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Preface

This preface introduces the ARM7TDMI-S processor and its reference documentation. 
It contains the following sections:

• About this document on page xii

• Feedback on page xvi.
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Preface 
About this document

This document is a reference manual for the ARM7TDMI-S processor.

Intended audience

This document has been written for experienced hardware and software engineers who 
might or might not have experience of ARM products.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to the ARM7TDMI-S processor.

Chapter 2 Programmer’s Model 

Read this chapter for a description of the 32-bit ARM and 16-bit Thumb 
instruction sets.

Chapter 3 Memory Interface 

Read this chapter for a description of the nonsequential, sequential, 
internal, and coprocessor register transfer memory cycles.

Chapter 4 Coprocessor Interface 

Read this chapter for information about implementing specialized 
additional instructions for use with coprocessors.

Chapter 5 Debugging Your System 

Read this chapter for a description of the ARM7TDMI-S processor 
hardware extensions for advanced debugging.

Chapter 6 ETM Interface 

Read this chapter for information about connecting an ETM7 to an 
ARM7TDMI-S processor.

Chapter 7 Instruction Cycle Timings 

Read this chapter for a description of the instruction cycle timings for the 
ARM7TDMI-S processor.

Chapter 8 AC Parameters 

Read this chapter for the AC parameters timing diagrams and definitions.
xii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B
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Appendix A Signal Descriptions 

Read this chapter for a list of all ARM7TDMI-S processor signals.

Appendix B Differences Between the ARM7TDMI-S and the ARM7TDMI 

Read this chapter for a description of the differences between the 
ARM7TDMI-S processor and the ARM7TDMI hard macrocell with 
reference to interface signals, scan interface signals, timing parameters, 
and design considerations.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface 
elements such as menu names. Can also be used for emphasis in 
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

monospace Denotes text that can be entered at the keyboard, such as 
commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

monospace italic Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Timing diagram conventions

This manual contains several timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labeled when they occur. 
Therefore, no additional meaning must be attached unless specifically stated.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. xiii



Preface 
Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not 
answered by this document, please contact info@arm.com or visit our web site at 
http://www.arm.com.

ARM publications

This document contains information that is specific to the ARM7TDMI-S processor. 
Refer to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM7TDMI Technical Reference Manual (ARM DDI 0029)

• ETM7 (Rev 1) Technical Reference Manual (ARM DDI 0158).

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Heavy line indicates region of interest
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Other publications

This section lists relevant documents published by third parties.

• IEEE Std. 1149.1-1990, Standard Test Access Port and Boundary-Scan 
Architecture.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. xv



Preface 
Feedback

ARM Limited welcomes feedback both on the ARM7TDMI-S processor, and on the 
documentation.

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM7TDMI-S processor

If you have any problems with the ARM7TDMI-S processor, please contact your 
supplier giving:

• the product name

• details of the platform you are running on, including the hardware platform, 
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample code output illustrating the problem.
xvi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B



Chapter 1 
Introduction

This chapter introduces the ARM7TDMI-S processor. It contains the following 
sections:

• About the ARM7TDMI-S processor on page 1-2

• ARM7TDMI-S architecture on page 1-4

• ARM7TDMI-S block, core and functional diagrams on page 1-6

• ARM7TDMI-S instruction set summary on page 1-9

• Differences between Rev 3a and Rev 4 on page 1-23.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. 1-1



Introduction 
1.1 About the ARM7TDMI-S processor

The ARM7TDMI-S processor is a member of the ARM family of general-purpose 
32-bit microprocessors. The ARM family offers high performance for very low-power 
consumption and gate count.

The ARM architecture is based on Reduced Instruction Set Computer (RISC) 
principles. The RISC instruction set, and related decode mechanism are much simpler 
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

• a high instruction throughput

• an excellent real-time interrupt response

• a small, cost-effective, processor macrocell.

1.1.1 The instruction pipeline

The ARM7TDMI-S processor uses a pipeline to increase the speed of the flow of 
instructions to the processor. This enables several operations to take place 
simultaneously, and the processing, and memory systems to operate continuously. 

A three-stage pipeline is used, so instructions are executed in three stages:

• Fetch

• Decode

• Execute.

The three-stage pipeline is shown in Figure 1-1.

Figure 1-1 The instruction pipeline

ARM Thumb

PC

PC - 4

PC - 8

PC

PC - 2

PC - 4

Fetch

Decode

Execute

The instruction is fetched from memory

The registers used in the instruction are decoded

The registers are read from the register bank

The shift and ALU operations are performed

The registers are written back to the register bank
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Introduction 
Note
 The Program Counter (PC) points to the instruction being fetched rather than to the 
instruction being executed.

During normal operation, while one instruction is being executed, its successor is being 
decoded, and a third instruction is being fetched from memory.

1.1.2 Memory access

The ARM7TDMI-S processor has a Von Neumann architecture, with a single 32-bit 
data bus carrying both instructions and data. Only load, store, and swap instructions can 
access data from memory.

Data can be 8-bit bytes, 16-bit halfwords, or 32-bit words. Words must be aligned to 
4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

1.1.3 Memory interface

The memory interface of the ARM7TDMI-S processor enables performance potential 
to be realized, while minimizing the use of memory. Speed-critical control signals are 
pipelined to allow system control functions to be implemented in standard low-power 
logic. These control signals facilitate the exploitation of the fast-burst access modes 
supported by many on-chip and off-chip memory technologies.

The ARM7TDMI-S processor has four basic types of memory cycle:

• internal cycle

• nonsequential cycle

• sequential cycle

• coprocessor register transfer cycle.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. 1-3
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1.2 ARM7TDMI-S architecture

The ARM7TDMI-S processor has two instruction sets:

• the 32-bit ARM instruction set

• the 16-bit Thumb instruction set.

The ARM7TDMI-S processor is an implementation of the ARM architecture v4T. For 
full details of both the ARM and Thumb instruction sets, see the ARM Architecture 
Reference Manual.

1.2.1 Instruction compression

Microprocessor architectures traditionally had the same width for instructions and data. 
Therefore, 32-bit architectures had higher performance manipulating 32-bit data and 
could address a large address space much more efficiently than 16-bit architectures.

16-bit architectures typically had higher code density than 32-bit architectures, and 
greater than half the performance.

Thumb implements a 16-bit instruction set on a 32-bit architecture to provide:

• higher performance than a 16-bit architecture

• higher code density than a 32-bit architecture.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM 
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit 
ARM instruction that has the same effect on the processor model. Thumb instructions 
operate with the standard ARM register configuration, allowing excellent 
interoperability between ARM and Thumb states. 

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit 
ARM instructions in real time, without performance loss.

Thumb has all the advantages of a 32-bit core:

• 32-bit address space

• 32-bit registers

• 32-bit shifter and Arithmetic Logic Unit (ALU)

• 32-bit memory transfer.

Thumb therefore offers a long branch range, powerful arithmetic operations, and a large 
address space.
1-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B



Introduction 
Thumb code is typically 65% of the size of the ARM code and provides 160% of the 
performance of ARM code when running on a processor connected to a 16-bit memory 
system. Thumb, therefore, makes the ARM7TDMI-S processor ideally suited to 
embedded applications with restricted memory bandwidth, where code density is 
important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives designers 
the flexibility to emphasize performance, or code size on a subroutine level, according 
to the requirements of their applications. For example, critical loops for applications 
such as fast interrupts and DSP algorithms can be coded using the full ARM instruction 
set and linked with Thumb code.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. 1-5



Introduction 
1.3 ARM7TDMI-S block, core and functional diagrams

The ARM7TDMI-S processor architecture, core, and functional diagrams are 
illustrated in the following figures:

• the ARM7TDMI-S block diagram is shown in Figure 1-2

• the ARM7TDMI-S core is shown in Figure 1-3 on page 1-7

• the ARM7TDMI-S functional diagram is shown in Figure 1-4 on page 1-8.

Figure 1-2 ARM7TDMI-S block diagram

Note
 There are no bidirectional paths on the data bus. These are shown in Figure 1-2 for 
simplicity.
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Figure 1-3 ARM7TDMI-S core
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Figure 1-4 ARM7TDMI-S functional diagram
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1.4 ARM7TDMI-S instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:

• ARM instruction summary on page 1-10

• Thumb instruction summary on page 1-18.

A key to the instruction set tables is given in Table 1-1.

The ARM7TDMI-S processor is an implementation of the ARMv4T architecture. For 
a complete description of both instruction sets, see the ARM Architecture Reference 
Manual.

Table 1-1 Key to tables

Instruction Description

{cond} See Table 1-11 on page 1-17.

<Oprnd2> See Table 1-9 on page 1-16.

{field} See Table 1-10 on page 1-17.

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces address translation. Cannot be used with 
pre-indexed addresses.

<a_mode2> See Table 1-3 on page 1-13.

<a_mode2P> See Table 1-4 on page 1-14.

<a_mode3> See Table 1-5 on page 1-15.

<a_mode4L> See Table 1-6 on page 1-15.

<a_mode4S> See Table 1-7 on page 1-16.

<a_mode5> See Table 1-8 on page 1-16.

#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit 
value by an even number of bits.

<reglist> A comma-separated list of registers, enclosed in 
braces ( { and } ).
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1.4.1 ARM instruction summary

The ARM instruction set summary is shown in Table 1-2.

Table 1-2 ARM instruction summary

Operation Description Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>

Move NOT MVN{cond}{S} Rd, <Oprnd2>

Move SPSR to register MRS{cond} Rd, SPSR

Move CPSR to register MRS{cond} Rd, CPSR

Move register to SPSR MSR{cond} SPSR{field}, Rm

Move register to CPSR MSR{cond} CPSR{field}, Rm

Move immediate to 
SPSR flags

MSR{cond} SPSR_f, #32bit_Imm

Move immediate to 
CPSR flags

MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>

Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>

Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract 
with carry

RSC{cond}{S} Rd, Rn, <Oprnd2>

Multiply MUL{cond}{S} Rd, Rm, Rs

Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn

Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply unsigned 
accumulate long

UMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed 
accumulate long

SMLAL{cond}{S} RdLo, RdHi, Rm, Rs
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Compare CMP{cond} Rd, <Oprnd2>

Compare negative CMN{cond} Rd, <Oprnd2>

Logical Test TST{cond} Rn, <Oprnd2>

Test equivalence TEQ{cond} Rn, <Oprnd2>

AND AND{cond}{S} Rd, Rn, <Oprnd2>

EOR EOR{cond}{S} Rd, Rn, <Oprnd2>

ORR ORR{cond}{S} Rd, Rn, <Oprnd2>

Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{cond} label

Branch with link BL{cond} label

Branch and exchange 
instruction set

BX{cond} Rn

Load Word LDR{cond} Rd, <a_mode2>

Word with user-mode 
privilege

LDR{cond}T Rd, <a_mode2P>

Byte LDR{cond}B Rd, <a_mode2>

Byte with user-mode 
privilege

LDR{cond}BT Rd, <a_mode2P>

Byte signed LDR{cond}SB Rd, <a_mode3>

Halfword LDR{cond}H Rd, <a_mode3>

Halfword signed LDR{cond}SH Rd, <a_mode3>

Multiple block 
data operations

Increment before LDM{cond}IB Rd{!}, <reglist>{^}

Increment after LDM{cond}IA Rd{!}, <reglist>{^}

Decrement before LDM{cond}DB Rd{!}, <reglist>{^}

Decrement after LDM{cond}DA Rd{!}, <reglist>{^}

Stack operations LDM{cond}<a_mode4L> Rd{!}, <reglist>

Table 1-2 ARM instruction summary (continued)

Operation Description Assembler
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Stack operations and 
restore CPSR

LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^

User registers LDM{cond}<a_mode4L> Rd{!}, <reglist>^

Store Word STR{cond} Rd, <a_mode2>

Word with User-mode 
privilege

STR{cond}T Rd, <a_mode2P>

Byte STR{cond}B Rd, <a_mode2>

Byte with User-mode 
privilege

STR{cond}BT Rd, <a_mode2P>

Halfword STR{cond}H Rd, <a_mode3>

Multiple -

Block data operations -

Increment before STM{cond}IB Rd{!}, <reglist>{^}

Increment after STM{cond}IA Rd{!}, <reglist>{^}

Decrement before STM{cond}DB Rd{!}, <reglist>{^}

Decrement after STM{cond}DA Rd{!}, <reglist>{^}

Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>

User registers STM{cond}<a_mode4S> Rd{!}, <reglist>^

Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]

Table 1-2 ARM instruction summary (continued)

Operation Description Assembler
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Addressing mode 2, <a_mode2>, is shown in Table 1-3.

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>

Move to ARM register 
from coprocessor

MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Move to coprocessor 
from ARM register

MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Load LDC{cond} p<cpnum>, CRd, <a_mode5>

Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software 
Interrupt

SWI 24bit_Imm

Table 1-2 ARM instruction summary (continued)

Operation Description Assembler

Table 1-3 Addressing mode 2

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed immediate offset [Rn, #+/-12bit_Offset]!

Pre-indexed register offset [Rn, +/-Rm]!

Pre-indexed scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!
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Addressing mode 2 (privileged), <a_mode2P>, is shown in Table 1-4.

Post-indexed immediate offset [Rn], #+/-12bit_Offset

Post-indexed register offset [Rn], +/-Rm

Post-indexed scaled register offset [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-4 Addressing mode 2 (privileged)

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed immediate 
offset

[Rn], #+/-12bit_Offset

Post-indexed register offset [Rn], +/-Rm

Post-indexed scaled 
register offset

[Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

Table 1-3 Addressing mode 2 (continued)

Operation Assembler
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Addressing mode 3 (signed byte, and halfword data transfer), <a_mode3>, is shown in 
Table 1-5.

Addressing mode 4 (load), <a_mode4L>, is shown in Table 1-6. 

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-5 Addressing mode 3

Operation Assembler

Immediate offset [Rn, #+/-8bit_Offset]

Pre-indexed [Rn, #+/-8bit_Offset]!

Post-indexed [Rn], #+/-8bit_Offset

Register [Rn, +/-Rm]

Pre-indexed [Rn, +/-Rm]!

Post-indexed [Rn], +/-Rm

Table 1-6 Addressing mode 4 (load)

Addressing mode Stack type

IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

Table 1-4 Addressing mode 2 (privileged) (continued)

Operation Assembler
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Addressing mode 4 (store), <a_mode4S>, is shown in Table 1-7.

Addressing mode 5 (coprocessor data transfer), <a_mode5>, is shown in Table 1-8.

Operand 2, <Oprnd2>, is shown in Table 1-9.

Table 1-7 Addressing mode 4 (store)

Addressing mode Stack type

IA Increment after EA Empty ascending

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Table 1-8 Addressing mode 5

Operation Assembler

Immediate offset [Rn, #+/-(8bit_Offset*4)]

Pre-indexed [Rn, #+/-(8bit_Offset*4)]!

Post-indexed [Rn], #+/-(8bit_Offset*4)

Table 1-9 Operand 2

Operation Assembler

Immediate value #32bit_Imm

Logical shift left Rm LSL #5bit_Imm

Logical shift right Rm LSR #5bit_Imm

Arithmetic shift right Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm

Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs
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Fields, {field}, are shown in Table 1-10.

Condition fields, {cond}, are shown in Table 1-11.

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Table 1-10 Fields

Suffix Sets

_c Control field mask bit (bit 3)

_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

_x Extension field mask bit(bit 2)

Table 1-11 Condition fields

Suffi
x

Description

EQ Equal

NE Not equal

CS Unsigned higher, or same

CC Unsigned lower

MI Negative

PL Positive, or zero

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower, or same

Table 1-9 Operand 2 (continued)

Operation Assembler
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1.4.2 Thumb instruction summary

The Thumb instruction set summary is shown in Table 1-12.

GE Greater, or equal

LT Less than

GT Greater than

LE Less than, or equal

AL Always

Table 1-11 Condition fields (continued)

Suffi
x

Description

Table 1-12 Thumb instruction summary

Operation Assembler

Move Immediate MOV Rd, #8bit_Imm

High to Low MOV Rd, Hs

Low to High MOV Hd, Rs

High to High MOV Hd, Hs

Arithmetic Add ADD Rd, Rs, #3bit_Imm

Add Low and Low ADD Rd, Rs, Rn

Add High to Low ADD Rd, Hs

Add Low to High ADD Hd, Rs

Add High to High ADD Hd, Hs

Add Immediate ADD Rd, #8bit_Imm

Add Value to SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm

Add with carry ADC Rd, Rs

Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm

Subtract Immediate SUB Rd, #8bit_Imm
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Subtract with carry SBC Rd, Rs

Negate NEG Rd, Rs

Multiply MUL Rd, Rs

Compare Low and Low CMP Rd, Rs

Compare Low and High CMP Rd, Hs

Compare High and Low CMP Hd, Rs

Compare High and 
High

CMP Hd, Hs

Compare Negative CMN Rd, Rs

Compare Immediate CMP Rd, #8bit_Imm

Logical AND AND Rd, Rs

EOR EOR Rd, Rs

OR ORR Rd, Rs

Bit clear BIC Rd, Rs

Move NOT MVN Rd, Rs

Test bits TST Rd, Rs

Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm LSL Rd, 
Rs

Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, 
Rs

Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm ASR Rd, 
Rs

Rotate right ROR Rd, Rs

Branch Conditional

If Z set BEQ label

If Z clear BNE label

If C set BCS label

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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If C clear BCC label

If N set BMI label

If N clear BPL label

If V set BVS label

If V clear BVC label

If C set and Z clear BHI label

If C clear and Z set BLS label

If N set and V set, or if 
N clear and V clear

BGE label

If N set and V clear, or 
if N clear and V set

BLT label

If Z clear and N or V 
set, or if Z clear, and N 
or V clear

BGT label

If Z set, or N set and V 
clear, or N clear and V 
set

BLE label

Unconditional B label

Long branch with link BL label

Optional state change -

To address held in Lo 
reg

BX Rs

To address held in Hi 
reg

BX Hs

Load With immediate offset

Word LDR Rd, [Rb, #7bit_offset]

Halfword LDRH Rd, [Rb, #6bit_offset]

Byte LDRB Rd, [Rb, #5bit_offset]

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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With register offset

Word LDR Rd, [Rb, Ro]

Halfword LDRH Rd, [Rb, Ro]

Signed halfword LDRSH Rd, [Rb, Ro]

Byte LDRB Rd, [Rb, Ro]

Signed byte LDRSB Rd, [Rb, Ro]

PC-relative LDR Rd, [PC, #10bit_Offset]

SP-relative LDR Rd, [SP, #10bit_Offset]

Address

Using PC ADD Rd, PC, #10bit_Offset

Using SP ADD Rd, SP, #10bit_Offset

Multiple LDMIA Rb!, <reglist>

Store With immediate offset

Word STR Rd, [Rb, #7bit_offset]

Halfword STRH Rd, [Rb, #6bit_offset]

Byte STRB Rd, [Rb, #5bit_offset]

With register offset

Word STR Rd, [Rb, Ro]

Halfword STRH Rd, [Rb, Ro]

Byte STRB Rd, [Rb, Ro]

SP-relative STR Rd, [SP, #10bit_offset]

Multiple STMIA Rb!, <reglist>

Push/Pop Push registers onto 
stack

PUSH <reglist>

Push LR and registers 
onto stack

PUSH <reglist, LR>

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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Pop registers from stack POP <reglist>

Pop registers and PC 
from stack

POP <reglist, PC>

Software 
Interrupt

SWI 8bit_Imm

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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1.5 Differences between Rev 3a and Rev 4

The changes incorporated in the ARM7TDMI-S (Rev 4) processor are summarized in 
the following sections:

• Addition of EmbeddedICE-RT logic

• Improved Debug Communications Channel (DCC) bandwidth on page 1-24

• Access to DCC through JTAG on page 1-24

• TAP controller ID register on page 1-24

• More efficient multiple transfers on page 1-25.

1.5.1 Addition of EmbeddedICE-RT logic

EmbeddedICE-RT is an enhanced implementation of the EmbeddedICE logic that was 
part of the ARM7TDMI-S (Rev 3) processor. EmbeddedICE-RT enables you to 
perform debugging in monitor mode. In monitor mode, the core takes an exception upon 
a breakpoint or watchpoint, rather than entering debug state as it does in halt mode. 

If the core does not enter debug state when it encounters a watchpoint or breakpoint, it 
can continue to service hardware interrupt requests as normal. Debugging in monitor 
mode is extremely useful if the core forms part of the feedback loop of a mechanical 
system, where stopping the core can potentially lead to system failure.

For more details, see Chapter 5 Debugging Your System.

Power saving

When DBGEN is tied LOW, much of the EmbeddedICE-RT logic is disabled to keep 
power consumption to a minimum.

Changes to the programmer’s model

The changes to the programmer’s model are as follows:

Debug control register 

Two new bits have been added:

Bit 4 Monitor mode enable. Use this to control how the 
device reacts on a breakpoint or watchpoint:

• When set, the core takes the instruction or data 
abort exception.

• When clear, the core enters debug state.
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Bit 5 EmbeddedICE-RT disable. Use this when changing 
watchpoints and breakpoints:

• When set, this bit disables breakpoints and 
watchpoints, enabling the breakpoint or 
watchpoint registers to be programmed with new 
values. 

• When clear, the new breakpoint or watchpoint 
values become operational.

For more information, see Debug control register on page 5-57.

Coprocessor register map 

A new register (R2) in the coprocessor register map indicates 
whether the processor entered the Prefetch or Data Abort 
exception because of a real abort, or because of a breakpoint or 
watchpoint. For more details, see Abort status register on 
page 5-56.

1.5.2 Improved Debug Communications Channel (DCC) bandwidth 

In the ARM7TDMI-S (Rev 3) processor, two accesses to scan chain 2 were required to 
read the DCC data. The first accessed the status bit, and the second accessed the data 
itself.

To increase DCC bandwidth, only one access is required to read both the data and the 
status bit in the ARM7TDMI-S (Rev 4) processor. The status bit is now included in the 
least significant bit of the address field that is read from the scan chain.

The status bit in the DCC control register is left unchanged to ensure backwards 
compatibility.

For more information, see The debug communications channel on page 5-20.

1.5.3 Access to DCC through JTAG

The DCC control register can be controlled from the JTAG interface in ARM7TDMI-S 
Rev 4. A processor write clears bit 0, the data read control bit.

For more information, see The debug communications channel on page 5-20.

1.5.4 TAP controller ID register

The TAP controller ID register value is now 0x7F1F0F0F.
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For more information, see ARM7TDMI-S device identification (ID) code register on 
page 5-31.

1.5.5 More efficient multiple transfers

The ARM7TDMI-S (Rev 4) core provides an extra output signal, DMORE. This signal 
improves the efficiency of LDM and STM instructions. DMORE is HIGH when the next 
data memory access is followed by a sequential data memory access.

For a full list of ARM7TDMI-S (Rev 4) signals, see Appendix A Signal Descriptions.
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Chapter 2 
Programmer’s Model

This chapter describes the programmer’s model for the ARM7TDMI-S processor. It 
contains the following sections:

• About the programmer’s model on page 2-2

• Processor operating states on page 2-3

• Memory formats on page 2-4

• Instruction length on page 2-6

• Data types on page 2-7

• Operating modes on page 2-8

• Registers on page 2-9

• The program status registers on page 2-16

• Exceptions on page 2-19

• Interrupt latencies on page 2-26

• Reset on page 2-27.
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2.1 About the programmer’s model

The ARM7TDMI-S processor core implements ARM architecture v4T, which includes 
the 32-bit ARM instruction set and the 16-bit Thumb instruction set. The programmer’s 
model is described fully in the ARM Architecture Reference Manual.
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2.2 Processor operating states

The ARM7TDMI-S processor has two operating states:

ARM state 32-bit, word-aligned ARM instructions are executed in this state.

Thumb state 16-bit, halfword-aligned Thumb instructions. 

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate 
halfwords.

Note
 Transition between ARM and Thumb states does not affect the processor mode or the 
register contents.

2.2.1 Switching state

You can switch the operating state of the ARM7TDMI-S core between ARM state and 
Thumb state using the BX instruction. This is described fully in the ARM Architecture 
Reference Manual.

All exception handling is performed in ARM state. If an exception occurs in Thumb 
state, the processor reverts to ARM state. The transition back to Thumb state occurs 
automatically on return.
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2.3 Memory formats

The ARM7TDMI-S processor views memory as a linear collection of bytes numbered 
in ascending order from zero:

• bytes 0 to 3 hold the first stored word

• bytes 4 to 7 hold the second stored word

• bytes 8 to 11 hold the third stored word.

The ARM7TDMI-S processor can treat words in memory as being stored in one of:

• Big-endian format

• Little-endian format.

2.3.1 Big-endian format

In big-endian format, the ARM7TDMI-S processor stores the most significant byte of 
a word at the lowest-numbered byte, and the least significant byte at the 
highest-numbered byte. So byte 0 of the memory system connects to data lines 31 to 24. 
This is shown in Figure 2-1.

Figure 2-1 Big-endian addresses of bytes within words

2.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is considered the 
least-significant byte of the word, and the highest-numbered byte is the most significant. 
So byte 0 of the memory system connects to data lines 7 to 0. This is shown in 
Figure 2-2 on page 2-5.
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Figure 2-2 Little-endian addresses of bytes within words
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2.4 Instruction length

Instructions are either: 

• 32 bits long (in ARM state)

• 16 bits long (in Thumb state).
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2.5 Data types

The ARM7TDMI-S processor supports the following data types:

• word (32-bit)

• halfword (16-bit)

• byte (8-bit).

