
Arm® Compiler
Version 6.9

Scalable Vector Extension User Guide

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.
100891_0609_00_en

Arm® Compiler
Scalable Vector Extension User Guide
Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

C 04 November 2016 Non-Confidential Arm Compiler v6.6 Release

0607-00 05 April 2017 Non-Confidential Arm Compiler v6.7 Release. Document numbering scheme has
changed.

0607-01 19 April 2017 Non-Confidential Arm Update 1 for Arm Compiler 6.7. Added links to the Arm C
Language Extensions for SVE specification on
developer.arm.com.

0608-00 30 July 2017 Non-Confidential Arm Compiler v6.8 Release. Removal of limitation to inclusion
of arm_sve.h.

0609-00 25 October 2017 Non-Confidential Arm Compiler v6.9 Release.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the

 Arm® Compiler

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2
Non-Confidential

trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Compiler

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
http://www.arm.com

Contents
Arm® Compiler Scalable Vector Extension User
Guide

Preface
About this book 8

Chapter 1 SVE Overview
1.1 Introducing SVE 1-11
1.2 License configuration for SVE 1-12

Chapter 2 Getting Started with the SVE Compiler
2.1 Assembling SVE code 2-14
2.2 Compiling C and C++ code for SVE-enabled targets .. 2-16
2.3 Disassembling SVE object files 2-18
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP) 2-19

Chapter 3 Coding Considerations
3.1 Best practices to enable auto-vectorization 3-23
3.2 Auto-vectorization examples 3-24
3.3 Embedding SVE assembly code directly into C and C++ code 3-26
3.4 Using pragmas to encourage or suppress auto-vectorization 3-31
3.5 Using SVE intrinsics directly in your C code .. 3-33

Chapter 4 Reference
4.1 Compiler options .. 4-39

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4
Non-Confidential

Chapter 5 Troubleshooting
5.1 General troubleshooting advice 5-42
5.2 Known limitations in SVE support .. 5-43

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5
Non-Confidential

List of Tables
Arm® Compiler Scalable Vector Extension User
Guide

Table 3-1 Compiler output with and without auto-vectorization ... 3-32
Table 3-2 Element selection by predicate type svbool_t ... 3-33
Table 3-3 Common addressing mode disambiguators .. 3-35

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 6
Non-Confidential

Preface

This preface introduces the Arm® Compiler Scalable Vector Extension User Guide.

It contains the following:
• About this book on page 8.

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 7
Non-Confidential

 About this book
The Arm® Compiler Scalable Vector Extension User Guide provides information about using Arm
Compiler 6 with targets that implement the Scalable Vector Extension (SVE) for Armv8-A AArch64.

 Using this book

This book is organized into the following chapters:

Chapter 1 SVE Overview
Gives general information about Arm Compiler 6 support for the Scalable Vector Extension
(SVE) EAC (00rel1) for Armv8-A AArch64.

Chapter 2 Getting Started with the SVE Compiler
Describes how to generate an executable binary that makes use of the instructions provided by the
SVE architectural extension to the Armv8-A architecture.

Chapter 3 Coding Considerations
Describes best practices for writing code that can encourage the SVE Compiler to produce
optimal auto-vectorized output.

Chapter 4 Reference
Provides reference information about Arm Compiler.

Chapter 5 Troubleshooting
Provides general troubleshooting advice relating to SVE functionality in this release of Arm
Compiler.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace

Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace

Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic

Denotes arguments to monospace text where the argument is to be replaced by a specific value.
monospace bold

Denotes language keywords when used outside example code.
<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

 Preface
 About this book

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 8
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Compiler Scalable Vector Extension User Guide.
• The number 100891_0609_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 9
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
SVE Overview

Gives general information about Arm Compiler 6 support for the Scalable Vector Extension (SVE) EAC
(00rel1) for Armv8-A AArch64.

It contains the following sections:
• 1.1 Introducing SVE on page 1-11.
• 1.2 License configuration for SVE on page 1-12.

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-10
Non-Confidential

1.1 Introducing SVE
The Arm Compiler toolchain supports targets that implement the Scalable Vector Extension (SVE) EAC
(00rel2) for Armv8-A AArch64.

SVE is the next-generation SIMD instruction set for AArch64, that introduces the following new
architectural features for High Performance Computing (HPC):

• Scalable vector length.
• Per-lane predication.
• Gather-load and scatter-store.
• Fault-tolerant speculative vectorization.
• Horizontal and serialized vector operations.

This release of the Arm Compiler toolchain lets you:
• Assemble source code containing SVE instructions.
• Disassemble ELF object files containing SVE instructions.
• Compile C and C++ code for SVE-enabled targets, with an advanced auto-vectorizer capable of

taking advantage of SVE features.
• Use intrinsics to write SVE instructions directly from C code.

 Note

The Arm Compiler toolchain only supports bare-metal applications.

This document provides information about the features of the Arm Compiler toolchain that specifically
relate to SVE. For information about the other features, see the Arm Compiler documentation.

Related information
Arm Compiler 6 documentation.

1 SVE Overview
1.1 Introducing SVE

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-11
Non-Confidential

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/docs/version-6-9

1.2 License configuration for SVE
Use of the SVE functionality in the Arm Compiler toolchain requires a suitable valid license. Contact
your Arm support representative for more information.

To indicate the location of your license, set the ARMLMD_LICENSE_FILE environment variable to reference
either your license file or license server:

export ARMLMD_LICENSE_FILE=/home/user/sve.lic
export ARMLMD_LICENSE_FILE=27000@license-server-hostname

Related information
Arm DS-5 License Management Guide.
Arm Compiler User Guide: Toolchain environment variables.

1 SVE Overview
1.2 License configuration for SVE

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 1-12
Non-Confidential

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0577-/index.html
https://developer.arm.com/docs/100748/0609/a-supporting-reference-information/a5-toolchain-environment-variables

Chapter 2
Getting Started with the SVE Compiler

Describes how to generate an executable binary that makes use of the instructions provided by the SVE
architectural extension to the Armv8-A architecture.

It contains the following sections:
• 2.1 Assembling SVE code on page 2-14.
• 2.2 Compiling C and C++ code for SVE-enabled targets on page 2-16.
• 2.3 Disassembling SVE object files on page 2-18.
• 2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP) on page 2-19.

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-13
Non-Confidential

2.1 Assembling SVE code
Use armclang with a suitable SVE-enabled target to assemble code containing SVE instructions.

The SVE architectural extension to the Armv8-A architecture (armv8-a+sve) provides SVE instructions.
Many of these SVE instructions make use of the new p and z register classes.

 Note

The legacy Arm assembler, armasm, does not support SVE instructions.

The following example shows a simple assembly program that includes SVE instructions.

// example1.s
 .global main
main:
 mov x0, 0x90000000
 mov x8, xzr
 ptrue p0.s //SVE instruction
 fcpy z0.s, p0/m, #5.00000000 //SVE instruction
 orr w10, wzr, #0x400
loop:
 st1w z0.s, p0, [x0, x8, lsl #2] //SVE instruction
 incw x8 //SVE instruction
 whilelt p0.s, x8, x10 //SVE instruction
 b.any loop //SVE instruction
 mov w0, wzr
 ret

To assemble this source file into a binary object file, use armclang with an SVE-enabled target:

armclang -c --target=aarch64-arm-none-eabi -march=armv8-a+sve example1.s -o example1.o

The command-line options in this example are:

-c

Standard armclang option. Instructs the compiler to perform the compilation step, but not the
link step.

--target=aarch64-arm-none-eabi

Standard armclang option. Instructs the compiler to generate A64 instructions for AArch64 state.
 Note

SVE is not supported with AArch32 state, so the --target=aarch64-arm-none-eabi option is
mandatory.

-march=armv8-a+sve

New target argument for the standard armclang -march option. Specifies that the compiler targets
the Armv8-A architecture profile with the SVE target feature enabled.

The default for AArch64 is -march=armv8-a, that is the Armv8-A architecture profile without the
SVE extension. You must explicitly specify +sve to assemble SVE instructions.

