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Preface

About this document

This document is a reference manual for the ARM940T microprocessor. 

The document describes silicon revisions 0, 0b and 0c. Apart from bug fixes, these 
revisions have the same specification except that revision 0b and 0c include the 
BURST[1:0] signal, which is described within. The BURST[1:0] signal does not 
appear on revision 0 silicon.

Intended audience

This document has been written for experienced hardware engineers and software 
engineers who may or may not have previous experience of ARM products.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. iii



Typographical conventions

The following typographical conventions are used in this document:

bold highlights signal names and menu options within text, internal 
signals are further identified by italics.

italic highlights ARM-specific terminology, cross references and 
references to other publications.

typewriter identifies file and program names, source code, and text (such 
as commands) that may be entered at the keyboard.

typewriter italic identifies arguments to commands or functions which should 
be replaced by a specific value.

typewriter bold identifies language keywords when used outside example code.
iv © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



Related publications

ARM Architecture Reference Manual (ARM DDI 0100).
ARM9TDMI Technical Reference Manual (ARM DDI 0091).
AMBA Specification (ARM IHI 0001).
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ture”.
Further reading

IEEE Std. 1149.1- 1990, “Standard Test Access Port and Boundary-Scan Architec
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Feedback on this manual

If you have any comments or suggestions about this document, please send an email to 
errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.
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Feedback on this product

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.
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Chapter 1
Overview

1.1 Introduction

This chapter introduces the ARM940T processor.

1.2 The ARM940T

The ARM940T is a member of the ARM9 Thumb family of general-purpose 
microprocessors. The ARM940T is targeted at embedded control applications where 
high performance, low die size, and low power are all important. The ARM940T 
supports both the 32-bit ARM and 16-bit Thumb instruction sets, allowing the user to 
trade off between high performance and high code density. The ARM940T supports the 
ARM debug architecture and includes logic to assist in both hardware and software 
debug. The ARM940T also includes support for coprocessors.

The ARM940T is a Harvard cache architecture processor. The separate instruction and 
data caches in this design are 4KB each in size, with a 4-word line length. A protection 
unit allows the memory to be segmented and protected in a simple manner, and is ideal 
for embedded control applications. There is no virtual to physical address mapping. A 
writeback cache scheme and write buffer are used to optimize performance and 
minimize bus traffic, thus reducing system power consumption.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 1-1
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The processor core within ARM940T is an ARM9TDMI. This processor core is a 
Harvard architecture device implemented using a five-stage pipeline consisting of 
fetch, decode, execute, memory and write stages, and can be provided as a stand-alone 
core which may be embedded into more complex devices.

The ARM940T interface to the rest of the system is via unified address and data buses. 
This interface is compatible with the Advanced Microcontroller Bus Architecture 
(AMBA) bus scheme. For coprocessor support, the instruction and data buses are 
exported along with simple handshaking signals. The ARM940T also has a 
‘TrackingICE’ mode which allows an approach similar to a conventional ICE mode
operation.

1.3 Processor block diagram

Figure 1-1  ARM940T block diagram
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Chapter 2
Programmer’s Model

This chapter describes the programmer’s model for the ARM940T.

2.1 Introduction

The ARM940T cache processor macrocell is built around the ARM9TDMI proces
core. The ARM9TDMI processor core implements ARM Architecture V4T, which 
includes the 32-bit ARM instruction set and the 16-bit Thumb instruction set. The A
Architecture V4T programmer’s model is described in the ARM Architecture Reference 
Manual, and implementation-specific information is described in the ARM9TDMI 
Technical Reference Manual.

The ARM940T has two coprocessors, CP14 and CP15, which extend the program
model. A coprocessor interface allows additional coprocessors to be attached to 
floating point, DSP, graphics acceleration, or other application-specific functional

CP14 is described in 8.16 Debug communications channel on page 8-45; CP15 is 
described below, in section 2.2 ARM940T CP15 registers.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-1



Programmer’s Model
2.2 ARM940T CP15 registers

2.2.1 CP15 register map summary

As with all cached ARM processors, the ARM940T includes coprocessor 15 (CP15) for 
system control. The structure of CP15 is very similar to that of other cached ARM 
processors such as the ARM720T, and the ARM710T:

• Register 0 is read only. All writes to this register are ignored.

• Register 7 is write only. Reads of this register are unpredictable.

• All other registers are read/write.

• A read from or write to a reserved register is UNDEFINED.

A summary of the register map is given in Table 2-1 CP15 register map: 

Table 2-1 CP15 register map

Register Functions

0 ID code

1 Control

2 Cacheable

3 Write buffer control

5 Protection region access permissions

6 Protection region base / size control

7 Cache operations

9 Cache lock down

15 Test

4,8,10–14 Reserved
2-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



Programmer’s Model
2.2.2 Register 0

This is a read-only register which returns a 32-bit ID code.

2.2.3 Register 1: Control register

This contains the global control bits of the ARM940T. All reserved bits should either 
be written with zero or one, as indicated, or written using read-modify-write. The 
reserved bits have an UNPREDICTABLE value when read.

All defined bits in the control register are set to zero at reset.

• Bit 0 enables the protection unit (see Chapter 4 Caches and Write Buffer)

• Bits 2 and 12 enable the caches (see Chapter 4 Caches and Write Buffer)

31 24 23 16 15 4 3 0

Implementor Architecture version Part number Revision

0x41 = A= ARM 0x2 = Architecture 4T 0x940 0x0

Table 2-2 CP15 register 1

Register Bit Functions

0 Protection unit enable (P)

1 Reserved (should be zero)

2 D Cache enable bit (D)

3:6 Reserved (should be one)

7 Big-end bit (E)

8:11 Reserved (should be zero)

12 I Cache enable bit (1)

13 Alternate vectors select (V)

14:29 Reserved (should be zero)

30 nFastBus select (nF)

31 Asynchronous clocking select (iA)
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-3
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• Bit 7 selects the endian configuration of the ARM940T. Setting bit 7 selects a 
big-endian configuration. Clearing bit 7 selects a little–endian configuration. B
is cleared during reset.

Bit 13 selects the location of the vector table. During reset, the bit is cleared and 
vector table is located at address 0x00000000. When bit 13 is set, the vector tabl
relocated to address 0xffff0000.

Bits 30 and 31 determine the clocking mode of the processor.

Clocking modes are discussed in Chapter 7 ARM940T Coprocessor Interface.

Table 2-3 Clocking modes

Clocking mode nFASTBUS ASYNC

FastBus mode 0 0

Reserved 0 1

Synchronous 1 0

Asynchronous 1 1
2-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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2.2.4 Register 2: Cacheable registers

These registers contain the cacheable attributes for the eight areas of memory. 
Individual control is provided for the I and D caches.

• If the opcode_2 field = 0, the data-cacheable bits are programmed:
MCR/MRC p15,0,Rd,c2,c0,0 Write/Read data-cacheable bits

• If the opcode_2 field = 1 the instruction-cacheable bits are programmed:
MCR/MRC p15,0,Rd,c2,c0,1 Write/Read instruction cacheable bits

The format for the cacheable bits in data and instruction regions is the same, and
given in Table 2-4 Cacheable bits register format. Setting a bit makes an area 
cacheable, clearing it makes it non-cacheable. See also 4.5.1 Write buffer operation. All 
defined bits in the cacheable registers are set to zero at reset.

The use of register 2 is discussed in Chapter 3 Protection Unit.

Table 2-4 Cacheable bits register format

Register bit Functions

7 Cacheable bit (C_7) for area 7

6 Cacheable bit (C_6) for area 6

5 Cacheable bit (C_5) for area 5

4 Cacheable bit (C_4) for area 4

3 Cacheable bit (C_3) for area 3

2 Cacheable bit (C_2) for area 2

1 Cacheable bit (C_1) for area 1

0 Cacheable bit (C_0) for area 0
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-5



Programmer’s Model
2.2.5 Register 3: Write buffer control register

This register contains the write buffer control (bufferable) attribute for the eight areas 
of memory. Setting a bit makes an area bufferable, clearing a bit makes an area 
unbuffered. For cacheable regions, this determines the type of cache operations. See 
4.5.1 Write buffer operation.
MCR/MRC p15,0,Rd,c3,c0,0 Write/Read data-cacheable bits

The opcode_2 field should be 0 as the write buffer only operates on data regions.

This only applies to the D Cache.

All defined bits in the write buffer control register are set to zero at reset.

The use of register 3 is discussed in Chapter 3 Protection Unit.

Table 2-5 CP15 register map

Register bit Function

7 Write buffer control bit (B_d7) for data area 7

6 Write buffer control bit (B_d6) for data area 6

5 Write buffer control bit (B_d5) for data area 5

4 Write buffer control bit (B_d4) for data area 4

3 Write buffer control bit (B_d3) for data area 3

2 Write buffer control bit (B_d2) for data area 2

1 Write buffer control bit (B_d1) for data area 1

0 Write buffer control bit (B_d0) for data area 0
2-6 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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2.2.6 Register 5: Instruction and data space protection registers

These registers contain the access permission bits for the instruction and data protection 
regions. The opcode_2 field of a MRC/MCR determines whether the instruction or data 
access permissions are to be programmed:
MCR/MRC p15,0,Rd,c5,co,0 Write/Read data space access permissions

MCR/MRC p15,0,Rd,c5,co,1 Write/Read instruction space access permissions

Each register contains the access permission bits, apn[1:0], for the eight areas of 
instruction or data memory.

All defined bits in the protection registers are set to zero at reset.

The values of the Iapn[1:0] and Dapn[1:0] bits define the access permission for each 
area of memory. The encoding is shown in Table 2-7 Permission encoding.

Table 2-6 Protection space register format

Register bit Function

15:14 ap7[1:0] bits of area 7

13:12 ap6[1:0] bits of area 6

11:10 ap5[1:0] bits of area 5

9:8 ap4[1:0] bits of area 4

7:6 ap3[1:0] bits of area 3

5:4 ap2[1:0] bits of area 2

3:2 ap1[1:0] bits of area 1

1:0 ap0[1:0] bits of area 0

Table 2-7 Permission encoding

I/Dapn[1:0] Permission

00 No access

01 Privileged mode access only

10 Privileged mode full access, user mode read only

11 Full access
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-7



Programmer’s Model
The use of register 5 discussed in Chapter 3 Protection Unit.

2.2.7 Register 6: Protection region base / size registers

This register can define 16 programmable regions (eight instruction, eight data) in 
memory. These registers define the base and size of each of the eight areas of memory. 
Individual control is provided for the instruction and data memory regions. The values 
are ignored when the protection unit is disabled. 

On reset, only the region enable bit for each region is reset to 0, all other bits are 
undefined. At least one instruction and data memory region must be programmed 
before the protection unit is enabled including its size, base address, access permissions, 
cache and write buffer enables.

The opcode_2 field defines whether the data or instruction protection regions are to be 
programmed. The CRm field selects the region number.

Table 2-8 CP15 data protection region registers

ARM instruction Protection region register

MCR/MRC p15, 0, Rd, c6, c7, 0 Data memory region 7

MCR/MRC p15, 0, Rd, c6, c6, 0 Data memory region 6

MCR/MRC p15, 0, Rd, c6, c5, 0 Data memory region 5

MCR/MRC p15, 0, Rd, c6, c4, 0 Data memory region 4

MCR/MRC p15, 0, Rd, c6, c3, 0 Data memory region 3

MCR/MRC p15, 0, Rd, c6, c2, 0 Data memory region 2

MCR/MRC p15, 0, Rd, c6, c1, 0 Data memory region 1

MCR/MRC p15, 0, Rd, c6, c0, 0 Data memory region 0

Table 2-9 CP15 instruction protection region registers

ARM instruction Protection region register

MCR/MRC p15, 0, Rd, c6, c7, 1 Instruction memory region 7

MCR/MRC p15, 0, Rd, c6, c6, 1 Instruction memory region 6

MCR/MRC p15, 0, Rd, c6, c5, 1 Instruction memory region 5

MCR/MRC p15, 0, Rd, c6, c4, 1 Instruction memory region 4
2-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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Each protection region register has the format shown in Table 2-10 CP15 protection 
region register format.

The region base must be aligned to an ‘area size’ boundary, where the area size
defined in its respective protection region register. The behavior is UNDEFINED if this 
is not the case.

MCR/MRC p15, 0, Rd, c6, c3, 1 Instruction memory region 3

MCR/MRC p15, 0, Rd, c6, c2, 1 Instruction memory region 2

MCR/MRC p15, 0, Rd, c6, c1, 1 Instruction memory region 1

MCR/MRC p15, 0, Rd, c6, c0, 1 Instruction memory region 0

Table 2-10 CP15 protection region register format

Register bit Function

31:12 Base address

11:6 Unused

5:1 Area size

0 Region enable. Reset to disable (0).

Table 2-9 CP15 instruction protection region registers

ARM instruction Protection region register
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-9
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Example base setting 

An 8KB size region must be aligned to an 8KB boundary—bits [31:12] = 0x00002
Area sizes are given in Table 2-11. Register 6 is discussed in Chapter 3 Protection Unit.

Table 2-11 Area size encoding

Bit encoding Area size

00000 to 01010 Reserved

01011 4KB

01100 8KB

01101 16KB

01110 32KB

01111 64KB

10000 128KB

10001 256KB

10010 512KB

10011 1MB

10100 2MB

10101 4MB

10110 8MB

10111 16MB

11000 32MB

11001 64MB

11010 128MB

11011 256MB

11100 512MB

11101 1GB

11110 2GB

11111 4GB
2-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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2.2.8 Register 7

A write to this register allows the caches to be flushed, and an I Cache line to be pre-
fetched. A read from this register returns an UNPREDICTABLE value. A subset of the 
Architecture V4 functions, as defined in the ARM Architecture Reference Manual, is 
implemented, see Table 2-12 Cache operations through register 7. “Data” means the 
value transferred in the Rd.

Where the required value is an Index/Segment, the format is:

Table 2-12 Cache operations through register 7

Function Data ARM instruction

Flush I Cache Should be zero MCR p15, 0, Rd, c7, c5, 0

Flush I Cache single entry Index/segment MCR p15, 0, Rd, c7, c5, 1

Flush D Cache Should be zero MCR p15, 0, Rd, c7, c6, 0

Flush D Cache single entry Index/segment MCR p15, 0, Rd, c7, c6, 1

Clean D Cache entry Index/segment MCR p15, 0, Rd, c7, c10, 1

Prefetch I Cache line Address MCR p15, 0, Rd, c7, c13, 1

Clean and Flush D Cache entry Index/segment MCR p15, 0, Rd, c7, c14, 1

Table 2-13 CP15 register 7 index/segment data format

Rd bit position Function

31:26 Index

25:6 Should be zero

5:4 Segment

3:0 Should be zero
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-11
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For the I Cache prefetch operation, the data format is:

The use of register 7 is discussed in Chapter 4 Caches and Write Buffer.

2.2.9 Register 9: Programming lockdown registers

These registers allow regions of the cache to be locked down. The format is:

The format of the registers, Rd, transferred during this operation, is shown below:

All defined bits in the lockdown registers are set to zero at reset.

Note

The segment number is not specified because cache lines are locked down across all four 
segments (16-word granularity). The use of register 9 is discussed in Chapter 4 Caches 
and Write Buffer.

Table 2-14 CP15 Register 7 prefetch address format

Rd bit position Function

31:6 Address bits 31:6

5:4 Cache segment

3:0 Should be zero

Table 2-15 Programming the lockdown registers

ARM instructions Lockdown register

MCR/MRC p15, 0, Rd, c9, c0, 0 Data lockdown control

MCR/MRC p15, 0, Rd, c9, c0, 1 Instruction lockdown control

Table 2-16 Lockdown register format

Register bit Function

31 Load bit

30:6 Reserved

5:0 Cache index
2-12 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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2.2.10 Register 15: Test register

This register controls features intended for use during silicon production testing only. 
The DTRRobin and ITRRobin bits set the respective caches into a pseudo round-robin 
replacement mode.

All defined bits in the test register are set to zero at reset.

This register is for production test purposes only, and should not be used for any other 
purpose.

2.2.11 Reserved registers

Accessing a reserved register is UNPREDICTABLE.

Table 2-17 CP15 register 15

Register bit Function

1:0 Reserved

2 DTRRobin test mode

3 ITRRobin test mode

31:4 Reserved
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 2-13
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Chapter 3 
Protection Unit

3.1 Introduction

This chapter describes the ARM940T protection unit. This unit allows memory to be 
partitioned, and individual attributes to be set for each protection region. Both the 
instruction address space and the data address space may be divided into eight regions 
of variable size. The protection unit is programmed via CP15 registers 1, 2, 3, 5 and 6. 

The information in this chapter is organized as follows:

• Enabling the protection unit

• Memory regions

• Overlapping regions.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 3-1
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3.2 Enabling the protection unit

Before the protection unit is enabled, valid protection regions must be programmed. If 
they are not programmed, the ARM940T can enter a state that is recoverable only by 
reset. Setting bit 0 of the CP15 register 1, the control register, enables the protection 
unit.

When the protection unit is disabled, all instruction fetches are non-cacheable and all 
data accesses are non-cacheable and non-bufferable. This results in very poor system 
performance, so software should define memory regions and enable the protection unit 
soon after reset.

3.3 Memory regions

Both the instruction and data address spaces may be partitioned into a maximum of 
eight regions. Each region is specified by:

• a base address

• a size field

• cache and write buffer configuration

• read/write access permissions

The ARM architecture uses constants with code to do address calculations. Thes
called inline literals. For correct operation, any area of memory from which code w
be executed should be defined for both the instruction and data address spaces.

The base address and size properties are programmed via CP15 register 6, the fo
which is shown in Table 3-1 Protection register format:

Table 3-1  Protection register format

Register bit Function

31:12 Base address

11:6 Unused

5:1 Area size

0 Region enable, reset to disable (0)
3-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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3.3.1 Area size

The area size is specified as a 5-bit value, encoding a range of values from 4KB to 4GB. 
The encoding is shown below in Table 3-2 Region size encoding:

Table 3-2  Region size encoding

Bit encoding Area size

00000 to 01010 Reserved

01011 4KB

01100 8KB

01101 16KB

01110 32KB

01111 64KB

10000 128KB

10001 256KB

10010 512KB

10011 1MB

10100 2MB

10101 4MB

10110 8MB

10111 16MB

11000 32MB

11001 64MB

11010 128MB

11011 256MB

11100 512MB

11101 1GB

11110 2GB

11111 4GB
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Note

Any value less than ‘01011’ programmed in Rd[5:1] will result in unpredictable 
behavior.

3.3.2 Base address

The base address defines the start of the memory region. This must be aligned to
region size. If not, this results in UNPREDICTABLE behavior. For example, if a region
size of 8KB is programmed for a given region, the base address must be a multip
8KB.

Each region has a number of attributes associated with it. These control how a me
access is performed when the processor core issues an address which falls withi
given region.

3.3.3 Region attributes

The attributes are:

• cacheable

• bufferable (for data regions only)

• read/write permissions.

This information is specified by programming CP15 registers 2, 3 and 5 (see Chapter 2 
Programmer’s Model). If an access fails its protection check (for example, if a user 
mode application attempts to access a privileged mode access only region), a memory 
abort occurs. The processor enters the abort exception mode, branching to the data abort 
or prefetch abort vector accordingly.

The cacheable and bufferable bits in CP15 registers 2 and 3 are together used to select 
one of four cache and write buffer configurations. These are described in Chapter 4  and 
specifically in 4.5.1 Write buffer operation.
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3.4 Overlapping regions

The protection unit may be programmed such that two, or more, regions overlap. In this 
case, a fixed priority scheme applies to determine which region’s attributes shoul
applied to the memory access. Attributes for region 7 take highest priority, and re
0 take lowest priority. 

A block diagram showing the protection unit is given in Figure 3-1.

Figure 3-1 ARM940T protection unit

Consider the following:

Data region 2 is programmed to be 4KB in size, starting from address 
0x3000 with Dap[1:0]=10 
(Privileged mode full access, user mode read only).

Data region 1 is programmed to be 16KB in size, starting from address 0x0 
with Dap[1:0]=01 
(Privileged mode access only).