You must align these as follows:

• word quantities must be aligned to four-byte boundaries

• halfword quantities must be aligned to two-byte boundaries

• byte quantities can be placed on any byte boundary.
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2.6 Operating modes

The ARM7TDMI-S processor has seven operating modes:

• User mode is the usual ARM program execution state, and is used for executing 
most application programs.

• Fast interrupt (FIQ) mode supports a data transfer or channel process.

• Interrupt (IRQ) mode is used for general-purpose interrupt handling.

• Supervisor mode is a protected mode for the operating system.

• Abort mode is entered after a data or instruction prefetch abort.

• System mode is a privileged user mode for the operating system.

• Undefined mode is entered when an undefined instruction is executed.

Modes other than User mode are collectively known as privileged modes. Privileged 
modes are used to service interrupts, exceptions, or access protected resources.
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2.7 Registers

The ARM7TDMI-S processor has a total of 37 registers:

• 31 general-purpose 32-bit registers

• 6 status registers.

These registers are not all accessible at the same time. The processor state and operating 
mode determine which registers are available to the programmer.

2.7.1 The ARM state register set

In ARM state, 16 general registers, and one or two status registers are accessible at any 
one time. In privileged modes, mode-specific banked registers become available. 
Figure 2-3 on page 2-11 shows which registers are available in each mode.

The ARM state register set contains 16 directly-accessible registers, r0 to r15. An 
additional register, the Current Program Status Register (CPSR), contains condition 
code flags, and the current mode bits. Registers r0 to r13 are general-purpose registers 
used to hold either data or address values. Registers r14 and r15 have the following 
special functions: 

Link register Register 14 is used as the subroutine Link Register (LR).

r14 receives a copy of r15 when a Branch with Link (BL) 
instruction is executed.

At all other times you can treat r14 as a general-purpose register. 
The corresponding banked registers r14_svc, r14_irq, r14_fiq, 
r14_abt, and r14_und are similarly used to hold the return values 
of r15 when interrupts and exceptions arise, or when BL 
instructions are executed within interrupt or exception routines.

Program counter Register 15 holds the Program Counter (PC).

In ARM state, bits [1:0] of r15 are zero. Bits [31:2] contain the PC. 
In Thumb state, bit [0] is zero. Bits [31:1] contain the PC.

In privileged modes, another register, the Saved Program Status Register (SPSR), is 
accessible. This contains the condition code flags, and the mode bits saved as a result 
of the exception that caused entry to the current mode.

See The program status registers on page 2-16 for a description of the program status 
registers.
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Banked registers have a mode identifier that shows to which User mode register they are 
mapped. These mode identifiers are shown in Table 2-1.

FIQ mode has seven banked registers mapped to r8–r14 (r8_fiq–r14_fiq).

In ARM state, most of the FIQ handlers do not have to save any registers.

The User, IRQ, Supervisor, Abort, and undefined modes each have two banked registers 
mapped to r13 and r14, allowing a private stack pointer and LR for each mode

Figure 2-3 on page 2-11 shows the ARM state registers.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System sys

Undefined und
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Figure 2-3 Register organization in ARM state
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2.7.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. The programmer has 
direct access to:

• eight general registers, r0–r7

• the PC

• a Stack Pointer (SP)

• a Link Register (LR)

• the CPSR. 

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set is 
shown in Figure 2-4 on page 2-13.
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Figure 2-4 Register organization in Thumb state

2.7.3 The relationship between ARM state and Thumb state registers
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• Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical 

• Thumb state SP maps onto ARM state r13 

• Thumb state LR maps onto ARM state r14 

• The Thumb state PC maps onto the ARM state PC (r15).

These relationships are shown in Figure 2-5 on page 2-14.
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Figure 2-5 Mapping of Thumb state registers onto ARM state registers

Note
 Registers r0–r7 are known as the low registers. Registers r8–r15 are known as the high 
registers.

2.7.4 Accessing high registers in Thumb state

In Thumb state, the high registers (r8–r15) are not part of the standard register set. The 
assembly language programmer has limited access to them, but can use them for fast 
temporary storage.

Program counter (PC)

r1

r2

r3

r4

r5

Thumb state

r6

r7

Stack pointer (PC)

Link register (LR)

Current program status register

(CPSR)

Saved program status register

(SPSR)

Program counter (r15)

r1

r2

r3

r4

r5

ARM state

r6

r7

r8

Stack pointer (r13)

Link register (r14)

Current program status register

(CPSR)

Saved program status register

(SPSR)

r9

r10

r11

r12

r0 r0
2-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B



Programmer’s Model 
You can use special variants of the MOV instruction to transfer a value from a low register 
(in the range r0–r7) to a high register, and from a high register to a low register. The CMP 
instruction enables you to compare high register values with low register values. The 
ADD instruction enables you to add high register values to low register values. For more 
details, see the ARM Architecture Reference Manual.
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2.8 The program status registers

The ARM7TDMI-S core contains a CPSR and five SPSRs for exception handlers to 
use. The program status registers:

• hold the condition code flags

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 Program status register format

Note
 To maintain compatibility with future ARM processors, and as good practice, you are 
strongly advised to use a read-write-modify strategy when changing the CPSR.

2.8.1 The condition code flags

The N, Z, C, and V bits are the condition code flags, You can set these bits by arithmetic 
and logical operations. The flags can also be set by MSR and LDM instructions. The 
ARM7TDMI-S processor tests these flags to determine whether to execute an 
instruction.

All instructions can execute conditionally in ARM state. In Thumb state, only the 
Branch instruction can be executed conditionally. For more information about 
conditional execution, see the ARM Architecture Reference Manual.
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2.8.2 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the: 

• Interrupt disable bits

• T bit

• Mode bits.

The control bits change when an exception occurs. When the processor is operating in 
a privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• when the I bit is set, IRQ interrupts are disabled

• when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:

• when the T bit is set, the processor is executing in Thumb state

• when the T bit is clear, the processor executing in ARM state. 

The operating state is reflected by the CPTBIT external signal.

Caution
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If 
you do this, the processor enters an unpredictable state.

Mode bits

The M4, M3, M2, M1, and M0 bits (M[4:0]) are the mode bits. These bits determine the 
processor operating mode as shown in Table 2-2. Not all combinations of the mode bits 
define a valid processor mode, so take care to use only the bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

10000 User r0–r7, SP, LR, PC, CPSR r0–r14, PC, CPSR

10001 FIQ r0–r7, SP_fiq, LR_fiq PC, CPSR, SPSR_fiq r0–r7, r8_fiq–r14_fiq, PC, CPSR, SPSR_fiq

10010 IRQ r0–r7, SP_irq, LR_irq, PC, CPSR, SPSR_irq r0–r12, r13_irq, r14_irq, PC, CPSR, SPSR_irq
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Note
 If you program an illegal value into M[4:0], the processor enters an unrecoverable state.

2.8.3 Reserved bits 

The remaining bits in the PSRs are unused but are reserved. When changing a PSR flag 
or control bits make sure that these reserved bits are not altered. Also, make sure that 
your program does not rely on reserved bits containing specific values because future 
processors might have these bits set to one or zero.

10011 Supervisor r0–r7, SP_svc, LR_svc, PC, CPSR, 
SPSR_svc

r0–r12, r13_svc, r14_svc, PC, CPSR, 
SPSR_svc

10111 Abort r0–r7, SP_abt, LR_abt, PC, CPSR, SPSR_abt r0–r12, r13_abt, r14_abt, PC, CPSR, SPSR_abt

11011 Undefined r0–r7, SP_und, LR_und, PC, CPSR, 
SPSR_und

r0–r12, r13_und, r14_und, PC, CPSR, 
SPSR_und

11111 System r0–r7, SP, LR, PC, CPSR r0–r14, PC, CPSR

Table 2-2 PSR mode bit values (continued)

M[4:0] Mode Visible Thumb state registers Visible ARM state registers
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2.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily, 
for example to service an interrupt from a peripheral. Before attempting to handle an 
exception, the ARM7TDMI-S core preserves the current processor state so that the 
original program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the fixed 
order given in Exception priorities on page 2-24.

This section provides details of the exception handling on the ARM7TDMI-S 
processor:

• Exception entry/exit summary

• Entering an exception on page 2-20

• Leaving an exception on page 2-21.

2.9.1 Exception entry/exit summary

Table 2-3 shows the PC value preserved in the relevant r14 on exception entry and the 
recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception 
or entry 

Return instruction Previous state Notes

ARM r14_x Thumb r14_x

BL MOV PC, R14 PC + 4 PC + 2

Where the PC is the address of the BL, 
SWI, undefined instruction Fetch, or 
instruction that had the Prefetch Abort.

SWI MOVS PC, R14_svc PC + 4 PC + 2

Undefined 
instruction

MOVS PC, R14_und PC + 4 PC + 2

Prefetch 
Abort

SUBS PC, R14_abt, #4 PC + 4 PC + 4
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2.9.2 Entering an exception

When handling an exception the ARM7TDMI-S core: 

1. Preserves the address of the next instruction in the appropriate LR. When the 
exception entry is from:

• ARM state, the ARM7TDMI-S copies the address of the next instruction 
into the LR (current PC + 4, or PC + 8 depending on the exception) 

• Thumb state, the ARM7TDMI-S writes the value of the PC into the LR, 
offset by a value (current PC + 4, or PC + 8 depending on the exception).

The exception handler does not have to determine the state when entering an 
exception. For example, in the case of a SWI, MOVS PC, r14_svc always returns to 
the next instruction regardless of whether the SWI was executed in ARM or 
Thumb state.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value which depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI-S core also sets the interrupt disable flags on interrupt exceptions to 
prevent otherwise unmanageable nestings of exceptions.

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 Where the PC is the address of the 
instruction that was not executed 
because the FIQ or IRQ took priority.IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4

Data Abort SUBS PC, R14_abt, #8 PC + 8 PC + 8 Where the PC is the address of the Load 
or Store instruction that generated the 
Data Abort.

RESET Not applicable - - The value saved in r14_svc on reset is 
UNPREDICTABLE.

Table 2-3 Exception entry and exit (continued)

Exception 
or entry 

Return instruction Previous state Notes

ARM r14_x Thumb r14_x
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Note
 Exceptions are always handled in ARM state. When the processor is in Thumb state and 
an exception occurs, the switch to ARM state takes place automatically when the 
exception vector address is loaded into the PC.

2.9.3 Leaving an exception

When an exception is completed, the exception handler must:

1. Move the LR, minus an offset to the PC. The offset varies according to the type 
of exception, as shown in Table 2-3 on page 2-19.

2. Copy the SPSR back to the CPSR.

3. Clear the interrupt disable flags that were set on entry.

Note
 The action of restoring the CPSR from the SPSR automatically restores the T, F, and I 
bits to whatever value they held immediately prior to the exception.

2.9.4 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports data transfers or channel 
processes. In ARM state, FIQ mode has eight private registers to remove the need for 
register saving (this minimizes the overhead of context switching).

An FIQ is externally generated by taking the nFIQ signal input LOW.

Irrespective of whether exception entry is from ARM state, or from Thumb state, an FIQ 
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag. 
When the F flag is clear, the ARM7TDMI-S checks for a LOW level on the output of 
the FIQ synchronizer at the end of each instruction.

2.9.5 Interrupt request

The Interrupt Request (IRQ) exception is a normal interrupt caused by a LOW level on 
the nIRQ input. IRQ has a lower priority than FIQ, and is masked on entry to an FIQ 
sequence. You can disable IRQ at any time, by setting the I bit in the CPSR from a 
privileged mode.
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Irrespective of whether exception entry is from ARM state, or Thumb state, an IRQ 
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

2.9.6 Abort

An abortindicates that the current memory access cannot be completed. It is signaled by 
the external ABORT input. The ARM7TDMI-S checks for the abort exception at the 
end of memory access cycles.

There are two types of abort:

• a Prefetch Abort occurs during an instruction prefetch

• a Data Abort occurs during a data access.

Prefetch Abort

When a Prefetch Abort occurs, the ARM7TDMI-S core marks the prefetched 
instruction as invalid, but does not take the exception until the instruction reaches the 
execute stage of the pipeline. If the instruction is not executed because a branch occurs 
while it is in the pipeline, the abort does not take place.

After dealing with the reason for the abort, the handler executes the following 
instruction irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR and retriesthe aborted instruction.

Data Abort

When a Data Abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers. The 
abort handler must be aware of this.

• The swap instruction (SWP) aborts as though it had not been executed. (The abort 
must occur on the read access of the SWP instruction.)

• Block data transfer instructions (LDM, STM) complete. When write-back is set, the 
base is updated. If the instruction would have overwritten the base with data 
(when it has the base register in the transfer list), the ARM7TDMI-S prevents the 
overwriting. The ARM7TDMI-S core prevents all register overwriting after an 
abort is indicated. This means that the ARM7TDMI-S core always preserves r15 
(always the last register to be transferred) in an aborted LDM instruction.
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The abort mechanism enables the implementation of a demand-paged virtual memory 
system. In such a system, the processor is allowed to generate arbitrary addresses. When 
the data at an address is unavailable, the Memory Management Unit (MMU) signals an 
abort. The abort handler must then work out the cause of the abort, make the requested 
data available, and retry the aborted instruction. The application program does not have 
to know the amount of memory available to it, nor is its state in any way affected by the 
abort.

After fixing the reason for the abort, the handler must execute the following return 
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC, and the CPSR, and retriesthe aborted instruction.

2.9.7 Software interrupt instruction

The Software Interrupt (SWI) is used to enter Supervisor mode, usually to request a 
particular supervisor function. A SWI handler returns by executing the following 
irrespective of the processor operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instructionfollowing the SWI. 
The SWI handler reads the opcode to extract the SWI function number.

2.9.8 Undefined instruction

When the ARM7TDMI-S processor encounters an instruction that neither it nor any 
coprocessor in the system can handle, the ARM7TDMI-S core takes the undefined 
instruction trap. Software can use this mechanism to extend the ARM instruction set by 
emulating undefined coprocessor instructions. 

Note
 The ARM7TDMI-S processor is fully compliant with the ARM architecture v4T, and 
traps all instruction bit patterns that are classified as undefined.

After emulating the failed instruction, the trap handler executes the following 
irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instructionafter the undefined 
instruction.
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For more information about undefined instructions, see the ARM Architecture Reference 
Manual.

2.9.9 Exception vectors 

Table 2-4 shows the exception vector addresses. In the table, I and F represent the 
previous value.

2.9.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the 
order in which they are handled: 

1. Reset (highest priority).

2. Data Abort.

3. FIQ.

4. IRQ.

5. Prefetch Abort.

6. Undefined instruction.

7. SWI (lowest priority).

Some exceptions cannot occur together:

• The Undefined Instruction and SWI exceptions are mutually exclusive. Each 
corresponds to a particular (non-overlapping) decoding of the current instruction.

Table 2-4 Exception vectors

Address Exception Mode on entry
I state on 
entry

F state on 
entry

0x00000000 Reset Supervisor Disabled Disabled

0x00000004 Undefined instruction Undefined I F

0x00000008 Software interrupt Supervisor Disabled F

0x0000000C Abort (Prefetch) Abort I F

0x00000010 Abort (Data) Abort I F

0x00000014 Reserved Reserved - -

0x00000018 IRQ IRQ Disabled F

0x0000001C FIQ FIQ Disabled Disabled
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• When FIQs are enabled and a Data Abort occurs at the same time as an FIQ, the 
ARM7TDMI-S core enters the Data Abort handler and proceeds immediately to 
the FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error 
does not escape detection. You must add the time for this exception entry to the 
worst-case FIQ latency calculations in a system that uses aborts.
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2.10 Interrupt latencies

Interrupt latencies are described in:

• Maximum interrupt latencies

• Minimum interrupt latencies.

2.10.1 Maximum interrupt latencies

When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

• Tsyncmax, the longest time the request can take to pass through the synchronizer. 
Tsyncmax is two processor cycles.

• Tldm, the time for the longest instruction to complete. (The longest instruction is 
an LDM that loads all the registers including the PC.) Tldm is 20 cycles in a zero wait 
state system.

• Texc, the time for the Data Abort entry. Texc is three cycles.

• Tfiq, the time for FIQ entry. Tfiq is two cycles.

The total latency is therefore 27 processor cycles, slightly less than 0.7 microseconds in 
a system that uses a continuous 40MHz processor clock. At the end of this time, the 
ARM7TDMI-S executes the instruction at 0x1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ, 
having higher priority, might delay entry into the IRQ handling routine for an arbitrary 
length of time.

2.10.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through 
the synchronizer, Tsyncmin plus Tfiq (four processor cycles).
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2.11 Reset

When the nRESET signal goes LOW, the ARM7TDMI-S processor abandons the 
executing instruction.

When nRESET goes HIGH again the ARM7TDMI-S processor:

1. Forces M[4:0] to b10011 (Supervisor mode).

2. Sets the I and F bits in the CPSR.

3. Clears the CPSR T bit.

4. Forces the PC to fetch the next instruction from address 0x00.

5. Reverts to ARM state and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.
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Memory Interface

This chapter describes the memory interface on the ARM7TDMI-S processor. It 
contains the following sections:

• About the memory interface on page 3-2

• Bus interface signals on page 3-3

• Bus cycle types on page 3-4

• Addressing signals on page 3-10

• Data timed signals on page 3-13

• Using CLKEN to control bus cycles on page 3-17.
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3.1 About the memory interface

The ARM7TDMI-S processor has a Von Neumann architecture, with a single 32-bit 
data bus carrying both instructions and data. Only load, store, and swap instructions can 
access data from memory.

The ARM7TDMI-S processor supports four basic types of memory cycle:

• nonsequential

• sequential

• internal

• coprocessor register transfer.
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3.2 Bus interface signals

The signals in the ARM7TDMI-S processor bus interface can be grouped into four 
categories:

• clocking and clock control

• address class signals

• memory request signals

• data timed signals.

The clocking and clock control signals are:

• CLK
• CLKEN
• nRESET.

The address class signals are:

• ADDR[31:0]
• WRITE
• SIZE[1:0]
• PROT[1:0]
• LOCK.

The memory request signals are:

• TRANS[1:0].

The data timed signals are:

• WDATA[31:0]
• RDATA[31:0]
• ABORT.

Each of these signal groups shares a common timing relationship to the bus interface 
cycle. All signals in the ARM7TDMI-S processor bus interface are generated from or 
sampled by the rising edge of CLK. 

Bus cycles can be extended using the CLKEN signal. This signal is introduced in Using 
CLKEN to control bus cycles on page 3-17. All other sections of this chapter describe a 
simple system in which CLKEN is permanently HIGH.
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3.3 Bus cycle types 

The ARM7TDMI-S processor bus interface is pipelined, and so the address class 
signals, and the memory request signals are broadcast in the bus cycle ahead of the bus 
cycle to which they refer. This gives the maximum time for a memory cycle to decode 
the address, and respond to the access request. 

A single memory cycle is shown in Figure 3-1.

Figure 3-1 Simple memory cycle

The ARM7TDMI-S processor bus interface can perform four different types of memory 
cycle. These are indicated by the state of the TRANS[1:0] signals. Memory cycle types 
are encoded on the TRANS[1:0] signals as shown in Table 3-1.

A memory controller for the ARM7TDMI-S processor commits to a memory access 
only on an N cycle or an S cycle.

Address

Cycle type

Write data

Bus cycle

CLK

Address-class signals

TRANS[1:0]

WDATA[31:0]

(write)

RDATA[31:0]

(read)
Read data

Table 3-1 Cycle types

TRANS[1:0] Cycle type Description

00 I cycle Internal cycle

01 C cycle Coprocessor register transfer cycle

10 N cycle Nonsequential cycle

11 S cycle Sequential cycle
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The ARM7TDMI-S processor has four basic types of memory cycle:

Nonsequential cycle 

During this cycle, the ARM7TDMI-S core requests a transfer to, 
or from an address which is unrelated to the address used in the 
preceding cycle.

Sequential cycle During this cycle, the ARM7TDMI-S core requests a transfer to 
or from an address that is either one word or one halfword greater 
than the address used in the preceding cycle.

Internal cycle During this cycle, the ARM7TDMI-S core does not require a 
transfer because it is performing an internal function and no useful 
prefetching can be performed at the same time.

Coprocessor register transfer cycle 

During this cycle, the ARM7TDMI-S core uses the data bus to 
communicate with a coprocessor but does not require any action 
by the memory system.

3.3.1 Nonsequential cycles

A nonsequential cycle is the simplest form of an ARM7TDMI-S processor bus cycle, 
and occurs when the ARM7TDMI-S processor requests a transfer to or from an address 
that is unrelated to the address used in the preceding cycle. The memory controller must 
initiate a memory access to satisfy this request.

The address class signals, and the TRANS[1:0] = N cycle are broadcast on the bus. At 
the end of the next bus cycle the data is transferred between the CPU, and the memory. 
This is illustrated in Figure 3-2 on page 3-6.
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Figure 3-2 Nonsequential memory cycle

The ARM7TDMI-S processor can perform back to back nonsequential memory cycles. 
This happens, for example, when an STR instruction is executed, as shown in Figure 3-3. 
If you are designing a memory controller for the ARM7TDMI-S processor, and your 
memory system is unable to cope with this case, you must use the CLKEN signal to 
extend the bus cycle to allow sufficient cycles for the memory system. See Using 
CLKEN to control bus cycles on page 3-17.

Figure 3-3 Back to back memory cycles

Address

N cycle

N cycle

CLK

Address-class signals

TRANS[1:0]

WDATA[31:0]

(write)

RDATA[31:0]

(read)

Write data

Read data

Write data

Write
cycle

CLK

Address-class signals

TRANS[1:0]

WDATA[31:0]

(write)

RDATA[31:0]

(read)

Read
cycle

WRITE

N cycle N cycle

Read data

Read addressWrite address
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3.3.2 Sequential cycles

Sequential cycles perform burst transfers on the bus. You can use this information to 
optimize the design of a memory controller interfacing to a burst memory device, such 
as a DRAM.

During a sequential cycle, the ARM7TDMI-S processor requests a memory location 
that is part of a sequential burst. If this is the first cycle in the burst, the address can be 
the same as the previous internal cycle. Otherwise the address is incremented from the 
previous cycle:

• for a burst of word accesses, the address is incremented by 4 bytes

• for a burst of halfword accesses, the address is incremented by 2 bytes. 

Bursts of byte accesses are not possible.

A burst always starts with an N cycle or a merged I-S cycle (see Merged I-S cycles on 
page 3-8), and continues with S cycles. A burst comprises transfers of the same type. 
The ADDR[31:0] signal increments during the burst. The other address class signals 
remain the same throughout the burst.

The types of burst are shown in Table 3-2.

All accesses in a burst are of the same width, direction, and protection type. For more 
details, see Addressing signals on page 3-10.

An example of a burst access is shown in Figure 3-4 on page 3-8.

Table 3-2 Burst types

Burst type Address increment Cause

Word read 4 bytes ARM7TDMI-S code fetches, or LDM instruction

Word write 4 bytes STM instruction

Halfword read 2 bytes Thumb code fetches
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Figure 3-4 Sequential access cycles

3.3.3 Internal cycles

During an internal cycle, the ARM7TDMI-S processor does not require a memory 
access, as an internal function is being performed, and no useful prefetching can be 
performed at the same time. 

Where possible the ARM7TDMI-S processor broadcasts the address for the next 
access, so that decode can start, but the memory controller must not commit to a 
memory access. This is described in Merged I-S cycles.

3.3.4 Merged I-S cycles

Where possible, the ARM7TDMI-S processor performs an optimization on the bus to 
allow extra time for memory decode. When this happens, the address of the next 
memory cycle is broadcast during an internal cycle on this bus. This enables the 
memory controller to decode the address, but it must not initiate a memory access 
during this cycle. In a merged I-S cycle, the next cycle is a sequential cycle to the same 
memory location. This commits to the access, and the memory controller must initiate 
the memory access. This is shown in Figure 3-5 on page 3-9.

Address

N cycle

N cycle

CLK

Address-class signals

TRANS[1:0]

WDATA[31:0]

(write)

RDATA[31:0]

(read)
Read data1

Address+4

S cycle

Write data1 Write data2

Read data2

S cycle
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Figure 3-5 Merged I-S cycle

Note
 When designing a memory controller, make sure that the design also works when an I 
cycle is followed by an N cycle to a different address. This sequence might occur during 
exceptions, or during writes to the PC. It is essential that the memory controller does 
not commit to the memory cycle during an I cycle.

3.3.5 Coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM7TDMI-S processor uses the data 
buses to transfer data to or from a coprocessor. A memory cycle is not required and the 
memory controller does not initiate a transaction.

The coprocessor interface is described in Chapter 4 Coprocessor Interface.

Address

I cycle

I cycle

CLK

Address-class signals

TRANS[1:0]

RDATA[31:0]

(read)
Read data1

Address+2

S cycle

Read data1

Merged

S cycle

S cycle

S cycle
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3.4 Addressing signals

The address class signals are described in the following sections:

• ADDR[31:0]]

• WRITE

• SIZE[1:0]

• PROT[1:0] on page 3-11

• LOCK on page 3-11

• CPTBIT on page 3-12.

3.4.1 ADDR[31:0]

ADDR[31:0] is the 32-bit address bus which specifies the address for the transfer. All 
addresses are byte addresses, so a burst of word accesses results in the address bus 
incrementing by four for each cycle.

The address bus provides 4GB of linear addressing space. When a word access is 
signaled, the memory system must ignore the bottom two bits, ADDR[1:0], and when 
a halfword access is signaled the memory system must ignore the bottom bit, ADDR[0].