Valid SVE-enabled targets are:
• -march=armv8-a+sve

• -march=armv8.1-a+sve

• -march=armv8.2-a+sve

• -march=armv8.3-a+sve

• -march=armv8.4-a+sve

example1.s

Standard armclang option. Input assembly language file.
-o example1.o

Standard armclang option. Output ELF object file.

2 Getting Started with the SVE Compiler
2.1 Assembling SVE code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-14
Non-Confidential

Related references
2.3 Disassembling SVE object files on page 2-18.
4.1 Compiler options on page 4-39.

Related information
armclang Reference Guide.
armclang Reference Guide: -c option.
armclang Reference Guide: -o option.
armclang Reference Guide: -march option.
armclang Reference Guide: --target option.

2 Getting Started with the SVE Compiler
2.1 Assembling SVE code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-15
Non-Confidential

https://developer.arm.com/docs/100067/0609/
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-c
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-o
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-target

2.2 Compiling C and C++ code for SVE-enabled targets
Arm Compiler is an advanced auto-vectorizing compiler for the 64-bit Armv8-A architecture and
supports the SVE Architectural extension.

Generating SVE assembly code from C and C++ code

Arm Compiler can produce annotated assembly, and this is a good first step to see how the auto-
vectorizer generates SVE instructions.

The following C program subtracts corresponding elements in two arrays, writing the result to a third
array. The three arrays are declared using the restrict keyword, indicating to the compiler that they do
not overlap in memory.

// example1.c
#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{
 for (int i = 0; i < ARRAYSIZE; i++)
 {
 a[i] = b[i] - c[i];
 }
}

int main()
{
 subtract_arrays(a, b, c);
}

Compile the program as follows:

armclang -O3 -S --target=aarch64-arm-none-eabi -march=armv8-a+sve -o example1.s example1.c

The output assembly code is saved as example1.s. The section of the generated assembly language file
containing the compiled subtract_arrays function appears as follows:

subtract_arrays: // @subtract_arrays
// BB#0:
 orr w9, wzr, #0x400
 mov x8, xzr
 whilelo p0.s, xzr, x9
.LBB0_1: // =>This Inner Loop Header: Depth=1
 ld1w {z0.s}, p0/z, [x1, x8, lsl #2]
 ld1w {z1.s}, p0/z, [x2, x8, lsl #2]
 sub z0.s, z0.s, z1.s
 st1w {z0.s}, p0, [x0, x8, lsl #2]
 incw x8
 whilelo p0.s, x8, x9
 b.mi .LBB0_1
// BB#2:
 ret

SVE instructions operate on the z and p register banks. In this example the inner loop is almost entirely
composed of SVE instructions. The auto-vectorizer has converted the scalar loop from the original C
source code into a vector loop that is independent of the width of SVE vector registers.

Generating an executable binary from C and C++ code

To generate an executable binary, compile your program without the –S option:

armclang -O3 -Xlinker "--ro_base=0x80000000" --target=aarch64-arm-none-eabi -march=armv8-a+sve -

o example1 example1.c

You can specify multiple source files on a single line. Each source file is compiled individually and then
linked into a single executable binary:

2 Getting Started with the SVE Compiler
2.2 Compiling C and C++ code for SVE-enabled targets

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-16
Non-Confidential

armclang -O3 -Xlinker "--ro_base=0x80000000" --target=aarch64-arm-none-eabi -march=armv8-a+sve -

o example2 example2a.c example2b.c

 Note

When compiling binaries to execute on the AEMv8-A Base Fixed Virtual Platform (FVP) base model,
use the -Xlinker "--ro_base=0x80000000" option to specify the location in memory to load and run the
binary. The RAM base address for this FVP is 0x80000000.

These executable binaries are suitable for execution on an SVE-enabled AEMv8-A Base Fixed Virtual
Platform (FVP). Binaries are automatically linked against the Arm C/C++ library, which is included as
part of the Arm Compiler distribution.

The Arm C/C++ library provides many common C functions. The version used by the Arm Compiler is
configured for semihosting. This allows a compiled binary to run on an FVP, and pass I/O operations to
the host system, removing the need to run a full operating system within the FVP.

Compiling and linking object files as separate steps

To compile each of your source files individually into an object file, specify the -c (compile-only)
armclang option, and then pass the resulting object files into another invocation of armclang to link them
into an executable binary. The -Xlinker argument is not required until the final invocation.

armclang -O3 --target=aarch64-arm-none-eabi -march=armv8-a+sve -c -o example2a.o example2a.c
armclang -O3 --target=aarch64-arm-none-eabi -march=armv8-a+sve -c -o example2b.o example2b.c
armclang -O3 -Xlinker "--ro_base=0x80000000" --target=aarch64-arm-none-eabi
 -march=armv8-a+sve -o example2 example2a.o example2b.o

Related references
4.1 Compiler options on page 4-39.

Related information
Fixed Virtual Platforms, on www.arm.com.
armlink User Guide: --ro_base option.
armclang Reference Guide.
armclang Reference Guide: -c option.
armclang Reference Guide: -o option.
armclang Reference Guide: -Xlinker option.
armclang Reference Guide: -O option.
armclang Reference Guide: -march option.
armclang Reference Guide: -S option.
armclang Reference Guide: --target option.

2 Getting Started with the SVE Compiler
2.2 Compiling C and C++ code for SVE-enabled targets

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-17
Non-Confidential

https://developer.arm.com/products/system-design/fixed-virtual-platforms
https://developer.arm.com/docs/100070/0609/linker-command-line-options/-ro_baseaddress
https://developer.arm.com/docs/100067/0609/
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-c
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-o
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-xlinker
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-o-1
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-s
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-target

2.3 Disassembling SVE object files
Use the fromelf tool without specifying --cpu to display the details and contents of an ELF-format binary
file. This includes disassembly of the code sections of an object containing SVE instructions.

To disassemble an ELF-format object file containing SVE instructions, use fromelf with the -c option:

...
** Section #3 '.text.subtract_arrays' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 44 bytes (alignment 4)
 Address: 0x00000000

 $x.0
 subtract_arrays
 0x00000000: 321603e9 ...2 ORR w9,wzr,#0x400
 0x00000004: aa1f03e8 MOV x8,xzr
 0x00000008: 25a91fe0 ...% WHILELO p0.S,xzr,x9
 0x0000000c: a5484020 @H. LD1W {z0.S},p0/Z,[x1,x8,LSL #2]
 0x00000010: a5484041 A@H. LD1W {z1.S},p0/Z,[x2,x8,LSL #2]
 0x00000014: 04a10400 SUB z0.S,z0.S,z1.S
 0x00000018: e5484000 .@H. ST1W {z0.S},p0,[x0,x8,LSL #2]
 0x0000001c: 04b0e3e8 DCI 0x04b0e3e8 ; ? Undefined
 0x00000020: 25a91d00 ...% WHILELO p0.S,x8,x9
 0x00000024: 54ffff44 D..T B.MI {pc}-0x18 ; 0xc
 0x00000028: d65f03c0 .._. RET

** Section #4 '.text.main' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 72 bytes (alignment 4)
 Address: 0x00000000

 $x.1
 main
 0x00000000: 321603e9 ...2 ORR w9,wzr,#0x400
 0x00000004: 9000000a ADRP x10,{pc} ; 0x4
 0x00000008: 9000000b ADRP x11,{pc} ; 0x8
 0x0000000c: 9000000c ADRP x12,{pc} ; 0xc
 0x00000010: aa1f03e8 MOV x8,xzr
 0x00000014: 9100014a J... ADD x10,x10,#0
 0x00000018: 9100016b k... ADD x11,x11,#0
 0x0000001c: 25a91fe0 ...% WHILELO p0.S,xzr,x9
 0x00000020: 9100018c ADD x12,x12,#0
 0x00000024: a5484140 @AH. LD1W {z0.S},p0/Z,[x10,x8,LSL #2]
 0x00000028: a5484161 aAH. LD1W {z1.S},p0/Z,[x11,x8,LSL #2]
 0x0000002c: 04a10400 SUB z0.S,z0.S,z1.S
 0x00000030: e5484180 .AH. ST1W {z0.S},p0,[x12,x8,LSL #2]
 0x00000034: 04b0e3e8 DCI 0x04b0e3e8 ; ? Undefined
 0x00000038: 25a91d00 ...% WHILELO p0.S,x8,x9
 0x0000003c: 54ffff44 D..T B.MI {pc}-0x18 ; 0x24
 0x00000040: 2a1f03e0 ...* MOV w0,wzr
 0x00000044: d65f03c0 .._. RET
...

