdr Eldr Midr Widr
Fadd Dadd Dadd Eadd Madd Wadd
GCLK J / /
INMREQ H ” ” ﬂ ”

IA[31:1] ’ [

A+C ” A+10

L]
]
L]
]
L]

ID[31:0] Eﬂ Eﬂ [

Figure 11-1 Single load interlock timing

11-6

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Instruction Cycle Summary and Interlocks

Example 2

In this second example, the following code sequence is executed:
LDRB RO, [RL,#1]
ADD R2, RO, Rl

Now, because arotation must occur on theloaded data, thereisasecond interlock cycle.
The behavior on the instruction memory interface is shown in Figure 11-2.

Fldrb Dldrb Eldrb Midrb Widrb

GCLK J
LT I T A

Fadd Dadd Dadd Dadd Eadd Madd Wadd

1A[31:1] ’ A+4 ” A+8 ” A+C A+10 u A+14 ”
owo — G| 0

Figure 11-2 Two cycle load interlock

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 11-7

Instruction Cycle Summary and Interlocks

Example 3

In this third example, the following code sequence is executed:
LDM R12, { RL- R3}
ADD R2, R2, Rl

The LDM takes three cycles to execute in the memory stage of the pipeline. The ADD
istherefore delayed until the LDM beginsits final memory fetch. The behavior of both
the instruction and data memory interface are shown in Figure 11-3.

Fldmb Dldmb Eldmb Midmb Midmb Midmb Widmb

GCLK J
L I R O A

Fadd Dadd Dadd Dadd Eadd Madd Wadd

me [[we | MEENE
ot —fif—{re}—{] 0
omeee || 1| Ll L L T T
DABLO] | [= RES
(]

Figure 11-3 LDM interlock

11-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Instruction Cycle Summary and Interlocks

Example 4

In the fourth example, the following code sequence is executed:
LDM R12, { RL- R3}
ADD R4, R3, R1

Thecodeisthe samecodeasin example 3, but inthisinstancethe ADD instruction uses
R3. Dueto the nature of load multiples, the lowest register specified istransferred first,
and the highest specified register last. Because the ADD isdependent on R3, there must
be afurther cycle of interlock while R3 isloaded. The behavior on the instruction and
data memory interface is shown in Figure 11-4.

Fldmb Didmb Eldmb Midmb Midmb Midmb Widmb

Fadd Dadd Dadd Dadd Dadd Eadd Madd Wadd

s [L
oweee | T T L]

e be [[]
oo —] 0
oo T[T L1l 1| [T T] 1
pARLO] | ENECEEN

LISt

Figure 11-4 L DM dependent interlock

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 11-9

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 11-10

Chapter 12
ARM940T AC Characteristics

12.1 Introduction

This chapter gives the timing diagrams and timing parameters for the ARM940T. The
information in this chapter is organized as follows:
« ARMO940T timing diagrams

« ARM940T timing parameters.

12.2 ARM940T timing diagrams

The AMBA bus interface of the ARM940T conforms to tdBA Bus Specification.
Please refer to this document for the relevant timing diagrams.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 12-1

ARM940T AC Characteristics

FCLK
CPCLK ﬁ \TL /
TrcPKR ™ - Trcrrr
CPID[31:0]
CPDOUT[3L:0] =
FCPDH [
—> T
CPNMREQ FCPDD
NCPTRANS
CPTBIT T
FCTLH [Tecrin
—> T E
CPLATECANCEL
T —> le—
FCANH] T eeann
CPPASS *«
TEPASH™
— TrpasD
CPNnWAIT K
TEnrH T
— FNWID
CHSDE[1:0]
CHSEX[1:0]
TEcHss = -
- FCHSH
CPDIN[31:0] L J
TFCDNSJ -
-] T rconH

Figure 12-1 ARM940T FCLK timed coprocessor interface

12-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T AC Characteristics

BCLK
CPCLK & \TL /
TBCPKR™ — TeepkF
CPID[31:0] |
CPDOUT[31:0]
TBCPDH: ~ LT
CPNMREQ BCPDD
NCPTRANS |
CPTBIT TeorLn l— N
> «TgcrLD
CPLATECANCEL |
TBcANH— =
— =T BcanD
CPPASS | Xe
TepasH* T
— BPASD
CPNWAIT | *F
TenwrH— T
— BNWID
CHSDE[1:0] |
CHSEX[1:0] -
BCHSS -
— TBcHsH
CPDIN[31:0] b J
T J [
BOONS — TBcoNH

Figure 12-2 ARM940T BCLK timed coprocessor interface

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 12-3

ARM940T AC Characteristics

FCLK
ECLK {7 \L /
TEEKR™ — TrexE
FCLKOUT /{7 \ki /
TEFKR—™ — TEFkF
nFIQ |
nIRQ
TE NTS— [T
— F—TE NTH
ISYNC |
TEl sys— — T
— —TEl syH

BIGENDOUT ’

TrFel G

TEBI GD

Figure 12-3 ARM940T FCLK related signal timing

BCLK
ECLK {e \TL /
TBEKR ! > TeEKF
nFIQ
nIRQ
Tei NTS™ -
> “TaI NTH
ISYNC
Tel sys— -
— TBI SYH
BIGENDOUT
Teel GH—
- Teai e
Figure 12-4 ARM940T BCLK related signal timing
12-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T AC Characteristics