3.4.2 WRITE

WRITE specifies the direction of the transfer. WRITE indicates an ARM7TDMI-S 
core write cycle when HIGH, and an ARM7TDMI-S core read cycle when LOW. A 
burst of S cycles is always either a read burst or a write burst. The direction cannot be 
changed in the middle of a burst.

3.4.3 SIZE[1:0]

The SIZE[1:0] bus encodes the size of the transfer. The ARM7TDMI-S processor can 
transfer word, halfword, and byte quantities. This is encoded on SIZE[1:0] as shown in 
Table 3-3.

Table 3-3 Transfer widths

SIZE[1:0] Transfer width

00 Byte
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The size of transfer does not change during a burst of S cycles.

Note
 A writable memory system for the ARM7TDMI-S processor must have individual byte 
write enables. Both the C Compiler and the ARM debug tool chain (for example, 
Multi-ICE) assume that arbitrary bytes in the memory can be written. If individual byte 
write capability is not provided, it might not be possible to use either of these tools.

3.4.4 PROT[1:0]

The PROT[1:0] bus encodes information about the transfer. A memory management 
unit uses this signal to determine whether an access is from a privileged mode, and 
whether it is an opcode or a data fetch. This can therefore be used to implement an 
access permission scheme. The encoding of PROT[1:0] is shown in Table 3-4.

3.4.5 LOCK

LOCK indicates to an arbiter that an atomic operation is being performed on the bus. 
LOCK is normally LOW, but is set HIGH to indicate that a SWP or SWPB instruction is 
being performed. These instructions perform an atomic read/write operation and can be 
used to implement semaphores.

01 Halfword

10 Word

11 Reserved

Table 3-3 Transfer widths (continued)

SIZE[1:0] Transfer width

Table 3-4 PROT[1:0] encoding

PROT[1:0] Mode Opcode or data 

00 User Opcode

01 User Data

10 Privileged Opcode

11 Privileged Data
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3.4.6 CPTBIT

CPTBIT indicates the operating state of the ARM7TDMI-S processor:

• in ARM state, the CPTBIT signal is LOW

• in Thumb state, the CPTBIT signal is HIGH.
3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B



Memory Interface 
3.5 Data timed signals

The data timed signals are described in the following sections:

• WDATA[31:0]

• RDATA[31:0]

• ABORT.

3.5.1 WDATA[31:0]

WDATA[31:0] is the write data bus. All data written out from the ARM7TDMI-S 
processor is broadcast on this bus. Data transfers from the ARM7TDMI-S core to a 
coprocessor also use this bus during C-cycles. In normal circumstances, a memory 
system must sample the WDATA[31:0] bus on the rising edge of CLK at the end of a 
write bus cycle. The WDATA[31:0] value is valid only during write cycles.

3.5.2 RDATA[31:0]

RDATA[31:0] is the read data bus, and is used by the ARM7TDMI-S core to fetch both 
opcodes and data. The RDATA[31:0] signal is sampled on the rising edge of CLK at 
the end of the bus cycle. RDATA[31:0] is also used during C-cycles to transfer data 
from a coprocessor to the ARM7TDMI-S core.

3.5.3 ABORT

ABORT indicates that a memory transaction failed to complete successfully. ABORT 
is sampled at the end of the bus cycle during active memory cycles (S-cycles and 
N-cycles).

If ABORT is asserted on a data access, it causes the ARM7TDMI-S processor to take 
the Data Abort trap. If it is asserted on an opcode fetch, the abort is tracked down the 
pipeline, and the Prefetch Abort trap is taken if the instruction is executed.

ABORT can be used by a memory management system to implement, for example, a 
basic memory protection scheme or a demand-paged virtual memory system. 

For more details about aborts, see Abort on page 2-22.
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3.5.4 Byte and halfword accesses

The ARM7TDMI-S processor indicates the size of a transfer using the SIZE[1:0] 
signals. These are encoded as shown in Table 3-5.

All writable memory in an ARM7TDMI-S processor-based system supports the writing 
of individual bytes to allow the use of the C Compiler and the ARM debug tool chain 
(for example, Multi-ICE).

The address produced by the ARM7TDMI-S processor is always a byte address. 
However, the memory system ignores the insignificant bits of the address. The 
significant address bits are shown in Table 3-6.

When a halfword or byte read is performed, a 32-bit memory system can return the 
complete 32-bit word, and the ARM7TDMI-S processor extracts the valid halfword or 
byte field from it. The fields extracted depend on the state of the CFGBIGEND signal, 
which determines the endianness of the system (see Memory formats on page 2-4).

Table 3-5 Transfer size encoding

SIZE[1:0] Transfer width

00 Byte

01 Halfword

10 Word

11 Reserved

Table 3-6 Significant address bits

SIZE[1:0] Width Significant address bits

00 Byte ADDR[31:0]

01 Halfword ADDR[31:1]

10 Word ADDR[31:2]
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The fields extracted by the ARM7TDMI-S processor are shown in Table 3-7.

When connecting 8-bit to 16-bit memory systems to the ARM7TDMI-S processor, 
make sure that the data is presented to the correct byte lanes on the ARM7TDMI-S 
processor as shown in Table 3-8 and Table 3-9.

Writes

When the ARM7TDMI-S processor performs a byte or halfword write, the data being 
written is replicated across the bus, as illustrated in Figure 3-6 on page 3-16. The 
memory system can use the most convenient copy of the data. A writable memory 
system must be capable of performing a write to any single byte in the memory system. 
This capability is required by the ARM C Compiler and the Debug tool chain.

Table 3-7 Word accesses

SIZE[1:0] ADDR[1:0]
Little-endian 
CFGBIGEND = 0

Big-endian 
CFGBIGEND = 1

10 XX RDATA[31:0] RDATA[31:0]

Table 3-8 Halfword accesses

SIZE[1:0] ADDR[1:0]
Little-endian 
CFGBIGEND = 0

Big-endian 
CFGBIGEND = 1

01 0X RDATA[15:0] RDATA[31:16]

01 1X RDATA[31:16] RDATA[15:0]

Table 3-9 Byte accesses

SIZE[1:0] ADDR[1:0]
Little-endian 
CFGBIGEND = 0

Big-endian 
CFGBIGEND = 1

00 00 RDATA[7:0] RDATA[31:24]

00 01 RDATA[15:8] RDATA[23:16]

00 10 RDATA[23:16] RDATA[15:8]

00 11 RDATA[31:24] RDATA[7:0]
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Figure 3-6 Data replication
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3.6 Using CLKEN to control bus cycles

The pipelined nature of the ARM7TDMI-S processor bus interface means that there is 
a distinction between clock cycles and bus cycles. CLKEN can be used to stretch a bus 
cycle, so that it lasts for many clock cycles. The CLKEN input extends the timing of 
bus cycles in increments of complete CLK cycles:

• when CLKEN is HIGH on the rising edge of CLK, a bus cycle completes

• when CLKEN is sampled LOW, the bus cycle is extended. 

In the pipeline, the address class signals and the memory request signals are ahead of 
the data transfer by one bus cycle. In a system using CLKEN this can be more than one 
CLK cycle. This is illustrated in Figure 3-7, which shows CLKEN being used to extend 
a nonsequential cycle. In the example, the first N cycle is followed by another N cycle 
to an unrelated address, and the address for the second access is broadcast before the 
first access completes.

Figure 3-7 Use of CLKEN

Note
 When designing a memory controller, you are strongly advised to sample the values of 
TRANS[1:0] and the address class signals only when CLKEN is HIGH. This ensures 
that the state of the memory controller is not accidentally updated during a bus cycle.

Address 1Address-class signals

TRANS[1:0]

RDATA[31:0]

(read)
Read data1

Address 2

Read data2

First bus cycle Second bus cycle

CLK

Next address

N cycle N cycle Next cycle type

CLKEN
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Coprocessor Interface

This chapter describes the ARM7TDMI-S coprocessor interface. It contains the 
following sections:

• About coprocessors on page 4-2

• Coprocessor interface signals on page 4-4

• Pipeline-following signals on page 4-5

• Coprocessor interface handshaking on page 4-6

• Connecting coprocessors on page 4-11

• Not using an external coprocessor on page 4-14

• Undefined instructions on page 4-15

• Privileged instructions on page 4-16.
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4.1 About coprocessors

The ARM7TDMI-S processor instruction set enables you to implement specialized 
additional instructions using coprocessors. These are separate processing units that are 
tightly coupled to the ARM7TDMI-S core. A typical coprocessor contains:

• an instruction pipeline

• instruction decoding logic

• handshake logic

• a register bank

• special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM7TDMI-S processor in the 
system, and tracks the pipeline in the ARM7TDMI-S core. This means that the 
coprocessor can decode the instructions in the instruction stream, and execute those that 
it supports. Each instruction progresses down both the ARM7TDMI-S processor 
pipeline and the coprocessor pipeline at the same time. 

The execution of instructions is shared between the ARM7TDMI-S core and the 
coprocessor. 

The ARM7TDMI-S core:

1. Evaluates the condition codes to determine whether the instruction must be 
executed by the coprocessor, then signals this to any coprocessors in the system 
(using CPnI).

2. Generates any addresses that are required by the instruction, including 
prefetching the next instruction to refill the pipeline.

3. Takes the undefined instruction trap if no coprocessor accepts the instruction.

The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.

2. Indicates whether it can accept the instruction (by signaling on CPA and CPB).

3. Fetches any values required from its own register bank.

4. Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined 
instruction trap. You can choose whether to emulate coprocessor functions in software, 
or to design a dedicated coprocessor.
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4.1.1 Coprocessor availability

You can connect up to 16 coprocessors into a system, each with a unique coprocessor 
ID number to identify it. The ARM7TDMI-S processor contains two internal 
coprocessors:

• CP14 is the communications channel coprocessor

• CP15 is the system control coprocessor for cache and MMU functions.

Therefore, you cannot assign external coprocessors to coprocessor numbers 14 and 15. 
Other coprocessor numbers have also been reserved by ARM. Coprocessor availability 
is shown in Table 4-1.

If you intend to design a coprocessor send an E-mail with coprocessor in the subject line 
to info@arm.com for up to date information on coprocessor numbers that have already 
been allocated.

Table 4-1 Coprocessor availability

Coprocessor 
number

Allocation

15 System control

14 Debug controller

13:8 Reserved

7:4 Available to users

3:0 Reserved
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4.2 Coprocessor interface signals

The signals used to interface the ARM7TDMI-S core to a coprocessor are grouped into 
four categories.

The clock and clock control signals are:

• CLK
• CLKEN
• nRESET.

The pipeline-following signals are:

• CPnMREQ
• CPSEQ
• CPnTRANS
• CPnOPC
• CPTBIT.

The handshake signals are:

• CPnI
• CPA
• CPB.

The data signals are:

• WDATA[31:0]
• RDATA[31:0].

These signals and their use are described in:

• Pipeline-following signals on page 4-5

• Coprocessor interface handshaking on page 4-6

• Connecting coprocessors on page 4-11

• Not using an external coprocessor on page 4-14

• Undefined instructions on page 4-15

• Privileged instructions on page 4-16.
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4.3 Pipeline-following signals

Every coprocessor in the system must contain a pipeline follower to track the 
instructions executing in the ARM7TDMI-S core pipeline. The coprocessors connect to 
the ARM7TDMI-S processor input data bus, RDATA[31:0], over which instructions 
are fetched, and to CLK and CLKEN.

It is essential that the two pipelines remain in step at all times. When designing a 
pipeline follower for a coprocessor, the following rules must be observed:

• At reset (nRESET LOW), the pipeline must either be marked as invalid, or filled 
with instructions that do not decode to valid instructions for that coprocessor.

• The coprocessor state must only change when CLKEN is HIGH (except for 
reset).

• An instruction must be loaded into the pipeline on the rising edge of CLK, and 
only when CPnOPC, CPnMREQ, and CPTBIT were all LOW in the previous 
bus cycle.

These conditions indicate that this cycle is an ARM state opcode Fetch, so the 
new opcode must be sampled into the pipeline.

• The pipeline must be advanced on the rising edge of CLK when CPnOPC, 
CPnMREQ, and CPTBIT are all LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete 
execution, because the first action of any instruction performing an instruction 
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM7TDMI-S processor pipeline never 
signal on CPnI that they have entered Execute, and so they are automatically flushed 
from the coprocessor pipeline by the prefetches required to refill the pipeline.

There are no coprocessor instructions in the Thumb instruction set, and so coprocessors 
must monitor the state of the CPTBIT signal to ensure that they do not try to decode 
pairs of Thumb instructions as ARM instructions.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. 4-5



Coprocessor Interface 
4.4 Coprocessor interface handshaking

The ARM7TDMI-S core and any coprocessors in the system perform a handshake 
using the signals shown in Table 4-2.

These signals are explained in more detail in Coprocessor signaling on page 4-7.

4.4.1 The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline 
and checks whether that instruction is a coprocessor instruction. A coprocessor 
instruction has a coprocessor number that matches the coprocessor ID of the 
coprocessor.

If the instruction currently in the Decode stage is a coprocessor instruction:

1. The coprocessor attempts to execute the instruction.

2. The coprocessor signals back to the ARM7TDMI-S core using CPA and CPB.

4.4.2 The ARM7TDMI-S core

Coprocessor instructions progress down the ARM7TDMI-S processor pipeline in step 
with the coprocessor pipeline. A coprocessor instruction is executed if the following are 
true:

1. The coprocessor instruction has reached the Execute stage of the pipeline. (It 
might not if it was preceded by a branch.)

2. The instruction has passed its conditional execution tests.

3. A coprocessor in the system has signaled on CPA and CPB that it is able to accept 
the instruction.

If all these requirements are met, the ARM7TDMI-S core signals by taking CPnI LOW, 
committing the coprocessor to the execution of the coprocessor instruction.

Table 4-2 Handshaking signals

Signal Direction Meaning

CPnI ARM7TDMI-S to coprocessor Not coprocessor instruction

CPA Coprocessor to ARM7TDMI-S Coprocessor absent

CPB Coprocessor to ARM7TDMI-S Coprocessor busy
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4.4.3 Coprocessor signaling

The coprocessor signals as follows:

Coprocessor absent If a coprocessor cannot accept the instruction currently in Decode 
it must leave CPA and CPB both HIGH.

Coprocessor present If a coprocessor can accept an instruction, and can start that 
instruction immediately, it must signal this by driving both CPA 
and CPB LOW.

Coprocessor busy (busy-wait) 

If a coprocessor can accept an instruction, but is currently unable 
to process that request, it can stall the ARM7TDMI-S core by 
asserting busy-wait. This is signaled by driving CPA LOW, but 
leaving CPB HIGH. When the coprocessor is ready to start 
executing the instruction it signals this by driving CPB LOW. This 
is shown in Figure 4-1.

Figure 4-1 Coprocessor busy-wait sequence

ADD SWINETSTCPDOSUB

TSTCPDOSUBADD SWINE

CPDOSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

coprocessor busy-waiting

CLK

Fetch stage

Decode stage

Execute stage

CPnI (from core)

CPA (from
coprocessor)

CPB (from
coprocessor)

RDATA[31:0]
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4.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If a valid FIQ or IRQ occurs 
(the appropriate bit is cleared in the CSPR), the ARM7TDMI-S core abandons the 
coprocessor instruction, and signals this by taking CPnI HIGH. A coprocessor that is 
capable of busy-waiting must monitor CPnI to detect this condition. When the 
ARM7TDMI-S core abandons a coprocessor instruction, the coprocessor also abandons 
the instruction and continues tracking the ARM7TDMI-S processor pipeline. 

Caution
 It is essential that any action taken by the coprocessor while it is busy-waiting is 
idempotent. The actions taken by the coprocessor must not corrupt the state of the 
coprocessor, and must be repeatable with identical results. The coprocessor can only 
change its own state after the instruction has been executed.

4.4.5 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, transfer data between a 
register in the ARM7TDMI-S processor register bank and a register in the coprocessor 
register bank. An example sequence for a coprocessor register transfer is shown in 
Figure 4-2.

Figure 4-2 Coprocessor register transfer sequence

ADD SWINETSTMCRSUB

TSTMCRSUBADD SWINE

MCRSUBADD SWINETST
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4.4.6 Coprocessor data operations

Coprocessor data operations, CDP instructions, perform processing operations on the 
data held in the coprocessor register bank. No information is transferred between the 
ARM7TDMI-S core and the coprocessor as a result of this operation. An example 
sequence is shown in Figure 4-3.

Figure 4-3 Coprocessor data operation sequence

4.4.7 Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a 
coprocessor and memory. They can be used to transfer either a single word of data or a 
number of the coprocessor registers. There is no limit to the number of words of data 
that can be transferred by a single LDC or STC instruction, but by convention a 
coprocessor must not transfer more than 16 words of data in a single instruction. An 
example sequence is shown in Figure 4-4 on page 4-10.

Note
 If you transfer more than 16 words of data in a single instruction, the worst case 
interrupt latency of the ARM7TDMI-S core increases.

ADD SWINETSTCPDOSUB

TSTCPDOSUBADD SWINE

CPDOSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

CLK

Fetch stage

Decode stage

Execute stage

CPnI
(from core)

CPA (from
coprocessor)

CPB (from
coprocessor)

RDATA[31:0]
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Figure 4-4 Coprocessor load sequence

ADD SWINETSTLDCSUB

TSTLDCSUBADD SWINE

LDCSUBADD SWINETST

I Fetch I FetchI FetchI Fetch CP data I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

CLK

Fetch
stage

Decode
stage

Execute
stage

CPnI
(from core)

(from coprocessor)

RDATA[31:0]

n=4

CPA

(from coprocessor)
CPB

CP dataCP dataCP data
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4.5 Connecting coprocessors

A coprocessor in an ARM7TDMI-S processor-based system must have 32-bit 
connections to:

• transfer data from memory (instruction stream and LDC)

• write data from the ARM7TDMI-S (MCR)

• read data to the ARM7TDMI-S (MRC).

4.5.1 Connecting a single coprocessor

An example of how to connect a coprocessor into an ARM7TDMI-S processor-based 
system is shown in Figure 4-5.

Figure 4-5 Coprocessor connections
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The fragments of Verilog that describe the register logic to derive asel, bsel, and csel 
from the relevant ARM7TDMI-S processor or ARM7TDMI processor pins are 
described in this section.

The logic for asel, bsel, and csel is as follows:

assign asel = ~(cprt | (cpdt & nRW_r));
assign bsel = ~cpdt;
assign csel = cprt;

assign cpdt = ~nMREQ_r & ~CPA_r2 & nOPC_r;
assign cprt = nMREQ_r & SEQ_r;

Note
 cpdt shows that the current cycle is a load or store cycle due to an LDC or STC 
instruction.cprt shows that the current cycle is a coprocessor register transfer cycle.

The other signals used to drive these terms are as follows:

always @(posedge CLK)
if (CLKEN)

begin
nMREQ_r <= CPnMREQ; // Output from ARM7TDMI-S

SEQ_r   <= CPSEQ;   // Output from ARM7TDMI-S
nOPC_r  <= CPnOPC;  // Output from ARM7TDMI-S
nRW_r   <= WRITE;   // Output from ARM7TDMI-S
CPA_r   <= CPA;     // Input to ARM7TDMI-S
CPA_r2  <= CPA_r;

end

Note
 If you are building a system with an ETM and an ARM7TDMI-S processor, you must 
directly connect the ETM7 RDATA[31:0] and WDATA[31:0] to the ARM7TDMI-S 
RDATA[31:0] and WDATA[31:0] buses. This enables the ETM to correctly trace 
coprocessor instructions.
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4.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as 
shown in Table 4-3.

You must also multiplex the output data from the coprocessors.

Table 4-3 Handshake signal connections

Signal Connection

CPnI Connect this signal to all coprocessors present in the system

CPA and CPB The individual CPA and CPB outputs from each coprocessor must be 
ANDed together, and connected to the CPA and CPB inputs on the 
ARM7TDMI-S processor
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4.6 Not using an external coprocessor 

If you are implementing a system that does not include any external coprocessors, you 
must tie both CPA and CPB HIGH. This indicates that no external coprocessors are 
present in the system. If any coprocessor instructions are received, they take the 
undefined instruction trap so that they can be emulated in software if required.

The coprocessor-specific outputs from the ARM7TDMI-S processor must be left 
unconnected:

• CPnMREQ
• CPSEQ
• CPnTRANS
• CPnOPC
• CPnI
• CPTBIT.
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4.7 Undefined instructions

The ARM7TDMI-S processor implements full ARM architecture v4T undefined 
instruction handling. This means that any instruction defined in the ARM Architecture 
Reference Manual as UNDEFINED, automatically causes the ARM7TDMI-S processor to 
take the undefined instruction trap. Any coprocessor instructions that are not accepted 
by a coprocessor also result in the ARM7TDMI-S processor taking the undefined 
instruction trap.
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4.8 Privileged instructions

The output signal CPnTRANS enables the implementation of coprocessors, or 
coprocessor instructions, that can only be accessed from privileged modes. The signal 
meanings are shown in Table 4-4.

The CPnTRANS signal is sampled at the same time as the instruction, and is factored 
into the coprocessor pipeline Decode stage. 

Note
 If a User mode process (CPnTRANS LOW) tries to access a coprocessor instruction 
that can only be executed in a privileged mode, the coprocessor must respond with CPA 
and CPB HIGH. This causes the ARM7TDMI-S processor to take the undefined 
instruction trap.

Table 4-4 CPnTRANS signal meanings

CPnTRANS Meaning

LOW User mode instruction 

HIGH Privileged mode instruction
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Chapter 5 
Debugging Your System

This chapter describes the debug features of the ARM7TDMI-S processor. It contains 
the following sections:

• About debugging your system on page 5-3

• Controlling debugging on page 5-5

• Entry into debug state on page 5-7

• Debug interface on page 5-12

• ARM7TDMI-S core clock domains on page 5-13

• The EmbeddedICE-RT macrocell on page 5-14

• Disabling EmbeddedICE-RT on page 5-16

• The debug communications channel on page 5-20

• Scan chains and the JTAG interface on page 5-24

• Resetting the TAP controller on page 5-27

• Public JTAG instructions on page 5-28

• Test data registers on page 5-31

• Scan timing on page 5-36

• Examining the core and the system in debug state on page 5-39

• The program counter during debug on page 5-44

• Priorities and exceptions on page 5-47
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• Watchpoint unit registers on page 5-48

• Programming breakpoints on page 5-53

• Programming watchpoints on page 5-55

• Abort status register on page 5-56

• Debug control register on page 5-57

• Debug status register on page 5-60

• Coupling breakpoints and watchpoints on page 5-62

• EmbeddedICE-RT timing on page 5-65.
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5.1 About debugging your system

The advanced debugging features of the ARM7TDMI-S (Rev 4) processor make it 
easier to develop application software, operating systems, and the hardware itself. 

5.1.1 A typical debug system

The ARM7TDMI-S processor forms one component of a debug system that interfaces 
from the high-level debugging that you perform to the low-level interface supported by 
the ARM7TDMI-S processor. Figure 5-1 shows a typical debug system.

Figure 5-1 Typical debug system

A debug system usually has three parts:

 Debug host A computer that is running a software debugger such as the ARM 
Debugger for Windows (ADW). The debug host enables you to 
issue high-level commands such as setting breakpoints or 
examining the contents of memory.

Protocol converter This interfaces between the high-level commands issued by the 
debug host and the low-level commands of the ARM7TDMI-S 
processor JTAG interface. Typically it interfaces to the host 
through an interface such as an enhanced parallel port.

Debug host

(host compiler

running ARM or

third party toolkit)

Protocol converter

(for example Multi-
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Debug target

(development

system containing
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processor)
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Debug target The ARM7TDMI-S processor has hardware extensions that ease 
debugging at the lowest level. These extensions enable you to:

• halt program execution

• examine and modify the internal state of the core

• examine the state of the memory system

• execute abort exceptions, allowing real-time monitoring of 
the core

• resume program execution.

The debug host and the protocol converter are system-dependent.
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5.2 Controlling debugging

The major blocks of the ARM7TDMI-S processor are:

ARM CPU core This has hardware support for debug.

 EmbeddedICE-RT macrocell 

A set of registers and comparators that you use to generate debug 
exceptions (such as breakpoints). This unit is described in The 
EmbeddedICE-RT macrocell on page 5-14.

 TAP controller Controls the action of the scan chains using a JTAG serial 
interface. For more details, see The TAP controller on page 5-26.

These blocks are shown in Figure 5-2.

Figure 5-2 ARM7TDMI-S block diagram

5.2.1 Debug modes

You can perform debugging in either of the following modes:

Halt mode When the system is in halt mode, the core enters debug state when 
it encounters a breakpoint or a watchpoint. In debug state, the core 
is stopped and isolated from the rest of the system. When debug 
has completed, the debug host restores the core and system state, 
and program execution resumes.
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For more information, see Entry into debug state on page 5-7.

Monitor mode When the system is in monitor mode, the core does not enter 
debug state on a breakpoint or watchpoint. Instead, an Instruction 
Abort or Data Abort is generated and the core continues to receive 
and service interrupts as normal. You can use the abort status 
register to establish whether the exception was due to a breakpoint 
or watchpoint, or to a genuine memory abort.

For more information, see Monitor mode debugging on page 5-18. 

5.2.2 Examining system state during debugging

In both halt mode and monitor mode, the JTAG-style serial interface enables you to 
examine the internal state of the core and the external state of the system while system 
activity continues. 

