
Arm® Compiler
Version 6.11

User Guide

Copyright © 2016–2018 Arm Limited or its affiliates. All rights reserved.
100748_0611_00_en

Arm® Compiler
User Guide
Copyright © 2016–2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0606-00 04 November 2016 Non-Confidential Arm Compiler v6.6 Release

0607-00 05 April 2017 Non-Confidential Arm Compiler v6.7 Release

0608-00 30 July 2017 Non-Confidential Arm Compiler v6.8 Release.

0609-00 25 October 2017 Non-Confidential Arm Compiler v6.9 Release.

0610-00 14 March 2018 Non-Confidential Arm Compiler v6.10 Release.

0611-00 25 October 2018 Non-Confidential Arm Compiler v6.11 Release.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016–2018 Arm Limited (or its affiliates). All rights reserved.

 Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com

Contents
Arm® Compiler User Guide

Preface
About this book 11

Chapter 1 Getting Started
1.1 Introduction to Arm® Compiler 6 1-14
1.2 Installing Arm® Compiler .. 1-16
1.3 Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5 Development

Studio 1-18
1.4 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE 1-20
1.5 Compiling a Hello World example 1-21
1.6 Using the integrated assembler 1-24
1.7 Running bare-metal images 1-26
1.8 Architectures supported by Arm® Compiler 1-28

Chapter 2 Using Common Compiler Options
2.1 Mandatory armclang options 2-30
2.2 Selecting source language options .. 2-32
2.3 Selecting optimization options 2-34
2.4 Building to aid debugging 2-36
2.5 Linker options for mapping code and data to target memory 2-37
2.6 Controlling diagnostic messages 2-38
2.7 Selecting floating-point options .. 2-40
2.8 Compilation tools command-line option rules .. 2-43

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 3 Writing Optimized Code
3.1 Optimizing loops .. 3-45
3.2 Inlining functions .. 3-49
3.3 Examining stack usage .. 3-51
3.4 Packing data structures 3-53

Chapter 4 Optimization Techniques
4.1 Optimizing for code size or performance 4-58
4.2 Optimizing across modules with link time optimization .. 4-59
4.3 How optimization affects the debug experience .. 4-64

Chapter 5 Using Assembly and Intrinsics in C or C++ Code
5.1 Using intrinsics 5-66
5.2 Writing inline assembly code 5-67
5.3 Calling assembly functions from C and C++ 5-69

Chapter 6 Mapping Code and Data to the Target
6.1 What the linker does to create an image 6-72
6.2 Placing data items for target peripherals with a scatter file 6-74
6.3 Placing the stack and heap with a scatter file .. 6-75
6.4 Root region .. 6-76
6.5 Placing functions and data in a named section 6-79
6.6 Placing functions and data at specific addresses .. 6-81
6.7 Placement of Arm® C and C++ library code 6-89
6.8 Placement of unassigned sections .. 6-91
6.9 Placing veneers with a scatter file 6-101
6.10 Preprocessing a scatter file 6-102
6.11 Reserving an empty block of memory 6-104
6.12 Aligning regions to page boundaries 6-106
6.13 Aligning execution regions and input sections 6-107

Chapter 7 Embedded Software Development
7.1 About embedded software development 7-110
7.2 Default compilation tool behavior 7-111
7.3 C library structure 7-112
7.4 Default memory map 7-113
7.5 Application startup 7-115
7.6 Tailoring the C library to your target hardware 7-116
7.7 Reimplementing C library functions 7-117
7.8 Tailoring the image memory map to your target hardware 7-119
7.9 About the scatter-loading description syntax 7-120
7.10 Root regions 7-121
7.11 Placing the stack and heap 7-122
7.12 Run-time memory models 7-123
7.13 Reset and initialization 7-125
7.14 The vector table 7-126
7.15 ROM and RAM remapping 7-127
7.16 Local memory setup considerations .. 7-128
7.17 Stack pointer initialization .. 7-129
7.18 Hardware initialization 7-130

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

7.19 Execution mode considerations 7-131
7.20 Target hardware and the memory map .. 7-132
7.21 Execute-only memory .. 7-133
7.22 Building applications for execute-only memory 7-134
7.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles 7-135
7.24 Vector table for M-profile architectures .. 7-136
7.25 Vector Table Offset Register .. 7-137

Appendix A Supporting reference information
A.1 Support level definitions Appx-A-139
A.2 Standards compliance in Arm® Compiler Appx-A-143
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard) Appx-A-144
A.4 GCC compatibility provided by Arm® Compiler 6 Appx-A-146
A.5 Locale support in Arm® Compiler Appx-A-147
A.6 Toolchain environment variables Appx-A-148
A.7 Clang and LLVM documentation .. Appx-A-150
A.8 Further reading Appx-A-151

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

List of Figures
Arm® Compiler User Guide

Figure 1-1 A typical tool usage flow diagram .. 1-15
Figure 1-2 Accessing Arm Compiler settings from DS-5 Development Studio 1-19
Figure 1-3 Accessing the Arm Compiler version from µVision .. 1-20
Figure 1-4 Debug configurations ... 1-26
Figure 3-1 Structure without packing attribute or pragma ... 3-54
Figure 3-2 Structure with attribute packed .. 3-54
Figure 3-3 Structure with pragma pack with 1 byte alignment .. 3-54
Figure 3-4 Structure with pragma pack with 2 byte alignment .. 3-55
Figure 3-5 Structure with pragma pack with 4 byte alignment .. 3-55
Figure 3-6 Structure with attribute packed on individual member ... 3-55
Figure 4-1 Link time optimization .. 4-59
Figure 6-1 Memory map for fixed execution regions ... 6-77
Figure 6-2 .ANY contingency .. 6-98
Figure 6-3 Reserving a region for the stack .. 6-105
Figure 7-1 C library structure ... 7-112
Figure 7-2 Default memory map .. 7-113
Figure 7-3 Linker placement rules ... 7-113
Figure 7-4 Default initialization sequence ... 7-115
Figure 7-5 Retargeting the C library .. 7-116
Figure 7-6 Scatter-loading description syntax ... 7-120
Figure 7-7 One-region model .. 7-123
Figure 7-8 Two-region model .. 7-124
Figure 7-9 Initialization sequence ... 7-125

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

Figure A-1 Integration boundaries in Arm Compiler 6. .. Appx-A-141

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

List of Tables
Arm® Compiler User Guide

Table 2-1 Source language variants .. 2-32
Table 2-2 Optimization example .. 2-35
Table 2-3 Optimization example .. 2-35
Table 2-4 Common diagnostic options .. 2-38
Table 2-5 Options for floating-point selection .. 2-40
Table 2-6 Floating-point linkage for AArch32 .. 2-41
Table 3-1 Loop unrolling pragmas ... 3-45
Table 3-2 Loop optimizing example ... 3-45
Table 3-3 Loop examples .. 3-46
Table 3-4 Example loops ... 3-46
Table 3-5 Assembly code from vectorizable and non-vectorizable loops .. 3-47
Table 3-6 Function inlining ... 3-49
Table 3-7 Effect of -fno-inline-functions ... 3-50
Table 3-8 Packing members in a structure or union .. 3-53
Table 3-9 Packing structures ... 3-54
Table 3-10 Packing individual members .. 3-55
Table 6-1 Input section properties for placement of .ANY sections ... 6-93
Table 6-2 Input section properties for placement of sections with next_fit .. 6-95
Table 6-3 Input section properties and ordering for sections_a.o and sections_b.o 6-96
Table 6-4 Sort order for descending_size algorithm .. 6-96
Table 6-5 Sort order for cmdline algorithm .. 6-97
Table A-1 Environment variables used by the toolchain .. Appx-A-148

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Preface

This preface introduces the Arm® Compiler User Guide.

It contains the following:
• About this book on page 11.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

 About this book
The Arm® Compiler User Guide provides information for users new to Arm Compiler 6.

 Using this book

This book is organized into the following chapters:

Chapter 1 Getting Started
This chapter introduces Arm Compiler 6 and helps you to start working with Arm Compiler 6
quickly. You can use Arm Compiler 6 from Arm Development Studio, Arm DS-5 Development
Studio, Arm Keil® MDK, or as a standalone product.

Chapter 2 Using Common Compiler Options
There are many options that you can use to control how Arm Compiler 6 generates code for your
application. This section lists the mandatory and commonly used optional command-line
arguments, such as to control target selection, optimization, and debug view.

Chapter 3 Writing Optimized Code
To make best use of the optimization capabilities of Arm Compiler, there are various options,
pragmas, attributes, and coding techniques that you can use.

Chapter 4 Optimization Techniques
Describes how to use armclang to optimize for either code size or performance, and the impact of
the optimization level when debugging.

Chapter 5 Using Assembly and Intrinsics in C or C++ Code
All code for a single application can be written in the same source language. This is usually a
high-level language such as C or C++ that is compiled to instructions for Arm architectures.
However, in some situations you might need lower-level control than what C and C++ provide.

Chapter 6 Mapping Code and Data to the Target
There are various options in Arm Compiler to control how code, data and other sections of the
image are mapped to specific locations on the target.

Chapter 7 Embedded Software Development
Describes how to develop embedded applications with Arm Compiler, with or without a target
system present.

Appendix A Supporting reference information
The various features in Arm Compiler might have different levels of support, ranging from fully
supported product features to community features.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 About this book

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Compiler User Guide.
• The number 100748_0611_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Getting Started

This chapter introduces Arm Compiler 6 and helps you to start working with Arm Compiler 6 quickly.
You can use Arm Compiler 6 from Arm Development Studio, Arm DS-5 Development Studio, Arm
Keil® MDK, or as a standalone product.

It contains the following sections:
• 1.1 Introduction to Arm® Compiler 6 on page 1-14.
• 1.2 Installing Arm® Compiler on page 1-16.
• 1.3 Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5 Development Studio

on page 1-18.
• 1.4 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE on page 1-20.
• 1.5 Compiling a Hello World example on page 1-21.
• 1.6 Using the integrated assembler on page 1-24.
• 1.7 Running bare-metal images on page 1-26.
• 1.8 Architectures supported by Arm® Compiler on page 1-28.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.1 Introduction to Arm® Compiler 6
Arm Compiler 6 is the most advanced C and C++ compilation toolchain from Arm for Arm Cortex®

processors. Arm Compiler 6 is developed alongside the Arm architecture, and is therefore tuned to
generate highly efficient code for embedded bare-metal applications ranging from small sensors to 64-bit
devices.

Arm Compiler 6 is a component of Arm Development Studio, Arm® DS-5 Development Studio, and Arm®

Keil® MDK. Alternatively, you can use Arm Compiler 6 as a standalone product. The features and
processors that Arm Compiler 6 supports depend on the product edition. See Arm® Developer for the
specification of the different standard products.

Arm Compiler 6 combines the optimized tools and libraries from Arm with a modern LLVM-based
compiler framework. The components in Arm Compiler 6 are:

armclang

The compiler and integrated assembler that compiles C, C++, and GNU assembly language
sources.

The compiler is based on LLVM and Clang technology.

Clang is a compiler front end for LLVM that supports the C and C++ programming languages.

armasm

The legacy assembler. Only use armasm for legacy Arm-syntax assembly code. Use the
armclang assembler and GNU syntax for all new assembly files.

armlink

The linker combines the contents of one or more object files with selected parts of one or more
object libraries to produce an executable program.

armar
The archiver enables sets of ELF object files to be collected together and maintained in archives
or libraries. You can pass such a library or archive to the linker in place of several ELF files.
You can also use the archive for distribution to a third party application developer.

fromelf

The image conversion utility can convert Arm ELF images to binary formats and can also
generate textual information about the input image, such as its disassembly and its code and data
size.

Arm C++ libraries
The Arm C++ libraries are based on the LLVM libc++ project:
• The libc++abi library is a runtime library providing implementations of low-level language

features.
• The libc++ library provides an implementation of the ISO C++ library standard. It depends

on the functions that are provided by libc++abi.

Arm C libraries
The Arm C libraries provide:
• An implementation of the library features as defined in the C standards.
• Nonstandard extensions common to many C libraries.
• POSIX extended functionality.
• Functions standardized by POSIX.

Application development

A typical application development flow might involve the following:

1 Getting Started
1.1 Introduction to Arm® Compiler 6

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

https://developer.arm.com/products/software-development-tools/ds-5-development-studio
http://www2.keil.com/mdk5
http://www2.keil.com/mdk5
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/editions

• Developing C/C++ source code for the main application (armclang).
• Developing assembly source code for near-hardware components, such as interrupt service routines

(armclang, or armasm for legacy assembly code).
• Linking all objects together to generate an image (armlink).
• Converting an image to flash format in plain binary, Intel Hex, and Motorola-S formats (fromelf).

The following figure shows how the compilation tools are used for the development of a typical
application.

Flash format

.s

armclang

armasm
or

armclang

C/C++ A32
and T32

Assembly
code

armlink fromelf

ImageObject codeSource code

code

data

debug

Plain binary
Intel Hex

Motorola-S

.o data

.o data

.c
code

debug

code

debug

Figure 1-1 A typical tool usage flow diagram

Arm Compiler 6 has more functionality than the set of product features that are described in the
documentation. The various features in Arm Compiler 6 can have different levels of support and
guarantees. For more information, see Support level definitions on page Appx-A-139.

 Note

• If you are migrating your toolchain from Arm Compiler 5 to Arm Compiler 6, see the Arm® Compiler
Migration and Compatibility Guide for information on how to migrate your source code and
toolchain build options from Arm Compiler 5 to Arm Compiler 6.

• For a list of Arm® Compiler 6 documents, see the documentation on Arm Developer.

1 Getting Started
1.1 Introduction to Arm® Compiler 6

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

https://developer.arm.com/docs/100068/0611
https://developer.arm.com/docs/100068/0611
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler/documentation/version-6-11

1.2 Installing Arm® Compiler
This topic lists the system requirements for running Arm Compiler and guides you through the
installation process.

System Requirements
Arm Compiler 6 is available for the following operating systems:
• Windows 64-bit.
• Windows 32-bit.
• Linux 64-bit.

For more information on system requirements see the Arm® Compiler release note.

Installing Arm® Compiler

You can install Arm Compiler as a standalone product on supported Windows and Linux platforms. If
you use Arm Compiler as part of a development suite such as Arm Development Studio, Arm DS-5
Development Studio, or Arm Keil MDK, installing the development suite also installs Arm Compiler.
The following instructions are for installing Arm Compiler as a standalone product.

Prerequisites:
1. Download Arm® Compiler 6.
2. Obtain a license. Contact your Arm sales representative or request a license.
3. Set the ARMLMD_LICENSE_FILE environment variable to point to your license file or license server.

 Note

This path must not contain double quotes on Windows. A path that contains spaces still works
without the quotes.

If you need to set any other environment variable, such as ARM_TOOL_VARIANT, see Toolchain
environment variables on page Appx-A-148 for more information.

Installing a standalone Arm® Compiler on Windows platforms
To install Arm Compiler as a standalone product on Windows, you need the setup.exe installer on your
machine. This is in the Arm® Compiler 6 download:
1. On 64-bit platforms, run win-x86_64\setup.exe. On 32-bit platforms, run win-x86_32\setup.exe.
2. Follow the on-screen installation instructions.

If you have an older version of Arm Compiler 6 and you want to upgrade, Arm recommends that you
uninstall the older version of Arm Compiler 6 before installing the new version of Arm Compiler 6.

Installing a standalone Arm® Compiler on Linux platforms
To install Arm Compiler as a standalone product on Linux platforms, you need the install_x86_64.sh
installer on your machine. This is in the Arm® Compiler 6 download:
1. Run install_x86_64.sh normally, without using the source Linux command.
2. Follow the on-screen installation instructions.

Uninstalling a standalone Arm® Compiler
To uninstall Arm Compiler on Windows, use the Control Panel:
1. Select Control Panel > Programs and Features.
2. Select the version that you want to uninstall, for example Arm Compiler 6.10.
3. Click the Uninstall button.

To uninstall Arm Compiler on Linux, delete the Arm Compiler 6 installation directory for the compiler
version you want to delete.

For more information on installation, see the Arm® Compiler release note.

1 Getting Started
1.2 Installing Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/buy-arm-products
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads

Related tasks
1.3 Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5 Development Studio
on page 1-18
1.4 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE on page 1-20

1 Getting Started
1.2 Installing Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.3 Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5
Development Studio

Arm Development Studio and DS-5 Development Studio are development suites that provide Arm
Compiler 6 as a built-in toolchain.

This task describes how to access and configure Arm Compiler from DS-5 Development Studio.
 Note

See the Arm Development Studio documentation for how to access and configure Arm Compiler from
Arm Development Studio.

Prerequisites

Ensure you have DS-5 Development Studio installed. Create a new C or C++ project in DS-5
Development Studio. For information on creating new projects in DS-5 Development Studio, see
Creating a new C or C++ project.

Procedure
1. Select the project in DS-5 Development Studio.
2. Select Project > Properties.
3. From the left-hand side menu, select C/C++ Build > Tool Chain Editor.
4. In the Current toolchain options, select ARM Compiler 6 if this is not already selected.
5. From the left-hand side menu, select C/C++ Build > Settings.

1 Getting Started
1.3 Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5 Development Studio

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

https://developer.arm.com/docs/100951/latest/working-with-projects/creating-a-new-c-or-c-project

Figure 1-2 Accessing Arm Compiler settings from DS-5 Development Studio

For information about using DS-5, see the Arm® DS-5 Getting Started Guide and Arm® DS-5
Debugger Guide.

6. After setting the compiler options, right-click on the project and select Build Project.
Related reference
1.2 Installing Arm® Compiler on page 1-16

1 Getting Started
1.3 Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5 Development Studio

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

https://developer.arm.com/docs/100950/latest
https://developer.arm.com/docs/100953/latest
https://developer.arm.com/docs/100953/latest

1.4 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE
MDK is a microprocessor development suite that provides the µVision® IDE, and Arm Compiler 6 as a
built-in toolchain.

This task describes how to access and configure Arm Compiler 6 from the µVision IDE:

Prerequisites

Ensure you have µVision installed. Create a new project in µVision.

Procedure
1. Select the project in µVision.
2. Select Project > Manage > Project 'project_name' Project Items.

Figure 1-3 Accessing the Arm Compiler version from µVision
3. Select the Folders/Extensions tab.
4. Click Setup Default ARM Compiler Version.
5. For each device, select the version of Arm Compiler you want to use. For example, v6.10.
6. Click OK to close each of the dialog boxes in turn.
Related reference
1.2 Installing Arm® Compiler on page 1-16

1 Getting Started
1.4 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.5 Compiling a Hello World example
These examples show how to use the Arm Compiler toolchain to build and inspect an executable image
from C/C++ source files.

The source code

The source code that is used in the examples is a single C source file, hello.c, to display a greeting
message:

#include <stdio.h>

int main() {
 printf("Hello World\n");
 return 0;
}

Compiling in a single step
When compiling code, you must first decide which target the executable is to run on. An Armv8‑A target
can run in different states:
• AArch64 state targets execute A64 instructions using 64-bit and 32-bit general-purpose registers.
• AArch32 state targets execute A32 or T32 instructions using 32-bit general-purpose registers.

The --target option determines which target state to compile for. This option is a mandatory option.

Compiling for an AArch64 target

To create an executable for an AArch64 target in a single step:

armclang --target=aarch64-arm-none-eabi hello.c

This command creates an executable, a.out.

This example compiles for an AArch64 state target. Because only --target is specified, the
compiler defaults to generating code that runs on any Armv8‑A target. You can also use -mcpu
to target a specific processor.

Compiling for an AArch32 target

To create an executable for an AArch32 target in a single step:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 hello.c

There is no default target for AArch32 state. You must specify either -march to target an
architecture or -mcpu to target a processor. This example uses -mcpu to target the Cortex‑A53
processor. The compiler generates code that is optimized specifically for the Cortex‑A53, but
might not run on other processors.

Use -mcpu=list or -march=list to see all available processor or architecture options.

Beyond the defaults

Compiler options let you specify precisely how the compiler behaves when generating code.

The armclang Reference Guide describes all the supported options, but here are some of the most
common:
• Including debug information. The -g option tells the compiler to produce DWARF debug

information. You can then use a compatible debugger, such as Arm DS-5 Debugger, to load, run, and
debug images.

• Optimization. The -Olevel option specifies the level of optimization to use when compiling source
files. The default is -O0, with no optimization. Different optimization levels let you control what type
of optimization the compiler performs. For example, -Os aims to reduce code size by balancing code

1 Getting Started
1.5 Compiling a Hello World example

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

https://developer.arm.com/docs/100067/0611

size against code speed, whereas -Omax uses aggressive optimizations to target performance
optimization.

• Instruction set. AArch32 targets support two instruction sets that you specify with the -m option. The
-marm option specifies A32, that is 32-bit instructions, to emphasize performance. The -mthumb
option specifies T32, that is mixed 32-bit and 16-bit instructions, to emphasize code density.

Examining the executable

The fromelf tool lets you examine a compiled binary, extract information about it, or convert it.

For example, you can:
• Disassemble the code that is contained in the executable:

fromelf --text -c a.out

 ...
 main
 0x000081a0: e92d4800 .H-. PUSH {r11,lr}
 0x000081a4: e1a0b00d MOV r11,sp
 0x000081a8: e24dd010 ..M. SUB sp,sp,#0x10
 0x000081ac: e3a00000 MOV r0,#0
 0x000081b0: e50b0004 STR r0,[r11,#-4]
 0x000081b4: e30a19cc MOV r1,#0xa9cc
 ...

• Examine the size of code and data in the executable:

fromelf --text -z a.out

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name
 10436 492 596 16 348 3468 a.out
 10436 492 596 16 0 0 ROM Totals for a.out

• Convert the ELF executable image to another format, for example a plain binary file:

fromelf --bin --output=outfile.bin a.out

See fromelf Command-line Options for the options from the fromelf tool.

Compiling and linking as separate steps

For simple projects with small numbers of source files, compiling and linking in a single step might be
the simplest option:

armclang --target=aarch64-arm-none-eabi file1.c file2.c -o image.axf

This example compiles the two source files file1.c and file2.c for an AArch64 state target. The -o
option specifies that the filename of the generated executable is image.axf.

More complex projects might have many more source files. It is not efficient to compile every source file
at every compilation, because most source files are unlikely to change. To avoid compiling unchanged
source files, you can compile and link as separate steps. In this way, you can then use a build system
(such as make) to compile only those source files that have changed, then link the object code together.
The armclang -c option tells the compiler to compile to object code and stop before calling the linker:

armclang -c --target=aarch64-arm-none-eabi file1.c
armclang -c --target=aarch64-arm-none-eabi file2.c
armlink file1.o file2.o -o image.axf

These commands do the following:
• Compile file1.c to object code, and save using the default name file1.o.
• Compile file2.c to object code, and save using the default name file2.o.
• Link the object files file1.o and file2.o to produce an executable that is called image.axf.

In the future, if you modify file2.c, you can rebuild the executable by recompiling only file2.c then
linking the new file2.o with the existing file1.o to produce a new executable:

armclang -c --target=aarch64-arm-none-eabi file2.c
armlink file1.o file2.o -o image.axf

1 Getting Started
1.5 Compiling a Hello World example

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

https://developer.arm.com/docs/100071/0611/fromelf-command-line-options

Related information
armclang --target option
armclang -march option
armclang -mcpu option
Summary of armclang command-line options

1 Getting Started
1.5 Compiling a Hello World example

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-target
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/summary-of-armclang-command-line-options

1.6 Using the integrated assembler
These examples show how to use the armclang integrated assembler to build an object from assembly
source files, and how to call functions in this object from C/C++ source files.

The assembly source code

The assembly example is a single assembly source file, mystrcopy.s, containing a function to perform a
simple string copy operation:

 .section StringCopy, "ax"
 .balign 4

 .global mystrcopy
 .type mystrcopy, "function"
mystrcopy:
 ldrb r2, [r1], #1
 strb r2, [r0], #1
 cmp r2, #0
 bne mystrcopy
 bx lr

The .section directive creates a new section in the object file named StringCopy. The characters in the
string following the section name are the flags for this section. The a flag marks this section as
allocatable. The x flag marks this section as executable.

The .balign directive aligns the subsequent code to a 4-byte boundary. The alignment is required for
compliance with the Arm® Application Procedure Call Standard (AAPCS).

The .global directive marks the symbol mystrcopy as a global symbol. This enables the symbol to be
referenced by external files.

The .type directive sets the type of the symbol mystrcopy to function. This helps the linker use the
proper linkage when the symbol is branched to from A32 or T32 code.

Assembling a source file

When assembling code, you must first decide which target the executable is to run on. The --target
option determines which target state to compile for. This option is a mandatory option.

To assemble the above source file for an Armv8‑M Mainline target:

armclang --target=arm-arm-none-eabi -c -march=armv8-m.main mystrcopy.s

This command creates an object file, mystrcopy.o.

The --target option selects the target that you want to assemble for. In this example, there is no default
target for A32 state, so you must specify either -march to target an architecture or -mcpu to target a
processor. This example uses -march to target the Armv8‑M Mainline architecture. The integrated
assembler accepts the same options for --target, -march, -mcpu, and -mfpu as the compiler.

Use -mcpu=list or -march=list to see all available options.

Examining the executable

You can use the fromelf tool to:

• examine an assembled binary.
• extract information about an assembled binary.
• convert an assembled binary to another format.

For example, you can disassemble the code that is contained in the object file:

fromelf --text -c mystrcopy.o

 ...
 ** Section #3 'StringCopy' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 14 bytes (alignment 4)

1 Getting Started
1.6 Using the integrated assembler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

 Address: 0x00000000

 $t.0
 mystrcopy
 0x00000000: f8112b01 ...+ LDRB r2,[r1],#1
 0x00000004: f8002b01 ...+ STRB r2,[r0],#1
 0x00000008: 2a00 .* CMP r2,#0
 0x0000000a: d1f9 .. BNE mystrcopy ; 0x0
 0x0000000c: 4770 pG BX lr
 ...

The example shows the disassembly for the section StringCopy as created in the source file.
 Note

The code is marked as T32 by default because Armv8‑M Mainline does not support A32 code. For
processors that support A32 and T32 code, you can explicitly mark the code as A32 or T32 by adding the
GNU assembly .arm or .thumb directive, respectively, at the start of the source file.

