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Preface

 

This preface introduces the Arm® Mali™ RenderScript Best Practices Developer Guide.

It contains the following:
• About this book on page 6.
• Feedback on page 7.

 

101144_0200_00_en Copyright © 2019 Arm Limited or its affiliates. All rights reserved. 5
Non-Confidential



 About this book
This book describes the RenderScript best practices for Arm® Mali™ GPUs.

 Intended audience

This book is for developers working with RenderScript on Arm Mali™ Midgard, Bifrost, or Valhall
GPUs. It is intended to be used in addition to Google RenderScript documentation, and provides Mali
GPU-specific advice.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces RenderScript.

Chapter 2 RenderScript kernel best practices
This chapter describes best practices and other performance considerations for RenderScript
kernels.

Appendix A Revisions
This appendix describes the changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• Arm® Mali™ Bifrost and Valhall OpenCL Developer Guide (ARM 101574).
• Arm® Mali™ Midgard OpenCL Developer Guide (ARM 100614).

See https://developer.arm.com for access to Arm documentation.

Other publications
None

 Preface
 About this book
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 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Mali RenderScript Best Practices Developer Guide.
• The number 101144_0200_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note 

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback
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Chapter 1
Introduction

This chapter introduces RenderScript.

It contains the following section:
• 1.1 About RenderScript on page 1-9.
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1.1 About RenderScript
RenderScript is a language and API in Android OS that enables you to use different processors for
compute intensive tasks.

RenderScript applications can be written to make optimal use of the GPU acceleration capabilities
offered by the Mali RenderScript GPU accelerator.
• For an overview of RenderScript, see https://developer.android.com/guide/topics/renderscript/

compute.
• The RenderScript Java API is documented here https://developer.android.com/reference/android/

renderscript/RenderScript.
• The RenderScript runtime API is documented here https://developer.android.com/guide/topics/

renderscript/reference/overview.

1 Introduction
1.1 About RenderScript
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Chapter 2
RenderScript kernel best practices

This chapter describes best practices and other performance considerations for RenderScript kernels.

It contains the following sections:
• 2.1 Using global variables on page 2-11.
• 2.2 Use allocation usage flags on page 2-12.
• 2.3 Avoid casting user-defined data on page 2-13.
• 2.4 Avoid recursive root functions on page 2-14.
• 2.5 Use RenderScript intrinsic functions on page 2-15.
• 2.6 Consider numerical precision on page 2-16.
• 2.7 Debugging properties on page 2-17.
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2.1 Using global variables
How to use global variables in RenderScript.

Minimize the number and size of global variables used in your kernels

To enable hardware to accelerate global variables in root functions, the global variables are copied by the
RenderScript runtime. The copy operations take time, so try to minimize them. Instead of using global
variables, try passing all input to a root function with the input and output allocations. If you do this in
invokable helper functions, it is unrestricted because the invokable functions always execute on the
application processor.

Pack the data into one allocation. For example:

void root(const float2* in, float* out, uint32_t x) 
{ 
*out = in->x + in->y; 
} 

Avoid this type of construct:

rs_allocation array; //global allocation, same size as the input/output
                
void root(const float* in, float* out, uint32_t x)
{
*out = *in + rsGetElementAt_float(array, x);
}

Avoid writing to global variables

Writing to global variables within a kernel can degrade performance because it reduces the opportunity
to apply performance optimizations. For example:

int global_var; 
            
void root(const float* in, float* out) 
{ 
//reading from the global variable is ok 
int tmp = global_var; 
//avoid writing to the global variable. 
global_var = 1; 
}

There is no restriction on using global variables in invokable helper functions. This is because invokable
functions always execute on the application processor.

2 RenderScript kernel best practices
2.1 Using global variables
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2.2 Use allocation usage flags
To ensure an allocation is supported on the GPU, include the USAGE_SCRIPT flag.

If an allocation does not have the USAGE_SCRIPT flag set, it is not supported on the GPU. If usage
flags are not specified, an allocation is marked with USAGE_SCRIPT by default. However, an allocation
might not have its USAGE_SCRIPT flag set, if it is explicitly marked with other flags. If a root function
uses an unsupported allocation, it executes on the application processor.