If the processor attempts to perform a data store to address 0x3010 while in user 
the address falls into both region 1 and region 2, as shown in Figure 3-2. As there is a 
clash, the attributes associated with region 2 are applied, because of the fixed pr
scheme. In this case, the user is only allowed to perform reads from this region, a
a data abort occurs.

hit
Priority
Encoder

Address Comparators
Attribute
Registers

Abort Attributes
Address from ARM9TDMI
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Figure 3-2 Overlapping memory regions

3.4.1 Background regions

Overlapping regions increase the flexibility of how the eight regions may be mapped 
onto physical memory devices in the system. The overlapping properties may also be 
used to specify a background region. For example, there may be a number of physical 
memory areas sparsely distributed across the 4GB address space. If a programing error 
occurs therefore, it may be possible for the processor to issue an address which does not 
fall into any defined region.

If the address issued by the processor does not fall into any of the defined regions, the 
ARM940T protection unit is hardwired to abort the access. You may override this 
behavior by programming region 0 to be a 4GB background region. In this way, if the 
address does not fall into any of the other seven regions, the access is controlled by the 
attributes the user has specified for region 0.

0X4000

0X3000
0X3010

0X0

Region 2

Region 1
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Chapter 4
Caches and Write Buffer

4.1 Introduction

To reduce the effective memory access time, the ARM940T employs an Instruction 
Cache (I Cache), a Data Cache (D Cache) and a Write Buffer. The following sections 
describe the features and behavior of each of these blocks. The information in this 
chapter is organized as follows:

• Cache architecture

• Instruction cache

• Data cache

• The write buffer

• Cache lock down.
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4.2 Cache architecture

The ARM940T uses:

• a 4KB Instruction cache

• a 4KB Data cache

• an 8-word write buffer.

Each cache comprises four, fully associative 1KB segments which support single 
reads, and either one or two-cycle writes depending on the sequentiality of the ac

Each cache segment consists of 64 CAM rows to select one of 64 RAM lines of f
words in length. On an I Cache or D Cache access, a segment is selected and the
address is compared with the 64 TAGs in the CAM. If a match occurs, the cache
‘hit’. The row line corresponding to the match is then enabled so the data can be 
accessed. If none of the row TAGs match, the access has missed. External memor
be accessed unless the access is a buffered write, in which case the write buffer i

If a read access from a cacheable memory region misses in the cache, one of the
segment row lines is selected as a target into which to load new data (allocate on
read-miss replacement policy). This selection is performed by a randomly clocked
target row counter. Critical or frequently accessed instructions and/or data may b
locked down in the I Cache and D Cache respectively, by restricting the range of 
target counter. Locked down lines are immune to replacement and remain in the c
until they are unlocked, or flushed.

Figure 4-2 4KB cache used for ARM940T instruction and data caches shows the 4KB 
Instruction Cache or Data Cache architecture:

• Address bits 5 to 4 select one of the four cache segments

• Bits 3 to 2 select a word in the cache line.

The CAM allows 64 address TAGs to be stored for an address that selects a give
segment (64-way associativity). This reduces the chance of an address sequence
example, a program loop that constantly selects the same segment from replacin
that will be required again in a later iteration of the loop. The overhead for this hig
associativity is the need to store a larger TAG, in this case 26 bits per line. Figure 4-1 
ARM940T Instruction/Data cache address mapping shows how the address space 
accesses the 4KB I Cache and 4KB D Cache.
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Two additional bits are used on each segment row line:

• The valid bit is set once the cache line has been written with valid data. Only a
valid line can return a hit during a CAM lookup. On reset, all the valid bits are 
cleared.

• The dirty bit is associated with write operations in the D Cache and is used to 
indicate that a cache line contains data that differs from data stored at the addr
external memory (data can only be marked dirty if it resides in a writeback 
protection region).

Figure 4-1 ARM940T Instruction/Data cache address mapping

A[..] 012345631

Address TAG stored in CAM

Word
In Line

Cache
Seg Word Aligned

so A[1:0] not used

ADDRESS MAPPING
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Figure 4-2 4KB cache used for ARM940T instruction and data caches
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4.3 Instruction cache

The ARM940T has a 4KB Instruction Cache (I Cache) comprising 16 bytes (four 
words) arranged as four 64-way associative segments.

The I Cache uses the physical address generated by the processor core. It employs a 
policy of ‘allocate on read-miss’ and is always reloaded one cache line (four word
a time, through the external interface.

The I Cache operation may be enabled or disabled by the CP15 control register, 
always disabled on reset. When enabled, the I Cache operation is further controll
the (GCi) Gated Cacheable data bit stored in the protection unit, which selectively 
enables/disables caching for different memory regions. The GCi bits have the 
protection unit enable factored into them such that GCi = 1 only when a cacheab
region is accessed AND the protection unit is enabled.

The I Cache and protection unit can be enabled with a single write to the CP15 co
register, although at least one protection region should be programmed before th
protection unit is enabled. Critical or frequently accessed instructions can be lock
down into the I Cache with a granularity of 64 bytes.

Note

Instructions in this lockdown region are immune to replacement, and remain in the
I Cache, although they are not immune to being flushed.

4.3.1 Instruction cache operation

When the I Cache is enabled, it is searched when the processor requests an inst

Successful cache read:
Data is returned to the core regardless of the state of the GCi bit

Unsuccessful cache read:
The GCi bit is examined:

If this bit is 1, a cacheable code area and protection unit enabled 
linefetch of four words is performed. The data is written into a 
randomly chosen line in the I Cache.

If this bit is 0, a single-word external access is performed to fetch 
requested instruction. The cache is not updated.

Locked down code is always found on I Cache searches. Lines containing locked 
code cannot be selected for replacement during a linefetch.
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4.3.2 Instruction cache validity

The ARM940T does not support external memory snooping. If, therefore, self-
modifying code is written, the instructions in the I Cache may become invalid. 
Similarly, if the instruction protection regions are reprogrammed, code may exist in the 
cache which should now be in a non-cacheable region. In either of these cases, the 
I Cache must be flushed by the programmer.

The entire I Cache can be invalidated (flushed) by software in one operation, or flushed 
one line at a time by writing to the CP15 cache operations register (register 7). The 
I Cache is automatically flushed in hardware during reset. The I Cache never needs to 
be cleaned as its only source of data is from external memory (the processor only ever 
performs reads from the I Cache).

4.3.3 Flushing the entire cache

As shown in Table 2-12 Cache operations through register 7 on page 2-11, the entire I 
Cache can be flushed through the use of an MCR instruction. In this case, the contents 
of the ARM register transferred to CP15 should be zero. The code segment shown 
below may be used. Note that the use of R0 is arbitrary:
M0V RO, #0; Clear R0

MCR p15, R0, c7,c5, 0; Flush entire I Cache

Flushing the entire cache also flushes any locked down code. If the I Cache contains 
locked down code, the programmer must flush lines individually, avoiding the lines 
used for the locked down code.

4.3.4 Flushing a single cache line

A single cache line may be flushed. To do this, the cache line must be specified in Rd. 
As the ARM940T I Cache comprises four segments, each with 64 lines, both the 
segment and line number index must be specified. The format of Rd for this operation 
is shown in Table 4-1 CP15 Register 7:

Table 4-1 CP15 Register 7

Rd bit position Function

31:26 Index

25:6 Should be zero

5:4 Segment

3:0 Should be zero
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For example, the following code sequence may be used to flush line 25 of segment 2 in 
the I Cache.
MOV R0, #0x64000000; Specify line 25

ORR R0, R0, #0x20; Specify cache segment 2,
; R0=0x64000020

MCR p15, 0, R0, c7, c5, 1; Flush the I Cache line

4.3.5 Instruction cache enable/disable and reset

The I Cache is enabled by setting bit 12 of the CP 15 control register. The cache is only 
enabled if the protection unit is already enabled, or is enabled simultaneously. When the 
I Cache is enabled, a cacheable read-miss causes lines to be placed in the I Cache.

The I Cache can be disabled by clearing bit 12 of the CP15 control register. This has the 
effect of preventing all I Cache look-ups and line fills, and forces all instruction fetches 
to be performed by single external accesses.
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4.4 Data cache

The ARM940T has a 4KB Data Cache (D Cache) comprising 256 lines of 16 bytes 
(bytes words), arranged as four 64-way associative segments. The D Cache uses the 
physical address generated by the processor core. It employs an allocate on read-miss 
policy, and is always reloaded a cache line (four words) at a time through the external 
interface.

The D Cache supports both Write-back (WB) and Write-Through (WT) modes. For data 
stores that hit in the D Cache, in WB mode the cache line is updated, and an additional 
dirty bit associated with the cache line is set. This indicates that the internal version of 
the data differs from that in the external memory. In WT mode, a store that hits in the 
D Cache causes the cache line to be updated but not marked as dirty, as the data store 
is also written to the write buffer to keep the external memory consistent. In both WB 
and WT modes, a store that misses in the cache is sent to the write buffer. When a line 
fetch causes a cache line to be evicted from the D Cache, the dirty bit for the victim line 
is read and if the line contains valid and dirty data, it is written back to the write buffer 
before the line fill replaces it.

The Gated Cacheable Data (GCd) bit and the Gated Write Buffer Control (GBd) bit 
control the D Cache behavior. For this reason the protection unit must be enabled when 
the D Cache is enabled.

4.4.1 Gated cacheable data bit 

The GCd bit determines whether data being read should be placed in the D Cache and 
used for subsequent reads. Typically, main memory is marked as cacheable to reduce 
memory access time and therefore increase system performance. Input/output space is 
usually marked as non-cacheable. For example, if a processor is polling a hardware flag 
in input/output space, it is important that the processor is forced to read data direct from 
the external peripheral, and not from a copy of initial data held in the D Cache.

4.4.2 Gated write buffer control bit 

The GBd and GCd bits affect writes that both hit and miss in the D Cache. For details 
of the ways these bits are decoded to perform different types of writes, see 4.5 The write 
buffer on page 4-12.
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4.4.3 Data cache operation

When the D Cache is enabled, it is searched when the processor performs a data load or 
store. If the cache hits on a load, data is returned to the core regardless of the state of 
the GCd bit. If the cache read misses, the GCd bit is examined:

If the GCd bit is 1:
Cacheable data area and protection unit enabled. A line fill of four 
words is performed, and the data is written into a randomly chosen 
line in the D Cache.

If the GCd bit is 0:
A single or multiple external access is performed and the cache is not 
updated.

Stores that hit in the cache always update the cache line, regardless of the GCd bit. 
Stores that miss the cache use the GCd and GBd bits to determine whether the write is 
buffered (see 4.5 The write buffer on page 4-12).

Non-cacheable load multiples and non-cacheable non-bufferable (NCNB) store 
multiples are broken up on 4KB boundaries (the minimum protection region size), 
allowing a protection check to be performed in case the LDM or STM crosses into a 
region with different protection properties.

D Cache lock down is supported with 16-word granularity. Data that is locked down 
always hits on D Cache searches, and lines containing locked down data cannot be 
selected for replacement during a line fill.

Back-to-back stores from adjacent store instructions to the same segment within the D 
Cache cause a cache stall, requiring two cycles for the cache write. A burst of stores 
from a single store multiple instruction does not cause stalls and allows one write cycle 
to be performed. Single back-to-back stores to different segments are also performed 
without a stall, allowing one write cycle.

4.4.4 Data cache validity

The ARM940T does not support memory translation so the data in the D Cache can 
always be considered valid within the context of the ARM940T. However, if external 
memory translation is used, and the mappings are changed, the D Cache data is no 
longer consistent with external memory, and the D Cache must be flushed by the 
programmer.

The ARM940T does not support external memory snooping. Any shared data memory 
space therefore, should not be cacheable. Additionally, if the data protection regions are 
reprogrammed, data already in the cache may now be in a non-cacheable region, and 
the cache must be flushed.
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4.4.5 Data cache clean and/or flush

The D Cache has flexible cleaning and flushing utilities. The whole D Cache can be 
invalidated (Flush D Cache) in one operation without writing back dirty data. Individual 
D Cache lines can also be invalidated without writing back any dirty data (Flush D 
Cache Single Entry). Cleaning is performed on a line-by-line basis where the data is 
only written back through the write buffer when a dirty line is encountered, and the 
cleaned line remains in the cache (Clean D Cache Single Entry). Lastly, a line may be 
cleaned and flushed in one operation (Clean and Flush D Cache Single Entry).

Note

Flushing the entire D Cache will also flush any locked down code, without resetting the 
victim counter range.

The cleaning and flushing utilities are performed using CP15 register 7, in a similar 
manner to that described previously in 4.3 Instruction cache on page 4-5 for I Cache. 
The format of Rd transferred to CP15 is as shown in Table 4-1 CP15 Register 7 on page 
4-6 for all register 7 operations. It is usual for the cache to be cleaned before being 
flushed, so that external memory is updated with any dirty data.
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The code segment below shows how the entire cache can be cleaned and flushed:
MOV R1, #0; Initialize line counter R1 outer_loop

MOV R0, #0; Initialize segment counter, R0 inner_loop

ORR R2, R1, R0; Make segment and line address

MCR p15, 0, R2, c7, c14, 1; Clean and flush that line

ADD R0, R0, #0x10; Increment segment counter

CMP R0, #0x40; Complete all 4 segments?

BNE inner_loop; If not, branch back to inner_loop

ADD R1, R1, #0x04000000; Increment line counter

CMP R1, #0x0; Complete all lines?

BNE outer_loopIf not, branch back to outer_loop

4.4.6 Data cache enable/disable and reset

The D Cache is automatically disabled and flushed on reset. If the D Cache is 
subsequently disabled, further D Cache searches are prevented. This has the effect of 
making all data accesses non-cacheable and forcing the ARM940T to perform external 
accesses. The write buffer control is still decoded from the GBd and the GCd bit, the 
latter being forced to 0 (non-cacheable) when the D Cache is disabled.

Writing to the CP15 control register bit 2 enables the D Cache. This should only be done 
if bit 0 is already set, enabling the protection unit. These two bits can be written to at 
the same time, enabling the D Cache and protection unit. The D Cache can be disabled 
by clearing bit 2 of the CP15 control register.
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4.5 The write buffer

The ARM940T provides a write buffer to increase system performance. The write 
buffer can buffer up to eight words of data and four separate non-sequential addresses. 
On reset, the buffer is flushed. 

Write buffer behavior is controlled by the protection region attributes of the store being 
performed, and the D Cache and protection unit enable status. This control is 
represented by the following bits:

GCd bit Gated Cacheable Data (GCd) bit. The GCd bit is generated 
from the cacheable attribute of the protection region AND 
the D Cache enable AND the protection unit enable.

GBd bit Gated Write Buffer Control (GBd) bit. The GBd bit is 
generated from the bufferable attribute of the protection 
region AND the protection unit enable.

All accesses are initially non-cacheable and non-bufferable until the protection unit has 
been programmed and enabled. It follows that the write buffer cannot be used while the 
protection unit is disabled.
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4.5.1 Write buffer operation

The write buffer is used when the D Cache hits and/or misses, depending on the mode 
of operation. Table 4-2 Data write modes shows how the GCd and GBd bits determine 
the behavior of the write buffer:

NCNB Data reads and writes are not cached, and may be externally aborted. 
Writes are not buffered; the processor is stalled during the external 
access.

NCB Data reads and writes are not cached. Writes are buffered, and so 
cannot be externally aborted. Reads can be externally aborted. 

If the D Cache hits for this type of access, there has been a 
programming error. This error is treated like a write-through, in that 
the D Cache line is updated and the data is buffered. 

Swap instructions operation on data in an NCB region are made to 
perform NCNB type accesses and are not buffered.

WT Searches the D Cache for reads and writes. Reads which miss in the 
D Cache cause a line fill. Reads which hit in the D Cache do not 
perform an external access. All writes are buffered, regardless of 
whether they hit or miss in the D Cache. Writes which hit in the D 
Cache update the cache but do not mark the cache line as dirty, as the 
write is also sent to the Write Buffer. Writes cannot be externally 
aborted.

WB Searches the D Cache for reads and writes. Reads which miss in the 
D Cache cause a line fill. Reads which hit in the D Cache do not 
perform an external access. Writes which miss in the D Cache are 
buffered. Writes which hit in the D Cache update the cache line, mark 
it as dirty, and do not send the data to the write buffer. D Cache write-
backs are buffered. Writes (write-miss and write-back) may not be 
externally aborted.

Table 4-2 Data write modes

GCd GBd Access mode

0 0 NCNB Non-cacheable, non-bufferable

0 1 NCB Non-cacheable, bufferable

1 0 WT Write-through

1 1 WB Write-back
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4.5.2 Enabling/disabling the write buffer

The write buffer cannot be directly enabled or disabled. However, setting the properties 
of a memory region to be NCNB or disabling the protection unit prevents the write 
buffer being used.
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4.6 Cache lock down

To provide a predictable code behavior in embedded systems, a mechanism for locking 
code and data into the Instruction and Data caches respectively is provided. This feature 
may be used, for example, to hold high-priority interrupt routines where there is a hard 
real-time constraint, or to hold the co-efficients of a DSP filter routine in order to reduce 
external bus traffic.

Locking down a region of the I Cache or D Cache is achieved by executing a short 
software routine, taking note of these requirements:

• the program should be held in a non-cached area of memory

• the cache should be enabled and interrupts should be disabled

• software must ensure that the code or data to be locked down is not already in
cache

• if the caches have been used since the last reset, the software must ensure th
cache in question is cleaned, if appropriate, and then flushed.

Lock down in the D Cache is achieved through use of CP15 register 9. I Cache lo
down uses both CP15 registers 7 and 9.

As described in 4.2 Cache architecture on page 4-2, the ARM940T I and D Caches 
comprise four segments, each with 64 lines of four words each. Each segment is
in size. Lock down can be performed with a granularity of one line across each of
four segments; the smallest space which may be locked down is 16 words. Lock d
starts at line zero, and can continue until 63 of the 64 lines are locked.

4.6.1 Locking down the caches

The procedure for locking down a line in the I Cache and the D Cache are slightly
different. In both cases:

1. The cache must be put into lock down mode by programming register 9.

2. A line fill must be forced.

3. The corresponding data must be locked in the cache.

If more than one line is to be locked, a software loop must repeat this procedure.
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Data cache lock down

For the D Cache, the procedure is as follows:

1. Write to CP15 register 9, setting DL=1 and Dindex=0.

2. Initialize the pointer to the first of the 16 words to be locked.

3. Execute an LDR from that location. This forces a linefill from that location, and 
the resulting four words are captured by the cache.

4. Increment the pointer by 16 to select cache bank 1.

5. Execute an LDR from that location. The resulting linefill is captured in cache 
bank 2.

6. Repeat steps 1 to 5 for cache banks 3 and 4.

7. Write to CP15 register 9, setting DL=0 and Dindex=1.

If there were more data to lock down, at the final step, step 7, the DL bit should be left 
HIGH, Dindex incremented by 1 line, and the process repeated. The DL bit should only 
be set LOW when all the lock down data has been loaded.
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Instruction cache lock down

For the I Cache, this procedure is as follows:

1. Write to CP15 register 9, setting IL=1 and Iindex=0.

2. Initialize the pointer to the first of the sixteen words to lock down.

3. Force a line fill from that location by writing to CP15 register 7.

4. Increment the pointer by 16 to select cache segment 1.

5. Force a line fill from that location by writing to CP15 register 7. The resulting 
line fill is captured in segment 1.

6. Repeat for cache segments 3 and 4.

7. Write to CP15 register 9, setting IL=0 and Iindex=1.

If there were more data to lock down, at the final step 7, the IL bit should be left HIGH, 
Iindex increment by 1 line and the process repeated. The IL bit should be set LOW when 
all the lock down data had been loaded.

Performing lock down in the I Cache involves a similar sequence of operations, except 
that the IL and Iindex of CP15 register 9 are accessed.

The only significant difference in the sequence of operations is that an MCR instruction 
must be used to force the line fill in the I Cache, instead of an LDR, This is due to the 
Harvard nature of the processor. During the MCR, the value set up in the pointer register 
is output on the instruction address bus, and a memory access is forced. As this misses 
in the cache (due to earlier flushing), a line fill occurs.

The rest of the sequence of operations is exactly the same as for D Cache lock down.