Calling an assembly function from C/C++ code

It can be useful to write optimized functions in an assembly file and call them from C/C++ code. When
doing so, ensure that the assembly function uses registers in compliance with the AAPCS.

The C example is a single C source file main.c, containing a call to the mystrcopy function to copy a
string from one location to another:

const char *source = "String to copy.";
char *dest;

extern void mystrcopy(char *dest, const char *source);

int main(void) {
 mystrcopy(dest, source);
 return 0;
}

An extern function declaration has been added for the mystrcopy function. The return type and function
parameters must be checked manually.

If you want to call the assembly function from a C++ source file, you must disable C++ name mangling
by using extern "C" instead of extern. For the above example, use:

extern "C" void mystrcopy(char *dest, const char *source);

Compiling and linking the C source file

To compile the above source file for an Armv8‑M Mainline target:

armclang --target=arm-arm-none-eabi -c -march=armv8-m.main main.c

This command creates an object file, main.o.

To link the two object files main.o and mystrcopy.o and generate an executable image:

armlink main.o mystrcopy.o -o image.axf

This command creates an executable image file image.axf.

Related concepts
2.1 Mandatory armclang options on page 2-30
Related information
Summary of armclang command-line options
Sections

1 Getting Started
1.6 Using the integrated assembler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-25

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/summary-of-armclang-command-line-options
https://developer.arm.com/docs/100068/0611/migrating-from-armasm-to-the-armclang-integrated-assembler/sections

1.7 Running bare-metal images
By default, Arm Compiler produces bare-metal images. Bare-metal images can run without an operating
system. The images can run on a hardware target or on a software application that simulates the target,
such as Fast Models or Fixed Virtual Platforms.

If you are using Arm DS-5, you can select Run > Debug Configurations to configure and load your
application image into either a model or hardware platform.

Figure 1-4 Debug configurations

For more information on configuring and running the image using Arm DS-5, see the Arm® DS-5
Debugger User Guide.

By default, the C library in Arm Compiler uses special functions to access the input and output interfaces
on the host computer. These functions implement a feature called semihosting. Semihosting is useful
when the input and output on the hardware is not available during the early stages of application
development.

When you want your application to use the input and output interfaces on the hardware, you must
retarget the required semihosting functions in the C library.

For more information on configuring the Arm DS-5 Debugger settings, see Configuring a connection to
a bare-metal hardware target.

1 Getting Started
1.7 Running bare-metal images

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-26

Non-Confidential

https://developer.arm.com/docs/100953/latest
https://developer.arm.com/docs/100953/latest
https://developer.arm.com/docs/100953/latest/configuring-debug-connections-in-ds-5-debugger/configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/docs/100953/latest/configuring-debug-connections-in-ds-5-debugger/configuring-a-connection-to-a-bare-metal-hardware-target

Outputting debug messages from your application

The semihosting feature enables your bare-metal application, running on an Arm processor, to use the
input and output interface on a host computer. This feature requires the use of a debugger that supports
semihosting, for example Arm DS-5 Debugger, on the host computer.

A bare-metal application that uses semihosting does not use the input and output interface of the
development platform. When the input and output interfaces on the development platform are available,
you must reimplement the necessary semihosting functions to use the input and output interfaces on the
development platform.

For more information, see how to use the libraries in semihosting and nonsemihosting environments.

Related information
Arm DS-5 Debugger User Guide

1 Getting Started
1.7 Running bare-metal images

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-27

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/support-for-building-an-application-with-the-c-library/using-the-c-and-c-libraries-with-an-application-in-a-semihosting-environment
https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/support-for-building-an-application-with-the-c-library/using-the-libraries-in-a-nonsemihosting-environment
https://developer.arm.com/docs/100953/latest/

1.8 Architectures supported by Arm® Compiler
Arm Compiler supports a number of different architecture profiles.

Arm Compiler supports the following architectures:

• Armv8‑A and all update releases, for bare-metal targets.
• Armv8‑R.
• Armv8‑M.
• Armv7‑A for bare-metal targets.
• Armv7‑R.
• Armv7‑M.
• Armv6‑M.

When compiling code, the compiler needs to know which architecture to target in order to take advantage
of features specific to that architecture.

To specify a target, you must supply the target execution state (AArch32 or AArch64), together with
either a target architecture (for example Armv8‑A) or a target processor (for example, the Cortex‑A53
processor).

To specify a target execution state (AArch64 or AArch32) with armclang, use the mandatory --target
command-line option:

--target=arch-vendor-os-abi

Supported targets include:

aarch64-arm-none-eabi
Generates A64 instructions for AArch64 state. Implies -march=armv8-a unless -march or -
mcpu is specified.

arm-arm-none-eabi
Generates A32 and T32 instructions for AArch32 state. Must be used in conjunction with -
march (to target an architecture) or -mcpu (to target a processor).

To generate generic code that runs on any processor with a particular architecture, use the -march option.
Use the -march=list option to see all supported architectures.

To optimize your code for a particular processor, use the -mcpu option. Use the -mcpu=list option to see
all supported processors.

 Note

The --target, -march, and -mcpu options are armclang options. For all of the other tools, such as
armasm and armlink, use the --cpu option to specify target processors and architectures.

Related information
armclang --target option
armclang -march option
armclang -mcpu option
armlink --cpu option
Arm Glossary

1 Getting Started
1.8 Architectures supported by Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

1-28

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-target
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100070/0611/linker-command-line-options/-cpuname
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 2
Using Common Compiler Options

There are many options that you can use to control how Arm Compiler 6 generates code for your
application. This section lists the mandatory and commonly used optional command-line arguments,
such as to control target selection, optimization, and debug view.

It contains the following sections:
• 2.1 Mandatory armclang options on page 2-30.
• 2.2 Selecting source language options on page 2-32.
• 2.3 Selecting optimization options on page 2-34.
• 2.4 Building to aid debugging on page 2-36.
• 2.5 Linker options for mapping code and data to target memory on page 2-37.
• 2.6 Controlling diagnostic messages on page 2-38.
• 2.7 Selecting floating-point options on page 2-40.
• 2.8 Compilation tools command-line option rules on page 2-43.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

2.1 Mandatory armclang options
When using armclang, you must specify a target on the command-line. Depending on the target you use,
you might also have to specify an architecture or processor.

Specifying a target
To specify a target, use the --target option. The following targets are available:
• To generate A64 instructions for AArch64 state, specify --target=aarch64-arm-none-eabi.

 Note

For AArch64, the default architecture is Armv8‑A.

• To generate A32 and T32 instructions for AArch32 state, specify --target=arm-arm-none-eabi. To
specify generation of either A32 or T32 instructions, use -marm or -mthumb respectively.

 Note

AArch32 has no defaults. You must always specify an architecture or processor.

Specifying an architecture

To generate code for a specific architecture, use the -march option. The supported architectures vary
according to the selected target.

To see a list of all the supported architectures for the selected target, use -march=list.

Specifying a processor

To generate code for a specific processor, use the -mcpu option. The supported processors vary according
to the selected target.

To see a list of all the supported processors for the selected target, use -mcpu=list.

It is also possible to enable or disable optional architecture features, by using the +[no]feature notation.
For a list of the architecture features that your processor supports, see the processor product
documentation. See the armclang Reference Guide for a list of architecture features that Arm Compiler
supports.

Use +feature or +nofeature to explicitly enable or disable an optional architecture feature.
 Note

You do not need to specify both the architecture and processor. The compiler infers the architecture from
the processor. If you only want to run code on one particular processor, you can specify the specific
processor. Performance is optimized, but code is only guaranteed to run on that processor. If you want
your code to run on a range of processors from a particular architecture, you can specify the architecture.
The code runs on any processor implementation of the target architecture, but performance might be
impacted.

Examples
These examples compile and link the input file helloworld.c:
• To compile for the Armv8‑A architecture in AArch64 state, use:

armclang --target=aarch64-arm-none-eabi -march=armv8-a helloworld.c

• To compile for the Armv8‑R architecture in AArch32 state, use:

armclang --target=arm-arm-none-eabi -march=armv8-r helloworld.c

• To compile for the Armv8‑M architecture mainline profile, use:

armclang --target=arm-arm-none-eabi -march=armv8-m.main helloworld.c

2 Using Common Compiler Options
2.1 Mandatory armclang options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-target
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-marm
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mthumb
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mcpu

• To compile for a Cortex‑A53 processor in AArch64 state, use:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 helloworld.c

• To compile for a Cortex‑A53 processor in AArch32 state, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 helloworld.c

• To compile for a Cortex-M4 processor, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m4 helloworld.c

• To compile for a Cortex-M33 processor, with DSP disabled, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m33+nodsp helloworld.c

Related information
armclang --target option
armclang -march option
armclang -mcpu option
armclang -marm option
armclang -mthumb option
Summary of armclang command-line options

2 Using Common Compiler Options
2.1 Mandatory armclang options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-target
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-marm
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mthumb
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/summary-of-armclang-command-line-options

2.2 Selecting source language options
Arm Compiler infers the source language, for example C or C++, from the filename extension. You can
force Arm Compiler to compile for a specific source language using the -x option. Arm Compiler can
also compile different variants of C and C++ source code. You can specify the variant using the -std
option.

 Note

This topic includes descriptions of [COMMUNITY] features. See Support level definitions
on page Appx-A-139.

Source language

By default Arm Compiler treats files with .c extension as C source files. If you want to compile a .c
file, for example file.c, as a C++ source file, use the -xc++ option:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -xc++ file.c

By default Arm Compiler treats files with .cpp extension as C++ source files. If you want to compile
a .cpp file, for example file.cpp, as a C source file, use the -xc option:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -xc file.cpp

The -x option only applies to input files that follow it on the command line.

Source language standard

Arm Compiler supports Standard and GNU variants of source languages as shown in the following table.

Table 2-1 Source language variants

Standard C GNU C Standard C++ GNU C++

c90 gnu90 c++98 gnu++98

c99 gnu99 c++03 gnu++03

c11 [COMMUNITY] gnu11 [COMMUNITY] c++11 gnu++11

- - c++14 gnu++14

- - c++17 [COMMUNITY] gnu++17 [COMMUNITY]

The default language standard for C code is gnu11 [COMMUNITY]. The default language standard for
C++ code is gnu++14. To specify a different source language standard, use the -std=name option.

Arm Compiler supports various language extensions, including GCC extensions, which you can use in
your source code. The GCC extensions are only available when you specify one of the GCC C or C++
language variants. For more information on language extensions, see the Arm® C Language Extensions in
Arm Compiler.

Since Arm Compiler uses the available language extensions by default, it does not adhere to the strict
ISO Standard. To compile to strict ISO standard for the source language, use the -Wpedantic option.
This shows warnings where the source code violates the ISO Standard. Arm Compiler does not support
strict adherence to C++98 or C++03.

2 Using Common Compiler Options
2.2 Selecting source language options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

https://developer.arm.com/docs/100067/0611/other-compiler-specific-features/acle-support

If you do not use -Wpedantic, Arm Compiler uses the available language extensions without warning.
However, where language variants produce different behavior, the behavior of the language variant
specified by -std will apply.

 Note

Certain compiler optimizations can violate strict adherence to the ISO Standard for the language. To
identify when these violations happen, use the -Wpedantic option.

The following example shows the use of a variable length array, which is a C99 feature. In this example,
the function declares an array i, with variable length n.

#include <stdlib.h>

void function(int n) {
 int i[n];
}

Arm Compiler does not warn when compiling the example for C99 with -Wpedantic:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c -std=c99 -Wpedantic file.c

Arm Compiler does warn about variable length arrays when compiling the example for C90 with -
Wpedantic:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c -std=c90 -Wpedantic file.c

In this case armclang gives the following warning:

file.c:4:8: warning: variable length arrays are a C99 feature [-Wvla-extension]
int i[n];
^
1 warning generated.

Related information
Standard C++ library implementation definition

2 Using Common Compiler Options
2.2 Selecting source language options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/iso-c-library-implementation-definition/standard-c-library-implementation-definition

2.3 Selecting optimization options
Arm Compiler performs several optimizations to reduce the code size and improve the performance of
your application. However, optimization techniques can result in the loss of debug information, increased
build time, or increase in image size. Optimization levels are always a trade-off between these three
parameters.

Arm Compiler provides optimization options for the different optimization trade-offs. Primarily, you can
optimize for performance or for image size. However, there are several options for finer control of the
optimizations techniques. The optimization options are:

-O0
This is the default optimization setting. It turns off most optimizations, and gives the best
correlation between the built image and your application source code.

Use the following options to optimize performance:

-O1
This results in more optimizations for performance, when compared to -O0. It also reduces the
information available for debugging, and might result in an increased image size. Arm
recommends this option for debugging.

-O2
This results in more optimizations for performance, when compared to -O1. It also reduces the
information available for debugging, and might result in an increased image size.

-O3
This results in more optimizations for performance, when compared to -O2. It also reduces the
information available for debugging, and might result in an increased image size.

-Ofast
This results in more optimizations for performance, when compared to -O3. It also reduces the
information available for debugging, and might result in an increased image size. At this
optimization level, Arm Compiler might violate certain language standards.

-Omax
This results in more optimizations for performance, when compared to -Ofast. It also reduces
the information available for debugging, and might result in an increased image size. At this
optimization level, Arm Compiler might violate certain language standards. Arm recommends
this option for best performance.

Use the following options to optimize for size:

-Os
This results in reduced code size, and also reduces the information available for debugging.
Using this option might make your code slower.

-Oz
This results in more reduced image size, when compared to -Os, and also reduces the
information available for debugging. Using this option is likely to make your code slower than -
Os. Arm recommends this option for best code size.

The example shows the optimization performed with the -O1 optimization option. To perform this
optimization, compile your source file using:

armclang --target=arm-arm-none-eabi -march=armv7-a -O1 -c -S file.c

2 Using Common Compiler Options
2.3 Selecting optimization options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

Table 2-2 Optimization example

Source code in file.c Optimized output from armclang

int dummy()
{
 int x=10, y=20;
 int z;
 z=x+y;
 return 0;
}

dummy:
 .fnstart
 movs r0, #0
 bx lr

The example shows the optimization performed with the -O0 optimization option. To perform this
optimization, compile your source file using:

armclang --target=arm-arm-none-eabi -march=armv7-a -O0 -c -S file.c

Table 2-3 Optimization example

Source code in file.c Unoptimized output from armclang

int dummy()
{
 int x=10, y=20;
 int z;
 z=x+y;
 return 0;
}

dummy:
 .fnstart
 .pad #12
 sub sp, sp, #12
 mov r0, #10
 str r0, [sp, #8]
 mov r0, #20
 str r0, [sp, #4]
 ldr r0, [sp, #8]
 add r0, r0, #20
 str r0, [sp]
 mov r0, #0
 add sp, sp, #12
 bx lr

2 Using Common Compiler Options
2.3 Selecting optimization options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

2.4 Building to aid debugging
During application development, you must debug the image that you build. The Arm Compiler tools
have various features that provide good debug view and enable source-level debugging, such as setting
breakpoints in C and C++ code. There are also some features you must avoid when building an image for
debugging.

Available command-line options

To build an image for debugging, you must compile with the -g option. This option allows you to specify
the DWARF format to use. The -g option is a synonym for -gdwarf-4. You can specify DWARF 2 or
DWARF 3 if necessary, for example:

armclang -gdwarf-3

When linking, there are several armlink options available to help improve the debug view:
• --debug. This option is the default.
• --no_remove to retain all input sections in the final image even if they are unused.
• --bestdebug. When different input objects are compiled with different optimization levels, this

option enables linking for the best debug illusion.

Effect of optimizations on the debug view

To build an application that gives the best debug view, it is better to use options that give the fewest
optimizations. Arm recommends using optimization level -O1 for debugging. This option gives good
code density with a satisfactory debug view.

Higher optimization levels perform progressively more optimizations with correspondingly poorer debug
views.

The compiler attempts to automatically inline functions at optimization levels -O2 and -O3. If you must
use these optimization levels, disable the automatic inlining with the armclang option -fno-inline-
functions. The linker inlining is disabled by default.

Support for debugging overlaid programs
The linker provides various options to support overlay-aware debuggers:
• --emit_debug_overlay_section
• --emit_debug_overlay_relocs

These options permit an overlay-aware debugger to track which overlay is active.

Features to avoid when building an image for debugging

Avoid using the following in your source code:

• The __attribute__((always_inline)) function attribute. Qualifying a function with this attribute
forces the compiler to inline the function. If you also use the -fno-inline-functions option, the
function is inlined.

• The __declspec(noreturn) attribute and the __attribute__((noreturn)) function attribute.
These attributes limit the ability of a debugger to display the call stack.

Avoid using the following features when building an image for debugging:
• Link time optimization. This feature performs aggressive optimizations and can remove large chunks

of code.
• The armlink --no_debug option.
• The armlink --inline option. This option changes the image in such a way that the debug

information might not correspond to the source code.

2 Using Common Compiler Options
2.4 Building to aid debugging

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

2.5 Linker options for mapping code and data to target memory
For an image to run correctly on a target, you must place the various parts of the image at the correct
locations in memory. Linker command-line options are available to map the various parts of an image to
target memory.

The options implement the scatter-loading mechanism that describes the memory layout for the image.
The options that you use depend on the complexity of your image:
• For simple images, use the following memory map related options:

— --ro_base to specify the address of both the load and execution region containing the RO output
section.

— --rw_base to specify the address of the execution region containing the RW output section.
— --zi_base to specify the address of the execution region containing the ZI output section.

 Note

For objects that include execute-only (XO) sections, the linker provides the --xo_base option to
locate the XO sections. These sections are objects that are targeted at Armv7‑M or Armv8‑M
architectures, or objects that are built with the armclang -mthumb option,

• For complex images, use a text format scatter-loading description file. This file is known as a scatter
file, and you specify it with the --scatter option.

 Note

You cannot use the memory map related options with the --scatter option.

Examples
The following example shows how to place code and data using the memory map related options:

armlink --ro_base=0x0 --rw_base=0x400000 --zi_base=0x405000 --first="init.o(init)" init.o
main.o

 Note

In this example, --first is also included to make sure that the initialization routine is executed first.

The following example shows a scatter file, scatter.scat, that defines an equivalent memory map:

LR1 0x0000 0x20000
{
 ER_RO 0x0
 {
 init.o (INIT, +FIRST)
 *(+RO)
 }

 ER_RW 0x400000
 {
 *(+RW)
 }

 ER_ZI 0x405000
 {
 *(+ZI)
 }
}

To link with this scatter file, use the following command:

armlink --scatter=scatter.scat init.o main.o

2 Using Common Compiler Options
2.5 Linker options for mapping code and data to target memory

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

2.6 Controlling diagnostic messages
Arm Compiler provides diagnostics messages in the form of warnings and errors. You can use options to
suppress these messages or enable them as either warnings or errors.

Arm Compiler lists all the warnings and errors it encounters during the compiling and linking process.
However, if you specify multiple source files, and Arm Compiler encounters an error from a source file,
it does not report any diagnostic information from the other source files that it has not processed.

Diagnostic messages from Arm Compiler include the following information:

• Name of file that contains the error or warning.
• Line number in the file that contains the error or warning.
• Character in the line that is associated with the error or warning.
• Description of the error or warning.
• A diagnostic flag of the form -Wflag, for example -Wvla-extension, to identify the error or

warning. Only the messages that you can suppress have an associated flag. Errors that you cannot
suppress do not have an associated flag.

An example warning diagnostic message is:

file.c:8:7: warning: variable length arrays are a C99 feature [-Wvla-extension]
 int i[n];
 ^

This warning message tells you:
• The file that contains the problem is called file.c.
• The problem is on line 8 of file.c, and starts at character 7.
• The warning is about the use of a variable length array i[n].
• The flag to identify, enable or disable this diagnostic message is vla-extension.

The following are common options that control diagnostic output from Arm Compiler.

Table 2-4 Common diagnostic options

Option Description

-Werror Turn all warnings into errors.

-Werror=foo Turn warning flag foo into an error.

-Wno-error=foo Leave warning flag foo as a warning even if -Werror is
specified.

-Wfoo Enable warning flag foo.

-Wno-foo Suppress warning flag foo.

-w Suppress all warnings. Note that this is a lowercase w.

-Weverything Enable all warnings.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

Examples of controlling diagnostic messages

Copy the following code example to file.c and compile it with Arm Compiler to see example
diagnostic messages.

#include <stdlib.h>
#include <stdio.h>

void function (int x) {
 int i;

2 Using Common Compiler Options
2.6 Controlling diagnostic messages

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

http://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages
http://clang.llvm.org/docs/UsersManual.html

 int y=i+x;

 printf("Result of %d plus %d is %d\n", i, x); /* Missing an input argument for the third
%d */
 call(); /* This function has not been declared and is therefore an implicit declaration
*/

 return;
}

Compile file.c using:

armclang --target=aarch64-arm-none-eabi -march=armv8 -c file.c

By default armclang checks the format of printf() statements to ensure that the number of % format
specifiers matches the number of data arguments. Therefore Arm Compiler generates this diagnostic
message:

file.c:9:36: warning: more '%' conversions than data arguments [-Wformat]
 printf("Result of %d plus %d is %d\n", i, x);
 ^

By default armclang compiles for the gnu11 standard for .c files. This language standard does not allow
implicit function declarations. Therefore Arm Compiler generates this diagnostic message:

file.c:11:3: warning: implicit declaration of function 'call' is invalid C99 [-Wimplicit-
function-declaration]
 call();
 ^

To suppress all warnings, use -w:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -w

To suppress only the -Wformat warning, use -Wno-format:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Wno-format

To enable the -Wformat message as an error, use -Werror=format:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Werror=format

Some diagnostic messages are suppressed by default. To see all diagnostic messages use -Weverything:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Weverything

2 Using Common Compiler Options
2.6 Controlling diagnostic messages

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

2.7 Selecting floating-point options
Arm Compiler supports floating-point arithmetic and floating-point data types in your source code or
application. Arm Compiler supports floating-point arithmetic either by using libraries that implement
floating-point arithmetic in software, or by using the hardware floating-point registers and instructions
that are available on most Arm-based processors.

You can use various options that determine how Arm Compiler generates code for floating-point
arithmetic. Depending on your target, you might need to specify one or more of these options to generate
floating-point code that correctly uses floating-point hardware or software libraries.

Table 2-5 Options for floating-point selection

Option Description

armclang -mfpu Specify the floating point architecture to the compiler.

armclang -mfloat-abi Specify the floating-point linkage to the compiler.

armclang -march Specify the target architecture to the compiler. This automatically selects the default
floating-point architecture.

armclang -mcpu Specify the target processor to the compiler. This automatically selects the default floating-
point architecture.

armlink --fpu Specify the floating-point architecture to the linker.

Benefits of using floating-point hardware versus software floating-point libraries

Code that uses floating-point hardware is more compact and faster than code that uses software libraries
for floating-point arithmetic. But code that uses the floating-point hardware can only be run on
processors that have the floating-point hardware. Code that uses software floating-point libraries can also
run on Arm-based processors that do not have floating-point hardware, for example, the Cortex‑M0
processor, and this makes the code more portable. You might also disable floating-point hardware to
reduce power consumption.

Enabling and disabling the use of floating-point hardware

By default, Arm Compiler uses the available floating-point hardware that is based on the target you
specify for -mcpu or -march. However, you can force Arm Compiler to disable the floating-point
hardware. This forces Arm Compiler to use software floating-point libraries, if available, to perform the
floating-point arithmetic in your source code.

When compiling for AArch64:
• By default, Arm Compiler uses floating-point hardware that is available on the target.
• To disable the use of floating-point arithmetic, use the +nofp extension on the -mcpu or -march

options.

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nofp

• Software floating-point library for AArch64 is not currently available. Therefore, Arm Compiler does
not support floating-point arithmetic in your source code, if you disable floating-point hardware when
compiling for AArch64 targets.

• Disabling floating-point arithmetic does not disable all the floating-point hardware because the
floating-point hardware is also used for Advanced SIMD arithmetic. To disable all Advanced SIMD
and floating-point hardware, use the +nofp+nosimd extension on the -mcpu or -march options:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nofp+nosimd

See the armclang Reference Guide for more information on the -march option.

2 Using Common Compiler Options
2.7 Selecting floating-point options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-march

When compiling for AArch32:
• By default, Arm Compiler uses floating-point hardware that is available on the target, with the

exception for Armv6‑M, which does not have any floating-point hardware.
• To disable the use of floating-point hardware instructions, use the -mfpu=none option.

armclang --target=arm-arm-none-eabi -march=armv8-a -mfpu=none

• On AArch32 targets, using -mfpu=none disables the hardware for both Advanced SIMD and floating-
point arithmetic. You can use -mfpu to selectively enable certain hardware features. For example, if
you want to use the hardware for Advanced SIMD operations on an Armv7 architecture-based
processor, but not for floating-point arithmetic, then use -mfpu=neon.

armclang --target=arm-arm-none-eabi -march=armv7-a -mfpu=neon

See the armclang Reference Guide for more information on the -mfpu option.

Floating-point linkage

Floating-point linkage refers to how the floating-point arguments are passed to and returned from
function calls.

For AArch64, Arm Compiler always uses hardware floating-point registers to pass and return floating-
point values. This is called hardware linkage.

For AArch32, Arm Compiler can use hardware linkage or software linkage. When using software
linkage, floating-point values are passed and returned using the general purpose registers. By default,
Arm Compiler uses software linkage. You can use the -mfloat-abi option to force hardware linkage or
software linkage.

Table 2-6 Floating-point linkage for AArch32

-mfloat-abi value Linkage Floating-point operations

hard Hardware linkage. Use floating-point
registers. But if -mfpu=none is specified
for AArch32, then use general-purpose
registers.

Use hardware floating-point instructions.
But if -mfpu=none is specified for
AArch32, then use software libraries.

soft Software linkage. Use general-purpose
registers.

Use software libraries without floating-
point hardware.

softfp (This is the default) Software linkage. Use general-purpose
registers.

Use hardware floating-point instructions.
But if -mfpu=none is specified for
AArch32, then use software libraries.