The command-line options in this example are:

-c

Disassemble all code sections in the object file, displaying assembler mnemonics for the
machine instructions.

example1.o

Input ELF-format object file generated from the example1.c program shown in 2.2 Compiling C
and C++ code for SVE-enabled targets on page 2-16.

Related concepts
2.1 Assembling SVE code on page 2-14.

2 Getting Started with the SVE Compiler
2.3 Disassembling SVE object files

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-18
Non-Confidential

2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)
Describes how to compile a program with Arm Compiler and then run the resulting binary using the
AEMv8-A Base Fixed Virtual Platform (FVP). This demonstrates some basic features and shows how
increasing the SVE vector width produces a corresponding performance gain.

Running the FVP

The command to execute a compiled binary through the FVP is fairly complex, but there are only a few
elements that can be edited.

The following example shows a complete command-line invocation of the FVP. Most of the lines are
required for correct program execution and do not need to be modified. The italic elements indicate
parameters that can be edited.

$FVP_BASE/FVP_Base_AEMv8A-AEMv8A \
 --plugin $FVP_BASE/ScalableVectorExtension.so \
 -C SVE.ScalableVectorExtension.veclen=$VECLEN \
 --quiet \
 --stat \
 -C cluster0.NUM_CORES=1 \
 -C bp.secure_memory=0 \
 -C bp.refcounter.non_arch_start_at_default=1 \
 -C cluster0.cpu0.semihosting-use_stderr=1 \
 -C bp.vis.disable_visualisation=1 \
 -C cluster0.cpu0.semihosting-cmd_line="$CMDLINE" \
 -a cluster0.cpu0=$BINARY

Where:

$FVP_BASE

Specifies the path to the FVP.
$VECLEN

Defines the SVE vector width, in units of 64-bit (8 byte) blocks. The maximum value is 32,
which corresponds to the architectural maximum SVE vector width of 2048 bits (256 bytes).

The SVE architecture only supports vector lengths in 128-bit (16 byte increments), so all values
of $VECLEN should be even. For example, a value of 8 would signify a 512-bit vector width.

--quiet

Specifies that the FVP emits reduced output. For example, if --quiet is omitted, Simulation is
started and Simulation is terminating messages are output to signify the start and end of
program execution.

--stat

Specifies that the FVP writes a short summary of program execution to standard output
following termination (even if --quiet is specified).

This output is of the form:

Total instructions executed: 10344
User time: 0.01 sec
Kernel time: 0.00 sec
CPU time: 0.01 sec
Elapsed clock: 0.00 sec

$CMDLINE

Specifies the command-line to pass to your program. This is typically of the form
"./binary_name arg1 arg2".

$BINARY

Specifies the path to the compiled binary that will be loaded and executed by the FVP.

2 Getting Started with the SVE Compiler
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-19
Non-Confidential

A sample application

The following sample application contains two vectorizable loops. The first fills the values array with
floating-point values, and the second calculates the total. The application then performs a printf
operation, producing output when executed through the FVP.

#include <stdio.h>
#define ITERATIONS 8192
float values[ITERATIONS];
void fill()
{
 for (int i = 0; i < ITERATIONS; i++)
 {
 values[i] = (float)i;
 }
}

float reduce() {
 float result = 0.0;
 for (int i = 0; i < ITERATIONS; i++)
 {
 result += values[i];
 }
 return result;
}

int main(int argc, char* argv[]) {
 fill();
 printf("Result was %f\n", reduce());
}

To compile this application and create an executable binary:

armclang -O3 -Xlinker "--ro_base=0x80000000" --target=aarch64-arm-none-eabi
 -march=armv8-a+sve -o sum sum.c

Running the sample application on an FVP

To execute an application using an FVP, it is useful to construct a shell script as follows:

#!/bin/bash
fvp-run.sh
Usage: fvp-run.sh [veclen] [binary]
Executes the specified binary in the FVP, with no command-line
arguments. The SVE register width will be [veclen] x 64 bits. Only
even values of veclen are valid.
#
#
Set the FVP_BASE environment variable to point to the FVP directory.
#
Set the ARMLMD_LICENSE_FILE environment variable to reference a license
file or license server with entitlement for the FVP.

VECLEN=$1
CMDLINE=$2

$FVP_BASE/FVP_Base_AEMv8A-AEMv8A \
 --plugin $FVP_BASE/ScalableVectorExtension.so \
 -C SVE.ScalableVectorExtension.veclen=$VECLEN \
 --quiet \
 --stat \
 -C cluster0.NUM_CORES=1 \
 -C bp.secure_memory=0 \
 -C bp.refcounter.non_arch_start_at_default=1 \
 -C cluster0.cpu0.semihosting-use_stderr=1 \
 -C bp.vis.disable_visualisation=1 \
 -C cluster0.cpu0.semihosting-cmd_line="$CMDLINE" \
 -a cluster0.cpu0=$CMDLINE

This script loads and executes a compiled binary with the FVP, configured for a specified vector width.

Running the compiled binary through the FVP generates output of the form:

$./fvp-run.sh 2 ./sum
terminal_3: Listening for serial connection on port 5000
terminal_2: Listening for serial connection on port 5001
terminal_1: Listening for serial connection on port 5002
terminal_0: Listening for serial connection on port 5003
Result was 33549136.000000

2 Getting Started with the SVE Compiler
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-20
Non-Confidential

Total instructions executed: 62090
User time: 0.01 sec
Kernel time: 0.01 sec
CPU time: 0.02 sec
Elapsed clock: 0.00 sec

The first line is the command-line invocation, passing a vector width of 2 and the application
binary ./sum. The line starting "Result was" is generated by the application. The remainder of the output
is the result of specifying the --stat option.

Varying the vector width

Varying the SVE vector width changes the total instruction count. The wider the SVE vector, the fewer
instructions are needed to process the array. The following example bash command-line executes the
binary with all possible vector widths, extracting and printing the instruction count as returned by the
FVP --stat option.

$ for x in {2..32..2};
 do echo -ne VL=$x\\t;
 ./fvp-run.sh $x ./sum | grep 'instructions' | cut -f2 -d:;
 done
VL=2 62090
VL=4 50826
VL=6 47075
VL=8 45194
VL=10 44072
VL=12 43324
VL=14 42785
VL=16 42378
VL=18 42070
VL=20 41817
VL=22 41619
VL=24 41443
VL=26 41300
VL=28 41179
VL=30 41179
VL=32 41179

Related references
4.1 Compiler options on page 4-39.

Related information
armclang Reference Guide.
armclang Reference Guide: -o option.
armclang Reference Guide: -Xlinker option.
armclang Reference Guide: -O option.
armclang Reference Guide: -march option.
armclang Reference Guide: --target option.

2 Getting Started with the SVE Compiler
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 2-21
Non-Confidential

https://developer.arm.com/docs/100067/0609/
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-o
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-xlinker
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-o-1
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-target

Chapter 3
Coding Considerations

Describes best practices for writing code that can encourage the SVE Compiler to produce optimal auto-
vectorized output.

It contains the following sections:
• 3.1 Best practices to enable auto-vectorization on page 3-23.
• 3.2 Auto-vectorization examples on page 3-24.
• 3.3 Embedding SVE assembly code directly into C and C++ code on page 3-26.
• 3.4 Using pragmas to encourage or suppress auto-vectorization on page 3-31.
• 3.5 Using SVE intrinsics directly in your C code on page 3-33.