In halt mode, this enables instructions to be inserted serially into the core pipeline 
without using the external data bus. For example, when in debug state, a Store Multiple 
(STM) can be inserted into the instruction pipeline to export the contents of the 
ARM7TDMI-S processor registers. This data can be serially shifted out without 
affecting the rest of the system. For more information, see Examining the core and the 
system in debug state on page 5-39.

In monitor mode, the JTAG interface is used to transfer data between the debugger and 
a simple monitor program running on the ARM7TDMI-S core.

For detailed information about the scan chains and the JTAG interface, see Scan chains 
and the JTAG interface on page 5-24.
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5.3 Entry into debug state

If the system is in halt mode, any of the following types of interrupt force the processor 
into debug state:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request.

Note
 In monitor mode, the processor continues to execute instructions in real time, and will 
take an abort exception. The abort status register enables you to establish whether the 
exception was due to a breakpoint or watchpoint, or to a genuine memory abort.

You can use the EmbeddedICE-RT logic to program the conditions under which a 
breakpoint or watchpoint can occur. Alternatively, you can use the DBGBREAK signal 
to enable external logic to flag breakpoints or watchpoints and monitor the following:

• address bus

• data bus

• control signals.

The timing is the same for externally-generated breakpoints and watchpoints. Data must 
always be valid around the rising edge of CLK. When this data is an instruction to be 
breakpointed, the DBGBREAK signal must be HIGH around the rising edge of CLK. 
Similarly, when the data is for a load or store, asserting DBGBREAK around the rising 
edge of CLK marks the data as watchpointed. 

When a breakpoint or watchpoint is generated, there might be a delay before the 
ARM7TDMI-S core enters debug state. When it enters debug state, the DBGACK 
signal is asserted. The timing for an externally-generated breakpoint is shown in 
Figure 5-3 on page 5-8.
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. 5-7



Debugging Your System 
Figure 5-3 Debug state entry

5.3.1 Entry into debug state on breakpoint

The ARM7TDMI-S processor marks instructions as being breakpointed as they enter 
the instruction pipeline, but the core does not enter debug state until the instruction 
reaches the Execute stage. 

Breakpointed instructions are not executed. Instead, the ARM7TDMI-S core enters 
debug state. When you examine the internal state, you see the state before the 
breakpointed instruction. When your examination is complete, remove the breakpoint. 
Program execution restarts from the previously-breakpointed instruction.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline, 
the breakpoint is always taken if the system is in halt mode. The ARM7TDMI-S core 
enters debug state regardless of whether the instruction condition is met.

A breakpointed instruction does not cause the ARM7TDMI-S core to enter debug state 
when:

• A branch or a write to the PC precedes the breakpointed instruction. In this case, 
when the branch is executed, the ARM7TDMI-S processor flushes the instruction 
pipeline, so canceling the breakpoint. 

• An exception occurs, causing the ARM7TDMI-S processor to flush the 
instruction pipeline, and cancel the breakpoint. In normal circumstances, on 
exiting from an exception, the ARM7TDMI-S core branches back to the 
instruction that would have been executed next before the exception occurred. In 
this case, the pipeline is refilled and the breakpoint is reflagged.
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5.3.2 Entry into debug state on watchpoint

Watchpoints occur on data accesses. In halt mode, the core processing stops. In monitor 
mode, an abort exception is executed (see Abort on page 2-22). A watchpoint is always 
taken, but a core in halt mode might not enter debug state immediately because the 
current instruction always completes. If the current instruction is a multiword load or 
store (an LDM or STM), many cycles can elapse before the watchpoint is taken.

On a watchpoint, the following sequence occurs:

1. The current instruction completes.

2. All changes to the core state are made. 

3. Load data is written into the destination registers. 

4. Base write-back is performed.

Note
 Watchpoints are similar to Data Aborts. The difference is that when a Data Abort 
occurs, although the instruction completes, the ARM7TDMI-S core prevents all 
subsequent changes to the ARM7TDMI-S processor state. This action enables the abort 
handler to cure the cause of the abort, so the instruction can be re-executed. 

If a watchpoint occurs when an exception is pending, the core enters debug state in the 
same mode as the exception.

5.3.3 Entry into debug state on debug request

An ARM7TDMI-S core in halt mode can be forced into debug state on debug request 
in either of the following ways:

• through EmbeddedICE-RT programming (see Programming breakpoints on 
page 5-53, and Programming watchpoints on page 5-55.)

• by asserting the DBGRQ pin.

When the DBGRQ pin has been asserted, the core normally enters debug state at the 
end of the current instruction. However, when the current instruction is a busy-waiting 
access to a coprocessor, the instruction terminates, and the ARM7TDMI-S core enters 
debug state immediately. This is similar to the action of nIRQ and nFIQ.

5.3.4 Action of the ARM7TDMI-S in debug state

When the ARM7TDMI-S processor enters debug state, the core forces TRANS[1:0] to 
indicate internal cycles. This action enables the rest of the memory system to ignore the 
ARM7TDMI-S core and to function as normal. Because the rest of the system continues 
to operate, the ARM7TDMI-S core is forced to ignore aborts and interrupts.
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Caution
 Do not reset the core while debugging, otherwise the debugger loses track of the core.

Note
 The system must not change the CFGBIGEND signal during debug. From the point of 
view of the programmer, if CFGBIGEND changes, the ARM7TDMI-S processor 
changes, with the debugger unaware that the core has reset. You must also ensure that 
nRESET is held stable during debug. When the system applies reset to the 
ARM7TDMI-S processor (that is, nRESET is driven LOW), the ARM7TDMI-S 
processor state changes with the debugger unaware that the core has reset.

5.3.5 Clocks

The system and test clocks must be synchronized externally to the macrocell. The ARM 
Multi-ICE debug agent directly supports one or more cores within an ASIC design. 
Synchronizing off-chip debug clocking with the ARM7TDMI-S macrocell requires a 
three-stage synchronizer. The off-chip device (for example, Multi-ICE) issues a TCK 
signal and waits for the RTCK (Returned TCK) signal to come back. Synchronization 
is maintained because the off-chip device does not progress to the next TCK until after 
RTCK is received. 

Figure 5-4 on page 5-11 shows this synchronization.
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Figure 5-4 Clock synchronization
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5.4 Debug interface

The ARM7TDMI-S processor debug interface is based on IEEE Std. 1149.1- 1990, 
Standard Test Access Port and Boundary-Scan Architecture. Refer to this standard for 
an explanation of the terms used in this chapter, and for a description of the TAP 
controller states.

5.4.1 Debug interface signals

There are three primary external signals associated with the debug interface:

• DBGBREAK and DBGRQ are system requests for the ARM7TDMI-S core to 
enter debug state

• DBGACK is used by the ARM7TDMI-S core to flag back to the system that it is 
in debug state.
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5.5 ARM7TDMI-S core clock domains

The ARM7TDMI-S processor has a single clock, CLK, that is qualified by two clock 
enables:

• CLKEN controls access to the memory system

• DBGTCKEN controls debug operations.

During normal operation, CLKEN conditions CLK to clock the core. When the 
ARM7TDMI-S processor is in debug state, DBGTCKEN conditions CLK to clock the 
core.
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5.6 The EmbeddedICE-RT macrocell

The ARM7TDMI-S processor EmbeddedICE-RT macrocell module provides 
integrated on-chip debug support for the ARM7TDMI-S core.

EmbeddedICE-RT is programmed serially using the ARM7TDMI-S processor TAP 
controller. Figure 5-5 illustrates the relationship between the core, EmbeddedICE-RT, 
and the TAP controller, showing only the signals that are pertinent to 
EmbeddedICE-RT.

Figure 5-5 The ARM7TDMI-S core, TAP controller, and EmbeddedICE-RT macrocell
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The EmbeddedICE-RT logic comprises the following:

Two real-time watchpoint units 

You can program one or both watchpoint units to halt the 
execution of instructions by the core. Execution halts when the 
values programmed into EmbeddedICE-RT match the values 
currently appearing on the address bus, data bus, and various 
control signals. You can mask any bit so that its value does not 
affect the comparison. 

You can configure each watchpoint unit to be either a watchpoint 
(monitoring data accesses) or a breakpoint (monitoring instruction 
fetches). Watchpoints and breakpoints can be data-dependent.

For more details, see Watchpoint unit registers on page 5-48.

Abort status register 

This register identifies the cause of an abort exception entry. For 
more information, see Abort status register on page 5-56.

Debug Communications Channel (DCC) 

The DCC passes information between the target and the host 
debugger. For more information, see The debug communications 
channel on page 5-20.

In addition, two independent registers provide overall control of EmbeddedICE-RT 
operation. These are described in the following sections:

• Debug control register on page 5-57

• Debug status register on page 5-60.

The locations of the EmbeddedICE-RT registers are given in EmbeddedICE-RT register 
map on page 5-17.
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5.7 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT in two ways:

Permanently By wiring the DBGEN input LOW.

When DBGEN is LOW:

• DBGBREAK and DBGRQ are ignored by the core

• DBGACK is forced LOW by the ARM7TDMI-S core

• interrupts pass through to the processor uninhibited

• the EmbeddedICE-RT logic enters low-power mode.

Caution
 Hard-wiring the DBGEN input LOW permanently disables debug 

access. However, you must not rely on this for system security.

Temporarily By setting bit 5 in the debug control register (described in Debug 
control register on page 5-57). Bit 5 is also known as the 
EmbeddedICE-RT disable bit. 

You must set bit 5 before doing either of the following:

• programming breakpoint or watchpoint registers

• changing bit 4 of the debug control register.
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5.8 EmbeddedICE-RT register map

The locations of the EmbeddedICE-RT registers are shown in Table 5-1.

Table 5-1 Function and mapping of EmbeddedICE-RT registers

Address Width Function

b00000 6 Debug control

b00001 5 Debug status

b00100 32 Debug Communications Channel (DCC) control 
register

b00101 32 Debug Communications Channel (DCC) data register

b01000 32 Watchpoint 0 address value

b01001 32 Watchpoint 0 address mask

b01010 32 Watchpoint 0 data value

b01011 32 Watchpoint 0 data mask

b01100 9 Watchpoint 0 control value

b01101 8 Watchpoint 0 control mask

b10000 32 Watchpoint 1address value

b10001 32 Watchpoint 1 address mask

b10010 32 Watchpoint 1 data value

b10011 32 Watchpoint 1 data mask

b10100 9 Watchpoint 1 control value

b10101 8 Watchpoint 1 control mask
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5.9 Monitor mode debugging

The ARM7TDMI-S (Rev 4) processor contains logic that enables the debugging of a 
system without stopping the core entirely. This means that critical interrupt routines 
continue to be serviced while the core is being interrogated by the debugger. 

5.9.1 Enabling monitor mode

The debugging mode is controlled by bit 4 of the debug control register (described in 
Debug control register on page 5-57). Bit 4 of this register is also known as the monitor 
mode enable bit:

Bit 4 set  Enables the monitor mode features of the ARM7TDMI-S processor. 
When this bit is set, the EmbeddedICE-RT logic is configured so that a 
breakpoint or watchpoint causes the ARM7TDMI-S core to enter abort 
mode, taking the Prefetch or Data Abort vectors respectively. 

Bit 4 clear Monitor mode debugging is disabled and the system is placed into halt 
mode. In halt mode, the core enters debug state when it encounters a 
breakpoint or watchpoint.

5.9.2 Restrictions on monitor-mode debugging

There are several restrictions you must be aware of when the ARM core is configured 
for monitor-mode debugging:

• Breakpoints and watchpoints cannot be data-dependent in monitor mode. No 
support is provided for use of the range functionality. Breakpoints and 
watchpoints can only be based on the following:

— instruction or data addresses

— external watchpoint conditioner (DBGEXT[0] or DBGEXT[1])

— User or privileged mode access (CPnTRANS)

— read/write access for watchpoints (WRITE)

— access size (watchpoints SIZE[1:0]).

• External breakpoints or watchpoints are not supported.

• No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort 
status register in coprocessor 14 (see Abort status register on page 5-56).
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The monitor mode enable bit does not put the ARM7TDMI-S processor into debug 
state. For this reason, it is necessary to change the contents of the watchpoint registers 
while external memory accesses are taking place, rather than changing them when in 
debug state where the core is halted. 

If there is a possibility of false matches occurring during changes to the watchpoint 
registers (caused by old data in some registers and new data in others) you must:

1. Disable the watchpoint unit by setting bit 5 in the debug control register (also 
known as the EmbeddedICE-RT disable bit).

2. Poll the debug control register until the EmbeddedICE-RT disable bit is read back 
as set.

3. Change the other registers.

4. Re-enable the watchpoint unit by clearing the EmbeddedICE-RT disable bit in the 
debug control register.
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5.10 The debug communications channel

The ARM7TDMI-S (Rev 4) EmbeddedICE-RT contains a Debug Communication 
Channel (DCC) for passing information between the target and the host debugger. This 
is implemented as coprocessor 14.

The DCC comprises two registers, as follows:

DCC control register 

A 32-bit register, used for synchronized handshaking between the 
processor and the asynchronous debugger. For more details, see 
DCC control register.

DCC data register 

A 32-bit register, used for data transfers between the debugger and 
the processor. For more details, see Communications through the 
DCC on page 5-22.

These registers occupy fixed locations in the EmbeddedICE-RT memory map, as shown 
in Table 5-1 on page 5-17. They are accessed from the processor using MCR and MRC 
instructions to coprocessor 14.

The registers are accessed as follows:

By the debugger Through scan chain 2 in the usual way.

By the processor Through coprocessor register transfer instructions.

5.10.1 DCC control register

The DCC control register is read-only and enables synchronized handshaking between 
the processor and the debugger. The register format is shown in Figure 5-6.

Figure 5-6 DCC control register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 RW...100
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The DCC control register bit assignments are shown in Table 5-2.

Note
 If execution is halted, bit 0 might remain asserted. The debugger can clear it by writing 
to the DCC control register.

Writing to this register is rarely necessary, because in normal operation the processor 
clears bit 0 after reading it.

Instructions

The following instructions must be used:

MRC CP14, 0, Rd, C0, C0 

Returns the value from the DCC control register into the 
destination register Rd.

MCR CP14, 0, Rn, C1, C0 

Writes the value in the source register Rn to the DCC data write 
register.

Table 5-2 DCC control register bit assignments

Bit Function

31:28 Contain a fixed pattern that denotes the 
EmbeddedICE-RT version number, in this case 
b0001.

27:2 Reserved.

1 The write control bit.

If this bit is clear, the DCC data write register is ready 
to accept data from the processor.

If this bit is set, there is data in the DCC data write 
register and the debugger can scan it out. 

0 The read control bit.

If this bit is clear, the DCC data read register is ready 
to accept data from the debugger. 

If this bit is set, the DCC data read register contains 
new data that has not been read by the processor, and 
the debugger must wait.
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MRC CP14, 0, Rd, C1, C0 

Returns the value from the DCC data read register into the 
destination register Rd.

Note
 The Thumb instruction set does not contain coprocessor instructions, so it is 
recommended that these are accessed using SWI instructions when in Thumb state.

5.10.2 Communications through the DCC

Messages can be sent and received through the DCC.

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check that the 
DCC data write register is free for use by finding out whether the W bit of the DCC 
control register is clear.

The processor reads the DCC control register to check the status of the W bit:

• If W bit is clear, the DCC data write register is clear.

• If the W bit is set, previously written data has not been read by the debugger. The 
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14. 
As the data transfer occurs from the processor to the DCC data write register, the W bit 
is set in the DCC control register. 

The debugger sees both the R and W bits when it polls the DCC control register through 
the JTAG interface. When the debugger sees that the W bit is set, it can read the comms 
data write register and scan the data out. The action of reading this data register clears 
the debug comms control register W bit. At this point the communications process can 
begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger polls the R bit of the debug comms 
control register: 

• If the R bit is LOW, the comms data read register is free, and data can be placed 
there for the processor to read. 
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• If the R bit is set, previously deposited data has not yet been collected, so the 
debugger must wait.

When the comms data read register is free, data is written there using the JTAG 
interface. The action of this write sets the R bit in the debug comms control register. 

The processor polls the debug comms control register. If the R bit is set, there is data 
that can be read using an MRC instruction to coprocessor 14. The action of this load 
clears the R bit in the debug comms control register. When the debugger polls this 
register and sees that the R bit is clear, the data has been taken, and the process can now 
be repeated.
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5.11 Scan chains and the JTAG interface

There are two JTAG-style scan chains within the ARM7TDMI-S processor. These allow 
debugging and EmbeddedICE-RT programming.

A JTAG-style Test Access Port (TAP) controller controls the scan chains. For more 
details of the JTAG specification, see IEEE Standard 1149.1 - 1990 Standard Test 
Access Port and Boundary-Scan Architecture.

5.11.1 Scan chain implementation

The two scan paths are referred to as scan chain 1 and scan chain 2. They are shown in 
Figure 5-7. Scan chain 0 is not implemented on the ARM7TDMI-S processor.

Figure 5-7 ARM7TDMI-S scan chain arrangements

Scan chain 1

Scan chain 1 provides serial access to the core data bus RDATA/WDATA and the 
DBGBREAK signal.

There are 33 bits in this scan chain, the order being (from serial data in to out): 

• data bus bits 0 through 31

• the DBGBREAK bit (the first to be shifted out).
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Scan chain 2

Scan chain 2 enables access to the EmbeddedICE-RT registers. See Test data registers 
on page 5-31 for details.

5.11.2 Controlling the JTAG interface

The JTAG interface is driven by the currently-loaded instruction in the instruction 
register (described in Instruction register on page 5-32). The loading of instructions is 
controlled by the Test Access Port (TAP) controller.

For more information about the TAP controller, see The TAP controller on page 5-26.
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5.12 The TAP controller

The TAP controller is a state machine that determines the state of the ARM7TDMI-S 
boundary-scan test signals DBGTDI and DBGTDO. Figure 5-8shows the state 
transitions that occur in the TAP controller.

Figure 5-8 Test access port controller state transitions

From IEEE Std 1149.1-1990. Copyright 2001 IEEE. All rights reserved.

Test-Logic Reset
0xF

Run-Test/Idle
0xC

Select-DR-Scan
0x7

Capture-DR
0x6

Capture-IR
0xE

Shift-DR
0x2

Shift-IR
0xA

Exit1-DR
0x1

Exit1-IR
0x9

Pause-DR
0x3

Pause-IR
0xB

Exit2-DR
0x0

Exit2-IR
0x8

Update-DR
0x5

Update-IR
0xD

Select-IR-Scan
0x4

tms=1

tms=0

tms=0

tms=1 tms=1 tms=1

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1tms=1

tms=0 tms=0

tms=1 tms=1

tms=1

tms=0

tms=1

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

tms=0tms=1

tms=0

tms=0 tms=0

tms=0
5-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B



Debugging Your System 
5.12.1 Resetting the TAP controller

To force the TAP controller into the correct state after power-up, you must apply a reset 
pulse to the DBGnTRST signal:

• When the boundary-scan interface is to be used, DBGnTRST must be driven 
LOW and then HIGH again. 

• When the boundary-scan interface is not to be used, you can tie the DBGnTRST 
input LOW.

Note
 A clock on CLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. This means that the boundary-scan cells do not intercept 
any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state and CLK is pulsed while 
enabled by DBGTCKEN, the contents of the ID register are clocked out of 
DBGTDO.
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5.13 Public JTAG instructions

Table 5-3 shows the public JTAG instructions.

In the following descriptions, the ARM7TDMI-S processor samples DBGTDI and 
DBGTMS on the rising edge of CLK with DBGTCKEN HIGH. The TAP controller 
states are shown in Figure 5-8 on page 5-26.

5.13.1 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between DBGTDI and 
DBGTDO:

• In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

• In the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
scan path select register.

• In the UPDATE-DR state, the scan register of the selected scan chain is connected 
between DBGTDI and DBGTDO, and remains connected until a subsequent 
SCAN_N instruction is issued.

• On reset, scan chain 0 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite 
length is specified.

5.13.2 INTEST (1100)

The INTEST instruction places the selected scan chain in test mode:

• The INTEST instruction connects the selected scan chain between DBGTDI and 
DBGTDO.

Table 5-3 Public instructions

Instruction Binary code

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

RESTART 0100
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• When the INTEST instruction is loaded into the instruction register, all the scan 
cells are placed in their test mode of operation.

• In the CAPTURE-DR state, the value of the data applied from the core logic to 
the output scan cells, and the value of the data applied from the system logic to 
the input scan cells is captured.

• In the SHIFT-DR state, the previously-captured test data is shifted out of the scan 
chain through the DBGTDO pin, while new test data is shifted in through the 
DBGTDI pin.

Single-step operation of the core is possible using the INTEST instruction.

5.13.3 IDCODE (1110)

The IDCODE instruction connects the device identification code register (or 
ID register) between DBGTDI and DBGTDO. The ID register is a 32-bit register that 
enables the manufacturer, part number, and version of a component to be read through 
the TAP. See ARM7TDMI-S device identification (ID) code register on page 5-31 for the 
details of the ID register format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells 
are placed in their normal (system) mode of operation:

• In the CAPTURE-DR state, the device identification code is captured by the ID 
register.

• In the SHIFT-DR state, the previously captured device identification code is 
shifted out of the ID register through the DBGTDO pin, while data is shifted into 
the ID register through the DBGTDI pin.

• In the UPDATE-DR state, the ID register is unaffected.

5.13.4 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between 
DBGTDI and DBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells 
assume their normal (system) mode of operation. The BYPASS instruction has no effect 
on the system pins:

• In the CAPTURE-DR state, a logic 0 is captured the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register through 
DBGTDI and shifted out on DBGTDO after a delay of one CLK cycle. The first 
bit to shift out is a zero. 
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• The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

5.13.5 RESTART (0100)

The RESTART instruction restarts the processor on exit from debug state. The 
RESTART instruction connects the bypass register between DBGTDI and DBGTDO. 
The TAP controller behaves as if the BYPASS instruction had been loaded. 

The processor exits debug state when the RUN-TEST/IDLE state is entered.

For more information, see Exit from debug state on page 5-42.
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5.14 Test data registers

The six test data registers that can connect between DBGTDI and DBGTDO are 
described in the following sections: 

• Bypass register

• ARM7TDMI-S device identification (ID) code register

• Instruction register on page 5-32

• Scan path select register on page 5-32

• Scan chain 1 on page 5-34

• Scan chain 2 on page 5-34.

In the following descriptions, data is shifted during every CLK cycle when 
DBGTCKEN enable is HIGH.

5.14.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path 
between DBGTDI and DBGTDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the 
instruction register, serial data is transferred from DBGTDI to 
DBGTDO in the SHIFT-DR state with a delay of one CLK cycle 
enabled by DBGTCKEN. There is no parallel output from the 
bypass register. A logic 0 is loaded from the parallel input of the 
bypass register in the CAPTURE-DR state.

5.14.2 ARM7TDMI-S device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable 
supplementary identification code is provided.

Length 32 bits. The format of the ID code register is as shown in 
Figure 5-9.

Figure 5-9 ID code register format

011112272831

Version Part number Manufacturer identity 1
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The default device identification code is 0x7f1f0f0f.

Operating mode When the IDCODE instruction is current, the ID register is 
selected as the serial path between DBGTDI and DBGTDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register 
from its parallel inputs during the CAPTURE-DR state.

5.14.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode In the SHIFT-IR state, the instruction register is selected as the 
serial path between DBGTDI, and DBGTDO.

During the CAPTURE-IR state, the binary value 0001 is loaded 
into this register. This value is shifted out during SHIFT-IR (least 
significant bit first), while a new instruction is shifted in (least 
significant bit first).

During the UPDATE-IR state, the value in the instruction register 
becomes the current instruction. 

On reset, IDCODE becomes the current instruction.

There is no parity bit.

5.14.4 Scan path select register

Purpose Changes the current active scan chain.

Length 4 bits.

Operating mode SCAN_N as the current instruction in the SHIFT-DR state selects 
the scan path select register as the serial path between DBGTDI, 
and DBGTDO.

During the CAPTURE-DR state, the value 1000 binary is loaded 
into this register. This value is loaded out during SHIFT-DR (least 
significant bit first), while a new value is loaded in (least 
significant bit first). During the UPDATE-DR state, the value in 
the register selects a scan chain to become the currently active 
scan chain. All additional instructions, such as INTEST, then 
apply to that scan chain.
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The currently-selected scan chain changes only when a SCAN_N 
instruction is executed, or when a reset occurs. On reset, scan 
chain 0 is selected as the active scan chain.

Table 5-4 shows the scan chain number allocation.

5.14.5 Scan chains 1 and 2

The scan chains allow serial access to the core logic, and to the EmbeddedICE-RT 
hardware for programming purposes. Each scan chain cell is simple and comprises a 
serial register and a multiplexor. 

The scan cells perform three basic functions:

• capture

• shift

• update.

For input cells, the capture stage involves copying the value of the system input to the 
core into the serial register. During shift, this value is output serially. The value applied 
to the core from an input cell is either the system input, or the contents of the parallel 
register (loads from the shift register after UPDATE-DR state) under multiplexor 
control.

For output cells, capture involves placing the value of a core output into the serial 
register. During shift, this value is serially output as before. The value applied to the 
system from an output cell is either the core output, or the contents of the serial register.

Table 5-4 Scan chain number allocation

Scan chain number Function

0 Reserveda

a. When selected, all reserved scan chains scan 
out zeros.

1 Debug

2 EmbeddedICE-RT 
programming

3 Reserveda

4 Reserveda

8 Reserveda
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All the control signals for the scan cells are generated internally by the TAP controller. 
The action of the TAP controller is determined by current instruction and the state of the 
TAP state machine.