SDOUTBS
TDO
T1psH™ =
- - T1psp
Figure 12-5 ARM940T SDOUTBS to TDO relationship
NTRST
RSTCLKBS /ﬁ
TgRsT

Figure 12-6 ARM940T nTRST to RSTCLKBS relationship

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 12-5

ARM940T AC Characteristics

TCK
TCK1 /rr \TL /
Trokr™ - Trexr
TCK2 ‘\T\L \
Troke - ~ TTkR
ECAPCLKBS
ICAPCLKBS
PCLKBS TcaprR™ - - Teapr
IR[3:0]
SCREG[3:0]
T) RSH™ —
- T RsD
RSTCLKBS
TBRTH™ e
- = TBRTD
NnTDOEN
TroEH -
- *+TToeD
TDO
T oo [+
— ~ TTpoo
SDIN
T spnH —
- - TspnD
TAPSM[3:0]
TPV [
- “T1PvD
SHCLK1BS \TL /
T SHKR - -+~ Tekr
SHCLK2BS ‘\TL {k \
TSHKF# > TSHKR

Figure 12-7 ARM940T JTAG output signal

12-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

TCK

TDI
TMS

FCLK

COMMTX
COMMRX

DBGACK

RANGEOUTO

RANGEOUT1

EXTERNO
EXTERN1

EDBGRQ

TRACK

)

ARM940T AC Characteristics

Toi s%

o **TTDI H

Figure 12-8 ARM940T JTAG input signal timing

| 3
Troow] Trcovd
| £
TFocH) TEpckD
| £
TFROOH TrreoD
| £
TFRaLH] TrraGID
|
TrEXTS e <~ TEEXTH
|
TrpBQs — T roBQH
|
TETRKS e ~~TETRKH

Figure 12-9 ARM940T FCLK related debug output timings

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 12-7

ARM940T AC Characteristics

BCLK
COMMTX
COMMRX
TecovH]
— Tecovd
DBGACK *«
T BDCKH]
— TepckD
RANGEOUTO K
TBRGOH]
— TBreOD
RANGEOUT1 K
TBRGIH]
— TerGID
EXTERNO
EXTERN1
TBEXTS™ - =T BEXTH
EDBGRQ
T BDBQS* —>e— T BDBQ‘|
TRACK
TeTRKS ™ —e— +TBTRKH
Figure 12-10 ARM940T BCLK related debug output timings
TCK
ECLK \
TTEKF - TTEKR
DBGRQI
Tog H™
- Toa b
Figure 12-11 ARM940T TCK related debug output timings
12-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

NTRST

DBGRQI

EDBGRQ

DBGRQI

DBGEN

RANGEOUTO
RANGEOUT1

DBGRQI

ARM940T AC Characteristics

el E

Figure 12-12 nTRST to DBGRQI relationship

—» T Em)
Figure 12-13 ARM940T EDBGRQ to DBGRQI relationship

TReEN™ }\«

TpoeN— }\%

Figure 12-14 ARM940T DBGEN to Output relationship

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. 12-9

ARM940T AC Characteristics

12.3 ARMO940T timing parameters

Table 12-1 ARM940T timing parameters

Timing parameter

Description

Thbigd

BIGENOUT output delay from BCLK falling

Thbigh

BIGENOUT output hold time from BCLK falling

Thcand

CPLATECANCEL output delay from BCLK falling

Thcanh

CPLATECANCEL output hold time from BCLK falling

Thednh

CPDIN[31:0] set uptimeto BCLK falling

Thbcdns

CPDIN[31:0] set uptimeto BCLK falling

Thchsh

CHSDEJ[1:0]/CHSEX[1:0] hold timeto BCLK falling

Thchss

CHSDEJ[1:0]/CHSEX]1:0] setup timeto BCLK falling

Thcomd

COMMTX/COMMRX output delay

Thcomh

COMMTX/COMMRX output hold time

Thepdd

CPID[31:0]/CPDOUT[31:0] output delay from BCLK falling

Thepdh

CPID[31:0]/CPDOUT[31:0] output hold time from BCLK falling

Thepkf

Delay from BCLK fallingto CPCLK falling

Thepkr

Delay from BCLK rising to CPCLK rising

Thctld

CPNnMREQ/nCPTRANS/CPTBIT output delay from BCLK faling

Thctlh

CPnMREQ/nCPTRANS/CPTBIT output hold time from BCLK
falling

Thdbgh

EDBGRQ input hold time from BCLK falling

Thdbgs

EDBGRQ input setup timeto BCLK falling

Thdckd

DBGACK output delay

Thdckh

DBGACK output hold time

Thekf

Delay from BCLK fallingto ECLK falling

Thekr

Delay from BCLK risingto ECLK rising

Thexth

EXTERNO/EXTERN1 input hold time from BCLK falling

12-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T AC Characteristics

Table 12-1 ARM940T timing parameters (continued)

