
Cycle Model Studio
Version 9.2

Cycle Model Compiler Verilog and SystemVerilog
Language Support Guide

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.
ARM 100972_0902_00_en

Cycle Model Studio
Cycle Model Compiler Verilog and SystemVerilog Language Support Guide
Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0902-00 25 May 2017 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2017, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

 Cycle Model Studio

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Cycle Model Studio

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
Cycle Model Studio Cycle Model Compiler Verilog
and SystemVerilog Language Support Guide

Preface
About this book 7

Chapter 1 Introduction
1.1 Compilation Specifications 1-10
1.2 Compiler response to unsupported constructs 1-11

Chapter 2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.1 General Constructs .. 2-13
2.2 Net Types 2-17
2.3 Synthesizable Subset .. 2-18
2.4 Behavioral Constructs 2-19
2.5 Gate-level Constructs .. 2-20
2.6 Hierarchical References 2-21
2.7 Switch-level Constructs 2-22
2.8 User-defined Primitives 2-23
2.9 System Tasks 2-24
2.10 Format specifications 2-26
2.11 Z State Propagation 2-27
2.12 Arrays 2-29
2.13 Unions 2-30
2.14 Structures 2-31

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 4
Non-Confidential

2.15 Interfaces 2-32
2.16 Data Types 2-33

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the Cycle Model Studio Cycle Model Compiler Verilog and SystemVerilog
Language Support Guide.

It contains the following:
• About this book on page 7.

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 6
Non-Confidential

 About this book
This document describes the Cycle Model Compiler support for the Verilog and SystemVerilog
languages.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This section provides basic information about using the Cycle Model Compiler.

Chapter 2 Verilog 95, Verilog 2001, and SystemVerilog Support
This section covers the supported subset of the language constructs provided by the Cycle Model
Compiler software for Verilog 95, Verilog 2001, and SystemVerilog (2012) design files.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Preface
 About this book

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 7
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Cycle Model Studio Cycle Model Compiler Verilog and SystemVerilog Language Support
Guide.

• The number ARM 100972_0902_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Developer.
• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction

This section provides basic information about using the Cycle Model Compiler.

It contains the following sections:
• 1.1 Compilation Specifications on page 1-10.
• 1.2 Compiler response to unsupported constructs on page 1-11.

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 1-9
Non-Confidential

1.1 Compilation Specifications
This section provides information about Cycle Model Compiler compilation modes.

Specifying compilation mode

By default, the Cycle Model Compiler processes design files using the Verilog 95 language definition
(IEEE 1634-1995).

To enable Verilog-2001 compilation mode, use the -2001 option. This includes partial support for
Verilog-2005 (IEEE Std 1364-2005) language features. All files encountered during the compilation are
treated as Verilog 2001. Note that you may also use -2000 or -v2k to enable this compilation mode;
these three options are equivalent.

To enable SystemVerilog compilation mode, use the -sverilog option. All Verilog files encountered
during compilation are treated as SystemVerilog source files.

Full and partial compilation

The Cycle Model Compiler does not support partial compilation using compilation units as described in
Section 3.12.1 of the Language Standard; full compilation is supported. This means that you must
include a specification of all Verilog files when you issue the cbuild command.

1 Introduction
1.1 Compilation Specifications

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 1-10
Non-Confidential

1.2 Compiler response to unsupported constructs
This section describes Cycle Model Compiler behavior in response to unsupported or ignored constructs.

If the Cycle Model Compiler encounters a construct that is unsupported, it:
• issues a warning and continues, or
• issues an alert or error and exits.

In cases where errors are reported, the offending constructs must be removed through remodeling. In
cases where an alert is reported, the construct must be fixed or the alert demoted. For information about
demoting alert severity, see the compiler directives described in the Cycle Model Compiler User Manual
(ARM DUI0957).

If the Cycle Model Compiler encounters a construct that is ignored, it may or may not issue a message
and will continue compiling.

1 Introduction
1.2 Compiler response to unsupported constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

Chapter 2
Verilog 95, Verilog 2001, and SystemVerilog
Support

This section covers the supported subset of the language constructs provided by the Cycle Model
Compiler software for Verilog 95, Verilog 2001, and SystemVerilog (2012) design files.

