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Preface

This preface introduces the Cortex-A8 Technical Reference Manual (TRM). It contains the 
following sections:
• About this manual on page xxi
• Feedback on page xxv.
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Preface 
About this manual
This book is for the Cortex-A8 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This document is written for hardware and software engineers who want to design or develop 
products based on the Cortex-A8 processor. 

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction 
Read this for an introduction to the processor and descriptions of the major 
functional blocks.

Chapter 2 Programmers Model 
Read this for a description of the processor registers and programming details.

Chapter 3 System Control Coprocessor 
Read this for a description of the system control coprocessor CP15 registers and 
programming information.

Chapter 4 Unaligned Data and Mixed-endian Data Support 
Read this for a description of the processor support for unaligned and 
mixed-endian data accesses. It also describes Advanced Single Instruction 
Multiple Data (SIMD) data access and alignment.

Chapter 5 Program Flow Prediction 
Read this for a description of branch prediction, including guidelines for optimal 
performance, and how to enable program flow prediction.

Chapter 6 Memory Management Unit 
Read this for a description of the Memory Management Unit (MMU) and the 
address translation process, including a list of CP15 registers that control the 
MMU.

Chapter 7 Level 1 Memory System 
Read this for a description of the Level 1 memory system that consists of separate 
instruction and data caches.

Chapter 8 Level 2 Memory System 
Read this for a description of the Level 2 memory system, including the L2 
PreLoad Engine (PLE).

Chapter 9 External Memory Interface 
Read this for a description of the external memory interface including AXI 
control signals in the processor.
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Chapter 10 Clock, Reset, and Power Control 
Read this for a description of the clocking modes and the reset signals. This 
chapter also describes the power control facilities that include the different clock 
gating levels to control power and skew.

Chapter 11 Design for Test 
Read this for a description of the Design For Test (DFT) features of the processor.

Chapter 12 Debug 
Read this for a description of the debug support.

Chapter 13 NEON and VFP Programmers Model 
Read this for an overview of the NEON and Vector Floating-Point (VFP) 
coprocessor and a description of the NEON and VFP registers and programming 
details.

Chapter 14 Embedded Trace Macrocell 
Read this for an overview of the Embedded Trace Macrocell (ETM).

Chapter 15 Cross Trigger Interface 
Read this for a description of the Cross Trigger Interface (CTI).

Chapter 16 Instruction Cycle Timing 
Read this for a description of the instruction cycle timing and for details of the 
interlocks.

Chapter 17 AC Characteristics 
Read this for a description of the timing parameters applicable to the processor.

Appendix A Signal Descriptions 
Read this for a summary of the processor signals.

Appendix B Instruction Mnemonics 
Read this for a list of the Unified Assembler Language (UAL) equivalents of the 
legacy Advanced SIMD data-processing and VFP data-processing assembly 
language mnemonics used in this manual.

Appendix C Revisions 
Read this for a list of the technical changes between released issues of this book.

Glossary Read the Glossary for definitions of terms used in this manual.

Conventions

Conventions that this manual can use are described in:
• Typographical
• Timing diagrams on page xxiii
• Signals on page xxiii

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.
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bold  Highlights interface elements, such as menu names. Denotes signal 
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter 
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax where they 
appear in code or code fragments. They appear in normal font in running 
text. For example:
• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing 
diagrams. Variations, when they occur, have clear labels. You must not assume any timing 
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the 
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and 
they look similar to the bus change shown in Key to timing diagram conventions. If a timing 
diagram shows a single-bit signal in this way then its value does not affect the accompanying 
description.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means HIGH for active-HIGH 
signals and LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
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Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for 
other relevant information:

• Embedded Trace Macrocell Architecture Specification (ARM IHI 0014)

• AMBA® AHB Specification (ARM IHI 0011)

• AMBA AXI Protocol Specification (ARM IHI 0022)

• AMBA 3 APB Protocol Specification (ARM IHI 0024)

• CoreSight™ Architecture Specification (ARM IHI 0029)

• CoreSight Design Kit Technical Reference Manual (ARM DDI 0314)

• CoreSight Design Kit Implementation and Integration Manual (ARM DII 0092)

• CoreSight Technology System Design Guide (ARM DGI 0012)

• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition 
(ARM DDI 0406)

• RealView™ Compilation Tools Developer Guide (ARM DUI 0203)

• Cortex-A8 Release Notes (PRDC 007834).

Other publications

This section list relevant documents published by third parties:

• ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

• IEEE Std. 1500-2005, IEEE Standard Testability Method for Embedded Core-based 
Integrated Circuits.
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Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on the product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and 
diagnostic procedures if appropriate.

Feedback on this manual

If you have any comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DDI 0344K
• the page number(s) to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
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Chapter 1 
Introduction

This chapter introduces the processor and its features. It contains the following sections:
• About the processor on page 1-2
• ARMv7-A architecture on page 1-3
• Components of the processor on page 1-4
• External interfaces of the processor on page 1-7
• Debug on page 1-8
• Power management on page 1-9
• Configurable options on page 1-10
• Product documentation and architecture on page 1-11
• Product revisions on page 1-13.
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1.1 About the processor
The Cortex-A8 processor is a high-performance, low-power, cached application processor that 
provides full virtual memory capabilities. The features of the processor include:

• full implementation of the ARM architecture v7-A instruction set

• configurable 64-bit or 128-bit high-speed Advanced Microprocessor Bus Architecture 
(AMBA) with Advanced Extensible Interface (AXI) for main memory interface 
supporting multiple outstanding transactions

• a pipeline for executing ARM integer instructions

• a NEON pipeline for executing Advanced SIMD and VFP instruction sets

• dynamic branch prediction with branch target address cache, global history buffer, and 
8-entry return stack

• Memory Management Unit (MMU) and separate instruction and data Translation 
Look-aside Buffers (TLBs) of 32 entries each

• Level 1 instruction and data caches of 16KB or 32KB configurable size

• Level 2 cache of 0KB, 128KB through 1MB configurable size

• Level 2 cache with parity and Error Correction Code (ECC) configuration option

• Embedded Trace Macrocell (ETM) support for non-invasive debug

• static and dynamic power management including Intelligent Energy Management (IEM)

• ARMv7 debug with watchpoint and breakpoint registers and a 32-bit Advanced 
Peripheral Bus (APB) slave interface to a CoreSight debug system.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 1-2
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1.2 ARMv7-A architecture
The processor implements ARMv7-A that includes the following features:

• ARM Thumb®-2 instruction set for overall code density comparable with Thumb and 
performance comparable with ARM instructions.

• Thumb Execution Environment (ThumbEE) to provide execution environment 
acceleration.

• Security Extensions architecture for enhanced security features that facilitate the 
development of secure applications.

• Advanced SIMD architecture extension to accelerate the performance of multimedia 
applications such as 3-D graphics and image processing.

Note
 — The Advanced SIMD architecture extension, its associated implementations, and 

supporting software, are commonly referred to as NEON technology.
— This document uses the older assembler language instruction mnemonics. See 

Appendix B Instruction Mnemonics for information about the Unified Assembler 
Language (UAL) equivalents of the Advanced SIMD instruction mnemonics. See 
the ARM Architecture Reference Manual for more information on the UAL syntax.

• Vector Floating Point v3 (VFPv3) architecture for floating-point computation that is fully 
compliant with the IEEE 754 standard.

Note
 This document uses the older assembler language instruction mnemonics. See 

Appendix B Instruction Mnemonics for information about the Unified Assembler 
Language (UAL) equivalents of the VFP data-processing instruction mnemonics. See the 
ARM Architecture Reference Manual for more information on the UAL syntax.

See the ARM Architecture Reference Manual for more information on the ARMv7-A 
architecture.
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1.3 Components of the processor
The main components of the processor are:
• Instruction fetch
• Instruction decode on page 1-5
• Instruction execute on page 1-5
• Load/store on page 1-5
• L2 cache on page 1-5
• NEON on page 1-6
• ETM on page 1-6.

Figure 1-1 shows the structure of the Cortex-A8 processor.

Figure 1-1 Cortex-A8 block diagram

1.3.1 Instruction fetch

The instruction fetch unit predicts the instruction stream, fetches instructions from the L1 
instruction cache, and places the fetched instructions into a buffer for consumption by the 
decode pipeline. The instruction fetch unit also includes the L1 instruction cache.
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1.3.2 Instruction decode

The instruction decode unit decodes and sequences all ARM and Thumb-2 instructions 
including debug control coprocessor, CP14, instructions and system control coprocessor, CP15, 
instructions. See Chapter 12 Debug for information on the CP14 coprocessor and Chapter 3 
System Control Coprocessor for information on the CP15 coprocessor.

The instruction decode unit handles the sequencing of:
• exceptions
• debug events
• reset initialization
• Memory Built-In Self Test (MBIST)
• wait-for-interrupt
• other unusual events.

See Chapter 16 Instruction Cycle Timing for more information on how the processor sequences 
instructions.

1.3.3 Instruction execute

The instruction execute unit consists of two symmetric Arithmetic Logical Unit (ALU) 
pipelines, an address generator for load and store instructions, and the multiply pipeline. The 
execute pipelines also perform register write back.

The instruction execute unit:

• executes all integer ALU and multiply operations including flag generation

• generates the virtual addresses for loads and stores and the base write-back value, when 
required

• supplies formatted data for stores and also forwards data and flags

• processes branches and other changes of instruction stream and evaluates instruction 
condition codes.

1.3.4 Load/store

The load/store unit encompasses the entire L1 data side memory system and the integer 
load/store pipeline. This includes:
• the L1 data cache
• the data side TLB
• the integer store buffer
• the NEON store buffer
• the integer load data alignment and formatting
• the integer store data alignment and formatting.

The pipeline accepts one load or store per cycle that can be present in either pipeline 0 or 
pipeline 1. This gives the processor flexibility when scheduling load and store instructions. See 
Chapter 7 Level 1 Memory System for more information.

1.3.5 L2 cache

The L2 cache unit includes the L2 cache and the Buffer Interface Unit (BIU). It services L1 
cache misses from both the instruction fetch unit and the load/store unit. See Chapter 8 Level 2 
Memory System and Chapter 9 External Memory Interface for more information.
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1.3.6 NEON

The NEON unit includes the full 10-stage NEON pipeline that decodes and executes the 
Advanced SIMD media instruction set. The NEON unit includes:
• the NEON instruction queue
• the NEON load data queue
• two pipelines of NEON decode logic
• three execution pipelines for Advanced SIMD integer instructions
• two execution pipelines for Advanced SIMD floating-point instructions
• one execution pipeline for Advanced SIMD and VFP load/store instructions
• the VFP engine for full execution of the VFPv3 data-processing instruction set.

See Chapter 13 NEON and VFP Programmers Model for programming information on the 
NEON and VFP coprocessor.

1.3.7 ETM

The ETM unit is a non-intrusive trace macrocell that filters and compresses an instruction and 
data trace for use in system debugging and system profiling.

The ETM unit has an external interface outside of the processor called the Advanced Trace Bus 
(ATB) interface. See Chapter 14 Embedded Trace Macrocell for more information.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 1-6
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1.4 External interfaces of the processor
The processor has the following external interfaces:
• AMBA AXI interface
• AMBA APB interface
• AMBA ATB interface
• DFT interface.

1.4.1 AMBA AXI interface

The AXI bus interface is the main interface to the system bus. It performs L2 cache fills and 
noncacheable accesses for both instructions and data. The AXI interface supports 64-bit or 
128-bit wide input and output data buses. It also supports multiple outstanding requests on the 
AXI bus. The AXI signals are synchronous to the CLK input. A wide range of bus clock to core 
clock ratios is possible through the use of the AXI clock enable signal ACLKEN. See the AMBA 
AXI Protocol Specification for more information.

1.4.2 AMBA APB interface

The Cortex-A8 processor implements an APB slave interface that enables access to the ETM, 
CTI, and the debug registers. The APB interface is compatible with the CoreSight architecture 
that is the ARM architecture for multi-processor trace and debug. See the CoreSight 
Architecture Specification for more information.

1.4.3 AMBA ATB interface

The Cortex-A8 processor implements an ATB interface that outputs trace information used for 
debugging. The ATB interface is compatible with the CoreSight architecture. See the CoreSight 
Architecture Specification for more information.

1.4.4 DFT interface

The Design For Test (DFT) interface provides support for manufacturing testing of the core 
using Memory Built-In Self Test (MBIST) and Automatic Test Pattern Generation (ATPG). See 
Chapter 11 Design for Test for more information.
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1.5 Debug
The processor implements the ARMv7 Debug architecture that includes support for Security 
Extensions and CoreSight. To get full access to the processor debug capability, you can access 
the debug register map through the Advanced Peripheral Bus (APB) slave interface. See 
Chapter 12 Debug for more information on the Cortex-A8 implementation of debug. See the 
ARM Architecture Reference Manual for more information on the ARMv7 Debug architecture.
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1.6 Power management
The processor provides both dynamic and static power control mechanisms. See Dynamic 
power management on page 10-8 for more information. Static power control is 
implementation-specific. See Static or leakage power management on page 10-11 for more 
information.
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1.7 Configurable options
Table 1-1 lists the configurable options for the Cortex-A8 processor.

Table 1-1 Cortex-A8 configurable options

Feature Options

AXI bus width 64-bit or 128-bit bus width

L1 RAM L1 cache size:
• 16KB
• 32KB.

L2 RAM L2 cache size:
• 0KB
• 128KB
• 256KB
• 512KB
• 1MB.

L2 parity/ECC Yes or No

ETM Yes or No

NEON Yes or No

Note
 When you configure the processor without the NEON options, all 
attempted Advanced SIMD and VFP instructions result in an 
Undefined Instruction exception.

IEM Support:
• all power domains and retention
• no power domain or retention
• level-shifting only
• debug PCLK, ETM CLK, and ETM ATCLK power domain
• NEON power domain
• L1 data RAMs and L2 RAMs retention
• L2 RAMs retention.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 1-10
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1.8 Product documentation and architecture
This section describes the content of the product documents and the relevant architectural 
standards and protocols.

Note
 See Additional reading on page xxiv for more information about the documentation described 
in this section.

1.8.1 Documentation

The following books describe the processor:

Technical Reference Manual 
The Technical Reference Manual (TRM) describes the processor functionality 
and the effects of functional options on the behavior of the processor. It is required 
at all stages of the design flow. Some behavior described in the TRM might not 
be relevant, because of the way the processor has been implemented and 
integrated. If you are programming the processor, contact the implementer to 
determine the build configuration of the implementation, and the integrator to 
determine the pin configuration of the SoC that you are using.

Configuration and Sign-Off Guide 
The Configuration and Sign-Off Guide (CSG) describes:
• the available build configuration options and related issues in selecting 

them
• how to configure the Register Transfer Level (RTL) with the build 

configuration options
• the processes to sign off the configured RTL and final macrocell.
The ARM product deliverables include reference scripts and information about 
using them to implement your design. Reference methodology documentation 
from your EDA tools vendor complements the CSG. The CSG is a confidential 
book that is only available to licensees.

Methodology Guide 
The Methodology Guide (MG) describes the major requirements and 
considerations for each step in the implementation flow. This guide does not 
provide complete details about the tools and commands used or procedural steps 
for specific implementation flows. The details of the flow depend on the 
particular Electronic Design Automation (EDA) tools, process technology, and 
standard cell libraries that the implementation team uses. The MG is a 
confidential book that is only available to licensees.

1.8.2 Architectural information

The Cortex-A8 processor conforms to, or implements, the following specifications:

ARM Architecture 
This describes:
• The behavior and encoding of the instructions that the processor can 

execute.
• The modes and states that the processor can be in.
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• The various data and control registers that the processor must contain.
• The properties of memory accesses.
• The debug architecture you can use to debug the processor. The TRM gives 

more information about the implemented debug features.
The Cortex-A8 processor implements the ARMv7-A architecture profile.

Advanced Microcontroller Bus Architecture protocol 
Advanced Microcontroller Bus Architecture (AMBA) is an open standard, 
on-chip bus specification that defines the interconnection and management of 
functional blocks that make up a System-on-Chip (SoC). It facilitates 
development of embedded processors with multiple peripherals.

IEEE 754 IEEE Standard for Binary Floating Point Arithmetic.

An architecture specification typically defines a number of versions, and includes features that 
are either optional or partially specified. The TRM describes which architectures are used, 
including which version is implemented, and the architectural choices made for the 
implementation. The TRM does not provide detailed information about the architecture, but 
some architectural information is included to give an overview of the implementation or, in the 
case of control registers, to make the manual easier to use. See the appropriate specification for 
more information about the implemented architectural features.
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1.9 Product revisions
This section summarizes the differences in functionality between the releases of this processor.

Note
 The first released version of the Cortex-A8 processor was r1p0.

1.9.1 r1p0-r1p1

The following changes have been made in this release:

• ID Register values changed to reflect product revision status:
Main ID Register 0x411FC081

FPSID Register 0x410330C1

• The L2EN bit of the Auxiliary Control Register is banked between Nonsecure and Secure 
states.

• SAFESHIFTRAM top-level pin added for ATPG test.

• ETM and NEON configurability support added.

1.9.2 r1p1-r1p2

The ID Register values changed to reflect product revision status:

Main ID Register 0x411FC082

FPSID Register 0x410330C1

1.9.3 r1p2-r1p3

The ID Register values changed to reflect product revision status:

Main ID Register 0x411FC083

FPSID Register 0x410330C1

1.9.4 r1p3-r1p7

The ID Register values changed to reflect product revision status:

Main ID Register 0x411FC087

FPSID Register 0x410330C1

1.9.5 r1p1-r2p0

The following changes have been made in this release:

• ID Register values changed to reflect product revision status:
Main ID Register 0x412FC080

FPSID Register 0x410330C2

• CLKSTOPREQ and CLKSTOPACK functionality added to stop and restart the 
processor clocks without relying on software to execute WFI instruction.
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• The SAFESHIFTRAM signal is replaced with the SAFESHIFTRAMIF, 
SAFESHIFTRAMLS, and SAFESHIFTRAML2 signals for ATPG test.

• Intelligent Energy Management (IEM) multiple power domain support added.

• 1-way and 4-way L2 tag bank removed.

• 64KB and 2MB L2 cache sizes removed.

• ETMPWRDWNREQ and ETMPWRDWNACK are no longer required because debug 
and the ETM use the same power domain. ETMPWRDWNREQ must be tied to 0. See 
Static or leakage power management on page 10-11 for information on the supported 
Cortex-A8 power domain configurations.

1.9.6 r2p0-r2p1

The ID Register values changed to reflect product revision status:

Main ID Register 0x412FC081

FPSID Register 0x410330C2

1.9.7 r2p1-r2p2

The ID Register values changed to reflect product revision status:

Main ID Register 0x412FC082

FPSID Register 0x410330C2

1.9.8 r2p1-r2p5

The ID Register values changed to reflect product revision status:

Main ID Register 0x412FC085

FPSID Register 0x410330C2

1.9.9 r2p2-r2p3

The ID Register values changed to reflect product revision status:

Main ID Register 0x412FC083

FPSID Register 0x410330C2

1.9.10 r2p2-r2p6

The ID Register values changed to reflect product revision status:

Main ID Register 0x412FC086

FPSID Register 0x410330C2

1.9.11 r2p2-r3p0

The following changes have been made in this release:

• ID Register values changed to reflect product revision status:
Main ID Register 0x413FC080
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Introduction 
FPSID Register 0x410330C3

• Improved performance for Cache Maintenance operations.

• Addition of Auxiliary Control Register bit[20] accessible in Secure state only for 
controlling the performance of Cache Maintenance operations.

• Changed the PLE to perform clean-and-invalidate when DT=1 from clean.

1.9.12 r3p0-r3p1

The following changes have been made in this release:

• ID Register values changed to reflect product revision status:
Main ID Register 0x413FC081. See c0, Main ID Register on page 3-19.
FPSID Register 0x410330C3. See Floating-Point System ID Register, FPSID on 

page 13-11.

• Changed the name for trigger input 0 from DBGTRIGGER to Debug entry. This trigger 
is a pulse asserted on debug state entry. See Table 15-1 on page 15-5 and Table 15-26 on 
page 15-22.

1.9.13 r3p2

ID Register values changed to reflect product revision status:

Main ID Register 0x413FC082. See c0, Main ID Register on page 3-19.
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Chapter 2 
Programmers Model

This chapter describes the processor registers and provides information for programming the 
microprocessor. It contains the following sections:
• About the programmers model on page 2-2
• Thumb-2 instruction set on page 2-3
• ThumbEE instruction set on page 2-4
• Jazelle Extension on page 2-7
• Security Extensions architecture on page 2-9
• Advanced SIMD architecture on page 2-11
• VFPv3 architecture on page 2-12
• Processor operating states on page 2-13
• Data types on page 2-14
• Memory formats on page 2-15
• Addresses in a processor system on page 2-16
• Operating modes on page 2-17
• Registers on page 2-18
• The program status registers on page 2-21
• Exceptions on page 2-27
• Software consideration for Security Extensions on page 2-34
• Hardware consideration for Security Extensions on page 2-35
• Control coprocessor on page 2-38.
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2.1 About the programmers model
This section describes the processor at the level required to write functional code. It does not 
include internal microarchitecture details.

The processor implements the ARMv7-A architecture. This includes:
• the 32-bit ARM instruction set
• the 16-bit and 32-bit Thumb-2 instruction set
• the ThumbEE instruction set
• the Security Extensions architecture
• the Advanced SIMD architecture.

See the ARM Architecture Reference Manual for more information on the ARMv7-A 
architecture.
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2.2 Thumb-2 instruction set
Thumb-2 is an enhancement to the 16-bit Thumb instruction set. It adds 32-bit instructions that 
can be freely intermixed with 16-bit instructions in a program. The additional 32-bit instructions 
enable Thumb-2 to cover the functionality of the ARM instruction set. The 32-bit instructions 
enable Thumb-2 to combine the code density of earlier versions of Thumb, with performance 
of the ARM instruction. 

The most important difference between the Thumb-2 instruction set and the ARM instruction 
set is that most 32-bit Thumb instructions are unconditional, whereas most ARM instructions 
can be conditional. Thumb-2 introduces a conditional execution instruction, IT, that is a logical 
if-then-else function that you can apply to following instructions to make them conditional.

Thumb-2 instructions are accessible as were Thumb instructions when the processor is in 
Thumb state, that is, the T bit in the CPSR is 1 and the J bit in the CPSR is 0.

In addition to the 32-bit Thumb instructions, there are several 16-bit Thumb instructions and a 
few 32-bit ARM instructions, introduced as part of the Thumb-2 architecture.

The main enhancements are:

• 32-bit instructions added to the Thumb instruction set to:
— provide support for exception handling in Thumb state
— provide access to coprocessors
— include Digital Signal Processing (DSP) and media instructions
— improve performance in cases where a single 16-bit instruction restricts functions 

available to the compiler.

• addition of a 16-bit IT instruction that enables one to four following Thumb instructions, 
the IT block, to be conditional

• addition of a 16-bit Compare with Zero and Branch (CZB) instruction to improve code 
density by replacing two-instruction sequence with a single instruction.

The 32-bit ARM Thumb-2 instructions are added in the space occupied by the Thumb BL and 
BLX instructions. Figure 2-1 shows the 32-bit ARM Thumb-2 instruction format.

Figure 2-1 32-bit ARM Thumb-2 instruction format

The first halfword (hw1) determines the instruction length and functionality. If the processor 
decodes the instruction as 32-bit long, then the processor fetches the second halfword (hw2) of 
the instruction from the instruction address plus two.

The availability of both 16-bit Thumb and 32-bit instructions in the Thumb-2 instruction sets, 
gives you the flexibility to emphasize performance or code size on a subroutine level, according 
to the requirements of their applications. For example, you can code critical loops for 
applications such as fast interrupts and DSP algorithms using the 32-bit media instructions in 
Thumb-2 and use the smaller 16-bit classic Thumb instructions for the rest of the application. 
This is for code density and does not require any mode change.

See the ARM Architecture Reference Manual for information on the ARM, Thumb, and 
Thumb-2 instruction set.

hw2

31 16 0

hw1
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2.3 ThumbEE instruction set
ThumbEE is a variant of the Thumb-2 instruction set. It is designed as a target for dynamically 
generated code. This is code compiled on the device either shortly before or during execution 
from a portable bytecode or other intermediate or native representation. It is particularly suited 
to languages that employ managed pointers or array types. ThumbEE provides increased code 
density for the compiled binary compared with the compiled code for the ARM or Thumb-2 
instruction set. ThumbEE introduces a new processor state, the ThumbEE state, indicated by 
both the T bit and the J bit in the CPSR Register being set to 1.

See the ARM Architecture Reference Manual for information on the ARM, Thumb, and 
ThumbEE instruction sets.

2.3.1 Instructions

In ThumbEE state, the processor uses almost the same instruction set as Thumb-2 although 
some instructions behave differently, and a few are removed, or added.

The key differences are:
• additional state changing instructions in both Thumb state and ThumbEE state
• new instructions to branch to handlers
• null pointer checking on loads and stores
• an additional instruction in ThumbEE state to check array bounds
• some other modifications to the load, store, and branch instructions.

ThumbEE instructions are accessible when the processor is in ThumbEE state.

2.3.2 Configuration

Two registers provide ThumbEE configuration:

• ThumbEE Configuration Register. This contains a single bit, the ThumbEE configuration 
control bit, XED.

• ThumbEE HandlerBase Register. This contains the base address for ThumbEE handlers.
A handler is a short, commonly executed, sequence of instructions. It is typically, but not 
always, associated directly with one or more bytecodes or other intermediate language 
elements.

ThumbEE Configuration Register

The purpose of the ThumbEE Configuration Register is to control access to the ThumbEE 
HandlerBase Register.

The ThumbEE Configuration Register is:
• in CP14 register c0
• a 32-bit register, with access rights that depend on the current privilege:

— the result of an unprivileged write to the register is Undefined
— unprivileged reads, and privileged reads and writes, are permitted.

Figure 2-2 on page 2-5 shows the bit arrangement of the ThumbEE Configuration Register.
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Figure 2-2 ThumbEE Configuration Register format

Table 2-1 shows how the bit values correspond with the ThumbEE Configuration Register.

Any change to this register is only guaranteed to be visible to subsequent instructions after the 
execution of an ISB instruction. However, a read of this register always returns the last value 
written to the register.

To access the ThumbEE Configuration Register, read or write CP14 with:

MRC p14, 6, <Rd>, c0, c0, 0 ; Read ThumbEE Configuration Register
MCR p14, 6, <Rd>, c0, c0, 0 ; Write ThumbEE Configuration Register

ThumbEE HandlerBase Register

The purpose of the ThumbEE HandlerBase Register is to hold the base address for ThumbEE 
handlers.

The ThumbEE HandlerBase Register is:

• in CP14 register c0

• a 32-bit read/write register, with unprivileged access that depends on the value of the 
ThumbEE Configuration Register. See Access to ThumbEE registers on page 2-6.

Figure 2-3 shows the bit arrangement of the ThumbEE HandlerBase Register.

Figure 2-3 ThumbEE HandlerBase Register format

Reserved

31 1 0

XED

Table 2-1 ThumbEE Configuration Register bit functions

Bits Field Function

[31:1] - Reserved. Unpredictable (UNP), Should-Be-Zero (SBZ).

[0] XED eXecution Environment Disable bit. Controls unprivileged access to the ThumbEE HandlerBase 
Register:
0 = Unprivileged access permitted. See Access to ThumbEE registers on page 2-6 for details.
1 = Unprivileged access disabled.
The reset value of this bit is 0.

HandlerBase

31 1 0

Reserved

2
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Table 2-2 shows how the bit values correspond with the ThumbEE HandlerBase Register.

Any change to this register is only guaranteed to be visible to subsequent instructions after the 
execution of an ISB instruction. However, a read of this register always returns the last value 
written to the register.

To access the ThumbEE HandlerBase Register, read or write CP14 with:

MRC p14, 6, <Rd>, c1, c0, 0 ; Read ThumbEE HandlerBase Register
MCR p14, 6, <Rd>, c1, c0, 0 ; Write ThumbEE HandlerBase Register

Access to ThumbEE registers

Table 2-3 shows the access permissions for the ThumbEE registers, and how unprivileged 
access to the ThumbEE HandlerBase Register depends on the value of the ThumbEE 
Configuration Register.

Table 2-2 ThumbEE HandlerBase Register bit functions

Bits Field Function

[31:2] HandlerBase The address of the ThumbEE Handler_00 implementation. This is the address of the first of the 
ThumbEE handlers. The reset value of this field is Unpredictable.

[1:0] - Reserved. UNP, SBZ.

Table 2-3 Access to ThumbEE registers

Register
Unprivileged access

Privileged access
XED == 0a XED == 1a

ThumbEE Configuration Read access permitted, 
write access Undefined

Read access permitted, 
write access Undefined

Read and write 
access permitted

ThumbEE HandlerBase Read and write access 
permitted

Read and write access 
Undefined

Read and write 
access permitted

a. Value of XED bit in the ThumbEE Configuration Register, see ThumbEE Configuration Register on page 2-4.
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2.4 Jazelle Extension
The Cortex-A8 processor provides a trivial implementation of the Jazelle Extension. This means 
that the processor does not accelerate the execution of any bytecodes, and all bytecodes are 
executed by software routines. 

In the implementation of the Jazelle Extension:
• Jazelle state is not supported
• The BXJ instruction behaves as a BX instruction.

See the ARM Architecture Reference Manual for information on Jazelle Extension.

The processor provides three registers for the implementation of the Jazelle Extension:
• the Jazelle Identity Register
• the Jazelle Main Configuration Register
• the Jazelle OS Control Register on page 2-8.

2.4.1 Jazelle Identity Register

The Jazelle Identity Register enables software to determine the implementation of the Jazelle 
Extension provided by the processor. 

The Jazelle Identity Register is:
• in CP14 register c0
• a 32-bit read-only register, accessible in all processor modes and security states.

Figure 2-4 shows the bit arrangement of the Jazelle Identity Register.

Figure 2-4 Jazelle Identity Register format

Table 2-4 shows how the bit values correspond with the Jazelle Identity Register.

To access this register, read CP14 with:

MRC p14, 7, <Rd>, c0, c0, 0 ; Read Jazelle Identity Register

2.4.2 Jazelle Main Configuration Register

The Jazelle Main Configuration Register controls features of the Jazelle Extension. 

The Jazelle Main Configuration Register is:
• in CP14 register c0
• a 32-bit register, with access rights that depend on the current privilege:

— Write-only (WO) in User mode
— Read/Write (R/W) in Privileged modes.

Figure 2-5 on page 2-8 shows the bit arrangement of the Jazelle Main Configuration Register.

Reserved

31 0

Table 2-4 Jazelle Identity Register bit functions

Bits Field Function

[31:0] - Read-As-Zero (RAZ)
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Figure 2-5 Jazelle Main Configuration Register format

Table 2-5 shows how the bit values correspond with the Jazelle Main Configuration Register.

To access this register, read or write CP14 with:

MRC p14, 7, <Rd>, c2, c0, 0 ; Read Main Configuration Register
MCR p14, 7, <Rd>, c2, c0, 0 ; Write Main Configuration Register

2.4.3 Jazelle OS Control Register

The Jazelle OS Control Register enables operating systems to control access to Jazelle 
Extension hardware. 

The Jazelle OS Control Register is:
• in CP14 register c0
• a 32-bit register, with access rights that depend on the current privilege:

— the result of an access in User mode is an Undefined Instruction exception
— the register is Read/Write (R/W) in Privileged modes.

Figure 2-6 shows the bit arrangement of the Jazelle OS Control Register.

Figure 2-6 Jazelle OS Control Register format

Table 2-6 shows how the bit values correspond with the Jazelle OS Control Register.

To access this register, read or write CP14 with:

MRC p14, 7, <Rd>, c1, c0, 0 ; Read OS Control Register
MCR p14, 7. <Rd>, c1, c0, 0 ; Write OS Control Register

Reserved

31 0

Table 2-5 Jazelle Main Configuration Register bit functions

Bits Field Function

[31:0] - RAZ

Reserved

31 0

Table 2-6 Jazelle OS Control Register bit functions

Bits Field Function

[31:0] - RAZ
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2.5 Security Extensions architecture
The processor implements the TrustZone Security Extensions architecture to facilitate the 
development of secure applications.

Security Extensions are based on these fundamental principles:

• The extensions define a class of core operation that you can switch between Secure and 
Nonsecure state. Most code runs in Nonsecure state. Only trusted code runs in Secure 
state.

• The extensions define some memory as secure memory. When the core is in Secure state, 
it can access secure memory.

• Entry into Secure state is strictly controlled.

• Exit from Secure state can only occur at programmed points.

• Debug is strictly controlled.

• The processor enters Secure state on reset.

Exceptions are generally handled in a similar way to other ARM architectures. Support is 
available for some exceptions handled only by code running in Secure state.

See the ARM Architecture Reference Manual for information on the Security Extensions.

2.5.1 Security Extensions model

The basis of the Security Extensions model is that the computing environment splits into two 
isolated states, the Secure state and the Nonsecure state, with no leakage of secure data to the 
Nonsecure state. Software Secure Monitor code, running in the Monitor mode, links the two 
states and acts as a gatekeeper to manage program flow. The system can have both secure and 
nonsecure peripherals that is suitable to secure and nonsecure device drivers control. Figure 2-7 
shows the relationship between the Secure and Nonsecure states. The Operating System (OS) 
splits into the secure OS, that includes the secure kernel, and the nonsecure OS, that includes 
the nonsecure kernel. For details on modes of operation, see Operating modes on page 2-17.

Figure 2-7 Secure and Nonsecure states

In normal nonsecure operation, the OS runs tasks in the usual way. When a User process 
requires secure execution it makes a request to the secure kernel, that operates in privileged 
mode. This then calls the Secure Monitor to transfer execution to the Secure state.
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This approach to secure systems means that the platform OS that works in the Nonsecure state, 
has only a few fixed entry points into the Secure state through the Secure Monitor. The trusted 
code base for the Secure state, that includes the secure kernel and secure device drivers, is small 
and therefore much easier to maintain and verify.

See Software consideration for Security Extensions on page 2-34 and Hardware consideration 
for Security Extensions on page 2-35 for more details.
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2.6 Advanced SIMD architecture
Advanced SIMD architecture is a media and signal processing architecture that adds 
instructions targeted primarily at audio, video, 3-D graphics, image, and speech processing. 
Advanced SIMD instructions are available in both ARM and Thumb states.

The NEON coprocessor provides a register bank that is distinct from the ARM integer core 
register bank. Both the Advanced SIMD instructions and the VFP instructions use this register 
bank.

The Advanced SIMD instructions perform packed SIMD operations. These operations process 
registers containing vectors of elements of the same type packed together, enabling the same 
operation to be performed on multiple items in parallel. Instructions operate on vectors held in 
64-bit or 128-bit registers.

The elements can be:
• 32-bit single-precision floating-point numbers
• 8-bit, 16-bit, 32-bit, or 64-bit signed or unsigned integers
• 8-bit, 16-bit, 32-bit, or 64-bit bitfields
• 8-bit or 16-bit polynomials with 1-bit coefficients.

See the ARM Architecture Reference Manual for information on the Advanced SIMD 
architecture.
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2.7 VFPv3 architecture
The VFP architecture v3 is an enhancement to the VFP architecture v2. The main changes are:

• the doubling of the number of double-precision registers to 32

• the introduction of an instruction that places a floating-point constant in a register, and 
instructions that perform conversions between fixed-point and floating-point numbers

• the introduction of VFP architecture v3 variant, that does not trap floating-point 
exceptions.

VFPv3 is backward compatible with VFPv2 except for the capability of trapping floating-point 
exceptions.

See the ARM Architecture Reference Manual for information on the VFPv3 architecture.
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2.8 Processor operating states
The processor has the following operating states controlled by the T bit and J bit in the CPSR.

ARM state 32-bit, word-aligned ARM instructions are executed in this state.
T bit is 0 and J bit is 0.

Thumb state 16-bit and 32-bit, halfword-aligned Thumb-2 instructions.
T bit is 1 and J bit is 0.

ThumbEE state 16-bit and 32-bit, halfword-aligned variant of the Thumb-2 instruction set 
designed as a target for dynamically generated code. This is code compiled 
on the device either shortly before or during execution from a portable 
bytecode or other intermediate or native representation.
T bit is 1 and J bit is 1.

Note
 • The processor does not support Jazelle state. This means there is no processor state where 

the T bit is 0 and J bit is 1.

• Transition between ARM and Thumb states does not affect the processor mode or the 
register contents. See the ARM Architecture Reference Manual for information on 
entering and exiting ThumbEE state.

2.8.1 Switching state

You can switch the operating state of the processor between:
• ARM state and Thumb state using the BX and BLX instructions, and loads to the PC. 

Switching state is described in the ARM Architecture Reference Manual.
• Thumb state and ThumbEE state using the ENTERX and LEAVEX instructions. 

Exceptions cause the processor to enter ARM or Thumb state according to the value held in the 
TE bit within the system control coprocessor. Normally, on exiting an exception handler, the 
processor restores the original contents of the T and J bits.

2.8.2  Interworking ARM and Thumb state

The processor enables you to mix ARM Thumb-2 code. See Chapter 4 Interworking ARM and 
Thumb in the RealView Compilation Tools Developer Guide for details.
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2.9 Data types
The processor supports the following data types:
• doubleword, 64-bit
• word, 32-bit
• halfword, 16-bit
• byte, 8-bit.

Note
 • when any of these types are described as unsigned, the N-bit data value represents a 

non-negative integer in the range 0 to +2N-1, using normal binary format

• when any of these types are described as signed, the N-bit data value represents an integer 
in the range -2N-1 to +2N-1-1, using two’s complement format.

For best performance you must align these as follows:
• word quantities must align with 4-byte boundaries
• halfword quantities must align with 2-byte boundaries
• byte quantities can be placed on any byte boundary.

The processor provides mixed-endian and unaligned access support. See Chapter 4 Unaligned 
Data and Mixed-endian Data Support for details.

Note
 You cannot use LDRD, LDM, LDC, STRD, STM, or STC instructions to access 32-bit quantities if they are 
unaligned.
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2.10 Memory formats
The processor views memory as a linear collection of bytes numbered in ascending order from 
zero. For example, bytes 0-3 in memory hold the first stored word, and bytes 4-7 hold the second 
stored word.

The processor can treat words in memory as either:
• Byte-invariant big-endian format
• Little-endian format.

Additionally, the processor supports mixed-endian and unaligned data accesses. See Chapter 4 
Unaligned Data and Mixed-endian Data Support for details.

Note
 Instructions are always treated as little-endian.

2.10.1 Byte-invariant big-endian format

In byte-invariant big-endian format, the processor stores the most significant byte of a word at 
the lowest-numbered byte, and the least significant byte at the highest-numbered byte. 
Therefore, byte 0 of the memory system connects to data lines 31-24 as Figure 2-8 shows.

Figure 2-8 Big-endian addresses of bytes within words

2.10.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte of the 
word and the highest-numbered byte is the most significant. Therefore, byte 0 of the memory 
system connects to data lines 7-0. This is shown in Figure 2-9.

Figure 2-9 Little-endian addresses of bytes within words

31 24 23 16 15 8 7 Word address0

4

0

8Higher address

Lower address

• Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

Bit

111098

7654

3210

31 24 23 16 15 8 7 Word address0

4

0

8Higher address

Lower address

• Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

Bit

891011

4567

0123
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2.11 Addresses in a processor system
Three distinct types of address exist in the processor system:
• Virtual Address (VA)
• Modified Virtual Address (MVA)
• Physical Address (PA).

When the core is in the Secure or Nonsecure state, the VA is Secure or Nonsecure respectively. 
To get the VA to PA translation, the core uses secure translation tables while it is in Secure state. 
Otherwise it uses the nonsecure translation tables.

Table 2-7 shows the address types in the processor system.

This is an example of the address manipulation that occurs when the processor requests an 
instruction.

1. The processor issues the VA of the instruction as the Secure or Nonsecure VA according 
to the state of the processor.

2. The lower bits of the VA indexes the instruction cache. The VA is translated using the 
Secure or Nonsecure Process ID, CP15 c13, to the MVA, and then to PA in the Translation 
Lookaside Buffer (TLB). The TLB performs the translation in parallel with the cache 
lookup. The translation uses secure descriptors if the core is in the Secure state. Otherwise 
it uses the nonsecure ones.

3. If the TLB performs a successful protection check on the MVA, and the PA tag is in the 
instruction cache, the instruction data is returned to the processor. For information on 
unsuccessful protection checks, see Aborts on page 2-29.

4. The PA is passed to the L2 cache. If the L2 cache contains the physical address of the 
requested instruction, the L2 cache supplies the instruction data.

5. The PA is passed to the AXI bus interface to perform an external access, in the event of a 
cache miss. The external access is always Nonsecure when the core is in the Nonsecure 
state. In the Secure state, the external access is Secure or Nonsecure according to the NS 
attribute value in the selected descriptor.

Table 2-7 Address types in the processor system

Processor Caches TLBs AXI bus

Virtual Address Virtual index physical taga Translates Virtual Address to Physical Address Physical Addressb

a. L1 cache is virtual index physical tag.
b. L2 cache is physical address physical tag.
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2.12 Operating modes
There are eight modes of operation:
• User mode is the usual ARM program execution state, and is used for executing most 

application programs
• Fast interrupt (FIQ) mode is used for handling fast interrupts
• Interrupt (IRQ) mode is used for general-purpose interrupt handling
• Supervisor mode is a protected mode for the OS
• Abort mode is entered after a data abort or prefetch abort
• System mode is a privileged user mode for the OS
• Undefined mode is entered when an Undefined Instruction exception occurs
• Monitor mode is a Secure mode for the Security Extensions Secure Monitor code.

Modes other than User mode are collectively known as privileged modes. Privileged modes are 
used to service interrupts or exceptions, or to access protected resources. Table 2-8 shows the 
mode structure for the processor.

Table 2-8 Mode structure

Modes Mode type Security state of core

NS bit = 1 NS bit = 0

User User Nonsecure Secure

FIQ Privileged Nonsecure Secure

IRQ Privileged Nonsecure Secure

Supervisor Privileged Nonsecure Secure

Abort Privileged Nonsecure Secure

Undefined Privileged Nonsecure Secure

System Privileged Nonsecure Secure

Monitor Privileged Secure Secure
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2.13 Registers
The processor has a total of 40 registers:
• 33 general-purpose 32-bit registers
• seven 32-bit status registers.

These registers are not all accessible at the same time. The processor state and mode of operation 
determine the registers that are available to the programmer.

2.13.1 The state register set

In ARM state, 16 data registers and one or two status registers are accessible at any time. In 
privileged modes, mode-specific banked registers become available. Figure 2-10 on page 2-19 
shows the registers that are available in each mode.

Thumb and ThumbEE state give access to the same set of registers as ARM state. However, the 
16-bit instructions provide only limited access to some of the registers. No such limitations exist 
for 32-bit Thumb-2 and ThumbEE instructions. 

Registers r0 through r13 are general-purpose registers used to hold either data or address values.

Registers r14 and r15 have the following special functions:

Link Register Register r14 is used as the subroutine Link Register (LR).
Register r14 receives the return address when the processor executes a 
Branch with Link (BL or BLX) instruction.
You can treat r14 as a general-purpose register at all other times. Similarly, 
the corresponding banked registers r14_mon, r14_svc, r14_irq, r14_fiq, 
r14_abt, and r14_und hold the return values when the processor receives 
interrupts and exceptions, or when it executes the BL or BLX instructions 
within interrupt or exception routines.

Program Counter Register r15 holds the PC:
• in ARM state, this is word-aligned
• in Thumb state, this is halfword-aligned
• in ThumbEE state, this is halfword-aligned.

One of the status registers, the Current Program Status Register (CPSR), contains condition 
code flags, status bits, and current mode bits.

In privileged modes, another register, one of the Saved Program Status Registers (SPSR), is 
accessible. This contains the condition code flags, status bits, and current mode bits saved as a 
result of the exception that caused entry to the current mode. Typically, this is used when 
returning after handling an exception.

Banked registers have a mode identifier that indicates the mode that they relate to. Table 2-9 
shows these mode identifiers.

Table 2-9 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt fiq

Interrupt irq
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The usr mode identifier is usually omitted from register names. It is only used in descriptions 
where the User or System mode register is specifically accessed from another operating mode.

FIQ mode has seven banked registers mapped to r8–r14, that is, r8_fiq through r14_fiq. As a 
result many FIQ handlers do not have to save any registers.

The Monitor, Supervisor, Abort, IRQ, and Undefined modes have alternative mode-specific 
registers mapped to r13 and r14, that permits a private stack pointer and link register for each 
mode.

Figure 2-10 shows the ARM state registers.

Figure 2-10 Register organization in ARM state

Supervisor svc

Abort abt

System usr

Undefined und

Monitor mon

Table 2-9 Register mode identifiers (continued)

Mode Mode identifier

ARM state general registers and program counter
System and 

User

ARM state program status registers

= banked register

Supervisor Abort IRQ Undefined

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_svc

r14_svc

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_abt

r14_abt

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_irq

r14_irq

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_und

r14_und

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

r15 (PC) r15 (PC) r15 (PC) r15 (PC)

Secure 
monitor

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13_mon

r14_mon

CPSR

SPSR_mon

r15 (PC)
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 2-19
ID060510 Non-Confidential



Programmers Model 
Figure 2-11 shows an alternative view of the ARM registers.

Figure 2-11 Processor register set showing banked registers
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2.14 The program status registers
The processor contains one CPSR, and six SPSRs for exception handlers to use. The program 
status registers:
• hold information about the most recently performed logical or arithmetic operation
• control the enabling and disabling of interrupts
• set the processor operating mode.

Figure 2-12 shows the bit arrangements of the program status registers.

Figure 2-12 Program status register

Note
 The bits identified in Figure 2-12 as Do Not Modify (DNM) must not be modified by software. 
These bits are:

• Readable, to enable the processor state to be preserved, for example, during process 
context switches.

• Writable, to enable the processor state to be restored. To maintain compatibility with 
future ARM processors, and as good practice, you are strongly advised to use a 
read-modify-write strategy when you change the CPSR.

2.14.1 The condition code flags

The N, Z, C, and V bits are the condition code flags. You can set them by arithmetic and logical 
operations, and also by MSR and LDM instructions. The processor tests these flags to determine 
whether to execute an instruction.

In ARM state, you can execute most instructions conditionally on the state of the N, Z, C, and 
V bits. In Thumb state, you can execute fewer instructions conditionally. However, you can 
make most instructions conditional with the IT instruction.

See the ARM Architecture Reference Manual for more information about conditional 
executions.

2.14.2 The Q flag

You can set the Sticky Overflow, Q flag, to 1 by executing certain multiply and fractional 
arithmetic instructions:
• QADD

• QDADD

M[4:0]TFIAEIT[7:2]GE[3:0]N J

Greater than
or equal to
Java state bit

Sticky overflow
Overflow
Carry/Borrow/Extend
Zero
Negative/Less than

Mode bits
Thumb state bit
FIQ disable
IRQ disable
Imprecise abort 
disable bit
Data endianness bit

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Z C V Q

IT[1:0]

DNM
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• QSUB

• QDSUB

• SMLAD

• SMLAxy

• SMLAWy

• SMLSD

• SMUAD

• SSAT

• SSAT16

• USAT

• USAT16.

The Q flag is sticky in that, when set to 1 by an instruction, it remains set until explicitly cleared 
to 0 by an MSR instruction writing to the CPSR. Instructions cannot execute conditionally on the 
status of the Q flag. 

To determine the status of the Q flag, you must read the PSR into a register and extract the Q 
flag from this. See the individual instruction definitions in the ARM Architecture Reference 
Manual for details of how you can set and clear the Q flag.

2.14.3 The IT execution state bits

IT[7:5] encodes the base condition code for the current IT block, if any. It contains b000 when 
no IT block is active.

IT[4:0] encodes the number of instructions that are to be conditionally executed, and whether 
the condition for each is the base condition code or the inverse of the base condition code. It 
contains b00000 when no IT block is active.

When the processor executes an IT instruction, it sets these bits according to the condition in the 
instruction, and the Then and Else (T and E) parameters in the instruction. During execution of 
an IT block, IT[4:0] is shifted:
• to reduce the number of instructions to be conditionally executed by one
• to move the next bit into position to form the least significant bit of the condition code.

See the ARM Architecture Reference Manual for more information on the operation of the IT 
execution state bits.

2.14.4 The J bit

The J bit in the CPSR indicates when the processor is in ThumbEE state.

When T=1:
J = 0 The processor is in Thumb state.
J = 1 The processor is in ThumbEE state.

Note
 • You cannot set the J bit to 1 when the T bit is 0. The J bit is written as 0 when the T bit is 

written as 0.

• You cannot use MSR to change the J bit in the CPSR.
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• The placement of the J bit avoids the status or extension bytes in code running on 
ARMv5TE or earlier processors. This ensures that OS code written using the deprecated 
CPSR, SPSR, CPSR_all, or SPSR_all syntax for the destination of an MSR instruction 
continues to work.

2.14.5 The GE[3:0] bits

Some of the SIMD instructions set GE[3:0] as greater than or equal bits for individual halfwords 
or bytes of the result, as Table 2-10 shows.

Note
 GE bit is 1 if A op B ≥ C, otherwise 0.

The SEL instruction uses GE[3:0] to select the source register that supplies each byte of its 
result.

Note
 • For unsigned operations, the usual ARM rules determine the GE bits for carries out of 

unsigned additions and subtractions, and so are carry-out bits. 

• For signed operations, the rules for setting the GE bits are chosen so that they have the 
same sort of greater than or equal functionality as for unsigned operations.

Table 2-10 GE[3:0] settings

GE[3] GE[2] GE[1] GE[0]

Instruction A op B >= C A op B >= C A op B >= C A op B >= C

Signed

SADD16 [31:16] + [31:16] ≥ 0 [31:16] + [31:16] ≥ 0 [15:0] + [15:0] ≥ 0 [15:0] + [15:0] ≥ 0

SSUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

SADDSUBX [31:16] + [15:0] ≥ 0 [31:16] + [15:0] ≥ 0 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

SSUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 0 [15:0] + [31:16] ≥ 0

SADD8 [31:24] + [31:24] ≥ 0 [23:16] + [23:16] ≥ 0 [15:8] + [15:8] ≥ 0 [7:0] + [7:0] ≥ 0

SSUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0

Unsigned

UADD16 [31:16] + [31:16] ≥ 216 [31:16] + [31:16] ≥ 216 [15:0] + [15:0] ≥ 216 [15:0] + [15:0] ≥ 216

USUB16 [31:16] - [31:16] ≥ 0 [31:16] - [31:16] ≥ 0 [15:0] - [15:0] ≥ 0 [15:0] - [15:0] ≥ 0

UADDSUBX [31:16] + [15:0] ≥ 216 [31:16] + [15:0] ≥ 216 [15:0] - [31:16] ≥ 0 [15:0] - [31:16] ≥ 0

USUBADDX [31:16] - [15:0] ≥ 0 [31:16] - [15:0] ≥ 0 [15:0] + [31:16] ≥ 216 [15:0] + [31:16] ≥216

UADD8 [31:24] + [31:24] ≥ 28 [23:16] + [23:16] ≥ 28 [15:8] + [15:8] ≥ 28 [7:0] + [7:0] ≥ 28

USUB8 [31:24] - [31:24] ≥ 0 [23:16] - [23:16] ≥ 0 [15:8] - [15:8] ≥ 0 [7:0] - [7:0] ≥ 0
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2.14.6 The E bit

ARM and Thumb instructions are provided to set and clear the E bit. The E bit controls 
load/store endianness. The E bit can be initialized at reset using the CFGEND0 input. See 
Chapter 4 Unaligned Data and Mixed-endian Data Support for details of the E bit. See 
Miscellaneous signals on page A-8 for details on the CFGEND0 signal.

2.14.7 The A bit

The A bit is set to 1 automatically. It is used to disable imprecise data aborts. It might not be 
writable in the Nonsecure state if the AW bit in the SCR register is reset.

2.14.8 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the: 
• Interrupt disable bits
• T bit
• Mode bits on page 2-25.

The control bits change when an exception occurs. When the processor is operating in a 
privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• When the I bit is set to 1, IRQ interrupts are disabled.

• When the F bit is set to 1, FIQ interrupts are disabled. FIQ can be nonmaskable in the 
Nonsecure state if the FW bit in SCR register is reset.

Note
 You can change the SPSR F bit in the Nonsecure state but this does not update the CPSR if the 
SCR bit [4] FW does not permit it.

T bit

The T bit reflects the operating state:

• when the T bit is set to 1, the processor is executing in Thumb state or ThumbEE state 
depending on the J bit

• when the T bit is cleared to 0, the processor is executing in ARM state.

Note
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If an MSR 
instruction does try to modify this bit the result is architecturally Unpredictable. In the 
processor, this bit is not affected.
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Mode bits

M[4:0] are the mode bits. These bits determine the processor operating mode as Table 2-11 
shows.

2.14.9 Modification of PSR bits by MSR instructions

In previous architecture versions, MSR instructions can modify the flags byte, bits [31:24], of the 
CPSR in any mode, but the other three bytes are only modifiable in privileged modes. 

After the introduction of ARMv6 however, each CPSR bit falls into one of the following 
categories:

• Bits that are freely modifiable from any mode, either directly by MSR instructions or by 
other instructions whose side-effects include writing the specific bit or writing the entire 
CPSR.
Bits in Figure 2-12 on page 2-21 that are in this category are:
— N
— Z
— C
— V
— Q
— GE[3:0]
— E.

• Bits that must never be modified by an MSR instruction, and so must only be written as a 
side-effect of another instruction. If an MSR instruction does try to modify these bits the 
results are architecturally Unpredictable. In the processor these bits are not affected.

Table 2-11 PSR mode bit values

M[4:0] Mode Visible state registers

Thumb ARM

b10000 User r0–r7, r8-r12a, SP, LR, PC, CPSR r0–r14, PC, CPSR

b10001 FIQ r0–r7, r8_fiq-r12_fiqa, SP_fiq, 
LR_fiq PC, CPSR, SPSR_fiq

r0–r7, r8_fiq–r14_fiq, PC, CPSR, SPSR_fiq

b10010 IRQ r0–r7, r8-r12a, SP_irq, LR_irq, PC, 
CPSR, SPSR_irq

r0–r12, r13_irq, r14_irq, PC, CPSR, SPSR_irq

b10011 Supervisor r0–r7, r8-r12a, SP_svc, LR_svc, PC, 
CPSR, SPSR_svc

r0–r12, r13_svc, r14_svc, PC, CPSR, SPSR_svc

b10111 Abort r0–r7, r8-r12a, SP_abt, LR_abt,
PC, CPSR, SPSR_abt

r0–r12, r13_abt, r14_abt, PC, CPSR, SPSR_abt

b11011 Undefined r0–r7, r8-r12a, SP_und, 
LR_und, PC, CPSR, SPSR_und

r0–r12, r13_und, r14_und, PC, CPSR, SPSR_und

b11111 System r0–r7, r8-r12a, SP, LR, PC, CPSR r0–r14, PC, CPSR

b10110 Secure 
Monitor

r0-r7, r8-r12a, SP_mon, LR_mon, 
PC, CPSR, SPSR_mon

r0-r12, PC, CPSR, SPSR_mon, r13_mon, r14_mon

a. In Thumb state, access to these registers is limited.
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Bits in Figure 2-12 on page 2-21 that are in this category are J and T.

• Bits that can only be modified from privileged modes, and that are completely protected 
from modification by instructions while the processor is in User mode. The only way that 
these bits can be modified while the processor is in User mode is by entering a processor 
exception, as described in Exceptions on page 2-27. 
Bits in Figure 2-12 on page 2-21 that are in this category are:
— A
— I
— F
— M[4:0].
Only secure privileged modes can write directly to the CPSR mode bits to enter Monitor 
mode. If the core is in secure User mode, nonsecure User mode, or nonsecure privileged 
modes it ignores changes to the CPSR to enter the Secure Monitor. The core does not copy 
mode bits in the SPSR that are changed in the Nonsecure state, across to the CPSR.

2.14.10 Reserved bits 

The remaining bits in the PSRs are unused and reserved. When changing a PSR flag or control 
bits, make sure that you do not alter these reserved bits. You must ensure that your program does 
not rely on reserved bits containing specific values because future processors might use some 
or all of the reserved bits.
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2.15 Exceptions
Exceptions occur whenever the processor temporarily halts the normal flow of a program, for 
example, to service an interrupt from a peripheral. Before attempting to handle an exception, the 
processor preserves the current processor state so the original program can resume when the 
handler routine finishes.

If two or more exceptions occur simultaneously, the processor deals with exceptions in the fixed 
order given in Exception priorities on page 2-33.

This section provides details of the processor exception handling:
• Exception entry and exit summary
• Leaving an exception on page 2-28.
• Reset on page 2-28
• Fast interrupt request on page 2-28
• Interrupt request on page 2-29
• Aborts on page 2-29
• Imprecise data abort mask in the CPSR/SPSR on page 2-31
• Software interrupt instruction on page 2-31
• Software Monitor Instruction on page 2-31
• Undefined instruction on page 2-32
• Breakpoint instruction on page 2-32
• Exception vectors on page 2-32
• Exception priorities on page 2-33

2.15.1 Exception entry and exit summary

Table 2-12 summarizes the PC value preserved in the relevant r14 on exception entry and the 
recommended instruction for exiting the exception handler.

Table 2-12 Exception entry and exit

Exception 
or entry Return instruction Previous state Notes

ARM r14_x Thumb r14_x

SVC MOVS PC, R14_svc PC + 4 PC+2 Where the PC is the address of the SVC, SMC, 
or Undefined instruction

SMC MOVS PC, R14_mon PC + 4 -

UNDEF MOVS PC, R14_und PC + 4 PC+2

PABT SUBS PC, R14_abt, #4 PC + 4 PC+4 Where the PC is the address of instruction 
that had the prefetch abort

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC+4 Where the PC is the address of the 
instruction that was not executed because 
the FIQ or IRQ took priorityIRQ SUBS PC, R14_irq, #4 PC + 4 PC+4

DABT SUBS PC, R14_abt, #8 PC + 8 PC+8 Where the PC is the address of the load or 
store instruction that generated the data 
abort

RESET - - - The value saved in r14_svc on reset is 
Unpredictable

BKPT SUBS PC, R14_abt, #4 PC + 4 PC+4 Software breakpoint
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2.15.2 Leaving an exception

When an exception has completed, the exception handler must move the LR, minus an offset to 
the PC. The offset varies according to the type of exception, as Table 2-12 on page 2-27 shows.

Typically the return instruction is an arithmetic or logical operation with the S bit set to 1 and 
rd = r15, so the core copies the SPSR back to the CPSR.

Note
 The action of restoring the CPSR from the SPSR, automatically resets the T bit and J bit to the 
values held immediately prior to the exception. The A, I, and F bits are also automatically 
restored to the value they held immediately prior to the exception.

2.15.3 Reset

When the reset signals, as described in Chapter 10 Clock, Reset, and Power Control, are driven 
appropriately a reset occurs, and the processor abandons the executing instruction.

When the reset signals are deasserted, the processor:

1. Forces the NS bit in SCR to 0 for secure and CPSR M[4:0] to 5'b10011 for secure 
Supervisor mode.

2. Sets the A, I, and F bits in the CPSR.

3. Clears the CPSR J bit. The CPSR T bit is set based on the state of the CFGTE input. Other 
bits in the CPSR are indeterminate.

4. Forces the PC to fetch the next instruction from the reset vector address.

5. Resumes execution in ARM or Thumb state based on the state of the CFGTE input.

After reset, all register values except the PC and CPSR are indeterminate.

2.15.4 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports fast interrupts. In ARM state, FIQ mode 
has eight private registers to reduce, or even remove the requirement for register saving. This 
minimizes the overhead of context switching.

An FIQ is externally generated by taking the nFIQ signal input LOW. The nFIQ input is 
registered internally to the processor. It is the output of this register that the processor control 
logic uses.

Irrespective of whether exception entry is from ARM state, Thumb state, or Java state, an FIQ 
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag. When the 
F flag is cleared to 0, the processor checks for a LOW level on the output of the nFIQ register 
at the end of each instruction.

The FW bit and FIQ bit in the SCR register configure the FIQ as:
• nonmaskable in Nonsecure state (FW bit in SCR)
• branch to either current FIQ mode or Monitor mode (FIQ bit in SCR).

FIQs and IRQs are disabled when an FIQ occurs. You can use nested interrupts but it is up to 
you to save any corruptible registers and to re-enable FIQs and interrupts.
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2.15.5 Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a 
lower priority than FIQ, and is masked on entry to an FIQ sequence.

Irrespective of whether exception entry is from ARM state, Thumb state, or Java state, an IRQ 
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ exceptions within a privileged mode by setting the CPSR I flag. When the 
I flag is cleared to 0, the processor checks for a LOW level on the output of the nIRQ register 
at the end of each instruction.

IRQs are disabled when an IRQ occurs. You can use nested interrupts but it is up to you to save 
any corruptible registers and to re-enable IRQs.

The IRQ bit in the SCR register configures the IRQ to branch to either the current IRQ mode or 
to the Monitor mode.

2.15.6 Aborts

An abort is an exception that indicates to the operating system that the value associated with a 
memory access is invalid. Attempting to access invalid instruction or data memory typically 
causes an abort. 

An abort is either:
• an internal abort signaled by the MMU
• an internal abort signaled by an error condition in the L1 or L2 cache
• an external abort signaled by the AXI interface because of an AXI error response. 

An internal or external abort is either:
• a prefetch abort
• a data abort.

In addition, aborts can be precise or imprecise. A precise abort occurs on the instruction 
associated with the access that triggers the abort exception. An imprecise abort can occur on an 
instruction subsequent to the instruction associated with the access that triggers the abort 
exception.

Note
 All aborts from the TLB are internal except for aborts from translation table walks that are 
external precise aborts. If the EA bit is 1 for translation aborts, the core branches to Monitor 
mode in the same way as it does for all other external aborts. See c1, Secure Configuration 
Register on page 3-53.

IRQs are disabled when an abort occurs. When the aborts are configured to branch to Monitor 
mode, the FIQ is also disabled.

Prefetch abort

A prefetch abort is associated with an instruction fetch as opposed to a data access.

When a prefetch abort occurs, the processor marks the prefetched instruction as invalid, but does 
not take the exception until it executes the instruction. If the processor does not execute the 
instruction, for example because a branch occurs while it is in the pipeline, the abort does not 
take place.
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After dealing with the cause of the abort, the handler executes the following instruction 
irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data abort

A data abort is associated with a data access as opposed to an instruction fetch.

Data aborts on the processor can be precise or imprecise. 

Internal precise data aborts are those generated by data load or store accesses that the MMU 
checks: 
• alignment faults
• translation faults
• access bit faults
• domain faults
• permission faults.

Note
 Instruction memory system operations performed with the system control coprocessors can also 
generate internal precise data aborts.

Externally generated data aborts can be precise or imprecise. Two separate FSR encodings 
indicate if the external abort is precise or imprecise:
• all external aborts to loads or stores to strongly ordered memory are precise
• all external aborts to loads to the Program Counter or the CSPR are precise
• all external aborts on the load part of a SWP are precise
• all other external aborts are imprecise. 

External aborts are supported on cacheable locations. The abort is transmitted to the processor 
only if the processor requests a word that had an external abort. 

Precise data aborts 

The state of the system presented to the abort exception handler for a precise abort is always the 
state for the instruction that caused the abort. It cannot be the state for a subsequent instruction. 
As a result, it is straightforward to restart the processor after the exception handler has rectified 
the cause of the abort.

The processor implements the base restored Data Abort model, that differs from the base 
updated Data Abort model implemented by the ARM7TDMI-S processor. 

With the base restored Data Abort model, when a data abort exception occurs during the 
execution of a memory access instruction, the processor hardware always restores the base 
register to the value it contained before the instruction was executed. This removes the 
requirement for the Data Abort handler to unwind any base register update, that the aborted 
instruction might have specified. This simplifies the software Data Abort handler. See the ARM 
Architecture Reference Manual for more information.

After dealing with the cause of the abort, the handler executes the following return instruction, 
irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8
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This restores both the PC and the CPSR, and retries the aborted instruction.

Imprecise data aborts

The state of the system presented to the abort exception handler for an imprecise data abort can 
be the state for an instruction after the instruction that caused the abort. As a result, it is not often 
possible to restart the processor from the point where the exception occurred.

Data aborts that occur because of watchpoints are precise.

2.15.7 Imprecise data abort mask in the CPSR/SPSR

An imprecise data abort caused, for example, by an external error on a write that has been held 
in a write buffer, is asynchronous to the execution of the causing instruction. The imprecise data 
abort can occur many cycles after the instruction that caused the memory access has retired. For 
this reason, the imprecise data abort can occur at a time that the processor is in Abort mode 
because of a precise data abort, or can have live state in Abort mode, but be handling an 
interrupt.

To avoid the loss of the Abort mode state (r14_abt and SPSR_abt) in these cases, that leads the 
processor to enter an unrecoverable state, the system must hold the existence of a pending 
imprecise data abort until a time when the Abort mode can safely be entered. 

A mask is included in the CPSR to indicate that an imprecise data abort can be accepted. This 
bit is referred to as the A bit. The imprecise data abort causes a data abort to be taken when 
imprecise data aborts are not masked. When imprecise data aborts are masked, then the 
implementation is responsible for holding the presence of a pending imprecise data abort until 
the mask is cleared to 0 and the abort is taken. The A bit is set to 1 automatically on entry into 
Abort Mode, IRQ, and FIQ Modes, and on Reset. See the ARM Architecture Reference Manual 
for more information.

Note
 You cannot change the CPSR A bit in the Nonsecure state if the SCR bit [5] is reset. You can 
change the SPSR A bit in the Nonsecure state but this does not update the CPSR if the SCR bit 
[5] does not permit it.

2.15.8 Software interrupt instruction

You can use the Supervisor Call (SVC) instruction to enter Supervisor mode, usually to request a 
particular supervisor function. The SVC handler reads the opcode to extract the SVC function 
number. A SVC handler returns by executing the following instruction, irrespective of the 
processor operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SVC. IRQs are 
disabled when a software interrupt occurs.

2.15.9 Software Monitor Instruction

When the processor executes the Secure Monitor Call (SMC) instruction, the core enters Monitor 
mode to request a Monitor function.

Note
 An attempt by a User process to execute an SMC causes an Undefined Instruction exception.
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2.15.10 Undefined instruction

When the processor encounters an instruction that neither it nor any coprocessor in the system 
can handle, it takes the Undefined Instruction exception. Software can use this mechanism to 
extend the ARM instruction set by emulating Undefined coprocessor instructions. 

After emulating the failed instruction, the exception handler executes the following instruction, 
irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the Undefined Instruction 
exception.

IRQs are disabled when an Undefined Instruction exception occurs. See the ARM Architecture 
Reference Manual for more information about Undefined instructions.

2.15.11 Breakpoint instruction

A breakpoint, BKPT, instruction operates as though the instruction causes a prefetch abort. A 
breakpoint instruction does not cause the processor to take the prefetch abort exception until the 
instruction reaches the Execute stage of the pipeline. If the processor does not execute the 
instruction, for example because a branch occurs while it is in the pipeline, the breakpoint does 
not take place.

After dealing with the breakpoint, the handler executes the following instruction irrespective of 
the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note
 If the EmbeddedICE-RT logic is configured into Halting debug-mode, a breakpoint instruction 
causes the processor to enter debug state. See Halting debug-mode debugging on page 12-3.

2.15.12 Exception vectors

The Secure Configuration Register bits [3:1] determine the mode that is entered when an IRQ, 
a FIQ, or an external abort exception occurs. The CP15 c12, Secure or Nonsecure Vector Base 
Address Register and the Monitor Vector Base Address Register define the base address of the 
Nonsecure, Secure, and Secure Monitor vector tables. If high vectors are enabled using CP15 
c1 bit[13], the base address of the Nonsecure and Secure vector tables is 0xFFFF0000, regardless 
of the value of these registers. Enabling high vectors has no effect on the Secure Monitor vector 
addresses.
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2.15.13 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order 
that they are handled. Table 2-13 shows the order of exception priorities.

Some exceptions cannot occur together:

• The BKPT, Undefined instruction, SMC, and SVC exceptions are mutually exclusive. 
Each corresponds to a particular, non-overlapping, decoding of the current instruction.

• When FIQs are enabled, and a precise data abort occurs at the same time as an FIQ, the 
processor enters the Data Abort handler, and proceeds immediately to the FIQ vector.
A normal return from the FIQ causes the Data Abort handler to resume execution.
Precise data aborts must have higher priority than FIQs to ensure that the transfer error 
does not escape detection. You must add the time for this exception entry to the worst-case 
FIQ latency calculations in a system that uses aborts to support virtual memory.
The FIQ handler must not access any memory that can generate a data abort, because the 
initial Data Abort exception condition is lost if this happens.

Note
 If the data abort is a precise external abort and bit [3] EA of SCR is set to 1, the processor enters 
Monitor mode where aborts and FIQs are disabled automatically. Therefore the processor does 
not proceed to FIQ vector afterwards.

Table 2-13 Exception priorities

Priority Exception

Highest 1 Reset

2 Precise data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Imprecise data abort

Lowest 7 BKPT
Undefined instruction
SVC
SMC 
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2.16 Software consideration for Security Extensions
The Monitor mode is responsible for the switch from one state to the other. You must only 
modify the SCR in Monitor mode.

The recommended way to return to the Nonsecure state is to:
• set the NS bit to 1 in the SCR
• execute a MOVS or SUBS.

All ARM implementations ensure that the processor cannot execute the prefetched instructions 
that follow MOVS, SUBS, or equivalents, with secure access permissions.

It is strongly recommended that you do not use an MSR instruction to switch from the Secure to 
the Nonsecure state. There is no guarantee enforced in the architecture that, after the NS bit is 
set to 1 in Monitor mode, an MSR instruction avoids execution of prefetched instructions with 
secure access permission. This is because the processor prefetches the instructions that follow 
the MSR with secure privileged permissions. This might form a security hole in the system if the 
prefetched instructions then execute in the Nonsecure state.

If the prefetched instructions are in nonsecure memory, with the MSR at the boundary between 
secure and nonsecure memory, they might be corrupted when giving secure information to the 
Nonsecure state.

To avoid this problem with the MSR instruction, you can use an IMB sequence shortly after the MSR. 
If you use the IMB sequence you must ensure that the instructions executed after the MSR and 
before the IMB do not leak any information to the Nonsecure state and do not rely on the secure 
permission level.

It is strongly recommended that you do not set the NS bit to 1 in privileged modes other than in 
Monitor mode. If you do so, you face the same problem as a return to the Nonsecure state with 
the MSR instruction. To avoid leakage after an MSR instruction, use an IMB sequence.

To enter the Secure Monitor, the processor executes the following instruction:

SMC {<cond>} <imm4>

where:

<cond> Is the condition that the processor executes the SMC.

<imm4> The processor ignores this 4-bit immediate value, but the Secure Monitor can use 
it to determine the service to provide.

To return from the Secure Monitor, the processor executes the following instruction:

MOVS PC, R14_mon
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 2-34
ID060510 Non-Confidential



Programmers Model 
2.17 Hardware consideration for Security Extensions
This section describes the following:
• System boot sequence
• Security Extensions write access disable
• Secure monitor bus on page 2-36.

2.17.1 System boot sequence

Caution
 Security Extensions computing enable a secure software environment. The technology does not 
protect the processor from hardware attacks, and you must make sure that the hardware 
containing the boot code is appropriately secure.

The processor always boots in the privileged Supervisor mode in the Secure state, that is the NS 
bit is 0. This means that code not written for Security Extensions always run in the Secure state, 
but has no way to switch to the Nonsecure state. Because the Secure and Nonsecure states mirror 
each other, this secure operation does not affect the functionality of code not written for Security 
Extensions. Peripherals boot in the Secure state.

The secure OS code at the reset vector must:

1. Initialize the secure OS. This includes normal boot actions such as:
a. Generate translation tables and switch on the MMU if the design uses caches or 

memory protection.
b. Switch on the stack.
c. Set up the run time environment and program stacks for each processor mode.

2. Initialize the Secure Monitor. This includes such actions as:
a. Allocate scratch work space.
b. Set up the Secure Monitor stack pointer and initialize its state block.

3. Program the partition checker to allocate physical memory available to the nonsecure OS.

4. Yield control to the nonsecure OS with an SMC instruction. The nonsecure OS boots after 
this.

The overall security of the software relies on the security of the boot code along with the code 
for the Secure Monitor.

2.17.2 Security Extensions write access disable

The processor pin CP15SDISABLE disables write access to certain registers in the system 
control coprocessor. Attempts to write to these registers when CP15SDISABLE is HIGH result 
in an Undefined Instruction exception. Reads from the registers are still permitted. See 
Chapter 3 System Control Coprocessor for more information about the registers affected by this 
pin. 

A change to the CP15SDISABLE pin takes effect on the instructions decoded by the processor 
as quickly as practically possible. Software must perform an ISB instruction, after a change to 
this pin on the boundary of the macrocell, to ensure that its effect is recognized for following 
instructions. It it is expected that: 
• control of the CP15SDISABLE pin remains within the SoC that embodies the macrocell
• the CP15SDISABLE pin is cleared to logic 0 by the SoC hardware at reset. 
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You can use the CP15SDISABLE pin to disable subsequent access to the system control 
processor registers after the secure boot code runs and protect the configuration that the secure 
boot code applies.

Note
 The register accesses affected by the CP15SDISABLE pin are only accessible in secure 
privileged modes.

2.17.3 Secure monitor bus

The SECMONOUT bus exports a set of signals from the processor.

Caution
 You must ensure that the SECMONOUT signals do not compromise the security of the 
processor.

The SECMONOUTEN input enables the security monitor output SECMONOUT[86:0]. The 
SECMONOUTEN signal is sampled at reset. Any change to the state of this pin during 
functional operation is ignored.

See Appendix A Signal Descriptions for a list of signals that appear on the secure monitor bus 
SECMONOUT[86:0].

SECMONOUT protocol

The following pseudo code shows the protocol of SECMONOUT[86:0].

if SECMONOUTEN = 0 at reset, then

SECMONOUT[86:0] holds its value

else if SECMONOUTEN = 1 at reset, then

if SECMONOUT[86] = 1, then
valid L1 data address present on SECMONOUT[59:40]

else 
invalid L1 data address

if SECMONOUT[85] = 1, then
valid exception data present on SECMONOUT[64:60]

else 
invalid exception data

if SECMONOUT[82] = 1, then
valid pipeline 1 instruction address on SECMONOUT[39:20]
valid pipeline 1 condition code fail on SECMONOUT[84]

else 
invalid instruction or condition code in pipeline 1

if SECMONOUT[81] = 1, then
valid pipeline 0 instruction address on SECMONOUT[19:0]
valid pipeline 0 condition code fail on SECMONOUT[83]

else 
invalid instruction or condition code in pipeline 0

any change of state is exported for the following pins:
SECMONOUT[80] DMB or DWB executed
SECMONOUT[79] IMB executed
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SECMONOUT[78] instruction caches at all levels enabled if set
to 1 or disabled if cleared to 0
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2.18 Control coprocessor
The processor does not have an external coprocessor interface but it does implement two 
internal coprocessors, CP14 and CP15.

The CP15 coprocessor is also known as the system control coprocessor and is used to control 
and provide status information for the functions implemented in the processor. See Chapter 3 
System Control Coprocessor for more information on the system control coprocessor.

The CP14 coprocessor is also known as the debug coprocessor and is used for various debug 
functions. See Chapter 12 Debug for more information on the debug coprocessor.
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System Control Coprocessor

This chapter describes the purpose of the system control coprocessor, its structure, operation, and 
how to use it. It contains the following sections:
• About the system control coprocessor on page 3-2
• System control coprocessor registers on page 3-7.
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3.1 About the system control coprocessor
This section gives an overall view of the system control coprocessor. See System control 
coprocessor registers on page 3-7 for details of the registers in the system control coprocessor.

The purpose of the system control coprocessor, CP15, is to control and provide status 
information for the functions implemented in the processor. The main functions of the system 
control coprocessor are:
• overall system control and configuration
• cache configuration and management
• Memory Management Unit (MMU) configuration and management
• preloading engine for L2 cache
• system performance monitoring.

The system control coprocessor does not exist in a distinct physical block of logic.

The following CP15 instructions are valid NOP instructions:

MCR p15, 0, <Rd>, c7, c0, 4 ; NOP (wait-for-interrupt, replaced by WFI
; instruction)

At reset, the following CP15 instructions are valid NOP instructions. This behavior is strongly 
recommended for best performance. Following reset, software can configure the instructions to 
operate in the traditional manner by programming the Auxiliary Control Register. See c1, 
Auxiliary Control Register on page 3-47 for more details.

MCR p15, 0, <Rd>, c7, c5, 6 ; NOP (invalidate entire branch predictor array)
MCR p15, 0, <Rd>, c7, c5, 7 ; NOP (invalidate branch predictor array line by

; MVA)

3.1.1 System control coprocessor functional groups

The system control coprocessor is a set of registers that you can write to and read from. Some 
of the registers permit more than one type of operation. The functional groups for the registers 
are:
• System control and configuration on page 3-4
• MMU control and configuration on page 3-5
• Cache control and configuration on page 3-6
• L2 cache preload engine control and configuration on page 3-6
• System performance monitor on page 3-6
• Array debug on page 3-6.

The system control coprocessor controls the Security Extensions operation of the processor:
• some of the registers are only accessible in the Secure state
• some of the registers are banked for Secure and Nonsecure states
• some of the registers are common to Secure and Nonsecure states.

Note
 When Monitor mode is active, the core is in the Secure state. The processor treats all accesses 
as secure and the system control coprocessor behaves as if it operates in the Secure state 
regardless of the value of the NS bit, see c1, Secure Configuration Register on page 3-53. In 
Monitor mode the NS bit defines the copies of the banked registers in the system control 
coprocessor that the processor can access:
NS = 0 Access to Secure state CP15 registers.
NS = 1 Access to Nonsecure state CP15 registers.
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Registers that are only accessible in the Secure state are always accessible in Monitor mode, 
regardless of the value of the NS bit.

Table 3-1 shows the overall functionality of the system control coprocessor registers.

Table 3-1 System control coprocessor register functions

Function Register/operation Reference to description

System control 
and configuration

Control c1, Control Register on page 3-44

Auxiliary Control c1, Auxiliary Control Register on page 3-47

Secure Configuration c1, Secure Configuration Register on page 3-53

Secure Debug Enable c1, Secure Debug Enable Register on page 3-55

Nonsecure Access Control c1, Nonsecure Access Control Register on page 3-56

Coprocessor Access Control c1, Coprocessor Access Control Register on page 3-52

Secure or Nonsecure Vector Base 
Address

c12, Secure or Nonsecure Vector Base Address Register on 
page 3-117

Monitor Vector Base Address c12, Monitor Vector Base Address Register on page 3-118

Main ID Registera c0, Main ID Register on page 3-19

Silicon ID Register c0, Silicon ID Register on page 3-40

Product Features c0, Memory Model Feature Register 0 on page 3-26 - c0, 
Instruction Set Attributes Registers 5-7 on page 3-39

MMU control and 
configuration

TLB Type c0, TLB Type Register on page 3-21

Translation Table Base 0 c2, Translation Table Base Register 0 on page 3-57

Translation Table Base 1 c2, Translation Table Base Register 1 on page 3-59

Translation Table Base Control c2, Translation Table Base Control Register on page 3-60

Domain Access Control c3, Domain Access Control Register on page 3-62

Data Fault Status c5, Data Fault Status Register on page 3-63

Auxiliary Fault Status c5, Auxiliary Fault Status Registers on page 3-66

Instruction Fault Status c6, Instruction Fault Address Register on page 3-68

Instruction Fault Address c6, Instruction Fault Address Register on page 3-68

Data Fault Address c6, Data Fault Address Register on page 3-67

TLB Operations c8, TLB operations on page 3-75

Memory region remap c10, Memory Region Remap Registers on page 3-100

Context ID c13, Context ID Register on page 3-122

FCSE PID c13, FCSE PID Register on page 3-120

Thread and Process ID c13, Thread and Process ID Registers on page 3-123
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3.1.2 System control and configuration

The purpose of the system control and configuration registers is to provide overall management 
of:
• Security Extensions behavior
• memory functionality
• interrupt behavior
• exception handling
• program flow prediction
• coprocessor access rights for CP0-CP13.

The system control and configuration registers also provide the processor ID. Some of the 
functionality depends on how you set external signals at reset.

System control and configuration behaves in three ways:
• as a set of flags or enables for specific functionality
• as a set of numbers, values that indicate system functionality
• as a set of addresses for processes in memory.

Cache control and 
configuration

Cache Type c0, Cache Type Register on page 3-20

Cache Level Identification c0, Cache Level ID Register on page 3-39

Cache Size Identification c0, Cache Size Identification Registers on page 3-41

Cache Size Selection c0, Cache Size Selection Register on page 3-43

Cache operations c7, Cache operations on page 3-68

L2 cache 
PreLoad Engine 
(PLE) control and 
configuration

PLE Identification and Status c11, PLE Identification and Status Registers on page 3-104

PLE User Accessibility c11, PLE User Accessibility Register on page 3-106

PLE Channel Number c11, PLE Channel Number Register on page 3-108

PLE Enable c11, PLE enable commands on page 3-109

PLE Control c11, PLE Control Register on page 3-109

L2 cache PLE 
control and 
configuration

PLE Internal Start Address c11, PLE Internal Start Address Register on page 3-112

PLE Internal End Address c11, PLE Internal End Address Register on page 3-113

PLE Channel Status c11, PLE Channel Status Register on page 3-114

PLE Context ID c11, PLE Context ID Register on page 3-116

L1 instruction 
and data cache, 
and TLB Debug

L1 instruction and data cache, BTB, 
GHB, and TLB Debug

c15, L1 system array debug data registers on page 3-124

L2 unified cache L2 unified cache c15, L2 system array debug data registers on page 3-136

System 
performance 
monitor 

Performance monitoring c9, Performance Monitor Control Register on page 3-76 - 
c9, Interrupt Enable Clear Register on page 3-91

a. Returns device ID code.

Table 3-1 System control coprocessor register functions (continued)

Function Register/operation Reference to description
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Security Extensions write access disable

The processor supports a primary input pin, CP15SDISABLE, to disable write access to the 
CP15 registers.

When the CP15SDISABLE input is set to 1, any attempt to write to the secure version of the 
banked register, NS-bit is 0, or any non-banked register, NS-state is 0 results in an Undefined 
Instruction exception.

Changes in the pin on an instruction boundary occur as quickly as practically possible after a 
change to this pin. Software must perform a IMB after a change to this pin has occurred on the 
boundary of the macros to ensure that its effects are recognized on following instructions.

At reset, it is expected that this pin is set to logic 0 by the SoC hardware. Control of this pin is 
expected to remain within the SoC chip that implements the processor. 

Table 3-2 shows the CP15 registers affected by the primary input pin, CP15SDISABLE.

3.1.3 MMU control and configuration

The purpose of the MMU control and configuration registers is to:

• allocate physical address locations from the Virtual Addresses (VAs) that the processor 
generates

• control program access to memory

• configure translation table memory type attributes

• detect MMU faults and external aborts

• translate and lock translation table walk entries

• hold thread and process IDs.

Table 3-2 CP15 registers affected by CP15SDISABLE

Register Instruction

Control Register MCR p15, 0, <Rd>, c1, c0, 0

Translation Table Base 0 MCR p15, 0, <Rd>, c2, c0, 0

Translation Table Control Register MCR p15, 0, <Rd>, c2, c0, 2

Domain Access Control MCR p15, 0, <Rd>, c3, c0, 0 

Primary Region Remap MCR p15, 0, <Rd>, c10, c2, 0

Normal Memory Region Remap MCR p15, 0, <Rd>, c10, c2, 1

Vector Base MCR p15, 0, <Rd>, c12, c0, 0

Monitor Base MCR p15, 0, <Rd>, c12, c0, 1

FCSE MCR p15, 0, <Rd>, c13, c0, 0

Array operations MCR p15, 0, <Rd>, c15, c0-15, 0-7
MRC p15, 0, <Rd>, c15, c0-15, 0-7
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3.1.4 Cache control and configuration

The purpose of the cache control and configuration registers is to:

• provide information on the size and architecture of the instruction and data caches

• control cache maintenance operations that include clean and invalidate caches, drain and 
flush buffers, and address translation

• override cache behavior during debug or interruptible cache operations.

3.1.5 L2 cache preload engine control and configuration

The purpose of the L2 cache PLE control and configuration control registers is to:
• enable software to control transfers to or from the L2 RAM
• transfer large blocks of data 
• determine accessibility
• select the PLE channel.

Code can execute several PLE operations while in User mode if these operations are enabled by 
the PLE User Accessibility Register.

If the PLE control registers attempt to execute a privileged operation in User mode, the 
processor takes an Undefined instruction trap.

The PLE control registers operation specifies the block of data for transfer, the location of the 
transfer, and the direction of the PLE. See L2 PLE on page 8-6 for more information on the 
operation.

3.1.6 System performance monitor

The purpose of the performance monitor registers is to:
• control the monitoring operation
• count events.

System performance monitoring counts system events, such as cache misses, TLB misses, 
pipeline stalls, and other related features to enable system developers to profile the performance 
of their systems. It can generate interrupts when the number of events reaches a given value. 

3.1.7 Array debug

The purpose of array debug is to enable debug of the Cortex-A8 processor by accessing data, 
only in a secure state and privilege state, in the following arrays:
• L1:

— instruction and data cache data RAMs
— instruction and data cache tag RAMs
— TLB entries
— branch predictor arrays.

• L2 cache RAMs
• parity error detection registers.

You can use the registers to observe the contents of the cache without executing a load or store 
instruction to debug:
• frequency issues
• Real Time Operating System (RTOS).
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3.2 System control coprocessor registers
This section describes all the registers in the system control coprocessor. The section presents a 
summary of the registers and descriptions in register order of CRn, Opcode_1, CRm, Opcode_2. 

See the ARM Architecture Reference Manual for more information on using system control 
coprocessors and the general method on how to access CP15 registers.

3.2.1 Register allocation

Table 3-3 shows a summary the register allocation and reset values of the system control 
coprocessor where:
• CRn is the register number within CP15
• Op1 is the Opcode_1 value for the register
• CRm is the operational register
• Op2 is the Opcode_2 value for the register
• Security state can be Secure, S, or Nonsecure, NS, and is:

— B, registers banked in Secure and Nonsecure states. If the registers are not banked 
then they are common to Secure or Nonsecure states or only accessible in one state.

— NA, no access
— RO, read-only access
— RO, read-only access in privileged modes only
— R/W, read/write access
— R/W, read/write access in privileged modes only
— WO, write-only access
— WO, write-only access in privileged modes only
— X, access depends on another register or external signal.

Table 3-3 Summary of CP15 registers and operations

CRn Op1 CRm Op2 Register or 
operation Security state Reset value Page

NS S

c0 0 c0 {0, 4, 6-7} Main ID RO RO 0x413FC082 page 3-19

1 Cache Type RO RO 0x82048004 page 3-20

2 TCM Type RO RO 0x00000000 page 3-21

3 TLB Type RO RO 0x00202001 page 3-21

5 Multiprocessor ID RO RO 0x00000000 page 3-22

c1 0 Processor Feature 0 RO RO 0x00001131 page 3-23

1 Processor Feature 1 RO RO 0x00000011 page 3-23

2 Debug Feature 0 RO RO 0x00010400 or 
0x00000400

page 3-24

3 Auxiliary Feature 0 RO RO 0x00000000 page 3-26

4 Memory Model 
Feature 0

RO RO 0x01100003 page 3-26
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5 Memory Model 
Feature 1

RO RO 0x20000000 page 3-27

6 Memory Model 
Feature 2

RO RO 0x01202000 page 3-29

7 Memory Model 
Feature 3

RO RO 0x00000211 page 3-31

c2 0 Instruction Set 
Attribute 0

RO RO 0x00101111 page 3-32

1 Instruction Set 
Attribute 1

RO RO 0x13112111 page 3-34

2 Instruction Set 
Attribute 2

RO RO 0x21232031 page 3-35

3 Instruction Set 
Attribute 3

RO RO 0x11112131 page 3-36

4 Instruction Set 
Attribute 4

RO RO 0x00011142 page 3-38

5-7 Instruction Set 
Attribute 5-7

RO RO 0x00000000 page 3-39

c3-c7 0-7 Reserved for 
Feature ID 
Registers

RO RO 0x00000000 -

c8-c15 0-7 Undefined - - - -

1 c0 0 Cache Size 
Identification 

RO RO Unpredictable page 3-41

1 Cache Level ID RO RO 0x0A000023 or 
0x0A000003

page 3-39

2-6 Undefined - - - -

7 Silicon ID RO RO a page 3-40

c1-c15 0-7 Undefined - - - -

2 c0 0 Cache Size 
Selection

R/W R/W, B Unpredictable page 3-43

1-7 Undefined - - - -

c1-c15 0-7 Undefined - - - -

3-7 c0-c15 0-7 Undefined - - - -

c1 0 c0 0 Control R/W R/W, Bb, X 0x00C50078c page 3-44

1 Auxiliary Control B B 0x00000002 page 3-47
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System Control Coprocessor 
2 Coprocessor 
Access Control

R/W R/W 0x00000000 page 3-52

3-7 Undefined - - - -

c1 0 Secure 
Configuration

NA R/W 0x00000000 page 3-53

1 Secure Debug 
Enable

NA R/W 0x00000000 page 3-55

2 Nonsecure Access 
Control

RO R/W 0x00000000 page 3-56

3-7 Undefined - - - -

c2-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c2 0 c0 0 Translation Table 
Base 0

R/W R/W, B, X Unpredictable page 3-57

1 Translation Table 
Base 1

R/W R/W, B Unpredictable page 3-59

2 Translation Table 
Base Control

R/W R/W, B, X Unpredictable page 3-60

3-7 Undefined - - - -

c1-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c3 0 c0 0 Domain Access 
Control

R/W R/W, B, X Unpredictable page 3-62

1-7 Undefined - - - -

c1-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c4 0-7 c0-c15 0-7 Undefined - - - -

c5 0 c0 0 Data Fault Status R/W R/W, B Unpredictable page 3-63

1 Instruction Fault 
Status

R/W R/W, B Unpredictable page 3-65

2-7 Undefined - - - -

c1 0 Data Auxiliary 
Fault Status

R/W R/W, B Unpredictable page 3-66

1 Instruction 
Auxiliary Fault 
Status

R/W R/W, B Unpredictable page 3-66
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System Control Coprocessor 
c1 2-7 Undefined - - - -

c2-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c6 0 c0 0 Data Fault Address R/W R/W, B Unpredictable page 3-67

1 Undefined - - - -

2 Instruction Fault 
Address

R/W R/W, B Unpredictable page 3-68

3-7 Undefined - - - - 

c1-c15 0-7 Undefined - - - - 

1-7 c0-c15 0-7 Undefined - - - - 

c7 0 c0 0-3 Undefined - - - -

4 NOP (WFI) WO WO - page 3-2

5-7 Undefined - - - -

c1-c3 0-7 Undefined - - - -

c4 0 Physical Address R/W R/W, B 0x00000000 page 3-71

1-7 Undefined - - - -

c5 0 Invalidate all 
instruction caches 
to point of 
unification

WO WO - page 3-68

1 Invalidate 
instruction cache 
line to point of 
unification

WO WO - page 3-68

2-3 Undefined - - - -

4 Flush Prefetch 
Buffer

WO WO - page 3-68

5 Undefined - - - -

6 NOP (Invalidate 
entire branch 
predictor array)

WO WO - page 3-2

7 NOP (Invalidate 
branch predictor 
array line by MVA)

WO WO - page 3-2

c6 0 Undefined - - - -
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System Control Coprocessor 
1 Invalidate data 
cache line to point 
of coherency by 
MVA

WO WO - page 3-68 

2 Invalidate data 
cache line by set 
and way

WO WO - page 3-68

3-7 Undefined - - - -

c7 0-7 Undefined - - - -

c8 0-3 VA to PA 
translation in the 
current state

WO WO - page 3-73

4-7 VA to PA 
translation in the 
other state

NA WO - page 3-74

c9 0-7 Undefined - - - -

c10 0 Undefined - - - -

1 Clean data cache 
line to point of 
coherency by MVA

WO WO - page 3-68

2 Clean data cache 
line by set and way

WO WO - page 3-68

3 Undefined - - - -

4 Data 
Synchronization 
Barrier

WO WO - page 3-74

5 Data Memory 
Barrier

WO WO - page 3-75

6-7 Undefined - - - -

c11 0 Undefined - - - -

1 Clean data cache 
line to point of 
unification by 
MVA

WO WO - page 3-68

2-7 Undefined - - - -

c12-c13 0-7 Undefined - - - -

c14 0 Undefined - - - -
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System Control Coprocessor 
1 Clean and 
invalidate data 
cache line to point 
of coherency by 
MVA

WO WO - page 3-68

2 Clean and 
invalidate data 
cache line by set 
and way

WO WO - page 3-68

3-7 Undefined - - - -

c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c8 0 c0-c4 0-7 Undefined - - - -

c5 0 Invalidate 
Instruction TLB 
unlocked entries

WO WO, B - page 3-75

1 Invalidate 
Instruction TLB 
entry by MVA

WO WO, B - page 3-75

2 Invalidate 
Instruction TLB 
entry on ASID 
match

WO WO, B - page 3-75

3-7 Undefined - - - -

c6 0 Invalidate Data 
TLB unlocked 
entries

WO WO, B - page 3-75

1 Invalidate Data 
TLB entry by MVA

WO WO, B - page 3-75

2 Invalidate Data 
TLB entry on ASID 
match

WO WO, B - page 3-75

3-7 Undefined - - - -

c7 0 Invalidate unified 
TLB unlocked 
entries

WO WO, B - page 3-75

1 Invalidate unified 
TLB entry by MVA

WO WO, B - page 3-75

2 Invalidate unified 
TLB entry on ASID 
match

WO WO, B - page 3-75
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System Control Coprocessor 
3-7 Undefined - - - -

c8-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c9 0 c0-c11 0-7 Undefined - - - -

c12 0 Performance 
Monitor Control

R/W, X R/W, X 0x41002000 page 3-76

1 Count Enable Set R/W, X R/W, X 0x00000000 page 3-78

2 Count Enable Clear R/W, X R/W, X 0x00000000 page 3-79

3 Overflow Flag 
Status 

R/W, X R/W, X 0x00000000 page 3-80

4 Software Increment R/W, X R/W, X 0x00000000 page 3-81

5 Performance 
Counter Selection 

R/W, X R/W, X Unpredictable page 3-82

6-7 Undefined - - - -

c13 0 Cycle Count R/W, X R/W, X 0x00000000 page 3-83

1 Event Selection R/W, X R/W, X Unpredictable page 3-84

2 Performance 
Monitor Count

R/W, X R/W, X 0x00000000 page 3-88

3-7 Undefined - - - -

c14 0 User Enable R/W R/W 0x00000000 page 3-89

1 Interrupt Enable 
Set 

R/W R/W 0x00000000 page 3-90

2 Interrupt Enable 
Clear 

R/W R/W 0x00000000 page 3-91

3-7 Undefined - - - -

c15 0-7 Undefined - - - -

1 c0 0 L2 Cache 
Lockdown

R/W R/W 0x00000000 page 3-92

1 Undefined - - - -

2 L2 Cache Auxiliary 
Control 

RO R/W 0x00000042 page 3-95

3-7 Undefined - - - -

c1-c15 0-7 Undefined - - - -

2-7 c0-c15 0-7 Undefined - - - -
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System Control Coprocessor 
c10 0 c0 0 Data TLB 
Lockdown Register

R/W R/W 0x00000000 page 3-98

1 Instruction TLB 
Lockdown Register

R/W R/W 0x00000000 page 3-98

2-7 Undefined - - - -

c1 0 Data TLB Preload WO WO - page 3-99

1 Instruction TLB 
Preload

WO WO - page 3-99

2-7 Undefined - - - -

c2 0 Primary Region 
Remap Register

R/W R/W, B, X 0x00098AA4 page 3-100

1 Normal Memory 
Remap Register

R/W R/W, B, X 0x44E048E0 page 3-100

2-7 Undefined - - - -

c3-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c11 0 c0 0 PLE Identification 
and Status

RO, X RO 0x00000003d page 3-104

1 Undefined - - - -

2-3 PLE Identification 
and Status

RO, X RO 0x00000000d page 3-104

4-7 Undefined - - - -

c1 0 PLE User 
Accessibility

R/W, X R/W 0x00000000 page 3-106

1-7 Undefined - - - -

c2 0 PLE Channel 
Number

R/W, X R/W, X Unpredictable page 3-108

1-7 Undefined - - - -

c3 0-2 PLE enable WO, X WO, X - page 3-109

3-7 Undefined - - - -

c4 0 PLE Control R/W, X R/W, X Unpredictable page 3-109

1-7 Undefined - - - -

c5 0 PLE Internal Start 
Address

R/W, X R/W, X Unpredictable page 3-112

1-7 Undefined - - - -
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System Control Coprocessor 
c6 0-7 Undefined - - - -

c7 0 PLE Internal End 
Address

R/W, X R/W, X Unpredictable page 3-113

1-7 Undefined - - - -

c8 0 PLE Channel 
Status

RO, X RO, X 0x00000000 page 3-114

1-7 Undefined - - - -

c9-14 0-7 Undefined - - - -

c15 0 PLE Context ID R/W, X R/W Unpredictable page 3-116

c11 0 c15 1-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

c12 0 c0 0 Secure or 
Nonsecure Vector 
Base Address

R/W R/W, B, X 0x00000000 page 3-117

1 Monitor Vector 
Base Address

NA R/W, X 0x00000000 page 3-118

2-7 Undefined - - - -

c1 0 Interrupt Status RO RO 0x00000000e page 3-119

1-7 Undefined - - - -

c2-15 0-7 Undefined - - - -

1-7 c0-15 0-7 Undefined - - - -

c13 0 c0 0 FCSE PID R/W R/W, B, X 0x00000000 page 3-120

1 Context ID R/W R/W, B Unpredictable page 3-122

2 User read/write 
Thread and Process 
ID

R/W R/W, B Unpredictable page 3-123

3 User read-only 
Thread and Process 
ID

R/W, RO R/W, RO, Bf Unpredictable page 3-123

4 Privileged only 
Thread and Process 
ID

R/W R/W, B Unpredictable page 3-123

5-7 Undefined - - - -

c1-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -
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System Control Coprocessor 
c14 0-7 c0-c15 0-7 Undefined - - - -

c15 0 c0 0 D-L1 Data 0 
Register

NA R/W Unpredictable page 3-124

1 D-L1 Data 1 
Register

NA R/W Unpredictable page 3-124

2 D-TLB CAM write 
operation

NA WO - page 3-128

3 D-TLB ATTR 
write operation

NA WO - page 3-128

4 D-TLB PA write 
operation

NA WO - page 3-128

5 D-HVAB write 
operation

NA WO - page 3-130

6 D-Tag write 
operation

NA WO - page 3-132

7 D-Data write 
operation

NA WO - page 3-133

c1 0 I-L1 Data 0 
Register

NA R/W Unpredictable page 3-124

1 I-L1 Data 1 
Register

NA R/W Unpredictable page 3-124

2 I-TLB CAM write 
operation

NA WO - page 3-128

3 I-TLB ATTR write 
operation

NA WO - page 3-128

4 I-TLB PA write 
operation

NA WO - page 3-128

5 I-HVAB write 
operation

NA WO - page 3-130

6 I-Tag write 
operation

NA WO - page 3-132

7 I-Data write 
operation

NA WO - page 3-133

c2 0-1 Undefined - - - -

2 D-TLB CAM read 
operation

NA WO - page 3-128

3 D-TLB ATTR read 
operation

NA WO - page 3-128
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System Control Coprocessor 
4 D-TLB PA read 
operation

NA WO - page 3-128

5 D-HVAB read 
operation

NA WO - page 3-130

6 D-Tag read 
operation

NA WO - page 3-132

7 D-Data read 
operation

NA WO - page 3-133

c3 0-1 Undefined NA - - -

2 I-TLB CAM read 
operation

NA WO - page 3-128

3 I-TLB ATTR read 
operation

NA WO - page 3-128

4 I-TLB PA read 
operation

NA WO - page 3-128

5 I-HVAB read 
operation

NA WO - page 3-130

6 I-Tag read 
operation

NA WO - page 3-132

7 I-Data read 
operation

NA WO - page 3-133

c4 0-7 Undefined - - - -

c5 0-1 Undefined - - - -

2 GHB write 
operation

NA WO - page 3-135

3 BTB write 
operation

NA WO - page 3-134

4-7 Undefined - - - -

c6 0-7 Undefined - - - -

c7 0-1 Undefined - - - -

2 GHB read 
operation

NA WO - page 3-135

3 BTB read operation NA WO - page 3-134

4-7 Undefined - - - -

c8 0 L2 Data 0 Register NA R/W Unpredictable page 3-136

1 L2 Data 1 Register NA R/W Unpredictable page 3-136
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System Control Coprocessor 
2 L2 tag, L2 valid 
write operation

NA WO - page 3-140

3 L2 data, L2 dirty 
write operation

NA WO - page 3-140

4 L2 parity and ECC 
write operation

NA WO - page 3-139

5 L2 Data 2 Register NA R/W Unpredictable page 3-136

6-7 Undefined - - - -

c9 0-1 Undefined - - - -

2 L2 tag, L2 valid 
read operation

NA WO - page 3-140

3 L2 data, L2 dirty 
read operation

NA WO - page 3-140

4 L2 parity and ECC 
read operation

NA WO - page 3-139

5-7 Undefined - - - -

c10-c15 0-7 Undefined - - - -

1-7 c0-c15 0-7 Undefined - - - -

a. Reset value depends on external signals, that is, SILICONID[31:0]. 
b. Some bits in this register are banked and some are secure modify only.
c. Reset value depends on external signals, that is, VINITHI, CFGTE, and CFGNMFI. The value shown in this table assumes these 

signals are set to zero.
d. Reset value depends on the number of PLE channels implemented.
e. Reset value depends on external signals, that is, nFIQ and nIRQ. The value shown in this table assumes these signals are set to 

zero.
f. This register is read/write in privileged modes and read-only in User mode.
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System Control Coprocessor 
3.2.2 c0, Main ID Register

The purpose of the Main ID Register is to return the device ID code that contains information 
about the processor.

The Main ID Register is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-1 shows the bit arrangement of the Main ID Register.

Figure 3-1 Main ID Register format

The contents of the Main ID Register depend on the specific implementation. Table 3-4 shows 
how the bit values correspond with the Main ID Register functions.

Note
 If an Opcode_2 value corresponding to an non-implemented or reserved ID register with CRm 
equal to c0 and Opcode_1 = 0 is encountered, the system control coprocessor returns the value 
of the Main ID Register.

Table 3-5 shows the results of attempted access for each mode.

To access the Main ID Register, read CP15 with:

VariantImplementor

31 23 20 19 16 15 4 3 0

Architecture Primary part number Revision

24

Table 3-4 Main ID Register bit functions

Bits Field Function

[31:24] Implementor Indicates the implementor, ARM:
0x41.

[23:20] Variant Indicates the variant number, or major revision, of the processor:
0x3.

[19:16] Architecture Indicates that the architecture is given in the feature registers:
0xF.

[15:4] Primary part number Indicates the part number, Cortex-A8:
0xC08.

[3:0] Revision Indicates the revision number, or minor revision, of the processor:
0x2.

Table 3-5 Results of access to the Main ID Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined 

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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System Control Coprocessor 
MRC p15, 0, <Rd>, c0, c0, 0 ; Read Main ID Register

See c0, Processor Feature Register 0 on page 3-23 - c0, Instruction Set Attributes Registers 5-7 
on page 3-39 for more information on the processor features.

3.2.3 c0, Cache Type Register

The purpose of the Cache Type Register is to determine the instruction and data cache minimum 
line length in bytes to enable a range of addresses to be invalidated.

The Cache Type Register is:
• a read-only register 
• accessible in privileged modes only.

The contents of the Cache Type Register depend on the specific implementation. Figure 3-2 
shows the bit arrangement of the Cache Type Register.

Figure 3-2 Cache Type Register format

Table 3-6 shows how the bit values correspond with the Cache Type Register functions.

Table 3-7 shows the results of attempted access for each mode.

IMinLineDMinLine

L1 IpolicyCache writeback granule

1

31 28 27 24 23 20 19 16 15 14 13 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3-6 Cache Type Register bit functions

Bits Field Function

[31:28] - Always read as 4'b1000.

[27:24] Cache writeback granule Cache writeback granule. Log2 of the number of words of the maximum size of 
memory that can be overwritten as a result of the eviction of a cache entry that has 
had a memory location within it modified.
4'b0010 = cache writeback granule size is 4 words.

[23:20] - Always read as 4'b0000.

[19:16] DMinLine Number of words of smallest line length in L1 or L2 data cache:
4'b0100 = sixteen 32-bit word data line length.

[15:14] L1 Ipolicy VIPT instruction cache support:
2'b10 = virtual index, physical tag L1 Ipolicy.

[13: 4] - Always read as b0000000000.

[3:0] IMinLine Number of words of smallest line length in L1 or L2 instruction cache:
4'b0100 = sixteen 32-bit word data line length.

Table 3-7 Results of access to the Cache Type Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined
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System Control Coprocessor 
To access the Cache Type Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 1 ; Read Cache Type Register

3.2.4 c0, TCM Type Register

The processor does not implement Tightly Coupled Memory (TCM). The TCM Type Register 
specifies that the processor does not implement instruction and data TCMs.

The TCM Type Register is:
• a read-only register that is Read-As-Zero
• accessible in privileged modes only.

Table 3-8 shows the results of attempted access for each mode.

To access the TCM Type Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 2; Read TCM Type Register

3.2.5 c0, TLB Type Register

The purpose of the TLB Type Register is to return the number of lockable entries for both the 
instruction and data TLBs.

Each TLB has 32 entries organized as fully associative and lockable TLB.

The TLB Type Register is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-3 shows the bit arrangement of the TLB Type Register.

Figure 3-3 TLB Type Register format

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

Table 3-8 Results of access to the TCM Type Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

UReserved

31 24 23 16 15 8 7 1 0

ILsize DLsize Reserved
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System Control Coprocessor 
Table 3-9 shows how the bit values correspond with the TLB Type Register functions.

Table 3-10 shows the results of attempted access for each mode.

To access the TLB Type Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 3 ; Read TLB Type Register

3.2.6 c0, Multiprocessor ID Register

The Multiprocessor ID Register indicates that the processor is a uniprocessor.

The Multiprocessor ID Register is:
• a read-only register that is Read-As-Zero
• accessible in privileged modes only.

Table 3-11 shows the results of attempted access for each mode.

To access the Multiprocessor ID Register, read CP15 with:

MRC p15, 0, <Rd>, c0, c0, 5; Read Multiprocessor ID Register

Table 3-9 TLB Type Register bit functions

Bits Field Function

[31:24] - Reserved, Read-As-Zero (RAZ).

[23:16] ILsize Instruction lockable size specifies the number of instruction TLB lockable entries:
0x20 = Processor has 32 lockable entries.

[15:8] DLsize Data lockable size specifies the number of unified or data TLB lockable entries:
0x20 = Processor has 32 lockable entries.

[7:1] - Reserved, RAZ.

[0] U Unified specifies if the TLB is unified or if there are separate instruction and data TLBs:
0x1 = Processor has separate instruction and data TLBs.

Table 3-10 Results of access to the TLB Type Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

Table 3-11 Results of access to the Multiprocessor ID Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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3.2.7 c0, Processor Feature Register 0

The purpose of Processor Feature Register 0 is to provide information about the execution state 
support and programmer’s model for the processor.

The Processor Feature Register 0 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-4 shows the bit arrangement of the Processor Feature Register 0.

Figure 3-4 Processor Feature Register 0 format

Table 3-12 shows how the bit values correspond with the Processor Feature Register 0 
functions.

Table 3-13 shows the results of attempted access for each mode.

To access the Processor Feature Register 0, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 0 ; Read Processor Feature Register 0

3.2.8 c0, Processor Feature Register 1

The purpose of Processor Feature Register 1 is to provide information about the execution state 
support and programmer’s model for the processor.

State3

31 16 15 8 7 3 0

State2 State1 State0

41112

Reserved

Table 3-12 Processor Feature Register 0 bit functions

Bits Field Function

[31:16] - Reserved, RAZ.

[15:12] State3 Indicates support for Thumb Execution Environment (ThumbEE):
0x1 = Processor supports ThumbEE.

[11:8] State2 Indicates support for Jazelle extension interface:
0x1 = Jazelle extension supported.

[7:4] State1 Indicates the type of Thumb encoding that the processor supports:
0x3 = Processor supports Thumb-2 encoding with all Thumb-2 instructions.

[3:0] State0 Indicates support for ARM instruction set:
0x1 = Processor supports ARM instructions.

Table 3-13 Results of access to the Processor Feature Register 0a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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The Processor Feature Register 1 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-5 shows the bit arrangement of the Processor Feature Register 1.

Figure 3-5 Processor Feature Register 1 format

Table 3-14 shows how the bit values correspond with the Processor Feature Register 1 
functions.

Table 3-15 shows the results of attempted access for each mode.

To access the Processor Feature Register 1, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 1 ; Read Processor Feature Register 1

3.2.9 c0, Debug Feature Register 0

The purpose of Debug Feature Register 0 is to provide information about the debug system for 
the processor.

The Debug Feature Register 0 is:
• a read-only register common to the Secure and Nonsecure states

31 12 11 8 7 4 3 0

Reserved

Microcontroller programmer’s model
Security extensions

Programmer’s model

Table 3-14 Processor Feature Register 1 bit functions

Bits Field Function

[31:12] - Reserved, RAZ.

[11:8] Microcontroller 
programmer’s model

Indicates support for microcontroller programmer’s model:
0x0 = Processor does not support microcontroller programmer’s model.

[7:4] Security extensions Indicates support for Security Extensions Architecture v1:
0x1 = Processor supports Security Extensions Architecture v1.

[3:0] Programmer’s model Indicates support for standard ARMv4 programmer’s model. All processor operating 
modes are supported:
0x1 = Processor supports the ARMv4 model.

Table 3-15 Results of access to Processor Feature Register 1a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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• accessible in privileged modes only.

Figure 3-6 shows the bit arrangement of the Debug Feature Register 0.

Figure 3-6 Debug Feature Register 0 format

Table 3-16 shows how the bit values correspond with the Debug Feature Register 0 functions.

Table 3-17 shows the results of attempted access for each mode.

To access the Debug Feature Register 0, read CP15 with:

Reserved

Microcontroller debug model – memory-mapped
Trace debug model – memory-mapped

Trace debug model – coprocessor-based
Core debug model – memory-mapped

Core debug model – coprocessor-based
Secure debug model – coprocessor-based

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Table 3-16 Debug Feature Register 0 bit functions

Bits Field Function

[31:24] - Reserved, RAZ.