Timing parameter

Description

Thexts

EXTERNO/EXTERNL1 input setup timeto BCLK faling

Thinth

nFIQ/nIRQ hold time from BCLK falling

Thints

nFlQ/nIRQ setup timeto BCLK falling

Thisyh

ISYNC hold time from BCLK falling

Thisys

ISYNC setup timeto BCLK falling

Tbnwtd

CPnWAIT output delay from BCLK rising

Tbnwth

CPnWAIT output hold time from BCLK rising

Thpasd

CPPASS output delay from BCLK rising

Thpash

CPPASS output hold time from BCLK rising

Thrg0d

RANGEOUTO output delay

TbrgOh

RANGEOUTO0 output hold time

Tbrglh

RANGEOUT1 output hold time

Thbrgad

RANGEOUT1 output delay

Thrst

Delay from nTRST falling to RSTCLKBSrising

Thrtd

RSTCLKBS output delay from TCK falling

Thrth

RSTCLKBS hold time from TCK falling

Thtrks

TRACK input setup timeto BCLK falling

Thtrsh

TRACK input hold time from BCLK falling

Teapf

ECAPCLKBS/ICAPCLKBSPCLKBSfdling from TCK rising

Tcapr

ECAPCLKBS/IICAPCLKBSPCLKBS ising from TCK rising

Tdgid

DBGRQI output delay from TCK falling

Tdgih

DBGRQI output hold time from TCK falling

Tdih

TDI and TM S hold time from TCK rising

Tdis

TDI and TM S setup timeto TCK rising

Tdgen

Delay from DBGEN falling to DBGRQI falling

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 12-11

ARM940T AC Characteristics

Table 12-1 ARM940T timing parameters (continued)

Timing parameter

Description

Tdaqir

Delay from nTRST falling to DBGRQI

Tedqd

DBGRQI output delay from EDBGRQ falling

Tedgh

DBGRQI output hold time from EDBGRQ falling

Tfbigd

BIGENOUT output delay from FCLK falling

Tfbigh

BIGENOUT output hold time from FCLK falling

Tfcand

CPLATECANCEL output delay from FCLK falling

Tfcanh

CPLATECANCEL output hold time from FCLK falling

Tfcdnh

CPDIN[31:0] set uptimeto FCLK falling

Tfcdns

CPDIN[31:0] set uptimeto FCLK falling

Tfchsh

CHSDEJ[1:0]//CHSEX[1:0] hold timeto FCLK falling

Tfchss

CHSDEJ[1:0]/CHSEX[1:0] setup timeto FCLK faling

Tfcpdh

CPID[31:0]/CPOUT[31:0] output delay from FCLK falling

Tfcpkf

Delay from FCLK falling to CPCLK falling

Tfcpkr

Delay from FCLK risingto CPCLK rising

Tfetld

CPNnMREQ/nCPTRANS/CPTBIT output delay from FCLK falling

Tfctlh

CPNnMREQ/nCPTRANS/CPTBIT output hold time from FCLK
falling

Tfekf

Delay from FCLK fallingto ECLK falling

Tfekr

Delay from FCLK risingto ECLK rising

THfkf

Delay from FCLK falling to FCLKOUT falling

Tifkr

Delay from FCLK risingto FCLKOUT rising

Tfinth

nF1Q/nIRQ hold time from FCLK falling

Tfints

nFIQ/nIRQ setup timeto FCLK falling

Tisyh

ISYNC hold time from FCLK falling

Tfisys

ISYNC setup timeto FCLK faling

12-12 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T AC Characteristics

Table 12-1 ARM940T timing parameters (continued)

Timing parameter

Description

Tfnwtd

CPnWAIT output delay from FCLK rising

Tfnwth

CPnWAIT output hold time from FCLK rising

Tfpasd

CPPASS output delay from FCLK rising

Tfpash

CPPASS output hold time from FCLK rising

Tirsd

IREG[3:0]/SCREG][3:0] output delay from TCK falling

Tirsh

IREG[3:0]/SCREG]3:0] hold time from TCK falling

Trgen

Delay from DBGEN falling to RANGEOUTO/RANGEOUT 1 falling

Tsdnd

SDIN output delay from TCK falling

Tsdnh

SDIN hold time from TCK falling

Tshkf

SHCLK1BS/SHCLK2BSfdling from TCK changing

Tshkr

SHCLK1BS/SHCLK2BSrising from TCK changing

Ttckf

TCK1/TCK2faling from TCK changing

Ttckr

TCK1/TCK2rising from TCK changing

Ttdod

TDO output delay from TCK falling

Ttdoh

TDO hold time from TCK falling

Ttdsd

TDO output delay from SDOUTBS changing

Ttdsh

TDO output hold time from SDOUTBS changing

Ttekf

Delay from TCK fallingto ECLK falling

Ttekr

Delay from TCK risingto ECLK rising

Tteod

NTDOEN output delay from TCK falling

Tteoh

NTDOEN hold time from TCK falling

Ttpmd

TAPSM[3:] output delay from TCK falling

Ttpmh

TAPSM[3:0] hold time from TCK falling

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 12-13

ARM940T AC Characteristics

12-14 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Appendix A
ARMO940T Signal Descriptions

This appendix lists and describes the ARM940T signals under the following headings:
« AMBA signals

« Coprocessor interface signals

e JTAG and TAP controller signals

» Debug signals

« Miscellaneous signals.