Scan chain 1

Purpose Scan chain 1 is used for communication between the debugger, 
and the ARM7TDMI-S core. It is used to read and write data, and 
to scan instructions into the pipeline. The SCAN_N TAP 
instruction can be used to select scan chain 1.

Length 33 bits, 32 bits a for the data value and 1 bit for the scan cell on 
the DBGBREAK core input.

Scan chain order From DBGTDI to DBGTDO, the ARM7TDMI-S processor data 
bits, bits 0 to 31, then the 33rd bit, the DBGBREAK scan cell.

Scan chain 1, bit 33 serves three purposes:

• Under normal INTEST test conditions, it enables a known value to be scanned 
into the DBGBREAK input. 

• While debugging, the value placed in the 33rd bit determines whether the 
ARM7TDMI-S core synchronizes back to system speed before executing the 
instruction. See System speed access on page 5-46 for more details.

• After the ARM7TDMI-S core has entered debug state, the value of the 33rd bit 
on the first occasion that it is captured, and scanned out tells the debugger whether 
the core entered debug state from a breakpoint (bit 33 LOW), or from a 
watchpoint (bit 33 HIGH).

Scan chain 2

Purpose Scan chain 2 provides access to the EmbeddedICE-RT registers. 
To do this, scan chain 2 must be selected using the SCAN_N TAP 
controller instruction, and then the TAP controller must be put in 
INTEST mode.

Length 38 bits. 

Scan chain order From DBGTDI to DBGTDO, the read/write bit, the register 
address bits, bits 4 to 0, then the data bits, bits 0 to 31.

No action occurs during CAPTURE-DR. 

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify 
the address of the EmbeddedICE-RT register to be accessed. 
5-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234B



Debugging Your System 
During UPDATE-DR, this register is either read or written depending on the value of 
bit 37 (0 = read, 1 = write). See Figure 5-12 on page 5-49 for more details.
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5.15 Scan timing

Figure 5-10 provides general scan timing information.

Figure 5-10 Scan timing

5.15.1 Scan chain 1 cells

The ARM7TDMI-S processor provides data for scan chain 1 cells as shown in 
Table 5-5.
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Table 5-5 Scan chain 1 cells

Number Signal Type

1 DATA[0] Input/output

2 DATA[1] Input/output

3 DATA[2] Input/output

4 DATA[3] Input/output

5 DATA[4] Input/output

6 DATA[5] Input/output

7 DATA[6] Input/output
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8 DATA[7] Input/output

9 DATA[8] Input/output

10 DATA[9] Input/output

11 DATA[10] Input/output

12 DATA[11] Input/output

13 DATA[12] Input/output

14 DATA[13] Input/output

15 DATA[14] Input/output

16 DATA[15] Input/output

17 DATA[16] Input/output

18 DATA[17] Input/output

19 DATA[18] Input/output

20 DATA[19] Input/output

21 DATA[20] Input/output

22 DATA[21] Input/output

23 DATA[22] Input/output

24 DATA[23] Input/output

25 DATA[24] Input/output

26 DATA[25] Input/output

27 DATA[26] Input/output

28 DATA[27] Input/output

29 DATA[28] Input/output

30 DATA[29] Input/output

Table 5-5 Scan chain 1 cells (continued)

Number Signal Type
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31 DATA[30] Input/output

32 DATA[31] Input/output

33 DBGBREAK Input

Table 5-5 Scan chain 1 cells (continued)

Number Signal Type
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5.16 Examining the core and the system in debug state

When the ARM7TDMI-S processor is in debug state, you can examine the core and 
system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug state from Thumb state or ARM state, by 
examining bit 4 of the EmbeddedICE-RT debug status register, as follows:

Bit 4 HIGH The core has entered debug from Thumb state.

Bit 4 LOW The core has entered debug from ARM state.

5.16.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of 
action is for the debugger to force the core back into ARM state. The debugger can then 
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb 
instructions on the core:

STR R0, [R0]; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R0]; Now save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP
MOV R8, R8 ; NOP

Note
 Because all Thumb instructions are only 16 bits long, you can repeat the instruction 
when shifting scan chain 1. For example, the encoding for BX R0 is 0x4700, so when 
0x47004700 shifts into scan chain 1, the debugger does not have to keep track of the half 
of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions below to determine the state of the 
processor.

With the processor in the ARM state, the first instruction to execute is typically:

STM R0, {R0-R15}

This instruction causes the contents of the registers to appear on the data bus. You can 
then sample and shift out these values.
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Note
 The use of r0 as the base register for the STM is only for illustration, any register can 
be used.

After you have determined the values in the current bank of registers, you might wish 
to access the banked registers. To do this, you must change mode. Normally, a mode 
change can occur only if the core is already in a privileged mode. However, while in 
debug state, a mode change from one mode into any other mode can occur. 

The debugger must restore the original mode before exiting debug state. For example, 
if the debugger was requested to return the state of the User mode registers, and FIQ 
mode registers, and debug state was entered in Supervisor mode, the instruction 
sequence might be:

STM R0, {R0-R15}; Save current registers
MRS R0, CPSR
STR R0, R0; Save CPSR to determine current mode
BIC R0, 0x1F; Clear mode bits
ORR R0, 0x10; Select user mode
MSR CPSR, R0; Enter USER mode
STM R0, {R13,R14}; Save register not previously visible
ORR R0, 0x01; Select FIQ mode
MSR CPSR, R0; Enter FIQ mode
STM R0, {R8-R14}; Save banked FIQ registers

All these instructions execute at debug speed. Debug speed is much slower than system 
speed. This is because between each core clock, 33 clocks occur in order to shift in an 
instruction, or shift out data. Executing instructions this slowly is acceptable for 
accessing the core state because the ARM7TDMI-S processor is fully static. However, 
you cannot use this method for determining the state of the rest of the system.

While in debug state, only the following instructions can be scanned into the instruction 
pipeline for execution:

• all data processing operations

• all load, store, load multiple, and store multiple instructions

• MSR and MRS.

5.16.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access 
system state must occur with the clock qualified by CLKEN. To perform a memory 
access, CLKEN must be used to force the ARM7TDMI-S processor to run in normal 
operating mode. This is controlled by bit 33 of scan chain 1.
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An instruction placed in scan chain 1 with bit 33, the DBGBREAK bit, LOW executes 
at debug speed. To execute an instruction at system speed, the instruction prior to it must 
be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has scanned into the data bus and clocked into the 
pipeline, the RESTART instruction must be loaded into the TAP controller. RESTART 
causes the ARM7TDMI-S processor to:

1. Switch automatically to CLKEN control.

2. Execute the instruction at system speed.

3. Reenter debug state.

When the instruction has completed, DBGACK is HIGH and the core reverts to 
DBGTCKEN control. It is now possible to select INTEST in the TAP controller and 
resume debugging.

The debugger must look at both DBGACK and TRANS[1:0] to determine whether a 
system speed instruction has completed. To access memory, the ARM7TDMI-S core 
drives both bits of TRANS[1:0] LOW after it has synchronized back to system speed. 
This transition is used by the memory controller to arbitrate whether the ARM7TDMI-S 
core can have the bus in the next cycle. If the bus is not available, the ARM7TDMI-S 
processor might have its clock stalled indefinitely. The only way to determine whether 
the memory access has completed is to examine the state of both TRANS[1:0] and 
DBGACK. When both are HIGH, the access has completed.

The debugger usually uses EmbeddedICE-RT to control debugging, and so the state of 
TRANS[1:0] and DBGACK can be determined by reading the EmbeddedICE-RT 
status register. See Debug status register on page 5-60 for more details.

The state of the system memory can be fed back to the debug host by using system speed 
load multiples and debug speed store multiples.

There are restrictions on which instructions can have bit 33 set. The valid instructions 
on which to set this bit are:

• loads

• stores

• load multiple

• store multiple.

See also Exit from debug state on page 5-42. 

When the ARM7TDMI-S processor returns to debug state after a system speed access, 
bit 33 of scan chain 1 is set HIGH. The state of bit 33 gives the debugger information 
about why the core entered debug state the first time this scan chain is read.
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5.17 Exit from debug state

Leaving debug state involves:

• restoring the ARM7TDMI-S processor internal state

• causing the execution of a branch to the next instruction

• returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline. 
See The program counter during debug on page 5-44 for details on calculating the 
branch.

Bit 33 of scan chain 1 forces the ARM7TDMI-S processor to resynchronize back to 
CLKEN, clock enable. The penultimate instruction of the debug sequence is scanned 
in with bit 33 set HIGH. The final instruction of the debug sequence is the branch, which 
is scanned in with bit 33 LOW. The core is then clocked to load the branch instruction 
into the pipeline, and the RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back 
to System mode. The ARM7TDMI-S processor then resumes normal operation, 
fetching instructions from memory. This delay, until the state machine is in the 
RUN-TEST/IDLE state, enables conditions to be set up in other devices in a 
multiprocessor system without taking immediate effect. When the state machine enters 
the RUN-TEST/IDLE state, all the processors resume operation simultaneously.

DBGACK informs the rest of the system when the ARM7TDMI-S processor is in 
debug state. This information can be used to inhibit peripherals, such as watchdog 
timers, that have real-time characteristics. DBGACK can also mask out memory 
accesses caused by the debugging process. 

For example, when the ARM7TDMI-S processor enters debug state after a breakpoint, 
the instruction pipeline contains the breakpointed instruction, and two other instructions 
that have been prefetched. On entry to debug state the pipeline is flushed. On exit from 
debug state the pipeline must therefore revert to its previous state. 

Because of the debugging process, more memory accesses occur than are expected 
normally. DBGACK can inhibit any system peripheral that might be sensitive to the 
number of memory accesses. For example, a peripheral that counts the number of 
memory cycles must return the same answer after a program has been run with and 
without debugging. Figure 5-11 on page 5-43 shows the behavior of the ARM7TDMI-S 
processor on exit from the debug state.
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Figure 5-11 Debug exit sequence

Figure 5-3 on page 5-8 shows that the final memory access occurs in the cycle after 
DBGACK goes HIGH. This is the point at which the cycle counter must be disabled. 
Figure 5-11 shows that the first memory access that the cycle counter has not previously 
seen occurs in the cycle after DBGACK goes LOW. This is the point at which to 
re-enable the counter.

Note
 When a system speed access from debug state occurs, the ARM7TDMI-S processor 
temporarily drops out of debug state, so DBGACK can go LOW. If there are peripherals 
that are sensitive to the number of memory accesses, they must be led to believe that the 
ARM7TDMI-S processor is still in debug state. You can do this by programming the 
EmbeddedICE-RT control register to force the value on DBGACK to be HIGH. See 
Debug status register on page 5-60 for more details.
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5.18 The program counter during debug

The debugger must keep track of what happens to the PC, so that the ARM7TDMI-S 
core can be forced to branch back to the place at which program flow was interrupted 
by debug. Program flow can be interrupted by any of the following:

• Breakpoints

• Watchpoints

• Watchpoint with another exception on page 5-45

• Debug request on page 5-45

• System speed access on page 5-46.

5.18.1 Breakpoints

Entry into debug state from a breakpoint advances the PC by four addresses or 16 bytes. 
Each instruction executed in debug state advances the PC by one address or 4 bytes. 

The usual way to exit from debug state after a breakpoint is to remove the breakpoint 
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI-S processor entered debug state from a breakpoint set 
on a given address, and two debug speed instructions were executed, a branch of –7 
addresses must occur (4 for debug entry, plus 2 for the instructions, plus 1 for the final 
branch).

The following sequence shows the data scanned into scan chain 1, most significant bit 
first. The value of the first digit goes to the DBGBREAK bit, and then the instruction 
data into the remainder of scan chain 1:

0 E0802000; ADD R2, R0, R0
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B -7 (2’s complement)

After the ARM7TDMI-S processor enters debug state, it must execute a minimum of 
two instructions before the branch, although these can both be NOPs (MOV R0, R0). For 
small branches, you can replace the final branch with a subtract, with the PC as the 
destination (SUB PC, PC, #28 in the above example).

5.18.2 Watchpoints

The return to program execution after entry to debug state from a watchpoint is made in 
the same way as the procedure described in Breakpoints.

Debug entry adds four addresses to the PC, and every instruction adds one address. The 
difference from breakpoint is that the instruction that caused the watchpoint has 
executed, and the program must return to the next instruction.
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5.18.3 Watchpoint with another exception

If a watchpointed access simultaneously causes a Data Abort, the ARM7TDMI-S 
processor enters debug state in abort mode. Entry into debug is held off until the core 
changes into abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a 
watchpointed memory access. The ARM7TDMI-S processor enters debug state in the 
mode of the exception. The debugger must check to see whether an exception has 
occurred by examining the current and previous mode (in the CPSR, and SPSR), and 
the value of the PC. When an exception has taken place, you are given the choice of 
servicing the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented 
by three instructions rather than four, and this must be considered in return branch 
calculation when exiting debug state. For example, suppose that an abort occurs on a 
watchpointed access, and ten instructions have been executed to determine this 
eventuality. You can use the following sequence to return to program execution.

0 E1A00000; MOV R0, R0
1 E1A00000; MOV R0, R0
0 EAFFFFF0; B -16

This code forces a branch back to the abort vector, causing the instruction at that 
location to be refetched and executed.

Note
 After the abort service routine, the instruction that caused the abort, and watchpoint is 
refetched and executed. This triggers the watchpoint again and the ARM7TDMI-S 
processor reenters debug state.

5.18.4 Debug request

Entry into debug state using a debug request is similar to a breakpoint. However, unlike 
a breakpoint, the last instruction has completed execution and so must not be refetched 
on exit from debug state. Therefore, you can assume that entry to debug state adds three 
addresses to the PC and every instruction executed in debug state adds one address.

For example, suppose you have invoked a debug request, and decide to return to 
program execution straight away. You could use the following sequence:

0 E1A00000; MOV R0, R0
1 E1A00000; MOV R0, R0
0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.
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5.18.5 System speed access

When a system speed access is performed during debug state, the value of the PC 
increases by three addresses. System speed instructions access the memory system and 
so it is possible for aborts to take place. If an abort occurs during a system speed 
memory access, the ARM7TDMI-S processor enters abort mode before returning to 
debug state.

This scenario is similar to an aborted watchpoint, but the problem is much harder to fix 
because the abort was not caused by an instruction in the main program, and so the PC 
does not point to the instruction that caused the abort. An abort handler usually looks at 
the PC to determine the instruction that caused the abort and also the abort address. In 
this case, the value of the PC is invalid, but because the debugger can determine which 
location was being accessed, the debugger can be written to help the abort handler fix 
the memory system.

5.18.6 Summary of return address calculations

The calculation of the branch return address is as follows:

• for normal breakpoint and watchpoint, the branch is:

- (4 + N + 3S)

• for entry through debug request (DBGRQ) or watchpoint with exception, the 
branch is:

- (3 + N + 3S)

where N is the number of debug speed instructions executed (including the final branch) 
and S is the number of system speed instructions executed.
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5.19 Priorities and exceptions

When a breakpoint, or a debug request occurs, the normal flow of the program is 
interrupted. Therefore, debug can be treated as another type of exception. The 
interaction of the debugger with other exceptions is described in The program counter 
during debug on page 5-44. This section covers the following priorities:

• Breakpoint with Prefetch Abort

• Interrupts

• Data Aborts.

5.19.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken, and 
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an 
access is made to a virtual address that does not physically exist, and the returned data 
is therefore invalid. In such a case, the normal action of the operating system is to swap 
in the page of memory, and to return to the previously-invalid address. This time, when 
the instruction is fetched, and providing the breakpoint is activated (it can be 
data-dependent), the ARM7TDMI-S processor enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

5.19.2 Interrupts

When the ARM7TDMI-S processor enters debug state, interrupts are automatically 
disabled.

If an interrupt is pending during the instruction prior to entering debug state, the 
ARM7TDMI-S processor enters debug state in the mode of the interrupt. On entry to 
debug state, the debugger cannot assume that the ARM7TDMI-S processor is in the 
mode expected by the program of the user. The ARM7TDMI-S core must check the PC, 
the CPSR, and the SPSR to determine accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM7TDMI-S 
processor does remember that an interrupt has occurred.

5.19.3 Data Aborts

When a Data Abort occurs on a watchpointed access, the ARM7TDMI-S processor 
enters debug state in abort mode. The watchpoint, therefore, has higher priority than the 
abort, but the ARM7TDMI-S processor remembers that the abort happened.
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5.20 Watchpoint unit registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three 
pairs of registers:

• address value and address mask

• data value and data mask

• control value and control mask.

Each register is independently programmable and has a unique address. The function 
and mapping of the resisters is shown in Table 5-1 on page 5-17.

5.20.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedICE-RT scan 
chain (scan chain 2). The scan chain is a 38-bit shift register comprising:

• a 32-bit data field

• a 5-bit address field

• a read/write bit.

This setup is shown in Figure 5-12 on page 5-49.
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Figure 5-12 EmbeddedICE-RT block diagram

The data to be written is shifted into the 32-bit data field, the address of the register is 
shifted into the 5-bit address field, and the read/write bit is set.
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A register is read by shifting its address into the address field, and by shifting a 0 into 
the read/write bit. The 32-bit data field is ignored.

The register addresses are shown in Table 5-1 on page 5-17.

Note
 A read or write actually takes place when the TAP controller enters the UPDATE-DR 
state.

5.20.2 Using the data, and address mask registers

For each value register in a register pair, there is a mask register of the same format. 
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in 
the value register disregarded in the comparison.

For example, when a watchpoint is required on a particular memory location, but the 
data value is irrelevant, the data mask register can be programmed to 0xffffffff (all bits 
set to 1) to ignore the entire data bus field.

Note
 The mask is an XNOR mask rather than a conventional AND mask. When a mask bit is 
set to 1, the comparator for that bit position always matches, irrespective of the value 
register or the input value.

Setting the mask bit to 0 means that the comparator matches only if the input value 
matches the value programmed into the value register.

5.20.3 The control registers

The control value and control mask registers are mapped identically in the lower eight 
bits, as shown in Figure 5-13.

Figure 5-13 Watchpoint control value, and mask format

Bit 8 of the control value register is the ENABLE bit and cannot be masked.

ENABLE CHAINRANGE DBGEXT PROT[0]PROT[1] SIZE[1] WRITESIZE[0]

8 67 5 34 2 01
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The bits have the following functions:

WRITE  Compares against the write signal from the core in order to detect 
the direction of bus activity. WRITE is 0 for a read cycle, and 1 
for a write cycle.

SIZE[1:0]  Compares against the SIZE[1:0] signal from the core in order to 
detect the size of bus activity.

The encoding is shown in Table 5-6.

PROT[0] Is used to detect whether the current cycle is an instruction fetch 
(PROT[0] = 0), or a data access (PROT[0] = 1).

PROT[1] Is used to compare against the not translate signal from the core in 
order to distinguish between user mode (PROT[1] = 0), and 
non-User mode (PROT[1] = 1) accesses.

DBGEXT[1:0] Is an external input to EmbeddedICE-RT logic that enables the 
watchpoint to be dependent on some external condition. 

The DBGEXT input for Watchpoint 0 is labeled DBGEXT[0].

The DBGEXT input for Watchpoint 1 is labeled DBGEXT[1].

CHAIN Can be connected to the chain output of another watchpoint in 
order to implement, for example, debugger requests of the form 
breakpoint on address YYY only when in process XXX.

In the ARM7TDMI-S processor EmbeddedICE-RT macrocell, the 
CHAINOUT output of Watchpoint 1 is connected to the CHAIN 
input of Watchpoint 0. 

The CHAINOUT output is derived from a register. The 
address/control field comparator drives the write enable for the 
register. The input to the register is the value of the data field 
comparator.

Table 5-6 SIZE[1:0] signal encoding

bit 1 bit 0 Data size

0 0 Byte

0 1 Halfword

1 0 Word

1 1 (Reserved)
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The CHAINOUT register is cleared when the control value 
register is written, or when DBGnTRST is LOW.

RANGE In the ARM7TDMI-S processor EmbeddedICE-RT logic, the 
RANGEOUT output of Watchpoint 1 is connected to the 
RANGE input of Watchpoint 0. Connection enables the two 
watchpoints to be coupled for detecting conditions that occur 
simultaneously, such as for range checking.

ENABLE When a watchpoint match occurs, the internal DBGBREAK 
signal is asserted only when the ENABLE bit is set. This bit exists 
only in the value register. It cannot be masked.

For each of the bits [7:0] in the control value register, there is a corresponding bit in the 
control mask register. These bits remove the dependency on particular signals.
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5.21 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

• Hardware breakpoints typically monitor the address value and can be set in any 
code, even in code that is in ROM or code that is self-modifying. See Hardware 
breakpoints for more details.

• Software breakpoints monitor a particular bit pattern being fetched from any 
address. One EmbeddedICE-RT watchpoint can therefore be used to support any 
number of software breakpoints. See Software breakpoints on page 5-54 for more 
details.

Software breakpoints can normally be set only in RAM because a special bit 
pattern chosen to cause a software breakpoint has to replace the instruction.

5.21.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints (on instruction fetches):

1. Program its address value register with the address of the instruction to be 
breakpointed.

2. For an ARM-state breakpoint, program bits [1:0] of the address mask register to 
11. For a breakpoint in Thumb state, program bits [1:0] of the address mask 
register to 01.

3. Program the data value register only when you require a data-dependent 
breakpoint, that is only when you have to match the actual instruction code 
fetched as well as the address. If the data value is not required, program the data 
mask register to 0xffffffff (all bits to 1). Otherwise program it to 0x00000000.

4. Program the control value register with PROT[0] = 0.

5. Program the control mask register with PROT[0]= 0.

6. When you have to make the distinction between User and non-User mode 
instruction fetches, program the PROT[1] value and mask bits appropriately.

7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

8. Program the mask bits for all unused control values to 1.
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5.21.2 Software breakpoints

To make a watchpoint unit cause software breakpoints (on instruction fetches of a 
particular bit pattern):

1. Program its address mask register to 0xffffffff (all bits set to 1) so that the 
address is disregarded.

2. Program the data value register with the particular bit pattern that has been chosen 
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern 
in both halves of the data value register. For example, if the bit pattern is 0xdfff, 
program 0xdfffdfff. When a 16-bit instruction is fetched, EmbeddedICE-RT 
compares only the valid half of the data bus against the contents of the data value 
register. In this way, you can use a single watchpoint register to catch software 
breakpoints on both the upper and lower halves of the data bus.

3. Program the data mask register to 0x00000000.

4. Program the control value register with PROT[0] = 0.

5. Program the control mask register with PROT[0] = 0 and all other bits to 1.

6. If you want to make the distinction between User and non-User mode instruction 
fetches, program the PROT[1] bit in the control value, and control mask registers 
accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

Note
 You do not have to program the address value register.

Setting the breakpoint

To set the software breakpoint:

1. Read the instruction at the desired address and store it.

2. Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
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5.22 Programming watchpoints

To make a watchpoint unit cause watchpoints (on data accesses):

1. Program its address value register with the address of the data access to be 
watchpointed.

2. Program the address mask register to 0x00000000.

3. Program the data value register only if you require a data-dependent watchpoint, 
that is, only if you have to match the actual data value read or written as well as 
the address. If the data value is irrelevant, program the data mask register to 
0xffffffff (all bits set to 1). Otherwise program the data mask register to 
0x00000000.

4. Program the control value register with PROT[0]= 1, WRITE= 0 for a read, or 
WRITE = 1 for a write, SIZE[1:0] with the value corresponding to the 
appropriate data size.

5. Program the control mask register with PROT[0] = 0, WRITE = 0, SIZE[1:0]= 
0, and all other bits to 1. You can set WRITE, or SIZE[1:0]to 1 when both reads 
and writes, or data size accesses are to be watchpointed respectively.

6. If you have to make the distinction between User and non-User mode data 
accesses, program the PROT[1] bit in the control value and control mask registers 
accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

Note
 The above are examples of how to program the watchpoint register to generate 
breakpoints and watchpoints. Many other ways of programming the registers are 
possible. For example, you can provide simple range breakpoints by setting one or more 
of the address mask bits.
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5.23 Abort status register

Only bit 0 of this 32 bit read/write register is used. It determines whether an abort 
exception entry was caused by a breakpoint, a watchpoint, or a real abort. The format is 
shown in Figure 5-14.

Figure 5-14 Debug abort status register

This bit is set when the ARM7TDMI-S core takes a Prefetch or Data Abort as a result 
of a breakpoint or watchpoint. If, on a particular instruction or data fetch, both the 
Debug Abort and the external Abort signal are asserted, the external Abort takes 
priority, and the DbgAbt bit is not set. Once set, DbgAbt remains set until reset by the 
user. The register is accessed by MRC and MCR instructions. 

DbgAbt

0

SBZ/RAZ

31:1
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5.24 Debug control register

The debug control register is six bits wide. Writes to the debug control register occur 
when a watchpoint unit register is written. Reads of the debug control register occur 
when a watchpoint unit register is read. See Watchpoint unit registers on page 5-48 for 
more information.

Figure 5-15 shows the function of each bit in the debug control register.

Figure 5-15 Debug control register format

The debug control register bit assignments are shown in Table 5-7.

INTDIS DBGRQ DBGACK

2 1 0

EmbeddedICE-RT

disable

Monitor mode

enable
SBZ/RAZ

5 4 3

Table 5-7 Debug control register bit assignments

Bit Function

5 Used to disable the EmbeddedICE-RT comparator outputs while the watchpoint and 
breakpoint registers are being programmed. This bit can be read and written through 
JTAG.