[23:20] Microcontroller 
debug model – 
memory-mapped

Indicates support for the microcontroller debug model:
0x0 = Processor does not support the microcontroller debug 
model – memory-mapped.

[19:16] Trace debug model – 
memory-mapped

Indicates support for the trace debug model – memory-mapped:
0x1 = Processor supports the trace debug model – memory-mapped
0x0 = Processor does not support the trace debug model – memory-mapped.a

[15:12] Trace debug model – 
coprocessor-based

Indicates support for the coprocessor-based trace debug model:
0x0 = Processor does not support the trace debug model – coprocessor.

[11:8] Core debug model – 
memory mapped

Indicates support for the memory-mapped debug model:
0x4 = Processor supports the memory mapped debug model.

[7:4] Secure debug model – 
coprocessor-based

Indicates support for the secure debug model – coprocessor:
0x0 = Processor does not support the secure debug model – coprocessor.

[3:0] Core debug model – 
coprocessor-based

Indicates support for the coprocessor debug model:
0x0 = Processor does not support the coprocessor debug model.

a. A value of 0x0 indicates that the ETM option is not configured for the processor, see Configurable options on page 1-10

Table 3-17 Results of access to Debug Feature Register 0a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 3-25
ID060510 Non-Confidential



System Control Coprocessor 
MRC p15, 0, <Rd>, c0, c1, 2 ; Read Debug Feature Register 0

3.2.10 c0, Auxiliary Feature Register 0

The purpose of Auxiliary Feature Register 0 is to provide additional information about the 
features of the processor.

The Auxiliary Feature Register 0 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

In the processor, the Auxiliary Feature Register 0 reads as 0x00000000.

Table 3-18 shows the results of attempted access for each mode.

To access the Auxiliary Feature Register 0, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 3 ; Read Auxiliary Feature Register 0

3.2.11 c0, Memory Model Feature Register 0

The purpose of the Memory Model Feature Register 0 is to provide information about the 
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 0 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-7 shows the bit arrangement of the Memory Model Feature Register 0.

Figure 3-7 Memory Model Feature Register 0 format

Table 3-18 Results of access to Auxiliary Feature Register 0a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Reserved FCSE TCM PMSA VMSA

Auxiliary Control Register
Outer shareable

Cache coherence
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Table 3-19 shows how the bit values correspond with the Memory Model Feature Register 0 
functions.

Table 3-20 shows the results of attempted access for each mode.

To access the Memory Model Feature Register 0, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 4 ; Read Memory Model Feature Register 0

3.2.12 c0, Memory Model Feature Register 1

The purpose of the Memory Model Feature Register 1 is to provide information about the 
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 1 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-8 on page 3-28 shows the bit arrangement of the Memory Model Feature Register 1.

Table 3-19 Memory Model Feature Register 0 bit functions

Bits Field Function

[31:28] - Reserved, RAZ.

[27:24] FCSE Indicates support for fast context switch memory mappings:
0x1 = Processor supports FCSE.

[23:20] Auxiliary Control Register Indicates support for Auxiliary Control Register:
0x1 = Processor supports the Auxiliary Control Register.

[19:16] TCM Indicates support for TCM and associated DMA:
0x0 = Processor does not support TCM and DMA.

[15:12] Outer shareable Indicates support for outer shareable attribute:
0x0 = Processor does not support this model.

[11:8] Cache coherence Indicates support for cache coherency maintenance:
0x0 = Processor does not support this model.

[7:4] PMSA Indicates support for Protected Memory System Architecture (PMSA):
0x0 = Processor does not support PMSA.

[3:0] VMSA Indicates support for Virtual Memory System Architecture (VMSA).
0x3 = Processor supports:
• VMSA v7 including cache and TLB type register
• Extensions to ARMv6.

Table 3-20 Results of access to Memory Model Feature Register 0a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-8 Memory Model Feature Register 1 format

Table 3-21 shows how the bit values correspond with the Memory Model Feature Register 1 
functions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

BTB

L1 test clean operations
L1 unified cache maintenance operations

L1 Harvard cache maintenance operations
L1 unified cache line maintenance operations by set and way

L1 Harvard cache line maintenance operations by set and way
L1 unified cache line maintenance operations by MVA

L1 Harvard cache line maintenance operations by MVA

Table 3-21 Memory Model Feature Register 1 bit functions

Bits Field Function

[31:28] BTB Indicates support for branch target buffer:
0x2 = Processor does not require flushing of BTB on VA change.

[27:24] L1 test clean operations Indicates support for test and clean operations on data cache, Harvard or unified 
architecture:
0x0 = no support in processor.

[23:20] L1 unified cache 
maintenance operations

Indicates support for L1 cache, all maintenance operations, unified architecture:
0x0 = no support in processor.

[19:16] L1 Harvard cache 
maintenance operations

Indicates support for L1 cache, all maintenance operations, Harvard architecture.
0x0 = Processor supports:
• invalidate instruction cache including branch target buffer
• invalidate data cache
• invalidate instruction and data cache including branch target buffer.
The processor does not support Harvard version.

[15:12] L1 unified cache line 
maintenance operations 
by set and way

Indicates support for L1 cache line maintenance operations by set and way, unified 
architecture:
0x0 = no support in processor.
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Table 3-22 shows the results of attempted access for each mode.

To access the Memory Model Feature Register 1, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 5 ; Read Memory Model Feature Register 1

3.2.13 c0, Memory Model Feature Register 2

The purpose of the Memory Model Feature Register 2 is to provide information about the 
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 2 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-9 on page 3-30 shows the bit arrangement of the Memory Model Feature Register 2.

[11:8] L1 Harvard cache line 
maintenance operations 
by set and way

Indicates support for L1 cache line maintenance operations by set and way, 
Harvard architecture.
0x0 = Processor supports:
• clean data cache line by set and way
• clean and invalidate data cache line by set and way
• invalidate data cache line by set and way
• invalidate instruction cache line by set and way.

[7:4] L1 unified cache line 
maintenance operations 
by MVA

Indicates support for L1 cache line maintenance operations by MVA, unified 
architecture:
0x0 = no support in processor.

[3:0] L1 Harvard cache line 
maintenance operations 
by MVA

Indicates support for L1 cache line maintenance operations by MVA, Harvard 
architecture.
0x0 = Processor supports:
• clean data cache line by MVA
• invalidate data cache line by MVA
• invalidate instruction cache line by MVA
• clean and invalidate data cache line by MVA
• invalidation of branch target buffer by MVA.

Table 3-21 Memory Model Feature Register 1 bit functions (continued)

Bits Field Function

Table 3-22 Results of access to Memory Model Feature Register 1a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-9 Memory Model Feature Register 2 format

Table 3-23 shows how the bit values correspond with the Memory Model Feature Register 2 
functions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Hardware 
access flag WFI

Memory 
barrier 

features

Unified TLB maintenance operations
Harvard TLB maintenance operations

Harvard L1 cache maintenance range operations
Harvard L1 background prefetch cache range operations

Harvard L1 foreground prefetch cache range operations

Table 3-23 Memory Model Feature Register 2 bit functions

Bits Field Function

[31:28] Hardware access 
flag

Indicates support for hardware access flag:
0x0 = Processor does not support hardware access flag.

[27:24] WFI Indicates support for wait-for-interrupt stalling:
0x1 = Processor supports wait-for-interrupt.

[23:20] Memory barrier 
features

Indicates support for memory barrier operations.
0x2 = Processor supports:
• data synchronization barrier
• instruction synchronization barrier
• data memory barrier.

[19:16] Unified TLB 
maintenance 
operations

Indicates support for TLB maintenance operations, unified architecture.
0x0 = Processor does not support:
• invalidate all entries
• invalidate TLB entry by MVA
• invalidate TLB entries by ASID match.

[15:12] Harvard TLB 
maintenance 
operations

Indicates support for TLB maintenance operations, Harvard architecture.
0x2 = Processor supports:
• invalidate instruction and data TLB, all entries
• invalidate instruction TLB, all entries
• invalidate data TLB, all entries
• invalidate instruction TLB by MVA
• invalidate data TLB by MVA
• invalidate instruction and data TLB entries by ASID match
• invalidate instruction TLB entries by ASID match
• invalidate data TLB entries by ASID match.
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Table 3-24 shows the results of attempted access for each mode.

To access the Memory Model Feature Register 2, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 6 ; Read Memory Model Feature Register 2

3.2.14 c0, Memory Model Feature Register 3

The purpose of the Memory Model Feature Register 3 is to provide information about the 
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 3 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-10 shows the bit arrangement of the Memory Model Feature Register 3.

Figure 3-10 Memory Model Feature Register 3 format

[11:8] Harvard L1 cache 
maintenance 
range operations

Indicates support for cache maintenance range operations, Harvard architecture:
0x0 = no support in processor.

[7:4] Harvard L1 
background 
prefetch cache 
range operations

Indicates support for background prefetch cache range operations, Harvard architecture:
0x0 = no support in processor.

[3:0] Harvard L1 
foreground 
prefetch cache 
range operations

Indicates support for foreground prefetch cache range operations, Harvard architecture:
0x0 = no support in processor.

Table 3-23 Memory Model Feature Register 2 bit functions (continued)

Bits Field Function

Table 3-24 Results of access to Memory Model Feature Register 2a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

Hierarchical cache maintenance operations by MVA
Hierarchical cache maintenance operations by set and way

31 8 7 3 0

Reserved

28 27 12

Supersection

Branch predictor maintenance
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Table 3-25 shows how the bit values correspond with the Memory Model Feature Register 3 
functions.

Table 3-26 shows the results of attempted access for each mode.

To access the Memory Model Feature Register 3, read CP15 with:

MRC p15, 0, <Rd>, c0, c1, 7 ; Read Memory Model Feature Register 3

3.2.15 c0, Instruction Set Attributes Register 0

The purpose of the Instruction Set Attributes Register 0 is to provide information about the 
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 0 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-11 on page 3-33 shows the bit arrangement of the Instruction Set Attributes Register 0.

Table 3-25 Memory Model Feature Register 3 bit functions

Bits Field Function

[31:28] Supersection Indicates support for supersections:
0x0 = Processor supports supersections.

[27:12] - Reserved, RAZ.

[11:8] Branch predictor 
maintenance

Indicates support for branch predictor maintenance operations:
0x2 = Processor supports invalidate entire branch predictor array and invalidate 
branch predictor by MVA.

[7:4] Hierarchical cache 
maintenance operations 
by set and way

Indicates support for invalidate cache by set and way, clean by set and way, and 
invalidate and clean by set and way:
0x1 = Processor supports invalidate cache by set and way, clean by set and way, 
and invalidate and clean by set and way.

[3:0] Hierarchical cache 
maintenance operations 
by MVA

Indicates support for invalidate cache by MVA, clean by MVA, invalidate and 
clean by MVA, and invalidate all:
0x1 = Processor supports invalidate cache by MVA, clean by MVA, invalidate and 
clean by MVA, and invalidate all.

Table 3-26 Results of access to Memory Model Feature Register 3a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-11 Instruction Set Attributes Register 0 format

Table 3-27 shows how the bit values correspond with the Instruction Set Attributes Register 0 
functions.

Table 3-28 shows the results of attempted access for each mode.

To access the Instruction Set Attributes Register 0, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 0 ; Read Instruction Set Attributes Register 0

Reserved

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Divide instructions
Debug instructions

Coprocessor instructions
Compare and branch instructions

Bitfield instructions
Bit count instructions

Atomic instructions

Table 3-27 Instruction Set Attributes Register 0 bit functions

Bits Field Function

[31:28] - Reserved, RAZ.

[27:24] Divide instructions Indicates support for divide instructions:
0x0 = Processor does not support divide instructions.

[23:20] Debug instructions Indicates support for debug instructions:
0x1 = Processor supports BKPT.

[19:16] Coprocessor 
instructions

Indicates support for coprocessor instructions. This field reads as zero (RAZ).

[15:12] Compare and branch 
instructions

Indicates support for combined compare and branch instructions:
0x1 = Processor supports combined compare and branch instructions.

[11:8] Bitfield instructions Indicates support for bitfield instructions:
0x1 = Processor supports bitfield instructions.

[7:4] Bit count 
instructions

Indicates support for bit counting instructions:
0x1 = Processor supports CLZ.

[3:0] Atomic instructions Indicates support for atomic load and store instructions:
0x1 = Processor supports SWP and SWPB.

Table 3-28 Results of access to Instruction Set Attributes Register 0a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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3.2.16 c0, Instruction Set Attributes Register 1

The purpose of the Instruction Set Attributes Register 1 is to provide information about the 
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 1 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-12 shows the bit arrangement of the Instruction Set Attributes Register 1.

Figure 3-12 Instruction Set Attributes Register 1 format

Table 3-29 shows how the bit values correspond with the Instruction Set Attributes Register 1 
functions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Immediate
instructions

ITE
instructions

Extend
instructions

Exception 2
instructions

Exception 1
instructions

Endian
instructions

Inter-
working

instructions

Jazelle
instructions

Table 3-29 Instruction Set Attributes Register 1 bit functions

Bits Field Function

[31:28] Jazelle instructions Indicates support for Jazelle instructions:
0x1 = Processor supports BXJ and J bit in PSRs.

[27:24] Interworking instructions Indicates support for instructions that branch between ARM and Thumb code.
0x3 = Processor supports:
• BX, and T bit in PSRs
• BLX, and PC loads have BX behavior
• data-processing instructions in the ARM instruction set with the PC as 

the destination and the S bit cleared to 0, have the BX behavior.

[23:20] Immediate instructions Indicates support for immediate instructions:
0x1 = Processor supports immediate instructions.

[19:16] ITE instructions Indicates support for IfThen instructions:
0x1 = Processor supports IfThen instructions.

[15:12] Extend instructions Indicates support for sign or zero extend instructions.
0x2 = Processor supports:
• SXTB, SXTB16, SXTH, UXTB, UXTB16, and UXTH
• SXTAB, SXTAB16, SXTAH, UXTAB, UXTAB16, and UXTAH.

[11:8] Exception 2 instructions Indicates support for exception 2 instructions:
0x1 = Processor supports SRS, RFE, and CPS.

[7:4] Exception 1 instructions Indicates support for exception 1 instructions:
0x1 = Processor supports LDM(2), LDM(3) and STM(2).

[3:0] Endian instructions Indicates support for endianness control instructions:
0x1 = Processor supports SETEND and E bit in PSRs.
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Table 3-30 shows the results of attempted access for each mode.

To access the Instruction Set Attributes Register 1, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 1 ; Read Instruction Set Attributes Register 1

3.2.17 c0, Instruction Set Attributes Register 2

The purpose of the Instruction Set Attributes Register 2 is to provide information about the 
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 2 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-13 shows the bit arrangement for the Instruction Set Attributes Register 2.

Figure 3-13 Instruction Set Attributes Register 2 format

Table 3-31 shows how the bit values correspond with the Instruction Set Attributes Register 2 
functions.

Table 3-30 Results of access to Instruction Set Attributes Register 1a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
Memory 

hint
instructions

Load and 
store 

instructions

Interruptible
instructions

Multiply
instructions

Signed 
multiply

instructions

Unsigned 
multiply

instructions

PSR
instructions

Reversal
instructions

Table 3-31 Instruction Set Attributes Register 2 bit functions

Bits Field Function

[31:28] Reversal
instructions

Indicates support for reversal instructions.
0x2 = Processor supports:
• REV

• REV16

• REVSH

• RBIT.

[27:24] PSR
instructions

Indicates support for PSR instructions:
0x1 = Processor supports MRS and MSR exception return instructions for data processing.

[23:20] Unsigned
multiply
instructions

Indicates support for advanced unsigned multiply instructions.
0x2 = Processor supports:
• UMULL and UMLAL
• UMAAL.
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Table 3-32 shows the results of attempted access for each mode.

To access the Instruction Set Attributes Register 2, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 2 ; Read Instruction Set Attributes Register 2

3.2.18 c0, Instruction Set Attributes Register 3

The purpose of the Instruction Set Attributes Register 3 is to provide information about the 
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 3 is:
• a read-only registers common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-14 on page 3-37 shows the bit arrangement of Instruction Set Attributes Register 3.

[19:16] Signed
multiply
instructions

Indicates support for advanced signed multiply instructions.
0x3 = Processor supports:
• SMULL and SMLAL
• SMLABB, SMLABT, SMLALBB,SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, 

SMULBT, SMULTB, SMULTT, SMULWB, SMULWT, and Q flag in PSRs
• SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, 

SMMLSR, SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX.

[15:12] Multiply
instructions

Indicates support for multiply instructions:
0x2 = Processor supports MUL, MLA, and MLS.

[11:8] Interruptible
instructions

Indicates support for multi-access interruptible instructions:
0x0 = Processor does not support restartable LDM and STM.

[7:4] Memory
hint
instructions

Indicates support for memory hint instructions:
0x3 = Processor supports PLD, memory hint YIELD (true NOP), and PLI (NOP).

[3:0] Load and
store
instructions

Indicates support for load and store instructions:
0x1 = Processor supports LDRD and STRD.

Table 3-31 Instruction Set Attributes Register 2 bit functions (continued)

Bits Field Function

Table 3-32 Results of access to Instruction Set Attributes Register 2a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-14 Instruction Set Attributes Register 3 format

Table 3-33 shows how the bit values correspond with the Instruction Set Attributes Register 3 
functions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Synchronization primitive instructions

NOP 
instructions

Thumb 
copy 

instructions

Table 
branch 

instructions

SVC 
instructions

SIMD 
instructions

Saturate 
instructions

Thumb2 executable environment extension

Table 3-33 Instruction Set Attributes Register 3 bit functions

Bits Field Function

[31:28] Thumb2 
executable 
environment 
extension 
instructions

Indicates support for Thumb2 Executable Environment Extension instructions:
0x1 = Processor supports ENTERX and LEAVEX instructions and modifies the load behavior 
to include null checking.

[27:24] NOP
instructions

Indicates support for true NOP instructions:
0x1 = Processor supports true NOP instructions in both the Thumb and ARM instruction 
sets, and the capability for additional NOP compatible hints.

[23:20] Thumb copy
instructions

Indicates support for Thumb copy instructions:
0x1 = Processor supports Thumb MOV(3) low register ⇒ low register, and the CPY alias for 
Thumb MOV(3).

[19:16] Table branch
instructions

Indicates support for table branch instructions:
0x1 = Processor supports table branch instructions.

[15:12] Synchronization
primitive
instructions

Indicates support for synchronization primitive instructions.
0x2 = Processor supports:
• LDREX and STREX
• LDREXB, LDREXH, LDREXD, STREXB, STREXH, STREXD, and CLREX.

[11:8] SVC
instructions

Indicates support for SVC instructions:
0x1 = Processor supports SVC.

[7:4] SIMD
instructions

Indicates support for Single Instruction Multiple Data (SIMD) instructions.
0x3 = Processor supports:
PKHBT, PKHTB, QADD16, QADD8, QADDSUBX, QSUB16, QSUB8, QSUBADDX, SADD16, SADD8, SADDSUBX, 
SEL, SHADD16, SHADD8, SHADDSUBX, SHSUB16, SHSUB8, SHSUBADDX, SSAT, SSAT16, SSUB16, SSUB8, 
SSUBADDX, SXTAB16, SXTB16, UADD16, UADD8, UADDSUBX, UHADD16, UHADD8, UHADDSUBX, UHSUB16, 
UHSUB8, UHSUBADDX, UQADD16, UQADD8, UQADDSUBX, UQSUB16, UQSUB8, UQSUBADDX, USAD8, USADA8, 
USAT, USAT16, USUB16, USUB8, USUBADDX, UXTAB16, UXTB16, and the GE[3:0] bits in the PSRs.

[3:0] Saturate
instructions

Indicates support for saturate instructions:
0x1 = Processor supports QADD, QDADD, QDSUB, QSUB and Q flag in PSRs.
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Table 3-34 shows the results of attempted access for each mode.

To access the Instruction Set Attributes Register 3, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 3 ; Read Instruction Set Attributes Register 3

3.2.19 c0, Instruction Set Attributes Register 4

The purpose of Instruction Set Attributes Register 4 is to provide information about the 
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 4 is:
• a read-only register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-15 shows the bit arrangement of the Instruction Set Attributes Register 4.

Figure 3-15 Instruction Set Attributes Register 4 format

Table 3-35 shows how the bit values correspond with the Instruction Set Attributes Register 4 
functions.

Table 3-34 Results of access to Instruction Set Attributes Register 3a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

31 24 23 20 19 16 15 12 11 8 7 4 3 0

Exclusive 
instructions

Barrier 
instructions

SMC 
instructions

Write-back 
instructions

With-shift 
instructions

Unprivileged 
instructionsReserved

Table 3-35 Instruction Set Attributes Register 4 bit functions

Bits Field Function

[31:24] - Reserved, RAZ.

[23:20] Exclusive instructions Indicates support for exclusive instructions: 
0x0 = The processor supports CLREX, LDREX{B|H}, and STREX{B|H}.

[19:16] Barrier instructions Indicates support for barrier instructions: 
0x1 = The processor supports DMB, DSB, and ISB.

[15:12] SMC instructions Indicates support for SMC instructions:
0x1 = The processor supports SMC.
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Table 3-36 shows the results of attempted access for each mode.

To access the Instruction Set Attributes Register 4, read CP15 with:

MRC p15, 0, <Rd>, c0, c2, 4 ; Read Instruction Set Attributes Register 4

3.2.20 c0, Instruction Set Attributes Registers 5-7

The purpose of the Instruction Set Attributes Registers 5-7 are reserved, and they read as 
0x00000000.

3.2.21 c0, Cache Level ID Register

The purpose of the Cache Level ID Register is to indicate the cache levels that are implemented. 
The register indicates the level of unification, LoU, and the level of coherency, LoC. For 
example, in the CortexA8 processor, the point where both data and instruction are unified is the 
Level 2 cache, therefore, the LoU is 3'b001. The point where both data and instruction are 
coherent is the AMBA AXI interface, therefore, the LoC is 3'b010. 

The Cache Level ID Register is:
• a read-only register common for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-16 on page 3-40 shows the bit arrangement of the Cache Level ID Register.

[11:8] Write-back instructions Indicates support for write-back instructions:
0x1 = The processor supports all defined write-back addressing modes.

[7:4] With-shift instructions Indicates support for with-shift instructions.
0x4 = The processor supports:
• shifts of loads and stores over the range LSL 0-3
• constant shift options
• register-controlled shift options.

[3:0] Unprivileged instructions Indicates support for Unprivileged instructions:
0x2 = The processor supports LDR{SB|B|SH|H}T.

Table 3-35 Instruction Set Attributes Register 4 bit functions (continued)

Bits Field Function

Table 3-36 Results of access to Instruction Set Attributes Register 4a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-16 Cache Level ID Register format

Table 3-37 shows how the bit values correspond with the Cache Level ID Register functions.

Table 3-38 shows the results of attempted access for each mode.

To access the Cache Level ID Register, read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 1 ; Read Cache Level ID Register

3.2.22 c0, Silicon ID Register

The purpose of the Silicon ID Register is to enable software to identify the silicon manufacturer 
and revision. The reset value of this register is the SILICONID[31:0] input.

The Silicon ID Register is:
• a read-only register common for Secure and Nonsecure states

CL 8 CL 7 CL 6 CL 5 CL 4 CL 3 CL 2 CL 1

Reserved

31 30 29 27 26 24 23 21 20 18 17 15 14 12 11 10 8 6 5 3 2 0

LoU LoC

Table 3-37 Cache Level ID Register bit functions

Bits Field Function

[31:30] - Reserved, RAZ

[29:27] LoU 3'b001 = level of unification

[26:24] LoC 3'b010 = level of coherency

[23:21] CL 8 3'b000 = no cache at Cache Level (CL) 8

[20:18] CL 7 3'b000 = no cache at CL 7

[17:15] CL 6 3'b000 = no cache at CL 6

[14:12] CL 5 3'b000 = no cache at CL 5

[11:9] CL 4 3'b000 = no cache at CL 4

[8:6] CL 3 3'b000 = no cache at CL 3

[5:3] CL 2 3'b000 = no cache at CL 2
3'b100 = unified cache at CL 2

[2:0] CL 1 3'b011 = separate instruction and data cache at CL 1

Table 3-38 Results of access to the Cache Level ID Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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• accessible in privileged modes only.

Figure 3-17 shows the bit arrangement of the Silicon ID Register.

Figure 3-17 Silicon ID Register format

Table 3-39 shows how the bit values correspond with the Silicon ID Register functions.

Table 3-40 shows the results of attempted access for each mode.

To access the Silicon ID Register, read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 7 ; Read Silicon ID Register

3.2.23 c0, Cache Size Identification Registers

The purpose of these registers is to provide cache size information for up to eight levels of cache 
containing instruction, data, or unified caches. The processor contains L1 and L2 cache. The 
Cache Size Selection Register determines the Cache Size Identification Register to select.

The Cache Size Identification Registers are:
• read-only registers common for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-18 on page 3-42 shows the bit arrangement of the Cache Size Identification Register.

Major 
revisionImplementor

31 23 16 15 4 3 0

Feature Reserved Minor 
revision

24 8 7

Table 3-39 Silicon ID Register bit functions

Bits Field Function

[31:24] Implementor This field contains a code that identifies the silicon manufacturer. ARM assigns this code. 

[23:16] Feature This field is implementation-defined.

[15:8] - Reserved, RAZ.

[7:4] Major revision This field is implementation-defined.

[3:0] Minor revision This field is implementation-defined.

Table 3-40 Results of access to the Silicon ID Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-18 Cache Size Identification Register format

Table 3-41 shows how the bit values correspond with the Cache Size Identification Register 
functions. See Table 3-42 for valid bit field encodings.

Table 3-42 shows the individual bit field and complete register encodings for the Cache Size 
Identification Register. Use this to match the cache size and level of cache set by the Cache Size 
Selection Register (CSSR). See c0, Cache Size Selection Register on page 3-43.

Line 
Size

31 30 29 28 27 13 12 2 0

NumSets Associativity

3

WT
WB
RA
WA

Table 3-41 Cache Size Identification Register bit functions

Bits Field Function

[31] WT Indicates support available for write-through:
0 = write-through not supported
1 = write-through supported.

[30] WB Indicates support available for write-back:
0 = write-back not supported
1 = write-back supported.

[29] RA Indicates support available for read allocation:
0 = read allocation not supported
1 = read allocation supported.

[28] WA Indicates support available for write allocation:
0 = write allocation not supported
1 = write allocation supported.

[27:13] NumSets Indicates number of sets - 1.

[12:3] Associativity Indicates number of ways - 1.

[2:0] LineSize Indicates (log2(number of words in cache line)) - 2.

Table 3-42 Encodings of the Cache Size Identification Register

CSSR Size
Complete 
register 
encoding

Register bit field encoding

WT WB RA WA NumSets Associativity LineSize

0x0 16KB 0xE007E01A 1 1 1 0 0x003F 0x3 0x2

32KB 0xE00FE01A 1 1 1 0 0x007F 0x3 0x2

0x1 16KB 0x2007E01A 0 0 1 0 0x003F 0x3 0x2

32KB 0x200FE01A 0 0 1 0 0x007F 0x3 0x2
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Table 3-43 shows the results of attempted access for each mode.

To access the Cache Size Identification Register, read CP15 with:

MRC p15, 1, <Rd>, c0, c0, 0; Cache Size Identification Register

3.2.24 c0, Cache Size Selection Register

The purpose of the Cache Size Selection Register is to hold the value that the processor uses to 
select the Cache Size Identification Register to use. 

The Cache Size Selection Register is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-19 shows the bit arrangement of the Cache Size Selection Register.

Figure 3-19 Cache Size Selection Register format

0x2 0KB 0xF0000000 1 1 1 1 0x0000 0x0 0x0

128KB 0xF01FE03A 1 1 1 1 0x00FF 0x7 0x2

256KB 0xF03FE03A 1 1 1 1 0x01FF 0x7 0x2

512KB 0xF07FE03A 1 1 1 1 0x03FF 0x7 0x2

1024KB 0xF0FFE03A 1 1 1 1 0x07FF 0x7 0x2

0x3-0xF - 0x0 Reserved

Table 3-42 Encodings of the Cache Size Identification Register  (continued)

CSSR Size
Complete 
register 
encoding

Register bit field encoding

WT WB RA WA NumSets Associativity LineSize

Table 3-43 Results of access to the Cache Size Identification Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

Reserved Level

4 3 1 0

InD

31
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Table 3-44 shows how the bit values correspond with the Cache Size Selection Register 
functions.

Table 3-45 shows the results of attempted access for each mode.

To access the Cache Size Selection Register, read CP15 with:

MRC p15, 2, <Rd>, c0, c0, 0 ; Read Cache Size Selection Register
MCR p15, 2, <Rd>, c0, c0, 0 ; Write Cache Size Selection Register

3.2.25 c1, Control Register

The purpose of the Control Register is to provide control and configuration of:
• memory alignment, endianness, protection, and fault behavior
• MMU, cache enables, and cache replacement strategy
• interrupts and behavior of interrupt latency
• location for exception vectors
• program flow prediction.

The Control Register is:
• a 32-bit read/write register
• accessible in privileged modes only
• partially banked.

Figure 3-20 on page 3-45 shows the bit arrangement of the Control Register.

Table 3-44 Cache Size Selection Register bit functions

Bits Field Function

[31:4] - Reserved. UNP, SBZ.

[3:1] Level Cache level selected
3'b000 = level 1
3'b001 = level 2
3'b010 - 3'b111 = reserved.

[0] InD Instruction (1) or Data/Unified (0).

Table 3-45 Results of access to the Cache Size Selection Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
Data

Secure 
Data

Nonsecure 
Data

Nonsecure 
Data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-20 Control Register bit assignments

Table 3-46 shows how the bit values correspond with the Control Register functions.

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 0

MI

NMFI
Reserved

Reserved

ReservedReserved V Z C A

EE

TRE
AFE
TE

Table 3-46 Control Register bit functions

Bits Field Accessa Function

[31] - - Reserved. UNP, SBZP.

[30] TE Banked Thumb exception enable bit:
0 = Enables ARM exception generation. On exception entry, the CPSR T bit is 0 and J 
bit is 0.
1 = Enables Thumb exception generation. On exception entry, the CPSR T bit is 1 and 
J bit is 0.
The primary input CFGTE defines the reset value.

[29] AFE Banked This is the Access Flag Enable bit. It controls whether VMSAv7 redefines the AP[0] bit 
as an access flag or whether the software maintains binary compatibility with VMSAv6:
0 = AP[0] behavior defined, reset value
1 = access flag behavior defined.
The TLB must be invalidated after changing the AFE bit.

[28] TRE Banked This bit controls the TEX remap functionality in the MMU, see MMU 
software-accessible registers on page 6-8:
0 = TEX remap disabled. Normal ARMv6 or later behavior, reset value.
1 = TEX remap enabled. TEX[2:1] become translation table bits for OS.

[27] NMFI Read-only This is the Non-Maskable Fast Interrupt enable bit. The reset value is determined by 
CFGNMFI. The pin cannot be configured by software:
0 = FIQ exceptions can be masked by software
1 = FIQ exceptions cannot be masked by software.

[26] - - Reserved. RAZ, SBZP.

[25] EE bit Banked Determines how the E bit in the CPSR is set on an exception:
0 = CPSR E bit is set to 0 on an exception
1 = CPSR E bit is set to 1 on an exception.
The primary input CFGEND0 defines the reset value of the EE bit.

[24:14] - - This field returns 11'b01100010100 when read.
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Attempts to read or write the Control Register from secure or nonsecure User modes result in 
an Undefined Instruction exception.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 2-35.

Table 3-47 shows the actions that result from attempted access for each mode.

To access the Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 0 ; Read Control Register

[13] V bit Banked Determines the location of exception vectors, see c12, Secure or Nonsecure Vector Base 
Address Register on page 3-117. The primary input VINITHI defines the reset value of 
the V bit:
0 = Normal exception vectors selected, reset value. The Vector Base Address Registers 
determine the address range.
1 = High exception vectors selected, address range = 0xFFFF0000-0xFFFF001C.

[12] I bit Banked Determines if instructions can be cached in any instruction cache at any cache level:
0 = instruction caching disabled at all levels, reset value
1 = instruction caching enabled.

[11] Z bit Banked Enables program flow prediction:
0 = program flow prediction disabled, reset value
1 = program flow prediction enabled.

[10:7] - - Reserved. RAZ, SBZP.

[6:3] - - Reserved. Read-As-One (RAO), Should-Be-One or Preserved (SBOP).

[2] C bit Banked Determines if data can be cached in a data or unified cache at any cache level:
0 = data caching disabled at all levels, reset value
1 = data caching enabled.

[1] A bit Banked Enables strict alignment of data to detect alignment faults in data accesses:
0 = strict alignment fault checking disabled, reset value
1 = strict alignment fault checking enabled.

[0] M bit Banked Enables the MMU:
0 = MMU disabled, reset value
1 = MMU enabled.

a. The reset values for Secure and Non-secure banked access for the Control Register are the same.

Table 3-46 Control Register bit functions (continued)

Bits Field Accessa Function

Table 3-47 Results of access to the Control Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
bit

Secure 
bit

Nonsecure 
bit

Nonsecure 
bit

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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MCR p15, 0, <Rd>, c1, c0, 0 ; Write Control Register

Table 3-48 shows the behavior of the processor caching instructions or data for the I bit and C 
bit of the c1, Control Register on page 3-44 and the L2EN bit of the c1, Auxiliary Control 
Register.

3.2.26 c1, Auxiliary Control Register

The purpose of the Auxiliary Control Register is to control processor-specific features that are 
not architecturally described.

The Auxiliary Control Register is:
• partially banked
• accessible in privileged modes only.

Figure 3-21 on page 3-48 shows the bit arrangement of the Auxiliary Control Register.

Table 3-48 Behavior of the processor when enabling caches

I bit C bit L2EN bit Description

0 0 x Instruction cache, data cache, L2 cache disabled for all instruction and data requests

0 1 0 Instruction cache disabled, data cache enabled, L2 cache disabled for all instruction and 
data requests

0 1 1 Instruction cache disabled, data cache enabled, L2 cache enabled for all instruction and 
data requests

1 0 x Instruction cache enabled, data cache disabled, L2 cache disabled for all instruction and 
data requests

1 1 0 Instruction cache enabled, data cache enabled, L2 cache disabled for all instruction and 
data requests

1 1 1 Instruction cache, data cache, and L2 cache enabled for all requests
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Figure 3-21 Auxiliary Control Register format

Table 3-49 shows how the bit values correspond with the Auxiliary Control Register functions.

Reserved

31 4 3 2 1 06 5716 15 14 13 12 11 10 9 8

Force ETM clock

Reserved
L1PE

L2EN

ASA
L1NEON

IBE

Force NEON clock
Force main clock

Force NEON  single issue
Force load/store single issue

Force single issue
PLDNOP
WFINOP

Disable branch size mispredicts

19 18 17

CP14/CP15 instruction serialization
CP14/CP15 idle

CP14/CP15 flush

L1ALIAS

Clock stop request disable

202930

L2 hardware reset disable
L1 hardware reset disable

CP15 maintenance pipeline

21

Table 3-49 Auxiliary Control Register bit functions

Bits Field
Security State

Function
NS S

[31] L2 hardware reset 
disable

RAZ R Monitors the L2 hardware reset disable bit, 
L2RSTDISABLE:
0 = the L2 valid RAM contents are reset by hardware
1 = the L2 valid RAM contents are not reset by hardware.

[30] L1 hardware reset 
disable

RAZ R Monitors the L1 hardware reset disable bit, 
L1RSTDISABLE:
0 = the L1 valid RAM contents are reset by hardware
1 = the L1 valid RAM contents are not reset by hardware.

[29:21] - R R/W Reserved. UNP, SBZP.

[20] Cache maintenance 
pipeline

R R/W Specify pipelining of CP15 data cache maintenance 
operations. CP15 data cache clean and invalidate or data cache 
invalidate operations can be executed by the processor in a 
pipelined fashion.
0 = pipelined cache maintenance operations, reset value
1 = non-pipelined cache maintenance operations.
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[19] Clock stop request 
disable

R R/W Disables CLKSTOPREQ:
0 = CLKSTOPREQ causes the processor to stop the internal 
clocks and to assert the CLKSTOPACK output, reset value
1 = disables the CLKSTOPREQ functionality.

[18] CP14/CP15 instruction 
serialization

R R/W Some CP14 and CP15 instructions execute natively in a serial 
manner. This control bit imposes serialization on those CP14 
and CP15 instructions that are not natively serialized:
0 = does not enforce serialization of CP14 or CP15 
instructions, reset value
1 = enforces serialization of CP14 and CP15 instructions.

[17] CP14/CP15 wait on idle R R/W Some CP14 or CP15 instructions that execute in a serial 
manner require that all outstanding memory accesses 
complete before execution of the instruction. This control bit 
imposes wait on idle protocol of CP14 and CP15 serialized 
instructions that do not natively wait on idle:
0 = does not enforce wait on idle of CP14 and CP15 
instructions, reset value
1 = enforces wait on idle for serialized CP14 or CP15 
instructions.

[16] CP14/CP15 pipeline 
flush

R R/W After execution of some CP14 or CP15 instructions, the 
processor natively performs a pipeline flush before it executes 
the next instructions. This control bit imposes a pipeline flush 
on CP14 and CP15 instructions that do not natively include 
one:
0 = does not impose a pipeline flush on CP14 or CP15 
instructions, reset value
1 = imposes a pipeline flush on CP14 and CP15 instructions.

[15] Force ETM clock R R/W Forces ETM clock enable active:
0 = does not prevent the processor clock generator from 
stopping the ETM clock, reset value
1 = prevents the processor clock generator from stopping the 
ETM clock.

[14] Force NEON clock R R/W Forces NEON clock enable active:
0 = does not prevent the processor clock generator from 
stopping the NEON clock, reset value
1 = prevents the processor clock generator from stopping the 
NEON clock.

[13] Force main clock R R/W Forces the main processor clock enable active:
0 = does not prevent the processor clock generator from 
stopping the main clock, reset value
1 = prevents the processor clock generator from stopping the 
main clock.

[12] Force NEON single 
issue

R R/W Forces single issue of Advanced SIMD instructions:
0 = does not force single issue of Advanced SIMD 
instructions, reset value
1 = forces single issue of Advanced SIMD instructions.

Table 3-49 Auxiliary Control Register bit functions (continued)

Bits Field
Security State

Function
NS S
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[11] Force load/store single 
issue

R R/W Forces single issue of load/store instructions:
0 = does not force single issue of load/store instructions, reset 
value
1 = forces single issue of load/store instructions.

[10] Force single issue R R/W Forces single issue of all instructions:
0 = does not force single issue of all instructions, reset value
1 = forces single issue of all instructions.

[9] PLDNOP R R/W Executes PLD instructions as a NOP instruction:
0 = PLD instructions behave as defined in the ARM Architecture 
Reference Manual, reset value
1 = PLD instructions are executed as NOP instructions.
The PLD instruction acts as a hint to the memory system. If the 
PLDNOP is set to 0, the processor performs a memory access 
for the PLD instruction. If the PLDNOP is set to 1, the processor 
does not perform a memory access. See the ARM Architecture 
Reference Manual for more information on the PLD instruction.

[8] WFINOP R R/W Executes WFI instructions as a NOP instruction:
0 = executes WFI instructions as defined in the ARM 
Architecture Reference Manual, reset value
1 = executes WFI instructions as NOP instruction.
The WFI instruction places the processor in a low-power state 
and stops it from executing any more until an interrupt or a 
debug request occurs. If the WFINOP is set to 0, then the WFI 
instruction places the processor in a low-power state. If the 
WFINOP is set to 1, the WFI instruction is executed as a NOP and 
does not place the processor in a low-power state. See the 
ARM Architecture Reference Manual for more information on 
the WFI instruction.

[7] Disable branch size 
mispredicts

R R/W Prevents BTB branch size mispredicts:
0 = enables BTB branch size mispredicts, reset value
1 = executes the CP15 Invalidate All and Invalidate by MVA 
instructions as specified and prevents BTB branch size 
mispredicts.

[6] IBE R R/W Invalidates BTB enable:
0 = executes the CP15 Invalidate All and Invalidate by MVA 
instructions as a NOP instruction, reset value
1 = executes the CP15 Invalidate All and Invalidate by MVA 
instructions as specified.

Table 3-49 Auxiliary Control Register bit functions (continued)

Bits Field
Security State

Function
NS S
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Table 3-50 shows the results of attempted access for each mode.

To access the Auxiliary Control Register you must use a read modify write technique. To access 
the Auxiliary Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 1 ; Read Auxiliary Control Register
MCR p15, 0, <Rd>, c1, c0, 1 ; Write Auxiliary Control Register

[5] L1NEON R R/W Enables caching NEON data within the L1 data cache:
0 = disables caching NEON data within the L1 data cache, 
reset value
1 = enables caching NEON data within the L1 data and L2 
cache.

Note
 NEON L1 caching must be enabled for best performance 
when the L2 cache is off or not present.

[4] ASA R R/W Enables speculative accesses on AXI:
0 = disables speculative accesses, reset value
1 = enables speculative accesses.

[3] L1PE R R/W Enables L1 cache parity detection:
0 = L1 cache parity disabled for both instruction and data 
caches, reset value
1 = L1 cache parity enabled.

[2] - R R/W Reserved. UNP, SBZ.

[1] L2EN B B Enables L2 cache:
0 = L2 cache disabled
1 = L2 cache enabled. See Table 3-48 on page 3-47 for details.
The reset value for this bit is 1.

[0] L1ALIAS R R/W Enables L1 data cache hardware alias checks:
0 = L1 data cache hardware alias support enabled, reset value
1 = L1 data cache hardware alias support disabled.

Table 3-49 Auxiliary Control Register bit functions (continued)

Bits Field
Security State

Function
NS S

Table 3-50 Results of access to the Auxiliary Control Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Data Data Banked 
Data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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3.2.27 c1, Coprocessor Access Control Register

The purpose of the Coprocessor Access Control Register is to set access rights for the 
coprocessors CP0 through CP13. This register has no effect on access to CP14, the debug 
control coprocessor, or CP15, the system control coprocessor. This register also provides a 
means for software to determine if any particular coprocessor, CP0-CP13, exists in the system.

The Coprocessor Access Control Register is:
• a read/write register common to Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-22 shows the bit arrangement of the Coprocessor Access Control Register.

Figure 3-22 Coprocessor Access Control Register format

Table 3-51 shows how the bit values correspond with the Coprocessor Access Control Register 
functions.

Access to coprocessors in the Nonsecure state depends on the permissions set in the c1, 
Nonsecure Access Control Register on page 3-56.

Attempts to read or write the Coprocessor Access Control Register access bits depend on the 
corresponding bit for each coprocessor in c1, Nonsecure Access Control Register on page 3-56. 
Table 3-52 shows the results of attempted access to coprocessor access bits for each mode.

To access the Coprocessor Access Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c0, 2 ; Read Coprocessor Access Control Register

Reserved

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cp13 cp12 cp11 cp10 cp9 cp8 cp7 cp6 cp5 cp4 cp3 cp2 cp1 cp0

Table 3-51 Coprocessor Access Control Register bit functions

Bits Field Function

[31:28] - Reserved. UNP, SBZP.

- cp<n>a Defines access permissions for each coprocessor. Access denied is the reset condition and is the 
behavior for nonexistent coprocessors:
b00 = Access denied, reset value. Attempted access generates an Undefined Instruction exception. 
b01 = Privileged mode access only.
b10 = Reserved.
b11 = Privileged and User mode access.

a. n is the coprocessor number between 0 and 13.

Table 3-52 Results of access to the Coprocessor Access Control Registera

Nonsecure
Access Control
Register bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data b00 Ignored
Undefined Undefined

1 Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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MCR p15, 0, <Rd>, c1, c0, 2 ; Write Coprocessor Access Control Register

You must execute an Instruction Memory Barrier (IMB) sequence immediately after an update 
of the Coprocessor Access Control Register, see Memory Barriers in the ARM Architecture 
Reference Manual. You must not attempt to execute any instructions that are affected by the 
change of access rights between the IMB sequence and the register update.

To determine if any particular coprocessor exists in the system, write the access bits for the 
coprocessor of interest with a value other than b00. If the coprocessor does not exist in the 
system the access rights remain set to b00.

Note
 • For the processor, there is a direct relationship between the CPEXIST[13:0] inputs and 

the Coprocessor Access Control Register bits cp13-cp01.
Each CPEXIST input represents the existence of a coprocessor that you use to enable a 
particular coprocessor. If the appropriate CPEXIST input is set to a:
— logical 0, access is denied to that coprocessor or reset state as defined by the register
— logical 1, then you can reprogram that coprocessor.

• You must enable the Coprocessor Access Control Register before accessing any NEON 
or VFP system register.

• You must set CPEXIST[11:10] to b11 to use the NEON or VFP coprocessor. All other 
CPEXIST bits must be set to 0.

• You must set CPEXIST[11:10] to b00 if you configure the processor without the NEON 
coprocessor.

3.2.28 c1, Secure Configuration Register

The purpose of the Secure Configuration Register is to define:
• the current state of the processor as Secure or Nonsecure states
• in which state the core executes exceptions
• the ability to modify the A and I bits in the CPSR in the Nonsecure state.

The Secure Configuration Register is:
• a read/write register
• accessible in secure privileged modes only.

Figure 3-23 shows the bit arrangement of the Secure Configuration Register.

Figure 3-23 Secure Configuration Register format

31 6 5 4 3 2 1 0

Reserved

AW
FW
EA

FIQ
IRQ
NS
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Table 3-53 shows how the bit values correspond with the Secure Configuration Register 
functions.

Note
 When the core runs in Monitor mode the state is considered secure regardless of the state of the 
NS bit. However, Monitor mode code can access nonsecure banked copies of registers if the NS 
bit is set to 1. See the ARM Architecture Reference Manual for information on the effect of the 
Security Extensions on the CP15 registers.

The permutations of the bits in the Secure Configuration Register have certain security 
implications. Table 3-54 shows the results for combinations of the FW and FIQ bits.

Table 3-53 Secure Configuration Register bit functions

Bits Field Function

[31:7] - Reserved. UNP, SBZP.

[6] - Reserved, RAZ.

[5] AW Determines if the A bit in the CPSR can be modified when in the Nonsecure state:
0 = disable modification of the A bit in the CPSR in the Nonsecure state, reset value
1 = enable modification of the A bit in the CPSR in the Nonsecure state.

[4] FW Determines if the F bit in the CPSR can be modified when in the Nonsecure state:
0 = disable modification of the F bit in the CPSR in the Nonsecure state, reset value
1 = enable modification of the F bit in the CPSR in the Nonsecure state.

[3] EA Determines External Abort behavior for Secure and Nonsecure states:
0 = branch to abort mode on an External Abort exception, reset value
1 = branch to Monitor mode on an External Abort exception.

[2] FIQ Determines FIQ behavior for Secure and Nonsecure states:
0 = branch to FIQ mode on an FIQ exception, reset value
1 = branch to Monitor mode on an FIQ exception.

[1] IRQ Determines IRQ behavior for Secure and Nonsecure states:
0 = branch to IRQ mode on an IRQ exception, reset value
1 = branch to Monitor mode on an IRQ exception.

[0] NS bit Defines the operation of the processor:
0 = secure, reset value
1 = nonsecure.

Table 3-54 Operation of the FW and FIQ bits

FW FIQ Function

1 0 FIQs handled locally

0 1 FIQs can be configured to give deterministic secure interrupts

1 1 Nonsecure state able to make denial of service attack, avoid use of this function

0 0 For Nonsecure state, avoid because the core might enter an infinite loop for nonsecure FIQ
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Table 3-55 shows the results for combinations of the AW and EA bits.

To access the Secure Configuration Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c1, 0 ; Read Secure Configuration Register data
MCR p15, 0, <Rd>, c1, c1, 0 ; Write Secure Configuration Register data

An attempt to access the Secure Configuration Register from any state other than secure 
privileged results in an Undefined Instruction exception.

3.2.29 c1, Secure Debug Enable Register

The purpose of the Secure Debug Enable Register is to provide control of permissions for debug 
in secure User mode. See Chapter 12 Debug for more details.

The Secure Debug Enable Register is:
• a register in the Secure state only
• accessible in secure privileged modes only.

Figure 3-24 shows the bit arrangement of the Secure Debug Enable Register.

Figure 3-24 Secure Debug Enable Register format

Table 3-56 shows how the bit values correspond with the Secure Debug Enable Register 
functions.

Table 3-55 Operation of the AW and EA bits

AW EA Function

1 0 Aborts handled locally

0 1 All external aborts trapped to Monitor mode

1 1 All external imprecise Data Aborts trapped to Monitor mode but the Nonsecure state can hide secure 
aborts from the Monitor, avoid use of this function

0 0 For Nonsecure state, avoid this because the core can unexpectedly enter an abort mode

Reserved

31 1 02

SUNIDEN

SUIDEN

Table 3-56 Secure Debug Enable Register bit functions

Bits Field Function

[31:2] - Reserved. UNP, SBZP.

[1] SUNIDEN Enables secure User noninvasive debug:
0 = noninvasive debug is not permitted in secure User mode, reset value
1 = noninvasive debug is permitted in secure User mode.

[0] SUIDEN Enables secure User invasive debug:
0 = invasive debug is not permitted in secure User mode, reset value
1 = invasive debug is permitted in secure User mode.
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Table 3-57 shows the results of attempted access for each mode.

To access the Secure Debug Enable Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c1, 1 ; Read Secure Debug Enable Register
MCR p15, 0, <Rd>, c1, c1, 1 ; Write Secure Debug Enable Register

3.2.30 c1, Nonsecure Access Control Register

The purpose of the Nonsecure Access Control Register is to define the nonsecure access 
permission for:
• coprocessors
• internal PLE.

Note
 This register has no effect on nonsecure access permissions for the debug control coprocessor, 
CP14, or the system control coprocessor, CP15.

The Nonsecure Access Control Register is:
• a read/write register in the Secure state
• a read-only register in the Nonsecure state
• only accessible in privileged modes.

Figure 3-25 shows the bit arrangement of the Nonsecure Access Control Register.

Figure 3-25 Nonsecure Access Control Register format

Table 3-57 Results of access to the Secure Debug Enable Registera

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Data Undefined Undefined Undefined Undefined Undefined Undefined

31 19 18 17 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

CP13
CP12
CP11
CP10

CP0
CP1
CP2
CP3
CP4
CP5
CP6
CP7
CP8CP9

15

PLE
TL
CL

Reserved
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Table 3-58 shows how the bit values correspond with the Nonsecure Access Control Register 
functions.

To access the Nonsecure Access Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c1, c1, 2 ; Read Nonsecure Access Control Register data
MCR p15, 0, <Rd>, c1, c1, 2 ; Write Nonsecure Access Control Register data

Table 3-59 shows the results of attempted access for each mode.

3.2.31 c2, Translation Table Base Register 0

The purpose of the Translation Table Base Register 0 is to hold the physical address of the first 
level translation table.

You use Translation Table Base Register 0 for process-specific addresses, where each process 
maintains a separate first level translation table. On a context switch you must modify both 
Translation Table Base Register 0 and the Translation Table Base Control Register, if 
appropriate.

The Translation Table Base Register 0 is:
• a read/write register banked for Secure and Nonsecure states

Table 3-58 Nonsecure Access Control Register bit functions

Bits Field Function

[31:19] - Reserved. UNP, SBZP.

[18] PLE Determines if an access to PLE registers is permitted in Nonsecure state:
0 = PLE registers cannot be used in Nonsecure state
1 = PLE registers can be accessed in both Secure and Nonsecure state.
Nonsecure translation tables are used for address translation when the PLE bit is set to 1.

[17] TL Determines if lockable translation table entries can be allocated in Nonsecure state:
0 = lockable TLB entries cannot be allocated, reset
1 = lockable TLB entries can be allocated.

[16] CL Determines if lockdown entries can be allocated within the L2 cache in Nonsecure state:
0 = entries cannot be allocated, reset value
1 = entries can be allocated.
If CL is set to 0, then any L2 cache lockdown operation takes an Undefined Instruction exception.

[15:14] - Reserved. UNP, SBZ.

[13:0] CP<n> Determines permission to access the given coprocessor in the Nonsecure state, <n> is the number 
of coprocessor from 0 to 13:
0 = secure access only, reset value
1 = secure or nonsecure access.

Table 3-59 Results of access to the Auxiliary Control Registera

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Data Data Undefined Undefined Undefined Undefined Undefined
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• accessible in privileged modes only.

Figure 3-26 shows the bit arrangement of the Translation Table Base Register 0.

Figure 3-26 Translation Table Base Register 0 format

Table 3-60 shows how the bit values correspond with the Translation Table Base Register 0 
functions.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 2-35.

Table 3-61 shows the results of attempted access for each mode.

S CPTranslation table base 0

14-N 13-N

Reserved RGN

31 5 4 3 2 1 0

Table 3-60 Translation Table Base Register 0 bit functions

Bits Field Function

[31:14-N]a Translation table 
base 0

Holds the translation table base address, the physical address of the first level 
translation table. 

[13-N:5] - Reserved. RAZ, SBZ.

[4:3] RGN Indicates the outer cacheable attributes for translation table walking:
b00 = outer noncacheable
b01 = write-back, write allocate 
b10 = write-through, no allocate on write
b11 = write-back, no allocate on write.

[2] P Read-As-Zero and ignore writes. This bit is not implemented on this processor.

[1] S Indicates the translation table walk is to nonshared or to shared memory:
0 = nonshared
1 = shared.

[0] C Indicates the translation table walk is inner cacheable or inner noncacheable:
0 = inner noncacheable
1 = inner cacheable.

a. For an explanation of N, see c2, Translation Table Base Control Register on page 3-60.

Table 3-61 Results of access to the Translation Table Base Register 0a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure data Secure data Nonsecure data Nonsecure data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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A write to the Translation Table Base Register 0 updates the address of the first level translation 
table from the value in bits [31:7] of the written value, to account for the maximum value of 7 
for N. The number of bits of this address that the processor uses, and the required alignment of 
the first level translation table, depends on the value of N, see c2, Translation Table Base 
Control Register on page 3-60.

A read from the Translation Table Base Register 0 returns the complete address of the first level 
translation table in bits [31:7] of the read value, regardless of the value of N.

To access the Translation Table Base Register 0, read or write CP15 c2 with:

MRC p15, 0, <Rd>, c2, c0, 0 ; Read Translation Table Base Register
MCR p15, 0, <Rd>, c2, c0, 0 ; Write Translation Table Base Register

Note
 The processor cannot perform a translation table walk from L1 cache. Therefore, if C is set to 
1, to ensure coherency, you must store translation tables in inner write-through memory. If you 
store the translation tables in an inner write-back memory region, you must clean the 
appropriate cache entries after modification so that the mechanism for the hardware translation 
table walks sees them.

3.2.32 c2, Translation Table Base Register 1

The purpose of the Translation Table Base Register 1 is to hold the physical address of the first 
level table. The expected use of the Translation Table Base Register 1 is for OS and I/O 
addresses.

The Translation Table Base Register 1 is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-27 shows the bit arrangement of the Translation Table Base Register 1.

Figure 3-27 Translation Table Base Register 1 format

Table 3-62 shows how the bit values correspond with the Translation Table Base Register 1 
functions.

S CPTranslation table base 1

31 14 13 0

Reserved

123

RGN

45

Table 3-62 Translation Table Base Register 1 bit functions

Bits Field Function

[31:14] Translation table 
base 1

Holds the translation table base address, the physical address of the first level translation 
table.

[13:5] - Reserved. RAZ, SBZ.

[4:3] RGN Indicates the outer cacheable attributes for translation table walking:
b00 = outer noncacheable
b01 = write-back, write allocate 
b10 = write-through, no allocate on write
b11 = write-back, no allocate on write.
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Table 3-63 shows the results of attempted access for each mode.

A write to the Translation Table Base Register 1 updates the address of the first level translation 
table from the value in bits [31:14] of the written value. Bits [13:5] Should-Be-Zero. The 
Translation Table Base Register 1 must reside on a 16KB page boundary.

To access the Translation Table Base Register 1, read or write CP15 with:

MRC p15, 0, <Rd>, c2, c0, 1 ; Read Translation Table Base Register 1
MCR p15, 0, <Rd>, c2, c0, 1 ; Write Translation Table Base Register 1

Note
 The processor cannot perform a translation table walk from L1 cache. Therefore, if C is set to 
1, to ensure coherency, you must store translation tables in inner write-through memory. If you 
store the translation tables in an inner write-back memory region, you must clean the 
appropriate cache entries after modification so that the mechanism for the hardware translation 
table walks sees them.

3.2.33 c2, Translation Table Base Control Register

The purpose of the Translation Table Base Control Register is to determine if a translation table 
miss for a specific VA uses, for its translation table walk, either:

• Translation Table Base Register 0. The recommended use is for task-specific addresses 

• Translation Table Base Register 1. The recommended use is for operating system and I/O 
addresses. 

Figure 3-28 on page 3-61 shows the bit arrangement of the Translation Table Base Control 
Register.

[2] P Reserved, RAZ and ignore writes. This bit is not implemented on this processor.

[1] S Indicates the translation table walk is to nonshared or to shared memory:
0 = nonshared
1 = shared.

[0] C Indicates the translation table walk is inner cacheable or inner noncacheable:
0 = inner noncacheable
1 = inner cacheable.

Table 3-62 Translation Table Base Register 1 bit functions (continued)

Bits Field Function

Table 3-63 Results of access to the Translation Table Base Register 1a

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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Figure 3-28 Translation Table Base Control Register format

Table 3-64 shows how the bit values correspond with the Translation Table Base Control 
Register functions.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 2-35.

Reserved N

31 6 5 4 3 2 1 0

PD1
PD0
SBZ

Table 3-64 Translation Table Base Control Register bit functions

Bits Field Function

[31:6] - Reserved. UNP, SBZ.

[5] PD1 Specifies occurrence of a translation table walk on a TLB miss when using Translation Table Base 
Register 1. When translation table walk is disabled, a section translation fault occurs instead on a 
TLB miss:
0 = The processor performs a translation table walk on a TLB miss, with secure or nonsecure 
privilege appropriate to the current Secure or Nonsecure state. This is the reset value.
1 = The processor does not perform a translation table walk. If a TLB miss occurs with Translation 
Table Base Register 1 in use, the processor returns a section translation fault.

[4] PD0 Specifies occurrence of a translation table walk on a TLB miss when using Translation Table Base 
Register 0. When translation table walk is disabled, a section translation fault occurs instead on a 
TLB miss:
0 = The processor performs a translation table walk on a TLB miss, with secure or nonsecure 
privilege appropriate to the current Secure or Nonsecure state. This is the reset value.
1 = The processor does not perform a translation table walk. If a TLB miss occurs with Translation 
Table Base Register 0 in use, the processor returns a section translation fault.

[3] - Reserved. UNP, SBZ.

[2:0] N Specifies the boundary size of Translation Table Base Register 0:
b000 = 16KB, reset value
b001 = 8KB
b010 = 4KB
b011 = 2KB
b100 = 1KB
b101 = 512B
b110 = 256B
b111 = 128B.
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Table 3-65 shows the results of attempted access for each mode. 

To access the Translation Table Base Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c2, c0, 2 ; Read Translation Table Base Control Register
MCR p15, 0, <Rd>, c2, c0, 2 ; Write Translation Table Base Control Register

A translation table base register is selected in the following fashion:

• If N is set to 0, always use Translation Table Base Register 0. This is the default case at 
reset. It is backwards compatible with ARMv5 and earlier processors. 

• If N is set to a value greater than 0, and bits [31:32-N] of the VA are all zeros, use 
Translation Table Base Register 0. Otherwise, use Translation Table Base Register 1. N 
must be in the range 0-7.

Note
 The processor cannot perform a translation table walk from L1 cache. Therefore, if C is set to 
1, to ensure coherency, you must store translation tables in inner write-through memory. If you 
store the translation tables in an inner write-back memory region, you must clean the 
appropriate cache entries after modification so that the mechanism for the hardware translation 
table walks sees them.

3.2.34 c3, Domain Access Control Register

The purpose of the Domain Access Control Register is to hold the access permissions for a 
maximum of 16 domains.

The Domain Access Control Register is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-29 shows the bit arrangement of the Domain Access Control Register.

Figure 3-29 Domain Access Control Register format

Table 3-65 Results of access to the Translation Table Base Control Register

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefineda Undefined Undefined Undefined

a. The access gives an Undefined Instruction exception when the coprocessor instruction is executed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
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Table 3-66 shows how the bit values correspond with the Domain Access Control Register 
functions.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 2-35.

Table 3-67 shows the results of attempted access for each mode.

To access the Domain Access Control Register, read or write CP15 with:

MRC p15, 0, <Rd>, c3, c0, 0 ; Read Domain Access Control Register
MCR p15, 0, <Rd>, c3, c0, 0 ; Write Domain Access Control Register

3.2.35 c5, Data Fault Status Register

The purpose of the Data Fault Status Register (DFSR) is to hold the source of the last data fault.

The Data Fault Status Register is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-30 shows the bit arrangement of the Data Fault Status Register when the data abort is 
not imprecise. When the data abort is imprecise, only bits [3:0] are valid.

Figure 3-30 Data Fault Status Register format

Table 3-66 Domain Access Control Register bit functions

Bits Field Function

- D<n>a The fields D15-D0 in the register define the access permissions for each one of the 16 domains. These 
domains can be either sections, large pages, or small pages of memory:
b00 = No access. Any access generates a domain fault.
b01 = Client. Accesses are checked against the access permission bits in the TLB entry.
b10 = Reserved. Any access generates a domain fault.
b11 = Manager. Accesses are not checked against the access permission bits in the TLB entry, so a 
permission fault cannot be generated. Attempting to execute code in a page that has the TLB eXecute 
Never (XN) attribute set does not generate an abort.

a. n is the Domain number in the range between 0 and 15

Table 3-67 Results of access to the Domain Access Control Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

0 StatusDomainS

31 13 12 11 10 9 8 7 4 3 0

0Reserved

SD
RW
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Table 3-68 shows how the bit values correspond with the Data Fault Status Register functions.

Note
 When the SCR EA bit is set to 1, see c1, Secure Configuration Register on page 3-53, the 
processor writes to the Secure Data Fault Status Register on a Monitor entry caused by an 
external abort.

Table 3-68 Data Fault Status Register bit functions

Bits Field Function

[31:13] - Reserved. UNP, SBZ.

[12] SD Indicates whether an AXI Decode or Slave error caused an abort. This bit is only valid for external 
aborts. For all other aborts this bit Should-Be-Zero:
0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.

[11] RW Indicates whether a read or write access caused an abort:
0 = read access caused the abort, reset value
1 = write access caused the abort.

[10] S Part of the Status field. See bits [3:0] in this table. The reset value is 0.

[9:8] - Reserved, RAZ and ignore writes.

[7:4] Domain Indicates which one of the 16 domains, D15-D0, is accessed when a data fault occurs. This field 
takes values 0-15.

[3:0] Status Indicates the type of exception generated. To determine the data fault, bits [12] and [10] must be 
used in conjunction with bits [3:0]. The following encodings are listed in priority order, highest 
first:
• b000001 alignment fault
• b000100 instruction cache maintenance fault
• bx01100 L1 translation, precise external abort
• bx01110 L2 translation, precise external abort
• b011100 L1 translation precise parity error
• b011110 L2 translation precise parity error
• b000101 translation fault, section
• b000111 translation fault, page
• b000011 access flag fault, section
• b000110 access flag fault, page
• b001001 domain fault, section
• b001011 domain fault, page
• b001101 permission fault, section
• b001111 permission fault, page
• bx01000 precise external abort, nontranslation
• bx10110 imprecise external abort
• b011000 imprecise error, parity or ECC
• b000010 debug event.
Any unused encoding not listed is reserved.
Where x represents bit [12] in the encoding, bit [12] can be either:
0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.
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To access the Data Fault Status Register, read or write CP15 with:

MRC p15, 0, <Rd>, c5, c0, 0 ; Read Data Fault Status Register
MCR p15, 0, <Rd>, c5, c0, 0 ; Write Data Fault Status Register

3.2.36 c5, Instruction Fault Status Register

The purpose of the Instruction Fault Status Register (IFSR) is to hold the source of the last 
instruction fault. 

The Instruction Fault Status Register is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only. 

Figure 3-31 shows the bit arrangement of the Instruction Fault Status Register.

Figure 3-31 Instruction Fault Status Register format

Table 3-69 shows how the bit values correspond with the Instruction Fault Status Register 
functions.

Reserved StatusReservedS

31 13 12 11 10 9 4 3 0

Reserved
SD

Table 3-69 Instruction Fault Status Register bit functions

Bits Field Function

[31:13] - Reserved. UNP, SBZ.

[12] SD Indicates whether an AXI Decode or Slave error caused an abort. This bit is only valid for external 
aborts. For all other aborts this bit Should-Be-Zero:
0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.

[11] - Reserved. UNP, SBZ.
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Note
 When the SCR EA bit is set to 1, see c1, Secure Configuration Register on page 3-53, the 
processor writes to the Secure Instruction Fault Status Register on a Monitor entry caused by an 
external abort.

To access the Instruction Fault Status Register, read or write CP15 with:

MRC p15, 0, <Rd>, c5, c0, 1 ; Read Instruction Fault Status Register
MCR p15, 0, <Rd>, c5, c0, 1 ; Write Instruction Fault Status Register

3.2.37 c5, Auxiliary Fault Status Registers

The Auxiliary Fault Status Register is provided for compatibility with all ARMv7-A designs. 
This is true for both the instruction and data auxiliary FSR. The processor always reads this as 
RAZ. All writes are ignored. 

The Auxiliary Fault Status Register is:
• a read-only register banked for Secure and Nonsecure states
• accessible in privileged modes only.

[10] S Part of the Status field. See bits [3:0] in this table.

[9:4] - Reserved. UNP, SBZ.

[3:0] Status Indicates the type of exception generated. To determine the data fault, bits [12] and [10] must be 
used in conjunction with bits [3:0]. The following encodings are listed in priority order, highest first:
• bx01100 L1 translation, precise external abort
• bx01110 L2 translation, precise external abort
• b011100 L1 translation precise parity error
• b011110 L2 translation precise parity error
• b000101 translation fault, section
• b000111 translation fault, page
• b000011 access flag fault, section
• b000110 access flag fault, page
• b001001 domain fault, section
• b001011 domain fault, page
• b001101 permission fault, section
• b001111 permission fault, page
• bx01000 precise external abort, nontranslation
• b011001 precise parity error
• b000010 debug event.
Any unused encoding not listed is reserved.
Where x represents bit [12] in the encoding, bit [12] can be either:
0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.

Table 3-69 Instruction Fault Status Register bit functions (continued)

Bits Field Function
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Table 3-70 shows the results of attempted access for each mode.

To access the Auxiliary Fault Status Registers, read or write CP15 with: 

MRC p15, 0, <Rd>, c5, c1, 0; Read Data Auxiliary Fault Status Register
MCR p15, 0, <Rd>, c5, c1, 0; Write Data Auxiliary Fault Status Register
MRC p15, 0, <Rd>, c5, c1, 1; Read Instruction Auxiliary Fault Status Register
MCR p15, 0, <Rd>, c5, c1, 1; Write Instruction Auxiliary Fault Status Register

There is no physical register for Auxiliary Data Fault Status Register or Auxiliary Instruction 
Fault Status Register as the register is always RAZ.

3.2.38 c6, Data Fault Address Register

The purpose of the Data Fault Address Register (DFAR) is to hold the Modified Virtual Address 
(MVA) of the fault when a precise abort occurs.

The DFAR is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

The Data Fault Address Register bits [31:0] contain the MVA where the precise abort occurred.

Table 3-71 shows the results of attempted access for each mode.

To access the DFAR, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c0, 0 ; Read Data Fault Address Register
MCR p15, 0, <Rd>, c6, c0, 0 ; Write Data Fault Address Register

A write to this register sets the DFAR to the value of the data written. This is useful for a 
debugger to restore the value of the DFAR.

The processor also updates the DFAR on debug exception entry because of watchpoints. See 
Effect of debug exceptions on CP15 registers and WFAR on page 12-54 for more information.

Table 3-70 Results of access to the Auxiliary Fault Status Registersa

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

Table 3-71 Results of access to the Data Fault Address Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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3.2.39 c6, Instruction Fault Address Register

The purpose of the Instruction Fault Address Register (IFAR) is to hold the address of 
instructions that cause a prefetch abort.

The IFAR is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

The Instruction Fault Address Register bits [31:1] contain the instruction fault MVA and bit [0] 
is RAZ.

Table 3-72 shows the results of attempted access for each mode.

To access the IFAR, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c0, 2 ; Read Instruction Fault Address Register
MCR p15, 0, <Rd>, c6, c0, 2 ; Write Instruction Fault Address Register

A write to this register sets the IFAR to the value of the data written. This is useful for a 
debugger to restore the value of the IFAR.

3.2.40 c7, Cache operations

The purpose of c7 is to manage the associated cache levels. The maintenance operations are 
formed into two management groups:

• Set and way:
— clean
— invalidate
— clean and invalidate.

• MVA:
— clean
— invalidate
— clean and invalidate.

In addition, the maintenance operations use the following definitions:

Point of coherency 
The time when the imposition of any more cache becomes transparent for 
instruction, data, and translation table walk accesses to that address by any 
processor in the system.

Point of unification 
The time when the instruction and data caches, and the TLB translation table 
walks have merged for a uniprocessor system.

Table 3-72 Results of access to the Instruction Fault Address Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure data Secure data Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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Note
 • Reading from c7, except for reads from the Physical Address Register (PAR), causes an 

Undefined Instruction exception.

• All accesses to c7 can only be executed in a privileged mode of operation, except Data 
Synchronization Barrier, Flush Prefetch Buffer, and Data Memory Barrier. These can be 
executed in User mode. Attempting to execute a privileged instruction in User mode 
results in an Undefined Instruction exception.

• For information on the behavior of the invalidate, clean, and prefetch operations in the 
secure and nonsecure operations, see the ARM Architecture Reference Manual.

Data formats for the cache operations

The possible formats for the data supplied to the cache maintenance and prefetch buffer 
operations depend on the specific operation:
• Set and way
• MVA on page 3-70
• SBZ on page 3-71.

Table 3-73 shows the data value supplied to each cache maintenance and prefetch buffer 
operations, See also Coprocessor instructions on page 16-10 for the effect on these operations 
of the setting of bit [20] of the Auxiliary Control Register.

Set and way

Figure 3-32 on page 3-70 shows the set and way format for invalidate and clean operations.

Table 3-73 Register c7 cache and prefetch buffer maintenance operations

CRm Opcode_2 Function Data

c5 0 Invalidate all instruction caches to PoU. Also flushes branch target cache.a SBZ

c5 1 Invalidate instruction cache line by MVA to PoC. MVA

c5 4 Prefetch flush. The prefetch buffer is flushed.b SBZ

c5 6 Invalidate entire branch predictor array. SBZ

c5 7 Invalidate MVA from branch predictor array MVA

c6 1 Invalidate Data or Unified cache line by MVA to PoC. MVA

c6 2 Invalidate Data or Unified cache line by Set/Way. Set/Way

c10 1 Clean Data or Unified cache line by MVA to PoC. MVA

c10 2 Clean Data or Unified cache line by Set/Way. Set/Way

c11 1 Clean Data or Unified cache line by MVA to PoU. MVA

c14 1 Clean and Invalidate Data or Unified cache line by MVA to PoC. MVA

c14 2 Clean and Invalidate Data or Unified cache line by Set/Way. Set/Way

a. Only applies to separate instruction caches, does not apply to unified caches.
b. Available in User mode.
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Figure 3-32 c7 format for set and way

Table 3-74 shows how the bit values correspond with the Cache Operation functions for set and 
way format operations.

For the processor, the L1 and L2 cache are configurable at implementation time. Therefore, the 
set and way fields are unique to the configured cache sizes. Table 3-75 shows the values of A, 
L, and S for L1 cache sizes, and Table 3-76 shows the values of A, L, and S for L2 cache sizes.

Table 3-76 shows the values of A, L, and S for L2 cache sizes and the resultant bit range for 
Way, Set, and Level. See Table 3-74 and Figure 3-32.

See c0, Cache Type Register on page 3-20 for more information on cache sizes.

MVA

Figure 3-33 on page 3-71 shows the MVA format for invalidate, clean, and prefetch operations.

Set

Reserved

Way

L+S-1 0

Reserved LevelReserved

134L-1LL+S31 31-A32-A

Table 3-74 Functional bits of c7 for set and way

Bits Field Function

[31:32-A] Way Selects the way for the c7 set and way cache operation.

[31-A:L+S] - Reserved, SBZ.

[L+S-1:L] Set Selects the set for the c7 set and way cache operation.

[L-1:4] - Reserved, SBZ.

[3:1] Level Selects the cache level for the c7 set and way operation. 0 indicates cache level 1 is selected. 

[0] - Reserved, SBZ.

Table 3-75 Values of A, L, and S for L1 cache sizes

L1 A L S Way Set Level

16KB 2 6 6 [31:30] [11:6] [3:1]

32KB 2 6 7 [31:30] [12:6] [3:1]

Table 3-76 Values of A, L, and S for L2 cache sizes

L2 A L S Way Set Level 

0KB 3 6 0 [31:29] - [3:1]

128KB 3 6 8 [31:29] [13:6] [3:1] 

256KB 3 6 9 [31:29] [14:6] [3:1]

 512KB 3 6 10 [31:29] [15:6] [3:1]

1024KB 3 6 11 [31:29] [16:6] [3:1]
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Figure 3-33 c7 format for MVA

Table 3-77 shows how the bit values correspond with the Cache Operation functions for MVA 
format operations.

SBZ

The value supplied Should-Be-Zero. The value 0x00000000 must be written to the register.

VA to PA translation operations

The purpose of the VA to PA translation operations, nonsecure operations, is to provide a secure 
means to determine address translation between the Secure and Nonsecure states. VA to PA 
translations operate through:
• PA Register
• VA to PA translation in the current Secure or Nonsecure state on page 3-73
• VA to PA translation in the other Secure or Nonsecure state on page 3-74.

PA Register

The purpose of the Physical Address Register (PAR) is to hold:
• the Physical Address (PA) after a successful translation
• the source of the abort for an unsuccessful translation.

Table 3-78 on page 3-72 shows the purpose of the bits of the PAR for successful translations and 
Table 3-79 on page 3-73 shows the purpose of the bits of the PAR for unsuccessful translations.

The PAR is:
• a read/write register banked in Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-34 shows the bit arrangement of the PAR for successful translations. 

Figure 3-34 PA Register format for successful translation

Figure 3-35 on page 3-72 shows the bit arrangement of the PAR for unsuccessful translations.

Modified virtual address Reserved

31 5 06

Table 3-77 Functional bits of c7 for MVA

Bits Field Function

[31:6] Modified virtual address Specifies address to invalidate, clean, or prefetch

[5:0] - Reserved, SBZ

PA P 0

31 10 9 8 7 6 4 3 2 1 0

INNER

OUTER
Supersection

12 11

Reserved SH
NS
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Figure 3-35 PA Register format for unsuccessful translation

Table 3-78 shows how the bit values correspond with the PAR for a successful translation.

FSR[12,10,3:0] 1Reserved

31 7 6 1 0

Table 3-78 PA Register for successful translation bit functions

Bits Field Function

[31:12] PA Contains the physical address after a successful translation.

[11:10] - Reserved. UNP, SBZ.

[9] NS Indicates the state of the NS attribute bit in the translation 
table:
0 = secure memory
1 = nonsecure memory.

[8] P Not used in the processor.

[7] SH Indicates shareable memory:
0 = nonshared
1 = shared.

[6:4] INNER Indicates the inner attributes from the translation table:
b000 = noncacheable
b001 = strongly ordered
b010 = reserved
b011 = device
b100 = reserved
b101 = inner write-back, allocate on write
b110 = inner write-through, no allocate on write
b111 = inner write-back, no allocate on write.

[3:2] OUTER Indicates the outer attributes from the translation table:
b00 = noncacheable
b01 = write-back, allocate on write
b10 = write-through, no allocate on write
b11 = write-back, no allocate on write.

[1] Supersection Indicates if the result is a supersection:
0 = page is not a supersection, that is, PAR [31:12] contains 
PA[31:12], regardless of the page size.
1 = page is part of a supersection:
PAR[31:24] contains PA[31:24]
PAR[23:16] contains b00000000
PAR[15:12] contains b0000.

Note
 PA[23:12] is the same as VA[23:12] for supersections.

[0] - Indicates that the translation succeeded:
0 = translation successful.
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Table 3-79 shows how the bit values correspond with the PAR for an unsuccessful translation.

Attempts to access the PAR in User mode results in an Undefined Instruction exception.

Note
 The VA to PA translation can only generate an abort to the core if the operation failed because 
an external abort occurred on the possible translation table request. In this case, the processor 
does not update the PA Register. The processor updates the Data Fault Status Register and the 
Fault Address Register:

• if the EA bit in the Secure Configuration Register is set to 1, the secure versions of the 
two registers are updated and the processor traps the abort into Monitor mode

• if the EA bit in the Secure Configuration Register is not set to 1, the processor updates the 
secure or nonsecure versions of the two registers, depends whether the core is in Secure 
or Nonsecure state when the operation was issued.

For all other cases when the VA to PA operation fails, the processor only updates the PA 
Register, secure or nonsecure version, depends whether the core is in Secure or Nonsecure state 
when the operation was issued, with the Fault Status Register encoding and bit [0] set to 1. The 
Data Fault Status Register and Fault Address Register remain unchanged and the processor does 
not send an abort to the core.

To access the PA Register, read or write CP15 c7 with:

MRC p15, 0, <Rd>, c7, c4, 0 ; Read PA Register
MCR p15, 0, <Rd>, c7, c4, 0 ; Write PA Register

VA to PA translation in the current Secure or Nonsecure state

The purpose of the VA to PA translation in the current Secure or Nonsecure state is to translate 
the address with the current virtual mapping for either Secure or Nonsecure state.

The VA to PA translation in the current Secure or Nonsecure state use:
• CP15 c7
• four, write-only operations common to the Secure and Nonsecure states
• operations accessible in privileged modes only.

The operations work for privileged or User access permissions and returns information in the 
PA Register for aborts, when the translation is unsuccessful, or translation table information, 
when the translation succeeds.

Attempts to access the VA to PA translation operations in the current Secure or Nonsecure state 
in User mode result in an Undefined Instruction exception.

To access the VA to PA translation in the current Secure or Nonsecure state, write CP15 c7 with:

Table 3-79 PA Register for unsuccessful translation bit functions

Bits Field Function

[31:7] - Reserved. UNP, SBZ.

[6:1] FSR[12,10,3:0] Holds the FSR bits for the aborted address. See c5, Data Fault Status Register on page 3-63 
and c5, Auxiliary Fault Status Registers on page 3-66.

[0] - Indicates that the translation aborted:
1 = translation aborted.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 3-73
ID060510 Non-Confidential



System Control Coprocessor 
MCR p15, 0, <Rn>, c7, c8, 3 ; get VA = <Rn> and run VA-to-PA translation
; with User write permission.
; if the selected translation table has the
; User write permission, the PA is loaded in the PA
; Register, otherwise abort information is loaded in
; the PA Register.

MRC p15, 0, <Rd>, c7, c4, 0 ; read in <Rd> the PA value

Note
 • The VA that this operation uses is the true VA not the MVA.

• General register <Rn> contains the VA for translation. The result returns in the PA 
Register.

VA to PA translation in the other Secure or Nonsecure state

The purpose of the VA to PA translation in the other Secure or Nonsecure state is to translate the 
address with the current virtual mapping in the Nonsecure state while the core is in the Secure 
state.

The VA to PA translation in the other Secure or Nonsecure state use:
• CP15 c7
• four, write-only operations in the Secure state only
• operations accessible in privileged modes only.

The operations work in the Secure state for nonsecure privileged or nonsecure User access 
permissions and returns information in the PA Register for aborts, when the translation is 
unsuccessful, or translation table information, when the translation succeeds.

When a VA to PA translation occurs in the other state from the Secure state, the value of the NS 
bit for a successful translation is Unpredictable.

Attempts to access the VA to PA translation operations in the other Secure or Nonsecure state 
in any nonsecure or User mode result in an Undefined Instruction exception.

To access the VA to PA translation in the other Secure or Nonsecure state, write CP15 c7 with 
Opcode_2 set to:
• 4 for privileged read permission
• 5 for privileged write permission
• 6 for User read permission
• 7 for User write permission.

General register <Rn> contains the VA for translation. The result returns in the PA Register, for 
example:

MCR p15, 0, <Rn>, c7, c8, 4 ; get VA = <Rn> and run nonsecure translation
; with nonsecure privileged read permission.
; if the selected translation table has privileged
; read permission, the PA is loaded in the PA
; Register, otherwise abort information is loaded
; in the PA Register.

MRC p15, 0, <Rd>, c7, c4, 0 ; read in <Rd> the PA value

Data synchronization barrier operation

The purpose of the data synchronization barrier operation is to ensure that all outstanding 
explicit memory transactions complete before any following instructions begin. This ensures 
that data in memory is up to date before the processor executes any more instructions.
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The data synchronization barrier operation is:
• a write-only operation, common to both Secure and Nonsecure states
• accessible in both User and privileged modes.

Table 3-80 shows the results of attempted access for each mode.

To perform a data synchronization barrier operation, write CP15 with:

MCR p15, 0, <Rd>, c7, c10, 4 ; Data synchronization barrier operation

See the ARM Architecture Reference Manual for more information on memory barriers.

Data memory barrier operation

The purpose of the data memory barrier operation is to ensure that all outstanding explicit 
memory transactions complete before any following explicit memory transactions begin. This 
ensures that data in memory is up to date for any memory transaction that depends on it.

The data memory barrier operation is:
• a write-only operation, common to the Secure and Nonsecure states
• accessible in User and privileged modes.

Table 3-81 shows the results of attempted access for each mode.

To perform a data memory barrier operation, write CP15 with:

MCR p15, 0, <Rd>; c7, c10, 5 ; Data memory barrier operation

See the ARM Architecture Reference Manual for more information on memory barriers.

3.2.41 c8, TLB operations

The purpose of the TLB operations is to either:
• invalidate all the unlocked entries in the TLB
• invalidate all TLB entries for an area of memory before the MMU remaps it
• invalidate all TLB entries that match an ASID value.

You can perform these operations on either:
• instruction TLB
• data TLB.

To perform TLB operations, write CP15 with:

MCR p15, 0, <Rd>, c8, c5, 0 ; Invalidate Inst-TLB
MCR p15, 0, <Rd>, c8, c5, 1 ; Invalidate Inst-TLB entry (MVA)
MCR p15, 0, <Rd>, c8, c5, 2 ; Invalidate Inst-TLB (ASID)

Table 3-80 Results of access to the data synchronization barrier operation

Read Write

Undefined Instruction exception Data

Table 3-81 Results of access to the data memory barrier operation

Read Write

Undefined Instruction exception Data
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MCR p15, 0, <Rd>, c8, c6, 0 ; Invalidate Data-TLB
MCR p15, 0, <Rd>, c8, c6, 1 ; Invalidate Data-TLB entry (MVA)
MCR p15, 0, <Rd>, c8, c6, 2 ; Invalidate Data-TLB (ASID)
MCR p15, 0, <Rd>, c8, c7, 0 ; Invalidate Inst-TLB and Data-TLB
MCR p15, 0, <Rd>, c8, c7, 1 ; Invalidate Inst-TLB and Data-TLB entry (MVA)
MCR p15, 0, <Rd>, c8, c7, 2 ; Invalidate Inst-TLB and Data-TLB (ASID)

All other ARMv7-A TLB maintenance encodings are Unpredictable.

Functions that update the contents of the TLB occur in program order. Therefore, an explicit 
data access before the TLB function uses the old TLB contents, and an explicit data access after 
the TLB function uses the new TLB contents. For instruction accesses, TLB updates are 
guaranteed to have taken effect before the next pipeline flush. This includes flush prefetch 
buffer operations and exception return sequences.

Invalidate TLB unlocked entries

Invalidate TLB unlocked entries invalidates all the unlocked entries in the TLB.

Invalidate TLB Entry by MVA

For an area of memory to be remapped, you can use the Invalidate TLB Entry by MVA to 
invalidate any TLB entry, locked or unlocked, by either:
• matching the MVA and ASID 
• matching the MVA for a globally marked TLB entry.

The operation uses both the MVA and ASID as arguments. Figure 3-36 shows the format. 

Figure 3-36 TLB Operations MVA and ASID format

Invalidate TLB Entry on ASID Match

This operation invalidates all TLB entries that match the provided ASID value. This function 
invalidates locked entries but does not invalidate entries marked as global.

The Invalidate TLB Entry on ASID Match function requires an ASID as an argument. 
Figure 3-37 shows the format.

Figure 3-37 TLB Operations ASID format

3.2.42 c9, Performance Monitor Control Register

The purpose of the Performance MoNitor Control (PMNC) Register is to control the operation 
of the four Performance Monitor Count Registers, and the Cycle Counter Register:

The PMNC Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

Reserved ASIDModified virtual address

31 012 11 8 7

ASIDReserved

31 08 7
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Figure 3-38 shows the bit arrangement of the PMNC Register.

Figure 3-38 Performance Monitor Control Register format

Table 3-82 shows how the bit values correspond with the PMNC Register functions.

D C P EIMP

31 11 6 4 3 2 1 0

IDCODE N

10

Reserved

5

X

24 23 16 15

DP

Table 3-82 Performance Monitor Control Register bit functions

Bits Field Function

[31:24] IMP Specifies the implementor code:
0x41 = ARM.

[23:16] IDCODE Specifies the identification code:
0x0.

[15:11] N Specifies the number of counters implemented:
0x4 = 4 counters implemented.

[10:6] - Reserved. RAZ, SBZP.

[5] DP Disables cycle counter, CCNT, when non-invasive debug is prohibited:
0 = count is enabled in regions where non-invasive debug is prohibited
1 = count is disabled in regions where non-invasive debug is prohibited.

[4] X Enables export of the events from the event bus to an external monitoring block, such as the ETM 
to trace events:
0 = export disabled, reset value
1 = export enabled.

[3] D Cycle count divider:
0 = counts every processor clock cycle, reset value
1 = counts every 64th processor clock cycle.

[2] C Cycle counter reset:
0 = no action
1 = resets cycle counter, CCNT, to zero.
This bit Read-As-Zero.

[1] P Performance counter reset:
0 = no action
1 = resets all performance counters to zero.
This bit Read-As-Zero.

[0] E Enable bit:
0 = disables all counters, including CCNT
1 = enables all counters including CCNT.
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The PMNC Register is always accessible in privileged modes. Table 3-83 shows the results of 
attempted access for each mode.

To access the PMNC Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 0 ; Read PMNC Register
MCR p15, 0, <Rd>, c9, c12, 0 ; Write PMNC Register

3.2.43 c9, Count Enable Set Register

The purpose of the CouNT ENable Set (CNTENS) Register is to enable or disable any of the 
Performance Monitor Count Registers.

When reading this register, any enable that reads as 0 indicates the counter is disabled. Any 
enable that reads as 1 indicates the counter is enabled.

When writing this register, any enable written with a value of 0 is ignored, that is, not updated. 
Any enable written with a value of 1 indicates the counter is enabled.

The CNTENS Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

Figure 3-39 shows the bit arrangement of the CNTENS Register.

Figure 3-39 Count Enable Set Register format

Table 3-84 shows how the bit values correspond with the CNTENS Register functions.

Table 3-83 Results of access to the Performance Monitor Control Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.

C

31 4 3 2 1 0

Reserved

30

P3
P2
P1
P0

Table 3-84 Count Enable Set Register bit functions

Bits Field Function

[31] C Enable cycle counter.

[30:4] - Reserved. UNP, SBZ.

[3] P3 Enable Counter 3. 
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Table 3-85 shows the results of attempted access for each mode.

To access the CNTENS Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 1 ; Read CNTENS Register
MCR p15, 0, <Rd>, c9, c12, 1 ; Write CNTENS Register

3.2.44 c9, Count Enable Clear Register

The purpose of the CouNT ENable Clear (CNTENC) Register is to enable or disable any of the 
Performance Monitor Count Registers.

When reading this register, any enable that reads as 0 indicates the counter is disabled. Any 
enable that reads as 1 indicates the counter is enabled.

When writing this register, any enable written with a value of 0 is ignored, that is, not updated. 
Any enable written with a value of 1 clears the counter enable to 0.

The CNTENC Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

Figure 3-40 shows the bit arrangement of the CNTENC Register.

Figure 3-40 Count Enable Clear Register format

[2] P2 Enable Counter 2.

[1] P1 Enable Counter 1.

[0] P0 Enable Counter 0.

Table 3-84 Count Enable Set Register bit functions (continued)

Bits Field Function

Table 3-85 Results of access to the Count Enable Set Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.

C

31 4 3 2 1 0

Reserved

30

P3
P2
P1
P0
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Table 3-86 shows how the bit values correspond with the CNTENC Register functions.

Table 3-87 shows the results of attempted access for each mode.

To access the CNTENC Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 2 ; Read CNTENC Register
MCR p15, 0, <Rd>, c9, c12, 2 ; Write CNTENC Register

You can use the enable, EN, bit [0] of the PMNC Register to disable all performance counters 
including CCNT. The CNTENC Register retains its value when the enable bit of the PMNC is 
set to 0, even though its settings are ignored.

3.2.45 c9, Overflow Flag Status Register

The purpose of the Overflow Flag Status (FLAG) Register is to enable or disable any of the 
performance monitor counters producing an overflow flag.

When reading this register, any overflow flag that reads as 0 indicates the counter has not 
overflowed. Any overflow flag that reads as 1 indicates the counter has overflowed.

When writing this register, any overflow flag written with a value of 0 is ignored, that is, not 
updated. Any overflow flag written with a value of 1 clears the counter overflow flag to 0.

The FLAG Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

Figure 3-41 on page 3-81 shows the bit arrangement of the FLAG Register.

Table 3-86 Count Enable Clear Register bit functions

Bits Field Function

[31] C Disable cycle counter.

[30:4] - Reserved. UNP, SBZP.

[3] P3 Disable Counter 3.

[2] P2 Disable Counter 2.

[1] P1 Disable Counter 1.

[0] P0 Disable Counter 0.

Table 3-87 Results of access to the Count Enable Clear Register

EN
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

EN = 0a Data Data Data Data Undefinedb Undefined Undefined Undefined

EN = 1 Data Data Data Data Data Data Data Data

a. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.
b. The access gives an Undefined Instruction exception when the coprocessor instruction is executed.
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Figure 3-41 FLAG Register format

Table 3-88 shows how the bit values correspond with the FLAG Register functions.

Table 3-89 shows the results of attempted access for each mode.

To access the FLAG Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 3 ; Read FLAG Register
MCR p15, 0, <Rd>, c9, c12, 3 ; Write FLAG Register

3.2.46 c9, Software Increment Register

The purpose of the Software INCRement (SWINCR) Register is to increment the count of a 
performance monitor count register.

When writing this register, a value of 1 increments the counter, and a value of 0 does nothing.

The SWINCR Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

C

31 4 3 2 1 0

Reserved

30

P3
P2
P1
P0

Table 3-88 Overflow Flag Status Register bit functions

Bits Field Function

[31] C Cycle counter overflow flag.

[30:4] - Reserved. UNP, SBZP.

[3] P3 Counter 3 overflow flag.

[2] P2 Counter 2 overflow flag.

[1] P1 Counter 1 overflow flag.

[0] P0 Counter 0 overflow flag.

Table 3-89 Results of access to the Overflow Flag Status Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.
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Figure 3-42 shows the bit arrangement of the SWINCR Register.

Figure 3-42 Software Increment Register format

Table 3-90 shows how the bit values correspond with the SWINCR Register functions.

The SWINCR Register only has effect when counter event is set to 0x00. 

Table 3-91 shows the results of attempted access for each mode.

To access the SWINCR Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 4 ; Read SWINCR Register
MCR p15, 0, <Rd>, c9, c12, 4 ; Write SWINCR Register

3.2.47 c9, Performance Counter Selection Register 

The purpose of the Performance Counter SELection (PMNXSEL) Register is to select a 
Performance Monitor Count Register.

The PMNXSEL Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

31 4 3 2 1 0

Reserved

P3
P2
P1
P0

Table 3-90 Software Increment Register bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZP

[3] P3 Increment Counter 3

[2] P2 Increment Counter 2

[1] P1 Increment Counter 1

[0] P0 Increment Counter 0

Table 3-91 Results of access to the Software Increment Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Data 0 Data Undefined Undefined Undefined Undefined

1 0 Data 0 Data 0 Data 0 Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.
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Figure 3-43 shows the bit arrangement of the PMNXSEL Register.

Figure 3-43 Performance Counter Selection Register format

Table 3-92 shows how the bit values correspond with the PMNXSEL Register functions.

Any values programmed in the PMNXSEL Register other than those specified in Table 3-92 are 
Unpredictable.

Table 3-93 shows the results of attempted access for each mode.

To access the PMNXSEL Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c12, 5; Read PMNXSEL Register
MCR p15, 0, <Rd>, c9, c12, 5; Write PMNXSEL Register

3.2.48 c9, Cycle Count Register

The purpose of the Cycle CouNT (CCNT) Register is to count the number of clock cycles since 
the register was reset. See bit [3] of the c9, Performance Monitor Control Register on page 3-76.

The CCNT Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

31 4 0

Reserved SEL

5

Table 3-92 Performance Counter Selection Register bit functions

Bits Field Function

[31:5] - RAZ, SBZP.

[4:0] SEL Counter select:
5'b00000 = selects counter 0
5'b00001 = selects counter 1
5'b00010 = selects counter 2
5'b00011 = selects counter 3.

Table 3-93 Results of access to the Performance Counter Selection Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.
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Table 3-94 shows the results of attempted access for each mode.

To access the CCNT Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 0 ; Read CCNT Register
MCR p15, 0, <Rd>, c9, c13, 0 ; Write CCNT Register

The CCNT Register must be disabled before software can write to it. Any attempt by software 
to write to this register when enabled is Unpredictable.

3.2.49 c9, Event Selection Register 

The purpose of the Event SELection (EVTSEL) Register is to select the events that you want a 
Performance Monitor Count Register to count. 

The EVTSEL Register is:
• a read/write register common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

Figure 3-44 shows the bit arrangement of the EVTSEL Register.

Figure 3-44 Event Selection Register format

Table 3-95 shows how the bit values correspond with the EVTSEL Register functions.

Table 3-94 Results of access to the Cycle Count Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.

31 0

Reserved SEL

8 7

Table 3-95 Event Selection Register bit functions

Bits Field Function

[31:8] - Reserved. RAZ, SBZP

[7:0] SEL Specifies the event selected as shown in Table 3-97 on page 3-85
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Table 3-96 shows the results of attempted access for each mode.

To access the EVTSEL Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 1 ; Read EVTSEL Register
MCR p15, 0, <Rd>, c9, c13, 1 ; Write EVTSEL Register

Table 3-97 shows the range values for predefined events that you can monitor using the 
EVTSEL Register.

Table 3-96 Results of access to the Event Selection Registera

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.

Table 3-97 Values for predefined events

Value Description

0x00 Software increment. The register is incremented only on writes to the Software Increment Register. See c9, 
Software Increment Register on page 3-81.

0x01 Instruction fetch that causes a refill at the lowest level of instruction or unified cache. Each instruction fetch 
from normal cacheable memory that causes a refill from outside of the cache is counted. Accesses that do 
not cause a new cache refill, but are satisfied from refilling data of a previous miss are not counted. Where 
instruction fetches consist of multiple instructions, these accesses count as single events. CP15 cache 
maintenance operations do not count as events. This counter increments for speculative instruction fetches 
and for fetches of instructions that reach execution.

0x02 Instruction fetch that causes a TLB refill at the lowest level of TLB. Each instruction fetch that causes a 
translation table walk or an access to another level of TLB caching is counted. CP15 TLB maintenance 
operations do not count as events. This counter increments for speculative instruction fetches and for fetches 
of instructions that reach execution.

0x03 Data read or write operation that causes a refill at the lowest level of data or unified cache. Each data read 
from or write to normal cacheable memory that causes a refill from outside of the cache is counted. Accesses 
that do not cause a new cache refill, but are satisfied from refilling data of a previous miss are not counted. 
Each access to a cache line to normal cacheable memory that causes a new linefill is counted, including the 
multiple transaction of instructions such as LDM or STM, PUSH and POP. Write-through writes that hit in 
the cache do not cause a linefill and so are not counted. CP15 cache maintenance operations do not count as 
events. This counter increments for speculative data accesses and for data accesses that are explicitly made 
by instructions.

0x04 Data read or write operation that causes a cache access at the lowest level of data or unified cache. Each 
access to a cache line to normal cacheable memory is counted including the multiple transaction of 
instructions such as LDM or STM. CP15 cache maintenance operations do not count as events. This counter 
increments for speculative data accesses and for data accesses that are explicitly made by instructions.

0x05 Data read or write operation that causes a TLB refill at the lowest level of TLB. Each data read or write 
operation that causes a translation table walk or an access to another level of TLB caching is counted. CP15 
TLB maintenance operations do not count as events. This counter increments for speculative data accesses 
and for data accesses that are explicitly made by instructions.
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0x06 Data read architecturally executed. This counter increments for every instruction that explicitly read data, 
including SWP. This counter only increments for instructions that are unconditional or that pass their 
condition codes.

0x07 Data write architecturally executed. The counter increments for every instruction that explicitly wrote data, 
including SWP. This counter only increments for instructions that are unconditional or that pass their 
condition codes.

0x08 Instruction architecturally executed. This counter counts for all instructions, including conditional 
instructions that fail their condition codes.

0x09 Exception taken. This counts for each exception taken.

0x0A Exception return architecturally executed. This includes:
• RFE <addressing_mode> <Rn>{!}
• MOVS PC (and other similar data processing instructions)
• LDM <addressing_mode> Rn{!}, <registers_and_pc>
This counter only increments for instructions that are unconditional or that pass their condition codes.

0x0B Instruction that writes to the Context ID Register architecturally executed. This counter only increments for 
instructions that are unconditional or that pass their condition codes.

0x0C Software change of PC, except by an exception, architecturally executed. This counter only increments for 
instructions that are unconditional or that pass their condition codes.

0x0D Immediate branch architecturally executed, taken or not taken. This includes B{L}, BLX, CB{N}Z, HB{L}, 
and HBLP. This counter counts for all immediate branch instructions that are architecturally executed, 
including conditional instructions that fail their condition codes.

0x0E Procedure return, other than exception returns, architecturally executed. This includes:
• BX R14
• MOV PC, LR
• POP {..., PC}
• LDR PC, [R13], #offset
• LDMIA R9!, {...,PC}
• LDR PC, [R9], #offset
This counter only increments for instructions that are unconditional or that pass their condition codes.

0x0F Unaligned access architecturally executed. This counts each instruction that is an access to an unaligned 
address. This counter only increments for instructions that are unconditional or that pass their condition 
codes.

0x10 Branch mispredicted or not predicted. This counts for every pipeline flush because of a misprediction from 
the program flow prediction resources.

0x11 Cycle count. This counts for every clock cycle.

0x12 Branches or other change in the program flow that could have been predicted by the branch prediction 
resources of the processor.

0x13-0x3F Reserved.

0x40 Any write buffer full cycle.

0x41 Any store that is merged in the L2 memory system.

0x42 Any bufferable store transaction from load/store to L2 cache, excluding eviction or cast out data.

0x43 Any accesses to the L2 cache.

Table 3-97 Values for predefined events (continued)

Value Description
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0x44 Any cacheable miss in the L2 cache.

0x45 The number of AXI read data transfers.

0x46 The number of AXI write data transfers.

0x47 Any replay event in the memory system.

0x48 Any unaligned memory access that results in a replay.

0x49 Any L1 data memory access that misses in the cache as a result of the hashing algorithm. The cases covered 
are:
• hash hit and physical address miss
• hash hit and physical address hit in another way
• hash miss and physical address hit.

0x4a Any L1 instruction memory access that misses in the cache as a result of the hashing algorithm. The cases 
covered are:
• hash hit and physical address miss
• hash hit and physical address hit in another way
• hash miss and physical address hit.

0x4b Any L1 data memory access in which a page coloring alias occurs. 
alias = virtual address [12] ! = physical address [12]
This behavior results in a data memory eviction or cast out.

0x4c Any NEON access that hits in the L1 data cache.

0x4d Any NEON cacheable data accesses for L1 data cache.

0x4e Any L2 cache accesses as a result of a NEON memory access.

0x4f Any NEON hit in the L2 cache.

0x50 Any L1 instruction cache access, excluding CP15 cache accesses.

0x51 Any return stack misprediction because of incorrect target address for a taken return stack pop.

0x52 Two forms of branch direction misprediction:
• branch predicted taken, but was not taken
• branch predicted not taken, but was taken.

0x53 Any predictable branch that is predicted to be taken.

0x54 Any predictable branch that is executed and taken.

0x55 Number of operations issued, where an operation is either:
• an instruction
• one operation in a sequence of operations that make up a multi-cycle instruction.

0x56 Increment for every cycle that no instructions are available for issue.

0x57 For every cycle, this event counts the number of instructions issued in that cycle. Multi-cycle instructions 
are only counted once.

0x58 Number of cycles the processor stalls waiting on MRC data from NEON.

0x59 Number of cycles that the processor stalls as a result of a full NEON instruction queue or NEON load queue.

0x5a Number of cycles that NEON and integer processors are both not idle.

Table 3-97 Values for predefined events (continued)

Value Description
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If this unit generates an interrupt, the processor asserts the pin nPMUIRQ. You can route this 
pin to an external interrupt controller for prioritization and masking. This is the only mechanism 
that signals this interrupt to the core. 

The absolute counts recorded might vary because of pipeline effects. This has negligible effect 
except in cases where the counters are enabled for a very short time.

In addition to the counters within the processor, most of the events that Table 3-97 on page 3-85 
shows are available to the ETM unit or other external trace hardware to enable the events to be 
monitored. See Chapter 14 Embedded Trace Macrocell and Chapter 15 Cross Trigger Interface 
for more information.

3.2.50 c9, Performance Monitor Count Registers

There are four Performance Monitor CouNT (PMCNT0-PMCNT3) Registers in the processor. 
The purpose of each PMCNT Register, as selected by the PMNXSEL Register, is to count 
instances of an event selected by the EVTSEL Register. Bits [31:0] of each PMCNT Register 
contain an event count.

The PMCNT0-PMCNT3 Registers are:
• read/write registers common to Secure and Nonsecure states
• accessible as determined by c9, User Enable Register on page 3-89.

Table 3-98 shows the results of attempted access for each mode.

To access the PMCNT Registers, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c13, 2; Read PMCNT0-PMCNT3 Registers
MCR p15, 0, <Rd>, c9, c13, 2; Write PMCNT0-PMCNT3 Registers

0x60-0x6F Reserved.

0x70 Counts any event from external input source PMUEXTIN[0].

0x71 Counts any event from external input source PMUEXTIN[1].

0x72 Counts any event from both external input sources PMUEXTIN[0] and PMUEXTIN[1].

0x73-0xFF Reserved.

Table 3-97 Values for predefined events (continued)

Value Description

Table 3-98 Results of access to the Performance Monitor Count Registersa

ENb
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. The EN bit in c9, User Enable Register on page 3-89 enables User mode access of the Performance Monitor Registers.
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Table 3-99 shows what signal settings are required and the Secure or Nonsecure state and mode 
that you can enable the counters.

3.2.51 c9, User Enable Register

The purpose of the USER ENable (USEREN) Register is to enable User mode to have access to 
the Performance Monitor Registers.

Note
 USEREN Register does not provide access to the registers that control interrupt generation.

The USEREN Register is:
• a read/write register common to Secure and Nonsecure states
• writable only in privileged mode and readable in any processor mode.

Figure 3-45 shows the bit arrangement of the USEREN Register.

Figure 3-45 User Enable Register format

Table 3-100 shows how the bit values correspond with the USEREN Register functions.

Table 3-99 Signal settings for the Performance Monitor Count Registers

DBGEN || 
NIDEN

SPIDEN || 
SPNIDEN SUNIDEN Secure 

state
User 
mode PMNC[5] Performance 

counters enabled
CCNT 
enabled

0 - - - - b0 No Yes

0 - - - - b1 No No

1 - - No - - Yes Yes

1 - - Yes - - Yes Yes

1 0 - Yes No b0 No Yes

1 0 - Yes No b1 No No

1 0 0 Yes Yes b0 No Yes

1 0 0 Yes Yes b1 No No

1 0 1 Yes Yes X Yes Yes

31 1 0

Reserved

EN

Table 3-100 User Enable Register bit functions

Bits Field Function

[31:1] - Reserved. RAZ, SBZP

[0] EN User mode enable
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Table 3-101 shows the results of attempted access for each mode.

To access the USEREN Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 0 ; Read USEREN Register
MCR p15, 0, <Rd>, c9, c14, 0 ; Write USEREN Register

3.2.52 c9, Interrupt Enable Set Register 

The purpose of the INTerrupt ENable Set (INTENS) Register is to determine if any of the 
Performance Monitor Count Registers, PMCNT0-PMCNT3 and CCNT, generate an interrupt 
on overflow.

The INTENS Register is:
• a read/write register common to Secure and Nonsecure states
• accessible in privileged mode only.

When reading this register, any interrupt overflow enable bit that reads as 0 indicates the 
interrupt overflow flag is disabled. Any interrupt overflow enable bit that reads as 1 indicates 
the interrupt overflow flag is enabled.

When writing this register, any interrupt overflow enable bit written with a value of 0 is ignored, 
that is, not updated. Any interrupt overflow enable bit written with a value of 1 sets the interrupt 
overflow enable bit.

Figure 3-46 shows the bit arrangement of the INTENS Register.

Figure 3-46 Interrupt Enable Set Register format

Table 3-101 Results of access to the User Enable Register

EN
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0
Data Data Data Data Data

Undefined
exception

Data
Undefined
exception

1 Data Data Data Data Data Undefined
exception

Data Undefined
exception

C

31 4 3 2 1 0

Reserved

30

P3
P2
P1
P0
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Table 3-102 shows how the bit values correspond with the INTENS Register functions.

Table 3-103 shows the results of attempted access for each mode.

To access the INTENS Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 1 ; Read INTENS Register
MCR p15, 0, <Rd>, c9, c14, 1 ; Write INTENS Register

3.2.53 c9, Interrupt Enable Clear Register

The purpose of the INTerrupt ENable Clear (INTENC) Register is to determine if any of the 
Performance Monitor Count Registers, PMCNT0-PMCNT3 and CCNT, generate an interrupt 
on overflow.

The INTENC Register is:
• a read/write register common to Secure and Nonsecure states
• accessible in privileged mode only.

When reading this register, any interrupt overflow enable bit that reads as 0 indicates the 
interrupt overflow flag is disabled. Any interrupt overflow enable bit that reads as 1 indicates 
the interrupt overflow flag is enabled.

When writing this register, any interrupt overflow enable bit written with a value of 0 is ignored, 
that is, not updated. Any interrupt overflow enable bit written with a value of 1 clears the 
interrupt overflow enable bit to 0.

Figure 3-47 on page 3-92 shows the bit arrangement of the INTENC Register.

Table 3-102 Interrupt Enable Set Register bit functions

Bits Field Function

[31] C CCNT overflow interrupt enable.

[30:4] - Reserved. UNP, SBZP.

[3] P3 PMCNT3 overflow interrupt enable.

[2] P2 PMCNT2 overflow interrupt enable.

[1] P1 PMCNT1 overflow interrupt enable.

[0] P0 PMCNT0 overflow interrupt enable.

Table 3-103 Results of access to the Interrupt Enable Set Registera

EN
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-47 Interrupt Enable Clear Register format

Table 3-104 shows how the bit values correspond with the INTENC Register functions.

Table 3-105 shows the results of attempted access for each mode.

To access the INTENC Register, read or write CP15 with:

MRC p15, 0, <Rd>, c9, c14, 2 ; Read INTENC Register
MCR p15, 0, <Rd>, c9, c14, 2 ; Write INTENC Register

3.2.54 c9, L2 Cache Lockdown Register

The L2 Cache Lockdown Register controls the L2 cache lockdown. The Lockdown Format C 
provides a method to restrict the replacement algorithm on cache linefills to only use selected 
cache ways within a set. Using this method, you can fetch or load code into the L2 cache and 
protect data from being evicted, or you can use the method to reduce cache pollution.

The L2 Cache Lockdown Register is:
• a read-only or read/write register, depending on the security selected for the register 

access using CL bit [16] in the c1, Nonsecure Access Control Register on page 3-56.
• accessible in privileged modes only.

C

31 4 3 2 1 0

Reserved

30

P3
P2
P1
P0

Table 3-104 Interrupt Enable Clear Register bit functions

Bits Field Function

[31] C CCNT overflow interrupt enable.

[30:4] - Reserved. UNP, SBZP.

[3] P3 PMCNT3 overflow interrupt enable.

[2] P2 PMCNT2 overflow interrupt enable.

[1] P1 PMCNT1 overflow interrupt enable.

[0] P0 PMCNT0 overflow interrupt enable.

Table 3-105 Results of access to the Interrupt Enable Clear Registera

EN
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Data Data Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-48 shows the bit arrangement of the L2 Cache Lockdown Register.

Figure 3-48 L2 Cache Lockdown Register format

Table 3-106 shows how the bit values correspond with the L2 Cache Lockdown Register 
functions.

Reserved

31 8 7 6 5 4 3 2 1 0

LOCK way-7
LOCK way-6
LOCK way-5
LOCK way-4
LOCK way-3
LOCK way-2
LOCK way-1
LOCK way-0

Table 3-106 L2 Cache Lockdown Register bit functions

Bits Field Function

[31:8] - Reserved. UNP, SBZP.

[7] LOCK
way-7

Lockdown bit for way 7 of the L2 cache:
0 = way 7 is not locked and allocation is determined by standard replacement algorithm
1 = way 7 is locked and no allocation is performed to this cache way.

[6] LOCK
way-6

Lockdown bit for way 6 of the L2 cache:
0 = way 6 is not locked and allocation is determined by standard replacement algorithm
1 = way 6 is locked and no allocation is performed to this cache way.

[5] LOCK
way-5

Lockdown bit for way 5 of the L2 cache:
0 = way 5 is not locked and allocation is determined by standard replacement algorithm
1 = way 5 is locked and no allocation is performed to this cache way.

[4] LOCK
way-4

Lockdown bit for way 4 of the L2 cache:
0 = way 4 is not locked and allocation is determined by standard replacement algorithm
1 = way 4 is locked and no allocation is performed to this cache way.

[3] LOCK
way-3

Lockdown bit for way 3 of the L2 cache:
0 = way 3 is not locked and allocation is determined by standard replacement algorithm
1 = way 3 is locked and no allocation is performed to this cache way.

