
Arm® Mali™ Midgard OpenCL
Version 3.13

Developer Guide

Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All rights reserved.
100614_0313_00_en

Arm® Mali™ Midgard OpenCL
Developer Guide
Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 12 July 2012 Confidential First release

D 07 November 2012 Confidential Second release

E 27 February 2013 Non-Confidential Third release

F 03 December 2013 Non-Confidential Fourth release

G 13 May 2015 Non-Confidential First release for r6p0

H 10 August 2015 Non-Confidential First release for r7p0

I 01 October 2015 Non-Confidential First release for r8p0

0900-00 03 December 2015 Non-Confidential First release for r9p0

1000-00 21 January 2016 Non-Confidential First release for r10p0

1100-00 24 March 2016 Non-Confidential First release for r11p0

0300-00 21 April 2016 Non-Confidential Changed to version 3.0

0301-00 13 May 2016 Non-Confidential First release of version 3.1

0302-00 12 July 2016 Non-Confidential First release of version 3.2

0303-00 22 February 2017 Non-Confidential First release of version 3.3

0304-00 07 June 2017 Non-Confidential First release of version 3.4

0305-00 24 August 2017 Non-Confidential First release of version 3.5

0306-00 12 December 2017 Non-Confidential First release of version 3.6

0307-00 28 February 2018 Non-Confidential First release of version 3.7

0308-00 27 March 2018 Non-Confidential First release of version 3.8

0309-00 09 May 2018 Non-Confidential First release of version 3.9

0310-00 17 July 2018 Non-Confidential First release of version
3.10

0311-00 28 November 2018 Non-Confidential First release of version
3.11

0312-00 15 February 2019 Non-Confidential First release of version
3.12

0313-00 18 October 2019 Non-Confidential First release of version
3.13

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

 Arm® Mali™ Midgard OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2

Non-Confidential

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2012, 2013, 2015–2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Arm® Mali™ Midgard OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://www.arm.com

Contents
Arm® Mali™ Midgard OpenCL Developer Guide

Preface
About this book 8
Feedback 11

Chapter 1 Introduction
1.1 About Arm® Mali™ GPUs 1-13
1.2 About OpenCL 1-14
1.3 About the Mali GPU OpenCL driver and support 1-15

Chapter 2 Parallel processing concepts
2.1 About parallel processing 2-17
2.2 Types of parallelism 2-18
2.3 Mixing different types of parallelism 2-20
2.4 Embarrassingly parallel applications 2-21
2.5 Limitations of parallel processing and Amdahl's law 2-22
2.6 Concurrency 2-23

Chapter 3 OpenCL concepts
3.1 Using OpenCL 3-25
3.2 OpenCL applications 3-26
3.3 OpenCL execution model .. 3-27
3.4 OpenCL data processing 3-28
3.5 OpenCL work-groups 3-29
3.6 OpenCL identifiers 3-30

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

4

Non-Confidential

3.7 OpenCL memory model 3-31
3.8 Mali™ GPU OpenCL memory model 3-33
3.9 OpenCL concepts summary .. 3-34

Chapter 4 Developing an OpenCL application
4.1 Software and hardware requirements for Mali™ GPU OpenCL development 4-36
4.2 Development stages for OpenCL 4-37

Chapter 5 Execution stages of an OpenCL application
5.1 About the execution stages 5-39
5.2 Finding the available compute devices .. 5-41
5.3 Initializing and creating OpenCL contexts 5-42
5.4 Creating a command queue 5-43
5.5 Creating OpenCL program objects .. 5-44
5.6 Building a program executable .. 5-45
5.7 Creating kernel and memory objects 5-46
5.8 Executing the kernel .. 5-47
5.9 Reading the results .. 5-49
5.10 Cleaning up unused objects 5-50

Chapter 6 Converting existing code to OpenCL
6.1 Profiling your application 6-52
6.2 Analyzing code for parallelization .. 6-53
6.3 Parallel processing techniques in OpenCL .. 6-56
6.4 Using parallel processing with non-parallelizable code 6-60
6.5 Dividing data for OpenCL 6-61

Chapter 7 Retuning existing OpenCL code
7.1 About retuning existing OpenCL code for Mali™ GPUs .. 7-64
7.2 Differences between desktop-based architectures and Mali™ GPUs 7-65
7.3 Retuning existing OpenCL code for Mali™ GPUs 7-67

Chapter 8 Optimizing OpenCL for Mali™ GPUs
8.1 The optimization process for OpenCL applications 8-70
8.2 Load balancing between control threads and OpenCL threads 8-71
8.3 Optimizing memory allocation 8-72

Chapter 9 OpenCL optimizations list
9.1 General optimizations .. 9-76
9.2 Kernel optimizations 9-78
9.3 Code optimizations .. 9-81
9.4 Execution optimizations 9-83
9.5 Reducing the effect of serial computations .. 9-84
9.6 Mali™ Midgard GPU specific optimizations 9-85

Chapter 10 Kernel auto-vectorizer and unroller
10.1 About the kernel auto-vectorizer and unroller .. 10-87
10.2 Kernel auto-vectorizer options 10-88
10.3 Kernel unroller options 10-89
10.4 The dimension interchange transformation 10-90

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5

Non-Confidential

Appendix A OpenCL data types
A.1 About OpenCL data types Appx-A-92
A.2 OpenCL data type lists Appx-A-93

Appendix B OpenCL built-in functions
B.1 Work-item functions Appx-B-97
B.2 Math functions Appx-B-98
B.3 half_ and native_ math functions Appx-B-100
B.4 Integer functions Appx-B-101
B.5 Common functions Appx-B-102
B.6 Geometric functions Appx-B-103
B.7 Relational functions Appx-B-104
B.8 Vector data load and store functions Appx-B-105
B.9 Synchronization functions .. Appx-B-106
B.10 Asynchronous copy functions .. Appx-B-107
B.11 Atomic functions Appx-B-108
B.12 Miscellaneous vector functions .. Appx-B-109
B.13 Image read and write functions .. Appx-B-110

Appendix C OpenCL extensions
C.1 OpenCL extensions supported by the Mali™ GPU OpenCL driver Appx-C-112

Appendix D Using OpenCL extensions
D.1 Inter-operation with EGL .. Appx-D-114
D.2 The cl_arm_printf extension Appx-D-118
D.3 The cl_arm_import_memory extensions Appx-D-120

Appendix E OpenCL 1.2
E.1 OpenCL 1.2 compiler options Appx-E-122
E.2 OpenCL 1.2 compiler parameters .. Appx-E-123
E.3 OpenCL 1.2 functions .. Appx-E-124
E.4 Functions deprecated in OpenCL 1.2 .. Appx-E-125

Appendix F Revisions
F.1 Revisions Appx-F-127

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6

Non-Confidential

Preface

This preface introduces the Arm® Mali™ Midgard OpenCL Developer Guide.

It contains the following:
• About this book on page 8.
• Feedback on page 11.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7

Non-Confidential

 About this book
This book describes software development and optimization for OpenCL on Mali™ Midgard GPUs.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This guide is written for software developers with experience in C or C-like languages who want to
develop OpenCL on Mali™ Midgard GPUs.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces Mali GPUs, OpenCL, and the Mali GPU OpenCL driver.

Chapter 2 Parallel processing concepts
This chapter describes the main concepts of parallel processing.

Chapter 3 OpenCL concepts
This chapter describes the OpenCL concepts.

Chapter 4 Developing an OpenCL application
This chapter describes the development stages of an OpenCL application.

Chapter 5 Execution stages of an OpenCL application
This chapter describes the execution stages of an OpenCL application.

Chapter 6 Converting existing code to OpenCL
This chapter describes converting existing code to OpenCL.

Chapter 7 Retuning existing OpenCL code
This chapter describes how to retune existing OpenCL code so you can run it on Mali GPUs.

Chapter 8 Optimizing OpenCL for Mali™ GPUs
This chapter describes the procedure to optimize OpenCL applications for Mali GPUs.

Chapter 9 OpenCL optimizations list
This chapter lists several optimizations to use when writing OpenCL code for Mali GPUs.

Chapter 10 Kernel auto-vectorizer and unroller
This chapter describes the kernel auto-vectorizer and unroller.

Appendix A OpenCL data types
This appendix describes OpenCL data types.

Appendix B OpenCL built-in functions
This appendix lists the OpenCL built-in functions.

Appendix C OpenCL extensions
This appendix describes the OpenCL extensions that the Mali GPU OpenCL driver supports.

Appendix D Using OpenCL extensions
This appendix provides usage notes on specific OpenCL extensions.

 Preface
 About this book

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8

Non-Confidential

Appendix E OpenCL 1.2
This appendix describes some of the important changes to the Mali OpenCL driver in OpenCL
1.2.

Appendix F Revisions
This appendix contains a list of technical changes made between releases and where they are
documented in this guide.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• Customers developing OpenCL on an Android platform, see Arm® Mali™ RenderScript Best

Pratices Developer Guide (ARM 101144).
• Arm® Mali™ Bifrost OpenCL Developer Guide (ARM 101574)

See http://Developer.arm.com, for access to Arm documentation

 Preface
 About this book

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
http://Developer.arm.com

Other publications

OpenCL 1.2 Specification, www.khronos.org

 Preface
 About this book

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

10

Non-Confidential

http://www.khronos.org

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Mali Midgard OpenCL Developer Guide.
• The number 100614_0313_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

11

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter introduces Mali GPUs, OpenCL, and the Mali GPU OpenCL driver.

It contains the following sections:
• 1.1 About Arm® Mali™ GPUs on page 1-13.
• 1.2 About OpenCL on page 1-14.
• 1.3 About the Mali GPU OpenCL driver and support on page 1-15.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

1-12

Non-Confidential

1.1 About Arm® Mali™ GPUs
Arm produces families of Mali GPUs. Midgard is one of the Mali GPU architectures.

Mali GPUs run data processing tasks in parallel that contain relatively little control code. Mali GPUs
typically contain many more processing units than application processors. This enables Mali GPUs to
compute at a higher rate than application processors without using more power.

Mali GPUs can have one or more shader cores. Each shader core contains one or more arithmetic pipes.

The arithmetic pipes in Mali Midgard GPUs are based on a Single Instruction Multiple Data (SIMD)
style vectorization so instructions operate on multiple data elements simultaneously. You must explicitly
vectorize your shader code for this to work.

1 Introduction
1.1 About Arm® Mali™ GPUs

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

1-13

Non-Confidential

1.2 About OpenCL
Open Computing Language (OpenCL) is an open standard that enables you to use the parallel processing
capabilities of multiple types of processors including application processors, Graphics Processing Units
(GPUs), and other computing devices.

OpenCL makes parallel applications easier to write, because it enables the execution of your application
across multiple application processors and GPUs.

OpenCL is an open standard developed by the Khronos Group.

Related information
http://www.khronos.org

1 Introduction
1.2 About OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

1-14

Non-Confidential

http://www.khronos.org

1.3 About the Mali GPU OpenCL driver and support
The Mali GPU OpenCL driver is an implementation of OpenCL for Mali GPUs. The Mali GPU OpenCL
driver supports different versions of OpenCL.

The Mali Midgard driver supports OpenCL version 1.2, Full Profile.

The driver is binary-compatible with OpenCL 1.0, OpenCL 1.1, and OpenCL 1.2 applications. The
driver is also compatible with the APIs deprecated in OpenCL 1.2.

1 Introduction
1.3 About the Mali GPU OpenCL driver and support

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

1-15

Non-Confidential

Chapter 2
Parallel processing concepts

This chapter describes the main concepts of parallel processing.

It contains the following sections:
• 2.1 About parallel processing on page 2-17.
• 2.2 Types of parallelism on page 2-18.
• 2.3 Mixing different types of parallelism on page 2-20.
• 2.4 Embarrassingly parallel applications on page 2-21.
• 2.5 Limitations of parallel processing and Amdahl's law on page 2-22.
• 2.6 Concurrency on page 2-23.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-16

Non-Confidential

2.1 About parallel processing
Parallel processing is the simultaneous processing of multiple computations.

Application processors are typically designed to execute a single thread as quickly as possible. This type
of processing typically includes scalar operations and control code.

GPUs are designed to execute a large number of threads at the same time. Graphics applications typically
require many operations that can be computed in parallel across many processors.

OpenCL enables you to use the parallel processing capabilities of GPUs or multi-core application
processors.

OpenCL is an open standard language that enables developers to run general purpose computing tasks on
GPUs, application processors, and other types of processors.

2 Parallel processing concepts
2.1 About parallel processing

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-17

Non-Confidential

2.2 Types of parallelism
Data parallelism, task parallelism, and pipelines are the main types of parallelism.

This section contains the following subsections:
• 2.2.1 Data parallelism on page 2-18.
• 2.2.2 Task parallelism on page 2-18.
• 2.2.3 Pipelines on page 2-18.

2.2.1 Data parallelism

In data parallelism, data is divided into data elements that a processor can process in parallel. Several
different processors simultaneously read and process different data elements.

The data must be in data structures that processors can read and write in parallel.

An example of a data parallel application is rendering three-dimensional graphics. The generated pixels
are independent so the computations required to generate them can be performed in parallel. This type of
parallelism is very fine-grained and can involve hundreds of thousands of active threads simultaneously.

OpenCL is primarily used for data parallel processing.

2.2.2 Task parallelism

In task parallelism, the application is broken down into smaller tasks that execute in parallel. Task
parallelism is also known as functional parallelism.

An example of an application that can use task parallelism is playing a video in a web page. To display a
video in a web page, your device must do several tasks:
• Run a network stack that performs communication.
• Request data from an external server.
• Read data from an external server.
• Parse data.
• Decode video data.
• Decode audio data.
• Draw video frames.
• Play audio data.

The following figure shows parts of an application and operating system that operate simultaneously
when playing an on-line video.

Parse data

Decode
video

Playback
sound

Operating
system

Request data from
external server

Read data from
external server

Decode
sound

Draw video
frame

Network stack

Figure 2-1 Task parallel processing

2.2.3 Pipelines

Pipelines process data in a series of stages. In a pipeline, the stages can operate simultaneously but they
do not process the same data. A pipeline typically has a relatively small number of stages.