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. A-1

ARM940T Signal Descriptions

A.1 AMBA signals

Table A-1 AMBA signals

Name Direction Description
AGNT Input Bus Grant. A signal from the bus arbiter to a bus master which indicates that the
bus master will be granted the bus when BWAIT is LOW.
AREQ Output Bus Request. A signal from the bus master to the bus arbiter which indicates that
the ARM940T requires the bus.
BA[31:0] Input/ Address Bus. The processor address bus, which is driven by the active bus master.
Output
BCLK Input Bus Clock. This clock times all bus transfers. Both the LOW phase and HIGH
phase of BCLK are used to control transfers on the bus.
BD[31:0] Input/ DataBus. Thisis abidirectional system data bus.
Output
BERROR Input/ Error Response. A transfer error is indicated by the selected bus slave using the
Output BERROR signal. When BERROR isHIGH, atransfer error has occurred, when
BERROR isLOW, the transfer is successful. Thissignal isalso used in
combination with the BLAST signal to indicate a bus retract operation.
BLAST Input/ Last Response. This signal is driven by the selected bus slave to indicate whether
Output the current transfer should be the last of aburst sequence. When BLAST isHIGH,
the decoder must allow sufficient time for address decoding. When BLAST is
LOW, the next transfer may continue a burst sequence.
BLOK Input/ Locked Transfers. When HIGH, this signal indicates that the current transfer, and
Output the next transfer, are to beindivisible, and that no other bus master should be given
accessto the bus. Thissignal is used by the bus arbiter.
BnRES Input Reset. The bus reset signal is active LOW, and is used to reset the system and the
bus. Thisisthe only active LOW AMBA signal.
BPROT[1:0] Input/ Protection Control . These signal s provide additional information about abus access
Output and are primarily intended for use by a bus decoder when acting as abasic
protection unit. The signalsindicate whether the transfer is an opcode fetch or data
access, aswell as whether the transfer is a privileged mode or user mode.
BSIZE[1:0] Input/ Transfer Size. These signals indicate the size of the transfer:
Output 10encodes word access
Olencodes a half word
0Oencodes a byte access
11reserved
A-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Signal Descriptions

Table A-1 AMBA signals

Name Direction Description
BTRAN[1:0] Input/ Transfer Type. These signals indicate the type of the next transaction:
Output 0Oencodes an address-only transfer
Olencodes a non-sequential transfer
1lencodes a sequential transfer
Olreserved
BWAIT Input/ Wait Response. This signa is driven by the selected bus slave to indicate whether
Output the current transfer may complete. If BWAIT isHIGH, afurther buscycleis
required, if BWAIT is LOW, the transfer will complete in the current bus cycle.
BWRITE Input/ Transfer Direction.When HIGH, this signal indicates awrite transfer, when LOW,
Output aread transfer.
DSEL Input Slave Select. Thissignal is used during test within the AMBA system and alows

the ARM940T to be selected and to have test vectors applied to it.

A.1.1 AMBA Bus Specification

ARMO940T has an AMBA-compatible bus interface. Please refer to the AMBA
Foecification for full details.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. A-3

ARM940T Signal Descriptions

A.2 Coprocessor interface signals

Table A-2 Coprocessor interface signals

Name Direction Description

CHSDEJ[1:0] Input Coprocessor Handshake Decode. The handshake signal's from the decode stage of
the coprocessor pipeline follower.

CHSEX][1:0] Input Coprocessor Handshake Execute. The handshake signals from the execute stage of
the coprocessor pipeline follower.

CPCLK Output Coprocessor Clock. This clock controls the operation of the coprocessor interface.

CPDOUT[31:0] Output Coprocessor Data Out. The coprocessor data bus for transferring MCR and LDC
data to the coprocessor.

CPDIN[31:0] Input Coprocessor Data In. The coprocessor data bus for transferring MRC and STC data
from the coprocessor to the ARM940T.

CDPID[31:0] Output Coprocessor Instruction Data. This is the coprocessor instruction data bus over
which instructions are transferred to the pipeline follower in the coprocessor.

CPLATECANCEL Output Coprocessor Late Cancel. When a coprocessor instruction is being executed, if this
signal is HIGH during the first memory cycle, the coprocessor instruction should be
cancelled without having updated the coprocessor state.

nCPMREQ Output Not Coprocessor Memory Request. When LOW on arising CPCLK edge and
NCPWAIT LOW, theinstruction on CPID should enter the coprocessor pipeline
follower’s decode stage. The second instruction previously in the pipeline followers
decode stage should enter its execute stage.

CPPASS Output Coprocessor Pass. This signal indicates that there is a coprocessor instruction in the
execute stage of the pipeline, and it should be executed.

CPTBIT Output Coprocessor Thumb Bit. If HIGH, the coprocessor interface is in Thumb state.

NnCPTRANS Output Not Coprocessor Translate. When HIGH, the coprocessor interface is in a non-
privileged mode. When LOW , the coprocessor interface is in a privileged mode.
The coprocessor samples this signal on every cycle when determining the
COprocessor response.

nCPWAIT Output Not Coprocessor Wait. The coprocessor dRiRL K is qualified bynCPWAIT
to allow the ARM940T to control the transfer of data on the coprocessor interface.
NnCPWAIT changes whilSEPCLK is HIGH.