Set bit 5 when:

• programming breakpoint or watchpoint registers

• changing bit 4 of the debug control register.

You must clear bit 5 after you have made the changes, to re-enable the 
EmbeddedICE-RT logic and make the new breakpoints and watchpoints operational.

4 Used to determine the behavior of the core when breakpoints or watchpoints are 
reached:

• If clear, the core enters debug state when a breakpoint or watchpoint is reached.

• If set, the core performs an abort exception when a breakpoint or watchpoint is 
reached.

This bit can be read and written from JTAG.

3 This bit must be clear.
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5.24.1 Disabling interrupts

IRQs and FIQs are disabled under the following conditions:

• during debugging (DBGACK HIGH)

• when the INTDIS bit is HIGH. 

The IFEN signal is driven as shown in Table 5-8.

5.24.2 Forcing DBGRQ

Figure 5-17 on page 5-61 shows that the value stored in bit 1 of the debug control 
register is synchronized and then ORed with the external DBGRQ before being applied 
to the processor. The output of this OR gate is the signal DBGRQI which is brought out 
externally from the macrocell.

The synchronization between debug control register bit 1 and DBGRQI assists in 
multiprocessor environments. The synchronization latch only opens when the TAP 
controller state machine is in the RUN-TEST-IDLE state. This enables an enter-debug 
condition to be set up in all the processors in the system while they are still running. 
When the condition is set up in all the processors, it can be applied to them 
simultaneously by entering the RUN-TEST-IDLE state.

2 Used to disable interrupts:

• If set, the interrupt enable signal of the core (IFEN) is forced LOW. The IFEN 
signal is driven as shown in Table 5-8.

• If clear, interrupts are enabled.

1 Used to force the value on DBGRQ.

0 Used to force the value on DBGACK.

Table 5-7 Debug control register bit assignments  (continued)

Bit Function

Table 5-8 Interrupt signal control

DBGACK INTDIS IFEN Interrupts

0 0 1 Permitted

1 x 0 Inhibited

x 1 0 Inhibited
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5.24.3 Forcing DBGACK

Figure 5-17 on page 5-61 shows that the value of the internal signal DBGACKI from 
the core is ORed with the value held in bit 0 of the debug control register, to generate 
the external value of DBGACK seen at the periphery of the ARM7TDMI-S core. This 
enables the debug system to signal to the rest of the system that the core is still being 
debugged even when system-speed accesses are being performed (when the internal 
DBGACK signal from the core is LOW).
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5.25 Debug status register

The debug status register is 5 bits wide. If it is accessed for a write (with the read/write 
bit set), the status bits are written. If it is accessed for a read (with the read/write bit 
clear), the status bits are read. The format of the debug status register is shown in 
Figure 5-16.

Figure 5-16 Debug status register format

The function of each bit in this register is as follows:

Bit 4 Enables TBIT to be read. This enables the debugger to determine 
the processor state and therefore which instructions to execute.

Bit 3  Enables the state of the TRANS[1] signal from the core to be read. 
This enables the debugger to determine whether a memory access 
from the debug state has completed.

Bit 2 Enables the state of the core interrupt enable signal (IFEN) to be 
read. 

Bits [1:0] Enable the values on the synchronized versions of DBGRQ and 
DBGACK to be read. 

The structure of the debug control and status registers is shown in Figure 5-17 on 
page 5-61.
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Figure 5-17 Debug control and status register structure
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5.26 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE 
inputs. The use of CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 
has previously matched. The use of RANGE enables simple range checking to be 
performed by combining the outputs of both watchpoints.

5.26.1 Breakpoint and watchpoint coupling example 

Let:

Av[31:0] Be the value in the address value register

Am[31:0] Be the value in the address mask register

A[31:0] Be the address bus from the ARM7TDMI-S processor

Dv[31:0] Be the value in the data value register

Dm[31:0] Be the value in the data mask register

D[31:0] Be the data bus from the ARM7TDMI-S processor

Cv[8:0] Be the value in the control value register

Cm[7:0] Be the value in the control mask register

C[9:0] Be the combined control bus from the ARM7TDMI-S core, other 
watchpoint registers, and the DBGEXT signal.

CHAINOUT signal

The CHAINOUT signal is derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == 0xFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to 
Watchpoint 0. This CHAIN input enables you to use quite complicated configurations 
of breakpoints and watchpoints.

Note
 There is no CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.

Take, for example, the request by a debugger to breakpoint on the instruction at location 
YYY when running process XXX in a multiprocess system. If the current process ID is 
stored in memory, you can implement the above function with a watchpoint and 
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breakpoint chained together. The watchpoint address points to a known memory 
location containing the current process ID, the watchpoint data points to the required 
process ID and the ENABLE bit is cleared.

The address comparator output of the watchpoint is used to drive the write enable for 
the CHAINOUT latch. The input to the latch is the output of the data comparator from 
the same watchpoint. The output of the latch drives the CHAIN input of the breakpoint 
comparator. The address YYY is stored in the breakpoint register, and when the 
CHAIN input is asserted, the breakpoint address matches and the breakpoint triggers 
correctly.

5.26.2 DBGRNG signal

The DBGRNG signal is derived as follows:

DBGRNG = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}) == 0xFFFFFFFFF) AND 
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR 
Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The DBGRNG output of watchpoint register 1 provides the RANGE input to 
watchpoint register 0. This RANGE input enables you to couple two breakpoints 
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if a breakpoint is to 
occur when the address is in the first 256 bytes of memory, but not in the first 32 bytes, 
program the watchpoint registers as follows:

For Watchpoint 1: 

1. Program Watchpoint 1 with an address value of 0x00000000 and an address mask 
of 0x0000001f. 

2. Clear the ENABLE bit. 

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH but 
does not trigger the breakpoint.

For Watchpoint 0:

1. Program Watchpoint 0 with an address value of 0x00000000, and an address mask 
of 0x000000ff. 

2. Set the ENABLE bit. 

3. Program the RANGE bit to match a 0. 

4. Program all other Watchpoint 0 registers as normal for a breakpoint. 
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If Watchpoint 0 matches but Watchpoint 1 does not (that is the RANGE input to 
Watchpoint 0 is 0), the breakpoint is triggered.
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5.27 EmbeddedICE-RT timing

EmbeddedICE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the rising 
edge of CLK.

See Chapter 8 AC Parameters for details of the required setup and hold times for these 
signals.
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Chapter 6 
ETM Interface

This chapter describes the ETM interface that is provided on the ARM7TDMI-S 
processor. It contains the following sections:

• About the ETM interface on page 6-2

• Enabling and disabling the ETM7 interface on page 6-3

• ETM7 to ARM7TDMI-S (Rev 4) connections on page 6-4

• Clocks and resets on page 6-6

• Debug request wiring on page 6-7.
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6.1 About the ETM interface

You can connect an external Embedded Trace Macrocell (ETM) to the ARM7TDMI-S 
processor, so that you can perform real-time tracing of the code that the processor is 
executing. 

Note
 If you have more than one ARM processor in your system, each processor must have its 
own dedicated ETM.

In general, little or no glue logic is required to connect the ETM7 to the ARM7TDMI-S 
(Rev 4) processor. You program the ETM through a JTAG interface. The interface is an 
extension of the ARM TAP controller, and is assigned scan chain 6. 

Note
 See the ETM7 (Rev 1) Technical Reference Manual for detailed information about 
integrating an ETM7 with an ARM7TDMI-S processor.
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6.2 Enabling and disabling the ETM7 interface

Under the control of the ARM debug tools, the ETM7 PWRDOWN output is used to 
enable and disable the ETM. When PWRDOWN is HIGH, this indicates that the ETM 
is not currently enabled, so you can stop the CLK input and hold the other ETM signals 
stable. This enables you to reduce power consumption when you are not performing 
tracing. 

When a TAP reset (DBGnTRST) occurs, PWRDOWN is forced HIGH until the ETM7 
control register has been programmed (see the Embedded Trace Macrocell 
Specification for details of this register). 

PWRDOWN is automatically cleared at the start of a debug session.
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6.3 ETM7 to ARM7TDMI-S (Rev 4) connections

The ETM7 interface port names are a mixture of those from the ARM7TDMI and the 
ARM7TDMI-S macrocells. Table 6-1 shows the connections that you must make 
between the ARM7TDMI-S processor and ETM7.

Table 6-1 ETM7 and ARM7TDMI-S (Rev 4) pin connections

ETM7 signal name
ARM7TDMI-S (Rev 4) 
signal name

A[31:0] ADDR[31:0]

ABORT ABORT

ARMTDO DBGTDO

BIGEND CFGBIGEND

CLKa CLKa

CLKEN CLKEN

CPA CPA

CPB CPB

DBGACK DBGACK

DBGRQb DBGRQb

nMREQ CPnMREQ

SEQ CPSEQ

MAS[1:0] SIZE[1:0]

nCPI CPnI

nEXEC DBGnEXEC

nOPC CPnOPC

nRESET nRESET

nRW WRITE

nTRSTa DBGnTRSTa

PROCID[31:0]c -

PROCIDWRc -
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RANGEOUT[0] DBGRNG[0]

RANGEOUT[1] DBGRNG[1]

RDATA[31:0] RDATA[31:0]

TBIT CPTBIT

TCKa CLKa

TCKEN DBGTCKEN

TDI DBGTDI

TDO DBGTDO

TMS DBGTMS

WDATA[31:0] WDATA[31:0]

INSTRVALID DBGINSTRVALID

a. See Clocks and resets on page 6-6.
b. See Debug request wiring on page 6-7.
c. The ARM7TDMI-S processor does not provide 

the PROCID[31:0] or PROCIDWR signals. You 
must tie these ETM inputs LOW.

Table 6-1 ETM7 and ARM7TDMI-S (Rev 4) pin connections  (continued)

ETM7 signal name
ARM7TDMI-S (Rev 4) 
signal name
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6.4 Clocks and resets

The ARM7TDMI-S (Rev 4) processor uses a single clock, CLK, as both the main 
system clock and the JTAG clock. You must connect the processor clock to both CLK 
and TCK on the ETM. You can then use TCKEN to control the JTAG interface.

To trace through a warm reset of the ARM7TDMI-S processor, use the TAP reset 
(connect nTRST to DBGnTRST) to reset the ETM7 state. 

For more information about ETM7 clocks and resets, see the ETM7 Technical Reference 
Manual.
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6.5 Debug request wiring

It is recommended that you connect together the DBGRQ output of the ETM7 to the 
DBGRQ input of the ARM7TDMI-S processor. If this input is already in use, you can 
OR the DBGRQ inputs together. See the ETM7 Technical Reference Manual for more 
details.
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Chapter 7 
Instruction Cycle Timings

This chapter gives the ARM7TDMI-S processor instruction cycle timings. It contains 
the following sections:

• About the instruction cycle timings on page 7-3

• Instruction cycle count summary on page 7-5

• Branch and ARM branch with link on page 7-7

• Thumb branch with link on page 7-8

• Branch and exchange on page 7-9

• Data operations on page 7-10

• Multiply, and multiply accumulate on page 7-12

• Load register on page 7-14

• Store register on page 7-16

• Load multiple registers on page 7-17

• Store multiple registers on page 7-19

• Data swap on page 7-20

• Software interrupt, and exception entry on page 7-21

• Coprocessor data processing operation on page 7-22

• Load coprocessor register (from memory to coprocessor) on page 7-23

• Store coprocessor register (from coprocessor to memory) on page 7-25
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• Coprocessor register transfer (move from coprocessor to ARM register) on 
page 7-27

• Coprocessor register transfer (move from ARM register to coprocessor) on 
page 7-28

• Undefined instructions and coprocessor absent on page 7-29

• Unexecuted instructions on page 7-30.
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7.1 About the instruction cycle timings

The TRANS[1:0] signals predict the type of the next cycle. These signals are pipelined 
in the cycle before the one to which they apply and are shown like this in the tables in 
this section. 

In the tables in this chapter, the following signals (which also appear ahead of the cycle) 
are registered in the cycle to which they apply:

• Address is ADDR[31:0]
• Lock is LOCK
• Size is SIZE[1:0]
• Write is WRITE
• Prot1 and Prot0 are PROT[1:0]
• Tbit is CPTBIT.

The address is incremented for prefetching instructions in most cases. The increment 
varies with the instruction length:

• 4 bytes in ARM state

• 2 bytes in Thumb state.

Note
 The letter i is used to indicate the instruction lengths.

Size indicates the width of the transfer:

• w (word) represents a 32-bit data access or ARM opcode fetch

• h (halfword) represents a 16-bit data access or Thumb opcode fetch

• b (byte) represents an 8-bit data access.

CPA and CPB are pipelined inputs and are shown as sampled by the ARM7TDMI-S 
processor. They are therefore shown in the tables the cycle after they have been driven 
by the coprocessor.

Transaction types are shown in Table 7-1 on page 7-4.
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Note
 All cycle counts in this chapter assume zero-wait-state memory access. In a system 
where CLKEN is used to add wait states, you must adjust the cycle counts accordingly.

Table 7-1 Transaction types

TRANS[1:0] Transaction type Description

00 I cycle Internal (address-only) next cycle

01 C cycle Coprocessor transfer next cycle

10 N cycle Memory access to next address is nonsequential

11 S cycle Memory access to next address is sequential
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7.2 Instruction cycle count summary

In the pipelined architecture of the ARM7TDMI-S core, while one instruction is being 
fetched, the previous instruction is being decoded, and the one prior to that is being 
executed. Table 7-2 shows the number of cycles required by an instruction, when that 
instruction reaches the Execute stage.

You can calculate the number of cycles for a routine from the figures in Table 7-2. These 
figures assume execution of the instruction. Unexecuted instructions take one cycle.

In Table 7-2:

n Is the number of words transferred.

m Is 1 if bits [32:8] of the multiplier operand are all zero or one.

Is 2 if bits [32:16] of the multiplier operand are all zero or one.

Is 3 if bits [31:24] of the multiplier operand are all zero or one.

Is 4 otherwise.

b Is the number of cycles spent in the coprocessor busy-wait loop (which 
can be zero or more).

When the condition is not met, all the instructions take one S-cycle.

Table 7-2 Instruction cycle counts

Instruction Qualifier Cycle count

Any unexecuted Condition codes fail +S

Data processing Single-cycle +S

Data processing Register-specified shift +I +S

Data processing R15 destination +N +2S

Data processing R15, register-specified shift +I +N +2S

MUL - +(m)I +S

MLA - +I +(m)I +S

MULL - +(m)I +I +S

MLAL - +I +(m)I +I +S

B, BL - +N +2S

LDR Non-R15 destination +N +I +S

LDR R15 destination +N +I +N +2S
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The cycle types N, S, I, and C are defined in Table 7-1 on page 7-4.

STR - +N +N

SWP - +N +N +I +S

LDM Non-R15 destination +N +(n–1)S +I +S

LDM R15 destination +N +(n–1)S +I +N +2S

STM - +N +(n–1)S +I +N

MSR, MRS - +S

SWI, trap - +N +2S

CDP - +(b)I +S

MCR - +(b)I +C +N

MRC - +(b)I +C +I +S

LDC, STC - +(b)I +N +(n – 1)S +N

Table 7-2 Instruction cycle counts (continued)

Instruction Qualifier Cycle count
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7.3 Branch and ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three 
cycles:

1. During the first cycle, a branch instruction calculates the branch destination while 
performing a prefetch from the current PC. This prefetch is done in all cases 
because, by the time the decision to take the branch has been reached, it is already 
too late to prevent the prefetch. 

2. During the second cycle, the ARM7TDMI-S core performs a Fetch from the 
branch destination. The return address is stored in r14 if the link bit is set. 

3. During the third cycle, the ARM7TDMI-S core performs a Fetch from the 
destination + i, refilling the instruction pipeline. When the instruction is a branch 
with link, r14 is modified (4 is subtracted from it) to simplify return to MOV PC,R14. 
This modification ensures subroutines of the type STM..{R14} LDM..{PC} work 
correctly.

Table 7-3 shows the cycle timings, where:

pc Is the address of the branch instruction.

pc’ Is an address calculated by the ARM7TDMI-S core.

(pc’) Are the contents of that address.

Note
 This data applies only to branches in ARM and Thumb states, and to branch with link 
in ARM state.

Table 7-3 Branch instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc+2i w/h 0 (pc + 2i) N cycle 0

2 pc’ w’/h’ 0 (pc’) S cycle 0

3 pc’+i w’/h’ 0 (pc’ + i) S cycle 0

pc’+2i w’/h’ - - - -
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7.4 Thumb branch with link

A Thumb Branch with Link (BL) operation comprises two consecutive Thumb 
instructions and takes four cycles:

1. The first instruction acts as a simple data operation. It takes a single cycle to add 
the PC to the upper part of the offset and stores the result in r14 (LR).

2. The second instruction acts similar to the ARM BL instruction over three cycles: 

• During the first cycle, the ARM7TDMI-S core calculates the final branch 
destination while performing a prefetch from the current PC.

• During the second cycle, the ARM7TDMI-S core performs a Fetch from 
the branch destination. The return address is stored in r14.

• During the third cycle, the ARM7TDMI-S core performs a Fetch from the 
destination +2, refills the instruction pipeline, and modifies r14 (subtracting 
2) to simplify the return to MOV PC, R14. This modification ensures that 
subroutines of the type PUSH {..,LR} ; POP {..,PC} work correctly.

Table 7-4 shows the cycle timings of the complete operation.

Note
 PC is the address of the first instruction of the operation.

Thumb BL operations are explained in detail in the ARM Architecture Reference Manual.

Table 7-4 Thumb long branch with link

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc + 4 h 0 (pc + 4) S cycle 0

2 pc + 6 h 0 (pc + 6) N cycle 0

3 pc’ h 0 (pc’) S cycle 0

4 pc’ + 2 h 0 (pc’ + 2) S cycle 0

pc’ + 4 - - - - -
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7.5 Branch and exchange

A Branch and eXchange (BX) operation takes three cycles, it is similar to a Branch:

1. During the first cycle, the ARM7TDMI-S core extracts the branch destination, 
and the new core state from the register source, while performing a prefetch from 
the current PC. This prefetch is performed in all cases, because by the time the 
decision to take the branch has been reached, it is already too late to prevent the 
prefetch.

2. During the second cycle, the ARM7TDMI-S core performs a Fetch from the 
branch destination using the new instruction width, dependent on the state that has 
been selected.

3. During the third cycle, the ARM7TDMI-S core performs a Fetch from the 
destination +2 or +4 dependent on the new specified state, refilling the instruction 
pipeline.

Table 7-5 shows the cycle timings.

Note
 i and i’ represent the instruction widths before and after the BX respectively. In ARM 
state, Size is 2, and in Thumb state Size is 1. When changing from Thumb to ARM state, 
i equals 1, and i’ equals 2. t, and t’ represent the states of the T bit before and after the 
BX respectively. In ARM state, Tbit is 0, and in Thumb state Tbit is 1. When changing 
from ARM to Thumb state, t equals 0, and t’ equals 1.

Table 7-5 Branch and exchange instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Tbit

1 pc + 2i w/h 0 (pc + 2i) N cycle 0 t

2 pc’ w’/h’ 0 (pc’) S cycle 0 t’

3 pc’+ i’ w’/h’ 0 (pc’+i’) S cycle 0 t’

pc’ + 2i’ - - - - - -
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7.6 Data operations

A data operation executes in a single data path cycle except where the shift is 
determined by the contents of a register. The ARM7TDMI-S core reads a first register 
onto the A bus, and a second register or the immediate field onto the B bus.

The ALU combines the A bus source and the shifted B bus source according to the 
operation specified in the instruction. The ARM7TDMI-S core writes the result (when 
required) into the destination register. (Compares and tests do not produce results. Only 
the ALU status flags are affected.) 

An instruction prefetch occurs at the same time as the data operation, and the PC is 
incremented.

When a register specifies the shift length, an additional data path cycle occurs before 
the data operation to copy the bottom 8 bits of that register into a holding latch in the 
barrel shifter. The instruction prefetch occurs during this first cycle. The operation cycle 
is internal (it does not request memory). Because the address remains stable through 
both cycles, the memory manager can merge this internal cycle with the following 
sequential access.

The PC can be one or more of the register operands. When the PC is the destination, 
external bus activity can be affected. When the ARM7TDMI-S core writes the result to 
the PC, the contents of the instruction pipeline are invalidated, and the ARM7TDMI-S 
core takes the address for the next instruction prefetch from the ALU rather than the 
address incrementer. The ARM7TDMI-S processor refills the instruction pipeline 
before any more execution takes place. During this time exceptions are locked out. 

PSR transfer operations exhibit the same timing characteristics as the data operations 
except that the PC is never used as a source or destination register.

The data operation timing cycles are shown in Table 7-6.

Table 7-6 Data operation instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

normal 1 pc+2i w/h 0 (pc+2i) S cycle 0

pc+3i - - - - -

dest=pc 1 pc+2i w/h 0 (pc+2i) N cycle 0

2 pc’ w/h 0 (pc’) S cycle 0

3 pc’+i w/h 0 (pc’+i) S cycle 0

pc’+2i - - - - -
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Note
 Shifted register with destination equals PC is not possible in Thumb state.

shift(Rs) 1 pc+2i w/h 0 (pc+2i) I cycle 0

2 pc+3i w/h 0 - S cycle 1

pc+3i - - - - -

shift(Rs) 1 pc+8 w 0 (pc+8) I cycle 0

dest=pc 2 pc+12 w 0 - N cycle 1

3 pc’ w 0 (pc’) S cycle 0

4 pc’+4 w 0 (pc’+4) S cycle 0

pc’+8 - - - - -

Table 7-6 Data operation instruction cycle operations  (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0
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7.7 Multiply, and multiply accumulate

The multiply instructions use special hardware that implements integer multiplication 
with early termination. All cycles except the first are internal.

The cycle timings are shown in Table 7-7 to Table 7-10 on page 7-13, in which m is the 
number of cycles required by the multiplication algorithm (see Instruction cycle count 
summary on page 7-5).

Table 7-7 Multiply instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+2i 0 w/h (pc+2i) I cycle 0

2 pc+3i 0 w/h - I cycle 1

• pc+3i 0 w/h - I cycle 1

m pc+3i 0 w/h - I cycle 1

m+1 pc+3i 0 w/h - S cycle 1

pc+3i - - - - -

Table 7-8 Multiply-accumulate instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+2i 0 w/h (pc+2i) I cycle 0

2 pc+2i 0 w/h - I cycle 1

• pc+3i 0 w/h - I cycle 1

m pc+3i 0 w/h - I cycle 1

m+1 pc+3i 0 w/h - I cycle 1

m+2 pc+3i 0 w/h - S cycle 1

pc+3i - - - - -
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Note
 Multiply long is available only in ARM state.

Note
 Multiply-accumulate long is available only in ARM state.

Table 7-9 Multiply long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+8 0 w (pc+8) I cycle 0

2 pc+12 0 w - I cycle 1

• pc+12 0 w - I cycle 1

m pc+12 0 w - I cycle 1

m+1 pc+12 0 w - I cycle 1

m+2 pc+12 0 w - S cycle 1

pc+12 - - - - -

Table 7-10 Multiply-accumulate long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+8 0 w (pc+8) I cycle 0

2 pc+8 0 w - I cycle 1

• pc+12 0 w - I cycle 1

m pc+12 0 w - I cycle 1

m+1 pc+12 0 w - I cycle 1

m+2 pc+12 0 w - I cycle 1

m+3 pc+12 0 w - S cycle 1

pc+12 - - - - -
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7.8 Load register

A load register instruction takes a variable number of cycles:

1. During the first cycle, the ARM7TDMI-S processor calculates the address to be 
loaded. 

2. During the second cycle, the ARM7TDMI-S processor fetches the data from 
memory and performs the base register modification (if required). 

3. During the third cycle, the ARM7TDMI-S processor transfers the data to the 
destination register. (External memory is not used.) Normally, the ARM7TDMI-S 
core merges this third cycle with the next prefetch to form one memory N-cycle.

The load register cycle timings are shown in Table 7-11, where:

b, h, and w Are byte, halfword and word as defined in Table 5-6 on page 5-51.

s Represents current supervisor-mode-dependent value.

u Is either 0, when the force translation bit is specified in the instruction 
(LDRT), or s at all other times.

Either the base or the destination (or both) can be the PC. The prefetch sequence 
changes when the PC is affected by the instruction. If the Data Fetch aborts, the 
ARM7TDMI-S processor prevents modification of the destination register.

Table 7-11 Load register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Prot1

normal 1 pc+2i w/h 0 (pc+2i) N cycle 0 s

2 pc’ w/h/b 0 (pc’) I cycle 1 u/s

3 pc+3i w/h 0 - S cycle 1 s

pc+3i - - - - - -

dest=pc 1 pc+8 w 0 (pc+8) N cycle 0 s

2 da w/h/b 0 pc’ I cycle 1 u/s

3 pc+12 w 0 - N cycle 1 s

4 pc’ w 0 (pc’) S cycle 0 s

5 pc’+4 w 0 (pc’+4) S cycle 0 s

pc’+8 - - - - - -
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Note
 Destination equals PC is not possible in Thumb state.
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7.9 Store register

A store register has two cycles:

1. During the first cycle, the ARM7TDMI-S core calculates the address to be stored. 

2. During the second cycle, the ARM7TDMI-S core performs the base modification, 
and writes the data to memory (if required). 