2 Parallel processing concepts
2.2 Types of parallelism

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-18

Non-Confidential

An example of a pipeline is a video recorder application that must execute these stages:
1. Capture image data from an image sensor and measure light levels.
2. Modify the image data to correct for lens effects.
3. Modify the contrast, color balance, and exposure of the image data.
4. Compress the image.
5. Add the data to the video file.
6. Write the video file to storage.

These stages must be executed in order, but they can all execute on data from different video frames at
the same time.

The figure shows parts of a video capture application that can operate simultaneously as a pipeline.

Correct
image for

lens effects

Modify:
Contrast

Color balance
Exposure

Compress
image

Write video
file to

storage

Capture
data

 from image
sensor

Add data to
video file

Figure 2-2 Pipeline processing

2 Parallel processing concepts
2.2 Types of parallelism

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-19

Non-Confidential

2.3 Mixing different types of parallelism
You can mix different types of parallelism in your applications.

For example, an audio synthesizer might use a combination of all three types of parallelism, in these
ways:
• Task parallelism is used to compute the notes independently.
• A pipeline of audio generation and processing modules creates the sound of an individual note.
• Within the pipeline, some stages can use data parallelism to accelerate the computation of processing.

2 Parallel processing concepts
2.3 Mixing different types of parallelism

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-20

Non-Confidential

2.4 Embarrassingly parallel applications
If an application can be parallelized across a large number of processors easily, it is said to be
embarrassingly parallel.

OpenCL is ideally suited for developing and executing embarrassingly parallel applications.

The following figure shows an image that is divided into many small parts. If, for example, you want to
brighten the image, you can process all of these parts simultaneously.

Figure 2-3 Embarrassingly parallel processing

Another example of an embarrassingly parallel application is rendering three-dimensional graphics. For
example, pixels are independent so they can be computed and drawn in parallel.

2 Parallel processing concepts
2.4 Embarrassingly parallel applications

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-21

Non-Confidential

2.5 Limitations of parallel processing and Amdahl's law
There are limitations of parallel processing that you must consider when developing parallel applications.

For example, if your application parallelizes perfectly, executing the application on ten processors makes
it run ten times faster. However, applications rarely parallelize perfectly because part of the application is
serial. This serial component imposes a limit on the amount of parallelization the application can use.

Amdahl’s law describes the maximum speedup that parallel processing can achieve.

The formula for Amdahl’s law is shown in the following figure where the terms in the equation are:

S Fraction of the application that is serial.
P Fraction of the application that is parallelizable.
N Number of processors.

1
Speedup =

S +
P
N

Figure 2-4 Formula for Amdahl’s law

The following figure shows the speedup that different numbers of processors provide for applications
with different serial components.

Processors
2 4 10

10 X

6 X

4 X

2 X

1 X

6 8

Speedup

1

8 X

0

10% serial

5% serial

20% serial

Perfect scaling

Figure 2-5 Speedup for an application with different serial components

The biggest speedups are achieved with relatively small numbers of processors. However, as the number
of processors rises, the per-processor gains are reduced.

You cannot avoid Amdahl’s law in your application but you can reduce the impact.

For high performance with a large number of processors, the application must have a very small serial
component. These sorts of applications are said to be embarrassingly parallel.

Related concepts
2.4 Embarrassingly parallel applications on page 2-21
9.5 Reducing the effect of serial computations on page 9-84

2 Parallel processing concepts
2.5 Limitations of parallel processing and Amdahl's law

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-22

Non-Confidential

2.6 Concurrency
Concurrent applications have multiple operations in progress at the same time. These can operate in
parallel or in serial through the use of a time sharing system.

In a concurrent application, multiple tasks attempt to share the same data. Access to this data must be
managed to prevent complex problems such as race conditions, deadlocks, and livelocks.

Race conditions
A race condition occurs when two or more threads try to modify the value of one variable at the
same time. In general, the final value of the computation will always produce the same value,
but when a race condition occurs, the variable can get a different value that depends on the order
of the writes.

Deadlocks
A deadlock occurs when two threads become blocked by each other and neither thread can make
progress. This can happen when each thread obtains a lock that the other thread requires.

Livelocks
A livelock is similar to deadlock, but the threads keep running. Because of the lock, the threads
can never complete their tasks.

Concurrent applications require concurrent data structures. A concurrent data structure is a data structure
that enables multiple tasks to gain access to the data with no concurrency problems.

Data parallel applications use concurrent data structures. These are the sorts of data structures that you
typically use in OpenCL.

OpenCL includes atomic operations to help manage interactions between threads. Atomic operations
provide one thread exclusive access to a data item while it modifies it. The atomic operation enables one
thread to read, modify, and write the data item with the guarantee that no other thread can modify the
data item at the same time.

 Note

OpenCL does not guarantee the order of operation of threads. Threads can start and finish in any order.

2 Parallel processing concepts
2.6 Concurrency

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

2-23

Non-Confidential

Chapter 3
OpenCL concepts

This chapter describes the OpenCL concepts.

It contains the following sections:
• 3.1 Using OpenCL on page 3-25.
• 3.2 OpenCL applications on page 3-26.
• 3.3 OpenCL execution model on page 3-27.
• 3.4 OpenCL data processing on page 3-28.
• 3.5 OpenCL work-groups on page 3-29.
• 3.6 OpenCL identifiers on page 3-30.
• 3.7 OpenCL memory model on page 3-31.
• 3.8 Mali™ GPU OpenCL memory model on page 3-33.
• 3.9 OpenCL concepts summary on page 3-34.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-24

Non-Confidential

3.1 Using OpenCL
Open Computing Language (OpenCL) is an open standard that enables you to use the parallel processing
capabilities of multiple types of processors including application processors, Graphics Processing Units
(GPUs), and other computing devices.

OpenCL specifies an API for parallel programming that is designed for portability:
• It uses an abstracted memory and execution model.
• There is no requirement to know the application processor instruction set.

Functions executing on OpenCL devices are called kernels. These are written in a language called
OpenCL C that is based on C99.

The OpenCL language includes vector types and built-in functions that enable you to use the features of
accelerators. There is also scope for targeting specific architectures with optimizations.

3 OpenCL concepts
3.1 Using OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-25

Non-Confidential

3.2 OpenCL applications
OpenCL applications consist of two parts: application or host-side code, and OpenCL kernels.

Application, or host-side code:
• Calls the OpenCL APIs.
• Compiles the OpenCL kernels.
• Allocates memory buffers to pass data into and out of the OpenCL kernels.
• Sets up command queues.
• Sets up dependencies between the tasks.
• Sets up the N-Dimensional Range (NDRanges) that the kernels execute over.

OpenCL kernels
• Written in OpenCL C language.
• Perform the parallel processing.
• Run on compute devices such as application processors or GPU shader cores.

You must write both of these parts correctly to get the best performance.

3 OpenCL concepts
3.2 OpenCL applications

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-26

Non-Confidential

3.3 OpenCL execution model
The OpenCL execution model includes the host application, the context, and the operation of OpenCL
kernels.

The host application
The host application runs on the application processor. The host application manages the
execution of the kernels by setting up command queues for:
• Memory commands.
• Kernel execution commands.
• Synchronization.

The context
The host application defines the context for the kernels. The context includes:
• The kernels.
• Compute devices.
• Program objects.
• Memory objects.

Operation of OpenCL kernels
Kernels run on compute devices. A kernel is a block of code that is executed on a compute
device in parallel with other kernels. Kernels operate in the following sequence:
1. The kernel is defined in a host application.
2. The host application submits the kernel for execution on a compute device. A compute

device can be an application processor, GPU, or another type of processor.
3. When the application issues a command to submit a kernel, OpenCL creates the NDRange of

work-items.
4. An instance of the kernel is created for each element in the NDRange. This enables each

element to be processed independently in parallel.

3 OpenCL concepts
3.3 OpenCL execution model

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-27

Non-Confidential

3.4 OpenCL data processing
The data processed by OpenCL is in an index space of work-items.

The work-items are organized in an NDRange where:
• N is the number of dimensions.
• N can be one, two, or three.

One kernel instance is executed for each work-item in the index space.

The following figure shows NDRanges with one, two, and three dimensions.

One dimensional
NDRange

N=1

Two dimensional
NDRange

N=2

Three dimensional
NDRange

N=3

Work-items

Work-items

Work-items

Figure 3-1 NDRanges and work-items

You group work-items into work-groups for processing. The following figure shows a three-dimensional
NDRange that is split into 16 work-groups, each with 16 work-items.

Work-items

Work-groups

Figure 3-2 Work-items and work-groups.

3 OpenCL concepts
3.4 OpenCL data processing

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-28

Non-Confidential

3.5 OpenCL work-groups
Work-groups have several properties, limitations and work-items:

Properties of work-groups
• Work-groups are independent of each other.
• The OpenCL driver can issue multiple work-groups for execution in parallel.
• The work-items in a work-group can communicate with each other using shared data buffers.

You must synchronize access to these buffers.

Limitations between work-groups

Work-groups typically do not directly share data. They can share data using global memory.

The following are not supported across different work-groups:
• Barriers.
• Dependencies.
• Ordering.
• Coherency.

Global atomics are available but these can be slower than local atomics.

Work-items in a work-group
The work-items in a work-group can:
• Access shared memory.
• Use local atomic operations.
• Perform barrier operations to synchronize execution points.

For example:

barrier(CLK_LOCAL_MEM_FENCE); // Wait for all work-items in
 // this work-group to catch up

After the synchronization is complete, all writes to shared buffers are guaranteed to have
been completed. It is then safe for work-items to read data written by different work-items
within the same work-group.

3 OpenCL concepts
3.5 OpenCL work-groups

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-29

Non-Confidential

3.6 OpenCL identifiers
There are several identifiers in OpenCL. These identifiers are the global ID, the local ID, and the work-
group ID.

global ID Every work-item has a unique global ID that identifies it within the index space.
work-group ID Each work-group has a unique work-group ID.
local ID Within each work-group, each work-item has a unique local ID.

3 OpenCL concepts
3.6 OpenCL identifiers

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-30

Non-Confidential

3.7 OpenCL memory model
The OpenCL memory model contains several components and supports a number of memory types.

This section contains the following subsections:
• 3.7.1 OpenCL memory model overview on page 3-31.
• 3.7.2 Memory types in OpenCL on page 3-31.

3.7.1 OpenCL memory model overview

The following figure shows the OpenCL memory model.

Global memory

Local memory

Private
memory

Private
memory

Work-group

Constant memory

Work-item Work-item

Local memory

Private
memory

Private
memory

Work-group

Work-item Work-item

Figure 3-3 OpenCL memory model

3.7.2 Memory types in OpenCL

OpenCL supports these memory types: Private memory, local memory, constant memory, and global
memory.

Private memory
• Private memory is specific to a work-item.
• It is not visible to other work-items.

Local memory
• Local memory is local to a work-group.
• It is accessible by the work-items in the work-group.
• It is accessed with the __local keyword.
• It is consistent to all work-items in the work-group.

 Note

Work-items execute in an undefined order. This means you cannot guarantee the order that
work-items write data in. If you want a work-item to read data that are written by another
work-item, you must use a barrier to ensure that they execute in the correct order.

Constant memory
• Constant memory is a memory region used for objects allocated and initialized by the host.
• It is accessible as read-only by all work-items.

3 OpenCL concepts
3.7 OpenCL memory model

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-31

Non-Confidential

Global memory
• Global memory is accessible to all work-items executing in a context.
• It is accessible to the host using read, write, and map commands.
• It is consistent across work-items in a single work-group.

 Note

— Work-items execute in an undefined order. This means you cannot guarantee the order
that work-items write data in.

— If you want a work-item to read data that are written by another work-item, you must use
a barrier to ensure that they execute in the correct order.

• It implements a relaxed consistency, shared memory model.
• It is accessed with the __global keyword.
• There is no guarantee of memory consistency between different work-groups.

3 OpenCL concepts
3.7 OpenCL memory model

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-32

Non-Confidential

3.8 Mali™ GPU OpenCL memory model
Mali GPUs use a different memory model compared to desktop workstation GPUs.

The main differences between desktop workstation GPUs and Mali GPUs are:

Desktop workstation GPUs

Traditional desktop workstation processors have their own dedicated memory.

Desktop workstation GPUs have physically separate global, local, and private memories.

Typically, a graphics card has its own memory.

Data must be copied from the application processor memory to the GPU memory and back
again.

Mali GPUs

Mali GPUs have a unified memory system with the application processor.

Mali GPUs use global memory backed with caches in place of local or private memories.

If you allocate local or private memory, it is allocated in global memory. Moving data from
global to local or private memory typically does not improve performance.

Copying data is not required, provided it is allocated by OpenCL in the correct manner.

Each compute device, that is, shader core, has its own data caches.

Related concepts
8.3 Optimizing memory allocation on page 8-72

3 OpenCL concepts
3.8 Mali™ GPU OpenCL memory model

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-33

Non-Confidential

3.9 OpenCL concepts summary
Summary of the concepts used in OpenCL.

• OpenCL primarily uses data parallel processing.
• Computations in OpenCL are performed by pieces of code called kernels that execute on compute

devices. Compute devices can be application processors or GPUs.
• The data processed by OpenCL is in an index space of work-items. The work-items are organized in

an NDRange.
• One kernel instance is executed for each work-item in the index space.
• Kernel instances can execute in parallel.
• You group work-items together to form work-groups. The work-items in a work-group can

communicate with each other using shared data buffers, but access to the buffers must be
synchronized with barrier operations.

• Work-groups typically do not directly share data with each other. They can share data using global
memory and atomic operations.

• You can issue multiple work-groups for execution in parallel.

3 OpenCL concepts
3.9 OpenCL concepts summary

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

3-34

Non-Confidential

Chapter 4
Developing an OpenCL application

This chapter describes the development stages of an OpenCL application.

It contains the following sections:
• 4.1 Software and hardware requirements for Mali™ GPU OpenCL development on page 4-36.
• 4.2 Development stages for OpenCL on page 4-37.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

4-35

Non-Confidential

4.1 Software and hardware requirements for Mali™ GPU OpenCL development
Implementations of OpenCL are available for several operating systems. You can develop on other
hardware platforms with implementations of OpenCL.

To develop OpenCL applications for Mali GPUs, you require:
• A compatible OS.
• The Mali GPU OpenCL driver.
• A platform with a Mali GPU.

Estimating Mali GPU performance with results from a different system will produce inaccurate data.