It contains the following sections:
• 2.1 General Constructs on page 2-13.
• 2.2 Net Types on page 2-17.
• 2.3 Synthesizable Subset on page 2-18.
• 2.4 Behavioral Constructs on page 2-19.
• 2.5 Gate-level Constructs on page 2-20.
• 2.6 Hierarchical References on page 2-21.
• 2.7 Switch-level Constructs on page 2-22.
• 2.8 User-defined Primitives on page 2-23.
• 2.9 System Tasks on page 2-24.
• 2.10 Format specifications on page 2-26.
• 2.11 Z State Propagation on page 2-27.
• 2.12 Arrays on page 2-29.
• 2.13 Unions on page 2-30.
• 2.14 Structures on page 2-31.
• 2.15 Interfaces on page 2-32.
• 2.16 Data Types on page 2-33.

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-12
Non-Confidential

2.1 General Constructs
This section describes the Cycle Model Compiler Verilog construct support.

Supported Constructs
• modules (macromodule) and instances.
• Endmodule : <modulename> construct.
• ANSI and non-ANSI style port declarations.
• identifiers (including escaped identifiers).
• memories (2 or more dimensional reg arrays). Maximum bit size of the array is 232 bits. See also

memory index expressions in the Limited Support section.
• parameters, localparams, and parameterized instances.
• bit selects and variable indices.
• strings: called "string" in Verilog 2001, and called "string literal" in SystemVerilog.
• Verilog compiler directives: `define, `default_nettype, `ifdef, `ifndef, `else, `endif,

`undef, `include, `resetall, `timescale.By default, `define ARM_CM is defined for all Verilog
and SystemVerilog design files.

For conditional code blocks: Conditional code blocks must open (`ifdef, `ifndef) and close
(`endif) in the same file. For example, placing an `ifdef in one file and its corresponding `endif in
an `included file is illegal. `else directives must also be placed in the same file as their associated
`ifdef or `ifndef.

Similarly, when used in a `protected section, conditional code blocks must open and close within
that section. When used in a file with one or more `protected sections, paired `ifdef and `endif
directives must be placed outside of `protected sections. For example, placing an `ifdef in a file
and its corresponding `endif inside of a `protect/`endprotect is not supported.

• Unsized Constants. These constants are sized according to the rules in the Language Standard.
• ifnone Conditions. As mandated by the Language Standard, only simple module paths may be

described with an ifnone condition.
• cast operator (') (For example, casting_type ' (expression)).
• Integer declared in begin/end block.
• Integer/genvar declared as localParam.
• Use of inc_or_dec operator (++ or --).
• Use of combined assignment operators such as += , |=, &=.
• Timeunit and timeprecision.
• User-defined types defined with the typedef syntax.
• Use of packages to define typedefs, enums, and functions.
• Output and inout ports for functions (independent of port data type).
• Ignoring the value returned by a function.
• Continuous assigns to reg, and blocking and non-blocking assigns to logic.
• static and automatic qualifiers to distinguish between variables within functions, tasks, or

procedural blocks.

Limited Support
• Enumeration declaration with typedef syntax, and usage of variables and values declared with this

type. The built-in functions .first(), .last(), and .size() are supported. The built-in
functions .next(), .prev(), and .name() are not supported.

• Port specifications in module declarations are generally supported; however the following cases are
not supported: Concatenation expressions in the module declaration port list are not supported:

module foo ({a,b}, .d{e,f});

A bit or part select that is not for the full identifier is not supported:

module foo (in1[3:1]) ; // full width not selected
 input [3:0] in1;

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.1 General Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-13
Non-Confidential

Multiple occurrences of the same identifier in a module declaration is not supported, except when all
bits are specified and listed in declaration order:

module foo (b[2], b[1], b[0]) // supported
 input [2:0] b;
module foo (a, a); // not supported
 input a;

• Multiple driven nets. The Cycle Model Compiler selects a driver and does not perform conflict
resolution; the exception is tristates, which are handled correctly.

• Specify blocks The Cycle Model Compiler does not ignore specify blocks, however it does ignore
most of the contents of specify blocks. Only the following two optional and implicit connections are
recognized: 1) between the net of the reference_event and the delayed_reference net, and 2)
between the net of the data_event and the delayed_data net.