Code with hardware linkage can be faster than the same code with software linkage. However, code with
software linkage can be more portable because it does not require the hardware floating-point registers.
Hardware floating-point is not available on some architectures such as Armv6‑M, or on processors where
the floating-point hardware might be powered down for energy efficiency reasons.

 Note

In AArch32 state, if you specify -mfloat-abi=soft, then specifying the -mfpu option does not have an
effect.

See the armclang Reference Guide for more information on the -mfloat-abi option.
 Note

All objects to be linked together must have the same type of linkage. If you link object files that have
hardware linkage with object files that have software linkage, then the image might have unpredictable
behavior. When linking objects, specify the armlink option --fpu=name where name specifies the

2 Using Common Compiler Options
2.7 Selecting floating-point options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mfpu
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mfloat-abi

correct linkage type and floating-point hardware. This enables the linker to provide diagnostic
information if it detects different linkage types.

See the armlink User Guide for more information on how the --fpu option specifies the linkage type and
floating-point hardware.

2 Using Common Compiler Options
2.7 Selecting floating-point options

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

https://developer.arm.com/docs/100070/0611/linker-command-line-options/-fpuname

2.8 Compilation tools command-line option rules
You can use command-line options to control many aspects of the compilation tools' operation. There are
rules that apply to each tool.

armclang option rules

armclang follows the same syntax rules as GCC. Some options are preceded by a single dash -, others
by a double dash --. Some options require an = character between the option and the argument, others
require a space character.

armasm, armar, armlink, and fromelf command-line syntax rules

The following rules apply, depending on the type of option:

Single-letter options

All single-letter options, including single-letter options with arguments, are preceded by a single
dash -. You can use a space between the option and the argument, or the argument can
immediately follow the option. For example:

armar -r -a obj1.o mylib.a obj2.o

armar -r -aobj1.o mylib.a obj2.o

Keyword options

All keyword options, including keyword options with arguments, are preceded by a double dash
--. An = or space character is required between the option and the argument. For example:

armlink myfile.o --cpu=list

armlink myfile.o --cpu list

Command-line syntax rules common to all tools

To compile files with names starting with a dash, use the POSIX option -- to specify that all subsequent
arguments are treated as filenames, not as command switches. For example, to link a file named
-ifile_1, use:

armlink -- -ifile_1

In some Unix shells, you might have to include quotes when using arguments to some command-line
options, for example:

armlink obj1.o --keep='s.o(vect)'

2 Using Common Compiler Options
2.8 Compilation tools command-line option rules

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

Chapter 3
Writing Optimized Code

To make best use of the optimization capabilities of Arm Compiler, there are various options, pragmas,
attributes, and coding techniques that you can use.

It contains the following sections:
• 3.1 Optimizing loops on page 3-45.
• 3.2 Inlining functions on page 3-49.
• 3.3 Examining stack usage on page 3-51.
• 3.4 Packing data structures on page 3-53.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

3.1 Optimizing loops
Loops can take a significant amount of time to complete depending on the number of iterations in the
loop. The overhead of checking a condition for each iteration of the loop can degrade the performance of
the loop.

Loop unrolling

You can reduce the impact of this overhead by unrolling some of the iterations, which in turn reduces the
number of iterations for checking the condition. Use #pragma unroll (n) to unroll time-critical loops
in your source code. However, unrolling loops has the disadvantage of increasing the codes size. These
pragmas are only effective at optimization -O2, -O3, -Ofast, and -Omax.

Table 3-1 Loop unrolling pragmas

Pragma Description

#pragma unroll (n) Unroll n iterations of the loop.

#pragma unroll_completely Unroll all the iterations of the loop.

The examples below show code with loop unrolling and code without loop unrolling.

Table 3-2 Loop optimizing example

Bit counting loop without unrolling Bit counting loop with unrolling

int countSetBits1(unsigned int n)
{
 int bits = 0;

 while (n != 0)
 {
 if (n & 1) bits++;
 n >>= 1;
 }
 return bits;
}

int countSetBits2(unsigned int n)
{
 int bits = 0;
 #pragma unroll (4)
 while (n != 0)
 {
 if (n & 1) bits++;
 n >>= 1;
 }
 return bits;
}

The code below shows the code that Arm Compiler generates for the above examples. Copy the
examples above into file.c and compile using:

armclang --target=arm-arm-none-eabi -march=armv8-a file.c -O2 -c -S -o file.s

For the function with loop unrolling, countSetBits2, the generated code is faster but larger in size.

3 Writing Optimized Code
3.1 Optimizing loops

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

Table 3-3 Loop examples

Bit counting loop without unrolling Bit counting loop with unrolling

countSetBits1:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
 mov r0, #0
.LBB0_1:
 and r3, r1, #1
 cmp r2, r1, asr #1
 add r0, r0, r3
 lsr r3, r1, #1
 mov r1, r3
 bne .LBB0_1
 bx lr

countSetBits2:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
 mov r0, #0
LBB0_1:
 and r3, r1, #1
 cmp r2, r1, asr #1
 add r0, r0, r3
 beq .LBB0_4
@ BB#2:
 asr r3, r1, #1
 cmp r2, r1, asr #2
 and r3, r3, #1
 add r0, r0, r3
 asrne r3, r1, #2
 andne r3, r3, #1
 addne r0, r0, r3
 cmpne r2, r1, asr #3
 beq .LBB0_4
@ BB#3:
 asr r3, r1, #3
 cmp r2, r1, asr #4
 and r3, r3, #1
 add r0, r0, r3
 asr r3, r1, #4
 mov r1, r3
 bne .LBB0_1
.LBB0_4:
 bx lr

Arm Compiler can unroll loops completely only if the number of iterations is known at compile time.

Loop vectorization

If your target has the Advanced SIMD unit, then Arm Compiler can use the vectorizing engine to
optimize vectorizable sections of the code. At optimization level -O1, you can enable vectorization using
-fvectorize. At higher optimizations, -fvectorize is enabled by default and you can disable it using
-fno-vectorize. See -fvectorize in the armclang Reference Guide for more information. When using
-fvectorize with -O1, vectorization might be inhibited in the absence of other optimizations which
might be present at -O2 or higher.

For example, loops that access structures can be vectorized if all parts of the structure are accessed
within the same loop rather than in separate loops. The following examples show code with a loop that
can be vectorized by Advanced SIMD, and a loop that cannot be vectorized easily.

Table 3-4 Example loops

Vectorizable by Advanced SIMD Not vectorizable by Advanced SIMD

typedef struct tBuffer {
 int a;
 int b;
 int c;
} tBuffer;
tBuffer buffer[8];

void DoubleBuffer1 (void)
{
 int i;
 for (i=0; i<8; i++)
 {
 buffer[i].a *= 2;
 buffer[i].b *= 2;
 buffer[i].c *= 2;
 }
}

typedef struct tBuffer {
 int a;
 int b;
 int c;
} tBuffer;
tBuffer buffer[8];

void DoubleBuffer2 (void)
{
 int i;
 for (i=0; i<8; i++)
 buffer[i].a *= 2;
 for (i=0; i<8; i++)
 buffer[i].b *= 2;
 for (i=0; i<8; i++)
 buffer[i].c *= 2;
}

3 Writing Optimized Code
3.1 Optimizing loops

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-fvectorize-fno-vectorize

For each example above, copy the code into file.c and compile at optimization level O2 to enable auto-
vectorization:

armclang --target=arm-arm-none-eabi -march=armv8-a -O2 file.c -c -S -o file.s

The vectorized assembly code contains the Advanced SIMD instructions, for example vld1, vshl, and
vst1. These Advanced SIMD instructions are not generated when compiling the example with the non-
vectorizable loop.

Table 3-5 Assembly code from vectorizable and non-vectorizable loops

Vectorized assembly code Non-vectorized assembly code

DoubleBuffer1:
.fnstart
@ BB#0:
 movw r0, :lower16:buffer
 movt r0, :upper16:buffer
 vld1.64 {d16, d17}, [r0:128]
 mov r1, r0
 vshl.i32 q8, q8, #1
 vst1.32 {d16, d17}, [r1:128]!
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 add r1, r0, #32
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 add r1, r0, #48
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 add r1, r0, #64
 add r0, r0, #80
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 vld1.64 {d16, d17}, [r0:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r0:128]
 bxlr

DoubleBuffer2:
 .fnstart
@ BB#0:
 movw r0, :lower16:buffer
 movt r0, :upper16:buffer
 ldr r1, [r0]
 lsl r1, r1, #1
 str r1, [r0]
 ldr r1, [r0, #12]
 lsl r1, r1, #1
 str r1, [r0, #12]
 ldr r1, [r0, #24]
 lsl r1, r1, #1
 str r1, [r0, #24]
 ldr r1, [r0, #36]
 lsl r1, r1, #1
 str r1, [r0, #36]
 ldr r1, [r0, #48]
 lsl r1, r1, #1
 str r1, [r0, #48]
 ldr r1, [r0, #60]
 lsl r1, r1, #1
 str r1, [r0, #60]
 ldr r1, [r0, #72]
 lsl r1, r1, #1
 str r1, [r0, #72]
 ldr r1, [r0, #84]
 lsl r1, r1, #1
 str r1, [r0, #84]
 ldr r1, [r0, #4]
 lsl r1, r1, #1
 str r1, [r0, #4]
 ldr r1, [r0, #16]
 lsl r1, r1, #1
 ...
 bx lr

 Note

Advanced SIMD (Single Instruction Multiple Data), also known as Arm NEON™ technology, is a
powerful vectorizing unit on Armv7‑A and later Application profile architectures. It enables you to write
highly optimized code. You can use intrinsics to directly use the Advanced SIMD capabilities from C or
C++ code. The intrinsics and their data types are defined in arm_neon.h. For more information on
Advanced SIMD, see the Arm® C Language Extensions, Cortex®‑A Series Programmer's Guide, and
Arm® NEON™ Programmer's Guide.

Using -fno-vectorize does not necessarily prevent the compiler from emitting Advanced SIMD
instructions. The compiler or linker might still introduce Advanced SIMD instructions, such as when
linking libraries that contain these instructions.

To prevent the compiler from emitting Advanced SIMD instructions for AArch64 targets, specify
+nosimd using -march or -mcpu:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nosimd -O2 file.c -c -S -o file.s

3 Writing Optimized Code
3.1 Optimizing loops

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053-/index.html
https://developer.arm.com/docs/den0024/latest
https://developer.arm.com/docs/den0018/latest

To prevent the compiler from emitting Advanced SIMD instructions for AArch32 targets, set the option -
mfpu to the correct value that does not include Advanced SIMD, for example fp-armv8.

armclang --target=aarch32-arm-none-eabi -march=armv8-a -mfpu=fp-armv8 -O2 file.c -c -S -o
file.s

Related information
armclang -O option
pragma unroll
armclang -fvectorize option

3 Writing Optimized Code
3.1 Optimizing loops

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-o-1
https://developer.arm.com/docs/100067/0611/compiler-specific-pragmas/pragma-unrolln-pragma-unroll_completely
https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-fvectorize-fno-vectorize

3.2 Inlining functions
Arm Compiler automatically inlines functions if it decides that inlining the function gives better
performance. This inlining does not significantly increase the code size. However, you can use compiler
hints and options to influence or control whether a function is inlined or not.

Table 3-6 Function inlining

Inlining options, keywords, or
attributes

Description

__inline__ Specify this keyword on a function definition or declaration as a hint to the compiler to
favor inlining of the function. However, for each function call, the compiler still decides
whether to inline the function. This is equivalent to __inline.

__attribute__((always_inline)) Specify this function attribute on a function definition or declaration to tell the compiler
to always inline this function, with certain exceptions such as for recursive functions.
This overrides the -fno-inline-functions option.

__attribute__((noinline)) Specify this function attribute on a function definition or declaration to tell the compiler
to not inline the function. This is equivalent to __declspec(noinline).

-fno-inline-functions This is a compiler command-line option. Specify this option to the compiler to disable
inlining. This option overrides the __inline__ hint.

 Note

• Arm Compiler only inlines functions within the same compilation unit, unless you use Link Time
Optimization. For more information, see Optimizing across modules with link time optimization
on page 4-59 in the Software Development Guide.

• C++ and C99 provide the inline language keyword. The effect of this inline language keyword is
identical to the effect of using the __inline__ compiler keyword. However, the effect in C99 mode
is different from the effect in C++ or other C that does not adhere to the C99 standard. For more
information, see Inline functions in the armclang Reference Guide.

• Function inlining normally happens at higher optimization levels, such as -O2, except when you
specify __attribute__((always_inline)).

Examples of function inlining

This example shows the effect of __attribute__((always_inline)) and -fno-inline-functions in C99
mode, which is the default behavior for C files. Copy the following code to file.c.

int bar(int a)
{
 a=a*(a+1);
 return a;
}

__attribute__((always_inline)) static int row(int a)
{
 a=a*(a+1);
 return a;
}

int foo (int i)
{
 i=bar(i);
 i=i-2;
 i=bar(i);
 i++;
 i=row(i);
 i++;
 return i;
}

3 Writing Optimized Code
3.2 Inlining functions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

https://developer.arm.com/docs/100067/0611/other-compiler-specific-features/inline-functions

In the example code, functions bar and row are identical but function row is always inlined. Use the
following compiler commands to compile for -O2 with -fno-inline-functions and without -fno-
inline-functions:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -S file.c -O2 -o file_no_inline.s -fno-
inline-functions

armclang --target=arm-arm-none-eabi -march=armv8-a -c -S file.c -O2 -o file_with_inline.s

The generated code shows inlining:

Table 3-7 Effect of -fno-inline-functions

Compiling with -fno-inline-functions Compiling without -fno-inline-functions

foo: @ @foo
 .fnstart
@ BB#0:
 .save {r11, lr}
 push {r11, lr}
 bl bar
 sub r0, r0, #2
 bl bar
 add r1, r0, #1
 add r0, r0, #2
 mul r0, r0, r1
 add r0, r0, #1
 pop {r11, pc}
.Lfunc_end0:
 .size foo, .Lfunc_end0-foo
 .cantunwind
 .fnend

foo: @ @foo
 .fnstart
@ BB#0:
 add r1, r0, #1
 mul r0, r1, r0
 sub r1, r0, #2
 sub r0, r0, #1
 mul r0, r0, r1
 add r1, r0, #1
 add r0, r0, #2
 mul r0, r0, r1
 add r0, r0, #1
 bx lr
.Lfunc_end0:
 .size foo, .Lfunc_end0-foo
 .cantunwind
 .fnend

When compiling with -fno-inline-functions, the compiler does not inline the function bar. When
compiling without -fno-inline-functions, the compiler inlines the function bar. However, the
compiler always inlines the function row even though it is identical to function bar.

Related information
armclang -fno-inline-functions option
__inline keyword
__attribute__((always_inline)) function attribute
__attribute__((no_inline)) function attribute

3 Writing Optimized Code
3.2 Inlining functions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-fno-inline-functions
https://developer.arm.com/docs/100067/0611/compiler-specific-keywords-and-operators/__inline
https://developer.arm.com/docs/100067/0611/compiler-specific-function-variable-and-type-attributes/__attribute__always_inline-function-attribute
https://developer.arm.com/docs/100067/0611/compiler-specific-function-variable-and-type-attributes/__attribute__noinline-function-attribute

3.3 Examining stack usage
Processors for embedded applications have limited memory and therefore the amount of space available
on the stack is also limited. You can use Arm Compiler to determine how much stack space is used by
the functions in your application code.

The amount of stack that a function uses depends on factors such as the number and type of arguments to
the function, local variables in the function, and the optimizations that the compiler performs. For more
information on what the stack is used for, see Stack use in C and C++ in the Software Development
Guide.

It is good practice to examine the amount of stack used by the functions in your application. You can
then consider rewriting your code to reduce stack usage.

To examine the stack usage in your application, use the linker option --info=stack. The following
example code shows functions with different numbers of arguments:

__attribute__((noinline)) int fact(int n)
{
 int f = 1;
 while (n>0)
 f *= n--;
 return f;
}

int foo (int n)
{
 return fact(n);
}

int foo_mor (int a, int b, int c, int d)
{
 return fact(a);
}

int main (void)
{
 return foo(10) + foo_mor(10,11,12,13);
}

Copy the code example to file.c and compile it using the following command:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -g file.c -o file.o

Compiling with the -g option generates the DWARF frame information that armlink requires for
estimating the stack use. Run armlink on the object file using --info=stack:

armlink file.o --info=stack

For the example code, armlink shows the amount of stack used by the various functions. Function
foo_mor has more arguments than function foo, and therefore uses more stack.

Stack Usage for fact 0xc bytes.
Stack Usage for foo 0x8 bytes.
Stack Usage for foo_mor 0x10 bytes.
Stack Usage for main 0x8 bytes.

You can also examine stack usage using the linker option --callgraph:

armlink file.o --callgraph -o FileImage.axf

This outputs a file called FileImage.htm which contains the stack usage information for the various
functions in the application.

fact (ARM, 84 bytes, Stack size 12 bytes, file.o(.text))

[Stack]

Max Depth = 12
Call Chain = fact

[Called By]

3 Writing Optimized Code
3.3 Examining stack usage

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

https://developer.arm.com/docs/100066/0611/coding-considerations/stack-use-in-c-and-c

>> foo_mor
>> foo
foo (ARM, 36 bytes, Stack size 8 bytes, file.o(.text))

[Stack]

Max Depth = 20
Call Chain = foo >> fact

[Calls]
>> fact

[Called By]
>> main
foo_mor (ARM, 76 bytes, Stack size 16 bytes, file.o(.text))

[Stack]

Max Depth = 28
Call Chain = foo_mor >> fact

[Calls]
>> fact

[Called By]
>> main
main (ARM, 76 bytes, Stack size 8 bytes, file.o(.text))

[Stack]

Max Depth = 36
Call Chain = main >> foo_mor >> fact

[Calls]
>> foo_mor
>> foo

[Called By]
>> __rt_entry_main (via BLX)

See --info and --callgraph in the armlink User Guide for more information on these options.

3 Writing Optimized Code
3.3 Examining stack usage

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

https://developer.arm.com/docs/100070/0611/linker-command-line-options/-infotopictopic

3.4 Packing data structures
You can reduce the amount of memory that your application requires by packing data into structures.
This is especially important if you need to store and access large arrays of data in embedded systems.

If individual data members in a structure are not packed, the compiler can add padding within the
structure for faster access to individual members, based on the natural alignment of each member. Arm
Compiler 6 provides a pragma and attribute to pack the members in a structure or union without any
padding.

Table 3-8 Packing members in a structure or union

Pragma or attribute Description

#pragma pack (n) For each member, if n bytes is less than the natural alignment of
the member, then set the alignment to n bytes, otherwise the
alignment is the natural alignment of the member. For more
information see #pragma pack (n) and __alignof__.

__attribute__((packed)) This is equivalent to #pragma pack (1). However, the attribute
can also be used on individual members in a structure or union.

Packing the entire structure

To pack the entire structure or union, use __attribute__((packed)) or #pragma pack(n) to the
declaration of the structure as shown in the code examples. The attribute and pragma apply to all the
members of the structure or union. If the member is a structure, then the structure has an alignment of 1-
byte, but the members of that structure continue to have their natural alignment.

When using #pragma pack(n), the alignment of the structure is the alignment of the largest member
after applying #pragma pack(n) to the structure.

Each example declares two objects c and d. Copy each example into file.c and compile:

armclang --target=arm-arm-none-eabi -march=armv8-a -c file.c -o file.o

For each example use linker option --info=sizes to examine the memory used in file.o.

armlink file.o --info=sizes

The linker output shows the total memory used by the two objects c and d. For example:

Code (inc. data) RO Data RW Data ZI Data Debug Object Name
 36 0 0 0 24 0 str.o

 36 0 16 0 24 0 Object Totals

3 Writing Optimized Code
3.4 Packing data structures

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

https://developer.arm.com/docs/100067/0611/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/docs/100067/0611/compiler-specific-keywords-and-operators/__alignof__

Table 3-9 Packing structures

Code Packing Size of structure

struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

Char

ShortChar

Padding

Padding

Int

Figure 3-1 Structure without
packing attribute or pragma

12. The alignment of the structure is the
natural alignment of the largest member. In
this example, the largest member is an int.

struct __attribute__((packed))
stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

CharShortChar

Int

Figure 3-2 Structure with attribute
packed

8. The alignment of the structure is 1 byte.

#pragma pack (1)
struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

CharShortChar

Int

Figure 3-3 Structure with pragma
pack with 1 byte alignment

8. The alignment of the structure is 1 byte.

3 Writing Optimized Code
3.4 Packing data structures

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

Table 3-9 Packing structures (continued)

Code Packing Size of structure

#pragma pack (2)
struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

Int

Char

ShortChar

Padding

Padding

Int

Figure 3-4 Structure with pragma
pack with 2 byte alignment

10. The alignment of the structure is 2
bytes.

#pragma pack (4)
struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

Int

Char

ShortChar

Padding

Padding

Figure 3-5 Structure with pragma
pack with 4 byte alignment

12. The alignment of the structure is 4
bytes.

Packing individual members in a structure

To pack individual members of a structure, use __attribute__((packed)) on the member. This aligns
the member to a byte boundary and therefore reduces the amount of memory required by the structure as
a whole. It does not affect the alignment of the other members. Therefore the alignment of the whole
structure is equal to the alignment of the largest member without the __attribute__((packed)).

Table 3-10 Packing individual members

Code Packing Size

struct stc
{
 char one;
 short two;
 char three;
 int __attribute__((packed))
four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

IntChar

ShortChar

Int Padding

Padding

Figure 3-6 Structure with attribute
packed on individual member

10. The alignment of the structure is 2
bytes because the largest member without
__attribute__((packed)) is short.

Accessing packed members from a structure
If a member of a structure or union is packed and therefore does not have its natural alignment, then to
access this member, you must use the structure or union that contains this member. You must not take the
address of such a packed member to use as a pointer, because the pointer might be unaligned.

3 Writing Optimized Code
3.4 Packing data structures

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

Dereferencing such a pointer can be unsafe even when unaligned accesses are supported by the target,
because certain instructions always require word-aligned addresses.

 Note

If you take the address of a packed member, in most cases, the compiler generates a warning.

struct __attribute__((packed)) foobar
{
 char x;
 short y;
};

short get_y(struct foobar *s)
{
 // Correct usage: the compiler will not use unaligned accesses
 // unless they are allowed.
 return s->y;
}

short get2_y(struct foobar *s)
{
 short *p = &s->y; // Incorrect usage: 'p' might be an unaligned pointer.
 return *p; // This might cause an unaligned access.
}

Related information
pragma pack
__attribute__((packed)) type attribute
__attribute__((packed)) variable attribute

3 Writing Optimized Code
3.4 Packing data structures

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

https://developer.arm.com/docs/100067/0611/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/docs/100067/0611/compiler-specific-function-variable-and-type-attributes/__attribute__packed-type-attribute
https://developer.arm.com/docs/100067/0611/compiler-specific-function-variable-and-type-attributes/__attribute__packed-variable-attribute

Chapter 4
Optimization Techniques

Describes how to use armclang to optimize for either code size or performance, and the impact of the
optimization level when debugging.

It contains the following sections:
• 4.1 Optimizing for code size or performance on page 4-58.
• 4.2 Optimizing across modules with link time optimization on page 4-59.
• 4.3 How optimization affects the debug experience on page 4-64.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

4.1 Optimizing for code size or performance
The compiler and associated tools use many techniques for optimizing your code. Some of these
techniques improve the performance of your code, while other techniques reduce the size of your code.

These optimizations often work against each other. That is, techniques for improving code performance
might result in increased code size, and techniques for reducing code size might reduce performance. For
example, the compiler can unroll small loops for higher performance, with the disadvantage of increased
code size.

By default, armclang does not perform optimization. That is, the default optimization level is -O0.

The following armclang options help you optimize for code performance:

-O0 | -O1 | -O2 | -O3
Specify the level of optimization to be used when compiling source files, where -O0 is the
minimum and -O3 is the maximum.

-Ofast
Enables all the optimizations from -O3 along with other aggressive optimizations that might
violate strict compliance with language standards.

The following armclang options help you optimize for code size:

-Os
Performs optimizations to reduce the image size at the expense of a possible increase in
execution time. This option balances code size against performance.

-Oz
Optimizes for smaller code size.

 Note

You can also set the optimization level with the armlink option --lto_level. The levels correspond to
the armclang optimization levels.

The following armclang option helps you optimize for both code size and code performance:

-flto
Enables link time optimization, which lets the linker make additional optimizations across
multiple source files.

In addition, choices you make during coding can affect optimization. For example:
• Optimizing loop termination conditions can improve both code size and performance. In particular,

loops with counters that decrement to zero usually produce smaller, faster code than loops with
incrementing counters.

• Manually unrolling loops by reducing the number of loop iterations, but increasing the amount of
work done in each iteration can improve performance at the expense of code size.

• Reducing debug information in objects and libraries reduces the size of your image.
• Using inline functions offers a trade-off between code size and performance.
• Using intrinsics can improve performance.

4 Optimization Techniques
4.1 Optimizing for code size or performance

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

4.2 Optimizing across modules with link time optimization
At link time, additional optimization opportunities are available because source code from different
modules can be optimized together.

By default, the compiler optimizes each source module independently, translating C or C++ source code
into an ELF file containing object code. At link time the linker combines all the ELF object files into an
executable by resolving symbol references and relocations. Compiling each source file separately means
the compiler might miss some optimization opportunities, such as cross-module inlining.

When link time optimization is enabled, the compiler translates source code into an intermediate form
called LLVM bitcode. At link time, the linker collects all files containing bitcode together and sends
them to the link time optimizer (libLTO). Collecting modules together means the link time optimizer can
perform more optimizations because it has more information about the dependencies between modules.
The link time optimizer then sends a single ELF object file back to the linker. Finally, the linker
combines all object and library code to create an executable.