Related concepts
1.1 About Arm® Mali™ GPUs on page 1-13

4 Developing an OpenCL application
4.1 Software and hardware requirements for Mali™ GPU OpenCL development

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

4-36

Non-Confidential

4.2 Development stages for OpenCL
There are several stages to develop an OpenCL application. First, you must determine what you want to
parallelize. Then, you must write the kernels. Finally, write infrastructure for the kernels and execute
them.

You must perform the following stages to develop and OpenCL application:

Determine what you want to parallelize
The first step when deciding to use OpenCL is to look at what your application does, and
identify the parts of the application that can run in parallel. This is often the hardest part of
developing an OpenCL application.

 Note

It is only necessary to convert the parts of an application to OpenCL where there is likely to be a
benefit. Profile your application to find the most active parts and consider these parts for
conversion.

Write kernels

OpenCL applications consist of a set of kernel functions. You must write the kernels that
perform the computations.

If possible, partition your kernels so that the least amount of data is transferred between them.
Loading large amounts of data is often the most expensive part of an operation.

Write infrastructure for kernels
OpenCL applications require infrastructure code that sets up the data and prepares the kernels
for execution.

Execute the kernels
Enqueue the kernels for execution and read back the results.

Related concepts
6.2 Analyzing code for parallelization on page 6-53

4 Developing an OpenCL application
4.2 Development stages for OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

4-37

Non-Confidential

Chapter 5
Execution stages of an OpenCL application

This chapter describes the execution stages of an OpenCL application.

 Note

This chapter is not intended as a comprehensive guide to using OpenCL.

It contains the following sections:
• 5.1 About the execution stages on page 5-39.
• 5.2 Finding the available compute devices on page 5-41.
• 5.3 Initializing and creating OpenCL contexts on page 5-42.
• 5.4 Creating a command queue on page 5-43.
• 5.5 Creating OpenCL program objects on page 5-44.
• 5.6 Building a program executable on page 5-45.
• 5.7 Creating kernel and memory objects on page 5-46.
• 5.8 Executing the kernel on page 5-47.
• 5.9 Reading the results on page 5-49.
• 5.10 Cleaning up unused objects on page 5-50.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-38

Non-Confidential

5.1 About the execution stages
Platform setup and runtime setup are the two main parts of the OpenCL execution stages. Your OpenCL
application must obtain information about your hardware, then set up the runtime environment.

This section contains the following subsections:
• 5.1.1 Platform setup on page 5-39.
• 5.1.2 Runtime setup on page 5-39.

5.1.1 Platform setup

Use the platform API to obtain information about your hardware, then set up the OpenCL context.

The platform API helps you to:
• Determine what OpenCL devices are available. Query to find out what OpenCL devices are available

on the system using OpenCL platform layer functions.
• Set up the OpenCL context. Create and set up an OpenCL context and at least one command queues

to schedule execution of your kernels.

Related concepts
5.2 Finding the available compute devices on page 5-41
5.3 Initializing and creating OpenCL contexts on page 5-42

5.1.2 Runtime setup

You can use the runtime API for many different operations.

The runtime API helps you to:
• Create a command queue.
• Compile and build your program objects. Issue commands to compile and build your source code and

extract kernel objects from the compiled code.
You must follow this sequence of commands:
1. Create the program object by calling either:

clCreateProgramWithSource()
Creates the program object from the kernel source code.

clCreateProgramWithBinary()
Creates the program with a pre-compiled binary file.

2. Call the clBuildProgram() function to compile the program object for the specific devices on
the system.

• Build a program executable.
• Create the kernel and memory objects:

1. Call the clCreateKernel() function for each kernel, or call the clCreateKernelsInProgram()
function to create kernel objects for all the kernels in the OpenCL application.

2. Use the OpenCL API to allocate memory buffers. You can use the map() and unmap() operations
to enable the application processor to access the data.

• Enqueue and execute the kernels.

Enqueue to the command queues the commands that control the sequence and synchronization of
kernel execution, mapping and unmapping of memory, and manipulation of memory objects.

To execute a kernel function, you must do the following steps:
1. Call clSetKernelArg() for each parameter in the kernel function definition to set the kernel

parameter values.
2. Determine the work-group size and the index space to use to execute the kernel.
3. Enqueue the kernel for execution in the command queue.

• Enqueue commands that make the results from the work-items available to the host.
• Clean up the unused objects.

5 Execution stages of an OpenCL application
5.1 About the execution stages

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-39

Non-Confidential

Related concepts
5.4 Creating a command queue on page 5-43
5.5 Creating OpenCL program objects on page 5-44
5.7 Creating kernel and memory objects on page 5-46
5.8 Executing the kernel on page 5-47
5.9 Reading the results on page 5-49
5.10 Cleaning up unused objects on page 5-50
Related references
5.6 Building a program executable on page 5-45

5 Execution stages of an OpenCL application
5.1 About the execution stages

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-40

Non-Confidential

5.2 Finding the available compute devices
To set up OpenCL, you must choose compute devices. Call clGetDeviceIDs() to query the OpenCL
driver for a list of devices on the machine that support OpenCL.

You can restrict your search to a particular type of device or to any combination of device types. You
must also specify the maximum number of device IDs that you want returned.

If you have two or more devices, you can schedule different NDranges for processing on the devices.

If your Mali GPU has two shader core groups, the OpenCL driver treats each core group as a separate
OpenCL device, each with its own cl_device_id. This means you can form separate queues and execute
them independently of each other. Alternatively, you can choose one core group for OpenCL and leave
the other core group for other GPU tasks.

The OpenCL driver returns the device arrays in core group ID order.
 Note

Some of the Midgard devices are asymmetric. One core group might contain four shader cores while
another core group might contain two shader cores.

5 Execution stages of an OpenCL application
5.2 Finding the available compute devices

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-41

Non-Confidential

5.3 Initializing and creating OpenCL contexts
When you know the available OpenCL devices on the machine and have at least one valid device ID, you
can create an OpenCL context. The context groups the devices together to enable memory objects to be
shared across different compute devices.

To share work between devices, or to have interdependencies between operations submitted to more than
one command queue, create a context containing all the devices you want to use in this way.

Pass the device information to the clCreateContext() function. For example:

// Create an OpenCL context

context = clCreateContext(NULL, 1, &device_id, notify_function, NULL, &err);
if (err != CL_SUCCESS)
{
 Cleanup();
 return 1;
}

You can optionally specify an error notification callback function when you create an OpenCL context.
When you leave this parameter as a NULL value, the system does not register an error notification
function.

To receive runtime errors for the particular OpenCL context, provide the callback function. For example:

// Optionally user_data can contain contextual information
// Implementation specific data of size cb, can be returned in private_info

void context_notify(const char *notify_message, const void *private_info,
 size_t cb, void *user_data)
{
 printf("Notification:\n\t%s\n", notify_message);
}

5 Execution stages of an OpenCL application
5.3 Initializing and creating OpenCL contexts

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-42

Non-Confidential

5.4 Creating a command queue
After creating your OpenCL context, use clCreateCommandQueue() to create a command queue.

OpenCL does not support the automatic distribution of work to devices. If you want to share work
between devices, or have dependencies between operations enqueued on devices, then you must create
the command queues in the same OpenCL context.

Example command queue:

// Create a command-queue on the first device available
// on the created context

commandQueue = clCreateCommandQueue(context, device, properties, errcode_ref);
if (commandQueue == NULL)
{
 Cleanup();
 return 1;
}

If you have multiple OpenCL devices, you must:
1. Create a command queue for each device.
2. Divide up the work.
3. Submit commands separately to each device.

5 Execution stages of an OpenCL application
5.4 Creating a command queue

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-43

Non-Confidential

5.5 Creating OpenCL program objects
Create an OpenCL program object.

The OpenCL program object encapsulates the following components:

• Your OpenCL program source.
• The latest successfully built program executable.
• The build options.
• The build log.
• A list of devices the program is built for.

The program object is loaded with the kernel source code, then the code is compiled for the devices
attached to the context. All kernel functions must be identified in the application source with the
__kernel qualifier. OpenCL applications can also include functions that you can call from your kernel
functions.

Load the OpenCL C kernel source and create an OpenCL program object from it.

To create a program object, use the clCreateProgramWithSource() function. For example:

// Create OpenCL program

program = clCreateProgramWithSource(context, device, “<kernel source>”);
if (program == NULL)
{
 Cleanup();
 return 1;
}

There are different options for building OpenCL programs:
• You can create a program object directly from the source code of an OpenCL application and compile

it at runtime. Do this at application start-up to save compute resources while the application is
running.

If you can cache the binary between application invocations, compile the program object at platform
start-up.

• To avoid compilation overhead at runtime, you can build a program object with a previously built
binary.

 Note

Applications with pre-built program objects are not portable across platforms and driver versions.

Creating a program object from a binary is a similar process to creating a program object from source
code, except that you must supply the binary for each device that you want to execute the kernel on. Use
the clCreateProgramWithBinary() function to do this.

Use the clGetProgramInfo() function to obtain the binary after you have generated it.

5 Execution stages of an OpenCL application
5.5 Creating OpenCL program objects

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-44

Non-Confidential

5.6 Building a program executable
When you have created a program object, you must build a program executable from the contents of the
program object. Use the clBuildProgram() function to build your executable.

Compile all kernels in the program object:

err = clBuildProgram(program, 1, &device_id, "", NULL, NULL);
if (err != CL_SUCCESS)
{
 Cleanup();
 return 1;
}

5 Execution stages of an OpenCL application
5.6 Building a program executable

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-45

Non-Confidential

5.7 Creating kernel and memory objects
There are separate processes for creating kernel objects and memory objects. You must create the kernel
objects and memory objects.

This section contains the following subsections:
• 5.7.1 Creating kernel objects on page 5-46.
• 5.7.2 Creating memory objects on page 5-46.

5.7.1 Creating kernel objects

Call the clCreateKernel() function to create a single kernel object, or call the
clCreateKernelsInProgram() function to create kernel objects for all the kernels in the OpenCL
application.

For example:

// Create OpenCL kernel

kernel = clCreateKernel(program, “<kernel_name>", NULL);
if (kernel == NULL)
{
 Cleanup();
 return 1;
}

5.7.2 Creating memory objects

When you have created and registered your kernels, send the program data to the kernels.

Procedure
1. Package the data in a memory object.
2. Associate the memory object with the kernel.

These are the types of memory objects:

Buffer objects
Simple blocks of memory.

Image objects
These are structures specifically for representing 2D or 3D images. These are opaque
structures. This means that you cannot see the implementation details of these structures.

To create buffer objects, use the clCreateBuffer() function.

To create image objects, use the clCreateImage() function.

5 Execution stages of an OpenCL application
5.7 Creating kernel and memory objects

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-46

Non-Confidential

5.8 Executing the kernel
There are several stages in the kernel execution. The initial stages are related to determining work-group
and work-item sizes, and data dimensions. After completing the initial stages, you can enqueue and
execute your kernel.

This section contains the following subsections:
• 5.8.1 Determining the data dimensions on page 5-47.
• 5.8.2 Determining the optimal global work size on page 5-47.
• 5.8.3 Determining the local work-group size on page 5-47.
• 5.8.4 Enqueuing kernel execution on page 5-48.
• 5.8.5 Executing kernels on page 5-48.

5.8.1 Determining the data dimensions

If your data is an image x pixels wide by y pixels high, it is a two-dimensional data set. If you are dealing
with spatial data that involves the x, y, and z position of nodes, it is a three-dimensional data set.

The number of dimensions in the original data set does not have to be the same in OpenCL. For example,
you can process a three-dimensional data set as a single dimensional data set in OpenCL.

5.8.2 Determining the optimal global work size

The global work size is the total number of work-items required for all dimensions combined.

You can change the global work size by processing multiple data items in a single work-item. The new
global work size is then the original global work size divided by the number of data items processed by
each work-item.

The global work size must be large if you want to ensure high performance. Typically, the number is
several thousand, but the ideal number depends on the number of shader cores in your device.

5.8.3 Determining the local work-group size

You can specify the size of the work-group that OpenCL uses when you enqueue a kernel to execute on a
device. To do this, you must know the maximum work-group size permitted by the OpenCL device your
work-items execute on. To find the maximum work-group size for a specific kernel, use the
clGetKernelWorkGroupInfo() function and request the CL_KERNEL_WORK_GROUP_SIZE property.

If your application is not required to share data among work-items, set the local_work_size parameter
to NULL when enqueuing your kernel. This enables the OpenCL driver to determine an efficient work-
group size for your kernel, but this might not be the optimal work-group size.

To get the maximum work-group size in each dimension, call clGetDeviceInfo() with
CL_DEVICE_MAX_WORK_ITEM_SIZES. This provides maximum sizes for the simplest kernel, and
dimensions might be lower for more complex kernels. The product of the dimensions of your work-
group might limit the size of the work-group.

 Note

To get the maximum work-group size for a specific kernel, call clGetKernelWorkGroupInfo() with
CL_KERNEL_WORK_GROUP_SIZE. If the maximum work-group size for a kernel is lower than 128,
performance is reduced. If this is the case, try simplifying the kernel.

The work-group size for each dimension must divide evenly into the total data-size for that dimension.
This means that the x size of the work-group must divide evenly into the x size of the total data. If this
requirement means padding the work-group with extra work-items, ensure the additional work-items
return immediately and do no work.

5 Execution stages of an OpenCL application
5.8 Executing the kernel

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-47

Non-Confidential

5.8.4 Enqueuing kernel execution

When you have identified the dimensions necessary to represent your data, the necessary work-items for
each dimension, and an appropriate work-group size, enqueue the kernel for execution using
clEnqueueNDRangeKernel().

For example:

size_t globalWorkSize[1] = { ARRAY_SIZE };
size_t localWorkSize[1] = { 4 };

// Queue the kernel up for execution across the array

errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorkSize,
localWorkSize, 0, NULL, NULL);

if (errNum != CL_SUCCESS)
{
 printf("Error queuing kernel for execution.\n");
 Cleanup();
 return 1;
}

5.8.5 Executing kernels

Queuing the kernel for execution does not mean that it executes immediately. The kernel execution is put
into the command queue so the device can process it later.

The call to clEnqueueNDRangeKernel() is not a blocking call and returns before the kernel has
executed. It can sometimes return before the kernel has started executing.