If the $setuphold includes a specification for a delayed_reference net and it is the same width as
the net of the reference_event, then a continuous assignment is created: assign
delayed_reference = reference_event_net;.

If the $setuphold includes a specification for a delayed_data net and it is the same width as the net
of the data_event, then a continuous assignment is created: assign delayed_data =
data_event_net;.

The partial support provided for $setuphold does not include the timing check that is specified by
the $setuphold.

• Memory index expressions. The Cycle Model Compiler does not support memory index expressions
that are wider than 32 bits. If a memory index expression wider than 32 bits is found, the Cycle
Model Compiler prints a warning and truncates the expression to the least significant 32 bits. The
Cycle Model Compiler implements the equivalent of the following transformation: Original Verilog:

 ...
 reg [7:0] mem [1023:0];
 reg [63:0] index;
 ...
 always @(...) begin
 mem[index] = value;

The Cycle Model Compiler transformation:

 ...
 reg [7:0] mem [1023:0];
 reg [63:0] index;
 reg [31:0] short_index;
 ...
 always @(...) begin
 short_index = index[31:0];
 mem[short_index] = value;
 end
 ...

In addition, the Cycle Model Compiler prints an error if it finds that it must truncate an index
expression and the memory has been declared with a range that includes negative values.

• Support for the exponent operator (a ** b) is limited as follows: At least one of the bases or
exponents must be a constant.

For non-constant bases the exponent must be a constant power of 2.

For non-constant exponents the base must be a constant power of 2.
• Hierarchical references to variables.
• Variables in SystemVerilog functions default to static or automatic as defined in the Language

Standard. Static variables can be initialized provided that initialization does not depend on an
automatic or port.

• Inout ports with an associated memory type are not supported. Inout ports with structure or union
type are supported, provided that they do not contain nested memories.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.1 General Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-14
Non-Confidential

• The function $clog2() is supported in the case where the argument is a constant. The following alert
is emitted if the argument is non-constant: Alert 3271: Non-constant argument for $clog2 is
unsupported.

• The priority, unique, and unique0 keywords are ignored, but do not cause errors. The related
Violation Checks are not performed and Violation Reports are not created. A warning is emitted that
states that these keywords are ignored. The associated case or if-then-else statements are executed as
specified in the Language Standard.

• Wildcard equality binary operators (==? and !=?) are supported only when the right-hand operand is
a constant. For example:

 a ==? 3'b1x0; // supported
 3'b00x ==? c; // not supported

• case inside is fully supported except when ‘x’, ‘z’ or ‘?’ values appear in the case select
expression. If ‘x’, ‘z’ or ‘?’ values are specified in the case select expression, the following alert is
printed:

Alert 3273: 'x','z','?' values are unsupported for case statement select expression.

The following table shows examples of supported and unsupported case inside expressions. In this
table, a, b, and c are variables:

Table 2-1 Supported and unsupported case inside expressions

Supported Unsupported

Case (a) inside
4’b10x0:
4’b1xz1:
4’b??00:

Case (4’b1x10) inside
4’b10x0:
4’b1xz1:
4’b??00:

Case (4’b1010) inside
a:
b:
4’b1010:

Case (4’b1?zx) inside
a:
b:
4’b1010:

• If you use the always_comb, always_ff, or always_latch construct, be aware of the following
limitations: Section 9.2.2.2 of the Language Standard specifies that variables written on the left-hand
side of assignments must not be written to by other processes. The Cycle Model Compiler does not
perform this check or issue a warning if this language requirement is not met.

The Cycle Model Compiler does not check or warn you if the logic within the always_comb does not
represent combinational logic. Similarly, checks are not performed and warnings are not issued if the
logic within always_ff does not represent flip-flop logic, or if the logic within always_latch does
not represent latch logic.

Auto-trigger of the body of the block may not be performed at time 0.

Implicit sensitivity list of always_comb blocks may not include inputs to functions called from within
the always_comb construct.

• Using the conditional operator (?:) with aggregate expressions and integral types is supported.
However, using the conditional operator with nonintegral types like Realis not supported.