C/C++ Source
.c

ELF Object
containing

Bitcode
.o

C/C++ Source
.c

ELF Object
.o

armclang -flto

armclang

Libraries

armlink --lto

Link time optimizer
libLTO

ELF
Executable

ELF Object
.o

ELF Object
containing

Bitcode
.o

Figure 4-1 Link time optimization

 Note

In this figure, ELF Object containing Bitcode is an ELF file that does not contain normal code and data.
Instead, it contains a section called .llvmbc that holds LLVM bitcode.

Section .llvmbc is reserved. You must not create an .llvmbc section with, for example
__attribute__((section(".llvmbc"))).

 Caution

Link Time Optimization performs aggressive optimizations. Sometimes this can result in large chunks of
code being removed.

This section contains the following subsections:
• 4.2.1 Enabling link time optimization on page 4-59.
• 4.2.2 Restrictions with link time optimization on page 4-60.
• 4.2.3 Removing unused code across multiple object files on page 4-61.

4.2.1 Enabling link time optimization

You must enable link time optimization in both armclang and armlink.

4 Optimization Techniques
4.2 Optimizing across modules with link time optimization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

To enable link time optimization:
1. At compilation time, use the armclang option -flto to produce ELF files suitable for link time

optimization. These ELF files contain bitcode in a .llvmbc section.
2. At link time, use the armlink option --lto to enable link time optimization for the specified bitcode

files.
 Note

armclang automatically passes the --lto option to armlink if the -flto option is used without the -
c option.

Example 1: Optimizing all source files

The following example performs link time optimization across all source files:

armclang --target=arm-arm-none-eabi -march=armv8-a -flto src1.c src2.c src3.c -o output.axf

This example does the following:
1. armclang compiles the C source files src1.c, src2.c, and src3.c to the ELF files src1.o, src2.o,

and src3.o. These ELF files contain bitcode.
2. armclang automatically invokes armlink with the --lto option.
3. armlink passes the bitcode files src1.o, src2.o, and src3.o to the link time optimizer to produce a

single optimized ELF object file.
4. armlink creates the executable output.axf from the ELF object file.

Example 2: Optimizing a subset of source files

The following example performs link time optimization for a subset of source files.

armclang --target=arm-arm-none-eabi -march=armv8-a -c src1.c -o src1.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src2.c -o src2.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src3.c -o src3.o
armlink --lto src1.o src2.o src3.o -o output.axf

This example does the following:
1. armclang compiles the C source file src1.c to the ELF object file src1.o.
2. armclang compiles the C source files src2.c and src3.c to the ELF files src2.o and src3.o. These

ELF files contain bitcode.
3. armlink passes the bitcode files src2.o and src3.o to the link time optimizer to produce a single

optimized ELF object file.
4. armlink combines the ELF object file src1.o with the object file produced by the link time

optimizer to create the executable output.axf.

4.2.2 Restrictions with link time optimization

Link time optimization has a few restrictions in Arm Compiler 6. Future releases might have fewer
restrictions and more features. The user interface to link time optimization might change in future
releases.

No bitcode libraries

armlink only supports bitcode objects on the command line. It does not support bitcode objects
coming from libraries. armlink gives an error message if it encounters a file containing bitcode
while loading from a library.

Although armar silently accepts ELF files that are produced with armclang -flto, these files
currently do not have a proper symbol table. Therefore, the generated archive has incorrect
index information and armlink cannot find any symbols in this archive.

Partial linking
The armlink option --partial only works with ELF files. The linker gives an error message if
it detects a file containing bitcode.

4 Optimization Techniques
4.2 Optimizing across modules with link time optimization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

Scatter-loading

The output of the link time optimizer is a single ELF object file that by default is given a
temporary filename. This ELF object file contains sections and symbols just like any other ELF
object file, and these are matched by input section selectors as normal.

Use the armlink option --lto_intermediate_filename to name the ELF object file output.
You can reference this ELF file name in the scatter file.

Arm recommends that link time optimization is only performed on code and data that does not
require precise placement in the scatter file, with general input section selectors such as *(+RO)
and .ANY(+RO) used to select sections generated by link time optimization.
It is not possible to match bitcode in .llvmbc sections by name in a scatter file.

 Note

The scatter-loading interface is subject to change in future versions of Arm Compiler 6.

Executable and library compatibility
The armclang executable and the libLTO library must come from the same Arm Compiler 6
installation. Any use of libLTO other than that supplied with Arm Compiler 6 is unsupported.

Other restrictions
• You cannot currently use link time optimization for building ROPI/RWPI images.
• Object files that are produced by the link time optimization contain build attributes that are

the default for the target architecture. If you use the armlink options --cpu or --fpu when
link time optimization is enabled, armlink can incorrectly report that the attributes in the file
produced by the link time optimizer are incompatible with the provided attributes.

• Link Time Optimization does not honor armclang options -ffunction-sections and -
fdata-sections.

• Link Time Optimization does not honor the armclang -mexecute-only option. If you use
the armclang -flto or -Omax options, then the compiler cannot generate execute-only code
and produces a warning.

• Link Time Optimization does not work correctly when two bitcode files are compiled for
different targets.

4.2.3 Removing unused code across multiple object files

Link-time optimization can remove unused code across multiple object files, particularly when the code
contains conditional calls to functions that are otherwise unused.

In this example:
• The function main() calls an externally defined function foo(), and returns the value that foo()

returns. Because this function is externally defined, the compiler cannot inline or otherwise optimize
it when compiling main.c, without using LTO.

• The file foo.c contains the following functions:

foo()
If the parameter a is nonzero, foo() conditionally calls a function bar().

bar()
This function prints a message.

In this case, foo() is called with the parameter a == 0, so bar() is not called at run time.

Example code that is used in the following procedure:

// main.c
extern int foo(int a);

int main(void)
{

4 Optimization Techniques
4.2 Optimizing across modules with link time optimization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

 return foo(0);
}

// foo.c
#include <stdio.h>

int foo(int a);
void bar(void);

/* `foo()` conditionally calls `bar()`
 depending on the value of `a`
 */
int foo(int a)
{
 if (a == 0)
 {
 return 0;
 }
 else
 {
 bar();

 return 0;
 }
}

void bar(void)
{
 printf("a is non-zero.\n");
}

Procedure
1. Build the example code with LTO disabled:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c main.c -o main.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c foo.c -o foo.o
armlink main.o foo.o -o image_without_lto.axf
fromelf --text -c -z image_without_lto.axf

Results:

The compiler cannot inline the call to foo() because it is in a different object from main().
Therefore, the compiler must keep the conditional call to bar() within foo(), because the compiler
does not have any information about the value of the parameter a while foo.c is being compiled:

$a.0
foo
 0x00008bd8: e3500000 ..P. CMP r0,#0
 0x00008bdc: 0a000004 BEQ 0x8bf4 ; foo + 28
 0x00008be0: e92d4800 .H-. PUSH {r11,lr}
 0x00008be4: e3080c44 D... MOV r0,#0x8c44
 0x00008be8: e3400000 ..@. MOVT r0,#0
 0x00008bec: fafffd28 (... BLX puts ; 0x8094
 0x00008bf0: e8bd4800 .H.. POP {r11,lr}
 0x00008bf4: e3a00000 MOV r0,#0
 0x00008bf8: e12fff1e ../. BX lr
main
 0x00008bfc: e3a00000 MOV r0,#0
 0x00008c00: eafffff4 B foo ; 0x8bd8

Additionally, bar() uses the Arm C library function printf(). In this example, printf() is
optimized to puts() and inlined into foo(). Therefore, the linker must include the relevant C library
code to allow the puts() function to be used. Including the C library code results in a large amount
of uncalled code being included in the image. The output from the fromelf utility shows the resulting
overall image size:

** Object/Image Component Sizes

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name

 3128 200 44 16 348 1740 image_without_lto.axf

2. Build the example code with LTO enabled:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c main.c -o main.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c foo.c -o foo.o

4 Optimization Techniques
4.2 Optimizing across modules with link time optimization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

armlink --lto main.o foo.o -o image_with_lto.axf
fromelf --text -c -z image_with_lto.axf

Results:

Although the compiler does not have any information about the call to foo() from main() when
compiling foo.c, at link time, it is known that:

• foo() is only ever called once, with the parameter a == 0.
• bar() is never called.
• The Arm C library function puts() is never called.

Because LTO is enabled, this extra information is used to make the following optimizations:
• Inlining the call to foo() into main().
• Removing the code to conditionally call bar() from foo() entirely.
• Removing the C library code that allows use of the puts() function.

$a.0
main
 0x00008128: e3a00000 MOV r0,#0
 0x0000812c: e12fff1e ../. BX lr

Also, this optimization means that the overall image size is much lower. The output from the fromelf
utility shows the reduced image size:

** Object/Image Component Sizes

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name

 332 24 16 0 96 504 image_with_lto.axf

Related reference
4.1 Optimizing for code size or performance on page 4-58
4.2 Optimizing across modules with link time optimization on page 4-59
4.3 How optimization affects the debug experience on page 4-64
Related information
armclang -O option

4 Optimization Techniques
4.2 Optimizing across modules with link time optimization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-o-1

4.3 How optimization affects the debug experience
There is a trade-off between optimizing code and the debug experience.

The precise optimizations performed by the compiler depend both on the level of optimization chosen,
and whether you are optimizing for performance or code size.

The lowest optimization level, -O0, provides the best debug experience because the structure of the
generated code directly corresponds to the source code.

Higher optimization levels result in an increasingly degraded debug view because the mapping of object
code to source code is not always clear. The compiler might perform optimizations that cannot be
described by debug information.

4 Optimization Techniques
4.3 How optimization affects the debug experience

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

Chapter 5
Using Assembly and Intrinsics in C or C++ Code

All code for a single application can be written in the same source language. This is usually a high-level
language such as C or C++ that is compiled to instructions for Arm architectures. However, in some
situations you might need lower-level control than what C and C++ provide.

For example:

• To access features which are not available from C or C++, such as interfacing directly with device
hardware.

• To generate highly optimized code by manually writing sections using intrinsics or inline assembly.

There are a number of different ways to have low-level control over the generated code:
• Intrinsics are functions provided by the compiler. An intrinsic function has the appearance of a

function call in C or C++, but is replaced during compilation by a specific sequence of low-level
instructions.

• Inline assembly lets you write assembly instructions directly in your C/C++ code, without the
overhead of a function call.

• Calling assembly functions from C/C++ lets you write standalone assembly code in a separate source
file. This code is assembled separately to the C/C++ code, and then integrated at link time.

It contains the following sections:
• 5.1 Using intrinsics on page 5-66.
• 5.2 Writing inline assembly code on page 5-67.
• 5.3 Calling assembly functions from C and C++ on page 5-69.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5-65

Non-Confidential

5.1 Using intrinsics
Compiler intrinsics are special functions whose implementations are known to the compiler. They enable
you to easily incorporate domain-specific operations in C and C++ source code without resorting to
complex implementations in assembly language.

The C and C++ languages are suited to a wide variety of tasks but they do not provide built-in support
for specific areas of application, for example Digital Signal Processing (DSP).

Within a given application domain, there is usually a range of domain-specific operations that have to be
performed frequently. However, if specific hardware support is available, then these operations can often
be implemented more efficiently using the hardware support than in C or C++. A typical example is the
saturated add of two 32-bit signed two’s complement integers, commonly used in DSP programming.
The following example shows a C implementation of a saturated add operation:

#include <limits.h>
int L_add(const int a, const int b)
{
 int c;
 c = a + b;
 if (((a ^ b) & INT_MIN) == 0)
 {
 if ((c ^ a) & INT_MIN)
 {
 c = (a < 0) ? INT_MIN : INT_MAX;
 }
 }
 return c;
}

Using compiler intrinsics, you can achieve more complete coverage of target architecture instructions
than you would from the instruction selection of the compiler.

An intrinsic function has the appearance of a function call in C or C++, but is replaced during
compilation by a specific sequence of low-level instructions. The following example shows how to
access the __qadd saturated add intrinsic:

#include <arm_acle.h> /* Include ACLE intrinsics */

int foo(int a, int b)
{
 return __qadd(a, b); /* Saturated add of a and b */
}

Using compiler intrinsics offers a number of performance benefits:
• The low-level instructions substituted for an intrinsic are either as efficient or more efficient than

corresponding implementations in C or C++. This results in both reduced instruction and cycle
counts. To implement the intrinsic, the compiler automatically generates the best sequence of
instructions for the specified target architecture. For example, the __qadd intrinsic maps directly to
the A32 assembly language instruction qadd:

QADD r0, r0, r1 /* Assuming r0 = a, r1 = b on entry */

• More information is given to the compiler than the underlying C and C++ language is able to convey.
This enables the compiler to perform optimizations and to generate instruction sequences that it
cannot otherwise perform.

These performance benefits can be significant for real-time processing applications. However, care is
required because the use of intrinsics can decrease code portability.

Related information
Compiler-specific intrinsics
ACLE support

5 Using Assembly and Intrinsics in C or C++ Code
5.1 Using intrinsics

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5-66

Non-Confidential

https://developer.arm.com/docs/100067/0611/compiler-specific-intrinsics
https://developer.arm.com/docs/100067/0611/other-compiler-specific-features/acle-support

5.2 Writing inline assembly code
The compiler provides an inline assembler that enables you to write assembly code in your C or C++
source code, for example to access features of the target processor that are not available from C or C++.

The __asm keyword can incorporate inline assembly code into a function using the GNU inline assembly
syntax. For example:

#include <stdio.h>

int add(int i, int j)
{
 int res = 0;
 __asm ("ADD %[result], %[input_i], %[input_j]"
 : [result] "=r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

int main(void)
{
 int a = 1;
 int b = 2;
 int c = 0;

 c = add(a,b);

 printf("Result of %d + %d = %d\n", a, b, c);
}

 Note

The inline assembler does not support legacy assembly code written in armasm assembler syntax. See the
Migration and Compatibility Guide for more information about migrating armasm syntax assembly code
to GNU syntax.

The general form of an __asm inline assembly statement is:

__asm [volatile] (code); /* Basic inline assembly syntax */

/* Extended inline assembly syntax */
__asm [volatile] (code_template
 : output_operand_list
 [: input_operand_list
 [: clobbered_register_list]]
);

code is the assembly instruction, for example "ADD R0, R1, R2". code_template is a template for an
assembly instruction, for example "ADD %[result], %[input_i], %[input_j]".

If you specify a code_template rather than code then you must specify the output_operand_list
before specifying the optional input_operand_list and clobbered_register_list.

output_operand_list is a list of output operands, separated by commas. Each operand consists of a
symbolic name in square brackets, a constraint string, and a C expression in parentheses. In this example,
there is a single output operand: [result] "=r" (res). The list can be empty. For example:

__asm ("ADD R0, %[input_i], %[input_j]"
 : /* This is an empty output operand list */
 : [input_i] "r" (i), [input_j] "r" (j)
);

input_operand_list is an optional list of input operands, separated by commas. Input operands use the
same syntax as output operands. In this example, there are two input operands: [input_i] "r" (i),
[input_j] "r" (j). The list can be empty.

5 Using Assembly and Intrinsics in C or C++ Code
5.2 Writing inline assembly code

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5-67

Non-Confidential

clobbered_register_list is an optional list of clobbered registers whose contents are not preserved.
The list can be empty. In addition to registers, the list can also contain special arguments:

"cc"
The instruction affects the condition code flags.

"memory"
The instruction accesses unknown memory addresses.

The registers in clobbered_register_list must use lowercase letters rather than uppercase letters. An
example instruction with a clobbered_register_list is:

__asm ("ADD R0, %[input_i], %[input_j]"
 : /* This is an empty output operand list */
 : [input_i] "r" (i), [input_j] "r" (j)
 : "r5","r6","cc","memory" /*Use "r5" instead of "R5" */
);

Use the volatile qualifier for assembler instructions that have processor side-effects, which the
compiler might be unaware of. The volatile qualifier disables certain compiler optimizations. The
volatile qualifier is optional.

Defining symbols and labels

You can use inline assembly to define symbols. For example:

__asm (".global __use_no_semihosting\n\t");

To define labels, use : after the label name. For example:

__asm ("my_label:\n\t");

Multiple instructions

You can write multiple instructions within the same __asm statement. This example shows an interrupt
handler written in one __asm statement for an Armv8‑M mainline architecture.

void HardFault_Handler(void)
{
 asm (
 "TST LR, #0x40\n\t"
 "BEQ from_nonsecure\n\t"
 "from_secure:\n\t"
 "TST LR, #0x04\n\t"
 "ITE EQ\n\t"
 "MRSEQ R0, MSP\n\t"
 "MRSNE R0, PSP\n\t"
 "B hard_fault_handler_c\n\t"
 "from_nonsecure:\n\t"
 "MRS R0, CONTROL_NS\n\t"
 "TST R0, #2\n\t"
 "ITE EQ\n\t"
 "MRSEQ R0, MSP_NS\n\t"
 "MRSNE R0, PSP_NS\n\t"
 "B hard_fault_handler_c\n\t"
);
}

Copy the above handler code to file.c and then you can compile it using:

armclang --target=arm-arm-none-eabi -march=armv8-m.main -c -S file.c -o file.s

Embedded assembly

You can write embedded assembly using __attribute__((naked)). For more information, see
__attribute__((naked)) in the armclang Reference Guide.

5 Using Assembly and Intrinsics in C or C++ Code
5.2 Writing inline assembly code

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5-68

Non-Confidential

https://developer.arm.com/docs/100067/0611/compiler-specific-function-variable-and-type-attributes/__attribute__naked-function-attribute

5.3 Calling assembly functions from C and C++
Often, all the code for a single application is written in the same source language. This is usually a high-
level language such as C or C++. That code is then compiled to Arm assembly code.

However, in some situations you might want to make function calls from C/C++ code to assembly code.
For example:

• If you want to make use of existing assembly code, but the rest of your project is in C or C++.
• If you want to manually write critical functions directly in assembly code that can produce better

optimized code than compiling C or C++ code.
• If you want to interface directly with device hardware and if this is easier in low-level assembly code

than high-level C or C++.

 Note

For code portability, it is better to use intrinsics or inline assembly rather than writing and calling
assembly functions.

To call an assembly function from C or C++:
1. In the assembly source, declare the code as a global function using .globl and .type:

 .globl myadd
 .p2align 2
 .type myadd,%function

myadd: // Function "myadd" entry point.
 .fnstart
 add r0, r0, r1 // Function arguments are in R0 and R1. Add together and put
the result in R0.
 bx lr // Return by branching to the address in the link register.
 .fnend

 Note

armclang requires that you explicitly specify the types of exported symbols using the .type
directive. If the .type directive is not specified in the above example, the linker outputs warnings of
the form:

Warning: L6437W: Relocation #RELA:1 in test.o(.text) with respect to myadd...

Warning: L6318W: test.o(.text) contains branch to a non-code symbol myadd.

2. In C code, declare the external function using extern:

#include <stdio.h>

extern int myadd(int a, int b);

int main()
{
 int a = 4;
 int b = 5;
 printf("Adding %d and %d results in %d\n", a, b, myadd(a, b));
 return (0);
}

In C++ code, use extern "C":

extern "C" int myadd(int a, int b);

3. Ensure that your assembly code complies with the Procedure Call Standard for the Arm® Architecture
(AAPCS).

5 Using Assembly and Intrinsics in C or C++ Code
5.3 Calling assembly functions from C and C++

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5-69

Non-Confidential

The AAPCS describes a contract between caller functions and callee functions. For example, for
integer or pointer types, it specifies that:
• Registers R0-R3 pass argument values to the callee function, with subsequent arguments passed

on the stack.
• Register R0 passes the result value back to the caller function.
• Caller functions must preserve R0-R3 and R12, because these registers are allowed to be

corrupted by the callee function.
• Callee functions must preserve R4-R11 and LR, because these registers are not allowed to be

corrupted by the callee function.

For more information, see the Procedure Call Standard for the Arm® Architecture (AAPCS).
4. Compile both source files:

armclang --target=arm-arm-none-eabi -march=armv8-a main.c myadd.s

Related information
Procedure Call Standard for the Arm Architecture
Procedure Call Standard for the Arm 64-bit Architecture

5 Using Assembly and Intrinsics in C or C++ Code
5.3 Calling assembly functions from C and C++

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

5-70

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
https://developer.arm.com/docs/ihi0042/latest
https://developer.arm.com/docs/ihi0055/latest

Chapter 6
Mapping Code and Data to the Target

There are various options in Arm Compiler to control how code, data and other sections of the image are
mapped to specific locations on the target.

It contains the following sections:
• 6.1 What the linker does to create an image on page 6-72.
• 6.2 Placing data items for target peripherals with a scatter file on page 6-74.
• 6.3 Placing the stack and heap with a scatter file on page 6-75.
• 6.4 Root region on page 6-76.
• 6.5 Placing functions and data in a named section on page 6-79.
• 6.6 Placing functions and data at specific addresses on page 6-81.
• 6.7 Placement of Arm® C and C++ library code on page 6-89.
• 6.8 Placement of unassigned sections on page 6-91.
• 6.9 Placing veneers with a scatter file on page 6-101.
• 6.10 Preprocessing a scatter file on page 6-102.
• 6.11 Reserving an empty block of memory on page 6-104.
• 6.12 Aligning regions to page boundaries on page 6-106.
• 6.13 Aligning execution regions and input sections on page 6-107.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-71

Non-Confidential

6.1 What the linker does to create an image
The linker takes object files that a compiler or assembler produces and combines them into an executable
image. The linker also uses a memory description to assign the input code and data from the object files
to the required addresses in the image.

You can specify object files directly on the command line or specify a user library containing object files.
The linker:

• Resolves symbolic references between the input object files.
• Extracts object modules from libraries to resolve otherwise unresolved symbolic references.
• Removes unused sections.
• Eliminates duplicate common groups and common code, data, and debug sections.
• Sorts input sections according to their attributes and names, and merges sections with similar

attributes and names into contiguous chunks.
• Organizes object fragments into memory regions according to the grouping and placement

information that is provided in a memory description.
• Assigns addresses to relocatable values.
• Generates either a partial object if requested, for input to another link step, or an executable image.

The linker has a built-in memory description that it uses by default. However, you can override this
default memory description with command-line options or with a scatter file. The method that you use
depends how much you want to control the placement of the various output sections in the image:
• Allow the linker to automatically place the output sections using the default memory map for the

specified linking model. armlink uses default locations for the RO, RW, execute-only (XO), and ZI
output sections.

• Use the memory map related command-line options to specify the locations of the RO, RW, XO, and
ZI output sections.

• Use a scatter file if you want to have the most control over where the linker places various parts of
your image. For example, you can place individual functions at specific addresses or certain data
structures at peripheral addresses.

 Note

XO sections are supported only for images that are targeted at Armv7‑M or Armv8‑M architectures.

This section contains the following subsection:
• 6.1.1 What you can control with a scatter file on page 6-72.

6.1.1 What you can control with a scatter file

A scatter file gives you the ability to control where the linker places different parts of your image for
your particular target.

You can control:

• The location and size of various memory regions that are mapped to ROM, RAM, and FLASH.
• The location of individual functions and variables, and code from the Arm standard C and C++

libraries.
• The placement of sections that contain individual functions or variables, or code from the Arm

standard C and C++ libraries.
• The priority ordering of memory areas for placing unassigned sections, to ensure that they get filled

in a particular order.
• The location and size of empty regions of memory, such as memory to use for stack and heap.

6 Mapping Code and Data to the Target
6.1 What the linker does to create an image

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-72

Non-Confidential

If the location of some code or data lies outside all the regions that are specified in your scatter file, the
linker attempts to create a load and execution region to contain that code or data.

 Note

Multiple code and data sections cannot occupy the same area of memory, unless you place them in
separate overlay regions.

6 Mapping Code and Data to the Target
6.1 What the linker does to create an image

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-73

Non-Confidential

6.2 Placing data items for target peripherals with a scatter file
To access the peripherals on your target, you must locate the data items that access them at the addresses
of those peripherals.

To make sure that the data items are placed at the correct address for the peripherals, use the
__attribute__((section(".ARM.__at_address"))) variable attribute together with a scatter file.

Procedure
1. Create peripheral.c to place the my_peripheral variable at address 0x10000000.

#include "stdio.h"

int my_peripheral __attribute__((section(".ARM.__at_0x10000000"))) = 0;

int main(void)
{
 printf("%d\n",my_peripheral);
 return 0;
}

2. Create the scatter file scatter.scat.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 *(+RO +RW) ; all RO sections (must include section with
 ; initial entry point)
 }
 ; rest of scatter-loading description

 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

LR_2 0x01000000
{
 ER_ZI +0 UNINIT
 {
 *(.bss)
 }
}

LR_3 0x10000000
{
 ER_PERIPHERAL 0x10000000 UNINIT
 {
 *(.ARM.__at_0x10000000)
 }
}

3. Build the image.

armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 peripheral.c -g -c -o peripheral.o
armlink --cpu=cortex-a9 --scatter=scatter.scat --map --symbols peripheral.o --
output=peripheral.axf > map.txt

Results: The memory map for load region LR_3 is:

 Load Region LR_3 (Base: 0x10000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE)

 Execution Region ER_PERIPHERAL (Base: 0x10000000, Size: 0x00000004, Max: 0xffffffff,
ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

 0x10000000 0x00000004 Data RW 5 .ARM.__at_0x10000000 peripheral.o

6 Mapping Code and Data to the Target
6.2 Placing data items for target peripherals with a scatter file

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-74

Non-Confidential

6.3 Placing the stack and heap with a scatter file
The Arm C library provides multiple implementations of the function __user_setup_stackheap(), and
can select the correct one for you automatically from information that is given in a scatter file.

 Note

• If you re-implement __user_setup_stackheap() then your version does not get invoked when stack
and heap are defined in a scatter file.

• You might have to update your startup code to use the correct initial stack pointer. Some processors,
such as the Cortex-M3 processor, require that you place the initial stack pointer in the vector table.
See Stack and heap configuration in AN179 - Cortex®-M3 Embedded Software Development for more
details.

Procedure
1. Define two special execution regions in your scatter file that is named ARM_LIB_HEAP and

ARM_LIB_STACK.
2. Assign the EMPTY attribute to both regions.