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-22
Non-Confidential

3.1 Best practices to enable auto-vectorization
To encourage the SVE Compiler to produce optimal auto-vectorized output, code can be structured and
hints provided to inform the compiler of program features that it would otherwise not be able to
determine. This allows the compiler to produce optimal auto-vectorized output.

Use the restrict keyword if appropriate

The C99 restrict keyword (or the non-standard C/C++ __restrict__ keyword) indicates to the compiler
that a specified pointer does not alias with any other pointers for the lifetime of that pointer. This
guidance allows the compiler to vectorize loops more aggressively, since it becomes possible to prove
that loop iterations are independent and can be executed in parallel.

If these keywords are used erroneously (that is, if another pointer is used to access the same memory)
then the behavior is undefined. It is possible that the results of optimized code will differ from that of its
unoptimized equivalent.

Use pragmas

The compiler supports pragmas that you can use to explicitly indicate that loop iterations are completely
independent from each other. See Using pragmas to encourage or suppress auto-vectorization
on page 3-31 for more details and examples.

The loop index variable

Where possible, use < conditions rather than <= or != when constructing loops. This helps the compiler to
prove that a loop terminates before the index variable wraps.

The compiler might also be able to perform more loop optimizations if signed integers are used, because
the C standard allows for undefined behavior in the case of signed integer overflow. This is not the case
for unsigned integers.

Use the –ffp-mode=fast option if it is safe to do so

As highlighted in the description of the -ffp-mode=fast option on page 4-39, this can significantly
improve the quality of generated code, but it does so at the expense of strict compliance with IEEE and
ISO standards for mathematical operations. Ensure that your algorithms are tolerant of potential
inaccuracies that could be introduced by the use of this option.

Related references
3.2 Auto-vectorization examples on page 3-24.
4.1 Compiler options on page 4-39.

Related information
armclang Reference Guide.
armclang Reference Guide: -ffast-math option.

3 Coding Considerations
3.1 Best practices to enable auto-vectorization

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-23
Non-Confidential

https://developer.arm.com/docs/100067/0609/
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-ffast-math-fno-fast-math

3.2 Auto-vectorization examples
Describes example C code for loops that the compiler is capable of vectorizing, with a short description
of the interesting features of each loop.

Reductions

Loops that perform a reduction operation, such as the following "running total" calculation, can be
vectorized.

If the -ffp-mode=fast option is specified, the compiler maintains a vector of per-lane running totals.
When the loop completes, it performs a cross-lane reduction operation to efficiently sum all elements
into a single scalar value.

Without the -ffp-mode=fast option, the compiler can still vectorize, but is likely to produce less efficient
code, as it is constrained to perform the summation operation in the same order as the original source
code.

float reduction(float *restrict a, long count)
{
 float r = 0;
 for (long i = 0; i < count; i++)
 {
 r += a[i];
 }
 return r;
}

Strided access

Access to memory does not need to be sequential. In this example every fifth element in two arrays are
added together and written to the corresponding element in a destination array.

void stride(int *restrict a, int *restrict b, int *restrict c, long count)
{
 for (long i = 0; i < count; i+=5)
 {
 a[i] = b[i] + c[i];
 }
}

Scatter and gather

You can use the SVE scatter and gather operations to efficiently auto-vectorize when loop iterations do
not have a regular access pattern. In the following example an indices array indicates which elements in
the data array should be added together. The compiler loads as many indices elements as can fit in an
SVE vector, and then uses them as offsets from a base register, to perform a gather-load operation from
the data array.

float gather_reduce(float *restrict data, int *restrict indices, long c)
{
 float r = 0;
 for (long i = 0; i < c; i++)
 {
 r += data[indices[i]];
 }
 return r;
}

Conditions within the loop body

The predication features of the SVE architectural extension make it possible to efficiently support
unpredictable control flow within vectorized loops.

float cond_gather_reduce(float *restrict data, int *restrict indices, long count)
{
 float r = 0;
 for (long i = 0; i < count; i++)
 {
 if (indices[i]%2 == 0)

3 Coding Considerations
3.2 Auto-vectorization examples

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-24
Non-Confidential

 {
 r += data[indices[i]];
 }
 }
 return r;
}

Related references
3.1 Best practices to enable auto-vectorization on page 3-23.
4.1 Compiler options on page 4-39.

Related information
armclang Reference Guide.
armclang Reference Guide: -ffast-math option.

3 Coding Considerations
3.2 Auto-vectorization examples

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-25
Non-Confidential

https://developer.arm.com/docs/100067/0609/
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-ffast-math-fno-fast-math

3.3 Embedding SVE assembly code directly into C and C++ code
Inline assembly (or inline asm) provides a mechanism for inserting hand-written assembly instructions
into C and C++ code. This lets you vectorize parts of a function by hand without having to write the
entire function in assembly code.

 Note

This information assumes that you are familiar with details of the SVE Architecture, including vector-
width agnostic registers, predication, and WHILE operations.

Using inline assembly rather than writing a separate .s file has the following advantages:
• Shifts the burden of handling the procedure call standard (PCS) from the programmer to the compiler.

This includes allocating the stack frame and preserving all necessary callee-saved registers.
• Inline assembly code gives the compiler more information about what the assembly code does.
• The compiler can inline the function that contains the assembly code into its callers.
• Inline assembly code can take immediate operands that depend on C-level constructs, such as the size

of a structure or the byte offset of a particular structure field.

Structure of an inline assembly statement

The compiler supports the GNU form of inline assembly. Note that it does not support the Microsoft
form of inline assembly.

More detailed documentation of the asm construct is available at the GCC website.

Inline assembly statements have the following form:

asm ("instructions" : outputs : inputs : side-effects);

Where:

instructions

is a text string that contains AArch64 assembly instructions, with at least one newline sequence
\n between consecutive instructions.

outputs

is a comma-separated list of outputs from the assembly instructions.
inputs

is a comma-separated list of inputs to the assembly instructions.
side-effects

is a comma-separated list of effects that the assembly instructions have, besides reading from
inputs and writing to outputs.

Additionally, the asm keyword might need to be followed by the volatile keyword.

Outputs

Each entry in outputs has one of the following forms:

[name] "=®ister-class" (destination)
[name] "=register-class" (destination)

The first form has the register class preceded by =&. This specifies that the assembly instructions might
read from one of the inputs (specified in the asm statement's inputs section) after writing to the output.

The second form has the register class preceded by =. This specifies that the assembly instructions never
read from inputs in this way. Using the second form is an optimization. It allows the compiler to allocate
the same register to the output as it allocates to one of the inputs.

Both forms specify that the assembly instructions produce an output that is stored in the C object
specified by destination. This can be any scalar value that is valid for the left-hand side of a C

3 Coding Considerations
3.3 Embedding SVE assembly code directly into C and C++ code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-26
Non-Confidential

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

assignment. The register-class field specifies the type of register that the assembly instructions require. It
can be one of:

r

if the register for this output when used within the assembly instructions is a general-purpose
register (x0-x30)

w

if the register for this output when used within the assembly instructions is a SIMD and floating-
point register (v0-v31).

It is not possible at present for outputs to contain an SVE vector or predicate value. All uses of SVE
registers must be internal to the inline assembly block.