[2] LOCK
way-2

Lockdown bit for way 2 of the L2 cache:
0 = way 2 is not locked and allocation is determined by standard replacement algorithm
1 = way 2 is locked and no allocation is performed to this cache way.

[1] LOCK
way-1

Lockdown bit for way 1 of the L2 cache:
0 = way 1 is not locked and allocation is determined by standard replacement algorithm
1 = way 1 is locked and no allocation is performed to this cache way.

[0] LOCK
way-0

Lockdown bit for way 0 of the L2 cache:
0 = way 0 is not locked and allocation is determined by standard replacement algorithm
1 = way 0 is locked and no allocation is performed to this cache way.
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Table 3-107 shows the results of attempted access for each mode.

To access the L2 Cache Lockdown Register, read or write CP15 with:

MRC p15, 1, <Rd>, c9, c0, 0 ; Read L2 Cache Lockdown Register
MCR p15, 1, <Rd>, c9, c0, 0 ; Write L2 Cache Lockdown Register

Specific loading of addresses into cache way

The following procedure for lock down into a data or an instruction cache way i, with N cache 
ways, using Format C, ensures that only the target cache way i is locked down.

This is the architecturally-defined method for locking data into caches:

1. Disable interrupts to ensure that no processor exceptions can occur during the execution 
of this procedure. If this is not possible, all code and data that any exception handlers can 
call must meet the conditions specified in step 2 and step 3.

2. Ensure that all data that the following code uses, apart from the data that is to be locked 
down, is either:
• in a noncacheable area of memory
• in an already locked cache way.

3. Ensure that the data to be locked down is in a cacheable area of memory.

4. Ensure that the data to be locked down is not already in the cache, using either:
• cache clean
• invalidate
• cache clean and invalidate.
See c7, Cache operations on page 3-68.

5. Enable allocation to the target cache way by writing to the Instruction or Data Cache 
Lockdown Register, with the CRm field set to 0, setting L to 0 for bit i, and L to 1 for all 
other ways.

6. Ensure that the memory cache line is loaded into the cache by using an LDR instruction 
to load a word from the memory cache line, for each of the cache lines to be locked down 
in cache way i. 

7. Write to the Instruction or Data Cache Lockdown Register, setting L to 1 for bit i and 
restore all the other bits to the previous values before this routine was started.

Cache unlock procedure

To unlock the lock down portion of the cache, write to register c9, setting L to 0 for each bit.

Table 3-107 Results of access to the L2 Cache Lockdown Registera

CL bit 
value

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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3.2.55 c9, L2 Cache Auxiliary Control Register

The purpose of the L2 Cache Auxiliary Control Register is to enable you to configure the L2 
cache behavior.

The L2 Cache Auxiliary Control Register is:
• a read register, common to Secure and Nonsecure states
• a write register in Secure state only
• accessible in privileged modes only.

Note
 If bit [24] of the L2 Cache Auxiliary Control Register is not set to 1, the L2 cache does not 
perform a security check for the data that is placed in the L2 cache. If software requires a higher 
level of security within the processor, then you must set bit [24] to 1 of this register. By setting 
bit [24] to 1, the L2 cache performs an external linefill, and the AXI slave performs the security 
check on that linefill.

Figure 3-49 shows the bit arrangement of the L2 Cache Auxiliary Control Register.

Figure 3-49 L2 Cache Auxiliary Control Register format

Table 3-108 shows how the bit values correspond with the L2 Cache Auxiliary Control Register 
functions.

31 29 28 27 26 25 24 23 22 21 20 17 16 15 8 6 5 3 0

Parity or ECC enable

Reserved

L2 inner

Reserved

Tag RAM latency
Reserved
Data RAM latency

9 4

Write combining disable

ECC or Parity  

Reserved

Reserved
Load data forwarding disable

Write allocate delay disable
Write allocate combine disable
Write allocate disable

30

L2 data RAM read multiplexer select

Table 3-108 L2 Cache Auxiliary Control Register bit functions

Bits Field Function

[31:30] - Reserved. UNP, SBZP.

[29] L2 data RAM read 
multiplexer select

Configures the timing of the read data multiplexer select between one or two cycles 
for all L2 data RAM read operations:
0 = two cycles, default
1 = one cycle.

[28] ECC or Parity Selects ECC or parity:
0 = parity
1 = ECC.
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[27] Load data forwarding 
disable

Enables or disables load data forwarding to any LS or NEON request:
0 = enables load data forwarding, default
1 = disables load data forwarding.

[26] - Reserved. UNP, SBZP.

[25] Write combining 
disable

Enables or disables write combining:
0 = enables write combine, default
1 = disables write combine.

[24] Write allocate delay 
disable

Enables or disables external linefill when storing an entire line with write allocate 
permission:
0 = enables write allocate delay, default
1 = disables write allocate delay.

[23] Write allocate 
combine disable

Enables or disables combining of data in the L2 write combining buffers:
0 = enables write allocate combine, default
1 = disables write allocate combine.

[22] Write allocate disable Enables or disables allocate on write miss in L2:
0 = enables write allocate, default
1 = disables write allocate.

[21] Parity or ECC enable Parity or ECC enable:
0 = disables parity or ECC, default
1 = enables parity or ECC.

[20:17] - Reserved. UNP, SBZP.

[16] L2 inner Defines whether the L2 observes the inner or outer cacheability attributes:
0 = L2 observes outer cacheability
1 = L2 observes inner cacheability.

[15:9] - Reserved. UNP, SBZP.

Table 3-108 L2 Cache Auxiliary Control Register bit functions (continued)

Bits Field Function
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Table 3-109 shows the results of attempted access for each mode.

To access the L2 Cache Auxiliary Control Register, read or write CP15 with:

MRC p15, 1, <Rd>, c9, c0, 2 ; Read L2 Cache Auxiliary Control Register
MCR p15, 1, <Rd>, c9, c0, 2 ; Write L2 Cache Auxiliary Control Register

If you have not configured the processor to include parity and ECC RAM, then software cannot 
set bit [21] to 1, parity or ECC enable bit. The following code sequence shows how to determine 
if the processor was configured to include parity and ECC RAM.

MRC p15, 1, <Rd>, c9, c0, 2 ; Read L2 Cache Auxiliary Control Register

[8:6] Tag RAM latency Program tag RAM latency:
b000 = 2 cycles
b001 = 2 cycles
b010 = 3 cycles
b011 = 4 cycles
b100 = 4 cycles
b101 = 4 cycles
b110 = 4 cycles
b111 = 4 cycles.

[5:4] - Reserved. UNP, SBZP.

[3:0] Data RAM latency Program data RAM latency:
b0000 = 2 cycles
b0001 = 2 cycles
b0010 = 3 cycles
b0011 = 4 cycles
b0100 = 5 cycles
b0101 = 6 cycles
b0110 = 7 cycles
b0111 = 8 cycles
b1000 = 9 cycles
b1001 = 10 cycles
b1010 = 11 cycles
b1011 = 12 cycles
b1100 = 13 cycles
b1101 = 13 cycles
b1110 = 13 cycles
b1111 = 13 cycles.

Table 3-108 L2 Cache Auxiliary Control Register bit functions (continued)

Bits Field Function

Table 3-109 Results of access to the L2 Cache Auxiliary Control Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Data Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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ORR <Rd>, <Rd>, #0x0020_0000; Set parity/ECC enable
MCR p15, 1, <Rd>, c9, c0, 2 ; Write L2 Cache Auxiliary Control Register
MRC p15, 1, <Rd>, c9, c0, 2 ; Read L2 Cache Auxiliary Control Register
TST <Rd>, #0x0020_0000 ; Test for parity/ECC enable
BEQ no_parity_ram_setup

parity_ram_setup:
;<do parity RAM setup>
B done_parity_RAM_setup

no_parity_ram_setup:
;<do no parity/ECC RAM setup>

done_parity_RAM_setup:
;<continue>

3.2.56 c10, TLB Lockdown Registers

The purpose of the TLB Lockdown Registers is to control the fully-associative TLB entries to 
allocate on the next table walk. The TLB is normally allocated on a rotating basis. The oldest 
entry is always the next allocated.

You can configure the TLB Lockdown Registers to exclude a range of entries from the 
round-robin allocation scheme. You must use the TLB Lockdown Registers with the TLB 
preload operation. See c10, TLB preload operation on page 3-99 for more information.

The TLB Lockdown Registers are:
• read/write registers common to Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-50 shows the bit arrangement of the Data and Instruction TLB Lockdown Registers.

Figure 3-50 TLB Lockdown Register format

Table 3-110 shows how the bit values correspond with the Data and Instruction TLB Lockdown 
Register functions.

Base Victim Reserved P

31 27 26 22 21 1 0

Table 3-110 TLB Lockdown Register bit functions

Bits Field Function

[31:27] Base Defines the offset from TLB entry 0 for which entries 0 to base - 1 are locked assuming P equals 1 
during a hardware translation table walk.

[26:22] Victim Specifies the entry where the next hardware translation table walk can place a TLB entry. The reset 
value is 0. Each hardware translation table walk increments the value of the Victim field.

[21:1] - Reserved. UNP, SBZP.

[0] P Determines if TLB entries allocated by subsequent translation table walks are not invalidated by the 
Invalidate TLB unlocked entries operation:
0 = allocated TLB entries are invalidated, reset value
1 = allocated TLB entries are not invalidated.
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For the Data or Instruction TLB Lockdown Register:

• The TLB lockdown behavior depends on the TL bit, see c1, Nonsecure Access Control 
Register on page 3-56. If the TL bit is not set to 1, the lockdown entries are reserved for 
the Secure state.

• The TLB Lockdown Register must be used with the TLB preload operation. See c10, TLB 
preload operation.

Note
 Setting the P bit before a hardware translation table walk does not guarantee the locking down 
of an entry. The Base field must be set to the first unlocked entry. The Victim field must always 
be set to a value greater than or equal to the value of the Base field.

Table 3-111 shows the results of attempted access for each mode.

To access the Data TLB Lockdown Register, read or write CP15 with:

MRC p15, 0, <Rd>, c10, c0, 0 ; Read Data TLB Lockdown Register
MCR p15, 0, <Rd>, c10, c0, 0 ; Write Data TLB Lockdown Register

To access the Instruction TLB Lockdown Register, read or write CP15 with:

MRC p15, 0, <Rd>, c10, c0, 1 ; Read Instruction TLB Lockdown Register
MCR p15, 0, <Rd>, c10, c0, 1 ; Write Instruction TLB Lockdown Register

3.2.57 c10, TLB preload operation

The TLB preload operations are used to load entries into either the instruction or data TLB as 
specified by the virtual address. The operation performs a TLB lookup to determine if the virtual 
address has been cached in the TLB array. If the TLB lookup misses in the TLB array, a 
hardware translation table walk is performed. There are two possible results of the hardware 
translation table walk:

• the descriptor is cached in the TLB array at the entry specified by the Victim field in the 
TLB Lockdown Register

• the descriptor faults.

If the operation is a preload D-TLB instruction and the descriptor faults, a data abort is 
indicated. The DFSR and DFAR indicate the fault type and the fault address, respectively. 

If the operation is a preload I-TLB instruction and the descriptor faults, a data abort is indicated. 
The DFSR indicates the instruction cache maintenance fault value. The DFAR contains the 
faulty virtual address, and the IFSR contains the fault type encoding.

Table 3-111 Results of access to the TLB Lockdown Registera

TL bit 
value

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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The TLB preload operations are:

• accessible in privileged modes only, User mode causes Undefined Instruction exception

• supported in both Secure and Nonsecure states

• when CP15 c1 M-bit [0] is LOW, the instruction executes as a NOP

• when CP15 c1 A-bit [1] is HIGH, no alignment faults are generated as VA[1:0] are 
ignored.

The data and instruction TLB preload operations are as follows:

MCR p15, 0, <Rd>, c10, c1, 0 ; Data TLB preload operation
MCR p15, 0, <Rd>, c10, c1, 1 ; Instruction TLB preload operation

The TLB preload operation and the TLB lockdown operation can be used to lock entries into 
the TLB array. Example 3-1 is a code sequence that locks an entry into the TLB array.

Note
 This example assumes that the FCSE PID Register is set to 0. If the FCSE PID is not 0, then the 
MVA of the TLB entry must be invalidated.

Example 3-1 Lock an entry to the instruction TLB array

LDR r1,=VA ; Address of entry to lock
MCR p15,0,r1,c8,c5,1 ; Invalidate TLB entry corresponding to VA
LDR r0,=0x00000001 ; base=victim=0 (protect bit=1 [lock])
LDR r2,=0x08400000 ; base=victim=1 (protect bit=0 [unlock])
MCR p15,0,r0,c10,c0,1 ; Write I-TLB Lockdown Register
MCR p15,0,r1,c10,c1,1 ; Prefetch I-TLB
MCR p15,0,r2,c10,c0,1 ; Write I-TLB Lockdown Register

3.2.58 c10, Memory Region Remap Registers

The purpose of the Memory Region Remap Registers is to remap memory region attributes 
encoded by the TEX[2:0], C, and B bits in the translation tables that the data side, instruction 
side, and PLE use. See MMU software-accessible registers on page 6-8 for information on 
memory remap.

The Memory Region Remap Registers are:
• two read/write registers banked for the Secure and Nonsecure states:

— the Primary Region Remap Register
— the Normal Memory Remap Register.

• accessible in privileged modes only.

These registers apply to all memory accesses and this includes accesses from the data side, 
instruction side, and PLE. Table 3-113 on page 3-101 shows the purposes of the individual bits 
in the Primary Region Remap Register. Table 3-115 on page 3-102 shows the purposes of the 
individual bits in the Normal Memory Remap Register.

Note
 The behavior of the Memory Region Remap Registers depends on the TEX Remap bit, see c1, 
Control Register on page 3-44.
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Table 3-112 describes the behavior of memory accesses when the region remapped registers, 
PRRR and NMRR, are applied.

Figure 3-51 shows the bit arrangement of the Primary Region Remap Register.

Figure 3-51 Primary Region Remap Register format

Table 3-113 shows how the bit values correspond with the Primary Region Remap Register 
functions.

Table 3-112 Application of remapped registers on memory access

CP15 M bit CP15 TRE bit Expected behavior

0 0 Memory accesses are controlled by the remapped default 
memory attributes as defined in the ARM Architecture 
Reference Manual

0 1 Memory accesses are not remapped but used the default 
memory attributes

1 0 Memory accesses are not remapped and are controlled by 
the MMU translation table descriptors

1 1 Memory accesses are controlled by the remapped MMU 
translation table descriptors

Reserved ------------

31 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 3-113 Primary Region Remap Register bit functions

Bits Field Functiona

[31:20] - Reserved. UNP, SBZ

[19] - Remaps shareable attribute when S=1 for Normal regionsb

1 = reset value

[18] - Remaps shareable attribute when S=0 for Normal regionsb

0 = reset value

[17] - Remaps shareable attribute when S=1 for Device regionsb

0 = reset value

[16] - Remaps shareable attribute when S= 0 for Device regionsb

1= reset value

[15:14] - Remaps {TEX[0],C,B} = b111
b10 = reset value

[13:12] - Remaps {TEX[0],C,B} = b110
b00 = reset value

[11:10] - Remaps {TEX[0],C,B} = b101
b10 = reset value

[9:8] - Remaps {TEX[0],C,B} = b100
b10 = reset value
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Table 3-114 shows the encoding of the remapping for the primary memory type.

Figure 3-52 shows the bit arrangement of the Normal Memory Remap Register.

Figure 3-52 Normal Memory Remap Register format

Table 3-115 shows how the bit values correspond with the Normal Memory Remap Register 
functions.

[7:6] - Remaps {TEX[0],C,B} = b011
b10 = reset value

[5:4] - Remaps {TEX[0],C,B} = b010
b10 = reset value

[3:2] - Remaps {TEX[0],C,B} = b001
b01 = reset value

[1:0] - Remaps {TEX[0],C,B} = b000
b00 = reset value

a. The reset values ensure that no remapping occurs at reset.
b. Shareable attributes can map for both shared and nonshared memory. If the 

shared bit read from the TLB or translation tables is 0, then the bit remaps to 
the nonshared attributes in this register. If the shared bit read from the TLB or 
translation tables is 1, then the bit remaps to the shared attributes of this 
register.

Table 3-114 Encoding for the remapping of the primary memory type

Encoding Memory type

b00 Strongly ordered

b01 Device

b10 Normal

b11 UNP (Normal)

Table 3-113 Primary Region Remap Register bit functions (continued)

Bits Field Functiona

--- - -- ----------

31 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 030 29 28 27 26 25 24 23 22 21

Table 3-115 Normal Memory Remap Register bit functions

Bits Field Functiona

[31:30] - Remaps outer attribute for {TEX[0],C,B} = b111
b01 = reset value

[29:28] - Remaps outer attribute for {TEX[0],C,B} = b110
b00 = reset value

[27:26] - Remaps outer attribute for {TEX[0],C,B} = b101
b01 = reset value
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Table 3-116 shows the encoding for the inner or outer cacheable attribute bit fields I0 to I7 and 
O0 to O7.

[25:24] - Remaps outer attribute for {TEX[0],C,B} = b100
b00 = reset value

[23:22] - Remaps outer attribute for {TEX[0],C,B} = b011
b11 = reset value

[21:20] - Remaps outer attribute for {TEX[0],C,B} = b010
b10 = reset value

[19:18] - Remaps outer attribute for {TEX[0],C,B} = b001
b00 = reset value

[17:16] - Remaps outer attribute for {TEX[0],C,B} = b000
b00 = reset value

[15:14] - Remaps inner attribute for {TEX[0],C,B} = b111
b01 = reset value

[13:12] - Remaps inner attribute for {TEX[0],C,B} = b110
b00 = reset value

[11:10] - Remaps inner attribute for {TEX[0],C,B} = b101
b10 = reset value

[9:8] - Remaps inner attribute for {TEX[0],C,B} = b100
b00 = reset value

[7:6] - Remaps inner attribute for {TEX[0],C,B} = b011
b11 = reset value

[5:4] - Remaps inner attribute for {TEX[0],C,B} = b010
b10 = reset value

[3:2] - Remaps inner attribute for {TEX[0],C,B} = b001
b00 = reset value

[1:0] - Remaps inner attribute for {TEX[0],C,B} = b000
b00 = reset value

a. The reset values ensure that no remapping occurs at reset.

Table 3-116 Remap encoding for inner or outer cacheable attributes

Encoding Cacheable attribute

b00 Noncacheable

b01 Write-back, allocate on write

b10 Write-through, no allocate on write

b11 Write-back, no allocate on write

Table 3-115 Normal Memory Remap Register bit functions (continued)

Bits Field Functiona
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Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 3-5.

Table 3-117 shows the results of attempted access for each mode.

To access the Memory Region Remap Registers read or write CP15 with:

MRC p15, 0, <Rd>, c10, c2, 0 ; Read Primary Region Remap Register
MCR p15, 0, <Rd>, c10, c2, 0 ; Write Primary Region Remap Register
MRC p15, 0, <Rd>, c10, c2, 1 ; Read Normal Memory Remap Register
MCR p15, 0, <Rd>, c10, c2, 1 ; Write Normal Memory Remap Register

Memory remap occurs in two stages:

1. The processor uses the Primary Region Remap Register to remap the primary memory 
type, normal, device, or strongly ordered, and the shareable attribute. 

2. For memory regions that the Primary Region Remap Register defines as Normal memory, 
the processor uses the Normal Memory Remap Register to remap the inner and outer 
cacheable attributes.

The behavior of the Memory Region Remap Registers depends on the TEX Remap bit, see c1, 
Control Register on page 3-44. If the TEX Remap bit is set to 1, the entries in the Memory 
Region Remap Registers remap each possible value of the TEX[0], C and B bits in the 
translation tables. You can therefore set your own definitions for these values. If the TEX 
Remap bit is cleared to 0, the Memory Region Remap Registers are not used and no memory 
remapping takes place. See MMU software-accessible registers on page 6-8 for more 
information.

The Memory Region Remap Registers are expected to remain static during normal operation. 
When you write to the Memory Region Remap Registers, you must invalidate the TLB and 
perform an IMB operation before you can rely on the new written values. You must also stop 
the PLE if it is running.

Note
 For security reasons, you cannot remap the NS bit.

3.2.59 c11, PLE Identification and Status Registers

The purpose of the PLE Identification and Status Registers is to define:
• the PLE channels that are physically implemented on the particular device
• the current status of the PLE channels.

Processes that handle PLE can read this register to determine the physical resources 
implemented and their availability.

Table 3-117 Results of access to the memory region remap registersa

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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The PLE Identification and Status Register is:
• four read-only registers common to Secure and Nonsecure states
• accessible only in privileged modes.

Figure 3-53 shows the bit arrangement of the PLE Identification and Status Registers 0-3.

Figure 3-53 PLE Identification and Status Registers format

Table 3-118 shows how the bit values correspond with the PLE Identification and Status 
Registers functions.

Table 3-119 shows the Opcode_2 values for PLE channel function selection.

31 2 1 0

Reserved

CH1
CH0

Table 3-118 PLE Identification and Status Register bit functions

Bits Field Function

[31:2] - Reserved. UNP, SBZ.

[1] CH1 Provides information on PLE Channel 1 functions:
0 = PLE Channel 1 function disabled
1 = PLE Channel 1 function enabled. This is the reset value.

[0] CH0 Provides information on PLE Channel 0 functions:
0 = PLE Channel 0 function disabled
1 = PLE Channel 0 function enabled. This is the reset value.

Table 3-119 Opcode_2 values for PLE Identification and Status Register functions

Opcode_2 Function

0 Indicates channel present:
0 = channel is not present
1 = channel is present.

1 Reserved. Does not result in an Undefined Instruction 
exception.

2 Indicates channel running:
0 = channel is not running
1 = channel is running.

3 Indicates channel interrupting:
0 = channel is not interrupting
1 = channel is interrupting, through completion or an error.

4-7 Reserved. Results in an Undefined Instruction exception.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 3-105
ID060510 Non-Confidential



System Control Coprocessor 
Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can only access these registers in privileged modes. 
Table 3-120 shows the results of attempted access for each mode.

To access the PLE Identification and Status Registers in a privileged mode, read CP15 with:

MRC p15, 0, <Rd>, c11, c0, 0 ; Read PLE Identification and Status Register present
MRC p15, 0, <Rd>, c11, c0, 2 ; Read PLE Identification and Status Register running
MRC p15, 0, <Rd>, c11, c0, 3 ; Read PLE Identification and Status Register interrupting

3.2.60 c11, PLE User Accessibility Register

The purpose of the PLE User Accessibility Register is to determine if a User mode process can 
access the registers for each channel. This register contains a bit for each channel, referred to as 
the U bit for that channel.

The PLE User Accessibility Register is:
• a read/write register common to the Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-54 shows the bit arrangement of the PLE User Accessibility Register.

Figure 3-54 PLE User Accessibility Register format

Table 3-120 Results of access to the PLE Identification and Status Registersa

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Undefined Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Undefined Data Undefined Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

Reserved

31 1 02

U1

U0
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Table 3-121 shows how the bit values correspond with the PLE User Accessibility Register 
functions.

Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can only access this register in privileged modes. 
Table 3-122 shows the results of attempted access for each mode.

To access the PLE User Accessibility Register, read or write CP15 with:

MRC p15, 0, <Rd>, c11, c1, 0 ; Read PLE User Accessibility Register
MCR p15, 0, <Rd>, c11, c1, 0 ; Write PLE User Accessibility Register

The registers that you can access in User mode when the U1 or U0 bit = 1 for the current channel 
are: 
• c11, PLE enable commands on page 3-109
• c11, PLE Control Register on page 3-109
• c11, PLE Internal Start Address Register on page 3-112
• c11, PLE Internal End Address Register on page 3-113
• c11, PLE Channel Status Register on page 3-114.

You can access the PLE Channel Number Register, see c11, PLE Channel Number Register on 
page 3-108, in User mode when the U1 or U0 bit for any channel is 1.

The contents of these registers must be preserved on a task switch if the registers are user 
accessible. 

If the U bit for the currently selected channel is set to 0, and a User mode process attempts to 
access any of these registers, the processor takes an Undefined instruction trap.

Table 3-121 PLE User Accessibility Register bit functions

Bits Field Function

[31:2] - Reserved. UNP, SBZP.

[1] U1 Indicates if a User mode process can access the registers for channel 1:
0 = User mode cannot access channel 1, reset value. User mode accesses cause an Undefined 
Instruction exception.
1 = User mode can access channel 1.

[0] U0 Indicates if a User mode process can access the registers for channel 0:
0 = User mode cannot access channel 0, reset value. User mode accesses cause an Undefined 
Instruction exception.
1 = User mode can access channel 0.

Table 3-122 Results of access to the PLE User Accessibility Registera

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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3.2.61 c11, PLE Channel Number Register

The purpose of the PLE Channel Number Register is to select a PLE channel.

The PLE Channel Number Register is:
• a read/write register common to Secure and Nonsecure states
• accessible in User and privileged modes.

Figure 3-55 shows the bit arrangement of the PLE Channel Number Register.

Figure 3-55 PLE Channel Number Register format

Table 3-123 shows how the bit values correspond with the PLE Channel Number Register 
functions.

Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can access this register in User mode if the U bit for any 
channel is set to 1, see c11, PLE User Accessibility Register on page 3-106.

Table 3-124 shows the results of attempted access for each mode.

To access the PLE Channel Number Register, read or write CP15 with:

MRC p15, 0, <Rd>, c11, c2, 0 ; Read PLE Channel Number Register
MCR p15, 0, <Rd>, c11, c2, 0 ; Write PLE Channel Number Register

Reserved

31 1 0

CN

Table 3-123 PLE Channel Number Register bit functions

Bits Field Function

[31:1] - Reserved. UNP, SBZ.

[0] CN Indicates PLE channel selected:
0 = PLE channel 0 selected, reset value
1 = PLE channel 1 selected.

Table 3-124 Results of access to the PLE User Accessibility Registera

U 
bit 

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

1 0 Data Data Undefined Undefined Data Data Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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3.2.62 c11, PLE enable commands

The purpose of the PLE enable commands is to start, stop, or clear PLE transfers for each 
channel implemented.

The PLE enable commands are:
• three commands for each PLE channel common to Secure and Nonsecure states
• accessible in User and privileged modes.

Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can access these commands in User mode if the U bit, see 
c11, PLE User Accessibility Register on page 3-106, for the currently selected channel is set to 
1.

Table 3-125 shows the results of attempted access for each mode.

To issue a PLE enable command, set the PLE Channel Number Register to the appropriate PLE 
channel and execute one of the following CP15 command:

MCR p15, 0, <Rd>, c11, c3, 0 ; Stop PLE enable command
MCR p15, 0, <Rd>, c11, c3, 1 ; Start PLE enable command
MCR p15, 0, <Rd>, c11, c3, 2 ; Clear PLE enable command

3.2.63 c11, PLE Control Register

The purpose of the PLE Control Register for each channel is to control the operations of that 
PLE channel. 

Table 3-126 on page 3-110 shows the purposes of the individual bits in the PLE Control 
Register.

The PLE Control Register is:
• one read/write register for each PLE channel common to Secure and Nonsecure states
• accessible in User and privileged modes.

Figure 3-56 on page 3-110 shows the bit arrangement of the PLE Control Register.

Table 3-125 Results of access to the PLE enable commandsa

U 
bit 

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Undefined Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Undefined Data Undefined Data Undefined Undefined Undefined Undefined

1 0 Undefined Data Undefined Undefined Undefined Data Undefined Undefined

1 Undefined Data Undefined Data Undefined Data Undefined Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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Figure 3-56 PLE Control Register format

Table 3-126 shows how the bit values correspond with the PLE Control Register functions.

WY  Reserved

31 30 29 28 27 26 25 3 2 0

Reserved

Reserved

UM

IE
IC
DT

Table 3-126 PLE Control Register bit functions

Bits Field Function

[31] - Reserved. UNP, SBZP.

[30] DT Indicates direction of transfer:
0 = transfer from AXI SoC memory to the L2 cache, performing cache linefill.
1 = transfer from L2 cache to AXI SoC memory, performing a cache clean-and-invalidate operation.

[29] IC Indicates whether the PLE channel must assert an interrupt on completion of the PLE transfer, or if 
the Stop command stops the PLE, see c11, PLE enable commands on page 3-109.
The interrupt is deasserted from this source, if the processor performs a clear operation on the channel 
that caused the interrupt. See c11, PLE enable commands on page 3-109 for more information. 

Note
 The U bit has no affect on whether an interrupt is generated on completion.

0 = no interrupt on completion
1 = interrupt on completion.

[28] IE Indicates that the PLE channel must assert an interrupt on an error. 
The interrupt is deasserted from this source, when the channel is set to idle with a clear operation. See 
c11, PLE enable commands on page 3-109 for more information.

Note
 If the U bit is set to 1, then an interrupt on error occurs regardless of the state of the IE bit. See c11, 
PLE User Accessibility Register on page 3-106 for information on the U bit.

0 = no interrupt on error
1 = interrupt on error.

[27] - Reserved. UNP, SBZP.
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Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can access this register in User mode if the U bit for the 
currently selected channel is set to 1, see c11, PLE User Accessibility Register on page 3-106.

Table 3-127 shows the behavior of the processor when writing the UM bit [26] for various 
processor modes and U bit settings.

[26] UM Indicates that the permission checks are based on the PLE in User or privileged mode. The UM bit is 
provided so that the privileged mode process can emulate a User mode. See Table 3-127 for more 
details on the UM bit:
0 = transfer is a privileged transfer
1 = transfer is a User mode transfer.

[25:3] - Reserved. UNP, SBZP.

[2:0] WY Indicates the selected L2 cache way for filling data. This is used in conjunction with the L2 Cache 
Lockdown Register:
b000 = way 0
b001 = way 1
b010 = way 2
b011 = way 3
b100 = way 4
b101 = way 5
b110 = way 6
b111 = way 7.

Table 3-126 PLE Control Register bit functions (continued)

Bits Field Function

Table 3-127 Writing to UM bit [26]

Data to be written 
to UM bit [26]

Mode of CP15 
instruction

User accessibility 
(U bit)

Value written 
to UM bit [26]

b1 User mode b0 Undefined 
Instruction 
exception taken

b0 User mode b0 Undefined 
Instruction 
exception taken

b1 Privileged mode b0 b1

b0 Privileged mode b0 b0

b1 User mode b1 b1

b0 User mode b1 b1

b1 Privileged mode b1 b1

b0 Privileged mode b1 b1
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Table 3-128 shows the results of attempted access for each mode.

To access the PLE Control Register, set the PLE Channel Number Register to the appropriate 
PLE channel and read or write CP15 with:

MRC p15, 0, <Rd>, c11, c4, 0 ; Read PLE Control Register
MCR p15, 0, <Rd>, c11, c4, 0 ; Write PLE Control Register

While the channel has the status of Running, any attempt to write to the PLE Control Register 
results in architecturally Unpredictable behavior. For the processor, writes to the PLE Control 
Register have no effect when the PLE channel is running.

3.2.64 c11, PLE Internal Start Address Register

The purpose of the PLE Internal Start Address Register for each channel is to define the start 
address, that is, the first address that data transfers go to or from.

The PLE Internal Start Address Register is:

• a 32-bit read/write register with one register for each PLE channel common to Secure and 
Nonsecure states

• accessible in User and privileged modes.

The PLE Internal Start Address Register bits [31:0] contain the Internal Start Virtual Address 
(VA). Figure 3-57 shows this format.

Figure 3-57 PLE Internal Start Address Register bit format

Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can access this register in User mode if the U bit for the 
currently selected channel is set to 1, see c11, PLE User Accessibility Register on page 3-106.

Table 3-128 Results of access to the PLE Control Registersa

U 
bit 

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

1 0 Data Data Undefined Undefined Data Data Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

31 05 4

virtual address UNP/SBZ
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Table 3-129 shows the results of attempted access for each mode.

To access the PLE Internal Start Address Register, set the PLE Channel Number Register to the 
appropriate PLE channel and read or write CP15 c11 with:

MRC p15, 0, <Rd>, c11, c5, 0 ; Read PLE Internal Start Address Register
MCR p15, 0, <Rd>, c11, c5, 0 ; Write PLE Internal Start Address Register

3.2.65 c11, PLE Internal End Address Register

The purpose of the PLE Internal End Address Register for each channel is to define the number 
of cache lines transferred.

The PLE Internal End Address Register is:

• a 32-bit read/write register with one register for each PLE channel common to Secure and 
Nonsecure states

• accessible in User and privileged modes.

Figure 3-58 shows the bit arrangement of the PLE Internal End Address Register functions.

Figure 3-58 PLE Internal End Address Register format

The PLE Internal End Address Register bits [N:6] contain the number of cache lines transferred 
where N is determined by the L2 cache size as defined in Table 3-130.

Table 3-129 Results of access to the PLE Internal Start Address Registera

U 
bit

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

1 0 Data Data Undefined Undefined Data Data Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

ReservedReserved

31 0N N-1 6 5

Lines

Table 3-130 Maximum transfer size for various L2 cache sizes

Cache size N Maximum number of lines Maximum transfer size

0KB 6 0 0KBa

128KB 14 256 16KB

256KB 15 512 32KB

512KB 16 1024 64KB

1024KB 17 2048 128KB
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Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. The processor can access this register in User mode if the U bit for the 
currently selected channel is set to 1, see c11, PLE User Accessibility Register on page 3-106.

Table 3-131 shows the results of attempted access for each mode.

To access the PLE Internal End Address Register, set the PLE Channel Number Register to the 
appropriate PLE channel and read or write CP15 with:

MRC p15, 0, <Rd>, c11, c7, 0 ; Read PLE Internal End Address Register
MCR p15, 0, <Rd>, c11, c7, 0 ; Write PLE Internal End Address Register

3.2.66 c11, PLE Channel Status Register

The purpose of the PLE Channel Status Register for each channel is to define the status of the 
most recently started PLE operation on that channel.

The PLE Channel Status Register is:
• one read-only register for each PLE channel common to Secure and Nonsecure states
• accessible in User and privileged modes.

Figure 3-59 shows the bit arrangement of the PLE Channel Status Register.

Figure 3-59 PLE Channel Status Register format

a. For a 0KB cache, the PLE setup code must read the Cache Size ID Register, see c0, 
Cache Size Identification Registers on page 3-41, before attempting PLE access. In a 
0KB environment, the PLE does nothing.

Table 3-131 Results of access to the PLE Internal End Address Registera

U 
bit 

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

1 0 Data Data Undefined Undefined Data Data Undefined Undefined

1 Data Data Data Data Data Data Data Data

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

Error code

31 9 8 2 1 0

Status

Reserved
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Table 3-132 shows how the bit values correspond with the PLE Channel Status Register 
functions.

Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. You can access these registers in User mode if the U bit for the currently 
selected channel is set to 1, see c11, PLE User Accessibility Register on page 3-106.

Table 3-133 shows the results of attempted access for each mode.

Table 3-132 PLE Channel Status Register bit functions

Bits Field Function

[31:9] - Reserved. UNP, SBZ.

[8:2] Error code Indicates the status of the external address error. All other encodings are reserved:
b0xxxxxx = no error
b1x01100 = precise external abort, L1 translation
b1x01110 = precise external abort, L2 translation
b1011100 = parity/ECC error on L1 translation
b1011110 = parity/ECC error on L2 translation
b1000101 = translation fault, section
b1000111 = translation fault, page
b1000011 = access flag fault, section
b1000110 = access flag fault, page
b1001001 = domain fault, section
b1001011 = domain fault, page
b1001101 = permission fault, section
b1001111 = permission fault, page
b1x10110 = imprecise external abort
b1011000 = imprecise parity or ECC error, nontranslation.
Any unused encoding not listed is reserved.
Where x represents bit [7] in the encoding, bit [7] can be either:
0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.

[1:0] Status Indicates the status of the PLE channel:
b00 = idle, reset value
b01 = reserved
b10 = running
b11 = complete or error.

Table 3-133 Results of access to the PLE Channel Status Registera

U 
bit

PLE 
bit

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 0 Data Undefined Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Undefined Data Undefined Undefined Undefined Undefined Undefined

1 0 Data Undefined Undefined Undefined Data Undefined Undefined Undefined

1 Data Undefined Data Undefined Data Undefined Data Undefined
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To access the PLE Channel Status Register, set PLE Channel Number Register to the 
appropriate PLE channel and read CP15 with:

MRC p15, 0, <Rd>, c11, c8, 0 ; Read PLE Channel Status Register

For more details on the operation of the L2 PreLoad Engine (PLE), see L2 PLE on page 8-6.

3.2.67 c11, PLE Context ID Register

The PLE Context ID Register for each channel contains the processor context ID of the process 
that uses that channel.

The PLE Context ID Register is:

• a read/write register for each PLE channel common to Secure and Nonsecure states

• accessible in privileged modes only.

Figure 3-60 shows the bit arrangement of the PLE Context ID Register.

Figure 3-60 PLE Context ID Register format

Table 3-134 shows how the bit values correspond with the PLE Context ID Register functions.

Access in the Nonsecure state depends on the PLE bit, see c1, Nonsecure Access Control 
Register on page 3-56. Table 3-135 shows the results of attempted access for each mode.

To access the PLE Context ID Register in a privileged mode, set the PLE Channel Number 
Register to the appropriate PLE channel and read or write CP15 with:

MRC p15, 0, <Rd>, c11, c15, 0 ; Read PLE Context ID Register
MCR p15, 0, <Rd>, c11, c15, 0 ; Write PLE Context ID Register

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

ASIDPROCID

31 8 07

Table 3-134 PLE Context ID Register bit functions

Bits Field Function

[31:8] PROCID Extends the ASID to form the process ID and identifies the current process

[7:0] ASID Holds the ASID of the current process and identifies the current ASID

Table 3-135 Results of access to the PLE Context ID Registera

PLE bit
Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

0 Data Data Undefined Undefined Undefined Undefined Undefined Undefined

1 Data Data Data Data Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.
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3.2.68 c12, Secure or Nonsecure Vector Base Address Register

The purpose of the Secure or Nonsecure Vector Base Address Register is to hold the base 
address for exception vectors in the Secure and Nonsecure states. See Exceptions on page 2-27 
for more information.

The Secure or Nonsecure Vector Base Address Register is:
• a read/write register banked in Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-61 shows the bit arrangement of the Secure or Nonsecure Vector Base Address 
Register.

Figure 3-61 Secure or Nonsecure Vector Base Address Register format

Table 3-136 shows how the bit values correspond with the Secure or Nonsecure Vector Base 
Address Register functions.

When an exception occurs in the Secure state, the core branches to address:

Secure Vector_Base_Address + Exception_Vector_Address.

When an exception occurs in the Nonsecure state, the core branches to address:

Nonsecure Vector_Base_Address + Exception_Vector_Address.

When high vectors are enabled, regardless of the value of the register the processor branches to 
0xFFFF0000 + Exception_Vector_Address.

You can configure IRQ, FIQ, and external abort exceptions to branch to Monitor mode, see c1, 
Secure Configuration Register on page 3-53. In this case, the processor uses the Monitor Vector 
Base Address, see c12, Monitor Vector Base Address Register on page 3-118, to calculate the 
branch address. The Reset exception always branches to 0x00000000, regardless of the value of 
the Vector Base Address except when the processor uses high vectors.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Data formats for the cache operations on 
page 3-69.

ReservedVector base address

31 5 4 0

Table 3-136 Secure or Nonsecure Vector Base Address Register bit functions

Bits Field Functiona

a. The reset values ensure that no remapping occurs at reset.

[31:5] Vector base address Holds the base address. Determines the location that the core 
branches to, on an exception. The reset value is 0.

[4:0] - Reserved. UNP, SBZ.
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Table 3-137 shows the results of attempted access for each mode.

To access the Secure or Nonsecure Vector Base Address Register, read or write CP15 with:

MRC p15, 0, <Rd>, c12, c0, 0 ; Read Secure or Nonsecure Vector Base
; Address Register

MCR p15, 0, <Rd>, c12, c0, 0 ; Write Secure or Nonsecure Vector Base
; Address Register

3.2.69 c12, Monitor Vector Base Address Register

The purpose of the Monitor Vector Base Address Register is to hold the base address for the 
Monitor mode exception vector. See Exceptions on page 2-27 for more information.

The Monitor Vector Base Address Register is:
• a read/write register in the Secure state only
• accessible in secure privileged modes only.

Figure 3-62 shows the bit arrangement of the Monitor Vector Base Address Register.

Figure 3-62 Monitor Vector Base Address Register format

Table 3-138 shows how the bit values correspond with the Monitor Vector Base Address 
Register functions.

When an exception branches to the Monitor mode, the core branches to address:

Monitor_Base_Address + Exception_Vector_Address.

The Software Monitor Exception caused by an SMC instruction branches to Monitor mode. You 
can configure IRQ, FIQ, and External abort exceptions to branch to Monitor mode, see c1, 
Secure Configuration Register on page 3-53. These are the only exceptions that can branch to 
Monitor mode and that use the Monitor Vector Base Address Register to calculate the branch 
address. See Exceptions on page 2-27 for more information.

Table 3-137 Results of access to the Secure or Nonsecure Vector Base Address Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

Monitor vector base address Reserved

31 5 4 0

Table 3-138 Monitor Vector Base Address Register bit functions

Bits Field Function

[31:5] Monitor vector 
base address

Holds the base address. Determines the location that the core branches to, on 
a Monitor mode exception. The reset value is 0.

[4:0] - Reserved. UNP, SBZ.
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Note
 The Monitor Vector Base Address Register is 0x00000000 at reset. The secure boot code must 
program the register with an appropriate value for the Monitor.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 3-5.

Table 3-139 shows the results of attempted access for each mode.

To access the Monitor Vector Base Address Register, read or write CP15 with:

MRC p15, 0, <Rd>, c12, c0, 1 ; Read Monitor Vector Base Address Register
MCR p15, 0, <Rd>, c12, c0, 1 ; Write Monitor Vector Base Address Register

3.2.70 c12, Interrupt Status Register

The purpose of the Interrupt Status Register is to:
• reflect the state of the nFIQ and nIRQ pins on the processor
• reflect the state of external aborts.

The Interrupt Status Register is:
• a read-only register common to Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-63 shows the bit arrangement of the Interrupt Status Register.

Figure 3-63 Interrupt Status Register format

Table 3-139 Results of access to the Monitor Vector Base Address Registera

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Data Undefined Undefined Undefined Undefined Undefined Undefined

ReservedReserved

31 9 8 7 6 5 0

A I F
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Table 3-140 shows how the bit values correspond with the Interrupt Status Register functions.

Note
 • The F and I bits directly reflect the state of the nFIQ and nIRQ pins respectively, but are 

the inverse state.

• The A bit is set to 1 when an external abort occurs and automatically clears to 0 when the 
abort is taken.

Table 3-141 shows the results of attempted access for each mode.

The A, I, and F bits map to the same format as the CPSR so that you can use the same mask for 
these bits.

The Monitor can poll these bits to detect the exceptions before it completes context switches. 
This can reduce interrupt latency.

To access the Interrupt Status Register, read CP15 with:

MRC p15, 0, <Rd>, c12, c1, 0 ; Read Interrupt Status Register

3.2.71 c13, FCSE PID Register

The c13, Context ID Register on page 3-122 replaces the FCSE PID Register. Use of the FCSE 
PID Register is deprecated.

Table 3-140 Interrupt Status Register bit functions

Bits Field Functiona

a. The reset values depend on external signals.

[31:9] - Reserved. UNP, SBZ.

[8] A Indicates when an external abort is pending:
0 = no abort, reset value
1 = abort pending.

[7] I Indicates when an IRQ is pending:
0 = no IRQ, reset value
1 = IRQ pending.

[6] F Indicates when an FIQ is pending:
0 = no FIQ, reset value
1 = FIQ pending.

[5:0] - Reserved. UNP, SBZ.

Table 3-141 Results of access to the Interrupt Status Registera

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Data Undefined Data Undefined Undefined Undefined Undefined Undefined
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The FCSE PID Register is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-64 shows the bit arrangement of the FCSE PID Register.

Figure 3-64 FCSE PID Register format

Table 3-142 shows how the bit values correspond with the FCSE PID Register functions.

Attempts to write to this register in secure privileged mode when CP15SDISABLE is HIGH 
result in an Undefined Instruction exception, see Security Extensions write access disable on 
page 3-5.

Table 3-143 shows the results of attempted access for each mode.

To access the FCSE PID Register, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 0 ; Read FCSE PID Register
MCR p15, 0, <Rd>, c13, c0, 0 ; Write FCSE PID Register

To change the ProcID and perform a fast context switch, write to the FCSE PID Register. You 
are not required to flush the contents of the TLB after the switch because the TLB still holds the 
valid address tags.

Because a write to the FCSE PID Register causes a pipeline flush, the effect is immediate. The 
next executed instruction is fetched with the new PID.

Note
 You must not rely on this behavior for future compatibility. An IMB must be executed between 
changing the ProcID and fetching from locations that are translated by the ProcID.

ReservedFCSE PID

31 25 24 0

Table 3-142 FCSE PID Register bit functions

Bits Field Function

[31:25] FCSE PID Holds the ProcID. Identifies a specific process for fast context switch. The reset value is 0.
The purpose of the FCSE PID Register is to provide the ProcID for fast context switch memory 
mappings. The MMU uses the contents of this register to map memory addresses in the range 
0-32MB.

[24:0] - Reserved. UNP, SBZP.

Table 3-143 Results of access to the FCSE PID Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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Addresses issued by the processor in the range 0-32MB are translated by the ProcID. Address 
A becomes A + (ProcID x 32MB). The MMU uses this translated address, the MVA. Addresses 
above 32MB are not translated. The ProcID is a 7-bit field, enabling 128 x 32MB processes to 
be mapped.

Note
 If ProcID is 0, as it is on Reset, then there is a flat mapping between the processor and the MMU.

Figure 3-65 shows how addresses are mapped using the FCSE PID Register. 

Figure 3-65 Address mapping with the FCSE PID Register

3.2.72 c13, Context ID Register

The purpose of the Context ID Register is to provide information on the current ASID and 
process ID, for example for the ETM and debug logic. 

Debug logic uses the ASID information to enable process-dependent breakpoints and 
watchpoints. The ASID field of the Context ID Register and FCSE PID Register cannot be used 
simultaneously. The FCSE PID Register remapping of VA to MVA has priority over setting the 
ASID field to designate non-global pages. Therefore, non-global pages cannot be used if the 
FCSE PID Register is set to a non-zero value.

The Context ID Register is:
• a read/write register banked for Secure and Nonsecure states
• accessible in privileged modes only.

Figure 3-66 shows the bit arrangement of the Context ID Register.

Figure 3-66 Context ID Register format

C13

127

2

1

0

4GB

Modified virtual address (MVA)
input to MMU
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32MB

0
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31 8 7 0
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Table 3-144 shows how the bit values correspond with the Context ID Register functions.

Table 3-145 shows the results of attempted access for each mode.

The current ASID value in the Context ID Register is exported to the MMU.

To access the Context ID Register, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 1 ; Read Context ID Register
MCR p15, 0, <Rd>, c13, c0, 1 ; Write Context ID Register

You must ensure that software executes a Data Synchronization Barrier operation before 
changes to this register. This ensures that all accesses are related to the correct context ID.

You must execute an IMB instruction immediately after changes to the Context ID Register. You 
must not attempt to execute any instructions that are from an ASID-dependent memory region 
between the change to the register and the IMB instruction. Code that updates the ASID must 
execute from a global memory region.

You must program each process with a unique number to ensure that the ETM and debug logic 
can correctly distinguish between processes.

3.2.73 c13, Thread and Process ID Registers

The purpose of the Thread and Process ID Registers is to provide locations to store the IDs of 
software threads and processes for OS management purposes.

The Thread and Process ID Registers are:
• three read/write registers banked for Secure and Nonsecure states:

— user read/write Thread and Process ID Register
— user read-only Thread and Process ID Register
— privileged only Thread and Process ID Register.

• accessible in different modes:
— the user read/write Thread and Process ID Register is read/write in User and 

privileged modes
— the user read-only Thread and Process ID Register is read-only in User mode, and 

read/write in privileged modes

Table 3-144 Context ID Register bit functions

Bits Field Function

[31:8] PROCID Extends the ASID to form the process ID and identifies the current process. The reset value is 0.

[7:0] ASID Holds the ASID of the current process to identify the current ASID. The reset value is 0.

Table 3-145 Results of access to the Context ID Registera

Secure privileged Nonsecure privileged Secure User Nonsecure User

Read Write Read Write Read Write Read Write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the 
coprocessor instruction is executed.
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— the privileged only Thread and Process ID Register is only accessible in privileged 
modes, and is read/write.

Table 3-146 shows the results of attempted access to each register for each mode.

To access the Thread and Process ID Registers, read or write CP15 with:

MRC p15, 0, <Rd>, c13, c0, 2 ; Read User read/write Thread and Process ID Register
MCR p15, 0, <Rd>, c13, c0, 2 ; Write User read/write Thread and Process ID Register
MRC p15, 0, <Rd>, c13, c0, 3 ; Read User read-only Thread and Process ID Register
MCR p15, 0, <Rd>, c13, c0, 3 ; Write User read-only Thread and Process ID Register
MRC p15, 0, <Rd>, c13, c0, 4 ; Read Privileged only Thread and Process ID Register
MCR p15, 0, <Rd>, c13, c0, 4 ; Write Privileged only Thread and Process ID Register

Reading or writing the Thread and Process ID Registers has no effect on the processor state or 
operation. These registers provide OS support and must be managed by the OS.

You must clear the contents of all Thread and Process ID Registers on process switches to 
prevent data leaking from one process to another. This is important to ensure the security of 
secure data.

3.2.74 c15, L1 system array debug data registers

The purpose of the L1 system array debug data registers is to hold the data:

• that is returned on instruction side or data side TLB CAM, TLB ATTR, TLB PA, HVAB, 
tag, data, GHB, and BTB instruction or data side read operations

• for TLB CAM, TLB ATTR, TLB PA, HVAB, tag, data, GHB, and BTB instruction side 
or data side write operations.

Because BTB, TLB, and data arrays are greater than 32-bits wide, the processor contains two 
registers, data low register and data high register, to hold data when retrieving or registering data 
as a result of read/write operations. If the data is greater than 32-bit wide, both the low and high 
registers are used to transfer data. Otherwise, only the low register is used to transfer data.

The Data 0 and Data 1 read/write registers are accessible in secure privileged modes only.

To access the L1 system debug registers, read or write CP15 with:

MCR p15, 0, <Rd>, c15, c0, 0 ; Write data L1 Data 0 Register

Table 3-146 Results of access to the Thread and Process ID Registersa

Secure 
privileged Nonsecure privileged Secure User Nonsecure User

Registerb Read Write Read Write Read Write Read Write

User 
read/write

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Secure 
data

Secure data Nonsecure 
data

Nonsecure 
data

User 
read-only

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Secure 
data

Undefined Nonsecure 
data

Undefined

Privileged 
only

Secure 
data

Secure 
data

Nonsecure 
data

Nonsecure 
data

Undefined Undefined Undefined Undefined

a. An entry of Undefined in the table means that the access gives an Undefined Instruction exception when the coprocessor 
instruction is executed.

b. Each row refers to a Thread and Process ID Register. For example, the User read/write row refers to the User read/write 
Thread and Process ID Register.
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MRC p15, 0, <Rd>, c15, c0, 0 ; Read data L1 Data 0 Register
MCR p15, 0, <Rd>, c15, c0, 1 ; Write data L1 Data 1 Register
MRC p15, 0, <Rd>, c15, c0, 1 ; Read data L1 Data 1 Register
MCR p15, 0, <Rd>, c15, c1, 0 ; Write instruction L1 Data 0 Register
MRC p15, 0, <Rd>, c15, c1, 0 ; Read instruction L1 Data 0 Register
MCR p15, 0, <Rd>, c15, c1, 1 ; Write instruction L1 Data 1 Register
MRC p15, 0, <Rd>, c15, c1, 1 ; Read instruction L1 Data 1 Register

Figure 3-67 shows the bit arrangement of the L1 Data 0 Register when retrieving or registering 
data as a result of the read/write operations.

Figure 3-67 Instruction and Data side Data 0 Registers format

Figure 3-68 shows the bit arrangement of the L1 Data 1 Register when retrieving or registering 
data as a result of the read/write operations.

Figure 3-68 Instruction and Data side Data 1 Registers format
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Table 3-147 shows how the bit values correspond with the I-L1 or D-L1 Data 0 Register 
functions as a result of a TLB CAM read/write operation.

Table 3-148 shows how the bit values correspond with the I-L1 or D-L1 Data 1 Register 
functions as a result of a TLB CAM read/write operation.

To perform a TLB CAM operation, read or write CP15 with:

MCR p15, 0, <Rd>, c15, c0, 2 ; D-L1 CAM write
MCR p15, 0, <Rd>, c15, c2, 2 ; D-L1 CAM read
MCR p15, 0, <Rd>, c15, c1, 2 ; I-L1 CAM write
MCR p15, 0, <Rd>, c15, c3, 2 ; I-L1 CAM read

Table 3-149 shows how the bit values correspond with the I-L1 or D-L1 Data 0 Register 
functions as a result of a TLB ATTR read/write operation.

To perform a TLB ATTR operation, read or write CP15 with:

MCR p15 0, <Rd>, c15, c0, 3 ; D-L1 TLB ATTR write
MCR p15 0, <Rd>, c15, c2, 3 ; D-L1 TLB ATTR read
MCR p15 0, <Rd>, c15, c1, 3 ; I-L1 TLB ATTR write
MCR p15 0, <Rd>, c15, c3, 3 ; I-L1 TLB ATTR read

Table 3-150 shows how the bit values correspond with the I-L1 or D-L1 Data 0 Register as a 
result of a TLB PA array read/write operation.

To perform a TLB PA operation, read or write CP15 with:

MCR p15 0, <Rd>, c15, c0, 4 ; D-L1 TLB PA write
MCR p15 0, <Rd>, c15, c2, 4 ; D-L1 TLB PA read
MCR p15 0, <Rd>, c15, c1, 4 ; I-L1 TLB PA write

Table 3-147 Functional bits of I-L1 or D-L1 Data 0 Register for a TLB CAM operation

Bits Field Function

[31:0] Data Holds TLB CAM information.

Table 3-148 Functional bits of I-L1 or D-L1 Data 1 Register for a TLB CAM operation

Bits Field Function

[31:5] - Reserved. UNP, SBZ.

[4:0] Data Holds TLB CAM information.

Table 3-149 Functional bits of I-L1 or D-L1 Data 0 Register for a TLB ATTR operation

Bits Field Function

[31:12] - Reserved. UNP, SBZ.

[11:0] Data Holds TLB ATTR information.

Table 3-150 Functional bits of I-L1 or D-L1 Data 0 Register for a TLB PA array operation

Bits Field Function

[31:29] - Reserved. UNP, SBZ.

[28:0] Data Holds TLB PA information.
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MCR p15 0, <Rd>, c15, c3, 4 ; I-L1 TLB PA read

Table 3-151 shows how the bit values correspond with the I-L1 or D-L1 Data 0 Register as a 
result of a HVAB array read/write operation.

To perform a HVAB operation, read or write CP15 with:

MCR p15 0, <Rd>, c15, c0, 5 ; D-L1 HVAB write
MCR p15 0, <Rd>, c15, c2, 5 ; D-L1 HVAB read
MCR p15 0, <Rd>, c15, c1, 5 ; I-L1 HVAB write
MCR p15 0, <Rd>, c15, c3, 5 ; I-L1 HVAB read

Table 3-152 shows how the bit values correspond with the I-L1 or D-L1 Data 0 Register as a 
result of an L1 tag array read/write operation.

To perform a tag operation, read or write CP15 with:

MCR p15 0, <Rd>, c15, c0, 6 ; D-L1 tag write
MCR p15 0, <Rd>, c15, c2, 6 ; D-L1 tag read
MCR p15 0, <Rd>, c15, c1, 6 ; I-L1 tag write
MCR p15 0, <Rd>, c15, c3, 6 ; I-L1 tag read

Table 3-153 shows how the bit values correspond with the I-L1 or D-L1 Data 0 Register as a 
result of an L1 data array read/write operation.

Table 3-154 shows how the bit values correspond with the I-L1 or D-L1 Data 1 Register as a 
result of an L1 data array read/write operation.

To perform a data operation on the Data 0 or Data 1 Register, read or write CP15 with:

MCR p15 0, <Rd>, c15, c0, 7 ; D-L1 data write

Table 3-151 Functional bits of I-L1 or D-L1 Data 0 Register for an HVAB array operation

Bits Field Function

[31:8] - Reserved. UNP, SBZ.

[7:0] Data Holds HVAB information.

Table 3-152 Functional bits of I-L1 or D-L1 Data 0 Register for an L1 tag array operation

Bits Field Function

[31:23] - Reserved. UNP, SBZ.

[22:0] Data Holds L1 tag array information.

Table 3-153 Functional bits of I-L1 or D-L1 Data 0 Register for L1 data array operation

Bits Field Function

[31:0] Data Holds L1 data array information.

Table 3-154 Functional bits of I-L1 or D-L1 Data 1 Register for L1 data array operation

Bits Field Function

[30:6] - Reserved. UNP, SBZ.

[5:0] Data Holds L1 data array information.
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MCR p15 0, <Rd>, c15, c2, 7 ; D-L1 data read
MCR p15 0, <Rd>, c15, c1, 7 ; I-L1 data write
MCR p15 0, <Rd>, c15, c3, 7 ; I-L1 data read

Table 3-155 shows how the bit values correspond with the I-L1 Data 0 Register as a result of a 
BTB array read/write operation.

Table 3-156 shows how the bit values correspond with the I-L1 Data 1 Register as a result of a 
BTB array read/write operation.

To perform a BTB operation on the Data 0 or Data 1 Register, read or write CP15 with:

MCR p15 0, <Rd>, c15, c5, 3 ; I-L1 BTB write
MCR p15 0, <Rd>, c15, c7, 3 ; I-L1 BTB read

Table 3-157 shows how the bit values correspond with the I-L1 Data 0 Register as a result of a 
GHB array read/write operation.

To perform a GHB operation on the Data 0 Register, read or write CP15 with:

MCR p15 0, <Rd>, c15, c5, 2 ; I-L1 GHB write
MCR p15 0, <Rd>, c15, c7, 2 ; I-L1 GHB read

3.2.75 c15, L1 TLB operations

The purpose of the L1 TLB operations is to:

• read the instruction or data side L1 TLB array contents and write into the system debug 
data registers

• write into the system debug data registers and instruction or data side L1 TLB array.

The L1 TLB operations are accessible in secure privileged modes only.

Figure 3-69 on page 3-129 shows the bit arrangement of the L1 TLB CAM read operations.

Table 3-155 Functional bits of I-L1 Data 0 Register for a BTB array operation

Bits Field Function

[31:0] Data Holds L1 Data 0 Register BTB information

Table 3-156 Functional bits of I-L1 Data 1 Register for a BTB array operation

Bits Field Function

[31:28] - Reserved. UNP, SBZ.

[27:0] Data Holds L1 Data 1 Register BTB information.

Table 3-157 Functional bits of I-L1 Data 0 Register for a GHB array operation

Bits Field Function

[31:0] Data Holds L1 Data 0 Register GHB information
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Figure 3-69 L1 TLB CAM read operation format

Figure 3-70 shows the bit arrangement of the L1 TLB CAM write operations.

Figure 3-70 L1 TLB CAM write operation format

TLB CAM array examples

To write one entry in data side TLB CAM array, for example:

LDR R0, =0x03000323;
MCR p15, 0, R0, c15, c0, 0; Move R0 to D-L1 Data 0 Register
LDR R2, =0x01;
MCR p15, 0, R2, c15, c0, 1; Move R0 to D-L1 Data 1 Register
LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c0, 2; Write D-L1 Data 0 or 1 Register to D-TLB CAM

To read one entry in data side TLB CAM array, for example:

LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c2, 2; Read D-TLB CAM into data L1 Data 0/1 Register
MRC p15, 0, R0, c15, c0, 0; Move D-L1 Data 0 Register to R0
MRC p15, 0, R2, c15, c0, 1; Move D-L1 Data 1 Register to R2

To write one entry in instruction side TLB CAM array, for example:

LDR R0, =0x03000323;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R2, =0x01;
MCR p15, 0, R2, c15, c1, 1; Move R0 to I-L1 Data 1 Register
LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c1, 2; Write I-L1 Data 0 or 1 Register to D-TLB CAM

To read one entry in instruction side TLB CAM array, for example:

LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c3, 2; Read I-TLB CAM into data L1 Data 0/1 Register
MRC p15, 0, R0, c15, c1, 0; Move I-L1 Data 0 Register to R0
MRC p15, 0, R2, c15, c1, 1; Move I-L1 Data 1 Register to R2
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TLB ATTR array examples

To write one entry in data side TLB ATTR array, for example:

LDR R0, =0x252E;
MCR p15, 0, R0, c15, c0, 0; Move R0 to D-L1 Data 0 Register
LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c0, 3; Write D-L1 Data 0 Register to D-TLB ATTR

To read one entry in data side TLB ATTR array, for example:

LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c2, 3; Read D-TLB ATTR into data L1 Data 0 Register
MRC p15, 0, R0, c15, c0, 0; Move D-L1 Data 0 Register to R0

To write one entry in instruction side TLB ATTR array, for example:

LDR R0, =0x252E;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c1, 3; Write I-L1 Data 0 Register to I-TLB ATTR

To read one entry in instruction side TLB ATTR array, for example:

LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c3, 3; Read I-TLB ATTR into data L1 Data 0 Register
MRC p15, 0, R0, c15, c0, 0; Move I-L1 Data 0 Register to R0

TLB PA array examples

To write one entry in data side TLB PA array, for example:

LDR R0, =0x05730000;
MCR p15, 0, R0, c15, c0, 0; Move R0 to D-L1 Data 0 Register
LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c0, 4; Write D-L1 Data 0 Register to D-TLB PA

To read one entry in data side TLB PA array, for example:

LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c2, 4; Read D-TLB PA into data L1 Data 0 Register
MRC p15, 0, R0, c15, c0, 0; Move D-L1 Data 0 Register to R0

To write one entry in instruction side TLB PA array, for example:

LDR R0, =0x05730000;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c1, 4; Write I-L1 Data 0 Register to I-TLB PA

To read one entry in instruction side TLB PA array, for example:

LDR R1, =0x00C00000;
MCR p15, 0, R1, c15, c3, 4; Read I-TLB PA into data L1 Data 0 Register
MRC p15, 0, R0, c15, c1, 0; Move I-L1 Data 0 Register to R0

3.2.76 c15, L1 HVAB array operations

The purpose of the L1 HVAB array operations is to:
• read the L1 HVAB array contents and write to the system debug data registers
• write into the system debug data registers and into the L1 HVAB array.
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The L1 HVAB array operation is accessible in secure privileged modes only. You can calculate 
the value of N in Figure 3-71 and Figure 3-72 using the NumSets and LineSize fields as defined 
in Table 3-42 on page 3-42. 

Figure 3-71 shows the bit arrangement of the L1 HVAB array read operation.

Figure 3-71 L1 HVAB array read operation format

Figure 3-72 shows the bit arrangement of the L1 HVAB array write operation.

Figure 3-72 L1 HVAB array write operation format

To write one entry in data side HVAB array, for example:

LDR R0, =0x47;
MCR p15, 0, R0, c15, c0, 0; Move R0 to D-L1 Data 0 Register
LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c0, 5; Write D-L1 Data 0 Register to D-HVAB

To read one entry from data side HVAB array, for example:

LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c2, 5; Read D-HVAB into data L1 Data 0 Register
MRC p15, 0, R2, c15, c0, 0; Move D-L1 Data 0 Register to R2

To write one entry in instruction side HVAB array, for example:

LDR R0, =0x47;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c1, 5; Write I-L1 Data 0 Register to I-HVAB

To read one entry from instruction side HVAB array, for example:

LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c3, 5; Read I-HVAB into I-L1 Data 0 Register
MRC p15, 0, R2, c15, c1, 0; Move I-L1 Data 0 Register to R2

31 30 29 N+1 N 6 5 0

Address

Reserved Address Reserved
HVAB 
array

Address

31 8 7 0

DataReserved
L1 Data 0 
register

HVAB 
array

Address

Write data

Address

Reserved

31 30 29 N+1 N 6 5 0

Address Reserved
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3.2.77 c15, L1 tag array operations

The purpose of the L1 tag array operations is to:
• read the L1 tag array contents and write into the system debug data registers
• write into the system debug data registers and copy into the L1 tag array.

The L1 tag array operation is accessible in secure privileged modes only. You can calculate the 
value of N in Figure 3-73 and Figure 3-74 using the NumSets and LineSize fields as defined in 
Table 3-42 on page 3-42.

Figure 3-73 shows the bit arrangement of the L1 tag array read operation.

Figure 3-73 L1 tag array read operation format

Figure 3-74 shows the bit arrangement of the L1 tag array write operation.

Figure 3-74 L1 tag array write operation format

To write one entry to the data side L1 tag array, for example:

LDR R0, =0x00500007;
MCR p15, 0, R0, c15, c0, 0; Move R0 to D-L1 Data 0 Register
LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c0, 6; Write D-L1 Data 0 Register to D-tag

To read one entry from the data side L1 tag array, for example:

LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c2, 6; Read D-tag into data L1 Data 0 Register
MRC p15, 0, R2, c15, c0, 0; Move D-L1 Data 0 Register to R2

To write one entry to the instruction side L1 tag array, for example:

LDR R0, =0x00500007;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R1, =0x800000C0;
MCR p15, 0, R1, c15, c1, 6; Write I-L1 Data 0 Register to I-tag

To read one entry from the instruction side L1 tag array, for example:

LDR R1, =0x800000C0;

31 30 29 N+1 N 6 5 0

Address

Reserved Address Reserved
Tag 
array

Address

31 0

Reserved
L1 Data 0 
register

Tag 
array

Address

Write data

Reserved

31 30 29 N+1 N 6 5 0

Address Reserved

23 22

Data

Address
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 3-132
ID060510 Non-Confidential



System Control Coprocessor 
MCR p15, 0, R1, c15, c3, 6; Read I-tag into I-L1 Data 0 Register
MRC p15, 0, R2, c15, c1, 0; Move I-L1 Data 0 Register to R2

3.2.78 c15, L1 data array operations

The purpose of the L1 data array operations is to:
• read the L1 data array contents and write into the system debug data registers
• write into the system debug data registers and copy into the L1 data array.

The L1 data array operation is accessible in secure privileged modes only. You can calculate the 
value of N in Figure 3-75 and Figure 3-76 using the NumSets and LineSize fields as defined in 
Table 3-42 on page 3-42.

Figure 3-75 shows the bit arrangement of the L1 data array read operation.

Figure 3-75 L1 data array read operation format

Figure 3-76 shows the bit arrangement of the L1 data array write operation.

Figure 3-76 L1 data array write operation format

To write one entry in data side L1 data array, for example:

LDR R0, =0x01234567;
MCR p15, 0, R0, c15, c0, 0; Move R0 to D-L1 Data 0 Register
LDR R2, =0x1B;
MCR p15, 0, R2, c15, c0, 1; Move R0 to D-L1 Data 1 Register
LDR R1, =0x800000D8;
MCR p15, 0, R1, c15, c0, 7; Write D-L1 Data 0 or 1 Register to D-L1 data

To read one entry in data side L1 data array, for example:

LDR R1, =0x800000D8;
MCR p15, 0, R1, c15, c2, 7; Read D-L1 data into data L1 Data 0 or 1 Register
MRC p15, 0, R0, c15, c0, 0; Move D-L1 Data 0 Register to R0
MRC p15, 0, R2, c15, c0, 1; Move D-L1 Data 1 Register to R2

31 30 29 N+1 N 0

Reserved Address
L1 

data 
arrayAddress

2 1

Reserved
Address

31 0

Data
L1 Data 0 
register

L1 
data 
array

Address

Write data

Reserved

31 30 29 N+1 N 0

Address

Reserved

L1 Data 1 
register

5

Reserved Data

6

2 1

Address
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To write one entry in instruction side L1 data array, for example:

LDR R0, =0x01234567;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R2, =0x1B;
MCR p15, 0, R2, c15, c1, 1; Move R0 to I-L1 Data 1 Register
LDR R1, =0x800000D8;
MCR p15, 0, R1, c15, c1, 7; Write I-L1 Data 0 or 1 Register to I-L1 data

To read one entry in instruction side L1 data array, for example:

LDR R1, =0x800000D8;
MCR p15, 0, R1, c15, c3, 7; Read I-L1 data into I-L1 Data 0 or 1 Register
MRC p15, 0, R0, c15, c1, 0; Move I-L1 Data 0 Register to R0
MRC p15, 0, R2, c15, c1, 1; Move I-L1 Data 1 Register to R2

Note
 The granularity of the dirty bits is so that two sets of dirty bits are updated for each CP15 L1 
DATA array write operation. A doubleword set of dirty bits are updated so that if word 0 or word 
1 is being updated, then the D-bit and D-bit parity bits are updated for both word 0 and word 1.

3.2.79 c15, BTB array operations

The purpose of the Branch Target Buffer (BTB) array operations is to:
• read the BTB array contents and write into the system debug data registers
• write into the system debug data registers and into the BTB array.

The BTB array operation is accessible in secure privileged modes only.

Figure 3-77 shows the bit arrangement of the BTB array read operation.

Figure 3-77 BTB array read operation format

Figure 3-78 on page 3-135 shows the bit arrangement of the BTB array write operation.

Reserved

31 30 29 0

Reserved Address
BTB 
array

Address

3 2

Reserved

1011

Address
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Figure 3-78 BTB array write operation format

To write one entry in the instruction side BTB array, for example:

LDR R0, =0x01234567;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R2, =0x0DDFFFFF;
MCR p15, 0, R2, c15, c1, 1; Move R0 to I-L1 Data 1 Register
LDR R1, =0x40000408;
MCR p15, 0, R1, c15, c5, 3; Write I-L1 Data 0 or 1 Register to BTB

To read one entry in instruction side BTB array, for example:

LDR R1, =0x40000408;
MCR p15, 0, R1, c15, c7, 3; Read BTB into I-L1 Data 0 or 1 Register
MRC p15, 0, R0, c15, c1, 0; Move I-L1 Data 0 Register to R0
MRC p15, 0, R2, c15, c1, 1; Move I-L1 Data 1 Register to R2

3.2.80 c15, GHB array operations

The purpose of the Global History Buffer (GHB) array operation is to:
• read the GHB array contents and write into the system debug data registers
• write into the system debug data registers and into the GHB array.

The GHB array operation is accessible in secure privileged modes only.

Figure 3-79 shows the bit arrangement of the GHB array read operation.

Figure 3-79 GHB array read operation format

Figure 3-80 on page 3-136 shows the bit arrangement of the GHB array write operation.
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Figure 3-80 GHB array write operation format

To write one entry in the instruction side GHB array, for example:

LDR R0, =0x3333AAAA;
MCR p15, 0, R0, c15, c1, 0; Move R0 to I-L1 Data 0 Register
LDR R1, =0x0000020C;
MCR p15, 0, R1, c15, c5, 2; Write I-L1 Data 0 Register to GHB

To read one entry in the instruction side GHB array, for example:

LDR R1, =0x0000020C;
MCR p15, 0, R1, c15, c7, 2; Read GHB into I-L1 Data 0 Register
MRC p15, 0, R0, c15, c1, 0; Move I-L1 Data 0 Register to R0

3.2.81 c15, L2 system array debug data registers

The purpose of the L2 system array debug data registers is to hold the data:
• that is returned from the L2 tag, data, parity/ECC read operations
• for L2 tag, data, parity/ECC write operations.

Because the L2 data arrays are greater than 32-bits wide, the processor contains three registers, 
Data 0, Data 1, and Data 2 registers, to hold data when retrieving or registering data as a result 
of read/write operations. If the data is greater than 32-bit wide, all of the registers are used to 
transfer data.

The Data 0, Data 1, and Data 2 read/write registers are accessible in secure privileged modes 
only.

To access the L2 system debug registers, read or write CP15 with:

MCR p15, 0, <Rd>, c15, c8, 0 ; Write L2 Data 0 Register
MRC p15, 0, <Rd>, c15, c8, 0 ; Read L2 Data 0 Register
MCR p15, 0, <Rd>, c15, c8, 1 ; Write L2 Data 1 Register
MRC p15, 0, <Rd>, c15, c8, 1 ; Read L2 Data 1 Register
MCR p15, 0, <Rd>, c15, c8, 5 ; Write L2 Data 2 Register
MRC p15, 0, <Rd>, c15, c8, 5 ; Read L2 Data 2 Register

Figure 3-81 on page 3-137 shows the bit arrangement of the L2 Data 0 Register when retrieving 
or registering data as a result of the read/write operations.

31 0

Data
Instruction L1  
Data 0 register
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31 0
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ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 3-136
ID060510 Non-Confidential



System Control Coprocessor 
Figure 3-81 L2 Data 0 Register format

Figure 3-82 shows the bit arrangement of the L2 Data 1 Register when retrieving or registering 
data as a result of the read/write operations.

Figure 3-82 L2 Data 1 Register format

Figure 3-83 shows the bit arrangement of the L2 Data 2 Register when retrieving or registering 
data as a result of the read/write operations.

Figure 3-83 L2 Data 2 Register format

Table 3-158 shows how the bit values correspond with the L2 Data 0 Register functions as a 
result of an L2 parity/ECC read/write operation.

To perform an L2 parity/ECC operation, read or write CP15 with:

MCR p15, 0, c15, c8, 4 ; L2 parity and ECC write
MCR p15, 0, c15, c9, 4 ; L2 parity and ECC read

Tag RAM read/write

Data RAM read/
write

Parity/ECC RAM 
read/write  

31 16 15 0

ReservedData

Reserved

Data

Data

Reserved

Data Data

1213 8 7 5 4 2 1

DataData RAM read/write

031

ReservedData RAM read/write

0131

Data

Table 3-158 Functional bits of L2 Data 0 Register for an L2 parity/ECC operation

Bits Field Function

[31:16] - Reserved. UNP, SBZ.

[15:0] Data Holds L2 parity/ECC information.
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Table 3-159 shows how the bit values correspond with the L2 Data 0 Register functions as a 
result of an L2 tag RAM read/write operation.

To perform an L2 tag RAM operation, read or write CP15 with:

MCR p15, 0, c15, c8, 2 ; L2 tag write
MCR p15, 0, c15, c9, 2 ; L2 tag read

Table 3-160 shows how the bit values correspond with the L2 Data 0 Register functions as a 
result of an L2 data RAM read/write operation.

Table 3-161 shows how the bit values correspond with the L2 Data 1 Register as a result of a 
data RAM read/write operation.

Table 3-162 shows how the bit values correspond with the L2 Data 2 Register as a result of a 
data RAM read/write operation.

To perform an L2 data 0, data 1, or data 2 operation, read or write CP15 with:

MCR p15, 0, c15, c8, 0 ; L2 data 0 write
MRC p15, 0, c15, c8, 0 ; L2 data 0 read
MCR p15, 0, c15, c8, 1 ; L2 data 1 write
MRC p15, 0, c15, c8, 1 ; L2 data 1 read
MCR p15, 0, c15, c8, 5 ; L2 data 2 write
MRC p15, 0, c15, c8, 5 ; L2 data 2 read

Table 3-159 Functional bits of L2 Data 0 Register for a tag RAM operation

Bits Field Function

[31:13] Data Holds bits [31:13] of the physical address tag read from or written to the L2 tag RAM.

[12:8] - Reserved. UNP, SBZ.

[7:5] Data Bit [7] holds the L2 tag RAM parity. Bits [6:5] hold the L2 tag RAM outer attributes.

[4:2] - Reserved. UNP, SBZ.

[1:0] Data Bit [1] holds the L2 tag RAM secure valid bit and bit [0] holds the nonsecure valid bit. 

Table 3-160 Functional bits of L2 Data 0 Register for a data RAM operation

Bits Field Function

[31:0] Data Holds L2 data RAM information

Table 3-161 Functional bits of L2 Data 1 Register for a data RAM operation

Bits Field Function

[31:0] Data Holds L2 data RAM information

Table 3-162 Functional bits of L2 Data 2 Register for a data RAM operation

Bits Field Function

[31:1] - Reserved. UNP, SBZ.

[0] Data Holds a duplicate copy of the dirty bit that the L2 tag RAM stores.
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3.2.82 c15, L2 parity/ECC array operations

The purpose of the L2 parity/ECC array operations is to:
• read the L2 parity/ECC array contents and write into the system debug data registers
• write into the system debug data registers and copy into the L2 parity/ECC array.

The L2 parity/ECC array operation is accessible in secure privileged mode only. You can 
determine the value of N in Figure 3-84 and Figure 3-85 from Table 3-163.

Figure 3-84 shows the bit arrangement of the L2 parity/ECC array read operation.

Figure 3-84 L2 parity/ECC array read operation format

The value of N in the Address field is:

Figure 3-85 shows the bit arrangement of the L2 parity/ECC array write operation.

Figure 3-85 L2 parity/ECC array write operation format

To write one entry to the L2 parity/ECC array, for example:

LDR R0, =0x0000ABCD;
MCR p15, 0, R0, c15, c8, 0; Move R0 to L2 Data 0 Register
LDR R1, =0x400000C0;
MCR p15, 0, R1, c15, c8, 4; Write L2 Data 0 Register to L2 parity/ECC RAM

31 29 6 5 0

Address

Reserved Address Reserved
ECC 
array

Address

NN+128

Table 3-163 Address field values

L2 cache size N

0KB -

128KB 13

256KB 14

512KB 15

1024KB 16

31 0

Reserved
L2 parity/ECC 

RAM

Write data

Data

31 29 6 5 0

Data Reserved Address
ECC 
array

Address

NN+128

1516

Reserved

Address
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To read one entry from the L2 parity/ECC array, for example:

LDR R1, =0x400000C0 ;
MCR p15, 0, R1, c15, c9, 4; Read L2 parity/ECC RAM into L2 Data 0 Register
MRC p15, 0, R2, c15, c8, 0; Move L2 Data 0 Register to R2

3.2.83 c15, L2 tag array operations

The purpose of the L2 tag array operations is to:
• read the L2 tag array contents and write into the system debug data registers
• write into the system debug data registers and copy into the L2 tag array.

The L2 tag array operation is accessible in secure privileged modes only. You can determine the 
value of N in Figure 3-86 and Figure 3-87 from Table 3-163 on page 3-139.

Figure 3-86 shows the bit arrangement of the L2 tag array read operation.

Figure 3-86 L2 tag array read operation format

Note
 In Figure 3-86, bits [31:29] also correspond to the L2 cache way numbers.

Figure 3-87 shows the bit arrangement of the L2 tag array write operation.

Figure 3-87 L2 tag array write operation format

To write one entry to the L2 tag array, for example:

LDR R0, =0x000020D1;
MCR p15, 0, R0, c15, c8, 0; Move R0 to L2 Data 0 Register
LDR R1, =0x400000C0;
MCR p15, 0, R1, c15, c8, 2; Write L2 Data 0 Register to L2 tag RAM

To read one entry from the L2 tag array, for example:

LDR R1, =0x400000C0;
MCR p15, 0, R1, c15, c9, 2; Read L2 tag RAM into L2 Data 0 Register
MRC p15, 0, R2, c15, c8, 0; Move L2 Data 0 Register to R2

31 29 6 5 0

Reserved Address Reserved
Tag 
array

Address

NN+128

Address

L2 Data 0 register ReservedTag

Reserved

31 N+1 N 8 7 4 2 1 0

Data

5

Address

Write data
31 29 6 5 0

Reserved Address
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Reserved

Data
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3.2.84 c15, L2 data array operations

The purpose of the L2 data array operations is to:
• read the L2 data array contents and write into the system debug data registers
• write into the system debug data registers and copy into the L2 data array.

The L2 data array operation is accessible in secure privileged modes only. You can determine 
the value of N in Figure 3-88 and Figure 3-89 from Table 3-163 on page 3-139.

Figure 3-88 shows the bit arrangement of the L2 data RAM array read operation.

Figure 3-88 L2 data RAM array read operation format

Figure 3-89 shows the bit arrangement of the L2 data RAM array write operation.

Figure 3-89 L2 data RAM array write operation format

To write one entry to the L2 data RAM array, for example:

LDR R0, =0x01234567;
MCR p15, 0, R0, c15, c8, 0; Move R0 to L2 Data 0 Register
LDR R0, =0x89ABCDEF;
MCR p15, 0, R0, c15, c8, 1; Move R0 to L2 Data 1 Register
LDR R0, =0x00000001;
MCR p15, 0, R0, c15, c8, 5; Move R0 to L2 Data 2 Register
LDR R1, =0x400000C8;
MCR p15, 0, R1, c15, c8, 3; Write L2 Data 0-2 Registers to L2 data RAM

To read one entry from the L2 data RAM array, for example:

LDR R1, =0x400000C8;
MCR p15, 0, R1, c15, c9, 3; Read L2 data RAM into L2 Data 0-2 Registers
MRC p15, 0, R2, c15, c8, 0; Move L2 Data 0 Register to R2
MRC p15, 0, R3, c15, c8, 1; Move L2 Data 1 Register to R3
MRC p15, 0, R4, c15, c8, 5; Move L2 Data 2 Register to R4

31 29 0

Reserved Address
Data 
array

Address

NN+128 3 2

Address Reserved

31 0

DataL2 Data 0 register

Write data

DataL2 Data 1 register

31 29 0

Reserved Address

Reserved

Data 
array

Address

NN+128 23

Data

ReservedL2 Data 2 register

1

Address
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Chapter 4 
Unaligned Data and Mixed-endian Data Support

This chapter describes the unaligned and mixed-endianness data access support for the processor. 
It contains the following sections:
• About unaligned and mixed-endian data on page 4-2
• Unaligned data access support on page 4-3
• Mixed-endian access support on page 4-5.
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4.1 About unaligned and mixed-endian data
The processor has the following features to support unaligned and mixed-endian data access:

• permanently enabled support for unaligned data access

• architecturally defined unaligned word, unaligned halfword, and word-aligned 
doubleword access

• byte-reverse instructions that operate on general-purpose register contents to support 
signed and unsigned halfword data values

• separate endianness control for data with instructions fixed as little-endian format, 
naturally aligned, but with legacy support for 32-bit word-invariant binary images and 
ROM

• EE bit in CP15 c1 Control Register 1 that controls load and store endianness during 
exceptions

• ARM and Thumb instructions to change the endianness and the E flag in the Program 
Status Registers (PSRs)

• byte-invariant addressing to support fine-grain big-endian and little-endian shared data 
structures, to conform to a shared memory standard.

Note
 Instructions are always little-endian and must be aligned according to the size of the instruction:

• 32-bit ARM instructions must be word-aligned with address bits [1:0] equal to b00.

• 16-bit or 32-bit Thumb instructions must be halfword-aligned with address bit [0] equal 
to 0.
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4.2 Unaligned data access support
The processor supports loads and stores of unaligned words and halfwords. The processor 
makes the required number of memory accesses and transfers adjacent bytes transparently. 

Note
 Data accesses that cross a word boundary can add to the access time.

Setting the A bit in the CP15 c1 Control Register enables alignment checking. When the A bit 
is set to 1, two types of memory access generate a Data Abort signal and an Alignment fault 
status code:
• a 16-bit access that is not halfword-aligned
• a 32-bit load or store that is not word-aligned.

Alignment fault detection is a mandatory address-generation function rather than an optionally 
supported function of external memory management hardware.

See the ARM Architecture Reference Manual for more information on unaligned data access 
support.

4.2.1 NEON data alignment

This section describes NEON data access, alignment and the alignment qualifiers.

Alignment specifiers

In vector load and vector store operations, you can specify alignment requirements in the 
instruction.

Alignment faults are generated based on both memory attributes and alignment qualifiers. 

When executing NEON vector accesses, the number of memory accesses (N) is determined 
based on the internal interface (128-bit) and the number of bytes being accessed. If no alignment 
qualifier is specified, the number of memory accesses is equal to N + 1. Adding alignment 
qualifiers improves performance by reducing extra cycles required to access memory.

Normal memory

Normal memory conforms to the following rules concerning NEON alignment qualifiers:

• If an alignment qualifier is specified, a check is made for strict alignment based on the 
qualifier, independent of the A-bit setting. Table 4-1 shows the NEON alignment 
qualifiers:

• If an alignment qualifier is not specified, and A=1, the alignment fault is taken if it is not 
aligned to element size.

Table 4-1 NEON normal memory alignment qualifiers

Alignment specifier Low-order address bits

@16 Address[0] = b0

@32 Address[1:0] = b00

@64 Address[2:0] = b000

@128 Address[3:0] = b0000
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• If an alignment qualifier is not specified, and A=0, it is treated as unaligned access.

Device memory and strongly ordered memory

Strongly ordered or device memory conforms to the following rules concerning NEON 
alignment qualifiers:

• if an alignment qualifier is specified, a check is made for strict alignment based on the 
qualifier, independent of the A-bit setting as Table 4-1 on page 4-3 shows

• independent of the A bit, the alignment fault is taken if it is not aligned to element size

• access to the external memory is handled by creating a burst sequence of element sized 
transfers, up to the bus width.
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4.3 Mixed-endian access support
In the processor, instruction endianness and data endianness are separated:

Instructions Instructions are fixed little-endian.

Data Data accesses can be either little-endian or big-endian as controlled by the E bit 
in the Program Status Register.
On any exception entry, including reset, the EE bit in the CP15 c1 Control 
Register determines the state of the E bit in the CPSR. See c1, Control Register 
on page 3-44 for details.

See the ARM Architecture Reference Manual for more information on mixed-endian access 
support.
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Chapter 5 
Program Flow Prediction

This chapter describes how the processor performs branch prediction. It contains the following 
sections:
• About program flow prediction on page 5-2
• Predicted instructions on page 5-3
• Nonpredicted instructions on page 5-6
• Guidelines for optimal performance on page 5-7
• Enabling program flow prediction on page 5-8
• Operating system and predictor context on page 5-9.
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5.1 About program flow prediction
The processor contains program flow prediction hardware, also known as branch prediction. 
With program flow prediction disabled, all taken branches incur a 13-cycle penalty. With 
program flow prediction enabled, all mispredicted branches incur a 13-cycle penalty.

To avoid this penalty, the branch prediction hardware operates at the front of the instruction 
pipeline. The branch prediction hardware consists of:
• a 512-entry 2-way set associative Branch Target Buffer (BTB)
• a 4096-entry Global History Buffer (GHB)
• an 8-entry return stack.

An unpredicted branch executes in the same way as a branch that is predicted as not taken. 
Incorrect or invalid prediction of the branch prediction or target address causes the pipeline to 
flush, invalidating all of the following instructions.
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5.2 Predicted instructions
This section shows the instructions that the processor predicts. Unless otherwise specified, the 
list applies to ARM, Thumb-2, and ThumbEE instructions. See the ARM Architecture Reference 
Manual for more information about instructions or addressing modes.

The flow prediction hardware predicts the following instructions:

• B conditional

• B unconditional

• BL

• BLX(1) immediate
The BL and BLX(1) instructions act as function calls and push the return address and ARM 
or Thumb state onto the return stack.

• BLX(2) register
The BLX(2) instruction acts as a function call and pushes the return address and ARM or 
Thumb state onto the return stack.

• BX

The BX r14 instruction acts as a function return and pops the return address and ARM or 
Thumb state from the return stack.

• LDM(1) with PC in the register list in ARM state
The LDM instruction with r13 specified as the base register acts as a function return and 
pops the return address and ARM or Thumb state from the return stack.

• POP with PC in register list in Thumb state
The POP instruction acts as a function return and pops the return address and ARM or 
Thumb state from the return stack.

• LDM with PC in register list in Thumb or ThumbEE state
The LDM instruction with r13 specified as the base register, or r9 specified as the base 
register in ThumbEE state acts as a function return and pops the return address and ARM 
or Thumb state from the return stack.

• LDR with PC destination
The LDR instruction with r13 specified as the base register, or r9 specified as the base 
register in ThumbEE state, acts as function return and pops the return address and ARM 
or Thumb state from the return stack.

• PC-destination data-processing operations in ARM state
In ARM state, the second operand of a data-processing instruction can be a 32-bit 
immediate value, an immediate shift value, or a register shift value. An instruction with 
an immediate shift value or a register shift value is predicted. An instruction with a 32-bit 
immediate value is not predicted. For example:
— MOV pc, r10, LSL r3 is predicted
— ADD pc, r0, r1, LSL #2 is predicted
— ADD pc, r4, #4 is not predicted.
There is no restriction on the opcode predicted, but a majority of opcodes do not make 
sense for branch-type instructions. Usually only MOV, ADD, and SUB are useful.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 5-3
ID060510 Non-Confidential



Program Flow Prediction 
Note
 Instructions with the S suffix are not predicted. They are typically used to return from 

exceptions and have side effects that can change privilege mode and security state.

• ADD(4) with PC destination in Thumb state

• MOV(3) with PC destination in Thumb state

• CPY with PC destination in Thumb state

• CZB in Thumb state

• TBB/TBH in Thumb state

Note
 In Thumb state, a branch that is normally encoded as unconditional can be conditioned by 

inclusion in an If-Then-Else (ITE) block. Then it is treated as a normal conditional branch.

• HB (ThumbEE state only)

• HBP (ThumbEE state only)

• HBL (ThumbEE state only)

• HBLP (ThumbEE state only).
The HBL and HBLP instructions act as function calls and push the return address onto the 
return stack.

5.2.1 Return stack predictions

The return stack stores the address and the ARM or Thumb state of the instruction after a 
function-call type branch instruction. This address is equal to the link register value stored in 
r14.

The following instructions cause a return stack push if predicted:
• BL immediate
• BLX(1) immediate
• BLX(2) register
• HBL (ThumbEE state)
• HBLP (ThumbEE state).

The following instructions cause a return stack pop if predicted:
• BX r14

• MOV pc, r14

• LDM r13, {…pc}

• LDR pc, [r13]

• LDM r9, {..pc} (ThumbEE state only)
• LDR pc, [r9] (ThumbEE state only).

The LDR instruction can use any of the addressing modes, as long as r13 is the base register. 
Additionally, in ThumbEE state you can also use r9 as a stack pointer so the LDR and LDM 
instructions with pc as a destination and r9 as a base register are also treated as a return stack 
pop.
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Because return-from-exception instructions can change processor privilege mode and security 
state, they are not predicted. This includes the LDM(3) instruction, and the MOVS pc, r14 
instruction.
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5.3 Nonpredicted instructions
The following instructions are not predicted:

• Instructions that can be used to return from an exception
These instructions change the PC. They potentially change processor state, privilege 
mode, and security state. To fetch the target instructions in the new privilege mode, the 
pipeline must be flushed.

• Instructions that restore the CPSR from memory or from the SPSR
These instructions change the PC. They potentially change processor state, privilege 
mode, and security state. To fetch the target instructions in the new privilege mode, the 
processor must flush the pipeline.

• PC-destination data-processing instructions with immediate values in ARM state.
As described, PC-destination data-processing instructions where the second operand is an 
immediate, are not predicted

• BXJ

The processor implements the trivial Jazelle extension, so BXJ becomes BX. This can be 
used as an unpredictable indirect branch instruction to force a pipeline flush on execution.

• ENTERX/LEAVEX

Transitions between Thumb and ThumbEE state are not predicted.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 5-6
ID060510 Non-Confidential



Program Flow Prediction 
5.4 Guidelines for optimal performance
You can avoid certain code constructs to maximize branch prediction performance. For 
example:

• Using conditional Undefined instructions in normal code to enter the undefined handler 
as a means of doing emulation.

• Coding more than two likely taken branches per fetch. This can only happen in Thumb 
state. Unless used as a jump table where each branch is its own basic block, use NOPs for 
padding.

• Coding more than three branches per fetch that are likely to be executed in sequence.
In Thumb state, it is possible to pack four branches in a single fetch, for example, in a 
multiway branch:
BVS overflow
BGT greater_than
BLT less_than
B equal

This is a sequence of more than three branches with three conditional branches, and the 
fourth branch is likely to be reached. Avoid this kind of sequence, or use NOPs to break 
up the branch sequence.
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5.5 Enabling program flow prediction
You can enable program flow prediction by setting the Z bit in the CP15 c1 Control Register to 
1. See c1, Control Register on page 3-44 for details. Reset disables program flow prediction, 
invalidates the BTB, and resets the GHB to a known state. No software intervention is required 
to prepare the prediction logic before enabling program flow prediction.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 5-8
ID060510 Non-Confidential



Program Flow Prediction 
5.6 Operating system and predictor context
The BTB does not have to be invalidated on a context switch, self-modifying code, or any other 
change in the VA-to-PA mapping.

ARMv7-A specifies two branch prediction invalidation operations:
• MCR p15, 0, Rx, c7, c5, 6 ; invalidate entire branch predictor array

• MCR p15, 0, Rx, c7, c5, 7 ; invalidate VA from branch predictor array

These operations are not required to perform a context switch in the processor and are 
implemented as NOPs. ARMv7-A generic context-switching or self-modifying code can 
contain these operations without cycle penalty. These instructions can be enabled by setting the 
IBE bit in the Auxiliary Control Register to 1. See c1, Auxiliary Control Register on page 3-47 
for details.

5.6.1 Instruction memory barriers

ARMv7-A requires Instruction Memory Barriers (IMBs) after updates to certain CP15 registers 
or CP15 operations. The processor flushes the pipeline to ensure that the instructions following 
the given CP15 instruction are fetched in the new context. In addition, self-modifying code 
sequences must be preceded by an IMB. The recommended means of implementing an IMB is 
the ISB instruction.

The following prefetch flush instruction is from earlier versions of the ARM architecture. The 
processor supports this instruction, but its use is deprecated in ARMv7-A.

MCR p15, 0, Rx, c7, c5, 4
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Chapter 6 
Memory Management Unit

This chapter describes the Memory Management Unit (MMU). It contains the following sections:
• About the MMU on page 6-2
• Memory access sequence on page 6-3
• 16MB supersection support on page 6-4
• MMU interaction with memory system on page 6-5
• External aborts on page 6-6
• TLB lockdown on page 6-7
• MMU software-accessible registers on page 6-8.
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6.1 About the MMU
The MMU works with the L1 and L2 memory system to translate virtual addresses to physical 
addresses. It also controls accesses to and from external memory. See the ARM Architecture 
Reference Manual for a full architectural description of the MMU.

The processor implements the ARMv7-A MMU enhanced with Security Extensions features to 
provide address translation and access permission checks. The MMU controls table walk 
hardware that accesses translation tables in main memory. The MMU enables fine-grained 
memory system control through a set of virtual-to-physical address mappings and memory 
attributes held in instruction and data TLBs. 

The MMU features include the following:
• full support for Virtual Memory System Architecture version 7 (VMSAv7)
• separate, fully-associative, 32-entry data and instruction TLBs
• support for 32 lockable entries using the lock-by-entry model
• TLB entries that support 4KB, 64KB, 1MB, and 16MB pages
• 16 domains
• global and application-specific identifiers to prevent context switch TLB flushes
• extended permissions check capability
• round-robin replacement policy
• CP15 TLB preloading instructions to enable locking of TLB entries.
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6.2 Memory access sequence
When the processor generates a memory access, the MMU:

1. Performs a lookup for the requested virtual address and current ASID and security state 
in the relevant instruction or data TLB.

2. Performs a hardware translation table walk if the lookup in step 1 misses.

The MMU might not find global mapping, mapping for the currently selected ASID, or a 
matching NSTID for the virtual address in the TLB. The hardware does a translation table walk 
if the translation table walk is enabled by the PD0 or PD1 bit in the TTB Control Register. If 
translation table walks are disabled, the processor returns a Section Translation fault.

If the MMU finds a matching TLB entry, it uses the information in the entry as follows:

1. The access permission bits and the domain determine if the access is enabled. If the 
matching entry does not pass the permission checks, the MMU signals a memory abort. 
See the ARM Architecture Reference Manual for a description of abort types and 
priorities, and for a description of the Instruction Fault Status Register (IFSR) and Data 
Fault Status Register (DFSR).

2. The memory region attributes specified in the CP15 c10 registers control the cache and 
write buffer, and determine if the access is secure or nonsecure, cached or noncached, and 
device or shared.

3. The MMU translates the virtual address to a physical address for the memory access.

If the MMU does not find a matching entry, a hardware table walk occurs.

6.2.1 TLB match process

Each TLB entry contains a virtual address, a page size, a physical address, and a set of memory 
attributes.

A TLB entry matches when these conditions are true:
• its virtual address matches that of the requested address
• its NSTID matches the secure or nonsecure state of the MMU request
• its ASID matches the current ASID or is global.

The behavior of a TLB if two or more entries match at any time, including global and 
ASID-specific entries, is Unpredictable. The operating system must ensure that only one TLB 
entry matches at any time. Entries with different NSTIDs can never be hit simultaneously.
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6.3 16MB supersection support
The processor supports supersections that consist of 16MB blocks of memory. The processor 
does not support the optional extension of physical address bits [39:32].

Figure 6-1 shows the descriptor format for supersections.

Figure 6-1 16MB supersection descriptor format

Note
 Each translation table entry for a supersection must be repeated 16 times in consecutive memory 
locations in the level 1 translation tables, and each of the 16 repeated entries must have identical 
translation and permission information. See the ARM Architecture Reference Manual for more 
information.
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6.4 MMU interaction with memory system
You can enable or disable the MMU as described in the ARM Architecture Reference Manual.

After a CP15 c1 instruction enables the MMU, the processor flushes all following instructions 
in the pipeline. The processor then begins refetching instructions, and the MMU performs 
virtual-to-physical address mapping according to the translation table descriptors in main 
memory.

After a CP15 c1 instruction disables the MMU, the processor flushes all following instructions 
in the pipeline. The processor then begins refetching instructions and uses flat address mapping. 
In flat address mapping, PA = VA.

The following is an example of enabling the MMU:

MRC p15, 0, r1, c1, c0, 0 ; read CP15 Register 1
ORR r1, r1, #0x1
MCR p15, 0, r1, c1, c0, 0 ; enable MMUs
Fetch translated
Fetch translated
Fetch translated
Fetch translated

The following is an example of disabling the MMU:

MRC p15, 0, r1, c1, c0, 0 ; read CP15 Register 1
BIC r1, r1, #0x1
MCR p15, 0, r1, c1, c0, 0 ; disabled
Fetch flat
Fetch flat
Fetch flat
Fetch flat
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6.5 External aborts
External memory errors are defined as those that occur in the memory system but are not 
detected by the MMU. External memory errors are expected to be extremely rare and are likely 
to be fatal to the running processor. External aborts are caused by errors flagged by AXI when 
the request goes external to the processor. External aborts can be configured to trap to the 
monitor by setting the EA bit in the Secure Configuration Register to 1. See c1, Secure 
Configuration Register on page 3-53 for more information.

6.5.1 External aborts on data read or write

Externally generated errors during a data read or write can be imprecise. This means that the 
r14_abt on entry into the abort handler on such an abort might not hold the address of the 
instruction that caused the exception.

The DFAR is Unpredictable when an imprecise abort occurs.

In the case of a load multiple or store multiple operation, the address captured in the DFAR is 
that of the address that generated the precise external abort.

6.5.2 Precise and imprecise aborts

Chapter 3 System Control Coprocessor describes precise and imprecise aborts, their priorities, 
and the IFSR and DFSR. To determine a fault type, read the DFSR for a data abort or the IFSR 
for an instruction abort.

The processor supports an Auxiliary Fault Status Register for software compatibility reasons 
only. The processor does not modify this register because of any generated abort.
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6.6 TLB lockdown
The TLB supports the TLB lock-by-entry model as described in the ARM Architecture 
Reference Manual. CP15 preload TLB instructions support loading entries into the TLB to be 
locked. Any preload operation first looks in the TLB to determine if the entry hits within the 
TLB array. If the entry misses, a hardware translation table walk loads that entry into the TLB 
array. See c10, TLB Lockdown Registers on page 3-98 and c10, TLB preload operation on 
page 3-99 for more information.
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6.7 MMU software-accessible registers
Table 6-1 shows the CP15 registers that control the MMU. See Chapter 3 System Control 
Coprocessor for more information on CP15.

Table 6-1 CP15 register functions

Register Cross reference

TLB Type Register c0, TLB Type Register on page 3-21

Control Register c1, Control Register on page 3-44

Nonsecure Access Control Register c1, Nonsecure Access Control Register on page 3-56

Translation Table Base Register 0 c2, Translation Table Base Register 0 on page 3-57

Translation Table Base Register 1 c2, Translation Table Base Register 1 on page 3-59

Translation Table Base Control Register c2, Translation Table Base Control Register on page 3-60

Domain Access Control Register c3, Domain Access Control Register on page 3-62

Data Fault Status Register (DFSR) c5, Data Fault Status Register on page 3-63

Instruction Fault Status Register (IFSR) c5, Instruction Fault Status Register on page 3-65

Data Fault Address Register (DFAR) c6, Data Fault Address Register on page 3-67

Instruction Fault Address Register (IFAR) c6, Instruction Fault Address Register on page 3-68

TLB operations c8, TLB operations on page 3-75

TLB Lockdown Registers c10, TLB Lockdown Registers on page 3-98

Primary Region Remap Register c10, Memory Region Remap Registers on page 3-100

Normal Memory Remap Register c10, Memory Region Remap Registers on page 3-100

FCSE PID Register c13, FCSE PID Register on page 3-120

Context ID Register c13, Context ID Register on page 3-122
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Chapter 7 
Level 1 Memory System

This chapter describes the L1 memory system. It contains the following sections:
• About the L1 memory system on page 7-2
• Cache organization on page 7-3
• Memory attributes on page 7-5
• Cache debug on page 7-7
• Data cache features on page 7-8
• Instruction cache features on page 7-9
• Hardware support for virtual aliasing conditions on page 7-10
• Parity detection on page 7-11.
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7.1 About the L1 memory system
The L1 memory system consists of separate instruction and data caches in a Harvard 
arrangement. The L1 memory system provides the core with:
• fixed line length of 64 bytes
• support for 16KB or 32KB caches
• two 32-entry fully associative ARMv7-A MMU
• data array with parity for error detection
• an instruction cache that is virtually indexed, IVIPT
• a data cache that is physically indexed, PIPT
• 4-way set associative cache structure
• random replacement policy 
• nonblocking cache behavior for Advanced SIMD code
• blocking for integer code
• MBIST
• support for hardware reset of the L1 data cache valid RAM, see Hardware RAM array 

reset on page 10-6.
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7.2 Cache organization
Each cache is 4-way set associative of configurable size. They are physically tagged, and 
virtually indexed for instruction and physically indexed for data. The cache sizes are 
configurable with sizes of 16KB or 32KB. Both the instruction cache and the data cache are 
capable of providing two words per cycle for all requesting sources. Data cache can provide four 
words per cycle for NEON or VFP memory accesses.

The system control coprocessor, CP15, handles the control of the L1 memory system and the 
associated functionality, together with other system wide control attributes. See Chapter 3 
System Control Coprocessor for more information on CP15 registers.

7.2.1 Cache control operations

The cache control operations that are supported by the processor are described in Chapter 3 
System Control Coprocessor.

7.2.2 Cache miss handling

A cache miss results when a read access is not present in the cache. The caches perform critical 
word-first cache refilling.

7.2.3 Cache disabled behavior

If you disable the cache then the cache is not accessed for reads or writes. This ensures that you 
can achieve maximum power savings. It is therefore important that before you disable the cache, 
all of the entries are cleaned to ensure that the external memory has been updated. In addition, 
if the cache is enabled with valid entries in it then it is possible that the entries in the cache 
contain old data. Therefore the cache must be completely cleaned and invalidated before being 
disabled. Unlike normal reads and writes to the cache, cache maintenance operations are 
performed even if the cache is disabled.

7.2.4 Unexpected hit behavior

An unexpected hit is where the cache reports a hit on a memory location that is marked as 
noncacheable or shared. The unexpected hit is ignored.

For writes, an unexpected cache hit does not result in the cache being updated. 

7.2.5 Cache parity error detection

The purpose of cache parity error detection is to increase the tolerance to memory faults.

Instruction cache data RAM parity error detection

The instruction cache RAM is written on cache linefills. Parity error detection is done on a 
fetch-wide basis, that is, a parity error on any byte in a 64-bit fetch region causes a parity error 
on the first instruction within that fetch. The detection of a parity error instruction cache RAM 
causes the processor to return a Prefetch Abort.

When the processor executes the instruction:
• the address of the fetch containing the parity error is stored in the Instruction Fault 

Address Register 
• the Instruction Fault Status Register is set to indicate the presence of a parity error.
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Data cache data RAM parity error detection

The detection of a parity error in the data cache RAM causes the processor to return a Data 
Abort. The Data Fault Status Register is set to indicate the presence of a parity error. The parity 
error is always imprecise on the data cache.

7.2.6 Instruction cache maintenance

The Cortex-A8 processor is implemented with an optional extension, the IVIPT extension 
(Instruction cache Virtually Indexed Physically Tagged extension). The effect of this extension 
is to reduce the instruction cache maintenance requirement to a single condition: 
• writing new data to an instruction address.

Note
 This condition is consistent with the maintenance required for a Virtually Indexed Physically 
Tagged (VIPT) instruction cache.

Software can read the Cache Type Register to determine whether the IVIPT extension is 
implemented, see c0, Cache Type Register on page 3-20.

Software written to rely on a VIPT instruction cache must only be used with processors that 
implement the IVIPT. For maximum compatibility across processors, ARM recommends that 
operating systems target the ARMv7 base architecture that uses ASID-tagged VIVT instruction 
caches, and do not assume the presence of the IVIPT extension. Software that relies on the 
IVIPT extension might fail in an unpredictable way on an ARMv7 implementation that does not 
include the IVIPT extension.

With an instruction cache, the distinction between a VIPT cache and a PIPT cache is much less 
visible to the programmer than it is for a data cache, because normally the contents of an 
instruction cache are not changed by writing to the cached memory. However, there are 
situations where a program must distinguish between the different cache tagging strategies. 
Example 7-1 describes such a situation.

Example 7-1 A situation where software must be aware of the
Instruction cache tagging strategy

Two processes, P1 and P2, share some code and have separate virtual mappings to the same 
region of instruction memory. P1 changes this region, for example as a result of a JIT, or some 
other self-modifying code operation. P2 must see the modified code.

As part of its self-modifying code operation, P1 must invalidate the changed locations from the 
instruction cache. If this invalidation is performed by MVA, and the instruction cache is a VIPT 
cache, then P2 might continue to see the old code. For more information, see the ARM 
Architecture Reference Manual.

In this situation, if the instruction cache is a VIPT cache, after the code modification the entire 
instruction cache must be invalidated to ensure P2 observes the new version of the code.
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7.3 Memory attributes
ARMv7-A defines three memory regions using the TEX, C and B bits. They are:
• Strongly ordered
• Device
• Normal.

An access can be marked as shared. If it is marked as shared, the access is treated as 
noncacheable.

7.3.1 Strongly ordered

Strongly ordered memory type is noncacheable, nonbufferable, and serialized. This type of 
memory flushes all buffers and waits for acknowledge from the bus before executing the next 
instruction. You must execute strongly ordered memory nonspeculatively. Unaligned accesses 
to strongly ordered memory result in an alignment fault.

7.3.2 Device

Device memory type is noncacheable and must be executed nonspeculatively. Ordering 
requirement for device accesses are as follows:

• device loads cannot bypass device stores

• device stores can be buffered, but must be executed with respect to other device stores

• unaligned accesses to strongly ordered memory result in an alignment fault.

7.3.3 Normal

Normal memory type can have the following attributes:
• noncacheable, bufferable
• write-back cached, write-allocate
• write-through cached, no allocate on write, buffered
• write-back cached, no allocate on write, buffered.

Table 7-1 shows how L1 and L2 memory systems handle these memory types.

Table 7-1 Memory types affecting L1 and L2 cache flows

L1 inner policya L2 outer policy Buffers 
flushed Description

Strongly ordered Strongly ordered Yes Noncacheable and nonbufferable.

Device shared Device shared No Device accesses are noncacheable and must be executed 
nonspeculative.

Device nonshared Device nonshared No Device accesses are noncacheable and must be executed 
nonspeculative.

Noncacheable, 
nonbufferable

Cacheable, 
write-back, no 
write-allocate

No Loads and stores are not cached at L1. Loads are not filled into 
the fill buffer but are allocated to the L2 cache. Stores bypass 
integer store buffer and are directly sent to L2.

Noncacheable, 
nonbufferable

Cacheable, 
write-back, 
write-allocate

No Loads and stores are not cached at L1. Loads are not filled into 
the fill buffer but are allocated to the L2 cache. Stores bypass 
integer store buffer and are directly sent to L2. L2 store misses 
allocate the line into L2 cache.
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Noncacheable, 
nonbufferable 

Cacheable, 
write-through, no 
write-allocate

No Loads and stores are not cached at L1. Loads are not filled into 
the fill buffer. Stores bypass integer store buffer and are 
directly sent to L2. L2 store misses do not allocate the line into 
L2 cache. Store hits are sent externally in addition to updating 
L2.

Cacheable, 
write-back, no 
write-allocate

Noncacheable, 
nonbufferable

No Load misses are filled into L1. Store misses are sent to L2. L2 
does not allocate the line into L2 cache on an L2 miss but is 
sent externally.

Cacheable, 
write-back, 
write-allocate

Noncacheable, 
nonbufferable

No This is not supported. L1 is always in the no write-allocate 
mode.

Cacheable, 
write-back, 
write-allocate

Cacheable, 
write-back, 
write-allocate

No Load misses are allocated into L1. Store misses bypass integer 
store buffer and are sent to L2. Store hits update the cache. L2 
allocates the line into L2 cache for store misses.

Cacheable, 
write-through, no 
write-allocate

Noncacheable, 
nonbufferable

No Load misses are filled into L1. Store hits and store misses are 
sent to L2. L2 does not allocate the line into L2 cache on an L2 
miss because it is sent externally.

Cacheable, 
write-back, no 
write-allocate

Cacheable, 
write-back, no 
write-allocate

No Load misses are allocated into L1. Store misses bypass integer 
store buffer and are sent to L2. Store hits update the cache. L2 
does not allocate the line into L2 cache on store misses.

Cacheable, 
write-back, no 
write-allocate

Cacheable, 
write-back, 
write-allocate

No Load misses are allocated into L1. Store misses bypass integer 
store buffer and are sent to L2. Store hits update the cache. L2 
allocates the line into L2 cache for store misses.

Cacheable, 
write-back, no 
write-allocate

Cacheable, 
write-through, no 
write-allocate

No Load misses are allocated into L1. L2 makes store hits 
write-through at L2 cache and does not allocate the line into 
L2 for store misses.

Cacheable, 
write-through, no 
write-allocate

Cacheable, 
write-back, no 
write-allocate

No Loads are allocated into L1. Store hits are made write-through 
at L1. Store hits update the cache and are sent to L2. L2 does 
not allocate store misses but they are sent externally.

Cacheable, 
write-through, no 
write-allocate

Cacheable, 
write-back, 
write-allocate

No Loads are allocated into L1. Store hits are made write-through 
at L1. Store hits update the cache and are sent to L2. Store 
misses are allocated into L2.