For further information on the coprocessor interface refer to Chapter 7 ARM940T
Coprocessor Interface.
A-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Signal Descriptions

A.3 JTAG and TAP controller signals

Table A-3 JTAG and TAP controller signals

Name

Direction

Description

DRIVEOUTBS

Output

Boundary Scan Cell Enable. Thissignal is used to control the multiplexersin the scan
cells of an external boundary scan chain. This signal changesin the UPDATE-IR state
when scan chain 3 is selected, and either the INTEST, EXTEST, CLAMP or CLAMPZ
instruction is loaded. When an external boundary scan chain is not connected, this
output should be left unconnected.

ECAPCLKBS

Output

Extest Capture Clock for Boundary Scan. ThisisaTCK 2 wide pulse generated when
the TAP controller state machine isin the CAPTURE-DR state, the current instruction
isEXTEST, and scan chain 3 is selected. Thissignal is used to capture the chip level
inputs during EXTEST. When an external boundary scan chain is not connected, this
output should be left unconnected.

ICAPCLKBS

Output

Intest Capture Clock. Thisis a TCK 2 wide pulse generated when the TAP controller
state machineisin the CAPTURE-DR state, the current instruction isINTEST, and scan
chain 3 isselected. Thissignal is used to capture the chip level outputs during INTEST.
When an external boundary scan chain is not connected, this output should be left
unconnected.

IR[3:0]

Output

Tap Controller Instruction Register. Thesefour bitsreflect the current instruction loaded
into the TAP controller instruction register. The bits change on the falling edge of TCK
when the state machineisin the UPDATE-IR state.

PCLKBS

Output

Boundary Scan Update Clock. Thisisa TCK 2 wide pul se generated when the TAP
controller state machine isin the UPDATE-DR state, and scan chain 3 is selected. This
signal isused by an external boundary scan chain asthe update clock. When an external
boundary scan chain is not connected, this output should be left unconnected.

RSTCLKBS

Output

Boundary Scan Reset Clock. This signal denotes that either the TAP controller state
machineisinthe RESET state, or that nTRST has been asserted. This may be used to
reset external boundary scan cells.

SCREG[4:0]

Output

Scan Chain Register. These four bits reflect the ID number of the scan chain currently
selected by the TAP controller. These bits change on the falling edge of TCK when the
TAP state machineisin the UPDATE-DR state.

SDIN

Output

Boundary Scan Serial Input Data. Thissignal containsthe serial datato be applied to an
externa scan chain, and is valid around the falling edge of TCK.

SDOUTBS

Input

Boundary Scan Serial Output Data. Thisisthe seria data out of the boundary scan
chain (or other external scan chain). It should be set up to the rising edge of TCK.
When an external boundary scan chain is not connected, thisinput should be tied LOW.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. A-5

ARM940T Signal Descriptions

Table A-3 JTAG and TAP controller signals (continued)

Name

Direction

Description

SHCLK1BS

Output

Boundary Scan Shift Clock Phase 1. This control signal is provided to ease the
connection of an external boundary scan chain. SHCLK 1BS isused to clock the master
half of the external scan cells. When in the SHIFT-DR state of the state machine and
scan chain 3isselected, SHCLK 1BS follows TCK 1. When not in the SHIFT-DR state,
or when scan chain 3 is not selected, this clock is LOW. When an externa boundary
scan chain is not connected, this output must be left unconnected.

SHCLK2BS

Output

Boundary Scan Shift Clock Phase 2. This control signal is provided to ease the
connection of an external boundary scan chain. SHCLK2BSis used to clock the slave
half of the external scan cells. When in the SHIFT-DR state of the state machine and
scan chain 3 is selected, SHCLK 2BS follows TCK 2. When not in the SHIFT-DR state,
or when scan chain 3 is not selected, this clock is LOW. When an externa boundary
scan chain is not connected, this output must be left unconnected.

TAPSM[3:0]

Output

TAP Controller State Machine. This bus reflects the current state of the TAP controller
state machine. These hits change off the rising edge of TCK.

TCK

Input

Test Clock. The JTAG clock (the test clock).

TCK1

Output

TCK, Phase 1. TCK1isHIGH when TCK isHIGH, although thereisaslight phase lag
due to the internal clock non-overlap.

TCK2

Output

TCK, Phase 2. TCK 2 isHIGH when TCK is LOW, athough thereisa dlight phase lag
due to the internal clock non-overlap.

TDI

Input

Test Data Input. JTAG serid input.

TDO

Output

Test Data Output. JTAG seria output.

nTDOEN

Output

Not TDO Enable. When HIGH, thissignal denotesthat serial dataisbeing driven out on
the TDO output. nTDOEN would normally be used as an output enable for aTDO pin
in a packaged part.

T™MS

Input

Test Mode Select. TM S selects to which state the TAP controller state machine should
change.

nTRST

Input

Not Test Reset. Active-low reset signal for the boundary scan logic. This pin must be
pulsed or driven LOW to achieve normal device operation, in addition to the normal
devicereset (BNRES).

© Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

ARM940T Signal Descriptions

A.4 Debug signals

Table A-4 Debug signals

Name Direction Description

COMMRX Qutput Communications Channel Receive. When HIGH, this signal denotes that the comms
channdl receive buffer contains data waiting to be read by the processor core.

COMMTX Output Communications Channel Transmit. When HIGH, this signal denotes that the comms
channel transmit buffer is empty.

DBGACK Qutput Debug Acknowledge. When HIGH, this signal indicates the ARM isin debug state.

DBGEN Input Debug Enable. Thisinput signal allows the debug features of the ARM940T to be
disabled. This signa should be LOW only when debugging will not be required.

DBGRQI Output Internal Debug Request. This signal represents the debug request signal whichis
presented to the processor core. Thisisacombination of EDBGRQ, as presented to the
ARM940T, and bit 1 of the debug control register.

DEWPT Input External Watchpoint. This signal allows external data watchpoints to be implemented.

ECLK Output External Clock Output.

EDBGRQ Input External Debug Request. When driven HIGH, this causes the processor to enter debug
state once execution of the current instruction has compl eted.

EXTERNO Input External Input 0. Thisisan input to watchpoint unit O of the EmbeddedI CE logic in the
processor, and alows breakpoints/watchpoints to be dependent on an external condition.

EXTERN1 Input External Input 1. Thisisan input to watchpoint unit 1 of the EmbeddedI CE logic in the
processor, and alows breakpoints/watchpoints to be dependent on an external condition.

IEBKPT Input External Breakpoint. Thissignal allows an external instruction breakpoints to be
implemented.

INSTREXEC Output Instruction Executed. Indicates that in the previous cycle, the instruction in the execute
stage of the pipeline passed its condition codes, and was executed.

RANGEOUTO Output Embeddedl CE Rangeout 0. This signal indicates that the Embedded| CE watchpoint
unit 0 has matched the conditions currently present on the address, data and control
buses. Thissignal isindependent of the state of the watchpoint unit enable control bit.

RANGEOUT1 Output EmbeddedI CE Rangeout 1. Thissignal indicates that the Embedded| CE watchpoint
unit 1 has matched the conditions currently present on the address, data and control
buses. Thissignal isindependent of the state of the watchpoint unit enable control bit.

TRACK Input Enable tracking ICE Mode. Driving thissigna HIGH placesthe ARM940T into tracking

mode for debugging purposes.

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved. A-7

ARM940T Signal Descriptions

A.5 Miscellaneous signals

Table A-5 Miscellaneous signals

Name Direction Description

BIGENDOUT Output Big-Endian Output. When HIGH, the ARM940T is operating in big-endian
configuration.

When LOW, itisin little-endian configuration.

BURST[1:0] Output Burst Access. These signalsindicate the length of a burst transfer:
0ONo sequential information available (default)
01Reserved
10Current access is part of a4-word transfer
11Reserved

ENAMADRV Output AMBA Signal Enabled. Thissignal is driven HIGH when the AMBA signals,
BA[31:0], BLOK, BPROT, BWRITE and BSIZE are driven out of the ARM940T
macrocell. When this signal is driven LOW, these outputs are in the high-impedance
state.

ENBTRAN Output BTRAN Enable. Thissignal is driven HIGH when the AMBA signal BTRAN][1:0] is
driven out of the ARM940T macrocell. When thissignal isdriven LOW, BTRAN[1:0]
isin the high-impedance state.

FCLK Input Fast Clock. The fast clock input is used when the ARM940T is in the synchronous or
asynchronous clocking mode.

GATEDBDDRV Output BD Direction. Thissignal is driven HIGH when the bidirectional AMBA data bus,
BD[31:0], isdriven as an output. When this signal is LOW, BD[31:0] isinitsinput
state.

ISYNC Input Synchronous I nterrupts. When HIGH, interrupts should be applied synchronously.

nFlQ Input Not Fast Interrupt request. Thisis the not Fast Interrupt Request (nFI Q) signal.

nlRQ Input Not Interrupt Request. Thisis the not Interrupt Request (nIRQ) signal.

A-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

Index

ARM940T Technical Reference Manual

Theitemsin thisindex are listed in alphabetic order, with symbols and humerics appearing at the front. The

references given are to page numbers.

A

areasize 3-3
ASB transfers 6-1

B

base address 3-4
boundary scan chain
controlling external 8-21
boundary scan interface 8-10
breakpoints 8-4
exceptions 8-5
instruction boundary ~ 8-5
prefetch abort 8-5
timing 85
burst accesses 6-2
businterface unit 6-1

busy-wait 7-5, 7-6, 7-14

abandoned 7-14
interrupted 7-14

C

cache
architecture 4-2
data 4-8
instruction 4-5

cachelock down 4-15

clock modes 5-1
asynchronous 5-3
FastBus 5-2
sychronous 5-2

ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved.