The MCR to perform the I Cache lookup is a CP15 register 7 operation:
MCR p15, 0, Rd, c7, c13, 1

A macro used to lock down code in the instruction cache is given below:
; Subroutine lock_i_cache

; R1 contains start address of code to be locked down

;

; The subroutine performs a lock-down of instructions in the 

; I Cache

; It first reads the current lock_down index and then locks 

; down the number of lines requested.

;
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; Note that this subroutine must be located in a non-cacheable

; region of memory in order to work, or these instructions

; themselves will be locked into the cache. Interrupts should also 

; be disabled.

; The subroutine should be called via the ‘BL’ instruction.

;

; This subroutine returns the next free cache line number in R0, 
or 

; 0 in R0.

; if an error occurs.

lock_i_cache

STMFD R13!, {R1-R3}; save corrupted registers

BICR1, R1, #0x3f; align address to cache line

MRCp15, 0, R3, c9, c0, 1 ; get current instruction cache index

ANDR2, R2, #0x3f; mask off unwanted bits

ADDR3, R2, R0; Check to see if current index

CMP R3, #0x3f; plus line count is greater than 63

; If so, branch to error as

; more lines are being locked down

; than permitted

ORR2, R2, #0x80000000; set lock bit, r2 contains the cache

; line number to lock down

lock_loop

MCR p15, 0, R2, c9, c0, 1 ; write lock down register

MCR p15, 0, R1, c7, c13, 1; force line fetch from external 
memory

ADD R1, R1, #16; add 4 words to address

MCRp15, 0, R1, c7, c13, 1; force line fetch from external memory

ADDR1, R1, #16; add 4 words to address

MCRp15, 0, R1, c7, c13, 1; force line fetch from external memory

ADDR1, R1, #16; add 4 words to address

MCRp15, 0, R1, c7, c13, 1; force line fetch from external memory

ADDR1, R1, #16; add 4 words to address

ADDR2, R2, #0x1; increment cache line in lock down 

; register

SUBSR0, R0, #0x1; decrement line count and set flags

BNElock_loop; if r0! = 0 then branch round

BICR0, R2, #0x80000000; clear lock bit in lockdown register
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MCRp15, 0, R0, c9, c0, 1; restrict victim counter to lines 

; r0 to 63

LDMFD R13!, {R1-R3}; restore corrupted registers and return

MOVPC, LR; R0 contains the first free cache line

; number

error

LDRR0, =0; make r0 = 0 to indicate error

LDMFD R13!, {R1-R3}; restore corrupted registers and return

MOVPC, LR
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Chapter 5
Clock Modes

5.1 Introduction

This chapter describes the different clock modes available on the ARM940T. The 
information in this chapter is organized as follows:

• Overview

• FastBus mode 

• Sychronous mode 

• Asynchronous mode.

5.2 Overview

The ARM940T has two main clock inputs BCLK and FCLK, which allow flexible 
clocking configurations. There are three different modes of operation, selected us
bits 30 and 31 of CP15 register 1, the control register. The three modes are Fast
Synchronous and Asynchronous. ECLK and CPCLK reflect which clock is currently 
selected.

The ARM940T is a pseudo-static design and both clocks can be stopped. Typica
when accessing slow memory systems or peripherals, wait states will be applied 
the BWAIT signal, refer to the AMBA Specification for more details.
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5.3 FastBus mode

In this mode of operation the BCLK input is used for controlling the internal 
ARM9TDMI, cache operations and the external memory interface. The FCLK input is 
ignored. This mode is typically used in systems with high speed memory.

5.4 Sychronous mode

This mode is typically used in systems with low speed memory. In this mode both the 
BCLK and FCLK inputs are used. BCLK is used to control the AMBA memory 
interface. FCLK is used to control the internal ARM9TDMI processor core and any 
cache operations. FCLK must have a higher frequency and must also be an integer 
multiple of BCLK, with a BCLK transition only when FCLK is HIGH. An example is 
shown in Figure 5-1 Sychronous clocking mode:

Figure 5-1 Sychronous clocking mode

If the ARM940T performs an external access, for example, a cache miss or a cache line 
fill, the ARM940T will switch to BCLK to perform the access. The delay when 
switching from FCLK to BCLK is a minimum of one FCLK phase and a maximum of 
one BCLK cycle. An example of the clock switching is shown in Figure 5-2 Switching 
from FCLK to BCLK in sychronous mode. The delay when switching from BCLK to 
FCLK is a maximum of one FCLK phase.

Figure 5-2 Switching from FCLK to BCLK in sychronous mode

Care must be taken if BCLK is stopped by the system so that when BCLK is restarted 
it does not violate any of the above restrictions.

BCLK

FCLK

BCLK

FCLK

ECLK
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5.5 Asynchronous mode

This mode is typically used in systems with low speed memory. In this mode of 
operation both the BCLK and FCLK inputs are used. BCLK is used to control the 
AMBA memory interface. FCLK is used to control the internal ARM9TDMI processor 
core and any cache operations. The one restriction is that FCLK must have a higher 
frequency than BCLK. An example is shown in Figure 5-3 Asynchronous clocking 
mode:

Figure 5-3 Asynchronous clocking mode

If the ARM940T performs an external access, for example, a cache miss or a cache line 
fill, ARM940T will switch to BCLK to perform the access. The delay when switching 
from FCLK and BCLK is a minimum of one BCLK cycle, and a maximum of one and 
a half BCLK cycles. An example of the clock switching is shown in Figure 5-3 
Asynchronous clocking mode. When switching from BCLK to FCLK the minimum 
delay is one FCLK cycle and the maximum delay is one and a half FCLK cycles. An 
example of the clock switching is shown in Figure 5-4 Switching from FCLK to BCLK 
in asynchronous mode:

Figure 5-4 Switching from FCLK to BCLK in asynchronous mode

BCLK

FCLK

BCLK

FCLK

ECLK
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Chapter 6
Bus Interface Unit

6.1 Introduction

The ARM940T has an Advanced Microprocessor Bus Architecture (AMBA) interface. 
This chapter describes the different type of behavior on this interface.

6.2 ASB transfers

When accessing the Advanced System bus (ASB), the ARM940T does not use the non-
sequential transfer. Instead, an address-only transfer, followed by a sequential transfer, 
is used. This eases the AMBA decoder design considerably, particularly for high speed 
designs.
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Figure 6-1 Sequential LDR accesses

Figure 6-1 Sequential LDR accesses shows the ARM940T ASB activity when two LDR 
instructions are executed. In this example, the LDR instructions are accessing a non-
cacheable region of memory. As can be seen, there are two sets of address-only 
transfers, followed by sequential transfers, even though the two addresses are 
sequentially related.

6.3 Burst accesses

To help implement an efficient memory system, the ARM940T supports burst 
transfers. Burst transfers are used for cache line fills, and for buffered writes caused by 
cache lines that have been evicted or cleaned. In each case, a transfer of four words will 
take place.

The bus BURST[1:0] indicates when a transfer of four words is going to take place. 
BURST[1:0] can be factored into both the arbiter and decoder of the AMBA system, 
and can be used to prevent a new bus master taking control of the ASB, giving a more 
efficient transfer.

BCLK

BTRAN[1:0]

BA[31:0]

BD[31:0]

BWAIT

A-TRAN S-TRAN A-TRAN A-TRAN A-TRAN A-TRAN S-TRAN A-TRAN

LDR ADDRESS = 0x100 LDR ADDRESS = 0x104

DATA DATA
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The code of BURST[1:0] is shown below:

Figure 6-2 shows a cache line fill followed by a buffered write where a cache line has 
been evicted.

Figure 6-2 Cache line fill

Note

A cache line can only be evicted from the D Cache when a protection region is marked 
as a writeback area, and the dirty bit of the line has been set.

Table 6-1 BURST[1:0] encoding

BURST
[1] [0]

Transfer

0 0 No sequential information available (default)

0 1 Reserved

1 0 Current access is part of a 4-word transfer

1 1 Reserved

BCLK

BURST[1:0]

BTRAN[1:0]

BA[31:0]

BD[31:0]

BWRITE

10 = 4 Word transfer 10 = 4 Word transfer

A-TRAN S-TRAN S-TRAN S-TRAN S-TRAN A-TRAN A-TRAN S-TRAN S-TRAN S-TRAN

0x100 0x104 0x108 0x10C 0x180 0x184

READ READ READ READ WRITE WRITE
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BURST[1:0] only indicates a four-word transfer when either a cache line fill takes 
place, or when a line within a writeback protection region has been evicted. In all other 
circumstances, BURST[1:0] indicates single word transfers. This is true for LDM and 
STM instructions, regardless of the number of registers being transferred.

Cache line fills are performed by reading four words of data aligned to a 4-word 
boundary. The word of data aligned onto the 4-word boundary is always fetched first. 
The ARM940T supports streaming, so when the addressed word is fetched, it is 
transferred to the cache and to the ARM9TDMI simultaneously. If the next access is 
sequential, subsequent words may also be streamed to the ARM9TDMI.

6.4 Buffered writes

The write buffer buffers eight words of data at up to four non-related addresses. The 
write buffer is used for memory which is marked as one of the following:

• A non-cacheable, buffered region (NCB)

• A writeback region (WB)

• A write-through region (WT). 

Refer to section 4.5.1 Write buffer operation on page 4-13.

The write buffer is non-merging, so even if two separate buffered external memory 
writes are performed which are sequentially related, they will still take two addres
locations within the buffer, and are treated as non-sequential accesses. This is als
for non-word writes to the same word address—in this instance two address and 
data locations would be used within the write buffer.

The write buffer will split any accesses caused by a STM instruction on 4-word 
boundaries. Each set of words will use one address location within the write buffer.
mechanism allows privileges to be rechecked in the instance where the access c
a memory region and the memory region privileges may change, therefore protec
any regions of reserved memory.

Figure 6-3 shows the write buffer behavior for the following code sequence:
MOV R11, #0x10c; set pointer

MOV R12, #0x20c; set pointer

STMIA R11, {R0-R5}; store 6 registers

STMIA R12, {R6-R10}; store 5 registers
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In this code, a pointer has been set to address 0x10c. A store multiple of six registers is 
then executed. This instruction uses six data registers, and three address registers within 
the write buffer. A further store to address 0x20c is then executed using the remaining 
address location. The internal ARM9TDMI is then stalled until an address register 
becomes free.

Figure 6-3 Write buffer allocation

Note

When a cache line is evicted from the D Cache to the write buffer, it only uses one 
address register, as cache lines are aligned to 4-word boundaries.

6.5 LDM operations from a non-cached region

An LDM instruction can transfer all 16 general-purpose registers in one instruction. If 
this instruction is executed, and the address being accessed lies in a non-cacheable 
region of memory, a 16-word sequential load will take place on the AMBA interface. If 
the access crosses a 4KB boundary, the access will be split. This allows the region 
properties to be checked in the instance where there is a transition between memory 
protection regions. Figure 6-4 LDM operation on page 6-6 shows a LDM operation 
crossing a 4KB boundary.

Data Register

Empty R6 R5 R4 R3 R2 R1 R0

Address Register
0x20c 0x120 0x110 0x10c Address

incrementer

ARM9TDMI
DD[31:0]

ARM9TDMI
DA[31:0]

BD[31:0]

BA[31:0]
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Figure 6-4 LDM operation

Note

In Figure 6-4, the BURST[1:0] bus is only indicating word transfers during the LDM 
operation. 

As the LDM transfer takes place on the ASB, the time taken to complete the operation 
is dependent on the BCLK frequency, any bus arbitration and the speed of the slave 
being accessed. An LDM instruction must therefore be completed before an interrupt 
can be serviced.

BCLK

BURST[1:0]

BTRAN[1:0]

BA[31:0]

BD[31:0]

BWRITE

00 = Word transfer 00 = Word transfer

S-TRAN S-TRAN A-TRAN A-TRAN A-TRAN A-TRAN S-TRAN S-TRAN S-TRAN S-TRAN

0x09998 0x0999C 0x10000 0x10004 0x10008

DATA DATA DATA DATA DATA
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6.6 STM operation to a non-cached region

An STM instruction can transfer all 16 general-purpose registers in one instruction. If 
this instruction is executed, and the address being accessed lies in a non-cacheable 
region of memory, a 16-word sequential write will take place on the AMBA interface. 
If the access crosses a 4KB boundary, the access will be split. This allows the region 
properties to be checked in the case where there is a transition between memory regions. 
Figure 6-5 show an STM operation crossing a 4KB boundary:

Figure 6-5 STM operation

Note

In Figure 6-5, BURST[1:0] bus is only indicating word transfers during the STM 
operation.

BCLK

BURST[1:0]

BTRAN[1:0]

BA[31:0]

BD[31:0]

BWRITE

00 = Word transfer 00 = Word transfer

S-TRAN S-TRAN A-TRAN A-TRAN A-TRAN A-TRAN S-TRAN S-TRAN S-TRAN S-TRAN

0x3998 0x399C 0x4000 0x4004 0x4008

DATA DATA DATA DATA DATA
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6.7 External aborts

External aborts will be ignored for buffered write operations or for cache linefills. In all 
other cases, the external abort will cause the abort exception to be taken.

6.8 SWP instruction

The Swap (SWP) instruction results in a read operation being followed by a write 
operation. When a SWP instruction is executed on the ARM940T, the behavior is 
dependent on the memory region being accessed, and it is up to the programmer to 
ensure correct operation.

Typically for multi-master operations, the SWP instruction is used for passing 
semaphores between the masters. For this type of operation, the semaphore must be 
stored in a non-cacheable non-bufferable (NCNB) or non-cacheable bufferable (NCB) 
region of memory. When an SWP instruction is executed, any cache line fills will 
complete and the write buffer will drain before the SWP instruction memory accesses 
take place. During the SWP access, the BLOK signal will go HIGH to indicate that the 
two memory accesses are indivisible.

For SWP instructions which access a NCB region of memory, any cache line fills will 
complete, and the write buffer will drain before the read takes place. During the read, 
BLOK will be driven HIGH. The write operation then takes place as an unbuffered 
write. This is to allow external aborts to be taken.

When an SWP instruction accesses a cacheable region of memory, the access is 
protected as a normal data access. The BLOK signal will remain LOW throughout this 
operation.

If a region of memory is changed from being cacheable to non-cacheable and the cache 
is not flushed, it is possible for a cache hit to occur for the read access of the SWP 
instruction. This is a programming error and should be avoided.
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6.9 Memory access order

If a simultaneous data access and instruction fetch both cause cache misses, the data 
access will take precedence and be completed first. Typically, instructions tend to 
require frequent sequential accesses and data requires infrequent non-sequential 
accesses. This type of behavior results in more efficient ASB usage, and improves the 
chances at streaming line fill words to the ARM9TDMI core.

Figure 6-6 shows how misses in both the I Cache and D Cache result in external access, 
with the data access taking place first, followed by the instruction fetch.

Figure 6-6 Simultaneous cache misses

BCLK

BTRAN[1:0]

BPROT[1:0]

BA[31:0]

BD[31:0]

BRWITE

A-TRAN S-TRAN A-TRAN A-TRAN A-TRAN A-TRAN S-TRAN A-TRAN

11 = data operation 10 = opcode fetch

0x1168 0x4098c

DATA DATA
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 6-9



Bus Interface Unit
6-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



Chapter 7
ARM940T Coprocessor Interface

The ARM940T supports the connection of on-chip coprocessors through an external 
coprocessor interface. All types of coprocessor instruction are supported. This chapter 
describes the ARM940T coprocessor interface:

• Overview

• LDC/STC

• MCR/MRC

• Interlocked MCR

• CDP

• Privileged instructions

• Busy-waiting and interrupts.
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7.1 Overview

The ARM940T coprocessor interface allows specially designed coprocessor hardware 
to be attached to the ARM940T. Example uses include:

• Attachment of accelerators for floating point math, DSP, 3-D graphics, encrypt
or decryption 

• The ARM instruction set supports the connection of 16 coprocessors, number
to 15, to an ARM processor.

7.1.1 Internal coprocessors

The ARM940T contains two internal coprocessors; CP14 for debug control and C
for cache and protection unit control. This means that coprocessors attached exte
to the ARM940T cannot be assigned coprocessor numbers 15 or 14. Some other
coprocessor numbers have been allocated by ARM for internal usage. Please co
ARM for a full list of reserved coprocessor numbers.

The register map of CP15 is described in 2.2 ARM940T CP15 registers on page 2-2. The 
functionality of CP14 is described in 8.16 Debug communications channel on page 
8-45.

7.1.2 External coprocessors

Coprocessors determine which instructions they need to execute by using a pipeline 
follower in the coprocessor. As each instruction arrives from memory, it enters both
ARM pipeline and the coprocessor’s pipeline. To avoid a critical path for the instruc
being latched by the coprocessor, the coprocessor pipeline should operate one c
phase behind the ARM940T pipeline. The ARM940T then informs the coprocesso
when instructions move from decode into execute, and whether the instruction nee
be executed.

To enable coprocessors to continue execution of coprocessor data operations wh
ARM940T pipeline is stalled (for instance waiting for a cache line fill to occur), the
coprocessor should monitor a clock CPCLK, and a clock stall signal nCPWAIT. If 
nCPWAIT is LOW on the rising edge of CPCLK, the ARM940T pipeline is stalled 
and the coprocessor pipeline should not advance.
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Figure 7-1 ARM940T coprocessor clocking indicates the timing for these signals and 
when the coprocessor pipeline should advance its state. In this diagram, Coproc Clock 
shows the result of ORing CPCLK with the inverse of nCPWAIT. This is one 
technique for generating a clock which reflects the ARM9TDMI pipeline advancing.

Figure 7-1 ARM940T coprocessor clocking

Coprocessor instructions

These are three classes of coprocessor instructions:

LDC/STC Load/Store from/to coprocessor register to memory.

MCR/MRC Register transfer between coprocessor and ARM processor core.

CDP Coprocessor data operation.

The remainder of this chapter gives examples of how a coprocessor should execute 
these instruction classes.

Coprocessor
Pipeline

CPCLK

nCPWAIT

Coproc
Clock
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7.2 LDC/STC

The cycle timing for this operation is shown in Figure 7-2.

Figure 7-2 ARM940T LDC / STC cycle timing

In this example, four words of data are transferred. The number of words transferred is 
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

ARM Processor
Pipeline

Coprocessor Pipeline

CPCLK

nCPMREQ

CPID[27:0]

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC

CPDIN[31:0]
STC

DnMREQ
(ARM940T
 Internal)

DMORE
(ARM940T
 Internal)

DA[31:0]
(ARM940T
 Internal)

Decode
Execute

(GO)
Execute

(GO)
Execute

(GO)
Execute
(LAST)

Memory Write

Decode
Execute

(GO)
Execute

(GO)
Execute

(GO)
Execute
(LAST)

Memory Write

LDC

GO

GO GO LAST Ignored

A A+4 A+8 A+C

Interface Signals
7-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



ARM940T Coprocessor Interface

st 
 

he 

e 

rmine 

ssor 

en 
f 

 

le, it 

ssor 
this 
ion 
As with all other instructions, the ARM940T processor core performs the main 
instruction decode off the rising edge of the clock during the decode stage. From this, 
the core commits to executing the instruction, and so performs an instruction fetch. The 
coprocessor’s instruction pipeline should keep in step with the ARM940T by 
monitoring CPMREQ, a latched copy of the ARM9TDMI instruction memory reque
signal nIMREQ. Whenever nCPMREQ is LOW, an instruction fetch is occurring and
CPID will be updated with fetched instruction in the next cycle. This means that t
instruction currently on CPID should enter the decode stage of the coprocessor 
pipeline, and that the instruction in the decode stage of the coprocessor’s pipelin
should enter its execute stage.

During the execute stage, the condition codes are combined with the flags to dete
whether the instruction should be executed or not. The output CPPASS is asserted 
(HIGH) if the instruction in the execute stage of the coprocessor pipeline is:

• a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the 
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, 
CPPASS is driven LOW, and the coprocessor should stop execution of the coproce
instruction.

A further output, CPLATECANCEL, is used to cancel a coprocessor instruction wh
the instruction preceding it caused a data abort. This is valid on the rising edge o
CPCLK on the cycle after the first execute cycle of the coprocessor instructions. 
CPLATECANCEL will only be asserted during the first memory cycle of a 
coprocessor instruction’s execution.

On the falling edge of the clock, the ARM940T processor core examines the 
coprocessor handshake signals CHSDE[1:0] or CHSEX[1:0]:

• If a new instruction is entering the execute stage in the next cycle, it examines
CHSDE[1:0]

• If the coprocessor instruction currently in execute requires another execute cyc
examines CHSEX[1:0]. 