Cacheable, 
write-through, no 
write-allocate

Cacheable, 
write-through, no 
write-allocate

No Loads are allocated into L1. Store hits are made write-through 
at L1. Store hits update the cache and are sent to L2. Store 
misses are not allocated into L2.

Noncacheable, 
bufferable

Noncacheable, 
bufferable

No Loads are replayed and access is sent externally. Stores bypass 
integer store buffer and are placed into L2 write buffer. Stores 
are sent externally.

a. You can configure the L2 cache to use the inner policy attributes.

Table 7-1 Memory types affecting L1 and L2 cache flows (continued)

L1 inner policya L2 outer policy Buffers 
flushed Description
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7.4 Cache debug
See Chapter 12 Debug for information on cache debug.
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7.5 Data cache features
This section describes the unique features of the data cache. It contains the following:
• Data cache preload instruction
• Data cache behavior with C-bit disabled.

7.5.1 Data cache preload instruction

ARMv7-A specifies the PLD instruction as a preload hint instruction. The processor uses the PLD 
instruction to preload cache lines to the L2 cache. If the PLD instruction results in a L1 cache hit, 
L2 cache hit, or TLB miss no more action is taken. If a cache miss and TLB hit result, the line 
is retrieved from external memory and is loaded into the L2 memory cache.

7.5.2 Data cache behavior with C-bit disabled

The C bit in CP15 Control Register c1 enables or disables the L1 data cache. See c1, Control 
Register on page 3-44 for more information on caching data when enabling the data cache. If 
the C bit is disabled, then memory requests do not access any of the data cache arrays.

An exception to this rule is the CP15 data cache operations. If the data cache is disabled, all data 
cache maintenance operations can still execute normally.
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7.6 Instruction cache features
This section describes the unique features of the instruction cache. It contains the following:
• Instruction cache preload instruction
• Instruction cache speculative memory accesses
• Instruction cache disabled behavior.

7.6.1 Instruction cache preload instruction

ARMv7-A specifies the PLI instruction as a preload hint instruction. Because the processor 
implements a blocking L1 cache and to avoid the penalty associated with a cache miss, the 
processor handles the PLI instruction as a NOP.

7.6.2 Instruction cache speculative memory accesses

An instruction can remain in the pipeline between being fetched and being executed. Because 
there can be several unresolved branches in the pipeline, instruction fetches are speculative, 
meaning there is no guarantee that they are executed. A branch or exceptional instruction in the 
code stream can cause a pipeline flush, discarding the currently fetched instructions.

Fetches or instruction table walks that begin without an empty pipeline are marked speculative. 
If the pipeline contains any instruction up to the point of branch and exception resolution, then 
the pipeline is considered not empty. If a fetch is marked speculative and misses the L1 
instruction cache and the L2 cache, it is not forwarded to the external interface. Fetching is 
suspended until all outstanding instructions are resolved or the pipeline is flushed.

This behavior is controlled by the ASA bit in the CP15 Auxiliary Control Register c1. See c1, 
Auxiliary Control Register on page 3-47 for information on the ASA bit. By default, this bit is 
0, indicating that speculative fetches or instruction table walks are not forwarded to the external 
interface. If this bit is set to 1, then neither fetches nor instruction table walks are marked 
speculative, and are forwarded to the external interface.

Given the aggressive prefetching behavior, you must not place read-sensitive devices in the 
same page as code. Pages containing read-sensitive devices must be marked with the TLB XN 
(execute never) attribute bit.

7.6.3 Instruction cache disabled behavior 

The I bit in CP15 Control Register c1 enables or disables the L1 instruction cache. If the I bit is 
disabled, then fetches do not access any of the instruction cache arrays.

An exception to this rule is the CP15 instruction cache operations. If the instruction cache is 
disabled, the instruction cache maintenance operations can still execute normally.
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7.7 Hardware support for virtual aliasing conditions
Previously, restrictions were placed on software to ensure that no virtual aliasing conditions 
arise. This restriction, referred to as page coloring, is no longer required.
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7.8 Parity detection
The L1 memory system instruction and data caches support parity detection on data arrays. 
There is one parity bit for each data byte. For data cache, because the dirty bit is also held in the 
data array, there is a corresponding parity bit to cover the dirty bit. Parity errors reported by 
instruction cache accesses result in precise prefetch aborts. Parity errors reported by data cache 
accesses result in imprecise data aborts.

Parity errors reported by instruction cache accesses are reported on a fetch-granularity basis, 
that is, if any byte within a fetch region contains a parity error, the parity error is reported on the 
first instruction in the fetch, although this instruction might not contain the parity error.

The Auxiliary Control Register bit [3], L1PE, controls parity errors reported by the L1 caches. 
Parity errors are enabled if the L1PE bit is set to 1.

If a cache access result is a parity error in the L1 data cache, then the L1 data cache and the L2 
cache are unpredictable. No recovery is possible. The abort handler must: 
• disable the caches
• communicate the fail directly with the external system
• request a reboot.
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Chapter 8 
Level 2 Memory System

This chapter describes the L2 memory system. It contains the following sections:
• About the L2 memory system on page 8-2
• Cache organization on page 8-3
• Enabling and disabling the L2 cache controller on page 8-5
• L2 PLE on page 8-6
• Synchronization primitives on page 8-10
• Locked access on page 8-12
• Parity and error correction code on page 8-13.
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8.1 About the L2 memory system
The processor contains an on-chip L2 memory system that consists of the following 
components:
• L2 PreLoad Engine (PLE)
• AXI interface
• configurable L2 RAM.

The L2 memory system is tightly coupled to the L1 data cache and L1 instruction cache. The 
L2 memory system does not support hardware cache coherency, therefore software intervention 
is required to maintain coherency in the system.

The key features of the L2 memory system include:

• configurable cache size of 0KB, 128KB, 256KB, 512KB, and 1MB

• fixed line length of 64 bytes

• physically indexed and tagged

• 8-way set associative cache structure

• support for lockdown format C 

• configurable 64-bit or 128-bit wide AXI system bus interface with support for multiple 
outstanding requests

• random replacement policy

• optional ECC or parity protection on the data RAM

• optional parity protection on the tag RAM

• MBIST

• support for hardware reset of the L2 unified cache valid RAM, see Hardware RAM array 
reset on page 10-6.
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8.2 Cache organization
The L2 cache is 8-way set associative of configurable size. The cache is physically addressed. 
The cache sizes are configurable with sizes in the range of 0KB, 128KB, 256KB, 512KB, and 
1MB.

You can reduce the effective cache size using lockdown format C. This feature enables you to 
lock cache ways to prevent allocation to locked entries.

You can configure the L2 memory pipeline to insert wait states to take into account the latencies 
of the compiled memories for the implemented RAMs.

To enable streaming of NEON read accesses from the L1 data cache, the L2 memory system 
supports up to twelve NEON read accesses. The write buffer handles integer writes, NEON 
writes, and eviction accesses from the L1 data cache. This enables streaming of write requests 
from the L1 data cache.

The L2 cache incorporates a dirty bit per quadword to reduce AXI traffic. This eliminates 
unnecessary transfer of clean data on the AXI interface.

8.2.1 L2 cache bank structure

The L2 cache is partitioned into multiple banks to enable parallel operations. There are two 
levels of banking:

• the tag array is partitioned into multiple banks to enable up to two requests to access 
different tag banks of the L2 cache simultaneously

• each tag bank is partitioned into multiple data banks to enable streaming accesses to the 
data banks.

Figure 8-1 shows the logical representation of the L2 cache bank structure. The diagram shows 
a configuration with all possible tag and data bank combinations.

Figure 8-1 L2 cache bank structure

8.2.2 L2 cache transfer policy

Table 8-1 on page 8-4 describes instruction and data transfers to and from the L2 cache.

Data bank 3

Data bank 2

Data bank 1

Data bank 0

Tag bank 0

b0

Data bank 3

Data bank 2

Data bank 1

Data bank 0

Tag bank 1

b1

Tag bank selected by PA[6]

Data bank 
selected by 

PA[5:4]

b11

b10

b01

b00

128KB - 1MB 2 tag, 4 data
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Table 8-1 L2 cache transfer policy

Request type L2 hit L2 miss

Instruction miss (read) L2 −> L1 AXI −> L1
AXI −> L2

Data miss (read) L2 −> L1 AXI −> L1
AXI −> L2

NEON (read) L2 −> NEON AXI −> NEON
AXI −> L2

Data or NEON (write) Write data −> L2
Read, modify, and write to 
recalculate error correction 
code if necessary

Initiates write allocate fill
AXI (merged with write data) −> L2

TLB table walk (instruction or data) L2 −> TLB AXI −> TLB
AXI −> L2
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8.3 Enabling and disabling the L2 cache controller
The L2 cache is enabled when both the C bit of the CP15 Control Register c1 and the L2EN bit 
of the CP15 Auxiliary Control Register, c1, are both active. If either of these bits is disabled, 
then the L2 cache is disabled.

To enable the L2 cache following a reset or to change the settings of the L2 Cache Auxiliary 
Control Register, you must use the following sequence:

1. Complete the processor reset sequence or disable the L2 cache.

2. Program the L2 Cache Auxiliary Control Register. See c9, L2 Cache Auxiliary Control 
Register on page 3-95 for details.

Note
 If you have configured the processor to support parity or ECC memory, you must enable 

those features before you can program the C bit.

3. Program the Auxiliary Control Register to set the L2EN bit to 1. See c1, Auxiliary Control 
Register on page 3-47 for details.

4. Program the C bit in the CP15 Control Register c1. See c1, Control Register on page 3-44 
for details.

To disable the L2 cache, but leave the L1 data cache enabled, use the following sequence:

1. Disable the C bit.

2. Clean and invalidate the L1 and L2 caches.

3. Disable the L2 cache by clearing the L2EN bit to 0.

4. Enable the C bit.

Note
 To keep memory coherent when using cache maintenance operations, you must follow the L2 
cache disabling sequence. Cache maintenance operations have an effect on the L1 and L2 caches 
when they are disabled. A cache maintenance operation can evict a cache line from the L1 data 
cache. If the L2EN bit is set to 1, the evicted cache line can be allocated to the L2 cache. If the 
L2EN bit is not set to 1, then evictions from the L1 data cache are sent directly to external 
memory using the AXI interface. 
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8.4 L2 PLE
The L2 cache controller supports transactions from a programmable preloading engine. This 
PLE is not the same Dynamic Memory Allocation (DMA) engine used in previous ARM family 
of processors but has a similar programming interface.

The L2 PLE has two channels to permit two blocks of data movement to or from the L2 cache 
RAM.

The L2 PLE shares the translation table base TTBR0, TTBR1 and control, TTBCR, registers 
with the main translation table walk hardware.

The L2 PLE also supports the ability to lock data to a specific L2 cache way. If software requires 
the data to always remain resident in the L2 cache way, software can lock the specific cache way 
per channel when the PLE transfers data to or from the L2 cache RAM. Locking of a specified 
way only guarantees that the PLE is within the L2 cache RAM after completion. If the way is 
not locked, it is possible that the software might have evicted or replaced data with the way that 
the PLE is transferring data. To lock a cache way, you must program the L2 Cache Lockdown 
Register c9. See c9, L2 Cache Lockdown Register on page 3-92 for more information.

The programming of other registers within the PLE is possible only within the secure privileged 
state with specific extensions as described in this section. You can reprogram this capability 
using the Nonsecure Access Control Register and setting the PLE bit [18] to 1. If you program 
any register in nonsecure privileged state when the PLE bit [18] is 0, an Undefined Instruction 
exception occurs. Additionally, you can use the software to program the L2 Preload Engine 
Control Register UM bit [26] to 1 to enable more accessibility to the PLE registers.

8.4.1 Configuring the preload engine

To start the PLE, the software must program the following registers:
• L2 PLE User Accessibility
• L2 PLE Channel Number
• L2 PLE Control
• L2 PLE Internal Start Address
• L2 PLE Internal End Address
• L2 PLE Context ID.

After the software has programmed the registers, it enables the PLE by programming the L2 
PLE Enable Register with a start command. The start command triggers data to be transferred 
to or from the L2 cache RAM as defined by DT bit [30] of the L2 PLE Control Register. The 
internal start address defines the block of data transfer beginning at the 64-byte aligned address 
and ending when the number of cache lines is transferred to or from the L2 cache as defined by 
the internal end address.

Note
 The number of lines is limited to the size of the L2 cache RAM way.

If the direction bit indicates that data is being transferred into the L2 RAM, then the L2 RAM 
cache way is loaded. However, if the software programmed the direction bit to indicate the 
transferring of data from the L2 RAM, then each address performs an L2 RAM lookup. Any 
cache line found to be dirty is evicted from the L2 cache RAM.
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Note
 It is entirely possible that the L1 data cache contains the same line that is transferred by the PLE 
engine to the external memory. Therefore it is possible for the line to become valid in the L2 
cache as a result of an L1 eviction.

During data transfers into the L2 cache RAM, any L2 cache RAM data present in a different L2 
cache RAM way, other than the way specified by the L2 PLE Control Register bits [2:0], remain 
in the different way. The preload engine continues with the next cache line to be loaded and the 
line is not relocated to the specified way.

During transfers to or from the L2 cache RAM, if the PLE crosses a page boundary, a hardware 
translation table walk is performed to obtain a new physical address for that new page. All 
standard fault checks are also performed. If a fault occurs, the PLE signals an interrupt on error. 
The PLE updates the L2 PLE Channel Status Register to capture the fault status. The address 
where the fault occurred is captured in the L2 PLE Internal Start Address Register.

When a PLE channel completes the transfer of the data block to or from the L2 cache RAM, it 
signals an interrupt. This interrupt can be either secure, nDMASIRQ, or nonsecure, 
nDMAIRQ, if IC bit [29] in the L2 PLE Control Register is enabled. In addition, there might 
be an interrupt-on-error, nDMAEXTERRIRQ, indicated if the PLE aborts for any reason and 
if the interrupt-on-error bit is enabled. 

If you program the PLE to load data into the L2 cache RAM, the PLE transfers data to the L2 
cache RAM if the memory region type is cacheable. To determine the memory region type, the 
PLE performs a hardware translation table walk at the start of the sequence and for any 4KB 
page boundary. The PLE channel does not save any state for the table walk. The translation 
procedure is for exception checking purposes and for determination of the memory attributes of 
the page. Any unexpected L2 cache RAM hits found when using the PLE are ignored for any 
type of data transfer.

Note
 Both channels can run concurrently and be programmed to transfer data from external memory 
to the same L2 cache RAM way. At the completion of both PLE transactions, the data from 
either channel 0 or 1might be present in the L2 cache.

8.4.2 Preload engine commands and status interaction

When the preloading engine channel has been configured, the channel begins to transfer data 
after it executes the start command. If at any time during the transfer, a preloading engine 
channel command of stop or clear is executed, the following rules apply for that command:

START Channel status transitions from idle to running. It has no effect on a channel status 
of running. The start and end address registers are updated as preloading engine 
transfers complete.

STOP Channel status transitions from running to idle. The start and end address reflect 
the next transfer to occur. When the channel is stopped, the address plus stride of 
the last transfer is stored in the PLE Internal Start Address Register. In addition, 
the remaining number of cache lines to be transferred is stored in the PLE Internal 
End Address Register. Therefore, by executing a start command, the preloading 
engine continues from the point when it was stopped.

CLEAR Channel status transitions from error or complete to idle and the interrupt or error 
flag is cleared to 0. It has no effect on a channel status of running. The start and 
end address registers are unchanged.
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Note
 While the PLE channel is running, the contents of the PLE Internal Start and End Address 
registers are Unpredictable for that channel.

8.4.3 Interaction of the preload engine with WFI

If one or more channels of the preload engine are active when the processor executes a WFI 
instruction, the preload engine controller suspends the PLE channels to enable the processor to 
enter WFI. When the processor wakes up from WFI, the PLE controller restarts all suspended 
PLE channels.

If it is important for the PLE channels to complete the data transfer, software must poll each PLE 
Channel Status Register for a status of completion or error. When each channel has completed, 
software can then execute the WFI instruction.

8.4.4 Memory region interaction with the preload engine

If you programmed the preload engine to load data into the L2 cache RAM, the preload engine 
transfers data to the L2 cache RAM if the memory region type is cacheable. Table 8-2 shows the 
memory region types that the L2 memory system considers cacheable or noncacheable.

When the preload engine encounters a noncached memory region, including at the start of the 
transfer, the preload engine stops the transfer and marks the transfer as complete.

8.4.5 Processor configuration and the impact on the preload engine

During a preloading engine transfer, if the processor configuration of the memory system that 
affects the preloading engine is altered, the behavior of the preloading engine is Unpredictable. 
Some processor configurations that cause Unpredictable behavior are of the following:
• altering the MMU enable
• modifying the memory region remap registers
• changing the Context ID
• disabling the L2 cache controller.

Table 8-2 Cacheable and noncacheable memory region types

Memory region type Cacheable

Strongly ordered No

Shared device No

Nonshared device No

Write-through, nonshared Yes

Write-through, shared No

Write-back, no write-allocate, nonshared Yes

Write-back, no write-allocate, shared No

Write-back, write-allocate, nonshared yes

Write-back, write-allocate, shared No

Noncached No
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Note
 You must enable the MMU for the PLE to operate. If you disabled the MMU during preloading 
engine configurations, the PLE treats all memory as noncacheable regardless of the state of the 
Memory Region Remap Registers.

8.4.6 Effects of cache maintenance operations during preloading engine transfers

When a CP15 operation is performed during a preloading engine transfer, the preload engine 
pauses the transfer of data and waits for all outstanding AXI transactions to complete. Following 
completion of the CP15 operation, the preload engine restarts.
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8.5 Synchronization primitives
On previous versions of the ARM architectures, support for shared memory synchronization 
was with the read-locked-write operations that swap register contents with memory, the SWP and 
SWPB instructions. These support basic busy and free semaphore mechanisms. See the ARM 
Architecture Reference Manual for details of the swap instructions. 

ARMv7-A describes support for more comprehensive shared-memory synchronization 
primitives that scale for multiple-processor system designs. Two sets of instructions are 
introduced to support multiple-processor and shared-memory inter-process communication: 
• load-exclusive, LDR{B,H,D}EX
• store-exclusive, STR{B,H,D}EX.

The exclusive-access instructions rely on the ability to tag a physical address as 
exclusive-access for a particular processor. This tag is later used to determine if an exclusive 
store to an address occurs. 

For nonshared memory regions, the LDR{B,H,D}EX and STR{B,H,D}EX instructions are presented to 
the ports as normal LDR or STR. If a processor does an STR on a memory region that it has already 
marked as exclusive, this does not clear the tag. However, if the region has been marked by 
another processor, an STR clears the tag.

Other events might cause the tag to be cleared. In particular, for memory regions that are not 
shared, it is Unpredictable whether a store by another processor to a tagged physical address 
causes the tag to be cleared.

An external abort on either a load-exclusive or store-exclusive puts the processor into Abort 
mode.

Note
 An external abort on a load-exclusive can leave the processor internal monitor in its exclusive 
state and might affect your software. If it does, you must execute a store-exclusive to an unused 
location in your abort handler or use the CLREX instruction to clear the processor internal monitor 
to an open state.

8.5.1 Load-exclusive instruction

Load-exclusive performs a load from memory and causes the physical address of the access to 
be tagged as exclusive-access for the requesting processor. This causes any other physical 
address that has been tagged by the requesting processor to no longer be tagged as 
exclusive-access.

8.5.2 Store-exclusive instruction

Store-exclusive performs a conditional store to memory. The store only takes place if the 
physical address is tagged as exclusive-access for the requesting processor. This operation 
returns a status value on BRESP, indicating whether the write was successful. If BRESP is 
EXOKAY, then the destination register is written with a value of 0. Otherwise, it is written with 
a value of 1. The exclusive monitor is cleared after completion.

A store-exclusive that fails because of the local monitor does not cause a translation table walk, 
MMU fault, or watchpoint.

8.5.3 Example of LDREX and STREX usage

The following is an example of typical usage. Suppose you are trying to claim a lock:
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Lock address : LockAddr
Lock free : 0x00
Lock taken : 0xFF

MOV R1, #0xFF ; load the ‘lock taken’ value
try LDREX R0, [LockAddr] ; load the lock value

CMP R0, #0 ; is the lock free?
STREXEQ R1, R0, [LockAddr]; try and claim the lock
CMPEQ R0, #0 ; did this succeed?
BNE try ; no – try again. . .

; yes – we have the lock
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8.6 Locked access
The AXI protocol specifies that, when a locked transaction occurs, the master must follow the 
locked transaction with an unlocked transaction to remove the lock of the interconnect. The 
locked sequence is not complete until the end of the locking transaction. The SWP{B,H} 
instructions include separate read and write transactions on the AXI. The read transaction is 
marked as a locked transaction while the write transaction is not marked as a locked transaction. 
Therefore, the write transaction serves as the unlocking transaction and the AXI interconnect is 
unlocked when the write response is generated.

The SWP{B,H} instructions can access cacheable or noncacheable memory. If it is to cacheable 
memory, the bus transaction is not marked as a locked transaction. If it is to noncacheable 
memory, both the read and write transactions are treated as strongly ordered memory type, and 
the bus transaction is marked as a locked transaction.

If an abort occurs, the swapping of data between the register and memory is unsuccessful. To 
clear the lock, the processor issues a write transaction on the AXI interface without any byte 
strobes active.

Note
 All transactions related to the swap instructions are issued with the lock indicator on its 
respective port, ARLOCK or AWLOCK.
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8.7 Parity and error correction code
The L2 memory supports parity detection on the tag arrays. The data arrays can support parity 
or Error Correction Code (ECC). If ECC support is implemented, two extra cycles are added to 
the L2 pipeline to perform the checking and correction functionality. In addition, ECC 
introduces extra cycles to support read-modified-write conditions when a subset of the data 
covered by the ECC logic is updated. The ECC supports single-bit correction and double-bit 
detection.

The L2 Cache Auxiliary Control Register bits [28] and [21] control the parity and ECC support.

If a cache access result is a parity error or double bit ECC error in the L2 Cache, then both the 
L1 data cache and the L2 cache are unpredictable. No recovery is possible. The abort handler 
must:
• disable the caches
• communicate the fail directly with the external system
• request a reboot.
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Chapter 9 
External Memory Interface

This chapter describes the features of the AXI interconnect used by the processor. It contains the 
following sections:
• About the external memory interface on page 9-2
• AXI control signals in the processor on page 9-3
• AXI instruction transactions on page 9-5
• AXI data read/write transactions on page 9-6.
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9.1 About the external memory interface
The external memory interface enables the processor to interface with third level caches, 
peripherals, and external memory. You can configure the processor to connect to either a 64-bit 
or 128-bit AXI interconnect that provides flexibility to system designs. The external memory 
interface supports the following interfaces:
• read address channel
• read data/response channel
• write address channel
• write data channel 
• write response channel.

All internal requests that require access to an external interface must use the appropriate external 
interface. You can generate requests with the following:
• instruction fetch unit
• load/store unit
• table walk
• preload engine
• internal L2 cache controller. 

By using the features of the AXI interconnect that enable split address and data transactions, in 
addition to multiple outstanding requests, the processor can reduce the external pin interface 
without reducing performance. The processor has a single AXI master interface. It does not 
contain an AXI slave interface.

9.1.1 External interface servicing instruction fetch transactions

The L2 memory system handles all instruction-side cache misses, including those for 
noncacheable memory. All instruction fetch requests are read-only and are routed to the external 
read address and data channels. For cacheable memory accesses, a wrapping burst transaction 
is generated to fetch an entire cache line from external memory. A nonwrapping burst 
transaction is generated by the L2 memory system for noncacheable, strongly ordered, or device 
memory instruction fetch accesses. See Table 9-5 on page 9-5 for information on AXI 
instruction transactions.

9.1.2 External interface servicing data transactions

The L2 memory system handles all data-side cache misses, including those for noncacheable 
memory, and those generated by the preload engine. Read data accesses are routed to the read 
address and data channels, whereas write data accesses are routed to the write address and data 
channels. Swap and semaphore instruction support is also built into the L2 memory system and 
external interface that are unique to data-side accesses.

Cacheable accesses generate a wrapping burst transaction on the external interface. Strongly 
ordered, device, and noncacheable accesses typically result in single transaction requests to 
external interface. See Table 9-7 on page 9-7 for information on data transactions.
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9.2 AXI control signals in the processor
For additional information about AXI control signals, see the AMBA AXI Protocol 
Specification.

9.2.1 AXI identifiers

The AXI interconnect uses identifiers with each transaction that enables requests to be serviced 
out-of-order under certain circumstances. The processor supports multiple outstanding 
transactions and assigns unique IDs to each specific transaction. There are two sets of 
identifiers, one for the read address channel, ARRID[3:0], and one for the write address 
channel, AWRID[3:0]. Table 9-1 shows the AXI ID assignment for read address channel.

Table 9-2 shows the AXI ID assignment for write address channel.

Table 9-1 Read address channel AXI ID

Read address channel request type ID tag value

Instruction fetch L2 cacheable b1000-b1011

L1 cacheable (L2 non-cacheable) b1111

Noncacheable or Strongly Ordered b0100

Shared or nonshared device b0101

Integer data and CP14 loads L2 cacheable b1000-b1011

L1 cacheable (L2 non-cacheable) b1110

Noncacheable or Strongly Ordered b0000

Shared device b0001

Nonshared device b0011

NEON and VFP loads L2 cacheable b1000-b1011

Noncacheable or Strongly Ordered b0000

Shared device b0001

Nonshared device b0011

Table Walks L2 cacheable b1000-b1011

Noncacheable b0110

PLD and PLE L2 cacheable b1000-b1011

Table 9-2 Write address channel AXI ID

Write address channel request type ID tag value

Evictions from L2 cache Each ID corresponds to one eviction in the L2 cache b1000 - b1011
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 9-3
ID060510 Non-Confidential



External Memory Interface 
The processor supports multiple read and write channel transactions as Table 9-3 shows.

9.2.2 Read/write data bus width configuration pin

The primary input pin A64n128 of the processor determines the width of the AXI interface 
read/write data buses. You must ensure that this pin is driven appropriately for your system 
configuration.

Table 9-4 shows the supported values for A64n128.

Integer data and CP14 writes Noncacheable/cacheable
Write-through/strongly ordered

b0000

Cacheable non-burst writes b0010

Shared device b0001

Nonshared device b0011

NEON and VFP writes Noncacheable/cacheable
Write-through/strongly ordered

b0000

Cacheable non-burst writes b0010

Shared device b0001

Nonshared device b0011

PLE L2 cacheable b1000-b1011

CP15 (cache maintenance) L2 cacheable b1000-b1011

Table 9-3 AXI master interface attributes

Attribute Outstanding transactions

Write Issuing Capability 12

Read Issuing Capability 18

Combined Issuing Capability 26a

a. The combined issuing capability is limited to a total of four 
outstanding linefills or evictions. Therefore the sum of the 
read and write issuing capability does not equal the 
combined issuing capability.

Table 9-2 Write address channel AXI ID (continued)

Write address channel request type ID tag value

Table 9-4 A64n128 encoding

Value Description

0 128-bit interface

1 64-bit interface
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9.3 AXI instruction transactions
This section describes the AXI master interface behavior for instruction side transactions to 
either Cacheable or Noncacheable regions of memory.

See the AMBA AXI Protocol Specification for details of the other AXI signals.

9.3.1 AXI instruction address transactions

Table 9-5 shows the values of ARADDR[31:0], ARLEN[3:0], ARSIZE[2:0], 
ARBURST[1:0], and ARLOCK[1:0] for instruction transactions.

Table 9-5 AXI address channel for instruction transactions

Transfer Bus width ARADDR 
[31:0]a

ARLEN
[3:0]

ARSIZE
[2:0]

ARBURST[
1:0]

ARLOCK 
[1:0]

MMU translation table 
translation table walkb

64 [31:6]bbbb00 0 32-bit Incr Normal

128 [31:6]bbbb00 0 32-bit Incr Normal

Noncacheable 64 [31:6]bbb000 0-7 64-bit Incr Normal

128 [31:6]bb0000 0-3 128-bit Incr Normal

Cacheable linefill 64 [31:6]bbb000 7 64-bit Wrap Normal

128 [31:6]bb0000 3 128-bit Wrap Normal

a. ARADDR[31:0] is a 32-bit signal with bits [5:3] set to any value and bits [2:0] set to 0, unless otherwise indicated. 
This determines the ARLEN[3:0] value depending on the transfer type and bus width. For example, a noncacheable 
instruction fetch with ARADDR[5:0] = b101000 for a 64-bit bus width, results in an ARLEN[3:0] = b0010. In this 
example, doublewords 5, 6, and 7 of the cache line are transferred.

b. This is for noncacheable or strongly ordered table walk only. For cacheable table walk, the bus transaction is a 
cacheable linefill.
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9.4 AXI data read/write transactions
This section describes the AXI master interface behavior for data read/write transactions.

9.4.1 Linefills

An AXI wrapping burst transaction transfers a cache line from external memory to the internal 
caches. The critical doubleword or quadword, depending on the 64-bit or 128-bit bus 
configuration, is requested first. In the event of an external abort, the cache line is not written 
into the caches and the line is never marked as valid. 

9.4.2 Evictions

To reduce the number of burst transfers on the AXI interface, a subset of the cache line is written 
only if it is partially dirty. The burst size depends on the bus configuration and which quadwords 
of the cache line contain dirty data.

The CortexA8 processor contains four dirty bits per 64 byte cache line, representing four 128-bit 
packets of data, or four quadwords of data. The encoding of the dirty bits defines the number, 
or length, of transfers on the AWLEN[3:0] signals. Table 9-6 shows the different possible 
evictions that can take place for all combinations of dirty bits. 

Table 9-6 Number of transfers on AXI write channel for an eviction

Quadword 
Dirty Bit[3:0]

128-bit AXI 
AWLEN[3:0]

64-bit AXI 
AWLEN[3:0]

b0000 No eviction No eviction

b0001 b0000 b0001

b0010 b0000 b0001

b0011 b0001 b0011

b0100 b0000 b0001

b0101 b0010 b0101

b0110 b0001 b0011

b0111 b0010 b0101

b1000 b0000 b0001

b1001 b0011 b0111

b1010 b0010 b0101

b1011 b0011 b0111

b1100 b0001  b0011

b1101  b0011  b0111

b1110 b0010 b0101

b1111 b0011 b0111
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9.4.3 NEON accesses to strongly ordered and device memory

NEON vector type transfers are based on an element size and can require multiple AXI 
transfers. Each transfer consists of incrementing burst transactions of up to 128-bit bus width 
boundary. For example, if the Advanced SIMD instruction VLD1.16 {D0}, [r1] is executed to 
address offset 0xE, then the following two burst transactions are generated on the AXI interface. 
The first transaction consists of the following:
• ARBURST[1:0] = 0x1
• ARLEN[3:0] = 0x0 for single data transfer
• ARSIZE[2:0] = 0x1.

The second transaction consists of the following:
• ARBURST[1:0] = 0x1
• ARLEN[3:0] = 0x2 for three data transfers
• ARSIZE[2:0] = 0x1.

9.4.4 AXI data address transactions

Table 9-7 shows the values of AxADDR[31:0], AxLEN[3:0], AxSIZE[2:0], AxBURST[1:0], 
and AxLOCK[1:0] for data transactions excluding load/store multiples.

In this table:

NA Naturally Aligned

BW Bus Width

BC Boundary Cross

NoT Number of Transactions

TS Transaction sequence number if multiple transactions are required

SAO Starting Address Offset

AxA AxADDR, either ARADDR or AWADDR

AxLN AxLEN, either ARLEN or AWLEN

AxS AxSIZE, either ARSIZE or AWSIZE

AxB AxBURST, either ARBURST or AWBURST

AxLK AxLOCK, either ARLOCK or AWLOCK

Table 9-7 AXI address channel for data transactions - excluding load/store multiples

Transfer NA BW BCa NoT TS SAO 
[3:0]

AxA 
[31:0]

AxLN 
[3:0]

AxS 
[2:0]

AxB 
[1:0]

AxLK 
[1:0]

MMU 
translation table 
walkb

Yes 64 N/A 1 - - [31:2]00 0 32-bit Incr Normal

128 N/A 1 - - [31:2]00 0 32-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device load byte

Yes 64 N/A 1 - - [31:0] 0 8-bit Incr Normal

128 N/A 1 - - [31:0] 0 8-bit Incr Normal
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Noncacheable, 
or strongly 
ordered, or 
device load 
halfword

Yes 64 N/A 1 - - [31:1]0 0 16-bit Incr Normal

128 N/A 1 - - [31:1]0 0 16-bit Incr Normal

Noncacheable 
load halfword

No 64 QW 2 1st - [31:1]0 0 16-bit Incr Normal

QW 2 2nd - [31:4]0000 0 16-bit Incr Normal

DW 1 - - [31:1]0 1 16-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

HW 1 - - [31:2]00 0 32-bit Incr Normal

128 QW 2 1st - [31:1]0 0 16-bit Incr Normal

2nd - [31:4]0000 0 16-bit Incr Normal

DW 1 - - [31:4]0000 0 128-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

HW 1 - - [31:2]00 0 32-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device load 
word

Yes 64 N/A 1 - - [31:2]00 0 32-bit Incr Normal

128 N/A 1 - - [31:2]00 0 32-bit Incr Normal

Noncacheable 
load word

No 64 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 1 - - [31:2]00 1 32-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

128 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 1 - - [31:4]0000 0 128-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device load 
doubleword

Yes 64 N/A 1 - - [31:3]000 0 64-bit Incr Normal

128 N/A 1 - - [31:3]000 0 64-bit Incr Normal

Table 9-7 AXI address channel for data transactions - excluding load/store multiples (continued)

Transfer NA BW BCa NoT TS SAO 
[3:0]

AxA 
[31:0]

AxLN 
[3:0]

AxS 
[2:0]

AxB 
[1:0]

AxLK 
[1:0]
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Noncacheable, 
or strongly 
ordered, or 
device load 
doubleword

No 64 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:3]000 0 32-bit Incr Normal

128 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:3]000 0 32-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device store 
byte

Yes 64 N/A 1 - - [31:0] 0 8-bit Incr Normal

128 N/A 1 - - [31:0] 0 8-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device store 
halfword

Yes 64 N/A 1 - - [31:1]0 0 16-bit Incr Normal

128 N/A 1 - - [31:1]0 0 16-bit Incr Normal

Noncacheable 
store halfword

No 64 QW 2 1st - [31:0] 0 8-bit Incr Normal

2nd - [31:4]0000 0 8-bit Incr Normal

DW 1 - - [31:0] 1 8-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

HW 1 - - [31:3]000 0 64-bit Incr Normal

128 QW 2 1st - [31:0] 0 8-bit Incr Normal

2nd - [31:4]0000 0 8-bit Incr Normal

DW 1 - - [31:4]0000 0 128-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

HW 1 - - [31:3]000 0 64-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device store 
word

Yes 64 N/A 1 - - [31:2]00 0 32-bit Incr Normal

128 N/A 1 - - [31:2]00 0 32-bit Incr Normal

Table 9-7 AXI address channel for data transactions - excluding load/store multiples (continued)

Transfer NA BW BCa NoT TS SAO 
[3:0]

AxA 
[31:0]

AxLN 
[3:0]

AxS 
[2:0]

AxB 
[1:0]

AxLK 
[1:0]
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Noncacheable 
store word

No 64 QW 2 1st 0xD [31:3]000 0 32-bit Incr Normal

2nd - [31:4]0000 0 8-bit Incr Normal

1st 0xE [31:4]1110 0 16-bit Incr Normal

2nd - [31:4]0000 0 16-bit Incr Normal

1st 0xF [31:4]1111 0 8-bit Incr Normal

2nd - [31:4]0000 0 64-bit Incr Normal

DW 1 - 0x5 [31:3]000 1 64-bit Incr Normal

0x6 [31:3]110 1 16-bit Incr Normal

0x7 [31:3]000 1 64-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

128 QW 2 1st 0xD [31:3]000 0 64-bit Incr Normal

2nd - [31:4]0000 0 8-bit Incr Normal

1st 0xE [31:4]1110 0 16-bit Incr Normal

2nd - [31:4]0000 0 16-bit Incr Normal

1st 0xF [31:4]1111 0 8-bit Incr Normal

2nd - [31:4]0000 0 64-bit Incr Normal

DW 1 - 0x5 [31:4]0000 0 128-bit Incr Normal

0x6 [31:4]0000 0 128-bit Incr Normal

0x7 [31:4]0000 0 128-bit Incr Normal

W 1 - - [31:3]000 0 64-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device store 
doubleword

Yes 64 N/A 1 - - [31:3]000 0 64-bit Incr Normal

128 N/A 1 - - [31:3]000 0 64-bit Incr Normal

Noncacheable 
store 
doubleword

No 64 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 1c - - [31:2]00 1 32-bit Incr Normal

2d 1st - [31:2]00 0 32-bit Incr Normal

128 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 1 - - [31:4]0000 0 128-bit Incr Normal

Table 9-7 AXI address channel for data transactions - excluding load/store multiples (continued)

Transfer NA BW BCa NoT TS SAO 
[3:0]

AxA 
[31:0]

AxLN 
[3:0]

AxS 
[2:0]

AxB 
[1:0]

AxLK 
[1:0]
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Table 9-8 on page 9-12 shows the values of ARADDR[31:0], ARLEN[2:0], ARSIZE[2:0], 
ARBURST[1:0], ARLOCK[1:0], and ARPROT[2:0] for data transactions for load/store 
multiples.

In this table:
ENR Even Number Registers
FA First Access

Strongly 
ordered, or 
device store 
doubleword

No 64 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:3]000 0 32-bit Incr Normal

128 QW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:4]0000 0 32-bit Incr Normal

DW 2 1st - [31:2]00 0 32-bit Incr Normal

2nd - [31:3]000 0 32-bit Incr Normal

Cacheable 
linefill

Yes 64 N/A 8 - - [31:3]000 7 64-bit Wrap Normal

128 N/A 4 - - [31:4]0000 3 128-bit Wrap Normal

Eviction/castout Yes 64 N/A 8 - - [31:3]000 7 64-bit Incr Normal

128 N/A 4 - - [31:4]0000 3 128-bit Incr Normal

Swap byte 
(load/store)

Yes 64 N/A 1 - - [31:0] 0 8-bit Incr Locked

128 N/A 1 - - [31:0] 0 8-bit Incr Locked

Swap word 
(load/store)

Yes 64 N/A 1 - - [31:2]00 0 32-bit Incr Locked

128 N/A 1 - - [31:2]00 0 32-bit Incr Locked

Exclusive byte 
(load/store)

Yes 64 N/A 1 - - [31:0] 0 8-bit Incr Exclusive

128 N/A 1 - - [31:0] 0 8-bit Incr Exclusive

Exclusive half 
word 
(load/store)

Yes 64 N/A 1 - - [31:1]0 0 16-bit Incr Exclusive

128 N/A 1 - - [31:1]0 0 16-bit Incr Exclusive

Exclusive word 
(load/store)

Yes 64 N/A 1 - - [31:2]00 0 32-bit Incr Exclusive

128 N/A 1 - - [31:2]00 0 32-bit Incr Exclusive

Exclusive 
doubleword 
(load/store)

Yes 64 N/A 1 - - [31:3]000 0 64-bit Incr Exclusive

128 N/A 1 - - [31:3]000 0 64-bit Incr Exclusive

a. In the Boundary cross column, HW = 16 bits, W = 32 bits, DW = 64 bits, and QW = 128 bits.
b. This is for noncacheable or strongly ordered table walk only. For cacheable table walk, the bus transaction is a cacheable 

linefill.
c. This is for write combining enabled.
d. This is for write combining disabled.

Table 9-7 AXI address channel for data transactions - excluding load/store multiples (continued)

Transfer NA BW BCa NoT TS SAO 
[3:0]

AxA 
[31:0]

AxLN 
[3:0]

AxS 
[2:0]

AxB 
[1:0]

AxLK 
[1:0]
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LA Last Access

Table 9-8 AXI address channel for data transactions for load/store multiples

Transfer Alignment ENR FA LA ARADDR 
[31:0]

ARLEN 
[2:0]

ARSIZE 
[2:0]

ARBURST 
[1:0]

ARLOCK 
[1:0]

Noncacheable, 
or strongly 
ordered, or 
device LDMs

Even word Yes 1 0 [31:3]000 0 64-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 64-bit Incr Normal

1 1 [31:3]000 0 64-bit Incr Normal

No 1 0 [31:3]000 0 64-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 64-bit Incr Normal

1 1 [31:3]000 0 32-bit Incr Normal

Odd word Yes 1 0 [31:2]00 0 32-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 32-bit Incr Normal

No 1 0 [31:2]00 0 32-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 64-bit Incr Normal

Noncacheable, 
or strongly 
ordered, or 
device STMs

Even word Yes 1 0 [31:3]000 0 64-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 64-bit Incr Normal

1 1 [31:3]000 0 64-bit Incr Normal

No 1 0 [31:3]000 0 64-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 64-bit Incr Normal

1 1 [31:3]000 0 32-bit Incr Normal

Odd word Yes 1 0 [31:3]100 0 32-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 32-bit Incr Normal

No 1 0 [31:3]100 0 32-bit Incr Normal

0 0 [31:3]000 0 64-bit Incr Normal

0 1 [31:3]000 0 64-bit Incr Normal
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Chapter 10 
Clock, Reset, and Power Control

This chapter describes the clock domains and reset inputs of the processor. It also describes 
dynamic and static power control techniques. It contains the following sections:
• Clock domains on page 10-2
• Reset domains on page 10-4
• Power control on page 10-8.
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10.1 Clock domains
The processor has three major clock domains:
CLK High speed core clock used to clock all major processor interfaces. The 

Cortex-A8 processor uses only the rising edge of CLK. 
CLK controls the following units within the processor:
• instruction fetch unit
• instruction decode unit
• instruction execute unit
• load/store unit
• L2 cache unit, including AXI interface
• NEON unit
• ETM unit, not including the ATB interface
• debug logic, not including the APB interface.

Note
 The instruction fetch, instruction decode, instruction execute, load/store, and L2 

cache are called the core or integer core.

PCLK APB clock that controls the debug interface for the processor. PCLK is 
asynchronous to CLK and ATCLK. PCLK controls the debug interface and 
logic in the PCLK domain.

ATCLK ATB clock that controls the ATB interface for the processor. ATCLK is 
asynchronous to CLK and PCLK. ATCLK controls the ATB interface.

Note
 You can implement PCLK and ATCLK to be synchronous to CLK. You can also 

implement PCLK and ATCLK to run synchronously to each other.

10.1.1 AXI clocking using ACLKEN

The processor contains a single synchronous AXI interface. The AXI interface is clocked using 
a gated CLK that is gated using ACLKEN. The AXI interface can operate at any integer 
multiple slower than the processor clock, CLK. In previous ARM family of processors, 
sampling ACLKEN on the rising edge of CLK indicated that the rising edge of the AXI bus 
clock, ACLK, had occurred. However, for the processor, the cycle timing of ACLKEN has 
changed.

Figure 10-1 shows the timing behavior of ACLKEN.

Figure 10-1 CLK-to-ACLK ratio of 4:1

Note
 Figure 10-1 shows the timing relationship between the AXI bus clock, ACLK, and ACLKEN, 
where ACLKEN asserts two CLK cycles prior to the rising edge of ACLK. It is critical that 
the relationship between ACLK and ACLKEN is maintained.

ACLKEN

CLK

ACLK

2 cycles
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Figure 10-2 shows a change to a 1:1 clock ratio. In this figure, ACLKEN remains asserted, 
changing the CLK:ACLK frequency ratio from 4:1 to 1:1.

Figure 10-2 Changing the CLK-to-ACLK ratio from 4:1 to 1:1

10.1.2 Debug clocking using PCLKEN

All debug logic within the processor operates at an integer multiple of PCLK that is the same 
frequency as or slower than the APB clock, PCLK, using PCLKEN. Figure 10-3 shows the 
behavior of PCLKEN. In this figure, PCLKEN remains asserted, changing the 
PCLK:internal PCLK frequency ratio from 4:1 to 1:1.

Figure 10-3 Changing the PCLK-to-internal-PCLK ratio from 4:1 to 1:1

Note
 If PCLKEN is not used, then it must be tied HIGH. This results in all state in the debug logic 
being clocked by PCLK directly.

10.1.3 ATB clocking using ATCLKEN

All ATB logic within the processor operates at an integer multiple of ATCLK that is the same 
frequency as or slower than the ATB clock, ATCLK, using ATCLKEN. Figure 10-4 shows the 
behavior of ATCLKEN. In this figure, ATCLKEN remains asserted, changing the 
ATCLK:internal ATCLK frequency ratio from 4:1 to 1:1.

Figure 10-4 Changing the ATCLK-to-internal-ATCLK ratio from 4:1 to 1:1

Note
 If ATCLKEN is not used, then it must be tied HIGH. This results in all state in the ATB logic 
being clocked by ATCLK directly.

ACLKEN

CLK

ACLK

2 cycles

PCLKEN

PCLK

Internal PCLK

1 cycle

ATCLKEN

ATCLK

Internal ATCLK

1 cycle
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10.2 Reset domains
Similar to the multiple clock domains within the processor, there are multiple reset domains: 
• Power-on reset
• Soft reset on page 10-5
• APB and ATB reset on page 10-6
• Hardware RAM array reset on page 10-6
• Reset of memory arrays on page 10-7.

All resets are active-LOW inputs, and each reset can affect one or more clock domains. 
Table 10-1 shows the different resets and what areas of the processor are controlled by those 
resets.

Note
 • There are specific requirements that must be met to reset each clock domain within the 

processor. Not adhering to these requirements can lead to a clock domain that is not 
functional.

• The documented reset sequences are the only reset sequences validated. Any deviation 
from the documented reset sequences might cause an improper reset of the clock domain.

10.2.1 Power-on reset

The power-on reset sequence is the most critical to the device because logic in all clock domains 
must be placed in a benign state following the deassertion of the reset sequence. Figure 10-5 on 
page 10-5 shows the power-on reset sequence.

Table 10-1 Reset inputs

Signal Core 
(CLK) NEON (CLK) ETM 

(CLK)
Debug 
(CLK)

APB 
(PCLK)

ATB 
(ATCLK)

nPORESET Reset Reset Reset Reset - -

ARESETn Reset Reset - - - -

PRESETn - - Reset Reset Reset -

ARESETNEONn - Reset - - - -

ATRESETn - - - - - Reset
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Figure 10-5 Power-on reset timing

Figure 10-5 shows three critical aspects:

1. At the beginning of power-on reset, CLK must be held LOW for a minimum of the 
equivalent of two REFCLK clock cycles to place components within the processor in a 
safe state.

2. The nPORESET, PRESETn, and ATRESETn resets must be held for eight CLK 
cycles. This ensures that reset has propagated to all locations within the processor.

3. The ARESETn and ARESETNEONn resets must be held for an additional eight CLK 
cycles following the release of nPORESET and PRESETn to enable those domains to 
exit reset safely.

Note
 • The PCLK and ATCLK domains must also be reset during a power-on reset sequence to 

ensure that the interfaces between those domains and the CLK domain are reset properly.
PRESETn and ATRESETn must be deasserted simultaneously with or after the 
deassertion of nPORESET.

• Figure 10-5 shows that PRESETn must be asserted for a minimum of eight cycles. 
Because PCLK is an asynchronous clock domain that can operate faster or slower than 
CLK, PRESETn must be asserted for the slowest of eight CLK or eight PCLK cycles.

The power-on reset also controls entry and exit from a power-down state for various power 
domains within the processor. See Power control on page 10-8 for more information.

10.2.2 Soft reset

The soft reset sequence is used to trace with ETM or debug across a reset event. By asserting 
only the ARESETn and ARESETNEONn signals, the reset domains controlled by 
nPORESET, ETM, and debug in particular, are not reset. Therefore, breakpoints and 
watchpoints are retained during a soft reset sequence. Figure 10-6 on page 10-6 shows a soft 
reset sequence.

REFCLK
(PLL input)

nPORESET

ARESETn

8 cycles minimum

PRESETn 8 cycles minimum

16 cycles minimum

CLK
When nPORESET is asserted, CLK must be 
clamped LOW for a minimum of 2 REFCLK cycles

ARESETNEONn 16 cycles minimum

8 cycles minimumATRESETn

PCLK and ATCLK
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Figure 10-6 Soft reset timing

An additional reset is provided to control the NEON unit independently of the processor reset. 
This reset can be used to hold the NEON unit in a reset state so that the power to the NEON unit 
can be safely removed without placing any logic within the NEON unit in a different state. The 
reset cycle timing requirements for ARESETNEONn are identical to those for ARESETn. 
ARESETNEONn must be held for a minimum of eight CLK cycles when asserted to guarantee 
that the NEON unit has entered a reset state.

In addition, both ARESETn and ARESETNEONn are used to manage various power domains 
within the processor. See Power control on page 10-8 for information on the management of 
these resets and power domains.

10.2.3 APB and ATB reset

PRESETn is used to reset the debug hardware within the processor in addition to the ETM 
CLK domain. ATRESETn is used to reset the ATB interface and Cross Trigger Interface (CTI). 
To safely reset the debug hardware, ATB, and CTI domains, PRESETn and ATRESETn must 
be asserted for a minimum of eight clock cycles of the slowest of CLK, PCLK, or ATCLK. 
Figure 10-7 shows the assertion of PRESETn and ATRESETn.

Figure 10-7 PRESETn and ATRESETn assertion

Note
 PRESETn and ATRESETn must always be asserted simultaneously.

10.2.4 Hardware RAM array reset

During a power-on reset or soft reset, by default the processor clears the valid bits of both the 
L1 data cache and the L2 unified cache. Depending on the size of the L2 cache, this can take up 
to 1024 cycles after the deasserting edge of the reset signals. The L1 data cache reset can take 
up to 512 cycles, and occurs coincident with the L1 instruction cache reset. The processor does 
not begin execution until the L1 caches are reset. The L2 hardware reset occurs in the 

REFCLK
(PLL input)

nPORESET

ARESETn

CLK

8 cycles minimum

ARESETNEONn 8 cycles minimum

ATCLK

ATRESETn 8 cycles minimum

PCLK

PRESETn 8 cycles minimum

CLK
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background and does not interfere with reset code. Any attempt to enable the L2 unified cache 
or perform any L2 cache maintenance operations stalls the processor until the hardware reset is 
complete.

The processor has two pins, L1RSTDISABLE and L2RSTDISABLE, to control the hardware 
reset process. The usage models of the hardware reset pins are as follows:

1. For applications that do not retain the L1 data cache and L2 unified cache RAM contents 
throughout a core power-down sequence, the hardware resets both the L1 data cache and 
L2 unified cache at every reset, using ARESETn or nPORESET. Both 
L1RSTDISABLE and L2RSTDISABLE must be tied LOW. This is the recommended 
usage model.

2. For applications that do retain the L1 data cache or L2 unified cache RAM contents 
throughout a core power-down sequence, hardware must control both the 
L1RSTDISABLE and L2RSTDISABLE signals during reset. When the system is 
powering up for the first time, the hardware reset signals, L1RSTDISABLE and 
L2RSTDISABLE, must be tied LOW to invalidate both the L1 data cache and L2 unified 
cache RAM contents using the hardware reset mechanism. If either the L1 data cache or 
L2 unified cache must retain its data during a reset sequence, then the corresponding 
hardware reset disable must be tied HIGH.

3. If the hardware array reset mechanism is not used, then both the L1RSTDISABLE and 
L2RSTDISABLE pins must be tied HIGH.

Both the L1RSTDISABLE and L2RSTDISABLE pins must be valid at least 16 CLK cycles 
before and after the deasserting edge of ARESETn and nPORESET.

10.2.5 Reset of memory arrays

During reset of the processor, the following memory arrays are invalidated at reset:
• branch prediction arrays (BTB and GHB)
• L1 instruction and data TLBs
• L1 data cache valid RAM, if L1RSTDISABLE is tied LOW
• L2 unified cache valid RAM, if L2RSTDISABLE is tied LOW.
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10.3 Power control
Both the clocks and resets in the processor play key roles in the power management of the 
processor, enabling islands to be powered down or powered up in a controlled manner. They 
also provide many key control mechanisms to manage dynamic power.

This section describes:
• Dynamic power management
• Static or leakage power management on page 10-11
• Debugging the processor while powered down on page 10-18
• L1 data and L2 cache power domains on page 10-19
• Special note on reset during power transition on page 10-22.

10.3.1 Dynamic power management

The processor has many different dynamic power management facilities. The most common 
form of dynamic power management is control of the clock network within the processor.

The processor has three levels of clock gating to manage dynamic power. The levels correspond 
to the following functions:

Level 1 This is architectural gating, also known as Wait-For-Interrupt (WFI), or the 
CLKSTOPREQ and CLKSTOPACK signals on the Cortex-A8 processor.

Level 2 This is major function gating, such as NEON, ETM, or integer core gating.

Level 3 This is state element gating, such as local clock gating.

The processor contains all hardware necessary for architecture, unit, and local clock gating. No 
external hardware is required to clock gate the processor.

Wait-For-Interrupt architecture

Executing a Wait-For-Interrupt instruction puts the processor into a low-power state until one 
of the following occurs:
• an IRQ or FIQ interrupt
• a halting debug event when the DBGNOCLKSTOP signal is HIGH.

See Halting debug event on page 12-51 for information on halting debug events.

Note
 • If you are debugging software running on the Cortex-A8 processor, DBGNOCLKSTOP 

must be HIGH. Otherwise, halting debug events do not work as architected and the APB 
interface does not return a response when accessing the ETM, CTI, or core domain debug 
registers. See Table 12-3 on page 12-6 for information on the debug registers that are in 
the core.

• If DBGNOCLKSTOP is HIGH and you execute the Wait-For-Interrupt instruction, the 
processor goes into an idle state but not into a low-power state.

• The STANDBYWFI pin remains HIGH even when DBGNOCLKSTOP is HIGH.

When executing the WFI instruction, the processor waits for the following events to complete 
before entering the idle or low-power state:
• L1 data memory system loads and stores are complete
• all L1 instruction memory system fetches are complete
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• all L2 memory system transactions are complete
• all AXI interface transactions are complete
• all Advanced SIMD instructions are complete
• all ETM data transfers from core clock domain to ATB clock domain are complete
• preloading engine, PLE, activity is interrupted.

On entry into the low-power state, the processor asserts the STANDBYWFI signal. Assertion 
of STANDBYWFI guarantees that the processor and the AXI interface are in the idle state. The 
APB PCLK clock domain and the ATB ATCLK clock domain can remain active.

Figure 10-8 shows the upper bound for the STANDBYWFI deassertion timing after assertion 
of nIRQ or nFIQ.

Figure 10-8 STANDBYWFI deassertion

Hardware clock stopping

Another form of architectural clock gating is controlled by the processor CLKSTOPREQ 
input. Asserting CLKSTOPREQ puts the processor into a low-power state until 
CLKSTOPREQ is deasserted.

Figure 10-9 shows the relationship between CLKSTOPREQ and CLKSTOPACK.

Figure 10-9 CLKSTOPREQ and CLKSTOPACK

When the system asserts CLKSTOPREQ, the processor waits for completion of the same 
events as in the Wait-For-Interrupt case before entering the low-power state. See 
Wait-For-Interrupt architecture on page 10-8 for more information.

On entry into the low-power state, the processor asserts the CLKSTOPACK output. Assertion 
of CLKSTOPACK guarantees that the processor and the AXI interface are in idle state. The 
APB PCLK domain and the ATB ATCLK clock domain can remain active.

The number of cycles between CLKSTOPREQ and CLKSTOPACK assertion has a lower 
bound of 20 cycles but no upper bound. The upper bound is a function of the latency to access 
the slowest device mapped on the processor AXI bus and, therefore, is system-dependent. After 

CLK

nIRQ or nFIQ

STANDBYWFI

maximum 8 cycles

REFCLK 
(PLL input)

CLK

CLKSTOPACK

CLKSTOPREQ

> 20 cycles 8 cycles 8 cycles

Vdd (core)
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the processor asserts CLKSTOPACK, it closes the architectural clock gate. However, eight 
CLK cycles must pass before you can rely on the architectural clock gate being completely 
closed.

Figure 10-9 on page 10-9 shows the system stopping CLK after the architectural clock gate is 
closed. This enables additional energy savings, but it is optional. In addition, the supply voltage, 
Vdd (core) can also be lowered as shown in Figure 10-9 on page 10-9 to improve energy 
savings. However, CLK must not stop before the architectural clock gate is closed, that is, it 
must continue to run for at least eight cycles after CLKSTOPACK is asserted.

After the architectural clock gate closes, the system can keep the processor in this low-power 
state for as long as required, by holding CLKSTOPREQ HIGH. When the system deasserts 
CLKSTOPREQ, this causes the architectural clock gate to open. The processor then responds 
by deasserting CLKSTOPACK and resuming instruction execution. The upper bound for the 
number of CLK cycles between CLKSTOPREQ and CLKSTOPACK deassertion is 8.

When driving CLKSTOPREQ, the system must comply with a set of protocol rules, otherwise 
the processor behavior is Unpredictable. The rules are as follows:

• CLKSTOPREQ must not transition from LOW to HIGH if CLKSTOPACK is already 
HIGH.

• When CLKSTOPREQ is HIGH, it must remain HIGH until CLKSTOPACK goes 
HIGH. Only when CLKSTOPACK goes HIGH can CLKSTOPREQ go LOW.

Note
 • If you are debugging software running on the Cortex-A8 processor, DBGNOCLKSTOP 

must be HIGH. Otherwise, halting debug events do not work as architected and the APB 
interface does not return a response when accessing the ETM, CTI, or core domain debug 
registers. See Table 12-3 on page 12-6 for information on the debug registers that are in 
the core.

• If DBGNOCLKSTOP is HIGH and the system asserts CLKSTOPREQ, the processor 
goes into an idle state but not into a low-power state.

• The CLKSTOPACK output pin remains HIGH even when DBGNOCLKSTOP is 
HIGH.

NEON or ETM unit level gating

In addition to the architectural gating mechanism, the processor supports gating of major 
components within the processor such as the NEON unit, VFP coprocessor, and ETM unit.

The cp10 and cp11 fields in the CP15 c1 Coprocessor Access Control Register control access to 
the NEON and VFP coprocessor. See c1, Coprocessor Access Control Register on page 3-52. 
Reset clears the cp10 and cp11 fields. If there are no NEON or VFP instructions in the pipeline, 
the clock is disabled for lower power.

You can also disable the NEON unit and VFP coprocessor by setting the EN bit of the 
Floating-point Exception Register to 0. See Floating-point Exception Register, FPEXC on 
page 13-14.

The ETM Control Register enables the ETM. See the Embedded Trace Macrocell Architecture 
Specification for more information. The global enable bit in the CTI Control Register enables 
the ETM clocks, excluding the ATB clock, ATCLK, that can only be gated external to the 
processor. See CTI Control Register, CTICONTROL on page 15-11.
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DFF gating

The finest level of dynamic power control is at the Delay Flip-Flop (DFF) level. This is implicit 
to the design and requires no external support.

10.3.2 Static or leakage power management

The processor can accommodate many different levels of static, or leakage power management. 
All of these techniques are specific to a given implementation of the processor. Some 
possibilities that the processor can accommodate are:
• full retention
• power domains or islands such as integer core, ETM and debug, L2 RAM, and NEON
• usage of multi-Vt such as high-Vt, standard-Vt, or low-Vt.

Note
 This technical reference manual does not document retention or the usage of multi-Vt. However, 
this manual describes the power domains, or islands that are supported and the methods that are 
required to manage those domains in a manner that has been validated within the processor.

To completely eliminate leakage power consumption in the processor, you must remove the 
power supplied to the processor. Before powering down, all architectural state must be saved to 
memory and the L1 data cache or L2 unified cache must be cleaned to the point of coherency. 
When powering up the processor, you must apply a complete reset sequence with software that 
restores the architectural state. The sequence takes significant time and energy to perform a full 
power-down of the processor. 

To improve the response time of a power-down sequence, the processor supports several key 
features to minimize the response time and to reduce the leakage power consumption:

• The processor enables the debug, ETM, and NEON units to be powered down while the 
rest of the processor is active.

• The processor is designed so that the L1 data cache or L2 unified cache can retain state 
while the rest of the processor is powered down. This avoids the time and energy 
consuming process of cleaning the caches before powering down.

• The processor enables the debug logic to remain powered up while the rest of the 
processor is powered down. This enables system debug to continue while the processor is 
powered down. All powered-down processor resources are not available to the debugger. 
As a result, the debug logic indicates an error to the debugger that the processor is in a 
powered-down state.

The processor supports many different power islands combinations, including a single 
monolithic power grid, resulting in a single power domain. The supported power domains are:

• the NEON unit

• all debug PCLK logic, ETM CLK logic, and ETM ATCLK logic

• the L2 cache arrays

• the L1 data cache arrays

• all remaining logic within the processor, excluding the previous power domain, also 
known as the integer core.

Figure 10-10 on page 10-12 shows the supported power domains.
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Figure 10-10 Power domains

When implementing the different power domains, the following modes of operation apply:

• integer core in running mode:
— All logic are powered and operational.
— NEON are powered down and all other logic powered and operational. This mode 

minimizes the NEON leakage when NEON is not required.
— Debug PCLK, ETM CLK, and ETM ATCLK are powered down and all other 

logic powered and operational. This mode minimizes the leakage of the debug and 
trace facilities when they are not required.

— NEON, debug PCLK, ETM ATCLK, and ETM CLK are powered down, with all 
other logic powered and operational.

• Integer core and NEON in powered down mode:
— L1 data cache or L2 cache are powered up. This mode enables data to be retained in 

the L1 data cache or the L2 cache. This mode can greatly minimize the time and 
energy required to power down the processor.

— Debug PCLK, ETM CLK, and ETM ATCLK are powered up. This mode enables 
the debug and trace external interfaces to remain active, enabling the debugger to 
detect that the processor is powered down.
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— L1 data cache or L2 cache, debug PCLK, ETM CLK, and ETM ATCLK are 
powered down.

If all power domains are implemented, the power domains can be independently controlled to 
give eight combinations of power-up and power-down domains. However, only some power-up 
and power-down domain combinations are valid. These are shown in Table 10-2.

From the power domains shown in Figure 10-10 on page 10-12, the following voltage domains 
can be derived. Figure 10-11 on page 10-14 shows this.

Table 10-2 Valid power domains

Integer core Debug and ETM NEON

Powered down Powered down Powered down

Powered down Powered up Powered down

Powered up Powered down Powered down

Powered up Powered up Powered down

Powered up Powered down Powered up

Powered up Powered up Powered up
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Figure 10-11 Voltage domains
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The voltage domains represent the power supply distributions that might be required in the 
Cortex-A8 processor. These include:

Debug PCLK and ETM ATCLK 
Connects to SoC debug power domain.

ETM CLK Operates at the same voltage as the processor but exists in same power domain as 
debug.

NEON Operates at the same voltage as the processor and can be powered down while the 
processor is running.

L2 RAMs Supports retention in the L2 cache, and supports SRAM voltage.

L1 data cache RAMs 
Supports retention in the L1 data cache, and supports SRAM voltage.

Other L1 RAMs 
Supports SRAM voltage.

Integer core 
All logic within the integer core, not including SRAMs.

Any or all of these voltage domains can be removed from the processor. However, the removal 
of those domains must comply with the supported power domain configurations listed in 
Table 10-2 on page 10-13.

NEON power domain

If NEON is not required, you can reduce leakage by turning off the power to the NEON unit. 
While the NEON unit is powered down, any Advanced SIMD instructions executed take the 
Undefined Instruction exception. The OS uses the Undefined Instruction exception on an 
Advanced SIMD instruction as a signal to apply power to the NEON unit, if powered down, or 
to activate NEON, if disabled.

To enable NEON to be powered down, the implementation must place NEON on a separately 
controlled power supply. In addition, the outputs of NEON must be clamped to benign values 
while NEON is powered down, to indicate that NEON is idle.

Powering down the NEON power domain while the processor is in reset

To power down the NEON power domain while the processor is in reset, apply the following 
sequence:

1. Assert both ARESETn and ARESETNEONn to place the processor in reset. You must 
assert ARESETn and ARESETNEONn for at least eight CLK cycles before activating 
the NEON clamps.

2. Activate the NEON output clamps by asserting the CLAMPNEONOUT input HIGH.

3. Remove power from the NEON power domain.

4. Deassert ARESETn, but continue to assert ARESETNEONn.

If the processor is executing a power-on reset sequence or is first powering up:

1. Assert both ARESETn and ARESETNEONn. You must assert ARESETn and 
ARESETNEONn for at least eight CLK cycles before activating the NEON clamps.

2. Activate the NEON output clamps by asserting the CLAMPNEONOUT input HIGH.
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3. While keeping the NEON power domain off, supply power to the other active power 
domains.

4. Deassert ARESETn, but continue to assert ARESETNEONn.

While ARESETNEONn remains asserted, all Advanced SIMD instructions cause an 
Undefined Instruction exception.

Note
 If ARESETNEONn is deasserted or the NEON output clamps are released without following 
one of the specified NEON power-up sequences, the results are Unpredictable and might cause 
the processor to deadlock.

Powering down the NEON power domain while the processor is not in reset

To power down the NEON power domain while the processor is not in reset, the NEON power 
domain must be placed into an idle state. Apply the following sequence to place the NEON 
power domain into an idle state:

1. Software must disable access to the NEON unit using the Coprocessor Access Control 
Register, see c1, Coprocessor Access Control Register on page 3-52. All outstanding 
Advanced SIMD instructions retire and all subsequent Advanced SIMD instruction cause 
an Undefined Instruction exception.
MRC p15, 0, <Rd>, c1, c0, 2; Read Coprocessor Access Control Register
BIC <Rd>, <Rd>, #0xF00000; Disable access to CP10 and CP11
MCR p15, 0, <Rd>, c1, c0, 2; Write Coprocessor Access Control Register

2. Software must signal to the external system that the NEON unit is disabled.

3. Assert ARESETNEONn to place NEON in reset. You must assert ARESETNEONn for 
at least eight CLK cycles before activating the NEON clamps.

4. Activate the NEON output clamps by asserting the CLAMPNEONOUT input HIGH.

5. Remove power from the NEON power domain.

Note
 If ARESETNEONn is deasserted or the NEON output clamps are released without following 
one of the specified NEON power-up sequences, the results are Unpredictable and might cause 
the processor to deadlock.

Powering up the NEON power domain while the processor is in reset

To apply power to the NEON power domain while the processor is in reset, use the following 
sequence:
1. Assert ARESETn and keep ARESETNEONn asserted.
2. Apply power to the NEON power domain.
3. Release the NEON output clamps by deasserting CLAMPNEONOUT.
4. Deassert ARESETn and ARESETNEONn.

After the completion of the reset sequence, you can enable the NEON unit using the 
Coprocessor Access Control Register. See c1, Coprocessor Access Control Register on 
page 3-52.
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Powering up the NEON power domain while the processor is not in reset

To apply power to the NEON power domain while the processor is not in reset, use the sequence 
that follows. With the NEON power domain currently powered down, it is assumed that 
ARESETNEONn is asserted.

1. Software must disable access to the NEON unit using the Coprocessor Access Control 
Register, see c1, Coprocessor Access Control Register on page 3-52.
MRC p15, 0, <Rd>, c1, c0, 2; Read Coprocessor Access Control Register
BIC <Rd>, <Rd>, #0xF00000; Disable access to CP10 and CP11
MCR p15, 0, <Rd>, c1, c0, 2; Write Coprocessor Access Control Register

2. Software must signal to the external system that it is safe to power up the NEON unit.

3. Apply power to the NEON power domain.

4. Deassert ARESETNEONn. NEON requires a minimum of 20 CLK cycles to complete 
its reset sequence. Therefore, the system must wait until NEON has completed its reset 
sequence before releasing the NEON clamps.

5. Release the NEON output clamps by deasserting CLAMPNEONOUT.

6. Software must poll the external system to determine that it is safe to enable the NEON 
unit.

After the completion of the reset sequence, you can enable the NEON unit using the 
Coprocessor Access Control Register. See c1, Coprocessor Access Control Register on 
page 3-52.

Debug and ETM power domains

If the core is running in an environment where debug facilities are not required, you can reduce 
leakage power by powering down the debug PCLK, ETM CLK, and ETM ATCLK power 
domains. Debug PCLK, ETM CLK, and ETM ATCLK power domains must be built using a 
common power supply.

Powering down the debug and ETM power domains

To power down the debug PCLK, ETM CLK, and ETM ATCLK power domains, the 
implementation must place debug PCLK, ETM CLK, and ETM ATCLK on a separately 
controlled and shared power supply. In addition, the outputs of debug PCLK, ETM CLK, and 
ETM ATCLK must be clamped to benign values while powered down to indicate that the 
interface is idle.

To power down the debug PCLK, ETM CLK, and ETM ATCLK power domains, apply the 
following sequence:

1. Assert both PRESETn and ATRESETn. You must assert PRESETn for at least eight 
PCLK cycles and ATRESETn for at least eight ATCLK cycles before asserting 
CLAMPDBGOUT.

2. Activate the debug PCLK, ETM CLK, and ETM ATCLK output clamps by asserting the 
CLAMPDBGOUT input HIGH.

3. Remove power from the debug PCLK, ETM CLK, and ETM ATCLK power domains. 
PRESETn and ATRESETn must remain asserted while the domain is powered down.
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Powering up the debug and ETM domains

To power up the debug PCLK, ETM CLK, and ETM ATCLK power domains, use the 
sequence that follows. It is assumed that both PRESETn and ATRESETn are asserted during 
the sequence.

1. Apply power to the debug PCLK, ETM CLK, and ETM ATCLK power domains.

2. Release the debug PCLK, ETM CLK, and ETM ATCLK output clamps by deasserting 
CLAMPDBGOUT.

3. If the system uses the debug PCLK, ETM CLK, and ETM ATCLK hardware, it is safe 
to deassert either PRESETn, ATRESETn, or both.

10.3.3 Debugging the processor while powered down

If the processor is powered down, the SoC can still be functional and used for debug across the 
power domains. If the debugger accesses the processor, the debug PCLK, ETM CLK, and ETM 
ATCLK domains must be powered up. See Chapter 12 Debug for more information on 
debugging during power down.

If the integer core power domain is powered down while the debug PCLK, ETM CLK, and 
ETM ATCLK power domains are still powered up, all inputs from the integer core power 
domain to the debug PCLK, ETM CLK, and ETM ATCLK power domains must be clamped 
to benign values.

Powering down the integer core power domain

Apply the following sequence to power down the integer core power domain:

1. Assert DBGPWRDWNREQ to indicate that processor debug and ETM resources are not 
available for APB accesses. Wait for DBGPWRDWNACK to be asserted.

Note
 The ETMPWRDWNREQ and ETMPWRDWNACK signals are not required because 

debug and the ETM use the same power domain. ETMPWRDWNREQ must be tied to 0.

2. Assert ARESETn, ARESETNEONn, and nPORESET. You must assert ARESETn, 
ARESETNEONn, and nPORESET for at least eight CLK cycles before activating the 
integer core and NEON clamps.

3. Activate the NEON output clamps and the clamps to the debug PCLK, ETM CLK, and 
ETM ATCLK power domains from the core by asserting the CLAMPCOREOUT and 
CLAMPNEONOUT inputs HIGH.

4. Remove power from the integer core and NEON power domains while retaining power to 
the debug PCLK, ETM CLK, and ETM ATCLK power domains.

Powering up the integer core and NEON power domains

Apply the following sequence to power up the integer core and NEON power domains:

1. Apply power to the integer core and NEON power domains while keeping ARESETn, 
ARESETNEONn and nPORESET asserted.

2. Release the NEON output clamps and the clamps to the debug PCLK, ETM CLK, and 
ETM ATCLK power domains from the core by deasserting CLAMPCOREOUT and 
CLAMPNEONOUT.
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3. Deassert DBGPWRDWNREQ to indicate that processor debug and ETM resources are 
available. There is no requirement for hardware to wait for DBGPWRDWNACK to be 
deasserted.

Note
 The ETMPWRDWNREQ and ETMPWRDWNACK signals are not required because 

debug and the ETM use the same power domain. ETMPWRDWNREQ must be tied to 0.

4. Continue a normal power-on reset sequence.

Powering up the integer core power domain while keeping NEON powered down

Apply the following sequence to power up the integer core while keeping NEON powered 
down:

1. Apply power to the integer core power domain while keeping ARESETn, 
ARESETNEONn and nPORESET asserted. Be sure to keep the NEON power domain 
off.

2. Release the clamps to the debug PCLK, ETM CLK, and ETM ATCLK power domains 
from the core by deasserting CLAMPCOREOUT and keeping CLAMPNEONOUT 
asserted.

3. Deassert DBGPWRDWNREQ to indicate that processor debug and ETM resources are 
available. There is no requirement for hardware to wait for DBGPWRDWNACK to be 
deasserted.

Note
 The ETMPWRDWNREQ and ETMPWRDWNACK signals are not required because 

debug and the ETM use the same power domain. ETMPWRDWNREQ must be tied to 0.

4. Continue a normal power-on reset sequence while ARESETNEONn and 
CLAMPNEONOUT remain asserted. To power up the NEON power domain, see 
Powering up the NEON power domain while the processor is not in reset on page 10-17.

10.3.4 L1 data and L2 cache power domains

During periods when the entire core is not required, you can stop the processor clocks by 
executing a Wait For Interrupt instruction. However, leakage continues to occur. To remove the 
leakage component, you must remove the power supplied to the power domains within the 
processor. However, the time required to remove and restore the power limits the advantage of 
a full power-down of the processor. A full power-down sequence for the processor might 
include:

1. Clean and invalidate the caches, L1 data and L2 caches, to the point of coherency.

2. Disable the L1 data and L2 cache.

3. Save off any TLB state such as locked entries, if required.

4. Save off architectural state.

5. Reset and power down the processor. See Powering down the integer core power domain 
on page 10-18.

6. Power up the processor. See Powering up the integer core and NEON power domains on 
page 10-18.
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7. Perform a normal software reset sequence.

The largest potential time and energy required in the sequence is the clean and invalidate of the 
caches. This operation is bounded by the time required to transfer the data into an external 
memory. To reduce or remove this Clean and Invalidate operation, the processor supports a 
separate power domain for the L1 data cache in addition to a separate power domain for the L2 
cache RAMs. The L1 data cache and L2 unified cache contain hardware reset assistance that is 
controlled with the input pins L1RSTDISABLE and L2RSTDISABLE, respectively. The 
L1RSTDISABLE and L2RSTDISABLE pins must be tied LOW to enable hardware reset if 
the L1 data cache and L2 cache contents are not retained during core power down. Conversely, 
if the L1 data cache contents and the L2 cache contents are retained by a separate powered-up 
domain, the L1RSTDISABLE and L2RSTDISABLE pins must be enabled to ensure updated 
data contained in the caches is not invalidated by the power-up reset sequence. See Hardware 
RAM array reset on page 10-6 for more information about the timing requirements of these pins.

If an implementation places the L1 or L2 cache on separate power domains as shown in 
Figure 10-12 on page 10-21, the rest of the processor can be powered down while the L1 or L2 
cache retains their data. This requires that all inputs to the L1 or L2 RAMs such as tag, parity, 
valid, and data RAMs are clamped to safe values to avoid corrupting the data when entering or 
exiting a power-down state.

If the L1 data cache contents are placed on a separate power domain, then the L2 cache must 
also be placed on a separate power domain. The L1 data cache contents cannot be retained 
without retaining the L2 cache contents. An exception to this rule is the 0KB L2 cache 
configuration.
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Figure 10-12 Retention power domains

Similarly, the L1 data cache can be placed on a separate power domain from the rest of the 
processor. This L1 data cache power domain can be shared with the L2. However, sharing of the 
two cache power domains is not required. In addition, all inputs into the L1 data cache RAMs 
such as tag, HVAB, and data RAMs must be clamped to safe values to avoid corrupting the data 
when entering or exiting a power-down state.

Note
 Data retention within the L1 instruction cache is not supported.

Power cycle the core with L2 cache retaining state

A power down and reset sequence of the processor with the L2 cache retained is as follows:

1. Clean to the point of unification the L1 data cache.

2. Save off any TLB state such as locked entries, if required.

3. Save off architectural state, if required.

4. Assert L2RSTDISABLE to disable L2 hardware reset.
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5. Reset and power down the processor. See Powering down the integer core power domain 
on page 10-18.

6. Power up the processor. See Powering up the integer core and NEON power domains on 
page 10-18.

7. Perform a normal software initialization of the L1 instruction and data caches.

8. Perform a software read of a memory location to determine that the L2 has valid data and 
to skip the L2 software invalidation.

9. Before enabling the L2 cache or using any CP15 cache-related operations, software must 
signal the system to release the L2 cache input clamps and receive confirmation that the 
clamps have been released.

Power cycle the core with L1 data cache and L2 cache retaining state

A power down and reset sequence of the processor with the L1 data cache and L2 cache is as 
follows:

1. Save off any TLB state such as locked entries, if required.

2. Save off architectural state, if required.

3. Assert L1RSTDISABLE and L2RSTDISABLE to inhibit hardware reset of the L1 data 
cache and L2 cache.

4. Reset and power down the processor. See Powering down the integer core power domain 
on page 10-18.

5. Power up the processor. See Powering up the integer core and NEON power domains on 
page 10-18.

6. Perform a normal software initialization of the L1 instruction cache.

7. Perform a software read of a memory location to determine that the L1 data cache and L2 
cache have valid data and to skip the software initialization sequence.

8. Before enabling the L1 data cache or L2 cache, or using any CP15 cache-related 
operations, software must signal the system to release the L1 data cache and L2 cache 
input clamps and receive confirmation that the clamps have been released. 

Note
 The details of how to clamp the inputs to various arrays are implementation-specific and are not 
described in this document. Care must be taken that nPORESET does not affect the state in the 
RAM arrays.

10.3.5 Special note on reset during power transition

During any transition of the power supply to a component of the processor, the asynchronous 
reset to that component must be asserted. This is a safety mechanism for implementation to 
ensure that hardware can be protected against supply transition, DC paths, such as precharge or 
discharge circuits, or bus contention. The primary inputs to the processor that act as 
asynchronous resets are:
• ATRESETn
• PRESETn
• nPORESET.
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If an implementation retains state in the L1 data cache or L2 cache as described, care must be 
taken that reset, particularly nPORESET, does not corrupt the state of the RAM arrays when 
lowering or raising the power supply to the rest of the processor. You can achieve this by 
clamping the primary I/O to the RAM arrays or designing the RAM arrays in such a way that 
they do not require a reset. If a reset is required, hardware must ensure that reset is inactive to 
those RAMs while clamped.
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Chapter 11 
Design for Test

This chapter describes the DFT features that are included in the Register Transfer Language (RTL). 
It contains the following sections:
• MBIST on page 11-2
• ATPG test features on page 11-28.
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11.1 MBIST
This section describes the array architecture and operation of the MBIST:
• About MBIST
• MBIST registers
• MBIST operation on page 11-14
• Pattern selection on page 11-18.

11.1.1 About MBIST

The processor has three separate MBIST controllers:

L1 and L2 MBIST controllers 
The L1 and L2 MBIST controllers communicate with RAM arrays distributed 
around the chip. Their controls are directly ported to the interface for use with 
external testbench or Automated Test Equipment (ATE) drivers.

CAMBIST controller 
The CAMBIST controller is a slave of the L1 MBIST controller. It targets the 
comparator logic of the Content-Addressable Memory (CAM). The L1 MBIST 
controller tests the contents of the I-CAM and D-CAM arrays.

The following arrays require MBIST support:
• Instruction cache (I-cache)
• Data cache (D-cache)
• Global History Buffer (GHB)
• Branch Target Buffer (BTB)
• Translation Look-aside Buffer (TLB)

Note
 The TLB has separate instruction and data arrays, each containing an attribute array, a 

CAM array, and a Physical Address (PA) array.

• Hash Virtual Address Buffer (HVAB)
• L1 tag RAM
• all L2 cache RAM such as data, parity, tag, and valid RAMs.

11.1.2 MBIST registers

Table 11-1 shows the MBIST registers. See Figure 11-7 on page 11-15 for information about the 
timing of an MBIST instruction load.

Table 11-1 MBIST register summary

Register Access Reference

L1 MBIST Instruction Register W See L1 MBIST Instruction Register on page 11-3

L2 MBIST Instruction Register W See L2 MBIST Instruction Register on page 11-6

L1 and L2 MBIST GO-NOGO 
Instruction Registers

W See L1 and L2 MBIST GO-NOGO Instruction 
Registers on page 11-10

L1 MBIST Datalog Register R See L1 MBIST Datalog Register on page 11-11

L2 MBIST Datalog Register R See L2 MBIST Datalog Register on page 11-12
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L1 MBIST Instruction Register

Figure 11-1 shows the fields of the L1 MBIST Instruction Register.

Figure 11-1 L1 MBIST Instruction Register bit assignments

pttn[5:0]

Use the pttn[5:0] field to select test patterns as Table 11-2 shows.

Note
 The PTTN_SLAVE pattern (b111111) is for testing only the I-CAMBIST and D-CAMBIST.

rtfail

Setting the rtfail bit to 1 enables the fail signal to assert on every cycle that a failure occurs. 
Clearing the rtfail bit to 0 causes a sticky failure reporting, and the fail signal remains asserted 
after the first failure that occurs. Reset clears the rtfail bit to 0.

dseed[3:0]

pttn[5:0] L1_array_sel[22:0]

bitmap
rtfail

L1_ADDR_SCRAMBLE[183:0]In

HVAB_rows[2:0]
GHB_rows[2:0]

BTB_rows[2:0]
TAG_rows[2:0]

DATA_rows[2:0]

L1_config[14:0]

Table 11-2 Selecting a test pattern with pttn[5:0]

Field Selected test pattern

pttn[5:0] Pattern select field:a

a. See Pattern selection on page 11-18.

b010010 = PTTN_WRITE_SOLID
b010011 = PTTN_READ_SOLID
b100001 = PTTN_SOLIDS
b000010 = PTTN_WRITE_CKBD
b000011 = PTTN_READ_CKBD
b100011 = PTTN_CKBD
b000100 = PTTN_XMARCH_C
b000101 = PTTN_PTTN_FAIL
b000110 = PTTN_RW_XMARCH
b000111 = PTTN_RW_YMARCH
b001000 = PTTN_RWR_XMARCH
b001001 = PTTN_RWR_YMARCH
b001010 = PTTN_WRITEBANG

b101010 = PTTN_READBANG
b001011 = PTTN_YMARCH_C
b001100 = PTTN_WRITE_ROWBAR
b001101 = PTTN_READ_ROWBAR
b101101 = PTTN_ROWBAR
b001110 = PTTN_WRITE_COLBAR
b001111 = PTTN_READ_COLBAR
b101111 = PTTN_COLBAR
b010000 = PTTN_RW_XADDRBAR
b010001 = PTTN_RW_YADDRBAR
b010100 = PTTN_ADDR_DEC
b000000 = PTTN_GONOGOb

b111111 = PTTN_SLAVE

b. Default value of pttn[5:0].
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bitmap

Setting the bitmap bit to1 enables bitmap test mode. Reset clears the instruction register bitmap 
bit to 0. See Bitmap test mode on page 11-15.

dseed[3:0]

Write the data seed in the dseed field. The MBIST controller repeats the dseed data to the full 
array bus width. The reset value of dseed[3:0] is b0000.

L1_array_sel[22:0]

Set bits in the L1_array_sel[22:0] field to select the L1 arrays for test. The MBIST executes the 
selected arrays serially beginning with the array indicated by the LSB. Table 11-3 shows how 
each bit selects one of the L1 arrays. The reset value of the L1_array_sel is 23'h1FFFFF.

Table 11-3 Selecting the L1 arrays to test with L1_array_sel[22:0]

Bit Array selected

[0] I-RAM word0 [31:0] parity and dirty included.a

[1] I-RAM word1 [63:32] parity and dirty included.a

[2] I-RAM word2 [95:64] parity and dirty included.a

[3] I-RAM word3 [127:96] parity and dirty included.a

[4] I-CAM array.

[5] I-PA.

[6] I-tag.

[7] I-attributes of TLB.

[8] I-HVAB.

[9] BTBI.a

[10] BTBH.a

[11] GHB.

[12] D-RAM word0 [31:0] parity and dirty included.a

[13] D-RAM word1 [63:32] parity and dirty included.a

[14] D-RAM word2 [95:64] parity and dirty included.a

[15] D-RAM word3 [127:96] parity and dirty included.a

[16] D-CAM array.

[17] D-PA.

[18] D-tag.

[19] D-attributes of TLB.

[20] D-HVAB.

[21] I-CAMBIST. Tests CAM compare logic.

[22] D-CAMBIST. Tests CAM compare logic.
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Note
 Do not test the CAMBIST arrays in the same run as other arrays.

L1_config[14:0]

The L1_config[14:0] field contains five 3-bit fields for defining the number of physical rows in 
each L1 array as Table 11-4 shows.

The value in each field is implementation-defined and programmable to ensure that physically 
targeted RAM tests perform correctly.

Note
 Only arrays with variable row sizes are programmable. The CAM, PA, and attributes arrays 
have an architecturally fixed depth of 32. Because of timing limits, physical rows beyond 512 
are not supported.

Table 11-5 shows the possible values for each of the 4-bit fields of L1_config[14:0].

a. You can test the RAM and BTB arrays by accessing the 
entire array width during writes. The selected words are 
compared according to the L1_array_sel bit currently 
under test. For this reason, exercise care when creating 
iddq or data retention patterns because individual word 
slices cannot be initialized and maintained with 
different data seeds.

Table 11-4 L1_config[14:0]

L1_config bit field Field name

L1_config[14:12] HVAB_rows[2:0]

L1_config[11:9] GHB_rows[2:0]

L1_config[8:6] BTB_rows[2:0]

L1_config[5:3] TAG_rows[2:0]

L1_config[2:0] DATA_rows[2:0]

Table 11-5 Configuring the number of L1 array rows with L1_config[14:0]

Field value Number of rows sharing a bitline pair

b000 16

b001 32

b010 64

b011 128

b100 256

b101 512

b110-b111 Reserved
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Reset clears the HVAB_rows[2:0], GHB_rows[2:0], and TAG_rows[2:0] fields to b000. Reset 
initializes the BTB_rows[2:0] and DATA_rows[2:0] fields to b010.

L1_ADDR_SCRAMBLE[183:0]

Proper physical mapping prevents unintended pattern sequences that result in loss of test quality. 
This field defines the physical-to-logical address scramble settings for your implementation. 
See the Cortex-A8 Release Notes for information on how to program this for your design.

L2 MBIST Instruction Register

Figure 11-2 shows the fields of the L2 MBIST Instruction Register.

Figure 11-2 L2 MBIST Instruction Register bit assignments

The pttn[5:0], rtfail, bitmap, and dseed[3:0] fields function the same as in the L1 MBIST 
Instruction Register.

L2_ram_sel[4:0]

Set bits in the L2_ram_sel[4:0] field to select the L2 RAMs for test as Table 11-6 shows.

Setting an L2_ram_sel bit selects the corresponding RAM for test.

The MBIST accesses the RAMs serially in the order shown in Table 11-6, except that the L2 tag 
RAM and L2 valid RAM are tested in parallel. You can set the L2ValSer bit to 1 to test these 
two RAMs serially. See L2ValSer on page 11-9.

The reset value of the L2_ram_sel[4:0] field is b11111. 

L2_config[22:0]

The L2_config[22:0] field contains fields for selecting:
• read and write latency of the L2 data array
• read and write latency of the L2 tag array

L2_config[22:0]

L2_ram_sel[4:0]

dseed
[3:0]

pttn[5:0]

bitmap
rtfail

L2_ADDR_SCRAMBLE[289:0]In

L2DLat[3:0]
L2TLat[1:0]

L2Rows[11:0]
L2ValSer

L2AdLSB[3:0]

Table 11-6 Selecting L2 RAMs for test with L2_ram_sel[4:0]

Bit Selected RAM

[0] L2 data RAM low order bits [64:0]

[1] L2 data RAM high order bits [129:65]

[2] L2 parity RAM

[3] L2 tag RAM

[4] L2 valid RAM
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• number of rows of the L2 data, parity, tag and valid physical RAM
• testing of valid RAM separately or in parallel with tag RAM testing
• column address LSB sequencing of 00, 01, 10, 11 or 00, 01, 11, 10.

Table 11-7 shows the bit fields of L2_config[22:0].

L2DLat[3:0]

Use the L2DLat[3:0] field to select the read and write latency of the L2 data array as Table 11-8 
shows. The reset value of the L2DLat[3:0] field is b1111.

Table 11-7 L2_config[22:0]

L2_config bit field Field name

L2_config[22:19] L2DLat[3:0]

L2_config[18:17] L2TLat[1:0]

L2_config[16:5] L2Rows[11:0]

L2_config[4] L2ValSer

L2_config[3:0] L2AdLSB[3:0]

Table 11-8 Selecting L2 data array latency with L2DLat[3:0]

L2DLat[3:0] Wait states

b0000 2

b0001 2

b0010 3

b0011 4

b0100 5

b0101 6

b0110 7

b0111 8

b1000 9

b1001 10

b1010 11

b1011 12

b1100 13

b1101 14

b1110 15

b1111 16
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L2TLat[1:0]

Use the L2TLat[1:0] field to select the read and write latency of the L2 tag array as Table 11-9 
shows. Reset sets the L2TLat[1:0] field, selecting four wait states.

L2Rows[11:0]

The four 3-bit fields in the L2Rows[11:0] field control the number of rows in the data, parity, 
tag, and valid RAMs. Table 11-10 shows the fields that control each of the four RAMs.

Table 11-11 shows how to configure array depth with the L2Rows fields.

Table 11-9 Selecting L2 tag array latency with L2TLat[1:0]

L2TLat[1:0] Wait states

b00 2

b01 2

b10 3

b11 4

Table 11-10 Selecting the L2 RAMs with L2Rows[11:0]

Bit range Reset value Function

[11:9] b100 Selects number of data RAM rows

[8:6] b100 Selects number of parity RAM rows

[5:3] b000 Selects number of tag RAM rows

[2:0] b000 Selects number of valid RAM rows

Table 11-11 Configuring the number of L2 RAM rows with L2Rows[11:0]

Field value Number of rows sharing a bitline pair

b000 16

b001 32

b010 64

b011 128

b100 256

b101 512

b110-b111 Reserved
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Not all row settings are valid for all RAMs in all L2 cache size configurations. Table 11-12 
shows the range of values from Table 11-11 on page 11-8, that is possible for each RAM type, 
and for each cache size.

L2ValSer

By default, the MBIST tests the L2 tag RAM and L2 valid RAM at the same time. Table 11-13 
shows that you can select serial testing of the tag and valid RAMs by setting the L2ValSer bit 
to 1. The reset value of the L2ValSer bit is 0.

When L2ValSer is 0, that is, parallel testing is selected, the address scramble configuration for 
the valid RAM is the same as that of the tag RAM. This means that the valid RAM uses the tag 
RAM address scramble configuration, even if the tag RAM is not selected for test. The L2ValSer 
bit is provided to enable you to serially test the tag RAM with different address scramble 
configurations.

L2AdLSB[3:0]

Use the L2AdLSB[3:0] field to select how to increment or decrement the two LSBs of the 
column address of L2 valid, tag, parity and data RAM accesses. This field is provided as a way 
to configure non-linear address sequences found in some compiled RAMs. Table 11-14 shows 
the L2 array controlled by each L2AdLSB[3:0] bit.

Table 11-12 Valid L2 array row numbers

Cache size (KB)
Valid range

Data/parity RAM (rows) Tag/valid RAM (rows) 

128 32-512 16-128

256 32-512 16-128

512 32-512 16-128

1024 64-512 16-256

Table 11-13 Selecting the L2ValSer test type

L2ValSer Testing of L2 tag RAM and L2 valid RAM

1 Serial testing

0 Parallel testing

Table 11-14 Selecting L2 RAMs for LSB control

L2AdLSB[3:0] bit Selected RAM

[0] L2 valid RAM

[1] L2 tag RAM

[2] L2 parity RAM

[3] L2 data RAM
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Table 11-15 shows how each L2AdLSB[3:0] bit controls the increment and decrement sequence 
of the two column address LSBs.

The reset value of the L2AdLSB[3:0] field is b0000.

L2_ADDR_SCRAMBLE[289:0]

Proper physical mapping prevents unintended pattern sequences that result in loss of test quality. 
Use the ADDR_SCRAMBLE[289:0] field to define the physical-to-logical address scramble 
setting for your implementation. See the Cortex-A8 Release Notes for information on how to 
program this for your design.

L1 and L2 MBIST GO-NOGO Instruction Registers

You can use the L1 and L2 MBIST GO-NOGO Instruction Registers to program a custom 
sequence of up to eight patterns for either L1 or L2 memory. Figure 11-3 shows the fields of the 
L1 and L2 MBIST GO-NOGO Instruction Registers.

Note
 GO-NOGO on page 11-27 describes the default GO-NOGO sequence available at power-up.

Figure 11-3 L1 and L2 MBIST GO-NOGO Instruction Registers bit assignments

Each GNG[10:0] field is a concatenation of three fields as Table 11-16 shows.

The patterns execute in order, starting with GNG1. It is not necessary to load the entire register 
when fewer than eight patterns are required. If you load fewer than eight patterns, the unloaded 
fields cannot execute because their valid bits are cleared to 0 at reset.

For example, to execute a READBANG with a data seed of 0x6 followed by a COLBAR with a 
data seed of 0xF, you only have to load two fields: 

1_0110_101010 → 1_1111_10111 = GNG1[10:0] → GNG2[10:0]

See READBANG on page 11-26 and COLBAR on page 11-20 for more details.

Table 11-15 Selecting counting sequence of L2 RAM column address LSBs

L2AdLSB[n] LSB increment sequence LSB decrement sequence

[0] 00, 01, 10, 11 11, 10, 01, 00

[1] 00, 01, 11, 10 10, 11, 01, 00

In GNG1[10:0] GNG2[10:0] GNG3[10:0] GNG4[10:0] GNG5[10:0] GNG6[10:0] GNG7[10:0] GNG8[10:0]

Table 11-16 GNG[10:0] field

GNG[10:0] bit field Field name

GNG[10] Valid

GNG[9:6] data seed[3:0]

GNG[5:0] pattern selection[5:0]
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Figure 11-4 shows the L1 MBIST GO-NOGO Instruction Register contents after loading a 
COLBAR with a data seed of 0xF and a READBANG with a data seed of 0x6.

Figure 11-4 L1 MBIST GO-NOGO Instruction Register example with two patterns

The MBISTSHIFTL1 signal must toggle one cycle before initiation and one cycle before 
completion of the MBISTDATAINL1 stream as Figure 11-7 on page 11-15 shows. During 
GO-NOGO instruction load, MBISTDSHIFTL1 must toggle at the same time as 
MBISTSHIFTL1. See Figure 11-8 on page 11-16.

L1 MBIST Datalog Register

The L1 MBIST Datalog Register records information about failing arrays. Figure 11-5 shows 
the fields of the L1 MBIST Datalog Register.

Figure 11-5 L1 MBIST Datalog Register bit assignments

ArrayFail[22:0]

Read the ArrayFail[22:0] field to identify arrays that produce failures. The bits in this field 
correspond to the bits in the L1_array_sel[22:0] field in the L1 MBIST Instruction Register. 
Table 11-5 on page 11-5 shows how each bit corresponds to one of the L1 arrays. Testing more 
than one array while not in bitmap test mode can set more than one ArrayFail[22:0] bit to 1. The 
least-significant 1 in the ArrayFail[22:0] field indicates the first failing array.

expect_data[3:0]

Read the expect_data[3:0] field for the expected data seed for the first failing array. Because 
data seed toggling occurs throughout pattern execution, the value in this field does not always 
correspond to the programmed data seed.

fail_addr[16:2]

Read the fail_addr[16:2] field for the physical address of the first failing array. See the address 
scramble information contained within the Design for Test implementation documentation for 
details on shows how this address is constructed.

failing_bits[37:0]

Read the failing_bits[37:0] field to identify failing bits in the first array that fails. This field 
contains the EXCLUSIVE-OR of read data and expect data.

In

1_1111_101111

0_xxxx_xxxxxx
0_xxxx_xxxxxx

0_xxxx_xxxxxx

0_xxxx_xxxxxx
0_xxxx_xxxxxx

0_xxxx_xxxxxx

1_0110_101010

expect_data[3:0]

ArrayFail[22:0] fail_addr[16:2] failing_bits[37:0]

alg_pass[3:0]

pattern
[5:0]
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alg_pass[3:0]

For the first failing array, read the alg_pass[3:0] field to identify the pass of the algorithm that 
produced a failure. For example, the CKBD algorithm has four passes, wscan, rscan, wscan, and 
rscan, numbered 1, 2, 3, and 4. Because failures only occur on reads, a CKBD failure results in 
an alg_pass[3:0] value of b0010 or b0100.

pattern[5:0]

Read the pattern[5:0] field to identify the pattern running at the time of the first failure. 
Table 11-2 on page 11-3 shows the pattern codes. This field is useful when running more than 
one pattern during a GO-NOGO test.

L2 MBIST Datalog Register

Figure 11-6 shows the fields of the L2 MBIST Datalog Register.

Figure 11-6 L2 MBIST Datalog Register bit assignments

failing_ram[4:0]

Read the failing_ram[4:0] field to identify the RAMs that produce failures. The bits in this field 
correspond to the bits in the L2_ram_sel[4:0] field in the L2 MBIST Instruction Register. 
Table 11-6 on page 11-6 shows how each bit corresponds to one of the L2 RAMs. Testing more 
than one RAM while not in bitmap test mode can set more than one failing_ram[4:0] bit to 1. 
The least-significant bit that is set to 1 in the failing_ram[4:0] field indicates the first failing 
RAM. 

Note
 When the L2ValSer bit is 0, the tag RAM and valid RAM are tested in parallel. When testing 
both these RAM in parallel, a failure in either RAM sets both bit [3] and bit [4] in the 
failing_ram[4:0] field to 1. To determine if the tag RAM, valid RAM, or both failed, process the 
failing_bits[32:0] field, see Table 11-18 on page 11-13.

expect_data[3:0]

Read the expect_data[3:0] field for the expected data seed for the first failing RAM. Because 
data seed toggling occurs throughout algorithm execution, the value in this field does not always 
correspond to the programmed data seed.

fail_addr[16:0]

Read the fail_addr[16:0] field for the physical address of the first RAM failure. This is the 
address sent to the RAM through the L2 MBIST interface. See the Cortex-A8 Release Notes for 
information on how you can construct this address.

When testing the data array, there are no cache way select bits, but the index value is still 
right-justified with fail_addr[0]. You can ignore the upper bits of this field that might be unused 
for smaller cache sizes (except for bit [16], which is always zero). The values shifted out of 
unused address bits reflect the values assigned to those bits in the address scramble 
configuration.

failing_ram[4:0]
expect_data[3:0]

fail_addr[16:0]

read_mux

failing_bits[32:0]

alg_pass[3:0]

pattern
[5:0]
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When testing the tag array, bits [16:15] of this field contain the cache way select bits, and the 
tag array index value is the least-significant bits of fail_addr. Because the fail_addr[14:11] bits 
are not used for the tag array, they are always zero. Similar to the data array, the upper bits of 
the array index value are not used for lower cache sizes and can be ignored. Values to these 
upper bits are supplied by the address scramble configuration.

Table 11-17 shows how the cache ways are grouped into two ways of read data sent back from 
the tag RAMs. 

The lower-numbered cache ways are always assigned to bits [22:0] of the read data bus for the 
current test group. The valid RAM contains two data bits for each of the eight cache ways for a 
total of 16 bits. To achieve a high test quality, all 16 bits are tested in parallel when testing the 
first group of cache ways. Because the valid bits are typically implemented as a single 16-bit 
RAM, testing all cache ways in parallel enables the full 16 bits to be accessed each time instead 
of testing it in slices. This provides greater flexibility with data backgrounds and can reduce test 
time if the valid RAM is tested serially after the tag RAM.

When testing tag RAMs and valid RAMs in parallel, the valid RAM chip select is disabled to 
prevent the valid RAM from being accessed during testing of subsequent groups of cache ways 
within the tag array.

read_mux

The read_mux bit indicates the half of the 65-bit read that produced the first failure:

0 Indicates failure in bits [31:0].

1 Indicates failure in bits [64:32].

failing_bits[32:0]

Read the failing_bits[32:0] field to identify failing bits in the first RAM that fails. This field 
contains the EXCLUSIVE-OR of read data and expect data. Table 11-18 shows how to identify 
failing L2 bits.

Table 11-17 L2 cache way grouping

Test sequence numbera

a. Test sequence number is the order that the MBIST controller accesses 
the cache ways.

Cache way grouping in read data

0 way 1, way 0

1 way 3, way 2

2 way 5, way 4

3 way 7, way 6

Table 11-18 Identifying failing L2 bits with failing_bits[32:0]

failing_ram[4:0] read_mux
failing_bits[32:0]

Valid bitsa Value

Data, low order 0 [31:0] Data RAM bits [31:0]

Data, low order 1 [32:0] Data RAM bits [64:32]

Data, high order 0 [31:0] Data RAM bits [96:65]
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alg_pass[3:0]

Read the alg_pass[3:0] field to identify the pass of the algorithm that produced a failure in the 
first failing RAM. A pass is defined as one complete pass through the entire address space of 
the RAM under test. The numbering starts with b0001, indicating the first pass.

pattern[5:0]

Read the pattern[5:0] field to identify the pattern running at the time of the first failure. 
Table 11-2 on page 11-3 shows the pattern codes. This field is useful in GO-NOGO testing when 
more than one pattern is run during the test.

11.1.3 MBIST operation

There are two MBIST modes:
• Manufacturing test mode
• Bitmap test mode on page 11-15.

Manufacturing test mode

Manufacturing test mode determines the pass or fail status of the arrays. If the failure flag is set 
to 1 when the complete flag is set to 1, you can retrieve the datalog to identify the failing arrays. 
After analyzing the datalog, you can use bitmap test mode to identify the failing bits.

In manufacturing test mode, an MBIST test consists of the following steps:

1. Assert MBISTMODE for the entire test.

2. MBIST pipeline flush. Assert the system reset signal for at least 15 cycles.

3. Instruction load. Write to the MBIST Instruction Register. 

4. Test execute. Wait for complete flag or fail flag.

5. Datalog retrieval. If the fail pin, MBISTRESULT[1], is HIGH, read the MBIST Datalog 
Register.

Data, high order 1 [32:0] Data RAM bits [129:97]

Parity 0b [15:0] Parity RAM bits [15:0]

Tag/valid RAMs 0 [31:0] Tag RAM read bits [15:0]c, valid RAM read bits [15:0]

Tag/valid RAMs 1 [29:0] Tag RAM read bits [45:16]c

a. Unused bits are RAZ.
b. The read_mux value for the parity RAM is always 0 because it is only 16 bit-wide and is always stored in the lower half 

of the 65-bit read bus.
c. Not all tag RAM read bits are active. The MBIST controller masks any unused bits and does not generate a failure.

Table 11-18 Identifying failing L2 bits with failing_bits[32:0] (continued)

failing_ram[4:0] read_mux
failing_bits[32:0]

Valid bitsa Value
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Bitmap test mode

In bitmap test mode, the MBIST controller stops when it detects a failure. It asserts 
MBISTRESULT[1] until the tester begins datalog retrieval. After datalog retrieval, the MBIST 
controller resumes the test from the point where it stopped. This handshake continues until test 
completion. The collected datalogs are useful for offline bitmap and redundancy analysis.

In bitmap test mode, an MBIST test consists of the following steps:

1. MBIST pipeline flush. Assert the system reset signal for at least 15 cycles.

2. Instruction load. Write to the MBIST Instruction Register.

3. Test execute.
a. If failures are detected, go to step 4.
b. If no failure is detected, go to step 5.

4. Datalog retrieval. Go to step 3 to continue.

5. End of test.

MBIST Instruction load

Figure 11-7 shows the timing of an MBIST instruction load. The MBISTMODE signal must 
remain asserted while the core is under reset. See Figure 10-5 on page 10-5 for more 
information on reset timing. MBISTSHIFT is asserted and instruction load data is serially 
loaded into the Instruction Register through the MBISTDATAIN pin. MBISTSHIFT is 
deasserted on completion of the instruction load. MBISTDATAIN has one cycle of latency in 
relation to MBISTSHIFT.

Figure 11-7 Timing of MBIST instruction load

MBIST custom GO-NOGO instruction load

Figure 11-8 on page 11-16 shows an example of an MBIST instruction load followed 
immediately by a GO-NOGO instruction load. During the GO-NOGO portion of the load, 
MBISTDSHIFT and MBISTSHIFT both equal 1.

MBISTRESULT[2:0]

MBISTRUN

MBISTDATAIN

MBISTDSHIFT

MBISTSHIFT

MBISTMODE

ARESETn

CLK

Instr[lsb] Instr[lsb+1] Instr [msb-1] Instr [msb]

One-cycle MBISTDATAIN latency after MBISTSHIFT
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 11-15
ID060510 Non-Confidential



Design for Test 
Figure 11-8 Timing of MBIST custom GO-NOGO instruction load

Test execution

Figure 11-9 shows an example of normal MBIST test execution. The complete flag, 
MBISTRESULT[2], is asserted at the end of the test. This indicates a pass result in the absence 
of MBISTRESULT[1], the fail flag. While bitmap mode is enabled, the test execution is 
interrupted when a failure occurs to shift out the fail data. Figure 11-9 shows the timing wave 
forms for at speed test of the core. Slow clocking is implemented during the shifting of the 
Instruction Register and fast clocking is for the actual MBIST execution. It is assumed that slow 
clocking is required because of packaging pin timing restrictions.

Figure 11-9 Timing of MBIST at-speed execution

Note
 During at-speed clocking with real-time fail mode active, you can ignore MBISTRESULT[0].

MBISTRESULT[2:0]

MBISTRUN

MBISTDATAIN

MBISTDSHIFT

MBISTSHIFT

MBISTMODE

ARESETn

CLK

go-nogo[lsb] go-nogo[lsb+1] go-nogo[msb-1]Instr[msb]

One-cycle MBISTDATAIN latency after MBISTDSHIFT

go-nogo[msb]

MBISTRESULT[2:0]

CLK

ARESETn

MBISTMODE

MBISTSHIFT

MBISTDSHIFT

MBISTDATAIN

MBISTRUN

Instr[msb]

b000 b100

PLL glitchless switch procedure between 
fast and slow clocking can occur here  
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End-of-test datalog retrieval

Figure 11-10 shows an example of retrieval of the first failure datalog and the pass/fail status for 
every array. This is typically run at the end of testing. You can use bitmap test mode on the 
failing arrays.

Be careful not to miss a subsequent failure that might occur near the end of the testing sequence. 
For example, if a failure occurs on the last RAM access of the test sequence, then the complete 
flag asserts only three at-speed cycles after the fail flag asserts. If the fail flag signal goes 
through more external delay than the complete flag, the complete flag might be visible 
externally before the fail flag. Before classifying a test as passing, give adequate time after 
recognizing the complete flag to ensure that the fail flag does not assert.

Figure 11-10 Timing of MBIST end-of-test datalog retrieval

Bitmap datalog retrieval

Figure 11-11 shows an example of the start of a failure datalog retrieval during bitmap mode. 
The fail flag remains asserted and no more MBIST testing occurs until the MBISTDSHIFT 
signal is asserted, that initiates the serial shift-out of the bitmap datalog. This provides time to 
switch from fast to slow clocking required for shifting.

Figure 11-11 Timing of MBIST start of bitmap datalog retrieval

Figure 11-12 on page 11-18 shows an example of the end of a failure datalog retrieval during 
the execution of a failure bitmap. When all of the bits are shifted out, the PLL switches back to 
fast clocking and negates the MBISTDSHIFT signal. This causes the MBIST controller to 
resume testing.

MBISTRESULT[2:0]

CLK

ARESETn

MBISTMODE

MBISTSHIFT

MBISTDSHIFT

MBISTDATAIN

MBISTRUN

b110 xx,dlog[lsb] xx,dlog[msb-1] xx,dlog[msb]bxxx

MBISTRESULT[1] (fail flag)

CLK

MBISTDSHIFT

MBISTRESULT[0] (data log shift out)

MBISTRUN

D[lsb]

PLL glitchless switch between
fast and slow clocking occurs here  
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Figure 11-12 Timing of MBIST end of bitmap datalog retrieval

11.1.4 Pattern selection

The processor implementation includes a toolbox of patterns for testing the arrays. When 
creating test vectors, you can select the group of algorithms that is most effective for your 
fabrication process.

Some of the pattern sequence descriptions use the following terms:
R Read instruction data seed.
W Write instruction data seed.
R_ Read inverse of instruction data seed.
W_ Write inverse of instruction data seed.
incr Increment address starting with 0 until address = addrmax.
decr Decrement address starting with addrmax until address = 0.
wscan Write entire array.
rscan Read entire array.
N Total number of accesses per address location.

Table 11-19 shows the patterns that are selected using the pttn[5:0] field of the MBIST 
Instruction Register. 

MBISTRESULT[1] (fail flag)

CLK

MBISTDSHIFT

MBISTRESULT[0] (data log shift out)

MBISTRUN

PLL glitchless switch between
fast and slow clocking occurs here  

D[msb–1] D[msb]

Table 11-19 Summary of MBIST patterns

Pattern N Address 
updating Description

CAMBIST - - Tests CAM compare logic, see CAMBIST on page 11-19

CKBD 4N Row-fast Checkerboard-checkerboard_bar wscan-rscan pattern, see 
CKBD on page 11-20

COLBAR 4N Column-fast Column bar-stripe wscan-rscan pattern, see COLBAR on 
page 11-20

ROWBAR 4N Row-fast Row bar-stripe wscan-rscan pattern, see ROWBAR on 
page 11-21

SOLIDS 4N Row-fast Solid wscan-rscan pattern, see SOLIDS on page 11-21

RWXMARCH 6N Row-fast Standard R W_ increment-decrement march, see 
RWXMARCH on page 11-22

RWYMARCH 6N Column-fast Standard R W_ increment-decrement march, see 
RWYMARCH on page 11-22
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CAMBIST

The CAMBIST performs a simultaneous match check across all 32 entries by comparing each 
entry against an incoming compare value. This function is executed by performing a bitwise 
XOR of the inverted compare value and each individual CAM entry. If the XOR is true, a hit is 
determined. CAMBIST tests this compare function by testing that each CAM bit is capable of 
generating a hit and a miss for both 1 and 0.