Because the stack and heap are in separate regions, the library selects the non-default implementation
of __user_setup_stackheap() that uses the value of the symbols:
• Image$$ARM_LIB_STACK$$ZI$$Base.
• Image$$ARM_LIB_STACK$$ZI$$Limit.
• Image$$ARM_LIB_HEAP$$ZI$$Base.
• Image$$ARM_LIB_HEAP$$ZI$$Limit.

You can specify only one ARM_LIB_STACK or ARM_LIB_HEAP region, and you must allocate a size.

Example:

LOAD_FLASH …
{
 …
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 …
}

3. Alternatively, define a single execution region that is named ARM_LIB_STACKHEAP to use a combined
stack and heap region. Assign the EMPTY attribute to the region.
Because the stack and heap are in the same region, __user_setup_stackheap() uses the value of the
symbols Image$$ARM_LIB_STACKHEAP$$ZI$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$$Limit.

6 Mapping Code and Data to the Target
6.3 Placing the stack and heap with a scatter file

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-75

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0179-/CHDEGGBA.html

6.4 Root region
A root region is a region with the same load and execution address. The initial entry point of an image
must be in a root region.

If the initial entry point is not in a root region, the link fails and the linker gives an error message.

Example

Root region with the same load and execution address.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 … ; rest of scatter-loading description
}

This section contains the following subsections:
• 6.4.1 Effect of the ABSOLUTE attribute on a root region on page 6-76.
• 6.4.2 Effect of the FIXED attribute on a root region on page 6-77.

6.4.1 Effect of the ABSOLUTE attribute on a root region

You can use the ABSOLUTE attribute to specify a root region. This attribute is the default for an execution
region.

To specify a root region, use ABSOLUTE as the attribute for the execution region. You can either specify
the attribute explicitly or permit it to default, and use the same address for the first execution region and
the enclosing load region.

To make the execution region address the same as the load region address, either:
• Specify the same numeric value for both the base address for the execution region and the base

address for the load region.
• Specify a +0 offset for the first execution region in the load region.

If you specify an offset of zero (+0) for all subsequent execution regions in the load region, then all
execution regions not following an execution region containing ZI are also root regions.

Example

The following example shows an implicitly defined root region:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ABSOLUTE ; load address = execution address
 {
 * (+RO) ; all RO sections (must include the section
 ; containing the initial entry point)
 }
 … ; rest of scatter-loading description
}

6 Mapping Code and Data to the Target
6.4 Root region

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-76

Non-Confidential

6.4.2 Effect of the FIXED attribute on a root region

You can use the FIXED attribute for an execution region in a scatter file to create root regions that load
and execute at fixed addresses.

Use the FIXED execution region attribute to ensure that the load address and execution address of a
specific region are the same.

You can use the FIXED attribute to place any execution region at a specific address in ROM.

For example, the following memory map shows fixed execution regions:

*(RO)

Execution viewLoad view

init.o

0x4000

0x80000
init.o

*(RO)

Empty

Single
load
region

Filled with zeroes or the value defined using
the --pad option

(FIXED)

(movable)

Figure 6-1 Memory map for fixed execution regions

The following example shows the corresponding scatter-loading description:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 … ; rest of scatter-loading description
}

You can use this to place a function or a block of data, such as a constant table or a checksum, at a fixed
address in ROM so that it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of ROM and a checksum
at the end of ROM, some of the memory contents might be unused. Use the * or .ANY module selector to
flood fill the region between the end of the initialization block and the start of the data block.

6 Mapping Code and Data to the Target
6.4 Root region

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-77

Non-Confidential

To make your code easier to maintain and debug, it is suggested that you use the minimum amount of
placement specifications in scatter files and leave the detailed placement of functions and data to the
linker.

 Note

There are some situations where using FIXED and a single load region are not appropriate. Other
techniques for specifying fixed locations are:
• If your loader can handle multiple load regions, place the RO code or data in its own load region.
• If you do not require the function or data to be at a fixed location in ROM, use ABSOLUTE instead of

FIXED. The loader then copies the data from the load region to the specified address in RAM.
ABSOLUTE is the default attribute.

• To place a data structure at the location of memory-mapped I/O, use two load regions and specify
UNINIT. UNINIT ensures that the memory locations are not initialized to zero.

Example showing the misuse of the FIXED attribute

The following example shows common cases where the FIXED execution region attribute is misused:

LR1 0x8000
{
 ER_LOW +0 0x1000
 {
 *(+RO)
 }
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER_LOW. The maximum size is limited to 0x1000 so the next available Load
; and Execution address is at most 0x9000
 ER_HIGH 0xF0000000 FIXED
 {
 *(+RW,+ZI)
 }
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of(ER_LOW)) bytes of padding so that load address matches
; execution address
}
; The other common misuse of FIXED is to give a lower execution address than the next
; available load address.
LR_HIGH 0x100000000
{
 ER_LOW 0x1000 FIXED
 {
 *(+RO)
 }
; The next available load address in LR_HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR_HIGH must increase
; monotonically the linker cannot give ER_LOW a Load Address lower than 0x10000000
}

6 Mapping Code and Data to the Target
6.4 Root region

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-78

Non-Confidential

6.5 Placing functions and data in a named section
You can place functions and data by separating them into their own objects without having to use
toolchain-specific pragmas or attributes. Alternatively, you can specify a name of a section using the
function or variable attribute, __attribute__((section("name"))).

You can use __attribute__((section("name"))) to place a function or variable in a separate ELF
section, where name is a name of your choice. You can then use a scatter file to place the named sections
at specific locations.

You can place ZI data in a named section with __attribute__((section(".bss.name"))).

Use the following procedure to modify your source code to place functions and data in a specific section
using a scatter file.

Procedure
1. Create a C source file file.c to specify a section name foo for a variable and a section

name .bss.mybss for a zero-initialized variable z, for example:

#include "stdio.h"

int variable __attribute__((section("foo"))) = 10;
__attribute__((section(".bss.mybss"))) int z;

int main(void)
{
 int x = 4;
 int y = 7;
 z = x + y;
 printf("%d\n",variable);
 printf("%d\n",z);
 return 0;
}

2. Create a scatter file to place the named section, scatter.scat, for example:

LR_1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO)
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW)
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }
 ER_MYBSS 0x8000 0x2000
 {
 *(.bss.mybss)
 }

 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

FLASH 0x24000000 0x4000000
{
 ; rest of code

 ADDER 0x08000000
 {
 file.o (foo) ; select section foo from file.o
 }

}

6 Mapping Code and Data to the Target
6.5 Placing functions and data in a named section

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-79

Non-Confidential

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

 Note

If you omit file.o (foo) from the scatter file, the linker places the section in the region of the same
type. That is, ER_RW in this example.

3. Compile and link the C source:

armclang --target=arm-arm-eabi-none -march=armv8-a file.c -g -c -O1 -o file.o
armlink --cpu=8-A.32 --scatter=scatter.scat --map file.o --output=file.axf

The --map option displays the memory map of the image.

Example:
In this example:
• __attribute__((section("foo"))) specifies that the linker is to place the global variable

variable in a section called foo.
• __attribute__((section(".bss.mybss"))) specifies that the linker is to place the global

variable z in a section called .bss.mybss.
• The scatter file specifies that the linker is to place the section foo in the ADDER execution region of

the FLASH execution region.

The following example shows the output from --map:

…
 Execution Region ER_MYBSS (Base: 0x00008000, Size: 0x00000004, Max: 0x00002000,
ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00008000 0x00000004 Zero RW 7 .bss.mybss file.o
…
 Load Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000, ABSOLUTE)

 Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x08000000 0x00000004 Data RW 5 foo file.o
…

 Note

• If scatter-loading is not used, the linker places the section foo in the default ER_RW execution
region of the LR_1 load region. It also places the section .bss.mybss in the default execution
region ER_ZI.

• If you have a scatter file that does not include the foo selector, then the linker places the section in
the defined RW execution region.

You can also place a function at a specific address using .ARM.__at_address as the section name.
For example, to place the function sqr at 0x20000, specify:

int sqr(int n1) __attribute__((section(".ARM.__at_0x20000")));

int sqr(int n1)
{
 return n1*n1;
}

For more information, see 6.6 Placing functions and data at specific addresses on page 6-81.

6 Mapping Code and Data to the Target
6.5 Placing functions and data in a named section

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-80

Non-Confidential

6.6 Placing functions and data at specific addresses
To place a single function or data item at a fixed address, you must enable the linker to process the
function or data separately from the rest of the input files.

This section contains the following subsections:
• 6.6.1 Placing __at sections at a specific address on page 6-81.
• 6.6.2 Restrictions on placing __at sections on page 6-81.
• 6.6.3 Automatically placing __at sections on page 6-81.
• 6.6.4 Manually placing __at sections on page 6-82.
• 6.6.5 Placing a key in flash memory with an __at section on page 6-83.
• 6.6.6 Placing constants at fixed locations on page 6-84.
• 6.6.7 Placing jump tables in ROM on page 6-85.
• 6.6.8 Placing a variable at a specific address without scatter-loading on page 6-86.
• 6.6.9 Placing a variable at a specific address with scatter-loading on page 6-87.

6.6.1 Placing __at sections at a specific address

You can give a section a special name that encodes the address where it must be placed.

To place a section at a specific address, use the function or variable attribute
__attribute__((section("name"))) with the special name .ARM.__at_address.

To place ZI data at a specific address, use the variable attribute __attribute__((section("name")))
with the special name .bss.ARM.__at_address

address is the required address of the section. The compiler normalizes this address to eight
hexadecimal digits. You can specify the address in hexadecimal or decimal. Sections in the form
of .ARM.__at_address are referred to by the abbreviation __at.

The following example shows how to assign a variable to a specific address in C or C++ code:

// place variable1 in a section called .ARM.__at_0x8000
int variable1 __attribute__((section(".ARM.__at_0x8000"))) = 10;

 Note

The name of the section is only significant if you are trying to match the section by name in a scatter file.
Without overlays, the linker automatically assigns __at sections when you use the --autoat command-
line option. This option is the default. If you are using overlays, then you cannot use --autoat to place
__at sections.

6.6.2 Restrictions on placing __at sections

There are restrictions when placing __at sections at specific addresses.

The following restrictions apply:
• __at section address ranges must not overlap, unless the overlapping sections are placed in different

overlay regions.
• __at sections are not permitted in position independent execution regions.
• You must not reference the linker-defined symbols $$Base, $$Limit and $$Length of an __at

section.
• __at sections must not be used in Base Platform Application Binary Interface (BPABI) executables

and BPABI dynamically linked libraries (DLLs).
• __at sections must have an address that is a multiple of their alignment.
• __at sections ignore any +FIRST or +LAST ordering constraints.

6.6.3 Automatically placing __at sections

The linker automatically places __at sections, but you can override this feature.

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-81

Non-Confidential

The automatic placement of __at sections is enabled by default. Use the linker command-line option,
--no_autoat to disable this feature.

 Note

You cannot use __at section placement with position independent execution regions.

When linking with the --autoat option, the linker does not place __at sections with scatter-loading
selectors. Instead, the linker places the __at section in a compatible region. If no compatible region is
found, the linker creates a load and execution region for the __at section.

All linker execution regions created by --autoat have the UNINIT scatter-loading attribute. If you
require a ZI __at section to be zero-initialized, then it must be placed within a compatible region. A
linker execution region created by --autoat must have a base address that is at least 4 byte-aligned. If
any region is incorrectly aligned, the linker produces an error message.

A compatible region is one where:
• The __at address lies within the execution region base and limit, where limit is the base address +

maximum size of execution region. If no maximum size is set, the linker sets the limit for placing
__at sections as the current size of the execution region without __at sections plus a constant. The
default value of this constant is 10240 bytes, but you can change the value using the
--max_er_extension command-line option.

• The execution region meets at least one of the following conditions:
— It has a selector that matches the __at section by the standard scatter-loading rules.
— It has at least one section of the same type (RO or RW) as the __at section.
— It does not have the EMPTY attribute.

 Note

The linker considers an __at section with type RW compatible with RO.

The following example shows the sections .ARM.__at_0x0000 type RO, .ARM.__at_0x4000 type RW,
and .ARM.__at_0x8000 type RW:

// place the RO variable in a section called .ARM.__at_0x0000
const int foo __attribute__((section(".ARM.__at_0x0000"))) = 10;

// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000"))) = 100;

// place "variable" in a section called .ARM.__at_0x00008000
int variable __attribute__((section(".ARM.__at_0x00008000")));

The following scatter file shows how automatically to place these __at sections:

LR1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO) ; .ARM.__at_0x0000 lies within the bounds of ER_RO
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW) ; .ARM.__at_0x4000 lies within the bounds of ER_RW
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }
}
; The linker creates a load and execution region for the __at section
; .ARM.__at_0x8000 because it lies outside all candidate regions.

6.6.4 Manually placing __at sections

You can have direct control over the placement of __at sections, if required.

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-82

Non-Confidential

You can use the standard section-placement rules to place __at sections when using the --no_autoat
command-line option.

 Note

You cannot use __at section placement with position-independent execution regions.

The following example shows the placement of read-only sections .ARM.__at_0x2000 and the read-
write section .ARM.__at_0x4000. Load and execution regions are not created automatically in manual
mode. An error is produced if an __at section cannot be placed in an execution region.

The following example shows the placement of the variables in C or C++ code:

// place the RO variable in a section called .ARM.__at_0x2000
const int foo __attribute__((section(".ARM.__at_0x2000"))) = 100;
// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000")));

The following scatter file shows how to place __at sections manually:

LR1 0x0
{
 ER_RO 0x0 0x2000
 {
 *(+RO) ; .ARM.__at_0x0000 is selected by +RO
 }
 ER_RO2 0x2000
 {
 *(.ARM.__at_0x02000) ; .ARM.__at_0x2000 is selected by the section named
 ; .ARM.__at_0x2000
 }
 ER2 0x4000
 {
 *(+RW, +ZI) ; .ARM.__at_0x4000 is selected by +RW
 }
}

6.6.5 Placing a key in flash memory with an __at section

Some flash devices require a key to be written to an address to activate certain features. An __at section
provides a simple method of writing a value to a specific address.

Placing the flash key variable in C or C++ code

Assume that a device has flash memory from 0x8000 to 0x10000 and a key is required in
address 0x8000. To do this with an __at section, you must declare a variable so that the
compiler can generate a section called .ARM.__at_0x8000.

// place flash_key in a section called .ARM.__at_0x8000
long flash_key __attribute__((section(".ARM.__at_0x8000")));

Manually placing a flash execution region

The following example shows how to manually place a flash execution region with a scatter file:

ER_FLASH 0x8000 0x2000
{
 *(+RW)
 *(.ARM.__at_0x8000) ; key
}

Use the linker command-line option --no_autoat to enable manual placement.

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-83

Non-Confidential

Automatically placing a flash execution region

The following example shows how to automatically place a flash execution region with a scatter
file. Use the linker command-line option --autoat to enable automatic placement.

LR1 0x0
{
 ER_FLASH 0x8000 0x2000
 {
 *(+RO) ; other code and read-only data, the
 ; __at section is automatically selected
 }
 ER2 0x4000
 {
 *(+RW +ZI) ; Any other RW and ZI variables
 }
}

6.6.6 Placing constants at fixed locations

There are some situations when you want to place constants at fixed memory locations. For example, you
might want to write a value to FLASH to read-protect a SoC device.

Procedure
1. Create a C file abs_address.c to define an integer and a string constant.

unsigned int const number = 0x12345678;
char* const string = "Hello World";

2. Create a scatter file, scatter.scat, to place the constants in separate sections ER_RONUMBERS and
ER_ROSTRINGS.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 *(+RO +RW) ; all RO sections (must include section with
 ; initial entry point)
 }
 ER_RONUMBERS +0
 {
 *(.rodata.number, +RO-DATA)
 }
 ER_ROSTRINGS +0
 {
 *(.rodata.string, .rodata.str1.1, +RO-DATA)
 }
 ; rest of scatter-loading description

 ARM_LIB_STACK 0x80000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

armclang puts string literals in a section called .rodata.str1.1
3. Compile and link the file.

armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 abs_address.c -g -c -o abs_address.o
armlink --cpu=cortex-a9 --scatter=scatter.scat abs_address.o --output=abs_address.axf

4. Run fromelf on the image to view the contents of the output sections.

fromelf -c -d abs_address.axf

Results: The output contains the following sections:

...
** Section #2 'ER_RONUMBERS' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 4 bytes (alignment 4)
 Address: 0x00040000

 0x040000: 78 56 34 12 xV4.

** Section #3 'ER_ROSTRINGS' (SHT_PROGBITS) [SHF_ALLOC]

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-84

Non-Confidential

 Size : 16 bytes (alignment 4)
 Address: 0x00040004

 0x040004: 48 65 6c 6c 6f 20 57 6f 72 6c 64 00 04 00 04 00 Hello World.....
...

5. Replace the ER_RONUMBERS and ER_ROSTRINGS sections in the scatter file with the following
ER_RODATA section:

 ER_RODATA +0
 {
 abs_address.o(.rodata.number, .rodata.string, .rodata.str1.1, +RO-DATA)
 }

6. Repeat steps 3 and 4.
Results: The integer and string constants are both placed in the ER_RODATA section, for example:

** Section #2 'ER_RODATA' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 20 bytes (alignment 4)
 Address: 0x00040000

 0x040000: 78 56 34 12 48 65 6c 6c 6f 20 57 6f 72 6c 64 00 xV4.Hello World.
 0x040010: 04 00 04 00

6.6.7 Placing jump tables in ROM

You might find that jump tables are placed in RAM rather than in ROM.

A jump table might be placed in a RAM .data section when you define it as follows:

typedef void PFUNC(void);
const PFUNC *table[3] = {func0, func1, func2};

The compiler also issues the warning:

jump.c:19:1: warning: 'const' qualifier on function type 'PFUNC'
 (aka 'void (void)') has unspecified behavior
const PFUNC *table[3] = {func0, func1, func2};
^~~~~~

The following procedure describes how to place the jump table in a ROM .rodata section.

Procedure
1. Create a C file jump.c.

Make the PFUNC type a pointer to a void function that has no parameters. You can then use PFUNC to
create an array of constant function pointers.

extern void func0(void);
extern void func1(void);
extern void func2(void);

typedef void (*PFUNC)(void);

const PFUNC table[] = {func0, func1, func2};

void jump(unsigned i)
{
 if (i<=2)
 table[i]();
}

2. Compile the file.

armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 jump.c -g -c -o jump.o

3. Run fromelf on the image to view the contents of the output sections.

fromelf -c -d jump.o

Results: The table is placed in the read-only section .rodata that you can place in ROM as required:

...
** Section #3 '.text.jump' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 64 bytes (alignment 4)
 Address: 0x00000000

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-85

Non-Confidential

 $a.0
 [Anonymous symbol #24]
 jump
 0x00000000: e92d4800 .H-. PUSH {r11,lr}
 0x00000004: e24dd008 ..M. SUB sp,sp,#8
 0x00000008: e1a01000 MOV r1,r0
 0x0000000c: e58d0004 STR r0,[sp,#4]
 0x00000010: e3500002 ..P. CMP r0,#2
 0x00000014: e58d1000 STR r1,[sp,#0]
 0x00000018: 8a000006 BHI {pc}+0x20 ; 0x38
 0x0000001c: eaffffff B {pc}+0x4 ; 0x20
 0x00000020: e59d0004 LDR r0,[sp,#4]
 0x00000024: e3001000 MOVW r1,#:LOWER16: table
 0x00000028: e3401000 ..@. MOVT r1,#:UPPER16: table
 0x0000002c: e7910100 LDR r0,[r1,r0,LSL #2]
 0x00000030: e12fff30 0./. BLX r0
 0x00000034: eaffffff B {pc}+0x4 ; 0x38
 0x00000038: e28dd008 ADD sp,sp,#8
 0x0000003c: e8bd8800 POP {r11,pc}

...
** Section #7 '.rodata.table' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 12 bytes (alignment 4)
 Address: 0x00000000

 0x000000: 00 00 00 00 00 00 00 00 00 00 00 00
...

6.6.8 Placing a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific addresses, and
does not require a scatter file.

To place code and data at specific addresses without a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>

extern int sqr(int n1);
const int gValue __attribute__((section(".ARM.__at_0x5000"))) = 3; // Place at 0x5000
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section(".ARM.__AT_0x5000"))) specifies that the global variable
gValue is to be placed at the absolute address 0x5000. gValue is placed in the execution region
ER$$.ARM.__AT_0x5000 and load region LR$$.ARM.__AT_0x5000.

The memory map shows:

…
 Load Region LR$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max: 0x00000004,
ABSOLUTE)

 Execution Region ER$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
0x00000004, ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-86

Non-Confidential

 0x00005000 0x00000004 Data RO 18 .ARM.__AT_0x5000 main.o

6.6.9 Placing a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address using a
scatter file.

To modify your source code to place code and data at a specific address using a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
// Place at address 0x10000
const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3;
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0
{
 ER1 0x0
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 +0
 {
 function.o
 *(.ARM.__at_0x10000) ; Place gValue at 0x10000
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the ER2 execution region at address 0x10000:

…
 Execution Region ER2 (Base: 0x00002a54, Size: 0x0000d5b0, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00002a54 0x0000001c Code RO 4 .text.sqr function.o
 0x00002a70 0x0000d590 PAD
 0x00010000 0x00000004 Data RO 9 .ARM.__at_0x10000 main.o

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-87

Non-Confidential

In this example, the size of ER1 is unknown. Therefore, gValue might be placed in ER1 or ER2. To make
sure that gValue is placed in ER2, you must include the corresponding selector in ER2 and link with the
--no_autoat command-line option. If you omit --no_autoat, gValue is to placed in a separate load
region LR$$.ARM.__at_0x10000 that contains the execution region ER$$.ARM.__at_0x10000.

6 Mapping Code and Data to the Target
6.6 Placing functions and data at specific addresses

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-88

Non-Confidential

6.7 Placement of Arm® C and C++ library code
You can place code from the Arm standard C and C++ libraries using a scatter file.

Use *armlib* or *libcxx* so that the linker can resolve library naming in your scatter file.

Some Arm C and C++ library sections must be placed in a root region, for example __main.o,
__scatter*.o, __dc*.o, and *Region$$Table. This list can change between releases. The linker can
place all these sections automatically in a future-proof way with InRoot$$Sections.

 Note

For AArch64, __rtentry*.o is moved to a root region.

This section contains the following subsections:
• 6.7.1 Placing code in a root region on page 6-89.
• 6.7.2 Placing Arm® C library code on page 6-89.
• 6.7.3 Placing Arm® C++ library code on page 6-90.

6.7.1 Placing code in a root region

Some code must always be placed in a root region. You do this in a similar way to placing a named
section.

To place all sections that must be in a root region, use the section selector InRoot$$Sections. For
example :

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region at 0x0
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and *Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

6.7.2 Placing Arm® C library code

You can place C library code using a scatter file.

To place C library code, specify the library path and library name as the module selector. You can use
wildcard characters if required. For example:

LR1 0x0
{
 ROM1 0
 {
 * (InRoot$$Sections)
 * (+RO)
 }
 ROM2 0x1000
 {
 armlib/c_ (+RO) ; all Arm-supplied C library functions
 }

 RAM1 0x3000
 {
 armlib (+RO) ; all other Arm-supplied library code
 ; for example, floating-point libraries
 }
 RAM2 0x4000
 {
 * (+RW, +ZI)
 }
}

6 Mapping Code and Data to the Target
6.7 Placement of Arm® C and C++ library code

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-89

Non-Confidential

The name armlib indicates the Arm C library files that are located in the directory
install_directory\lib\armlib.

6.7.3 Placing Arm® C++ library code

You can place C++ library code using a scatter file.

To place C++ library code, specify the library path and library name as the module selector. You can use
wildcard characters if required.

Procedure
1. Create the following C++ program, foo.cpp:

#include <iostream>

using namespace std;

extern "C" int foo ()
{
 cout << "Hello" << endl;
 return 1;
}

2. To place the C++ library code, define the following scatter file, scatter.scat:

LR 0x8000
{
 ER1 +0
 {
 armlib(+RO)
 }
 ER2 +0
 {
 libcxx(+RO)
 }
 ER3 +0
 {
 *(+RO)

 ; All .ARM.exidx* sections must be coalesced into a single contiguous
 ; .ARM.exidx section because the unwinder references linker-generated
 ; Base and Limit symbols for this section.
 *(0x70000001) ; SHT_ARM_EXIDX sections

 ; All .init_array sections must be coalesced into a single contiguous
 ; .init_array section because the initialization code references
 ; linker-generated Base and Limit for this section.
 *(.init_array)
 }
 ER4 +0
 {
 *(+RW,+ZI)
 }
}

The name *armlib* matches install_directory\lib\armlib, indicating the Arm C library files
that are located in the armlib directory.

The name *libcxx* matches install_directory\lib\libcxx, indicating the C++ library files that
are located in the libcxx directory.

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c foo.cpp
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --scatter=scatter.scat --map main.o foo.o -o foo.axf

The --map option displays the memory map of the image.

6 Mapping Code and Data to the Target
6.7 Placement of Arm® C and C++ library code

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-90

Non-Confidential

6.8 Placement of unassigned sections
The linker attempts to place input sections into specific execution regions. For any input sections that
cannot be resolved, and where the placement of those sections is not important, you can specify where
the linker is to place them.

To place sections that are not automatically assigned to specific execution regions, use the .ANY module
selector in a scatter file.

Usually, a single .ANY selector is equivalent to using the * module selector. However, unlike *, you can
specify .ANY in multiple execution regions.

The linker has default rules for placing unassigned sections when you specify multiple .ANY selectors.
However, you can override the default rules using the following command-line options:

• --any_contingency to permit extra space in any execution regions containing .ANY sections for
linker-generated content such as veneers and alignment padding.

• --any_placement to provide more control over the placement of unassigned sections.
• --any_sort_order to control the sort order of unassigned input sections.

In a scatter file, you can also:
• Assign a priority to a .ANY selector. This gives you more control over how the unassigned sections

are divided between multiple execution regions. You can assign the same priority to more than one
execution region.

• Specify the maximum size for an execution region that the linker can fill with unassigned sections.