It is possible to make a kernel wait for execution until previous events are finished. You can specify
certain kernels wait until other specific kernels are completed before executing.

Kernels are executed in the order they are enqueued unless the property
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE is set when the command queue is created.

Kernels that are enqueued to an in-order queue automatically wait for kernels that were previously
enqueued on the same queue. You are not required to write any code to synchronize them.

5 Execution stages of an OpenCL application
5.8 Executing the kernel

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-48

Non-Confidential

5.9 Reading the results
After your kernels have finished execution, you must make the result accessible to the host. To access the
results from the kernel, use clEnqueueMapBuffer() to map the buffer into host memory.

For example:

local_buffer = clEnqueueMapBuffer(queue, buffer, CL_NON_BLOCKING, CL_MAP_READ, 0,
 (data_size, num_deps, &deps[0], NULL, &err);

ASSERT(CL_SUCCESS == err);

 Note

• clFinish() must be called to make the buffer available.
• The third parameter of clEnqueueMapBuffer() is CL_NON_BLOCKING in the previous example. If you

change this parameter in clEnqueueMapBuffer() or clFinish() to CL_BLOCKING, the call becomes a
blocking call and the read must be completed before clEnqueueMapBuffer() returns.

5 Execution stages of an OpenCL application
5.9 Reading the results

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-49

Non-Confidential

5.10 Cleaning up unused objects
When the application no longer requires the objects associated with the OpenCL runtime and context,
you must release these resources. You can use several functions to release your OpenCL objects.

These functions decrement the reference count for the associated object:
• clReleaseMemObject().
• clReleaseKernel().
• clReleaseProgram().
• clReleaseCommandQueue().
• clReleaseContext().

Ensure the reference counts for all OpenCL objects reach zero when your application no longer requires
them. You can obtain the reference count by querying the object. For example, by calling
clGetMemObjectInfo().

5 Execution stages of an OpenCL application
5.10 Cleaning up unused objects

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

5-50

Non-Confidential

Chapter 6
Converting existing code to OpenCL

This chapter describes converting existing code to OpenCL.

It contains the following sections:
• 6.1 Profiling your application on page 6-52.
• 6.2 Analyzing code for parallelization on page 6-53.
• 6.3 Parallel processing techniques in OpenCL on page 6-56.
• 6.4 Using parallel processing with non-parallelizable code on page 6-60.
• 6.5 Dividing data for OpenCL on page 6-61.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-51

Non-Confidential

6.1 Profiling your application
Profile your application to find the most compute intensive parts. These are the parts that might be worth
porting to OpenCL.

The proportion of an application that requires high performance is often a relatively small part of the
code. This is the part of the code that can make best use of OpenCL. Porting any more of the application
to OpenCL is unlikely to provide a benefit.

You can use profilers, such as DS-5 Streamline, to analyze the performance of your application.

Related information
http://malideveloper.arm.com

6 Converting existing code to OpenCL
6.1 Profiling your application

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-52

Non-Confidential

http://malideveloper.arm.com

6.2 Analyzing code for parallelization
Analyze compute-intensive code and determine the difficulty of parallelization, by checking for parallel
operations, operations with few dependencies, and by analyzing different types of loops. These factors
affect the difficulty of the parallelization.

This section contains the following subsections:
• 6.2.1 About analyzing code for parallelization on page 6-53.
• 6.2.2 Finding data parallel operations on page 6-53.
• 6.2.3 Finding operations with few dependencies on page 6-53.
• 6.2.4 Analyze loops on page 6-54.

6.2.1 About analyzing code for parallelization

When you have identified the most compute intensive parts of your application, analyze the code to see if
you can run it in parallel.

Parallelizing code can present the following degrees of difficulty:

Straightforward
Parallelizing the code requires small modifications.

Difficult
Parallelizing the code requires complex modifications. If you are using work-items in place of
loop iterations, compute variables based on the value of the global ID rather than using a loop
counter.

Difficult and includes dependencies

Parallelizing the code requires complex modifications and the use of techniques to avoid
dependencies. You can compute values per frame, perform computations in multiple stages, or
pre-compute values to remove dependencies.

Appears to be impossible

If parallelizing the code appears to be impossible, this only means that a particular code
implementation cannot be parallelized.

The purpose of code is to perform a function. There might be different algorithms that perform
the same function but work in different ways. Some of these might be parallelizable.

Investigate different alternatives to the algorithms and data structures that the code uses. These
might make parallelization possible.

Related concepts
6.3.1 Use the global ID instead of the loop counter on page 6-56
6.3.2 Compute values in a loop with a formula instead of using counters on page 6-56
6.3.3 Compute values per frame on page 6-57
6.3.4 Perform computations with dependencies in multiple-passes on page 6-58
6.3.5 Pre-compute values to remove dependencies on page 6-58
6.4 Using parallel processing with non-parallelizable code on page 6-60

6.2.2 Finding data parallel operations

Try to find tasks that do large numbers of operations that complete without sharing data or do not depend
on the results from each other. These types of operations are data parallel, so they are ideal for OpenCL.

6.2.3 Finding operations with few dependencies

If tasks have few dependencies, it might be possible to run them in parallel. Dependencies between tasks
prevent parallelization because they force tasks to be performed sequentially.

6 Converting existing code to OpenCL
6.2 Analyzing code for parallelization

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-53

Non-Confidential

If the code has dependencies, consider:
• If there is a way to remove the dependencies.
• If it is possible to delay the dependencies so that they occur later in execution.

6.2.4 Analyze loops

Loops are good targets for parallelization because they repeat computations many times, often
independently.

Consider the following types of loops:

Loops that process few elements

If the loop only processes a relatively small number of elements, it might not be appropriate for
data parallel processing.

It might be better to parallelize these sorts of loops with task parallelism on one or more
application processors.

Nested loops
If the loop is part of a series of nested loops and the total number of iterations is large, this loop
is probably appropriate for parallel processing.

Perfect loops
Look for loops that:
• Process thousands of items.
• Have no dependencies on previous iterations.
• Access data independently in each iteration.

These types of loops are data parallel, so are ideal for OpenCL.

Simple loop parallelization

If the loop includes a variable that is incremented based on a value from the previous iteration,
this is a dependency between iterations that prevents parallelization.

See if you can work out a formula that enables you to compute the value of the variable based
on the main loop counter.

In OpenCL work-items are processed in parallel, not in a sequential loop. However, work-item
processing acts in a similar way to a loop.

Every work-item has a unique global id that identifies it and you can use this value in place of a
loop counter.

It is also possible to have loops within work-items, but these are independent of other work-
items.

Loops that require data from previous iterations

If your loop involves dependencies based on data processed by a previous iteration, this is a
more complex problem.

Can the loop be restructured to remove the dependency? If not, it might not be possible to
parallelize the loop.

There are several techniques that help you deal with dependencies. See if you can use these
techniques to parallelize the loop.

Non-parallelizable loops

If the loop contains dependencies that you cannot remove, investigate alternative methods of
performing the computation. These might be parallelizable.

Related concepts
6.3 Parallel processing techniques in OpenCL on page 6-56

6 Converting existing code to OpenCL
6.2 Analyzing code for parallelization

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-54

Non-Confidential

6.3.1 Use the global ID instead of the loop counter on page 6-56
6.4 Using parallel processing with non-parallelizable code on page 6-60

6 Converting existing code to OpenCL
6.2 Analyzing code for parallelization

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-55

Non-Confidential

6.3 Parallel processing techniques in OpenCL
You can use different parallel processing techniques in OpenCL. These techniques include, for example,
different ways of computing values, removing dependencies, software pipelining, and task parallelism.

This section contains the following subsections:
• 6.3.1 Use the global ID instead of the loop counter on page 6-56.
• 6.3.2 Compute values in a loop with a formula instead of using counters on page 6-56.
• 6.3.3 Compute values per frame on page 6-57.
• 6.3.4 Perform computations with dependencies in multiple-passes on page 6-58.
• 6.3.5 Pre-compute values to remove dependencies on page 6-58.
• 6.3.6 Use software pipelining on page 6-58.
• 6.3.7 Use task parallelism on page 6-59.

6.3.1 Use the global ID instead of the loop counter

In OpenCL, you use kernels to perform the equivalent of loop iterations. This means that there is no loop
counter to use in computations. The global ID of the work-item provides the equivalent of the loop
counter. Use the global ID to perform any computations based on the loop counter.

 Note

You can include loops in OpenCL kernels, but they can only iterate over the data for that work-item, not
the entire NDRange.

Simplified loop example

Example showing a simple loop in C that assigns the value of the loop counter to each array element.

Loop example in C:

The following loop fills an array with numbers.

void SetElements(void)
{
 int loop_count;
 int my_array[4096];
 for (loop_count = 0; loop_count < 4096; loop_count++)
 {
 my_array[loop_count] = loop_count;
 }
 printf("Final count %d\n", loop_count);
}

This loop is parallelizable because the loop elements are all independent. There is no main loop counter
loop_count in the OpenCL kernel, so it is replaced by the global ID.

The equivalent code in an OpenCL kernel:

__kernel void example(__global int * restrict my_array)
{
 int id;
 id = get_global_id(0);
 my_array[id] = id;
}

6.3.2 Compute values in a loop with a formula instead of using counters

If you are using work-items in place of loop iterations, compute variables based on the value of the
global ID rather than using a loop counter. The global ID of the work-item provides the equivalent of the
loop counter.

6 Converting existing code to OpenCL
6.3 Parallel processing techniques in OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-56

Non-Confidential

6.3.3 Compute values per frame

If your application requires continuous updates of data elements and there are dependencies between
them, try breaking the computations into discrete units and perform one iteration per image frame
displayed.

For example, the following figure shows an application that runs a continuous physics simulation of a
flag.

Figure 6-1 Flag simulation

The flag is made up of a grid of nodes that are connected to the neighboring nodes. These nodes are
shown in the following figure.

Figure 6-2 Flag simulation grid

The simulation runs as a series of iterations. In one iteration, all the nodes are updated and the image is
redrawn.

The following operations are performed in each iteration:
1. The node values are read from a buffer A.
2. A physics simulation computes the forces between the nodes.
3. The position and forces on the nodes are updated and stored into buffer B.
4. The flag image is drawn.
5. Buffer A and buffer B are switched.

6 Converting existing code to OpenCL
6.3 Parallel processing techniques in OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-57

Non-Confidential

In this case, splitting the computations into iterations also splits the dependencies. The data required for
one frame is computed in the previous frame.

Some types of simulation require many iterations for relatively small movements. If this is the case, try
computing multiple iterations before drawing frames.

6.3.4 Perform computations with dependencies in multiple-passes

If your application requires continuous updates of data elements and there are dependencies between
them, try breaking the computations into discrete units and perform the computations in multiple stages.

This technique extends the technique that computes values per frame by splitting computations even
more.

Divide the data elements into odd and even fields. This divides the dependencies so the entire
computation can be performed in stages. The processing alternates between computing the odd then the
even fields.

For example, this technique can be used in neural network simulation.

The individual neurons are arranged in a three-dimensional grid. Computing the state for a neuron
involves reading inputs from the surrounding neurons. This means that each neuron has dependencies on
the state of the surrounding neurons.

To execute the simulation, the three-dimensional grid is divided into layers and executed in the following
manner:
1. The even node values are read.
2. The odd layers are computed and the results stored.
3. The odd node values are read.
4. The even layers are computed and the results stored.
Related concepts
6.3.3 Compute values per frame on page 6-57

6.3.5 Pre-compute values to remove dependencies

If part of your computation is serial, see if it can be removed and performed separately.

For example, the audio synthesis technique Frequency Modulation (FM) works by reading an audio
waveform called the carrier. The rate the waveform is read at depends on another waveform called the
modulator.

In one type of algorithm, the carrier values are read by a pointer to generate the output waveform. The
position of the pointer is computed by taking the previous value and moving it by an amount determined
by the value of the modulator waveform.

The position of the pointer has a dependency on the previous value and that value has a dependency on
the value before it. This series of dependencies makes the algorithm difficult or impossible to parallelize.

Another approach is to consider that the pointer is moving through the carrier waveform at a fixed speed
and the modulator is adding or subtracting an offset. This can be computed in parallel, but the offsets are
incorrect because they do not take account of the dependencies on previous offsets.

The computation of the correct offsets is a serial process. If you pre-compute these values, the remaining
computation can be parallelized. The parallel component reads from the generated offset table and uses
this to read the correct value from the carrier waveform.

There is a potential problem with this example. The offset table must be recomputed every time the
modulating waveform changes. This is an example of Amdahl’s law. The amount of parallel computation
possible is limited by the speed of the serial computation.

6.3.6 Use software pipelining

Software pipelines are a parallel processing technique that enable multiple data elements to be processed
simultaneously by breaking the computation into a series of sequential stages.

6 Converting existing code to OpenCL
6.3 Parallel processing techniques in OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-58

Non-Confidential

Pipelines are common in both hardware and software. For example, application processors and GPUs use
hardware pipelines. The graphics standard OpenGL ES is based on a virtual pipeline.

In a pipeline, a complete process is divided into a series of stages. A data element is processed in one
stage and the results are then passed to the next stage.

Because of the sequential nature of a pipeline, only one stage is used at a time by a particular data
element. This means that the other stages can process other data elements.

You can use software pipelines in your application to process different data elements.

For example, a game requires many different operations to happen. A game might use a similar pipeline
to this:
1. The input is read from the player.
2. The game logic computes the progress of the game.
3. The scene objects are moved based on the results of the game logic.
4. The physics engine computes positions of all objects in the scene.
5. The game uses OpenGL ES to draw objects on the screen.

6.3.7 Use task parallelism

Task or functional parallelism involves dividing an application by function into different tasks.

For example, an online game can take advantage of task parallelism. To run an online game, your device
performs several functions:

• Communicates with an external server.
• Reads player input.
• Updates the game state.
• Generates sound effects.
• Plays music.
• Updates the display.

These tasks require synchronization but are otherwise largely independent operations. This means you
can execute the tasks in parallel on separate processors.

Another example of task parallelism is Digital Television (DTV). At any time the television might be
performing several of the following operations:
• Downloading a program.
• Recording a program.
• Updating the program guide.
• Displaying options.
• Reading data from media storage device.
• Playing a program.
• Decoding a video stream.
• Playing audio.
• Scaling an image to the correct size.