The store register cycle timings are shown in Table 7-12, where:

s Represents current mode-dependent value.

t Is either 0, when the T bit is specified in the instruction (STRT) or c at all 
other times.

Table 7-12 Store register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Prot1

1 pc+2i w/h 0 (pc+2i) N cycle 0 s

2 da b/h/w 1 Rd N cycle 1 t

pc+3i - - - - - -
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7.10 Load multiple registers

A LoaD Multiple (LDM) takes four cycles: 

1. During the first cycle, the ARM7TDMI-S core calculates the address of the first 
word to be transferred, while performing a prefetch from memory. 

2. During the second cycle, the ARM7TDMI-S core fetches the first word and 
performs the base modification.

3. During the third cycle, the ARM7TDMI-S core moves the first word to the 
appropriate destination register and fetches the second word from memory. The 
ARM7TDMI-S latches the modified base internally, in case it is required after an 
abort. The third cycle is repeated for subsequent fetches until the last data word 
has been accessed. 

4. During the fourth and final (internal) cycle, the ARM7TDMI-S core moves the 
last word to its destination register. The last cycle can be merged with the next 
instruction prefetch to form a single memory N-cycle.

When an abort occurs, the instruction continues to completion. The ARM7TDMI-S 
core prevents all register writing after the abort. The ARM7TDMI-S core changes the 
final cycle to restore the modified base register (which the load activity before the abort 
occurred might have overwritten). 

When the PC is in the list of registers to be loaded, the ARM7TDMI-S core invalidates 
the current instruction pipeline. The PC is always the last register to load, so an abort at 
any point prevents the PC from being overwritten.

Note
 LDM with destination = PC cannot be executed in Thumb state. However, POP{Rlist,PC} 
equates to an LDM with destination = PC.

The LDM cycle timings are shown in Table 7-13.

Table 7-13 Load multiple registers instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 register 1 pc+2i w/h 0 (pc+2i) N cycle 0

2 da w 0 da I cycle 1

3 pc+3i w/h 0 - S cycle 1

pc+3i - - - - -
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1 register 1 pc+2i w/h 0 (pc+2i) N cycle 0

dest=pc 2 da w 0 pc’ I cycle 1

3 pc+3i w/h 0 - N cycle 1

4 pc’ w/h 0 (pc’) S cycle 0

5 pc’+i w/h 0 (pc’+i) S cycle 0

pc’+2i - - - - -

n registers 1 pc+2i w/h 0 (pc+2i) N cycle 0

(n>1) 2 da w 0 da S cycle 1

• da++ w 0 (da++) S cycle 1

n da++ w 0 (da++) S cycle 1

n+1 da++ w 0 (da++) I cycle 1

n+2 pc+3i w/h 0 - S cycle 1

pc+3i - - - - -

n registers 1 pc+2i w/h 0 (pc+2i) N cycle 0

(n>1) 2 da w 0 da S cycle 1

incl pc • da++ w 0 (da++) S cycle 1

n da++ w 0 (da++) S cycle 1

n+1 da++ w 0 pc’ I cycle 1

n+2 pc+3i w/h 0 - N cycle 1

n+3 pc’ w/h 0 (pc’) S cycle 0

n+4 pc’+i w/h 0 (pc’+i) S cycle 0

pc’+2i - - - - -

Table 7-13 Load multiple registers instruction cycle operations  (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0
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7.11 Store multiple registers

STore Multiple (STM) proceeds very much as LDM, although without the final cycle. There 
are therefore two cycles:

1. During the first cycle, the ARM7TDMI-S core calculates the address of the first 
word to be stored. 

2. During the second cycle, the ARM7TDMI-S core performs the base modification, 
and writes the data to memory.

Restart is straightforward because there is no general overwriting of registers.

The STM cycle timings are shown in Table 7-14. 

Table 7-14 Store multiple registers instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 register 1 pc+2i w/h 0 (pc+2i) N cycle 0

2 da w 1 R N cycle 1

pc+3i

n registers 1 pc+8 w/h 0 (pc+2i) N cycle 0

(n>1) 2 da w 1 R S cycle 1

• da++ w 1 R’ S cycle 1

n da++ w 1 R’’ S cycle 1

n+1 da++ w 1 R’’’ N cycle 1

pc+12
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7.12 Data swap

Data swap is similar to the load and store register instructions, although the swap takes 
place in cycles 2 and 3. The data is fetched from external memory in the second cycle, 
and in the third cycle the contents of the source register are written to the external 
memory. In the fourth cycle the data read during cycle 2 is written into the destination 
register.

The data swapped can be a byte or word quantity (b/w).

The ARM7TDMI-S core might abort the swap operation in either the read or write 
cycle. The swap operation (read or write) does not affect the destination register.

The data swap cycle timings are shown in Table 7-15, where b and w are byte and word 
as defined in Table 5-6 on page 5-51.

Note
 Data swap cannot be executed in Thumb state.

The LOCK output of the ARM7TDMI-S processor is driven HIGH for both load and 
store data cycles to indicate to the memory controller that this is an atomic operation.

Table 7-15 Data swap instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Lock

1 pc+8 w 0 (pc+8) N cycle 0 0

2 Rn w/b 0 (Rn) N cycle 1 1

3 Rn w/b 1 Rm I cycle 1 1

4 pc+12 w 0 - S cycle 1 0

pc+12
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7.13 Software interrupt, and exception entry

Exceptions, and SoftWare Interrupts (SWIs) force the PC to a specific value, and refill 
the instruction pipeline from this address: 

1. During the first cycle, the ARM7TDMI-S core constructs the forced address, and 
a mode change might take place. The ARM7TDMI-S core moves the return 
address to r14 and moves the CPSR to SPSR_svc.

2. During the second cycle, the ARM7TDMI-S core modifies the return address to 
facilitate return (although this modification is less useful than in the case of 
branch with link). 

3. The third cycle is required only to complete the refilling of the instruction 
pipeline.

The SWI cycle timings are shown in Table 7-16, where:

s Represents the current supervisor mode dependent value.

t Represents the current Thumb state value.

pc Is, for software interrupts, the address of the SWI instruction. For 
exceptions, this is the address of the instruction following the last one to 
be executed before entering the exception. For Prefetch Aborts, this is the 
address of the aborting instruction. For Data Aborts, this is the address of 
the instruction following the one that attempted the aborted data transfer.

Xn Is the appropriate trap address.

Table 7-16 Software interrupt instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Prot1 Mode Tbit

1 pc+2i w/h 0 (pc+2i) N cycle 0 s old mode t

2 Xn w’ 0 (Xn) S cycle 0 1 exception

mode

0

3 Xn+4 w’ 0 (Xn+4) S cycle 0 1 exception

mode

0

Xn+8
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7.14 Coprocessor data processing operation

A Coprocessor Data Processing (CDP) operation is a request from the ARM7TDMI-S 
core for the coprocessor to initiate some action. There is no need to complete the action 
immediately, but the coprocessor must commit to completion before driving CPB LOW.

If the coprocessor cannot perform the requested task, it leaves CPA and CPB HIGH. 
When the coprocessor is able to perform the task, but cannot commit immediately, the 
coprocessor drives CPA LOW, but leaves CPB HIGH until able to commit. The 
ARM7TDMI-S processor busy-waits until CPB goes LOW. However, an interrupt 
might cause the ARM7TDMI-S core to abandon a busy-waiting coprocessor instruction 
(see Consequences of busy-waiting on page 4-8).

The coprocessor data operations cycle timings are shown in Table 7-17.

Note
 Coprocessor operations are available only in ARM state.

Table 7-17 Coprocessor data operation instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0 CPnI CPA CPB

ready 1 pc+8 0 w (pc+8) N cycle 0 0 0 0

pc+12

not ready 1 pc+8 0 w (pc+8) I cycle 0 0 0 1

2 pc+8 0 w - I cycle 1 0 0 1

• pc+8 0 w - I cycle 1 0 0 1

n pc+8 0 w - N cycle 1 0 0 0

pc+12
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7.15 Load coprocessor register (from memory to coprocessor)

The LoaD Coprocessor (LDC) operation transfers one or more words of data from 
memory to coprocessor registers.

The coprocessor commits to the transfer only when it is ready to accept the data. The 
WRITE line is driven LOW during the transfer cycle. When CPB goes LOW, the 
ARM7TDMI-S core produces addresses, and expects the coprocessor to take the data 
at sequential cycle rates. The coprocessor is responsible for determining the number of 
words to be transferred. An interrupt can cause the ARM7TDMI-S core to abandon a 
busy-waiting coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The first cycle (and any busy-wait cycles) generates the transfer address. The second 
cycle performs the write-back of the address base. The coprocessor indicates the last 
transfer cycle by driving CPA and CPB HIGH.

The load coprocessor register cycle timings are shown in Table 7-18.

Table 7-18 Load coprocessor register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

1 register 
ready

1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

2 da w 0 (da) N cycle 1 1 1 1

pc+12

1 register

not ready

1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 0 (da) N cycle 1 1 1 1

pc+12

m registers

(m>1)

ready

1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

2 da w 0 (da) S cycle 1 1 0 0

• da++ w 0 (da++) S cycle 1 1 0 0

m da++ w 0 (da++) S cycle 1 1 0 0

m+1 da++ w 0 (da++) N cycle 1 1 1 1

pc+12
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Note
 Coprocessor operations are available only in ARM state.

m registers

(m>1)

not ready

1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 0 (da) S cycle 1 1 0 0

• da++ 0 (da++) S cycle 1 1 0 0

n+m da++ w 0 (da++) S cycle 1 1 0 0

n+m+1 da++ w 0 (da++) N cycle 1 1 1 1

pc+12

Table 7-18 Load coprocessor register instruction cycle operations  (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB
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7.16 Store coprocessor register (from coprocessor to memory)

The STore Coprocessor (STC) operation transfers one or more words of data from 
coprocessor registers to memory.

The coprocessor commits to the transfer only when it is ready to write data. The 
WRITE line is driven HIGH during the transfer cycle. When CPB goes LOW, the 
ARM7TDMI-S core produces addresses, and expects the coprocessor to write the data 
at sequential cycle rates. The coprocessor is responsible for determining the number of 
words to be transferred. An interrupt can cause the ARM7TDMI-S core to abandon a 
busy-waiting coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The first cycle (and any busy-wait cycles) generates the transfer address. The second 
cycle performs the write-back of the address base. The coprocessor indicates the last 
transfer cycle by driving CPA and CPB HIGH.

The store coprocessor register cycle timings are shown in Table 7-19.

Table 7-19 Store coprocessor register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

1 register

ready

1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

2 da w 1 CPdata N cycle 1 1 1 1

pc+12

1 register

not ready

1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 1 CPdata N cycle 1 1 1 1

pc+12

m registers

(m>1)

ready

1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

2 da w 1 CPdata S cycle 1 1 0 0

• da++ w 1 CPdata’ S cycle 1 1 0 0

m da++ w 1 CPdata’’ S cycle 1 1 0 0

m+1 da++ w 1 CPdata’’’ N cycle 1 1 1 1

pc+12
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Note
 Coprocessor operations are available only in ARM state.

m registers

(m>1)

not ready

1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 1 CPdata S cycle 1 1 0 0

• da++ w 1 CPdata S cycle 1 1 0 0

n+m da++ w 1 CPdata S cycle 1 1 0 0

n+m+1 da++ w 1 CPdata N cycle 1 1 1 1

pc+12

Table 7-19 Store coprocessor register instruction cycle operations  (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB
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7.17 Coprocessor register transfer (move from coprocessor to ARM register)

The Move fRom Coprocessor (MRC) operation reads a single coprocessor register into the 
specified ARM register. 

Data is transferred in the second cycle and written to the ARM register during the third 
cycle of the operation.

If the coprocessor signals busy-wait by asserting CPB, an interrupt can cause the 
ARM7TDMI-S core to abandon the coprocessor instruction (see Consequences of 
busy-waiting on page 4-8).

As is the case with all ARM7TDMI-S register load instructions, the ARM7TDMI-S 
core might merge the third cycle with the following prefetch cycle into a merged I-S 
cycle.

The MRC cycle timings are shown in Table 7-20.

Note
 This operation cannot occur in Thumb state.

Table 7-20 Coprocessor register transfer (MRC)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

ready 1 pc+8 w 0 (pc+8) C cycle 0 0 0 0

2 pc+12 w 0 CPdata I cycle 1 1 1 1

3 pc+12 w 0 - S cycle 1 1 - -

pc+12

not ready 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - C cycle 1 0 0 0

n+1 pc+12 w 0 CPdata I cycle 1 1 1 1

n+2 pc+12 w 0 - S cycle 1 1 - -

pc+12
ARM DDI 0234B Copyright © 2001 ARM Limited. All rights reserved. 7-27



Instruction Cycle Timings 
7.18 Coprocessor register transfer (move from ARM register to coprocessor)

The Move to CoprocessoR (MCR) operation transfers the contents of a single ARM 
register to a specified coprocessor register. 

The data is transferred to the coprocessor during the second cycle. If the coprocessor 
signals busy-wait by asserting CPB, an interrupt can cause the ARM7TDMI-S core to 
abandon the coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The MCR cycle timings are shown in Table 7-21.

Note
 Coprocessor operations are available only in ARM state.

Table 7-21 Coprocessor register transfer (MCR)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

ready 1 pc+8 w 0 (pc+8) C cycle 0 0 0 0

2 pc+12 w 1 Rd N cycle 1 1 1 1

pc+12

not ready 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - C cycle 1 0 0 0

n+1 pc+12 w 1 Rd N cycle 1 1 1 1

pc+12
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7.19 Undefined instructions and coprocessor absent

The undefined instruction trap is taken if an undefined instruction is executed. For a 
definition of undefined instructions, see the ARM Architecture Reference Manual.

If no coprocessor is able to accept a coprocessor instruction, the instruction is treated as 
an undefined instruction. This enables software to emulate coprocessor instructions 
when no hardware coprocessor is present.

Note
 By default CPA and CPB must be driven HIGH unless the coprocessor instruction is 
being handled by a coprocessor. 

Undefined instruction cycle timings are shown in Table 7-22.

where:

s Represents the current mode-dependent value.

t Represents the current state-dependent value.

Note
 Coprocessor operations are available only in ARM state.

Table 7-22 Undefined instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI
CPA 
and 
CPB 

Prot1 Mode Tbit

1 pc+2i w/h 0 (pc+2i) I cycle 0 0 1 s Old t

2 pc+2i w/h 0 - N cycle 0 1 1 s Old t

3 Xn w’ 0 (Xn) S cycle 0 1 1 1 00100 0

4 Xn+4 w’ 0 (Xn+4) S cycle 0 1 1 1 00100 0

Xn+8
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7.20 Unexecuted instructions

When the condition code of any instruction is not met, the instruction is not executed. 
An unexecuted instruction takes one cycle.

Unexecuted instruction cycle timings are shown in Table 7-23.

Table 7-23 Unexecuted instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc+2i w/h 0 (pc+2i) S cycle 0

pc+3i
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Chapter 8 
AC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI-S processor. It 
contains the following sections:

• Timing diagrams on page 8-2

• AC timing parameter definitions on page 8-8.
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8.1 Timing diagrams

This section contains timing diagrams, as follows:

• Timing parameters for data accesses 

• Coprocessor timing on page 8-4

• Exception and configuration input timing on page 8-4

• Debug timing on page 8-5

• Scan timing on page 8-6.

8.1.1 Timing parameters for data accesses

Timing parameters for data accesses are shown in Figure 8-1 on page 8-3.
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Figure 8-1 Timing parameters for data accesses
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Note
 The timing for both read and write data access are superimposed in Figure 8-1 on 
page 8-3. The WRITE signal conveys whether the access uses the RDATA or WDATA 
port.

CLKEN LOW stretches the data access when the read or write transaction is unable to 
complete within a single cycle.

The data buses are used for transfer only when the transaction signals TRANS[1:0] 
indicate a valid memory cycle or a coprocessor register transfer cycle.

8.1.2 Coprocessor timing

Coprocessor timing parameters are shown in Figure 8-2.

Figure 8-2 Coprocessor timing

8.1.3 Exception and configuration input timing

Exception and configuration input timing parameters are shown in Figure 8-3 on 
page 8-5.
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Figure 8-3 Exception and configuration input timing

8.1.4 Debug timing

Debug timing parameters are shown in Figure 8-4 on page 8-6.
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Figure 8-4 Debug timing

Note
 DBGBREAK is sampled on rising clock, so external data-dependent breakpoints and 
watchpoints must be matched and signaled by this edge.

8.1.5 Scan timing

Scan timing parameters are shown in Figure 8-5 on page 8-7.
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Figure 8-5 Scan timing
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8.2 AC timing parameter definitions

Table 8-1 shows target AC parameters. All figures are expressed as percentages of the 
CLK period at maximum operating frequency. Please contact your silicon supplier for 
more details.

Note
 Where 0% is shown, this indicates the hold time to clock edge plus the maximum clock 
skew for internal clock buffering.

Table 8-1 Provisional AC parameters

Symbol Parameter Min Max

tcyc CLK cycle time 100% -

tisclken CLKEN input setup to rising CLK 40% -

tihclken CLKEN input hold from rising CLK - 0%

tisabort ABORT input setup to rising CLK 15% -

tihabort ABORT input hold from rising CLK - 0%

tisrdata RDATA input setup to rising CLK 10% -

tihrdata RDATA input hold from rising CLK - 0%

tovaddr Rising CLK to ADDR valid - 90%

tohaddr ADDR hold time from rising CLK >0% -

tovctl Rising CLK to control valid - 90%

tohctl Control hold time from rising CLK >0% -

tovtrans Rising CLK to transaction type valid - 50%

tohtrans Transaction type hold time from rising CLK >0% -

tovwdata Rising CLK to WDATA valid - 40%

tohwdata WDATA hold time from rising CLK >0% -

tiscpstat CPA, CPB input setup to rising CLK 20% -

tihcpstat CPA, CPB input hold from rising CLK - 0%
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tovcpctl Rising CLK to coprocessor control valid - 80%

tohcpctl Coprocessor control hold time from rising CLK >0% -

tovcpni Rising CLK to coprocessor CPnI valid - 40%

tohcpni Coprocessor CPnI hold time from rising CLK >0% -

tisexc nFIQ, nIRQ, nRESET setup to rising CLK 10% -

tihexc nFIQ, nIRQ, nRESET hold from rising CLK - 0%

tiscfg CFGBIGEND setup to rising CLK 10% -

tihcfg CFGBIGEND hold from rising CLK - 0%

tisdbgstat Debug status inputs setup to rising CLK 10% -

tihdbgstat Debug status inputs hold from rising CLK - 0%

tovdbgctl Rising CLK to debug control valid - 40%

tohdbctl Debug control hold time from rising CLK >0% -

tistcken DBGTCKEN input setup to rising CLK 40% -

tihtcken DBGTCKEN input hold from rising CLK - 0%

tistctl DBGTDI, DBGTMS input setup to rising CLK 35% -

tihtctl DBGTDI, DBGTMS input hold from rising CLK - 0%

tovtdo Rising CLK to DBGTDO valid - 20%

tohtdo DBGTDO hold time from rising CLK >0% -

tovdbgstat Rising CLK to debug status valid 40% -

tohdbgstat Debug status hold time >0% -

Table 8-1 Provisional AC parameters  (continued)

Symbol Parameter Min Max
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Appendix A 
Signal Descriptions

This appendix lists and describes all the ARM7TDMI-S processor signals. It contains 
the following section:

• Signal descriptions on page A-2.
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A.1 Signal descriptions

The signals of the ARM7TDMI-S processor are shown in Table A-1.

Table A-1 Signal descriptions

Name Type Description

ABORT Input Memory abort or bus error. This is an input that is used by the memory system to signal 
to the processor that a requested access is disallowed.

ADDR[31:0] Output This is the processor address bus.

CFGBIGEND Input Big-endian configuration. When this signal is HIGH, the processor treats bytes in 
memory as being in big-endian format. When the signal is LOW, memory is treated as 
little-endian.

CFGBIGEND is normally a static configuration signal.

This signal is analogous to BIGEND on the hard macrocell.

CLK Input Clock input. This clock times all ARM7TDMI-S memory accesses and internal 
operations. All outputs change from the rising edge of CLK and all inputs are sampled 
on the rising edge of CLK.

The CLKEN input can be used with a free-running CLK to add synchronous 
wait-states.

Alternatively, the clock can be stretched indefinitely in either phase to allow access to 
slow peripherals or memory or to put the system into a low-power state. CLK is also 
used for serial scan-chain debug operation with the EmbeddedICE-RT tool-chain. This 
signal is analogous to inverted MCLK on the hard macrocell.

CLKEN Input Wait state control. When accessing slow peripherals, the ARM7TDMI-S can be made 
to wait for an integer number of CLK cycles by driving CLKENLOW. When the 
CLKEN control is not used, it must be tied HIGH.

This signal is analogous to nWAIT on the hard macrocell.

CPA Input Coprocessor absent handshake. A coprocessor that is capable of performing the 
operation that the ARM7TDMI-S is requesting (by asserting CPnI), takes CPA LOW, 
set up to the cycle edge that precedes the coprocessor access. When CPA is signaled 
HIGH and the coprocessor cycle is executed (as signaled by CPnI signaled LOW), the 
ARM7TDMI-S aborts the coprocessor handshake and takes the undefined instruction 
trap. When CPA is LOW and remains LOW, the ARM7TDMI-S busy-waits until CPB 
is LOW and then completes the coprocessor instruction. 

CPB Input Coprocessor busy handshake. A coprocessor is capable of performing the operation 
requested by the ARM7TDMI-S (by asserting CPnI), but cannot commit to starting it 
immediately, this is indicated by driving CPBHIGH. 

When the coprocessor is ready to start, it takes CPB LOW, with the signal being set up 
before the start of the coprocessor instruction execution cycle.
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CPnI Output Not coprocessor instruction. When the ARM7TDMI-S executes a coprocessor 
instruction, it takes this output LOW and waits for a response from the coprocessor. 
The action taken depends on this response, which the coprocessor signals on the CPA 
and CPB inputs.

CPnMREQ Output Not memory request. When LOW, this signal indicates that the processor requires 
memory access during the next transaction.

This signal is analogous to nMREQ on the hard macrocell.

CPnOPC Output Not opcode fetch. When LOW, this signal indicates that the processor is fetching an 
instruction from memory. When HIGH, data (if present) is being transferred.

This signal is analogous to nOPC on the hard macrocell and to BPROT[0] on the 
AMBA ASB.

CPSEQ Output Sequential address. This output signal becomes HIGH when the address of the next 
memory cycle is related to that of the last memory access. The new address is either the 
same as the previous one or four greater in ARM state or two greater when fetching 
opcodes in Thumb state.

This signal is analogous to SEQ on the hard macrocell.

CPTBIT Output When HIGH, this signal indicates to a coprocessor that the processor is executing the 
Thumb instruction set. When LOW, the processor is executing the ARM instruction set.

CPnTRANS Output Not memory translate. When LOW, this signal indicates that the processor is in User 
mode. It can be used to signal to memory management hardware when to bypass 
translation of the addresses or as an indicator of privileged mode activity.

This signal is analogous to nTRANS on the hard macrocell.

DBGACK Output Debug acknowledge. When HIGH, this signal DBGBREAK indicates that the 
ARM7TDMI-S is in debug state. It is enabled only when DBGEN is HIGH.

DBGBREAK Input EmbeddedICE-RT breakpoint/watchpoint indicator. This signal enables external 
hardware to halt the execution of the processor for debug purposes. 

When HIGH, this signal causes the current memory access to be breakpointed.

When the memory access is an instruction fetch, the ARM7TDMI-S enters debug state 
if the instruction reaches the execute stage of the ARM7TDMI-S pipeline. When the 
memory access is for data, the ARM7TDMI-S enters debug state after the current 
instruction completes execution. This enables extension of the internal breakpoints 
provided by the EmbeddedICE-RT module.

DBGBREAK is enabled only when DBGEN is HIGH.

This signal is analogous to BREAKPT on the hard macrocell.

Table A-1 Signal descriptions (continued)

Name Type Description
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Signal Descriptions 
DBGCOMMRX Output EmbeddedICE-RT communications channel receive. When HIGH, this signal indicates 
that the comms channel receive buffer is full. DBGCOMMRX is enabled only when 
DBGEN is HIGH.

This signal is analogous to COMMRX on the hard macrocell.

DBGCOMMTX Output EmbeddedICE-RT communications channel transmit. When HIGH, this signal denotes 
that the comms channel transmit buffer is empty. DBGCOMMTX is enabled only 
when DBGEN is HIGH.

This signal is analogous to COMMTX on the hard macrocell.

DBGEN Input Debug enable. This input signal enables the debug features of the ARM7TDMI-S. If 
you intend to use the ARM7TDMI-S debug features, tie this signal HIGH. Drive this 
signal LOW only when debugging is not required.

DBGnEXEC Output Not executed. When HIGH, this signal indicates that the instruction in the execution 
unit is not being executed (because, for example, it has failed its condition code check).

DBGEXT[1:0] Input EmbeddedICE-RT external input 0, external input 1. These are inputs to the 
EmbeddedICE-RT macrocell logic in the ARM7TDMI-S that allow breakpoints and/or 
watchpoints to be dependent on an external condition. The inputs are enabled only 
when DBGEN is HIGH.

These signals are analogous to EXTERN[1:0] on the hard macrocell.

DBGINSTRVALID Output Instruction executed signal. Goes HIGH for one cycle for each instruction committed 
to the execute stage of the pipeline. Used by ETM7 to trace the ARM7TDMI-S 
processor pipeline. This signal is analogous to INSTRVALID on the hard macrocell.