• The following name spaces, defined in Section 3.13 of the Language Standard, are supported:
definitions

package

compilation-unit scope (see 1.1 Compilation Specifications on page 1-10 for information about
supported compilation units.)

text macro

module, with the exception of the checkers because checkers are not supported.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.1 General Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-15
Non-Confidential

block

port

The attribute name space is not supported.
• Using disable to disable blocks, tasks, loops, and non_local blocks is partially supported. See

2.4 Behavioral Constructs on page 2-19 for more information.)
• Task argument passing and function argument passing by value, default argument values, binding by

name, or optional argument list is supported. Task argument passing and function argument passing
by reference is not supported. Default argument groups are not supported.

Unsupported
• $cast dynamic casting function.
• realtime data type.
• Libraries, library map files (Language Standard, 1364-2001 sec 13.1.1, or 1800-2012 section 33.3).
• Recursive tasks and functions.
• Final blocks.
• Streaming operators {<<{}} and {>>{}}.
• Binary operators with arguments of type real or shortreal.
• string type.
• Automatic conversion of shortreal type to integer type.
• Calling a nonvoid function that requires no arguments without parentheses () is not supported. For

example: i = foo() + 42 is supported

i = foo + 42 is not supported
• Conditional operators &&& and matches.
• Selection statements used in if, case, and pattern matching operators (&&& and matches).
• The keywords unique, unique0 and priority are ignored. The violation checks and reports that

they enable are not generated. The behavior of the case or if-then-else statements that include these
keywords are handled as defined in the Language Standard.

• Jump statements.
• Port declarations to ref port types (also known as ref port direction); the Cycle Model Compiler

handles these as if they are hierarchical references.
• Compilation by unit (by unit scope or using $unit).
• Top-level instances of $root and reference to objects using $root.name.
• Nested modules (modules declared within modules).
• The ability to select configuration libraries.
• Format specifications related to assignment patterns and net strength ($display specifications such

as %P, %0P, and %V).
• Extensions for handling packed data ($readmemb and $readmemh, $writememb and $writememh),

including file format considerations.
• Time literals are not supported (Language Standard 2012, sec 5.8).
• Bounded queues.
• The SystemVerilog attribute syntax (for example, (*full_case*) is ignored. See the IEEE Language

Standard 2012, section 5.12, for the syntax.
• Event control using @.
• Task and function argument passing by reference ref.
• Associative Arrays (Language Standard 1800-2012, section 7.8).
• Queues (Language Standard 1800-2012, section 7.10).
• Array Querying Functions (Language Standard 1800-2012, section 7.11).
• Classes (Language Standard 1800-2012, section 8).
• Bit select or part select starting from 65536 of a vector wider than 64K might cause a simulation

mismatch.

Ignored
• delays#. For example, in a = #5 b; the #5 is ignored.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.1 General Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-16
Non-Confidential

2.2 Net Types
This section describes the Verilog Net Types supported by the Cycle Model Compiler.

Supported
• tri
• trireg
• tri1, tri0
• wire

Limited support
• wor, wand, trior, triand. These are treated as wire; the Cycle Model Compiler issues an alert and

selects only one driver

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.2 Net Types

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

2.3 Synthesizable Subset
In general, the Cycle Model Compiler supports the Synthesizable Subset of the Verilog language. This
section provides details about this support.

Supported
The following aspects of the Synthesizable Subset are supported:
• always constructs that can be mapped into flops with 1 clock and asynchronous sets and resets;

limited to one edge per signal.
• always constructs that can be mapped into latches with 1 clock and asynchronous sets and resets.
• always constructs that can be mapped to purely combinational logic.
• blocks (begin-end and named).
• blocking and non-blocking assignments.
• conditional statements.
• full_case and parallel_case in comments.
• translate_off/translate_on.
• tasks and functions.
• genvars.
• generate blocks that contain any of the following: declarations of variables, UDPs, gate primitives,

continuous assignments, initial blocks, always blocks, functions, and tasks.
• generate statements: generate-loop (generate-for), generate-conditional (generate-if),

and generate-case. Generate blocks that contain module instantiations are also supported.

Limited Support
The following aspects of the Synthesizable Subset have limited support:
• initial blocks with statements that can be evaluated to constants, or expressions that evaluate to

constants, are supported. initial blocks with statements that cannot be evaluated to a constant are
not supported.