6 Converting existing code to OpenCL
6.3 Parallel processing techniques in OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-59

Non-Confidential

6.4 Using parallel processing with non-parallelizable code
If you cannot parallelize your code, it might still be possible to use parallel processing. The fact that the
code cannot be parallelized only means that a specific implementation cannot be parallelized. It does not
mean that the problem cannot be solved in a parallel way.

Most code is written to run on application processors that run sequentially. The code uses serial
algorithms and non-concurrent data structures. Parallelizing this sort of code can be difficult or
impossible.

Investigate the following approaches:

Use parallel versions of your data structures and algorithms

Many common data structures and algorithms that use them are non-concurrent. This prevents
you from parallelizing the code.

There are parallel versions of many common data structures and algorithms. You might be able
to use these in place of the originals to parallelize the code.

Solve the problem in a different way

Analyze what problem the code solves.

Look at the problem and investigate alternative ways of solving it. There might be alternative
solutions that use algorithms and data structures that are parallelizable.

To do this, think in terms of the purpose of the code and data structures.

Typically, the aim of code is to process or transform data. It takes a certain input and produces a
certain output.

Consider if the following possibilities are true:
• The data you want to process can be divided into small data elements.
• The data elements can be placed into a concurrent data structure.
• The data elements can be processed independently.

If all three possibilities are true, then you can probably solve your problem with OpenCL.

Related concepts
6.5.2 Use concurrent data structures on page 6-61

6 Converting existing code to OpenCL
6.4 Using parallel processing with non-parallelizable code

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-60

Non-Confidential

6.5 Dividing data for OpenCL
You must split data and use concurrent data structures where possible for processing by OpenCL. This
section shows examples for one-, two-, and three-dimensional data.

This section contains the following subsections:
• 6.5.1 About dividing data for OpenCL on page 6-61.
• 6.5.2 Use concurrent data structures on page 6-61.
• 6.5.3 Data division examples on page 6-62.

6.5.1 About dividing data for OpenCL

Data is divided up so it can be computed in parallel with OpenCL.

The data is divided into three levels of hierarchy:

NDRange
The total number of elements in the NDRange is known as the global work size.

Work-groups
The NDRange is divided into work-groups.

Work-items
Each work-group is divided into work-items.

Related references
Chapter 3 OpenCL concepts on page 3-24

6.5.2 Use concurrent data structures

OpenCL executes hundreds or thousands of individual kernel instances, so the processing and data
structures must be parallelizable to that degree. This means you must use data structures that permit
multiple data elements to be read and written simultaneously and independently. These are known as
concurrent data structures.

Many common data structures are non-concurrent. This makes parallelizing the code difficult. For
example, the following data structures are typically non-concurrent for writing data:

• Linked list.
• Hash table.
• Btree.
• Map.

This does not mean you cannot use these data structures. For example, these data structures can all be
read in parallel without any issues.

Work-items can also write to these data structures, but you must be aware of the following restrictions:
• Work-items can access any data structure that is read-only.
• Work-items can write to any data structure if the work-items write to different elements.
• Work-items can write to the same element in any data structure if it is guaranteed that both work-

items write the same value to the element.

Alternatively, work-items can write different values to the same element in any data structure if it
does not matter in the final output which of the values is correct. This is because either of the values
might be the last to be written.

• Work-items cannot change the links in the data structure if they might impact other elements.
• Work-items can change the links in the data structure with atomic instructions if multiple atomic

instructions do not access the same data.

There are parallel versions of many commonly used data structures.

6 Converting existing code to OpenCL
6.5 Dividing data for OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-61

Non-Confidential

6.5.3 Data division examples

You can process one-, two-, or three-dimensional data with OpenCL.

 Note

The examples map the problems into the NDRanges that have the same number of dimensions. OpenCL
does not require that you do this. You can for example, map a one-dimensional problem onto a two-, or
three-dimensional NDRange.

One-dimensional data

An example of one-dimensional data is audio. Audio is represented as a series of samples. Changing the
volume of the audio is a parallel task, because the operation is performed independently per sample.

In this case, the NDRange is the total number of samples in the audio. Each work-item can be one
sample and a work-group is a collection of samples.

Audio can also be processed with vectors. If your audio samples are 16-bit, you can make a work-item
represent eight samples and process eight of them at a time with vector instructions.

Two-dimensional data

An image is a natural fit for OpenCL, because you can process a 1,600 by 1,200 pixel image by mapping
it onto a two-dimensional NDRange of 1,600 by 1,200.The total number of work-items is the total
number of pixels in the image, that is, 1,920,000.

The NDRange is divided into work-groups where each work-group is also a two-dimensional array. The
number of work-groups must divide into the NDRange exactly.

If each work-item processes a single pixel, a work-group size of 8 by 16 has the size of 128. This work-
group size fits exactly into the NDRange on both the x and y axis. To process the image, you require
15,000 work-groups of 128 work-items each.

You can vectorize this example by processing all the color channels in a single vector. If the channels are
8-bit values, you can process multiple pixels in a single vector. If each vector processes four pixels, this
means each work-item processes four pixels and you require four times fewer work-items to process the
entire image. This means that your NDRange can be reduced to 400 by 1,200 and you only require 3,750
work-groups to process the image.

Three-dimensional data

You can use three-dimensional data to model the behavior of materials in the real world. For example,
you can model the behavior of concrete for building by simulating the stresses in a three-dimensional
data set.

You can use the data produced to determine the size and design of the structure you require to hold a
specific load.

You can use this technique in games to model the physics of objects. When an object is broken, the
physics simulation makes the process of breaking more realistic.

6 Converting existing code to OpenCL
6.5 Dividing data for OpenCL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

6-62

Non-Confidential

Chapter 7
Retuning existing OpenCL code

This chapter describes how to retune existing OpenCL code so you can run it on Mali GPUs.

It contains the following sections:
• 7.1 About retuning existing OpenCL code for Mali™ GPUs on page 7-64.
• 7.2 Differences between desktop-based architectures and Mali™ GPUs on page 7-65.
• 7.3 Retuning existing OpenCL code for Mali™ GPUs on page 7-67.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7-63

Non-Confidential

7.1 About retuning existing OpenCL code for Mali™ GPUs
OpenCL is a portable language but it is not always performance portable. This means that OpenCL
applications can work on many different types of compute device but performance is not preserved.
Existing OpenCL is typically tuned for specific architectures, such as desktop GPUs.

To achieve better performance with OpenCL code for Mali GPUs, you must retune the code:

1. Analyze the code.
2. Locate and remove optimizations for alternative compute devices.
3. Optimize the OpenCL code for Mali GPUs.
For the best performance, write kernels optimized for the specific target device.

 Note

For best performance on Mali Midgard GPUs, you must vectorize your code.

7 Retuning existing OpenCL code
7.1 About retuning existing OpenCL code for Mali™ GPUs

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7-64

Non-Confidential

7.2 Differences between desktop-based architectures and Mali™ GPUs
There are some differences between desktop-based GPUs and Mali GPUs. Because of these differences,
you must program the OpenCL in a different way for Mali GPUs.

This section contains the following subsections:
• 7.2.1 About desktop-based GPU architectures on page 7-65.
• 7.2.2 About Mali™ GPU architectures on page 7-65.
• 7.2.3 Programming OpenCL for Mali™ GPUs on page 7-65.

7.2.1 About desktop-based GPU architectures

The power availability and large chip area of desktop GPUs enable them to have characteristics different
to mobile GPUs.

Desktop GPUs have:
• A large chip area
• A large number of shader cores
• High-bandwidth memories.

The large power budget of desktop GPUs enables them to have these features.

Memory on desktop GPUs is organized in a hierarchy. Data is loaded from main memory into local
memories. The local memories are organized in banks that are split, so there is one per thread in the
thread group. Threads can access banks reserved for other threads, but when this happens accesses are
serialized, reducing performance.

7.2.2 About Mali™ GPU architectures

Mali GPUs use an architecture in which instructions operate on multiple data elements simultaneously.

The peak throughput depends on the hardware implementation of the Mali GPU type and configuration.

Mali GPUs can contain many identical shader cores. Each shader core supports hundreds of concurrently
executing threads.

Each shader core contains:
• One to three arithmetic pipelines or execution engines.
• One load-store pipeline.
• One texture pipeline.

OpenCL typically only uses the arithmetic pipelines or execution engines and the load-store pipelines.
The texture pipeline is only used for reading image data types.

The arithmetic pipes in Mali Midgard GPUs are based on a Single Instruction Multiple Data (SIMD)
style vectorization so instructions operate on multiple data elements simultaneously. You must explicitly
vectorize your shader code for this to work.

7.2.3 Programming OpenCL for Mali™ GPUs

There are differences between programming OpenCL on a Mali GPU and a desktop GPU.

If you are targeting Mali GPUs, consider the following:

7 Retuning existing OpenCL code
7.2 Differences between desktop-based architectures and Mali™ GPUs

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7-65

Non-Confidential

All Mali GPUs:
• The global and local OpenCL address spaces are mapped to the same physical memory and

are accelerated by L1 and L2 caches. This means that you are not required to use explicit
data copies or implement the associated barrier synchronization.

Mali Midgard GPUs:
• All threads have individual program counters. This means that branch divergence is not a

major problem. Branch divergence is a potential issue for warp or wavefront-based
architectures. In OpenCL, each work-item typically maps to a single thread on a Mali GPU.

• Mali Midgard GPUs use SIMD (Single Instruction Multiple Data) style vectors. Use the
kernel auto-vectorizer to take full advantage of these.

Related references
Chapter 10 Kernel auto-vectorizer and unroller on page 10-86

7 Retuning existing OpenCL code
7.2 Differences between desktop-based architectures and Mali™ GPUs

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7-66

Non-Confidential

7.3 Retuning existing OpenCL code for Mali™ GPUs
You can optimize existing OpenCL code for Mali GPUs if you analyze existing code and remove the
device-specific optimizations.

This section contains the following subsections:
• 7.3.1 Analyze code on page 7-67.
• 7.3.2 Locate and remove device optimizations on page 7-67.
• 7.3.3 Optimize your OpenCL code for Mali™ GPUs on page 7-68.

7.3.1 Analyze code

If you did not write the code yourself, you must analyze it to see what it does.

Try to understand the following:
• The purpose of the code.
• The way the algorithm works.
• The way the code would look like if there were no optimizations.

This analysis can act as a guide to help you remove the device-specific optimizations.

This analysis can be difficult because highly optimized code can be very complex.

7.3.2 Locate and remove device optimizations

There are optimizations for alternative compute devices that have no effect on Mali GPUs, or can reduce
performance. To retune the OpenCL code for Mali GPUs, you must first remove all types of
optimizations to create a non device-specific reference implementation.

Optimizations to remove for Mali™ Midgard GPUs

Remove the following types of optimizations if you are targeting Mali Midgard GPUs:

Use of local or private memory

Mali GPUs use caches instead of local memories. The OpenCL local and private memories are
mapped into main memory. There is therefore no performance advantage using local or private
memories in OpenCL code for Mali GPUs.

You can use local or private memories as temporary storage, but memory copies to or from the
memories are an expensive operation. Using local or private memories can reduce performance
in OpenCL on Mali GPUs.

Do not use local or private memories as a cache because this can reduce performance. The
processors already contain hardware caches that perform the same job without the overhead of
expensive copy operations.

Some code copies data into a local or private memory, processes it, then writes it out again. This
code wastes both performance and power by performing these copies.

Barriers
Data transfers to or from local or private memories are typically synchronized with barriers. If
you remove copy operations to or from these memories, also remove the associated barriers.

7 Retuning existing OpenCL code
7.3 Retuning existing OpenCL code for Mali™ GPUs

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7-67

Non-Confidential

Cache size optimizations

Some code optimizes reads and writes to ensure data fits into cache lines. This is a useful
optimization for both increasing performance and reducing power consumption. However, the
code is likely to be optimized for cache line sizes that are different than those used by Mali
GPUs.

If the code is optimized for the wrong cache line size, there might be unnecessary cache flushes
and this can decrease performance.

 Note

Mali GPUs have a cache line size of 64-bytes.

Use of scalars

Mali Midgard GPUs use scalars and 128-bit vectors.

Modifications for memory bank conflicts
Some GPUs include per-warp memory banks. If the code includes optimizations to avoid
conflicts in these memory banks, remove them.

Optimizations for divergent threads, warps, or wavefronts

Some GPU architectures group work-items together into what are called warps or wavefronts.
All the work-items in a warp must proceed in lock-step together in these architectures and this
means branches can perform badly.

Threads on Mali Midgard GPUs are independent and can diverge without any performance
impact. If your code contains optimizations or workarounds for divergent threads in warps or
wavefronts, remove them.

7.3.3 Optimize your OpenCL code for Mali™ GPUs

When you have retuned the code, performance improves. To improve performance more, you must
optimize it.

Related references
Chapter 8 Optimizing OpenCL for Mali™ GPUs on page 8-69

7 Retuning existing OpenCL code
7.3 Retuning existing OpenCL code for Mali™ GPUs

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

7-68

Non-Confidential

Chapter 8
Optimizing OpenCL for Mali™ GPUs

This chapter describes the procedure to optimize OpenCL applications for Mali GPUs.

It contains the following sections:
• 8.1 The optimization process for OpenCL applications on page 8-70.
• 8.2 Load balancing between control threads and OpenCL threads on page 8-71.
• 8.3 Optimizing memory allocation on page 8-72.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8-69

Non-Confidential

8.1 The optimization process for OpenCL applications
To optimize your application, you must first identify the most computationally intensive parts of your
application. In an OpenCL application that means identifying the kernels that take the most time.

To identify the most computationally intensive kernels, you must individually measure the time taken by
each kernel:

Measure individual kernels
Go through your kernels one at a time and:
1. Measure the time it takes for several runs.
2. Average the results.

 Note

It is important that you measure the run times of the individual kernels to get accurate
measurements.

Do a dummy run of the kernel the first time to ensure that the memory is allocated. Ensure this
is outside of your timing loop.

The allocation of some buffers in certain cases is delayed until the first time they are used. This
can cause the first kernel run to be slower than subsequent runs.

Select the kernels that take the most time
Select the kernels that have the longest run-time and optimize these. Optimizing any other
kernels has little impact on overall performance.