Index-i

Index

clocks
core 8-24
DCLK 824
GCLK 8-24
internally TCK generated clock 8-24
memory clock 8-24
switching 8-24
switching during debug ~ 8-25
switching during test 8-26
systemreset 8-26
coprocessor handshake signals ~ 7-5
encoding 7-7
states 7-5
coprocessor instructions
busy-wait 7-5, 7-6
CDP 7-11
during busy-wait 7-14
during interrupts ~ 7-14
interlocked MCR 7-10
LDC/STC 7-4
MCR/MRC 7-8
privileged instructions 7-13
privileged modes 7-13
core state
determining 8-27
CP15register map 2-2

D

datacache 4-8
DBGACK 8-31
debug
clock switching 8-25
communications channel ~ 8-45
debug scan chain 8-20
entered from Thumb state 8-27
hardware extensons 8-2, 8-3
instruction register 8-10
PC behavior 8-34
publicinstructions 8-11
pullup resistors 8-10
reset 8-10
scan chains 8-19
speed 8-28
state-machine controller 8-10
debug host 8-3
debug interface
signds 84
standard 8-2
TAP controller states 8-2
debug request 8-8, 8-36

debug state 8-2, 8-28
actionsof ARM9TDMI 8-8
breakpoints 8-4
exiting 8-31
system speed access 8-33
watchpoints 8-6

debug system 8-3

E

EmbeddedICE 8-2, 8-4, 8-8, 8-37
accessing hardware registers 8-21
control registers 8-40
debug control register 8-43
debug statusregister 8-43
hardware 8-37
hardware control register 8-33
register map 8-37
single stepping 8-44
vector catch register 8-44
vector catching 8-44

Embedded| CE watchpoint units

debugging 8-8
programming 8-8
testing 8-8

external aborts 6-8
external scan chains 8-18

instruction cache 4-5

instruction cycle
counts and bus activity 11-2
databusinstructiontimes 11-5
multiplier cycle counts 11-5
times 11-2

interlocks 11-6
LDM dependent timing 11-9
LDM timing 11-8
singleload timing 11-6
two cycleload timing 11-7

J

JTAG interface 8-8, 8-10, 8-26
JTAG state machine 8-9

L

LATECANCEL 7-5

Index-ii © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

LDM operations

non-cached regions 6-5
lock down

cache 4-15

M

memory access
order 6-9
memory regions 3-2

O

overlapping regions 3-5
Overview 9-2

P

PASS 7-5
PC

during debug 8-34

return address calculations 8-36
pipeline

interlock 7-10

interlocks 11-6
processor core

diagram 1-2
processor state

determining 8-27
programmer’'s model 2-1
protection unit 3-2
protocol converter 8-3
public instructions within debug

BYPASS 8-13
CLAMP 8-13
CLAMPZ 8-14
EXTEST 8-11
HIGHZ 8-14
IDCODE 8-12
INTEST 8-12

SCAN_N 8-12

S

Scan 8-49

scan chains 8-8, 8-19
external 8-18
scanchain0 8-19
scan chain 0 bit order 10-1, 10-3
scan chainl 8-20
scan chain 15 8-23
scan chain2 8-21
scan chain3 8-21
scan chain4 8-22
scan chain5 8-23

serial test and debug 8-9

signals
coprocessor interface A-4
debug A-7

JTAG and TAP controller A-5
miscellaneous A-8
single stepping 8-44
STM operations
non-cached regions 6-7
SWP instruction 6-8
SYSSPEED bit 8-30
system speed
instructions 8-29
system speed accesses 8-36
system state
determining 8-29
scanchainl 8-29

T

TAP controller 8-8, 8-9, 8-18

TAP state machine 8-24

test
clock switching 8-26
system reset 8-26

test data registers 8-16
ARM9TDMI device ID code register
bypass register 8-16
instruction register 8-17
scan chain select register 8-18
scan chains 8-19

testing 10-1
EXTEST 10-1
parallel and serial 10-1
scan chain O bit order 10-3
test patterns 10-1

timing
diagrams 12-1
parameters 12-10

8-17

Index

ARMDDI 0092B

© Copyright ARM Limited 1998. All rights reserved.

Index-iii

Index

TrackinglCE = 9-1
outputs 9-4
timing requirements 9-3

V

vector catching 8-44

W

watchpoint 8-34

watchpoints 8-6
exceptions 8-8
timing 8-6

write buffer 4-12
buffered writes 6-4

Index-iv © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B

	Preface
	About this document
	Intended audience
	Typographical conventions

	Related publications
	Further reading
	Feedback on this manual
	Feedback on this product

	Overview
	1.1 Introduction
	1.2 The ARM940T
	1.3 Processor block diagram

	Programmer’s Model
	2.1 Introduction
	2.2 ARM940T CP15 registers
	2.2.1 CP15 register map summary
	2.2.2 Register 0
	2.2.3 Register 1: Control register
	2.2.4 Register 2: Cacheable registers
	2.2.5 Register 3: Write buffer control register
	2.2.6 Register 5: Instruction and data space protection registers
	2.2.7 Register 6: Protection region base / size registers
	Example base setting

	2.2.8 Register 7
	2.2.9 Register 9: Programming lockdown registers
	2.2.10 Register 15: Test register
	2.2.11 Reserved registers

	Protection Unit
	3.1 Introduction
	3.2 Enabling the protection unit
	3.3 Memory regions
	3.3.1 Area size
	3.3.2 Base address
	3.3.3 Region attributes