This section contains the following subsections:
• 6.8.1 Default rules for placing unassigned sections on page 6-91.
• 6.8.2 Command-line options for controlling the placement of unassigned sections on page 6-92.
• 6.8.3 Prioritizing the placement of unassigned sections on page 6-92.
• 6.8.4 Specify the maximum region size permitted for placing unassigned sections on page 6-92.
• 6.8.5 Examples of using placement algorithms for .ANY sections on page 6-93.
• 6.8.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

on page 6-95.
• 6.8.7 Examples of using sorting algorithms for .ANY sections on page 6-96.
• 6.8.8 Behavior when .ANY sections overflow because of linker-generated content on page 6-97.

6.8.1 Default rules for placing unassigned sections

The linker has default rules for placing sections when using multiple .ANY selectors.

When more than one .ANY selector is present in a scatter file, the linker sorts sections in descending size
order. It then takes the unassigned section with the largest size and assigns the section to the most
specific .ANY execution region that has enough free space. For example, .ANY(.text) is judged to be
more specific than .ANY(+RO).

If several execution regions are equally specific, then the section is assigned to the execution region with
the most available remaining space.

For example:
• You might have two equally specific execution regions where one has a size limit of 0x2000 and the

other has no limit. In this case, all the sections are assigned to the second unbounded .ANY region.
• You might have two equally specific execution regions where one has a size limit of 0x2000 and the

other has a size limit of 0x3000. In this case, the first sections to be placed are assigned to the
second .ANY region of size limit 0x3000. This assignment continues until the remaining size of the
second .ANY region is reduced to 0x2000. From this point, sections are assigned alternately between
both .ANY execution regions.

You can specify a maximum amount of space to use for unassigned sections with the execution region
attribute ANY_SIZE.

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-91

Non-Confidential

6.8.2 Command-line options for controlling the placement of unassigned sections

You can modify how the linker places unassigned input sections when using multiple .ANY selectors by
using a different placement algorithm or a different sort order.

The following command-line options are available:
• --any_placement=algorithm, where algorithm is one of first_fit, worst_fit, best_fit, or

next_fit.
• --any_sort_order=order, where order is one of cmdline or descending_size.

Use first_fit when you want to fill regions in order.

Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections worst_fit
fills regions cyclically.

Use next_fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first_fit and best_fit, it might
overfill the region. This is because linker-generated content such as padding and veneers are not known
until sections have been assigned to .ANY selectors. If this occurs you might see the following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit
bytes).

The --any_contingency option prevents the linker from filling the region up to its maximum. It
reserves a portion of the region's size for linker-generated content and fills this contingency area only if
no other regions have space. It is enabled by default for the first_fit and best_fit algorithms,
because they are most likely to exhibit this behavior.

6.8.3 Prioritizing the placement of unassigned sections

You can give a priority ordering when placing unassigned sections with multiple .ANY module selectors.

To prioritize the order of multiple .ANY sections use the .ANYnum selector, where num is a positive integer
starting at zero.

The highest priority is given to the selector with the highest integer.

The following example shows how to use .ANYnum:

lr1 0x8000 1024
{
 er1 +0 512
 {
 .ANY1(+RO) ; evenly distributed with er3
 }
 er2 +0 256
 {
 .ANY2(+RO) ; Highest priority, so filled first
 }
 er3 +0 256
 {
 .ANY1(+RO) ; evenly distributed with er1
 }
}

6.8.4 Specify the maximum region size permitted for placing unassigned sections

You can specify the maximum size in a region that armlink can fill with unassigned sections.

Use the execution region attribute ANY_SIZE max_size to specify the maximum size in a region that
armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:

• max_size must be less than or equal to the region size.
• If you use ANY_SIZE on a region without a .ANY selector, it is ignored by armlink.

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-92

Non-Confidential

When ANY_SIZE is present, armlink does not attempt to calculate contingency and strictly follows
the .ANY priorities.

When ANY_SIZE is not present for an execution region containing a .ANY selector, and you specify the
--any_contingency command-line option, then armlink attempts to adjust the contingency for that
execution region. The aims are to:
• Never overflow a .ANY region.
• Make sure there is a contingency reserved space left in the given execution region. This space is

reserved for veneers and section padding.

If you specify --any_contingency on the command line, it is ignored for regions that have ANY_SIZE
specified. It is used as normal for regions that do not have ANY_SIZE specified.

Example

The following example shows how to use ANY_SIZE:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 ANY_SIZE 0xF00 0x1000
 {
 .ANY
 }
 ER_2 0x0 ANY_SIZE 0xFB0 0x1000
 {
 .ANY
 }
 ER_3 0x0 ANY_SIZE 0x1000 0x1000
 {
 .ANY
 }
}

In this example:
• ER_1 has 0x100 reserved for linker-generated content.
• ER_2 has 0x50 reserved for linker-generated content. That is about the same as the automatic

contingency of --any_contingency.
• ER_3 has no reserved space. Therefore, 100% of the region is filled, with no contingency for veneers.

Omitting the ANY_SIZE parameter causes 98% of the region to be filled, with a two percent
contingency for veneers.

6.8.5 Examples of using placement algorithms for .ANY sections

These examples show the operation of the placement algorithms for RO-CODE sections in sections.o.

The input section properties and ordering are shown in the following table:

Table 6-1 Input section properties for placement of .ANY sections

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x10
 {

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-93

Non-Confidential

 .ANY
 }
 ER_2 0x200 0x10
 {
 .ANY
 }
}

 Note

These examples have --any_contingency disabled.

Example for first_fit, next_fit, and best_fit

This example shows the image memory map where several sections of equal size are assigned to two
regions with one selector. The selectors are equally specific, equivalent to .ANY(+R0) and have no
priority.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 2 sec2 sections.o
 0x00000108 0x00000004 Code RO 3 sec3 sections.o
 0x0000010c 0x00000004 Code RO 4 sec4 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 5 sec5 sections.o
 0x00000204 0x00000004 Code RO 6 sec6 sections.o

In this example:
• For first_fit the linker first assigns all the sections it can to ER_1, then moves on to ER_2 because

that is the next available region.
• For next_fit the linker does the same as first_fit. However, when ER_1 is full it is marked as

FULL and is not considered again. In this example, ER_1 is completely full. ER_2 is then considered.
• For best_fit the linker assigns sec1 to ER_1. It then has two regions of equal priority and

specificity, but ER_1 has less space remaining. Therefore, the linker assigns sec2 to ER_1, and
continues assigning sections until ER_1 is full.

Example for worst_fit

This example shows the image memory map when using the worst_fit algorithm.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 3 sec3 sections.o
 0x00000108 0x00000004 Code RO 5 sec5 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 2 sec2 sections.o
 0x00000204 0x00000004 Code RO 4 sec4 sections.o
 0x00000208 0x00000004 Code RO 6 sec6 sections.o

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-94

Non-Confidential

The linker first assigns sec1 to ER_1. It then has two equally specific and priority regions. It assigns sec2
to the one with the most free space, ER_2 in this example. The regions now have the same amount of
space remaining, so the linker assigns sec3 to the first one that appears in the scatter file, that is ER_1.

 Note

The behavior of worst_fit is the default behavior in this version of the linker, and it is the only
algorithm available in earlier linker versions.

6.8.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 6-2 Input section properties for placement of sections with next_fit

Name Size

sec1 0x14

sec2 0x14

sec3 0x10

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x20
 {
 .ANY1(+RO-CODE)
 }
 ER_2 0x200 0x20
 {
 .ANY2(+RO)
 }
 ER_3 0x300 0x20
 {
 .ANY3(+RO)
 }
}

 Note

This example has --any_contingency disabled.

The next_fit algorithm is different to the others in that it never revisits a region that is considered to be
full. This example also shows the interaction between priority and specificity of selectors. This is the
same for all the algorithms.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000014 Code RO 1 sec1 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-95

Non-Confidential

 0x00000200 0x00000010 Code RO 3 sec3 sections.o
 0x00000210 0x00000004 Code RO 4 sec4 sections.o
 0x00000214 0x00000004 Code RO 5 sec5 sections.o
 0x00000218 0x00000004 Code RO 6 sec6 sections.o

 Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000300 0x00000014 Code RO 2 sec2 sections.o

In this example:
• The linker places sec1 in ER_1 because ER_1 has the most specific selector. ER_1 now has 0x6 bytes

remaining.
• The linker then tries to place sec2 in ER_1, because it has the most specific selector, but there is not

enough space. Therefore, ER_1 is marked as full and is not considered in subsequent placement steps.
The linker chooses ER_3 for sec2 because it has higher priority than ER_2.

• The linker then tries to place sec3 in ER_3. It does not fit, so ER_3 is marked as full and the linker
places sec3 in ER_2.

• The linker now processes sec4. This is 0x4 bytes so it can fit in either ER_1 or ER_3. Because both of
these sections have previously been marked as full, they are not considered. The linker places all
remaining sections in ER_2.

• If another section sec7 of size 0x8 exists, and is processed after sec6 the example fails to link. The
algorithm does not attempt to place the section in ER_1 or ER_3 because they have previously been
marked as full.

6.8.7 Examples of using sorting algorithms for .ANY sections

These examples show the operation of the sorting algorithms for RO-CODE sections in sections_a.o and
sections_b.o.

The input section properties and ordering are shown in the following table:

Table 6-3 Input section properties and ordering for sections_a.o and sections_b.o

sections_a.o sections_b.o

Name Size Name Size

seca_1 0x4 secb_1 0x4

seca_2 0x4 secb_2 0x4

seca_3 0x10 secb_3 0x10

seca_4 0x14 secb_4 0x14

Descending size example

The following linker command-line options are used for this example:

--any_sort_order=descending_size sections_a.o sections_b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .ANY assignment algorithm.

Table 6-4 Sort order for descending_size algorithm

Name Size

seca_4 0x14

secb_4 0x14

seca_3 0x10

secb_3 0x10

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-96

Non-Confidential

Table 6-4 Sort order for descending_size algorithm (continued)

Name Size

seca_1 0x4

seca_2 0x4

secb_1 0x4

secb_2 0x4

With --any_sort_order=descending_size, sections of the same size use the creation index as a
tiebreaker.

Command-line example

The following linker command-line options are used for this example:

--any_sort_order=cmdline sections_a.o sections_b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .ANY assignment algorithm.

Table 6-5 Sort order for cmdline algorithm

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

That is, the input sections are sorted by command-line index.

6.8.8 Behavior when .ANY sections overflow because of linker-generated content

Because linker-generated content might cause .ANY sections to overflow, a contingency algorithm is
included in the linker.

The linker does not know the address of a section until it is assigned to a region. Therefore, when
filling .ANY regions, the linker cannot calculate the contingency space and cannot determine if calling
functions require veneers. The linker provides a contingency algorithm that gives a worst-case estimate
for padding and an additional two percent for veneers. To enable this algorithm use the
--any_contingency command-line option.

The following diagram represents the notional image layout during .ANY placement:

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-97

Non-Confidential

.ANY
sections

Prospective padding

Base

limit

98%

2%

Image
content

Free
space

Execution region

Figure 6-2 .ANY contingency

The downward arrows for prospective padding show that the prospective padding continues to grow as
more sections are added to the .ANY selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared the priority is set to zero. When the two percent is cleared the
priority is decremented again.

You can also use the ANY_SIZE keyword on an execution region to specify the maximum amount of
space in the region to set aside for .ANY section assignments.

You can use the armlink command-line option --info=any to get extra information on where the linker
has placed sections. This can be useful when trying to debug problems.

Example
1. Create the following foo.c program:

#include "stdio.h"

int array[10] __attribute__ ((section ("ARRAY")));

struct S {
 char A[8];
 char B[4];
};
struct S s;

struct S* get()
{
 return &s;
}

int sqr(int n1);
int gSquared __attribute__((section(".ARM.__at_0x5000"))); // Place at 0x5000
int sqr(int n1)
{
 return n1*n1;
}

int main(void) {
 int i;
 for (i=0; i<10; i++) {
 array[i]=i*i;
 printf("%d\n", array[i]);
 }
 gSquared=sqr(i);

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-98

Non-Confidential

 printf("%d squared is: %d\n", i, gSquared);

 return sizeof(array);
}

2. Create the following scatter.scat file:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 0x1000 {
 .ANY
 }
 ER_2 (ImageLimit(ER_1)) 0x1500 {
 .ANY
 }
 ER_3 (ImageLimit(ER_2)) 0x500
 {
 .ANY
 }
 ER_4 (ImageLimit(ER_3)) 0x1000
 {
 *(+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

3. Compile and link the program as follows:

armclang -c --target=arm-arm-none-eabi -mcpu=cortex-m4 -o foo.o foo.c
armlink --cpu=cortex-m4 --any_contingency --scatter=scatter.scat --info=any -o foo.axf
foo.o

The following shows an example of the information generated:

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_2 Assignment: Worst fit 144
0x0000041a .text c_wu.l(_printf_fp_dec.o)
ER_2 Assignment: Worst fit 261 0x00000338 CL$
$btod_div_common c_wu.l(btod.o)
ER_1 Assignment: Worst fit 146
0x000002fc .text c_wu.l(_printf_fp_hex.o)
ER_2 Assignment: Worst fit 260 0x00000244 CL$
$btod_mult_common c_wu.l(btod.o)
...
ER_1 Assignment: Worst fit 3
0x00000090 .text foo.o
...
ER_3 Assignment: Worst fit 100
0x0000000a .ARM.Collect$$_printf_percent$$00000007 c_wu.l(_printf_ll.o)
ER_3 Info: .ANY limit reached - -
- -
ER_1 Assignment: Highest priority 423
0x0000000a .text c_wu.l(defsig_exit.o)
...
.ANY contingency summary
Exec Region Contingency Type
ER_1 161 Auto
ER_2 180 Auto
ER_3 73 Auto

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_2 Info: .ANY limit reached - -
- -

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-99

Non-Confidential

ER_1 Info: .ANY limit reached - -
- -
ER_3 Info: .ANY limit reached - -
- -
ER_2 Assignment: Worst fit 533 0x00000034 !!!
scatter c_wu.l(__scatter.o)
ER_2 Assignment: Worst fit 535 0x0000001c !!
handler_zi c_wu.l(__scatter_zi.o)

6 Mapping Code and Data to the Target
6.8 Placement of unassigned sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-100

Non-Confidential

6.9 Placing veneers with a scatter file
You can place veneers at a specific location with a linker-generated symbol.

Veneers allow switching between A32 and T32 code or allow a longer program jump than can be
specified in a single instruction.

Procedure
1. To place veneers at a specific location, include the linker-generated symbol Veneer$$Code in a

scatter file. At most, one execution region in the scatter file can have the *(Veneer$$Code) section
selector.
If it is safe to do so, the linker places veneer input sections into the region identified by the
*(Veneer$$Code) section selector. It might not be possible for a veneer input section to be assigned
to the region because of address range problems or execution region size limitations. If the veneer
cannot be added to the specified region, it is added to the execution region containing the relocated
input section that generated the veneer.

 Note

Instances of *(IWV$$Code) in scatter files from earlier versions of Arm tools are automatically
translated into *(Veneer$$Code). Use *(Veneer$$Code) in new descriptions.

*(Veneer$$Code) is ignored when the amount of code in an execution region exceeds 4MB of 16-bit
T32 code, 16MB of 32-bit T32 code, and 32MB of A32 code.

 Note

There are no state-change veneers in A64.

6 Mapping Code and Data to the Target
6.9 Placing veneers with a scatter file

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-101

Non-Confidential

6.10 Preprocessing a scatter file
You can pass a scatter file through a C preprocessor. This permits access to all the features of the C
preprocessor.

Use the first line in the scatter file to specify a preprocessor command that the linker invokes to process
the file. The command is of the form:

#! preprocessor [preprocessor_flags]

Most typically the command is #! armclang --target=arm-arm-none-eabi -march=armv8-a -E -x
c. This passes the scatter file through the armclang preprocessor.

You can:

• Add preprocessing directives to the top of the scatter file.
• Use simple expression evaluation in the scatter file.

For example, a scatter file, file.scat, might contain:

#! armclang --target=arm-arm-none-eabi -march=armv8-a -E -x c
#define ADDRESS 0x20000000
#include "include_file_1.h"

LR1 ADDRESS
{
 …
}

The linker parses the preprocessed scatter file and treats the directives as comments.

You can also use the --predefine command-line option to assign values to constants. For this example:
1. Modify file.scat to delete the directive #define ADDRESS 0x20000000.
2. Specify the command:

armlink --predefine="-DADDRESS=0x20000000" --scatter=file.scat

This section contains the following subsections:
• 6.10.1 Default behavior for armclang -E in a scatter file on page 6-102.
• 6.10.2 Using other preprocessors in a scatter file on page 6-102.

6.10.1 Default behavior for armclang -E in a scatter file

armlink behaves in the same way as armclang when invoking other Arm tools.

armlink searches for the armclang binary in the following order:
1. The same location as armlink.
2. The PATH locations.

armlink invokes armclang with the -Iscatter_file_path option so that any relative #includes work.
The linker only adds this option if the full name of the preprocessor tool given is armclang or
armclang.exe. This means that if an absolute path or a relative path is given, the linker does not give the
-Iscatter_file_path option to the preprocessor. This also happens with the --cpu option.

On Windows, .exe suffixes are handled, so armclang.exe is considered the same as armclang.
Executable names are case insensitive, so ARMCLANG is considered the same as armclang. The portable
way to write scatter file preprocessing lines is to use correct capitalization and omit the .exe suffix.

6.10.2 Using other preprocessors in a scatter file

You must ensure that the preprocessing command line is appropriate for execution on the host system.

6 Mapping Code and Data to the Target
6.10 Preprocessing a scatter file

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-102

Non-Confidential

This means:
• The string must be correctly quoted for the host system. The portable way to do this is to use double-

quotes.
• Single quotes and escaped characters are not supported and might not function correctly.
• The use of a double-quote character in a path name is not supported and might not work.

These rules also apply to any strings passed with the --predefine option.

All preprocessor executables must accept the -o file option to mean output to file and accept the input
as a filename argument on the command line. These options are automatically added to the user
command line by armlink. Any options to redirect preprocessing output in the user-specified command
line are not supported.

6 Mapping Code and Data to the Target
6.10 Preprocessing a scatter file

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-103

Non-Confidential

6.11 Reserving an empty block of memory
You can reserve an empty block of memory with a scatter file, such as the area used for the stack.

To reserve an empty block of memory, add an execution region in the scatter file and assign the EMPTY
attribute to that region.

This section contains the following subsections:
• 6.11.1 Characteristics of a reserved empty block of memory on page 6-104.
• 6.11.2 Example of reserving an empty block of memory on page 6-104.

6.11.1 Characteristics of a reserved empty block of memory

An empty block of memory that is reserved with a scatter-loading description has certain characteristics.

The block of memory does not form part of the load region, but is assigned for use at execution time.
Because it is created as a dummy ZI region, the linker uses the following symbols to access it:
• Image$$region_name$$ZI$$Base.
• Image$$region_name$$ZI$$Limit.
• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of the region. This
address must be an absolute address and not a relative one.

6.11.2 Example of reserving an empty block of memory

This example shows how to reserve and empty block of memory for stack and heap using a scatter-
loading description. It also shows the related symbols that the linker generates.

In the following example, the execution region definition STACK 0x800000 EMPTY –0x10000 defines a
region that is called STACK. The region starts at address 0x7F0000 and ends at address 0x800000:

LR_1 0x80000 ; load region starts at 0x80000
{
 STACK 0x800000 EMPTY -0x10000 ; region ends at 0x800000 because of the
 ; negative length. The start of the region
 ; is calculated using the length.
 {
 ; Empty region for placing the stack
 }

 HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
 ; region. End of region calculated using
 ; positive length
 {
 ; Empty region for placing the heap
 }
 … ; rest of scatter-loading description
}

 Note

The dummy ZI region that is created for an EMPTY execution region is not initialized to zero at runtime.

If the address is in relative (+offset) form and the length is negative, the linker generates an error.

The following figure shows a diagrammatic representation for this example.

6 Mapping Code and Data to the Target
6.11 Reserving an empty block of memory

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-104

Non-Confidential

Heap

Stack

0x810000

0x800000

0x7F0000

Base Limit

Base

Limit

Figure 6-3 Reserving a region for the stack

In this example, the linker generates the following symbols:

Image$$STACK$$ZI$$Base = 0x7f0000
Image$$STACK$$ZI$$Limit = 0x800000
Image$$STACK$$ZI$$Length = 0x10000
Image$$HEAP$$ZI$$Base = 0x800000
Image$$HEAP$$ZI$$Limit = 0x810000
Image$$HEAP$$ZI$$Length = 0x10000

 Note

The EMPTY attribute applies only to an execution region. The linker generates a warning and ignores an
EMPTY attribute that is used in a load region definition.

The linker checks that the address space used for the EMPTY region does not coincide with any other
execution region.

6 Mapping Code and Data to the Target
6.11 Reserving an empty block of memory

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-105

Non-Confidential

6.12 Aligning regions to page boundaries
You can produce an ELF file with each execution region starting at a page boundary.

The linker provides the following built-in functions to help create load and execution regions on page
boundaries:

• AlignExpr, to specify an address expression.
• GetPageSize, to obtain the page size for use in AlignExpr. If you use GetPageSize, you must also

use the --paged linker command-line option.
• SizeOfHeaders(), to return the size of the ELF header and Program Header table.

 Note

• Alignment on an execution region causes both the load address and execution address to be aligned.
• The default page size is 0x8000. To change the page size, specify the --pagesize linker command-

line option.

To produce an ELF file with each execution region starting on a new page, and with code starting on the
next page boundary after the header information:

LR1 0x0 + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW AlignExpr(+0, GetPageSize())
 {
 *(+RW)
 }
 ER_ZI AlignExpr(+0, GetPageSize())
 {
 *(+ZI)
 }
}

If you set up your ELF file in this way, then you can memory-map it onto an operating system in such a
way that:
• RO and RW data can be given different memory protections, because they are placed in separate

pages.
• The load address everything expects to run at is related to its offset in the ELF file by specifying

SizeOfHeaders() for the first load region.

6 Mapping Code and Data to the Target
6.12 Aligning regions to page boundaries

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-106

Non-Confidential

6.13 Aligning execution regions and input sections
There are situations when you want to align code and data sections. How you deal with them depends on
whether you have access to the source code.

Aligning when it is convenient for you to modify the source and recompile

When it is convenient for you to modify the original source code, you can align at compile time
with the __align(n) keyword, for example.

Aligning when it is not convenient for you to modify the source and recompile

It might not be convenient for you to modify the source code for various reasons. For example,
your build process might link the same object file into several images with different alignment
requirements.

When it is not convenient for you to modify the source code, then you must use the following
alignment specifiers in a scatter file:

ALIGNALL

Increases the section alignment of all the sections in an execution region, for example:

ER_DATA … ALIGNALL 8
{
 … ;selectors
}

OVERALIGN

Increases the alignment of a specific section, for example:

ER_DATA …
{
 *.o(.bar, OVERALIGN 8)
 … ;selectors
}

6 Mapping Code and Data to the Target
6.13 Aligning execution regions and input sections

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

6-107

Non-Confidential

Chapter 7
Embedded Software Development

Describes how to develop embedded applications with Arm Compiler, with or without a target system
present.

It contains the following sections:
• 7.1 About embedded software development on page 7-110.
• 7.2 Default compilation tool behavior on page 7-111.
• 7.3 C library structure on page 7-112.
• 7.4 Default memory map on page 7-113.
• 7.5 Application startup on page 7-115.
• 7.6 Tailoring the C library to your target hardware on page 7-116.
• 7.7 Reimplementing C library functions on page 7-117.
• 7.8 Tailoring the image memory map to your target hardware on page 7-119.
• 7.9 About the scatter-loading description syntax on page 7-120.
• 7.10 Root regions on page 7-121.
• 7.11 Placing the stack and heap on page 7-122.
• 7.12 Run-time memory models on page 7-123.
• 7.13 Reset and initialization on page 7-125.
• 7.14 The vector table on page 7-126.
• 7.15 ROM and RAM remapping on page 7-127.
• 7.16 Local memory setup considerations on page 7-128.
• 7.17 Stack pointer initialization on page 7-129.
• 7.18 Hardware initialization on page 7-130.
• 7.19 Execution mode considerations on page 7-131.
• 7.20 Target hardware and the memory map on page 7-132.
• 7.21 Execute-only memory on page 7-133.
• 7.22 Building applications for execute-only memory on page 7-134.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-108

Non-Confidential

• 7.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 7-135.
• 7.24 Vector table for M-profile architectures on page 7-136.
• 7.25 Vector Table Offset Register on page 7-137.

7 Embedded Software Development

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-109

Non-Confidential

7.1 About embedded software development
When developing embedded applications, the resources available in the development environment
normally differ from those on the target hardware.

It is important to consider the process involved in moving an embedded application from the
development or debugging environment to a system that runs standalone on target hardware.

When developing embedded software, you must consider the following:
• Understand the default compilation tool behavior and the target environment so that you appreciate

the steps necessary to move from a debug or development build to a fully standalone production
version of the application.

• Some C library functionality executes by using debug environment resources. If used, you must re-
implement this functionality to make use of target hardware.

• The toolchain has no inherent knowledge of the memory map of any given target. You must tailor the
image memory map to the memory layout of the target hardware.

• An embedded application must perform some initialization, such as stack and heap initialization,
before the main application can be run. A complete initialization sequence requires code that you
implement in addition to the Arm Compiler C library initialization routines.

7 Embedded Software Development
7.1 About embedded software development

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-110

Non-Confidential

7.2 Default compilation tool behavior
It is useful to be aware of the default behavior of the compilation tools if you do not yet know the full
technical specifications of the target hardware.

For example, when you start work on software for an embedded application, you might not know the
details of target peripheral devices, the memory map, or even the processor itself.

To enable you to proceed with software development before such details are known, the compilation
tools have a default behavior that enables you to start building and debugging application code
immediately.

In the Arm C library, support for some ISO C functionality, for example program I/O, can be provided by
the host debugging environment. The mechanism that provides this functionality is known as
semihosting. When semihosting is executed, the debug agent suspends program execution. The debug
agent then uses the debug capabilities of the host (for example printf output to the debugger console) to
service the semihosting operation before code execution is resumed on the target. The task performed by
the host is transparent to the program running on the target.