Unsupported
The following aspects of the Synthesizable Subset are unsupported:
• procedural continuous assignments.
• implicit state machines in always or initial blocks.
• UDFs.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.3 Synthesizable Subset

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

2.4 Behavioral Constructs
This section describes the Cycle Model Compiler support for Verilog behavioral constructs.

Fully Supported Constructs
• for statements
• repeat statements
• sensitivity lists
• while statements

Supported with Limitations
• disable. The target of the disable statement must be within the execution scope of the disable

statement and must not be a hierarchical reference.

Consider the following where only the first disable statement is supported because it is within the
execution of the target block.

 always @(posedge clock)
 begin
 begin : block_1
 if (a == 0)
 disable block_1; // supported
 else
 task1();
 end
 disable block_1; // not supported
 end

 always @(posedge clock)
 begin
 begin : block_2
 if (a == 0)
 disable block_1; // not supported
 end
 disable block_1; // not supported
 end

In addition, disable statements are only supported when the target is not a hierarchical reference. For
example:

 always @(...)
 begin
 if (in1 | in2)
 disable task1a.b1; // not supported
 end

Unsupported
• events
• force and release
• fork-join blocks

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.4 Behavioral Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-19
Non-Confidential

2.5 Gate-level Constructs
This section lists the Verilog gate-level constructs supported by the Cycle Model Compiler.

Supported
• and
• nand
• or
• nor
• xor
• xnor
• buf
• bufif1, bufif0
• not
• notif1, notif0

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.5 Gate-level Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-20
Non-Confidential

2.6 Hierarchical References
This section describes the Cycle Model Compiler Verilog support for hierarchical references.

Limited Support

The Cycle Model Compiler supports hierarchical references only to nets, tasks, and functions.
Hierarchical references to anything other than nets, tasks, and functions are not currently supported.

Unsupported

A hierarchical reference to a net declared under a task or function is not supported.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.6 Hierarchical References

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-21
Non-Confidential

2.7 Switch-level Constructs
This sections describes the Verilog support for switch-level constructs.

Supported
Supported switch-level constructs are:
• cmos
• nmos
• pmos

Limited support
The following switch-level constructs have limited support:
• pullup sources are supported with the restriction: If a pullup source is connected to one or more bits

of a vector, then a pullup source must be connected to all other bits of that vector.
• pulldown sources are supported with the restriction: If a pulldown source is connected to one or more

bits of a vector then a pulldown source must be connected to all bits of that vector.
• strength ordering is supported, but limited to strong and pull strengths; strength propagation is not

supported
• rcmos (converted to cmos).
• rnmos (converted to nmos).
• rpmos (converted to pmos).

Unsupported
Unsupported switch-level constructs are:
• tran (alias), rtran
• tranif1, tranif0
• rtranif1, rtranif0

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.7 Switch-level Constructs

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

2.8 User-defined Primitives
The Cycle Model Compiler supports most commonly-modeled User-defined Primitives (UDPs), thereby
decreasing the time required to compile a design and move it into a test environment.

Supported
Latch models such as the following are supported:

 Note

UDP descriptions generally do not yield the best performance from generated objects. ARM encourages
replacing UDPs with RTL models whenever possible.

 table
 //D G : Q : Qnext
 1 1 : ? : 1
 0 1 : ? : 0
 ? 0 : ? : -
 endtable

Limited Support
The following have limited support:
• Notifiers - UDPs with notifiers are handled; the notifier itself is ignored.
• Special optimization of separate Q, Qbar - Often Q and Qbar of a single flop are modeled with

separate UDPs. The Cycle Model Compiler optimizes the result to a single state element, but it may
not always do so. In such cases, performance may be improved by remodeling the UDP pair, or
adding UDP pair optimization to recognize this common situation.

Unsupported
The following are unsupported:
• Latch models such as the following:

 table
 // D G : Q : Qnext
 (01) 1 : ? : 1
 (10) 1 : ? : 0
 1 * : ? : 1
 0 * : ? : 0
 ? 0 : ? : -
 endtable

• Level behavior or combinational logic modeled with edges.
• Look-up-table implementation of UDPs.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.8 User-defined Primitives

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

2.9 System Tasks
This section describes the Cycle Model Compiler support for Verilog system tasks.

Fully Supported Constructs
• $dumpvar variants
• $fsdbDumpvar variants
• $stop
• $time

Supported with Limitations
 Note

The system tasks $fclose, $fflush, $sformat, $display, $fdisplay, $fwrite, and $fopen, must be
enabled with the -enableOutputSysTasks command line option. Otherwise, the Cycle Model Compiler
issues a warning and ignores them. See the information about -enableOutputSysTasks in the ARM
Cycle Model Compiler Guide (ARM DUI0957) for more information.