It is the responsibility of the compiler to allocate a suitable output register and to copy that register into
the destination after the asm statement is executed. The assembly instructions within the instructions
section of the asm statement can use one of the following forms to refer to the output value:

%[name]

to refer to an r-class output as xN or a w-class output as vN
%w[name]

to refer to an r-class output as wN
%s[name]

to refer to a w-class output as sN
%d[name]

to refer to a w-class output as dN

In all cases N represents the number of the register that the compiler has allocated to the output. The use
of these forms means that it is not necessary for the programmer to anticipate precisely which register is
selected by the compiler. The following example creates a function that returns the value 10. It shows
how the programmer is able to use the %w[res] form to describe the movement of a constant into the
output register without knowing which register is used.

int f()
{
 int result;
 asm("movz %w[res], #10" : [res] "=r" (result));
 return result;
}

In optimized output the compiler picks the return register (0) for res, resulting in the following assembly
code:

movz w0, #10
ret

Inputs

Within an asm statement, each entry in the inputs section has the form:

[name] "operand-type" (value)

This construct specifies that the asm statement uses the scalar C expression value as an input, referred to
within the assembly instructions as name. The operand-type field specifies how the input value is handled
within the assembly instructions. It can be one of the following:

r

if the input is to be placed in a general-purpose register (x0-x30)
w

if the input is to be placed in a SIMD and floating-point register (v0-v31).
[output-name]

if the input is to be placed in the same register as output output-name. In this case the [name] part
of the input specification is redundant and can be omitted. The assembly instructions can use the
forms described in the Outputs section above (%[name], %w[name], %s[name], %d[name]) to refer to
both the input and the output.

3 Coding Considerations
3.3 Embedding SVE assembly code directly into C and C++ code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-27
Non-Confidential

i

if the input is an integer constant and is used as an immediate operand. The assembly
instructions use %[name] in place of immediate operand #N, where N is the numerical value of
value.

In the first two cases, it is the responsibility of the compiler to allocate a suitable register and to ensure
that it contains value on entry to the assembly instructions. The assembly instructions must refer to these
registers using the same syntax as for the outputs (%[name], %w[name], %s[name], %d[name]).

It is not possible at present for inputs to contain an SVE vector or predicate value. All uses of SVE
registers must be internal to instructions.

This example shows an asm directive with the same effect as the previous example, except that an i-form
input is used to specify the constant to be assigned to the result.

int f()
{
 int result;
 asm("movz %w[res], %[value]" : [res] "=r" (result) : [value] "i" (10));
 return result;
}

Side effects

Many asm statements have effects other than reading from inputs and writing to outputs. This is
particularly true of asm statements that implement vectorized loops, since most such loops read from or
write to memory. The side-effects section of an asm statement tells the compiler what these additional
effects are. Each entry must be one of the following:

"memory"

if the asm statement reads from or writes to memory. This is necessary even if inputs contain
pointers to the affected memory.

"cc"

if the asm statement modifies the condition-code flags.
"xN"

if the asm statement modifies general-purpose register N.
"vN"

if the asm statement modifies SIMD and floating-point register N.
"zN"

if the asm statement modifies SVE vector register N. Since SVE vector registers extend the SIMD
and floating-point registers, this is equivalent to writing "vN".

"pN"

if the asm statement modifies SVE predicate register N.

Use of volatile

Sometimes an asm statement might have dependencies and side effects that cannot be captured by the asm
statement syntax. For example, suppose there are three separate asm statements (not three lines within a
single asm statement), that do the following:

• The first sets the floating-point rounding mode.
• The second executes on the assumption that the rounding mode set by the first statement is in effect.
• The third statement restores the original floating-point rounding mode.

It is important that these statements are executed in order, but the asm statement syntax provides no direct
method for representing the dependency between them. Instead, each statement must add the keyword
volatile after asm. This prevents the compiler from removing the asm statement as dead code, even if the
asm statement does not modify memory and if its results appear to be unused. The compiler always
executes asm volatile statements in their original order.

For example:

asm volatile ("msr fpcr, %[flags]" :: [flags] "r" (new_fpcr_value));

3 Coding Considerations
3.3 Embedding SVE assembly code directly into C and C++ code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-28
Non-Confidential

 Note

An asm volatile statement must still have a valid side effects list. For example, an asm volatile
statement that modifies memory must still include "memory" in the side-effects section.

Labels

The compiler might output a given asm statement more than once, either as a result of optimizing the
function that contains the asm statement or as a result of inlining that function into some of its callers.
Therefore, asm statements must not define named labels like .loop, since if the asm statement is written
more than once, the output contains more than one definition of label .loop. Instead, the assembler
provides a concept of relative labels. Each relative label is simply a number and is defined in the same
way as a normal label. For example, relative label 1 is defined by:

1:

The assembly code can contain many definitions of the same relative label. Code that refers to a relative
label must add the letter f to refer the next definition (f is for forward) or the letter b (backward) to refer
to the previous definition. A typical assembly loop with a pre-loop test would therefore have the
following structure. This allows the compiler output to contain many copies of this code without creating
any ambiguity.

 ...pre-loop test...
 b.none 2f
1:
 ...loop...
 b.any 1b
2:

Example

The following example shows a simple function that performs a fused multiply-add operation (x=a∙b+c)
across four passed-in arrays of a size specified by n:

void f(double *restrict x, double *restrict a, double *restrict b, double *restrict c,
 unsigned long n)
{
 for (unsigned long i = 0; i < n; ++i)
 {
 x[i] = fma(a[i], b[i], c[i]);
 }
}

An asm statement that exploited SVE instructions to achieve equivalent behavior might look like the
following:

void f(double *x, double *a, double *b, double *c, unsigned long n)
{
 unsigned long i;
 asm ("whilelo p0.d, %[i], %[n] \n\
 1: \n\
 ld1d z0.d, p0/z, [%[a], %[i], lsl #3] \n\
 ld1d z1.d, p0/z, [%[b], %[i], lsl #3] \n\
 ld1d z2.d, p0/z, [%[c], %[i], lsl #3] \n\
 fmla z2.d, p0/m, z0.d, z1.d \n\
 st1d z2.d, p0, [%[x], %[i], lsl #3] \n\
 uqincd %[i] \n\
 whilelo p0.d, %[i], %[n] \n\
 b.any 1b"
 : [i] "=&r" (i)
 : "[i]" (0),
 [x] "r" (x),
 [a] "r" (a),
 [b] "r" (b),
 [c] "r" (c),
 [n] "r" (n)
 : "memory", "cc", "p0", "z0", "z1", "z2");
}

3 Coding Considerations
3.3 Embedding SVE assembly code directly into C and C++ code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-29
Non-Confidential

 Note

Keeping the restrict qualifiers would be valid but would have no effect.

The input specifier "[i]" (0) indicates that the assembly statements take an input 0 in the same register
as output [i]. In other words, the initial value of [i] must be zero. The use of =& in the specification of
[i] indicates that [i] cannot be allocated to the same register as [x], [a], [b], [c], or [n] (because the
assembly instructions use those inputs after writing to [i]).

In this example, the C variable i is not used after the asm statement. In effect the asm statement is simply
reserving a register that it can use as scratch space. Including "memory" in the side effects list indicates
that the asm statement reads from and writes to memory. The compiler must therefore keep the asm
statement even though i is not used.

3 Coding Considerations
3.3 Embedding SVE assembly code directly into C and C++ code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-30
Non-Confidential

3.4 Using pragmas to encourage or suppress auto-vectorization
Arm Compiler supports pragmas to both encourage and suppress auto-vectorization. These pragmas
make use of, and extend, the pragma clang loop directives.

For more information about the pragma clang loop directives, see Auto-Vectorization in LLVM, at
llvm.org.

 Note

In all the following cases, the pragma only affects the loop statement immediately following it. If your
code contains multiple nested loops, you must insert a pragma before each one in order to affect all the
loops in the nest.

Encouraging auto-vectorization with pragmas

If the SVE auto-vectorization pass is enabled with –O2 or above, then by default it examines all loops.

If static analysis of a loop indicates that it might contain dependencies that hinder parallelism, auto-
vectorization might not be performed. If you know that these dependencies do not hinder vectorization,
you can use the interleave directive to indicate this to the compiler by placing the following line
immediately before the loop:

#pragma clang loop vectorize(assume_safety)

This pragma indicates to the compiler that the following loop contains no data dependencies between
loop iterations that would prevent vectorization. The compiler might be able to use this information to
vectorize a loop, where it would not typically be possible.

 Note

Use of this pragma does not guarantee auto-vectorization. There might be other reasons why auto-
vectorization is not possible or worthwhile for a particular loop.