Related information
What is semihosting?

7 Embedded Software Development
7.2 Default compilation tool behavior

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-111

Non-Confidential

https://developer.arm.com/docs/100863/latest

7.3 C library structure
Conceptually, the C library can be divided into functions that are part of the ISO C standard, for example
printf(), and functions that provide support to the ISO C standard.

For example, the following figure shows the C library implementing the function printf() by writing to
the debugger console window. This implementation is provided by calling _sys_write(), a support
function that executes a semihosting call, resulting in the default behavior using the debugger instead of
target peripherals.

ISO C

input/
output

error
handling

stack and
heap
setup

other

Semihosting Support
Debug
Agent

C Library

Functions called by
your application,
for example, printf()

Device driver level.
Use semihosting,
for example,

Implemented by
the debugging
environment

_sys_write()

Figure 7-1 C library structure

Related information
The Arm C and C++ libraries
The C and C++ library functions

7 Embedded Software Development
7.3 C library structure

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-112

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries
https://developer.arm.com/docs/100073/0611/the-c-and-c-library-functions-reference

7.4 Default memory map
In an image where you have not described the memory map, the linker places code and data according to
a default memory map.

ZI

RW

RO

STACK

HEAP

From
Semihosting

Calculated
by the linker

call

0x8000

Figure 7-2 Default memory map

 Note

The processors based on Armv6‑M and Armv7‑M architectures have fixed memory maps. This makes
porting software easier between different systems based on these processors.

The default memory map is described as follows:
• The image is linked to load and run at address 0x8000. All Read Only (RO) sections are placed first,

followed by Read-Write (RW) sections, then zero-initialized (ZI) sections.
• The heap follows directly on from the top of ZI, so the exact location is decided at link time.
• The stack base location is provided by a semihosting operation during application startup. The value

returned by this semihosting operation depends on the debug environment.

The linker observes a set of rules to decide where in memory code and data are located:

ZI

RW

RO

DATA

CODE

B

A

section A
from file2.o

Section A
from file1.o

Figure 7-3 Linker placement rules

7 Embedded Software Development
7.4 Default memory map

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-113

Non-Confidential

Generally, the linker sorts the input sections by attribute (RO, RW, ZI), by name, and then by position in
the input list.

To fully control the placement of code and data you must use the scatter-loading mechanism.

Related concepts
7.6 Tailoring the C library to your target hardware on page 7-116
Related information
The image structure
Section placement with the linker
About scatter-loading
Scatter file syntax
Cortex-M1 Technical Reference Manual
Cortex-M3 Technical Reference Manual

7 Embedded Software Development
7.4 Default memory map

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-114

Non-Confidential

https://developer.arm.com/docs/100070/0611/image-structure-and-generation/the-structure-of-an-arm-elf-image
https://developer.arm.com/docs/100070/0611/image-structure-and-generation/section-placement-with-the-linker
https://developer.arm.com/docs/100070/0611/scatter-loading-features/the-scatter-loading-mechanism
https://developer.arm.com/docs/100070/0611/scatter-file-syntax
https://developer.arm.com/docs/ddi0413/latest
https://developer.arm.com/docs/100165/latest

7.5 Application startup
In most embedded systems, an initialization sequence executes to set up the system before the main task
is executed.

The following figure shows the default initialization sequence.

C Library

__main
copy code and data

Initialize ZI data to
zeros

User Code

main()

causes the linker to link
in library initialization
code

__rt_entry

set up application stack
and heap
initialize library functions
call top-level
constructors (C++)

Exit from application

Image
entry point

.
copy or decompress RW
data

.

.

.

.

..

.

Figure 7-4 Default initialization sequence

__main is responsible for setting up the memory and __rt_entry is responsible for setting up the run-
time environment.

__main performs code and data copying, decompression, and zero initialization of the ZI data. It then
branches to __rt_entry to set up the stack and heap, initialize the library functions and static data, and
call any top level C++ constructors. __rt_entry then branches to main(), the entry to your application.
When the main application has finished executing, __rt_entry shuts down the library, then hands
control back to the debugger.

The function label main() has a special significance. The presence of a main() function forces the linker
to link in the initialization code in __main and __rt_entry. Without a function labeled main() the
initialization sequence is not linked in, and as a result, some standard C library functionality is not
supported.

Related information
--startup=symbol, --no_startup linker options
Arm Compiler C Library Startup and Initialization

7 Embedded Software Development
7.5 Application startup

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-115

Non-Confidential

https://developer.arm.com/docs/100070/0611/linker-command-line-options/-startupsymbol-no_startup
https://developer.arm.com/docs/dai0241/latest

7.6 Tailoring the C library to your target hardware
You can provide your own implementations of C library functions to override the default behavior.

By default, the C library uses semihosting to provide device driver level functionality, enabling a host
computer to act as an input and an output device. This is useful because development hardware often
does not have all the input and output facilities of the final system.

You can provide your own implementation of target-dependent C library functions to make use of target
hardware. These are automatically linked in to your image in favor of the C library implementations. The
following figure shows this process, known as retargeting the C library.

Target-
independent

Semihosting
Support

Retarget

Debug
Agent

C Library

User
Code

Target
Hardware

Target-
dependent

Target-
dependent

Target-
independent

Figure 7-5 Retargeting the C library

For example, you might have a peripheral I/O device such as an LCD screen, and you might want to
override the library implementation of fputc(), that writes to the debugger console, with one that
outputs to the LCD. Because this implementation of fputc() is linked in to the final image, the entire
printf() family of functions prints out to the LCD.

Example implementation of fputc()

In this example implementation of fputc(), the function redirects the input character parameter of
fputc() to a serial output function sendchar() that is assumed to be implemented in a separate source
file. In this way, fputc() acts as an abstraction layer between target dependent output and the C library
standard output functions.

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
{ /* e.g. write a character to an LCD screen */
 char tempch = ch;
 sendchar(&tempch);
 return ch;
}

In a standalone application, you are unlikely to support semihosting operations. Therefore, you must
remove all calls to target-dependent C library functions or re-implement them with non semihosting
functions.

Related information
Using the libraries in a nonsemihosting environment

7 Embedded Software Development
7.6 Tailoring the C library to your target hardware

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-116

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/support-for-building-an-application-with-the-c-library/using-the-libraries-in-a-nonsemihosting-environment

7.7 Reimplementing C library functions
This provides information for building applications without the Arm standard C library.

To build applications without the Arm standard C library, you must provide an alternative library that
reimplements the ISO standard C library functions that your application might need, such as printf().
Your reimplemented library must be compliant with the ARM Embedded Application Binary Interface
(AEABI).

To instruct armclang to not use the Arm standard C library, you must use the armclang options -
nostdlib and -nostdlibinc. You must also use the --no_scanlib armlink option if you invoke the
linker separately.

You must also use the -fno-builtin armclang option to ensure that the compiler does not perform any
transformations of built-in functions. Without -fno-builtin, armclang might recognize calls to certain
standard C library functions, such as printf(), and replace them with calls to more efficient alternatives
in specific cases.

This example reimplements the printf() function to simply return 1 or 0.

//my_lib.c:
int printf(const char *c, ...)
{
 if(!c)
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

Use armclang and armar to create a library from your reimplemented printf() function:

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none mylib.c -o mylib.o
armar --create mylib.a mylib.o

An example application source file foo.c contains:

//foo.c:
extern int printf(const char *c, ...);

void foo(void)
{
 printf("Hello, world!\n");
}

Use armclang to build the example application source file using the -nostdlib, -nostdlibinc and -
fno-builtin options. Then use armlink to link the example reimplemented library using the --
no_scanlib option.

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none -nostdlib -nostdlibinc -
fno-builtin foo.c -o foo.o
armlink foo.o mylib.a -o image.axf --no_scanlib

If you do not use the -fno-builtin option, then the compiler transforms the printf() function to the
puts() function, and the linker generates an error because it cannot find the puts() function in the
reimplemented library.

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none -nostdlib -nostdlibinc
foo.c -o foo.o
armlink foo.o mylib.a -o image.axf --no_scanlib

Error: L6218E: Undefined symbol puts (referred from foo.o).

 Note

If the linker sees a definition of main(), it automatically creates a reference to a startup symbol called
__main. The Arm standard C library defines __main to provide startup code. If you use your own library

7 Embedded Software Development
7.7 Reimplementing C library functions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-117

Non-Confidential

instead of the Arm standard C library, then you must provide your implementation of __main or change
the startup symbol using the linker --startup option.

Related concepts
7.3 C library structure on page 7-112
Related information
--startup
Run-time ABI for the Arm Architecture
C Library ABI for the Arm Architecture

7 Embedded Software Development
7.7 Reimplementing C library functions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-118

Non-Confidential

https://developer.arm.com/docs/100070/0611/linker-command-line-options/-startupsymbol-no_startup
https://developer.arm.com/docs/ihi0043/latest/run-time-abi-for-the-arm-architecture
https://developer.arm.com/docs/ihi0039/latest

7.8 Tailoring the image memory map to your target hardware
You can use a scatter file to define a memory map, giving you control over the placement of data and
code in memory.

In your final embedded system, without semihosting functionality, you are unlikely to use the default
memory map. Your target hardware usually has several memory devices located at different address
ranges. To make the best use of these devices, you must have separate views of memory at load and run-
time.

Scatter-loading enables you to describe the load and run-time memory locations of code and data in a
textual description file known as a scatter file. This file is passed to the linker on the command line using
the --scatter option. For example:

armlink --scatter scatter.scat file1.o file2.o

Scatter-loading defines two types of memory regions:

• Load regions containing application code and data at reset and load-time.
• Execution regions containing code and data when the application is executing. One or more execution

regions are created from each load region during application startup.

A single code or data section can only be placed in a single execution region. It cannot be split.

During startup, the C library initialization code in __main carries out the necessary copying of code/data
and zeroing of data to move from the image load view to the execute view.

 Note

The overall layout of the memory maps of devices based around the Armv6‑M and Armv7‑M
architectures are fixed. This makes it easier to port software between different systems based on these
architectures.

Related information
Information about scatter files
--scatter=filename linker option
Armv7‑M Architecture Reference Manual
Armv6‑M Architecture Reference Manual

7 Embedded Software Development
7.8 Tailoring the image memory map to your target hardware

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-119

Non-Confidential

https://developer.arm.com/docs/100070/0611/scatter-loading-features
https://developer.arm.com/docs/100070/0611/linker-command-line-options/-scatterfilename
https://developer.arm.com/docs/ddi0403/latest/armv7-m-architecture-reference-manual
https://developer.arm.com/docs/ddi0419/latest/armv6-m-architecture-reference-manual

7.9 About the scatter-loading description syntax
In a scatter file, each region is defined by a header tag that contains, as a minimum, a name for the region
and a start address. Optionally, you can add a maximum length and various attributes.

The scatter-loading description syntax shown in the following figure reflects the functionality provided
by scatter-loading:

MY_REGION 0x0000 0x2000
{
 contents of region
}

name of region start address

optional length
parameter

Figure 7-6 Scatter-loading description syntax

The contents of the region depend on the type of region:
• Load regions must contain at least one execution region. In practice, there are usually several

execution regions for each load region.
• Execution regions must contain at least one code or data section, unless a region is declared with the

EMPTY attribute. Non-EMPTY regions usually contain object or library code. You can use the wildcard
(*) syntax to group all sections of a given attribute not specified elsewhere in the scatter file.

Related information
Information about scatter files
Scatter-loading images with a simple memory map

7 Embedded Software Development
7.9 About the scatter-loading description syntax

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-120

Non-Confidential

https://developer.arm.com/docs/100070/0611/scatter-loading-features
https://developer.arm.com/docs/100070/0611/scatter-loading-features/the-scatter-loading-mechanism/scatter-loading-images-with-a-simple-memory-map

7.10 Root regions
A root region is an execution region with an execution address that is the same as its load address. A
scatter file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for creating execution
regions cannot be copied to another location. As a result, the following sections must be included in a
root region:
• __main.o and __scatter*.o containing the code that copies code and data
• __dc*.o that performs decompression
• Region$$Table section containing the addresses of the code and data to be copied or decompressed.

Because these sections are defined as read-only, they are grouped by the * (+RO) wildcard syntax. As a
result, if * (+RO) is specified in a non-root region, these sections must be explicitly declared in a root
region using InRoot$$Sections.

Related information
About placing Arm C and C++ library code

7 Embedded Software Development
7.10 Root regions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-121

Non-Confidential

https://developer.arm.com/docs/100070/0611/scatter-loading-features/placement-of-arm-c-and-c-library-code

7.11 Placing the stack and heap
The scatter-loading mechanism provides a method for specifying the placement of the stack and heap in
your image.

The application stack and heap are set up during C library initialization. You can tailor stack and heap
placement by using the specially named ARM_LIB_HEAP, ARM_LIB_STACK, or ARM_LIB_STACKHEAP
execution regions. Alternatively you can re-implement the __user_setup_stackheap() function if you
are not using a scatter file.

Related concepts
7.12 Run-time memory models on page 7-123
Related information
Tailoring the C library to a new execution environment
Specifying stack and heap using the scatter file

7 Embedded Software Development
7.11 Placing the stack and heap

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-122

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/tailoring-the-c-library-to-a-new-execution-environment
https://developer.arm.com/docs/100070/0611/scatter-loading-features/the-scatter-loading-mechanism/placing-the-stack-and-heap-with-a-scatter-file

7.12 Run-time memory models
Arm Compiler toolchain provides one- and two-region run-time memory models.

One-region model

The application stack and heap grow towards each other in the same region of memory, see the following
figure. In this run-time memory model, the heap is checked against the value of the stack pointer when
new heap space is allocated, for example, when malloc() is called.

STACK

HEAP

Stack Base

Heap Base

0x40000

0x20000

Figure 7-7 One-region model

One-region model routine
LOAD_FLASH ...
{
 ...
 ARM_LIB_STACKHEAP 0x20000 EMPTY 0x20000 ; Heap and stack growing towards
 { } ; each other in the same region
 ...
}

Two-region model

The stack and heap are placed in separate regions of memory, see the following figure. For example, you
might have a small block of fast RAM that you want to reserve for stack use only. For a two-region
model you must import __use_two_region_memory.

In this run-time memory model, the heap is checked against the heap limit when new heap space is
allocated.

7 Embedded Software Development
7.12 Run-time memory models

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-123

Non-Confidential

STACK

HEAP

Heap
Limit

Heap
Base

Stack
Base

0x28080000

0x28000000

0x40000

Figure 7-8 Two-region model

Two-region model routine
LOAD_FLASH ...
{
 ...
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { } ;
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 ...
}

In both run-time memory models, the stack grows unchecked.

Related information
Stack pointer initialization and heap bounds

7 Embedded Software Development
7.12 Run-time memory models

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-124

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/stack-and-heap-memory-allocation-and-the-arm-c-and-c-libraries/stack-pointer-initialization-and-heap-bounds

7.13 Reset and initialization
The entry point to the C library initialization routine is __main. However, an embedded application on
your target hardware performs some system-level initialization at startup.

Embedded system initialization sequence

The following figure shows a possible initialization sequence for an embedded system based on an Arm
architecture:

C Library User Code

__user_setup_stackheap()
set up application stack
and heap

main()
causes the linker to link
in library initialization
code

$Sub$$main()
enable caches and
interrupts

reset handler
initialize stack pointers
configure MMU/MPU
setup cache/enable TCM

1

2

3

4

5

6

__rt_entry

initialize library functions
call top-level
constructors (C++)

Exit from application

..

. .

.

.

...
__main

copy code and data
copy/decompress RW
data. initialize ZI data to zeros

..
Image
Entry
Point

Figure 7-9 Initialization sequence

If you use a scatter file to tailor stack and heap placement, the linker includes a version of the library
heap and stack setup code using the linker defined symbols, ARM_LIB_*, for these region names.
Alternatively you can create your own implementation.

The reset handler is normally a short module coded in assembler that executes immediately on system
startup. As a minimum, your reset handler initializes stack pointers for the modes that your application is
running in. For processors with local memory systems, such as caches, TCMs, MMUs, and MPUs, some
configuration must be done at this stage in the initialization process. After executing, the reset handler
typically branches to __main to begin the C library initialization sequence.

There are some components of system initialization, for example, the enabling of interrupts, that are
generally performed after the C library initialization code has finished executing. The block of code
labeled $Sub$$main() performs these tasks immediately before the main application begins executing.

Related information
About using $Super$$ and $Sub$$ to patch symbol definitions
Specifying stack and heap using the scatter file

7 Embedded Software Development
7.13 Reset and initialization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-125

Non-Confidential

https://developer.arm.com/docs/100070/0611/accessing-and-managing-symbols-with-armlink/use-of-super-and-sub-to-patch-symbol-definitions
https://developer.arm.com/docs/100070/0611/scatter-loading-features/the-scatter-loading-mechanism/placing-the-stack-and-heap-with-a-scatter-file

7.14 The vector table
All Arm systems have a vector table. It does not form part of the initialization sequence, but it must be
present for an exception to be serviced.

It must be placed at a specific address, usually 0x0. To do this you can use the scatter-loading +FIRST
directive, as shown in the following example.

Placing the vector table at a specific address
ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

The vector table for the microcontroller profiles is very different to most Arm architectures.

Related concepts
7.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 7-135
7.24 Vector table for M-profile architectures on page 7-136
Related information
Information about scatter files
Scatter-loading images with a simple memory map

7 Embedded Software Development
7.14 The vector table

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-126

Non-Confidential

https://developer.arm.com/docs/100070/0611/scatter-loading-features
https://developer.arm.com/docs/100070/0611/scatter-loading-features/the-scatter-loading-mechanism/scatter-loading-images-with-a-simple-memory-map

7.15 ROM and RAM remapping
You must consider what sort of memory your system has at address 0x0, the address of the first
instruction executed.

 Note

This information does not apply to Armv6‑M, Armv7‑M, and Armv8‑M profiles.

 Note

This information assumes that an Arm processor begins fetching instructions at 0x0. This is the standard
behavior for systems based on Arm processors. However, some Arm processors, for example the
processors based on the Armv7‑A architecture, can be configured to begin fetching instructions from
0xFFFF0000.

There has to be a valid instruction at 0x0 at startup, so you must have nonvolatile memory located at 0x0
at the moment of power-on reset. One way to achieve this is to have ROM located at 0x0. However, there
are some drawbacks to this configuration.

Example ROM/RAM remapping

This example shows a solution implementing ROM/RAM remapping after reset. The constants shown
are specific to the Versatile board, but the same method is applicable to any platform that implements
remapping in a similar way. Scatter files must describe the memory map after remapping.

; System memory locations
Versatile_ctl_reg EQU 0x101E0000 ; Address of control register
DEVCHIP_Remap_bit EQU 0x100 ; Bit 8 is remap bit of control register
 ENTRY
; Code execution starts here on reset
; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
 LDR pc, =Instruct_2
Instruct_2
; Remap by setting remap bit of the control register
; Clear the DEVCHIP_Remap_bit by writing 1 to bit 8 of the control register
 LDR R1, =Versatile_ctl_reg
 LDR R0, [R1]
 ORR R0, R0, #DEVCHIP_Remap_bit
 STR R0, [R1]
; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM
; The copying is done later by the C library code inside __main
; Reset_Handler follows on from here

7 Embedded Software Development
7.15 ROM and RAM remapping

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-127

Non-Confidential

7.16 Local memory setup considerations
Many Arm processors have on-chip memory management systems, such as Memory Management Units
(MMU) or Memory Protection Units (MPU). These devices are normally set up and enabled during
system startup.

Therefore, the initialization sequence of processors with local memory systems requires special
consideration.

The C library initialization code in __main is responsible for setting up the execution time memory map
of the image. Therefore, the run-time memory view of the processor must be set up before branching to
__main. This means that any MMU or MPU must be set up and enabled in the reset handler.

Tightly Coupled Memories (TCM) must also be enabled before branching to __main, normally before
MMU/MPU setup, because you generally want to scatter-load code and data into TCMs. You must be
careful that you do not have to access memory that is masked by the TCMs when they are enabled.

You might also encounter problems with cache coherency if caches are enabled before branching to
__main. Code in __main copies code regions from their load address to their execution address,
essentially treating instructions as data. As a result, some instructions can be cached in the data cache, in
which case they are not visible to the instruction path.

To avoid these coherency problems, enable caches after the C library initialization sequence finishes
executing.

Related information
Cortex-A Series Programmer's Guide for Armv8-A
Cortex-A Series Programmer's Guide for Armv7-A
Cortex-R Series Programmer's Guide for Armv7-R

7 Embedded Software Development
7.16 Local memory setup considerations

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-128

Non-Confidential

https://developer.arm.com/docs/den0024/latest
http://infocenter.arm.com/help/topic/com.arm.doc.den0013-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0042-/index.html

7.17 Stack pointer initialization
As a minimum, your reset handler must assign initial values to the stack pointers of any execution modes
that are used by your application.

Example stack pointer initialization

In this example, the stacks are located at stack_base:

; ***
; This example does not apply to Armv6-M and Armv7-M profiles
; ***
Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
stack_base DCD 0x18000
;
Reset_Handler
 ; stack_base could be defined above, or located in a scatter file
 LDR R0, stack_base ;
 ; Enter each mode in turn and set up the stack pointer
 MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
 MOV sp, R0
 SUB R0, R0, #Len_FIQ_Stack
 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
 MOV sp, R0
 SUB R0, R0, #Len_IRQ_Stack
 MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; Interrupts disabled
 MOV sp, R0
 ; Leave processor in SVC mode

The stack_base symbol can be a hard-coded address, or it can be defined in a separate assembler source
file and located by a scatter file.

The example allocates 256 bytes of stack for Fast Interrupt Request (FIQ) and Interrupt Request (IRQ)
mode, but you can do the same for any other execution mode. To set up the stack pointers, enter each
mode with interrupts disabled, and assign the appropriate value to the stack pointer.

The stack pointer value set up in the reset handler is automatically passed as a parameter to
__user_initial_stackheap() by C library initialization code. Therefore, this value must not be
modified by __user_initial_stackheap().

Related information
Specifying stack and heap using the scatter file
Cortex-M3 Embedded Software Development

7 Embedded Software Development
7.17 Stack pointer initialization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-129

Non-Confidential

https://developer.arm.com/docs/100070/0611/scatter-loading-features/the-scatter-loading-mechanism/placing-the-stack-and-heap-with-a-scatter-file
https://developer.arm.com/docs/dai0179/latest/cortex-m3-embedded-software-development

7.18 Hardware initialization
In general, it is beneficial to separate all system initialization code from the main application. However,
some components of system initialization, for example, enabling of caches and interrupts, must occur
after executing C library initialization code.

Use of $Sub and $Super

You can make use of the $Sub and $Super function wrapper symbols to insert a routine that is executed
immediately before entering the main application. This mechanism enables you to extend functions
without altering the source code.

This example shows how $Sub and $Super can be used in this way:

extern void $Super$$main(void);
void $Sub$$main(void)
{
 cache_enable(); // enables caches
 int_enable(); // enables interrupts
 $Super$$main(); // calls original main()
}

The linker replaces the function call to main() with a call to $Sub$$main(). From there you can call a
routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main().

Related information
About using $Super$$ and $Sub$$ to patch symbol definitions

7 Embedded Software Development
7.18 Hardware initialization

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-130

Non-Confidential

https://developer.arm.com/docs/100070/0611/accessing-and-managing-symbols-with-armlink/use-of-super-and-sub-to-patch-symbol-definitions

7.19 Execution mode considerations
You must consider the mode in which the main application is to run. Your choice affects how you
implement system initialization.

 Note

This does not apply to Armv6‑M, Armv7‑M, and Armv8‑M profiles.

Much of the functionality that you are likely to implement at startup, both in the reset handler and Sub
$main, can only be done while executing in privileged modes, for example, on-chip memory
manipulation, and enabling interrupts.

If you want to run your application in a privileged mode, this is not an issue. Ensure that you change to
the appropriate mode before exiting your reset handler.

If you want to run your application in User mode, however, you can only change to User mode after
completing the necessary tasks in a privileged mode. The most likely place to do this is in Sub
$main().

 Note

The C library initialization code must use the same stack as the application. If you need to use a non-
User mode in $Sub$$main and User mode in the application, you must exit your reset handler in System
mode, which uses the User mode stack pointer.

7 Embedded Software Development
7.19 Execution mode considerations

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-131

Non-Confidential

7.20 Target hardware and the memory map
It is better to keep all information about the memory map of a target, including the location of target
hardware peripherals and the stack and heap limits, in your scatter file, rather than hard-coded in source
or header files.

Mapping to a peripheral register

Conventionally, addresses of peripheral registers are hard-coded in project source or header files. You
can also declare structures that map on to peripheral registers, and place these structures in the scatter
file.

For example, if a target has a timer peripheral with two memory mapped 32-bit registers, a C structure
that maps to these registers is:

struct
{
 volatile unsigned ctrl; /* timer control */
 volatile unsigned tmr; /* timer value */
} timer_regs;

 Note

You can also use __attribute__((section(".ARM.__at_address"))) to specify the absolute address
of a variable.

Placing the mapped structure

To place this structure at a specific address in the memory map, you can create an execution region
containing the module that defines the structure. The following example shows an execution region
called TIMER that locates the timer_regs structure at 0x40000000:

ROM_LOAD 0x24000000 0x04000000
{
; ...
 TIMER 0x40000000 UNINIT
 {
 timer_regs.o (+ZI)
 }
 ; ...
}

It is important that the contents of these registers are not zero-initialized during application startup,
because this is likely to change the state of your system. Marking an execution region with the UNINIT
attribute prevents ZI data in that region from being zero-initialized by __main.

Related tasks
6.6 Placing functions and data at specific addresses on page 6-81
Related information
__attribute__((section("name"))) variable attribute

7 Embedded Software Development
7.20 Target hardware and the memory map

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-132

Non-Confidential

https://developer.arm.com/docs/100067/0611/compiler-specific-function-variable-and-type-attributes/__attribute__sectionname-variable-attribute

7.21 Execute-only memory
Execute-only memory (XOM) allows only instruction fetches. Read and write accesses are not allowed.