• $fclose
• $fflush
• $sformat
• $display. $display is supported. $display{b,h,o} is not supported.
• $fdisplay. $fdisplay is supported. $fdisplay{b,h,o} is not supported.
• $fopen. Filenames must be constants at design compile time. The following examples show uses of

filenames with $fopen.

 $fopen("file1.dat"); // supported; filename is a constant
 reg [72:1] filename1;
 ...
 initial
 begin
 filename1 = "file2.dau";
 filename1[1] = 1'b0; // change file extension from
 // .dau to .dat
 end
 $fopen(filename1); // supported; filename is a constant at
 // Cycle Model Compiler runtime
 --
 reg [72:1] filename2;
 ...
 initial
 begin
 filename2 = "file2.dau";
 if (in1) filename2[1] = 1'b0; // conditionally change
 // extension from .dau to .dat
 end
 $fopen(filename2); // not supported; filename is not
 // a constant at Cycle Model Compiler runtime

• $readmemb and $readmemh. Filenames specified as strings (such as data.dat) are supported.
Filenames specified with variables are not supported.

• $fwrite. $fwrite is supported. $fwrite{b,h,o} is not supported.
• $write. $write is supported. $write{b,h,o} is not supported.

Unsupported
Use of the following is not supported:
• $bitstoreal
• $exit
• $feof
• $fgetc
• $fgets
• $fread
• $fmonitor{b,h,o}

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.9 System Tasks

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

• $fscanf
• $fseek
• $fstrobe{b,h,o}
• $finish
• $ftell
• $itor
• $monitor
• $monitor {b,h,o,on,off}
• $random
• $realtime
• $realtobits
• $recordon
• $rewind
• $rtoi
• $sformatf
• $stime
• $sscanf
• $strobe{b,h,o}
• $swrite{b,h,o}
• $timeformat
• $ungetc
• $writemem{b,h}

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.9 System Tasks

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

2.10 Format specifications
This section describes the Cycle Model Compiler support related to Verilog format specifications.

Supported
• The following format specifications for real numbers are supported: %e, %f, and %g.
• The following escape sequences used for format specifications are supported, as defined in the

Verilog standard (IEEE Std 1364-2005): %h, %d, %o, %b, %c, %m, %s, %t, %u, and %z.

 Note

The %u and %z format specifiers are supported only for the $fwrite system output function.

 Note

The current implementation produces only zeros and ones, not x or z values, for %h, %o, %b, %v, and %z.

Unsupported
• %l and %v format specifiers. As described in 2.1 General Constructs on page 2-13, libraries and

library map files are not supported.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.10 Format specifications

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-26
Non-Confidential

2.11 Z State Propagation
This section describes the Cycle Model Compiler support for Z state propagation.

Supported

The Cycle Model Compiler has limited support for Z state propagation. The Z propagation is supported
in simple assignment statements only. For example, in the following sample the Z state is propagated to
dout.

 module top(clk, rst, dout, re, din);

 input rst, re, clk;
 input [3:0] din;
 output [3:0] dout;

 reg [3:0] dtemp;

 always @(posedge clk)
 if (re)
 dtemp <= din;
 else
 dtemp <= 'bz;

 assign dout = dtemp;

 endmodule

Z propagation is implemented using aliasing, therefore any pullup or pulldown on one of the nets is
applied to both nets. This can cause a simulation mismatch between the Cycle Model and other event-
driven simulators.

Unsupported
The following cases are not supported:
• Any directives applied to the nets used in the assignment stop the Z propagation from occurring

because aliasing does not occur.
• The Cycle Model Compiler does not support cases in which both of the nets in the assign are formal

module ports, as in the following example:

 module top(b1, b2, en, d);
 output b1;
 output b2;
 input en,d;
 assign b1 = b2;
 assign b2 = en ? d : 'bz;
 endmodule

Usage notes
The following warnings can be reported when either the net is undriven (weakly driven) or one of the
nets in the chain is undriven (weakly driven). An example for each type of warning is shown in the
following examples:
• Warning 4020: Net is undriven
• Warning 4063: Net is weakly driven.