CAMBIST performs the following sequence:

1. Write all entries with 0xA.

2. Write 0s to entry 0.

3. Compare 0s and check for hit with 0s.

RWRXMARCH 8N Row-fast Standard R W_ R_ increment-decrement march, see 
RWRXMARCH on page 11-22

RWRYMARCH 8N Column-fast Standard R W_ R_ increment-decrement march, see 
RWRYMARCH on page 11-23

XMARCHC 14N Row-fast Standard marchC, see XMARCHC on page 11-23
R W_ R_ incr, R_ W R_ incr, R W_ R_ decr R_ W R_decr

YMARCHC 14N Column-fast Standard marchC, see YMARCHC on page 11-24
R W_ R_ incr, R_ W R_ incr, R W_ R_ decr R_ W R_decr

XADDRBAR 4N Row-fast Wscan/rscan through opposite addresses, see XADDRBAR 
on page 11-24

YADDRBAR 4N Column-fast Wscan/rscan through opposite addresses, see YADDRBAR 
on page 11-25

WRITEBANG 20N Row-fast Custom bitline stress test, see WRITEBANG on page 11-25 
W_ R_ (wsac 5) R_ W

READBANG 17N Row-fast Custom bitcell read stress test, see READBANG on 
page 11-26

FAIL 6N Row-fast R W march with built-in failures, see FAIL on page 11-26

ADDRDECODER N(1 + 2log2N) NA Detection of open decoder faults on address lines, see 
ADDRESS DECODER on page 11-26

Default GO-NOGO 32N Mix CKBD-RWRYMARCH-WRITEBANG, see GO-NOGO on 
page 11-27

WCKBD
WCOLBAR
WROWBAR
WSOLIDS

1N - Single pass wscan for IDDQ and data retention style tests

RCKBD
RCOLBAR
RROWBAR
RSOLIDS

1N - Single pass rscan for IDDQ and data retention style tests

Table 11-19 Summary of MBIST patterns (continued)

Pattern N Address 
updating Description
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4. Compare 0x00000001 and check for miss.

5. Write 0x00000001 into CAM entry.

6. Check for hit and miss with compare = 0x00000001 and 0s.

7. Left shift compare bit until every bit is checked for hit and miss, repeating steps 4-6 until 
all bits are tested.

8. Write 0xAs to tested entry.

9. Repeat steps 2-8 for all 32 CAM entries.

Note
 Normal MBIST tests CAM array entries. The CAMBIST routine checks the compare and hit 
functions only.

CKBD

CKBD is a row-fast checkerboard scan pattern in which the following condition determines data 
seed inversion:

invert = row_index[0] ^ col_index[0]

CKBD performs the following sequence:
1. wscan array, data_seed = true.
2. rscan array, data_seed = true.
3. wscan array, data_seed = invert.
4. rscan array, data_seed = invert.

Figure 11-13 shows the physical array after the first CKBD pass.

Figure 11-13 Physical array after pass 1 of CKBD

COLBAR

COLBAR is a column-fast stripe scan pattern in which the following condition determines data 
seed inversion:

invert = col_index[0]

COLBAR performs the following sequence:
1. wscan array, data_seed = true.
2. rscan array, data_seed = true.
3. wscan array, data_seed = invert.

max
max - 1

3
2

Row

1
0

Col 3210

max
max - 1

1 0 1 0
0 1 0 1

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 0
0 1

1 0
0 1
1 0
0 1

Addressing
direction
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 11-20
ID060510 Non-Confidential



Design for Test 
4. rscan array, data_seed = invert.

Figure 11-14 shows the physical array after the first COLBAR pass.

Figure 11-14 Physical array after pass 1 of COLBAR

ROWBAR

ROWBAR is a row-fast bar-stripe scan pattern in which the following condition determines data 
seed inversion:

invert = row_index[0]

ROWBAR performs the following sequence:
1. wscan array, data_seed = true.
2. rscan array, data_seed = true.
3. wscan array, data_seed = invert.
4. rscan array, data_seed = invert.

Figure 11-15 shows the physical array after the first ROWBAR pass.

Figure 11-15 Physical array after pass 1 of ROWBAR

SOLIDS

SOLIDS is a row-fast scan pattern in which data seed inversion is not a function of address.

SOLIDS performs the following sequence:
1. wscan array, data_seed = true.
2. rscan array, data_seed = true.
3. wscan array, data_seed = invert.
4. rscan array, data_seed = invert.
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RWXMARCH

RWXMARCH is a row-fast RW increment/decrement march. It performs the following 
sequence:
1. wscan data to entire array.
2. R, W_, incr.
3. R_, W, decr.
4. rscan data from entire array.

Figure 11-16 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-16 Row 1 column 2 state during pass 2 of RWXMARCH

RWYMARCH

RWYMARCH is a column-fast RW increment/decrement march. It performs the following 
sequence:
1. wscan data to entire array.
2. R, W_, incr.
3. R_, W, decr.
4. rscan data from entire array.

Figure 11-17 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-17 Row 1 column 2 state during pass 2 of RWYMARCH

RWRXMARCH

RWRXMARCH is a row-fast RWR increment/decrement march. It differs from the RW march 
in that it requires consecutive reads of opposite data from consecutive addresses.

RWRXMARCH performs the following sequence:
1. wscan data to entire array.
2. R, W_, R_, incr.
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3. R_, W, R, decr.
4. rscan data from entire array.

Figure 11-18 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-18 Row 1 column 2 state during pass 2 of RWRXMARCH

RWRYMARCH

RWRYMARCH is a column-fast RWR increment/decrement march. It performs the following 
sequence:
1. wscan data to entire array.
2. R, W_, R_, incr.
3. R_, W, R, decr.
4. rscan data from entire array.

Figure 11-19 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-19 Row 1 column 2 state during pass 2 of RWRYMARCH

XMARCHC

XMARCHC is a row-fast RWR increment/decrement march for embedded memory test. It 
differs from the MARCH patterns in that it repeats the increment/decrement passes with the 
opposite start data.

XMARCHC performs the following sequence:
1. wscan data.
2. R, W_, R_, incr.
3. R_, W, R, incr.
4. R, W_, R_, decr.
5. R_, W, R, decr.
6. rscan data, decr.
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Figure 11-20 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-20 Row 1 column 2 state during pass 2 of XMARCHC

YMARCHC

YMARCHC is a column-fast MARCHC. It performs the following sequence:
1. R, W_, R_, incr.
2. R, W_, R_, incr.
3. R_, W, R, incr.
4. R, W_, R_, decr.
5. R_, W, R, decr.
6. rscan data, decr.

Figure 11-21 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-21 Row 1 column 2 state during pass 2 of YMARCHC

XADDRBAR

XADDRBAR is a write/read row-fast scan pattern with two exceptions. This algorithm uses 
only half of the MBIST address space. For each address, XADDRBAR also makes an access to 
the inverted address with inverted data. Unlike the standard scan pattern that moves through the 
entire address space linearly, it alternates between opposite addresses until it addresses the entire 
array.

XADDRBAR performs the following sequence:
1. W to Addr, W_ to inverse of Addr, incr until AddrMax/2.
2. R from Addr, R_ from inverse of Addr, increment until AddrMax/2.
3. W_ to Addr, W to inverse of Addr, decrement from AddrMax/2 to zero.
4. R_ from Addr, R from inverse of Addr, decrement from AddrMax/2 to zero.

In a 4 4 array, Figure 11-22 on page 11-25 shows:
• the order of array accesses during XADDRBAR execution
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• the data after pass 1 of XADDRBAR using a data seed of 0.

Figure 11-22 XADDRBAR array accessing and data

YADDRBAR

The YADDRBAR pattern is similar to the XADDRBAR pattern with the exception of 
incrementing and decrementing the array column-fast.

In a 4 4 array, Figure 11-23 shows:
• the order of array accesses during YADDRBAR execution
• the data after pass 1 of YADDRBAR using a data seed of 0.

Figure 11-23 YADDRBAR array accessing and data

WRITEBANG

WRITEBANG is a row-fast bitline stress pattern. It operates on a bitline pair, that is, a column. 
It tries to create slow reads from target data cells in the column that can cause hard faults in 
self-timed and high-speed RAMs. It writes the bitline multiple times to the opposite data state 
of the target read, trying to create an imbalance in the bitline pair that the cell must correct. The 
pattern reveals insufficient bitline precharge or equalization. The target cell has opposite data 
from all other cells on the bitline pair. This is a worst-case bitline condition for a cell to drive 
because any leakage from other cells in the column oppose the targeted read. In the following 
description, wsac indicates a write to row 0, a sacrificial (untested) row used during test. 
WRITEBANG performs the following sequence:
1. Wscan data to entire array.
2. W_, R_, wsac, wsac, wsac, wsac, wsac, R_, W, incr.
3. Wscan databar.
4. W, R, wsac_, wsac_, wsac_, wsac_, wsac_, R, W_, incr.

Figure 11-24 on page 11-26 shows the state of row 1, column 2 in a 4 4 array during pass 2.
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Figure 11-24 WRITEBANG

READBANG

READBANG is a row-fast bitcell stress test pattern. The pattern operates on a bitcell, reading 
it multiple times in an attempt to weaken its latched margin. It writes opposite data to the 
sacrificial row, and makes a final read of the target cell. In the following description, wsac 
indicates a write to row 0, a sacrificial row used during test. READBANG performs the 
following sequence:
1. Wscan data to entire array.
2. R, R, R, R, R, wsac_, R, W_, incr.
3. R_, R_, R_, R_, R_, wsac, R_, W, incr.

Figure 11-25 shows the state of row 1, column 2 in a 4 4 array during pass 2.

Figure 11-25 READBANG

FAIL

FAIL is a row-fast algorithm similar to the RWXMARCH pattern but contains injected failures 
of opposite data written during the wscan portion of the algorithm in one of every 16 accesses. 
Running FAIL with the production test suite ensures that the MBIST error detection and 
reporting occurs properly. You can use FAIL to check bitmap mode function in simulation.

ADDRESS DECODER

ADDRESS DECODER targets the address decoders in memory instead of the bitcells. It 
performs the following sequence:
1. W addr.
2. W_ (Addr ^ shift_reg).
3. R Addr, shift_reg << 1.
4. Repeat steps 2 and 3 until shift_reg = Addr MSB.
5. Incr addr, repeat steps 1-4 until addr expire.

The shift register is a one-hot register with a width equal to the number of address bits. 

The test time for the maximum L2 indexing (17 bits) is:
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(1 + (2 17)) 217 = 4,587,520 cycles, not including latency.

The test time for the maximum L1 indexing (11 bits) is:

(1 + (2 11)) 211 = 47,104 cycles, not including latency.

GO-NOGO

GO-NOGO is a concatenation of other basic patterns. You can choose between a standard 
default GO-NOGO sequence and a programmable sequence. The default GO-NOGO performs 
the following sequence:
1. CKBD, data seed = 0x5.
2. RWRYMARCH, data seed = 0xF.
3. WRITEBANG, data seed = 0xC.

You can select up to eight different pattern combinations and select the data seed of your choice. 

Note
 Be sure to properly order the sequence of tests. For example, a write CKBD followed by a read 
solid always fails because the data read was different from what was written. 
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11.2 ATPG test features
This section describes test features that are included in the RTL to ensure that the DFT 
implementation meets minimum requirements:
• Wrapper
• Enabling sections of the core on page 11-29
• Reset handling on page 11-30.
• Safe shift RAM signals on page 11-30.

11.2.1 Wrapper

There are seven input signals that control the logic of the core to support the Wrapper Boundary 
Register (WBR) and the IEEE 1500 standard:
• WEXTEST
• WINTEST
• WSE
• CAPTUREWR
• TESTMODE
• SERIALTEST
• SHIFTWR.

This logic:

• separates the shift and capture for IEEE 1500 compliance so that the shared wrapper cell 
can hold state when neither shifting nor capturing

• requires only one external wrapper scan enable and prevents unknown states in wrapper 
cells with multiple capture cycles, which is preferable for delay testing and for testing 
through the memories.

Figure 11-26 shows the RTL logic for a set of input WBR cells.

Figure 11-26 Input wrapper boundary register cell control logic

Figure 11-27 on page 11-29 shows the RTL logic for a set of output WBR cells.
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Figure 11-27 Output wrapper boundary register cell control logic

The hold control logic in Figure 11-26 on page 11-28 and Figure 11-27 has capture and shift 
signals that enable the WBR cell to hold data during test mode while both these signals are 
deasserted. The only difference between the input wrapper and output wrapper cells is that the 
WINTEST and WEXTEST connections switch polarity. The type of IEEE 1500 
compliant-wrapper cell used with this logic is shown in Figure 11-28.

This utilization provides the benefit of requiring only one external wrapper scan enable and 
preventing unknown states from being output from the WBR cells during patterns with multiple 
capture cycles. If you use a standard multiplexed-scan flip-flop in the WBR in place of the WBR 
cell as shown in Figure 11-28, you can use the shift_outputs and shift_inputs signals for the 
scan enable to the output and input WBR cells, respectively. 

Figure 11-28 shows the type of WBR cell required to meet IEEE 1500 compliance.

Figure 11-28 IEEE 1500-compliant input wrapper boundary register cell

Note
 The IEEE 1500-compliant output wrapper boundary register cell uses the shift_outputs and 
capture_outputs_n signals.

11.2.2 Enabling sections of the core

Three Cortex-A8 signals control whether or not sections of the processor can update when 
MBISTMODE is asserted or when TESTMODE is asserted. These signals are: 
• TESTEGATE
• TESTNGATE
• TESTCGATE.
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When either of these modes is asserted:

• if the TESTEGATE signal is LOW, the flops within the ETM unit cannot be updated

• if the TESTNGATE signal is LOW, the flops within the NEON unit cannot be updated

• the rest of the flops within the Cortex-A8 core are not updated when the TESTCGATE 
signal is LOW.

If these signals are HIGH, then the flip-flops that they control are allowed to update. When both 
MBISTMODE and TESTMODE are negated, the values of the TESTEGATE, 
TESTNGATE, and TESTCGATE inputs are not used.

11.2.3 Reset handling

The internal asynchronous reset signals are driven from a flip-flop. SE prevents the resettable 
registers from being corrupted during shift using the logic shown in Figure 11-29.

Figure 11-29 Reset handling

11.2.4 Safe shift RAM signals

The Cortex-A8 core has separate safe shift RAM signal for each logical unit that uses it, they 
are:
• SAFESHIFTRAMIF
• SAFESHIFTRAMLS
• SAFESHIFTRAML2.

These safe shift RAM signals are top-level signals with scan enable functionality. They are 
asserted during scan shifting to gate off the chip selects and write enables of the L1 cache 
RAMs. These signals are also used to gate off the clock signal to the L2 cache RAMs, as 
Figure 11-30 shows.

Figure 11-30 Safe shift RAM signal
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ATPG tool uses this gate for easier testability of this logic for this methodology. However, if 
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toggling during shift and causes the chain or wrapper to be ignored during test. If you do not 
require this gate, you can optimize it out during synthesis by setting SAFESHIFTRAMIF, 
SAFESHIFTRAMLS, or SAFESHIFTRAML2 LOW. 

Note
 When removing the safe shift RAM gate from a logical unit, all RAMs in that logical unit are 
affected.
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Chapter 12 
Debug

This chapter describes the processor debug unit. This feature assists the development of application 
software, operating systems, and hardware. This chapter contains the following sections:
• Debug systems on page 12-2
• About the debug unit on page 12-3
• Debug register interface on page 12-5
• Debug register descriptions on page 12-12
• Management registers on page 12-38
• Debug events on page 12-50
• Debug exception on page 12-53
• Debug state on page 12-56
• Cache debug on page 12-63
• External debug interface on page 12-65
• Using the debug functionality on page 12-69
• Debugging systems with energy management capabilities on page 12-86.
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12.1 Debug systems
The processor forms one component of a debug system. Figure 12-1 shows a typical system.

Figure 12-1 Typical debug system

This typical system has three parts:
• Debug host
• Protocol converter
• Debug target.

12.1.1 Debug host

The debug host is a computer, for example a personal computer, running a software debugger 
such as RealView™ Debugger. The debug host enables you to issue high-level commands such 
as setting a breakpoint at a certain location, or examining the contents of a memory address.

12.1.2 Protocol converter

The debug host sends messages to the debug target using an interface such as Ethernet. 
However, the debug target typically implements a different interface protocol. A device such as 
RealView ICE is required to convert between the two protocols.

12.1.3 Debug target

The debug target is the lowest level of the system. An example of a debug target is a 
development system with a test chip or a silicon part with a processor.

The debug target implements system support for the protocol converter to access the debug unit 
using the Advanced Peripheral Bus (APB) slave interface. 

The debug unit enables you to:
• stall program execution
• examine the internal state of the processor and the state of the memory system
• resume program execution.
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12.2 About the debug unit
The processor debug unit assists in debugging software running on the processor. You can use 
the processor debug unit, in combination with a software debugger program, to debug:
• application software 
• operating systems
• hardware systems based on an ARM processor.

The debug unit enables you to:
• stop program execution 
• examine and alter processor and coprocessor state
• examine and alter memory and input/output peripheral state
• restart the processor core.

You can debug software running on the processor in the following ways:
• Halting debug-mode debugging
• Monitor debug-mode debugging
• trace debugging, see Chapter 14 Embedded Trace Macrocell.

The processor external debug interface is compliant with the AMBA 3 APB Protocol 
Specification.

12.2.1 Halting debug-mode debugging

When the processor debug unit is in Halting debug-mode, the processor halts when a debug 
event, such as a breakpoint, occurs. When the processor is halted, an external debugger can 
examine and modify the processor state using the APB interface. This debug mode is invasive 
to program execution.

12.2.2 Monitor debug-mode debugging

When the processor debug unit is in Monitor debug-mode and a debug event occurs, the 
processor takes a debug exception instead of halting. A special piece of software, a monitor 
target, can then take control to examine or alter the processor state. Monitor debug-mode is 
essential in real-time systems where the processor cannot be halted to collect debug information. 
Examples of these systems are engine controllers and servo mechanisms in hard drive 
controllers that cannot stop the code without physically damaging the components.

When execution of a monitor target starts, the state of the processor is preserved in the same 
manner as all ARM exceptions. The monitor target then communicates with the debugger to 
access processor and coprocessor state, and to access memory contents and input/output 
peripherals. Monitor debug-mode requires a debug monitor program to interface between the 
debug hardware and the software debugger.

Note
 Monitor debug-mode, used for debugging, is not the same as Secure Monitor mode, that is a 
CPSR[4:0] processor mode.

See CP14 c1, Debug Status and Control Register on page 12-15 for information on how to select 
between Halting debug-mode or Monitor debug-mode.
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12.2.3 Security extensions and debug

To prevent access to secure system software or data while still permitting Nonsecure state and 
optionally secure User mode to be debugged, you can set debug to one of three levels: 
• Nonsecure state only
• Nonsecure state and Secure User mode only
• any Secure or Nonsecure state.

The SPIDEN and SPNIDEN signals, and the two bits, SUIDEN and SUNIDEN, in the Secure 
Debug Enable Register in CP15 coprocessor control the debug permissions. See External debug 
interface on page 12-65 and c1, Secure Debug Enable Register on page 3-55 for details.

The processor implements two types of debug support:

Invasive debug 
Invasive debug is defined as a debug process where you can control and observe 
the processor. Most debug features in this chapter are considered invasive debug 
because they enable you to halt the processor and modify its state.
SPIDEN and SUIDEN control invasive debug permissions.

Noninvasive debug 
Noninvasive debug is defined as a debug process where you can observe the 
processor but not control it. The ETM interface and the performance monitor 
registers are features of noninvasive debug. See Chapter 14 Embedded Trace 
Macrocell for information on ETM. See Chapter 3 System Control Coprocessor 
for information on performance monitor registers.
SPNIDEN and SUNIDEN control noninvasive debug permissions.

12.2.4 Programming the debug unit

The processor debug unit is programmed using the APB interface. See Table 12-3 on page 12-6 
for a complete list of memory-mapped debug registers accessible using the APB interface. Some 
features of the debug unit that you can access using the memory-mapped registers are:

• instruction address comparators for triggering breakpoints, see Breakpoint Value 
Registers on page 12-26 and Breakpoint Control Registers on page 12-27

• data address comparators for triggering watchpoints, see Watchpoint Value Registers on 
page 12-30 and Watchpoint Control Registers on page 12-30

• a bidirectional Debug Communication Channel (DCC), see Debug communications 
channel on page 12-69

• all other state information associated with the debug unit.
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12.3 Debug register interface
You can access the debug register map using the APB interface. This is the only way to get full 
access to the processor debug capability. ARM recommends that if your system requires the 
processor to access its own debug registers, you choose a system interconnect structure that 
enables the processor to access the APB interface by executing load and stores to a certain area 
of physical memory.

12.3.1 Coprocessor registers

Although most of the debug registers are accessible through the memory-mapped interface, 
there are several registers that you can access through a coprocessor interface. This is important 
for boot-strap access to the ARM register file. It enables software running on the processor to 
identify the debug architecture version implemented by the device.

12.3.2 CP14 access permissions

By default, you can access all CP14 debug registers from a nonprivileged mode. However, you 
can program the processor to disable user-mode access to all coprocessor registers using bit [12] 
of the DSCR, see CP14 c1, Debug Status and Control Register on page 12-15 for more 
information. CP14 debug registers accesses are always permitted while the processor is in debug 
state regardless of the processor mode.

Table 12-1 shows access to the CP14 debug registers.

12.3.3 Coprocessor registers summary

Table 12-2 on page 12-6 shows the valid CP14 debug instructions for accessing the debug 
registers. All CP14 debug instructions not listed are Undefined.

Note
 The CP14 debug instructions are defined as having Opcode_1 set to 0.

Table 12-1 Access to CP14 debug registers

Debug state Processor mode DSCR[12] CP14 debug access

Yes Xa

a. X indicates a Don’t care condition. The outcome does not depend on this 
condition.

X Permitted

No User b0 Permitted

No User b1 Undefined

No Privileged X Permitted
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12.3.4 Memory-mapped registers

Table 12-3 shows the complete list of memory-mapped registers accessible using the APB 
interface.

Note
 You must ensure that the base address of this 4KB register region is aligned to a 4KB boundary 
in physical memory.

Table 12-2 CP14 debug registers summary

Instruction Mnemonic Description

MRC p14, 0, <Rd>, c0, c0, 0 DIDR Debug Identification Register. See CP14 c0, Debug ID Register on 
page 12-13.

MRC p14, 0, <Rd>, c1, c0, 0 DRAR Debug ROM Address Register. See CP14 c0, Debug ROM Address 
Register on page 12-14.

MRC p14, 0, <Rd>, c2, c0, 0 DSAR Debug Self Address Register. See CP14 c0, Debug Self Address Offset 
Register on page 12-15.

MRC p14, 0, <Rd>, c0, c5, 0 

STC p14, c5, <addressing mode>

DTRRX Data Transfer Register - Receive. See Data Transfer Register on 
page 12-21.

MCR p14, 0, <Rd>, c0, c5, 0

LDC p14, c5, <addressing mode>

DTRTX Data Transfer Register - Transmit. See Data Transfer Register on 
page 12-21.

MRC p14, 0, <Rd>, c0, c1, 0

MRC p14, 0, PC, c0, c1, 0

DSCR Debug Status and Control Register. See CP14 c1, Debug Status and 
Control Register on page 12-15.

Table 12-3 Debug memory-mapped registers

Offset
Register
number

Access Mnemonic
Power
domain

Description

0x000 c0 R DIDR Debug CP14 c0, Debug ID Register on page 12-13

0x004-0x014 c1-c5 R - - RAZ

0x18 c6 RW WFAR Core Watchpoint Fault Address Register on 
page 12-22

0x01C c7 RW VCR Core Vector Catch Register on page 12-22

0x020 c8 R - - RAZ

0x024 c9 RW ECR Debug Event Catch Register on page 12-24

0x028 c10 RW DSCCR Core Debug State Cache Control Register on 
page 12-24

0x02C c11 R - - RAZ

0x030-0x07C c12-c31 R - - RAZ

0x080 c32 RW DTRRX Core Data Transfer Register on page 12-21
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12.3.5 Memory addresses for breakpoints and watchpoints

The breakpoint and watchpoint comparisons are done on a Virtual Address (VA). Therefore you 
must program Breakpoint Value Registers (BVRs) and Watchpoint Value Registers (WVRs) 
with a VA, not a Modified Virtual Address (MVA).

The Vector Catch Register (VCR) sets breakpoints on exception vectors as virtual addresses.

0x084 c33 W ITR Core Instruction Transfer Register on page 12-25

0x088 c34 RW DSCR Core CP14 c1, Debug Status and Control Register 
on page 12-15

0x08C c35 RW DTRTX Core Data Transfer Register on page 12-21

0x090 c36 W DRCR Debug Debug Run Control Register on page 12-26

0x094-0x0FC c37-c63 R - - RAZ

0x100-0x114 c64-c69 RW BVR Core Breakpoint Value Registers on page 12-26

0x118-0x13C c70-c79 R - - RAZ

0x140-0x154 c80-c85 RW BCR Core Breakpoint Control Registers on page 12-27

0x158-0x17C c86-c95 R - - RAZ

0x180-0x184 c96-c97 RW WVR Core Watchpoint Value Registers on page 12-30

0x188-0x1BC c97-c111 R - - RAZ

0x1C0-0x1C4 c112-c113 RW WCR Core Watchpoint Control Registers on page 12-30

0x1C8-0x1FC c114-c127 R - - RAZ

0x200-0x2FC c128-c191 R - - RAZ

0x300 c192 W OSLAR Debug Operating System Lock Access Register on 
page 12-33

0x304 c193 R OSLSR Debug Operating System Lock Status Register on 
page 12-34

0x308 c194 RW OSSRR - Operating System Save and Restore Register 
on page 12-34

0x30C c195 R - - RAZ

0x310 c196 RW PRCR Debug Device Power Down and Reset Control 
Register on page 12-36

0x314 c197 R PRSR Debug Device Power Down and Reset Status 
Register on page 12-36

0x318-0x7FC c198-c511 R - - RAZ

0x800-0x8FC c512-575 R - - RAZ

0x900-0xCFC c576-c831 R - - RAZ

0xD00-0xFFC c832-c1023 - - - Management registers on page 12-38

Table 12-3 Debug memory-mapped registers (continued)

Offset
Register
number

Access Mnemonic
Power
domain

Description
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The Watchpoint Fault Address Register (WFAR) reads a VA plus a processor state dependent 
offset, +8 for ARM state and +4 for Thumb and ThumbEE states.

12.3.6 Power domains and debug

This section describes how the debug registers are split in different power domains. Table 12-3 
on page 12-6 describes which debug registers are included in which power domain. Generally, 
debug registers are in the core power domain unless they must be accessible or hold their values 
while the core is powered down, in which case they are in the debug power domain. In addition, 
the APB interface itself is also in the debug power domain. Debug registers that are in debug 
power domain are:

• ID registers and most of the registers in the Management Registers space

• Registers that implement the functionality for debugging through power down such as:
— Event Catch Register
— Debug Run Control Register
— OS Lock Access Register
— Device Power Down and Reset Control Register
— Device Power Down and Status Control Register.

12.3.7 Effects of resets on debug registers

The processor has three reset signals that affect the debug registers in the following ways:

nPORESET The system asserts this signal when powering up the core domain. It sets all of the 
core power domain logic to the reset value, including all debug registers in the 
core power domain.

ARESETn The system asserts this signal for a warm or soft reset. It sets all the processor 
logic except debug or ETM, to the reset value. Therefore, the state of a debug or 
trace session is not affected by this reset signal.

PRESETn The system asserts this signal to set all of the debug and ETM logic to the reset 
value.

Table 12-4 shows the processor reset effect on debug and ETM logic.

12.3.8 APB interface access permissions

The restrictions on accesses to the APB interface are described as follows:

Privilege of memory access 
The system disables accesses to the memory-mapped registers based on the 
privilege of the memory access.

Table 12-4 Processor reset effect on debug and ETM logic

Signal
Debug power domain Core power domain

Debug and ETM logic Debug and ETM logic Non-debug and non-ETM logic

nPORESET Not reset Reset Reset

ARESETn Not reset Not reset Reset

PRESETn Reset Reset Not reset
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 12-8
ID060510 Non-Confidential



Debug 
Locks The debugger or software running on the system might lock out different parts of 
the register map so they cannot be accessed while the debug session is in certain 
states.

Power down 
The APB interface does not permit accesses to registers inside the core power 
domain when the core powers down.

Privilege of memory access permission

When nonprivileged software tries to access the APB interface, the system ignores or generates 
an abort response on the access. You must implement this restriction at the system level because 
the APB protocol does not have a control signal for privileged or user access. You can choose 
to have the system either ignore or abort the access. Although you can place additional 
restrictions on the memory transactions that are permitted to access the APB interface, ARM 
does not recommend this.

Locks permission

You can lock the APB interface so access to some debug registers is restricted. There are two 
locks:

Software lock 
The debug monitor can set this lock to prevent erratic software from modifying 
debug registers settings. See the ARM Architecture Reference Manual for more 
information. A debug monitor can also set this lock prior to returning control to 
the application, to reduce the chance of erratic code changing the debug settings. 
When this lock is set, writes to all debug registers are ignored, except those writes 
generated by the external debugger. See Lock Access Register on page 12-44 for 
more information.

OS Lock An OS can set this lock on the debug register map so access to some debug 
registers is not permitted while the OS is performing a save or restore sequence. 
When this lock is set, the APB interface aborts accesses to registers in the core 
power domain. See Operating System Lock Access Register on page 12-33 for 
more information.

Note
 • The state of these locks is held on debug power domain and, therefore, is not lost when 

the core powers down.

• These locks are set to their reset values only on reset of the debug power domain 
(PRESETn reset).

• Be sure to set the PADDR31 input signal to 1 for accesses originated from the external 
debugger for the Software Lock override feature to work. See Table 12-5 on page 12-10 
for more details.

• If you access a reserved or unused register while any lock is set to 1, it is Unpredictable 
whether or not the APB interface generates an error response.
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Table 12-5 shows the APB interface access permissions with relation to software lock.

Power down permission

Access to registers inside the core power domain is not possible when the core powers down. 
The APB interface ignores accesses to powered-down registers and returns an error response, 
that is, PSLVERR is set to 1.

When the core powers down, the PRSR[1] sticky power down bit is set to 1. While PRSR[1] is 
set to 1, the APB interface also ignores accesses to registers inside the core power domain and 
returns an error response, that is, PSLVERR is set to 1. This bit remains set until the debugger 
reads the PRSR. See Device Power Down and Reset Status Register on page 12-36 for more 
details.

Table 12-6 shows the behavior of APB interface accesses to debug registers with relation to 
power-down event.

Table 12-5 APB interface access with relation to software lock

Conditions Registers

PADDR31 Lock LAR Other registers

1a

a. The PADDR31 signal is HIGH, indicating the 
external debugger generated the access.

Xb

b. X indicates a Don’t care condition. The 
outcome does not depend on this condition.

OKc

c. OK indicates that the access succeeds.

OK

0 1d

d. LSR[1] bit is set to 1.

OK WIe

e. WI indicates that writes are ignored, and that 
reads do not change the processor state.

0 0 OK OK

Table 12-6 Debug registers access with relation to power-down event

Conditions Registers

DBGPWRDWNREQ Sticky power 
down OS Lock DIDR, ECR, DRCR Other debuga Managementb

1 Xc X OKd ERRe OK

0f 0 0 OK OK OK

0 0 1g OK ERR OK

0 1h X OK ERR OK

a. This column indicates registers in the address range of 0x000 through 0xF00 except for DIDR, ECR, DRCR, and the power 
management registers specified in Table 12-7 on page 12-11.

b. This column indicates registers in the address range of 0xF04 through 0xFFC.
c. X indicates a Don’t care condition. The outcome does not depend on this condition.
d. OK indicates that the access succeeds.
e. ERR indicates a PSLVERR error response; written value is ignored and reads return an Unpredictable value.
f. The DBGPWRDWNREQ signal is LOW, indicating the processor is powered up.
g. 1 indicates that OSLSR[1] is set to 1.
h. 1 indicates that PRSR[1] is set to 1.
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Table 12-7 shows the behavior of APB interface accesses to power management registers with 
relation to power-down event.

Accesses to ETM and CTI registers

Similarly to the restrictions on accesses to debug registers as described in Power down 
permission on page 12-10, the APB interface can restrict accesses to the ETM and CTI registers 
based on the occurrence of power-down events.

Table 12-8 shows the behavior of APB interface accesses to ETM and CTI registers with 
relation to power-down event.

Note
 The OS Lock, OSLSR, OSLAR, OSSRR, and PDSR registers described in this section are all 
part of the ETM programmer’s model. Do not confuse these registers with the debug registers 
of the same name.

Table 12-7 Power management registers access with relation to power-down event

Conditions Registers

DBGPWRDWNREQ Sticky power down OS Lock OSLSR, PRCR, PRSR OSLAR OSSRR

1 Xa X OKb UNPc UNP

0d 0 0 OK OK UNP

0 0 1e OK OK OK

0 1f X OK OK UNP

a. X indicates a Don’t care condition. The outcome does not depend on this condition.
b. OK indicates that the access succeeds.
c. UNP indicates that the access has Unpredictable results; reads return an Unpredictable value.
d. The DBGPWRDWNREQ signal is LOW, indicating the processor is powered up.
e. 1 indicates that OSLSR[1] is set to 1.
f. 1 indicates that PRSR[1] is set to 1.

Table 12-8 ETM and CTI registers access with relation to power-down event

Conditions Registers

DBGPWRDWNREQ OS Lock OSLSR OSLAR OSSRR Othera

a. This column indicates registers in the address range of 0x000 through 0xF00 except for OSLSR, OSLAR, 
OSSRR, and PDSR registers.

Managementb

b. This column indicates registers in the address range of 0xF04 through 0xFFC.

1 Xc

c. X indicates a Don’t care condition. The outcome does not depend on this condition.

OKd

d. OK indicates that the access succeeds.

UNPe

e. UNP indicates that the access has Unpredictable results; reads return an Unpredictable value.

UNP ERRf

f. ERR indicates a PSLVERR error response; written value is ignored and reads return an Unpredictable value.

OK

0g

g. The DBGPWRDWNREQ signal is LOW, indicating the processor is powered up.

0 OK OK UNP OK OK

0 1h

h. 1 indicates that OSLSR[1] is set to 1.

OK OK OK ERR OK
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12.4 Debug register descriptions
Table 12-9 shows definitions of terms used in the register descriptions.

12.4.1 Accessing debug registers

To access the CP14 debug registers you set Opcode_1 to 0. The rest of the fields of the 
coprocessor instruction determine the debug register being accessed.

Table 12-10 shows the CP14 debug register map.

Table 12-9 Terms used in register descriptions

Term Description

R Read-only. Written values are ignored.

W Write-only. This bit cannot be read. Reads return an Unpredictable value.

RW Read or write.

RAZ Read-As-Zero (RAZ). Return a value of zero when read.

SBZ Should-Be-Zero (SBZ). Must be written as zero (or all 0s for bit fields) by software. Non-zero values might 
produce Unpredictable results.

SBZP Should-Be-Zero or Preserved (SBZP). Must be written as zero (or all 0s for bit fields) or preserved by writing 
the same value that has been previously read from the same fields on the same processor.

UNP A read of this bit returns an Unpredictable value.

Table 12-10 CP14 debug registers

CRn Op1 CRm Op2 CP14 debug register name Abbreviation Reference

c0 0 c0 0 Debug ID Register DIDR CP14 c0, Debug ID 
Register on page 12-13

c1 0 c0 0 Debug ROM Address Register DRAR CP14 c0, Debug ROM 
Address Register on 
page 12-14

c2 0 c0 0 Debug Self Address Offset Register DSAR CP14 c0, Debug Self 
Address Offset Register 
on page 12-15

c3-c15 0 c0 0 Reserved - -

c0 0 c1 0 Debug Status and Control Register DSCR CP14 c1, Debug Status 
and Control Register on 
page 12-15

c1-c15 0 c1 0 Reserved - -

c0-c15 0 c2-c4 0 Reserved - -

c0 0 c5 0 Data Transfer Register DTR Data Transfer Register 
on page 12-21

c0-c15 0 c6-c15 0 Reserved - -

c0-c15 0 c0-c15 1-7 Reserved - -
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12.4.2 CP14 c0, Debug ID Register

The DIDR is a read-only register that identifies the debug architecture version and specifies the 
number of debug resources that the processor implements.

The Debug ID Register is:
• in CP14 c0
• a read-only register
• accessible in User and privileged modes.

Figure 12-2 shows the bit arrangement of the DIDR.

Figure 12-2 Debug ID Register format

Table 12-11 shows how the bit values correspond with the Debug ID Register functions.

To access the Debug ID Register, read CP14 c0 with:

Reserved

WRP

31 28 27 24 23 20 19 16 15 12 11 4 3 0

BRP Context ID Variant Revision

13

Debug architecture version

Security extensions

8 7

Reserved

Table 12-11 Debug ID Register bit functions

Bits Field Function

[31:28] WRP Number of Watchpoint Register Pairs.
For the processor, this field reads b0001 to indicate 2 WRPs are implemented.

[27:24] BRP Number of Breakpoint Register Pairs.
For the processor, this field reads b0101 to indicate 6 BRPs are implemented.

[23:20] Context Number of Breakpoint Register Pairs with context ID comparison capability.
For the processor, this field reads b0001 to indicate 2 BRPs have context ID 
capability.

[19:16] Debug architecture 
version

Debug architecture version:
b0100 = ARMv7 Debug.

[15:13} - RAZ.

[12] Security 
extensions

Security extensions bit:
0 = security extensions are not implemented
1 = security extensions implemented.
For the processor, this field reads b1 to indicate that the debug security extensions 
are implemented.

[11:8] - RAZ.

[7:4] Variant Implementation-defined variant number. This number is incremented on functional 
changes. The value matches bits [23:20] of the Main ID Register in CP15 c0. See 
c0, Main ID Register on page 3-19 for more information.

[3:0] Revision Implementation-defined revision number. This number is incremented on bug 
fixes. The value matches bits [3:0] of the Main ID Register in CP15 c0. See c0, 
Main ID Register on page 3-19 for more information.
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MRC p14, 0, <Rd>, c0, c0, 0 ; Read Debug ID Register

12.4.3 CP14 c0, Debug ROM Address Register

The Debug ROM Address Register is a read-only register that returns a 32-bit Debug ROM 
Address Register value. This is the physical address that indicates where in memory a debug 
monitor can locate the debug bus ROM specified by the CoreSight™ multiprocessor trace and 
debug architecture. This ROM holds information about all the components in the debug bus. 
You can configure the address read in this register using DBGROMADDR[31:12] and 
DBGROMADDRV inputs. DBGROMADDRV must be tied off to 1 if 
DBGROMADDR[31:12] is tied off to a valid value.

The Debug ROM Address Register is:
• in CP14 c0
• a read-only register
• accessible in User and privileged modes.

Figure 12-3 shows the bit arrangement of the Debug ROM Address Register.

Figure 12-3 Debug ROM Address Register format

Table 12-12 shows how the bit values correspond with the Debug ROM Address Register 
functions.

To access the Debug ROM Address Register, read CP14 c0 with:

MRC p14, 0, <Rd>, c1, c0, 0 ; Read Debug ROM Address Register

Note
 In a system with no ROM Table, DBGROMADDR must be tied off with the physical address 
of the debug registers that are memory-mapped. Debug software can use the debug component 
identification registers at the end of the 4KB block addressed by DBGROMADDR to 
distinguish a ROM table from a processor. DBGSELFADDR must be tied to 0. 
DBGROMADDRV and DBGSELFADDRV must both be tied to 1.

Debug bus ROM physical address Reserved

Valid bits

31 12 11 2 1 0

Table 12-12 Debug ROM Address Register bit functions

Bits Field Function

[31:12] Debug bus ROM 
physical address

Indicates bits [31:12] of the debug bus ROM physical address.

[11:2] - Reserved. UNP, SBZP.

[1:0] Valid bits Reads b11 if DBGROMADDRV is set to 1, reads b00 otherwise. DBGROMADDRV 
must be set to 1 if DBGROMADDR[31:12] is set to a valid value.
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12.4.4 CP14 c0, Debug Self Address Offset Register

The Debug Self Address Offset Register is a read-only register that returns a 20-bit offset value 
from the Debug ROM Address Register to the physical address of the processor debug registers. 
The address read from this register depends on the DBGSELFADDR[31:12] and 
DBGSELFADDRV inputs. DBGSELFADDRV must be tied off to 1 if 
DBGSELFADDR[31:12] is tied off to a valid value.

The Debug Self Address Offset Register is:
• in CP14 c0
• a read-only register
• accessible in User and privileged modes.

Figure 12-4 shows the bit arrangement of the Debug Self Address Offset Register.

Figure 12-4 Debug Self Address Offset Register format

Table 12-13 shows how the bit values correspond with the Debug Self Address Offset Register 
functions.

To access the Debug Self Address Offset Register, read CP14 c0 with:

MRC p14, 0, <Rd>, c2, c0, 0 ; Read Debug Self Address Offset Register

12.4.5 CP14 c1, Debug Status and Control Register

The DSCR is a read-only register that contains status and control information about the debug 
unit. Figure 12-5 on page 12-16 shows the bit arrangement of the DSCR.

Note
 For the APB interface, the DSCR is a read/write register.

Debug bus self-address offset value Reserved

Valid bits

31 12 11 2 1 0

Table 12-13 Debug Self Address Offset Register bit functions

Bits Field Function

[31:12] Debug bus 
self-address 
offset value

Indicates bits [31:12] of the 2’s complement offset from the debug ROM physical address 
to the physical address of the start of the region where the debug registers are mapped. The 
value read by this field corresponds to the value of DBGSELFADDR[31:12].

[11:2] - Reserved. RAZ, SBZP.

[1:0] Valid bits Reads b11 if DBGSELFADDRV is set to 1, reads b00 otherwise. DBGSELFADDRV must 
be set to 1 if DBGSELFADDR[31:12] is set to a valid value.
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Figure 12-5 Debug Status and Control Register format

Table 12-14 shows how the bit values correspond with the Debug Status and Control Register 
functions.

Discard imprecise abort

Core restarted
Core halted

31 30 29 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2 1 0

Reserved

DTRTXfull

Reserved

Entry

Monitor debug-mode

Execute instruction enable  

Nonsecure state status
Secure privileged noninvasive debug disabled
Secure privileged invasive debug disabled

Halting debug-mode

Sticky pipeline advance
InstrCompl_l

DTR access mode

CP14 user access disable
Interrupt disable
DbgAck

Sticky Undefined
Sticky imprecise abort
Sticky precise abort

DTRRXfull

Reserved

27

Reserved

DTRTXfull_l
DTRRXfull_l

Table 12-14 Debug Status and Control Register bit functions

Bits Field Function

[31] - Reserved. RAZ, SBZP.

[30] DTRRXfull The DTRRXfull flag:
0 = DTRRX empty, reset value
1 = DTRRX full.
When set to 1, this flag indicates that there is data available in the Receive Data Transfer 
Register, DTRRX. It is automatically set to 1 on writes to the DTRRX by the debugger, and 
is cleared to 0 when the processor reads the CP14 DTR. If the flag is not set to 1, the DTRRX 
returns an Unpredictable value.

[29] DTRTXfull The DTRTXfull flag:
0 = DTRTX empty, reset value
1 = DTRTX full.
When set to 0, this flag indicates that the Transmit Data Transfer Register, DTRTX, is ready 
for data write. It is automatically set to 0 on reads of the DTRTX by the debugger, and is set 
to 1 when the processor writes to the CP14 DTR. If this bit is set to 1 and the core attempts 
to write to the DTRTX, the register contents are overwritten and the DTRTXfull flag remains 
set.
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[28] - Reserved. RAZ, SBZP.

[27] DTRRXfull_l The latched DTRRXfull flag. This flag is read in one of the following ways:
• using CP14 instruction
• using the DSCR memory address 
• using the OSSRR memory address.
CP14 instruction returns an Unpredictable value for this bit.
DSCR memory address returns the same value as DTRRXfull.
OSSRR memory address returns the latched DTRRXfull value, that is, the value of 
DTRRXfull that the processor captured on the last DSCR memory address read.
If a write to the DTRRX APB address succeeds, DTRRXfull_l is set to 1.

[26] DTRTXfull_l The latched DTRTXfull flag. This flag is read in one of the following ways:
• using CP14 instruction
• using the DSCR memory address 
• using the OSSRR memory address.
CP14 instruction returns an Unpredictable value for this bit.
DSCR memory address returns the same value as DTRTXfull.
OSSRR memory address returns the latched DTRTXfull value, that is, the value of 
DTRTXfull that the processor captured on the last DSCR memory address read.
If a read to the DTRTX APB address succeeds, DTRTXfull_l is cleared to 0.

[25] Sticky 
pipeline 
advance

Sticky pipeline advance bit. This bit enables the debugger to detect whether the processor is 
idle. In some situations, this might mean that the system bus port is deadlock. This bit is set 
to 1 every time the processor pipeline retires one instruction. A write to DRCR[3] clears this 
bit to 0. See Debug Run Control Register on page 12-26. 
0 = no instruction has completed execution since the last time this bit was cleared, reset value
1 = an instruction has completed execution since the last time this bit was cleared.

[24] InstrCompl_l The latched InstrCompl flag. This flag is read in one of the following ways:
• using CP14 instruction
• using the DSCR memory address 
• using the OSSRR memory address.
CP14 instruction returns an Unpredictable value for this bit.
DSCR memory address returns the same value as InstrCompl.
OSSRR memory address returns the latched InstrCompl value, that is, the value of 
InstrCompl that the processor captured on the last DSCR memory address read.
If a write to the ITR APB address succeeds while in Stall or Nonblocking mode, 
InstrCompl_l and InstrCompl are cleared to 0.
If a write to the DTRRX APB address or a read to the DTRTX APB address succeeds while 
in Fast mode, InstrCompl_l and InstrCompl are cleared to 0.
InstrCompl is the instruction complete bit. This internal flag determines whether the 
processor has completed execution of an instruction issued through the APB interface.
0 = the processor is currently executing an instruction fetched from the ITR Register, reset 
value
1 = the processor is not currently executing an instruction fetched from the ITR Register.

[23:22] - Reserved. UNP, SBZP.

Table 12-14 Debug Status and Control Register bit functions (continued)

Bits Field Function
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[21:20] DTR access 
mode

DTR access mode. This is a read/write field. You can use this field to optimize DTR traffic 
between a debugger and the processor:
b00 = Nonblocking mode, reset value
b01 = Stall mode
b10 = Fast mode
b11 = reserved.

Note
 • This field only affects the behavior of DSCR, DTR, and ITR accesses through the 

APB interface, and not through CP14 debug instructions. 
• Nonblocking mode is the default setting. Improper use of the other modes might result 

in the debug access bus becoming jammed.

See DTR access mode on page 12-20 for more information.

[19] Discard 
imprecise 
abort

Discard imprecise abort. This read-only bit is set to 1 while the processor is in debug state 
and is cleared to 0 on exit from debug state. While this bit is set to 1, the processor does not 
record imprecise Data Aborts. However, the sticky imprecise Data Abort bit is set to 1.
0 = imprecise Data Aborts not discarded, reset value
1 = imprecise Data Aborts discarded.

[18]a Nonsecure 
state status

Nonsecure state status bit:
0 = the processor is in Secure state or the processor is in Monitor mode
1 = the processor is in Nonsecure state and is not in Monitor mode.

[17]a Secure 
privileged 
noninvasive 
debug 
disabled

Secure privileged noninvasive debug disabled:
0 = ((NIDEN || DBGEN) && (SPNIDEN || SPIDEN)) is HIGH
1 = ((NIDEN || DBGEN) && (SPNIDEN || SPIDEN)) is LOW.
This value is the inverse of bit [6] of the Authentication Status Register. See Authentication 
Status Register on page 12-46.

[16]a Secure 
privileged 
invasive 
debug 
disabled

Secure privileged invasive debug disabled:
0 = (DBGEN && SPIDEN) is HIGH
1 = (DBGEN && SPIDEN) is LOW.
This value is the inverse of bit [4] of the Authentication Status Register. See Authentication 
Status Register on page 12-46.

[15] Monitor 
debug-mode

The Monitor debug-mode enable bit. This is a read/write bit.
0 = Monitor debug-mode disabled, reset value
1 = Monitor debug-mode enabled.
If Halting debug-mode is enabled, bit [14] is set to 1, then the processor is in Halting 
debug-mode regardless of the value of bit [15]. If the external interface input DBGEN is 
LOW, DSCR[15] reads as 0. If DBGEN is HIGH, then the read value reverts to the 
programmed value.

[14] Halting 
debug-mode

The Halting debug-mode enable bit. This is a read/write bit.
0 = Halting debug-mode disabled, reset value
1 = Halting debug-mode enabled.
If the external interface input DBGEN is LOW, DSCR[14] reads as 0. If DBGEN is HIGH, 
then the read value reverts to the programmed value.

Table 12-14 Debug Status and Control Register bit functions (continued)

Bits Field Function
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[13] Execute 
instruction 
enable

Execute ARM instruction enable bit. This is a read/write bit.
0 = disabled, reset value
1 = enabled.
If this bit is set to 1 and an ITR write succeeds, the processor fetches an instruction from the 
ITR for execution. If this bit is set to 1 when the processor is not in debug state, the behavior 
of the processor is Unpredictable.

[12] CP14 user 
access disable

CP14 debug user access disable control bit. This is a read/write bit.
0 = CP14 debug user access enable, reset value
1 = CP14 debug user access disable.
If this bit is set to 1 and a User mode process tries to access any CP14 debug registers, the 
Undefined Instruction exception is taken.

[11] Interrupt 
disable

Interrupts disable bit. This is a read/write bit.
0 = interrupts enabled, reset value
1 = interrupts disabled.
If this bit is set to 1, the IRQ and FIQ input signals are disabled. The external debugger can 
set this bit to 1 before it executes code in normal state as part of the debugging process. If 
this bit is set to 1, an interrupt does not take control of the program flow. For example, the 
debugger might use this bit to execute an OS service routine to bring a page from disk into 
memory. It might be undesirable to service any interrupt during the routine execution.

[10] DbgAck Debug Acknowledge bit. This is a read/write bit. If this bit is set to 1, both the DBGACK 
and DBGTRIGGER output signals are forced HIGH, regardless of the processor state. The 
external debugger can use this bit if it wants the system to behave as if the processor is in 
debug state. Some systems rely on DBGACK to determine whether the application or 
debugger generates the data accesses. The reset value is 0.

[9] - Reserved. UNP, SBZ.

[8] Sticky 
Undefined

Sticky Undefined bit:
0 = No Undefined Instruction exception occurred in debug state since the last time this bit 
was cleared. This is the reset value.
1 = An Undefined Instruction exception has occurred while in debug state since the last time 
this bit was cleared.
This flag detects Undefined instruction exceptions generated by instructions issued to the 
processor through the ITR. This bit is set to 1 when an Undefined Instruction exception 
occurs while the processor is in debug state. Writing a 1 to DRCR[2] clears this bit to 0. See 
Debug Run Control Register on page 12-26.

[7] Sticky 
imprecise 
abort

Sticky imprecise Data Abort bit:
0 = no imprecise Data Aborts occurred since the last time this bit was cleared, reset value
1 = an imprecise Data Abort occurred since the last time this bit was cleared.
This flag detects imprecise Data Aborts triggered by instructions issued to the processor 
through the ITR. This bit is set to 1 when an imprecise Data Abort occurs while the processor 
is in debug state. Writing a 1 to DRCR[2] clears this bit to 0. See Debug Run Control Register 
on page 12-26.

[6] Sticky precise 
abort

Sticky precise Data Abort bit:
0 = no precise Data Abort occurred since the last time this bit was cleared, reset value
1 = a precise Data Abort occurred since the last time this bit was cleared.
This flag detects precise Data Aborts generated by instructions issued to the processor 
through the ITR. This bit is set to 1 when a precise Data Abort occurs while the processor is 
in debug state. Writing a 1 to DRCR[2] clears this bit to 0. See Debug Run Control Register 
on page 12-26.

Table 12-14 Debug Status and Control Register bit functions (continued)

Bits Field Function
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To access the Debug Status and Control Register, read CP14 c1 with:

MRC p14, 0, <Rd>, c0, c1, 0 ; Read Debug Status and Control Register

DTR access mode

You can use the DTR access mode field to optimize data transfer between a debugger and the 
processor. 

The DTR access mode can be one of the following:
• Nonblocking, this is the default mode
• Stall
• Fast.

In Nonblocking mode, the APB reads from the DTRTX and writes to the DTRRX and ITR are 
ignored if the appropriate READY flag is not set. In particular:

• writes to DTRRX are ignored if DTRRXfull_l is set to 1

• writes to ITR are ignored if InstrCompl_l is not set to 1

• reads from DTRTX are ignored and return an Unpredictable value if DTRTXfull_l is not 
set to 1.

[5:2] Entry Method of entry bits. This is a read/write field.
b0000 = a DRCR[0] halting debug event occurred, reset value
b0001 = a breakpoint occurred
b0100 = an EDBGRQ halting debug event occurred
b0011 = a BKPT instruction occurred
b0101 = a vector catch occurred
b1000 = an OS unlock catch occurred
b1010 = a precise watchpoint occurred
other = reserved.
These bits are set to indicate any of:
• the cause of a debug exception
• the cause for entering debug state.
A Prefetch Abort or Data Abort handler must check the value of the CP15 Fault Status 
Register to determine whether a debug exception occurred and then use these bits to 
determine the specific debug event.

[1]a Core restarted Core restarted bit:
0 = The processor is exiting debug state.
1 = The processor has exited debug state. This is the reset value.
The debugger can poll this bit to determine when the processor responds to a request to leave 
debug state.

[0]a Core halted Core halted bit:
0 = The processor is in normal state. This is the reset value.
1 = The processor is in debug state.
The debugger can poll this bit to determine when the processor has entered debug state.

a. These bits always reflect the status of the processor and, therefore they return to their reset values if the particular reset event 
affects the processor. For example, a PRESETn event leaves these bits unchanged whereas a core reset event such as 
nPORESET or ARESETn sets DSCR[18] to a 0 and DSCR[1:0] to b10.

Table 12-14 Debug Status and Control Register bit functions (continued)

Bits Field Function
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The debugger accessing these registers must first read the DSCR, and perform any of the 
following:
• write to the DTRRX if the DTRRXfull_l flag was cleared to 0
• write to the ITR if the InstrCompl_l flag was set to 1
• read from the DTRTX if the DTRTXfull_l flag was set to 1.

Failure to read the DSCR before one of these operations leads to Unpredictable behavior.

In Stall mode, the APB accesses to DTRRX, DTRTX, and ITR stall under the following 
conditions:
• writes to DTRRX are stalled until DTRRXfull is cleared to 0
• writes to ITR are stalled until InstrCompl is set to 1
• reads from DTRTX are stalled until DTRTXfull is set to 1.

Fast mode is similar to Stall mode except that in Fast mode, the processor fetches an instruction 
from the ITR when a DTRRX write or DTRTX read succeeds. In Stall mode and Nonblocking 
mode, the processor fetches an instruction from the ITR when an ITR write succeeds.

12.4.6 Data Transfer Register

The DTR consists of two separate physical registers: 
• the DTRRX (Data Transfer Register - Receive)
• the DTRTX (Data Transfer Register - Transmit).

The register accessed is dependent on the instruction used:
• writes, MCR and LDC instructions, access the DTRTX
• reads, MRC and STC instructions, access the DTRRX.

See Debug communications channel on page 12-69 for details on the use of these registers with 
the DTRRXfull and DTRTXfull flags. Figure 12-6 shows the bit arrangement of both the 
DTRRX and DTRTX.

Figure 12-6 DTR Register format

Table 12-15 shows how the bit values correspond with the DTRRX and DTRTX functions.

Data

31 0

Table 12-15 Data Transfer Register bit functions

Bits Field Function

[31:0] - Data Transfer Register - receive (read-only for the CP14 interface).

Note
 Reads of the DTRRX through the coprocessor interface cause the DTRRXfull flag to be cleared 
to 0. However, reads of the DTRRX through the APB interface do not affect this flag.

[31:0] - Data Transfer Register - transmit (write-only for the CP14 interface).

Note
 Writes to the DTRTX through the coprocessor interface cause the DTRTXfull flag to be set to 1. 
However, writes to the DTRTX through the APB interface do not affect this flag.
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12.4.7 Watchpoint Fault Address Register

The WFAR is a read/write register that holds the virtual address of the instruction that triggers 
the watchpoint.

Table 12-16 shows how the bit values correspond with the WFAR functions.

12.4.8 Vector Catch Register

The processor supports efficient exception vector catching. This is controlled by the read/write 
Vector Catch Register as Figure 12-7 shows.

Figure 12-7 Vector Catch Register format

If one of the bits in this register is set to 1 and the corresponding vector is committed for 
execution, then the processor either enters debug state or takes a debug exception.

Note
 • Under this model, any kind of prefetch of an exception vector can trigger a vector catch, 

not only the ones caused by exception entries. An explicit branch to an exception vector 
might generate a vector catch debug event.

• Catches because of bits [15:0] are only triggered when the processor is in secure state or 
in Monitor mode. Catches because of bits [31:25] are only triggered when the processor 
is in nonsecure state and not in Monitor mode.

• If bit [28], [27], [12], [11], [4], or [3] is set to 1 while the processor is in Monitor debug 
mode, then the processor ignores the setting and does not generate a vector catch debug 
event. This prevents the processor to enter an unrecoverable state. The debugger must 
program these bits to zero when Monitor debug mode is selected and enabled to ensure 
forward-compatibility.

Table 12-16 Watchpoint Fault Address Register bit functions

Bits Field Function

[31:1] - Virtual address of the watchpointed instruction. When a watchpoint occurs in ARM state, the 
WFAR contains the address of the instruction causing it plus 0x8. When a watchpoint occurs in 
Thumb state, the address is plus 0x4. The reset value is Unpredictable.

[0] - Reserved. UNP, SBZ.

31 30 29 28 27 26 25 24 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Reset
Undefined
SVC

Prefetch abort
Data abort
Reserved
IRQ
FIQ

SMC
Reserved

Prefetch abort
Data abort
Reserved
IRQ
FIQ

Undefined
SVC
Prefetch abort
Data abort
Reserved
IRQ
FIQ

Secure worldNonsecure world

Secure Monitor entry
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Table 12-17 shows the bit field definitions of the Vector Catch Register. In this table, VBAR is 
the CP15 Vector Base Address Register for secure, VBARNS is CP15 Vector Base Address 
Register for nonsecure, and MVBAR is CP15 Monitor Vector Base Address Register.

Table 12-17 Vector Catch Register bit functions

Bits Access Normal address High vectors 
address Function

[31] RW VBARNS+0x0000001C 0xFFFF001C Vector catch enable, FIQ in Nonsecure state. The 
reset value is 0.

[30] RW VBARNS+0x00000018 0xFFFF0018 Vector catch enable, IRQ in Nonsecure state. The 
reset value is 0.

[29] R - - Reserved. RAZ, SBZP.

[28] RW VBARNS+0x00000010 0xFFFF0010 Vector catch enable, Data Abort in Nonsecure state. 
The reset value is 0.

[27] RW VBARNS+0x0000000C 0xFFFF000C Vector catch enable, Prefetch Abort in Nonsecure 
state. The reset value is 0.

[26] RW VBARNS+0x00000008 0xFFFF0008 Vector catch enable, SVC in Nonsecure state. The 
reset value is 0.

[25] RW VBARNS+0x00000004 0xFFFF0004 Vector catch enable, Undefined instruction in 
Nonsecure state. The reset value is 0.

[24:16] R - - Reserved. RAZ, SBZP.

[15] RW MVBAR+0x0000001C MVBAR+0x0000001C Vector catch enable, FIQ in Secure state. The reset 
value is 0.

[14] RW MVBAR+0x00000018 MVBAR+0x00000018 Vector catch enable, IRQ in Secure state. The reset 
value is 0.

[13] R - - Reserved. RAZ, SBZP.

[12] RW MVBAR+0x00000010 MVBAR+0x00000010 Vector catch enable, Data Abort in Secure state. 
The reset value is 0.

[11] RW MVBAR+0x0000000C MVBAR+0x0000000C Vector catch enable, Prefetch Abort in Secure state. 
The reset value is 0.

[10] RW MVBAR+0x00000008 MVBAR+0x00000008 Vector catch enable, SMC in Secure state. The reset 
value is 0.

[9:8] R - - Reserved. RAZ, SBZP.

[7] RW VBAR+0x0000001C 0xFFFF001C Vector catch enable, FIQ in Secure state. The reset 
value is 0.

[6] RW VBAR+0x00000018 0xFFFF0018 Vector catch enable, IRQ in Secure state. The reset 
value is 0.

[5] R - - Reserved. RAZ, SBZP.

[4] RW VBAR+0x00000010 0xFFFF0010 Vector catch enable, Data Abort in Secure state. 
The reset value is 0.

[3] RW VBAR+0x0000000C 0xFFFF000C Vector catch enable, Prefetch Abort in Secure state. 
The reset value is 0.
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12.4.9 Event Catch Register

The ECR enables the external debugger or debug monitor to configure the debug logic to trigger 
a debug state or debug exception entry on certain events.

Figure 12-8 shows the bit arrangement of the ECR.

Figure 12-8 Event Catch Register format

Table 12-18 shows how the bit values correspond with the Event Catch Register functions.

12.4.10 Debug State Cache Control Register

The DSCCR controls both L1 and L2 cache behavior while the processor is in debug state.

Figure 12-9 on page 12-25 shows the bit arrangement of the DSCCR.

See Cache debug on page 12-63 for information on the usage model of the DSCCR register.

[2] RW VBAR+0x00000008 0xFFFF0008 Vector catch enable, SVC in Secure state. The reset 
value is 0.

[1] RW VBAR+0x00000004 0xFFFF0004 Vector catch enable, Undefined instruction in 
Secure state. The reset value is 0.

[0] RW 0x00000000 0xFFFF0000 Vector catch enable, Reset. The reset value is 0.

Table 12-17 Vector Catch Register bit functions (continued)

Bits Access Normal address High vectors 
address Function

31 131 0

Reserved

OS unlock catch

Table 12-18 Event Catch Register bit functions

Bits Field Function

[31:1] - Reserved. RAZ, SBZP.

[0] OS unlock catch OS unlock catch:
0 = catch disabled, reset value
1 = catch enabled.
When this bit is set to 1, the debug logic generates a debug event when the OS lock state 
transitions from 1 to 0. This debug event might trigger a debug state entry, or might be 
ignored, depending on the invasive debug security configuration. The OS unlock catch 
debug event is a halting debug event and, therefore it cannot cause a debug exception.

Note
 If you are debugging an application running on top of an OS that preserves the state of the 
debug unit when powering down the core, this event indicates when the debug session can 
continue.
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Figure 12-9 Debug State Cache Control Register format

Table 12-19 shows how the bit values correspond with the Debug State Cache Control Register 
functions.

12.4.11 Instruction Transfer Register

The ITR enables the external debugger to feed instructions into the core for execution while in 
debug state. The ITR is a write-only register. Reads from the ITR return an Unpredictable value.

Figure 12-10 shows the bit arrangement of the ITR.

Figure 12-10 ITR format

Table 12-20 shows how the bit values correspond with the Instruction Transfer Register 
functions.

31 2 131 0

Not write-through

Reserved

3

Reserved
Data and unified cache linefill

Table 12-19 Debug State Cache Control Register bit functions

Bits Field Function

[31:3] - Reserved. RAZ, SBZP.

[2] Not write-through Not write-through:
0 = force write-through behavior for regions marked as write-back in debug state, reset 
value
1 = normal operation of regions marked as write-back in debug state.

[1] - Reserved. RAZ, SBZP.

[0] Data and unified 
cache linefill

Data and unified cache linefill:
0 = L1 data cache and L2 cache linefills disabled in debug state, reset value
1 = normal operation of L1 data cache and L2 cache in debug state.

Data

31 0

Table 12-20 Instruction Transfer Register bit functions

Bits Field Function

[31:0] - Indicates an ARM instruction for the processor to execute while in debug state. The reset value is 
Unpredictable.

Note
 Writes to the ITR when the processor is not in debug state or the DSCR[13] execute instruction 
enable bit is 0 are Unpredictable.
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12.4.12 Debug Run Control Register

The DRCR requests the processor to enter or leave debug state. It also clears the sticky 
exception bits present in the DSCR to 0.

Figure 12-11 shows the bit arrangement of the DRCR.

Figure 12-11 Debug Run Control Register format

Table 12-21 shows how the bit values correspond with the Debug Run Control Register 
functions.

12.4.13 Breakpoint Value Registers

The BVRs are registers 64-79, at offsets 0x100-0x13C. Each BVR is associated with a Breakpoint 
Control Register (BCR), for example:
• BVR0 with BCR0
• BVR1 with BCR1.

This pattern continues up to BVR15 with BCR15.

A pair of breakpoint registers, BVRn and BCRn, is called a Breakpoint Register Pair (BRPn).

The breakpoint value contained in this register corresponds to either an Instruction Virtual 
Address (IVA) or a context ID. Breakpoints can be set on:
• an IVA
• a context ID value
• an IVA and context ID pair.

31 4 3 2 1 0

Clear sticky pipeline advance
Clear sticky exceptions

Restart request
Halt request

Reserved

Table 12-21 Debug Run Control Register bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZP.

[3] Clear sticky 
pipeline advance

Clear sticky pipeline advance. Writing a 1 to this bit clears DSCR[25] to 0.

[2] Clear sticky 
exceptions

Clear sticky exceptions. Writing a 1 to this bit clears DSCR[8:6] to b000.

[1] Restart request Restart request. Writing a 1 to this bit requests that the processor leaves debug state. This 
request is held until the processor exits debug state. The debugger must poll DSCR[1] to 
determine when this request succeeds. This bit always reads as zero. Writes are ignored 
when the processor is not in debug state.

[0] Halt request Halt request. Writing a 1 to this bit triggers a halting debug event, that is, a request that the 
processor enters debug state. This request is held until the debug state entry occurs. The 
debugger must poll DSCR[0] to determine when this request succeeds. This bit always 
reads as zero. Writes are ignored when the processor is already in debug state.
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For an IVA and context ID pair, two BRPs must be linked. A debug event is generated when 
both the IVA and the context ID pair match at the same time.

Table 12-22 shows how the bit values correspond with the Breakpoint Value Registers 
functions.

Note
 • Only BRP4 and BRP5 support context ID comparison.

• BVR0[1:0], BVR1[1:0], BVR2[1:0], and BVR3[1:0] are Should-Be-Zero or Preserved on 
writes and Read-As-Zero on reads because these registers do not support context ID 
comparisons.

• The context ID value for a BVR to match with is given by the contents of the CP15 
Context ID Register. See Chapter 3 System Control Coprocessor for information on the 
Context ID Register.

12.4.14 Breakpoint Control Registers

The BCR is a read/write register that contains the necessary control bits for setting:
• breakpoints
• linked breakpoints.

Figure 12-12 shows the bit arrangement of the BCRs.

Figure 12-12 Breakpoint Control Registers format

Table 12-22 Breakpoint Value Registers bit functions

Bits Field Description

[31:0] - Breakpoint value. The reset value is 0.

Reserved

M Linked BRP Reserved
Byte 

address
select

Secure state access control

Breakpoint 
address mask

Reserved Reserved

B

31 29 28 24 23 22 20 19 16 15 14 13 9 8 5 4 3 2 1 0

S
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Table 12-23 shows how the bit values correspond with the Breakpoint Control Registers 
functions.

Table 12-23 Breakpoint Control Registers bit functions

Bits Field Function

[31:29] - Reserved. RAZ, SBZP.

[28:24] Breakpoint 
address mask

Breakpoint address mask. This field is used to set a breakpoint on a range of addresses by 
masking lower order address bits out of the breakpoint comparison.a 
b00000 = no mask
b00001 = reserved
b00010 = reserved
b00011 = 0x00000007 mask for instruction address
b00100 = 0x0000000F mask for instruction address
b00101 = 0x0000001F mask for instruction address
.
.
.
b11111 = 0x7FFFFFFF mask for instruction address.

[23] - Reserved. RAZ, SBZP.

[22:20] M Meaning of BVR:
b000 = instruction virtual address match
b001 = linked instruction virtual address match
b010 = unlinked context ID
b011 = linked context ID
b100 = instruction virtual address mismatch
b101 = linked instruction virtual address mismatch
b11x = reserved.

Note
 BCR0[21], BCR1[21], BCR2[21], and BCR3[21] are RAZ because these registers do not 
have context ID comparison capability.

[19:16] Linked BRP Linked BRP number. The value of this field indicates another BRP to link this one with.

Note
 • if a BRP is linked with itself, it is Unpredictable whether a breakpoint debug event is 

generated
• if this BRP is linked to another BRP that is not configured for linked context ID 

matching, it is Unpredictable whether a breakpoint debug event is generated.

[15:14] Secure state 
access control

Secure state access control. This field enables the breakpoint to be conditional on the 
security state of the processor.
b00 = breakpoint matches in both Secure and Nonsecure state
b01 = breakpoint only matches in Nonsecure state
b10 = breakpoint only matches in Secure state
b11 = reserved.

[13:9] - Reserved. RAZ, SBZP.
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[8:5] Byte address 
select

Byte address select. For breakpoints programmed to match an IVA, you must write a 
word-aligned address to the BVR. You can then use this field to program the breakpoint so 
it hits only if you access certain byte addresses.
If you program the BRP for IVA match:
b0000 = the breakpoint never hits
b0011 = the breakpoint hits if any of the two bytes starting at address BVR & 0xFFFFFFFC +0 
is accessed
b1100 = the breakpoint hits if any of the two bytes starting at address BVR & 0xFFFFFFFC +2 
is accessed
b1111 = the breakpoint hits if any of the four bytes starting at address BVR & 0xFFFFFFFC +0 
is accessed.
If you program the BRP for IVA mismatch, the breakpoint hits where the corresponding IVA 
breakpoint does not hit, that is, the range of addresses covered by an IVA mismatch 
breakpoint is the negative image of the corresponding IVA breakpoint.
If you program the BRP for context ID comparison, this field must be set to b1111. 
Otherwise, breakpoint and watchpoint debug events might not be generated as expected.

Note
 Writing a value to BCR[8:5] where BCR[8] is not equal to BCR[7], or BCR[6] is not equal 
to BCR[5], has Unpredictable results.

[4:3] - Reserved. RAZ, SBZP.

[2:1] S Supervisor access control. The breakpoint can be conditioned on the mode of the processor:
b00 = User, System, or Supervisor
b01 = privileged
b10 = User
b11 = any.

[0] B Breakpoint enable:
0 = breakpoint disabled, reset value
1 = breakpoint enabled.

a. If BCR[28:24] is not set to b00000, then BCR[8:5] must be set to b1111. Otherwise, the behavior is Unpredictable. In addition, 
if BCR[28:24] is not set to b00000, then the corresponding BVR bits that are not being included in the comparison 
Should-Be-Zero. Otherwise, the behavior is Unpredictable. If you program this BRP for context ID comparison, you must set 
this field to b00000. Otherwise, the behavior is Unpredictable. There is no encoding for a full 32-bit mask but you can achieve 
the same effect of a break anywhere breakpoint by setting BCR[22] to 1 and BCR[8:5] to b0000.

Table 12-24 Meaning of BVR bits [22:20]

BVR[22:20] Meaning

b000 The corresponding BVR[31:2] is compared against the IVA bus and the state of the processor against this 
BCR. It generates a breakpoint debug event on a joint IVA and state match.

b001 The corresponding BVR[31:2] is compared against the IVA bus and the state of the processor against this 
BCR. This BRP is linked with the one indicated by BCR[19:16] linked BRP field. They generate a 
breakpoint debug event on a joint IVA, context ID, and state match.

b010 The corresponding BVR[31:0] is compared against CP15 Context ID Register, c13 and the state of the 
processor against this BCR. This BRP is not linked with any other one. It generates a breakpoint debug 
event on a joint context ID and state match. For this BRP, BCR[8:5] must be set to b1111. Otherwise, it 
is Unpredictable whether a breakpoint debug event is generated.

Table 12-23 Breakpoint Control Registers bit functions (continued)

Bits Field Function
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12.4.15 Watchpoint Value Registers

The WVRs are registers 96-111, at offsets 0x180-0x1BC. Each WVR is associated with a 
Watchpoint Control Register (WCR), for example:
• WVR0 with WCR0
• WVR1 with WCR1.

This pattern continues up to WVR15 with WCR15.

A pair of watchpoint registers, WVRn and WCRn, is called a Watchpoint Register Pair (WRPn).

The watchpoint value contained in the WVR always corresponds to a Data Virtual Address 
(DVA) and can be set either on:
• a DVA
• a DVA and context ID pair.

For a DVA and context ID pair, a WRP and a BRP with context ID comparison capability must 
be linked. A debug event is generated when both the DVA and the context ID pair match 
simultaneously. Table 12-25 shows how the bit values correspond with the Watchpoint Value 
Registers functions.

12.4.16 Watchpoint Control Registers

The WCRs contain the necessary control bits for setting:
• watchpoints
• linked watchpoints.

Figure 12-13 on page 12-31 shows the bit arrangement of the Watchpoint Control Registers.

b011 The corresponding BVR[31:0] is compared against CP15 Context ID Register, c13. This BRP links 
another BRP (of the BCR[21:20]=b01 type), or WRP (with WCR[20]=b1). They generate a breakpoint 
or watchpoint debug event on a joint IVA or DVA and context ID match. For this BRP, BCR[8:5] must 
be set to b1111, BCR[15:14] must be set to b00, and BCR[2:1] must be set to b11. Otherwise, it is 
Unpredictable whether a breakpoint debug event is generated.

b100 The corresponding BVR[31:2] and BCR[8:5] are compared against the IVA bus and the state of the 
processor against this BCR. It generates a breakpoint debug event on a joint IVA mismatch and state 
match.

b101 The corresponding BVR[31:2] and BCR[8:5] are compared against the IVA bus and the state of the 
processor against this BCR. This BRP is linked with the one indicated by BCR[19:16] linked BRP field. 
It generates a breakpoint debug event on a joint IVA mismatch, state and context ID match.

b11x Reserved. The behavior is Unpredictable.

Table 12-24 Meaning of BVR bits [22:20] (continued)

BVR[22:20] Meaning

Table 12-25 Watchpoint Value Registers bit functions

Bits Field Function

[31:2] - Watchpoint address

[1:0] - Reserved. RAZ, SBZP
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Figure 12-13 Watchpoint Control Registers format

Table 12-26 shows how the bit values correspond with the Watchpoint Control Registers 
functions.

Reserved

Linked BRP Byte address select L/S W

Reserved

Watchpoint 
address mask

31 21 20 19 16 15 5 3 2 1

E SP

24 4 014 1329 28 23

Secure state access control

12

Reserved

Table 12-26 Watchpoint Control Registers bit functions

Bits Field Function

[31:29] - Reserved. RAZ, SBZP.

[28:24] Watchpoint 
address mask

Watchpoint address mask. This field is used to watch a range of addresses by masking lower 
order address bits out of the watchpoint comparison:
b00000 = no mask
b00001 = reserved
b00010 = reserved
b00011 = 0x00000007 mask for data address
b00100 = 0x0000000F mask for data address
b00101 = 0x0000001F mask for data address
.
.
.
b11111 = 0x7FFFFFFF mask for data address.

Note
 • If WCR[28:24] is not set to b00000, then WCR[12:5] must be set to b11111111. 

Otherwise, the behavior is Unpredictable.
• If WCR[28:24] is not set to b00000, then the corresponding WVR bits that are not being 

included in the comparison Should-Be-Zero. Otherwise, the behavior is Unpredictable.
• To watch for a write to any byte in an 8-byte aligned object of size 8 bytes, ARM 

recommends that a debugger sets WCR[28:24] to b00111, and WCR[12:5] to 
b11111111. This is compatible with both ARMv7 debug compliant implementations 
that have an eight-bit WCR[12:5] and with those that have a four-bit WCR[8:5] byte 
address select field.

[23:21] - Reserved. RAZ, SBZP.

[20] E Enable linking bit:
0 = linking disabled
1 = linking enabled.
When this bit is set to 1, this watchpoint is linked with the context ID holding BRP selected 
by the linked BRP field.

[19:16] Linked BRP Linked BRP number. The binary number encoded here indicates a context ID holding BRP to 
link this WRP with. If this WRP is linked to a BRP that is not configured for linked context 
ID matching, it is Unpredictable whether a watchpoint debug event is generated.
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[15:14] Secure state 
access 
control

Secure state access control. This field enables the watchpoint to be conditioned on the security 
state of the processor:
b00 = watchpoint matches in both Secure and Nonsecure state
b01 = watchpoint only matches in Nonsecure state
b10 = watchpoint only matches in Secure state
b11 = reserved.

[13] - Reserved. RAZ, SBZP.

[12:5] Byte address 
select

Byte address select. The WVR is programmed with word-aligned address. You can use this 
field to program the watchpoint so it only hits if certain byte addresses are accessed.
For word-aligned addresses, WVRn[2]=1 indicates a 32-bit aligned address:
b00000000 = the watchpoint never hits
b0000xxx1 = the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC)+0 is accessed
b0000xx1x = the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC)+1 is accessed
b0000x1xx= the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC)+2 is accessed
b00001xxx= the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC)+3 is accessed
bxxx1xxxx= UNPREDICTABLE
bxx1xxxxx = UNPREDICTABLE
bx1xxxxxx = UNPREDICTABLE
b1xxxxxxx= UNPREDICTABLE
For double word-aligned addresses, WVRn[2]=0 indicates a 64-bit aligned address:
b00000000 = the watchpoint never hits
bxxxxxxx1 = the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC) +0 is accessed
bxxxxxx1x = the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC) +1 is accessed
bxxxxx1xx = the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC) +2 is accessed 
bxxxx1xxx = the watchpoint hits if the byte at address (WVR & 0xFFFFFFFC) +3 is accessed
bxxx1xxxx = the watchpoint hits if the byte at address (WVR & 0xFFFFFFF8) +4 is accessed
bxx1xxxxx = the watchpoint hits if the byte at address (WVR & 0xFFFFFFF8) +5 is accessed
bx1xxxxxx = the watchpoint hits if the byte at address (WVR & 0xFFFFFFF8) +6 is accessed
b1xxxxxxx = the watchpoint hits if the byte at address (WVR & 0xFFFFFFF8) +7 is accessed.

Table 12-26 Watchpoint Control Registers bit functions (continued)

Bits Field Function
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12.4.17 Operating System Lock Access Register

The OSLAR is a write-only register that locks the debug registers so that the APB interface 
returns a slave-generated error response for accesses to locked registers. This is useful for the 
OS to interrupt the debug session cleanly when it wants to save the state of the debug registers.

Figure 12-14 shows the bit arrangement of the OS Lock Access Register.

Figure 12-14 OS Lock Access Register format

Table 12-27 shows how the bit values correspond with the OS Lock Access Register functions.

[4:3] L/S Load/store access. The watchpoint can be conditioned to the type of access being done:
b00 = reserved
b01 = load, load exclusive, or swap
b10 = store, store exclusive or swap
b11 = either.
SWP and SWPB trigger a watchpoint on b01, b10, or b11. A load exclusive instruction triggers 
a watchpoint on b01 or b11. A store exclusive instruction triggers a watchpoint on b10 or b11 
only if it passes the local monitor within the processor.a

[2:1] S Privileged access control. The watchpoint can be conditioned to the privilege of the access 
being done:
b00 = reserved
b01 = privileged, match if the processor does a privileged access to memory
b10 = User, match only on nonprivileged accesses
b11 = either, match all accesses.

Note
 For all cases, the match refers to the privilege of the access, not the mode of the processor.

[0] W Watchpoint enable:
0 = watchpoint disabled, reset value
1 = watchpoint enabled.

a. A store exclusive that fails the local monitor does not cause a translation table walk, MMU fault, or watchpoint, see 
Store-exclusive instruction on page 8-10.

Table 12-26 Watchpoint Control Registers bit functions (continued)

Bits Field Function

3131 0

OS lock access

Table 12-27 OS Lock Access Register bit functions

Bits Field Function

[31:0] OS lock access OS lock access. Writing a 0xC5ACCE55 key locks the debug registers. Access to locked registers 
returns a slave-generated error response. To unlock the registers, write any other value.

Note
 Writing the key also resets the Operating System Save and Restore Register (OSSRR) 
sequence to the beginning.
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12.4.18 Operating System Lock Status Register

The OSLSR contains status information about the locked debug registers.

Figure 12-15 shows the bit arrangement of the OSLSR.

Figure 12-15 OS Lock Status Register format

Table 12-28 shows how the bit values correspond with the OS Lock Status Register functions.

12.4.19 Operating System Save and Restore Register

The OSSRR is a 32-bit read/write register that enables an operating system to save (prior to 
power-up) or restore (after power-down) those debug registers that reside on the core power 
domain while the OS lock is set.

Figure 12-16 shows the bit arrangement of the OSSRR.

Figure 12-16 OS Save and Restore Register format

0

Reserved

12

32-bit access
Lock bit

Lock implemented bit

31 3

Table 12-28 OS Lock Status Register bit functions

Bits Field Function

[31:3] - RAZ.

[2] 32-bit access Indicates that a 32-bit access is required to write the key to the OS Lock Access 
Register. This bit always reads 0.

[1] Lock bit Locked bit:
0 = lock is not set
1 = lock is set.
Writes are ignored. On Present, this bit initializes to the value of 
DBGOSLOCKINIT, that is, the OS lock is set if DBGOSLOCKINIT is HIGH.

[0] Lock implemented bit Lock implemented bit. It indicates that the OS lock functionality is implemented. This 
bit always reads 1.

31 0

OS save and restore
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Table 12-29 shows how the bit values correspond with the OS Save and Restore Register 
functions.

Note
 • If the OS issues a write to the OSSRR after the sequence has been initialized by writing 

the key to the OSLAR, the behavior is Unpredictable.

• Subsequent accesses after reading the length of the sequence must be either all reads or 
all writes. If the OS mixes reads and writes, the result is Unpredictable. Additionally, if 
the OS performs more accesses than registers are in the sequence, the result is also 
Unpredictable.

• This process restores only writable bits. Readable bits such as flags that reflect the 
processor state, are not updated. This means that, after the restore sequence, the readable 
bits indicate the current state of the processor rather than the state of the processor at the 
time the OS saved them. The only exceptions to this rule are the DSCR[30:29] and 
DSCR[27:26] bits, these can be restored.

• DTRRX writes and DTRTX reads through the OSSRR do not cause the APB interface to 
stall regardless of the value of the DSCR[22:21] field.

Table 12-29 OS Save and Restore Register bit functions

Bits Field Function

[31:0] OS save and 
restore

OS save and restore. A sequence of reads from this register returns the contents of all the 
registers that can be saved. A sequence of writes restores the saved values. The OS must initiate 
the sequence by writing a 0xC5ACCE55 key to the OSLAR to set the internal pointer to the starting 
value. This is followed by a read from the OSSRR, and then followed by a series of reads or 
writes. The first OSSRR read returns the length of the rest of the sequence, that is, the number 
of registers to be saved or restored.
These registers are saved and restored in the following order:
1. WCR1
2. WCR0
3. WVR1
4. WVR0
5. BCR5
6. BCR4
7. BCR3
8. BCR2
9. BCR1
10. BCR0
11. BVR5
12. BVR4
13. BVR3
14. BVR2
15. BVR1
16. BVR0
17. DTRTX
18. DSCR
19. DTRRX
20. DSCCR
21. VCR
22. WFAR.
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• The sequence can be abandoned and restarted from the beginning by writing the key again 
to the OSLAR. However, the results of accesses issued before it was abandoned are 
committed.

• If this register is read or written while the core is powered-down or the OS lock is not set, 
the results are Unpredictable.

12.4.20 Device Power Down and Reset Control Register

The PRCR is a read/write register that controls reset and power-down related functionality.

Figure 12-17 shows the bit arrangement of the PRCR.

Figure 12-17 PRCR format

Table 12-30 shows how the bit values correspond with the Device Power Down and Reset 
Control Register functions.

12.4.21 Device Power Down and Reset Status Register

The PRSR is a read-only register that provides information about the reset and power-down 
state of the processor.

Hold internal reset  
Reserved

No power down

31 3 2 1 0

Reserved

Table 12-30 PRCR bit functions

Bits Field Function

[31:3] - Reserved. RAZ, SBZP.

[2] Hold internal reset Hold internal reset bit. This bit prevents the processor from running again before the 
debugger detects a power-down event and restores the state of the debug registers in the 
core power domain. This bit is also used to detect a reset (ARESETn) event. By 
examining PRSR[1], the debugger can determine whether a power-down or a reset event 
occurred. The effect of this bit is that if it is set to 1 and a processor reset occurs, 
ARESETn or nPORESET, then the processor behaves as if ARESETn is still asserted, 
until the debugger clears PRCR[2] to 0. This bit does not have any effect on initial system 
power up as PRESETn clears it to 0:
0 = does not hold internal reset on power up or reset, reset value
1 = holds the processor nondebug logic in reset on power up or reset until this bit is cleared 
to 0.

[1] - Reserved. RAZ, SBZP.

[0] No power down No power down. When set to 1, the DBGNOPWRDWN output signal is HIGH. This 
output is connected to the system power controller and is interpreted as a request to operate 
in emulate mode. In this mode, the core and ETM are not actually powered down when 
requested by software or hardware handshakes. This mode is useful when debugging 
applications on top of working operating systems:
0 = DBGNOPWRDWN is LOW, reset value
1 = DBGNOPWRDWN is HIGH.
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Figure 12-18 shows the bit arrangement of the PRSR.

Figure 12-18 PRSR format

Table 12-31 shows how the bit values correspond with the PRSR functions.

Note
 On system reset, PRSR[1] resets to 1. Table 12-6 on page 12-10 specified that if PRSR[1] is set 
to 1, then accessing any register in the core power domain results in an error response. For these 
reasons, the debugger cannot access any register in the core power domain unless the debugger 
clears PRSR[1] to 0.

Reset status  
Sticky power-down status

Power-down status

Sticky reset status

31 3 2 1 0

Reserved

Table 12-31 PRSR bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZP.

[3] Sticky reset status Sticky reset status bit. This bit is cleared to 0 on read:
0 = the processor has not been reset since the last time this register was read
1 = the processor has been reset since the last time this register was read.
This sticky bit is set to 1 when either ARESETn or nPORESET is asserted. 
This sticky bit is set to 0 when PRESETn is asserted.
If both PRESETn and ARESETn or nPORESET are asserted at the same time, 
this bit is set to an Unpredictable value.

[2] Reset status Reset status bit:
0 = the processor is not currently held in reset
1 = the processor is currently held in reset.
This bit reads 1 when either ARESETn or nPORESET is asserted.

[1] Sticky power-down status Sticky power-down status bit. This bit is cleared to 0 on read:
0 = the processor has not powered down since the last time this register was read
1 = the processor has powered down since the last time this register was read. This 
is the reset value.

[0] Power-down status Power-down status bit. This status bit reflects the invert value of the 
DBGPWRDWNREQ input:
0 = the core is not powered up
1 = the core is powered up.
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12.5 Management registers
The Management registers define the standardized set of registers that is implemented by all 
CoreSight components. These registers are described in this section.

Table 12-32 shows the contents of the Management registers for the debug unit.

Table 12-32 Management registers

Offset Register 
number Access Mnemonic Power 

domain Description

0xD00-0xDFC 832-895 R - Debug Processor Identifier Registers. See 
Processor ID Registers on page 12-39.

0xE00-0xEF0 854-956 R - - RAZ.

0xEF4 957 RW ITCTRL-IOC Core Integration Internal Output Control Register. 
See Integration Internal Output Control 
Register on page 12-40.

0xEF8 958 RW ITCTRL-EOC Core Integration External Output Control 
Register. See Integration External Output 
Control Register on page 12-41.

0xEFC 959 R ITCTRL-IS Core Integration Input Status Register. See 
Integration Input Status Register on 
page 12-42.

0xF00 960 RW ITCTRL Core Integration Mode Control Register. See 
Integration Mode Control Register on 
page 12-43.

0xF04-0xF9C 961-999 R - Debug RAZ, reserved for Management Register 
expansion.

0xFA0 1000 RW CLAIMSET Debug Claim Tag Set Register. See Claim Tag Set 
Register on page 12-43.

0xFA4 1001 RW CLAIMCLR Debug Claim Tag Clear Register. See Claim Tag 
Clear Register on page 12-44.

0xFA8-0xFBC 1002-1003 R - - RAZ.

0xFB0 1004 W LOCKACCESS Debug Lock Access Register. See Lock Access 
Register on page 12-44.

0xFB4 1005 R LOCKSTATUS Debug Lock Status Register. See Lock Status 
Register on page 12-45.

0xFB8 1006 R AUTHSTATUS Debug Authentication Status Register. See 
Authentication Status Register on 
page 12-46.

0xFBC-0xFC4 1007-1009 R - - RAZ.

0xFC8 1010 R DEVID Debug RAZ, reserved for Device Identifier.

0xFCC 1011 R DEVTYPE Debug Device Type Register. See Device Type 
Register on page 12-46.

0xFD0-0xFFC 1012-1023 R - Debug Identification Registers. See Identification 
Registers on page 12-47.
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12.5.1 Processor ID Registers

The Processor ID Registers are read-only registers that return the same values as the 
corresponding CP15 registers.

Table 12-33 shows the offset value, register number, mnemonic, and description that are 
associated with each Process ID Register.

Table 12-33 Processor Identifier Registers

Offset Register 
number Mnemonic Function

0xD00 832 CPUID Main ID Register, see c0, Main ID Register on page 3-19

0xD04 833 CTYPR Cache Type Register, see c0, Cache Type Register on page 3-20

0xD08 834 - Reserved, RAZ

0xD0C 835 TTYPR TLB Type Register, see c0, TLB Type Register on page 3-21

0xD10 836 - Main ID Register, see c0, Main ID Register on page 3-19

0xD14 837 - Reserved, RAZ

0xD18 838 - Main ID Register, see c0, Main ID Register on page 3-19

0xD1C 839 - Main ID Register, see c0, Main ID Register on page 3-19

0xD20 840 ID_PFR0 Processor Feature Register 0, see c0, Processor Feature Register 0 on 
page 3-23

0xD24 841 ID_PFR1 Processor Feature Register 1, see c0, Processor Feature Register 1 on 
page 3-23

0xD28 842 ID_DFR0 Debug Feature Register 0, see c0, Debug Feature Register 0 on page 3-24

0xD2C 843 ID_AFR0 Auxiliary Feature Register 0, see c0, Auxiliary Feature Register 0 on 
page 3-26

0xD30 844 ID_MMFR0 Memory Model Feature Register 0, see c0, Memory Model Feature 
Register 0 on page 3-26

0xD34 845 ID_MMFR1 Memory Model Feature Register 1, see c0, Memory Model Feature 
Register 1 on page 3-27

0xD38 846 ID_MMFR2 Memory Model Feature Register 2, see c0, Memory Model Feature 
Register 2 on page 3-29

0xD3C 847 ID_MMFR3 Memory Model Feature Register 3, see c0, Memory Model Feature 
Register 3 on page 3-31

0xD40 848 ID_ISAR0 Instruction Set Attributes Register 0, see c0, Instruction Set Attributes 
Register 0 on page 3-32

0xD44 849 ID_ISAR1 Instruction Set Attributes Register 1, see c0, Instruction Set Attributes 
Register 1 on page 3-34

0xD48 850 ID_ISAR2 Instruction Set Attributes Register 2, see c0, Instruction Set Attributes 
Register 2 on page 3-35
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12.5.2 Integration Internal Output Control Register

When the processor is in integration mode, you can use the read/write Integration Internal 
Output Control Register to drive certain debug unit outputs to determine how they are connected 
to the Cross Triggered Interface (CTI).

Figure 12-19 shows the bit arrangement of the Integration Internal Output Control Register.

Figure 12-19 Integration Internal Output Control Register format

Table 12-34 shows how the bit values correspond with the Integration Internal Output Control 
Register functions.

0xD4C 851 ID_ISAR3 Instruction Set Attributes Register 3, see c0, Instruction Set Attributes 
Register 3 on page 3-36

0xD50 852 ID_ISAR4 Instruction Set Attributes Register 4, see c0, Instruction Set Attributes 
Register 4 on page 3-38

0xD54 853 ID_ISAR5 Instruction Set Attributes Register 5, see c0, Instruction Set Attributes 
Registers 5-7 on page 3-39

Table 12-33 Processor Identifier Registers (continued)

Offset Register 
number Mnemonic Function

31 0

Reserved

1345 2

Internal DBGACK
Internal COMMRX
Internal COMMTX
Internal nPMUIRQ

Internal DBGRESTARTED
Internal DBGTRIGGER

6

Table 12-34 Integration Internal Output Control Register bit functions

Bits Field Function

[31:6] - RAZ for reads, SBZP for writes.

[5] Internal 
DBGTRIGGER

Internal DBGTRIGGER. This bit drives the internal signal that goes from the debug 
unit to the CTI to indicate early entry to the debug state. The reset value is 0.

[4] Internal 
DBGRESTARTED

Internal DBGRESTARTED. This bit drives the internal signal that goes from the 
debug unit to the CTI to acknowledge success of a debug restart command. The reset 
value is 0.

[3] Internal nPMUIRQ Internal nPMUIRQ. This bit drives the internal signal equivalent to nPMUIRQ that 
goes from the debug unit to the CTI. If this bit is set to 1, the corresponding internal 
nPMUIRQ signal is asserted, that is, cleared to 0. The reset value is 0.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 12-40
ID060510 Non-Confidential



Debug 
Note
 Both the DBGTRIGGER and DBGACK signals are asserted on entry to debug state. The only 
difference is that DBGTRIGGER is asserted before the implicit Data Synchronization Barrier 
(DSB) associated with the debug state entry, while DBGACK is asserted after the DSB.

12.5.3 Integration External Output Control Register

When the processor is in integration mode, you can use the read/write Integration External 
Output Control Register to drive certain debug unit outputs to determine how they are connected 
to other parts of the system.

Figure 12-20 shows the bit arrangement of the Integration External Output Control Register.

Figure 12-20 Integration External Output Control Register format

Table 12-35 shows how the bit values correspond with the Integration External Output Control 
Register functions.

[2] Internal COMMTX Internal COMMTX. This bit drives the internal signal equivalent to COMMTX that 
goes from the debug unit to the CTI. The reset value is 0.

[1] Internal COMMRX Internal COMMRX. This bit drives the internal signal equivalent to COMMRX that 
goes from the debug unit to the CTI. The reset value is 0.

[0] Internal DBGACK Internal DBGACK. This bit drives the internal signal equivalent to DBGACK that 
goes from the debug unit to the CTI. The reset value is 0.

Table 12-34 Integration Internal Output Control Register bit functions (continued)

Bits Field Function

3131 0

Reserved

1

STANDBYWFI
nPMUIRQ
nDMAIRQ

nDMASIRQ
nDMAEXTERRIRQ

345 2678

COMMTX

DBGACK
COMMRX

Table 12-35 Integration External Output Control Register bit functions

Bits Field Function

[31:8] - Reserved. RAZ, SBZP.

[7] nDMAEXTERRIQ nDMAEXTERRIRQ. This signal drives the nDMAEXTERRIRQ output. If this bit is 
set to 1, the corresponding internal nDMAEXTERRIRQ signal is asserted, that is, 
cleared to 0. The reset value is 0.

[6] nDMASIRQ nDMASIRQ. This signal drives the nDMASIRQ output. If this bit is set to 1, the 
corresponding internal nDMASIRQ signal is asserted, that is, cleared to 0. The reset 
value is 0.
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12.5.4 Integration Input Status Register

When the processor is in integration mode, you can use the read-only Integration Input Status 
Register to read the state of the debug unit inputs to determine how they are connected to the 
CTI and to other parts of the system.

Figure 12-21 shows the bit arrangement of the Integration Input Status Register.

Figure 12-21 Integration Input Status Register format

Table 12-36 shows how the bit values correspond with the Integration Input Status Register 
functions.

[5] nDMAIRQ nDMAIRQ. This signal drives the nDMAIRQ output. If this bit is set to 1, the 
corresponding internal nDMAIRQ signal is asserted, that is, cleared to 0. The reset value 
is 0.

[4] nPMUIRQ nPMUIRQ. This signal drives the nPMUIRQ output. If this bit is set to 1, the 
corresponding internal nPMUIRQ signal is asserted, that is, cleared to 0. The reset value 
is 0.

[3] STANDBYWFI STANDBYWFI. This signal drives the STANDBYWFI output. The reset value is 0.

[2] COMMTX COMMTX. This signal drives the COMMTX output. The reset value is 0.

[1] COMMRX COMMRX. This signal drives the COMMRX output. The reset value is 0.

[0] DBGACK DBGACK. This signal drives the DBGACK output. The reset value is 0.

Table 12-35 Integration External Output Control Register bit functions (continued)

Bits Field Function

3131 0

Reserved

1

Reserved

CTI PMUEXTIN[0]
CTI PMUEXTIN[1]

CTI EDBGRQ
CTI DBGRESTART

3 278

nFIQ

EDBGRQ
nIRQ

9101112

Table 12-36 Integration Input Status Register bit functions

Bits Field Function

[31:12] - Reserved. RAZ, SBZP.

[11] CTI DBGRESTART CTI debug restart bit.This field reads the state of the debug restart input coming from 
the CTI into the Performance Monitoring Unit.

[10] CTI EDBGRQ CTI debug request bit. This field reads the state of the debug request input coming 
from the CTI into the Performance Monitoring Unit.

[9] CTI PMUEXTIN[1] CTI PMUEXTIN[1] signal. This field reads the state of the PMUEXTIN[1] input 
coming from the CTI into the Performance Monitoring Unit.
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12.5.5 Integration Mode Control Register

The read/write Integration Mode Control Register enables the processor to switch from a 
functional mode which is the default, into integration mode, where the inputs and outputs of the 
device can be directly controlled for integration testing or topology detection. When the 
processor is in this mode, you can use the Integration Internal Output Control Register or the 
Integration External Output Control Register to drive output values. You can use the Integration 
Input Status Register to read input values.

Figure 12-22 shows the bit arrangement of the Integration Mode Control Register.

Figure 12-22 Integration Mode Control Register format

Table 12-37 shows how the bit values correspond with the Integration Mode Control Register 
functions.

12.5.6 Claim Tag Set Register

Bits in the Claim Tag Set Register do not have any specific functionality. The external debugger 
and debug monitor set these bits to lay claims on debug resources.

Figure 12-23 on page 12-44 shows the bit arrangement of the Claim Tag Set Register.

[8] CTI PMUEXTIN[0] CTI PMUEXTIN[0] signal. This field reads the state of the PMUEXTIN[0] input 
coming from the CTI into the Performance Monitoring Unit.

[7:3] - Reserved. RAZ, SBZP.

[2] nFIQ nFIQ. This field reads 1 when the nFIQ input is asserted, that is, cleared to 0.

[1] nIRQ nIRQ. This field reads 1when the nIRQ input is asserted, that is, cleared to 0.

[0] EDBGRQ EDBGRQ. This field reads the state of the EDBGRQ input.

Table 12-36 Integration Input Status Register bit functions (continued)

Bits Field Function

3131 0

Reserved

1

Integration mode enable

Table 12-37 Integration Mode Control Register bit functions

Bits Field Function

[31:1] - Reserved. RAZ, SBZP.

[0] Integration mode enable Integration mode enable bit:
0 = normal operation, reset value
1 = integration mode enabled.
When this bit is set to 1, the processor reverts into integration mode to enable 
integration testing or topology detection.
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Figure 12-23 Claim Tag Set Register format

Table 12-38 shows how the bit values correspond wit the Claim Tag Set Register functions.

12.5.7 Claim Tag Clear Register

The read/write Claim Tag Clear Register is used to read the claim status on debug resources. 
Figure 12-24 shows the bit arrangement of the Claim Tag Clear Register.

Figure 12-24 Claim Tag Clear Register format

Table 12-39 shows how the bit values correspond with the Claim Tag Clear Register functions.

12.5.8 Lock Access Register

The Lock Access Register is a write-only register that controls writes to the debug registers. The 
purpose of the Lock Access Register is to reduce the risk of accidental corruption to the contents 
of the debug registers. It does not prevent all accidental or malicious damage. Because the state 
of the Lock Access Register is in the debug power domain, it is not lost when the core powers 
down.

Figure 12-25 on page 12-45 shows the bit arrangement of the Lock Access Register.

3131 0

Reserved Claim tags

78

Table 12-38 Claim Tag Set Register bit functions

Bits Field Function

[31:8] - Reserved. RAZ, SBZP.

[7:0] Claim tags Indicates the claim tags.
Writing 1 to a bit in this register sets that particular claim. You can read the claim status at the 
Claim Tag Clear Register. For example, if you write 1 to bit [3] of this register, bit [3] of the Claim 
Tag Clear Register is read as 1.
Writing 0 to a specific claim tag bit has no effect. This register always reads 0xFF, indicating that 
up to eight claims can be set.

3131 0

Reserved Claim tags

78

Table 12-39 Claim Tag Clear Register bit functions

Bits Field Function

[31:8] - Reserved. RAZ, SBZP.

[7:0] Claim tags Indicates the claim tag status. Writing 1 to a specific bit clears the corresponding claim tag to 0. 
Reading this register returns the current claim tag value. For example, if you write 1 to bit [3] of 
this register, it is read as 0. The reset value is 0.
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Figure 12-25 Lock Access Register format

Table 12-40 shows how the bit values correspond with the Lock Access Register functions.

Note
 You can only access the Lock Access Register when the PADDR31 input is LOW. Writes are 
ignored when PADDR31 is HIGH.

12.5.9 Lock Status Register

The Lock Status Register is a read-only register that returns the current lock status of the debug 
registers.

Figure 12-26 shows the bit arrangement of the Lock Status Register.

Figure 12-26 Lock Status Register format

Table 12-41 shows how the bit values correspond with the Lock Status Register functions.

3131 0

Lock access control

Table 12-40 Lock Access Register bit functions

Bits Field Function

[31:0] Lock access control Lock access control. To unlock the debug registers, write a 0xC5ACCE55 key to this 
register. To lock the debug registers, write any other value. Accesses to locked debug 
registers are ignored.

3131 0

Reserved

123

32-bit access
Locked bit

Lock implemented bit

Table 12-41 Lock Status Register bit functions

Bits Field Function

[31:3] - RAZ.

[2] 32-bit access 32-bit access. Indicates that a 32-bit access is required to write the key to the Lock 
Access Register. This bit always reads 0.

[1] Locked bit Locked bit:
0 = writes are permitted
1 = writes are ignored, reset value.

[0] Lock implemented bit Lock implemented bit. Indicates that the lock functionality is implemented. This bit 
always reads 1.
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Note
 This lock has no effect on accesses initiated by the debugger. Therefore, if PADDR31 is HIGH, 
all the bits in this register read 0.

12.5.10 Authentication Status Register

The Authentication Status Register is a read-only register that reads the current values of the 
configuration inputs that determine the debug permission level.

Figure 12-27 shows the bit arrangement of the Authentication Status Register.

Figure 12-27 Authentication Status Register format

Table 12-42 shows how the bit values correspond with the Authentication Status Register 
functions.

12.5.11 Device Type Register

The Device Type Register is a read-only register that indicates the type of debug component.

Figure 12-28 on page 12-47 shows the bit arrangement of the Device Type Register.

31 0

Reserved

1238 4567

Secure noninvasive debug enabled

Secure invasive debug enabled

Nonsecure noninvasive debug enabled

Nonsecure invasive debug enabled

Table 12-42 Authentication Status Register bit functions

Bits Field Value Function

[31:8] - - RAZ

[7] Secure 
noninvasive debug 
enabled

b1 Secure noninvasive debug enable 
field[6] (DBGEN || NIDEN) && (SPIDEN || SPNIDEN)

[5] Secure invasive 
debug enabled

b1
Secure invasive debug enable field

[4] DBGEN && SPIDEN

[3] Nonsecure 
noninvasive debug 
enabled

b1 Nonsecure noninvasive debug 
enable field[2] DBGEN || NIDEN

[1] Nonsecure 
invasive debug 
enabled

b1 Nonsecure invasive debug enable 
field[0] DBGEN
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Figure 12-28 Device Type Register format

Table 12-43 shows how the bit values correspond with the Device Type Register functions.

12.5.12 Identification Registers

The Identification Registers are read-only registers that consist of the Peripheral Identification 
Registers and the Component Identification Registers. The Peripheral Identification Registers 
provide standard information required by all CoreSight components. Only bits [7:0] of each 
register are used, the remaining bits Read-As-Zero.

The Component Identification Registers identify the processor as a CoreSight component. Only 
bits [7:0] of each register are used, the remaining bits Read-As-Zero. The values in these 
registers are fixed.

Table 12-44 shows the offset value, register number, and description that are associated with 
each Peripheral Identification Register.

3131 0

Reserved

4

Sub type Main class

8 7 3

Table 12-43 Device Type Register bit functions

Bits Field Function

[31:8] - RAZ.

[7:4] Sub type Indicates that the sub-type of the processor is core. This value is 0x1.

[3:0] Main class Indicates that the main class of the processor is debug logic. This value is 0x5.

Table 12-44 Peripheral Identification Registers

Offset Register number Function

0xFD0 1012 Peripheral Identification Register 4

0xFD4 1013 Reserved

0xFD8 1014 Reserved

0xFDC 1015 Reserved

0xFE0 1016 Peripheral Identification Register 0

0xFE4 1017 Peripheral Identification Register 1

0xFE8 1018 Peripheral Identification Register 2

0xFEC 1019 Peripheral Identification Register 3
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Table 12-45 shows fields that are in the Peripheral Identification Registers.

Table 12-46 shows how the bit values correspond with the Peripheral ID Register 0 functions.

Table 12-47 shows how the bit values correspond with the Peripheral ID Register 1 functions.

Table 12-48 shows how the bit values correspond with the Peripheral ID Register 2 functions.

Table 12-45 Fields in the Peripheral Identification Registers

Field Size Function

4KB Count 4 bits Indicates the Log2 of the number of 4KB blocks that the processor occupies. The debug 
registers occupy a single 4KB block, therefore this field is always 0x0.

JEP106 4+7 bits Identifies the designer of the processor. This field consists of a 4-bit continuation code and a 
7-bit identity code. Because the processor is designed by ARM, the continuation code is 0x4 
and the identity code is 0x3B.

Part 
number

12 bits Indicates the part number of the processor. The part number for the processor is 0xC08.

Revision 4 bits Indicates the major and minor revision of the product. The major revision contains 
functionality changes and the minor revision contains bug fixes for the product. The revision 
number starts at 0x0 and increments by 1 at both major and minor revisions.

RevAnd 4 bits Indicates the manufacturer revision number. This number starts at 0x0 and increments by the 
integrated circuit manufacturer on metal fixes. For the processor, the initial value is 0x0 but can 
be changed by the manufacturer.

Customer 
modified

4 bits For the processor, this value is 0x0.

Table 12-46 Peripheral ID Register 0 bit functions

Bits Field Function

[31:8] - RAZ.

[7:0] - Indicates bits [7:0] of the part number for the processor. This value is 0x08.

Table 12-47 Peripheral ID Register 1 bit functions

Bits Field Function

[31:8] - RAZ.

[7:4] - Indicates bits [3:0] of the JEDEC JEP106 Identity Code. This value is 0xB.

[3:0] - Indicates bits [11:8] of the part number for the processor. This value is 0xC.

Table 12-48 Peripheral ID Register 2 bit functions

Bits Field Function

[31:8] - RAZ.
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Table 12-49 shows how the bit values correspond with the Peripheral ID Register 3 functions.

Table 12-50 shows how the bit values correspond with the Peripheral ID Register 4 functions.

Table 12-51 shows the offset value, register number, and value that are associated with each 
Component Identification Register.

[7:4] - Indicates the revision number for the processor. This value changes based on the product major 
and minor revision. This value is set to b0110.

[3] - This field is always set to 1.

[2:0] - Indicates bits [6:4] of the JEDEC JEP106 Identity Code. This value is set to b011.

Table 12-48 Peripheral ID Register 2 bit functions (continued)

Bits Field Function

Table 12-49 Peripheral ID Register 3 bit functions

Bits Field Function

[31:8] - RAZ.

[7:4] - Indicates the manufacturer revision number. This value changes based on the manufacturer metal fixes. 
This value is set to 0x2.

[3:0] - For the processor, this value is set to 0x0.

Table 12-50 Peripheral ID Register 4 bit functions

Bits Field Function

[31:8] - RAZ.

[7:4] - Indicates the number of blocks occupied by the processor. This field is always set to 0x0.

[3:0] - Indicates the JEDEC JEP106 Continuation Code. For the processor, this value is 0x4.

Table 12-51 Component Identification Registers

Offset Register number Value Function

0xFF0 1020 0x0000000D Component Identification Register 0

0xFF4 1021 0x00000090 Component Identification Register 1

0xFF8 1022 0x00000005 Component Identification Register 2

0xFFC 1023 0x000000B1 Component Identification Register 3
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12.6 Debug events
A debug event is any of the following:
• Software debug event
• Halting debug event on page 12-51.

A processor responds to a debug event in one of the following ways:
• ignores the debug event
• takes a debug exception
• enters debug state.

12.6.1 Software debug event

A software debug event is any of the following:

• A watchpoint debug event. This occurs when:
— The D-side Virtual Address (DVA) for a load or store matches the watchpoint value. 

Memory hints and cache operations do not trigger watchpoints.
— All the conditions of the WCR match.
— The watchpoint is enabled.
— The linked context ID-holding BRP, if any, is enabled and its value matches the 

context ID in CP15 c13. See Chapter 3 System Control Coprocessor.
— The instruction that initiated the memory access is committed for execution. 

Watchpoint debug events are only generated if the instruction passes its condition 
code.

• A breakpoint debug event. This occurs when:
— An instruction is fetched and the I-side Virtual Address (IVA) present in the 

instruction bus matched the breakpoint value.
— At the same time the instruction is fetched, all the conditions of the BCR for linked 

or unlinked IVA-based breakpoint generation matched the I-side control signals.
— The breakpoint is enabled.
— At the same time the instruction is fetched, the linked context ID-holding BRP, if 

any, is enabled and its value matched the context ID in CP15 c13.
— The instruction is committed for execution. These debug events are generated 

whether the instruction passes or fails its condition code.

• A breakpoint debug event also occurs when:
— An instruction is fetched and the CP15 Context ID Register c13 matched the 

breakpoint value.
— At the same time the instruction is fetched, all the conditions of the BCR for 

unlinked context ID breakpoint generation matched the I-side control signals.
— The breakpoint is enabled.
— The instruction is committed for execution. These debug events are generated 

whether the instruction passes or fails its condition code.

• A BKPT debug event. This occurs when a BKPT instruction is committed for execution. 
BKPT is an unconditional instruction.

• A vector catch debug event. This occurs when:
— An instruction is prefetched and the IVA matched a vector location address. This 

includes any kind of prefetches, not only the ones because of exception entry.
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— At the same time the instruction is fetched, the corresponding bit of the VCR is set 
to 1, that is, vector catch enabled.