Execute-only memory allows you to protect your intellectual property by preventing executable code
being read by users. For example, you can place firmware in execute-only memory and load user code
and drivers separately. Placing the firmware in execute-only memory prevents users from trivially
reading the code.

 Note

The Arm architecture does not directly support execute-only memory. Execute-only memory is supported
at the memory device level.

Related tasks
7.22 Building applications for execute-only memory on page 7-134

7 Embedded Software Development
7.21 Execute-only memory

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-133

Non-Confidential

7.22 Building applications for execute-only memory
Placing code in execute-only memory prevents users from trivially reading that code.

 Note

Link Time Optimization does not honor the armclang -mexecute-only option. If you use the armclang
-flto or -Omax options, then the compiler cannot generate execute-only code and produces a warning.

To build an application with code in execute-only memory:

Procedure
1. Compile your C or C++ code using the -mexecute-only option.

Example: armclang --target=arm-arm-none-eabi -march=armv7-m -mexecute-only -c
test.c -o test.o

The -mexecute-only option prevents the compiler from generating any data accesses to the code
sections.

To keep code and data in separate sections, the compiler disables the placement of literal pools inline
with code.

Compiled execute-only code sections in the ELF object file are marked with the SHF_ARM_NOREAD
flag.

2. Specify the memory map to the linker using either of the following:
• The +XO selector in a scatter file.
• The armlink --xo-base option on the command-line.

Example: armlink --xo-base=0x8000 test.o -o test.axf
Results:
The XO execution region is placed in a separate load region from the RO, RW, and ZI execution
regions.

 Note

If you do not specify --xo-base, then by default:
• The XO execution region is placed immediately before the RO execution region, at address

0x8000.
• All execution regions are in the same load region.

Related concepts
7.21 Execute-only memory on page 7-133
Related information
-mexecute-only compiler option
--execute_only assembler option
--xo_base=address linker option
AREA

7 Embedded Software Development
7.22 Building applications for execute-only memory

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-134

Non-Confidential

https://developer.arm.com/docs/100067/0611/armclang-command-line-options/-mexecute-only
https://developer.arm.com/docs/100069/0611/armasm-command-line-options/-execute_only
https://developer.arm.com/docs/100070/0611/linker-command-line-options/-xo_baseaddress
https://developer.arm.com/docs/100069/0611/directives-reference/area

7.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
The vector table for Armv6 and earlier, Armv7‑A and Armv7‑R profiles consists of branch or load PC
instructions to the relevant handlers.

If required, you can include the FIQ handler at the end of the vector table to ensure it is handled as
efficiently as possible, see the following example. Using a literal pool means that addresses can easily be
modified later if necessary.

Typical vector table using a literal pool
 AREA vectors, CODE, READONLY
 ENTRY
Vector_Table
 LDR pc, Reset_Addr
 LDR pc, Undefined_Addr
 LDR pc, SVC_Addr
 LDR pc, Prefetch_Addr
 LDR pc, Abort_Addr
 NOP ;Reserved vector
 LDR pc, IRQ_Addr
FIQ_Handler
 ; FIQ handler code - max 4kB in size
Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
IRQ_Addr DCD IRQ_Handler
 ...
 END

This example assumes that you have ROM at location 0x0 on reset. Alternatively, you can use the
scatter-loading mechanism to define the load and execution address of the vector table. In that case, the C
library copies the vector table for you.

 Note

The vector table for Armv6 and earlier architectures supports A32 instructions only. Armv6T2 and later
architectures support both T32 instructions and A32 instructions in the vector table. This does not apply
to the Armv6‑M, Armv7‑M, and Armv8‑M profiles.

7 Embedded Software Development
7.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-135

Non-Confidential

7.24 Vector table for M-profile architectures
The vector table for the microcontroller profiles consists of addresses to the relevant handlers.

The handler for exception number n is held at (vectorbaseaddress + 4 * n).

In Armv7‑M and Armv8‑M processors you can specify the vectorbaseaddress in the Vector Table
Offset Register (VTOR) to relocate the vector table. The default location on reset is 0x0 (CODE space).
For Armv6‑M, the vector table base address is fixed at 0x0. The word at vectorbaseaddress holds the
reset value of the main stack pointer.

 Note

The least significant bit, bit[0] of each address in the vector table must be set or a HardFault exception is
generated. Arm Compiler toolchain normally enables this for you if T32 symbol names are used in the
table.

7 Embedded Software Development
7.24 Vector table for M-profile architectures

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-136

Non-Confidential

7.25 Vector Table Offset Register
In Armv7‑M and Armv8‑M, the Vector Table Offset Register locates the vector table in CODE, RAM, or
SRAM space.

When setting a different location, the offset, in bytes, must be aligned to:

• a power of 2.
• a minimum of 128 bytes.
• a minimum of 4*N, where N is the number of exceptions supported.

The minimal alignment is 128 bytes, which allows for 32 exceptions. 16 registers are reserved for system
exceptions, and therefore, you can use for up to 16 interrupts.

To use more interrupts, you must adjust the alignment by rounding up to the next power of two. For
example, if you require 21 interrupts, then the total number of exceptions is 37 (21 plus 16 reserved
system exceptions). The alignment must be on a 64-word boundary because the next power of 2 after 37
is 64.

 Note

Implementations might restrict where the vector table can be located. For example, in Cortex-M3 r0p0 to
r2p0, the vector table cannot be in RAM space.

7 Embedded Software Development
7.25 Vector Table Offset Register

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

7-137

Non-Confidential

Appendix A
Supporting reference information

The various features in Arm Compiler might have different levels of support, ranging from fully
supported product features to community features.

It contains the following sections:
• A.1 Support level definitions on page Appx-A-139.
• A.2 Standards compliance in Arm® Compiler on page Appx-A-143.
• A.3 Compliance with the ABI for the Arm® Architecture (Base Standard) on page Appx-A-144.
• A.4 GCC compatibility provided by Arm® Compiler 6 on page Appx-A-146.
• A.5 Locale support in Arm® Compiler on page Appx-A-147.
• A.6 Toolchain environment variables on page Appx-A-148.
• A.7 Clang and LLVM documentation on page Appx-A-150.
• A.8 Further reading on page Appx-A-151.

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-138

Non-Confidential

A.1 Support level definitions
This describes the levels of support for various Arm Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore it has more functionality than the set
of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and endeavors to support
users to a level that is appropriate for that feature. You can contact support at https://developer.arm.com/
support.

Identification in the documentation

All features that are documented in the Arm Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• Arm endeavors to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, Arm provides full support for use of all product

features.
• Arm welcomes feedback on product features.
• Any issues with product features that Arm encounters or is made aware of are considered for fixing in

future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.

Beta product features are indicated with [BETA].
• Arm endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of Arm Compiler 6.
• Arm encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are indicated with [ALPHA].
• Arm endeavors to document known limitations of alpha product features.
• Arm encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Community features

Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in Arm Compiler that are not listed in the
documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

A Supporting reference information
A.1 Support level definitions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-139

Non-Confidential

https://developer.arm.com/support
https://developer.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• Arm makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• Arm makes no guarantees that community features will remain functional across update releases,

although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no roadmap
for this. Arm is interested in understanding your use of these features, and welcomes feedback on them.
Arm supports customers using these features on a best-effort basis, unless the features are unsupported.
Arm accepts defect reports on these features, but does not guarantee that these issues will be fixed in
future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the Arm Compiler 6 toolchain:

A Supporting reference information
A.1 Support level definitions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-140

Non-Confidential

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

armasm syntax
assembly

C/C++
Source code

C/C++
Source code

GNU syntax
Assembly

GNU syntax
Assembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure A-1 Integration boundaries in Arm Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by Arm Compiler 6. See Application Binary Interface (ABI) for the Arm®

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support

A Supporting reference information
A.1 Support level definitions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-141

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive list of
unsupported features or use-cases for community features. The known limitations on community features
are listed in Community features on page Appx-A-139.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• C++ static initialization of local variables is not thread-safe when linked against the standard C++

libraries. For thread-safety, you must provide your own implementation of thread-safe functions as
described in Standard C++ library implementation definition.

 Note

This restriction does not apply to the [ALPHA]-supported multithreaded C++ libraries.

• Use of C11 library features is unsupported.
• Any community feature that exclusively pertains to non-Arm architectures is not supported.
• Compilation for targets that implement architectures older than Armv7 or Armv6‑M is not supported.
• The long double data type is not supported for AArch64 state because of limitations in the current

Arm C library.
• Complex numbers are not supported because of limitations in the current Arm C library.

A Supporting reference information
A.1 Support level definitions

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-142

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/iso-c-library-implementation-definition/standard-c-library-implementation-definition

A.2 Standards compliance in Arm® Compiler
Arm Compiler conforms to the ISO C, ISO C++, ELF, and DWARF standards.

The level of compliance for each standard is:

ar
armar produces, and armlink consumes, UNIX-style object code archives. armar can list and
extract most ar-format object code archives, and armlink can use an ar-format archive created
by another archive utility providing it contains a symbol table member.

DWARF

The compiler generates DWARF 4 (DWARF Debugging Standard Version 4) debug tables with
the -g option. The compiler can also generate DWARF 3 or DWARF 2 for backwards
compatibility with legacy and third-party tools.

The linker and the fromelf utility can consume ELF format inputs containing DWARF 4,
DWARF 3, and DWARF 2 format debug tables.

The legacy assembler armasm generates DWARF 3 debug tables with the --debug option. When
assembling for AArch32, armasm can also generate DWARF 2 for backwards compatibility with
legacy and third-party tools.

ISO C
The compiler accepts ISO C90, C99, and C11 source as input.

ISO C++
The compiler accepts ISO C++98 and C++11 source as input.

ELF
The toolchain produces relocatable and executable files in ELF format. The fromelf utility can
translate ELF files into other formats.

A Supporting reference information
A.2 Standards compliance in Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-143

Non-Confidential

A.3 Compliance with the ABI for the Arm® Architecture (Base Standard)
The ABI for the Arm Architecture (Base Standard) is a collection of standards. Some of these standards
are open. Some are specific to the Arm architecture.

The Application Binary Interface (ABI) for the Arm® Architecture (Base Standard) (BSABI) regulates the
inter-operation of binary code and development tools in Arm architecture-based execution environments,
ranging from bare metal to major operating systems such as Arm Linux.

By conforming to this standard, objects produced by the toolchain can work together with object libraries
from different producers.

The BSABI consists of a family of specifications including:

AADWARF64
DWARF for the Arm® 64-bit Architecture (AArch64). This ABI uses the DWARF 3 standard to
govern the exchange of debugging data between object producers and debuggers. It also gives
additional rules on how to use DWARF 3, and how it is extended in ways specific to the 64-bit
Arm architecture.

AADWARF
DWARF for the Arm® Architecture. This ABI uses the DWARF 3 standard to govern the
exchange of debugging data between object producers and debuggers.

AAELF64
ELF for the Arm® 64-bit Architecture (AArch64). This specification provides the processor-
specific definitions required by ELF for AArch64-based systems. It builds on the generic ELF
standard to govern the exchange of linkable and executable files between producers and
consumers.

AAELF
ELF for the Arm® Architecture. Builds on the generic ELF standard to govern the exchange of
linkable and executable files between producers and consumers.

AAPCS64

Procedure Call Standard for the Arm® 64-bit Architecture (AArch64). Governs the exchange of
control and data between functions at runtime. There is a variant of the AAPCS for each of the
major execution environment types supported by the toolchain.

AAPCS64 describes a number of different supported data models. Arm Compiler 6 implements
the LP64 data model for AArch64 state.

AAPCS
Procedure Call Standard for the Arm® Architecture. Governs the exchange of control and data
between functions at runtime. There is a variant of the AAPCS for each of the major execution
environment types supported by the toolchain.

BPABI
Base Platform ABI for the Arm® Architecture. Governs the format and content of executable and
shared object files generated by static linkers. Supports platform-specific executable files using
post linking. Provides a base standard for deriving a platform ABI.

CLIBABI
C Library ABI for the Arm® Architecture. Defines an ABI to the C library.

CPPABI64
C++ ABI for the Arm® Architecture. This specification builds on the generic C++ ABI
(originally developed for IA-64) to govern interworking between independent C++ compilers.

DBGOVL
Support for Debugging Overlaid Programs. Defines an extension to the ABI for the Arm
Architecture to support debugging overlaid programs.

A Supporting reference information
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard)

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-144

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0057-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0040-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0039-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0059-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

EHABI
Exception Handling ABI for the Arm® Architecture. Defines both the language-independent and
C++-specific aspects of how exceptions are thrown and handled.

RTABI
Run-time ABI for the Arm® Architecture. Governs what independently produced objects can
assume of their execution environments by way of floating-point and compiler helper-function
support.

If you are upgrading from a previous toolchain release, ensure that you are using the most recent versions
of the Arm specifications.

A Supporting reference information
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard)

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-145

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0043-/index.html

A.4 GCC compatibility provided by Arm® Compiler 6
The compiler in Arm Compiler 6 is based on Clang and LLVM technology. As such, it provides a high
degree of compatibility with GCC.

Arm Compiler 6 can build the vast majority of C code that is written to be built with GCC. However,
Arm Compiler is not 100% source compatible in all cases. Specifically, Arm Compiler does not aim to be
bug-compatible with GCC. That is, Arm Compiler does not replicate GCC bugs.

A Supporting reference information
A.4 GCC compatibility provided by Arm® Compiler 6

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-146

Non-Confidential

A.5 Locale support in Arm® Compiler
Summarizes the locales supported by Arm Compiler.

Arm Compiler 6 provides full support only for the English locale.

Arm Compiler 6 provides support for multibyte characters, for example Japanese characters, within
comments in UTF-8 encoded files. This includes:
• /* */ comments in C source files, C++ source files, and GNU-syntax assembly files.
• // comments in C source files, C++ source files, and GNU-syntax assembly files.
• @ comments in GNU-syntax assembly files, for Arm architectures.
• ; comments in armasm-syntax assembly source files and armlink scatter files.

 Note

There is no support for Shift-Japanese Industrial Standard (Shift-JIS) encoded files.

A Supporting reference information
A.5 Locale support in Arm® Compiler

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-147

Non-Confidential

A.6 Toolchain environment variables
Except for ARMLMD_LICENSE_FILE, Arm Compiler does not require any other environment variables to
be set. However, there are situations where you might want to set environment variables.

The environment variables used by the toolchain are described in the following table.

Where an environment variable is identified as GCC compatible, the GCC documentation provides full
information about that environment variable. See Environment Variables Affecting GCC on the GCC web
site.

To set an environment variable on a Windows machine:
1. Open the System settings from the Control Panel.
2. Click Advanced system settings to display the System Properties dialog box, then click

Environment Variables....
3. Create a new user variable for the required environment variable.

To set an environment variable on a Linux machine, using a bash shell, use the export command on the
command-line. For example:

export ARM_TOOL_VARIANT=ult

Table A-1 Environment variables used by the toolchain

Environment variable Setting

ARM_PRODUCT_PATH Required only if you have an Arm DS-5 Development Studio toolkit license and you are running the
Arm Compiler tools outside of the DS-5 Development Studio environment.

Use this environment variable to specify the location of the sw/mappings directory within an Arm
Compiler or DS-5 Development Studio installation.

ARM_TOOL_VARIANT Required only if you have a DS-5 Development Studio toolkit license and you are running the Arm
Compiler tools outside of the DS-5 Development Studio environment.

If you have an ultimate license, set this environment variable to ult to enable the Ultimate features.
See Product and toolkit configuration for more information.

ARM_PRODUCT_DEF Required only if you have an Arm Development Studio toolkit license and you are running the Arm
Compiler tools outside of the Arm Development Studio environment.

Use this environment variable to specify the location of the product definition file.

ARMCOMPILER6_ASMOPT An optional environment variable to define additional assembler options that are to be used outside
your regular makefile.

The options listed appear before any options specified for the armasm command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

ARMCOMPILER6_CLANGOPT An optional environment variable to define additional armclang options that are to be used outside
your regular makefile.

The options listed appear before any options specified for the armclang command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

A Supporting reference information
A.6 Toolchain environment variables

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-148

Non-Confidential

https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html
https://gcc.gnu.org
https://gcc.gnu.org
https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration

Table A-1 Environment variables used by the toolchain (continued)

Environment variable Setting

ARMCOMPILER6_FROMELFOPT An optional environment variable to define additional fromelf image converter options that are to
be used outside your regular makefile.

The options listed appear before any options specified for the fromelf command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

ARMCOMPILER6_LINKOPT An optional environment variable to define additional linker options that are to be used outside your
regular makefile.

The options listed appear before any options specified for the armlink command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

ARMROOT Your installation directory root, install_directory.

ARMLMD_LICENSE_FILE This environment variable must be set, and specifies the location of your Arm license file. See the
Arm® DS-5 License Management Guide for information on this environment variable.

 Note

On Windows, the length of ARMLMD_LICENSE_FILE must not exceed 260 characters.

C_INCLUDE_PATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find included C files.

COMPILER_PATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find subprograms.

CPATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find included files regardless of the source language.

CPLUS_INCLUDE_PATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find included C++ files.

TMP Used on Windows platforms to specify the directory to be used for temporary files.

TMPDIR Used on Red Hat Linux platforms to specify the directory to be used for temporary files.

Related information
Product and toolkit configuration

A Supporting reference information
A.6 Toolchain environment variables

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-149

Non-Confidential

https://developer.arm.com/docs/dui0577/latest
https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration

A.7 Clang and LLVM documentation
Arm Compiler is based on Clang and LLVM compiler technology.

The Arm Compiler documentation describes features that are specific to, and supported by, Arm
Compiler. Any features specific to Arm Compiler that are not documented are not supported and are
used at your own risk. Although open-source Clang features are available, they are not supported by Arm
and are used at your own risk. You are responsible for making sure that any generated code using
unsupported features is operating correctly.

The Clang Compiler User's Manual, available from the LLVM Compiler Infrastructure Project web site
http://clang.llvm.org, provides open-source documentation for Clang.

A Supporting reference information
A.7 Clang and LLVM documentation

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-150

Non-Confidential

http://clang.llvm.org/docs/UsersManual.html
http://llvm.org

A.8 Further reading
Additional information on developing code for the Arm family of processors is available from both Arm
and third parties.

Arm® publications

Arm periodically provides updates and corrections to its documentation. See Arm® Infocenter for current
errata sheets and addenda, and the Arm Frequently Asked Questions (FAQs).

For full information about the base standard, software interfaces, and standards supported by Arm, see
Application Binary Interface (ABI) for the Arm® Architecture.

In addition, see the following documentation for specific information relating to Arm products:
• Arm® Architecture Reference Manuals.
• Cortex®‑A series processors.
• Cortex®‑R series processors.
• Cortex®‑M series processors.

Other publications

This Arm Compiler tools documentation is not intended to be an introduction to the C or C++
programming languages. It does not try to teach programming in C or C++, and it is not a reference
manual for the C or C++ standards. Other publications provide general information about programming.

The following publications describe the C++ language:

• ISO/IEC 14882:2014, C++ Standard.
• Stroustrup, B., The C++ Programming Language (4th edition, 2013). Addison-Wesley Publishing

Company, Reading, Massachusetts. ISBN 978-0321563842.

The following publications provide general C++ programming information:

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use today.
• Vandevoorde, D and Josuttis, N.M. C++ Templates: The Complete Guide (2003). Addison-Wesley

Publishing Company, Reading, Massachusetts. ISBN 0-201-73484-2.
• Meyers, S., Effective C++ (3rd edition, 2005). Addison-Wesley Publishing Company, Reading,

Massachusetts. ISBN 978-0321334879.

This provides short, specific guidelines for effective C++ development.
• Meyers, S., More Effective C++ (2nd edition, 1997). Addison-Wesley Publishing Company, Reading,

Massachusetts. ISBN 0-201-92488-9.

The following publications provide general C programming information:
• ISO/IEC 9899:2011, C Standard.

The standard is available from national standards bodies (for example, AFNOR in France, ANSI in
the USA).

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-
Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This book is co-authored by the original designer and implementer of the C language, and is updated
to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (5th edition, 2002). Prentice-Hall, Englewood
Cliffs, NJ, USA. ISBN 0-13-089592-X.

This is a very thorough reference guide to C, including useful information on ANSI C.
• Plauger, P., The Standard C Library (1991). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN

0-13-131509-9.

A Supporting reference information
A.8 Further reading

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-151

Non-Confidential

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexa/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexm/index.html

This is a comprehensive treatment of ANSI and ISO standards for the C Library.
• Koenig, A., C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN 0-201-17928-8.

This explains how to avoid the most common traps in C programming. It provides informative
reading at all levels of competence in C.

See The DWARF Debugging Standard web site for the latest information about the Debug With Arbitrary
Record Format (DWARF) debug table standards and ELF specifications.

A Supporting reference information
A.8 Further reading

100748_0611_00_en Copyright © 2016–2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-152

Non-Confidential

http://www.dwarfstd.org

	Arm® Compiler User Guide
	Table of Contents
	List of Figures
	List of Figures
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Getting Started
	1.1 : Introduction to Arm® Compiler 6
	1.2 : Installing Arm® Compiler
	1.3 : Accessing Arm® Compiler from Arm® Development Studio or Arm® DS-5 Development Studio
	1.4 : Accessing Arm® Compiler from the Arm® Keil® µVision® IDE
	1.5 : Compiling a Hello World example
	1.6 : Using the integrated assembler
	1.7 : Running bare-metal images
	1.8 : Architectures supported by Arm® Compiler

	2 : Using Common Compiler Options
	2.1 : Mandatory armclang options
	2.2 : Selecting source language options
	2.3 : Selecting optimization options
	2.4 : Building to aid debugging
	2.5 : Linker options for mapping code and data to target memory
	2.6 : Controlling diagnostic messages
	2.7 : Selecting floating-point options
	2.8 : Compilation tools command-line option rules

	3 : Writing Optimized Code
	3.1 : Optimizing loops
	3.2 : Inlining functions
	3.3 : Examining stack usage
	3.4 : Packing data structures

	4 : Optimization Techniques
	4.1 : Optimizing for code size or performance
	4.2 : Optimizing across modules with link time optimization
	4.2.1 : Enabling link time optimization
	4.2.2 : Restrictions with link time optimization
	4.2.3 : Removing unused code across multiple object files

	4.3 : How optimization affects the debug experience

	5 : Using Assembly and Intrinsics in C or C++ Code
	5.1 : Using intrinsics
	5.2 : Writing inline assembly code
	5.3 : Calling assembly functions from C and C++

	6 : Mapping Code and Data to the Target
	6.1 : What the linker does to create an image
	6.1.1 : What you can control with a scatter file

	6.2 : Placing data items for target peripherals with a scatter file
	6.3 : Placing the stack and heap with a scatter file
	6.4 : Root region
	6.4.1 : Effect of the ABSOLUTE attribute on a root region
	6.4.2 : Effect of the FIXED attribute on a root region

	6.5 : Placing functions and data in a named section
	6.6 : Placing functions and data at specific addresses
	6.6.1 : Placing __at sections at a specific address
	6.6.2 : Restrictions on placing __at sections
	6.6.3 : Automatically placing __at sections
	6.6.4 : Manually placing __at sections
	6.6.5 : Placing a key in flash memory with an __at section
	6.6.6 : Placing constants at fixed locations
	6.6.7 : Placing jump tables in ROM
	6.6.8 : Placing a variable at a specific address without scatter-loading
	6.6.9 : Placing a variable at a specific address with scatter-loading

	6.7 : Placement of Arm® C and C++ library code
	6.7.1 : Placing code in a root region
	6.7.2 : Placing Arm® C library code
	6.7.3 : Placing Arm® C++ library code

	6.8 : Placement of unassigned sections
	6.8.1 : Default rules for placing unassigned sections
	6.8.2 : Command-line options for controlling the placement of unassigned sections
	6.8.3 : Prioritizing the placement of unassigned sections
	6.8.4 : Specify the maximum region size permitted for placing unassigned sections
	6.8.5 : Examples of using placement algorithms for .ANY sections
	6.8.6 : Example of next_fit algorithm showing behavior of full regions, selectors, and priority
	6.8.7 : Examples of using sorting algorithms for .ANY sections
	6.8.8 : Behavior when .ANY sections overflow because of linker-generated content

	6.9 : Placing veneers with a scatter file
	6.10 : Preprocessing a scatter file
	6.10.1 : Default behavior for armclang -E in a scatter file
	6.10.2 : Using other preprocessors in a scatter file

	6.11 : Reserving an empty block of memory
	6.11.1 : Characteristics of a reserved empty block of memory
	6.11.2 : Example of reserving an empty block of memory

	6.12 : Aligning regions to page boundaries
	6.13 : Aligning execution regions and input sections

	7 : Embedded Software Development
	7.1 : About embedded software development
	7.2 : Default compilation tool behavior
	7.3 : C library structure
	7.4 : Default memory map
	7.5 : Application startup
	7.6 : Tailoring the C library to your target hardware
	7.7 : Reimplementing C library functions
	7.8 : Tailoring the image memory map to your target hardware
	7.9 : About the scatter-loading description syntax
	7.10 : Root regions
	7.11 : Placing the stack and heap
	7.12 : Run-time memory models
	7.13 : Reset and initialization
	7.14 : The vector table
	7.15 : ROM and RAM remapping
	7.16 : Local memory setup considerations
	7.17 : Stack pointer initialization
	7.18 : Hardware initialization
	7.19 : Execution mode considerations
	7.20 : Target hardware and the memory map
	7.21 : Execute-only memory
	7.22 : Building applications for execute-only memory
	7.23 : Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
	7.24 : Vector table for M-profile architectures
	7.25 : Vector Table Offset Register

	A : Supporting reference information
	A.1 : Support level definitions
	A.2 : Standards compliance in Arm® Compiler
	A.3 : Compliance with the ABI for the Arm® Architecture (Base Standard)
	A.4 : GCC compatibility provided by Arm® Compiler 6
	A.5 : Locale support in Arm® Compiler
	A.6 : Toolchain environment variables
	A.7 : Clang and LLVM documentation
	A.8 : Further reading