Undriven example:

 module top(b1);
 output b1;
 wire w1, w2;
 assign b1 = w1;
 assign w1 = w2;
 endmodule

 d.v:2 top.b1: Warning 4020: Net is undriven.

This warning reports that b1 is undriven because the chain of nets w2->w1->b1 is undriven.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.11 Z State Propagation

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-27
Non-Confidential

Weakly Driven example:

 module foo(i1, o1, o2, o3);
 input i1;
 output o1;
 output o2;
 output o3;
 tri1 w2;
 tri0 w3;
 assign o2 = w2;
 assign o3 = w3;
 assign o1 = i1;
 endmodule

 tristate_30.v:4 foo.o2: Warning 4063: Net is weakly driven.
 tristate_30.v:5 foo.o3: Warning 4063: Net is weakly driven.

These warnings report that o2 and o3 are weakly driven because the chain of nets w2->o2 and w3->o3 are
weakly driven.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.11 Z State Propagation

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-28
Non-Confidential

2.12 Arrays
This section describes the Cycle Model Compiler support for arrays.

Supported
• Assignment of multi-dimensional arrays in blocking/non-blocking assignments.
• Full and slices of multi-dimensional arrays in port connections.
• System task arguments for multi-dimensional unpacked arrays.
• Assignment patterns for arrays and structures, including the use of default:.
• Use of unpacked structure and array data objects and unpacked structure and array constructors as

aggregate expressions (Language Standard Section 11.2.2).

Limited Support
See 2.13 Unions on page 2-30 for additional information about using arrays with unions.
• Arrays of regs declared within a named block of a generate_for loop must have hierarchical names.
• Assignment of packed arrays to unpacked is supported, and assignment of unpacked arrays to packed

is supported. Assigning unpacked arrays to packed arrays is supported with casting; however,
assigning packed arrays to unpacked arrays with casting is not supported. For example:

 // Assigning unpacked array to packed array is supported with
casting
 PackedArray_t mem_packed_C;
 UnpackedArray_t mem_unpacked_C;
 always @(posedge clock)
 begin
 for (int i = 0; i < 16; i=i+1) begin
 mem_unpacked_C[i] = in1 + i;
 end

 mem_packed_C = PackedArray_t'(mem_unpacked_C);
 out3 = mem_unpacked_C[address];
 end

 // Assigning packed array to unpacked array with casting is not
supported
 PackedArray_t mem_packed_D;
 UnpackedArray_t mem_unpacked_D;
 always @(posedge clock)
 begin
 for (int i = 0; i < 16; i=i+1) begin
 mem_packed_D[i] = in1 + i;
 end

 mem_unpacked_D = UnpackedArray_t'(mem_packed_D);
 out4 = mem_unpacked_B[address];
 end

Unsupported
• Array querying functions
• Unpacked array concatenations, as described in Section 10.10 of the Language Standard (1800-2012).
• Left hand side assignment patterns are skipped when datatype is explicit.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.12 Arrays

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-29
Non-Confidential

2.13 Unions
Unions are partially supported; the following limitations apply:

Limited Support
• Unpacked unions are not supported in the port list of the top-level module. This is because the

SystemVerilog standard does not specify how many bits are required to represent an unpacked union.
Therefore, it is impossible to know how many bits to reserve for an unpacked union port. This
construct is probably unsynthesizable.

• Declaration of tagged union elements is allowed, but the tag is ignored.
• Tagged union expressions and member access requires the addition of storage to keep track of which

union type was stored and is being read.

See the Cycle Model Compiler Guide (ARM DUI0957) for additional information about using directives
with unions.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.13 Unions

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-30
Non-Confidential

2.14 Structures
Structures are partially supported; the following limitations apply:

Limited Support
• For arrays of structures, out of bounds references using a variable index does not return the value

defined in the Language Reference Manual.
• Unpacked structures are supported with the following limitations: Assignments to objects defined as

structures are supported, but any initial value assignments to structure members (values defined in the
structure definition) are not supported (Language Standard 1800-2012 7.2.2).