If you are setting usage flags on an allocation, ensure that USAGE_SCRIPT is also added. The following
example explicitly includes USAGE_SCRIPT:

Allocation.createTyped( 
    mRS, 
    typeBuilder.create(), 
    MipmapControl.MIPMAP_NONE, 
    //OR'd with USAGE_SCRIPT flag, acceleration enabled. 
    Allocation.USAGE_GRAPHICS_TEXTURE | Allocation.USAGE_SCRIPT 
);

The following example does not include USAGE_SCRIPT and is not usable on the GPU:

Allocation.createTyped( 
    mRS, 
    typeBuilder.create(), 
    MipmapControl.MIPMAP_NONE, 
    //Not marked with USAGE_SCRIPT, GPU acceleration disabled. 
    Allocation.USAGE_GRAPHICS_TEXTURE 
);

If the allocation is marked with USAGE_IO_INPUT or USAGE_IO_OUTPUT, the allocation is not
supported on the GPU, even if you set USAGE_SCRIPT. For example:

Allocation.createTyped( 
    mRS, 
    typeBuilder.create(), 
    MipmapControl.MIPMAP_NONE, 
    //USAGE_IO_INPUT is not currently supported on the GPU, this allocation is CPU-only 
    Allocation.USAGE_IO_INPUT | Allocation.USAGE_SCRIPT 
);

2 RenderScript kernel best practices
2.2 Use allocation usage flags
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2.3 Avoid casting user-defined data
Do not cast user-defined data to a different type, or reference data beyond the type referenced by the
pointer.

Casting user-defined data to a different type, or reference data beyond the type referenced by the pointer,
is not good practice, because it limits the scope of possible optimizations. For example:

typedef struct { 
    int val; 
} user_data_t; 

void root(int * out, user_data_t * user) 
{ 
    user_data_t * other_value = &(user[1]); 
    *out = other_value->val; 
}

2 RenderScript kernel best practices
2.3 Avoid casting user-defined data
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2.4 Avoid recursive root functions
Do not implement root functions using direct or indirect recursion.

Recursive functions always execute on the application processor. They do not execute on the GPU.

2 RenderScript kernel best practices
2.4 Avoid recursive root functions
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2.5 Use RenderScript intrinsic functions
RenderScript intrinsic functions are high-performance implementations of functions.

The intrinsic functions outperform any equivalent function written in RenderScript.

Use the following intrinsic functions where possible to increase the performance of your application:
• Blend()
• Blur()
• ColorMatrix()
• Convolve3x3()
• Convolve5x5()
• Histogram()
• LUT()
• YUVtoRGB()

For more details on intrinsic functions, see https://developer.android.com/reference/android/renderscript/
ScriptIntrinsic.

2 RenderScript kernel best practices
2.5 Use RenderScript intrinsic functions
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2.6 Consider numerical precision
The numerical precision of some built-in functions can vary across different functions.

The numerical precision of the following built-in functions can vary across different functions when they
are accelerated on the GPU:
• cospi()
• sinpi()
• tanpi()
• dot()
• mix()

If your application is sensitive to numerical precision and uses one or more of these functions, test your
script on different devices to ensure the range of results is within acceptable limits.

For more details on these built-in functions, see RenderScript runtime API documentation.

2 RenderScript kernel best practices
2.6 Consider numerical precision
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2.7 Debugging properties
RenderScript includes the debug.rs.default-CPU-driver and debug.rs.script debugging properties.

debug.rs.default-CPU-driver
Values = 0 or 1
Default value = 0
If set to 1, the Android Open Source Project (AOSP) implementation of RenderScript Compute
is used. This does not use any GPU features.

debug.rs.script
Values = 0 or 1
Default value = 0

If set to 1, additional diagnostic information is printed in the logcat. This information includes
the actual device a kernel is running on, either GPU or application processor.

If a kernel cannot be run on the GPU more detailed information is provided explaining why. For
example:

[RS-DIAG] No support for recursive calls on GPU

2 RenderScript kernel best practices
2.7 Debugging properties
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Appendix A
Revisions

This appendix describes the changes between released issues of this book.

It contains the following section:
• A.1 Revisions on page Appx-A-19.
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A.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table A-1  Issue 0100_00

Change Location Affects

First release. - All.

Table A-2  Issue 0200_00

Change Location Affects

Added Valhall applicability. Various. All.

A Revisions
A.1 Revisions
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