Ensure that you only use this pragma when it is safe to do so. Using this pragma when there are data
dependencies between loop iterations results in incorrect behavior.

For example, consider the following loop, that processes an array indices. Each element in indices
specifies the index into a larger histogram array. The referenced element in the histogram array is
incremented.

void update(int *restrict histogram, int *restrict indices, int count)
{
 for (int i = 0; i < count; i++)
 {
 histogram[indices[i]]++;
 }
}

The compiler is unable to vectorize this loop, because the same index could appear more than once in the
indices array. Therefore a vectorized version of the algorithm would lose some of the increment
operations if two identical indices are processed in the same vector load/increment/store sequence.

However, if the programmer knows that the indices array only ever contains unique elements, then it is
useful to be able to force the compiler to vectorize this loop. This is accomplished by placing the pragma
before the loop:

void update(int *restrict histogram, int *restrict indices, int count)
{
 #pragma clang loop vectorize(assume_safety)
 for (int i = 0; i < count; i++)
 {
 histogram[indices[i]]++;
 }
}

3 Coding Considerations
3.4 Using pragmas to encourage or suppress auto-vectorization

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-31
Non-Confidential

http://llvm.org/docs/Vectorizers.html#pragma-loop-hint-directives
http://llvm.org/docs/Vectorizers.html#pragma-loop-hint-directives

The following table shows the differences between the compiler output for these functions, where the
only difference is the presence of the pragma to encourage vectorization:

Table 3-1 Compiler output with and without auto-vectorization

With no pragma With #pragma clang loop vectorize(assume_safety)

update:
 cmp w2, #1
 b.lt .LBB0_2
.LBB0_1:
 ldrsw x8, [x1], #4
 sub w2, w2, #1
 lsl x8, x8, #2
 ldr w9, [x0, x8]
 add w9, w9, #1
 str w9, [x0, x8]
 cbnz w2, .LBB0_1
.LBB0_2:
 ret

update_unique:
// BB#0:
 subs w9, w2, #1
 b.lt .LBB0_3
// BB#1:
 add x9, x9, #1
 mov x8, xzr
 whilelo p0.d, xzr, x9

.LBB0_2:
 ld1sw {z0.d}, p0/z, [x1, x8, lsl #2]
 incd x8
 ld1sw {z1.d}, p0/z, [x0, z0.d, lsl #2]
 add z1.d, z1.d, #1
 st1w {z1.d}, p0, [x0, z0.d, lsl #2]
 whilelo p0.d, x8, x9
 b.mi .LBB0_2
.LBB0_3:
 ret

Suppressing auto-vectorization with pragmas

If SVE auto-vectorization is not required for a specific loop, you can disable it or restrict it to only use
Arm NEON™ instructions.

You can suppress auto-vectorization on a specific loop by adding #pragma clang loop
vectorize(disable) immediately before the loop. In this example, a loop that would be trivially
vectorized by the compiler is ignored:

void update_unique(int *restrict a, int *restrict b, int count)
{
 #pragma clang loop vectorize(disable)
 for (int i = 0; i < count; i++)
 {
 a[i] = b[i] + 1;
 }
}

You can also suppress SVE instructions while allowing NEON instructions by adding a vectorize_style
hint:

vectorize_style(fixed_width)

Prefer fixed-width vectorization, resulting in NEON instructions. For a loop with
vectorize_style(fixed_width), the compiler prefers to generate NEON instructions, though
SVE instructions may still be used with a fixed-width predicate (such as gather loads or scatter
stores).

vectorize_style(scaled_width)

Prefer scaled-width vectorization, resulting in SVE instructions. For a loop with
vectorize_style(scaled_width), the compiler prefers SVE instructions but can choose to
generate NEON instructions or not vectorize at all.

This is the default.

For example:

void update_unique(int *restrict a, int *restrict b, int count)
{
 #pragma clang loop vectorize(enable) vectorize_style(fixed_width)
 for (int i = 0; i < count; i++)
 {
 a[i] = b[i] + 1;
 }
}

3 Coding Considerations
3.4 Using pragmas to encourage or suppress auto-vectorization

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-32
Non-Confidential

3.5 Using SVE intrinsics directly in your C code
Intrinsics are C or C++ pseudo-function calls that the compiler replaces with the appropriate SIMD
instructions. This lets you use the data types and operations available in the SIMD implementation, while
allowing the compiler to handle instruction scheduling and register allocation.

These intrinsics are defined in the Arm® C Language Extensions for SVE specification.

Introduction

The Arm C language extensions for SVE provide a set of types and accessors for SVE vectors and
predicates, and a function interface for all relevant SVE instructions.

The function interface is more general than the underlying architecture, so not every function maps
directly to an architectural instruction. The intention is to provide a regular interface and leave the
compiler to pick the best mapping to SVE instructions.

The Arm® C Language Extensions for SVE specification has a detailed description of this interface, and
must be used as the primary reference. This section introduces a selection of features to help you get
started with the Arm C Language Extensions (ACLE) for SVE.

Header file inclusion

Translation units that use the ACLE must first include arm_sve.h, guarded by __ARM_FEATURE_SVE:

#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif /* __ARM_FEATURE_SVE */

All functions and types that are defined in the header file have the prefix sv, to reduce the chance of
collisions with other extensions.

SVE vector types

arm_sve.h defines the following C types to represent values in SVE vector registers. Each type describes
the type of the elements within the vector:

svint8_t svuint8_t

svint16_t svuint16_t svfloat16_t

svint32_t svuint32_t svfloat32_t

svint64_t svuint64_t svfloat64_t

For example, svint64_t represents a vector of 64-bit signed integers, and svfloat16_t represents a vector
of half-precision floating-point numbers.

SVE predicate type

The extension also defines a single sizeless predicate type svbool_t, which has enough bits to control an
operation on a vector of bytes.

The main use of predicates is to select elements in a vector. When the elements in the vector have N
bytes, only the low bit in each sequence of N predicate bits is significant, as shown in the following
table:

Table 3-2 Element selection by predicate type svbool_t

Vector type Element selected by each svbool_t bit

svint8_t 0 1 2 3 4 5 6 7 8 ...

svint16_t 0 1 2 3 4 ...

3 Coding Considerations
3.5 Using SVE intrinsics directly in your C code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-33
Non-Confidential

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve

Table 3-2 Element selection by predicate type svbool_t (continued)

Vector type Element selected by each svbool_t bit

svint32_t 0 1 2 ...

svint64_t 0 1 ...

Limitations on how SVE ACLE types can be used

SVE is a vector-length agnostic architecture, allowing an implementation to choose a vector length of
any multiple of 128 bits, up to a maximum of 2048 bits. Therefore, the size of SVE ACLE types are
unknown at compile time, which limits how these types can be used.

Common situations where SVE types might be used include:

• as the type of an object with automatic storage duration
• as a function parameter or return type
• as the type in a (type) {value} compound literal
• as the target of a pointer or reference type
• as a template type argument.

Because of their unknown size at compile time, SVE types must not be used:
• to declare or define a static or thread-local storage variable
• as the type of an array element
• as the operand to a new expression
• as the type of object deleted by a delete expression
• as the argument to sizeof and _Alignof
• with pointer arithmetic on pointers to SVE objects (this affects the +, -, ++, and -- operators)
• as members of unions, structures and classes
• in standard library containers like std::vector.

For a comprehensive list of valid usage, refer to the Arm® C Language Extensions for SVE specification.

Writing SVE ACLE functions

SVE ACLE functions have the form:

svbase[_disambiguator][_type0][_type1]...[_predication]

where the function is built using the following:

base

For most functions, this is the lowercase name of the SVE instruction. Sometimes, letters
indicating the type or size of data being operated on are dropped, where it can be implied from
the argument types.

Unsigned extending loads add a u to indicate that the data will be zero extended, to more
explicitly differentiate them from their signed equivalent.

disambiguator

This field distinguishes between different forms of a function, for example:
• To distinguish between addressing modes
• To distinguish forms that take a scalar rather than a vector as the final argument.

type0 type1 ...