Module inputs declared using the ANSI style declaration, and using an unpacked structure type, and
specifying a default value are only partially supported. The declaration is supported but the default
value is not applied. (See Language Standard 1800-2012 23.2.2.4 for instantiation rules -
23.3.2.1-23.3.2.4).

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.14 Structures

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-31
Non-Confidential

2.15 Interfaces
Interfaces are partially supported. This section describes which are features supported and which are not.

Supported interface features
• Interface declaration/instantiation (Language Standard 1800-2012, section 25.3).
• Interface ports (Language Standard 1800-2012, section 25.4).
• Interface as a module port.
• Generic interfaces and generic interfaces with modports (Language Standard 1800-2012, section

25.3.3, section 25.10).
• Parametric interfaces (Language Standard 1800-2012, section 25.8).
• Arrays of interfaces.
• Non-ansi style interface/modport module port declarations.
• Command-line directives on interface module ports on interface instances and interface members.
• Embedded directives on interface module ports.
• Hierarchical references to interfaces and modports or to members of an interface or modport.

Limited support
Modports (Language Standard 1800-2012, 25.5) are generally supported except in following cases:
• Global non-constant references inside modport expressions are unsupported (all id references inside

modport expressions must be either constant or be declared inside the interface).
• CMS directives (such as observeSignal and forceSignal) using a hierarchical path through

modports are unsupported.
• Nested interface modport expressions are unsupported, because nested interfaces (interfaces declared

instantiated or used as a port inside an interface) are also unsupported (see the Language Standard
1800-2012, section 25.5).

• Using a task or function in a modport (see import task/function information in the Language Standard
(1800-2012, 25.7.2, and export task/export function information in the Language Standard
(1800-2012, 25.7.3).

• Use of the generate statement within the declaration of an interface. Only modport (including
modport expression) and constant (parameter or localparam) declarations under generate
statements are supported; net and variable declarations are unsupported.

Unsupported interface features
• Tasks and functions in interfaces (Language Standard 1800-2012, section 25.7).
• Nested interface declarations (interface declared inside an interface).
• Use of interface in the port list of another interface declaration.
• Clocking blocks under interfaces (Language Standard 1800-2012, section 25.5.5).
• Interfaces with specify blocks (Language Standard 1800-2012, section 25.6).
• Virtual interfaces (Language Standard 1800-2012, section 25.9).
• Non-ANSI style module port declarations using modports.
• Interface or modport usage in the portlist of the top-level module.
• Always block/initial block or continuous assign statements specified inside interface declarations.
• Embedded directives on interface instance.
• Interface member initializations are unsupported. Runtime const declarations using the const

keyword are also unsupported inside an interface, because they must always have initial values.
• Nested interface uses are unsupported (interface instantiation or interface port declaration

inside another interface).

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.15 Interfaces

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-32
Non-Confidential

2.16 Data Types
This section describes the support for data types by the Cycle Model Compiler:

Supported

The following data types, found in Verilog and SystemVerilog, are supported:

• integer

The following supported data types are found only in SystemVerilog:
• logic
• bit
• byte
• shortint
• int
• longint

Unsupported
The following data types, found in Verilog and SystemVerilog, are not supported:
• realtime
• Void when used as a function return type or member of a tagged union (Language Standard 2012, sec

6.13).
• String data type and associated string functions such as len() and putc().
• Enumerated types in numerical expressions; for example, in an Array declaration where range is

defined by an enum value.

2 Verilog 95, Verilog 2001, and SystemVerilog Support
2.16 Data Types

ARM 100972_0902_00_en Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 2-33
Non-Confidential

	Cycle Model Studio Cycle Model Compiler Verilog and SystemVerilog Language Support Guide
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : Compilation Specifications
	1.2 : Compiler response to unsupported constructs

	2 : Verilog 95, Verilog 2001, and SystemVerilog Support
	2.1 : General Constructs
	2.2 : Net Types
	2.3 : Synthesizable Subset
	2.4 : Behavioral Constructs
	2.5 : Gate-level Constructs
	2.6 : Hierarchical References
	2.7 : Switch-level Constructs
	2.8 : User-defined Primitives
	2.9 : System Tasks
	2.10 : Format specifications
	2.11 : Z State Propagation
	2.12 : Arrays
	2.13 : Unions
	2.14 : Structures
	2.15 : Interfaces
	2.16 : Data Types