— Either the vector is not one of the Prefetch Abort or Data Abort vectors, or Halting 
debug mode is enabled.

— The instruction is committed for execution. These debug events are generated 
whether the instruction passes or fails its condition code.

12.6.2 Halting debug event

The debugger or the system can cause the core to enter into debug state by triggering any of the 
following halting debug events:
• assertion of the external debug request signal, EDBGRQ
• write to the DRCR[0] Halt Request control bit
• detection of the OS unlock catch event
• assertion of the Cross Trigger Interface debug request signal.

If EDBGRQ or CTI debug request is asserted while DBGEN is HIGH but invasive debug is not 
permitted, the devices that assert these signals must hold them until the processor enters debug 
state, that is, until DBGACK is asserted. Otherwise, the behavior of the processor is 
Unpredictable. For DRCR[0] and OS unlock catch halting debug events, the processor records 
them internally until it is in a state and mode where they can be acknowledged.

12.6.3 Behavior of the processor on debug events

This section describes how the processor behaves on debug events while not in debug state. See 
Debug state on page 12-56 for information on how the processor behaves while in debug 
state.When the processor is in Monitor debug-mode, Prefetch Abort and Data Abort vector 
catch debug events are ignored. All other software debug events generate a debug exception 
such as Data Abort for watchpoints, and Prefetch Abort for anything else.

When debug is disabled, the BKPT instruction generates a debug exception, Prefetch Abort. All 
other software debug events are ignored.

When DBGEN is LOW, debug is disabled regardless of the value of DSCR[15:14].

Table 12-52 shows the behavior of the processor on debug events.

12.6.4 Debug event priority

Breakpoint, IVA or CID match, vector catch, and halting debug events have the same priority. 
If more than one of these events occurs on the same instruction, it is Unpredictable which event 
is taken.

Table 12-52 Processor behavior on debug events

DBGEN DSCR[15:14] Debug mode Action on software debug event Action on halting debug event

0 bxx Debug disabled Ignore or Prefetch Aborta Ignore

1 b00 None Ignore or Prefetch Aborta Debug state entry

1 bx1 Halting Debug state entry Debug state entry

1 b10 Monitor Debug exception or Ignoreb Debug state entry

a. The BKPT instruction generates a Prefetch Abort. All other software debug events are ignored.
b. Prefetch Abort and Data Abort vector catch debug events are ignored in Monitor debug-mode. All other software debug events 

generate a debug exception.
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If an instruction triggers a watchpoint debug event any breakpoint, vector catch, or halting 
debug event scheduled to cancel that instruction, has higher priority.

BKPT debug events have a lower priority than all other debug events.

12.6.5 Watchpoint debug events

A precise watchpoint exception has similar behavior as a precise data abort exception with the 
following differences:

• If the processor is in Halting debug-mode R14_abt and SPSR_abt are not updated.

• If the processor is in Monitor debug-mode the DFSR is updated with the encoding for a 
debug event, DFSR[10,3:0] = b00010. If the processor is in Halting debug-mode the 
DFSR is unchanged.

• If the processor is in Monitor debug-mode the DFAR is Unpredictable.

• The DSCR[5:2] bits are set to Precise Watchpoint Occurred.

If the watchpointed access is subject to a precise data abort, then the precise abort takes priority 
over the watchpoint because it is a higher priority exception. If the watchpointed access is 
subject to an imprecise data abort, then the watchpoint takes priority.
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12.7 Debug exception
The processor takes a debug exception when a software debug event occurs while in Monitor 
debug-mode. Prefetch Abort and Data Abort Vector catch debug events are ignored though.

If the processor takes a debug exception because of a breakpoint, BKPT, or vector catch debug 
event, the processor performs the following actions:

• Sets the DSCR[5:2] method of entry bits to indicate that a watchpoint occurred.

• Sets the CP15 IFSR and IFAR registers as described in Effect of debug exceptions on 
CP15 registers and WFAR on page 12-54.

• Performs the same sequence of actions as in a Prefetch Abort exception by:
— updating the SPSR_abt with the saved CPSR
— changing the CPSR to abort mode and ARM state with normal interrupts and 

imprecise aborts disabled
— setting R14_abt as a regular Prefetch Abort exception, that is, this register gets the 

address of the cancelled instruction plus 0x04
— setting the PC to the appropriate Prefetch Abort vector.

Note
 The Prefetch Abort handler checks the IFSR bit to determine if a debug exception or other kind 
of Prefetch Abort exception causes the exception entry. If the cause is a debug exception, the 
Prefetch Abort handler must branch to the debug monitor. You can find the address of the 
instruction to restart in the R14_abt register.

If the processor takes a debug exception because of a watchpoint debug event, the processor 
performs the following actions:
• sets the DSCR[5:2] method of debug entry bits to the Precise Watchpoint Occurred 

encoding
• sets the CP15 DFSR, FAR, and WFAR registers as described in Effect of debug exceptions 

on CP15 registers and WFAR on page 12-54
• performs the same sequence of actions as in a Data Abort exception by:

— updating the SPSR_abt with the saved CPSR
— changing the CPSR to abort mode and ARM state with normal interrupts and 

imprecise aborts disabled
— setting R14_abt as a regular Data Abort exception, that is, this register gets the 

address of the cancelled instruction plus 0x08
— setting the PC to the appropriate Data Abort vector.

Note
 The Data Abort handler checks the DFSR bits to determine if the exception entry was caused 
by a Debug exception or other kind of Data Abort exception. If the cause is a Debug exception, 
the Data Abort handler must branch to the debug monitor. The address of the instruction to 
restart can be found in the R14_abt register.
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Table 12-53 shows the values in the Link Register after exceptions. The ARM and Thumb 
columns in this table represent the processor state in which the exception occurred.

12.7.1 Effect of debug exceptions on CP15 registers and WFAR

The four CP15 registers that record abort information are:
• Data Fault Address Register (DFAR)
• Instruction Fault Address Register (IFAR) 
• Instruction Fault Status Register (IFSR)
• Data Fault Status Register (DFSR).

See Chapter 3 System Control Coprocessor for more information on these registers.

If the processor takes a debug exception because of a watchpoint debug event, the processor 
performs the following actions on these registers:

• it does not change the IFSR or IFAR

• it updates the DFSR with the debug event encoding

• it writes an Unpredictable value to the DFAR

• it updates the WFAR with the address of the instruction that accessed the watchpointed 
address, plus a processor state dependent offset:
— + 8 for ARM state
— + 4 for Thumb and ThumbEE states.

If the processor takes a debug exception because of a breakpoint, BKPT, or vector catch debug 
event, the processor performs the following actions on these registers:
• it updates the IFSR with the debug event encoding
• it writes an Unpredictable value to the IFAR
• it does not change the DFSR, DFAR, or WFAR.

12.7.2 Avoiding unrecoverable states

The processor ignores vector catch debug events on the Prefetch or Data Abort vectors while in 
Monitor debug-mode because these events put the processor in an unrecoverable state.

The debuggers must avoid other similar cases by following these rules, that apply only if the 
processor is in Monitor debug-mode:

• if BCR[22:20] is set to b010, an unlinked context ID breakpoint is selected, then the 
debugger must program BCR[2:1] for the same breakpoint as stated in this section

Table 12-53 Values in Link Register after exceptions

Cause of fault ARM Thumb Return address (RA) meaning

Breakpoint RA+4 RA+4 Breakpointed instruction address

Watchpoint RA+8 RA+8 Address of the instruction that triggered the watchpoint event 

BKPT instruction RA+4 RA+4 BKPT instruction address

Vector catch RA+4 RA+4 Vector address

Prefetch Abort RA+4 RA+4 Address of the instruction that the prefetch abort event canceled

Data Abort RA+8 RA+8 Address of the instruction that the data abort event canceled
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• if BCR[22:20] is set to b100 or b101, an IVA mismatch breakpoint is selected, then the 
debugger must program BCR[2:1] for the same breakpoint as stated in this section.

The debugger must write BCR[2:1] for the same breakpoint as either b00 or b10, that selects 
either match in only USR, SYS, SVC modes or match in only USR mode, respectively. The 
debugger must not program either b01 (match in any privileged mode) or b11 (match in any 
mode).

You must only request the debugger to write b00 to BCR[2:1] if you know that the abort handler 
does not switch to one of the USR, SYS, or SVC mode before saving the context that might be 
corrupted by a later debug event. You must also be careful about requesting the debugger to set 
a breakpoint or BKPT debug event inside a Prefetch Abort or Data Abort handler, or a 
watchpoint debug event on a data address that any of these handlers might access.

In general, you must only set breakpoint or BKPT debug events inside an abort handler after it 
saves the context of the abort. You can avoid breakpoint debug events in abort handlers by 
setting BCR[2:1] as previously described.

If the debugged code is not running in a privileged mode, you can prevent watchpoint debug 
events in abort handlers by setting WCR[2:1] to b10 for matching only nonprivileged accesses.

Failure to follow these guidelines can lead to debug events occurring before the handler is able 
to save the context of the abort, causing the corresponding registers to be overwritten, and 
resulting in Unpredictable software behavior.
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12.8 Debug state
The debug state enables an external agent, usually a debugger, to control the processor following 
a debug event. While in debug state, the processor behaves as follows:

• Sets the DSCR[0] core halted bit.

• Asserts the DBGACK signal, see DBGACK on page 12-65.

• Sets the DSCR[5:2] method of entry bits appropriately.

• Flushes the pipeline and does not prefetch any instructions.

• Does not change the execution mode and the CPSR.

• Continues to run the DMA engine. The debugger can stop and restart it using CP15 
operations if it has permission.

• Treats exceptions as described in Exceptions in debug state on page 12-61.

• Ignores interrupts.

• Ignores new debug events.

12.8.1 Entering debug state

When a debug event occurs while the processor is in Halting debug-mode, it switches to a 
special state called debug state so the debugger can take control. You can configure Halting 
debug-mode by setting DSCR[14] to 1.

If a halting debug event occurs, the processor enters debug state even when Halting debug-mode 
is not configured.

While the processor is in debug state, the PC does not increment on instruction execution. If the 
PC is read at any point after the processor has entered debug state, but before an explicit PC 
write, it returns a value as described in Table 12-54, depending on the previous state and the type 
of debug event.

Table 12-54 shows the read PC value after debug state entry for different debug events. The 
ARM and the Thumb and ThumbEE columns in this table represent the processor state in which 
the exception occurred.

Table 12-54 Read PC value after debug state entry

Debug event ARM Thumb and 
ThumbEE Return address (RA) meaning

Breakpoint RA+8 RA+4 Breakpointed instruction address

Watchpoint RA+8 RA+4 Address of the instruction that triggered the watchpoint debug event

BKPT instruction RA+8 RA+4 BKPT instruction address

Vector catch RA+8 RA+4 Vector address

External debug 
request signal 
activation

RA+8 RA+4 Address of the instruction that the external debug request signal 
activation canceled
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12.8.2 Behavior of the PC and CPSR in debug state

The behavior of the PC and CPSR registers while the processor is in debug state is as follows:

• The PC is frozen on entry to debug state. That is, it does not increment on the execution 
of ARM instructions. However, the processor still updates the PC as a response to 
instructions that explicitly modify the PC.

• If the PC is read after the processor has entered debug state, it returns a value as described 
in Table 12-54 on page 12-56, depending on the previous state and the type of debug 
event.

• If the debugger executes a sequence for writing a certain value to the PC and subsequently 
it forces the processor to restart without any additional write to the PC or CPSR, the 
execution starts at the address corresponding to the written value.

• If the debugger forces the processor to restart without performing a write to the PC, the 
restart address is Unpredictable.

• If the debugger writes to the CPSR, subsequent reads to the PC return an Unpredictable 
value. If it forces the processor to restart without performing a write to the PC, the restart 
address is Unpredictable. However, CPSR reads after a CPSR write return the written 
value.

• If the debugger writes to the PC, subsequent reads to the PC return an Unpredictable 
value.

• The processor behavior is Unpredictable when executing a conditional PC-updating 
instruction while in debug state.

• While the processor is in debug state, the CPSR does not change unless an instruction 
writes to it. In particular, the CPSR IT execution state bits do not change on instruction 
execution. The CPSR IT execution state bits do not have any effects on instruction 
execution.

• If the processor executes a data processing instruction with Rd == r15 and S == 0, then 
alu_out[0] must equal the current value of the CPSR T bit. Otherwise, the processor 
behavior is Unpredictable.

12.8.3 Executing instructions in debug state

In debug state, the processor executes instructions issued through the Instruction Transfer 
Register (ITR). Before the debugger can force the processor to execute any instruction, it must 
enable this feature through DSCR[13].

Debug state entry 
request command

RA+8 RA+4 Address of the instruction that the debug state entry request command 
canceled

OS unlock catch 
event

RA+8 RA+4 Address of the instruction that the OS unlock catch event canceled

CTI debug request 
signal activation

RA+8 RA+4 Address of the instruction that the CTI debug request signal activation 
canceled

Table 12-54 Read PC value after debug state entry (continued)

Debug event ARM Thumb and 
ThumbEE Return address (RA) meaning
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While the processor is in debug state, it always decodes ITR instructions as per the ARM 
instruction set, regardless of the value of the T and J bits of the CPSR.

The following restrictions apply to instructions executed through the ITR while in debug state:

• with the exception of branch instructions and instructions that modify the CPSR, the 
processor executes any ARM instruction in the same manner as if it was not in debug state

• the branch instructions B, BL, BLX(1), and BLX(2) are Unpredictable

• certain instructions that normally update the CPSR are Unpredictable

• instructions that load a value into the PC from memory are Unpredictable.

12.8.4 Writing to the CPSR in debug state

The only instruction that can update the CPSR while in debug state is the MSR instruction. All 
other ARMv7 instructions that write to the CPSR are Unpredictable, that is, the BX, BXJ, SETEND, 
CPS, RFE, LDM(3), and data processing instructions with Rd == r15 and S == 1.

The behavior of the CPSR forms of the MSR and MRS instructions in debug state is different to their 
behavior in normal state:

• When not in debug state, an MSR instruction that modifies the execution state bits in the 
CPSR is Unpredictable. However, in debug state an MSR instruction can update the 
execution state bits in the CPSR. A direct modification of the execution state bits in the 
CPSR by an MSR instruction must be followed by an instruction memory barrier sequence.

• When not in debug state, an MRS instruction reads the CPSR execution state bits as zeros. 
However, in debug state an MRS instruction returns the actual values of the execution state.

The debugger must execute an instruction memory barrier sequence after it writes to the CPSR 
execution state bits using an MSR instruction. If the debugger reads the CPSR using an MRS 
instruction after a write to any of these bits, but before an instruction memory barrier sequence, 
the value that MRS returns is Unpredictable. Similarly, if the debugger forces the processor to 
leave debug state after an MSR writes to the execution state bits, but before any instruction 
memory barrier sequence, the behavior of the processor in Unpredictable.

12.8.5 Privilege

While the processor is in debug state, ARM instructions issued through the ITR are subject to 
different rules whether they can change the processor state. As a general rule, instructions in 
debug state are always permitted to change the processor state, unless the processor is in a state, 
mode, and configuration where there are security restrictions.

If the debugger uses the ITR to execute an instruction that is not permitted, the processor ignores 
the instruction and sets the sticky undefined bit, DSCR[8], to 1.

Accessing registers and memory

The processor accesses register bank and memory as indicated by the CPSR mode bits. For 
example, if the CPSR mode bits indicate the processor is in User mode, ARM register reads and 
returns the User mode banked registers, and memory accesses are presented to the MMU as not 
privileged.
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Updating CPSR bits

If the debugger writes to the CPSR a value so that it sets the CPSR[4:0] bits to a processor mode 
where invasive debug is not permitted, this update of the CPSR[4:0] bits is ignored. Similarly, 
if invasive debug is not permitted for privilege modes in the current security state, writes to the 
CPSR privileged bits are ignored.

Table 12-55 shows which updates are permitted in debug state:

Writing to the CPSR SCR

While in debug state, if the debugger forces the processor to execute a CP15 MCR instruction 
to write to the CP15 Secure Configuration Register (SCR), it is only permitted to execute if 
either of these conditions is true:
• the processor is in a secure privileged mode including Monitor mode
• the processor is in secure User mode, and both DBGEN and SPIDEN are asserted.

Note
 • Writes to the SCR while in nonsecure state are not permitted even if both DBGEN and 

SPIDEN are asserted, except if the processor is in Monitor mode because it is considered 
to be a secure privileged mode regardless of the value of the SCR[0] NS bit.

• The processor treats attempts to write to the SCR when they are not permitted as 
Undefined instruction exceptions. See Exceptions in debug state on page 12-61 for details 
of how the processor behaves when Undefined instruction exceptions occur while in 
debug state.

Coprocessor instructions

The rules for executing coprocessor instructions other than CP14 and CP15 while in debug state 
are the same as in normal state. CP14 debug instructions are always permitted while in debug 
state regardless of the debug permissions, processor mode, and security state.

Note
 Nondebug CP14 instructions behave as CP15 instructions while in debug state.

Table 12-55 Permitted updates to the CPSR in debug state

Mode Secure statea or 
Monitor mode DBGEN & SPIDEN Modify CPSR[4:0] 

to Monitor mode
Update privileged 
CPSR bitsb

User Yes 0 Update ignored Update ignored

Privileged Yes 0 Permitted Permitted

Any No 0 Update ignored Permitted

Any X 1 Permitted Permitted

a. The processor is in secure state when CP15 SCR[0] nonsecure bit is set to 0.
b. This column excludes the case where the debugger attempts to change CPSR[4:0] to Monitor mode, that is, it 

only includes updates of the A, I, or F bits, or the CPSR[4:0] bits to a mode other than Monitor.
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For CP15 instructions, the processor behaves as follows:

• If the debugger is permitted to execute an MSR instruction to change the CPSR[4:0] bits to 
a privileged mode, then the debugger is also permitted to access privileged CP15 registers. 
In this situation, the debugger is not required to switch the processor into a privileged 
mode before executing a privileged CP15 instruction.

• If the processor is in nonsecure state and is permitted to change to Monitor mode, it must 
do so before issuing CP15 instructions that must be executed in a secure privileged mode. 
In this case, the processor is not automatically granted secure privileged permissions.

• If the debugger tries to execute a CP15 instruction that is not permitted, the processor 
generates an Undefined Instruction exception. See Exceptions in debug state on 
page 12-61 for information on how the processor behaves when Undefined instruction 
exceptions occur while in debug state.

Table 12-56 shows the CP14 and CP15 instruction execution rules.

12.8.6 Effect of debug state on noninvasive debug

The noninvasive debug features of the processor are the ETM and Performance Monitoring 
Unit (PMU). All of these noninvasive debug features are disabled when the processor is in 
debug state. See System performance monitor on page 3-6 and Chapter 14 Embedded Trace 
Macrocell for more information.

When the processor is in debug state:
• the ETM ignores all instructions and data transfers
• PMU events are not counted
• events are not visible to the ETM
• the PMU Cycle Count Register (CCNT) is stopped.

12.8.7 Effects of debug events on registers

On entry to debug state, the processor does not update any general-purpose or program status 
register, this includes the SPSR_abt or R14_abt register. Additionally, the processor does not 
update any coprocessor register, including the CP15 IFSR, DFSR, FAR, or IFAR register, except 
for CP14 DSCR[5:2] method of debug entry bits. These bits indicate which type of debug event 
caused the entry into debug state.

Table 12-56 Accesses to CP15 and CP14 registers in debug state

Mode SCR[0] DBGEN & 
SPIDEN

Access 
to CP14 
registers

Access to 
banked CP15 
registers

Access to 
restricted access 
CP15 registers

Access to 
configurable 
access CP15 
registers

User 0 0 Permitted Undefined Undefined Undefined

User 0 1 Permitted Secure Permitted Permitted

Monitor 0 X Permitted Secure Permitted Permitted

Monitor 1 X Permitted Nonsecure Permitted Permitted

PxMa 0 X Permitted Secure Permitted Permitted

User or PxM 1 X Permitted Nonsecure Undefined As configured

a. Any privileged mode excluding Secure Monitor mode.
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Note
 On entry to debug state, the processor updates the WFAR register with the virtual address of the 
instruction accessing the watchpointed address plus:
• + 8 in ARM state
• + 4 in Thumb or ThumbEE state.

12.8.8 Exceptions in debug state

While in debug state, exceptions are handled as follows:

Reset This exception is taken as in normal processor state. This means the processor 
leaves debug state as a result of the system reset.

Prefetch Abort 
This exception cannot occur because the processor does not fetch any instructions 
while in debug state.

Debug The processor ignores debug events, including BKPT instruction.

SVC The processor ignores SVC exceptions.

SMC The processor ignores SMC exceptions.

Undefined 
When an Undefined Instruction exception occurs in debug state, the behavior of 
the core is as follows:
• PC, CPSR, SPSR_und, and R14_und are unchanged
• the processor remains in debug state
• DSCR[8], sticky undefined bit, is set to 1.

Precise Data abort  
When a precise Data Abort occurs in debug state, the behavior of the core is as 
follows:
• PC, CPSR, SPSR_abt, and R14_abt are unchanged
• the processor remains in debug state
• DSCR[6], sticky precise data abort bit, is set to 1
• DFSR and FAR are set to the same values as if the abort had occurred in 

normal state.

Imprecise Data Abort 
When an imprecise Data Abort occurs in debug state, the behavior of the core is 
as follows, regardless of the setting of the CPSR A bit:
• PC, CPSR, SPSR_abt, and R14_abt are unchanged
• the processor remains in debug state
• DSCR[7], sticky imprecise data abort bit, is set to 1
• the imprecise Data Abort does not cause the processor to perform an 

exception entry sequence so DFSR remains unchanged
• the processor does not act on this imprecise Data Abort on exit from the 

debug state, that is, the imprecise abort is discarded.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 12-61
ID060510 Non-Confidential



Debug 
Imprecise Data Aborts on entry and exit from debug state

The processor performs an implicit Data Synchronization Barrier (DSB) operation as part of the 
debug state entry sequence. If this operation detects an imprecise Data Abort, the processor 
records this event and its type as if the CPSR A bit was set to 1. The purpose of latching this 
event is to ensure that it can be taken on exit from debug state.

If the processor detects an imprecise Data Abort while already in debug state, for example a 
debugger-generated imprecise abort, the processor sets the sticky imprecise Data Abort bit, 
DSCR[7], to 1 but otherwise it discards it. The act of discarding these debugger-generated 
imprecise Data Aborts does not affect recorded application-generated imprecise Data Aborts.

Before forcing the processor to leave debug state, the debugger must execute a DSB sequence 
to ensure that all debugger-generated imprecise Data Aborts are detected, and therefore 
discarded, while still in debug state. After exiting debug state, the processor acts on any 
recorded imprecise Data Aborts as indicated by the CPSR A bit.

Imprecise Data Aborts and watchpoints

The watchpoint exception has a higher priority than an imprecise Data Abort. If a data access 
causes both a watchpoint and an imprecise Data Abort, the processor enters debug state before 
taking the imprecise Data Abort. The imprecise Data Abort is recorded. This priority order 
ensures correct behavior where invasive debug is not permitted in privileged modes.

12.8.9 Leaving debug state

The debugger can force the processor to leave debug state by setting the restart request bit, 
DRCR[1], to 1. Another way of forcing the processor to leave debug state is through the CTI 
external restart request mechanism. When one of those restart requests occurs, the processor:

1. Clears the DSCR[1] core restarted flag to 0.

2. Leaves debug state.

3. Clears the DSCR[0] core halted flag to 0.

4. Drives the DBGACK signal LOW, unless the DSCR[11] DbgAck bit is set to 1.

5. Starts executing instructions from the address last written to the PC in the processor mode 
and state indicated by the current value of the CPSR.

6. Sets the DSCR[1] core restarted flag to 1.
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12.9 Cache debug
There are several memory system requirements for a debugger to work optimally on the cached 
processor:
• if the debugger performs a memory access while in debug state, caches must not change 

their state unless the access is a write that hits in the cache
• if the debugger performs a memory access while in debug state so that the cache state 

becomes incoherent with memory while in normal state, then one of the following 
conditions must be true:
— the memory system detects this situation and performs some implicit operations that 

keep the cache coherent
— the processor guarantees that the debugger can restore coherency after the memory 

access.
• the means to keep cache coherency must be sufficient so that it does not significantly slow 

down the debugging process
• a way to profile cache usage must be available.

12.9.1 Cache pollution in debug state

If bit [0] of the Debug State Cache Control Register (DSCCR) is set to 0 while the processor is 
in debug state, then neither the L1 data cache or L2 cache performs any eviction or linefill. 
However, evictions still occur in any of the following cases:

• If identical virtual addresses, except for bit [12], are mapped to the same physical address 
and the line that corresponds to the first virtual address is in the L1 data cache, then an 
access using the second virtual address causes an eviction of the cache line to the L2 
cache.

• The L1 data cache controller uses a hash algorithm to determine hits. If two different 
virtual addresses have the same hash and the line that corresponds to the first VA is in the 
L1 data cache, then an access using the second VA evicts the line to the L2 cache.

Note
 No special feature is required to prevent L1 instruction cache pollution because I-side fetches 
cannot occur while in debug state.

12.9.2 Cache coherency in debug state

The debugger can update memory while in debug state for the following reasons:
• to replace an instruction with a BKPT, or to restore the original instruction
• to download code for the processor to execute on leaving debug state.

The debugger can maintain cache coherency in both these situations with the following features:

• If bit [2] of the DSCCR is set to 0 while the processor is in debug state, it treats any 
memory access that hits in either L1 data cache or L2 cache as write-through, regardless 
of the memory region attributes. This guarantees that the L1 instruction cache can see the 
changes to the code region without the debugger executing a time-consuming and 
device-specific sequence of cache clean operations.

• After the code is written to memory, the debugger can execute either a CP15 I-cache 
Invalidate All or a CP15 I-cache Invalidate Line by MVA operation.
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Note
 • The processor can execute CP15 I-cache Invalidate All or CP15 I-cache Invalidate Line 

by MVA operation only in privileged mode. However, in debug state the processor can 
execute these instructions even when invasive debug is not permitted in privileged mode. 
This exception to the CP15 permission rules described in Coprocessor instructions on 
page 12-59 enables the debugger to maintain coherency in a secure user debug scenario.

• The CP15 Flush Branch Target Buffer instruction is also valid in debug state regardless of 
the processor mode. Although the processor implements this instruction as a NOP, making 
it available in debug state ensures software compatibility with other ARMv7 compliant 
processors.

• Execution of the CP15 I-cache Invalidate All operation while in nonsecure state flushes 
the secure and nonsecure lines from the I-cache.

• If bit [2] of the DSCCR is set to 0 while the processor is in debug state, then memory 
writes go through all levels of cache up to the point of coherency, that is, to external 
memory.

12.9.3 Cache usage profiling

There are two ways to obtain cache usage profiling information:

• Statistic profiling using the Performance Monitoring Unit (PMU). The processor can 
count cache accesses and misses over a period of time.

• CP15 operations for accessing L1 and L2 cache tag and data arrays. These instructions 
provide greater visibility into the cache state at the cost of interrupting the program flow 
to execute them.
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12.10 External debug interface
The system can access memory-mapped debug registers through the APB interface. The system 
can also access ETM and CTI registers through this port.

The APB interface is compliant with the AMBA 3 Advanced Peripheral Bus (APB) interface. 
This APB slave interface supports 32-bits wide data, stalls, slave-generated aborts, and ten 
address bits [11:2] mapping 4KB of memory. An extra PADDR31 signal indicates to the 
processor the source of access. See Appendix A Signal Descriptions for a complete list of the 
APB signals.

12.10.1 Miscellaneous debug signals

This section describes some of the miscellaneous debug input and output signals.

EDBGRQ

This signal generates a halting debug event, that is, it requests the processor to enter debug state. 
When this occurs, the DSCR[5:2] method of debug entry bits are set to b0100. When EDBGRQ 
is asserted, it must be held until DBGACK is asserted. Failure to do so leads to Unpredictable 
behavior of the processor.

DBGACK

The processor asserts DBGACK to indicate that the system has entered debug state. It serves as 
a handshake for the EDBGRQ signal. The processor also drives the DBGACK signal HIGH 
when the debugger sets the DSCR[10] DbgAck bit to 1.

COMMRX and COMMTX

The COMMRX and COMMTX output signals enable interrupt-driven communications over 
the DTR. By connecting these signals to an interrupt controller, software using the debug 
communications channel can be interrupted whenever there is new data on the channel or when 
the channel is clear for transmission.

COMMRX is asserted when the CP14 DTR has data for the processor to read, and it is 
deasserted when the processor reads the data. Its value is equal to DSCR[30] DTRRXfull flag.

COMMTX is asserted when the CP14 is ready for write data, and it is deasserted when the 
processor writes the data. Its value equals the inverse of DSCR[29] DTRTXfull flag.

DBGNOPWRDWN

The processor asserts DBGNOPWRDWN when bit [0] of the Device Power Down and Reset 
Control Register is 1. The processor power controller works in emulate mode when this signal 
is HIGH.

DBGPWRDWNREQ

You must set the DBGPWRDWNREQ signal HIGH before removing power from the core 
domain. Bit [0] of the Device Power Down and Reset Status Register reflects the value of this 
DBGPWRDWNREQ signal.
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Note
 DBGPWRDWNREQ must be tied LOW if the particular implementation does not support 
separate core and debug power domains.

DBGPWRDWNACK

This signal indicates to the system that it is safe to bring the core voltage down.

Figure 12-29 shows the relationship of the DBGPWRDWNREQ and DBGPWRDWNACK 
signals with the core domain power-down and power-up sequences.

Figure 12-29 Timing of core power-down and power-up sequences

DBGOSLOCKINIT

When the DBGOSLOCKINIT signal is asserted on PRESETn reset, the OS lock is set. 
Otherwise, the OS lock is clear on PRESETn reset. ARM recommends that this signal is tied 
LOW.

DBGROMADDR

The DBGROMADDR signal specifies bits [31:12] of the debug ROM physical address. This 
is a configuration input and must be tied off or changed while the processor is in reset. In a 
system with multiple debug ROMs, this address must be tied off to point to the top-level ROM 
address.

DBGROMADDRV is the valid signal for DBGROMADDR. If the address cannot be 
determined, DBGROMADDR must be tied off to zero and DBGROMADDRV must be tied 
LOW.

DBGSELFADDR

The DBGSELFADDR signal specifies bits [31:12] of the offset of the debug ROM physical 
address to the physical address where the APB interface is mapped to the base of the 4KB debug 
register map. This is a configuration input and must be tied off or changed while the processor 
is in reset.

DBGSELFADDRV is the valid signal for DBGSELFADDR. If the offset cannot be 
determined, DBGSELFADDR must be tied off to zero and DBGSELFADDRV must be tied 
LOW.

DBGPWRDWNREQ

DBGPWRDWNACK

Vdd (core)

nPORESET
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Note
 In a system with no ROM Table, DBGROMADDR must be tied off with the physical address 
of the debug registers that are memory-mapped. Debug software can use the debug component 
identification registers at the end of the 4KB block addressed by DBGROMADDR to 
distinguish a ROM table from a processor. DBGSELFADDR must be tied to 0. 
DBGROMADDRV and DBGSELFADDRV must both be tied to 1.

12.10.2 Authentication signals

Table 12-57 shows a list of the valid combination of authentication signals along with its 
associated debug permissions. Authentication signals are used to configure the processor so its 
activity can only be debugged or traced in a certain subset of processor modes and security 
states.

Changing the authentication signals

The NIDEN, DBGEN, SPIDEN, and SPNIDEN input signals are either tied off to some fixed 
value or controlled by some external device.

Table 12-57 Authentication signal restrictions

SPIDEN DBGENa SPNIDEN NIDEN

Secure 
invasive 
debug 
permitted

Nonsecure 
invasive 
debug 
permitted

Secure 
noninvasive 
debug 
permitted

Nonsecure 
noninvasive 
debug 
permitted

0 0 0 0 No No No No

0 0 0 1 No No No Yes

0 0 1 0 No No No No

0 0 1 1 No No Yes Yes

0 1 0 0 No Yes No Yes

0 1 0 1 No Yes No Yes

0 1 1 0 No Yes Yes Yes

0 1 1 1 No Yes Yes Yes

1 0 0 0 No No No No

1 0 0 1 No No Yes Yes

1 0 1 0 No No No No

1 0 1 1 No No Yes Yes

1 1 0 0 Yes Yes Yes Yes

1 1 0 1 Yes Yes Yes Yes

1 1 1 0 Yes Yes Yes Yes

1 1 1 1 Yes Yes Yes Yes

a. When DBGEN is LOW, the processor behaves as if DSCR[15:14] equals b00 with the exception that halting debug events 
are ignored when this signal is LOW.
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If software running on the processor has control over an external device that drives the 
authentication signals, it must make the change using a safe sequence:

1. Execute an implementation-specific sequence of instructions to change the signal value. 
For example, this might be a single STR instruction that writes certain value to a control 
register in a system peripheral.

2. If step 1 involves any memory operation, issue a Data Synchronization Barrier (DSB).

3. Poll the DSCR or Authentication Status Register to check whether the processor has 
already detected the changed value of these signals. This is required because the processor 
might not see the signal change until several cycles after the DSB completes.

4. Issue an Instruction Synchronization Barrier (ISB) exception entry or exception return.

The software cannot perform debug or analysis operations that depend on the new value of the 
authentication signals until this procedure is complete. The same rules apply when the debugger 
has control of the processor through the ITR while in debug state.

The relevant combinations of the DBGEN, NIDEN, SPIDEN, and SPNIDEN values can be 
determined by polling DSCR[17:16], DSCR[15:14], or the Authentication Status Register.
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12.11 Using the debug functionality
This section provides some examples of using the debug functionality, both from the point of 
view of a software engineer writing code to run on an ARM processor and of a developer 
creating debug tools for the processor. In the former case, examples are given in ARM assembly 
language. In the latter case, the examples are in C pseudo-language, intended to convey the 
algorithms to be used. These examples are not intended as source code for a debugger.

The debugger examples use a pair of pseudo-functions such as the following:

uint32 ReadDebugRegister(int reg_num)
{

// read the value of the debug register reg_num at address reg_num << 2
}

WriteDebugRegister(int reg_num, uint32 val)
{

// write the value val to the debug register reg_num at address reg_num >> 2
}

A basic function for using the debug state is executing an instruction through the ITR. 
Example 12-1 shows the sequence for executing an ARM instruction through the ITR.

Example 12-1 Executing an ARM instruction through the ITR

ExecuteARMInstruction(uint32 instr)
{

// Step 1. Poll DSCR until InstrCompl is set to 1.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<24));
// Step 2. Write the opcode to the ITR.
WriteDebugRegister(33, instr);
// Step 3. Poll DSCR until InstrCompl is set to 1.
repeat
{
dscr := ReadDebugRegister(34);
}
until (dscr & (1<<24);

}

12.11.1 Debug communications channel

There are two ways that an external debugger can send data to or receive data from the core:

• The debug communications channel, when the core is not in debug state. It is defined as 
a set of resources used for communicating between the external debugger and a piece of 
software running on the core.

• The mechanism for forcing the core to execute ARM instructions, when the core is in 
debug state. See Executing instructions in debug state on page 12-57 for details.
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Rules for accessing the DCC

At the core side, the debug communications channel resources are: 
• CP14 Debug Register c5 (DTR)
• CP14 Debug Register c1 (DSCR).

Implementations of the ARMv7 debug for the processor are so that:

• If a read of the CP14 DSCR returns 1 for the DTRRXfull flag, then a following read of 
the CP14 DTR returns valid data and DTRRXfull is cleared to 0. No prefetch flush is 
required between these two CP14 instructions.

• If a read of the CP14 DSCR returns 0 for the DTRRXfull flag, then a following read of 
the CP14 DTR returns an Unpredictable value.

• If a read of the CP14 DSCR returns 0 for the DTRTXfull flag, then a following write to 
the CP14 DTR writes the intended 32-bit word, and sets DTRTXfull to 1. No prefetch 
flush is required between these two CP14 instructions.

• If a read of the CP14 DSCR returns 1 for the DTRTXfull flag, then a following write to 
the CP14 DTR is Unpredictable.

When nonblocking mode is selected for DTR accesses, the following conditions are true for 
memory-mapped DSCR, memory-mapped DTRRX, and DTRTX registers:

• If a read of the memory-mapped DSCR returns 0 for the DTRRXfull flag, then a following 
write of the memory-mapped DTRRX passes valid data to the processor and sets 
DTRRXfull to 1.

• If a read of the memory-mapped DSCR returns 1 for the DTRRXfull flag, then a following 
write of the memory-mapped DTRRX is ignored, that is, both DTRRXfull and DTRRX 
contents are unchanged.

• If a read of the memory-mapped DSCR returns 1 for the DTRTXfull flag, then a following 
read of the memory-mapped DTRTX returns valid data and clears DTRTXfull to 0.

• If a read of the memory-mapped DSCR returns 0 for the DTRTXfull flag, then a following 
read of the memory-mapped DTRTX is ignored, for example, the content of DTRTXfull 
is unchanged and the read returns an Unpredictable value.

Other uses of the DCC resources are not supported by the ARMv7 debug architecture. In 
particular, ARMv7 debug does not support the following: 
• polling CP14 DSCR[30:29] flags to access the memory-mapped DTRRX and DTRTX 

registers
• polling memory-mapped DSCR[30:29] flags to access CP14 DTR.

Note
 Using the DCC in any of the nonsupported ways can be subject to race conditions.

Software access to the DCC

Software running on the processor that sends data to the debugger through the transmit channel 
can use the following sequence of instructions as shown in Example 12-2.

Example 12-2 Transmit data transfer (target end)

; r0 -> word to send to the debugger
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WriteDCC MRC p14, 0, PC, c0, c1, 0
BCS WriteDCC
MCR p14, 0, Rd, c0, c5, 0
BX lr

Example 12-3 shows the sequence of instructions for sending data to the debugger through the 
receive channel.

Example 12-3 Receive data transfer (target end)

; r0 -> word sent by the debugger
ReadDCC MRC p14, 0, PC, c0, c1, 0

BNE ReadDCC
MRC p14, 0, Rd, c0, c5, 0
BX lr

Debugger access to the DCC

A debugger accessing the DCC through the external interface when not in debug state can use 
the pseudo-code operations as shown in this section.

Example 12-4 shows the code for transmit data transfer.

Example 12-4 Transmit data transfer (host end)

uint32 ReadDCC()
{

// Step 1. Poll DSCR until DTRTXfull is set to 1.
repeat
{

scr := ReadDebugRegister(34);
}
until (dscr & (1<<29));
// Step 2. Read the value from DTRTX.
dtr_val := ReadDebugRegister(35);

return dtr_val;
}

Example 12-5 shows the code for receive data transfer.

Example 12-5 Receive data transfer (host end)

WriteDCC(uint32 dtr_val)
{

// Step 1. Poll DSCR until DTRTXfull is cleared to 0.
repeat
{

dscr := ReadDebugRegister(34);
}
until (!(dscr & (1<<30)));
// Step 2. Write the value to DTRTX.
WriteDebugRegister(32, dtr_val);
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}

While the processor is running, if the DCC is being used as a data channel, it might be 
appropriate to poll the DCC regularly.

Example 12-6 shows the code for polling the DCC.

Example 12-6 Polling the DCC (host end)

PollDCC
{

dscr := ReadDebugRegister(34);
if (dscr & (1<<29))
{

// DTRTX (target -> host transfer register) full
dtr := ReadDebugRegister(35)
ProcessTransmitWord(dtr);

}
if (!(dscr & (1<<30)))
{

// DTRRX (host -> target transfer register) empty
dtr :=GetNextHostToTargetWord();
WriteDebugRegister(32, dtr);

}
}

12.11.2 Programming breakpoints and watchpoints

The following operations are described in this section:
• Programming simple breakpoints and the byte address select
• Setting a simple aligned watchpoint on page 12-73
• Setting a simple unaligned watchpoint on page 12-74.

Programming simple breakpoints and the byte address select

When programming a simple breakpoint, you must set the byte address select bits in the control 
register appropriately. For a breakpoint in ARM state, this is simple. For Thumb or ThumbEE, 
you must calculate the value based on the address.

For a simple breakpoint, you can program the settings for the other control bits as Table 12-58 
shows:

Table 12-58 Values to write to BCR for a simple breakpoint

Bits Value to write Description

[31:29] b000 Reserved

[28:24] b00000 Breakpoint address mask

[23] b0 Reserved

[22:20] b000 Meaning of BVR

[19:16] b0000 Linked BRP number

[15:14] b00 Secure state access control
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Example 12-7 shows the sequence of instructions for setting a simple breakpoint.

Example 12-7 Setting a simple breakpoint

SetSimpleBreakpoint(int break_num, uint32 address, iset_t isa)
{

// Step 1. Disable the breakpoint being set.
WriteDebugRegister(80 + break_num, 0x0);
// Step 2. Write address to the BVR, leaving the bottom 2 bits zero.
WriteDebugRegister(64 + break_num, address & 0xFFFFFFC);
// Step 3. Determine the byte address select value to use.
case (isa) of
{
// Note: The processor does not support Jazelle state,
// but the ARMv7 Debug architecture does

when JAZELLE:
byte_address_select := (1'b1 << (address & 3));

when THUMB, THUMBEE:
byte_address_select := (2'b11 << (address & 2));

when ARM:
byte_address_select := 4'b1111;

}
// Step 4. Write the mask and control register to enable the breakpoint.
WriteDebugRegister(80 + break_num, 3'b111 | (byte_address_select << 5));

}

Setting a simple aligned watchpoint

The simplest and most common type of watchpoint watches for a write to a given address in 
memory. In practice, a data object spans a range of addresses but is aligned to a boundary 
corresponding to its size, so you must set the byte address select bits in the same way as for a 
breakpoint.

For a simple watchpoint, you can program the settings for the other control bits as Table 12-59 
shows:

[13:9] b00000 Reserved

[8:5] Derived from address Byte address select

[4:3] b00 Reserved

[2:1] b11 Supervisor access control

[0] b1 Breakpoint enable

Table 12-59 Values to write to WCR for a simple watchpoint

Bits Value to write Description

[31:29] b000 Reserved

[28:24] b00000 Watchpoint address mask

[23:21] b000 Reserved

Table 12-58 Values to write to BCR for a simple breakpoint (continued)

Bits Value to write Description
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 12-73
ID060510 Non-Confidential



Debug 
Example 12-8 shows the code for setting a simple aligned watchpoint.

Example 12-8 Setting a simple aligned watchpoint

SetSimpleAlignedWatchpoint(int watch_num, uint32 address, int size)
{

// Step 1. Disable the watchpoint being set.
WriteDebugRegister(112 + watch_num, 0);
// (Step 2. Write address to the WVR, leaving the bottom 3 bits zero.
WriteDebugRegister(96 + watch_num, address & 0xFFFFFF8);
// Step 3. Determine the byte address select value to use.
case (size) of
{
when 1:

byte_address_select := (1'b1 << (address & 7));
when 2:

byte_address_select := (2'b11 << (address & 6));
when 4:

byte_address_select := (4'b1111 << (address & 4));
when 8:

byte_address_select := 8'b11111111;
}
// Step 4. Write the mask and control register to enable the watchpoint.
WriteDebugRegister(112 + watch_num, 5'b10111 | (byte_address_select << 5));

}

Setting a simple unaligned watchpoint

Using the byte address select bits, certain unaligned objects up to a double-word (64 bits) can 
be watched in a single watchpoint. However, not all cases can be covered and in many cases, a 
second watchpoint might be required.

[20] b0 Enable linking

[19:16] b0000 Linked BRP number

[15:14] b00 Secure state access control

[13] b0 Reserved

[12:5] Derived from address Byte address select

[4:3] b10 Load/Store access control

[2:1] b11 Privileged access control

[0] b1 Watchpoint enable

Table 12-59 Values to write to WCR for a simple watchpoint (continued)

Bits Value to write Description
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Table 12-60 shows some examples.

Example 12-9 shows the code for setting a simple unaligned watchpoint.

Example 12-9 Setting a simple unaligned watchpoint

bool SetSimpleWatchpoint(int watch_num, uint32 address, int size)
{

// Step 1. Disable the watchpoint being set.
WriteDebugRegister(112 + watch_num, 0x0);
// Step 2. Write addresses to the WVRs, leaving the bottom 3 bits zero.
WriteDebugRegister(96 + watch_num, (address & 0xFFFFFF8));
// Step 3. Determine the byte address select value to use.
byte_address_select := (1'b1 << size) - 1;
byte_address_select := (byte_address_select) << (address & 3'b111);
// Step 4. Write the mask and control register to enable the breakpoint.
WriteDebugRegister (112 + watch_num, 5'b10111 | ((byte_address_select & 0xFF) << 5));
// Step 5. Set second watchpoint if required. This is the case if the byte
// address mask is more than 8 bits.
if (byte_address_select >= 9'b100000000)
{

WriteDebugRegister(112 + watch_num + 1, 0);
WriteDebugRegister(96 + watch_num + 1, (address & 0xFFFFFF8) + 8);
WriteDebugRegister(112 + watch_num + 1 5'b10111 | ((byte_address_select & 0xFF00) >> 3));

}
// Step 6. Return flag to caller indicating if second watchpoint was used.
return (byte_address_select >= 9'b100000000)

}

12.11.3 Single-stepping

You can use the breakpoint mismatch bit to implement single-stepping on the processor. Unlike 
high-level stepping, single-stepping implements a low-level step that executes a single 
instruction at a time. With high-level stepping, the instruction is decoded to determine the 
address of the next instruction and a breakpoint is set at that address.

Table 12-60 Example byte address masks for watchpointed objects

Address 
of object

Object size 
in bytes

First address 
value

First byte address 
mask

Second address 
value

Second byte 
address mask

0x00008000 1 0x00008000 b00000001 Not required -

0x00008007 1 0x00008000 b10000000 Not required -

0x00009000 2 0x00009000 b00000011 Not required -

0x0000900c 2 0x00009000 b11000000 Not required -

0x0000900d 2 0x00009000 b10000000 0x00009008 b00000001

0x0000A000 4 0x0000A000 b00001111 Not required -

0x0000A003 4 0x0000A000 b01111000 Not required -

0x0000A005 4 0x0000A000 b11100000 0x0000A008 b00000001

0x0000B000 8 0x0000B000 b11111111 Not required -

0x0000B001 8 0x0000B000 b11111110 0x0000B008 b00000001
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Example 12-10 shows the code for single-stepping off an instruction.

Example 12-10 Single-stepping off an instruction

SingleStepOff(uint32 address)
{

bkpt := FindUnusedBreakpointWithMismatchCapability();
SetComplexBreakpoint(address, 2'b100 << 20);

}

Note
 In Example 12-10, the second parameter of SetComplexBreakpoint() indicates the value to set 
BCR[22:20].

This method of single-stepping steps off the instruction that might not necessarily be the same 
as stepping to the next instruction executed. In certain circumstances, the next instruction 
executed might be the same instruction being stepped off.

The simplest example of this is a branch to a self instruction such as (B .). In this case, the 
required behavior is most likely to step off the branch to self because this is often used as a 
means of waiting for an interrupt.

A more complex example is a return from function that returns to the same point. For example, 
a simple recursive function might terminate with:

BL ThisFunction
POP {saved_registers, pc}

In this case, the POP instruction loads a link register that is saved at the start of the function, and 
if that is the link register created by the BL instruction as shown, it points back at the POP 
instruction. Therefore, this single step code unwinds the entire call stack to the point of the 
original caller, rather than stepping out a level at a time.

Note
 It is not possible to single step this piece of code using either the high-level or low-level stepping 
method.

12.11.4 Debug state entry

On entry to debug state, the debugger must first flush the load/store unit of pending memory 
transactions so that it can flag imprecise Data Aborts. The debugger can then read the processor 
state, including all registers and the PC, and determine the cause of the exception from the 
DSCR Method of Entry bits.

Example 12-11 shows the code for entry to debug state.

Example 12-11 Entering debug state

OnEntryToDebugState(PROCESSOR_STATE *state)
{

// Step 1. Read the DSCR to determine the cause of debug entry.
state->dscr := ReadDebugRegister(34);
// Step 2. Issue a Data Synchronization Barrier instruction if required;
// this is not required by the processor but is required for ARMv7
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// debug.
if ((state->dscr & (1<<19)) == 0)
{

ExecuteARMInstruction(0xEE070F9A)
// Step 3. Poll the DSCR for DSCR[19] to be set to 1.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<19));

}
// Step 4. Read the entire processor state. The function ReadAllRegisters
//reads all general-purpose registers for all processor mode, and saves
//the data in “state”.
ReadAllRegisters(state);
// Step 5. Based on the CPSR (processor state), determine the actual restart
//address
if (state->cpsr & (1<<5);
{

// set the T bit to Thumb or ThumbEE state
state->pc := state->pc - 4;

}
elseif (state->cpsr & (1<<24))
{

// Set the J bit to Jazelle state. Note: This code is not relevant for processor
// because it does not implement Jazelle state.
state->pc := state->pc - IMPLEMENTATION DEFINED

value;
}
else
{

// ARM state
state->pc := state->pc - 8;

}
// Step 6. If the method of entry was Watchpoint Occurred, read the WFAR
// register

method_of_debug_entry := ((state->dscr >> 10) & 0xF;
if (method_of_debug_entry == 2'b0010 || method_of_debug_entry == 2'b1010)

{
state->wfar := ReadDebugRegister(6);

}
}

12.11.5 Debug state exit

When exiting debug state, the program counter must always be written. If the execution state or 
CPSR must be changed, this must be done before writing to the PC because writing to the CPSR 
can affect the PC.

Having restored the program state, the debugger can restart by writing to bit [1] of the Debug 
Run Control Register. It must then poll bit [1] of the Debug Status and Control Register to 
determine if the core has restarted.

Example 12-12 shows the code for exit from debug state.

Example 12-12 Leaving debug state

ExitDebugState(PROCESSOR_STATE *state)
{
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// Step 1. Update the CPSR value
WriteCPSR(state->cpsr);
// Step 2. Restore any registers corrupted by debug state. The function
// WriteAllRegisters restores all general-purpose registers for all
// processor modes apart from R0.
WriteAllRegisters(state);
// Step 3. Write the return address.
WritePC(state->pc);
// Step 4. Writing the PC corrupts R0 therefore, restore R0 now.
WriteRegister(0, state->r0);
// Step 5. Write the restart request bit in the DRCR.
WriteDebugRegister(36, 1<<1);
// Step 6. Poll the RESTARTED flag in the DSCR.
repeat
{

dscr := ReadDebugRegister(34);
}
until (dscr & (1<<1));

}

12.11.6 Accessing registers and memory in debug state

This section describes the following:
• Reading and writing registers through the DCC
• Reading the PC in debug state on page 12-79
• Reading the CPSR in debug state on page 12-79
• Writing the CPSR in debug state on page 12-80
• Reading memory on page 12-80
• Fast register read/write on page 12-82
• Fast memory read/write on page 12-83
• Accessing secure and nonsecure coprocessor registers on page 12-84.

Reading and writing registers through the DCC

To read a single register, the debugger can use the sequence shown in Example 12-13. This 
sequence depends on two other sequences, Executing an ARM instruction through the ITR on 
page 12-69 and Transmit data transfer (host end) on page 12-71.

Example 12-13 Reading an ARM register

uint32 ReadARMRegister(int Rd)
{

// Step 1. Execute instruction MCR p14, 0, Rd, c0, c5, 0 through the ITR.
ExecuteARMInstruction(0xEE000E15 + (Rd<<12));
// Step 2. Read the register value through DTRTX.
reg_val := ReadDCC();
return reg_val;

}

Example 12-14 shows a similar sequence for writing an ARM register.

Example 12-14 Writing an ARM register

WriteRegister(int Rd, uint32 reg_val)
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{
// Step 1. Write the register value to DTRRX.
WriteDCC(reg_val);
// Step 2. Execute instruction MRC p14, 0, Rd, c0, c5, 0 to the ITR.
ExecuteARMInstruction(0xEE100E15 + (Rd<<12));

}

Reading the PC in debug state

Example 12-15 shows the code to read the PC.

Note
 You can use a similar sequence to write to the PC to set the return address when leaving debug 
state.

Example 12-15 Reading the PC

ReadPC()
{

// Step 1. Save R0
saved_r0 := ReadRegister(0);
// Step 2. Execute the instruction MOV r0, pc through the ITR.
ExecuteARMInstruction(0xE1A0000F);
// Step 3. Read the value of r0 that now contains the PC.
pc := ReadRegister(0);
// Step 4. Restore the value of R0.
WriteRegister(0, saved_r0);
return pc;

}

Reading the CPSR in debug state

Example 12-16 shows the code for reading the CPSR.

Example 12-16 Reading the CPSR

ReadCPSR()
{

// Step 1. Save R0.
saved_r0 := ReadRegister(0);
// Step 2. Execute instruction MRS r0, CPSR through the ITR.
ExecuteARMInstruction(0xE10F0000);
// Step 3. Read the value of r0 that now contains the CPSR
cpsr_val := ReadRegister(0);
// Step 4. Restore the value of R0.
WriteRegister(0, saved_r0);
return cpsr_val;

}

Note
 You can use similar sequences to read the SPSR in privileged modes.
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Writing the CPSR in debug state

Example 12-17 shows the code for writing the CPSR.

Example 12-17 Writing the CPSR

WriteCPSR(uint32 cpsr_val)
{

// Step 1. Save R0.
saved_r0 := ReadRegister(0);
// Step 2. Write the new CPSR value to r0.
WriteRegister(0, cpsr_val);
// Step 3. Execute instruction MSR r0, CPSR through the ITR.
ExecuteARMInstruction(0xE12FF000);
// Step 4. Execute a PrefetchFlush instruction through the ITR.
ExecuteARMInstruction(9xEE070F95);
// Step 5. Restore the value of r0.
WriteRegister(0, saved_r0);

}

Reading memory

Example 12-18 shows the code for reading a byte of memory.

Example 12-18 Reading a byte of memory

uint8 ReadByte(uint32 address, bool &aborted)
{

// Step 1. Save the values of r0 and r1.
saved_r0 := ReadRegister(0);
saved_r1 := ReadRegister(1);
// Step 2. Write the address to r0.
WriteRegister(0, address);
// Step 3. Execute the instruction LDRB r1,[r0] through the ITR.
ExecuteARMInstruction(0xE5D01000);
// Step 4. Read the value of r1 that contains the data at the address.
datum := ReadRegister(1);
// Step 5. Restore the corrupted registers r0 and r1.
WriteRegister(0, saved_r0);
WriteRegister(1, saved_r1);
// Step 6. Check the DSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

}

Example 12-19 shows the code for checking for aborts after a memory access.

Example 12-19 Checking for an abort after memory access

bool CheckForAborts()
{

// Step 1. Check the DSCR for a sticky abort.
dscr := ReadDebugRegister(34);
if (dscr & ((1<<6) + (1<<7))
{

// Step 2. Clear the sticky flag by writing DRCR[2].
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WriteDebugRegister(36, 1<<2);
return true;

}
else
{

return false;
}

}

Note
 You can use similar sequence to read half-word of memory and to write to memory.

To read or write blocks of memory, substitute the data instruction with one that uses 
post-indexed addressing. For example:

LDRB r1, [r0],#1

This is done to prevent reloading the address value for each sequential word.

Example 12-20 shows the code for reading a block of bytes of memory.

Example 12-20 Reading a block of bytes of memory

ReadBytes(uint32 address, bool &aborted, uint8 *data, int nbytes)
{

// Step 1. Save the value of r0 and r1.
saved_r0 := ReadRegister(0);
saved_r1 := ReadRegister(1);
// Step 2. Write the address to r0
WriteRegister(0, address);
while (nbytes > 0)
{

// Step 3. Execute instruction LDRB r1,[r0],1 through the ITR.
ExecuteARMInstruction(0xE4D01001);

// Step 4. Read the value of r1 that contains the data at the
// address.

*data++ := ReadRegister(1);
--nbytes;

}
// Step 5. Restore the corrupted registers r0 and r1.
WriteRegister(0, saved_r0);
WriteRegister(1, saved-r1);
// Step 6. Check the DSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

}

Example 12-21 on page 12-82 shows the sequence for reading a word of memory.

Note
 A faster method is available for reading and writing words using the direct memory access 
function of the DCC. See Fast memory read/write on page 12-83.
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Example 12-21 Reading a word of memory

uint32 ReadWord(uint32 address, bool &aborted)
{

// Step 1. Save the value of r0.
saved_r0 := ReadRegister(0);
// Step 2. Write the address to r0.
WriteRegister(0, address);
// Step 3. Execute instruction STC p14, c5, [r0] through the ITR.
ExecuteARMInstruction(0xED905E00);
// Step 4. Read the value from the DTR directly.
datum := ReadDCC();
// Step 5. Restore the corrupted register r0.
WriteRegister(0, saved_r0);
// Step 6. Check the DSCR for a sticky abort.
aborted := CheckForAborts();
return datum;

}

Fast register read/write

When multiple registers must be read in succession, you can optimize the process by placing the 
DCC into stall mode and by writing the value 1 to the DCC access mode bits. For more 
information, see CP14 c1, Debug Status and Control Register on page 12-15.

Example 12-22 shows the sequence to change the DTR access mode.

Example 12-22 Changing the DTR access mode

SetDTRAccessMode(int mode)
{

// Step 1. Write the mode value to DSCR[21:20].
dscr := ReadDebugRegister(34);
dscr := (dscr & ~(0x3<<20)) | (mode<<20);
WriteDebugRegister(34, dscr);

}

Example 12-23 shows the sequence to read registers in stall mode.

Example 12-23 Reading registers in stall mode

ReadRegisterStallMode(int Rd)
{

// Step 1. Write the opcode for MCR p14, 0, Rd, c5, c0 to the ITR.
// Write stalls until the ITR is ready.
WriteDebugRegister(33, 0xEE000E15 + (Rd<<12));
// Step 2. Read the register value through the DCC. Read stalls until 
// DTRTX is ready
reg_val := ReadDebugRegister(32);
return reg_val;

}

Example 12-24 on page 12-83 shows the sequence to write registers in stall mode.
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Example 12-24 Writing registers in stall mode

WriteRegisterInStallMode(int Rd, uint32 value)
{

// Step 1. Write the value to the DTRRX.
// Write stalls until the DTRRX is ready.
WriteDebugRegister(35, value);
// Step 2. Write the opcode for MRC p14, 0, Rd, c5, c0 to the ITR.
// Write stalls until the ITR is ready.
WriteDebugRegister(33, 0xEE100E15 + (Rd<<12));

}

Note
 To transfer a register to the processor when in stall mode, you are not required to poll the DSCR 
each time an instruction is written to the ITR and a value read from or written to the DTR. The 
processor stalls using the signal PREADY until the previous instruction has completed or the 
DTR register is ready for the operation.

Fast memory read/write

This section provides example code that enable faster reads from memory by making use of the 
DTR access mode.

Example 12-25 shows the sequence for reading a block of words of memory.

Example 12-25 Reading a block of words of memory

ReadWords(uint32 address, bool &aborted, uint32 *data, int nwords)
{

// Step 1. Write the value b01 to DSCR[21:20] for stall mode.
SetDTRAccessMode(2'b01);
// Step 2. Save the value of r0.
saved_r0 := ReadRegisterInStallMode(0);
// Step 3. Write the address to read from to the DTRRX.
// Write stalls until the DTRRX is ready.
WriteRegisterInStallMode(0, address);
// Step 4. Write the opcode for LDC p14, c5, [r0], 4 to the ITR.
// Write stalls until the ITR is ready.
WriteDebugRegister(33, 0xECB05E01);
// Step 5. Write the value 2'b10 to DSCR[21:20] for fast mode.
SetDCCAccessMode(2);
// Step 6. Loop reading out the data.
// Each time a word is read from the DTRTX, the instruction is reissued.
while (nwords > 1)
{

*data++ = ReadDebugRegister(35);
--nwords;

}
// Step 7. Write the value 2'b00 to DSCR[21:20] for nonblocking mode.
SetDTRAccessMode(2’b00);
// Step 8. Need to wait for the final instruction to complete.
// If there was an abort, this will complete immediately.
do
{
dscr := ReadDebugRegister(34);
}
until (dscr & (1<<24));
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// Step 9. Check for aborts.
aborted := CheckForAborts();
// Step 10. Read the final word from the DCC.
if (!aborted) *data := ReadDCC();
// Step 11. Restore the corrupted register r0.
WriteRegister(0, saved_r0);

}

Example 12-26 shows the sequence for writing a block of words to memory.

Example 12-26 Writing a block of words to memory (fast download)

WriteWords(uint32 address, bool &aborted, uint32 *data, int nwords)
{

// Step 1. Save the value of r0.
saved_r0 := ReadRegister(0);
// Step 2. Write the value 2'b10 to DSCR[21:20] for fast mode.
SetDTRAccessMode(2b10);
// Step 3. Write the opcode for MCR p14, 0, r0, c5, c0 to the ITR.
// Write stalls until the ITR is ready but the instruction is not issued.
WriteDebugRegister(33, 0xEE000E15);
// Step 4. Write the address to read from to the DTRRX
// Write stalls until the ITR is ready, but the instruction is not reissued.
WriteDebugRegister(33, address);
// Step 5. Write the opcode for STC p14, c5, [r0], 4 to the ITR.
// Write stalls until the ITR is ready but the instruction is not issued.
WriteDebugRegister(33, 0xED803E00);
// Step 6. Loop writing the data.
// Each time a word is written to the DTR, the instruction is reissued.
while (nwords > 0)
{

WriteDebugRegister(35, *data++);
--nwords;

}
// Step 7. Write the value 2'b00 to DSCR[21:20] for normal mode.
SetDTRAccessMode(2'b00);
// Step 8. Restore the corrupted register r0.
WriteRegister(0, saved_r0);
// Step 9. Check the DSCR for a sticky abort.
aborted := CheckForAborts();

}

Note
 As the amount of data transferred increases, these functions reach an optimum performance of 
one debug register access per data word transferred.

Accessing secure and nonsecure coprocessor registers

The sequence for accessing coprocessor registers is the same as for the PC and CPSR. That is, 
you must first execute an instruction to transfer the register to an ARM register, then read the 
value back through the DTR.

Example 12-27 on page 12-85 shows the sequence for reading a coprocessor register.
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Example 12-27 Reading a coprocessor register

uint32 ReadCPReg(int CPnum, int opc1, int CRn, int CRm, int opc2)
{

// Step 1. Save R0.
saved_r0 := ReadRegister(0);
// Step 2. Execute instruction MCR p15, 0, r0, c0, c1, 0 through the ITR.
ExecuteARMInstruction(0xEE000010 + (CPnum<<8) + (opc1<<21) + (CRn<<16) + CRm + (opc2<<5));
// Step 3. Read the value of r0 that now contains the CP register.
CP15c1 := ReadRegister(0);
// Step 4. Restore the value of R0.
WriteRegister(0, saved_r0);
return CP15c1;

}

Note
 For banked CP15 registers, it might be necessary to switch security state to read the required 
coprocessor register. Switching from secure to nonsecure state is simple because you can write 
to the Secure Configuration Register (SCR) from any secure privileged mode.

Example 12-28 shows the sequence for changing from secure to nonsecure state.

Example 12-28 Changing from secure to nonsecure state

SecureToNonSecure()
{

// Step 1. Set the NS bit.
scr := ReadCPReg(15, 0, 1, 1, 0);
scr := (scr | 1);
WriteCPReg(15, 0, 1, 1, 0, scr);

}

Example 12-29 shows the sequence to change from nonsecure to secure state, however the 
processor must first be in Monitor mode.

Example 12-29 Changing from nonsecure to secure state

NonSecureToSecure()
{

// Step 1. Change the processor to Monitor mode.
saved_cpsr := ReadCPSR();
new_cpsr := (saved_cpsr & ~0x1F) | 0x16;
WriteCPSR(new_cpsr);
// Step 2. Clear the NS bit.
scr := ReadCPReg(15, 0, 1, 1, 0);
scr := (scr & ~1);
WriteCPReg(15, 0, 1, 1, 0, scr);
// Step 3. Restore the processor mode.
WriteCPSR(saved_cpsr);

}

ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 12-85
ID060510 Non-Confidential



Debug 
12.12 Debugging systems with energy management capabilities
The processor offers functionality for debugging systems with energy management capabilities. 
This section describes scenarios where the OS takes energy-saving measures when in an idle 
state.

The different measures that the OS can take to save energy during an idle state are divided into 
two groups:

Standby The OS takes measures that reduce energy consumption but maintain the 
processor state.

Power down The OS takes measures that reduce energy consumption but do not maintain the 
processor state. Recovery involves a reset of the core after the power level has 
been restored, and reinstallation of the processor state.

12.12.1 Standby

Standby is the least invasive OS energy saving state because it only implies that the core is 
unavailable. It does not clear any of the debug settings. For this case, if DBGNOCLKSTOP is 
HIGH, the processor guarantees the following:

• If the processor is in standby and a halting debug event occurs, the processor:
— leaves standby 
— retires the Wait-For-Interrupt (WFI) instruction
— enters debug state.

• The processor responds to APB accesses as if it was not in standby.

Note
 If you implement the CoreSight Debug Access Port (DAP) in your system, ARM recommends 
that the DAP CDBGPWRUPREQ output is connected to the DBGNOCLKSTOP processor 
input.

12.12.2 Emulating power down

By writing to bit [0] of the PRCR, the debugger asserts the DBGNOPWRDWN output. The 
expected usage model of this signal is that it is connected to the system power controller and 
that, when HIGH, it indicates that this controller can work in emulate mode.

If on a power-down request from the processor, the power controller is in emulate mode. It does 
not remove core or ETM power but, otherwise, it behaves exactly the same as in normal mode.

Emulating power down is ideal for debugging applications running on top of operating systems 
that are free of errors because the debug register settings are not lost on a power-down event. 
However, there are a number of disadvantages such as:

• nIRQ and nFIQ interrupts to the processor must be externally masked as part of the 
emulation to prevent them from retiring the WFI instruction from the pipeline.

• The reset controller must also be aware of this emulate mode to assert ARESETn on 
power up, rather than nPORESET. Asserting nPORESET on power up clears the debug 
registers inside the core power domain.
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• The timing effects of power down and voltage stabilization are not factored in the 
power-down emulation. This is the case for systems with voltage recovery controlled by 
a closed loop system that monitors the core supply voltage, rather than a fixed timed for 
voltage recovery.

• State lost during power down is not modeled by the emulation, making it possible to miss 
errors in the state storage and recovery routines.

• Attaching the debugger for a post-mortem debug session is not possible because setting 
the DBGNOPWRDWN signal to 1 might not cause the processor to power up. The effect 
of setting DBGNOPWRDWN to 1 when the processor is already powered down is 
implementation-defined, and is up to the system designer.

12.12.3 Detecting power down

The processor enables the debugger to detect a power-down event occurrence so it can attempt 
to restore the debug session. Power-down events are detected by the following features:

• While the core is powered down, accesses to debug registers return a slave-generated error 
response. See APB interface on page A-7 and Power down permission on page 12-10 for 
more information.

• If the processor powers back up again before the debugger had a chance to access the APB 
interface, the debugger can still detect the occurrence of a power-down event. This is 
because the sticky power down status bit forces the processor to generate a 
slave-generated error response. See Device Power Down and Reset Status Register on 
page 12-36 for more details on the sticky power down bit.

12.12.4 Operating system support

The OS Save and Restore Registers enable an operating system to save the debug registers 
before power down and to recover them after power up. The debugger and the debug monitor 
are prevented from accessing the debug registers from the time the OS starts saving the registers 
through power down, until they are restored after power up. This behavior minimizes the 
possibility of race conditions and therefore, increases the chances that the debug agent is able 
to resynchronize successfully after the OS completes the restore.

Example 12-30 shows the sequence on power down of an operating system.

Example 12-30 OS debug register save sequence

; On entry, r0 points to a block of memory to save the debug registers.
SaveDebugRegisters

PUSH {r4, lr}
MOV r4, r0 ; save pointer

; Step 1. Set the OS Lock Access Register (OSLAR).
BL GetDebugRegisterBase ; returns base in R0
LDR r1, =0xC5ACCE55
STR r1, [r0, 0x300] ; write OSLAR

; Step 2. Get the number of words to save.
LDR r1, [r0, 0x308] ; OSSRR returns size on first read

; Step 3. Loop reading words from the OSSRR.
1 LDR r2, [r0, 0x308] ; load a word of data

STR r2, [r4], 4 ; push onto the save stack
SUBS r1, r1, 1
BNE%B1 ; loop

; Step 4. Return the pointer to the first word not written and
; leave the OSLAR set because no further changes are required.
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MOV r0, r4
POP {r4, pc}

Example 12-31 shows the sequence on power up of an operating system.

Example 12-31 OS debug register restore sequence

; On entry, r0 points to a block of saved debug registers.
RestoreDebugRegisters

PUSH {r4, lr}
MOV r4, r0 ; save pointer

; Step 1. Get the number of words saved.
BL GetDebugRegisterBase ; returns base in R0
LDR r1, [r0, 0x308] ; OSSRR returns size on first read

; Step 2. Loop writing words from the OSSRR.
1 LDR r2, [r4], 4 ; load a word from the save stack

STR r2, [r0, 0x308] ; store a word of data
SUBS r1, r1, 1
BNE%B1 ; loop

; Step 3. Clear the OS Lock Access Register (OSLAR).
LDR r1, =0xC5ACCE55
STR r1, [r0, 0x300] ; write OSLAR

; Step 4. Return the pointer to the first word not written.
MOV r0, r4
POP {r4, pc}

Note
 When the OSLAR is cleared, a debug event is triggered if the OS unlock catch bit is set to 1. 
This can be useful for a debugger to restart a debugging session.

12.12.5 Registers available during power down

Some debug registers reside in the debug power domain so they can be available while the core 
is powered down. This register set is chosen so the debugger can identify the part at any time 
and debug the OS power-up sequence.

12.12.6 Scenarios and usage models

This section describes the different debugging scenarios for systems with energy management 
capabilities along with a description of how the debug features help with those.

Application debug on a stable OS 
For this system, set the DBGNOPWRDWN signal to 1 to emulate power down.

Application debug on an OS with save and restore capability 
For this system, application debug is possible without power-down emulation if 
the OS supports storing and recovering of the debug registers. This is useful in 
systems where either:
• the save and restore capability is already implemented in the OS
• power-down emulation is undesirable because it makes it difficult to 

reproduce the error
• the system design does not support the power-down emulation.
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Note
 The debugger or debug monitor can program the debug logic to trigger a debug 

event on clearing of the OS lock.

Debugging of the power-up sequence 
When debugging the OS power-up sequence:
• The processor can be identified while the core is powered down.
• The internal signal ARESETn can be held on power up. If bit [2] of the 

PRCR is set to 1, the nondebug logic of the processor is held in reset on 
power up. When this bit is set to 1, it enables the debugger to wait for the 
power-up event to occur, reprogram the debug registers, and start execution 
by clearing this bit to 0.

• The EDBGRQ or DRCR[0] halting debug events can be set to 1 at any 
point in time, even if the core is powered down.

• The debugger can set PRCR[2] to 1, wait for the power-up event to occur, 
assert EDBGRQ or DRCR[0], and clear the PRCR[2] bit to 0 for the 
processor to enter debug state on executing the first instruction. This 
enables single-stepping of the power-up sequence.

When the debugger detects a slave-generated error response, it indicates that one of the 
following is true:

• the debug registers are not available because the core is powered down

• the debug registers are not available because the OS locks the APB interface

• the debug registers are available but the error response warns that a previous power-down 
event cleared them, that is, the sticky power down bit is set to 1.
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Chapter 13 
NEON and VFP Programmers Model

This chapter describes the NEON and VFP programmers model. It contains the following sections:
• About the NEON and VFP programmers model on page 13-2
• General-purpose registers on page 13-3
• Short vectors on page 13-5
• System registers on page 13-10
• Modes of operation on page 13-16
• Compliance with the IEEE 754 standard on page 13-17.
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13.1 About the NEON and VFP programmers model
The processor implements both the ARM Advanced SIMD and VFPv3 architectures. See the 
ARM Architecture Reference Manual for information on the Advanced SIMD and VFPv3 
instruction sets.

Note
 This chapter uses the older assembler language instruction mnemonics. See Appendix B 
Instruction Mnemonics for information about the Unified Assembler Language (UAL) 
equivalents of the Advanced SIMD and VFP data-processing instruction mnemonics. See the 
ARM Architecture Reference Manual for more information on the UAL syntax.

13.1.1 NEON media coprocessor

The NEON coprocessor implements the Advanced SIMD media processing architecture. 
Advanced SIMD is an optional part of the ARMv7-A architecture. The components of the 
NEON coprocessor are:

• NEON register file with 32x64-bit general-purpose registers

• NEON integer execute pipeline (ALU, Shift, MAC)

• NEON dual, single-precision floating-point execute pipeline (FADD, FMUL)

• NEON load/store and permute pipeline

• nonpipelined VFP coprocessor that implements VFPv3 data-processing floating-point 
operations.

The NEON coprocessor can receive up to two valid Advanced SIMD instructions per cycle from 
the ARM integer instruction execute unit. In addition, it can receive 32-bit MCR data from or 
send 32-bit MRC data to the ARM integer instruction execute unit.

The NEON coprocessor can load data from either the L1 data cache or the L2 memory system. 
Enable L1 data caching for best performance of the NEON coprocessor when the L2 memory 
system is off or not present. See c1, Auxiliary Control Register on page 3-47.

13.1.2 VFP coprocessor

The VFP coprocessor implements the VFPv3 architecture. The VFP coprocessor provides a 
floating-point computation coprocessor that is fully compliant with the ANSI/IEEE Std 
754-1985, IEEE Standard for Binary Floating-Point Arithmetic, referred to in this document as 
the IEEE 754 standard. The VFP coprocessor supports all data-processing instructions and data 
types in the VFPv3 architecture and is described in the ARM Architecture Reference Manual.

Designed for the processor, the VFP coprocessor fully supports single-precision and 
double-precision add, subtract, multiply, divide, multiply and accumulate, and square root 
operations. Conversions between fixed-point and floating-point data formats, and floating-point 
constant instruction are provided.
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13.2 General-purpose registers
The NEON and VFP coprocessor shares the same register bank. This is distinct from the ARM 
register bank.

You can reference the NEON and VFP register bank using three explicitly aliased views, as 
described in the following sections.

Figure 13-1 shows the three views of the register bank and the way the word, doubleword, and 
quadword registers overlap.

13.2.1 NEON views of the register bank

NEON views the register bank as:
• Sixteen 128-bit quadword registers, Q0-Q15.
• Thirty-two 64-bit doubleword registers, D0-D31. This view is also available in VFP.
• A combination of these 128-bit and 64-bit registers, Q0-Q15 and D0-D31.

13.2.2 VFP views of the register bank

In VFP, you can view the register bank as:

• Thirty-two 64-bit doubleword registers, D0-D31. This view is also available in NEON.

• Thirty-two 32-bit single word registers, S0-S31. Only half of the register bank is accessible 
in this view.

• A combination of these 128-bit and 64-bit registers, D0-D31 and S0-S31.

Figure 13-1 NEON and VFP register bank

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>
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• S<2n+1> maps to the most significant half of D<n>
• D<2n> maps to the least significant half of Q<n>
• D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by 
referring to D12, and the most significant half of the elements by referring to D13.
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13.3 Short vectors
The VFPv3 architecture supports execution of short vector instructions of up to eight operations 
on single-precision data and up to four operations on double-precision data.

The register file is especially suited for short vector operations. The four single-precision and 
eight double-precision register banks function as four hardware circular queues.

13.3.1 About register banks

As Figure 13-2 on page 13-6 shows, the register file is divided into four banks with eight 
registers in each bank for single-precision instructions and eight banks with four registers per 
bank for double-precision instructions. CDP instructions access the banks in a circular manner. 
Load and store multiple instructions do not access the registers in a circular manner but treat the 
register file as a linearly ordered structure.

The VFPv3 architecture adds 16 double-precision registers, making use of the additional 
register addressing bits currently used to specify single-precision registers. The first 16 
registers, D0 through D15, in the NEON register file provides the same functionality as the 
register file defined in the VFPv2 architecture. VFPv3 adds 16 new double-precision registers, 
D16 through D31, which provides a second set of 16 double-precision registers. These registers 
behave in vector mode in an identical manner to the lower 16 registers, with bank 4 specified as 
registers D16-D19, bank 5 specified as registers D20-D23, bank 6 specified as registers 
D24-D27, and bank 7 specified as D28-D31. Bank 4 of the second set of registers has the same 
characteristics when used in short vector instructions as bank 0 of the first set of registers.

Short vector operations on double-precision data support vector lengths of two through four 
iterations. The additional registers provides the capability to double-buffer double-precision 
operations in a similar way as is available for single-precision operations.

See the ARM Architecture Reference Manual for more information on VFP addressing modes.
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Figure 13-2 Register banks

A short vector CDP operation that has a source or destination vector crossing a bank boundary 
wraps around and accesses the first register in the bank.

Example 13-1 shows the iterations of the following short vector add instruction: 

FADDS S11, S22, S31

In this instruction, the LEN field contains b101, selecting a vector length of six iterations, and 
the STRIDE field contains b00, selecting a vector stride of one.

See Floating-Point Status and Control Register, FPSCR on page 13-12 for details of the LEN 
and STRIDE fields and the FPSCR Register.

Example 13-1 Register bank wrapping

FADDS S11, S22, S31 ; 1st iteration
FADDS S12, S23, S24 ; 2nd iteration. The 2nd source vector wraps around

; and accesses the 1st register in the 4th bank
FADDS S13, S16, S25 ; 3rd iteration. The 1st source vector wraps around

; and accesses the 1st register in the 3rd bank
FADDS S14, S17, S26 ; 4th iteration
FADDS S15, S18, S27 ; 5th iteration
FADDS S8, S19, S28 ; 6th and last iteration. The destination vector

; wraps around and writes to the 1st register in the
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; 2nd bank

13.3.2 Operations using register banks

The register file organization supports four types of operations described in the following 
sections:
• Scalar-only instructions
• Short vector-only instructions
• Short vector instructions with scalar source on page 13-8
• Scalar instructions in short vector mode on page 13-8.

Scalar-only instructions

An instruction is a scalar-only operation if the operands are treated as scalars and the result is a 
scalar. 

Clearing the LEN field in the FPSCR Register selects a vector length of one iteration. For 
example, if the LEN field contains b000, then the following operation writes the sum of the 
single-precision values in S21 and S22 to S12:

FADDS S12, S21, S22

Some instructions can operate only on scalar data regardless of the value in the LEN field. These 
instructions are:

Compare operations 
FCMPS/D, FCMPZS/D, FCMPES/D, and FCMPEZS/D.

Integer conversions 
FTOUIS/D, FTOUIZS/D, FTOSIS/D, FTOSIZS/D, FUITOS/D, and FSITOS/D.

Precision conversions 
FCVTDS and FCVTSD.

Fixed-point instructions 
FSHTOS/D, FSCTOS/D, FUHTOS/D, FULTOS/D, FTOSHS/D, FTOSLS/D, FTOUHS/D, and 
FTOULS/D.

Short vector-only instructions

Vector-only instructions require that the value in the LEN field is nonzero, and that the 
destination and Fm registers are not in bank 0. 

Example 13-2 shows the iterations of the following short vector instruction:

FMACS S16, S0, S8

In the example, the LEN field contains b011, selecting a vector length of four iterations, and the 
STRIDE field contains b00, selecting a vector stride of one.

Example 13-2 Short vector instruction

FMACS S16, S0, S8 ; 1st iteration
FMACS S17, S1, S9 ; 2nd iteration
FMACS S18, S2, S10 ; 3rd iteration
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FMACS S19, S3, S11 ; 4th and last iteration

Short vector instructions with scalar source

The VFPv3 architecture enables a vector to be operated on by a scalar operand. The destination 
must be a vector, that is, not in bank 0, and the Fm operand must be in bank 0.

Example 13-3 shows the iterations of the following short vector instruction with a scalar source:

FMULD D12, D8, D2

In the example, the LEN field contains b001, selecting a vector length of two iterations, and the 
STRIDE field contains b00, selecting a vector stride of one.

Example 13-3 Short vector instruction with scalar source

FMULD D12, D8, D2 ; 1st iteration
FMULD D13, D9, D2 ; 2nd and last iteration

This scales the two source registers, D8 and D9, by the value in D2 and writes the new values 
to D12 and D13.

Scalar instructions in short vector mode

You can mix scalar and short vector operations by carefully selecting the source and destination 
registers. If the destination is in bank 0 or bank 4, the operation is scalar-only regardless of the 
value in the LEN field. You do not have to change the LEN field from a nonzero value to b000 
to perform scalar operations.

Example 13-4 shows the sequence of operations for the following instructions:

FABSD D4, D8
FADDS S0, S0, S31
FMULS S24, S26, S1

In the example, the LEN field contains b001, selecting a vector length of two iterations, and the 
STRIDE field contains b00, selecting a vector stride of one.

Example 13-4 Scalar operation in short vector mode

FABSD D4, D8 ; vector DP ABS operation on regs (D8, D9) to (D4, D5)
FABSD D5, D9
FADDS S0, S0, S31 ; scalar increment of S0 by S31
FMULS S24, S26, S1 ; vector (S26, S27) scaled by S1 and written to (S24, S25)
FMULS S25, S27, S1
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The tables that follow show the four types of operations possible in the VFPv3 architecture. In 
the tables, Any refers to the availability of all registers in the precision for the specified operand. 
S refers to a scalar operand with only a single register. V refers to a vector operand with multiple 
registers. Table 13-1 describes single-precision three-operand register usage.

Table 13-2 describes single-precision two-operand register usage.

Table 13-3 describes double-precision three-operand register usage.

Table 13-4 describes double-precision two-operand register usage.

Table 13-1 Single-precision three-operand register usage

LEN field Fd Fn Fm Operation type

b000 Any Any Any S = S op S OR S = S S S

Nonzero 0-7 Any Any S = S op S OR S = S S S

Nonzero 8-31 Any 0-7 V = V op S OR V = V V S

Nonzero 8-31 Any 8-31 V = V op V OR V = V V V

Table 13-2 Single-precision two-operand register usage

LEN field Fd Fm Operation type

b000 Any Any S = op S

Nonzero 0-7 Any S = op S

Nonzero 8-31 0-7 V = op S

Nonzero 8-31 8-31 V = op V

Table 13-3 Double-precision three-operand register usage

LEN field Fd Fn Fm Operation type

b000 Any Any Any S = S op S OR S = S S S

Nonzero 0-3, 16-19 Any Any S = S op S OR S = S S S

Nonzero 4-15 Any 0-3 V = V op S OR V = V V S

Nonzero 4-15 Any 4-15 V = V op V OR V = V V V

Table 13-4 Double-precision two-operand register usage

LEN field Fd Fm Operation type

b000 Any Any S = op S

Nonzero 0-3, 16-19 Any S = op S

Nonzero 4-15, 20-31 0-3 V = op S

Nonzero 4-15, 20-31 4-15 V = op V
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13.4 System registers
The VFPv3 architecture describes the following system registers:
• Floating-Point System ID Register, FPSID on page 13-11
• Floating-Point Status and Control Register, FPSCR on page 13-12
• Floating-point Exception Register, FPEXC on page 13-14
• Media and VFP Feature Registers, MVFR0 and MVFR1 on page 13-14.

Table 13-5 shows the NEON and VFP system registers. 

Note
 The FPSID, MVFR0, and MVFR1 Registers are read-only. Attempts to write these registers are 
ignored.

Table 13-6 shows the processor modes for accessing the NEON and VFP system registers.

Table 13-6 shows that a privileged mode is sometimes required to access a NEON and VFP 
system register. When a privileged mode is required, an instruction that tries to access a register 
in a nonprivileged mode takes the Undefined Instruction trap.

For a NEON or VFP system register to be accessible, it must follow the rules in Table 13-6 and 
it must also be accessible by the Coprocessor Access Control Register and the Nonsecure 
Access Control Register. See c1, Coprocessor Access Control Register on page 3-52 and c1, 
Nonsecure Access Control Register on page 3-56 for more information.

Table 13-5 NEON and VFP system registers

Register FMXR/FMRX <reg> field Access type Reset state

Floating-Point System ID Register, FPSID b0000 Read-only 0x410330c3

Floating-Point Status and Control Register, FPSCR b0001 Read/write 0x00000000

Floating-Point Exception Register, FPEXC b1000 Read/write 0x00000000

Media and VFP Feature Register 0, MVFR0 b0111 Read-only 0x11110222

Media and VFP Feature Register 1, MVFR1 b0110 Read-only 0x00011111

Table 13-6 Accessing NEON and VFP system registers

Register
Privileged access User access

FPEXC.EN=0 FPEXC.EN=1 FPEXC.EN=0 FPEXC.EN=1

FPSID Permitted Permitted Not permitted Not permitted

FPSCR Not permitted Permitted Not permitted Permitted

MVFR0, MVFR1 Permitted Permitted Not permitted Not permitted

FPEXC Permitted Permitted Not permitted Not permitted
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Note
 All hardware ID information is now privileged access only.

FPSID is privileged access only 
This is a change in VFPv3. In VFPv2 implementation, the FPSID register can be 
accessed in all modes.

MVFR registers are privileged access only 
User code must issue a system call to determine what features are supported.

The following sections describe the NEON and VFP system registers:
• Floating-Point System ID Register, FPSID
• Floating-Point Status and Control Register, FPSCR on page 13-12
• Floating-point Exception Register, FPEXC on page 13-14
• Media and VFP Feature Registers, MVFR0 and MVFR1 on page 13-14.

13.4.1 Floating-Point System ID Register, FPSID

The FPSID Register is a read-only register that must be accessed in privileged mode only. It 
indicates which NEON and VFP implementation is being used.

Figure 13-3 shows the bit arrangement of the FPSID Register.

Figure 13-3 Floating-Point System ID Register format

Table 13-7 shows how the bit values correspond with the FPSID Register functions.

HW

Sub architecture Variant Revision

4

Implementor Part number

31 24 23 22 16 15 8 7 4 3 0

Table 13-7 FPSID Register bit functions

Bits Field Function

[31:24] Implementor ARM:
0x41 = A

[23] Hardware or software 0 = hardware implementation

[22:16] Sub architecture version The Null VFP sub-architecture:
0x03

[15:8] Part number VFP:
0x30

[7:4] Variant VFP interface:
0xC

[3:0] Revision Version:
0x3
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13.4.2 Floating-Point Status and Control Register, FPSCR

FPSCR is a read/write register that can be accessed in both privileged and unprivileged modes. 
All bits described as DNM in Figure 13-4 are reserved for future expansion. They must be 
initialized to zeros. To ensure that these bits are not modified, code other than initialization code 
must use read/modify/write techniques when writing to FPSCR. Failure to observe this rule can 
cause Unpredictable results in future systems.

Figure 13-4 shows the bit arrangement of the FPSCR Register.

Figure 13-4 Floating-Point Status and Control Register format

Table 13-8 shows how the bit values correspond with the FPSCR Register functions.

IXC

IDC

DNMDNM

Reserved

LEN

DNM

N Z C V

UFC

OFC

DZC

IOC

QC

RMODE

STRIDE

DN

FZ

DNM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Table 13-8 FPSCR Register bit functions

Bits Field Function

[31] N Set if comparison produces a less than result

[30] Z Set if comparison produces an equal result

[29] C Set if comparison produces an equal, greater than, or unordered result

[28] V Set if comparison produces an unordered result

[27] QC Saturation cumulative flag

[26] DNM Do Not Modify

[25] DN Default NaN mode enable bit: 0 = default NaN mode disabled 1 = 
default NaN mode enabled.

[24] FZ Flush-to-zero mode enable bit: 0 = flush-to-zero mode disabled 1 = 
flush-to-zero mode enabled.

[23:22] RMODE Rounding mode control field: b00 = round to nearest (RN) mod b01 = 
round towards plus infinity (RP) mode b10 = round towards minus 
infinity (RM) mode b11 = round towards zero (RZ) mode.

[21:20] STRIDE See Vector length and stride control on page 13-13

[19] DNM Do Not Modify

[18:16] LEN See Vector length and stride control on page 13-13

[15] - Reserved, RAZ/SBZP 

[14:13] DNM Do Not Modify
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Vector length and stride control

FPSCR[18:16] is the LEN field and controls the vector length for VFP instructions that operate 
on short vectors. The vector length is the number of iterations in a short vector instruction. 

FPSCR[21:20] is the STRIDE field and controls the vector stride. The vector stride is the 
increment value used to select the registers involved in the next iteration of the short vector 
instruction.

The rules for vector operation do not allow a vector to use the same register more than once. 
LEN and STRIDE combinations that use a register more than once produce Unpredictable 
results, as Table 13-9 shows. Some combinations that work normally in single-precision short 
vector instructions cause Unpredictable results in double-precision instructions. 

[12:8] - Reserved, RAZ/SBZP 

[7] IDC Input Subnormal cumulative flag

[6:5] DNM Do Not Modify

[4] IXC Inexact cumulative flag

[3] UFC Underflow cumulative flag

[2] OFC Overflow cumulative flag

[1] DZC Division by Zero cumulative flag

[0] IOC Invalid Operation cumulative flag

Table 13-9 Vector length and stride combinations

LEN Vector 
length STRIDE Vector 

stride
Single-precision 
vector instructions

Double-precision 
vector instructions

b000 1 b00 - All instructions are scalar All instructions are scalar

b000 1 b11 - Unpredictable Unpredictable

b001 2 b00 1 Work normally Work normally

b001 2 b11 2 Work normally Work normally

b010 3 b00 1 Work normally Work normally

b010 3 b11 2 Work normally Unpredictable

b011 4 b00 1 Work normally Work normally

b011 4 b11 2 Work normally Unpredictable

b100 5 b00 1 Work normally Unpredictable

b100 5 b11 2 Unpredictable Unpredictable

b101 6 b00 1 Work normally Unpredictable

b101 6 b11 2 Unpredictable Unpredictable

b110 7 b00 1 Work normally Unpredictable

Table 13-8 FPSCR Register bit functions (continued)

Bits Field Function
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13.4.3 Floating-point Exception Register, FPEXC

The FPEXC Register is accessible in privileged modes only.

The EN bit, FPEXC[30], is the NEON and VFP enable bit. Clearing EN disables the NEON and 
VFP coprocessor. The EN bit is cleared to 0 on reset.

Figure 13-5 shows the bit arrangement of the FPEXC Register.

Figure 13-5 Floating-Point Exception Register format

Table 13-10 shows how the bit values correspond with the FPEXC Register functions.

13.4.4 Media and VFP Feature Registers, MVFR0 and MVFR1

The Media and VFP Feature Registers, MVFR0 and MVFR1, describe the features supported 
by the NEON and VFP coprocessor. These registers are accessible in privileged modes only.

Figure 13-6 shows the bit arrangement of the MVFR0 Register.

Figure 13-6 MVFR0 Register format

b110 7 b11 2 Unpredictable Unpredictable

b111 8 b00 1 Work normally Unpredictable

b111 8 b11 2 Unpredictable Unpredictable

Table 13-9 Vector length and stride combinations (continued)

LEN Vector 
length STRIDE Vector 

stride
Single-precision 
vector instructions

Double-precision 
vector instructions

EX
EN

Reserved

31 30 29 0

Table 13-10 Floating-Point Exception Register bit functions

Bits Field Function

[31] EX Exception bit. This bit specifies how much information must be saved to record the state of the 
Advanced SIMD and VFP system. See the ARM Architecture Reference Manual, ARMv7-A and 
ARMv7-R edition.

[30] EN NEON and VFP enable bit. Setting the EN bit to 1 enables the NEON and VFP coprocessor. Reset 
clears EN to 0.

[29:0] - Reserved.

RBSVRM TE SPSR D DP

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
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Table 13-11 shows how the bit values correspond with the MVFR0 Register functions.

Figure 13-7 shows the bit arrangement of the MVFR1 Register.

Figure 13-7 MVFR1 Register format

Table 13-12 shows how the bit values correspond with the MVFR1 Register.

Table 13-11 MVFR0 Register bit functions

Bits Field Function

[31:28] RM All VFP rounding modes supported:
0x1

[27:24] SV VFP short vector supported:
0x1

[23:20] SR VFP hardware square root supported:
0x1

[19:16] D VFP hardware divide supported:
0x1

[15:12] TE Only untrapped exception handling can be selected:
0x0

[11:8] DP Double precision supported in VFPv3:
0x2

[7:4] SP Single precision supported in VFPv3:
0x2

[3:0] RB 32x64-bit media register bank supported:
0x2

FZReserved I DNSP LS

31 20 19 16 15 12 11 8 7 4 3 0

Table 13-12 MVFR1 Register bit functions

Bits Field Function

[31:20] - Reserved

[19:16] SP Single precision floating-point instructions supported for NEON:
0x1

[15:12] I Integer instructions supported for NEON:
0x1

[11:8] LS Load/store instructions supported for NEON:
0x1

[7:4] DN Propagation of NaN values supported for VFP:
0x1

[3:0] FZ Full denormal arithmetic supported for VFP:
0x1
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13.5 Modes of operation
To accommodate a variety of applications, the VFP coprocessor provides four modes of 
operation: 
• Full-compliance mode
• Flush-to-zero mode
• Default NaN mode
• RunFast mode.

13.5.1 Full-compliance mode

When the VFP coprocessor is in full-compliance mode, all operations are processed according 
to the IEEE 754 standard in hardware.

13.5.2 Flush-to-zero mode

Setting the FZ bit, FPSCR[24], enables flush-to-zero mode and increases performance on very 
small inputs and results. In flush-to-zero mode, the VFP coprocessor treats all subnormal input 
operands of arithmetic CDP operations as zeros in the operation. Exceptions that result from a 
zero operand are signaled appropriately. FABS, FNEG, and FCPY are not considered arithmetic 
CDP operations and are not affected by flush-to-zero mode. A result that is tiny, as described in 
the IEEE 754 standard, for the destination precision is smaller in magnitude than the minimum 
normal value before rounding and is replaced with a zero. The IDC flag, FPSCR[7], indicates 
when an input flush occurs. The UFC flag, FPSCR[3], indicates when a result flush occurs. 

13.5.3 Default NaN mode

Setting the DN bit, FPSCR[25], enables default NaN mode. In default NaN mode, the result of 
any operation that involves an input NaN or generated a NaN result returns the default NaN. 
Propagation of the fraction bits is maintained only by FABS, FNEG, and FCPY operations, all 
other CDP operations ignore any information in the fraction bits of an input NaN.

13.5.4 RunFast mode

RunFast mode is the combination of the following conditions:
• the VFP coprocessor is in flush-to-zero mode
• the VFP coprocessor is in default NaN mode
• all exception enable bits are cleared to 0.

In RunFast mode the VFP coprocessor:

• processes subnormal input operands as zeros

• processes results that are tiny before rounding, that is, between the positive and negative 
minimum normal values for the destination precision, as zeros

• processes input NaNs as default NaNs 

• returns the default result specified by the IEEE 754 standard for overflow, division by 
zero, invalid operation, or inexact operation conditions fully in hardware and without 
additional latency.
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13.6 Compliance with the IEEE 754 standard
The VFP coprocessor is fully compliant with the IEEE 754 standard in hardware, no support 
code is required to achieve this compliance.

See the ARM Architecture Reference Manual for information about VFP architectural 
compliance with the IEEE 754 standard.

13.6.1 Complete implementation of the IEEE 754 standard

The following operations from the IEEE 754 standard are not supplied by the VFP instruction 
set:
• remainder
• round floating-point number to integer-valued floating-point number
• binary-to-decimal conversions
• decimal-to-binary conversions
• direct comparison of single-precision and double-precision values. 

For complete implementation of the IEEE 754 standard, the VFP coprocessor must be 
augmented with library functions that implement these operations. See Application Note 98, 
VFP Support Code for details of the available library functions.

13.6.2 IEEE 754 standard implementation choices

Some of the implementation choices permitted by the IEEE 754 standard and used in the VFPv3 
architecture are described in the ARM Architecture Reference Manual. 

NaN handling

Any single-precision or double-precision values with the maximum exponent field value and a 
nonzero fraction field are valid NaNs. A most significant fraction bit of zero indicates a 
Signaling NaN (SNaN). A one indicates a Quiet NaN (QNaN). Two NaN values are treated as 
different NaNs if they differ in any bit. Table 13-13 shows the default NaN values in both single 
and double precision.

Any SNaN passed as input to an operation causes an Invalid Operation exception and sets the 
IOC flag, FPSCR[0], to 1. A default QNaN is written to the destination register. The rules for 
cases involving multiple NaN operands are in the ARM Architecture Reference Manual.

Processing of input NaNs for ARM floating-point coprocessors and libraries is defined as 
follows:

• In full-compliance mode, NaNs are handled according to the ARM Architecture Reference 
Manual. The hardware processes the NaNs directly for arithmetic CDP instructions. For 
data transfer operations, NaNs are transferred without raising the Invalid Operation 

Table 13-13 Default NaN values

Single-precision Double-precision

Sign 0 0

Exponent 0xFF 0x7FF

Fraction bit [22] = 1 bits [21:0] are all zeros bit [51] = 1 bits [50:0] are all zeros
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exception. For the non-arithmetic CDP instructions, FABS, FNEG, and FCPY, NaNs are 
copied, with a change of sign if specified in the instructions, without causing the Invalid 
Operation exception. 

• In default NaN mode, NaNs are handled completely within the hardware. SNaNs in an 
arithmetic CDP operation set the IOC flag, FPSCR[0], to 1. NaN handling by data transfer 
and non-arithmetic CDP instructions is the same as in full-compliance mode. Arithmetic 
CDP instructions involving NaN operands return the default NaN regardless of the 
fractions of any NaN operands. 

Table 13-14 summarizes the effects of NaN operands on instruction execution.

Comparisons

Comparison results modify condition code flags in the FPSCR Register. The FMSTAT 
instruction transfers the current condition code flags in the FPSCR Register to the CPSR 
Register. See the ARM Architecture Reference Manual for more information. The condition 
code flags used are chosen so that subsequent conditional execution of ARM instructions can 
test the predicates defined in the IEEE 754 standard.

The VFP coprocessor handles all comparisons of numeric and reserved values in hardware, 
generating the appropriate condition code depending on whether the result is less than, equal to, 
or greater than.

The VFP coprocessor supports: 

Compare operations 
The compare operations are FCMPS, FCMPZS, FCMPD, and FCMPZD. 
A compare instruction involving a QNaN produces an unordered result. An SNaN 
produces an unordered result and generates an Invalid Operation exception.

Compare with exception operations 
The compare with exception operations are FCMPES, FCMPEZS, FCMPED, and FCMPEZD. 

Table 13-14 QNaN and SNaN handling

Instruction 
type

Default 
NaN 
mode

With QNaN operand With SNaN operand

Arithmetic CDP

Off The QNaN or one of the QNaN operands, if 
there is more than one, is returned 
according to the rules given in the ARM 
Architecture Reference Manual.

IOCa set to 1. The SNaN is quieted and the 
result NaN is determined by the rules given 
in the ARM Architecture Reference 
Manual.

On Default NaN returns. IOC set to 1. Default NaN returns.

Non-arithmetic 
CDP

Off
NaN passes to destination with sign changed as appropriate.

On

FCMP(Z) - Unordered compare. IOC set to 1. Unordered compare.

FCMPE(Z) - IOC set to 1. Unordered compare. IOC set to 1. Unordered compare.

Load/store
Off

All NaNs transferred.
On

a. IOC is the Invalid Operation exception flag, FPSCR[0].
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A compare with exception operation involving either an SNaN or a QNaN 
produces an unordered result and generates an Invalid Operation exception.

Underflow

In the generation of Underflow exceptions, the before rounding form of tininess and the inexact 
result form of loss of accuracy as described in the IEEE 754 standard, are used.

In flush-to-zero mode, results that are tiny before rounding, as described in the IEEE 754 
standard, are flushed to a zero, and the UFC flag, FPSCR[3], is set to 1. See the ARM 
Architecture Reference Manual for information on flush-to-zero mode.

When the VFP coprocessor is not in flush-to-zero mode, operations are performed on subnormal 
operands. If the operation does not produce a tiny result, it returns the computed result, and the 
UFC flag, FPSCR[3], is not set to 1. The IXC flag, FPSCR[4], is set to 1 if the operation is 
inexact. If the operation produces a tiny result, the result is a subnormal or zero value, and the 
UFC flag, FPSCR[3], is set to 1.

Exceptions

The VFP coprocessor implements the VFPv3 architecture and sets all exception status bits in 
the FPSCR register as required for each instruction. The VFP coprocessor does not support 
user-mode traps. The VFP coprocessor ignores exception enable bits in the FPSCR register. 
FPSCR bits [15, 12:8] are read-only and read-as-zero. Writes to these enable bits are ignored.
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Chapter 14 
Embedded Trace Macrocell

This chapter describes the ETM. It contains the following sections:
• About the ETM on page 14-2
• ETM configuration on page 14-5
• ETM register summary on page 14-6
• ETM register descriptions on page 14-7
• Precision of TraceEnable and ViewData on page 14-17
• Exact match bit on page 14-19
• Context ID tracing on page 14-20
• Instrumentation instructions on page 14-21
• Idle state control on page 14-22
• Interaction with the Performance Monitoring Unit on page 14-23.
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14.1 About the ETM

The ETM is a CoreSight™component designed for use with the CoreSight Design Kit. CoreSight 
is the ARM extensible, system-wide debug and trace architecture. The Cortex-A8 processor 
implements the ETM architecture v3.3.

For more information about CoreSight and ETM functionality, see the Embedded Trace 
Macrocell Architecture Specification and the CoreSight documentation listed in Additional 
reading on page xxiv.

14.1.1 ETM features

The ETM has the following main features:

Core interface module 
The core interface module monitors the behavior of the processor.

Trace generation 
The ETM generates a real-time trace that can be configured to include:
• instruction tracing containing:

— the addresses of executed instructions
— passed or failed condition codes of the instructions
— information about exceptions
— context IDs.

• data address tracing containing the addresses of data transfers as viewed by 
the ARM architecture.

Note
 The Cortex-A8 ETM does not support tracing of data values.

Filtering and triggering resources 
You can filter the ETM trace such as configuring it to trace only instructions or 
data transfers in certain address ranges. You can also configure the ETM to filter 
based on the values of data transfers even though these cannot be traced. More 
complicated logic analyzer style filtering options are also available.
The ETM can also generate a trigger that is a signal to the trace capture device to 
stop capturing trace.

Main FIFO The trace generated by ETM is in a highly compressed form. The main FIFO 
enables bursts caused by the trace compression to be flattened out. When the 
FIFO becomes full, the FIFO signals an overflow. The trace generation logic does 
not generate any new trace until the FIFO has emptied. This causes a gap in the 
trace when viewed in the debugger.
You can also configure the ETM to suppress data address tracing when the FIFO 
is close to being full. This can prevent overflows from occurring.

AMBA 3 ATB interface 
The ETM outputs trace using the AMBA 3 Advanced Trace Bus (ATB) interface. 
See the CoreSight Architecture Specification for more information on AMBA 3 
ATB.
You can output trace asynchronously to the core clock.
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AMBA 3 APB interface 
The AMBA 3 Advanced Peripheral Bus (APB) interface enables access to the 
ETM, CTI, and the debug registers. The APB interface is compatible with the 
CoreSight architecture which is the ARM architecture for multi-processor trace 
and debug. See the CoreSight Architecture Specification for more information.

14.1.2 The debug environment

A software debugger provides the user interface to the ETM. The debugger enables all the ETM 
facilities such as the trace port to be configured. The debugger also displays the trace 
information that has been captured.

The ETM compresses the trace information and outputs it to the AMBA 3 ATB interface. The 
ETM can then either:

• Export the trace information through a narrow trace port. An external Trace Port Analyzer 
(TPA) captures the trace information as Figure 14-1 on page 14-4 shows.

• Write the trace information directly to an on-chip Embedded Trace Buffer (ETB). The 
trace is read out at low speed using the JTAG or Serial Wire interface when the trace 
capture is complete as Figure 14-1 on page 14-4 shows.

When the trace is captured, the debugger extracts the information from the TPA and 
decompresses it to provide a full disassembly, with symbols, of the code that was executed. The 
debugger can also link this back to the original high-level source code, to provide you with a 
visualization of how the code was executed on the target system.

Figure 14-1 on page 14-4 shows how the ETM fits into the CoreSight debug environment. See 
the CoreSight Architecture Specification for more information.
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Figure 14-1 Example CoreSight debug environment

In Figure 14-1, the ETM and the Cross Trigger Interface, are part of a CoreSight system 
consisting of other cores with their own ETMs, and various other trace sources. The CoreSight 
components are programmed using the Debug Access Port (DAP) through the APB 
programming bus, and trace is output over the ATB trace bus. This is then either exported 
through the Trace Port Interface Unit (TPIU), or stored in the ETB.

See the Embedded Trace Macrocell Architecture Specification for information about the trace 
protocol, and about controlling tracing using triggering and filtering resources.

14.1.3 NEON

The ETM ignores data transfers to and from the NEON register file. The addresses and data 
values of these transfers are not traced, and have no effect on the address comparators.
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Serial wire port
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Trace
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funnel

Replicator

Debug Access Port (DAP)

Trace port

Trace Port 
Analyzer

JTAG or serial wire 
interface unit

AHB

Cortex-A8 with ETM 
and CTI Core

Bridge and 
bus matrix

Embedded 
Trace Buffer

Trace Port 
Interface Unit

Computer-based debugging
tool

JTAG ROM 
table

CTI

System-on-Chip

System-on-Chip
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14.2 ETM configuration
ETMv3.3 permits a number of configurations. Table 14-1 shows the options implemented in the 
Cortex-A8 ETM.

Table 14-1 ETM implementation

Resource description Configuration

Instruction trace Yes

Data address trace Yes

Data value trace No

Jazelle trace -

Address comparator pairs 4

Data comparators 2

Context ID comparators 1

Sequencer Yes

Start/stop block Yes

EmbeddedICE comparators 0

External inputs 4

External outputs 2

Extended external inputs 49

Extended external input selectors 2

Instrumentation resources 4

FIFOFULL No

FIFOFULL level setting N/A

Branch broadcasting Yes

ASIC Control Register (bits) 8

Data suppression Yes

Software access to registers Memory

Readable registers Yes

FIFO size 128 bytes

Minimum port size 32

Maximum port size 32

Port modes Dynamic

Asynchronous ATB interface Yes

Load pc first No

Fetch comparisons No
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14.3 ETM register summary
The ETM registers are defined in the ETM Architecture Specification. 

Table 14-2 shows the values of the Identification registers and the Integration registers that are 
implementation-defined and are not described in the ETM Architecture Specification.

Table 14-2 ETM register summary

Register name Base offseta Type Reset value Description

Configuration Code 0x004 R 0x8D294024 Configuration Code Register on page 14-8

ID 0x1E4 R 0x410CF236 ID Register on page 14-7

Configuration Code 
Extension

0x1E8 R 0x000008A2 Configuration Code Extension Register on page 14-9

ITMISCOUT 0xEDC W - ITMISCOUT Register on page 14-12

ITMISCIN 0xEE0 R -b ITMISCIN Register on page 14-13

ITTRIGGER 0xEE8 W - ITTRIGGER Register on page 14-13

ITATBDATA0 0xEEC W - ITATBDATA0 Register on page 14-14

ITATBCTR2 0xEF0 R -b ITATBCTR2 Register on page 14-14

ITATBCTR1 0xEF4 W - ITATBCTR1 Register on page 14-15

ITATBCTR0 0xEF8 W - ITATBCTR0 Register on page 14-15

PeripheralID4 0xFD0 R 0x00000004 Peripheral Identification Registers on page 14-10

PeripheralID5 0xFD4 R 0x00000000

PeripheralID6 0xFD8 R 0x00000000

PeripheralID7 0xFDC R 0x00000000

PeripheralID0 0xFE0 R 0x00000021

PeripheralID1 0xFE4 R 0x000000B9

PeripheralID2 0xFE8 R 0x0000006B

PeripheralID3 0xFEC R 0x00000020

ComponentID0 0xFF0 R 0x0000000D Component Identification Registers on page 14-11

ComponentID1 0xFF4 R 0x00000090

ComponentID2 0xFF8 R 0x00000005

ComponentID3 0xFFC R 0x000000B1

a. The value given in the Base offset column is the address offset for memory-mapped access. To get the register number used 
in the ETM Architecture Specification, divide this offset by four.

b. The values of these read-only registers depend on the signals on external pins of the ETM. Therefore it is not possible to define 
the register reset values.
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14.4 ETM register descriptions
This section describes the following registers:
• ID Register
• Configuration Code Register on page 14-8
• Configuration Code Extension Register on page 14-9
• Peripheral Identification Registers on page 14-10
• Component Identification Registers on page 14-11
• Integration Test Registers on page 14-11.

For more details about these registers and the other registers implemented by the ETM, see the 
Embedded Trace Macrocell Architecture Specification.

14.4.1 ID Register

The ID Register, at offset 0x1E4, is a 32-bit read-only register that provides information about 
the ETM architecture version and options supported. Figure 14-2 shows the bit arrangement of 
the ID Register.

Figure 14-2 ID Register format

Table 14-3 shows how the bit values correspond with the ID Register functions.

0 0 0 00 0

Revision

0 1 0 0 0 0 0 1 0

31 24 23 20 19 18 17 16 15 12 11 8 7 4 3 0

0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1

Implementor ARM core 
family Major ETM 

architecture
version Minor ETM 

architecture
version

Security Extensions support
Thumb-2 support

Reserved
Load pc first

Table 14-3 ID Register bit functions

Bits Field Function

[31:24] Implementor Indicates implementor, ARM:
0x41.

[23:20] - Reserved, RAZ.

[19] Security Extensions 
support

Indicates Security Extensions support. The processor supports Security Extensions 
architecture. If this bit is not set to 1, then the ETM behaves as if the processor is in 
secure state at all times.

[18] Thumb-2 support All 32-bit Thumb instructions are traced as a single instruction, including BL and BLX 
immediate.

[17] - Reserved, RAZ.

[16] Load pc first All data transfers are traced in the same order that they appear in the ARM Architecture 
Reference Manual.

[15:12] ARM core family Indicates the Cortex-A8 processor.
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14.4.2 Configuration Code Register

The Configuration Code Register, at offset 0x004, is a 32-bit read-only register that provides 
information about the configuration of the ETM. Figure 14-3 shows the bit arrangement for the 
Configuration Code Register.

Figure 14-3 Configuration Code Register format

Table 14-4 shows how the bit values correspond with the Configuration Code Register 
functions. The Configuration Code Register has the value 0x8D294024.

[11:8] Major ETM 
architecture version

Indicates the major ETM architecture version number, ETMv3.

[7:4] Minor ETM 
architecture version

Indicates the minor ETM architecture version number, ETMv3.3.

[3:0] Revision Indicates the implementation revision.