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached which can execute the coproce
instruction, the handshake signals indicate the ABSENT state. In 
case, the ARM9TDMI processor core takes the undefined instruct
exception.
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WAIT If there is a coprocessor attached that can execute the instruction but 
not immediately, the coprocessor handshake signals should be driven 
to indicate that the ARM9TDMI processor core should stall until the 
coprocessor can catch up. This is known as the ‘busy-wait’ condition. 

In this case, the ARM9TDMI processor core loops in an idle state
waiting for CHSEX[1:0] to be driven to another state, or for an 
interrupt to occur. 
If CHSEX[1:0] changes to ABSENT, the undefined instruction 
exception will be taken. 
If CHSEX[1:0] changes to GO or LAST, the instruction will procee
as described below. 

If an interrupt occurs, the ARM9TDMI processor core is forced ou
of the busy-wait state. This is indicated to the coprocessor by the
CPPASS signal going LOW. The instruction will be restarted at a 
later date and so the coprocessor must not commit to the instruc
(change any of the coprocessor states) until it has seen CPPASS 
HIGH and when the handshake signals indicate the GO or LAST
condition.

GO The GO state indicates that the coprocessor can execute the 
instruction immediately, and that it requires another cycle of 
execution. Both the ARM9TDMI processor core and the coproces
must also consider the state of the CPPASS signal before actually 
committing to the instruction. For an LDC or STC instruction, the 
coprocessor instruction should drive the handshake signals with 
when two or more words still need to be transferred. When only o
further word is required, the coprocessor should drive the handsh
signals with the LAST condition.

In phase 2 of the execute stage, the ARM9TDMI processor core 
outputs the address for the LDC/STC. Also in this phase, DnMREQ 
is driven LOW, indicating to the memory system that a memory 
access is required at the data end of the device. The timing for the 
on CPDOUT[31:0] for an LDC and CPDIN[31:0] for an STC is as 
shown in Figure 7-2 ARM940T LDC / STC cycle timing on page 7-4. 

LAST An LDC or STC can be used for more than one item of data. If this
the case, possibly after busy waiting, the coprocessor should drive
coprocessor handshake signals with a number of GO states, and i
penultimate cycle LAST. The LAST indicating that the next transf
is the final one. If there was only one transfer, the sequence would
[WAIT,[WAIT,...]],LAST.
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7.2.1 Coprocessor Handshake Encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are 
encoded.

If a coprocessor is not attached to the ARM940T, then the handshake signals must be 
driven with “10” ABSENT.

If multiple coprocessors are to be attached to the interface, the handshaking signa
be combined by ANDing bit 1, and ORing bit 0. In the case of two coprocessors w
have handshaking signals CHSDE1, CHSEX1 and CHSDE2, CHSEX2 respectively:

CHSDE[1]<= CHSDE1[1] AND CHSDE2[1]

CHSDE[0]<= CHSDE1[0] OR CHSDE2[0]

CHSEX[1]<= CHSEX1[1] AND CHSEX2[1]

CHSEX[0]<= CHSEX1[0] OR CHSEX2[0]

Table 7-1 Handshake encoding

[1:0]

ABSENT 10

WAIT 00

GO 01

LAST 11
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7.3 MCR/MRC

These cycles look very similar to STC/LDC. An example, with a busy-wait state, is 
shown in Figure 7-3. 

Figure 7-3 ARM940T MCR / MRC transfer timing

ARM Processor
Pipeline

Coprocessor Pipeline

CPCLK

CPID[31:0]

nCPMREQ

CPPASS

CPLATECANCEL

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
MCR

CPDIN[31:0]
MRC

Decode
Execute
(WAIT)

Execute
(LAST)

Memory Write

Decode
Execute
(WAIT)

Execute
(LAST)

Memory Write

MCR/
MRC

WAIT

LAST Ignored

Interface Signals
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First nCPMREQ is driven LOW to denote that the instruction on CPID is entering the 
decode stage of the pipeline. This should cause the coprocessor to decode the new 
instruction and drive CHSDE[1:0] as required. 

In the next cycle nCPMREQ is driven LOW to denote that the instruction has now been 
issued to the execute stage. If the condition codes pass, and the instruction is to be 
executed, the CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is 
examined (it is ignored in all other cases). 

For any successive execute cycles the CHSEX[1:0] handshake bus is examined. When 
the LAST condition is observed, the instruction is committed. In the case of an MCR, 
the CPDOUT[31:0] bus is driven with the register data. In the case of an MRC, 
CPDIN[31:0] is sampled at the end of the ARM940T memory stage and written to the 
destination register during the next cycle.
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7.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9TDMI pipeline 
during its first decode cycle, the ARM940T pipeline interlock for one or more cycles 
until the data is available. An example of this is where the register being transferred is 
the destination from a preceding LDR instruction. In this situation the MCR instruction 
will enter the decode stage of the coprocessor pipeline, and remain there for a number 
of cycles before entering the execute stage. Figure 7-4 gives an example of an 
interlocked MCR.

Figure 7-4 ARM940T interlocked MCR
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Pipeline

Coprocessor Pipeline

CPCLK

CPID[31:0]

nCPMREQ
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CPDOUT[31:0]
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CPDIN[31:0]
MRC
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Memory Write

Decode Decode
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7.5 CDP

CDPs normally execute in a single cycle. Like all the previous cycles, nCPMREQ is 
driven LOW to signal when an instruction is entering the decode and then the execute 
stage of the pipeline:

• If the instruction is to be executed, the CPPASS signal is driven HIGH during 
phase 2 of the execute stage 

• If the coprocessor can execute the instruction immediately it drives CHSDE[1:0] 
with LAST 

• If the instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0] 
with WAIT and then CHSEX[1:0] with LAST.

Figure 7-5 ARM940T late cancelled CDP on page 7-12 shows a CDP which is cancelle
due to the previous instruction causing a data abort. The CDP instruction enters 
execute stage of the pipeline, and is signalled to execute by CPPASS. In the following 
phase CPLATECANCEL is asserted. This causes the coprocessor to terminate 
execution of the CDP instruction, and for it to cause no state changes to the coproc
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 7-11
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Figure 7-5 ARM940T late cancelled CDP
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7.6 Privileged instructions

The coprocessor may restrict certain instructions for use in privileged modes only. To 
do this, the coprocessor should track the nCPTRANS output. Figure 7-6 shows how 
nCPTRANS changes after a mode change.

Figure 7-6 ARM940T privileged instructions

Note

The first two CHSDE responses are ignored by the ARM940T since it is only the final 
CHSDE response, as the instruction moves from decode into execute, that is relevant. 
This allows the coprocessor to change its response as nCPTRANS changes.
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7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall (or ‘busy-wait’) the processor during the exec
of a coprocessor instruction if, for example, it is still busy with an earlier coproces
instruction. To do so, the coprocessor associated with the decode stage instructi
should drive WAIT in CHSDE[1:0]. When the instruction concerned enters the execu
stage of the pipeline, the coprocessor may drive WAIT onto CHSEX[1:0] for as many 
cycles as required to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor may be interrupted while busy-wait
causing the instruction to be abandoned. Abandoning execution is done through 
CPPASS. The coprocessor should monitor the state of CPPASS during every busy-
wait cycle. If it is HIGH, the instruction should still be executed. If it is LOW, the 
instruction should be abandoned. Figure 7-7 shows a busy-waited coprocessor 
instruction being abandoned due to an interrupt.
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Figure 7-7 ARM940T busy waiting and interrupts
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Chapter 8
Debug Support

This chapter describes the debug support for the ARM940T, including the 
EmbeddedICE hardware:

• Overview

• Debug systems

• Debug interface signals

• Scan chains and JTAG interface

• The JTAG state machine

• Test data registers

• ARM940T core clocks

• Clock switching during debug

• Clock switching during test

• Determining the core and system state

• Exit from debug state

• The PC’s behavior during debug

• EmbeddedICE

• Vector catching
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• Single stepping

• Debug communications channel

• The debugger’s view of the cache.

8.1 Overview

Debug support is implemented by using the ARM9TDMI processor core embedde
within the ARM940T. Throughout this chapter therefore, ARM9TDMI refers to this
core.

The ARM940T debug interface is based on IEEE Std. 1149.1- 1990, “Standard Test 
Access Port and Boundary-Scan Architecture”. Please refer to this standard for an 
explanation of the terms used in this chapter and for a description of the TAP controller 
states.

The ARM940T contains hardware extensions for advanced debugging features. These 
are intended to ease the user’s development of application software, operating sys
and the hardware itself.

The debug extensions allow the core to be stopped by one of the following:

• a given instruction fetch (breakpoint)

• a data access (watchpoint)

• asynchronously by a debug request. 

When this happens, the ARM940T is said to be in debug state. At this point, the core’s 
internal state and the system’s external state may be examined. Once examinatio
complete, the core and system state may be restored and program execution res

The ARM940T is forced into debug state either by a request on one of the extern
debug interface signals, or by an internal functional unit known as the EmbeddedICE 
macrocell. Once in debug state, the core isolates itself from the memory system. 
The core can then be examined while all other system activity continues as norm

The ARM940T internal state is examined via a JTAG-style serial interface, which
allows instructions to be serially inserted into the core’s pipeline without using the
external data bus. Thus, when in debug state, a store-multiple (STM) could be ins
into the instruction pipeline, and this would export the contents of the ARM9TDM
registers. This data can be serially shifted out without affecting the rest of the sys
8-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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8.2 Debug systems

The ARM940T forms one component of a debug system that interfaces from the 
high-level debugging performed by the user to the low-level interface supported by the 
ARM940T. Such a system typically has three parts:

• the debug host

The debug host is a computer, for example a PC, running a software debugge
as ADW. The debug host allows the user to issue high-level commands such a
breakpoint at location XX”, or “examine the contents of memory from 0x0 to 
0x100”.

• the protocol converter

The debug host is connected to the ARM940T development system via an inte
(an RS232 interface, for example). The messages broadcast over this connec
must be converted to the interface signals of the ARM940T, and this function 
performed by the protocol converter (for example, Multi-ICE).

• the ARM940T

The ARM940T, with hardware extensions to ease debugging, is the lowest lev
the system. The debug extensions allow the user to stall the core from progra
execution, examine its internal state and the state of the memory system, and
resume program execution.

Figure 8-1 Typical debug system

The debug host and the protocol converter are system dependent. The remainder
chapter describes the hardware debug extensions of ARM940T.

Host computer running armsd/ADW

Protocol
converter

Development system
containing ARM940T

Debug
host

Debug
target

For example, Multi-ICE

JTAG
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8.3 Debug interface signals

There are four primary external signals associated with the debug interface:

• IEBKPT, DEWPT, and EDBGRQ, with which the system requests the 
ARM9TDMI to enter debug state

• DBGACK, which the ARM9TDMI uses to flag back to the system when it is in
debug state.

8.3.1 Entry into debug state on breakpoint

Any instruction being fetched for memory is latched at the end of phase 2. To app
breakpoint to that instruction, the breakpoint signal must be asserted by the end o
following phase1. This minimizes the set-up time, giving the EmbeddedICE hardw
an entire phase in which to perform the comparison. This is shown in Figure 8-2 
Breakpoint timing.

External logic, such as additional breakpoint comparators, may be built to extend
functionality of the EmbeddedICE macrocell. Their output should be applied to th
IEBKPT input. This signal is ORed with the internally generated Breakpoint signal 
before being applied to the ARM9TDMI core control logic.

A breakpointed instruction is allowed to enter the execute stage of the pipeline, bu
state change as a result of the instruction is prevented. All writes from previous 
instructions complete as normal.

The decode cycle of the debug entry sequence occurs during the execute cycle o
breakpointed instruction. The latched Breakpoint signal forces the processor to start
the debug sequence.
8-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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Figure 8-2 Breakpoint timing

8.3.2 Breakpoints and exceptions

A breakpointed instruction may have a prefetch abort associated with it. If so, the 
prefetch abort takes priority and the breakpoint is ignored. (If there is a prefetch abort, 
instruction data may be invalid; the breakpoint may have been data-dependant, and as 
the data may be incorrect, the breakpoint may have been triggered incorrectly.)

SWI and undefined instruction are treated in the same way as any other instruction 
which may have a breakpoint set on it. Therefore, the breakpoint takes priority over the 
SWI or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt (IRQ 
or FIQ), the interrupt is taken and the breakpointed instruction is discarded. Once the 
interrupt has been serviced, the execution flow is returned to the original program. 
This means that the instruction which was previously breakpointed is fetched again, and 
if the breakpoint is still set, the processor enters the debug state once it reaches the 
execute stage of the pipeline.

Once the processor has entered debug state, it is important that further interrupts do not 
affect the instructions executed. For this reason, as soon as the processor enters the 
debug state, interrupts are disabled, although the state of the I and F bits in the PSR are 
not affected.
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8.3.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise. This is 
necessary because of the nature of the pipeline and the timing of the Watchpoint signal. 

After a watchpointed access, the next instruction in the processor pipeline is always 
allowed to complete execution. Where this instruction is a single-cycle data-processing 
instruction, entry into debug state is delayed for one cycle while the instruction 
completes. The timing of debug entry following a watchpointed load in this case is 
shown in Figure 8-3 Watchpoint entry with data processing instruction:

Figure 8-3 Watchpoint entry with data processing instruction

Note

Although instruction 4 enters the execute state, it is not executed, and there is no state 
update as a result of this instruction. Once the debugging session is complete, normal 
continuation would involve a return to instruction 4, the next instruction in the code 
sequence which has not yet been executed.

GCLK

ID[31:0]

DA[31:0]

DD[31:0]

Watchpoint

DBGACK

Ddebug Edebug

F1 D1 E1 M1 W1

F2 D2 E2 M2 W2

Fldr Dldr Eldr Mldr Wldr

FDp DDp EDp MDp WDp

F5 D5 E5 M5 W5

w1 w2 wldr wDp w4 w5

1 2 LDR Dp 4 5 6 7
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The instruction following the instruction which generated the watchpoint could have 
modified the PC. If this has happened, it will not be possible to determine the instruction 
which caused the watchpoint. A timing diagram showing debug entry after a watchpoint 
where the next instruction is a branch is shown in Figure 8-4 Watchpoint entry with 
branch on page 8-7. However, it is always possible to restart the processor. 

Once the processor has entered debug state, the ARM940T core may be interrogated to 
determine its state. In the case of a watchpoint, the PC contains a value that is six 
instructions on from the address of the next instruction to be executed. Therefore, if on 
entry to debug state, in ARM state, the instruction:
SUB PC, PC, #0x20

is scanned in and the processor is restarted. Execution flow would then return to the next 
instruction in the code sequence.

Figure 8-4 Watchpoint entry with branch
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8.3.4 Watchpoints and exceptions

If there is an abort with the data access as well as a watchpoint, the watchpoint condition 
is latched, the exception entry sequence performed, and then the processor enters debug 
state. If there is an interrupt pending, again the ARM940T allows the exception entry 
sequence to occur and then enters debug state.

8.3.5 Debug request

A debug request can take place through the EmbeddedICE hardware or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
will enter debug state when the instruction at the execution stage of the pipeline has 
completely finished executing (once memory and write stages of the pipeline have 
completed). While waiting for the instruction to finish executing, no more instructions 
will be issued to the execute stage of the pipeline.

8.3.6 Actions of the ARM940T in debug state

Once the ARM940T is in debug state, internally both memory interfaces will indicate 
internal cycles. Since the rest of the system continues operation, the ARM940T will 
ignore aborts and interrupts.

8.4 Scan chains and JTAG interface

There are six scan chains inside the ARM940T. These allow testing, debugging and 
programming of the EmbeddedICE watchpoint units. The scan chains are controlled by 
a JTAG-style Test Access Port (TAP) controller. In addition, support is provided for an 
optional seventh scan chain. This is intended to be used for an external boundary scan 
chain around the pads of a packaged device. The signals provided for this scan chain are 
described later.

The seven scan chains of the ARM940T are referred to as scan chain 0, 1, 2, 3, 4, 5 and 
15.

Note

The ARM940T TAP controller supports 32 scan chains. Scan chains 0 to 15 have been 
reserved for use by ARM. Any extension scan chains should be implemented in the 
remaining space. The SCREG[4:0] signals indicate which scan chain is being accessed.
8-8 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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8.5 The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state 
machine. Figure 8-5 Test access port (TAP) controller state transitions shows the state 
transitions that occur in the TAP controller.

The state numbers are also shown on the diagram. These are output from the ARM940T 
on the TAPSM[3:0] bits.

Figure 8-5 Test access port (TAP) controller state transitions
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8.5.1 Reset

The JTAG interface includes a state-machine controller (the TAP controller). In order 
to force the TAP controller into the correct state after power-up of the device, a reset 
pulse must be applied to the nTRST signal. If the JTAG interface is to be used, nTRST 
must be driven LOW, and then HIGH again. If the boundary scan interface is not to be 
used, the nTRST input may be tied permanently LOW. 

Note

A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected—the boundary scan chain cells do not intercept any of 
the signals passing between the external system and the core. 

2. The IDCODE instruction is selected. If the TAP controller is put into the 
Shift-DR state and TCK is pulsed, the contents of the ID register are clocked o
of TDO.

8.5.2 Pullup resistors

The IEEE 1149.1 standard effectively requires TDI and TMS to have internal pullup 
resistors. In order to minimize static current draw, these resistors are not fitted to the 
ARM940T. Accordingly, the four inputs to the test interface (the TDO, TDI and TMS 
signals plus TCK) must all be driven to valid logic levels to achieve normal circuit 
operation.

8.5.3 Instruction register

The instruction register is four bits in length. There is no parity bit. The fixed value
loaded into the instruction register during the CAPTURE-IR controller state is 000
8-10 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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8.5.4 Public instructions

The following public instructions are supported:

Note

The EXTEST, HIGHZ and CLAMPZ instructions for scan chains 0-15 are reserved for 
production test purpose only and should not be used.

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK 
and all output transitions on TDO occur as a result of the falling edge of TCK.

EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction. 
The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output 
scan cells to the system are captured by the scan cells. 

Table 8-1 Public instructions

Instruction Binary code

EXTEST 0000

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

CLAMP 0101

HIGHZ 0111

CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100
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In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
via TDO, while new test data is shifted in via the TDI input. This data is applied 
immediately to the system logic and system pins. 

SCAN_N (0010)

This instruction connects the Scan Path Select register between TDI and TDO. 

During the CAPTURE-DR state, the fixed value 10000 is loaded into the register. 

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
scan path select register. 

In the UPDATE-DR state, the scan register of the selected scan chain is connected 
between TDI and TDO, and remains connected until a subsequent SCAN_N instruction 
is issued. On reset, scan chain 3 is selected by default. The scan path select register is 
five bits long in this implementation, although no finite length is specified.

INTEST (1100)

The selected scan chain is placed in test mode by the INTEST instruction. The INTEST 
instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the 
output scan cells, and the value of the data applied from the system logic to the input 
scan cells is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
via the TDO pin, while new test data is shifted in via the TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) 
between TDI and TDO. The ID register is a 32-bit register that allows the 
manufacturer, part number and version of a component to be determined through the 
TAP.

When the instruction register is loaded with the IDCODE instruction, all the scan cells 
are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code is captured by the ID register. 
8-12 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



Debug Support
In the SHIFT-DR state, the previously captured device identification code is shifted out 
of the ID register via the TDO pin, while data is shifted in via the TDI pin into the ID 
register. 

In the UPDATE-DR state, the ID register is unaffected.

BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the BYPASS register) between 
TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells 
are placed in their normal (system) mode of operation. This instruction has no effect on 
the system pins. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the bypass register via TDI and out via 
TDO after a delay of one TCK cycle. The first bit shifted out will be a zero. 

The bypass register is not affected in the UPDATE-DR state. 

Note

All unused instruction codes default to the BYPASS instruction.

CLAMP (0101)

This instruction connects a 1-bit shift register (the BYPASS register) between TDI and 
TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all the 
output signals is defined by the values previously loaded into the currently loaded scan 
chain. 

Note

This instruction should only be used when scan chain 0 is the currently selected scan 
chain.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 
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In the SHIFT-DR state, test data is shifted into the bypass register via TDI and out via 
TDO after a delay of one TCK cycle. The first bit shifted out will be a zero. 