A list of types for vectors and predicates, starting with the return type then with each argument
type. For example, _s8, _u32, and _f32, which represent signed 8-bit integer, an unsigned 32-bit
integer and single precision 32-bit float types, respectively.

Predicate types are represented by _b8, _b16 and so on, for predicates suitable for 8-bit and 16-
bit types respectively. A predicate type suitable for all element types is represented by _b. Where
a type is not needed to disambiguate between variants of a base function, it is omitted.

3 Coding Considerations
3.5 Using SVE intrinsics directly in your C code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-34
Non-Confidential

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve

predication

This suffix describes the inactive elements in the result of a predicated operation. It can be one
of the following:
• z – Zero predication: Set all inactive elements of the result to zero.
• m – Merge predication: copy all inactive elements from the first vector argument.
• x – ‘Don’t care’ predication. Use this form when you do not care about the inactive

elements. The compiler is then free to choose between zeroing, merging, or unpredicated
forms to give the best code quality, but gives no guarantee of what data, if any, will be left in
inactive elements.

Addressing modes

Load, store, prefetch, and ADR functions have arguments that describe the memory area being
addressed. The first addressing argument is the base – either a single pointer to an element type, or a 32-
bit or 64-bit vector of addresses. The second argument, when present, offsets the base (or bases) by some
number of bytes, elements, or vectors. This offset argument can be an immediate constant value, a scalar
argument, or a vector of offsets.

Not every combination of the above options exists. The following table gives examples of some common
addressing mode disambiguators, and describes how to interpret the address arguments:

Table 3-3 Common addressing mode disambiguators

Disambiguator Interpretation

_u32base The base argument is a vector of unsigned 32-bit addresses.

_u64base The base argument is a vector of unsigned 64-bit addresses.

_s32offset

_s64offset

_u32offset

_u64offset

The offset argument is a vector of byte offsets. These offsets are signed or unsigned 32-bit or 64-bit numbers.

_s32index

_s64index

_u32index

_u64index

The offset argument is a vector of element-sized indices. These indices are signed or unsigned 32-bit or 64-bit
numbers.

_offset The offset argument is a scalar, and must be treated as a byte offset.

_index The offset argument is a scalar, and must be treated as an index into an array of elements.

_vnum The offset argument is a scalar, and must be treated an index into an array of SVE vectors.

In the following example, the address of element i is &base[indices[i]].

svuint32_t svld1_gather_[s32]index[_u32]
 (svbool_t pg, const uint32_t *base, svint32_t indices)

Operations involving vectors and scalars

All arithmetic functions that take two vector inputs have an alternative form that takes a vector and a
scalar. Conceptually, this scalar is duplicated across a vector, and that vector is used as the second vector
argument.

Similarly, arithmetic functions that take three vector inputs have an alternative form that takes two
vectors and one scalar.

To differentiate these forms, the disambiguator _n is added to the form that takes a scalar.

3 Coding Considerations
3.5 Using SVE intrinsics directly in your C code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-35
Non-Confidential

Short forms

Sometimes, it is possible to omit part of the full name, and still uniquely identify the correct form of a
function, by inspecting the argument types. Where this is possible, these simplified forms are provided as
aliases to their fully named equivalents, and will be used for preference in the rest of this document.

In the Arm® C Language Extensions for SVE specification, the portion that can be removed is enclosed in
square brackets. For example svclz[_s16]_m has the full name svclz_s16_m, and an overloaded alias,
svclz_m.

Example – Naïve step-1 daxpy

daxpy is a BLAS (Basic Linear Algebra Subroutines) subroutine that operates on two arrays of double
precision floating-point numbers. A slice is taken of each of these arrays. For each element in these
slices, an element (x) in the first array is multiplied by a constant (a), then added to the element (y) from
the second array. The result is stored back to the second array at the same index.

This example presents a step-1 daxpy implementation, where the indices of x and y start at 0 and
increment by 1 each iteration. A C code implementation might look like this:

void daxpy_1_1(int64_t n, double da, double *dx, double *dy)
{
 for (int64_t i = 0; i < n; ++i) {
 dy[i] = dx[i] * da + dy[i];
 }
}

Here is an ACLE equivalent:

void daxpy_1_1(int64_t n, double da, double *dx, double *dy)
{
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n); // [1]
 do
 {
 svfloat64_t dx_vec = svld1(pg, &dx[i]); // [2]
 svfloat64_t dy_vec = svld1(pg, &dy[i]); // [2]
 svst1(pg, &dy[i], svmla_x(pg, dy_vec, dx_vec, da)); // [3]
 i += svcntd(); // [4]
 pg = svwhilelt_b64(i, n); // [1]
 }
 while (svptest_any(svptrue_b64(), pg)); // [5]
}

The following steps explain this example:

[1] - Initialize a predicate register to control the loop. _b64 specifies a predicate for 64-bit elements.
Conceptually, this operation creates an integer vector starting at i and incrementing by 1 in each
subsequent lane. The predicate lane is active if this value is less than n. Therefore, this loop is safe, if
inefficient, even if n ≤ 0. The same operation is used at the bottom of the loop, to update the predicate for
the next iteration.

[2] - Load some values into an SVE vector, guarded by the loop predicate. Lanes where this predicate is
false do not perform any load (and so will not generate a fault), and set the result value to 0.0. The
number of lanes that are loaded depends on the vector width, which is only known at runtime.

[3] - Perform a floating-point multiply-add operation, and pass the result to a store. The _x on the MLA
indicates we don’t care about the result for inactive lanes. This gives the compiler maximum flexibility in
choosing the most efficient instruction. The result of this operation is stored at address &dy[i], guarded
by the loop predicate. Lanes where the predicate is false are not stored, and so the value in memory will
retain its prior value.

[4] - Increment i by the number of double-precision lanes in the vector.

[5] - ptest returns true if any lane of the (newly updated) predicate is active, which causes control to
return to the start of the while loop if there is any work left to do.

3 Coding Considerations
3.5 Using SVE intrinsics directly in your C code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-36
Non-Confidential

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve

“Ideal” assembler output:

daxpy_1_1:
 MOV Z2.D, D0 // da
 MOV X3, #0 // i
 WHILELT P0.D, X3, X0 // i, n
loop:
 LD1D Z1.D, P0/Z, [X1, X3, LSL #3]
 LD1D Z0.D, P0/Z, [X2, X3, LSL #3]
 FMLA Z0.D, P0/M, Z1.D, Z2.D
 ST1D Z0.D, P0, [X2, X3, LSL #3]
 INCD X3 // i
 WHILELT P0.D, X3, X0 // i, n
 B.ANY loop
 RET

Example – Naïve general daxpy

This example presents a general daxpy implementation, where the indices of x and y start at 0 and are
then incremented by unknown (but loop-invariant) strides each iteration.

void daxpy(int64_t n, double da, double *dx, int64_t incx,
 double *dy, int64_t incy)
{
 svint64_t incx_vec = svindex_s64(0, incx); // [1]
 svint64_t incy_vec = svindex_s64(0, incy); // [1]
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n); // [2]
 do
 {
 svfloat64_t dx_vec = svld1_gather_index(pg, dx, incx_vec); // [3]
 svfloat64_t dy_vec = svld1_gather_index(pg, dy, incy_vec); // [3]
 svst1_scatter_index(pg, dy, incy_vec, svmla_x(pg, dy_vec, dx_vec, da)); // [4]
 dx += incx * svcntd(); // [5]
 dy += incy * svcntd(); // [5]
 i += svcntd(); // [6]
 pg = svwhilelt_b64(i, n); // [2]
 }
 while (svptest_any(svptrue_b64(), pg)); // [7]
}

The following steps explain this example:

[1] - For each of x and y, initialize a vector of indices, starting at 0 for the first lane and incrementing by
incx and incy respectively in each subsequent lane.

[2] - Initialize or update the loop predicate.