Analyze the kernels
Analyze the kernels to see if they contain computationally expensive operations:
• Measure how many reads and writes there are in the kernel. For high performance, do as

many computations per memory access as possible.
• For Mali GPUs, you can use the Offline Shader Compiler to check the balancing between the

different pipelines.

Measure individual parts of the kernel

If you cannot determine the compute intensive part of the kernel by analysis, you can isolate it
by measuring different parts of the kernel individually.

You can do this by removing different code blocks and measuring the performance difference
each time.

The section of code that takes the most time is the most intensive.

Apply optimizations
Consider how the most intensive section of code can be rewritten and what optimizations apply.
Apply a relevant optimization.

Check your results
Whenever you make changes to optimize your code, ensure that you measure the results so you
can determine the optimization was successful. Many changes that are beneficial in one
situation, might not provide any benefit, or even reduce performance under a different set of
conditions.

Reiterate the process
When you have increased the performance of your code with an optimization, measure it again
to find out if there are other areas you can improve performance. There are typically several
areas where you can improve performance so you might need to iterate the process many times
to achieve optimal performance.

8 Optimizing OpenCL for Mali™ GPUs
8.1 The optimization process for OpenCL applications

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8-70

Non-Confidential

8.2 Load balancing between control threads and OpenCL threads
If you can, ensure that both control threads and OpenCL threads run in parallel.

This section contains the following subsections:
• 8.2.1 Do not use clFinish() for synchronization on page 8-71.
• 8.2.2 Do not use any of the clEnqueueMap() operations with a blocking call on page 8-71.

8.2.1 Do not use clFinish() for synchronization

Sometimes the application processor must access data written by OpenCL. This process must be
synchronized.

You can perform the synchronization with clFinish() but Arm recommends you avoid this if possible
because it serializes execution. Calls to clFinish() introduce delays because the control thread must
wait until all of the jobs in the queue to complete execution. The control thread is idle while it is waiting
for this process to complete.

Instead, where possible, use clWaitForEvents() or callbacks to ensure that the control thread and
OpenCL can work in parallel.

8.2.2 Do not use any of the clEnqueueMap() operations with a blocking call

Use clWaitForEvents() or callbacks to ensure that the control thread and OpenCL can work in parallel.

Procedure
1. Split work into many parts.
2. For each part:

a. Prepare the work for part X on the application processor.
b. Submit part X OpenCL work-items to the OpenCL device.

3. For each part:
a. Wait for part X OpenCL work-items to complete on the OpenCL device using clWaitForEvents.
b. Process the results from the OpenCL device on the application processor.

8 Optimizing OpenCL for Mali™ GPUs
8.2 Load balancing between control threads and OpenCL threads

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8-71

Non-Confidential

8.3 Optimizing memory allocation
You can optimize memory allocation by using the correct commands.

This section contains the following subsections:
• 8.3.1 About memory allocation on page 8-72.
• 8.3.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory on page 8-72.
• 8.3.3 Do not create buffers with CL_MEM_USE_HOST_PTR if possible on page 8-73.
• 8.3.4 Do not allocate memory buffers created with malloc() for OpenCL applications on page 8-73.
• 8.3.5 Sharing memory between I/O devices and OpenCL on page 8-74.
• 8.3.6 Sharing memory in a fully coherent system on page 8-74.
• 8.3.7 Sharing memory in an I/O coherent system on page 8-74.

8.3.1 About memory allocation

To avoid making the copies, use the OpenCL API to allocate memory buffers and use map() and
unmap() operations. These operations enable both the application processor and the Mali GPU to access
the data without any copies.

OpenCL originated in desktop systems where the application processor and the GPU have separate
memories. To use OpenCL in these systems, you must allocate buffers to copy data to and from the
separate memories.

Systems with Mali GPUs typically have a shared memory, so you are not required to copy data.
However, OpenCL assumes that the memories are separate and buffer allocation involves memory
copies. This is wasteful because copies take time and consume power.

The following table shows the different cl_mem_flags parameters in clCreateBuffer().

Table 8-1 Parameters for clCreateBuffer()

Parameter Description

CL_MEM_ALLOC_HOST_PTR This is a hint to the driver indicating that the buffer is accessed on the host side. To use the buffer on the
application processor side, you must map this buffer and write the data into it. This is the only method
that does not involve copying data. If you must fill in an image that is processed by the GPU, this is the
best way to avoid a copy.

CL_MEM_COPY_HOST_PTR Copies the data pointed to by the host_ptr argument into memory allocated by the driver.

CL_MEM_USE_HOST_PTR Copies the data pointed to by the host memory pointer into the buffer when the first kernel using this
buffer starts running. This flag enforces memory restrictions that can reduce performance. Avoid using
this if possible.

When a map is executed, the memory must be copied back to the provided host pointer. This
significantly increases the cost of map operations.

Arm recommends the following:
• Do not use private or local memory to improve memory read performance.
• If your kernel is memory bandwidth bound, try using a simple formula to compute variables instead

of reading from memory. This saves memory bandwidth and might be faster.
• If your kernel is compute bound, try reading from memory instead of computing variables. This saves

computations and might be faster.

8.3.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory

The Mali GPU can access the memory buffers created by clCreateBuffer(CL_MEM_ALLOC_HOST_PTR).
This is the preferred method to allocate buffers because data copies are not required.

This method of allocating buffers is shown in the following figure.

8 Optimizing OpenCL for Mali™ GPUs
8.3 Optimizing memory allocation

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8-72

Non-Confidential

Global
memory

Buffer created by
clCreateBuffer()

Application
processor Mali GPU

CL_MEM_ALLOC_HOST_PTR

Mali GPU and
application

processor can
both access

memory buffer

Figure 8-1 Memory buffer created by clCreateBuffer(CL_MEM_ALLOC_HOST_PTR)

Arm recommends the following:
• You must make the initial memory allocation through the OpenCL API.
• Always use the latest pointer returned.

If a buffer is repeatedly mapped and unmapped, the address the buffer maps into, is not guaranteed to
be the same.

8.3.3 Do not create buffers with CL_MEM_USE_HOST_PTR if possible

When a memory buffer is created using clCreateBuffer(CL_MEM_USE_HOST_PTR), the driver might be
required to copy the data to a separate buffer. This copy enables a kernel running on the GPU to access it.
If the kernel modifies the buffer and the application maps the buffer so that it can be read, the driver
copies the updated data back to the original location. The driver uses the application processor to perform
these copy operations, that are computationally expensive.

This method of allocating buffers is shown in the following figure.

Global
memory

Application
processor Mali GPU

Buffer created
by the

application

Buffer copy
created by the

driver

Buffer copy made
before kernel processing

Updated buffer is copied
back when it is mapped

Figure 8-2 Memory buffer created by clCreateBuffer(CL_MEM_USE_HOST_PTR)

If your application can use an alternative allocation type, it can avoid these computationally expensive
copy operations. For example, CL_MEM_ALLOC_HOST_PTR.

8.3.4 Do not allocate memory buffers created with malloc() for OpenCL applications

The Mali GPU cannot access the memory buffers created by malloc() because they are not mapped into
the address space of the Mali GPU.

The inaccessible memory buffer is shown in the following figure.

8 Optimizing OpenCL for Mali™ GPUs
8.3 Optimizing memory allocation

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8-73

Non-Confidential

Global
memory

Buffer created by
malloc()

Application
processor Mali GPU

Mali GPU
cannot access
memory buffer

Figure 8-3 Memory buffer created by malloc()

8.3.5 Sharing memory between I/O devices and OpenCL

For an I/O device to share memory with OpenCL, you must allocate the memory in OpenCL with
CL_MEM_ALLOC_HOST_PTR.

You must allocate the memory in OpenCL with CL_MEM_ALLOC_HOST_PTR because it ensures that the
memory pages are always mapped into physical memory.

If you allocate the memory on the application processor, the OS might not allocate physical memory to
the pages until they are used for the first time. Errors occur if an I/O device attempts to use unmapped
pages.

8.3.6 Sharing memory in a fully coherent system

Systems with full system coherency enable application processors and GPUs to share data easily,
increasing performance.

With full system coherency, application processors and GPUs can access memory without requiring
cache clean or invalidate operations on memory objects. This provides better performance than an I/O
coherent system when the data is shared between application processor and GPU.

8.3.7 Sharing memory in an I/O coherent system

With I/O coherent allocation, the driver is not required to perform cache clean or invalidate operations on
memory objects, before or after they are used on the Mali GPU. If you are using a memory object on
both the application processor and the Mali GPU, this can improve performance.

If your platform is I/O coherent, you can enable I/O coherent memory allocation by passing the
CL_MEM_ALLOC_HOST_PTR flag to clCreateBuffer() or clCreateImage().

8 Optimizing OpenCL for Mali™ GPUs
8.3 Optimizing memory allocation

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

8-74

Non-Confidential

Chapter 9
OpenCL optimizations list

This chapter lists several optimizations to use when writing OpenCL code for Mali GPUs.

It contains the following sections:
• 9.1 General optimizations on page 9-76.
• 9.2 Kernel optimizations on page 9-78.
• 9.3 Code optimizations on page 9-81.
• 9.4 Execution optimizations on page 9-83.
• 9.5 Reducing the effect of serial computations on page 9-84.
• 9.6 Mali™ Midgard GPU specific optimizations on page 9-85.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-75

Non-Confidential

9.1 General optimizations
Arm recommends general optimizations such as processing large amount of data, using the correct data
types, and compiling the kernels once.

Use the best processor for the job

GPUs are designed for parallel processing.

Application processors are designed for high-speed serial computations.

All applications contain sections that perform control functions and others that perform
computation. For optimal performance use the best processor for the task:
• Control and serial functions are best performed on an application processor using a

traditional language.
• Use OpenCL on Mali GPUs for the parallelizable compute functions.

Compile the kernel once at the start of your application
Ensure that you compile the kernel once at the start of your application. This can reduce the
fixed overhead significantly.

Enqueue many work-items

To get maximum use of all your processor or shader cores, you must enqueue many work-items.
For example, in a four shader-core Mali GPU system, enqueue 1024 or more work-items.

Process large amounts of data

You must process a relatively large amount of data to get the benefit of OpenCL. This is because
of the fixed overheads of starting OpenCL tasks. The exact size of a data set where you start to
see benefits depends on the processors you are running your OpenCL code on.

For example, performing simple image processing on a single 640x480 image is unlikely to be
faster on a GPU, whereas processing a 1920x1080 image is more likely to be beneficial. Trying
to benchmark a GPU with small images is only likely to measure the start-up time of the driver.

Do not extrapolate these results to estimate the performance of processing a larger data set. Run
the benchmark on a representative size of data for your application.

Align data on 128-bit or 16-byte boundaries
Align data on 128-bit or 16-byte boundaries. This can improve the speed of loading and saving
data. If you can, align data on 64-byte boundaries. This ensures data fits evenly into the cache
on Mali GPUs.

Use the correct data types

Check each variable to see what range it requires.

Using smaller data types has several advantages:
• More operations can be performed per cycle with smaller variables.
• You can load or store more in a single cycle.
• If you store your data in smaller containers, it is more cacheable.

If accuracy is not critical, instead of an int, see if a short, ushort, or char works in its place.

For example, if you add two relatively small numbers you probably do not require an int.
However, check in case an overflow might occur.

Only use float values if you require their additional range. For example, if you require very
small or very large numbers.

9 OpenCL optimizations list
9.1 General optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-76

Non-Confidential

Use the right data types
You can store image and other data as images or as buffers:
• If your algorithm can be vectorized, use buffers.
• If your algorithm requires interpolation or automatic edge clamping, use images.

Do not merge buffers as an optimization

Merging multiple buffers into a single buffer as an optimization is unlikely to provide a
performance benefit.

For example, if you have two input buffers you can merge them into a single buffer and use
offsets to compute addresses of data. However, this means that every kernel must perform the
offset calculations.

It is better to use two buffers and pass the addresses to the kernel as a pair of kernel arguments.

Use asynchronous operations
If possible, use asynchronous operations between the control threads and OpenCL threads. For
example:
• Do not make the application processor wait for results.
• Ensure that the application processor has other operations to process before it requires results

from the OpenCL thread.
• Ensure that the application processor does not interact with OpenCL kernels when they are

executing.

Avoid application processor and GPU interactions in the middle of processing
Enqueue all the kernels first, and call clFinish() at the end if possible.
Call clFlush() after one or more clEnqueueNDRange() calls, and call clFinish() before
checking the final result.

Avoid blocking calls in the submission thread
Avoid clFinish() or clWaitForEvent() or any other blocking calls in the submission thread.
If possible, wait for an asynchronous callback if you want to check the result while
computations are in progress.
Try double buffering, if you are using blocking operations in your submission thread.

Batching kernels submission
From version r17p0 onwards, the OpenCL driver batches kernels that are flushed together for
submission to the hardware. Batching kernels can significantly reduce the runtime overheads
and cache maintenance costs. For example, this reduction is useful when the application is
accessing multiple sub-buffers created from a buffer imported using clImportMemoryARM in
separate kernels.
The application should flush kernels in groups as large as possible. When the GPU is idle
though, reaching optimal performance requires the application to flush an initial batch of kernels
early so that the GPU execution overlaps the queuing of further kernels.

Related references
Chapter 6 Converting existing code to OpenCL on page 6-51

9 OpenCL optimizations list
9.1 General optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-77

Non-Confidential

9.2 Kernel optimizations
Arm recommends some kernel optimizations such as experimenting with the work-group size and shape,
minimizing thread convergence, and using a workgroup size of 128 or higher.

Query the possible workgroup sizes that can be used to execute a kernel on the device

For example:

clGetKernelWorkgroupInfo(kernel, dev, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t)...);

For best performance, use a workgroup size that is between 4 and 64 inclusive, and a multiple of 4

If you are using a barrier, a smaller workgroup size is better.

When you are selecting a workgroup size, consider the memory access pattern of the data.

Finding the best workgroup size can be counter-intuitive, so test different options to see what
one is fastest.

If the global work size is not divisible by 4, use padding at the edges or use a non-uniform
workgroup size

To ensure the global work size is divisible by 4, add a few more dummy threads.

Alternatively you can let the application processor compute the edges.

You can use a non-uniform workgroup size, but this does not guarantee better performance than
the other options.