The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

This instruction connects a 1-bit shift register (the BYPASS register) between TDI and 
TDO.

When the HIGHZ instruction is loaded into the instruction register and scan chain 0 is 
selected, all ARM9TDMI outputs are driven to the high impedance state, and the 
external HIGHZ signal is driven HIGH. This is as if the ARM9TDMI signal TBE had 
been driven LOW.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the 
SHIFT-DR state, test data is shifted into the bypass register via TDI and out via TDO 
after a delay of one TCK cycle. The first bit shifted out will be a zero. 

The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

This instruction connects a 1-bit shift register (the BYPASS register) between TDI and 
TDO.

When the CLAMPZ instruction is loaded into the instruction register and scan chain 0 
is selected, all the 3-state outputs (as described above) are placed in their inactive state, 
but the data supplied to the outputs is derived from the scan cells. The purpose of this 
instruction is to ensure that, during production test, each output can be disabled when 
its data value is either a logic 0 or logic 1.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the bypass register via TDI and out via 
TDO after a delay of one TCK cycle. The first bit shifted out will be a zero. 

The bypass register is not affected in the UPDATE-DR state.
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SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all 
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on 
the rising edge of TCK. Normal system operation is unaffected. 

In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan via the 
TDO pin, while new data is shifted in via the TDI pin to preload the boundary scan 
parallel input latch. Note that this data is not applied to the system logic or system pins 
while the SAMPLE/PRELOAD instruction is active. 

This instruction should be used to preload the boundary scan register with known data 
prior to selecting INTEST or EXTEST instructions.

RESTART (0100)

This instruction is used to restart the processor on exit from debug state. The RESTART 
instruction connects the bypass register between TDI and TDO and the TAP controller 
behaves as if the BYPASS instruction had been loaded. The processor will 
resynchronize back to the memory system once the RUN-TEST/ IDLE state is entered.
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8.6 Test data registers

The following test data registers may be connected between TDI and TDO: 

• Bypass register

• ID code resister

• Instruction register

• Scan chain select register

• Scan chains 0, 1, 2, 4 and 5.

These are described in turn below.

8.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path bet
TDI and TDO.

Length 1 bit

Operating mode When the BYPASS instruction is the current instruction in the 
instruction register, serial data is transferred from TDI to TDO in the 
SHIFT-DR state with a delay of one TCK cycle. There is no parallel 
output from the bypass register. A logic 0 is loaded from the para
input of the bypass register in CAPTURE-DR state.
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8.6.2 ARM940T device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable 
supplementary identification code is provided.

Length 32 bits

Operating mode When the IDCODE instruction is current, the ID register is selected 
as the serial path between TDI and TDO. There is no parallel output 
from the ID register. The 32-bit identification code is loaded into the 
register from its parallel inputs during the CAPTURE-DR state.

The IEEE format of the ID register is as follows:

The ARM940T ID code is 0x0f0f0f0f.

8.6.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits

Operating mode When in SHIFT-IR state, the instruction register is selected as the 
serial path between TDI and TDO.

During the CAPTURE-IR state, the value 0001 binary is loaded into this register. This 
is shifted out during SHIFT-IR (least significant bit first), while a new instruction is 
shifted in (least significant bit first). During the UPDATE-IR state, the value in the 
instruction register becomes the current instruction. On reset, IDCODE becomes the 
current instruction.

Table 8-2 ID code register

Bits Contents

31–28 Version number

27–12 Part number

11–1 Manufacturer identity

0 1
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8.6.4 Scan chain select register

Purpose Changes the current active scan chain.

Length 5 bits

Operating mode After SCAN_N has been selected as the current instruction, when in 
SHIFT-DR state, the Scan Chain Select register is selected as the 
serial path between TDI and TDO.

During the CAPTURE-DR state, the value 10000 binary is loaded into this register. 
This is shifted out during SHIFT-DR (least significant bit first), while a new value is 
shifted in (least significant bit first). 

During the UPDATE-DR state, the value in the register selects a scan chain to become 
the currently active scan chain. All further instructions such as INTEST then apply to 
that scan chain.

The currently selected scan chain only changes when a SCAN_N instruction is 
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[4:0] output 
bus. The TAP controller may be used to drive external scan chains in addition to those 
within the ARM940T macrocell. The external scan chain must be assigned a number 
and control signals for it, and can be derived from SCREG[4:0], IR[3:0], 
TAPSM[3:0], TCK1 and TCK2.

The list of scan chain numbers allocated by ARM are shown in Table 8-3 Scan chain 
number allocation. An external scan chain may take any other number. The serial data 
stream applied to the external scan chain is made present on SDINBS. The serial data 
back from the scan chain must be presented to the TAP controller on the SDOUTBS 
input. 
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The scan chain present between SDINBS and SDOUTBS will be connected between 
TDI and TDO whenever scan chain 3 is selected, or when any of the unassigned scan 
chain numbers is selected. If there is more than one external scan chain, a multiplexor 
must be built externally to apply the desired scan chain output to SDOUTBS. The 
multiplexor can be controlled by decoding SCREG[4:0].

8.6.5 Scan chains 0, 1, 2, 3, 4, 5, and 15

These allow serial access to the core logic, and to the EmbeddedICE hardware for 
programming purposes. Each scan cell can perform two basic functions—capture
shift.

Scan chain 0

Purpose Primarily for inter-device testing (EXTEST), and testing the 
ARM9TDMI core (INTEST). Scan chain 0 is selected via the 
SCAN_N instruction.

Length 184 bits

INTEST allows serial testing of the core. The TAP controller must be placed in th
INTEST mode after scan chain 0 has been selected. 

During CAPTURE-DR, the current outputs from the core’s logic are captured in th
output cells. 

Table 8-3  Scan chain number allocation

Scan Chain Number Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE macrocell programming

3 External boundary scan

4 I Cache CAM

5 D Cache CAM

6-14 Reserved

15 Control coprocessor

16–31 Unassigned
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During SHIFT-DR, this captured data is shifted out while a new serial test pattern is 
scanned in, thus applying known stimuli to the inputs. 

During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller should 
only spend one cycle in RUN-TEST/IDLE. The whole operation may then be repeated.

EXTEST allows inter-device testing, useful for verifying the connections between 
devices in the design. The TAP controller must be placed in EXTEST mode after scan 
chain 0 has been selected.

During CAPTURE-DR, the current inputs to the core’s logic from the system are 
captured in the input cells. 

During SHIFT-DR, this captured data is shifted out while a new serial test pattern
scanned in, thus applying known values on the core’s outputs. 

During RUN-TEST/IDLE, the core is not clocked. 

The operation may then be repeated.

Scan chain 1

Purpose Primarily for debugging. Scan chain 1 is selected via the SCAN_
TAP controller instruction.

Length 67 bits

This scan chain is 67 bits long, 32 bits for data values, 32 bits for instruction data
3 control bits, SYSSPEED, WPTANDBKPT, and DDEN. The three control bits serve
four different purposes:

• Under normal INTEST test conditions, the DDEN signal can be captured and 
examined.

• While debugging, the value placed in the SYSSPEED control bit determines 
whether the ARM9TDMI synchronizes back to system speed before executing
instruction.

• After the ARM9TDMI has entered debug state, the first time SYSSPEED is 
captured and scanned out, its value tells the debugger whether the core has e
debug state due to a breakpoint (SYSSPEED LOW), or a watchpoint (SYSSP
HIGH). It is possible to have a watchpoint and breakpoint condition occur 
simultaneously. When a watchpoint condition occurs the WPTANDBKPT bit m
be examined by the debugger to determine whether the instruction currently in
execute stage of the pipeline is breakpointed. If so, WPTANDBKPT will be HIG
otherwise it will be LOW.
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Scan chain 2

Purpose Allows access to the EmbeddedICE hardware registers. The order of 
the scan chain from TDI to TDO is:
read/write,
register address bits 4 to 0,
data values bits 31 to 0.

Length 38 bits

To access this serial register, scan chain 2 must first be selected via the SCAN_N TAP 
controller instruction. The TAP controller must then be placed in INTEST mode. 

No action is taken during CAPTURE-DR. 

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify 
the address of the EmbeddedICE hardware register to be accessed. 

During UPDATE-DR, this register is either read or written depending on the value of it 
37 (0 = read).

Scan chain 3

Purpose Allows the ARM9TDMI to control an external boundary scan chain.

Length User defined.

Scan chain 3 is provided so that an optional external boundary scan chain may be 
controlled via the ARM9TDMI. Typically this would be used for a scan chain around 
the pad ring of a packaged device. The following control signals are provided and are 
generated only when scan chain 3 has been selected. These outputs are inactive at all 
other times.

DRIVEBS This is used to switch the scan cells from system mode to test mode. 
This signal is asserted whenever either the INTEST, EXTEST, 
CLAMP or CLAMPZ instruction is selected.

PCLKBS This is the update clock, generated in the UPDATE-DR state. 
Typically the value scanned into the chain will be transferred to the 
cell output on the rising edge of this signal.

ICAPCLKBS, ECAPCLKBS
These are the capture clocks used to sample data into the scan cells 
during INTEST and EXTEST respectively. These clocks are 
generated in the CAPTURE-DR state.
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SHCLK1BS, SHCLK2BS
These are non-overlapping clocks generated in the SHIFT-DR state 
that are used to clock the master and slave element of the scan cells 
respectively. When the state machine is not in the SHIFT-DR state, 
both these clocks are LOW.

nHIGHZ This signal may be used to drive the outputs of the scan cells to the 
high impedance state. This signal is driven LOW when the HIGHZ 
instruction is loaded into the instruction register, and HIGH at all 
other times.

In addition to these control outputs, SDINBS output and SDOUTBS input are also 
provided. When an external scan chain is in use, SDOUTBS should be connected to the 
serial data output and SDINBS should be connected to the serial data input.

Scan chain 4

Purpose Allows access to the I Cache CAM array. The scan chain has two 
modes of operation. 

In addressing mode, the order of the scan chain TDI to TDO is:
CAM index bits 5 to 0,
segment select bits 1 to 0,
20 bits which should be LOW.

In reading mode, the order of the scan chain TDI to TDO is:
valid bit,
dirty bit,
address bits 25 to 0.

Length 28 bits

To access this serial register, scan chain 4 must first be selected via the SCAN_N TAP 
controller instruction. The TAP controller must then be placed in INTEST mode.

During SHIFT-DR, a CAM index can be addressed by shifting data into the serial 
register in the addressing mode format. Bits 27 to 20 define the cache segment and 
CAM index to be accessed.

During UPDATE-DR, the addressed CAM index data is transferred to the serial register 
in the reading mode format.
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Scan chain 5

Purpose Allows access to the D cache CAM array. The scan chain has two 
modes of operation, 

In addressing mode, the order of the scan chain TDI to TDO is:
CAM index bits 5 to 0,
segment select bits 1 to 0,
20 bits which should be LOW.

In reading mode, the order of the scan chain TDI to TDO is:
valid bit,
dirty bit,
address bits 25 to 0.

Length 28 bits

To access this serial register, scan chain 4 must first be selected via the SCAN_N TAP 
controller instruction. The TAP controller must then be placed in INTEST mode.

During SHIFT-DR, a CAM index can be addressed by shifting data into the serial 
register in the addressing mode format. Bits 27 to 20 define the cache segment and 
CAM index to be accessed.

During UPDATE-DR, the addressed CAM index data is transferred to the serial register 
in the reading mode format.

Scan chain 15

Purpose Allows access to the control coprocessor registers. The order of the 
scan chain TDI to TDO is:
read/write,
address bits 5 to 0,
32 bits register value.

Length 39 bits

To access this serial register, scan chain 15 must first be selected via the SCAN_N TAP 
controller instruction. the TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 37 specify 
the address of the EmbeddedICE hardware register to be accessed.

During SHIFT-DR, this register is either read or written depending on the value of 
bit 38 (0 = read).
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8.7 ARM940T core clocks

The source GCLK applied to the internal ARM9TDMI bus is dependent on the current 
selected clock mode and the operation being performed. Refer to Chapter 5 Clock 
Modes for further details.

The ARM9TDMI core has two clocks, the memory clock GCLK, and an internally 
TCK generated clock, DCLK. During normal operation, the core is clocked by GCLK, 
and internal logic holds DCLK LOW. When the ARM940T is in the debug state, the 
core is clocked by DCLK under control of the TAP state machine, and GCLK may free 
run. The selected clock is output on the ECLK signal for use by the external system. 

Note

When the core is being debugged and is running from DCLK, nWAIT has no effect.

There are two cases in which the clocks switch—during debugging and during te
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8.8 Clock switching during debug

When the ARM9TDMI enters debug state, it must switch from GCLK to DCLK. This 
is handled automatically by logic in the ARM9TDMI. On entry to debug state, the 
ARM9TDMI asserts DBGACK in the HIGH phase of GCLK. The switch between the 
two clocks occurs on the next falling edge of GCLK. 

Figure 8-6 Clock switching on entry to debug state

The ARM9TDMI is forced to use DCLK as the primary clock until debugging is 
complete. On exit from debug, the core must be allowed to synchronize back to GCLK. 
This must be done in the following sequence. The final instruction of the debug 
sequence must be shifted into the instruction data bus scan chain, and clocked in by 
asserting DCLK. At this point, RESTART must be clocked into the TAP controller 
register. 

The ARM9TDMI will now automatically resynchronize back to GCLK when the TAP 
controller enters to the RUN-TEST/IDLE mode and start fetching instructions from 
memory at GCLK speed. For more information, refer to 8.11 Exit from debug state.

GCLK

DBGACK

DCLK

ECLK
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8.9 Clock switching during test

When under serial test conditions - when test patterns are being applied to the core 
through the JTAG interface - the ARM9TDMI must be clocked using DCLK. Entry 
into test is less automatic than debug and some care must be taken.

On the way into test GCLK must be held LOW. The TAP controller can now be used 
to perform serial testing on the ARM9TDMI. If scan chain 0 and INTEST are selected, 
DCLK is generated while the state machine is in RUN-TEST/IDLE state. 

During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When 
this is done, GCLK can be allowed to resume. After INTEST testing, care should be 
taken to ensure that the core is in a sensible state before switching back. The safest way 
to do this is to either select RESTART and then cause a system reset, or to insert 
MOV PC,#0 into the instruction pipeline before switching back.
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8.10 Determining the core and system state

When the ARM9TDMI is in debug state, the core and system state may be examined. 
This is done by forcing load and store multiples into the pipeline.

Before the core and system state can be examined, the debugger must first determine 
whether the processor was in Thumb or ARM state when it entered debug. This is 
achieved by examining bit 4 of the EmbeddedICE hardware’s Debug Status regis
this is HIGH, the core was in Thumb state when it entered debug.

8.10.1 Determining the core state

If the processor has entered debug state from Thumb state, the simplest course of
is for the debugger to force the core back into ARM state. Once this is done, the 
debugger can always execute the same sequence of instructions to determine th
processor’s state.

To force the processor into ARM state, the following sequence of Thumb instructi
should be executed on the core:
STR R0, [R1] ; Save R0 before use

MOV R0, PC ; Copy PC into R1

STR R0, [R1] ; Save the PC in R1

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

The above use of R0 as the base register for the stores is for illustration only—an
register could be used.

Since all Thumb instructions are only 16 bits long, the simplest course of action w
shifting them into scan chain 1 is to repeat the instruction twice on the instruction 
bus bits. For example, the encoding for BX R0 is 0x4700. If 0x47004700 is shifted into
the 32 bits of the instruction data bus of scan chain 1, then the debugger does no
to keep track of from which half of the bus the processor expects to read instructi

From this point on, the processor state can be determined by the sequences of A
instructions described below.

Once the processor is in ARM state, typically the first instruction executed would 
STMIA R0, {R0-R15}

This causes the contents of the registers to be made visible on the data bus. These
can then be sampled and shifted out.
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After determining the values in the current bank of registers, it may be desirable to 
access banked registers. This can only be done by changing mode. Normally, a mode 
change may only occur if the core is already in a privileged mode. However, while in 
debug state, a mode change from any mode into any other mode may occur. Note that 
the debugger must restore the original mode before exiting debug state.

For example, assume that the debugger has been asked to return the state of the USER 
mode and FIQ mode registers, and debug state was entered in supervisor mode.

The instruction sequence could be:
STMIA R0,  {R0-R15} ; Save current registers

MRS R0, CPSR

STR R0, R1 ; Save CPSR to determine current mode

BIC R0, 0x1F ; Clear mode bits

ORR R0, 0x10 ; Select USER mode

MSR CPSR, R0 ; Enter USER mode

STMIA R0, {R13-R14} ; Save registers not previously visible

ORR R0, 0x01 ; Select FIQ mode

MSR CPSR, R0 ; Enter FIQ mode

STMIA R1, {R8-R14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower 
than system speed since between each core clock, 67 scan clocks occur in order to shift 
in an instruction, or shift out data. Executing instructions more slowly than usual is fine 
for accessing the core’s state since the ARM9TDMI is fully static. However, this sa
method cannot be used for determining the state of the rest of the system.

While in debug state, only the following instructions may be inserted into the 
instruction pipeline for execution:

• all data processing operations

• all load, store, load multiple and store multiple instructions

• MSR and MRS.
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8.10.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access 
system state must occur synchronously. Thus, the ARM9TDMI must be forced to 
synchronize back to system speed. The 33rd bit of scan chain 1, SYSSPEED, controls 
this.

A legal debug instruction may be placed in the instruction data bus of scan chain 1 with 
bit 33 (the SYSSPEED bit) LOW. This instruction will then be executed at debug speed. 
To execute an instruction at system speed, a NOP (such as MOV R0, R0) must be 
scanned in as the next instruction with bit 33 set HIGH.

After the system speed instructions have been scanned into the instruction data bus and 
clocked into the pipeline, the RESTART instruction must be loaded into the TAP 
controller. This will cause the ARM9TDMI to automatically resynchronize back to 
GCLK when the TAP controller enters RUN-TEST/IDLE state, and execute the 
instruction at system speed. Debug state will be re-entered once the instruction 
completes execution, when the processor will switch itself back to the internally 
generated DCLK. When the instruction has completed, DBGACK will be HIGH. At 
this point INTEST can be selected in the TAP controller, and debugging can resume.

Note

When preforming system-speed accesses, the caches will operate as usual, for example, 
performing cache lookups, line fills and evicting lines. To prevent the contents of the 
caches being altered, it is necessary to disable them first.

To determine whether a system speed instruction has completed, the debugger must 
look at SYSCOMP (bit 3 of the debug status register). To access memory, the 
ARM9TDMI must access memory through the data bus interface, as this access may be 
stalled indefinitely by nWAIT. The only way to determine whether the memory access 
has completed, is to examine the SYSCOMP bit—when this bit is HIGH the instruc
has completed.

By the use of system speed load multiples and debug store multiples, the state o
system’s memory can be passed to the debug host.
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8.10.3 Instructions which may have the SYSSPEED bit set

The only valid instructions on which to set this bit are:

• loads

• stores

• load multiple

• store multiple. 

When the ARM940T returns to debug state after a system speed access, the SYSS
bit is set HIGH.
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8.11 Exit from debug state

Leaving debug state involves restoring the ARM940T internal state, causing a branch 
to the next instruction to be executed, and synchronizing back to GCLK. After restoring 
the internal state, a branch instruction must be loaded into the pipeline. For details on 
calculating the branch, see 8.12 The PC’s behavior during debug on page 8-34.

Bit 33 of scan chain 1 is used to force the ARM940T to resynchronize back to GCLK. 
The penultimate instruction in the debug sequence is a branch to the instruction at which 
execution is to resume. This is scanned in with bit 33 set LOW. The core is then clocked 
to load the branch into the pipeline. The final instruction to be scanned in is an NOP 
(such as MOV R0, R0), with bit 33 set HIGH. The core is then clocked to load this 
instruction into the pipeline, and the RESTART instruction is selected in the TAP 
controller. When the state machine enters the RUN-TEST/IDLE state, the scan chain 
will revert back to system mode and clock resynchronization to GCLK will occur 
within the ARM940T. Normal operation will then resume, with instructions being 
fetched from memory. 