DBGRNG[1:0] Output EmbeddedICE-RT rangeout. This signal indicates that EmbeddedICE-RT watchpoint 
register has matched the conditions currently present on the address, data and control 
buses. 

This signal is independent of the state of the watchpoint enable control bit.

The signal is enabled only when DBGEN is HIGH.

This signal is analogous to RANGE[1:0] on the hard macrocell.

DBGRQ Input Debug request. This internally synchronized input signal requests the processor to 
enter debug state. DBGRQ is enabled only when DBGEN is HIGH.

DBGTCKEN Input Test clock enable. DBGTCKEN is enabled only when DBGEN is HIGH.

DBGTDI Input EmbeddedICE-RT data in. JTAG test data input. DBGTDI is enabled only when 
DBGEN is HIGH.

DBGTDO Output EmbeddedICE-RT data out. Output from the boundary scan logic. DBGTDO is 
enabled only when DBGEN is HIGH.

Table A-1 Signal descriptions (continued)

Name Type Description
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Signal Descriptions 
DBGnTDOEN Output Not DBGTDO enable. When LOW, this signal denotes that serial data is being driven 
out on the DBGTDO output. DBGnTDOEN is normally used as an output enable for 
a DBGTDO pin in a packaged part.

DBGTMS Input EmbeddedICE-RT mode select. JTAG test mode select. DBGTMS is enabled only 
when DBGEN is HIGH.

DBGnTRST Input Not test reset. This is the active-low reset signal for the EmbeddedICE-RT macrocell 
internal state.

DMORE Output Asserted for LDM and STM instructions (new for Rev 4). This signal has the effect of 
making memory accesses more efficient.

nFIQ Input Active-low fast interrupt request. This is a high priority synchronous interrupt request 
to the processor. If the appropriate enable in the processor is active when this signal is 
taken LOW, the processor is interrupted. 

This signal is level-sensitive and must be held LOW until a suitable interrupt 
acknowledge response is received from the processor. 

This signal is analogous to nFIQ on the hard macrocell when ISYNC is HIGH.

nIRQ Input Active-low interrupt request. This is a low priority synchronous interrupt request to the 
processor. If the appropriate enable in the processor is active when this signal is taken 
LOW, the processor is interrupted. 

This signal is level-sensitive and must be held LOW until a suitable interrupt 
acknowledge response is received from the processor.

This signal is analogous to nIRQ on the hard macrocell when ISYNC is HIGH.

LOCK Output Locked transaction operation. When LOCK is HIGH, the processor is performing a 
locked memory access, the arbiter must wait until LOCK goes LOW before allowing 
another device to access the memory.

PROT[1:0] Output These output signals to the memory system indicate whether the output is code or data 
and whether the access is User Mode or privileged access:

x0 opcode fetch

x1 data access

0x User-mode access

1x supervisor or privileged mode access.

RDATA[31:0] Input Read data input bus. This is the read data bus used to transfer instructions and data 
between the processor and memory. The data on this bus is sampled by the processor 
at the end of the clock cycle during read accesses (that is, when WRITE is LOW).

This signal is analogous to DIN[31:0] on the hard macrocell.

Table A-1 Signal descriptions (continued)

Name Type Description
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Signal Descriptions 
nRESET Input Not reset. This input signal forces the processor to terminate the current instruction and 
subsequently to enter the reset vector in supervisor mode. It must be asserted for at least 
two cycles. 

A LOW level forces the instruction being executed to terminate abnormally on the next 
nonwait cycle and causes the processor to perform idle cycles at the bus interface. 

When nRESET becomes HIGH for at least one clock cycle, the processor restarts from 
address 0.

SCANENABLE Input Scan test path enable (for automatic test pattern generation) is LOW for normal system 
configuration and HIGH during scan testing.

SCANIN Input Scan test path serial input (for automatic test pattern generation). Serial shift register 
input is active when SCANENABLE is active (HIGH).

SCANOUT Output Scan test path serial output (for automatic test pattern generation). Serial shift register 
output is active when SCANENABLE is active (HIGH).

SIZE[1:0] Output Memory access width. These output signals indicate to the external memory system 
when a word transfer or a halfword or byte length is required:

00 8-bit byte access (addressed in word by ADDR[1:0])

01 16-bit halfword access (addressed in word by ADDR[1])
10 32-bit word access (always word-aligned)

11 (reserved)

This signal is analogous to MAS[1:0] on the hard macrocell.

TRANS[1:0] Output Next transaction type. TRANS indicates the next transaction type:

00 address-only (internal operation cycle)

01 coprocessor

10 memory access at nonsequential address

11 memory access at sequential burst address.

The TRANS[1] signal is analogous to inverted nMREQ and the TRANS[0] signal is 
analogous to SEQ on the hard macrocell. TRANS is analogous to BTRAN on the 
AMBA system bus.

VDD Power supply to the device.

Table A-1 Signal descriptions (continued)

Name Type Description
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Signal Descriptions 
VSS Ground reference for all signals.

WDATA[31:0] Output Write data output bus. This is the write data bus, used to transfer data from the 
processor to the memory or coprocessor system. 

Write data is set up to the end of the cycle of store accesses (that is, when WRITE is 
HIGH) and remains valid throughout wait states.

This signal is analogous to DOUT[31:0] on the hard macrocell.

WRITE Output Write/read access. When HIGH, WRITE indicates a processor write cycle, when 
LOW, it indicates a processor read cycle.

This signal is analogous to nRW on the hard macrocell.

Table A-1 Signal descriptions (continued)

Name Type Description
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Appendix B 
Differences Between the ARM7TDMI-S and the 
ARM7TDMI

This appendix describes the differences between the ARM7TDMI-S and ARM7TDMI 
macrocell interfaces. It contains the following sections:

• Interface signals on page B-2

• ATPG scan interface on page B-6

• Timing parameters on page B-7

• ARM7TDMI-S design considerations on page B-8.
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Differences Between the ARM7TDMI-S and the ARM7TDMI 
B.1 Interface signals

The signal names have prefixes that identify groups of functionally-related signals: 

CFGxxx Shows configuration inputs (typically hard-wired for an embedded 
application).

CPxxx Shows coprocessor expansion interface signals.

DBGxxx Shows scan-based EmbeddedICE-RT debug support input or output.

Other signals provide the system designer interface, which is primarily 
memory-mapped. Table B-1 shows the ARM7TDMI-S (Rev 4) processor signals with 
their ARM7TDMI (Rev 4) hard macrocell equivalent signals.

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents

ARM7TDMI-S 
processor signal

Function
ARM7TDMI hard 
macrocell equivalent

ABORT 1 = memory abort or bus error.

0 = no error.

ABORT

ADDR[31:0] a 32-bit address output bus, available in the cycle preceding the 
memory cycle.

A[31:0]

CFGBIGEND 1 = big-endian configuration.

0 = little-endian configuration.

BIGEND

CLK b Master rising edge clock. All inputs are sampled on the rising 
edge of CLK.

All timing dependencies are from the rising edge of CLK.

MCLK

CLKEN c System memory interface clock enable:

1 = advance the core on rising CLK.

0 = prevent the core advancing on rising CLK.

nWAIT

CPA d Coprocessor absent. Tie HIGH when no coprocessor is present. CPA

CPB d Coprocessor busy. Tie HIGH when no coprocessor is present. CPB

CPnI Active LOW coprocessor instruction execute qualifier. nCPI

CPnMREQ Active LOW memory request signal, pipelined in the preceding 
access. This is a coprocessor interface signal.

Use the ARM7TDMI-S output TRANS[1:0] for bus interface 
design.

nMREQ
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Differences Between the ARM7TDMI-S and the ARM7TDMI 
CPnOPC Active LOW opcode fetch qualifier output, pipelined in the 
preceding access. This is a coprocessor interface signal.

Use the ARM7TDMI-S output PROT[1:0] for bus interface 
design.

nOPC

CPnTRANS Active LOW supervisor mode access qualifier output. This is a 
coprocessor interface signal.

Use the ARM7TDMI-S output PROT[1:0] for bus interface 
design.

nTRANS

CPSEQ Sequential address signal. This is a coprocessor interface signal.

Use the ARM7TDMI-S output TRANS[1:0] for bus interface 
design.

SEQ

CPTBIT Instruction set qualifier output:

1 = THUMB instruction set.

0 = ARM instruction set.

TBIT

DBGACK Debug acknowledge qualifier output:

1 = processor in debug state (real-time stopped).

0 = normal system state.

DBGACK

DBGBREAK External breakpoint (tie LOW when not used). BREAKPT

DBGCOMMRX EmbeddedICE-RT communication channel receive buffer full 
output.

COMMRX

DBGCOMMTX EmbeddedICE-RT communication channel transmit buffer 
empty output.

COMMTX

DBGEN Debug enable. Tie this signal HIGH to be able to use the debug 
features of the ARM7TDMI.

DBGEN

DBGEXT[1:0] EmbeddedICE-RT EXTERN debug qualifiers (tie LOW when 
not required).

EXTERN0, EXTERN1

DBGINSTRVALID e Signals instruction execution to ETM7. INSTRVALID

DBGnEXEC Active LOW condition codes success at Execute stage. nEXEC

DBGnTDOEN f Active LOW TAP controller DBGTDO output qualifier. nTDOEN

DBGnTRST f Active LOW TAP controller reset (asynchronous assertion). 
Resets the ICEBreaker subsystem.

nTRST

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S 
processor signal

Function
ARM7TDMI hard 
macrocell equivalent
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Differences Between the ARM7TDMI-S and the ARM7TDMI 
DBGRNG[1:0] EmbeddedICE-RT rangeout qualifier outputs. RANGEOUT1, 
RANGEOUT0

DBGRQ g External debug request (tie LOW when not required). DBGRQ

DBGTCKEN Multi-ICE clock input qualifier sampled on the rising edge of 
CLK. Used to qualify CLK to enable the debug subsystem. 

DBGTDI f Multi-ICE TDI test data input. TDI

DBGTDO f EmbeddedICE-RT TAP controller serial data output. TDO

DBGTMS f Multi-ICE TMS test mode select input. TMS

DMORE Asserted for LDM and STM instructions. No equivalent on the 
ARM7TDMI processor.

LOCK a Indicates whether the current address is part of locked access. 
This signal is generated by execution of a SWP instruction.

LOCK

nFIQ h Active LOW fast interrupt request input. nFIQ

nIRQ h Active LOW interrupt request input. nIRQ

nRESET Active LOW reset input (asynchronous assertion). Resets the 
processor core subsystem.

nRESET

PROT[1:0]  a, i Protection output, indicates whether the current address is being 
accessed as instruction or data, and whether it is being accessed 
in a privileged mode or User mode.

nOPC,

nTRANS

RDATA[31:0] j Unidirectional 32-bit input data bus. DIN[31:0]

SIZE[1:0] Indicates the width of the bus transaction to the current address:

00 = 8-bit

01 = 16-bit

10 = 32-bit

11 = not supported.

MAS[1:0]

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S 
processor signal

Function
ARM7TDMI hard 
macrocell equivalent
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Differences Between the ARM7TDMI-S and the ARM7TDMI 
TRANS[1:0] Next transaction type output bus:

00 = address-only/idle transaction next

01 = coprocessor register transaction next

10 = non-sequential (new address) transaction next

11 = sequential (incremental address) transaction next.

nMREQ, SEQ

WDATA[31:0] Unidirectional 32-bit output data bus DOUT[31:0]

WRITE Write access indicator. nRW

a. All the address-class signals (ADDR[31:0], WRITE, SIZE[1:0], PROT[1:0], and LOCK) change on the rising edge of 
CLK. In a system with a low-frequency clock this means that it is possible for the signals to change in the first phase of the 
clock cycle. This is unlike the ARM7TDMI hard macrocell where they would always change in the last phase of the cycle.

b. CLK is a rising-edge clock. It is inverted with respect to the MCLK signal used on the ARM7TDMI hard macrocell.
c. CLKEN is sampled on the rising edge of CLK. The nWAIT signal on the ARM7TDMI hard macrocell must be held 

throughout the HIGH phase of MCLK. This means that the address-class outputs (ADDR[31:0], WRITE, SIZE[1:0], 
PROT[1:0], and LOCK) might still change in a cycle in which CLKEN is taken LOW. You must take this possibility into 
account when designing a memory system.

d. CPA and CPB are sampled on the rising edge of CLK. They can no longer change in the first phase of the next cycle, as is 
possible with the ARM7TDMI hard macrocell.

e. DBGINSTRVALID is implemented on the ARM7TDMI-S (Rev 3) and ARM7TDMI-S (Rev 4) soft core and ARM7TDMI 
(Rev 4) hard core macrocells. This siganl is not implemented on previous versions.

f. All JTAG signals are synchronous to CLK on the ARM7TDMI-S processor. There is no asynchronous TCLK as on the 
ARM7TDMI hard macrocell. You can use an external synchronizing circuit to generate TCLKEN when an asynchronous 
TCLK is required.

g. DBGRQ must be synchronized externally to the macrocell. It is not an asynchronous input as on the ARM7TDMI hard 
macrocell.

h. nFIQ and nIRQ are synchronous inputs to the ARM7TDMI-S processor, and are sampled on the rising edge of CLK. 
Asynchronous interrupts are not supported.

i. PROT[0] is the equivalent of nOPC, and PROT[1] is the equivalent of nTRANS on the ARM7TDMI hard macrocell.
j. The ARM7TDMI-S processor supports only unidirectional data buses, RDATA[31:0] and WDATA[31:0]. When a 

bidirectional bus is required, you must implement external bus combining logic.

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S 
processor signal

Function
ARM7TDMI hard 
macrocell equivalent
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Differences Between the ARM7TDMI-S and the ARM7TDMI 
B.2 ATPG scan interface

Where automatic scan path is inserted for automatic test pattern generation, three 
signals are instantiated on the macrocell interface: 

• SCANENABLE is LOW for normal usage, HIGH for scan test

• SCANIN is the serial scan path input

• SCANOUT is the serial scan path output.
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Differences Between the ARM7TDMI-S and the ARM7TDMI 
B.3 Timing parameters

The timing constraints have been adjusted to balance the external timing parameters 
with the area of the synthesized core. All inputs are sampled on the rising edge of CLK. 
The timing diagrams associated with these timing parameters are shown in Timing 
diagrams on page 8-2.

The clock enables are sampled on every rising clock edge:

• CLKEN setup time is tisclken, hold time is tihclken

• DBGTCKEN setup time is tistcken, hold time is tihtcken.

All other inputs are sampled on the rising edge of CLK when the clock enable is active 
HIGH:

• ABORT setup time is tisabort, hold time is tihabort, when CLKEN is active

• RDATA setup time is tisrdata, hold time is tihrdata, when CLKEN is active

• DBGTMS, DBGTDI setup time is tistctl, hold time is tihtctl, when DBGTCKEN 
is active.

Outputs are all sampled on the rising edge of CLK with the appropriate clock enable 
active: 

• ADDR output hold time is tohaddr, valid time is tovaddr when CLKEN is active 

• TRANS output hold time is tohtrans, valid time is tovtrans when CLKEN is active 

• LOCK, PROT, SIZE, WRITE control output hold time is tohctl, valid time is 
tovctl when CLKEN is active 

• WDATA output hold time is tohwdata, valid time is tovwdata when CLKEN is active. 

Similarly, all coprocessor and debug signal expansion signals are defined with input 
setup parameters of tis... , hold parameters of tih... , output hold parameters of toh... and 
output valid parameters of tov... .
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B.4 ARM7TDMI-S design considerations

When an ARM7TDMI hard macrocell design is being converted to the ARM7TDMI-S 
soft core, the following areas require special consideration:

• Master clock

• JTAG interface timing

• TAP controller

• Interrupt timing

• Interrupt timing.

B.4.1 Master clock

The master clock to the ARM7TDMI-S processor, CLK, is inverted with respect to 
MCLK used on the ARM7TDMI hard macrocell. The rising edge of the clock is the 
active edge of the clock, on which all inputs are sampled, and all outputs are causal.

B.4.2 JTAG interface timing

All JTAG signals on the ARM7TDMI-S processor are synchronous to the master clock 
input, CLK. When an external TCLK is used, use an external synchronizer to the 
ARM7TDMI-S processor.

B.4.3 TAP controller

The ARM7TDMI-S processor does not have a boundary scan chain. Consequently 
support for some JTAG instructions have been removed.

Optional JTAG specification instructions are:

• CLAMP
• HIGHZ
• CLAMPZ.

When scan chain 1 or scan chain 2 is selected, you can not use the EXTEST, SAMPLE, 
and PRELOAD instructions because:

• unpredictable behavior occurs

• instructions are only supported for designer added scan chains.

B.4.4 Interrupt timing

As with all ARM7TDMI-S processor signals, the interrupt signals nIRQ and nFIQ are 
sampled on the rising edge of CLK. 
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When you are converting an ARM7TDMI hard macrocell design where the ISYNC 
signal is asserted LOW, add a synchronizer to the design to synchronize the interrupt 
signals before they are applied to the ARM7TDMI-S processor.

B.4.5 Address-class signal timing

The address-class outputs (ADDR[31:0], WRITE, SIZE[1:0], PROT[1:0], and 
LOCK) on the ARM7TDMI-S processor all change in response to the rising edge of 
CLK. This means that they can change in the first phase of the clock in some systems. 
When exact compatibility is required, add latches to the outside of the ARM7TDMI-S 
processor to make sure that they can change only in the second phase of the clock.

Because the CLKEN signal is sampled only on the rising edge of the clock, the 
address-class outputs still change in a cycle in which CLKEN is LOW. (This is similar 
to the behavior of nMREQ and SEQ in an ARM7TDMI hard macrocell system, when 
a wait state is inserted using nWAIT.) Make sure that the memory system design takes 
this into account. 

Also make sure that the correct address is used for the memory cycle, even though 
ADDR[31:0] might have moved on to address for the next memory cycle.

For more details, see Chapter 3 Memory Interface.

B.4.6 ARM7TDMI signals not implemented on ARM7TDMI-S processor

The following ARM7TDMI signals are not implemented on the ARM7TDMI-S 
processor.

Table B-2 Unimplemented ARM7TDMI processor signals

Description Signal name

Bus enables ABEDBETBE

BiDirectional data bus D

Address timing control inputs ALEAPE

Byte latch controls BL

Data bus timing control signals BUSDISBUSE
NnENINnEN
OUTnENOUT
I

Mode output nM
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For more details on any of these signals, see the ARM7TDMI Technical Reference 
Manual.

Interrupt configuration signal ISYNC

Debug signals DBGRQIECL
K

JTAG expansion signals DRIVEBSEC
APCLKECAP
CLKBSHIGH
ZICAPCLKB
SIRnHIGHZP
CLKBSRSTC
LKBSSCREG
SDINBSSDO
UTBSSHCLK
BSSHCLK2B
STAPSMTCK
1TCK2

Table B-2 Unimplemented ARM7TDMI processor signals (continued)

Description Signal name
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vectors   2-24
watchpoint   5-45

Exceptions   2-19–2-25
Execute   1-2

F
F bit   2-17
Fetch   1-2

instruction   5-51
FIQ

disable bits   2-17
exception   2-21
mode   2-8
registers   2-10
see interrupts
valid   4-8

Flags
condition code   2-16

H
Halt mode   5-6, 5-7
Hardware breakpoints   5-53
High registers   2-14

I
I bit   2-17
ID register   5-27, 5-29, 5-31
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Input timing
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ARM   1-4
compression   1-4
fetch   5-51
pipeline   1-2
register   5-29, 5-31, 5-32
set   1-9
Thumb   1-4

Instruction cycle
timings   7-3

Instruction set
ARM   1-9
Thumb   1-18

Interface
ATPG scan   B-6
coprocessor   4-1
debug   5-12
JTAG   5-24
memory   1-3, 3-2
signals   B-2

Interrupt
mask enable   5-61

Interrupts   5-47
disable bits   2-17
latencies   2-26

INTEST
instruction   5-28
mode   5-34

IRQ
exception   2-21
mode   2-8
valid   4-8

J
JTAG

BYPASS   5-29
IDCODE   5-29, 5-32
interface   5-5, 5-24
INTEST   5-28
public instructions (summary)   5-28
RESTART   5-30
SCAN_N   5-28

L
Link register, see LR
Little-endian format   2-4
Load coprocessor register   7-23
Low registers   2-14
LR   2-9

M
Mask enable

interrupt   5-61
Memory

access   1-3
access cycles   2-22
access from debugging state   5-40, 

5-42
big-endian format   2-4
byte and halfword accesses   3-14
coprocessor register transfer cycle   

1-3
formats   2-4
idle cycle   1-3
interface   1-3, 3-2
little-endian format   2-4
nonsequential cycle   1-3
sequential cycle   1-3
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big endian   2-4

Memory formats
big-endian   2-4
little-endian   2-4

Mode
abort   2-8
FIQ   2-8
IRQ   2-8
operating   2-8
privileged   2-8, 4-16
PSR   2-17
PSR bit values   2-17
Supervisor   2-8
system   2-8
undefined   2-8, 2-23
User   2-8
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Monitor mode   5-6, 5-18
Multi-ICE   5-10

N
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nIRQ   2-21, A-5
nRESET   2-27

O
Operating modes   2-8
Operating state

ARM   2-3
Thumb   2-3

Operating states
switching   2-3
transition   2-3

P
PC   1-3, 2-3, 2-9, 2-12, 2-13
Pipeline

follower   4-5
instruction   1-2

Porting considerations   B-10
Prefetch Abort   2-22
Privileged instructions   4-16
Privileged modes   2-8, 2-21, 4-16
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state   5-39
Program Counter, see PC
Program Status Register, see PSR
Programming EmbeddedICE   5-9
PROT   5-51
Protocol converter   5-4
PSR   2-17

control bits   2-17
format   2-16
mode bit values   2-17
reserved   2-18

Public instructions   5-28
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Range   5-52, 5-53, 5-54, 5-55, 5-62, 

5-63
Register

control value   5-52
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abort mode   2-10
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5-20
debug control

DBGACK   5-59
DBGRQ   5-58

FIQ   2-10
general-purpose   2-9
high   2-14
instruction   5-29, 5-31, 5-32
IRQ   2-10
low   2-14
status   2-9
supervisor mode   2-10
Thumb state   2-12
undefined mode   2-10
User mode   2-10
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address mask   5-53, 5-54
BYPASS   5-29
bypass   5-31
control mask   5-48, 5-50
control value   5-48, 5-50
data mask   5-48
data value   5-48
EmbeddedICE   5-34
EmbeddedICE accessing   5-25, 5-33
EmbeddedICE debug status   5-39
ID   5-31
instruction   5-29, 5-31, 5-32
scan path select   5-31, 5-32
scan path select register   5-28
status   5-60
status register   5-39
test data   5-31
watchpoint address mask   5-48
watchpoint address value   5-48

Reserved bits
PSR   2-18

Reset
nRESET   2-27

RESTART

on exit from debug   5-30
RESTART instruction   5-30, 5-41, 5-42
Return address calculation   5-46
Returned TCK, see RTCK
RTCK   5-10
RUN-TEST/IDLE state   5-30, 5-42

S
Saved Program Status Register, see 

SPSR
Scan

input cells   5-29
interface timing   5-36
limitations   5-24
output cells   5-29
path   5-28
paths   5-24

Scan cells   5-29, 5-33
Scan chain

selected   5-28
Scan chain 1   5-24, 5-31, 5-34, 5-36, 

5-39, 5-40, 5-41, 5-44
Scan chain 1 cells   5-36
Scan chain 2   5-24, 5-31, 5-34, 5-48
Scan chains   5-24, 5-33

number allocation   5-33
Scan path select register   5-28, 5-31, 

5-32
SCAN_N   5-28, 5-32, 5-34
SHIFT-DR   5-27, 5-28, 5-29, 5-34
SHIFT-IR   5-32
Signals compared to

hard macrocell
ARM7TDMI   B-2

Single-step core operation   5-29
SIZE   3-10, 5-51, A-6
Software breakpoints   5-53, 5-54

clearing   5-54
programming   5-54
setting   5-53, 5-54

Software Interrupt Instruction, see SWI
SP   2-12, 2-13
SPSR   2-9
Stack Pointer, see SP
State

ARM   1-4
CAPTURE-DR   5-28, 5-29

processor   5-39
register set

ARM state   2-9
SHIFT-DR   5-27, 5-28, 5-29, 5-31
Thumb   1-4
UPDATE-DR   5-28, 5-29, 5-30
UPDATE-IR   5-32

Status registers   2-9
Store coprocessor register   7-25
Supervisor mode   2-8, 2-23
SWI   2-23
System mode   2-8
System speed

instruction   5-41, 5-46
System state

determining   5-40

T
T bit   2-17, 2-27
TAP

controller   5-5, 5-14, 5-24, 5-26
controller state

transitions   5-26
instruction   5-32
state   5-34

Test Access Port, see TAP
Test data registers   5-31
Thumb

code   1-5
instruction set   1-4, 1-9
operating state   2-3
registers   2-12

Thumb instruction set   1-18
Thumb state   1-4
Timing parameters   B-7
Transitions

TAP controller state   5-26

U
Undefined instruction   2-8, 2-23

handling   4-15
trap   2-23, 4-2, 4-14, 4-15, 4-16, 

7-29
Undefined mode   2-8
Unexecuted instruction   7-30
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EmbeddedICE   5-53
externally generated   5-7
programming   5-55
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unit   5-55
units   5-48
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Watchpoint 0   5-64
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WRITE   5-51
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