	3.4 Overlapping regions
	3.4.1 Background regions

	Caches and Write Buffer
	4.1 Introduction
	4.2 Cache architecture
	4.3 Instruction cache
	4.3.1 Instruction cache operation
	4.3.2 Instruction cache validity
	4.3.3 Flushing the entire cache
	4.3.4 Flushing a single cache line
	4.3.5 Instruction cache enable/disable and reset

	4.4 Data cache
	4.4.1 Gated cacheable data bit
	4.4.2 Gated write buffer control bit
	4.4.3 Data cache operation
	4.4.4 Data cache validity
	4.4.5 Data cache clean and/or flush
	4.4.6 Data cache enable/disable and reset

	4.5 The write buffer
	4.5.1 Write buffer operation
	4.5.2 Enabling/disabling the write buffer

	4.6 Cache lock down
	4.6.1 Locking down the caches
	Data cache lock down
	Instruction cache lock down

	Clock Modes
	5.1 Introduction
	5.2 Overview
	5.3 FastBus mode
	5.4 Sychronous mode
	5.5 Asynchronous mode

	Bus Interface Unit
	6.1 Introduction
	6.2 ASB transfers
	6.3 Burst accesses
	6.4 Buffered writes
	6.5 LDM operations from a non-cached region
	6.6 STM operation to a non-cached region
	6.7 External aborts
	6.8 SWP instruction
	6.9 Memory access order

	ARM940T Coprocessor Interface
	7.1 Overview
	7.1.1 Internal coprocessors
	7.1.2 External coprocessors
	Coprocessor instructions

	7.2 LDC/STC
	7.2.1 Coprocessor Handshake Encoding

	7.3 MCR/MRC
	7.4 Interlocked MCR
	7.5 CDP
	7.6 Privileged instructions
	7.7 Busy-waiting and interrupts

	Debug Support
	8.1 Overview
	8.2 Debug systems
	8.3 Debug interface signals
	8.3.1 Entry into debug state on breakpoint
	8.3.2 Breakpoints and exceptions
	8.3.3 Watchpoints
	8.3.4 Watchpoints and exceptions
	8.3.5 Debug request
	8.3.6 Actions of the ARM940T in debug state

	8.4 Scan chains and JTAG interface
	8.5 The JTAG state machine
	8.5.1 Reset
	8.5.2 Pullup resistors
	8.5.3 Instruction register
	8.5.4 Public instructions
	EXTEST (0000)
	SCAN_N (0010)
	INTEST (1100)
	IDCODE (1110)
	BYPASS (1111)
	CLAMP (0101)
	HIGHZ (0111)
	CLAMPZ (1001)
	SAMPLE/PRELOAD (0011)
	RESTART (0100)

	8.6 Test data registers
	8.6.1 Bypass register
	8.6.2 ARM940T device identification (ID) code register
	8.6.3 Instruction register
	8.6.4 Scan chain select register
	8.6.5 Scan chains 0, 1, 2, 3, 4, 5, and 15
	Scan chain 0
	Scan chain 1
	Scan chain 2
	Scan chain 3
	Scan chain 4
	Scan chain 5
	Scan chain 15

	8.7 ARM940T core clocks
	8.8 Clock switching during debug
	8.9 Clock switching during test
	8.10 Determining the core and system state
	8.10.1 Determining the core state
	8.10.2 Determining system state
	8.10.3 Instructions which may have the SYSSPEED bit set

	8.11 Exit from debug state
	8.12 The PC’s behavior during debug
	8.12.1 Breakpoint
	8.12.2 Watchpoint
	8.12.3 Watchpoint with another exception
	8.12.4 Watchpoint and breakpoint
	8.12.5 Debug request
	8.12.6 System speed accesses
	8.12.7 Summary of return address calculations

	8.13 EmbeddedICE
	8.13.1 Register map
	8.13.2 Control registers
	8.13.3 Debug control register
	8.13.4 Debug status register
	8.13.5 Vector catch register

	8.14 Vector catching
	8.15 Single stepping
	8.16 Debug communications channel
	8.16.1 Debug comms channel registers
	8.16.2 Communications via the comms channel
	8.16.3 Software polling communication
	Sending a message to EmbeddedICE
	Receiving a message from EmbeddedICE

	8.16.4 Interrupt driven communications

	8.17 The debugger’s view of the cache

	TrackingICE
	9.1 Overview
	9.2 Timing requirements
	9.3 TrackingICE outputs

	Test Issues
	10.1 Introduction
	10.2 Scan chain 0 bit order

	Instruction Cycle Summary and Interlocks
	11.1 Introduction
	11.2 Instruction cycle times
	Key to tables
	11.2.1 Multiplier cycle counts

	11.3 Interlocks
	Example 1
	Example 2
	Example 3
	Example 4

	ARM940T AC Characteristics
	12.1 Introduction
	12.2 ARM940T timing diagrams
	12.3 ARM940T timing parameters

	ARM940T Signal Descriptions
	A.1 AMBA signals
	A.1.1 AMBA Bus Specification

	A.2 Coprocessor interface signals
	A.3 JTAG and TAP controller signals
	A.4 Debug signals
	A.5 Miscellaneous signals