The delay, until the state machine is in RUN-TEST/IDLE state, allows conditions to be 
set up in other devices in a multiprocessor system without taking immediate effect. 
When RUN-TEST/IDLE state is subsequently entered, all the processors resume 
operation simultaneously.

The function of DBGACK is to tell the rest of the system when the ARM940T is in 
debug state. This can be used to inhibit peripherals such as watchdog timers that have 
real time characteristics. DBGACK can also be used to mask out memory accesses that 
are caused by the debugging process. For example, when the ARM940T enters debug 
state after a breakpoint, the instruction pipeline contains the breakpointed instruction 
plus two other instructions which have been prefetched. On entry to debug state, the 
pipeline is flushed. On exit from debug state, the pipeline must then be refilled to its 
previous state. Because of the debugging process, more memory accesses occur than 
would normally be expected. Any system peripheral that may be sensitive to the number 
of memory accesses can be inhibited through the use of DBGACK.
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For example, consider a peripheral that simply counts the number of instruction fetches. 
This device should return the same answer after a program has run both with and 
without debugging. Figure 8-7 Debug exit sequence shows the behavior of the 
ARM940T on exit from debug state.

Figure 8-7 Debug exit sequence

It can be seen in Figure 8-8 Debug state entry that the final instruction fetch occurs in 
the cycle after DBGACK goes HIGH, and this is the point at which the instruction 
counter should be disabled. Figure 8-7 Debug exit sequence shows that the first memory 
access that the instruction fetch that the counter has not seen before occurs in the cycle 
after DBGACK goes LOW, and so this is the point at which the counter should be re-
enabled. 
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IA[31:1]

ID[31:0]
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Figure 8-8 Debug state entry

Note that when a system speed access from debug state occurs, the ARM940T 
temporarily drops out of debug state, and DBGACK goes LOW. If there are peripherals 
that are sensitive to the number of memory accesses, they must be led to believe that the 
ARM940T is still in debug state. By programming the EmbeddedICE hardware control 
register, the value of DBGACK can be forced HIGH.

GCLK

IA[31:1

ID[31:0]

IEBKPT

DBGACK
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Memory Cycles Internal Cycles
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8.12 The PC’s behavior during debug

To force the ARM940T to branch back to the place at which program flow was 
interrupted by debug, the debugger must keep track of what happens to the PC. There 
are six cases: 

• breakpoint

• watchpoint

• watchpoint when another exception occurs

• watchpoint when the next instruction is breakpoint

• debug request 

• system speed accesses.

These are explained below:

8.12.1 Breakpoint

Entry to debug state from a breakpointed instruction advances the PC by 16 byte
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state 
advances the PC by one address. The normal way to exit from debug state after 
breakpoint is to remove the breakpoint, and branch back to the previously breakpo
address.

For example, if the ARM940T entered debug state from a breakpoint set on a giv
address and two debug speed instructions were executed, a branch of –7 address
occur (four for debug entry, plus two for the instructions, plus one for the final bran
The following sequence shows ARM instructions scanned into scan chain 1. This
MSB first, and so the first digit represents the value to be scanned into the SYSSP
bit, followed by the instruction.
0 EAFFFFF9 ; B -7 addresses (two’s complement)

1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

For small branches, the final branch could be replaced with a subtract with the PC as 
the destination (SUB PC, PC, #28 for ARM code in the above example).

8.12.2 Watchpoint

Returning to the program execution after entering debug state from a watchpoint is done 
in the same way as the procedure described in 8.12.1 Breakpoint above. Debug entry 
adds four addresses to the PC, and every instruction adds one address. The difference is 
that the instruction after that which caused the watchpoint has executed. The next 
instruction after that is the return instruction.
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8.12.3 Watchpoint with another exception

If a watchpoint access simultaneously causes a data abort, the ARM940T will enter 
debug state in abort mode. Entry into debug is held off until the core has changed into 
abort mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during 
a watchpointed memory access. The ARM940T will enter debug state in the 
exception’s mode, and the debugger must check to see whether this happened. T
debugger can deduce whether an exception occurred by looking at the current an
previous mode (in the CPSR and SPSR), and the value of the PC. If an exception
take place, the user should be given the choice of whether to service the excepti
before debugging.

For example, suppose an abort occurred on a watchpoint access and ten instructio
been executed to determine this, the following sequence could be used to return 
program execution.
0 EAFFFFFC  ; B –15 addresses (two’s complement)

1 E1A00000  ; NOP (MOV R0, R0), SYSSPEED bit is set

This will force a branch back to the abort vector, causing the instructions at that location 
to be refetched and executed. Note that after the abort service routine, the instruction 
that caused the abort and watchpoint will be re-executed. This will cause the watchpoint 
to be generated and the ARM940T will enter debug state again.

8.12.4 Watchpoint and breakpoint

It is possible to have a watchpoint and breakpoint condition occurring simultaneously. 
This can happen when the instruction causes a watchpoint, and the following instruction 
has been breakpointed. In this instance, the PC will have been advanced by four 
addresses, but due to the breakpointed instruction not being executed, the instruction to 
be executed upon exit from debug state is at PC -5 addresses.
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8.12.5 Debug request

Entry into debug state via a debug request is similar to a breakpoint. However, unlike a 
breakpoint, the last instruction in the execution stage of the pipeline will have 
completed execution and so must not be refetched on exit from debug state. Therefore, 
entry to debug state adds three addresses to the PC, and every instruction executed in 
debug state adds one. 

For example, the following sequence handles a situation in which the user has invoked 
a debug request, and decides to return to program execution immediately:
0 EAFFFFFD  ; B –5 addresses (2’s complement)

1 E1A00000  ; NOP (MOV R0, R0), SYSSPEED bit is set

This restores the PC, and restarts the program from the next instruction.

8.12.6 System speed accesses

If a system speed access is performed during debug state, the value of the PC is 
increased by five addresses. Since system speed instructions access the memory system, 
it is possible for aborts to take place. If an abort occurs during a system speed memory 
access, the ARM940T enters abort mode before returning to debug state.

This is similar to an aborted watchpoint. However, this occurrence is more difficult to 
resolve, because the abort was not caused by an instruction in the main program, and 
the PC does not point to the instruction that caused the abort. An abort handler usually 
looks at the PC to determine the instruction that caused the abort, and hence the abort 
address. In this case, the value of the PC is invalid, but the debugger will know the 
address of the location that was being accessed. Thus the debugger can be written to 
help the abort handler fix the memory system.

8.12.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:

-(4 + N +5S)

where N is the number of debug speed instructions executed (including the final 
branch), and S is the number of system speed instructions executed.
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8.13 EmbeddedICE

The EmbeddedICE hardware is integral to the ARM9TDMI processor core. It has two 
hardware breakpoint/watchpoint units that may be configured to monitor either the 
instruction memory interface or the data memory interface. Each watchpoint unit set 
has a value and mask register, with an address, data and control field. 

Because the ARM9TDMI processor core has a Harvard Architecture, the user needs to 
specify whether the watchpoint registers examine the instruction interface or the data 
interface. This is specified by bit 3 in the control field of the watchpoint register. When 
bit 3 is set, the data interface is examined. When it is clear, the instruction interface is 
examined. There can be no “don’t care” case for this bit because the comparators c
compare the values on both interfaces simultaneously. Therefore, bit 3 of the con
mask registers is always clear and cannot be programmed HIGH. Bit 3 also determ
whether the IBREAKPT or DBREAKPT signal should be driven by the result of the
comparison, as shown in Figure 8-9 ARM940T EmbeddedICE overview on page 8-39.

The ARM940T EmbeddedICE unit has logic that allows single stepping through c
This reduces the work required by an external debugger, and removes the need to
the instruction cache. There is also hardware to allow efficient trapping of access
the exception vectors. These blocks of logic free the two general-purpose hardwa
breakpoint/watchpoint units for use by the programmer or debugger.

The general arrangement of the EmbeddedICE hardware is shown in Figure 8-9 
ARM940T EmbeddedICE overview on page 8-39.

8.13.1 Register map

The EmbeddedICE register map is shown below:

Table 8-4 ARM940T EmbeddedICE register map

Address Width Function

00000 4 Debug control

00001 5 Debug status

00010 8 Vector catch control

00100 6 Debug comms control

00101 32 Debug comms data

01000 32 Watchpoint 0 address value

01001 32 Watchpoint 0 address mask
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01010 32 Watchpoint 0 data value

01011 32 Watchpoint 0 data mask

01100 9 Watchpoint 0 control value

01101 8 Watchpoint 0 control mask

10000 32 Watchpoint 1 address value

10001 32 Watchpoint 1 address mask

10010 32 Watchpoint 1 data value

10011 32 Watchpoint 1 data mask

10100 9 Watchpoint 1 control value

10101 8 Watchpoint 1 control mask

Table 8-4 ARM940T EmbeddedICE register map (continued)

Address Width Function
8-38 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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Figure 8-9 ARM940T EmbeddedICE overview
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8.13.2 Control registers

The format of the control registers depends on how bit 3 is programmed. If bit 3 is 
programmed to be 1, the breakpoint comparators examine the data address, data and 
control signals. 

In this case, the format of the register is as shown in Figure 8-10 Watchpoint control 
register for data comparison. 

Note

Bit 8 and bit 3 cannot be masked.

Figure 8-10 Watchpoint control register for data comparison

The bits have the following functions:

8 7 6 5 4 3 2 1 0

 ENABLE RANGE CHAIN EXTERN DnTRANS 1 DMAS[1] DMAS[0] DnRW

Table 8-5 Watchpoint control register for data comparison bit functions

Bit Function

DnRW Compares against the data not read/write signal from the core in order to 
detect the direction of the data bus activity. nRW is 0 for a read, and 1 for a 
write

DMAS[1:0] Compares against the DMAS[1:0] signal from the core in order to detect the 
size of the data bus activity.

DnTRANS Compares against the data not translate signal from the core in order to 
determine between a user mode (DnTRANS = 0) data transfer, and a 
privileged mode (DnTRANS = 1) transfer.

EXTERN Is an external input into the EmbeddedICE hardware that allows the 
watchpoint to be dependent upon some external condition. The EXTERN 
input for watchpoint 0 is labelled EXTERN0, and the EXTERN input for 
watchpoint 1 is labelled EXTERN1.
8-40 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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If bit 3 of the control register is programmed to 0, the comparators will examine the 
instruction address, instruction data and instruction control buses. In this case bits [1:0] 
of the mask register must be set to “don’t care” (programmed to 11). The format o
register in this case is as shown in Figure 8-11 Watchpoint control register for 
instruction comparison.

Figure 8-11 Watchpoint control register for instruction comparison

CHAIN Can be connected to chain output of another watchpoint in order to 
implement, for example, debugger requests of the form “breakpoint on 
address YYY only when in process XXX”.
In the ARM940T EmbeddedICE hardware, the CHAINOUT output of 
watchpoint 1 is connected to the CHAIN input of watchpoint 0. The 
CHAINOUT output is derived from a latch; the address/control field 
comparator drives the write enable for the latch and the input to the latch i
the value of the data field comparator. The CHAINOUT latch is cleared 
when the control value register is written or when nTRST is LOW.

RANGE Can be connected to the range output of another watchpoint register. In th
ARM940T EmbeddedICE hardware, the RANGEOUT output of 
watchpoint 1 is connected to the RANGE input of watchpoint 0. This allows 
two watchpoints to be coupled for detecting conditions that occur 
simultaneously—for example, for range-checking.

ENABLE If a watchpoint match occurs, the IBREAKPT of DBREAKPT signal will 
only be asserted when the ENABLE bit is set. This bit only exists in the 
value register; it cannot be masked.

Table 8-5 Watchpoint control register for data comparison bit functions

Bit Function

8 7 6 5 4 3 2 1 0

 ENABLE RANGE CHAIN EXTERN InTRANS 0 ITBIT X X
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-41
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Table 8-6 Watchpoint control register for instruction comparison bit functions

Bit Function

ITBIT Compares against the Thumb state signal from the core to determine between a 
Thumb (ITBIT = 1) instruction fetch or an ARM (ITBIT = 0) fetch.

InTRANS Compares against the not translate signal from the core in order to determine 
between a user mode (InTRANS = 0) instruction fetch, and a privileged mode 
(InTRANS = 1) fetch.

EXTERN Is an external input into the EmbeddedICE hardware that allows the watchpoint 
to be dependent upon some external condition. The EXTERN input for 
watchpoint 0 is labelled EXTERN0, and the EXTERN input for watchpoint 1 
is labelled EXTERN1.

CHAIN Can be connected to chain output of another watchpoint in order to implement, 
for example, debugger requests of the form “breakpoint on address YYY onl
when in process XXX”.
In the ARM940T EmbeddedICE hardware, the CHAINOUT output of 
watchpoint 1 is connected to the CHAIN input of watchpoint 0. The 
CHAINOUT output is derived from a latch; the address/control field 
comparator drives the write enable for the latch, and the input to the latch is t
value of the data field comparator. The CHAINOUT latch is cleared when the 
control value register is written, or when nTRST is LOW.

RANGE Can be connected to the range output of another watchpoint register. In the
ARM940T EmbeddedICE hardware, the RANGEOUT output of watchpoint 
1 is connected to the RANGE input of watchpoint 0. This allows two 
watchpoints to be coupled for detecting conditions that occur simultaneously
for example, for range-checking.

ENABLE If a watchpoint match occurs, the IBREAKPT of DBREAKPT signal will 
only be asserted when the ENABLE bit is set. This bit only exists in the valu
register; it cannot be masked.
8-42 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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8.13.3 Debug control register

The ARM940T debug control register is four bits wide and is shown in Figure 8-12 
Debug control register. Bit 3 controls the single-step hardware. This is explained in 
more detail in 8.15 Single stepping on page 8-44.

Figure 8-12 Debug control register

8.13.4 Debug status register

The debug status register is five bits wide. If it is accessed for a write (with the read/
write bit set HIGH), the status bits are written. If it is accessed for a read (with the read/
write bit LOW), the status bits are read.

Figure 8-13 Debug status register

The function of each bit in this register is as follows:

Bits 1 and 0 Allow the values on the synchronized versions of DBGRQ and 
DBGACK to be read. 

Bit 2 Allows the state of the core interrupt enable signal (IFEN) to be read. 
Since the capture clock for the scan chain may be asynchronous to the 
processor clock, the DBGACK output from the core is synchronized 
before being used to generate the IFEN status bit.

Bit 3 Allows the state of the nMREQ signal from the core (synchronized 
to TCK) to be read. This allows the debugger to determine that a 
memory access from the debug state has completed.

Bit 4 Allows ITBIT to be read. This enables the debugger to determine 
what state the processor is in, and hence which instructions to 
execute.

3 2 1 0

Single step INTDIS DBGRQ DBGACK

4 3 2 1 0

ITBIT nMREQ IFEN DBGRQ DBGACK
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8.13.5 Vector catch register

The ARM940T EmbeddedICE unit controls logic to enable accesses to the exception 
vectors to be trapped in an efficient manner. This is controlled by the Vector Catch 
register, as shown in Figure 8-14 Vector catch register. The functionality is described 
in 8.14 Vector catching, below.

Figure 8-14 Vector catch register

8.14 Vector catching

The ARM940T EmbeddedICE macrocell contains logic that allows efficient trapping 
of fetches from the vectors during exceptions. This is controlled by the Vector Catch 
register. If one of the bits in this register is set HIGH and the corresponding exception 
occurs, the processor enters debug state as if a breakpoint has been set on an instruction 
fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the Vector Catch 
register is set, the ARM940T fetches an instruction from location 0x8. The vector catch 
hardware detects this access and forces the Breakpoint signal HIGH into the 
ARM940T control logic. This, in turn, forces the ARM940T to enter debug state.

The behavior of this hardware is independent of the watchpoint comparators, leaving 
them free for general use. The vector catch register is sensitive only to fetches from the 
vectors during exception entry. Therefore, if code branches to an address within the 
vectors during normal operation, and the corresponding bit in the Vector Catch register 
is set, the processor is not forced to enter debug state.

8.15 Single stepping

The ARM940T EmbeddedICE unit contains logic that allows efficient single stepping 
through code. This leaves the hardware watchpoint comparators free for general use. 

This function is enabled by setting bit 3 of the Debug Control register. The state of this 
bit should only be altered while the processor is in debug state. If the processor exits 
debug state and this bit is HIGH, the processor fetches an instruction, executes it, and 
then immediately re-enters debug state. This happens independently of the watchpoint 
comparators. If a system-speed data access is performed while in debug state, the 
debugger must ensure that the control bit is clear first.

7 6 5 4 3 2 1 0

 FIQ IRQ Reserved D_Abort P_Abort SWI Undef Reset
8-44 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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8.16 Debug communications channel

The ARM940T EmbeddedICE hardware contains a communication channel for passing 
information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel consists of a 32-bit wide Comms Data Read register, a 
32-bit wide Comms Data Write register and a 6-bit wide Comms Control register for 
synchronized handshaking between the processor and the asynchronous debugger. 
These registers are located in fixed locations in the EmbeddedICE register map (as 
shown in Figure 8-9 ARM940T EmbeddedICE overview on page 8-39) and are accessed 
from the processor via MCR and MRC instructions to coprocessor 14.

8.16.1 Debug comms channel registers

The Debug Comms Control register is read only, and allows synchronized handshaking 
between the processor and the debugger.

Figure 8-15 Debug comms control register

The function of each register bit is described below:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE hardware 
version number, in this case 0010.

Bits 27:2 Unused.

Bit 1 Denotes from the processor’s point of view, whether the Comms D
Write register is free. 
If, from the processor’s point of view, the Comms Data Write regis
is free (W=0), new data may be written. 
If it is not free (W=1), the processor must poll until W=0. 
If, from the debugger’s point of view, W=1, some new data has be
written which may then be scanned out.
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Bit 0 Denotes whether there is some new data in the Comms Data Read 
register. If, from the processor’s point of view, R=1, there is some
new data which may be read via an MRC instruction. 
If, from the debugger’s point of view, R=0, the Comms Data Read
register is free and new data may be placed there through the sc
chain. 
If R=1, this denotes that data previously placed there through the s
chain has not been collected by the processor, and so the debug
must wait.

From the debugger’s point of view, the registers are accessed via the scan chain
usual way. From the processor, these registers are accessed via coprocessor reg
transfer instructions. The following instructions should be used:

MRC p14, 0, Rd, c0, c0

Returns the Debug Comms Control register into Rd.

MCR p14, 0, Rn, c1, c0

Writes the value in Rn to the Comms Data Write register.

MRC p14, 0, Rd, c1, c0

Returns the Debug Data Read register into Rd.

The Thumb instruction set does not support coprocessor instructions (must be in 
state).

8.16.2 Communications via the comms channel

Communication can take place over the Debug Comms channel by either an inte
driven mechanism or through software polling.

The interrupt driven mechanism requires the COMMTX and COMMRX signals to
factored into an interrupt controller. The Comms Channel will only be accessed 
therefore, when the write channel has become free or the read channel has receive
allowing efficient communication.

Software polling requires no external hardware configuration. The program must 
examine the Debug Comms Control Register to determine if data has been receiv
if the write channel has become empty. Only when such an event has occurred w
Debug Comms Write or Read register be accessed.
8-46 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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8.16.3 Software polling communication

Sending a message to EmbeddedICE

When the processor wishes to send a message to EmbeddedICE hardware, it must check 
that the Comms Data Write register is free for use by finding out whether the W bit of 
the Debug Comms Control register is clear.

It reads the Debug Comms Control register to check status of the W bit:

• If the W bit is set, previously written data has not been read by the debugger 

• The processor must continue to poll the control register until the W bit is clear

• If W bit is clear, the Comms Data Write register is clear.

When the W bit is clear, a message is written by a register transfer to coprocesso
As the data transfer occurs from the processor to the Comms Data Write register, 
bit is set in the Debug Comms Control register. 

The debugger sees a synchronized version of both the R and W bit when it polls 
Debug Comms Control register through the JTAG interface. When the debugger 
that the W bit is set, it can read the Comms Data Write register, and scan the dat
The action of reading this data register clears the Debug Comms Control register W
At this point, the communications process may begin again.