If you are not sure what workgroup size is best, define local_work_size as NULL

The driver picks the workgroup size it thinks as best. The driver usually selects the work group
size as 64.

 Note

The performance might not be optimal.

If you want to set the local work size, set the reqd_work_group_size qualifier to kernel functions

This provides the driver with information at compile time for register use and sizing jobs to fit
properly on shader cores.

Experiment with work-group size

If you can, experiment with different sizes to see if any give a performance advantage. Sizes that
are a multiple of two are more likely to perform better.

If your kernel has no preference for the work-group size, you can pass NULL to the local work
size argument of the clEnqueueNDRangeKernel().

Use a work-group size of 128 or 256 if possible

The maximum work-group size is typically 256, but this is not possible for all kernels and the
driver suggests another size. A work-group size of 64 is the smallest size guaranteed to be
available for all kernels.

If possible, use a work-group size of 128 or 256. These make optimal use of the Mali GPU
hardware. If the maximum work-group size is below 128, your kernel might be too complex.

Experiment with work-group shape

The shape of the work-group can affect the performance of your application. For example, a 32
by 4 work-group might be the optimal size and shape.

Experiment with different shapes and sizes to find the best combination for your application.

9 OpenCL optimizations list
9.2 Kernel optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-78

Non-Confidential

Check for synchronization requirements

Some kernels require work-groups for synchronization of the work-items within the work-group
with barriers. These typically require a specific work-group size.

In cases where synchronization between work-items is not required, the choice of the size of the
work-groups depends on the most efficient size for the device.

You can pass in NULL to enable OpenCL to pick an efficient size.

Consider combining multiple kernels

If you have multiple kernels that work in a sequence, consider combining them into a single
kernel. If you combine kernels, be careful of dependencies between them.

However, do not combine the kernels if there are widening data dependencies.

For example:

• If there are two kernels, A and B.
• Kernel B takes an input produced by kernel A.
• If kernel A is merged with kernel B to form kernel C, you can only input to kernel C

constant data, plus data from what was previously input to kernel A.
• Kernel C cannot use the output from kernel A n-1, because it is not guaranteed that kernel A

n-1 has been executed. This is because the order of execution of work-items is not
guaranteed.

Typically this means that the coordinate systems for kernel A and kernel B are the same.
 Note

If combining kernels requires a barrier, it is probably better to keep them separate.

Avoid splitting kernels
Avoid splitting kernels. If you are required to split a kernel, split it into as few kernels as
possible.

 Note

• Splitting a kernel can sometimes be beneficial if it enables you to remove a barrier.
• Splitting a kernel can be useful if your kernel suffers from register pressure.

Check if your kernels are small
If your kernels are small, use data with a single dimension and ensure the work-group size is a
power of two.

Use a sufficient number of concurrent threads

Use a sufficient number of concurrent threads to hide the execution latency of instructions.

The number of concurrent threads that the shader core executes depends on the number of active
registers your kernel uses. The higher the number of registers, the smaller the number of
concurrent threads.

The number of registers used is determined by the compiler based on the complexity of the
kernel, and how many live variables the kernel has at one time.

To reduce the number of registers:
• Try reducing the number of live variables in your kernel.
• Use a large NDRange, so there are many work-items.

Experiment with this to find what suits your application. You can use the off-line compiler to
produce statistics for your kernels to assist with this.

9 OpenCL optimizations list
9.2 Kernel optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-79

Non-Confidential

Optimize the memory access pattern of your application
Use data structures with linear access and high locality. These improve cacheability and
therefore performance.

Tune the value of cl_arm_thread_limit_hint to your platform
If you are using the extension cl_arm_thread_limit_hint, the optimal value is different
depending on the platform. Tune the value to your platform.

9 OpenCL optimizations list
9.2 Kernel optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-80

Non-Confidential

9.3 Code optimizations
Arm recommends some code optimizations such as using built-in functions or experimenting with your
data to increase algorithm performance.

Use vector loads and saves

To load as much data as possible in a single operation, use vector loads. These enable you to
load 128 bits at a time. Do the same for saving data.

For example, if you are loading char values, use the built-in function vload16() to load 16
bytes at a time.

Do not try to load more than 128 bits in a single load. This can reduce performance.

Perform as many operations per load as possible
Operations that perform multiple computations per element of data loaded are typically good for
programming in OpenCL:
• Try to reuse data already loaded.
• Use as many arithmetic instructions as possible per load.

Avoid conversions to or from float and int

Conversions to or from float and int are relatively expensive so avoid them if possible.

Experiment to see how fast you can get your algorithm to execute

There are many variables that determine how well an application performs. Some of the
interactions between variables can be very complex and it is difficult to predict how they impact
performance.

Experiment with your OpenCL kernels to see how fast they can run:

Data types

Use the smallest data types for your calculation as possible.

For example, if your data does not exceed 16 bits do not use 32-bit types.

Load store types
Try changing the amount of data processed per work-item.

Data arrangement
Change the data arrangement to make maximum use of the processor caches.

Maximize data loaded
Always load as much data in a single operation as possible. Use 128-bit wide vector
loads to load as many data items as possible per load.

Use shift instead of a divide
If you are dividing by a power of two, use a shift instead of a divide.

 Note

• This only applies to integers.
• This only works for powers of two.
• Divide and shift use different methods of rounding negative numbers.

Use vector loads and saves for scalar data

Use vector load VLOAD instructions on arrays of data even if you do not process the data as
vectors. This enables you to load multiple data elements with a single instruction. A vector load
of 128-bits takes the same amount of time as loading a single character. Multiple loads of single
characters are likely to cause cache thrashing and this reduces performance. Do the same for
saving data.

9 OpenCL optimizations list
9.3 Code optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-81

Non-Confidential

Use the precise versions of built-in functions

Use the precise versions of built-in functions.

Usually, the half_ or native_ versions of built-in functions provide no extra performance. The
following functions are exceptions:
• native_sin().
• native_cos().
• native_tan().
• native_divide().
• native_exp().
• native_sqrt().
• half_sqrt().

Use _sat() functions instead of min() or max()
_sat() functions automatically take the maximum or minimum values if the values are too high
or too low for representation. You are not required to add additional min() or max() code.

Avoid writing kernels that use many live variables
Avoid writing kernels that use many live variables. Using too many live variables can affect
performance and limits the maximum work-group size.

Do not calculate constants in kernels
• Use defines for constants.
• If the values are only known at runtime, calculate them in the host application and pass them

as arguments to the kernel.

For example, height-1.

Use the offline compiler to produce statistics

Use the mali_clcc offline compiler to produce statistics for your kernels and check the ratio
between arithmetic instructions and loads.

Use the built-in functions

Many of the built-in functions are implemented as fast hardware instructions, use these for high
performance.

Use the cache carefully
• The amount of cache space available per thread is low so you must use it with care.
• Use the minimum data size possible.
• Use data access patterns to maximize spatial locality.
• Use data access patterns to maximize temporal locality.

Use large sequential reads and writes
General Purpose computations on a GPU can make very heavy use of external memory. Using
large sequential reads and writes significantly improves memory performance.

Related references
Chapter 10 Kernel auto-vectorizer and unroller on page 10-86
Appendix B OpenCL built-in functions on page Appx-B-96
B.3 half_ and native_ math functions on page Appx-B-100

9 OpenCL optimizations list
9.3 Code optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-82

Non-Confidential

9.4 Execution optimizations
Arm recommends some execution optimizations such as optimizing communication code to reduce
latency.

Arm also recommends that:
• If you are building from source, cache binaries on the storage device.
• If you know the kernels that you are using when your application initializes, call

clCreateKernelsInProgram() to initiate the final compile as soon as possible.

Doing this ensures that when you use kernels in the future, they start faster because the existing
finalized binary is used.

• If you use callbacks to prompt the processor to continue processing data resulting from the execution
of a kernel, ensure that the callbacks are set before you flush the queue.

If you do not do this, the callbacks might occur at the end of a larger batch of work, later than they
might have based on actual completion of work.

9 OpenCL optimizations list
9.4 Execution optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-83

Non-Confidential

9.5 Reducing the effect of serial computations
You can reduce the impact of serial components in your application by reducing and optimizing the
computations.

Use memory mapping instead of memory copies to transfer data.

Optimize communication code.
To reduce latency, optimize the communication code that sends and receives data.

Keep messages small.
Reduce communication overhead by sending only the data that is required.

Use power of two sized memory blocks for communication.
Ensure the sizes of memory blocks used for communication are a power of two. This makes the
data more cacheable.

Send more data in a smaller number of transfers.

Compute values instead of reading them from memory.
A simple computation is likely to be faster than reading from memory.

Do serial computations on the application processors.
Application processors are optimized for low latency tasks.

Use clEnqueueFillBuffer() to fill buffers.
The Mali OpenCL driver contains an optimized implementation of clEnqueueFillBuffer().
Use in place of manually implementing a buffer fill in your application.

Use clEnqueueFillImage() to fill images.
The Mali OpenCL driver contains an optimized implementation of clEnqueueFillImage().
Use this in place of manually implementing an image fill in your application.

9 OpenCL optimizations list
9.5 Reducing the effect of serial computations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-84

Non-Confidential

9.6 Mali™ Midgard GPU specific optimizations
Arm recommends the following Mali Midgard GPU specific optimizations.

Ensure that the kernels exit at the same time

Branches are computationally cheap on Mali Midgard GPUs. This means you can use loops in
kernels without any performance impact.

Your kernels can include different code segments but try to ensure the kernels exit at the same
time.

A workaround to this is to use a bucket algorithm.

Make your kernel code as simple as possible

This assists the auto-vectorization process.

Using loops and branches might make auto-vectorization more difficult.

Use vector operations in kernel code

Use vector operations in kernel code to help the compiler to map them to vector instructions.

Vectorize your code

Mali Midgard GPUs perform computation with vectors. These enable you to perform multiple
operations per instruction.

Vectorizing your code makes the best use of the Mali Midgard GPU hardware so ensure that you
vectorize your code for maximum performance.

Mali Midgard GPUs contain 128-bit wide vector registers.
 Note

The Midgard compiler can auto-vectorize some scalar code.

Vectorize incrementally

Vectorize in incremental steps. For example, start processing one pixel at a time, then two, then
four.

Avoid processing single values
Avoid writing kernels that operate on single bytes or other small values. Write kernels that work
on vectors.

Use 128-bit vectors

Vector sizes of 128-bits are optimal. Vector sizes greater than 128-bits are broken into 128-bit
parts and operated on separately. For example, adding two 256-bit vectors takes twice as long as
adding two 128-bit vectors. You can use vector sizes less than 128 bits without issue.

The disadvantage of using vectors greater than 128 bits is that they can increase code size.
Increased code size uses more instruction cache space and this can reduce performance.

9 OpenCL optimizations list
9.6 Mali™ Midgard GPU specific optimizations

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

9-85

Non-Confidential

Chapter 10
Kernel auto-vectorizer and unroller

This chapter describes the kernel auto-vectorizer and unroller.

It contains the following sections:
• 10.1 About the kernel auto-vectorizer and unroller on page 10-87.
• 10.2 Kernel auto-vectorizer options on page 10-88.
• 10.3 Kernel unroller options on page 10-89.
• 10.4 The dimension interchange transformation on page 10-90.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

10-86

Non-Confidential

10.1 About the kernel auto-vectorizer and unroller
The OpenCL compiler includes a kernel auto-vectorizer and a kernel unroller. These features are enabled
by default.

The kernel auto-vectorizer takes existing code and transforms it into vector code.

The unroller merges work-items by unrolling the bodies of the kernels.

If these operations are possible, they can provide substantial performance gains.

There are several options to control the auto-vectorizer and unroller. The following table shows the basic
options.

Table 10-1 Kernel auto-vectorizer and unroller options

Option Description

no option Kernel unroller and vectorizer enabled, with conservative heuristics.

-fno-kernel-vectorizer Disable the kernel vectorizer.

-fno-kernel-unroller Disable the kernel unroller.

-fkernel-vectorizer Enable aggressive heuristics for the kernel vectorizer.

-fkernel-unroller Enable aggressive heuristics for the kernel unroller.

 Note

The kernel auto-vectorizer performs a code transformation. For the transformation to be possible, several
conditions must be met:
• The enqueued NDRange must be a multiple of the vectorization factor.
• Barriers are not permitted in the kernel.
• Thread-divergent code is not permitted in the kernel.
• Global offsets are not permitted in the enqueued NDRange.

10 Kernel auto-vectorizer and unroller
10.1 About the kernel auto-vectorizer and unroller

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

10-87

Non-Confidential

10.2 Kernel auto-vectorizer options
You can optionally use the dimension and factor parameters to control the behavior of the auto-
vectorizer.

This section contains the following subsections:
• 10.2.1 Kernel auto-vectorizer command and parameters on page 10-88.
• 10.2.2 Kernel auto-vectorizer command examples on page 10-88.

10.2.1 Kernel auto-vectorizer command and parameters

The format of the kernel auto-vectorizer command is:

-fkernel-vectorizer= <dimension><factor>

The parameters are:

dimension This selects the dimension along which to vectorize.
factor This is the number of neighboring work-items that are merged to vectorize.

This must be one of the values 2, 4, 8, or 16. Other values are invalid.

The vectorizer works by merging consecutive work-items. The number of work-items enqueued is
reduced by the vectorization factor.

For example, in a one-dimensional NDRange, work-items have the local-IDs 0, 1, 2, 3, 4, 5...

Vectorizing by a factor of four merges work-items in groups of four. First work-items 0, 1, 2, and 3, then
work-items 4, 5, 6, and 7 going upwards in groups of four until the end of the NDRange.

In a two-dimensional NDRange, the work-items have local-IDs such as (0,0), (0,1), (0,2)..., (1,0), (1,1),
(1,2)... where (x,y) is showing (global_id(0), global_id(1)).

The vectorizer can vectorize along dimension 0 and merge work-items (0,0), (1,0)...

Alternatively it can vectorize along dimension 1 and merge work-items (0,0), (0,1)...

10.2.2 Kernel auto-vectorizer command examples

Examples of auto-vectorizer commands.

The following table shows examples of auto-vectorizer commands.

Table 10-2 Kernel auto-vectorizer command examples

Example Description

-fkernel-vectorizer Enable the vectorizer, use heuristics for both dimension and factor.