[3] - Load a vector’s worth of values, guarded by the loop predicate. Lanes where this predicate is false
do not perform any load (and so will not generate a fault), and set the result value to 0.0. This time, a
base + vector-of-indices gather load, is used to load the required non-consecutive values.

[4] - Perform a floating-point multiply-add operation, and pass the result to a store. This time, the base +
vector-of-indices scatter store is used to store each result in the correct index of the dy[] array.

[5] - Instead of using i to calculate the load address, increment the base pointer, by multiplying the
vector length by the stride.

[6] - Increment i by the number of double-precision lanes in the vector.

[7] - Test the loop predicate to work out whether there is any more work to do, and loop back if
appropriate.

3 Coding Considerations
3.5 Using SVE intrinsics directly in your C code

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 3-37
Non-Confidential

Chapter 4
Reference

Provides reference information about Arm Compiler.

It contains the following section:
• 4.1 Compiler options on page 4-39.

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-38
Non-Confidential

4.1 Compiler options
Describes the subset of Arm Compiler command-line options most likely to be of interest to users
developing code to take advantage of SVE.

See the armclang Reference Guide for information about the full range of supported options.

Options controlling compiler operation
-S

Outputs assembly code, rather than object code.

Produces a text .s file containing annotated assembly code.

-c

Performs the compilation step, but does not invoke armlink to perform the link step.

Produces an ELF object .o file. To later link object files into an executable binary, run armclang
again, passing in the object files.

-o file

Specifies the name of the output file.
-std=lang

Compiles for the specified language standard, for example -std=c90 or -std=c++98.

See the armclang Reference Guide for details of the supported variants, and the differences
between them.

--target=arch-vendor-os-abi

Generates code for the selected target.

Arm Compiler supports both AArch32 and AArch64 targets. However, SVE is an extension to
Armv8-A AArch64. Therefore the only supported target for this release is aarch64-arm-none-
eabi

-Xlinker opt

Specifies a linker command-line option to pass to the linker when a link step is being performed
after compilation.

When compiling binaries to execute on the AEMv8-A Base Fixed Virtual Platform (FVP) base
model, use this option to specify the location in memory to load and run the binary. The RAM
base address for this FVP is 0x80000000. You must therefore specify the
-Xlinker "--ro_base=0x80000000" option for any armclang invocation that performs the link
stage.

Options controlling compiler optimization
-march=name[+[no]feature]

Targets an architecture profile, generating generic code that runs on any processor of that
architecture.

Append the +sve feature to enable SVE, or omit to disable.

For example, -march=armv8.2+sve enables the Armv8.2 architecture profile plus SVE support.

Use -march=list to display a list of all the supported architectures for your target.

4 Reference
4.1 Compiler options

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-39
Non-Confidential

-Olevel

Specifies the level of optimization to use when compiling source files.

SVE auto-vectorization occurs only at the –O2 and –O3 levels. Auto-vectorization is identical at
both levels, however –O3 results in higher general code optimization.

The –Ofast option is equivalent to -O3 -ffp-mode=fast, and can produce faster code if fast math
optimizations are appropriate for your application.

The -Omax option is equivalent to -Ofast plus other aggressive optimizations. It specifically
targets performance optimization.

-ffp-mode=fast

Enable aggressive floating-point optimizations.

The compiler can perform code optimizations and transformations that, although arithmetically
correct, might not be in strict compliance with IEEE or ISO rules concerning mathematical
operations.

This option can produce significantly faster code. For example, it allows the compiler to use the
SVE FADDV instruction to perform fast parallel additions across a vector. The FADDV instruction is
faster than the FADDA instruction because FADDA performs all additions across the vector in strict
sequence. Take care to ensure that your algorithms do not depend on strict IEEE or ISO
mathematical rules. The optimizations applied here are not guaranteed to produce bitwise
identical results when compared with less aggressively optimized code.

Informational options
--help

Describes the most common options supported by Arm Compiler.
--vsn, --version

Displays version information and license details.

Related information
armclang Reference Guide.

4 Reference
4.1 Compiler options

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 4-40
Non-Confidential

https://developer.arm.com/docs/100067/0609/

Chapter 5
Troubleshooting

Provides general troubleshooting advice relating to SVE functionality in this release of Arm Compiler.

It contains the following sections:
• 5.1 General troubleshooting advice on page 5-42.
• 5.2 Known limitations in SVE support on page 5-43.

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-41
Non-Confidential

5.1 General troubleshooting advice
Provides general advice for troubleshooting problems with Arm Compiler.

SVE instructions are not generated
If your compiled code does not contain SVE instructions, check the following:
• Ensure that Arm Compiler was used to compile the code.

If your output files are human-readable assembly code (that is, you specified the -S option), examine
the .s output files and look for lines containing the .ident keyword. If the output is produced by Arm
Compiler, lines similar to the following are displayed:

.ident "armclang version 5.0.0 Component: ARM Compiler 6.9 Tool: armclang [5cc60200]"

If your output files are ELF object files, use fromelf to inspect the .comment section of an object file.
If the output is produced by Arm Compiler, lines similar to the following are displayed:

$ fromelf -v main.o | grep armclang
 armclang version 5.0.0 Component: ARM Compiler 6.9 Tool: armclang [5cc60200]

• Check you specified an optimization level of -O2 or greater.

The SVE auto-vectorizer is only invoked if the optimization level specified is -O2 or greater. Ensure
that your compiler invocation includes a flag such as –O2 to enable SVE auto-vectorization.

See Compiler options on page 4-39 for details of the compiler flags that control the behavior of the
SVE auto-vectorizer.

• Consider modifying source code.

When you have confirmed that the SVE Compiler is being invoked, and there is a loop that is not
being vectorized, see Best practices to enable auto-vectorization on page 3-23 for examples and hints
on how to encourage the compiler to auto-vectorize your code.

Fatal error: L6450U: Cannot find library m

Code that makes use of the mathematical functions declared in math.h usually requires a -lm flag when
compiling on a POSIX environment such as Linux, to link in the Linux implementation of those
functions for that host system. For this reason, you might find that such a flag is added to your scripts or
makefiles.

Arm Compiler is designed to run in a bare metal environment, and automatically includes
implementations of these functions, and so no such flag is necessary.

If you encounter error L6450U, remove the -lm flag from your makefiles or build scripts.

Related references
4.1 Compiler options on page 4-39.
3.1 Best practices to enable auto-vectorization on page 3-23.

Related information
armclang Reference Guide: -O option.
armclang Reference Guide: -S option.

5 Troubleshooting
5.1 General troubleshooting advice

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-42
Non-Confidential

https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-o-1
https://developer.arm.com/docs/100067/0609/armclang-command-line-options/-s

5.2 Known limitations in SVE support
The following are known limitations of Arm Compiler when compiling for SVE architectures:

• Link-Time Optimization (the -flto option) is not supported when compiling for SVE architectures.
To avoid the use of LTO:
— Do not compile with -flto and do not link with --lto.
— When compiling at -Omax, also compile with -fno-lto and link with --no_lto.

5 Troubleshooting
5.2 Known limitations in SVE support

100891_0609_00_en Copyright © 2016, 2017 Arm Limited (or its affiliates). All rights reserved. 5-43
Non-Confidential

	Arm® Compiler Scalable Vector Extension User Guide
	Contents
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : SVE Overview
	1.1 : Introducing SVE
	1.2 : License configuration for SVE

	2 : Getting Started with the SVE Compiler
	2.1 : Assembling SVE code
	2.2 : Compiling C and C++ code for SVE-enabled targets
	2.3 : Disassembling SVE object files
	2.4 : Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

	3 : Coding Considerations
	3.1 : Best practices to enable auto-vectorization
	3.2 : Auto-vectorization examples
	3.3 : Embedding SVE assembly code directly into C and C++ code
	3.4 : Using pragmas to encourage or suppress auto-vectorization
	3.5 : Using SVE intrinsics directly in your C code

	4 : Reference
	4.1 : Compiler options

	5 : Troubleshooting
	5.1 : General troubleshooting advice
	5.2 : Known limitations in SVE support