Receiving a message from EmbeddedICE

Message transfer from the debugger to the processor is similar to sending a mess
EmbeddedICE. In this case, the debugger polls the R bit of the Debug Comms Co
register: 

• If the R bit is LOW, the Data Read register is free, and data can be placed the
the processor to read 

• If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the Comms Data Read register is free, data is written there via the JTAG 
interface. The action of this write sets the R bit in the Debug Comms Control regi

When the processor polls this register, it sees an MCLK synchronized version. If t
bit is set, there is data waiting to be collected; this can be read via an MRC instru
to coprocessor 14. The action of this load clears the R bit in the Debug Comms Co
register. When the debugger polls this register and sees that the R bit is clear, th
has been taken, and the process may now be repeated.
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8.16.4 Interrupt driven communications

To implement interrupt driven communication, the signals COMMRX and COMMTX 
must be factored into any interrupt controller being used. If no interrupt controller is 
being used, the signals can be applied to a NOR gate with the output driving nIRQ.

When an interrupt occurs, the program must examine the Debug Comms Control 
register to determine if an event occurred. If the W bit is clear, new data can be written 
into the Debug Comms Write register. If the R bit is set, new data has been received and 
can be read.

If the W bit is set and the R bit clear, the Debug Comms channel was not the source of 
the interrupt.
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8.17 The debugger’s view of the cache

When in debug state, the debugger is able to see the state of the memory system, 
including the caches. The debugger needs to be able to control the cache, consequently 
all of CP15 registers are accessible through the scan chain. Scan chain 15 is reserved 
for this use. This scan chain is 38 bits long, and has a structure similar to the 
EmbeddedICE macrocell scan chain 2. The format of scan chain 15 is shown below in 
Table 8-7. An access via this scan chain allows any of CP15 registers to be read or 
written.

On entry to debug state, the debugger should extract and save the state of CP15. It is 
advisable then to switch off the cache to prevent any debug accesses to memory from 
altering the state of the caches. The mapping of the 6-bit address field to the CP15 
register is as shown in Table 8-8. For CP register 6, CRm corresponds to the region 
number.

Table 8-7 Scan chain 15 format

Scan chain bit Function

38 R/W (Write=1)

37:32 Register address

31:0 Register value

Table 8-8 Scan access mapping to CP15 register

Register address CP15 register

37 36:33 32

0 0000 0 0

0 0001 0 1

0 0010 0 2 (Data)

0 0010 1 2 (Instruction)

0 0011 0 3

0 0101 0 5 (Data)

0 0101 1 5 (Instruction)

0 1001 0 9 (Data)

0 1001 1 9 (Instruction)
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 8-49
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The contents of the caches is determined by:

1. Extracting the contents of the CAMs

2. Determining the contents of the RAMs.

The CAM arrays are read via scan chain 4 for the I Cache, and scan chain 5 for the 
D Cache. The format of these scan chains is identical and has two modes:

Addressing The CAM index and segment are specified. The format of the scan 
chain is as shown in Table 8-9 Scan chain 4 and 5 addressing mode.

Reading The contents of the CAM entry are read back. The format of the data 
read back is shown in Table 8-10 Scan chains 4 and 5 reading mode. 
When the I Cache CAM is read, the dirty bit will always be read as 
zero.

The addressing mode format is used when scanning in data to address the CAM. After 
UPDATE-DR, the data read from the CAM array is in the reading mode format.

0 1111 0 15

1 <CRm> 0 6 (Data)

1 <CRm> 1 6 (Instruction)

Table 8-9 Scan chain 4 and 5 addressing mode

Scan chain bit Write function

27:22 CAM index

21:20 Segment select

19:0 Should be zero

Table 8-8 Scan access mapping to CP15 register

Register address CP15 register

37 36:33 32
8-50 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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The debugger must index through all the entries in the CAM (0-63) to determine the 
26-bit TAG addresses. When this information is extracted, the contents of the cache 
RAM array can be determined.

For the Data cache
This is achieved by taking each TAG address, padding the bottom 4-
bits with zeros, setting bits 5 and 6 to indicate the same segment that 
the TAG was scanned from, and performing a system-speed 4-word 
LDM to that address, with the cache switched on. As the TAG address 
is known, a cache hit occurs, and the four words in the RAM line are 
returned.

If a system-speed access from a TAG address is performed with the 
cache switched off, the external data corresponding to that address is 
returned. For cache lines which are marked as valid and dirty 
therefore, it is possible to determine the value of the cached data and 
the external data in main memory.

For the Instruction cache
For the instruction cache, the system-speed LDM should be 
performed with the cache switched off. This ensures that the external 
memory system is accessed. As it is impossible to change the data in 
the instruction cache, the I Cache and external memory are 
guaranteed coherent.

Table 8-10 Scan chains 4 and 5 reading mode

Scan chain bit Write function

27 Valid

26 Dirty

25:0 Address
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TrackingICE

This chapter describes how TrackingICE mode is used by the ARM940T:

• Timing requirements

• TrackingICE outputs.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 9-1
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9.1 Overview

When in TrackingICE mode, a number of the ARM940T outputs track the inputs to the 
ARM9TDMI processor core embedded within the ARM940T. An ARM9TDMI test 
chip can then be connected to the outputs, which will precisely track the ARM9TDMI 
processor core inside the ARM940T. This enables all outputs of the ARM9TDMI to be 
observed.

Figure 9-1 gives an overview of how a tracking ARM9TDMI is attached to an 
ARM940T. 

Figure 9-1 Using TrackingICE

The tracking ARM9TDMI operates one clock phase behind the actual ARM9TDMI (on 
the inverted clock); all required inputs to the ARM9TDMI are latched inside the 
ARM940T and are then brought out on various outputs. The tracking ARM9TDMI can 
be directly attached to these outputs.

0
1

ARM940T

1
TRACK

ARM9TDMI ARM9TDMI
9-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



TrackingICE
9.2 Timing requirements

To enable the ARM9TDMI processor core to be tracked correctly, all inputs must be 
synchronous to the ARM9TDMI processor clock. These inputs include TCK, which in 
tracking mode is latched on the falling edge of GCLK before it is driven onto the 
ARM940T tracking outputs. All other TCK relative signals, TDI, TMS and 
SDOUTBS, are latched on rising GCLK before they are driven onto the ARM940T 
tracking outputs.
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9.3 TrackingICE outputs

The following ARM940T outputs are re-used when the ARM940T is in TrackingICE 
mode:

Table 9-1 ARM940T in TrackingICE

ARM940T output Attach to tracking ARM9TDMI input

IR[3:2] CHSE[1:0]

IR[1:0] CHSD[1:0]

SCREG[3][4] nIRQ

SCREG[2][3] nFIQ

SCREG[1][2] DABORT

SCREG[0][1] IABORT

TAPSM[3] EXTERN1

TAPSM[2] EXTERN0

TAPSM[1] DEWPT

TAPSM[0] IEBKPT

ICAPCLKBS HIVECS

ECAPCLKBS EDBGGQ

PCLKBS nWAIT

RSTCLKBS nRESET

SHCLK1BS TDI

SHCLK2BS TMS

TCK1 GCLK

TCK2 TCK

SDIN SDOUTBS
9-4 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B
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The remaining input connections to the ARM9TDMI are:

• ID bus attaches to the CPID bus

• DD bus attaches to the CPDOUT bus

• BIGEND input attaches to the BIGENDOUT.

These can still be attached to a coprocessor when the ARM940T is in tracking m
The only difference in behavior is that CPDOUT mirrors the ARM940T DD bus on 
every cycle, not just for coprocessor data transfers. The following conditions app

• The ISYNC and nTRST inputs should be common between the ARM940T and t
tracking ARM9TDMI

• IABE and DABE should be HIGH so that the address outputs of the tracking 
ARM9TDMI can be observed

• DDBE should be LOW to prevent a drive clash on the bidirectional DD bus. It is 
not necessary for the tracking ARM9TDMI to drive the DD bus since CPDOUT is 
driven with the data from all memory access cycles.
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Chapter 10
Test Issues

This chapter examines the test issues for the ARM940T and lists the scan chain 0 
bit order.

10.1 Introduction

The ARM940T processor core supports parallel and serial test methodologies. The 
parallel test patterns are derived from assembler ARM code programs written to achieve 
a high fault location coverage. 

The ARM940T processor core has a fully JTAG-compatible scan chain which 
intersects all the inputs and outputs. This allows the test patterns to be serialized and 
injected to the processor via the JTAG interface. Both the parallel and serial test patterns 
are supplied to ARM940T processor core licensees. The scan chain also supports 
EXTEST, allowing the connections between the ARM940T processor core and other 
JTAG-compatible peripherals to be tested.

The ARM940T supports parallel and AMBA test. The ARM940T parallel patterns are 
generated in a similar way to those for the ARM9TDMI processor core. The AMBA test 
methodology involves using the main system data bus to apply vectors to the device 
under test. Each test vector has to be built up in 32-bit multiples on the inputs of the 
device (because the AMBA data bus from the ARM940T is 32 bits wide). This means 
that a number of latches are required in the AMBA veneer.
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The ARM940T AMBA test wrapper also provides a high level of controllability over 
the caches. This allows the caches to be tested independently of the ARM9TDMI 
processor core. The addresses in the CAM array may be read and written. The CAM hit 
bits may be read and the data in the RAM may be read and written.
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10.2 Scan chain 0 bit order

Table 10-1 Scan chain 0 bit order

Number Signal Direction

1 ID[0] Input

2 ID[1] Input

3:31 ID[2:30] Input

32 ID[31] Input

33 SYSSPEED Internal

34 WPTANDBKPT Internal

35 DDEN Output

36 DD[31] Bidirectional

37 DD[30] Bidirectional

38:67 DD[29:1] Bidirectional

68 DD[0] Bidirectional

69 DA[31] Output

70 DA[30] Output

71:99 DA[29:1] Output

100 DA[0] Output

101 IA[31] Output

102 IA[30] Output

103:131 IA[29:2] Output

132 IA[1] Output

133 IEBKPT Input

134 DEWPT Input

135 EDBGRQ Input

136 EXTERN0 Input

137 EXTERN1 Input
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 10-3
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138 COMMRX Output

139 COMMTX Output

140 DBGACK Output

141 RANGEOUT0 Output

142 RANGEOUT1 Output

143 DBGRQI Output

144 DDBE Input

145 InMREQ Output

146 DnMREQ Output

147 DnRW Output

148 DMAS[1] Output

149 DMAS[0] Output

150 PASS Output

151 LATECANCEL Output

152 ITBIT Output

153 InTRANS Output

154 DnTRANS Output

155 nRESET Input

156 nWAIT Input

157 IABORT Input

158 IABE Input

159 DABORT Input

160 DABE Input

161 nFIQ Input

162 nIRQ Input

Table 10-1 Scan chain 0 bit order (continued)

Number Signal Direction
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163 ISYNC Input

164 BIGEND Input

165 HIVECS Input

166 CHSD[1] Input

167 CHSD[0] Input

168 CHSE[1] Input

169 CHSE[0] Input

170 ISEQ Output

171 InM[4] Output

172 InM[3] Output

173 InM[2] Output

174 InM[1] Output

175 InM[0] Output

176 DnM[4] Output

177 DnM[3] Output

178 DnM[2] Output

179 DnM[1] Output

180 DnM[0] Output

181 DSEQ Output

182 DMORE Output

183 DLOCK Output

184 ECLK Output

185 INSTREXEC Output

Table 10-1 Scan chain 0 bit order (continued)

Number Signal Direction
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Chapter 11
Instruction Cycle Summary and Interlocks

11.1 Introduction

This chapter gives the instruction cycle times and shows the timing diagrams for 
interlock timing. All signals quoted are ARM9TDMI signals, and are internal to the 
ARM940T. In all cases it is assumed that all accessess are from cached regions of 
memory.

If an instruction causes an external access, either when prefetching instructions or when 
accessing data, the instruction will take more cycles to complete execution. The 
additional number of cycles is dependent on the system implementation.
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11.2 Instruction cycle times

Key to tables

Table 11-2 summarizes the ARM940T instruction cycle counts and bus activity when 
executing the ARM instruction set.

Table 11-1 Symbols used in tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses

m Is in the range 0 to 3, depending on early termination 
(see 11.2.1 Multiplier cycle counts on page 11-5)

n The number of words transferred in an LDM/STM/LDC/STC

C Coprocessor register transfer (C-cycle)

I Internal cycle (I-cycle)

N Non-sequential cycle (N-cycle)

S Sequential cycle (S-cycle)

Table 11-2 Instruction cycle bus times

Instruction Cycles
Instruction
bus

Data
bus

Comment

Data Op 1 1S 1I Normal case

Data Op 2 1S+1I 2I With register 
controlled shift

LDR 1 1S 1N Normal case, not 
loading PC

LDR 2 1S+1I 1N+1I Not loading PC and 
following instruction 
uses loaded word (1 
cycle load-use 
interlock)
11-2 © Copyright ARM Limited 1998. All rights reserved. ARMDDI 0092B



Instruction Cycle Summary and Interlocks
LDR 3 1S+2I 1N+2I Loaded byte, 
halfword, or 
unaligned word used 
by following 
instruction (2 cycle 
load-use interlock)

LDR 5 2S+2I+1N 1N+4I PC is destination 
register

STR 1 1S 1N All cases

LDM 2 1S+1I 1S+1I Loading 1 Register, 
not the PC

LDM n 1S+(n-1)I 1N+(n-1)S Loading n registers, 
n > 1, not loading the 
PC

LDM n+4 2S+1N+(n+1)I 1N+(n-1)S+4I Loading n registers 
including the PC, n > 
0

STM 2 1S+1I 1N+1I Storing 1 Register

STM n 1S+(n-1)I 1N+(n-1)S Storing n registers, n 
> 1

SWP 2 1S+1I 2N Normal case

SWP 3 1S+2I 2N+1I Loaded byte used by 
following instruction

B, BL, BX 3 2S+1N 3I All cases

SWI, Undefined 3 2S+1N 3I All cases

CDP b+1 1S+bI (1+b)I All cases

LDC, STC b+n 1S+(b+n-1)I bI+1N+(n-1)S All cases

MCR b+1 1S+bI bI+1C All cases

MRC b+1 1S+bI bI+1C Normal case

Table 11-2 Instruction cycle bus times (continued)

Instruction Cycles
Instruction
bus

Data
bus

Comment
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MRC b+2 1S+(b+1)I (b+I)I+1C Following instruction 
uses transferred data

MUL, MLA 2+m 1S+(1+m)I (2+m)I All cases

SMULL, UMULL, S
MLAL, UMLAL

3+m 1S+(2+m)I (3+m)I All cases

Table 11-2 Instruction cycle bus times (continued)

Instruction Cycles
Instruction
bus

Data
bus

Comment
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Table 11-3 shows the instruction cycle times from the perspective of the data bus.

11.2.1 Multiplier cycle counts

The number of cycles that a multiply instruction takes to complete depends on which 
instruction it is, and on the value of the multiplier-operand. The multiplier-operand is 
the contents of the register specified by bits [11:8] of the ARM multiply instructions, or 
bits [2:0] of the Thumb multiply instructions. 

• For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, m is:

1 if bits [31:8] of the multiplier operand are all zero or one

2 if bits [31:16] of the multiplier operand are all zero or one

3 if bits [31:24] of the multiplier operand are all zero or all one

4 otherwise.

• For ARM UMULL, UMLAL, m is:

1 if bits [31:8] of the multiplier operand are all zero

2 if bits [31:16] of the multiplier operand are all zero

3 if bits [31:24] of the multiplier operand are all zero

4 otherwise.

Table 11-3 Data bus instruction times

Instruction Cycle time

LDR 1N

STR 1N

LDM,STM 1N+(n-1)S

SWP 1N+1S

LDC, STC 1N+(n-1)S

MCR,MRC 1C
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11.3 Interlocks

Pipeline interlocks occur when the data required for an instruction is not available due 
to the incomplete execution of an earlier instruction. When an interlock occurs, 
instruction fetches stop on the instruction memory interface of the ARM940T. Four 
examples of this are given below.

Example 1

In this first example, the following code sequence is executed:
LDR R0, [R1]

ADD R2, R0, R1

The ADD instruction cannot start until the data is returned from the load. The ADD 
instruction therefore, has to delay entering the execute stage of the pipeline by one 
cycle. The behavior on the instruction memory interface is shown in Figure 11-1.

Figure 11-1 Single load interlock timing

GCLK

InMREQ

IA[31:1]

ID[31:0]

Fldr Dldr Eldr Mldr Wldr

Fadd Dadd Dadd Eadd Madd Wadd

A+4 A+8 A+C A+10 A+14

LDR ADD
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Example 2

In this second example, the following code sequence is executed:
LDRB R0, [R1,#1]

ADD R2, R0, R1

Now, because a rotation must occur on the loaded data, there is a second interlock cycle. 
The behavior on the instruction memory interface is shown in Figure 11-2.

Figure 11-2 Two cycle load interlock

GCLK

InMREQ

IA[31:1]

ID[31:0]

Fldrb Dldrb Eldrb Mldrb Wldrb

Fadd Dadd Dadd Dadd Eadd Madd Wadd

A+4 A+8 A+C A+10 A+14

LDRB ADD
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 11-7



Instruction Cycle Summary and Interlocks
Example 3

In this third example, the following code sequence is executed:
LDM R12,{R1-R3}

ADD R2, R2, R1

The LDM takes three cycles to execute in the memory stage of the pipeline. The ADD 
is therefore delayed until the LDM begins its final memory fetch. The behavior of both 
the instruction and data memory interface are shown in Figure 11-3.

Figure 11-3 LDM interlock

GCLK

InMREQ

IA[31:1]

ID[31:0]

DnMREQ

DA[31:0]

DD[31:0]

Fldmb Dldmb Eldmb Mldmb Mldmb Mldmb Wldmb

Fadd Dadd Dadd Dadd Eadd Madd Wadd

IA+4 IA+8 IA+C IA+10 IA+14

LDM ADD

DA DA+4 DA+8

R1 R2 R3
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Example 4

In the fourth example, the following code sequence is executed:
LDM R12,{R1-R3}

ADD R4, R3, R1

The code is the same code as in example 3, but in this instance the ADD instruction uses 
R3. Due to the nature of load multiples, the lowest register specified is transferred first, 
and the highest specified register last. Because the ADD is dependent on R3, there must 
be a further cycle of interlock while R3 is loaded. The behavior on the instruction and 
data memory interface is shown in Figure 11-4.

Figure 11-4 LDM dependent interlock

GCLK
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IA[31:1]

ID[31:0]

DnMREQ

DA[31:0]

DD[31:0]

Fldmb Dldmb Eldmb Mldmb Mldmb Mldmb Wldmb

Fadd Dadd Dadd Dadd Dadd Eadd Madd Wadd

IA+4 IA+8 IA+C IA+10 IA+14

LDM ADD

DA DA+4 DA+8

R1 R2 R3
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Chapter 12
ARM940T AC Characteristics

12.1 Introduction

This chapter gives the timing diagrams and timing parameters for the ARM940T. The 
information in this chapter is organized as follows:

• ARM940T timing diagrams

• ARM940T timing parameters.