Table 14-3 ID Register bit functions (continued)

Bits Field Function

Reserved Number of 
external 
outputs

FIFOFULL logic

Software access support

Trace stop/start block present

Number of Context ID comparators

Number of 
external
 inputs

Sequencer

Number of  
data 

comparators

ID register

01

31 30 28 27 26 25 24 23 22 20 19 17 16 15 13 12 8 7 4 3 0

0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0

Number of 
counters

Number of 
memory map 

decoders

Number of  
pairs of 
address 

comparators

Table 14-4 Configuration Code Register bit functions

Bits Field Function

[31] ID Register Indicates that the ETM ID Register is present

[30:28] - Reserved, RAZ

[27] Software access Indicates that software access is supported

[26] Trace stop/start block Indicates that the trace start/stop block is present

[25:24] Number of Context ID comparators Specifies the number of Context ID comparators

[23] FIFOFULL logic Indicates that it is not possible to stall the processor to prevent 
FIFO overflow, uses data suppression instead

[22:20] Number of external outputs Specifies the number of external outputs

[19:17] Number of external inputs Specifies the number of external inputs
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14.4.3 Configuration Code Extension Register

The Configuration Code Extension Register, at offset 0x1E8, is a read-only register that provides 
additional information about the configuration of the ETM. Figure 14-4 shows the bit 
arrangement of the Configuration Code Extension Register.

Figure 14-4 Configuration Code Extension Register format

Table 14-5 shows how the bit values correspond with the Configuration Code Extension 
Register functions. The Configuration Code Register has the value 0x0000898A.

[16] Sequencer Indicates that the sequencer is present

[15:13] Number of counters Specifies the number of counters

[12:8] Number of memory map decoders Specifies the number of memory map decoders

[7:4] Number of data comparators Specifies the number of data comparators

[3:0] Number of pairs of address comparators Specifies the number of pairs of address comparators

Table 14-4 Configuration Code Register bit functions (continued)

Bits Field Function

0

31 12 11 10 3 2 0

1 00 0 1 0 0 0 1 0 1Reserved

16 15 13

1 0 10

Size of extended external input bus
Number of extended external input selectors

Readable registers

Number of instrumentation resources
Data address comparisons not supported

Table 14-5 Configuration Code Extension Register bit functions

Bits Field Function

[31:16] - Reserved, RAZ.

[15:13] Number of instrumentation 
resources

Specifies the number of instrumentation resources.

[12] Data address comparisons 
not supported

Indicates that data address comparisons are supported by ETM.

[11] Readable registers Indicates that all registers, except some Integration Test Registers, are 
readable. See Table 14-2 on page 14-6 for details of the access permission to 
the Integration Test Registers. Registers with names that start with IT are the 
Integration Test Registers, for example ITATBCTR1.

[10:3] Size of extended external 
input bus

Specifies the size of the extended external input bus.

[2:0] Number of extended 
external input selectors

Specifies the number of extended external input selectors.
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14.4.4 Peripheral Identification Registers

The ETM Peripheral Identification Registers are a set of eight read-only registers, 
PeripheralID7 to PeripheralID0. These registers are defined in the ETM Architecture 
Specification. Only bits [7:0] of each register are used.

Table 14-6 shows the bit field definitions of the Peripheral Identification Registers. The ETM 
Architecture Specification describes many of these fields in more detail.

Note
 In Table 14-6, the Peripheral Identification Registers are listed in order of register name, from 
most significant (ID7) to least significant (ID0). This does not match the order of the register 
offsets. Similarly, in Table 14-7 on page 14-11, the Component Identification Registers are 
listed in order of register name, from most significant (ID3) to least significant (ID0).

Table 14-6 Peripheral Identification Registers bit functions

Register 
name

Register 
offset

Bit 
range Value Function

PeripheralID7 0xFDC [31:8] - Unused, RAZ

[7:0] 0x00 Reserved for future use, RAZ

PeripheralID6 0xFD8 [31:8] - Unused, RAZ

[7:0] 0x00 Reserved for future use, RAZ

PeripheralID5 0xFD4 [31:8] - Unused, RAZ

[7:0] 0x00 Reserved for future use, RAZ

PeripheralID4 0xFD0 [31:8] - Unused, RAZ

[7:4] 0x0 Indicates that the ETM uses one 4KB block of memory 

[3:0] 0x4 JEP106 continuation code [3:0]

PeripheralID3 0xFEC [31:8] - Unused, RAZ

[7:4] 0x2 RevAnd (at top level)

[3:0] 0x0 Customer Modified 0x00 indicates from ARM

PeripheralID2 0xFE8 [31:8] - Unused, RAZ

[7:4] 0x6 Revision number of Peripheral

[3] 0x1 Indicates that a JEDEC assigned value is used

[2:0] 0x3 JEP106 identity code [6:4] 

PeripheralID1 0xFE4 [31:8] - Unused, RAZ

[7:4] 0xB JEP106 identity code [3:0] 

[3:0] 0x9 Part number 1 upper Binary Coded Decimal (BCD) value of Device 
number 

PeripheralID0 0xFE0 [31:8] - Unused, RAZ

[7:0] 0x21 Part number 0 middle and lower BCD value of Device number
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14.4.5 Component Identification Registers

There are four read-only Component Identification Registers, ComponentID3 to 
ComponentID0. Although these are implemented as standard 32-bit registers:
• the most significant 24 bits of each register are not used and Read-As-Zero
• the least significant eight bits of each register together make up the component ID.

Figure 14-5 shows this concept of a single 32-bit component ID, obtained from the four 
Component Identification Registers.

Figure 14-5 Mapping between the Component ID Registers and the component ID value

Table 14-7 shows the bit field definitions of the Component Identification Registers. This 
register structure is defined in the ETM Architecture Specification.

14.4.6 Integration Test Registers

The following sections describe the Integration Test Registers. To access these registers you 
must first set bit [0] of the Integration Mode Control Register to 1.

• You can use the write-only Integration Test Registers to set the outputs of some of the 
ETM signals. Table 14-8 on page 14-12 lists the signals that can be controlled in this way.

• You can use the read-only Integration Test Registers to read the state of some of the ETM 
input signals. Table 14-9 on page 14-12 lists the signals that can be read in this way.

ID3 Register

Conceptual 32-bit component ID

Actual ComponentID register fields
7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

ID2 Register ID1 Register ID0 Register

Component ID

Table 14-7 Component Identification Registers bit functions

Register Register 
offset

Bit 
range Value Function

ComponentID3 0xFFC [31:8] - Unused, RAZ

[7:0] 0xB1 Component identifier, bits [31:24]

ComponentID2 0xFF8 [31:8] - Unused, RAZ

[7:0] 0x05 Component identifier, bits [23:16]

ComponentID1 0xFF4 [31:8] - Unused, RAZ

[7:4] 0x9 Component class; component identifier, bits [15:12]

[3:0] 0x0 Component identifier, bits [11:8]

ComponentID0 0xFF0 [31:8] - Unused, RAZ

[7:0] 0x0D Component identifier, bits [7:0]
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See the ETM Architecture Specification for more information.

Using the Integration Test Registers

The CoreSight Design Kit Technical Reference Manual gives a full description of the use of the 
Integration Test Registers to check integration. In brief, when bit [0] of the Integration Mode 
Control Register is set to 1:

• Values written to the write-only Integration Test Registers map onto the specified outputs 
of ETM. For example, writing 0x3 to ITMISCOUT[1:0] causes EXTOUT[1:0] to take 
the value 0x3.

• Values read from the read-only integration test registers correspond to the values of the 
specified inputs of ETM. For example, if you read ITMISCIN[1:0] you obtain the value 
of EXTIN.

ITMISCOUT Register 

The ITMISCOUT Register, miscellaneous outputs, at offset 0xEDC, is write-only. This register 
controls signal outputs when bit [0] of the Integration Mode Control Register is set to 1. 
Figure 14-6 shows the bit arrangement of the ITMISCOUT Register.

Figure 14-6 ITMISCOUT Register format

Table 14-8 Output signals that can be controlled by the Integration Test Registers

Signal Register Bit Description

AFREADYM ITATBCTR0 [1] See ITATBCTR0 Register on page 14-15

ATBYTESM[1:0] ITATBCTR0 [9:8] See ITATBCTR0 Register on page 14-15

ATDATAM[31, 23, 15, 7, 0] ITATBDATA0 [4:0] See ITATBDATA0 Register on page 14-14

ATIDM[6:0] ITATBCTR1 [6:0] See ITATBCTR1 Register on page 14-15

ATVALIDM ITATBCTR0 [0] See ITATBCTR0 Register on page 14-15

EXTOUT[1:0] ITMISCOUT [9:8] See ITMISCOUT Register

TRIGGER ITTRIGGER [0] See ITTRIGGER Register on page 14-13

Table 14-9 Input signals that can be read by the Integration Test Registers

Signal Register Bit Description

AFVALIDM ITATBCTR2 [1] ITATBCTR2 Register on page 14-14

ATREADYM ITATBCTR2 [0] ITATBCTR2 Register on page 14-14

DBGACK ITMISCIN [4] ITMISCIN Register on page 14-13

EXTIN[3:0] ITMISCIN [3:0] ITMISCIN Register on page 14-13

Reserved

31 0

EXTOUT[1:0]

12
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Table 14-10 shows how the bit values correspond with the ITMISCOUT Register functions.

ITMISCIN Register

The ITMISCIN Register, miscellaneous inputs, at offset 0xEE0, is read-only. This register 
enables the values of signal inputs to be read when bit [0] of the Integration Mode Control 
Register is set to 1. Figure 14-7 shows the bit arrangement of the ITMISCIN Register.

Figure 14-7 ITMISCIN Register format

Table 14-11 shows how the bit values correspond with the ITMISCIN Register functions. The 
value of these fields depend on the signals on the input pins when the register is read.

ITTRIGGER Register

The ITTRIGGER Register, trigger request, at offset 0xEE8, is write-only. This register controls 
the signal outputs when bit [0] of the Integration Mode Control Register is set to 1. Figure 14-8 
shows the bit arrangement of the ITTRIGGER Register.

Figure 14-8 ITTRIGGER Register format

Table 14-10 ITMISCOUT Register bit functions

Bits Field Function

[31:2] - Reserved, SBZ

[1:0] EXTOUT Drives the EXTOUT[1:0] outputs

5

Reserved

31 4 3 0

DBGACK

EXTIN[3:0]

Table 14-11 ITMISCIN Register bit functions

Bits Field Function

[31:5] - Reserved, RAZ

[4] DBGACK Returns the value of the DBGACK input

[3:0] EXTIN Returns the value of the EXTIN[3:0] inputs

31 1 0

Reserved

TRIGGER
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Table 14-12 shows how the bit values correspond with the ITTRIGGER Register functions.

ITATBDATA0 Register

The ITATBDATA0 Register, ATB data 0, at offset 0xEEC, is write-only. This register controls 
signal outputs when bit [0] of the Integration Mode Control Register is set to 1. Figure 14-9 
shows the bit assignment of the ITATBDATA0 Register.

Figure 14-9 ITATBDATA0 Register format

Table 14-13 shows how the bit values correspond with the ITATBDATA0 Register functions.

ITATBCTR2 Register

The ITATBCTR2 Register, ATB control 2, at offset 0xEF0, is read-only. This register enables the 
values of signal inputs to be read when bit [0] of the Integration Mode Control Register is set to 
1. Figure 14-10 shows the bit assignment of the ITATBCTR2 Register.

Figure 14-10 ITATBCTR2 Register format

Table 14-12 ITTRIGGER Register bit functions

Bits Field Function

[31:1] - Reserved, SBZ

[0] TRIGGER Drives the TRIGGER output

31 0

Reserved

ATDATAM[31, 23, 15, 17, 0]

5 4

Table 14-13 ITATBDATA0 Register bit functions

Bits Field Function

[31:5] - Reserved, SBZ

[4:0] ATDATAM Drives the ATDATAM[31, 23, 15, 17, 0] outputs

31 0

Reserved

AFVALIDM

ATREADYM

12
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Table 14-14 shows how the bit values correspond with the ITATBCTR2 Register functions. The 
value of these fields depend on the signals on the input pins when the register is read.

ITATBCTR1 Register

The ITATBCTR1 Register, ATB control 1, at offset 0xEF4, is write-only. This register controls 
signal outputs when bit [0] of the Integration Mode Control Register is set to 1. Figure 14-11 
shows the bit assignment of the ITATBCTR1 Register.

Figure 14-11 ITATBCTR1 Register format

Table 14-15 shows how the bit values correspond with the ITATBCTR1 Register functions.

ITATBCTR0 Register

The ITATBCTR0 Register, ATB control 0, at offset 0xEF8, is write-only. This register controls 
signal outputs when bit [0] of the Integration Mode Control Register is set to 1. Figure 14-12 
shows the bit assignment of the ITATBCTR0 Register.

Figure 14-12 ITATBCTR0 Register format

Table 14-14 ITATBCTR2 Register bit functions

Bits Field Function

[31:2] - Reserved, RAZ

[1] AFVALIDM Returns the value of the AFVALIDM input

[0] ATREADYM Returns the value of the ATREADYM input

31 0

Reserved

ATIDM[6:0]

7 6

Table 14-15 ITATBCTR1 Register bit functions

Bits Field Function

[31:7] - Reserved, SBZ

[6:0] ATIDM Drives the ATIDM[6:0] outputs

31 0

Reserved

ATBYTESM[1:0]

7 128910

Reserved

ATVALIDM
AFREADYM
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Table 14-16 shows how the bit values correspond with the ITATBCTR0 Register functions.

Table 14-16 ITATBCTR0 Register bit functions

Bits Field Function

[31:10] - Reserved, SBZ

[9:8] ATBYTESM Drives the ATBYTESM[1:0] outputs

[7:2] - Reserved, SBZ

[1] AFREADYM Drives the AFREADYM output

[0] ATVALIDM Drives the ATVALIDM output
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14.5 Precision of TraceEnable and ViewData
The ETM Architecture Specification states that TraceEnable or ViewData is Imprecise under 
certain conditions. This section describes when TraceEnable and ViewData are Precise.

14.5.1 TraceEnable

TraceEnable is Precise if all of the following are true:

• The TraceEnable enabling event is Precise.

• The single address comparators selected by the start/stop resource are Precise, or 
TraceEnable is not configured to use the start/stop resource.

• TraceEnable is configured to include regions, the selected single address comparators 
and address range comparators are Precise.

• TraceEnable is configured to exclude regions, the selected single address comparators 
and address range comparators are Precise and are configured for instruction addresses. It 
is not possible to exclude instruction trace based on the addresses of data transfers.

The processor can execute two instructions in a cycle. The TraceEnable enabling event is 
calculated once per cycle. The other parts of TraceEnable are calculated once per instruction.

If the processor executes two instructions in a cycle, the ETM can trace neither of them or both 
of them, but cannot trace only one of them. If TraceEnable indicates that one instruction can 
be traced, then trace is generated as if TraceEnable had indicated that both instructions on that 
cycle can be traced. As an example, consider the following case:

• Two instructions are executed in the same cycle.

• The first instruction causes a single address comparators to match with what is selected as 
a start address.

• The second instruction causes a single address comparators to match with what is selected 
as a stop address.

• The TraceEnable enabling event is true.

• TraceEnable is configured to use the start/stop resource.

• TraceEnable is configured to exclude regions.

• No address comparators are selected for exclude regions.

In this case, TraceEnable behaves as follows:
1. The first instruction is traced because the start/stop resource was active.
2. The second instruction is traced because the first instruction was traced.
3. Instructions are not traced on subsequent cycles because the start/stop resource is off.

14.5.2 ViewData

ViewData is Precise if all of the following are true:

• the ViewData enabling event is Precise

• the single address comparators and address range comparators selected to include regions 
are Precise, or ViewData is configured for exclude regions only

• the single address comparators and address range comparators selected to exclude regions 
are Precise.
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The processor can perform two 32-bit data transfers in a cycle. The ETM treats a 64-bit data 
transfer as two 32-bit data transfers. The ViewData enabling event is calculated once per cycle. 
The other parts of ViewData are calculated once per data transfer.

If the processor performs two 32-bit data transfers in a cycle, the ETM can trace neither, one, or 
both of them. ViewData is recalculated for each transfer. However, because the enabling event 
is only calculated once per cycle, address comparators selected using the enabling event cause 
both data transfers to be traced as if a match occurs on each transfer.

14.5.3 Enabling events

The TraceEnable and ViewData enabling events are Precise if only the following is selected:
• Precise single address comparators
• Precise address range comparators
• instrumentation resources
• context ID comparator
• nonsecure state resource
• prohibited resource
• hard-wired resource, always true.

The following events are delayed by two cycles compared to the timing of their input events, 
and are Imprecise:
• counters at zero
• sequence state 1, 2, or 3
• trace start/stop resource.

The following events are Imprecise and have no fixed timing relationship with other events:
• external input
• extended external input selectors.

14.5.4 Address comparators

Single address comparators and address range comparators are always Precise if the exact match 
bit for that comparator is cleared to 0. This includes cases where the address comparator is 
conditional on the context ID comparator matching.
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14.6 Exact match bit
You can set the exact match bit in the address comparators to 1, to cause the ETM to wait before 
permitting the address comparator to match. Setting the exact match bit prevents it from an 
unintentional match. The exact match bit behaves as follows in the ETM:
• Address comparators configured for instruction addresses
• Address comparators configured for data addresses
• Address range comparators.

14.6.1 Address comparators configured for instruction addresses

If the exact match bit is set to 1, each instruction matches if both of the following are true:
• the instruction matches the address comparison conditions
• the instruction is not followed by a cancelling exception.

To determine whether the instruction is followed by a cancellation exception, the match does 
not take place until the next instruction. Therefore, matches do not occur in time to control 
tracing, but instructions that are cancelled by exceptions do not cause the comparator to match. 
This is useful when, for example, you want to count the number of times an instruction has been 
executed.

If the exact match bit is cleared to 0, each instruction matches if it matches the address 
comparison conditions. The match occurs at the time the instruction is traced and therefore, 
cannot consider if the instruction is subsequently cancelled. This is useful when you want to use 
the comparator to control tracing.

Note
 Instructions that are cancelled by exceptions do not cause the comparator to match. This is 
useful when you want to count the number of times an instruction has been executed.

14.6.2 Address comparators configured for data addresses

The exact match bit does not affect whether a match occurs on a data address.

14.6.3 Address range comparators

If an address range comparator configured for instruction address matches on an instruction 
address, it continues to match until the next instruction addresses. If an address range 
comparator configured for data addresses matches on a data address, it continues to match until 
the next data addresses. This enables the use of address range comparator in an imprecise 
manner such as to qualify performance monitoring events available as extended external input 
selectors. However, this is occasionally not required, for example when counting the number of 
data transfers performed in a region of memory.

If the exact match bit is set to 1, the address range comparator does not hold its value. An address 
range comparator configured for instruction addresses with its exact match bit cleared to 0 does 
not match on cycles in which no instructions are executed. In addition, an address range 
comparator configured for data addresses with its exact match bit cleared to 0 does not match 
on cycles in which no data transfers are performed.
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14.7 Context ID tracing
The ETM detects the MCR instruction that changes the context ID, and traces the appropriate 
number of bytes as a context ID packet instead of a normal data packet. As a result, if context 
ID tracing is enabled, an MCR instruction that changes the context ID does not have its data traced 
separately.

Because the ETM has a secure and a nonsecure context ID, the ETM outputs a context ID when 
switching between secure and nonsecure states.
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14.8 Instrumentation instructions
The ETM implements four instrumentation resources. You can use these resources to control the 
behavior of the ETM by inserting instrumentation instructions into the code for the processor to 
execute. For more information, see the ETM Architecture Specification.

The ETM can predict whether an instrumentation instruction is canceled at the time it is traced. 
If an instrumentation instruction is canceled, it has no effect on the instrumentation resources.
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14.9 Idle state control
The ETM implements an idle state that must be entered before you can power down the ETM. 
Before entry to the idle state, the following sequence occurs:
1. Trace is turned off.
2. The ETM waits for all trace that has already been generated to reach the FIFO.
3. The main FIFO is emptied.
4. The resynchronizing FIFO is emptied.
5. The ETM waits for any remaining trace on the ATB interface to be accepted.
6. The resynchronizing FIFO sets the read and write pointers that is uses to zero.

When in idle state, you can safely remove the power from the ck_gclke or ATCLK domain. It 
is recommended that you use the OS Save and Restore Registers to save the registers in the 
ck_gclke domain before removing the power and to restore the registers after restoring the 
power. See the ETM Architecture Specification for more information.

Following a reset of the ck_gclke domain, the ETM is in idle state. The ETM is also in idle state 
when any of the following occur:
• the power down bit is set to 1
• the programming bit is set to 1
• the ETMEN bit is cleared to 0
• the OS Save and Restore Register lock is set
• a WFI idle request is encountered
• both the NIDEN and DBGEN inputs are LOW.

The ETM Status Register reports the programming bit as set to 1 if both:
• the programming bit, power down bit, or OS Save and Restore Register lock is set to 1
• the ETM is in idle state.

The standard method to turn off the ETM is to set the programming bit to 1 and wait for the ETM 
Status Register to report the programming bit as set to 1. This method ensures that the idle entry 
sequence is complete before you can perform more operations.

If the idle request is cancelled before the idle entry sequence is complete, the ETM behaves as 
if the idle request is maintained until the idle entry sequence is complete. For example, if the 
programming bit is set to 1 and 0 in quick succession without checking the ETM Status Register, 
the programming bit is not cleared to 0 internally until the idle entry sequence has completed.

When a WFI occurs, the processor waits for the idle entry sequence to complete before stopping 
the clock to the ETM.
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14.10 Interaction with the Performance Monitoring Unit
The processor includes a Performance Monitoring Unit (PMU) that enables events, such as 
cache misses and instructions executed, to be counted over a period of time. This section 
describes how the PMU and ETM are used together.

14.10.1 Use of PMU events by the ETM

The PMU events are all available for use by the ETM using the extended external input facility. 
Each event is mapped to one or two extended external inputs. For more information on PMU 
events, see c9, Event Selection Register on page 3-84.

A PMU event uses two extended external inputs where two such events can occur in a cycle. 
Both extended external inputs are active in cycle when two events occur. The ETM Architecture 
Specification describes how to use extended external input selectors to make these events 
available to the rest of the ETM triggering and filtering logic.

Table 14-17 shows the mapping of the PMU event numbers to the ETM extended external input 
event numbers.

Table 14-17 PMU event number mappings

PMU event number First ETM event number Second ETM event number

0x0 - -

0x1 0x1 -

0x2 0x2 -

0x3 0x3 -

0x4 0x5 -

0x5 0x6 -

0x6 0x7 -

0x7 0x8 -

0x8 0x9 0xa

0x9 0xb -

0xa 0xc -

0xb 0xd -

0xc 0xe -

0xd 0xf -

0xe 0x10 -

0xf 0x11 -

0x10 0x12 -

0x12 0x13 -

0x40 0x14 -

0x41 0x15 -

0x42 0x16 -
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Table 14-18 shows the behavior of the ETM when two PMU events occur in a cycle.

0x43 0x17 0x18

0x44 0x19 0x32

0x45 0x1a -

0x46 0x1b -

0x47 0x1c -

0x48 0x1d -

0x49 0x1e -

0x4a 0x1f -

0x4b 0x20 -

0x4c 0x21 -

0x4d 0x22 -

0x4e 0x23 -

0x4f 0x24 -

0x50 0x25 -

0x51 0x26 -

0x52 0x27 -

0x53 0x28 -

0x54 0x29 -

0x55 0x2a 0x2b

0x56 0x2c -

0x57 0x2d 0x2e

0x58 0x2f -

0x59 0x30 -

0x5a 0x31 -

Table 14-18 PMU event cycle mappings

PMU events in cycle First ETM event active Second ETM event active

0 No No

1 Yes No

2 Yes Yes

Table 14-17 PMU event number mappings (continued)

PMU event number First ETM event number Second ETM event number
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14.10.2 Use of ETM events by the PMU

The PMU can count the two ETM external outputs as additional events by using the CTI. You 
must configure the CTI to connect the ETM external outputs to the PMU.

Because the CTI is implemented in the ATCLK clock domain, the ETM events must be 
resynchronized to ATCLK and back to the core clock before the PMU can use it. If the ETM 
events are too close together, the resynchronization causes some events to be lost.

The CTI outputs are normally held several cycles while synchronization takes place. CTI 
supports edge-detection logic that enables the PMU to count one event per ETM event. ARM 
recommends that you enable edge-detection for the PMU CTI outputs.

You can use the ETM to qualify PMU events and then count them using the ETM counters or 
pass them back to the PMU to be counted. You can count the number of cache misses caused by 
a particular region of instruction addresses as follows:

• Configure the ETM extended external input selectors to the PMU cache miss events you 
want to count.

• Configure an address range comparator to the required instruction address region, with the 
exact match bit cleared to 0.

• Configure the ETM external outputs as follows:
— Event A is the extended external input selector.
— Event B is the required address range comparator.
— Function is A and B.

• Select the PMU external inputs to be counted in the PMU.
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Chapter 15 
Cross Trigger Interface

This chapter describes the Cross Trigger Interface (CTI). It contains the following sections:
• About the CTI on page 15-2
• Trigger inputs and outputs on page 15-5
• Connecting asynchronous channel interfaces on page 15-7
• About the CTI programmers model on page 15-8
• CTI register summary on page 15-9
• CTI register descriptions on page 15-11
• CTI Integration Test Registers on page 15-19
• CTI CoreSight defined registers on page 15-24.
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15.1 About the CTI
The CTI enables the debug logic, ETM, and PMU, to interact with each other and with other 
CoreSight components. This is called cross triggering. For example, you can configure the CTI 
to generate an interrupt when the ETM trigger event occurs. 

The CTI is connected to a number of trigger inputs and trigger outputs. You can connect each 
trigger input to one or more trigger outputs. Figure 15-1 shows the debug system components 
and the available trigger inputs and trigger outputs.

Figure 15-1 Debug system components

The CTI also implements a synchronous channel interface as defined in the CoreSight 
Architecture Specification for communication with other CoreSight components.

15.1.1 How the CTI works

The CTI connects trigger inputs to trigger outputs using four channels. The following can cause 
a channel event:

• A trigger input event, if you have configured the channel for the trigger input using the 
CTIINEN registers. See Trigger inputs and outputs on page 15-5 for information on 
trigger inputs and outputs that are available to the CTI.

• An application trigger, using the CTIAPPSET, CTIAPPCLEAR, and CTIAPPPULSE 
registers.

• An input event on the channel interface.

A channel event can cause the following to occur:

• A trigger output event, if you have configured the channel for the trigger output using the 
CTIOUTEN registers. See Trigger inputs and outputs on page 15-5 for information on 
trigger inputs and outputs that are available to the CTI.

• An output event on the channel interface, unless the channel interface output for that 
channel has been disabled using the CTICHGATE Register.

Figure 15-2 on page 15-3 shows the connections to the channels.
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Figure 15-2 Cross Trigger Interface channels

15.1.2 The channel interface

The CTI can be:

• used on its own

• connected to another CTI using the channel interface

• connected to a CTM using the channel interface, enabling multiple CTIs to be linked 
together. 

The CoreSight Design Kit for the processor includes CTI and CTM components. You must use 
a separate CTI to connect the channel interface to system-level trigger signals.
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15.1.3 Trigger signal synchronization

The CTI operates in the ATCLK domain, and synchronizes the trigger inputs and outputs to 
ATCLK where required. The EXTIN[3:0] and PMUEXTIN[1:0] trigger outputs support edge 
detection, controlled by the CTI ASICCTL Register. See ASIC Control Register, ASICCTL on 
page 15-17.
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15.2 Trigger inputs and outputs
This section describes the trigger inputs and outputs that are available to the CTI.

Table 15-1 shows the trigger inputs available to the CTI.

Table 15-2 shows the trigger outputs available to the CTI.

Note
 • In revision r3 of the Cortex-A8 processor, trigger outputs 0 and 8 must be cleared by 

software. See CTI Interrupt Acknowledge Register, CTIINTACK on page 15-11.

Table 15-1 Trigger inputs

Trigger input Name Clock domain Description

0 Debug entrya CLK Pulsed on entry to debug state

1 !nPMUIRQ CLK PMU generated interrupt

2 EXTOUT[0] CLK ETM external output

3 EXTOUT[1] CLK ETM external output

4 COMMRX CLK Debug communication receive channel is full

5 COMMTX CLK Debug communication transmit channel is empty

6 TRIGGER ATCLK ETM trigger

a. For revision r3 of the Cortex-A8 processor, this trigger is a pulse asserted on debug state entry. For revisions 
r0 through r2, this trigger is a level-sensitive signal asserted while the processor is in debug state. This 
level-sensitive signal is DBGTRIGGER.

Table 15-2 Trigger outputs

Trigger 
Output Name Clock domain

Edge 
detection 
enable

Description

0 EDBGRQ CLK - Causes the processor to enter debug state.

1 EXTIN[0] CLK ASICCTL[0] ETM external input.

2 EXTIN[1] CLK ASICCTL[1] ETM external input.

3 EXTIN[2] CLK ASICCTL[2] ETM external input.

4 EXTIN[3] CLK ASICCTL[3] ETM external input.

5 PMUEXTIN[0] CLK ASICCTL[4] PMU CTI event. This input can be selected by 
the Event Selection Register. See c9, Event 
Selection Register on page 3-84 for more 
information on PMU events.

6 PMUEXTIN[1] CLK ASICCTL[5] PMU CTI event. This input can be selected by 
the Event Selection Register. See c9, Event 
Selection Register on page 3-84 for more 
information on PMU events.

7 DBGRESTART CLK - Causes the processor to exit debug state.

8 !nCTIIRQ Asynchronous - Generates an interrupt if nCTIIRQ is connected 
appropriately to the interrupt controller.
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• In revisions r0 through r2, only trigger output 8 must be cleared by software. Trigger 
output 0 is automatically cleared by the debug state entry event.
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15.3 Connecting asynchronous channel interfaces
The CTI implements a synchronous channel interface. It is synchronous to ATCLK.

It is possible to convert between synchronous and asynchronous versions of the channel 
interface using the circuit shown in Figure 15-3, which also includes a BYPASS signal to enable 
the converter to be bypassed if not required.

Figure 15-3 Asynchronous to synchronous converter

If you implement a synchronous to asynchronous converter, you increase the likelihood of 
merger of events. This is likely to happen if the events to be counted occur close together. For 
more information, see the CoreSight Architecture Specification.

D Q D Q 0
1

D Q

D Q D Q

CHOUT
CHIN

CHCLK

CHOUT

CHINACK

CHIN

CHOUTACK

BYPASS

Q D

Asynchronous 
interface

Synchronous 
interface
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 15-7
ID060510 Non-Confidential



Cross Trigger Interface 
15.4 About the CTI programmers model
The base addresses of the CTI are not fixed, and can be different for any particular system 
implementation. However, the offset of any particular register from the base address is fixed. 
Each CTI has a 4KB programmer’s model and must be programmed separately. All unused 
memory space is reserved.

The following applies to all registers:

• reserved or unused bits of registers must be written as 0, and ignored on a read unless 
otherwise stated in the text

• all register bits are reset to 0 unless otherwise stated in the text

• all registers must be accessed as words and so are compatible with little-endian and 
big-endian systems.
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15.5 CTI register summary
Table 15-3 shows the CTI programmable registers.

Table 15-3 CTI register summary

Address 
offset Register name Type Width Reset 

value Description

0x000 CTICONTROL R/W 1 0x0 CTI Control Register, CTICONTROL on 
page 15-11

0x010 CTIINTACK W 9 - CTI Interrupt Acknowledge Register, 
CTIINTACK on page 15-11

0x014 CTIAPPSET R/W 4 0x0 CTI Application Trigger Set Register, 
CTIAPPSET on page 15-12

0x018 CTIAPPCLEAR R/W 4 0x0 CTI Application Trigger Clear Register, 
CTIAPPCLEAR on page 15-13

0x01C CTIAPPPULSE W 4 0x0 CTI Application Pulse Register, 
CTIAPPPULSE on page 15-13

0x020-0x040 CTIINEN R/W 4 0x00 CTI Trigger to Channel Enable Registers, 
CTIINEN0-8 on page 15-14

0x0A0-0x0C0 CTIOUTEN R/W 4 0x00 CTI Channel to Trigger Enable Registers, 
CTIOUTEN0-8 on page 15-14

0x130 CTITRIGINSTATUS R 9 - CTI Trigger In Status Register, 
CTITRIGINSTATUS on page 15-15

0x134 CTITRIGOUTSTATUS R 9 0x00 CTI Trigger Out Status Register, 
CTITRIGOUTSTATUS on page 15-15

0x138 CTICHINSTATUS R 4 - CTI Channel In Status Register, 
CTICHINSTATUS on page 15-16

0x140 CTICHGATE R/W 4 0xF CTI Channel Gate Register, CTICHGATE 
on page 15-16

0x144 ASICCTL R/W 6 0x00 ASIC Control Register, ASICCTL on 
page 15-17

0x13C CTICHOUTSTATUS R 4 0x0 CTI Channel Out Status Register, 
CTICHOUTSTATUS on page 15-18

0xEE0 ITTRIGINACK W 9 0x00 ITTRIGINACK, 0xEE0 on page 15-19

0xEE4 ITCHOUT W 4 0x0 ITCHOUT, 0xEE4 on page 15-20

0xEE8 ITTRIGOUT W 9 0x00 ITTRIGOUT, 0xEE8 on page 15-20

0xEF0 ITTRIGOUTACK R 9 0x00 ITTRIGOUTACK, 0xEF0 on page 15-21

0xEF4 ITCHIN R 4 0x0 ITCHIN, 0xEF4 on page 15-21

0xEF8 ITTRIGIN R 9 0x00 ITTRIGIN, 0xEF8 on page 15-22

0xEFC-0xF7C - - - - Reserved
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0xF00 ITCTRL R/W 1 0x0 See the CoreSight Design Kit Technical 
Reference Manual 

0xFA0 Claim Tag Set R/W 4 0xF

0xFA4 Claim Tag Clear R/W 4 0x0

0xFB0 Lock Access W 32 -

0xFB4 Lock Status R 2 0x3

0xFB8 Authentication Status R 4 0xA CTI CoreSight defined registers on 
page 15-24

0xFC0-0xFC4 - - - - Reserved

0xFC8 Device ID R 20 0x40900 CTI CoreSight defined registers on 
page 15-24

0xFCC Device Type Identifier R 8 0x14

0xFD0 PeripheralID4 R 8 0x04 Peripheral Identification Registers on 
page 15-25

0xFD4 PeripheralID5 R 8 0x00

0xFD8 PeripheralID6 R 8 0x00

0xFDC PeripheralID7 R 8 0x00

0xFE0 PeripheralID0 R 8 0x22

0xFE4 PeripheralID1 R 8 0xB9

0xFE8 PeripheralID2 R 8 0x6B

0xFEC PeripheralID3 R 8 0x20

0xFF0 ComponentID0 R 8 0x0D Component Identification Registers on 
page 15-26

0xFF4 ComponentID1 R 8 0x90

0xFF8 ComponentID2 R 8 0x05

0xFFC ComponentID3 R 8 0xB1

Table 15-3 CTI register summary (continued)

Address 
offset Register name Type Width Reset 

value Description
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15.6 CTI register descriptions
This section describes the CTI registers.

15.6.1 CTI Control Register, CTICONTROL

CTICONTROL is a read/write register that enables the CTI. Figure 15-4 shows the bit 
arrangement of the CTICONTROL Register.

Figure 15-4 CTI Control Register format

Table 15-4 shows how the bit values correspond with the CTICONTROL Register functions.

15.6.2 CTI Interrupt Acknowledge Register, CTIINTACK

CTIINTACK is a write-only register used to acknowledge the nCTIIRQ and EDBGRQ trigger 
outputs. When the nCTIIRQ trigger output is asserted, it continues to be asserted until you 
write to bit [8] of this register. When the EDBGRQ trigger output is asserted, it continues to be 
asserted until you write to bit [0] of this register.

Figure 15-5 shows the bit arrangement of the CTIINTACK Register.

Figure 15-5 CTI Interrupt Acknowledge Register format

GLBEN

31 1 0

Reserved

Table 15-4 CTI Control Register bit functions

Bits Field Function

[31:1] - Reserved. RAZ, SBZ.

[0] GLBEN Enables or disables the CTI:
0 = disable CTI (reset)
1 = enable CTI.
When disabled, all cross triggering mapping logic functionality is disabled for this processor.

31 0

Reserved

9 8

Reserved

nCTIIRQ acknowledge

7 1

EDBGRQ acknowledge
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Table 15-5 shows how the bit values correspond with the CTIINTACK Register functions.

15.6.3 CTI Application Trigger Set Register, CTIAPPSET

CTIAPPSET is a read/write register. A write to this register generates a channel event, 
corresponding to the bit written to. 

Figure 15-6 shows the bit arrangement of the CTIAPPSET Register.

Figure 15-6 CTI Application Trigger Set Register format

Table 15-6 shows how the bit value corresponds with the CTIAPPSET Register functions.

Note
 The CTIINEN Registers do not affect the CTIAPPSET operation.

Table 15-5 CTI Interrupt Acknowledge Register bit functions

Bits Field Function

[31:9] - SBZ.

[8] nCTIIRQ acknowledge Acknowledges the nCTIIRQ output:
0 = no acknowledgement
1 = nCTIIRQ is acknowledged and is deasserted.

[7:1] - SBZ.

[0]a

a. Bit [0] EDBGRQ acknowledge of this register is only present in revision r3 of the 
Cortex-A8 processor. In revisions r0 through r2, this bit is SBZ.

EDBGRQ acknowledge Acknowledges the EDBGRQ trigger output:
0 = no acknowledgement
1 = EDBGRQ trigger output is acknowledged and 
is deasserted.

31 0

Reserved APPSET

4 3

Table 15-6 CTI Application Trigger Set Register bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZ.

[3:0] APPSET Setting a bit HIGH generates an event for the selected channel.
For read:
0 = application trigger inactive (reset)
1 = application trigger active.
For write:
0 = no effect
1 = generate channel event.
There is one bit of the register for each channel.
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15.6.4 CTI Application Trigger Clear Register, CTIAPPCLEAR

CTIAPPCLEAR is a read/write register. A write to this register clears a channel event, 
corresponding to the bit written to. 

Figure 15-7 shows the bit arrangement of the CTIAPPCLEAR Register.

Figure 15-7 CTI Application Trigger Clear Register format

Table 15-7 shows how the bit values correspond with the CTIAPPCLEAR Register functions.

15.6.5 CTI Application Pulse Register, CTIAPPPULSE

CTIAPPPULSE is a write-only register. A write to this register generates a channel event pulse, 
one CTICLK period, corresponding to the bit written to. The pulse external to the CTI can be 
extended to multi-cycle by the handshaking interface circuits. This register clears itself 
immediately, so it can be repeatedly written to without software having to clear it.

Figure 15-8 shows the bit arrangement of the CTIAPPPULSE Register.

Figure 15-8 CTI Application Pulse Register format

Table 15-8 shows how the bit values correspond with the CTIAPPPULSE Register functions.

31 0

Reserved APPCLEAR

4 3

Table 15-7 CTI Application Trigger Clear Register bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZ.

[3:0] APPCLEAR Clears corresponding bits in the CTIAPPSET Register:
0 = no effect
1 = application trigger disabled in the CTIAPPSET Register.
There is one bit of the register for each channel.

31 0

Reserved APPULSE

4 3

Table 15-8 CTI Application Pulse Register bit functions

Bits Field Function

[31:4] - Reserved, SBZ.

[3:0] APPULSE Setting a bit HIGH generates a channel event pulse for the selected channel.
For write:
0 = no effect
1 = channel event pulse generated for one CTICLK period.
There is one bit of the register for each channel.
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Note
 The CTIINEN registers do not affect the CTIAPPPULSE operation.

15.6.6 CTI Trigger to Channel Enable Registers, CTIINEN0-8

These registers are read/write registers that enable the signalling of an event on a CTM channel 
or CTM channels when the core issues a CTITRIGIN trigger input to the CTI. There is one 
register for each of the nine trigger inputs. Only seven trigger inputs are used, so CTIINEN7 and 
CTIINEN8 are present but not used. Within each register there is one bit for each of the four 
channels implemented. These registers do not affect the application trigger operations.

Figure 15-9 shows the bit arrangement of these registers.

Figure 15-9 CTI Trigger to Channel Enable Registers format

Table 15-9 shows how the bit values correspond with these registers.

15.6.7 CTI Channel to Trigger Enable Registers, CTIOUTEN0-8

These registers are read/write registers that define which channel can generate a 
CTITRIGOUT output. There is one register for each of the nine CTITRIGOUT outputs. 
Within each register there is one bit for each of the four channels implemented. These registers 
affect the mapping from application trigger to trigger outputs.

Figure 15-10 shows the bit assignments of these registers.

Figure 15-10 CTI Channel to Trigger Enable Registers format

31 0

Reserved TRIGINEN

4 3

Table 15-9 CTI Trigger to Channel Enable Registers bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZ.

[3:0] TRIGINEN Enables a cross trigger event to the corresponding channel when CTITRIGIN is activated:
0 = disables the CTITRIGIN signal from generating an event on the respective channel of the 
CTM
1 = enables the CTITRIGIN signal to generate an event on the respective channel of the CTM.
There is one bit of the register for each of the four channels. For example, TRIGINEN[0] set to 
1 in Register CTIINEN0, enables CTITRIGIN onto channel 0.

31 0

Reserved

TRIGOUTEN

4 3
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Table 15-10 shows how the bit values correspond with these registers.

15.6.8 CTI Trigger In Status Register, CTITRIGINSTATUS

CTITRIGINSTATUS is a read-only register that provides the status of the CTITRIGIN inputs. 

Figure 15-11 shows the bit arrangement of the CTITRIGINSTATUS Register.

Figure 15-11 CTI Trigger In Status Register format

Table 15-11 shows how the bit values correspond with the CTITRIGINSTATUS Register 
functions.

15.6.9 CTI Trigger Out Status Register, CTITRIGOUTSTATUS

CTITRIGOUTSTATUS is a read-only register that provides the status of the CTITRIGOUT 
outputs. 

Figure 15-12 shows the bit arrangement of the CTITRIGOUTSTATUS Register.

Figure 15-12 CTI Trigger Out Status Register format

Table 15-10 CTI Channel to Trigger Enable Registers bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZ.

[3:0] TRIGOUTEN Enables a channel event for the corresponding channel to generate an CTITRIGOUT output:
0 = the channel input CTICHIN from the CTM is not routed to the CTITRIGOUT output
1 = the channel input CTICHIN from the CTM is routed to the CTITRIGOUT output.
There is one bit of the register for each of the four channels. For example, enabling bit [0] in 
Register CTIOUTEN0, enables CTICHIN[0] to cause a trigger event on the 
CTITRIGOUT[0] output.

31 0

Reserved TRIGINSTATUS

89

Table 15-11 CTI Trigger In Status Register bit functions

Bits Field Function

[31:9] - Reserved, RAZ.

[8:0] TRIGINSTATUS Displays the status of the CTITRIGIN inputs:
0 = CTITRIGIN is inactive
1 = CTITRIGIN is active.
Because the register provides a view of the raw CTITRIGIN inputs, the reset value is 
unknown. There is one bit of the register for each trigger input.

31 0

Reserved

9 8

TRIGOUTSTATUS
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Table 15-12 shows how the bit values corresponds with the CTITRIGOUTSTATUS Register 
functions.

15.6.10 CTI Channel In Status Register, CTICHINSTATUS

CTICHINSTATUS is a read-only register that provides the status of the CTICHIN inputs.

Figure 15-13 shows the bit arrangement of the CTICHINSTATUS Register.

Figure 15-13 CTI Channel In Status Register format

Table 15-13 shows how the bit values correspond with the CTICHINSTATUS Register 
functions.

15.6.11 CTI Channel Gate Register, CTICHGATE

The CTICHGATE Register is a read/write register that controls the propagation of events to the 
channel interface. Figure 15-14 on page 15-17 shows the bit arrangement of the CTICHGATE 
Register.

Table 15-12 CTI Trigger Out Status Register bit functions

Bits Field Function

[31:9] - Reserved, RAZ.

[8:0] TRIGOUTSTATUS Displays the status of the CTITRIGOUT outputs:
0 = CTITRIGOUT is inactive (reset)
1 = CTITRIGIN is active.
There is one bit of the register for each trigger output.

31 0

Reserved

4 3

CTICHINSTATUS

Table 15-13 CTI Channel In Status Register bit functions

Bits Field Function

[31:4] - Reserved, RAZ.

[3:0] CTICHINSTATUS Displays the status of the CTICHIN inputs:
0 = CTICHIN is inactive
1 = CTICHIN is active.
Because the register provides a view of the raw CTICHIN inputs from the CTM, the reset 
value is unknown. There is one bit of the register for each channel input.
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Figure 15-14 CTI Channel Gate Register format

Table 15-14 shows how the bit values correspond with the CTICHGATE Register functions.

The Channel Gate Register prevents events from propagating through the channel interface to 
other CTIs. This enables local cross-triggering, such as causing an interrupt when the ETM 
trigger occurs. You can use the CTICHGATE Register with the CTIAPPSET, CTIAPPCLEAR 
and CTIAPPPULSE Registers to assert trigger outputs by asserting channels, without affecting 
the rest of the system.

Note
 This register is set to 0xF on reset, this causes channel interface propagation to be enabled for all 
channels.

See Figure 15-2 on page 15-3 for more information.

15.6.12 ASIC Control Register, ASICCTL

The ASICCTL Register is a read/write register that controls edge detection on trigger outputs. 
Figure 15-15 shows the bit assignments of the ASIC Control Register.

Figure 15-15 ASIC Control Register format

31 0

Reserved

4 3

CTICHGATE3

2 1

CTICHGATE2
CTICHGATE1
CTICHGATE0

Table 15-14 CTI Channel Gate Register bit functions

Bits Field Function

[31:4] - Reserved. RAZ, SBZ.

[3] CTICHGATE3 Enable CTICHOUT3. Set to 0 to disable channel propagation.

[2] CTICHGATE2 Enable CTICHOUT2. Set to 0 to disable channel propagation.

[1] CTICHGATE1 Enable CTICHOUT1. Set to 0 to disable channel propagation.

[0] CTICHGATE0 Enable CTICHOUT0. Set to 0 to disable channel propagation.

31 6 5 0

PMUEXTIN1EDGE

Reserved

4 3 2 1

PMUEXTIN0EDGE
ETMEXTIN4EDGE
ETMEXTIN3EDGE
ETMEXTIN2EDGE
ETMEXTIN1EDGE
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Table 15-15 shows how the bit values correspond with the ASIC Control Register functions.

You can enable edge detection for each trigger output that is used in the CLK domain. If edge 
detection is enabled:

• a single PMU CTI event is generated for every rising edge of the trigger output

• the ETM external input is HIGH for one CLK cycle for every rising edge of the trigger 
output.

15.6.13 CTI Channel Out Status Register, CTICHOUTSTATUS

CTICHOUTSTATUS is a read-only register that provides the status of the CTI CTICHOUT 
outputs. 

Figure 15-16 shows the bit arrangement of the CTICHOUTSTATUS Register.

Figure 15-16 CTI Channel Out Status Register format

Table 15-16 shows how the bit values correspond with the CTICHOUTSTATUS Register 
functions. 

Table 15-15 ASIC Control Register bit functions

Bits Field Function

[31:6] - Reserved. RAZ, SBZ.

[5] PMUEXTIN1EDGE Enables edge detection for trigger output 6, PMU CTI event 1.

[4] PMUEXTIN0EDGE Enables edge detection for trigger output 5, PMU CTI event 0.

[3] ETMEXTIN4EDGE Enables edge detection for trigger output 4, ETM external input 4.

[2] ETMEXTIN3EDGE Enables edge detection for trigger output 3, ETM external input 3.

[1] ETMEXTIN2EDGE Enables edge detection for trigger output 2, ETM external input 2.

[0] ETMEXTIN1EDGE Enables edge detection for trigger output 1, ETM external input 1.

31 0

CTICHOUTSTATUS

Reserved

34

Table 15-16 CTI Channel Out Status Register bit functions

Bits Field Function

[31:4] - Reserved, RAZ.

[3:0] CTICHOUTSTATUS Displays the status of the CTICHOUT outputs:
0 = CTICHOUT is inactive (reset)
1 = CTICHOUT is active.
There is one bit of the register for each channel output.
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15.7 CTI Integration Test Registers
Integration Test Registers are provided to simplify the process of verifying the integration of the 
CTI with other devices in a CoreSight system. These registers enable direct control of outputs 
and the ability to read the value of inputs. You must only use these registers when the Integration 
Test Control Register bit [0] is set to 1.

See the CoreSight Implementation and Integration Manual for details of how to use these 
signals.

Table 15-17 shows the CTI Integration Test Registers.

15.7.1 ITTRIGINACK, 0xEE0

ITTRIGINACK is a write-only register. This register controls signal outputs when bit [0] of the 
Integration Mode Control Register is set to 1. Figure 15-17 shows the bit arrangement of the 
ITTRIGINACK Register. 

Figure 15-17 ITTRIGINACK Register format

Table 15-18 shows how the bit values correspond with the ITTRIGINACK Register functions.

Each bit of the ITTRIGINACK Register corresponds to a bit on the ITTRIGIN Register. When 
in integration mode and a trigger input is cleared, you must set the appropriate bit in the 
ITTRIGINACK Register to 1, to enable the previous trigger input condition to be acknowledged 
and cleared. If you do not set the appropriate bit in ITTRIGINACK, the CTI synchronization 
logic causes the trigger input to continue to be asserted.

No bits of the ITTRIGINACK Register are connected to other integration test registers in the 
processor.

Table 15-17 CTI Integration Test Registers

Address offset Register Access Width Description

0xEE0 ITTRIGINACK W 9 bits ITTRIGINACK, 0xEE0

0xEE4 ITCHOUT W 4 bits ITCHOUT, 0xEE4 on page 15-20

0xEE8 ITTRIGOUT W 9 bits ITTRIGOUT, 0xEE8 on page 15-20

0xEF0 ITTRIGOUTACK R 9 bits ITTRIGOUTACK, 0xEF0 on page 15-21

0xEF4 ITCHIN R 4 bits ITCHIN, 0xEF4 on page 15-21

0xEF8 ITTRIGIN R 9 bits ITTRIGIN, 0xEF8 on page 15-22

31 0

CTTRIGINACKReserved

89

Table 15-18 ITTRIGINACK Register bit functions

Bits Field Function

[31:9] - Reserved, SBZ

[8:0] CTTRIGINACK Sets the value of the CTTRIGINACK outputs
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15.7.2 ITCHOUT, 0xEE4

ITCHOUT is a write-only register. This register controls signal outputs when bit [0] of the 
Integration Mode Control Register is set to 1. Figure 15-18 shows the bit arrangement of the 
ITCHOUT Register. 

Figure 15-18 ITCHOUT Register format

Table 15-19 shows how the bit values correspond with the ITCHOUT Register functions.

15.7.3 ITTRIGOUT, 0xEE8

ITTRIGOUT is a write-only register. This register controls signal outputs when bit [0] of the 
Integration Mode Control Register is set to 1. Figure 15-19 shows the bit arrangement of the 
ITTRIGOUT Register. 

Figure 15-19 ITTRIGOUT Register format

Table 15-20 shows how the bit values correspond with the ITTRIGOUT Register functions.

Each bit of the ITTRIGOUT Register corresponds to a trigger output. Table 15-21 shows how 
some of the bits of ITTRIGOUT are connected to other integration test registers in the processor.

31 0

CTCHOUTReserved

4 3

Table 15-19 ITCHOUT Register bit functions

Bits Field Function

[31:4] - Reserved, SBZ

[3:0] CTCHOUT Sets the value of the CTCHOUT outputs

31 8 0

Reserved CTTRIGOUT

9

Table 15-20 ITTRIGOUT Register bit functions

Bits Field Function

[31:9] - Reserved, SBZ

[8:0] CTTRIGOUT Sets the value of the CTTRIGOUT outputs

Table 15-21 ITTRIGOUT connections to other integration test registers

Bits Field Connected to  Register name Address bit

[8] !nCTIIRQ - - -

[7] DBGRESTART Debug Integration Input Status Register, 0xEFC [11]

[6] PMUEXTIN[1] Debug Integration Input Status Register, 0xEFC [9]

[5] PMUEXTIN[0] Debug Integration Input Status Register, 0xEFC [8]
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15.7.4 ITTRIGOUTACK, 0xEF0

ITTRIGOUTACK is a read-only register. This register enables the values of signal inputs to be 
read when bit [0] of the Integration Mode Control Register is set to 1. Figure 15-20 shows the 
bit arrangement of the ITTRIGOUTACK Register.

Figure 15-20 ITTRIGOUTACK Register format

Table 15-22 shows how the bit values correspond with the ITTRIGOUTACK Register 
functions.

Each bit of the ITTRIGOUTACK Register corresponds to a bit on the ITTRIGOUT Register. It 
indicates when a trigger output has been received.

Table 15-23 shows how some of the bits of the ITTRIGOUTACK Register are connected to 
other integration test registers in the processor.

15.7.5 ITCHIN, 0xEF4

ITCHIN is a read-only register. This register enables the values of signal inputs to be read when 
bit [0] of the Integration Mode Control Register is set to 1. Figure 15-21 on page 15-22 shows 
the bit arrangement of the ITCHIN Register.

[4] EXTIN[3] ETM ITMISCIN Register, 0xEE0 [3]

[3] EXTIN[2] ETM ITMISCIN Register, 0xEE0 [2]

[2] EXTIN[1] ETM ITMISCIN Register, 0xEE0 [1]

[1] EXTIN[0] ETM ITMISCIN Register, 0xEE0 [0]

[0] DBGACK Debug Integration Input Status Register, 0xEFC [10]

Table 15-21 ITTRIGOUT connections to other integration test registers (continued)

Bits Field Connected to  Register name Address bit

31 8 0

CTTRIGOUTACKReserved

9

Table 15-22 ITTRIGOUTACK Register bit functions

Bits Field Function

[31:9] - Reserved, RAZ

[8:0] CTTRIGOUTACK Reads the values of the CTTRIGOUTACK inputs

Table 15-23 ITTRIGOUTACK connections to other integration test registers

Bits Field Connected to  Register name Address bit

[8] - - - -

[7] DBGRESTARTED Debug Integration Internal Output Control Register, 0xEF4 [4]

[6:1] - - -

[0] DBGACK Debug Integration Internal Output Control Register, 0xEF4 [0]
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 15-21
ID060510 Non-Confidential



Cross Trigger Interface 
Figure 15-21 ITCHIN Register format

Table 15-24 shows how the bit values correspond with the ITCHIN Register functions.

15.7.6 ITTRIGIN, 0xEF8

ITTRIGIN is a read-only register. This register enables the values of signal inputs to be read 
when bit [0] of the Integration Mode Control Register is set to 1. Figure 15-22 shows the bit 
arrangement of the ITTRIGIN Register.

Figure 15-22 ITTRIGIN Register format

Table 15-25 shows how the bit values correspond with the ITTRIGIN Register functions.

Each bit of the ITTRIGIN Register corresponds to a trigger input. Table 15-26 shows how some 
of the bits of ITTRIGIN are connected to other integration test registers in the processor.

31 0

CTCHINReserved

4 3

Table 15-24 ITCHIN Register bit functions

Bits Field Function

[31:4] - Reserved, RAZ

[3:0] CTCHIN Reads the values of the CTCHIN inputs

31 0

CTTRIGINReserved

9 8

Table 15-25 ITTRIGIN Register bit functions

Bits Field Function

[31:9] - Reserved, RAZ

[8:0] CTTRIGIN Reads the values of the CTTRIGIN inputs

Table 15-26 ITTRIGIN connections to other integration test registers

Bits Field Connected to  Register name Address bit

[8] - - - -

[7] - - - -

[6] TRIGGER ETM ITTRIGGER Register, 0xEE8 [0]

[5] COMMTX Debug Integration Internal Output Control Register, 0xEF4 [2]

[4] COMMRX Debug Integration Internal Output Control Register, 0xEF4 [1]

[3] EXTOUT[1] ETM ITMISCOUT Register, 0xEDC [1]
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[2] EXTOUT[0] ETM ITMISCOUT Register, 0xEDC [0]

[1] !nPMUIRQ Debug Integration Internal Output Control Register, 0xEF4 [3]

[0] Debug entry Debug Integration Internal Output Control Register, 0xEF4 [5]

Table 15-26 ITTRIGIN connections to other integration test registers (continued)

Bits Field Connected to  Register name Address bit
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15.8 CTI CoreSight defined registers
See the CoreSight Architecture Specification for definitions of CTI CoreSight defined registers. 
The information given in this section is specific to the CTI.

15.8.1 Authentication Status Register, 0xFB8

The Authentication Status Register reports the required security level. Table 15-27 shows how 
the bit values correspond with the Authentication Status Register functions.

15.8.2 Device ID Register, 0xFC8

The Device ID Register reports the configuration of the CTI. For the Cortex-A8 processor, the 
CTI Device ID is 0x40900. Table 15-28 shows how the bit values correspond with the Device ID 
Register functions.

Table 15-27 Authentication Status Register bit functions

Bits Value Function

[31:4] 0x0000000 Reserved, RAZ.

[3] - Noninvasive debug enabled, DBGEN or NIDEN. When this bit is LOW, all trigger inputs are 
disabled.

[2] b1 Noninvasive debug features supported. 

[1] - Invasive debug enabled, DBGEN. When this bit is LOW, the following trigger outputs are 
disabled:
• ETM external inputs, EXTIN[3:0]
• PMU external inputs, PMUEXTIN[3:0]. 

[0] b1 Invasive debug features supported.

Table 15-28 Device ID Register bit functions

Bits Value Function

[31:20] 0x000 Reserved, RAZ

[19:16] 0x4 Number of CTI channels available

[15:8] 0x09 Number of CTI triggers available

[7:5] b000 Reserved, RAZ

[4:0] b00000 Number of multiplexing levels on CTI inputs and outputs
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 15-24
ID060510 Non-Confidential



Cross Trigger Interface 
15.8.3 Device Type Identifier, 0xFCC

The Device Type Identifier Register indicates the type of CoreSight component. Table 15-29 
shows how the bit values correspond with the Device Type Identifier Register functions.

15.8.4 Peripheral Identification Registers

The CTI Peripheral Identification Registers are a set of eight read-only registers, PeripheralID7 
to PeripheralID0. Only bits [7:0] of each register are used.

Table 15-30 shows the bit field definitions of the Peripheral Identification Registers. The 
CoreSight Architecture Specification describes many of these fields in more detail.

Table 15-29 Device Type Identifier Register bit functions

Bits Value Function

[31:8] 0x000000 Reserved, RAZ

[7:4] 0x1 Minor type, cross trigger

[3:0] 0x4 Major type, debug control logic

Table 15-30 Peripheral Identification Registers bit functions

Register name Offset Bits Value Function

PeripheralID7 0xFDC [31:8] - Unused, RAZ

[7:0] 0x00 Reserved for future use, RAZ

PeripheralID6 0xFD8 [31:8] - Unused, RAZ

[7:0] 0x00 Reserved for future use, RAZ

PeripheralID5 0xFD4 [31:8] - Unused, RAZ

[7:0] 0x00 Reserved for future use, RAZ

PeripheralID4 0xFD0 [31:8] - Unused, RAZ

[7:4] 0x0 Indicates that the ETM uses one 4KB block of memory

[3:0] 0x4 JEP106 continuation code [3:0]

PeripheralID3 0xFEC [31:8] - Unused, RAZ

[7:4] 0x2 RevAnd (at top level)

[3:0] 0x0 Customer Modified 0x00 indicates from ARM

PeripheralID2 0xFE8 [31:8] - Unused, RAZ

[7:4] 0x6 Revision number of Peripheral

[3] 0x1 Indicates that a JEDEC assigned value is used

[2:0] 0x3 JEP106 identity code [6:4] 
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Note
 In Table 15-30 on page 15-25, the Peripheral Identification Registers are listed in order of 
register name, from most significant (ID7) to least significant (ID0). This does not match the 
order of the register offsets. Similarly, in Table 15-31, the Component Identification Registers 
are listed in order of register name, from most significant (ID3) to least significant (ID0).

15.8.5 Component Identification Registers

There are four read-only Component Identification Registers, ComponentID3 to 
ComponentID0. Although these are implemented as standard 32-bit registers:
• the most significant 24 bits of each register are not used and Read-As-Zero (RAZ)
• the least significant eight bits of each register together make up the component ID.

Figure 15-23 shows this concept of a single 32-bit component ID, obtained from the four 
Component Identification Registers.

Figure 15-23 Mapping between the Component ID Registers and the component ID value

Table 15-31 shows the bit field definitions of the Component Identification Registers. This 
register structure is defined in the CoreSight Architecture Specification.

PeripheralID1 0xFE4 [31:8] - Unused, RAZ

[7:4] 0xB JEP106 identity code [3:0] 

[3:0] 0x9 Part number 1 upper Binary Coded Decimal (BCD) value of 
Device number 

PeripheralID0 0xFE0 [31:8] - Unused, RAZ

[7:0] 0x22 Part number 0 middle and lower BCD value of Device number

Table 15-30 Peripheral Identification Registers bit functions (continued)

Register name Offset Bits Value Function

ID3 Register

Conceptual 32-bit component ID

Actual ComponentID register fields
7 0 7 0 7 0 7 0

31 24 23 16 15 8 7 0

ID2 Register ID1 Register ID0 Register

Component ID

Table 15-31 Component Identification Registers bit functions

Register Register offset Bits Value Function

ComponentID3 0xFFC [31:8] - Unused, RAZ

[7:0] 0xB1 Component identifier, bits [31:24]

ComponentID2 0xFF8 [31:8] - Unused, RAZ

[7:0] 0x05 Component identifier, bits [23:16]
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ComponentID1 0xFF4 [31:8] - Unused, RAZ

[7:4] 0x9 Component class; component identifier, bits [15:12]

[3:0] 0x0 Component identifier, bits [11:8]

ComponentID0 0xFF0 [31:8] - Unused, RAZ

[7:0] 0x0D Component identifier, bits [7:0]

Table 15-31 Component Identification Registers bit functions (continued)

Register Register offset Bits Value Function
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Chapter 16 
Instruction Cycle Timing

This chapter describes the cycle timings of instructions on the processor. It contains the following 
sections:
• About instruction cycle timing on page 16-2
• Instruction-specific scheduling for ARM instructions on page 16-3
• Dual-instruction issue restrictions on page 16-13
• Other pipeline-dependent latencies on page 16-14
• Advanced SIMD instruction scheduling on page 16-17
• Instruction-specific scheduling for Advanced SIMD instructions on page 16-18
• VFP instructions on page 16-33
• Scheduling example on page 16-37.
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16.1 About instruction cycle timing
This chapter provides the information to estimate how much execution time particular code 
sequences require. The complexity of the processor makes it impossible to guarantee precise 
timing information with hand calculations. The timing of an instruction is often affected by 
other concurrent instructions, memory system activity, and additional events outside the 
instruction flow. Describing all possible instruction interactions and all possible events taking 
place in the processor is beyond the scope of this document. Only a cycle-accurate model of the 
processor can produce precise timings for a particular instruction sequence.

This chapter provides a framework for doing basic timing estimations for instruction sequences. 
The framework requires three main information components:

Instruction-specific scheduling information 
This includes the number of micro-operations for each main instruction and the 
source and destination requirements for each micro-operation. The processor can 
issue a series of micro-operations to the execution pipeline for each ARM 
instruction executed. Most ARM instructions execute only one micro-operation. 
More complex ARM instructions such as load multiples can consist of several 
micro-operations.

Dual issue restriction criteria 
This is the set of rules used to govern which instruction types can dual issue and 
under what conditions. This information is provided for dual issue of ARM 
instructions and Advanced SIMD instructions.

Other pipeline-dependent latencies 
In addition to the time taken for the scheduling and issuing of instructions, there 
are other sources of latencies that effect the time of a program sequence. The two 
most common examples are a branch mispredict and a memory system stall such 
as a data cache miss of a load instruction. These cases are the most difficult to 
predict and often must be ignored or estimated using statistical analysis 
techniques. Fortunately, you can ignore most of these additional latencies when 
creating an optimal hand scheduling for a code sequence. Hand scheduling is the 
most useful application of this cycle timing information.
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16.2 Instruction-specific scheduling for ARM instructions
The tables in this section provide information to determine the best-case instruction scheduling 
for a sequence of instructions. The information includes:
• when source registers are required
• when destination registers are available
• which register, such as Rn or Rm, is meant for each source or destination
• the minimum number of cycles required for each instruction
• any additional instruction issue requirements or restrictions.

When a source register is required or a destination register is available depends on the 
availability of forwarding paths to route the required data from the correct source to the correct 
destination.

Special considerations and caveats concerning the instruction tables include:

• Source requirements are always given for the first cycle in a multi-cycle instruction.

• Destination available is always given with respect to the last cycle in a data processing 
multi-cycle instruction. This rule does not apply to load/store multiple instructions.

• Multiply instructions issue to pipeline 0 only.

• Flags from the CPSR Register are updated internally in the E2 stage.

• [Rd] as a source register indicates the destination register is required as a source if the 
instruction is conditional.

• {} on a source register indicate the register is required only if the instruction includes an 
accumulator operand.

• () on a destination register indicate the destination is required only if writeback is enabled.

• [] on a load instruction destination register indicate that the destination register is optional 
depending on the size of the data transferred.

16.2.1 Example of how to read ARM instruction tables

This section provides examples of how to read ARM instruction tables described in the chapter. 
See the ARM Architecture Reference Manual for assembly syntax of instructions.

Example 16-1 shows how to read an ADDEQ data-processing instruction from Table 16-1 on 
page 16-5.

Example 16-1 Data-processing instruction

ADDEQ R0, R1, R2 LSL#10

This is a conditional general data-processing instruction of type shift by immediate. Source1, in 
this case R1, is required in E2 and Source2, in this case R2, is required in E1. Because the 
instruction is conditional, the destination register R0 is also required as a source register and 
must be available in E2. The result, stored in R0 for this case, is available in E2 for the next 
subsequent instruction that requires this register as a source operand. Assuming no data hazards, 
the instruction takes a minimum of one cycle to execute as indicated by the value in the Cycles 
column.
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Example 16-2 shows how to read an SMLAL multiply instruction from Table 16-4 on 
page 16-6.

Example 16-2 Multiply instruction

SMLAL R0, R1, R2, R3

This is a multiply accumulate instruction. Source1, in this case R2, and Source2, in this case R3, 
are both required in E1. Because this is an accumulate multiply instruction, the result registers, 
R0 and R1, in this case are both required as source registers in E1. The result, stored in R0 and 
R1, for this case is available in E5 for the next subsequent instruction that requires one or both 
of these registers as a source operand. Assuming no data hazards, the instruction takes a 
minimum of three cycles to execute as indicated by the value in the Cycles column.

Example 16-3 shows how to read an LDR PC load instruction from Table 16-9 on page 16-8.

Example 16-3 Load instruction

LDR PC, [R13,#4]

This is a load instruction of type immediate offset. However, it is also a branch instruction 
because the PC is the destination. Source1, in this case R13, is required in E1. Because 
writeback is enabled on this load instruction, Source1, in this case R13, is also required as a 
result destination register for writing back the new address. This result is available in E2 for the 
next subsequent instruction that requires this register as a source operand. Assuming no data 
hazards, the instruction takes a minimum of one cycle to execute as indicated by the value in the 
Cycles column. To complete the timing calculation for this instruction, we use information for 
the branch instructions as shown in Table 16-11 on page 16-9. In this table, we can see that the 
instruction is unconditional, therefore no flags are required as a source in E3 for branch 
resolution. The Cycles column of Table 16-11 on page 16-9 indicates to add one cycle to the 
total execution time for all load instructions that are branches. Assuming no data hazards, the 
instruction takes a minimum of two cycles instead of one cycle.

16.2.2 Data-processing instructions

Data-processing instructions are divided into the following subcategories:

Data-processing instructions with a destination 
AND, EOR, SUB, RSB, ADD, ADC, SBC, RCSC, ORR, BIC

Data-processing without a destination 
TST, TEQ, CMP, CMN

Move instructions 
MOV, MVN

The data-processing instruction tables exclude cases where the PC is the destination. Branch 
instructions on page 16-9 describes these cases.
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Table 16-1 shows the operation of data-processing instructions that use a destination.

Table 16-2 shows the operation of data-processing instructions that do not use a destination.

Table 16-3 shows the operation of MOV and MOVN instructions.

16.2.3 Multiply instructions

The ARM multiply instructions include MLA, MUL, SLMAxy, SMLAD, SMLAL, SMLALxy, SMLALD, SMLAWy, 
SMLD, SMLSLD, SMMLA, SMMLS, SMMUL, SMUAD, SMULxy, SMULL, SMULW, SMUSD, UMAAL, UMLAL, UMULL.

Table 16-1 Data-processing instructions with a destination

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

Immediate 1 Rn:E2 [Rd:E2] - - Rd:E2 -

Register 1 Rn:E2 Rm:E2 [Rd:E2] - Rd:E2 -

Shift by immediate, non-RRX 1 Rn:E2 Rm:E1 [Rd:E2] - Rd:E2 -

Shift by immediate, RRXa 1 Rn:E2 Rm:E1 [Rd:E2] - Rd:E2 -

Shift by register 1 Rn:E2 Rm:E1 Rs:E1 [Rd:E2] Rd:E2 -

a. One-cycle stall required before instruction execution.

Table 16-2 Data-processing instructions without a destination

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

Immediate 1 Rn:E2 - - - - -

Register 1 Rn:E2 Rm:E2 - - - -

Shift by immediate, non-RRX 1 Rn:E2 Rm:E1 - - - -

Shift by immediate, RRXa 1 Rn:E2 Rm:E1 - - - -

Shift by register 1 Rn:E2 Rm:E1 Rs:E1 - - -

a. One-cycle stall required before instruction execution.

Table 16-3 MOV and MOVN instructions

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

Immediatea 1 [Rd:E2] - - Rd:E1/E2 - -

Registera 1 Rn:E1 [Rd:E2] - Rd:E1/E2 - -

Shift by immediate, non-RRXa 1 Rn:E1 [Rd:E2] - Rd:E1/E2 - -

Shift by immediate, RRXb 1 Rn:E1 [Rd:E2] - Rd:E1/E2 - -

Shift by register 1 Rn:E1 Rs:E1 [Rd:E2] Rd:E1/E2 - -

a. Result is available in E2 if conditional.
b. Result is available in E2 if conditional. One-cycle stall required before instruction execution.
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Table 16-4 shows the operation of multiply instructions.

16.2.4 Parallel arithmetic and DSP instructions

The parallel arithmetic instructions include ADD15, ADDSUBX, SUBADDX, SUB16, ADD8, SUB8, QDADD, 
QDSUB, QADD, QSUB.

Table 16-5 shows the operation of parallel arithmetic instructions.

16.2.5 Extended instructions

The extended instructions include XTAB, XTAH, XTB, XTH.

Table 16-6 shows the operation of extended instructions.

Table 16-4 Multiply instructions

Multiply type Cycles Source1 Source2 Source3 Source4 Result1 Result2

Normal: MUL 2 Rm:E1 Rs:E1 [Rd:E3] {Rn:E4}a Rd:E5 -

Long: SMULL, UMULL 3 Rm:E1 Rs:E1 {[RdLo:E3]} {[RdHi:E3]} RdLo:E5 RdHi:E5

Long: SMLAL, UMLAL, UMAAL 3 Rm:E1 Rs:E1 {[RdLo:E2]} {[RdHi:E1]} RdLo:E5 RdHi:E5

Halfword: SMLAxy, SMULxy 2 Rm:E1 Rs:E1 [Rd:E2] {Rn:E4}a Rd:E5 -

Halfword: SMLALxy 2 Rm:E1 Rs:E1 {[RdLo:E1]} {[RdHi:E2]} RdLo:E5 RdHi:E5

Word-halfword: SMULWy 1 Rm:E1 Rs:E1 [Rd:E2] - Rd:E5 -

Word-halfword: SMLAWy 2 Rm:E1 Rs:E1 [Rd:E2] Rn:E4a Rd:E5 -

Most significant word 2 Rm:E1 Rs:E1 [Rd:E3] {Rn:E4}a Rd:E5 -

Dual halfword: SMUAD, SMUSD 1 Rm:E1 Rs:E1 [Rd:E2] - Rd:E5 -

Dual halfword: SMLAD, SMLSD 2 Rm:E1 Rs:E1 [Rd:E2] {Rn:E4}a Rd:E5 -

Dual halfword: SMLALD, SMLSLD 2 Rm:E1 Rs:E1 {[RdLo:E1]} {[RdHi:E2]} RdLo:E5 RdHi:E5

a. A multiply that is followed by a MAC with a dependency on the accumulator, Rn register, triggers a special accumulator 
forwarding. This enables both instructions to issue back-to-back because Rn is required as a source in E4. If this accumulator 
forwarding is not used, Rn is required in E2.

Table 16-5 Parallel arithmetic instructions

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

Shifter required: ADDSUB, SUBADD, QD 1 Rm:E2 Rn:E1 [Rd:E2] - Rd:E3 -

No shifter required: all others 1 Rm:E2 Rn:E2 [Rd:E2] - Rd:E3 -

Table 16-6 Extended instructions

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

Versions without accumulatea 1 Rm:E1 [Rd:E2] - - Rd:E1/E2 -

Versions with accumulate 1 Rm:E1 Rn:E2 [Rd:E2] - Rd:E2 -

a. If conditional, result is not available until E2.
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16.2.6 Miscellaneous data-processing instructions

The miscellaneous data-processing instructions include PK, SAT, SEL.

Table 16-7 shows the operation of miscellaneous data-processing instructions.

16.2.7 Status register access instructions

The MRS, MSR, and CPS instructions modify the CPSR and SPSR registers. Table 16-8 shows the 
operation of the status register access instructions.

16.2.8 Load/store instructions

There are many key characteristics that define different load/store instructions including the 
addressing mode, the data type, data size, whether or not register writeback is enabled, and 
indexing mode. Table 16-9 on page 16-8 and Table 16-10 on page 16-8 specify the timing for 
various load/store instruction types based on each of these characteristics, but only if that 
characteristic has an effect on timing. For example, data type and all data sizes except 64-bit 
offset do not affect instruction timing.

Table 16-7 Miscellaneous data-processing instructions

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

SATa

a. If conditional, result is not available until E2.

1 Rm:E1 [Rd:E2] - - Rd:E1/E2 -

CLZ 1 Rm:E2 [Rd:E2] - - Rd:E2 -

USAD 1 Rm:E1 Rn:E1 [Rd:E2] - Rd:E5 -

PKTa 1 Rm:E1 Rn:E1 [Rd:E2] - Rd:E1/E2 -

SEL 1 Rm:E1 Rn:E1 [Rd:E2] - Rd:E2 -

Table 16-8 Status register access instructions

Access type Cycles Source1 Source2 Source3 Source4 Result1 Result2

MRSa

a. Serialize before the instruction.

1 Rd:E2 - - - Rd:E1/E2 -

MSRb

b. Serialize between micro-operations. Force pipeline flush if updating CPSR. Serialize only for SPSR 
updates.

1 Rm:E1 Rd:E2 - - - -

CPSb 1 - - - - - -

SETENDb 1 - - - - - -
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Table 16-9 shows the operation of load instructions.

Table 16-10 shows the operation of store instructions. 

16.2.9 Load multiple and store multiple instructions

The number of registers in the register list usually determines the number of cycles required to 
execute a load or store multiple instruction. The processor can load or store two 32-bit registers 
in each cycle. However, to access 64 bits, the address must be 64-bit aligned. Processor 
scheduling is static, and it is not possible to know the address alignment at schedule time. 
Therefore, scheduling for the first transfer of loads and the last transfer of stores must be done 
assuming the address might be unaligned.

The number of cycles required to execute an LDM or STM instruction is (number of registers / 2) 
or 2 cycles, whichever is greater.

If register writeback is enabled, it is done in the first iteration in the E2 stage, as it is done in 
normal load/store instructions.

Table 16-9 Load instructions

Addressing mode Cycles Source Result

1 2 3 4 1 2 3

Immediate offset 1 Rn:E1 [Rd:E2] - - Rd:E3 (Rn:E2) -

Register offset 1 Rn:E1 Rm:E1 [Rd:E2] - Rd:E3 (Rn:E2) -

Immediate 64-bit offset 2 Rn:E1 - [Rd:E2] - Rd:E3 (Rn:E2) [Rd+1]:E3,

2nd iteration

Register 64-bit offset 2 Rn:E1 Rm:E1 [Rd:E2] - Rd:E3 (Rn:E2) [Rd+1]:E3,

2nd iteration

Scaled register offset, LSL by 2 1 Rn:E1 Rm:E1 [Rd:E2] - Rd:E3 (Rn:E2) -

Scaled register offset, other 2 Rn:E1 Rm:E1 [Rd:E2] - Rd:E3 (Rn:E2),

2nd iteration

-

Table 16-10 Store instructions

Addressing mode Cycles Source1 Source2 Source3 Source4 Result1

Immediate offset 1 Rn:E1 Rd:E3 - - (Rn:E2)

Register offset 1 Rn:E1 Rm:E1 Rd:E3 - (Rn:E2)

Immediate 64-bit offset 2 Rn:E1 Rd:E3 [Rd+1]:E3,

1st iteration

- (Rn:E2)

Register 64-bit offset 2 Rn:E1 Rm:E1 Rd:E3 [Rd+1]:E3,

1st iteration

(Rn:E2)

Scaled register offset, LSL by 2 1 Rn:E1 Rm:E1 Rd:E3 - (Rn:E2)

Scaled register offset, other 2 Rn:E1 Rm:E1 Rd:E3 - (Rn:E2),

2nd iteration
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 16-8
ID060510 Non-Confidential



Instruction Cycle Timing 
16.2.10 Branch instructions

Any write to the PC is considered a branch. This section describes both standard B branch 
instructions in addition to different instruction types with the PC as the destination register. In 
general, branch instructions schedule very well and have very few hazards that prevent 
superscalar issue. There are several properties to the execution of branches that make them 
behave differently than other instructions. 

Conditional branches

Conditional branches are executed differently than other conditional instructions. Most 
conditional instructions take the destination register as an additional source and the condition 
codes are resolved in E2. Branches do not require the destination register, PC, as an additional 
source because they already use the PC as a source. They are also different than normal 
conditional operations because the flags resolve the condition codes in E3 rather than E2. This 
enables the pairing of a flag setting instruction and a branch in the same cycle.

Branches with the PC as a source or destination

Using the PC as a source register does not generally result in scheduling hazards as for the case 
of a general-purpose register. This is because the PC values are predicted in the pipeline and are 
readily available to each instruction without any forwarding required. The only exception to this 
rule is that an instruction with a PC as a source register cannot be dual issued with an instruction 
that uses the PC as a destination register.

Other than the dual issue restriction, using the PC as a destination register does not result in a 
hazard for subsequent instructions for the same reason.

Data processing-based branches

Data processing branches can have the same data hazards of nonbranch versions of these 
instructions for operands other than the PC. 

Load-based branches

An LDR PC or LDM PC instruction behaves like a normal load with the exception that it requires 
one additional cycle to execute.

Table 16-11 shows the behavior of branch instructions.

Table 16-11 Branch instructions

Shift type Cycles Source1 Source2 Source3 Source4 Result1 Result2

BCC 1 [Flags:E3] - - - R15:E4a -

BLCC, BLX 1 [Flags:E3] - - - R14:E3 R15:E4a

BXCC 1 [Flags:E3] Rm:E2 - - - -

Data-processing branchb Typically 1c [Flags:E3] - - - R15:E4a -

Load-based branch Basic load 
plus one 
cycled

[Flags:E3] - - - (Rn:E2) -

a. Branch prediction resolution in E4.
b. ADD PC, R1, R2 and MOV PC, R4 are both examples of data-processing branches.
c. See Data-processing instructions on page 16-4 for more information on cycle counts and source registers.
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16.2.11 Coprocessor instructions

The CP15 and CP14 instructions are used to access special-purpose registers that are distributed 
across the design. They also perform very specialized operations such as cache maintenance. 
The instructions affected are listed in Table 16-12 and in Table 16-13. The minimum time to 
complete these CP15 and CP14 operations is 60 cycles. However, the timing of these 
instructions varies highly. It can take hundreds of cycles, depending on the operation and on the 
current processor activity. 

d. See Load/store instructions on page 16-7 for more information on cycle counts and source registers.

Table 16-12 Nonpipelined CP14 instructions

Instruction Op1 <Rd> CRn CRm Op2

MCR/MRC p14 0 Rd c0-c15 c0-c15 0-7

Table 16-13 Nonpipelined CP15 instructions

Instruction Op1 <Rd> CRn CRm Op2 Function

MCR         p15 0 Rd c1 c0 0 Control Register

MCR         p15 0 Rd c1 c0 1 Auxiliary Control Register

MCR         p15 0 Rd c2 c0 0 Translation Table Base 0 Register

MCR         p15 0 Rd c2 c0 1 Translation Table Base 1 Register

MCR         p15 0 Rd c2 c0 2 Translation Table Base Control Register

MCR         p15 0 Rd c3 c0 0 Domain Access Control Register

MCR/MRC p15 0 Rd c5 c0 0 Data Fault Status Register

MCR/MRC p15 0 Rd c5 c0 1 Instruction Fault Status Register

MCR/MRC p15 0 Rd c5 c1 0 Data Auxiliary Fault Status Register

MCR/MRC p15 0 Rd c5 c1 1 Instruction Auxiliary Fault Status Register

MCR/MRC p15 0 Rd c6 c0 0 Data Fault Address Register

MCR/MRC p15 0 Rd c6 c0 1 Instruction Fault Address Register

MCR p15 0 Rd c7 c5 1 Invalidate I$ Line by MVA to PoU

MCR p15 0 Rd c7 c6 1 Invalidate D$ Line by MVA to PoC

MCR p15 0 Rd c7 c6 2 Invalidate D$ Line by Set/Way

MCR p15 0 Rd c7 c8 0-3 VA-to-PA translation in the Current World

MCR p15 0 Rd c7 c8 4-7 VA-to-PA translation in the Other World

MCR p15 0 Rd c7 c10 1 Clean D$ Line by MVA to PoC

MCR p15 0 Rd c7 c10 2 Clean D$ Line by Set/Way

MCR p15 0 Rd c7 c10 4 Data Synchronization Barrier

MCR p15 0 Rd c7 c10 5 Data Memory Barrier
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 16-10
ID060510 Non-Confidential



Instruction Cycle Timing 
MCR p15 0 Rd c7 c11 1 Clean D$ Line by MVA to PoU

MCR p15 0 Rd c7 c14 1 Clean and Invalidate D$ Line by MVA to PoC

MCR p15 0 Rd c7 c14 2 Clean and Invalidate D$ Line by Set/Way

MCR p15 0 Rd c8 c5 0 Invalidate I-TLB Unlocked Entries

MCR p15 0 Rd c8 c5 1 Invalidate I-TLB Entry by MVA

MCR p15 0 Rd c8 c5 2 Invalidate I-TLB Entry on ASID Match

MCR p15 0 Rd c8 c6 0 Invalidate D-TLB Unlocked Entries

MCR p15 0 Rd c8 c6 1 Invalidate D-TLB Entry by MVA

MCR p15 0 Rd c8 c6 2 Invalidate D-TLB Entry on ASID Match

MCR p15 0 Rd c8 c7 0 Invalidate Unified-TLB Unlocked Entries

MCR p15 0 Rd c8 c7 1 Invalidate Unified-TLB Entry by MVA

MCR p15 0 Rd c8 c7 2 Invalidate Unified-TLB Entry on ASID Match

MCR p15 1 Rd c9 c0 0 L2$ Lockdown Register

MCR p15 1 Rd c9 c0 2 L2$ Auxiliary Control Register

MCR p15 0 Rd c10 c0 0 D-TLB Lockdown Register

MCR p15 0 Rd c10 c0 1 I-TLB Lockdown Register

MCR p15 0 Rd c10 c1 0 D-TLB Preload

MCR p15 0 Rd c10 c1 1 I-TLB Preload

MCR p15 0 Rd c10 c2 0 Primary Region Remap Register

MCR p15 0 Rd c10 c2 1 Normal Memory Remap Register

MCR p15 0 Rd c11 c1 0 PLE User Accessibility Register

MCR p15 0 Rd c11 c2 0 PLE Channel Number Register

MCR p15 0 Rd c11 c3 0-2 PLE Enable Register

MCR p15 0 Rd c11 c4 0 PLE Control Register

MCR p15 0 Rd c11 c15 0 PLE Context ID Register

MCR p15 0 Rd c13 c0 0 FCSE ID Register

MCR p15 0 Rd c13 c0 0 Context ID Register

MCR/MRC p15 - Rd c15 - - All Array Access instructions

Table 16-13 Nonpipelined CP15 instructions (continued)

Instruction Op1 <Rd> CRn CRm Op2 Function
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Table 16-14 shows the CP15 instructions that have improved cycle timing if the Auxiliary 
Control Register bit[20] = 0,

Table 16-14 CP15 instructions affected when ACTRL bit[20] = 0

Instruction Op1 <Rd> CRn CRm Op2 Function

MCR p15 0 Rd c7 c6 1 Invalidate D$ Line by MVA to PoC

MCR p15 0 Rd c7 c6 2 Invalidate D$ Line by Set/Way

MCR p15 0 Rd c7 c10 1 Clean D$ Line by MVA to PoC

MCR p15 0 Rd c7 c10 2 Clean D$ Line by Set/Way

MCR p15 0 Rd c7 c11 1 Clean D$ Line by MVA to PoU

MCR p15 0 Rd c7 c14 1 Clean and Invalidate D$ Line by MVA to PoC

MCR p15 0 Rd c7 c14 2 Clean and Invalidate D$ Line by Set/Way
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16.3 Dual-instruction issue restrictions
Calculating likely instruction pairings is part of the hand calculation process required to 
determine the timing for a sequence of instructions. The processor issues a pair of instructions 
unless it encounters an issue restriction. Table 16-15 shows the most common issue restriction 
cases. This table contains references to pipeline 0 and pipeline 1. The first instruction always 
issues in pipeline 0 and the second instruction, if present, issues in pipeline 1. If only one 
instruction issues, it always issues in pipeline 0.

Table 16-15 Dual-issue restrictions

Restriction 
type Description Example Cycle Restriction

Load/store 
resource 
hazard

There is only one LS pipeline. 
Only one LS instruction can be 
issued per cycle. It can be in 
pipeline 0 or pipeline 1

LDR r5, [r6] 1 -

STR r7, [r8] 2 Wait for LS unit

MOV r9, r10 2 Dual issue possible

Multiply 
resource 
hazard

There is only one multiply 
pipeline, and it is only available 
in pipeline 0.

ADD r1, r2, r3 1 -

MUL r4, r5, r6 2 Wait for pipeline 0

MUL r7, r8, r9 3 Wait for multiply unit

Branch 
resource 
hazard

There can be only one branch per 
cycle. It can be in pipeline 0 or 
pipeline 1. A branch is any 
instruction that changes the PC.

BX r1 1 -

BEQ 0x1000 2 Wait for branch

ADD r1, r2, r3 2 Dual issue possible

Data output 
hazard

Instructions with the same 
destination cannot be issued in 
the same cycle. This can happen 
with conditional code.

MOVEQ r1, r2 1 -

MOVNE r1, r3 2 Wait because of output dependency

LDR r5, [r6] 2 Dual issue possible

Data source 
hazard

Instructions cannot be issued if 
their data is not available. See 
the scheduling tables for source 
requirements and stages results.

ADD r1, r2, r3 1 -

ADD r4, r1, r6 2 Wait for r1

LDR r7, [r4] 4 Wait two cycles for r4

Multi-cycle 
instruction

Multi-cycle instructions must 
issue in pipeline 0 and can only 
dual issue in their last iteration.

MOV r1, r2 1 -

LDM r3, {r4-r7} 2 Wait for pipeline 0, transfer r4

LDM (cycle 2) 3 Transfer r5, r6

LDM (cycle 3) 4 Transfer r7

ADD r8, r9, r10 4 Dual issue possible on last transfer
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16.4 Other pipeline-dependent latencies
This section describes a variety of other factors that can affect the timing of a code sequence. 
For the most part, these factors cannot be accurately predicted on a case by case basis, but can 
be accounted for statistically if determining the overall timing for a larger section of code.

16.4.1 Cycle penalty for instruction flow change

Whenever a control flow change occurs in the processor that the prefetch unit has not predicted, 
the pipeline must be flushed. This results in a cycle stall equal in number to the length of the 
integer pipeline. This branch mispredict penalty is 13 cycles. See Chapter 5 Program Flow 
Prediction for details on program execution prediction.

16.4.2 Memory system effects on instruction timings

Because the processor is a statically scheduled design, any stall from the memory system can 
result in the minimum of a 8-cycle delay. This 8-cycle delay minimum is balanced with the 
minimum number of possible cycles to receive data from the L2 cache in the case of an L1 load 
miss. Table 16-16 gives the most common cases that can result in an instruction replay because 
of a memory system stall.

16.4.3 Thumb-2 instructions

As a general rule, Thumb-2 instructions are executed with timing constraints identical to their 
ARM counterparts. However, there are some second order effects to the cycle timing that you 
must observe. First, the code footprint is smaller, which can reduce the number of instruction 
cache misses and therefore reduce the cycle count. Second, branch instructions tend to be more 

Table 16-16 Memory system effects on instruction timings

Replay 
event Delay Description

Load data 
miss

8 cycles 1. A load instruction misses in the L1 data cache.
2. A request is then made to the L2 data cache.
3. If a miss also occurs in the L2 data cache, then a second replay occurs. The 

number of stall cycles depends on the external system memory timing. The time 
required to receive the critical word for an L2 cache miss is 18 core cycles plus 
the number of cycles required by the external memory system. The minimum 
number of additional cycles required for the external system is 2 cycles, making 
the total minimum cycle count 20 cycles. However, 20 cycles are likely to be 
optimistic because this can only occur in a system with a 1:1 bus ratio and zero 
wait-state memory.

Data TLB 
miss

24 cycles 1. A table walk because of a miss in the L1 TLB causes a 24-cycle delay, assuming 
the translation table entries are found in the L2 cache.

2. If the translation table entries are not present in the L2 cache, the number of stall 
cycles depends on the external system memory timing.

Store 
buffer full

8 cycles 
plus latency 
to drain fill 
buffer

1. A store instruction miss does not result in any stalls unless the store buffer is 
full.

2. In the case of a full store buffer, the delay is at least eight cycles. The delay can 
be more if it takes longer to drain some entries from the store buffer.

Unaligned
load or 
store
request

8 cycles 1. If a load instruction address is unaligned and the full access is not contained 
within a 128-bit boundary, there is a 8-cycle penalty.

2. If a store instruction address is unaligned and the full access is not contained 
within a 64-bit boundary, there is a 8-cycle penalty.
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densely packed, slightly reducing the branch prediction accuracy that is achieved and therefore 
increasing the number of branch mispredictions. Neither of these effects can be accurately 
measured using hand calculating techniques.

Note
 The code footprint and densely packed branch instructions can have an impact on the 
performance of the processor. In most cases, the interaction of these effects might cancel with 
each other.

16.4.4 ThumbEE instructions

The majority of the ThumbEE instruction set is identical in both encodings and behavior to the 
Thumb-2 instruction set and therefore the cycle timings are also identical to the Thumb-2 
instruction timings. The behavior of some instructions are different when executed in ThumbEE 
state instead of in Thumb state. However, the behavior changes for these instructions do not 
result in any changes to their cycle timing. The only additional cycle timing information for 
ThumbEE is for the new instructions.

Table 16-17 shows the timing operation of the new ThumbEE instructions.

ThumbEE memory check exceptions

All loads and stores in ThumbEE state have the additional functionality of checking the base 
register for a zero value. If the base register is zero, then the processor performs a branch to the 
address [HandlerBase – 4]. See the ARM Architecture Reference Manual for more information.

The processor handles this scenario in the same way as to an exception such as a data abort 
because it does not occur in the common case. If the base register is zero, the processor flushes 
the pipeline and branches to the correct address. The additional cycle time penalty for this is 

Table 16-17 ThumbEE instructions

Instruction type Cycles Source1 Source2 Source3 Source4 Result1 Result2

ENTERX/LEAVEXa 16 - - - - - -

CHKAb 1 E2 E2 - - - -

HBc 1 - - - - - -

HBLd 1 - - - - R14:E3 -

HBPc 2 - - - - R8:E2 -

HBLPd 2 - - - - R8:E2 R14:E3

LDR [R9]e 1 R9:E1 - - - Rd:E3 -

LDR [R10]e 1 R10:E1 - - - Rd:E3 -

LDR [negative offset]e 1 Rn:E1 - - - Rd:E3 -

STR [R9]f 1 Rn:E1 Rd:E3 - - - -

a. This instruction waits for all outstanding instructions to complete and then issues.
b. If CHKA fails the array bounds check, then an exception is taken. Otherwise, this is a single cycle instruction.
c. This instruction is predicted and behaves as a direct branch, B instruction.
d. This instruction is predicted and behaves as a direct branch and link, BL instruction.
e. Timing is identical to similar load instructions.
f. Timing is identical to similar store instructions.
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variable in length, but is at least 13 cycles. The CHKA instruction uses the same mechanism 
when the array bounds check fails. This is also a rare occurrence and therefore is not optimized 
for performance.

Predicting ThumbEE branch type instructions

All ThumbEE branch type instructions are predicted in ThumbEE state in the same manner that 
they are predicted in ARM or Thumb state. In addition, the handler base branch instructions, 
HB[L][P], are also predicted using the same branch prediction hardware used for direct branch 
and branch link, B and BL instructions, respectively. Because the ThumbEE instruction set uses 
R9 as the base register rather than R13 as a stack pointer, LDR and STR instructions that read or 
write to the PC are written onto the return stack to aid in the prediction of these indirect 
branches. The usage model of the return stack in ThumbEE state, using R9 as the stack pointer, 
is identical to the usage model in ARM and Thumb state, using R13 as the stack pointer.

16.4.5 Conditional instructions

Because the processor is statically scheduled, it schedules conditional instructions on the basis 
that they pass their condition codes. This means multi-cycle instructions such as LDM and STM 
instructions can still complete all their iterations even if they fail their condition codes. 

An additional point about conditional instructions is that the destination register of the 
instruction is treated as an additional source operand. This is done so the old value can be 
forwarded in the case when the instruction fails the condition codes. This additional source 
operand is required in the E2 stage of the machine.
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16.5 Advanced SIMD instruction scheduling
Advanced SIMD instructions flow through the ARM pipeline and then enter the NEON 
instruction queue between the ARM and NEON pipelines. Although an instruction in the NEON 
instruction queue is completed from the point of view of the ARM pipeline, the NEON unit must 
still decode and schedule the instruction. The NEON instruction queue is 16 entries deep. There 
is also an 12-entry NEON data queue that holds entries for Advanced SIMD load instructions.

As long as these queues are not full, the processor can continue to run and execute both ARM 
and Advanced SIMD instructions. When the Advanced SIMD instruction or data queue is full, 
the processor stalls execution of the next Advanced SIMD instruction until there is room for this 
instruction in the queues. In this manner, the cycle timing of Advanced SIMD instructions 
scheduled in the NEON engine can affect the overall timing of the instruction sequence, but only 
if there are enough Advanced SIMD instructions to fill the instruction or data queue.

Note
 When the processor is configured without NEON, all attempted Advanced SIMD and VFP 
instructions result in an Undefined Instruction exception.

16.5.1 Mixed ARM and Advanced SIMD instruction sequences

Advanced SIMD instruction scheduling only affects the overall timing sequence if there are 
enough Advanced SIMD instructions to fill the data or instruction queue. If the majority of 
instructions in a sequence are Advanced SIMD instructions, then the NEON unit dictates the 
time required for the sequence. Occasional ARM instructions in the sequence occur in parallel 
with the Advanced SIMD instructions. If most of the instructions in a sequence are ARM 
instructions, they dominate the timing of the sequence, and a Advanced SIMD data-processing 
instruction typically takes one cycle. In hand calculations of cycle timing, you must consider the 
type of instruction, ARM or Advanced SIMD, that dominates the sequence.

16.5.2 Passing data between ARM and NEON

Using MRC instructions to pass data from NEON to ARM takes a minimum of 20 cycles. The 
data transfers from the NEON register file at the back of the NEON pipeline to the ARM register 
file at the beginning of the ARM pipeline. You can hide some or all of this latency by doing 
multiple back-to-back MRC transfers. The processor continues to issue instructions following 
a MRC until it encounters an instruction that must read or write the ARM register file. At that 
point, instruction issue stalls until all pending register transfers from NEON to ARM are 
complete.

Using MCR instructions to pass data from ARM to NEON does not require any additional cycles. 
To the NEON unit, the transfers are similar to Advanced SIMD load instructions.

16.5.3 Dual issue for Advanced SIMD instructions

The NEON engine has limited dual issue capabilities. A load/store, permute, MCR, or MRC type 
instruction can be dual issued with a Advanced SIMD data-processing instruction. A load/store, 
permute, MCR, or MRC executes in the NEON load/store permute pipeline. An Advanced SIMD 
data-processing instruction executes in the NEON integer ALU, Shift, MAC, floating-point add 
or multiply pipelines. This is the only dual issue pairing permitted. 

The NEON engine can potentially dual issue on both the first cycle of a multi-cycle instruction 
(with an older instruction), and on the last cycle of a multi-cycle instruction (with a newer 
instruction). Intermediate cycles of a multi-cycle instruction cannot be paired and must be single 
issue.
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16.6 Instruction-specific scheduling for Advanced SIMD instructions
The tables in this section use the same format presented in Instruction-specific scheduling for 
ARM instructions on page 16-3 and can be interpreted in the same way. The one difference 
between tables in this section and those in the Instruction-specific scheduling for ARM 
instructions on page 16-3 is that the execution pipeline consists of stages N1-N6 instead of 
E1-E5.

Advanced SIMD data-processing instructions are divided into the following subcategories:
• integer ALU instructions
• integer multiply instructions
• integer shift instructions
• floating-point add instructions
• floating-point multiply instructions.

Advanced SIMD load/store permute instructions are divided into the following subcategories:
• byte permute instructions
• load/store instructions
• register transfer instructions.

Note
 This document uses the older assembler language instruction mnemonics. See Appendix B 
Instruction Mnemonics for information about the Unified Assembler Language (UAL) 
equivalents of the Advanced SIMD instruction mnemonics. See the ARM Architecture 
Reference Manual for more information on the UAL syntax.

16.6.1 Example of how to read Advanced SIMD instruction tables

This section provides examples of how to read Advanced SIMD instruction tables described in 
the chapter. See the ARM Architecture Reference Manual for assembly syntax of instructions.

In these Advanced SIMD instruction tables, Q<n>Lo maps to D<2n> and Q<n>Hi maps to D<2n+1>.

Example 16-4 shows how to read an Advanced SIMD integer ALU instruction from 
Table 16-18 on page 16-19.

Example 16-4 Advanced SIMD integer ALU instruction

VADD.I32.S16 Q2, D1, D2

This is an integer Advanced SIMD vector and long instruction. Source1, in this case D1, and 
Source2, in this case D2, are both required in N1. The result, stored in Q2 for this case, is 
available in N3 for the next subsequent instruction that requires this register as a source operand. 
Assuming no data hazards, the instruction takes a minimum of one cycle to execute as indicated 
by the value in the Cycles column.

Example 16-5 shows how to read an Advanced SIMD floating-point multiply instruction from 
Table 16-21 on page 16-24.

Example 16-5 Advanced SIMD floating-point multiply instruction

VMUL.F32 Q0, Q1, D4[0]
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This is a floating-point Advanced SIMD vector multiply by scalar instruction. It is a multi-cycle 
instruction that has source operand requirements in both the first and second cycles. In the first 
cycle, Source1, in this case Q1Lo or D2, is required in N2. Source2, in this case D4, is required 
in N1. In the second cycle, Source1, in this case Q1Hi or D3, is required in N2. The result of the 
multiply, stored in Q0 for this case, is available in N5 for the next subsequent instruction that 
requires this register as a source operand. The low half of the result, Q0Lo or D0, is calculated 
in the first cycle. The high half of the result, Q0Hi or D1, is calculated in the second cycle. 
Assuming no data hazards, the instruction takes a minimum of two cycles to execute as 
indicated by the value in the Cycles column.

16.6.2 Advanced SIMD integer ALU instructions

Table 16-18 shows the operation of the Advanced SIMD integer ALU instructions.

Table 16-18 Advanced SIMD integer ALU instructions

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

VADD

VAND

VORR

VEOR

VBIC

VORN

Dd,Dn,Dm 1 Dn:N2 Dm:N2 - - Dd:N3 -

Qd,Qn,Qm 1 QnLo:N2 QmLo:N2 QnHi:N2 QmHi:N2 QdLo:N3 QdHi:N3

VSUB Dd,Dn,Dm 1 Dn:N2 Dm:N1 - - Dd:N3 -

Qd,Qn,Qm 1 QnLo:N2 QmLo:N1 QnHi:N2 QmHi:N1 QdLo:N3 QdHi:N3

VADD

VSUB

Qd,Dn,Dm

(long)
1 Dn:N1 Dm:N1 - - QdLo:N3 QdHi:N3

Qd,Qn,Dm

(wide)
1 QnLo:N2 Dm:N1 QnHi:N2 - QdLo:N3 QdHi:N3

VHADD

VRHADD

VQADD

VTST

Dd,Dn,Dm 1 Dn:N2 Dm:N2 - - Dd:N4 -

Qd,Qn,Qm 1 QnLo:N2 QmLo:N2 QnHi:N2 QmHi:N2 QdLo:N4 QdHi:N4

VADH

VRADH

Dd,Qn,Qm

(highhalf)
1 QnLo:N2 QmLo:N2 QnHi:N2 QmHi:N2 Dd:N4 -

VSBH

VRSBH

Dd,Qn,Qm

(highhalf)
1 QnLo:N2 QmLo:N2 QnHi:N2 QmHi:N1 Dd:N4 -

VHSUB

VQSUB

VABD

VCEQ

VCGE

VCGT

VMAX

VMIN

VFMXa

VFMNa

Dd,Dn,Dm 1 Dn:N2 Dm:N1 - - Dd:N4 -

Qd,Qn,Qm 1 QnLo:N2 QmLo:N1 QnHi:N2 QmHi:N1 QdLo:N4 QdHi:N4
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 16-19
ID060510 Non-Confidential



Instruction Cycle Timing 
VNEG Dd,Dm 1 - Dm:N1 - - Dd:N3 -

Qd,Qm 1 - QmLo:N1 - QmHi:N1 QdLo:N3 QdHi:N3

VQNEG

VQABS

Dd,Dm 1 - Dm:N1 - - Dd:N4 -

Qd,Qm 1 - QmLo:N1 - QmHi:N1 QdLo:N4 QdHi:N4

VABD Qd,Dn,Dm

(long)
1 Dn:N2 Dm:N1 - - QdLo:N4 QdHi:N4

VABS

VCEQZ

VCGEZ

VCGTZ

VCLEZ

VCLTZ

Dd,Dm 1 Dm:N2 - - - Dd:N4 -

Qd,Qm 1 QmLo:N2 - QmHi:N2 - QdLo:N4 QdHi:N4

VSUM Dd,Dn,Dm 1 Dn:N1 Dm:N1 - - Dd:N3 -

Dd,Dm

(long)
1 Dm:N1 - - - Dd:N3 -

Qd,Qm

(long)
1 QmLo:N1 QmHi:N1 - - QdLo:N3 QdHi:N3

VNOT

VCLS

VCLZ

VCNT

Dd,Dm 1 - Dm:N2 - - Dd:N3 -

VNOT Qd,Qm 1 - QmLo:N2 - QmHi:N2 QdLo:N3 QdHi:N3

VCLS

VCLZ

VCNT

Qd,Qm 1
2

-
-

QmLo:N2

QmHi:N2

-
-

-
-

QdLo:N3

QdHi:N3

-
-

VMOV

VMVN

Dd,#IMM 1 - - - - Dd:N3 -

Qd,#IMM 1 - - - - QdLo:N3 QdHi:N3

VORR

VBIC

Dd,#IMM 1 Dd:N2 - - - Dd:N3 -

Qd,#IMM 1 QdLo:N2 - Qdb:N2 - QdLo:N3 QdHi:N3

VBIT

VBIF

VBSL

Dd,Dn,Dm 1 Dn:N2 Dm:N2 Dd:N2 - Dd:N3 -

Qd,Qn,Qm 1
2

QnLo:N2

QnHi:N2

QmLo:N2

QmHi:N2

QdLo:N2

QdHi:N2

-
-

QdLo:N3

QdHi:N3

-
-

Table 16-18 Advanced SIMD integer ALU instructions (continued)

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2
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16.6.3 Advanced SIMD integer multiply instructions

Table 16-19 shows the operation of the Advanced SIMD integer multiply instructions.

VABA Dd,Dn,Dm 1 Dn:N2 Dm:N1 Dd:N3 - Dd:N6 -

Qd,Qn,Qm 1
2

QnLo:N2

QnHi:N2

QmLo:N1

QmHi:N1

QdLo:N3

QdHi:N3

-
-

QdLo:N6

QdHi:N6

-
-

Qd,Dn,Dm

(long)
1 Dn:N2 Dm:N1 QdLo:N3 QdHi:N3 QdLo:N6 QdHi:N6

VSMA Dd,Dm

(long)
1 Dm:N1 - Dd:N3 - Dd:N6 -

Qd,Qm

(long)
1 QmLo:N1 QmHi:N1 QdLo:N3 QdHi:N3 QdLo:N6 QdHi:N6

a. VFMX and VFMN exist only for the Dd, Dn, Dm variant.

Table 16-18 Advanced SIMD integer ALU instructions (continued)

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

Table 16-19 Advanced SIMD integer multiply instructions

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

VMUL

VQDMLH

VQRDMLH

Dd,Dn,Dm

(.8 normal)
(.16 normal)

1 Dn:N2 Dm:N2 Dm:N2 - Dd:N6 -

Qd,Qn,Qm

(.8 normal)
(.16 normal)

1
2

QnLo:N2

QnHi:N2

QmLo:N2

QmHi:N2

-
-

-
-

QdLo:N6

QdHi:N6

-
-

Dd,Dn,Dm

(.32 normal)
1
2

Dn:N2

-
Dm:N1

-
-
-

-
-

-
Dd:N6

-
-

Qd,Qn,Qm

(.32 normal)
1
2
3
4

QnLo:N2

-
QnHi:N2

-

QmLo:N1

-
QmHi:N1

-

-
-
-
-

-
-
-
-

-
QdLo:N6

-
QdHi:N6

-
-
-
-

VMUL

VQDMUL

Qd,Dn,Dm

(.16.8 long)
(.32.16 long)

1 Dn:N2 Dm:N2 - - QdLo:N6 QdHi:N6

Qd,Dn,Dm

(.64.32 long)
1
2

Dn:N2

-
Dm:N1

-
-
-

-
-

-
QdLo:N6

-
QdHi:N6
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VMLAa

VMLSa

Dd,Dn,Dm

(.8 normal)
(.16 normal)

1 Dn:N2 Dm:N2 Dd:N3 - Dd:N6 -

Qd,Qn,Qm

(.8 normal)
(.16 normal)

1
2

QnLo:N2

QnHi:N2

QmLo:N2

QmHi:N2

QdLo:N3

QdHi:N3

-
-

QdLo:N6

QdHi:N6

-
-

Dd,Dn,Dm

(.32 normal)
1
2

Dn:N2

-
Dm:N1

-
Dd:N3 -

-
-
Dd:N6

-
-

Qd,Qn,Qm

(.32 normal)
1
2
3
4

QnLo:N2

-
QnHi:N2

-

QmLo:N1

-
QmHi:N1

-

QdLo:N3

-
QdHi:N3

-

-
-
-
-

-
QdLo:N6

-
QdHi:N6

-
-
-
-

VMLAa

VMLSa

VQDMLAa

VQDMLSa

Qd,Dn,Dm

(.16.8 long)
(.32.16 long)

1 Dn:N2 Dm:N2 QdLo:N3 QdHi:N3 QdLo:N6 QdHi:N6

Qd,Dn,Dm

(.64.32 long)
1
2

Dn:N2

-
Dm:N1

-
QdLo:N3

-
QdHi:N3

-
-
QdLo:N6

-
QdHi:N6

VMUL

VQDMLH

VQRDMLH

Dd,Dn,Dm[x]

(.16 scalar)
1 Dn:N2 Dm:N1 - - Dd:N6 -

Qd,Qn,Dm[x]

(.16 scalar)
1
2

QnLo:N2

QnHi:N2

Dm:N1 - - QdLo:N6

QdHi:N6

-

Dd,Dn,Dm[x]

(.32 scalar)
1
2

Dn:N2

-
Dm:N1

-
-
-

-
-

-
Dd:N6

-
-

Qd,Qn,Dm[x]

(.32 scalar)
1
2
3
4

QnLo:N2

-
Qnhi:N2

-

Dm:N1

-
-
-

-
-
-
-

-
-
-
-

-
QdLo:N6

-
QdHi:N6

-
-
-
-

VMUL

VQDMUL

Qd,Dn,Dm[x]

(.32.16 long scalar)
1 Dn:N2 Dm:N1 - - QdLo:N6 QdHi:N6

Qd,Dn,Dm[x]

(.64.32 long scalar)
1
2

Dn:N2

-
Dm:N1

-
-
-

-
-

-
QdLo:N6

-
QdHi:N6

Table 16-19 Advanced SIMD integer multiply instructions (continued)

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2
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16.6.4 Advanced SIMD integer shift instructions

Table 16-20 shows the operation of the Advanced SIMD integer shift instructions.

VMLAa

VMLSa

Dd,Dn,Dm[x]

(.16 scalar)
1 Dn:N2 Dm:N1 Dd:N3 - Dd:N6 -

Qd,Qn,Dm[x]

(.16 scalar)
1
2

QnLo:N2

QnHi:N2

Dm:N1

-
QdLo:N3

QdHi:N3

-
-

QdLo:N6

QdHi:N6

-
-

Dd,Dn,Dm[x]

(.32 scalar)
1
2

Dn:N2

-
Dm:N1

-
Dd:N3

-
-
-

-
Dd:N6

-
-

Qd,Qn,Dm[x]

(.32 scalar)
1
2
3
4

QnLo:N2

-
QnHi:N2

-

Dm:N1

-
-
-

QdLo:N3

-
QdHi:N3

-

-
-
-
-

-
QdLo:N6

-
QdHi:N6

-
-
-
-

VMLAa

VMLSa

VQDMLAa

VQDMLSa

Qd,Dn,Dm[x]

(.32.16 long scalar)
1 Dn:N2 Dm:N1 QdLo:N3 QdHi:N3 QdLo:N6 QdHi:N6

Qd,Dn,Dm[x]

(.64.32 long scalar)
1
2

Dn:N2

-
Dm:N1

-
QdLo:N3

-
QdHi:N3

-
-
QdLo:N6

-
QdHi:N6

a. If a multiply-accumulate follows a multiply or another multiply-accumulate, and depends on the result of that first instruction, then if the 
dependency between both instructions are of the same type and size, the processor uses a special multiplier accumulator forwarding. This 
special forwarding means the multiply instructions can issue back-to-back because the result of the first instruction in N5 is forwarded to 
the accumulator of the second instruction in N4. If the size and type of the instructions do not match, then Dd or Qd is required in N3. 
This applies to combinations of the multiply-accumulate instructions VMLA, VMLS, VQDMLA, and VQDMLS, and the multiply 
instructions VMUL and VQDMUL.