12.2 ARM940T timing diagrams

The AMBA bus interface of the ARM940T conforms to the AMBA Bus Specification. 
Please refer to this document for the relevant timing diagrams.
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Figure 12-1 ARM940T FCLK timed coprocessor interface
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Figure 12-2 ARM940T BCLK timed coprocessor interface
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Figure 12-3 ARM940T FCLK related signal timing

Figure 12-4 ARM940T BCLK related signal timing
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Figure 12-5 ARM940T SDOUTBS to TDO relationship

Figure 12-6 ARM940T nTRST to RSTCLKBS relationship
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Figure 12-7 ARM940T JTAG output signal
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Figure 12-8 ARM940T JTAG input signal timing

Figure 12-9 ARM940T FCLK related debug output timings
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Figure 12-10 ARM940T BCLK related debug output timings

Figure 12-11 ARM940T TCK related debug output timings
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Figure 12-12 nTRST to DBGRQI relationship

Figure 12-13 ARM940T EDBGRQ to DBGRQI relationship

Figure 12-14 ARM940T DBGEN to Output relationship

nTRST

DBGRQI

TDQIR

EDBGRQ

DBGRQI

TEDQH
TEDQD

DBGEN

RANGEOUT0
RANGEOUT1

DBGRQI

TRGEN

TDQEN
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. 12-9



ARM940T AC Characteristics
12.3 ARM940T timing parameters

Table 12-1 ARM940T timing parameters

Timing parameter Description

Tbbigd BIGENOUT output delay from BCLK falling

Tbbigh BIGENOUT output hold time from BCLK falling

Tbcand CPLATECANCEL output delay from BCLK falling

Tbcanh CPLATECANCEL output hold time from BCLK falling

Tbcdnh CPDIN[31:0] set up time to BCLK falling

Tbcdns CPDIN[31:0] set up time to BCLK falling

Tbchsh CHSDE[1:0]/CHSEX[1:0] hold time to BCLK falling

Tbchss CHSDE[1:0]/CHSEX[1:0] setup time to BCLK falling

Tbcomd COMMTX/COMMRX output delay

Tbcomh COMMTX/COMMRX output hold time

Tbcpdd CPID[31:0]/CPDOUT[31:0] output delay from BCLK falling

Tbcpdh CPID[31:0]/CPDOUT[31:0] output hold time from BCLK falling

Tbcpkf Delay from BCLK falling to CPCLK falling

Tbcpkr Delay from BCLK rising to CPCLK rising

Tbctld CPnMREQ/nCPTRANS/CPTBIT output delay from BCLK falling

Tbctlh CPnMREQ/nCPTRANS/CPTBIT output hold time from BCLK 
falling

Tbdbqh EDBGRQ input hold time from BCLK falling

Tbdbqs EDBGRQ input setup time to BCLK falling

Tbdckd DBGACK output delay

Tbdckh DBGACK output hold time

Tbekf Delay from BCLK falling to ECLK falling

Tbekr Delay from BCLK rising to ECLK rising

Tbexth EXTERN0/EXTERN1 input hold time from BCLK falling
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Tbexts EXTERN0/EXTERN1 input setup time to BCLK falling

Tbinth nFIQ/nIRQ hold time from BCLK falling

Tbints nFIQ/nIRQ setup time to BCLK falling

Tbisyh ISYNC hold time from BCLK falling

Tbisys ISYNC setup time to BCLK falling

Tbnwtd CPnWAIT output delay from BCLK rising

Tbnwth CPnWAIT output hold time from BCLK rising

Tbpasd CPPASS output delay from BCLK rising

Tbpash CPPASS output hold time from BCLK rising

Tbrg0d RANGEOUT0 output delay

Tbrg0h RANGEOUT0 output hold time

Tbrg1h RANGEOUT1 output hold time

Tbrgqd RANGEOUT1 output delay

Tbrst Delay from nTRST falling to RSTCLKBS rising

Tbrtd RSTCLKBS output delay from TCK falling

Tbrth RSTCLKBS hold time from TCK falling

Tbtrks TRACK input setup time to BCLK falling

Tbtrsh TRACK input hold time from BCLK falling

Tcapf ECAPCLKBS/ICAPCLKBS/PCLKBS falling from TCK rising

Tcapr ECAPCLKBS/ICAPCLKBS/PCLKBS rising from TCK rising

Tdgid DBGRQI output delay from TCK falling

Tdgih DBGRQI output hold time from TCK falling

Tdih TDI and TMS hold time from TCK rising

Tdis TDI and TMS setup time to TCK rising

Tdqen Delay from DBGEN falling to DBGRQI falling

Table 12-1 ARM940T timing parameters (continued)

Timing parameter Description
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Tdqir Delay from nTRST falling to DBGRQI

Tedqd DBGRQI output delay from EDBGRQ falling

Tedqh DBGRQI output hold time from EDBGRQ falling

Tfbigd BIGENOUT output delay from FCLK falling

Tfbigh BIGENOUT output hold time from FCLK falling

Tfcand CPLATECANCEL output delay from FCLK falling

Tfcanh CPLATECANCEL output hold time from FCLK falling

Tfcdnh CPDIN[31:0] set up time to FCLK falling

Tfcdns CPDIN[31:0] set up time to FCLK falling

Tfchsh CHSDE[1:0]/CHSEX[1:0] hold time to FCLK falling

Tfchss CHSDE[1:0]/CHSEX[1:0] setup time to FCLK falling

Tfcpdh CPID[31:0]/CPOUT[31:0] output delay from FCLK falling

Tfcpkf Delay from FCLK falling to CPCLK falling

Tfcpkr Delay from FCLK rising to CPCLK rising

Tfctld CPnMREQ/nCPTRANS/CPTBIT output delay from FCLK falling

Tfctlh CPnMREQ/nCPTRANS/CPTBIT output hold time from FCLK 
falling

Tfekf Delay from FCLK falling to ECLK falling

Tfekr Delay from FCLK rising to ECLK rising

Tffkf Delay from FCLK falling to FCLKOUT falling

Tffkr Delay from FCLK rising to FCLKOUT rising

Tfinth nFIQ/nIRQ hold time from FCLK falling

Tfints nFIQ/nIRQ setup time to FCLK falling

Tfisyh ISYNC hold time from FCLK falling

Tfisys ISYNC setup time to FCLK falling

Table 12-1 ARM940T timing parameters (continued)

Timing parameter Description
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Tfnwtd CPnWAIT output delay from FCLK rising

Tfnwth CPnWAIT output hold time from FCLK rising

Tfpasd CPPASS output delay from FCLK rising

Tfpash CPPASS output hold time from FCLK rising

Tirsd IREG[3:0]/SCREG[3:0] output delay from TCK falling

Tirsh IREG[3:0]/SCREG[3:0] hold time from TCK falling

Trgen Delay from DBGEN falling to RANGEOUT0/RANGEOUT1 falling

Tsdnd SDIN output delay from TCK falling

Tsdnh SDIN hold time from TCK falling

Tshkf SHCLK1BS/SHCLK2BS falling from TCK changing

Tshkr SHCLK1BS/SHCLK2BS rising from TCK changing

Ttckf TCK1/TCK2 falling from TCK changing

Ttckr TCK1/TCK2 rising from TCK changing

Ttdod TDO output delay from TCK falling

Ttdoh TDO hold time from TCK falling

Ttdsd TDO output delay from SDOUTBS changing

Ttdsh TDO output hold time from SDOUTBS changing

Ttekf Delay from TCK falling to ECLK falling

Ttekr Delay from TCK rising to ECLK rising

Tteod nTDOEN output delay from TCK falling

Tteoh nTDOEN hold time from TCK falling

Ttpmd TAPSM[3:] output delay from TCK falling

Ttpmh TAPSM[3:0] hold time from TCK falling

Table 12-1 ARM940T timing parameters (continued)

Timing parameter Description
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Appendix A
ARM940T Signal Descriptions

This appendix lists and describes the ARM940T signals under the following headings:

• AMBA signals

• Coprocessor interface signals

• JTAG and TAP controller signals

• Debug signals

• Miscellaneous signals.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. A-1



ARM940T Signal Descriptions
A.1 AMBA signals

Table A-1 AMBA signals

Name Direction Description

AGNT Input Bus Grant. A signal from the bus arbiter to a bus master which indicates that the 
bus master will be granted the bus when BWAIT is LOW.

AREQ Output Bus Request. A signal from the bus master to the bus arbiter which indicates that 
the ARM940T requires the bus.

BA[31:0] Input/
Output

Address Bus. The processor address bus, which is driven by the active bus master.

BCLK Input Bus Clock. This clock times all bus transfers. Both the LOW phase and HIGH 
phase of BCLK are used to control transfers on the bus.

BD[31:0] Input/
Output

Data Bus. This is a bidirectional system data bus.

BERROR Input/
Output

Error Response. A transfer error is indicated by the selected bus slave using the 
BERROR signal. When BERROR is HIGH, a transfer error has occurred, when 
BERROR is LOW, the transfer is successful. This signal is also used in 
combination with the BLAST signal to indicate a bus retract operation.

BLAST Input/
Output

Last Response. This signal is driven by the selected bus slave to indicate whether 
the current transfer should be the last of a burst sequence. When BLAST is HIGH, 
the decoder must allow sufficient time for address decoding. When BLAST is 
LOW, the next transfer may continue a burst sequence.

BLOK Input/
Output

Locked Transfers. When HIGH, this signal indicates that the current transfer, and 
the next transfer, are to be indivisible, and that no other bus master should be given 
access to the bus. This signal is used by the bus arbiter.

BnRES Input Reset. The bus reset signal is active LOW, and is used to reset the system and the 
bus. This is the only active LOW AMBA signal.

BPROT[1:0] Input/
Output

Protection Control.These signals provide additional information about a bus access 
and are primarily intended for use by a bus decoder when acting as a basic 
protection unit. The signals indicate whether the transfer is an opcode fetch or data 
access, as well as whether the transfer is a privileged mode or user mode.

BSIZE[1:0] Input/
Output

Transfer Size. These signals indicate the size of the transfer:
10encodes word access
01encodes a half word
00encodes a byte access
11reserved
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A.1.1 AMBA Bus Specification

ARM940T has an AMBA-compatible bus interface. Please refer to the AMBA 
Specification for full details.

BTRAN[1:0] Input/
Output

Transfer Type. These signals indicate the type of the next transaction:
00encodes an address-only transfer
01encodes a non-sequential transfer
11encodes a sequential transfer
01reserved

BWAIT Input/
Output

Wait Response. This signal is driven by the selected bus slave to indicate whether 
the current transfer may complete. If BWAIT is HIGH, a further bus cycle is 
required, if BWAIT is LOW, the transfer will complete in the current bus cycle.

BWRITE Input/
Output

Transfer Direction.When HIGH, this signal indicates a write transfer, when LOW, 
a read transfer.

DSEL Input Slave Select. This signal is used during test within the AMBA system and allows 
the ARM940T to be selected and to have test vectors applied to it.

Table A-1 AMBA signals

Name Direction Description
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A.2 Coprocessor interface signals

For further information on the coprocessor interface refer to Chapter 7 ARM940T 
Coprocessor Interface.

Table A-2 Coprocessor interface signals

Name Direction Description

CHSDE[1:0] Input Coprocessor Handshake Decode. The handshake signals from the decode stage of 
the coprocessor pipeline follower.

CHSEX[1:0] Input Coprocessor Handshake Execute. The handshake signals from the execute stage of 
the coprocessor pipeline follower.

CPCLK Output Coprocessor Clock. This clock controls the operation of the coprocessor interface.

CPDOUT[31:0] Output Coprocessor Data Out. The coprocessor data bus for transferring MCR and LDC 
data to the coprocessor.

CPDIN[31:0] Input Coprocessor Data In. The coprocessor data bus for transferring MRC and STC data 
from the coprocessor to the ARM940T.

CDPID[31:0] Output Coprocessor Instruction Data. This is the coprocessor instruction data bus over 
which instructions are transferred to the pipeline follower in the coprocessor.

CPLATECANCEL Output Coprocessor Late Cancel. When a coprocessor instruction is being executed, if this 
signal is HIGH during the first memory cycle, the coprocessor instruction should be 
cancelled without having updated the coprocessor state.

nCPMREQ Output Not Coprocessor Memory Request. When LOW on a rising CPCLK edge and 
nCPWAIT LOW, the instruction on CPID should enter the coprocessor pipeline 
follower’s decode stage. The second instruction previously in the pipeline followe
decode stage should enter its execute stage.

CPPASS Output Coprocessor Pass. This signal indicates that there is a coprocessor instruction 
execute stage of the pipeline, and it should be executed.

CPTBIT Output Coprocessor Thumb Bit. If HIGH, the coprocessor interface is in Thumb state.

nCPTRANS Output Not Coprocessor Translate. When HIGH, the coprocessor interface is in a non-
privileged mode. When LOW , the coprocessor interface is in a privileged mode.
The coprocessor samples this signal on every cycle when determining the 
coprocessor response.

nCPWAIT Output Not Coprocessor Wait. The coprocessor clock CPCLK is qualified by nCPWAIT 
to allow the ARM940T to control the transfer of data on the coprocessor interface
nCPWAIT changes whilst CPCLK is HIGH.
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A.3 JTAG and TAP controller signals

Table A-3 JTAG and TAP controller signals

Name Direction Description

DRIVEOUTBS Output Boundary Scan Cell Enable. This signal is used to control the multiplexers in the scan 
cells of an external boundary scan chain. This signal changes in the UPDATE-IR state 
when scan chain 3 is selected, and either the INTEST, EXTEST, CLAMP or CLAMPZ 
instruction is loaded. When an external boundary scan chain is not connected, this 
output should be left unconnected.

ECAPCLKBS Output Extest Capture Clock for Boundary Scan. This is a TCK2 wide pulse generated when 
the TAP controller state machine is in the CAPTURE-DR state, the current instruction 
is EXTEST, and scan chain 3 is selected. This signal is used to capture the chip level 
inputs during EXTEST. When an external boundary scan chain is not connected, this 
output should be left unconnected.

ICAPCLKBS Output Intest Capture Clock. This is a TCK2 wide pulse generated when the TAP controller 
state machine is in the CAPTURE-DR state, the current instruction is INTEST, and scan 
chain 3 is selected. This signal is used to capture the chip level outputs during INTEST. 
When an external boundary scan chain is not connected, this output should be left 
unconnected.

IR[3:0] Output Tap Controller Instruction Register. These four bits reflect the current instruction loaded 
into the TAP controller instruction register. The bits change on the falling edge of TCK 
when the state machine is in the UPDATE-IR state.

PCLKBS Output Boundary Scan Update Clock. This is a TCK2 wide pulse generated when the TAP 
controller state machine is in the UPDATE-DR state, and scan chain 3 is selected. This 
signal is used by an external boundary scan chain as the update clock. When an external 
boundary scan chain is not connected, this output should be left unconnected.

RSTCLKBS Output Boundary Scan Reset Clock. This signal denotes that either the TAP controller state 
machine is in the RESET state, or that nTRST has been asserted. This may be used to 
reset external boundary scan cells.

SCREG[4:0] Output Scan Chain Register. These four bits reflect the ID number of the scan chain currently 
selected by the TAP controller. These bits change on the falling edge of TCK when the 
TAP state machine is in the UPDATE-DR state.

SDIN Output Boundary Scan Serial Input Data. This signal contains the serial data to be applied to an 
external scan chain, and is valid around the falling edge of TCK.

SDOUTBS Input Boundary Scan Serial Output Data. This is the serial data out of the boundary scan 
chain (or other external scan chain). It should be set up to the rising edge of TCK. 
When an external boundary scan chain is not connected, this input should be tied LOW.
ARMDDI 0092B © Copyright ARM Limited 1998. All rights reserved. A-5



ARM940T Signal Descriptions
SHCLK1BS Output Boundary Scan Shift Clock Phase 1. This control signal is provided to ease the 
connection of an external boundary scan chain. SHCLK1BS is used to clock the master 
half of the external scan cells. When in the SHIFT-DR state of the state machine and 
scan chain 3 is selected, SHCLK1BS follows TCK1. When not in the SHIFT-DR state, 
or when scan chain 3 is not selected, this clock is LOW. When an external boundary 
scan chain is not connected, this output must be left unconnected.

SHCLK2BS Output Boundary Scan Shift Clock Phase 2. This control signal is provided to ease the 
connection of an external boundary scan chain. SHCLK2BS is used to clock the slave 
half of the external scan cells. When in the SHIFT-DR state of the state machine and 
scan chain 3 is selected, SHCLK2BS follows TCK2. When not in the SHIFT-DR state, 
or when scan chain 3 is not selected, this clock is LOW. When an external boundary 
scan chain is not connected, this output must be left unconnected.

TAPSM[3:0] Output TAP Controller State Machine. This bus reflects the current state of the TAP controller 
state machine. These bits change off the rising edge of TCK.

TCK Input Test Clock. The JTAG clock (the test clock).

TCK1 Output TCK, Phase 1. TCK1 is HIGH when TCK is HIGH, although there is a slight phase lag 
due to the internal clock non-overlap.

TCK2 Output TCK, Phase 2. TCK2 is HIGH when TCK is LOW, although there is a slight phase lag 
due to the internal clock non-overlap.

TDI Input Test Data Input. JTAG serial input.

TDO Output Test Data Output. JTAG serial output.

nTDOEN Output Not TDO Enable. When HIGH, this signal denotes that serial data is being driven out on 
the TDO output. nTDOEN would normally be used as an output enable for a TDO pin 
in a packaged part.

TMS Input Test Mode Select. TMS selects to which state the TAP controller state machine should 
change.

nTRST Input Not Test Reset. Active-low reset signal for the boundary scan logic. This pin must be 
pulsed or driven LOW to achieve normal device operation, in addition to the normal 
device reset (BnRES).

Table A-3 JTAG and TAP controller signals (continued)

Name Direction Description
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A.4 Debug signals

Table A-4 Debug signals

Name Direction Description

COMMRX Output Communications Channel Receive. When HIGH, this signal denotes that the comms 
channel receive buffer contains data waiting to be read by the processor core.

COMMTX Output Communications Channel Transmit. When HIGH, this signal denotes that the comms 
channel transmit buffer is empty.

DBGACK Output Debug Acknowledge. When HIGH, this signal indicates the ARM is in debug state.

DBGEN Input Debug Enable. This input signal allows the debug features of the ARM940T to be 
disabled. This signal should be LOW only when debugging will not be required.

DBGRQI Output Internal Debug Request. This signal represents the debug request signal which is 
presented to the processor core. This is a combination of EDBGRQ, as presented to the 
ARM940T, and bit 1 of the debug control register.

DEWPT Input External Watchpoint. This signal allows external data watchpoints to be implemented.

ECLK Output External Clock Output.

EDBGRQ Input External Debug Request. When driven HIGH, this causes the processor to enter debug 
state once execution of the current instruction has completed.

EXTERN0 Input External Input 0. This is an input to watchpoint unit 0 of the EmbeddedICE logic in the 
processor, and allows breakpoints/watchpoints to be dependent on an external condition.

EXTERN1 Input External Input 1. This is an input to watchpoint unit 1 of the EmbeddedICE logic in the 
processor, and allows breakpoints/watchpoints to be dependent on an external condition.

IEBKPT Input External Breakpoint. This signal allows an external instruction breakpoints to be 
implemented.

INSTREXEC Output Instruction Executed. Indicates that in the previous cycle, the instruction in the execute 
stage of the pipeline passed its condition codes, and was executed.

RANGEOUT0 Output EmbeddedICE Rangeout 0. This signal indicates that the EmbeddedICE watchpoint 
unit 0 has matched the conditions currently present on the address, data and control 
buses. This signal is independent of the state of the watchpoint unit enable control bit.

RANGEOUT1 Output EmbeddedICE Rangeout 1. This signal indicates that the EmbeddedICE watchpoint 
unit 1 has matched the conditions currently present on the address, data and control 
buses. This signal is independent of the state of the watchpoint unit enable control bit.

TRACK Input Enable tracking ICE Mode. Driving this signal HIGH places the ARM940T into tracking 
mode for debugging purposes.
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A.5 Miscellaneous signals

Table A-5 Miscellaneous signals

Name Direction Description

BIGENDOUT Output Big-Endian Output. When HIGH, the ARM940T is operating in big-endian 
configuration. 
When LOW, it is in little-endian configuration.

BURST[1:0] Output Burst Access. These signals indicate the length of a burst transfer:
00No sequential information available (default) 
01Reserved
10Current access is part of a 4-word transfer
11Reserved

ENAMADRV Output AMBA Signal Enabled. This signal is driven HIGH when the AMBA signals, 
BA[31:0], BLOK, BPROT, BWRITE and BSIZE are driven out of the ARM940T 
macrocell. When this signal is driven LOW, these outputs are in the high-impedance 
state.

ENBTRAN Output BTRAN Enable. This signal is driven HIGH when the AMBA signal BTRAN[1:0] is 
driven out of the ARM940T macrocell. When this signal is driven LOW, BTRAN[1:0] 
is in the high-impedance state.

FCLK Input Fast Clock. The fast clock input is used when the ARM940T is in the synchronous or 
asynchronous clocking mode.

GATEDBDDRV Output BD Direction. This signal is driven HIGH when the bidirectional AMBA data bus, 
BD[31:0], is driven as an output. When this signal is LOW, BD[31:0] is in its input 
state.

ISYNC Input Synchronous Interrupts. When HIGH, interrupts should be applied synchronously.

nFIQ Input Not Fast Interrupt request. This is the not Fast Interrupt Request (nFIQ) signal.

nIRQ Input Not Interrupt Request. This is the not Interrupt Request (nIRQ) signal.
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