Table 16-19 Advanced SIMD integer multiply instructions (continued)

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

Table 16-20 Advanced SIMD integer shift instructions

Instruction Register format Cycles Source1 Source2 Source3 Source4 Result1 Result2

VSHR

VSHL

Dd,Dm,#IMM 1 Dm:N1 - - - Dd:N3 -

Qd,Qm,#IMM 1 QmLo:N1 QmHi:N1 - - QdLo:N3 QdHi:N3

VQSHL

VRSHR

Dd,Dm,#IMM 1 Dm:N1 - - - Dd:N4 -

Qd,Qm,#IMM 1 QmLo:N1 QmHi:N1 - - QdLo:N4 QdHi:N4

VSHR Dd,Qm,#IMM

(narrow)
1 QmLo:N1 QmHi:N1 - - Dd:N3 -

VQSHR

VQMOV

VRSHR

VQRSHR

Dd,Qm,#IMM

(narrow)
1 QmLo:N1 QmHi:N1 - - Dd:N4 -

VSHLa

VMVH

Qd,Dm,[#IMM]

(long, wide)
Dm:N1 - - - QdLo:N3 QdHi:N3
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16.6.5 Advanced SIMD floating-point instructions

Table 16-21 shows the operation of the Advanced SIMD floating-point instructions.

VSLI

VSRI

Dd,Dm,#IMM 1 Dm:N1 Dd:N1 - - Dd:N3 -

Qd,Qm,#IMM 1
2

QmLo:N1

QmHi:N1

QdLo:N1

QdHi:N1

-
-

-
-

QdLo:N3

QdHi:N3

-
-

VSHL Dd,Dm,Dn 1 Dm:N1 Dn:N1 - - Dn:N1 -

Qd,Qm,Qn 1
2

QmLo:N1

QmHi:N1

QnLo:N1

QnHi:N1

-
-

-
-

QdLo:N3

QdHi:N3

-
-

VQSHL

VRSHL

VQRSHL

Dd,Dm,Dn 1 Dm:N1 Dn:N1 - - Dd:N4 -

Qd,Qm,Qn 1
2

QmLo:N1

QmLo:N1

QnLo:N1

QnHi:N1

-
-

-
-

QdLo:N4

QdHi:N4

-
-

VSRA

VRSRA

Dd,Dm,#IMM 1 Dm:N1 - Dd:N3 - Dd:N6 -

Qd,Qm,#IMM 1 QmLo:N1 QmHi:N1 QdLo:N3 QdHi:N3 QdLo:N6 QdHi:N6

a. Only VSHL has the #IMM parameter.

Table 16-20 Advanced SIMD integer shift instructions (continued)

Instruction Register format Cycles Source1 Source2 Source3 Source4 Result1 Result2

Table 16-21 Advanced SIMD floating-point instructions

Instruction Register format Cycles Source1 Source2 Source3 Source4 Result1 Result2

VADD

VSUB

VABD

VMUL

VCEQ

VCGE

VCGT

VCAGE

VCAGT

VMAX

VMIN

Dd,Dn,Dm 1 Dn:N2 Dm:N2 - - Dd:N5 -

Qd,Qn,Qm 1
2

QnLo:N2

QnHi:N2

QmLo:N2

QmHi:N2

-
-

-
-

QdLo:N5

QdHi:N5

-
-

VABS

VNEG

VCEQZ

VCGEZ

VCGTZ

VCLEZ

VCLTZ

VRECPE

VRSQRTE

VCVT

Dd,Dm 1 Dm:N2 - - - Dd:N5 -

Qd,Qm 1
2

QmLo:N2

QmHi:N2

-
-

-
-

-
-

QdLo:N5

QdHi:N5

-
-
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Note
 The VMLA.F and VMLS.F type instructions have additional restrictions that determine when 
they can be issued:

• If a VMLA.F is followed by a VMLA.F with no RAW hazard, the second VFMLA.F 
issues with no stalls.

• If a VMLA.F is followed by an VADD.F or VMUL.F with no RAW hazard, the VADD.F 
or VMUL.F stalls 4 cycles before issue. The 4 cycle stall preserves the in-order retirement 
of the instructions.

• A VMLA.F followed by any NEON floating-point instruction with RAW hazard stalls for 
8 cycles.

VSUM

VFMX

VPMN

Dd,Dn,Dm 1 Dn:N1 Dm:N1 - - Dd:N5 -

VMUL Dd,Dn,Dm[x]

(scalar)
1 Dn:N2 Dm:N1 - - Dd:N5 -

Qd,Qn,Dm[x]

(scalar)
1
2

QnLo:N2

QnHi:N2

Dm:N1

-
-
-

-
-

QdLo:N5

QdHi:N5

-
-

VMLAa

VMLSa

Dd,Dn,Dm 1 Dn:N2 Dm:N2 Dd:N3 - Dd:N9 -

Qd,Qn,Qm 1
2

QnLo:N2

QnHi:N2

QmLo:N2

QmHi:N2

QdLo:N3

QdHi:N3

-
-

QdLo:N9

QdHi:N9

-
-

Dd,Dn,Dm[x] 
(scalar)

1 Dn:N2 Dm:N1 Dd:N3 - Dd:N9 -

Qd,Qn,Dm[x] 
(scalar)

1
2

QnLo:N2

QnHi:N2

Dm:N1

-
QdLo:N3

QdHi:N3

-
-

QdLo:N9

QdHi:N9

-
-

VRECPSa

VRSQRTSa

Dd,Dn,Dm 1 Dn:N2 Dm:N2 - - Dd:N9 -

Qd,Qn,Qm 1
2

QnLo:N2

QnHi:N2

QmLo:N2

QmHi:N2

-
-

-
-

QdLo:N9

QdHi:N9

-
-

a. The VMLA.F, VMLS.F, VRECPS.F, VRSQRTS.F instructions begin execution on the floating-point multiply pipeline. The floating-point 
multiply result is then forwarded to the floating-point add pipeline to complete the accumulate portion of the instructions. 
Therefore, these instructions are pipelined across ten stages, N1 through N10, where N10 is the writeback stage.

Table 16-21 Advanced SIMD floating-point instructions (continued)

Instruction Register format Cycles Source1 Source2 Source3 Source4 Result1 Result2
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 16-25
ID060510 Non-Confidential



Instruction Cycle Timing 
16.6.6 Advanced SIMD byte permute instructions

Table 16-22 shows the operation of the Advanced SIMD byte permute instructions.

Table 16-22 Advanced SIMD byte permute instructions

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

VMOV Dd,Qm

(narrow)
1 QmLo:N1 QmHi:N1 - - Dd:N2 -

VMOV Dd,Dm[x]

(scalar)
1 Dm:N1 - - - Dd:N2 -

Qd,Dm[x]

(scalar)
1 Dm:N1 - - - QdLo:N2 QdHi:N2

VTRN

VSWP

Dd,Dm 1 Dd:N1 Dm:N1 - - Dd:N2 Dm:N2

Qd,Qm 1
2

QdLo:N1

QdHi:N1

QmLo:N1

QmHi:N1

-
-

-
-

QdLo:N2

QdHi:N2

QmLo:N2

QmHi:N2

VZIP Dd,Dm 1 Dd:N1 Dm:N1 - - Dd:N2 Dm:N2

Qd,Qm 1
2
3

QdLo:N1

QdHi:N1

-

QmLo:N1

QmHi:N1

-

-
-
-

-
-
-

-
QdLo:N2

QmLo:N2

-
QdHi:N2

QmHi:N2

VUZP Dd,Dm 1 Dd:N1 Dm:N1 - - Dd:N2 Dm:N2

Qd,Qm 1
2
3

QdLo:N1

QmLo:N1

-

QdHi:N1

QmHi:N1

-
-
-

-
-
-

-
QdLo:N2

QdHi:N2

-
QmLo:N2

QmHi:N2

VREV Dd,Dm 1 Dm:N1 - - - Dd:N2 -

Qd,Qm 1 QmLo:N1 QmHi:N1 - - QdLo:N2 QdHi:N2

VEXT Dd,Dn,Dm,#IMM 1 Dn:N1 Dm:N1 - - Dd:N2 -

Qd,Qn,Qm,#IMM 1
2

QnLo:N1

QmLo:N1

QnHi:N1

QmHi:N1

-
-

-
-

-
QdLo:N2

-
QdHi:N2

VTBL Dd,{Dn},Dm 1
2

-
Dn:N1

Dm:N1

-
-
-

-
-

-
Dd:N2

-
-

Dd,{Dn,Dn1},Dm 1
2

-
Dn:N1

Dm:N1

Dn1:N1

-
-

-
-

-
Dd:N2

-
-

Dd,{Dn,Dn1,Dn2},Dm 1
2
3

-
Dn:N1

Dn2:N1

Dm:N1

Dn1:N1

-

-
-
-

-
-
-

-
-
Dd:N2

-
-
-

Dd,{Dn,Dn1,Dn2,Dn3},Dm 1
2
3

-
Dn:N1

Dn2:N1

Dm:N1

Dn1:N1

Dn3:N1

-
-
-

-
-
-

-
-
Dd:N2

-
-
-
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16.6.7 Advanced SIMD load/store instructions

Advanced SIMD load/store instructions can be divided into the following subcategories:
• VLDR and VSTR register load/store single
• VLDM and VSTM register load/store multiple
• VLD and VST multiple 1-element or 2, 3, 4-element structure
• VLD and VST single 1-element or 2, 3, 4-element structure to one lane
• VLD single 1-element or 2, 3, 4-element structure to all lanes.

VLDR and VSTR instructions transfer a single 64-bit register and require two issue cycles. 
Processor scheduling is static, and it is not possible to know the address alignment at schedule 
time. Therefore, scheduling of the VLDR and VSTR instructions must be done assuming the 
load/store address is not 128-bit aligned.

VLDM and VSTM instructions transfer multiple 64-bit registers. The number of registers in the 
register list determines the number of cycles required to execute a load or store multiple. The 
NEON unit can load or store two 64-bit registers in each cycle. The number of cycles required 
to execute a VLDM or VSTM instruction is given by the following formula:

(number of registers/2) + mod (number of registers,2) + 1

For example, VLDM and VSTM transfer of one or two registers require two cycles, three or four 
registers require three cycles, five or six registers require four cycles, and 15 or 16 registers 
require nine cycles.

VLD and VST element and structure load/store instructions transfer one up to four 64-bit registers. 
The number of cycles required to execute a VLD or VST instruction depends on both the number 
of registers in the register list and the alignment requirement. Typically, you can reduce the 
number of cycles if you use a stronger alignment. For example, a 2-register VLD2.16@64 
requires two cycles but VLD2.16@128 requires only one cycle.

VTBX Dd,{Dn},Dm 1
2

Dd:N1

Dn:N1

Dm:N1

-
-
-

-
-

-
Dd:N2

-
-

Dd,{Dn,Dn1},Dm 1
2

Dd:N1

Dn:N1

Dm:N1

Dn1:N1

-
-

-
-

-
Dd:N2

-
-

Dd,{Dn,Dn1,Dn2},Dm 1
2
3

Dd:N1

Dn:N1

Dn2:N1

Dm:N1

Dn1:N1

-

-
-
-

-
-
-

-
-
Dd:N2

-
-
-

Dd,{Dn,Dn1,Dn2,Dn3},Dm 1
2
3

Dd:N1

Dn:N1

Dn2:N1

Dm:N1

Dn1:N1

Dn3:N1

-
-
-

-
-
-

-
-
Dd:N2

-
-
-

Table 16-22 Advanced SIMD byte permute instructions (continued)

Instruction Register format Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2
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Table 16-23 shows the operation of the Advanced SIMD load/store instructions.

Table 16-23 Advanced SIMD load/store instructions

Instruction
Register list 
(alignment) Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

VLDR and VSTR register load/storea:

VLDR Dd, <addr> 1
2

-
-

-
-

-
-

-
-

-
Dd:N1

-
-

VSTR Dd, <addr> 1
2

Dd:N1

-
-
-

-
-

-
-

-
-

-
-

VLD and VST multiple 1-element or 2, 3, 4-element structureb:

VLD1 1-reg

(unaligned)
1
2

-
-

-
-

-
-

-
-

-
Dd:N1

-
-

1-reg

(@64)
1 - - - - Dd:N1 -

2-reg

(unaligned, @64)
1
2

-
-

-
-

-
-

-
-

-
Dd:N1

-
Dd+1:N1

2-reg

(@128)
1 - - - - Dd:N1 Dd+1:N1

3-reg

(unaligned, @64)
1
2
3

-
-
-

-
-
-

-
-
-

-
-
-

-
Dd:N1

Dd+2:N1

-
Dd+1:N1

-

4-reg

(unaligned, @64)
1
2
3

-
-
-

-
-
-

-
-
-

-
-
-

-
Dd:N1

Dd+2:N1

-
Dd+1:N1

Dd+3:N1

4-reg

(@128, @256)
1
2

-
-

-
-

-
-

-
-

Dd:N1

Dd+2:N1

Dd+1:N1

Dd+3:N1

VLD2 2-reg

(unaligned, @64)
1
2

-
-

-
-

-
-

-
-

-
Dd:N2

-
Dd+1:N2

2-reg

(@128)
1 - - - - Dd:N2 Dd+1:N2

4-reg

(unaligned, @64)
1
2
3

-
-
-

-
-
-

-
-
-

-
-
-

-
Dd:N2

Dd+1:N2

-
Dd+2:N2

Dd+3:N2

4-reg

(@128, @256)
1
2

-
-

-
-

-
-

-
-

Dd:N2

Dd+1:N2

Dd+2:N2

Dd+3:N2

VLD3 3-reg

(unaligned, @64)
1
2
3
4

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
Dd:N2

Dd+2:N2

-
-
Dd+1:N2

-
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VLD4 4-reg

(unaligned, @64)
1
2
3
4

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
Dd:N2

Dd+2:N2

-
-
Dd+1:N2

Dd+3:N2

4-reg

(@128, @256)
1
2
3

-
-
-

-
-
-

-
-
-

-
-
-

-
Dd:N2

Dd+2:N2

-
Dd+1:N2

Dd+3:N2

VST1 1-reg

(unaligned)
1
2

Dd:N1

-
-
-

-
-

-
-

-
-

-
-

1-reg

(@64)
1 Dd:N1 - - - - -

2-reg

(unaligned, @64)
1
2

Dd:N1

-
Dd+1:N1

-
-
-

-
-

- - - -

2-reg

(@128)
1 Dd:N1 Dd+1:N1 - - - -

3-reg

(unaligned)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

-
-

-
-
-

-
-
-

-
-
-

-
-
-

3-reg

(@64)
1
2

Dd:N1

Dd+2:N1

Dd+1:N1

-
-
-

-
-

-
-

-

-

4-reg

(unaligned, @64)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

Dd+3:N1

-

-
-
-

-
-
-

-
-
-

-
-
-

4-reg

(@128, @256)
1
2

Dd:N1

Dd+2:N1

Dd+1:N1

Dd+3:N1

-
-

-
-

-
-

-
-

VST2 2-reg

(unaligned, @64)
1
2

Dd:N1

-
Dd+1:N1

-
-
-

-
-

-
-

-
-

2-reg

(@128)
1 Dd:N1 Dd+1:N1 - - - -

4-reg

(unaligned, @64)
1
2
3
4

Dd:N1

Dd+2:N1

-
-

Dd+1:N1

Dd+3:N1

-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

4-reg

(@128, @256)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

Dd+3:N1

-

-
-
-

-
-
-

-
-
-

-
-
-

Table 16-23 Advanced SIMD load/store instructions (continued)

Instruction
Register list 
(alignment) Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2
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VST3 3-reg

(unaligned)
1
2
3
4

Dd:N1

Dd+2:N1

-
-

Dd+1:N1

-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

3-reg

(@64)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

-
-

-
-
-

-
-
-

-
-
-

-
-
-

VST4 4-reg

(unaligned, @64)
1
2
3
4

Dd:N1

Dd+2:N1

-
-

Dd+1:N1

Dd+3:N1

-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

4-reg

(@128, @256)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

Dd+3:N1

-

-
-
-

-
-
-

-
-
-

-
-
-

VLD and VST single 1-element or 2, 3, 4-element structure to one lanec:

VLD1 1-reg

(.8 unaligned,
.16@16, .32@32)

1
2

Dd:N1

-
-
-

-
-

-
-

-
Dd:N2

-
-

1-reg

(.16 unaligned,
.32 unaligned)

1
2
3

Dd:N1

-
-

-
-
-

-
-
-

-
-
-

-
-
Dd:N2

-
-
-

VLD2 2-reg

(unaligned)
1
2
3

Dd:N1

-
-

Dd+1:N1

-
-

-
-
-

-
-
-

-
-
Dd:N2

-
-
Dd+1:N2

2-reg

(.8@16, .16@32, .32@64)
1
2

Dd:N1

-
Dd+1:N1

-
-
-

-
-

-
Dd:N2

-
Dd+1:N2

VLD3 3-reg

(unaligned)
1
2
3
4
5

Dd:N1

Dd+2:N1

-
-
-

Dd+1:N1

-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
Dd:N2

Dd+2:N2

-
-
-
Dd+1:N2

-

VLD4 4-reg

(unaligned, .32@64)
1
2
3
4
5

Dd:N1

Dd+2:N1

-
-
-

Dd+1:N1

Dd+3:N1

-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
Dd:N2

Dd+2:N2

-
-
-
Dd+1:N2

Dd+3:N1

4-reg

(.8@32, .16@64, .32@128)
1
2
3
4

Dd:N1

Dd+2:N1

-
-

Dd+1:N1

Dd+3:N1

-
-

-
-
-
-

-
-
-
-

-
-
Dd:N2

Dd+2:N2

-
-
Dd+1:N2

Dd+3:N2

Table 16-23 Advanced SIMD load/store instructions (continued)

Instruction
Register list 
(alignment) Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2
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VST1 1-reg

(.16 unaligned, .32 
unaligned)

1
2

Dd:N1

-
-
-

-
-

-
-

-
-

-
-

1-reg

(.8 unaligned, .16@16, 
.32@32)

1 Dd:N1 - - - - -

VST2 2-reg

(unaligned)
1
2

Dd:N1

-
Dd+1:N1

-
-
-

-
-

-
-

-
-

2-reg

(.8@16, .16@32, .32@64)
1 Dd:N1 Dd+1:N1 - - - -

VST3 3-reg

(unaligned)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

-
-

-
-
-

-
-
-

-
-
-

-
-
-

VST4 4-reg

(unaligned, .32@64)
1
2
3

Dd:N1

Dd+2:N1

-

Dd+1:N1

Dd+3:N1

-

-
-
-

-
-
-

-
-
-

-
-
-

4-reg

(.8@32, .16@64, .32@128)
1
2

Dd:N1

Dd+2:N1

Dd+1:N1

Dd+3:N1

-
-

-
-

-
-

-
-

VLD single 1-element or 2, 3, 4-element structure to all lanesb:

VLD1 1-reg

(.16 unaligned, .32 
unaligned)

1
2

-
-

-
-

-
-

-
-

-
Dd:N2

-
-

1-reg

(.8 unaligned, .16@16, 
.32@32)

1 - - - - Dd:N2 -

2-reg

(.16 unaligned, .32 
unaligned)

1
2

-
-

-
-

-
-

-
-

-
Dd:N2

-
Dd+1:N2

2-reg

(.8 unaligned, .16@16, 
.32@32)

1 - - - - Dd:N2 Dd+1:N2

VLD2 2-reg

(unaligned)
1
2

-
-

-
-

-
-

-
-

-
Dd:N2

-
Dd+1:N2

2-reg

(.8@16, .16@32, .32@64)
- - - - - Dd:N2 Dd+1:N2

Table 16-23 Advanced SIMD load/store instructions (continued)

Instruction
Register list 
(alignment) Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2
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16.6.8 Advanced SIMD register transfer instructions

Table 16-24 shows the operation of the Advanced SIMD register transfer instructions.

VLD3 3-reg

(unaligned)
1
2
3

-
-
-

-
-
-

-
-
-

-
-
-

-
Dd:N2

Dd+2:N2

-
Dd+1:N2

-

VLD4 4-reg

(unaligned, .32@64)
1
2
3

-
-
-

-
-
-

-
-
-

-
-
-

-
Dd:N2

Dd+2:N2

-
Dd+1:N2

Dd+3:N2

4-reg

(.8@32, .16@64, .32@128)
1
2

-
-

-
-

-
-

-
-

Dd:N2

Dd+2:N2

Dd+1:N2

Dd+3:N2

a. This table lists the VLDR instruction scheduling for little-endian mode. For VLDR in big-endian mode, results are available in N2 and not N1.
b. This table lists the VLD instruction scheduling for little-endian mode. For VLD1 multiple 1-element in big-endian mode, results are available 

in N2 and not N1. For VLD2, VLD3, VLD4 results are available in N2 regardless of the endianness configuration. This table lists only the 
single-spaced register transfer variants. For single-spaced register transfer variants, the source and destination registers are Dd, Dd+1, Dd+2, 
and Dd+3. For double-spaced register transfer variants, the source and destination registers are Dd, Dd+2, Dd+4, and Dd+6.

c. This table lists only the single-spaced register transfer variants. For single-spaced register transfer variants, the source and destination 
registers are Dd, Dd+1, Dd+2, and Dd+3. For double-spaced register transfer variants, the source and destination registers are Dd, Dd+2, 
Dd+4, and Dd+6.

Table 16-23 Advanced SIMD load/store instructions (continued)

Instruction
Register list 
(alignment) Cycles Source 1 Source 2 Source 3 Source 4 Result 1 Result 2

Table 16-24 Advanced SIMD register transfer instructions

Instruction Register format Cycles
Source Result

1 2 3 4 1 2

VMOVa 
(MCR/MCRR)

Dn,Rd - - - - - Dn:N2 -

Qn,Rd - - - - - QnLo:N2 QnHi:N2

Dn[],Rd 1
2

Dn:N1

-
-
-

-
-

-
-

-
Dd:N2

-
-

Dm,Rd,Rn 1
2

-
-

-
-

-
-

-
-

-
Dm:N2

-
-

VMOVb 
(MRC/MRRC)

Rd,Dn[] - Dn:N1 - - - - -

Rd,Rn,Dm 1
2

Dm:N1

-
-
-

-
-

-
-

-
-

-
-

a. MCRR instruction is scheduled as two back-to-back MCR instructions.
b. MRRC instruction is scheduled as two back-to-back MRC instructions.
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16.7 VFP instructions
All VFP data-processing instructions can execute on the VFP coprocessor. A special subset of 
the VFP instructions can execute on the NEON Floating-Point (NFP) pipeline.

Note
 This document uses the older assembler language instruction mnemonics. See Appendix B 
Instruction Mnemonics for information about the Unified Assembler Language (UAL) 
equivalents of the VFP data-processing instruction mnemonics. See the ARM Architecture 
Reference Manual for more information on the UAL syntax.

16.7.1 VFP instruction execution in the VFP coprocessor

The VFP coprocessor is a nonpipelined floating-point execution engine that can execute any 
VFPv3 data-processing instruction. Each instruction runs to completion before the next 
instruction can issue, and there is no forwarding of VFP results to other instructions. Two cycles 
of decode, stages M2 and M3, are required between consecutive VFP instructions. These decode 
cycles are included in the cycle timing of this section.

The number of cycles required to complete an instruction depends on both the instruction and 
the input data operands. Floating-point operands can be divided into three broad categories: 
• normal
• subnormal
• special.

Most numbers are normal and have an internal format that consists of a sign, a fractional number 
between one and two, and an exponent. Subnormal numbers are too small to represent in the 
normal space. A subnormal number consists of a sign, a fractional number between zero and 
one, and a zero in the exponent field. Special numbers are zeros, NaNs, and infinities.

Table 16-25 shows the range of cycle times for VFPv3 data-processing instruction with normal 
numbers. Subnormal numbers usually take more time as the Subnormal penalty column in 
Table 16-25 shows. Special numbers are handled by separate logic, and usually take less time 
than what is indicated in this table.

Table 16-25 VFP Instruction cycle counts

Instruction Single precision 
cycles

Double precision 
cycles Subnormal penalty 

FADD 9-10 9-10 operand/result

FSUB 9-10 9-10 operand/result

FMUL 10-12 11-17 operand/result

FNMUL 10-12 11-17 operand/result

FMAC 18-21 19-26 operand/intermediate/result

FNMAC 18-21 19-26 operand/intermediate/result

FMSC 18-21 19-26 operand/intermediate/result

FNMSC 18-21 19-26 operand/intermediate/result

FDIV 20-37 29-65 operand/result

FSQRT 19-33 29-60 operand
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The Instruction column of Table 16-25 on page 16-33 indicates the specific VFPv3 
data-processing instruction. The Single precision cycles column indicates the number of cycles 
required for normal single-precision inputs of the associated instruction. The Double precision 
cycles column indicates the number of cycles required for normal double-precision inputs of the 
associated instruction. For example, a double-precision FMUL instruction takes any where 
between 11 and 17 cycles, depending on the data. A single- or double-precision FCMP instruction 
takes either four or seven cycles, depending on the data.

The reason for the wide range of cycles required for normal data is because the VFP coprocessor 
can detect when a given problem does not require additional computation. For example, if the 
VFP coprocessor multiplies 3 times 3, the operation takes less time than when it multiplies π 
times π.

FCONST 4 4 none

FABS 4 4 none

FCPY 4 4 none

FNEG 4 4 none

FCMP 4 or 7 4 or 7 none

FCMPE 4 or 7 4 or 7 none

FCMPZ 4 or 7 4 or 7 none

FCMPEZ 4 or 7 4 or 7 none

FCVTDS 5 - operand

FCVTSD - 7 intermediate

FSITO 9 9 none

FUITO 9 9 none

FTOSI 8 8 none

FTOUI 8 8 none

FTOSIZ 8 8 none

FTOUIZ 8 8 none

FSHTO 9 9 none

FUHTO 9 9 none

FSLTO 9 9 none

FULTO 9 9 none

FTOSH 6 8 none

FTOUH 6 8 none

FTOSL 6 8 none

FTOUL 6 8 none

Table 16-25 VFP Instruction cycle counts (continued)

Instruction Single precision 
cycles

Double precision 
cycles Subnormal penalty 
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The Subnormal penalty column indicates whether additional cycles are required for subnormal 
operands, subnormal intermediate values, or subnormal final results. This penalty only applies 
when the VFP coprocessor has flush-to-zero mode disabled.

For operations that have the result penalty, six to seven additional cycles are required to format 
the final result.

For operations that have the operand penalty:

• one subnormal operand requires five to six additional cycles

• two subnormal operands require nine to ten additional cycles

• three subnormal operands require nine to ten additional cycles plus an intermediate 
penalty.

All 3-input operations FMAC, FNMAC, FMSC, or FNMSC are variations of multiply-add, that is, a 
multiplication followed by an addition. The multiplication produces an intermediate result that 
might itself be subnormal. This intermediate subnormal has a penalty that is the same as the 
output penalty (applied to the multiply) plus the input penalty (applied to the addition), which 
amounts to an additional 11-13 cycles.

A slightly simpler way to look at 3-input operation is to split them into equivalent multiply and 
add instructions. A 3-input operation takes the same amount of time as its component 
multiplication and addition, usually minus one cycle.

An FMAC operation with three normal operands might have a multiplication that takes 12 
cycles and an addition that takes nine cycles. The corresponding multiply followed by add 
instruction takes:

12 + 9 - 1 = 20 cycles

For a multiplication of a normal number with a subnormal number that results in a product that 
is also subnormal, this operation has an operand and result penalty and takes a total of 21 to 25 
cycles. We then add the subnormal product to another subnormal number, resulting in a normal 
sum. This addition has two operand penalties, and takes a total of 18 to 20 cycles. The total time 
the two operations take is between: 

10 + 5 + 6 + 18 = 39 cycles and 12 + 6 + 7 + 20 = 45 cycles

The corresponding FMAC multiply followed by add instruction has two operand penalties of 
nine to 10 cycles, an intermediate penalty of 11 to 13 cycles, and the cost of the multiply-add of 
18 to 21 cycles. The total time is between:

9 + 11 + 18 = 38 cycles and 10 + 13 + 21 = 44 cycles

16.7.2 VFP instruction execution in the NFP pipeline

The NFP pipeline can execute a subset of the VFPv3 data-processing instructions more quickly 
than the VFP coprocessor. The following constraints define which VFP instructions are 
executable by the NFP pipeline:
• single-precision data-processing operations only
• RunFast mode must be enabled
• scalar only or non-short vector instructions

If these constraints are met, the following instructions can execute in the NFP pipeline:
• FADDS, FSUBS
• FABSS, FNEGS
• FMULS, FNMULS
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• FMACS, FNMACS
• FMSCS, FNMSCS
• FCMPS, FCMPES
• FCMPZS, FCMPEZS
• FUITOS, FSITOS
• FTOUIS, FTOSIS
• FTOUIZS, FTOSIZS
• FSHTOS, FSLTOS
• FUHTOS,FULTOS
• FTOSHS, FTOSLS
• FTOUHS, FTOULS.

VFP instructions that execute in the NFP pipeline have results that are 32-bit single-precision 
writes to the upper or lower half of the 64-bit register value. A restriction that applies to VFP 
instructions executing in the NFP pipeline is that instruction results cannot be forwarded early 
to subsequent instructions. Each VFP instruction takes 7 cycles to execute in the NFP pipeline 
because of this restriction.
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16.8 Scheduling example
Example 16-6 shows a sample code segment and how the processor might schedule it.

Example 16-6 Dual issue instruction sequence for integer pipeline

Cycle PC Opcode Instruction Timing description
1 0x00000ed0: 0xe12fff1e BX r14 Dual issue pipeline 0
1 0x00000ee4: 0xe3500000 CMP r0,#0 Dual issue in pipeline 1
2 0x00000ee8: 0xe3a03003 MOV r3,#3 Dual issue pipeline 0
2 0x00000eec: 0xe3a00000 MOV r0,#0 Dual issue in pipeline 1
3 0x00000ef0: 0x05813000 STREQ r3,[r1,#0] Dual issue in pipeline 0, r3 not needed until E3
3 0x00000ef4: 0xe3520004 CMP r2,#4 Dual issue in pipeline 1
4 0x00000ef8: 0x979ff102 LDRLS pc,[pc,r2,LSL #2] Single issue pipeline 0, +1 cycle for load to pc, no 

extra cycle for shift since LSL #2
5 0x00000f2c: 0xe3a00001 MOV r0,#1 Dual issue with 2nd iteration of load in

pipeline 1
6 0x00000f30: 0xea000000 B {pc}+8 #0xf38 dual issue pipeline 0
6 0x00000f38: 0xe5810000 STR r0,[r1,#0] Dual issue pipeline 1
7 0x00000f3c: 0xe49df004 LDR pc,[r13],#4 Single issue pipeline 0, +1 cycle for load to pc
8 0x0000017c: 0xe284200c ADD r2,r4,#0xc Dual issue with 2nd iteration of load in pipeline 1
9 0x00000180: 0xe5960004 LDR r0,[r6,#4] Dual issue pipeline 0
9 0x00000184: 0xe3a0100a MOV r1,#0xa Dual issue pipeline 1

12 0x00000188: 0xe5900000 LDR r0,[r0,#0] Single issue pipeline 0: r0 produced in E3,
required in E1, so +2 cycle stall

13 0x0000018c: 0xe5840000 STR r0,[r4,#0] Single issue pipeline 0 due to LS resource
hazard, no extra delay for r0 since produced in
E3 and consumed in E3

14 0x00000190: 0xe594000c LDR r0,[r4,#0xc] Single issue pipeline 0 due to LS resource  hazard
15 0x00000194: 0xe8bd4070 LDMFD r13!,{r4-r6,r14} Load multiple loads r4 in 1st cycle, r5 and r6 

in 2nd cycle, r14 in 3rd cycle, 3 cycles total
17 0x00000198: 0xea000368 B {pc}+0xda8 #0xf40 dual issue in pipeline 1 with 3rd cycle of LDM
18 0x00000f40: 0xe2800002 ADD r0,r0,#2 ARM Single issue in pipeline 0
19 0x00000f44: 0xe0810000 ADD r0,r1,r0 ARM Single issue in pipeline 0, no dual issue due to

hazard on r0 produced in E2 and required in E2

Example 16-7 shows a sample instruction sequence for the NEON pipeline.

Example 16-7 Instruction sequence for the NEON pipeline

Cycle PC Opcode Instruction Timing description
1 0x00003690: 0xf2dbeac8 VMULL.S16 q15,d27,d0[1] ;4X16 SIMD multiply
2 0x00003694: 0xf2daaac8 VMULL.S16 q13,d26,d0[1] ;independent from previous multiply, issued

in back-to-back cycles
2 0x00003698: 0xf4402a5d VST1.16 {d18,d19},[r0@64]! ;128bit 2-issue cycle store (1st issue cycle

is dual issued with previous instruction)
3 0x0000369c: 0xf2d7685a VRSHRN.I32 d22,q5,#9 ;shift operation (dual issued with 2nd issue

cycle of previous store)
4 0x000036a0: 0xf2d7785c VRSHRN.I32 d23,q6,#9 ;independent from previous shift, executed

in back-to-back cycles
5 0x000036a4: 0xf29caac0 VMULL.S16 q5,d28,d0[0] ;4X16 SIMD multiply
6 0x000036a8: 0xf29dcac0 VMULL.S16 q6,d29,d0[0] ;independent from previous multiply, issued

in back-to-back cycles
7 0x000036ac: 0xf26aa8c6 VADD.I32 q13,q13,q3 ;4x32 (128bit) VADD uses result of multiply

from cycle 2.
8 0x000036b0: 0xf26ee8c8 VADD.I32 q15,q15,q4 ;4x32 (128bit) independent from previous

add, issued in back-to-back cycles
9 0x000036b4: 0xf29e6260 VMLAL.S16 q3,d14,d0[2] ;independent multiply
9 0x000036bc: 0xf4004a5d VST1.16 {d4,d5},[r0@64]! ;128bit 2-issue cycle store (1st issue cycle
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is dual issued with previous instruction)     
10 0x000036c0: 0xf2d7a87a VRSHRN.I32 d26,q13,#9 ;shift operation (dual issued with 2nd issue

cycle of previous store) 

Example 16-8 shows an instruction sequence for the VFP pipeline.

Example 16-8 Instruction sequence for VFP pipeline

Cycle PC Opcode Instruction Timing description
4 0x00002c44: 0xeeb01a49 FCPYS s2,s18 ;4 cycle single precision register move
8 0x00002c48: 0xeef00a68 FCPYS s1,s17 ;4 cycle single precision register move

12 0x00002c4c: 0xeeb00a48 FCPYS s0,s16 ;4 cycle single precision register move
12 0x00002c50: 0xeb000116 BL {pc}+0x460 ;branch executed ‘for free’ in ARM pipeline, not 

seen by Neon
19 0x000030b0: 0xee200a21 FMULS s0,s0,s3 ;7 cycle single precision multiply operation
30 0x000030b4: 0xee000a82 FMACS s0,s1,s4 ;11 cycle single precision multiply accumulate (uses

NFP multiply and add pipelines with bypassing of add
format stage)

41 0x000030b8: 0xee010a22 FMACS s0,s2,s5 ;11 cycle single precision multiply accumulate (uses
NFP multiply and add pipelines with bypassing of add
format stage)

41 0x000030bc: 0xe12fff1e BX lr ;branch executed ‘for free’ in ARM pipeline, not seen
by Neon

45 0x00002c54: 0xeeb01a4a FCPYS s2,s20 ;4 cycle single precision register move
80 0x00002c58: 0xeeb10ac0 FSQRTS s0,s0 ;35 cycles to execute single precision square root

function (number of cycles is data dependent)
112 0x00002c5c: 0xeec10a00 FDIVS    s1,s2,s0 ;32 cycles to execute single precision divide

function (number of cycles is data dependent)
116 0x00002c60: 0xeeb00a69 FCPYS    s0,s19 ;4 cycle single precision register move
123 0x00002c64: 0xee600a20 FMULS    s1,s0,s1 ;7 cycle single precision multiply operation 
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Chapter 17 
AC Characteristics

This chapter describes the timing parameters of the processor signals:
• About setup and hold times on page 17-2
• AXI interface on page 17-4
• ATB and CTI interfaces on page 17-6
• APB interface and miscellaneous debug signals on page 17-7
• L1 and L2 MBIST interfaces on page 17-9
• L2 preload interface on page 17-10
• DFT interface on page 17-11
• Miscellaneous signals on page 17-12.
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17.1 About setup and hold times
The setup and hold times of processor interface signals are necessary timing parameters for 
analyzing processor performance. This chapter specifies the setup and hold times of the 
processor interface signals.

The notation for setup and hold times of input signals is:
Tis Input setup time. Tis is the amount of time the input data is valid before the next 

rising clock edge.
Tih Input hold time. Tih is the amount of time the input data is valid after the next 

rising clock edge.

Figure 17-1 shows the setup and hold times of an input signal.

Figure 17-1 Input timing parameters

The time during which the processor can sample input data is Tissignal.

The notation for setup and hold times of output signals is:
Tov Output valid time. Tov is the amount of time after the rising clock edge before 

valid output data appears.
Toh Output hold time. Toh is the amount of time the output data is valid after the next 

rising clock edge.

Figure 17-2 shows the setup and hold times of an output signal.

Figure 17-2 Output timing parameters

The timing parameter tables in this chapter show setup and hold parameters of each signal as 
percentages of the relevant clock as shown in Table 17-1.

The setup parameter values are based on the Slow-Slow (SS) corner under the following 
conditions:
• 125 °C
• VDD = nominal operating voltage – 10%
• target frequency = fmax.

CLK

INPUT SIGNAL

Tissignal

Tihsignal

input data

CLK

OUTPUT SIGNAL

Tovsignal Tohsignal

output data

Table 17-1 Format of timing parameter tables

Signal Clock Setup parameter Percent of clock period Hold parameter

INPUT CLK Tisinput 50% Tihinput

OUTPUT PCLK Tovoutput 30% Tohoutput
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The hold parameter values are based on the Fast-Fast (FF) corner under the following 
conditions:
• -40 C
• VDD = nominal operating voltage + 10%
• target frequency = fmax.

The nominal operating voltage for the process is defined to be Vdd.

Note
 The hold time requirements for the macrocell I/O are not specified in this document. The hold 
time is specific to process and implementation requirements and therefore, are controlled by the 
implementor.
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17.2 AXI interface
Table 17-2 shows the setup and hold times for the AXI interface signals.

Table 17-2 Timing parameters of AXI interface

Signal Clock Setup 
parameter

Percent of 
clock period

Hold 
parameter

A64n128a CLK - - -

ACLKEN CLK Tisaclken 30% Tihaclken

ARADDR[31:0] CLK Tovaraddr 30% Toharaddr

ARBURST[1:0] CLK Tovarburst 30% Toharburst

ARCACHE[3:0] CLK Tovarcache 30% Toharcache

ARID[3:0] CLK Tovarid 30% Toharid

ARLEN[3:0] CLK Tovarlen 30% Toharlen

ARLOCK[1:0] CLK Tovarlock 30% Toharlock

ARPROT[2:0] CLK Tovarprot 30% Toharprot

ARSIZE[2:0] CLK Tovarsize 30% Toharsize

ARVALID CLK Tovarvalid 30% Toharvalid

ARREADY CLK Tisarready 30% Tiharready

RDATA[127:0] CLK Tisrdata 30% Tihrdata

RID[3:0] CLK Tisrid 30% Tihrid

RLAST CLK Tisrlast 30% Tihrlast

RRESP[1:0] CLK Tisrresp 30% Tihrresp

RVALID CLK Tisrvalid 30% Tihrvalid

RREADY CLK Tovrready 30% Tohrready

AWADDR[31:0] CLK Tovawaddr 30% Tohawaddr

AWBURST[1:0] CLK Tovawburst 30% Tohawburst

AWCACHE[3:0] CLK Tovawcache 30% Tohawcache

AWID[3:0] CLK Tovawid 30% Tohawid

AWLEN[3:0] CLK Tovawlen 30% Tohawlen

AWLOCK[1:0] CLK Tovawlock 30% Tohawlock

AWPROT[2:0] CLK Tovawprot 30% Tohawprot

AWSIZE[2:0] CLK Tovawsize 30% Tohawsize

AWVALID CLK Tovawvalid 30% Tohawvalid

AWREADY CLK Tisawready 30% Tihawready

WDATA[127:0] CLK Tovwdata 30% Tohwdata
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WID[3:0] CLK Tovwid 30% Tohwid

WLAST CLK Tovwlast 30% Tohwlast

WSTRB[15:0] CLK Tovwstrb 30% Tohwstrb

WVALID CLK Tovwvalid 30% Tohwvalid

WREADY CLK Tiswready 30% Tihwready

BID[3:0] CLK Tisbid 30% Tihbid

BRESP[1:0] CLK Tisbresp 30% Tihbresp

BVALID CLK Tisbvalid 30% Tihbvalid

BREADY CLK Tovbready 30% Tohbready

a. This is a static input to the processor.

Table 17-2 Timing parameters of AXI interface (continued)

Signal Clock Setup 
parameter

Percent of 
clock period

Hold 
parameter
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 17-5
ID060510 Non-Confidential



AC Characteristics 
17.3 ATB and CTI interfaces
Table 17-3 shows the setup and hold times for:
• the ATB interface
• the CTI.

Table 17-3 Timing parameters of ATB and CTI interfaces

Signal Clock Setup 
parameter

Percent of 
clock period

Hold 
parameter

AFREADYM ATCLK Tovafreadym 30% Tohafreadym

AFVALIDM ATCLK Tisafvalidm 30% Tihafvalidm

ASICCTL[7:0] CLK Tovasicctl 30% Tohasicctl

ATRESETna,b

a. This signal has multiple end-points and must be treated as level-sensitive.
b. Figure 10-5 on page 10-5 shows how this signal must be set up.

ATCLK - - -

ATCLKEN ATCLK Tisatclken 30% Tihatclken

ATREADYM ATCLK Tisatreadym 30% Tihatreadym

ATBYTESM[1:0] ATCLK Tovatbytesm 30% Tohatbytesm

ATDATAM[31:0] ATCLK Tovatdatam 30% Tohatdatam

ATIDM[6:0] ATCLK Tovatidm 30% Tohatidm

ATVALIDM ATCLK Tovatvalidm 30% Tohatvalidm

TRIGGER ATCLK Tovtrigger 30% Tohtrigger

CTICHOUT[3:0] ATCLK Tovctichout 30% Tohctichout

CTICHIN[3:0] ATCLK - - -

nCTIIRQa CLK Tovnctiirq 30% Tohnctiirq
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17.4 APB interface and miscellaneous debug signals
Table 17-4 shows the setup and hold times for:
• the APB interface
• the miscellaneous debug signals.

PCLK is the clock for the APB interface and some miscellaneous debug signals, and CLK is 
the clock for all other miscellaneous debug signals.

Table 17-4 Timing parameters of APB interface and miscellaneous debug signals

Signal Clock Setup parameter Percent of 
clock period Hold parameter

COMMRXa CLK Tovcommrx 30% Tohcommrx

COMMTXa CLK Tovcommtx 30% Tohcommtx

DBGACK CLK Tovdbgack 30% Tohdbgack

DBGNOCLKSTOP CLK Tisdbgnoclkstop 30% Tihdbgnoclkstop

DBGROMADDR[31:12]b CLK Tisdbgromaddr 30% Tihdbgromaddr

DBGROMADDRVb CLK Tisdbgromaddrv 30% Tihdbgromaddrv

DBGSELFADDR[31:12]b CLK Tisdbgselfaddr 30% Tihdbgselfaddr

DBGSELFADDRVb CLK Tisdbgselfaddrv 30% Tihdbgselfaddrv

EDBGRQa PCLK - - -

DBGEN PCLK - - -

DBGOSLOCKINITb PCLK Tisdbgoslockinit 30% Tihdbgoslockinit

DBGNOPWRDWNa PCLK Tovdbgnopwrdwn 30% Tohdbgnopwrdwn

DBGPWRDWNREQa PCLK - - -

ETMPWRDWNREQa,c PCLK - - -

DBGPWRDWNACK PCLK Tovdbgpwrdwnack 30% Tohdbgpwrdwnack

ETMPWRDWNACKc PCLK Tovetmpwrdwnack 30% Tohetmpwrdwnack

PRESETna,d PCLK - - -

PCLKEN PCLK Tispclken 30% Tihpclken

PADDR31 PCLK Tispaddr31 30% Tihpaddr31

PADDR11TO2[11:2] PCLK Tispaddr11to2 30% Tihpaddr11to2

PENABLE PCLK Tispenable 30% Tihpenable

PSELCTIe PCLK Tispselcti 30% Tihpselcti

PSELDBG PCLK Tispseldbg 30% Tihpseldbg

PSELETMd PCLK Tispseletm 30% Tihpseletm

PWRITE PCLK Tispwrite 30% Tihpwrite

PRDATA[31:0] PCLK Tovprdata 30% Tohprdata
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PWDATA[31:0] PCLK Tispwdata 30% Tihpwdata

PREADY PCLK Tovpready 30% Tohpready

PSLVERR PCLK Tovpslverr 30% Tohpslverr

NIDENa PCLK - - -

SPIDENa PCLK - - -

SPNIDENa PCLK - - -

a. This signal has multiple end-points and must be treated as level-sensitive.
b. This is a static input to the processor.
c. This signal is not required because debug and the ETM use the same power domain.
d. Figure 10-5 on page 10-5 shows how this signal must be set up.
e. This signal is not present when the processor is configured without the ETM.

Table 17-4 Timing parameters of APB interface and miscellaneous debug signals

Signal Clock Setup parameter Percent of 
clock period Hold parameter
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17.5 L1 and L2 MBIST interfaces
Table 17-5 shows the setup and hold times for the L1 and L2 interfaces

Table 17-5 Timing parameters of the L1 and L2 MBIST interface

Signal Clock Setup 
parameter

Percent of 
clock period

 Hold 
parameter

MBISTDATAINL1 CLK Tismbistdatainl1 30% Tihmbistdatainl1

MBISTDSHIFTL1 CLK Tismbistdshiftl1 30% Tihmbistdshiftl1

MBISTMODEL1 CLK Tismbistmodel1 30% Tihmbistmodel1

MBISTRUNL1 CLK Tismbistrunl1 30% Tihmbistrunl1

MBISTSHIFTL1 CLK Tismbistshiftl1 30% Tihmbistshiftl1

MBISTRESULTL1[2:0] CLK Tovmbistresultl1 30% Tihmbistresultl1

MBISTDATAINL2 CLK Tismbistdatainl2 30% Tihmbistdatainl2

MBISTDSHIFTL2 CLK Tismbistdshiftl2 30% Tihmbistdshiftl2

MBISTMODEL2 CLK Tismbistmodel2 30% Tihmbistmodel2

MBISTRUNL2 CLK Tismbistrunl2 30% Tihmbistrunl2

MBISTSHIFTL2 CLK Tismbistshiftl2 30% Tihmbistshiftl2

MBISTRESULTL2[2:0] CLK Tovmbistresultl2 30% Tohmbistresultl2

MBISTUSERINL2[18:0] CLK Tismbistuserinl2 30% Tihmbistuserinl2

MBISTUSEROUTL2[4:0] CLK Tovmbistuseroutl2 50% Tohmbistuseroutl2
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17.6 L2 preload interface
Table 17-6 shows the setup and hold times of the interrupt sources from the L2 preload engine.

Table 17-6 Timing parameters of the L2 preload interface

Signal Clock Setup 
parameter

Percent of 
clock period

 Hold 
parameter

nDMAEXTERRIRQa

a. This signal has multiple end-points and must be treated as level-sensitive.

CLK Tovndmaexterrirq 30% Tohndmaexterrirq

nDMAIRQa CLK Tovndmairq 30% Tohndmairq

nDMASIRQa CLK Tovndmasirq 30% Tohndmasirq
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. 17-10
ID060510 Non-Confidential



AC Characteristics 
17.7 DFT interface
Table 17-7 shows the setup and hold times for the DFT interface.

Table 17-7 Timing parameters of the DFT interface

Signal Clock Setup 
parameter

Percent of 
clock period

 Hold 
parameter

SE CLK Tisse 30% Tihse

SERIALTEST CLK Tisserialtest 30% Tihserialtest

SHIFTWR CLK Tisshiftwr 30% Tihshiftwr

CAPTUREWR CLK Tiscapturewr 30% Tihcapturewr

TESTMODE CLK Tistestmode 30% Tihtestmode

TESTCGATE CLK Tistestcgate 30% Tihtestcgate

TESTEGATE CLK Tistestegate 30% Tihtestegate

TESTNGATE CLK Tistestngate 30% Tihtestngate

WSE CLK Tiswse 30% Tihwse

WEXTEST CLK Tiswextest 30% Tihwextest

WINTEST CLK Tiswintest 30% Tihwintest
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17.8 Miscellaneous signals
Table 17-8 shows the setup and hold times of miscellaneous signals not described in the 
previous sections.

Table 17-8 Timing parameters of miscellaneous signals

Signal Clock Setup 
parameter

Percent of 
clock period

 Hold 
parameter

nPORESETa,b

a. This signal has multiple end-points and must be treated as level-sensitive.
b. Figure 10-5 on page 10-5 shows how this signal must be set up.

CLK - - -

ARESETna,b CLK - - -

ARESETNEONna,b CLK - - -

L1RSTDISABLEc

c. This is a static input to the processor.

CLK - - -

L2RSTDISABLEc CLK - - -

CLKSTOPREQ CLK - - -

CLKSTOPACK CLK Tovclkstopack 30% Tohclkstopack

SECMONOUTENd

d. This signal is sampled only during reset.

CLK - - -

SECMONOUT[86:0] CLK Tovsecmonout 30% Tohsecmonout

STANDBYWFI CLK Tovstandbywfi 30% Tohstandbywfi

nFIQa CLK - - -

nIRQa CLK - - -

VINITHIc CLK - - -

CFGTEc CLK - - -

CFGEND0c CLK - - -

CFGNMFIc CLK - - -

CP15SDISABLE CLK - - -

CPEXIST[13:0]c CLK - - -

SILICONID[31:0]c CLK - - -

nPMUIRQa CLK Tovnpmuirq 30% Tohnpmuirq
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Appendix A 
Signal Descriptions

This appendix describes the signals of the processor. It contains the following sections:
• AXI interface on page A-2
• ATB interface on page A-3
• MBIST and DFT interface on page A-4
• Preload engine interface on page A-6
• APB interface on page A-7
• Miscellaneous signals on page A-8
• Miscellaneous debug signals on page A-11
• Miscellaneous ETM and CTI signals on page A-13.

Note
 For each output signal of the processor, the value in the Reset column in the signal tables can either 
be defined as a logic 1 or 0 or undefined during reset.
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A.1 AXI interface
For complete descriptions of AXI interface signals, see the AMBA AXI Protocol Specification.

Table A-1 shows the AXI interface signals that have been added or that have different 
definitions for the Cortex-A8 processor.

Table A-1 AXI interface

Signal I/O Reset Description

A64n128 I - Statically selects 64-bit or 128-bit AXI bus width:
0 = 128-bit bus width
1 = 64-bit bus width.
This pin is only sampled during reset of the processor.

ACLKEN I - AXI clock gate enable:
0 = AXI clock disabled
1 = AXI clock enabled.

Note
 The rising edge of the internal ACLK signal comes two CLK cycles after the 
CLK cycle in which ACLKEN is asserted. See Chapter 10 Clock, Reset, and 
Power Control.

ARCACHE[3:0]
and
AWCACHE[3:0]

O Undefined Read or write cache type:
b0000 = strongly ordered
b0001 = device
b0010 = reserved
b0011 = normal noncacheable
b0100 and b0101 = reserved
b0110 = cacheable write-through, allocate on reads only
b0111 = cacheable write-back, allocate on reads only
b1000 to b1110 = reserved
b1111 = cacheable write-back, allocate on both reads and writes.
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A.2 ATB interface
Table A-2 shows the signals of the ATB interface.

Table A-2 ATB interface

Signal I/O Reset Description

AFREADYM O b0 Buffer ready for new data:
0 = buffer flush not complete
1 = buffer flush complete.

AFVALIDM I - Flush request:
0 = no ETM data flush request
1 = ETM data flush request.

ATBYTESM[1:0] O b00 Size of data:
b00 = 1 byte
b01 = 2 bytes
b10 = 3 bytes
b11 = 4 bytes.

ATCLK I - ATB clock.

ATCLKEN I - ATB clock enable:
0 = clock not enabled
1 = clock enabled.

ATDATAM[31:0] O 0x00000000 ATB data bus.

ATIDM[6:0] O b0000000 Identification tag of current trace source.

ATREADYM I - ATB device ready. Previous data accepted:
0 = not ready
1 = ready.

ATRESETn I - ATB reset input.

ATVALIDM O b0 ATB valid data:
0 = no valid data
1 = valid data.
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A.3 MBIST and DFT interface
This section describes:
• MBIST interface
• DFT pins and additional MBIST pin requirements during MBIST testing on page A-5.

A.3.1 MBIST interface

Table A-3 shows the MBIST interface signals. All MBIST interface signals are registered. All 
MBIST signals from Table A-3 must be controllable from external SoC pins for use by ATE.

Table A-3 MBIST interface

Signal I/O Reset Description

MBISTDATAINL1 I - Serial data input for loading the L1 MBIST Instruction Register

MBISTDSHIFTL1 I - Enables download of the L1 MBIST Datalog Register on 
MBISTRESULTL1[0] when MBISTSHIFTL1 is set to 0.

MBISTRUNL1 I - Enables execution of the loaded L1 MBIST instruction.

MBISTSHIFTL1 I - Enables serial loading of the L1 MBIST Instruction Register 
when MBISTDSHIFTL1 is set to 0 or enables serial loading of 
the L1 MBIST GO-NOGO Instruction Register when 
MBISTDSHIFTL1 is set to 1.

MBISTRESULTL1[2:0] O Undefined L1 MBIST controller status and data output:
MBISTRESULTL1[0] = address expire flag or L1 MBIST 
Datalog Register output
MBISTRESULTL1[1] = fail flag
MBISTRESULTL1[2] = test complete flag.

MBISTDATAINL2 I - Serial data input for loading the L2 MBIST Instruction Register.

MBISTDSHIFTL2 I - Enables download of the L2 MBIST Datalog Register on 
MBISTRESULTL2[0].

MBISTRUNL2 I - Enables execution of the loaded L2 MBIST instruction.

MBISTSHIFTL2 I - Enables serial loading of the L2 MBIST Instruction Register.

MBISTRESULTL2[2:0] O Undefined L2 MBIST controller status and data output:
MBISTRESULTL2[0] = address expire flag or L2 MBIST 
Datalog Register output
MBISTRESULTL2[1] = fail flag
MBISTRESULTL2[2] = test complete flag.

MBISTUSERINL2[18:0] I - L2 MBIST configuration pins reserved for future expansion. Tie 
these pins LOW.

MBISTUSEROUTL2[4:0] O Undefined L2 MBIST configuration pins reserved for future expansion. 
Ignore these pins.

CLK I - Clock input.

ARESETn I - Reset inputa.

nPORESET I - Reset inputa.

a. Reset input is controlled in the same way during MBIST mode as during functional mode. See Reset domains on 
page 10-4 for information on reset.
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A.3.2 DFT pins and additional MBIST pin requirements during MBIST testing

Table A-4 shows the signals necessary for DFT. It also shows the additional pins required during 
MBIST testing.

Table A-4 DFT and additional MBIST pin requirements

Signal I/O Value during 
functional mode

Value during 
MBIST mode Description

MBISTMODEL1 I 0 1 Configures L1 for MBIST mode and disables 
instruction fetch after reset.

MBISTMODEL2 I 0 1 Configures L2 for MBIST mode and disables 
instruction fetch after reset.

TESTMODE I 0 0 Indicates ATPG test mode. Deassert during 
MBIST mode.

TESTCGATE I 0 1 Controls core clock gating during test mode 
or MBIST mode.

TESTEGATE I 0 0 Controls ETM clock gating. Deassert to save 
power during MBIST mode.

TESTNGATE I 0 0 Controls NEON clock gating. Deassert to 
save power during MBIST mode.

SE I 0 0 Scan enable signal. Ensures safe shifting of 
scan chains.

SAFESHIFTRAMIF I 0 0 Prevents the RAM in the instruction fetch unit 
from performing a write operation during 
scan shifting.

SAFESHIFTRAMLS I 0 0 Prevents the RAM in the load/store unit from 
performing a write operation during scan 
shifting.

SAFESHIFTRAML2 I 0 0 Prevents the RAM in the L2 cache unit from 
performing a write operation during scan 
shifting.

SERIALTEST I 0 0 Concatenates the wrapper boundary register 
scan cells into a single scan chain.

SHIFTWR I 0 0 IEEE 1500 standard shift signal. 

CAPTUREWR I 0 0 IEEE 1500 standard capture signal.

WINTEST I 0 0 Enables internal testing during ATPG.

WEXTEST I 0 0 Enables external testing during ATPG.

WSE I 0 0 Wrapper scan enable. Enables serial shifting 
of the wrapper scan chain.

PRESETn I - 0 Active-LOW APB reset input.

ACLKEN I - 1 AXI clock enable signal. This signal must be 
driven HIGH for at least one clock cycle 
during reset. The value after reset does not 
affect the MBIST operation.
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A.4 Preload engine interface
Table A-5 shows the L2 preload signals.

Table A-5 Preload engine interface

Signal I/O Reset Description

nDMAEXTERRIRQ O b1 Active-LOW interrupt on error for all transfers:
0 = interrupt active
1 = interrupt not active.

nDMAIRQ O b1 Active-LOW interrupt on completion for nonsecure transfers:
0 = interrupt active
1 = interrupt not active.

nDMASIRQ O b1 Active-LOW interrupt on completion for secure transfers:
0 = interrupt active
1 = interrupt not active.
ARM DDI 0344K Copyright © 2006-2010 ARM Limited. All rights reserved. A-6
ID060510 Non-Confidential



Signal Descriptions 
A.5 APB interface
Table A-6 shows the APB interface signals.

Table A-6 APB interface

Signal I/O Reset Description

PRESETn I - Active-LOW APB reset input:
0 = reset APB
1 = do not reset APB.

PCLK I - APB clock.

PCLKEN I - APB clock enable:
0 = not enabled
1 = enabled.

PADDR31 I - APB address bus bit [31]:
0 = not an external debugger access
1 = external debugger access.

PADDR11TO2[11:2] I - APB address bus bits [11:2].

PENABLE I - APB transfer complete flag:
0 = APB not in ENABLE cycle
1 = APB in ENABLE cycle.
PENABLE remains asserted for only one cycle.

PSELCTIa

a. This signal is not present when the processor is configured without the ETM.

I - CTI registers select:
0 = CTI registers not selected
1 = CTI registers selected.

PSELDBG I - Debug registers select:
0 = debug registers not selected
1 = debug registers selected.

PSELETMa I - ETM registers select:
0 = ETM registers not selected
1 = ETM registers selected.

PWRITE I - APB read or write signal:
0 = reads from APB
1 = writes to APB.

PRDATA[31:0] O Undefined APB read data.

PWDATA[31:0] I - APB write data.

PREADY O b0 APB slave ready. An APB slave can assert PREADY to 
extend a transfer.

PSLVERR O b0 APB slave transfer error:
0 = no transfer error
1 = transfer error.
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A.6 Miscellaneous signals
Table A-7 shows the signals not included in the previous tables.

Table A-7 Miscellaneous signals

Signal I/O Reset Description

nPORESET I - Active-LOW power-on reset input:
0 = apply power-on reset
1 = do not apply power-on reset.

ARESETn I - Active-LOW AXI reset input:
0 = apply AXI reset
1 = do not apply AXI reset.

ARESETNEONn I - Active-LOW NEON reset input:
0 = apply NEON reset
1 = do not apply NEON reset.

SECMONOUTEN I - Security monitor output enable:
0 = disables SECMONOUT[86:0]
1 = enables SECMONOUT[86:0]. 
This pin is only sampled during reset of the processor.

L1RSTDISABLE I - L1 hardware reset disable input:
0 = the L1 valid RAM contents are reset by hardware
1 = the L1 valid RAM contents are not reset by hardware.

L2RSTDISABLE I - L2 hardware reset disable input:
0 = the L2 valid RAM contents are reset by hardware
1 = the L2 valid RAM contents are not reset by hardware.

CLKSTOPREQ I - Clock stop request:
0 = do not stop the internal clocks
1 = cause the processor to stop the internal clocks and to assert the 
CLKSTOPACK output.

CLKSTOPACK O 0 Clock stop acknowledge:
0 = the internal clocks are not stopped 
1 = the internal clocks are stopped.
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Signal Descriptions 
SECMONOUT[86:0] O Undefined Security monitor output:
[19:0] = pipeline 0 instruction address bits[31:12]
[39:20] = pipeline 1 instruction address bits[31:12]
[59:40] = L1 data address bits[31:12]
[64:60] = exception encoding
[69:65] = CPSR[4:0] = mode bits, M[4:0]
[73:70] = CPSR[8:5] = bits A, I, F, and T
[74] = CPSR[24] = J bit
[75] = CP15 Secure Configuration Register bit[0], NS
[76] = CP15 Secure Control Register bit[0], M
[77] = CP15 Secure Control Register bit[2], C
[78] = CP15 Secure Control Register bit[12], I
[79] = IMB instruction executed flag
[80] = DMB or DWB instruction executed flag
[81] = pipeline 0 instruction address valid flag
[82] = pipeline 1 instruction address valid flag
[83] = condition code fail pipeline 0 valid flag
[84] = condition code fail pipeline 1 valid flag
[85] = exception valid flag
[86] = L1 data address valid flag.

STANDBYWFI O b0 Standby mode flag generated by WFI operation:
0 = processor not in standby mode
1 = processor in standby mode.

nFIQ I - Active-LOW asynchronous fast interrupt request:
0 = activate fast interrupt
1 = do not activate fast interrupt.
The processor treats the nFIQ input as level sensitive. The nFIQ 
input must be asserted until the processor acknowledges the interrupt.

nIRQ I - Active-LOW asynchronous interrupt request:
0 = activate interrupt
1 = do not activate interrupt.
The processor treats the nIRQ input as level sensitive. The nIRQ 
input must be asserted until the processor acknowledges the interrupt.

VINITHI I - Controls the location of the exception vectors at reset:
0 = starts exception vectors at address 0x00000000
1 = starts exception vectors at address 0xFFFF0000.
This pin is only sampled during reset of the processor.

CFGTE I - Controls the state of TE bit in the CP15 c1 Control Register at reset:
0 = TE bit is LOW
1 = TE bit is HIGH.
This pin is only sampled during reset of the processor.

CFGEND0 I - Controls the state of EE bit in the CP15 c1 Control Register at reset:
0 = EE bit is LOW
1 = EE bit is HIGH.
This pin is only sampled during reset of the processor.

Table A-7 Miscellaneous signals (continued)

Signal I/O Reset Description
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Signal Descriptions 
CFGNMFI I - Configures fast interrupts to be nonmaskable:
0 = clears the NMFI bit in the CP15 c1 Control Register
1 = sets the NMFI bit in the CP15 c1 Control Register.
This pin is only sampled during reset of the processor.

CP15SDISABLE I - Disables CP15.

CPEXIST[13:0] I - Enables access programming of coprocessors 0-13:
0 = CP0-CP13 cannot be programmed for access
1 = CP0-CP13 can be programmed for access.
This pin is only sampled during reset of the processor. See c1, 
Coprocessor Access Control Register on page 3-52 for more details.

SILICONID[31:0] I - Defines the reset value of the CP15 Silicon ID Register. See c0, 
Silicon ID Register on page 3-40 for more information.
This pin is only sampled during reset of the processor.

nPMUIRQ O b1 Active-LOW PMU interrupt signal:
0 = PMU interrupt active
1 = PMU interrupt not active.

CLK I - Clock input.

CLAMPCOREOUTa I - Activates the clamps to force the core outputs to benign values:
0 = core clamps not active
1 = core clamps active.

CLAMPNEONOUTa I - Activates the clamps to force the NEON outputs to benign values:
0 = NEON clamps not active
1 = NEON clamps active.

CLAMPDBGOUTa I - Activates the clamps to force the debug PCLK, ETM CLK, and 
ETM ATCLK outputs to benign values:
0 = debug and ETM clamps not active
1 = debug and ETM clamps active.

a. This signal might not be present depending on the IEM support configurable options of the processor.

Table A-7 Miscellaneous signals (continued)

Signal I/O Reset Description
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Signal Descriptions 
A.7 Miscellaneous debug signals
Table A-8 shows the miscellaneous debug signals.

Table A-8 Miscellaneous debug signals

Signal I/O Reset Description

COMMRX O b0 Receive portion of Data Transfer Register full flag:
0 = empty
1 = full.

COMMTX O b0 Transmit portion of Data Transfer Register empty flag:
0 = full
1 = empty.

DBGACK O b0 EDBGRQ acknowledge:
0 = external debug request not acknowledged
1 = external debug request acknowledged.

DBGNOCLKSTOP I - Debug clock control signal: 0 = debug disabled while in 
WFI low-power state 1 = debug enabled while in WFI 
low-power state.

DBGROMADDR[31:12] I - Debug ROM base address.
This pin is only sampled during reset of the processor.

DBGROMADDRV I - Debug ROM base address valid:
0 = address not valid
1 = address valid.
This pin is only sampled during reset of the processor.

DBGSELFADDR[31:12] I - 2’s complement offset from the debug ROM base 
address.This pin is only sampled during reset of the 
processor.

DBGSELFADDRV I - Debug port base address valid bit:
0 = address not valid
1 = address valid.
This pin is only sampled during reset of the processor.

EDBGRQ I - External debug request:
0 = no external debug request
1 = external debug request.
The processor treats the EDBGRQ input as level 
sensitive. The EDBGRQ input must be asserted until 
the processor asserts DBGACK.

DBGEN I - Invasive debug enable:
0 = not enabled
1 = enabled.

DBGOSLOCKINIT I - Reset value for the OS lock:
0 = not locked
1 = locked.
This pin is only sampled during reset of the processor.
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DBGNOPWRDWN O b0 No power down:
0 = do not save state of debug registers
1 = save state of debug registers.

DBGPWRDWNREQ I - Processor power-down request:
0 = no request for processor power down
1 = request for processor power down.

ETMPWRDWNREQa I - ETM power-down request:
0 = no request for ETM power down
1 = request for ETM power down.

DBGPWRDWNACK O b0 Processor power-down acknowledge
0 = no acknowledge for processor power-down request
1 = acknowledge for processor power-down request.

ETMPWRDWNACKb O b0 ETM power-down acknowledge
0 = no acknowledge for ETM power-down request
1 = acknowledge for ETM power-down request.

NIDEN I - Noninvasive debug enable:
0 = not enabled
1 = enabled.

SPIDEN I - Secure privileged invasive debug enable:
0 = not enabled
1 = enabled.

SPNIDEN I - Secure privileged noninvasive debug enable:
0 = not enabled
1 = enabled.

a. This signal is not required because debug and the ETM use the same power domain. 
ETMPWRDWNREQ must be tied to 0. See Chapter 10 Clock, Reset, and Power Control for 
information on the Cortex-A8 supported power domain configurations.

b. This signal is not required because debug and the ETM use the same power domain. See Chapter 10 
Clock, Reset, and Power Control for information on the Cortex-A8 supported power domain 
configurations.

Table A-8 Miscellaneous debug signals (continued)

Signal I/O Reset Description
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Signal Descriptions 
A.8 Miscellaneous ETM and CTI signals
Table A-9 shows the ETM and CTI signals.

Table A-9 Miscellaneous ETM and CTI signals

Signal I/O Reset Description

ASICCTL[7:0] O 0x00 ETM ASIC Control Register outputs.

TRIGGER O b0 ETM trigger flag:
0 = no trigger occurs
1 = trigger occurs.

CTICHOUT[3:0] O b0000 CTI channel output status. Each bit represents a valid channel output:
0 = channel output inactive
1 = channel output active.

CTICHIN[3:0] I - CTI channel input status. Each bit represents a valid channel input:
0 = channel input inactive
1 = channel input active.

nCTIIRQ O b1 Active-LOW CTI interrupt output:
0 = interrupt active
1 = interrupt not active.
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Appendix B 
Instruction Mnemonics

This appendix lists the Unified Assembler Language (UAL) equivalents of the legacy Advanced 
SIMD data-processing and VFP data-processing assembly language mnemonics used in this 
manual. It contains the following sections:
• Advanced SIMD data-processing instructions on page B-2
• VFP data-processing instructions on page B-4.
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Instruction Mnemonics 
B.1 Advanced SIMD data-processing instructions
Table B-1 lists the UAL equivalents of the legacy Advanced SIMD data-processing assembly 
language mnemonics used in this manual. This table lists only those mnemonics that are 
different in the UAL syntax.

Table B-1 Advanced SIMD mnemonics

Legacy UAL

Three registers of the same length:

VFMX VPMAX

VFMN VPMIN

VQ{R}DMLH VQ{R}DMULH

VSUM VPADD

VCAGE VACGE

VCAGT VACGT

Three registers of different lengths:

VADD long VADDL

VSUB long VSUBL

VADD wide VADDW

VSUB wide VSUBW

V{R}ADH V{R}ADDHN

VABA long VABAL

V{R}SBH V{R}SUBHN

VABD long VABDL

VMLA long VMLAL

VQDMLA long VQDMLAL

VMLS long VMLSL

VQDMLS long VQDMLSL

VMUL long VMULL

VQDMUL long VQDMULL

VMUL polynomial VMULL

Two registers and a scalar:

VMLA long VMLAL

VQDMLA long VQDMLAL

VMLS long VMLSL

VQDMLS long VQDMLSL

VMUL long VMULL
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Instruction Mnemonics 
VQDMUL long VQDMULL

VQ{R}DMLH VQ{R}DMULH

Two registers and a shift amount:

VQSHL VQSHL{U}

V{R}SHR narrow V{R}SHRN

VQ{R}SHR narrow VQ{R}SHR{U}N

VSHL wide VSHLL

Two registers, miscellaneous:

VSUM long VPADDL

VNOT VMVN

VSMA long VPADAL

VCGTZ VCGT #0

VCGEZ VCGE #0

VCEQZ VCEQ #0

VCLEZ VCLE #0

VCLTZ VCLT #0

VMOV narrow VMOVN

VQMOV narrow VQMOV{U}N

VMVH wide VSHLL

Move data element to all lanes of a register:

VMOV VDUP

Table B-1 Advanced SIMD mnemonics (continued)

Legacy UAL
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Instruction Mnemonics 
B.2 VFP data-processing instructions
Table B-2 lists the UAL equivalents of the legacy VFP data-processing assembly language 
mnemonics used in this manual. The table lists only those mnemonics that are different in the 
UAL syntax.

Table B-2 VFP data-processing mnemonics

Legacy UAL

FADD VADD

FSUB VSUB

FMUL VMUL

FNMUL VNMUL

FMAC VMLA

FNMAC VMLS

FMSC VNMLS

FNMSC VNMLA

FDIV VDIV

FSQRT VSQRT

FCONST VMOV

FABS VABS

FCPY VMOV

FNEG VNEG

FCMP{E}{Z} VCMP{E}

FCVT VCVT

F[US]ITO VCVT

F[US][HL]TO VCVT

FTO[US]I{Z} VCVT

FTO[US][HL] VCVT
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Appendix C 
Revisions

This appendix describes the technical changes between released issues of this book.

Table C-1 Differences between issue F and issue G

Change Location

Added description of product documentation and 
architecture

Product documentation and architecture on page 1-11

Updated reset value of Main ID Register • Table 3-3 on page 3-7
• c0, Main ID Register on page 3-19.

Updated bit assignments and description of Auxiliary 
Control Register

c1, Auxiliary Control Register on page 3-47

Show effect of improved cache maintenance Table 3-73 on page 3-69

Changed description of values for predefined events 0x45 
and 0x46

Table 3-97 on page 3-85

Expanded description of DT field in PLE Control Register Table 3-126 on page 3-110

Updated description of L1 memory system • About the L1 memory system on page 7-2
• Cache organization on page 7-3.

Added section on instruction cache maintenance Instruction cache maintenance on page 7-4

Reorganized tables for AXI ID assignments AXI identifiers on page 9-3

Updated descriptions of AXI address channel for data 
transactions

Table 9-7 on page 9-7
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Revisions 
Added table showing number of transfers on AXI write 
channel for an eviction

Evictions on page 9-6

Clarified timing diagram of STANDBYWFI deassertion Figure 10-8 on page 10-9

Updated field values for Debug ID Register CP14 c0, Debug ID Register on page 12-13

Updated field values for Peripheral ID Register 2 • Table 12-48 on page 12-48
• Table 14-2 on page 14-6
• Table 14-6 on page 14-10
• Table 15-3 on page 15-9
• Table 15-30 on page 15-25.

Updated ID Register bit assignments Figure 14-2 on page 14-7

Added tables to show the effect of CP15 cache maintenance Coprocessor instructions on page 16-10

Added footnote to clarify back-to-back execution of certain 
multiply and multiply-accumulate instructions

Table 16-19 on page 16-21

Added Note to clarify operation of Advanced SIMD 
floating-point instructions

Advanced SIMD floating-point instructions on page 16-24

Expanded description of VFP instruction execution VFP instruction execution in the NFP pipeline on 
page 16-35

Table C-1 Differences between issue F and issue G (continued)

Change Location

Table C-2 Differences between issue G and issue H

Change Location

Amended function description for invalidate instruction cache line Table 3-73 on page 3-69

Table C-3 Differences between issue H and issue I

Change Location Affects

Updated Product revisions information Product revisions on page 1-13 All revisions

Updated Main ID Register to reflect revision 
change

• Table 3-3 on page 3-7
• c0, Main ID Register on page 3-19.

r3p0

Modified description for bits [7:4] and [3:0] in the 
Debug ID Register

Table 12-11 on page 12-13 All revisions

Modified description for the Revision field in the 
Peripheral Identification Registers

Table 12-45 on page 12-48 All revisions

Updated description and reset value for bits [7:4] 
in the Peripheral ID Register 3

• Table 12-49 on page 12-49
• Table 14-2 on page 14-6
• Table 14-6 on page 14-10
• Table 15-3 on page 15-9
• Table 15-30 on page 15-25.

r3p0

Updated value for bits [3:0] of the FPSID Register Table 13-7 on page 13-11 r3p0

Changed the name for trigger input 0 from 
DBGTRIGGER to Debug entry.

• Table 15-1 on page 15-5
• Table 15-26 on page 15-22.

r3p0
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Revisions 
Added text to clarify description for trigger input 0 Table 15-1 on page 15-5 All revisions

Added a note to clarify description for trigger 
outputs 0 and 8

Trigger inputs and outputs on page 15-5 All revisions

Updated the value and description for bits [4:0] of 
the CTI Device ID Register

• Table 15-3 on page 15-9
• Device ID Register, 0xFC8 on page 15-24
• Table 15-28 on page 15-24.

All revisions

Added text to clarify description for bit [0] of the 
CTI Interrupt Acknowledge Register

Table 15-5 on page 15-12 All revisions

Updated description for the load data miss replay 
event

Table 16-16 on page 16-14 All revisions

Clarified description of dual issue for Advanced 
SIMD instructions

Dual issue for Advanced SIMD instructions on 
page 16-17

All revisions

Table C-4 Differences between Issue I and Issue J

Change Location Affects

Updated Product revisions information Product revisions on page 1-13 All revisions

Updated Main ID Register to reflect revision 
change

• Table 3-3 on page 3-7
• c0, Main ID Register on page 3-19.

r3p2

Corrected reset values for the following registers:
• Cache Type
• Processor Feature 0
• Memory Model Feature 0
• Memory Model Feature 3
• Instruction Set Attribute 1

Table 3-3 on page 3-7

Updated description and reset value for bits [7:4] 
in the Peripheral ID Register 3

• Table 12-49 on page 12-49
• Table 14-2 on page 14-6
• Table 14-6 on page 14-10
• Table 15-3 on page 15-9
• Table 15-30 on page 15-25.

r3p2

Modified description for bits [7:4] of Memory 
Model Feature Register 0 

Table 3-19 on page 3-27 All revisions

Provided instruction to write the Cache Size 
Selection Register

c0, Cache Size Selection Register on page 3-43 All revisions

Added footnote to clarify reset values for Secure 
and Non-secure banked access for the Control 
Register

Table 3-46 on page 3-45 All revisions

Modified table to correctly indicate when the 
value of the L2EN bit has no effect on processor 
behavior when enabling caches

Table 3-48 on page 3-47 All revisions

Specified the reset value of the L2EN field of the 
Auxiliary Control Register

Table 3-49 on page 3-48 All revisions

Table C-3 Differences between issue H and issue I (continued)

Change Location Affects
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Revisions 
Expanded Note to include description of Monitor 
mode access to non-secure banked copies of 
registers

c1, Secure Configuration Register on page 3-53 All revisions

Modified descriptions of events 0x45 and 0x46 Table 3-97 on page 3-85 All revisions

Added description for cache flow when both L1 
and L2 are cacheable, write-back, write-allocate

Table 7-1 on page 7-5 All revisions

Table C-5 Differences between Issue J and Issue K

Change Location Affects

Updated description for CRm=c6 Opcode_2=1 
cache and prefetch buffer maintenance operation

Table 3-73 on page 3-69 All revisions

Revised description of how the Cortex-A8 uses 
the CLK signal.

Clock domains on page 10-2 All revisions

Updated description of the effect of a reset on the 
NEON and VFP clocks.

NEON or ETM unit level gating on page 10-10 All revisions

Added NOTE to describe Debug behavior in 
systems with no ROM Table.

• CP14 c0, Debug ROM Address Register on page 12-14
• DBGSELFADDR on page 12-66

All revisions

Updated code for the code for transmit data 
transfer.

Example 12-4 on page 12-71 All revisions

Updated the code for polling the DCC. Example 12-6 on page 12-72 All revisions

Updated the sequence for reading a block of 
words of memory.

Example 12-25 on page 12-83 All revisions

Revised description of Floating-Point Status and 
Control Register.

Floating-Point Status and Control Register, FPSCR on 
page 13-12

All revisions

Revised description of Floating-Point Exception 
Register.

Floating-point Exception Register, FPEXC on page 13-14 All revisions

Table C-4 Differences between Issue I and Issue J (continued)

Change Location Affects
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Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a core that the value associated with a memory access is invalid. An 
abort can be caused by the external or internal memory system as a result of attempting to access 
invalid instruction or data memory. An abort is classified as either a Prefetch or Data Abort, and an 
internal or External Abort.

See also Data Abort, External Abort and Prefetch Abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data Abort exception. 
Different abort models behave differently with regard to load and store instructions that specify 
base register write-back.

Addressing modes A mechanism, shared by many different instructions, for generating values used by the instructions. 
For four of the ARM addressing modes, the values generated are memory addresses (which is the 
traditional role of an addressing mode). A fifth addressing mode generates values to be used as 
operands by data-processing instructions.

Advanced eXtensible Interface (AXI)
A bus protocol that supports separate address/control and data phases, unaligned data transfers 
using byte strobes, burst-based transactions with only start address issued, separate read and write 
data channels to enable low-cost DMA, ability to issue multiple outstanding addresses, out-of-order 
transaction completion, and easy addition of register stages to provide timing closure.The AXI 
protocol also includes optional extensions to cover signaling for low-power operation.

AXI is targeted at high performance, high clock frequency system designs and includes a number 
of features that make it very suitable for high speed sub-micron interconnect.
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Glossary 
Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only supports 
a subset of the functionality provided by the AMBA AXI protocol. The full AMBA AHB 
protocol specification includes a number of features that are not commonly required for master 
and slave IP developments and ARM recommends only a subset of the protocol is usually used. 
This subset is defined as the AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.

Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA is the 
ARM open standard for on-chip buses. It is an on-chip bus specification that describes a strategy 
for the interconnection and management of functional blocks that make up a System-on-Chip 
(SoC). It aids in the development of embedded processors with one or more CPUs or signal 
processors and multiple peripherals. AMBA complements a reusable design methodology by 
defining a common backbone for SoC modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or 
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports. 
Connection to the main system bus is through a system-to-peripheral bus bridge that helps to 
reduce system power consumption.

AHB See Advanced High-performance Bus.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size 
is said to be aligned. Aligned words and halfwords have addresses that are divisible by four and 
two respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses 
that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

Advanced Trace Bus (ATB)
A bus used by trace devices to share CoreSight capture resources.

APB See Advanced Peripheral Bus.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function. It can be 
custom-built or mass-produced.

Architecture The organization of hardware and/or software that characterizes a processor and its attached 
components, and enables devices with similar characteristics to be grouped together when 
describing their behavior, for example, Harvard architecture, instruction set architecture, 
ARMv7 architecture.

Arithmetic instruction
Any VFPv3 Coprocessor Data Processing (CDP) instruction except FCPY, FABS, and FNEG.

See also CDP instruction.

ARM instruction A word that specifies an operation for an ARM processor to perform. ARM instructions must 
be word-aligned.

ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in ARM 
state.

ASIC See  Application Specific Integrated Circuit.

ATB See Advanced Trace Bus.

ATPG See Automatic Test Pattern Generation.
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Glossary 
Automatic Test Pattern Generation (ATPG)
The process of automatically generating manufacturing test vectors for an ASIC design, using 
a specialized software tool.

AXI See Advanced eXtensible Interface.

AXI channel order and interfaces
The block diagram shows:
• the order in which AXI channel signals are described
• the master and slave interface conventions for AXI components.

AXI terminology The following AXI terms are general. They apply to both masters and slaves:

Active read transaction 
A transaction for which the read address has transferred, but the last read data has 
not yet transferred.

Active transfer 

A transfer for which the xVALID1 handshake has asserted, but for which 
xREADY has not yet asserted.

Active write transaction 
A transaction for which the write address or leading write data has transferred, but 
the write response has not yet transferred.

Completed transfer 
A transfer for which the xVALID/xREADY handshake is complete.

Payload The non-handshake signals in a transfer.

Transaction An entire burst of transfers, comprising an address, one or more data transfers and 
a response transfer (writes only).

Transmit An initiator driving the payload and asserting the relevant xVALID signal.

Transfer A single exchange of information. That is, with one xVALID/xREADY 
handshake.

AXI 
interconnect

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

Write address channel (AW)
Write data channel (W)

Write response channel (B)
Read address channel (AR)

Read data channel (R)

AXI slave 
interface

AXI master 
interface

AXI
master

AXI
slave

AXI master 
interface

AXI slave 
interface

1. The letter x in the signal name denotes an AXI channel as follows:
AW Write address channel.
W Write data channel.
B Write response channel.
AR Read address channel.
R Read data channel.
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The following AXI terms are master interface attributes. To obtain optimum performance, they 
must be specified for all components with an AXI master interface:

Combined issuing capability 
The maximum number of active transactions that a master interface can generate. 
This is specified instead of write or read issuing capability for master interfaces 
that use a combined storage for active write and read transactions.

Read ID capability 
The maximum number of different ARID values that a master interface can 
generate for all active read transactions at any one time.

Read ID width 
The number of bits in the ARID bus.

Read issuing capability 
The maximum number of active read transactions that a master interface can 
generate.

Write ID capability 
The maximum number of different AWID values that a master interface can 
generate for all active write transactions at any one time.

Write ID width 
The number of bits in the AWID and WID buses.

Write interleave capability 
The number of active write transactions for which the master interface is capable 
of transmitting data. This is counted from the earliest transaction.

Write issuing capability 
The maximum number of active write transactions that a master interface can 
generate.

Banked registers Those physical registers whose use is defined by the current processor mode. The banked 
registers are r8 to r14.

Base register A register specified by a load or store instruction that is used to hold the base value for the 
instruction’s address calculation. Depending on the instruction and its addressing mode, an 
offset can be added to or subtracted from the base register value to form the virtual address that 
is sent to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address calculation so that 
the modified address is changed to the next higher or lower sequential address in memory. This 
means that it is not necessary to fetch the target address for successive instruction transfers and 
enables faster burst accesses to sequential memory. 

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst 
comprises four beats.

See also Burst.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are stored at 
increasing addresses in memory.

See also Little-endian and Endianness.
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Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or halfword 
within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the halfword at 
that address.

See also Little-endian memory.

Block address An address that comprises a tag, an index, and a word field. The tag bits identify the way that 
contains the matching cache entry for a cache hit. The index bits identify the set being 
addressed. The word field contains the word address that can be used to identify specific words, 
halfwords, or bytes within the cache entry.

See also Cache terminology diagram on the last page of this glossary.

Branch prediction The process of predicting if branches are to be taken or not in pipelined processors. Successfully 
predicting if branches are to be taken enables the processor to prefetch the instructions following 
a branch before the branch is fully resolved. Branch prediction can be done in software or by 
using custom hardware. Branch prediction techniques are categorized as static, in which the 
prediction decision is decided before run time, and dynamic, in which the prediction decision 
can change during program execution. 

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which program 
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of 
register contents, memory locations, variable values at fixed points in the program execution to 
test that the program is operating correctly. Breakpoints are removed after the program is 
successfully tested. 

See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, there is 
no requirement to supply an address for any of the transfers after the first one. This increases 
the speed at which the group of transfers can occur. Bursts over AMBA are controlled using 
signals to indicate the length of the burst and how the addresses are incremented.

See also Beat.

Byte An 8-bit data item.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged when 
switching between little-endian and big-endian operation. When a data item larger than a byte 
is loaded from or stored to memory, the bytes making up that data item are arranged into the 
correct order depending on the endianness of the memory access. The ARM architecture 
supports byte-invariant systems in ARMv6 and later versions. When byte-invariant support is 
selected, unaligned halfword and word memory accesses are also supported. Multi-word 
accesses are expected to be word-aligned.

See also Word-invariant.

Byte lane strobe A signal that is used for unaligned or mixed-endian data accesses to determine which byte lanes 
are active in a transfer. One bit of this signal corresponds to eight bits of the data bus.

Cache A block of on-chip or off-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retrieving copies of often used instructions and/or data. This 
is done to greatly increase the average speed of memory accesses and so improve processor 
performance. 

See also Cache terminology diagram on the last page of this glossary.
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Cache hit A memory access that can be processed at high speed because the instruction or data that it 
addresses is already held in the cache.

Cache line The basic unit of storage in a cache. It is always a power of two words in size (usually four or 
eight words), and is required to be aligned to a suitable memory boundary.

See also Cache terminology diagram on the last page of this glossary.

Cache line index The number associated with each cache line in a cache way. Within each cache way, the cache 
lines are numbered from 0 to (set associativity) -1.

See also Cache terminology diagram on the last page of this glossary.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown enables critical 
instructions and/or data to be loaded into the cache so that the cache lines containing them are 
not subsequently reallocated. This ensures that all subsequent accesses to the instructions/data 
concerned are cache hits, and therefore complete as quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it 
addresses is not in the cache and a main memory access is required. 

Cache set A cache set is a group of cache lines (or blocks). A set contains all the ways that can be 
addressed with the same index. The number of cache sets is always a power of two.

See also Cache terminology diagram on the last page of this glossary.

Cache way A group of cache lines (or blocks). It is 2 to the power of the number of index bits in size.

See also Cache terminology diagram on the last page of this glossary.

CAM See Content Addressable Memory.

Cast out See Victim.

CDP instruction Coprocessor data processing instruction. For the VFP coprocessor, CDP instructions are 
arithmetic instructions and FCPY, FABS, and FNEG.

See also Arithmetic instruction.

Clean A cache line that has not been modified while it is in the cache is said to be clean. To clean a 
cache is to write dirty cache entries into main memory. If a cache line is clean, it is not written 
on a cache miss because the next level of memory contains the same data as the cache.

See also Dirty.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock that 
results to control the operating state of the macrocell.

Coherency See Memory coherency.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning power off 
and then back on again clears main memory and many internal settings. Some program failures 
can lock up the processor and require a cold reset to enable the system to be used again. In other 
cases, only a warm reset is required. 

See also Warm reset.

Communications channel
The hardware used for communicating between the software running on the processor, and an 
external host, using the debug interface. When this communication is for debug purposes, it is 
called the Debug Comms Channel. In an ARMv7 compliant core, the communications channel 
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includes the Data Transfer Register, some bits of the Data Status and Control Register, and the 
external debug interface controller, such as the DBGTAP controller in the case of the JTAG 
interface.

Conditional execution
If the condition code flags indicate that the corresponding condition is true when the instruction 
starts executing, it executes normally. Otherwise, the instruction does nothing.

Content Addressable Memory (CAM)
Memory that is identified by its contents. Content Addressable Memory is used in CAM-RAM 
architecture caches to store the tags for cache entries. 

CAM includes comparison logic with each bit of storage. A data value is broadcast to all words 
of storage and compared with the values there. Words that match are flagged in some way. 
Subsequent operations can then work on flagged words. It is possible to read the flagged words 
out one at a time or write to certain bit positions in all of them.

Context The environment that each process operates in for a multitasking operating system. In ARM 
processors, this is limited to mean the physical address range that it can access in memory and 
the associated memory access permissions.

See also Fast context switch.

Control bits The bottom eight bits of a Program Status Register. The control bits change when an exception 
arises and can be altered by software only when the processor is in a privileged mode.

Coprocessor A processor that supplements the main processor. It carries out additional functions that the 
main processor cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

Copy back See Write-back.

Core A core is that part of a processor that contains the ALU, the datapath, the general-purpose 
registers, the Program Counter, and the instruction decode and control circuitry.

Core reset See Warm reset.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

CPSR See Current Program Status Register

Cross Trigger Interface (CTI)
Part of an Embedded Cross Trigger device. The CTI provides the interface between a core/ETM 
and the CTM within an ECT.

Cross Trigger Matrix (CTM)
The CTM combines the trigger requests generated from CTIs and broadcasts them to all CTIs 
as channel triggers within an Embedded Cross Trigger device.

CTI See Cross Trigger Interface.

CTM See Cross Trigger Matrix.

Current Program Status Register (CPSR)
The register that holds the current operating processor status.

Data Abort An indication from a memory system to the core of an attempt to access an illegal data memory 
location. An exception must be taken if the processor attempts to use the data that caused the 
abort. 

See also Abort, External Abort, and Prefetch Abort.
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Data cache A block of on-chip fast access memory locations, situated between the processor and main 
memory, used for storing and retrieving copies of often used data. This is done to greatly 
increase the average speed of memory accesses and so improve processor performance.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, 
together with custom hardware that supports software debugging.

Default NaN mode A mode in which all operations that result in a NaN return the default NaN, regardless of the 
cause of the NaN result. This mode is compliant with the IEEE 754 standard but implies that all 
information contained in any input NaNs to an operation is lost.

Direct-mapped cache
A one-way set-associative cache. Each cache set consists of a single cache line, so cache look-up 
selects and checks a single cache line.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any 
accesses to the data concerned.

Dirty A cache line in a write-back cache that has been modified while it is in the cache is said to be 
dirty. A cache line is marked as dirty by setting the dirty bit. If a cache line is dirty, it must be 
written to memory on a cache miss because the next level of memory contains data that has not 
been updated. The process of writing dirty data to main memory is called cache cleaning.

See also Clean.

DMA See Direct Memory Access.

DNM See Do Not Modify.

Do Not Modify (DNM)
In Do Not Modify fields, the value must not be altered by software. DNM fields read as 
Unpredictable values, and must only be written with the same value read from the same field on 
the same processor. DNM fields are sometimes followed by RAZ or RAO in parentheses to 
show which way the bits must read for future compatibility, but programmers must not rely on 
this behavior.

Double-precision value
Consists of two 32-bit words that must appear consecutively in memory and must both be 
word-aligned, and that is interpreted as a basic double-precision floating-point number 
according to the IEEE 754-1985 standard.

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

Doubleword-aligned
A data item having a memory address that is divisible by eight.

ECT See Embedded Cross Trigger.

Embedded Cross Trigger (ECT)
The ECT is a modular component to support the interaction and synchronization of multiple 
triggering events with an SoC.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging in 
real-time.

Embedded Trace Buffer
The ETB provides on-chip storage of trace data using a configurable sized RAM.
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Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction and data 
trace information on a trace port. The ETM provides processor driven trace through a trace port 
compliant to the ATB protocol.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are 
stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETB See Embedded Trace Buffer.

ETM See Embedded Trace Macrocell.

Event 1 (Simple) An observable condition that can be used by an ETM to control aspects of a trace.

2 (Complex) A boolean combination of simple events that is used by an ETM to control aspects 
of a trace.

Exception A fault or error event that is considered serious enough to require that program execution is 
interrupted. Examples include attempting to perform an invalid memory access, external 
interrupts, and undefined instructions. When an exception occurs, normal program flow is 
interrupted and execution is resumed at the corresponding exception vector. This contains the 
first instruction of the interrupt handler to deal with the exception.

Exception service routine
See Interrupt handler.

Exception vector See Interrupt vector.

Exponent The component of a floating-point number that normally signifies the integer power to which 
two is raised in determining the value of the represented number. 

External Abort An indication from an external memory system to a core that the value associated with a 
memory access is invalid. An external abort is caused by the external memory system as a result 
of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort.

Fast context switch
In a multitasking system, the point at which the time-slice allocated to one process stops and the 
one for the next process starts. If processes are switched often enough, they can appear to a user 
to be running in parallel, in addition to being able to respond quicker to external events that 
might affect them.

In ARM processors, a fast context switch is caused by the selection of a non-zero PID value to 
switch the context to that of the next process. A fast context switch causes each Virtual Address 
for a memory access, generated by the ARM processor, to produce a Modified Virtual Address 
that is sent to the rest of the memory system to be used in place of a normal Virtual Address. For 
some cache control operations Virtual Addresses are passed to the memory system as data. In 
these cases no address modification takes place.

See also Fast Context Switch Extension.

Fast Context Switch Extension (FCSE)
An extension to the ARM architecture that enables cached processors with an MMU to present 
different addresses to the rest of the memory system for different software processes, even when 
those processes are using identical addresses. 

See also Fast context switch.

FCSE See Fast Context Switch Extension. 
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Fd The destination register and the accumulate value in triadic operations. Sd for single-precision 
operations and Dd for double-precision.

Flat address mapping
A system of organizing memory in which each Physical Address contained within the memory 
space is the same as its corresponding Virtual Address.

Flush-to-zero mode In this mode, the VFP coprocessor treats the following values as positive zeros:

• arithmetic operation inputs that are in the subnormal range for the input precision

• arithmetic operation results, other than computed zero results, that are in the subnormal 
range for the input precision before rounding.

The VFP coprocessor does not interpret these values as subnormal values or convert them to 
subnormal values.

The subnormal range for the input precision is –2Emin < x < 0 or 0< x < 2Emin. 

Fm The second source operand in dyadic or triadic operations. Sm for single-precision operations 
and Dm for double-precision

Fn The first source operand in dyadic or triadic operations. Sn for single-precision operations and 
Dn for double-precision.

Formatter The formatter is an internal input block in the ETB and TPIU that embeds the trace source ID 
within the data to create a single trace stream.

Fraction The floating-point field that lies to the right of the implied binary point. 

Fully-associative cache
A cache that has one cache set that consists of the entire cache. The number of cache entries is 
the same as the number of cache ways.

See also Direct-mapped cache.

Halfword A 16-bit data item.

Halting debug-mode One of two mutually exclusive debug modes. In halting debug-mode all processor execution 
halts when a breakpoint or watchpoint is encountered. All processor state, coprocessor state, 
memory and input/output locations can be examined and altered using the debug port. 

See also Monitor debug-mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the top of the 
address space, rather than at the bottom.

Hit-Under-Miss (HUM)
A buffer that enables program execution to continue, even though there has been a data miss in 
the cache.

Host A computer that provides data and other services to another computer. Especially, a computer 
providing debugging services to a target being debugged.

HUM See Hit-Under-Miss.

IEEE 754 standard IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985. The standard 
that defines data types, correct operation, exception types and handling, and error bounds for 
floating-point systems. Most processors are built in compliance with the standard in either 
hardware or a combination of hardware and software.

IGN See Ignore.

Ignore (IGN) Must ignore memory writes.
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Illegal instruction An instruction that is architecturally Undefined. 

IMB See Instruction Memory Barrier.

Implementation-defined
The behavior is not architecturally defined, but is defined and documented by individual 
implementations.

Implementation-specific
The behavior is not architecturally defined, and does not have to be documented by individual 
implementations. Used when there are a number of implementation options available and the 
option chosen does not affect software compatibility.

Index See Cache index.

Infinity In the IEEE 754 standard format to represent infinity, the exponent is the maximum for the 
precision and the fraction is all zeros.

Instruction cache A block of on-chip fast access memory locations, situated between the processor and main 
memory, used for storing and retrieving copies of often used instructions. This is done to greatly 
increase the average speed of memory accesses and so improve processor performance.

Instruction cycle count
The number of cycles for which an instruction occupies the Execute stage of the pipeline.

Instruction Memory Barrier (IMB)
An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Internal scan chain A series of registers connected together to form a path through a device, used during production 
testing to import test patterns into internal nodes of the device and export the resulting values.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs. 

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors are 
configured, that contains the first instruction of the corresponding interrupt handler.

Invalidate To mark a cache line as being not valid by clearing the valid bit. This must be done whenever 
the line does not contain a valid cache entry. For example, after a cache flush all lines are invalid.

Jazelle architecture The ARM Jazelle architecture extends the Thumb and ARM operating states by adding a Java 
state to the processor. Instruction set support for entering and exiting Java applications, 
real-time interrupt handling, and debug support for mixed Java/ARM applications is present. 
When in Java state, the processor fetches and decodes Java bytecodes and maintains the Java 
operand stack.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard defines a 
boundary-scan architecture used for in-circuit testing of integrated circuit devices. It is 
commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

LE Little endian view of memory in both byte-invariant and word-invariant systems. See also 
Byte-invariant, Word-invariant.

Line See Cache line.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored at 
increasing addresses in memory.

See also Big-endian and Endianness.
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Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or halfword 
within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the halfword at that 
address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register contents, not 
directly on memory contents.

Load Store unit (LS)
The part of a processor that handles load and store transfers.

LS See Load Store unit.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system comprises 
several macrocells (such as a processor, an ETM, and a memory block) plus application-specific 
logic.

Memory bank One of two or more parallel divisions of interleaved memory, usually one word wide, that enable 
reads and writes of multiple words at a time, rather than single words. All memory banks are 
addressed simultaneously and a bank enable or chip select signal determines which of the banks 
is accessed for each transfer. Accesses to sequential word addresses cause accesses to sequential 
banks. This enables the delays associated with accessing a bank to occur during the access to its 
adjacent bank, speeding up memory transfers.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value that was 
most recently written to that location. Memory coherency is made difficult when there are 
multiple possible physical locations that are involved, such as a system that has main memory, 
a write buffer and a cache.

Memory Management Unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and translates 
virtual addresses to physical addresses.

Microprocessor See Processor.

Miss See Cache miss.

MMU See Memory Management Unit.

Modified Virtual Address (MVA)
A Virtual Address produced by the ARM processor can be changed by the current Process ID 
to provide a Modified Virtual Address (MVA) for the MMUs and caches. 

See also Fast Context Switch Extension.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor enables a 
software abort handler provided by the debug monitor or operating system debug task. When a 
breakpoint or watchpoint is encountered, this enables vital system interrupts to continue to be 
serviced while normal program execution is suspended. 

See also Halting debug-mode.

MVA See Modified Virtual Address.
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NaN Not a number. A symbolic entity encoded in a floating-point format that has the maximum 
exponent field and a nonzero fraction. An SNaN sets the Invalid Operation Cumulative (IOC) 
flag if used in an arithmetic instruction and the instruction returns a QNaN. A QNaN propagates 
through almost every arithmetic operation without signaling exceptions and has a most 
significant fraction bit of one.

PA See Physical Address.

Penalty The number of cycles in which no useful Execute stage pipeline activity can occur because an 
instruction flow is different from that assumed or predicted.

Power-on reset See Cold reset.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the pipeline 
before the preceding instructions have finished executing. Prefetching an instruction does not 
mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to the core that an instruction has been fetched from an 
illegal memory location. An exception must be taken if the processor attempts to execute the 
instruction. A Prefetch Abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction memory. 

See also Data Abort, External Abort and Abort.

Processor A processor is the circuitry in a computer system required to process data using the computer 
instructions. It is an abbreviation of microprocessor. A clock source, power supplies, and main 
memory are also required to create a minimum complete working computer system. 

Physical Address (PA)
The MMU performs a translation on Modified Virtual Addresses (MVA) to produce the Physical 
Address (PA) that is given to the AMBA bus to perform an external access. The PA is also stored 
in the data cache to avoid the necessity for address translation when data is cast out of the cache. 

See also Fast Context Switch Extension.

RAZ See Read-As-Zero.

Read-As-Zero (RAZ) Appear as zero when read.

Read Reads are defined as memory operations that have the semantics of a load. That is, the ARM 
instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB, LDRBT, 
LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM, LDR, LDRSH, 
LDRH, LDRSB, LDRB, and POP. 

Java instructions that are accelerated by hardware can cause a number of reads to occur, 
according to the state of the Java stack and the implementation of the Java hardware 
acceleration. 

RealView ICE A system for debugging embedded processor cores using a JTAG interface.

Region A partition of instruction or data memory space.

Remapping Changing the address of physical memory or devices after the application has started executing. 
This is typically done to permit RAM to replace ROM when the initialization has been 
completed.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the 
implementation, or produces Unpredictable results if the contents of the field are not zero. These 
fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be written as 0 
and read as 0.
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Rounding mode The IEEE 754 standard requires all calculations to be performed as if to an infinite precision. 
For example, a multiply of two single-precision values must accurately calculate the significand 
to twice the number of bits of the significand. To represent this value in the destination 
precision, rounding of the significand is often required. The IEEE 754 standard specifies four 
rounding modes. 

In round-to-nearest mode, the result is rounded at the halfway point, with the tie case rounding 
up if it would clear the least significant bit of the significand, making it even.

Round-towards-zero mode chops any bits to the right of the significand, always rounding down, 
and is used by the C, C++, and Java languages in integer conversions.

Round-towards-plus-infinity mode and round-towards-minus-infinity mode are used in interval 
arithmetic.

RunFast mode RunFast mode speeds up floating-point computations by flushing subnormal inputs and outputs 
to zero, and enabling the default NaN mode. 

Saved Program Status Register (SPSR)
The register that holds the CPSR of the task immediately before the exception occurred that 
caused the switch to the current mode.

SBO See Should-Be-One.

SBZ See Should-Be-Zero.

SBZP See Should-Be-Zero or Preserved.

Scalar operation A VFP coprocessor operation involving a single source register and a single destination register.

See also Vector operation.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan 
technology using a standard JTAG TAP interface. Each device contains at least one TAP 
controller containing shift registers that form the chain connected between TDI and TDO, 
through which test data is shifted. Processors can contain several shift registers to enable you to 
access selected parts of the device.

Set See Cache set.

Set-associative cache
In a set-associative cache, lines can only be placed in the cache in locations that correspond to 
the modulo division of the memory address by the number of sets. If there are n ways in a cache, 
the cache is termed n-way set-associative. The set-associativity can be any number greater than 
or equal to 1 and is not restricted to being a power of two.

Short vector operation
A VFP coprocessor operation involving more than one destination register and perhaps more 
than one source register in the generation of the result for each destination.

Should-Be-One (SBO)
Must be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces Unpredictable 
results.

Should-Be-Zero (SBZ)
Must be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces Unpredictable 
results.

Should-Be-Zero or Preserved (SBZP)
Must be written as 0 (or all 0s for bit fields) by software, or preserved by writing the same value 
back that has been previously read from the same field on the same processor.
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Significand The component of a binary floating-point number that consists of an explicit or implicit leading 
bit to the left of the implied binary point and a fraction field to the right.

SPSR See Saved Program Status Register

Stride The stride field, FPSCR[21:20], specifies the increment applied to register addresses in short 
vector operations. A stride of 00, specifying an increment of +1, causes a short vector operation 
to increment each vector register by +1 for each iteration, while a stride of 11 specifies an 
increment of +2. 

Subnormal value A value in the range (–2Emin < x < 2Emin), except for 0. In the IEEE 754 standard format for 
single-precision and double-precision operands, a subnormal value has a zero exponent and a 
nonzero fraction field. The IEEE 754 standard requires that the generation and manipulation of 
subnormal operands be performed with the same precision as normal operands.

Synchronization primitive
The memory synchronization primitive instructions are those instructions that are used to ensure 
memory synchronization. That is, the LDR{B,H,D}EX, STR{B,H,D}EX, SWP, and SWPB 
instructions.

Tag The upper portion of a block address used to identify a cache line within a cache. The block 
address from the CPU is compared with each tag in a set in parallel to determine if the 
corresponding line is in the cache. If it is, it is said to be a cache hit and the line can be fetched 
from cache. If the block address does not correspond to any of the tags, it is said to be a cache 
miss and the line must be fetched from the next level of memory.

See also Cache terminology diagram on the last page of this glossary.

TCM See Tightly coupled memory.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to perform. Thumb 
instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating in 
Thumb state.

Tightly coupled memory (TCM)
An area of low latency memory that provides predictable instruction execution or data load 
timing in cases where deterministic performance is required. TCMs are suited to holding:
• critical routines such as for interrupt handling
• scratchpad data
• data types whose locality is not suited to caching
• critical data structures, such as interrupt stacks.

Tiny A nonzero result or value that is between the positive and negative minimum normal values for 
the destination precision.

TLB See Translation Look-aside Buffer.

Trace hardware A term for a device that contains an Embedded Trace Macrocell.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a low-cost 
product designed specifically for trace acquisition, or a logic analyzer.

Translation Lookaside Buffer (TLB)
A cache of recently used translation table entries that avoid the overhead of translation table 
walking on every memory access. Part of the Memory Management Unit.
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Translation table A table, held in memory, that contains data that defines the properties of memory areas of 
various fixed sizes.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by hardware.

Trap An exceptional condition in a VFP coprocessor that has the respective exception enable bit set 
in the FPSCR register. The user trap handler is executed. 

Trigger instruction The VFP coprocessor instruction that causes a bounce at the time it is issued. A potentially 
exceptional instruction causes the VFP11 coprocessor to enter the exceptional state. A 
subsequent instruction, unless it is an FMXR or FMRX instruction accessing the FPEXC, 
FPINST, or FPSID register, causes a bounce, beginning exception processing. The trigger 
instruction is not necessarily exceptional, and no processing of it is performed. It is retried at the 
return from exception processing of the potentially exceptional instruction.

See also  Bounce, Potentially exceptional instruction, and Exceptional state.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data 
size is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM Architecture 
Reference Manual for more details on ARM exceptions.

UNP See Unpredictable.

Unpredictable Means that the behavior of the ETM cannot be relied on. Such conditions have not been 
validated. When applied to the programming of an event resource, only the output of that event 
resource is Unpredictable.Unpredictable behavior can affect the behavior of the entire system, 
because the ETM is capable of causing the core to enter debug state, and external outputs can 
be used for other purposes.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have any 
value. For writes, writing to this location causes unpredictable behavior, or an unpredictable 
change in device configuration. Unpredictable instructions must not halt or hang the processor, 
or any part of the system.

VA See Virtual Address.

Vector operation A VFP coprocessor operation involving more than one destination register, perhaps involving 
different source registers in the generation of the result for each destination.

See also Scalar operation.

Victim A cache line, selected to be discarded to make room for a replacement cache line that is required 
because of a cache miss. The way that the victim is selected for eviction is processor-specific. 
A victim is also known as a cast out.

Virtual Address (VA)
The MMU uses its translation tables to translate a Virtual Address into a Physical Address. The 
processor executes code at the Virtual Address, that might be located elsewhere in physical 
memory. 

See also Fast Context Switch Extension, Modified Virtual Address, and Physical Address.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug 
controller and debug logic. This type of reset is useful if you are using the debugging features 
of a processor.
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Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when the data 
contained by a particular memory address is changed. Watchpoints are inserted by the 
programmer to enable inspection of register contents, memory locations, and variable values 
when memory is written to test that the program is operating correctly. Watchpoints are removed 
after the program is successfully tested. See also Breakpoint.

Way See Cache way.

WB See Write-back.

Word A 32-bit data item.

Word-invariant In a word-invariant system, the address of each byte of memory changes when switching 
between little-endian and big-endian operation, in such a way that the byte with address A in 
one endianness has address A EOR 3 in the other endianness. As a result, each aligned word of 
memory always consists of the same four bytes of memory in the same order, regardless of 
endianness. The change of endianness occurs because of the change to the byte addresses, not 
because the bytes are rearranged.The ARM architecture supports word-invariant systems in 
ARMv3 and later versions. When word-invariant support is selected, the behavior of load or 
store instructions that are given unaligned addresses is instruction-specific, and is in general not 
the expected behavior for an unaligned access. It is recommended that word-invariant systems 
use the endianness that produces the required byte addresses at all times, apart possibly from 
very early in their reset handlers before they have set up the endianness, and that this early part 
of the reset handler must use only aligned word memory accesses. 

See also Byte-invariant.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM instructions 
SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and SWPB, and the 
Thumb instructions STM, STR, STRH, STRB, and PUSH. 

Java instructions that are accelerated by hardware can cause a number of writes to occur, 
according to the state of the Java stack and the implementation of the Java hardware 
acceleration.

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the cache on 
line replacement following a cache miss. Otherwise, writes by the processor only update the 
cache. This is also known as copyback.

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main 
memory, whose purpose is to optimize stores to main memory. 

Write completion The memory system indicates to the processor that a write has been completed at a point in the 
transaction where the memory system is able to guarantee that the effect of the write is visible 
to all processors in the system. This is not the case if the write is associated with a memory 
synchronization primitive, or is to a Device or Strongly Ordered region. In these cases the 
memory system might only indicate completion of the write when the access has affected the 
state of the target, unless it is impossible to distinguish between having the effect of the write 
visible and having the state of target updated. 

This stricter requirement for some types of memory ensures that any side-effects of the memory 
access can be guaranteed by the processor to have taken place. You can use this to prevent the 
starting of a subsequent operation in the program order until the side-effects are visible.

Write-through (WT) In a write-through cache, data is written to main memory at the same time as the cache is 
updated. 

WT See Write-through.
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Glossary 
Cache terminology diagram
The diagram illustrates the following cache terminology:
• block address
• cache line
• cache set
• cache way
• index
• tag.
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