-fkernel-vectorizer=x4 Enable the vectorizer, use dimension 0, use factor 4.

-fkernel-vectorizer=z2 Enable the vectorizer, use dimension 2, use factor 2.

-fkernel-vectorizer=x Enable the vectorizer, use heuristics for the factor, use dimension 0.

-fkernel-vectorizer=2 Enable the vectorizer, use heuristics for the dimension, use factor 2.

10 Kernel auto-vectorizer and unroller
10.2 Kernel auto-vectorizer options

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

10-88

Non-Confidential

10.3 Kernel unroller options
You can optionally use additional parameters to control the behavior of the kernel unroller.

This section contains the following subsections:
• 10.3.1 Kernel unroller command and parameters on page 10-89.
• 10.3.2 Kernel unroller command examples on page 10-89.

10.3.1 Kernel unroller command and parameters

The format of the kernel unroller command is:

-fkernel-unroller= <dimension><factor>

The parameters are:

dimension This selects the dimension along which to unroll.
factor This is the number of neighboring work-items that are merged.

The performance gain from unrolling depends on your kernel and the unrolling factor, so experiment to
see what suits your kernel. It is typically best to keep the unroll factor at eight or below.

10.3.2 Kernel unroller command examples

Examples of kernel unroller commands.

The following table shows examples of kernel unroller commands.

Table 10-3 Kernel unroller command examples

Example Description

-fkernel-unroller Enable the unroller, use heuristics for both dimension and factor.

-fkernel-unroller=x4 Enable the unroller, use dimension 0, use factor 4.

-fkernel-unroller=z2 Enable the unroller, use dimension 2, use factor 2.

-fkernel-unroller=x Enable the unroller, use heuristics for the factor, use dimension 0.

-fkernel-unroller=2 Enable the unroller, use heuristics for the dimension, use factor 2.

10 Kernel auto-vectorizer and unroller
10.3 Kernel unroller options

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

10-89

Non-Confidential

10.4 The dimension interchange transformation
The dimension interchange transformation swaps the dimensions of a work-group. This transformation
can improve cache locality and improve performance.

Dimension interchange is applied to kernels with the following annotation:
• __attribute__ ((annotate("interchange")))

This interchanges dimensions 0 and 1.
• __attribute__ ((annotate("interchange<dim0><dim1>")))

This interchanges dimensions dim0 and dim1, where <dim0> and <dim1> can be 0, 1 or 2.

You can disable dimension interchange with the following option:

-fno-dim-interchange

There are no parameters.

10 Kernel auto-vectorizer and unroller
10.4 The dimension interchange transformation

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

10-90

Non-Confidential

Appendix A
OpenCL data types

This appendix describes OpenCL data types.

It contains the following sections:
• A.1 About OpenCL data types on page Appx-A-92.
• A.2 OpenCL data type lists on page Appx-A-93.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-A-91

Non-Confidential

A.1 About OpenCL data types
This appendix lists the data types available in OpenCL. Most of these types are all natively supported by
the Mali GPU hardware.

The OpenCL types are used in OpenCL C. The API types are equivalents for use in your application. Use
these to ensure that the correct data is used, and it is aligned on 128-bit or 16-byte boundaries.

Up to 32-bits per chunk can work as vectors on Mali Midgard GPUs. This means you can use char,
short, and half in vectors.

 Note

Mali Midgard GPUs use 128-bit vectors.

Converting between vector types has a low performance cost on Mali GPUs. For example, converting a
vector of 8-bit values to 16-bit values:

ushort8 a; uchar8 b;
a = convert_ushort8(b);

A OpenCL data types
A.1 About OpenCL data types

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-A-92

Non-Confidential

A.2 OpenCL data type lists
List of OpenCL data types organized by type.

This section contains the following subsections:
• A.2.1 Built-in scalar data types on page Appx-A-93.
• A.2.2 Built-in vector data types on page Appx-A-93.
• A.2.3 Other built-in data types on page Appx-A-94.
• A.2.4 Reserved data types on page Appx-A-94.

A.2.1 Built-in scalar data types

List of built-in scalar data types.

Table A-1 Built-in scalar data types

Types for OpenCL kernels Types for application Description

bool - true (1) or false (0)

char cl_char 8-bit signed

unsigned char, uchar cl_uchar 8-bit unsigned

short cl_short 16-bit signed

unsigned short, ushort cl_ushort 16-bit unsigned

int cl_int 32-bit signed

unsigned int, uint cl_uint 32-bit unsigned

long cl_long 64-bit signed

unsigned long, ulong cl_ulong 64-bit unsigned

float cl_float 32-bit float

half cl_half 16-bit float, for storage only

size_t - unsigned integer, with size matching CL_DEVICE_ADDRESS_BITS

ptrdiff_t - unsigned integer, with size matching CL_DEVICE_ADDRESS_BITS

intptr_t - signed integer, with size matching CL_DEVICE_ADDRESS_BITS

uintptr_t - unsigned integer, with size matching CL_DEVICE_ADDRESS_BITS

void void void

 Note

You can query CL_DEVICE_ADDRESS_BITS with clGetDeviceInfo(). The value returned might be
different for 32-bit and 64-bit host applications, even on the same Mali GPU.

A.2.2 Built-in vector data types

List of built-in vector data types where n = 2, 3, 4, 8, or 16.

A OpenCL data types
A.2 OpenCL data type lists

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-A-93

Non-Confidential

Table A-2 Built-in vector data types

OpenCL Type API type for application Description

charn cl_charn 8-bit signed

ucharn cl_ucharn 8-bit unsigned

shortn cl_shortn 16-bit signed

ushortn cl_ushortn 16-bit unsigned

intn cl_intn 32-bit signed

uintn cl_uintn 32-bit unsigned

longn cl_longn 64-bit signed

ulongn cl_ulongn 64-bit unsigned

floatn cl_floatn 32-bit float

A.2.3 Other built-in data types

List of other built-in data types.

Table A-3 Other built-in data types

OpenCL Type Description

image2d_t 2D image handle

image3d_t 3D image handle

image2d_array_t 2D image array

image1d_t 1D image handle

image1d_buffer_t 1D image created from buffer

image1d_array_t 1D image array

sampler_t Sampler handle

event_t Event handle

A.2.4 Reserved data types

List of reserved data types. Do not use these in your OpenCL kernel code.

Table A-4 Reserved data types

OpenCL Type Description

booln Boolean vector.

halfn 16-bit float, vector.

quad, quadn 128-bit float, scalar, and vector.

complex half, complex halfn Complex 16-bit float, scalar, and vector.

imaginary half, imaginary halfn Imaginary 16-bit complex, scalar, and vector.

complex float, complex floatn, Complex 32-bit float, scalar, and vector.

imaginary float, imaginary floatn Imaginary 32-bit float, scalar, and vector.

complex double, complex doublen Complex 64-bit float, scalar, and vector.

A OpenCL data types
A.2 OpenCL data type lists

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-A-94

Non-Confidential

Table A-4 Reserved data types (continued)

OpenCL Type Description

imaginary double, imaginary doublen Imaginary 64-bit float, scalar, and vector.

complex quad, complex quadn Complex 128-bit float, scalar, and vector.

imaginary quad, imaginary quadn Imaginary 128-bit float, scalar, and vector.

floatnxm n*m matrix of 32-bit floats.

doublenxm n*m matrix of 64-bit floats.

long double, long doublen 64-bit - 128-bit float, scalar, and vector.

long long, long longnb 128-bit signed int, scalar, and vector.

unsigned long long, ulong long, ulonglongn 128-bit unsigned int, scalar, and vector.

 Note

• The half and half vector data types can be used with the cl_khr_fp16 extension.
• The double and double vector data types can be used with the cl_khr_fp64 extension on Mali

Midgard GPUs.

A OpenCL data types
A.2 OpenCL data type lists

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-A-95

Non-Confidential

Appendix B
OpenCL built-in functions

This appendix lists the OpenCL built-in functions.

It contains the following sections:
• B.1 Work-item functions on page Appx-B-97.
• B.2 Math functions on page Appx-B-98.
• B.3 half_ and native_ math functions on page Appx-B-100.
• B.4 Integer functions on page Appx-B-101.
• B.5 Common functions on page Appx-B-102.
• B.6 Geometric functions on page Appx-B-103.
• B.7 Relational functions on page Appx-B-104.
• B.8 Vector data load and store functions on page Appx-B-105.
• B.9 Synchronization functions on page Appx-B-106.
• B.10 Asynchronous copy functions on page Appx-B-107.
• B.11 Atomic functions on page Appx-B-108.
• B.12 Miscellaneous vector functions on page Appx-B-109.
• B.13 Image read and write functions on page Appx-B-110.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-96

Non-Confidential

B.1 Work-item functions
List of work-item functions.

The work-item functions are:
• get_work_dim()
• get_global_size()
• get_global_id()
• get_local_size()
• get_local_id()
• get_num_groups()
• get_group_id()
• get_global_offset()

B OpenCL built-in functions
B.1 Work-item functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-97

Non-Confidential

B.2 Math functions
List of math functions.

Table B-1 Math functions

Function Function Function

fabs() acos() acosh()

ceil() acospi() asinh()

fdim() asin() atanh()

fmax() asinpi() copysign()

fmin() atan() erfc()

mad() atan2() erf()

maxmag() atanpi() fmod()

minmag() atan2pi() fract()

rint() cbrt() frexp()

round() cos() hypot()

trunc() cosh() ilogb()

- cospi() ldexp()

- exp() lgamma()

- exp2() lgamma_r()

- exp10() log()

- expml() log10()

- floor() log1p()

- fma() logb()

- log2() modf()

- pow() nan()

- pown() nextafter()

- powr() remainder()

- rsqrt() remquo()

- sin() rootn()

- sincos() sinh()

- sinpi() tan()

- sqrt() tanh()

- - tanpi()

- - tgamma()

 Note

The ulp error of lgamma() is 16ulp unless the correctly rounded result is less than one. If the correctly
rounded result is less than one, lgamma() is also less than one. The error of lgamma_r() is the same as

B OpenCL built-in functions
B.2 Math functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-98

Non-Confidential

lgamma(). lgamma() is logarithmic, so if the correctly rounded result is small, the precision of the result
is not important.

B OpenCL built-in functions
B.2 Math functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-99

Non-Confidential

B.3 half_ and native_ math functions
List of half_ and native_ math functions. The half_ and native_ variants of the math functions are
provided for portability.

Table B-2 half_ and native_ math functions

half_ functions native_ functions

half_cos() native_cos()

half_divide() native_divide()

half_exp() native_exp()

half_exp2() native_exp2()

half_exp10() native_exp10()

half_log() native_log()

half_log2() native_log2()

half_log10() native_log10()

half_powr() native_powr()

half_recip() native_recip()

half_rsqrt() native_rsqrt()

half_sin() native_sin()

half_sqrt() native_sqrt()

half_tan() native_tan()

Mali GPUs implement most of the full precision variants of the half_ and native_ math functions at
full speed so you are not required to use the half_ and native_ functions.

 Note

On Mali GPUs, the following functions are faster than the full precision versions:
• native_sin().
• native_cos().
• native_tan().
• native_divide().
• native_exp().
• native_sqrt().
• half_sqrt().

Related references
B.2 Math functions on page Appx-B-98

B OpenCL built-in functions
B.3 half_ and native_ math functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-100

Non-Confidential

B.4 Integer functions
List of integer functions.

Table B-3 Integer functions

Function Notes

abs()

abs_diff()

add_sat()

hadd()

rhadd()

clz()

max()

min()

sub_sat()

mad24() Identical to 32-bit multiply accumulate.

mul24() Identical to 32-bit multiplies.

clamp()

mad_hi()

mul_hi()

mad_sat()

rotate()

upsample()

popcount()

B OpenCL built-in functions
B.4 Integer functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-101

Non-Confidential

B.5 Common functions
List of common functions.

Table B-4 Common functions

Function

max()

min()

step()

clamp()

degrees()

mix()

radians()

smoothstep()

sign()

B OpenCL built-in functions
B.5 Common functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-102

Non-Confidential

B.6 Geometric functions
List of geometric functions.

Table B-5 Geometric functions

Function

dot()

normalize()

fast_distance()

fast_length()

fast_normalize()

cross()

distance()

length()

B OpenCL built-in functions
B.6 Geometric functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-103

Non-Confidential

B.7 Relational functions
List of relational functions.

Table B-6 Relational functions

Function

any()

all()

bitselect()

select()

isequal()

isnotequal()

isgreater()

isgreaterequal()

isless()

islessequal()

islessgreater()

isfinite()

isinf()

isnan()

isnormal()

isordered()

isunordered()

signbit()

B OpenCL built-in functions
B.7 Relational functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-104

Non-Confidential

B.8 Vector data load and store functions
List of vector data load and store functions.

Table B-7 Vector data load and store functions

Function

vload()

vstore()

vload_half()

vstore_half()

vloada_half()

vstorea_half()

B OpenCL built-in functions
B.8 Vector data load and store functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-105

Non-Confidential

B.9 Synchronization functions
List of synchronization functions.

The barrier() function has no speed rating because it must wait for multiple work-items to complete.
The time this takes determines the length of time the function takes in your application. This also
depends on several factors such as:
• The number of work-items in the work-groups being synchronized.
• How much the work-items diverge.

Table B-8 Synchronization functions

Function

barrier()

mem_fence()

read_mem_fence()

write_mem_fence()

 Note

Arm recommends that you avoid using barriers, especially in small kernels.

B OpenCL built-in functions
B.9 Synchronization functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-106

Non-Confidential

B.10 Asynchronous copy functions
List of asynchronous copy functions. These have no speed rating because the copy speed depends on the
size of the data copied.

Table B-9 Asynchronous copy functions

Function

async_work_group_copy()

async_work_group_strided_copy()

wait_group_events()

prefetch()

B OpenCL built-in functions
B.10 Asynchronous copy functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-107

Non-Confidential

B.11 Atomic functions
List of atomic functions.

Table B-10 Atomic functions

Function

atomic_add()

atomic_sub()

atomic_xchg()

atomic_inc()

atomic_dec()

atomic_cmpxchg()

atomic_min()

atomic_max()

atomic_and()

atomic_or()

atomic_xor()

B OpenCL built-in functions
B.11 Atomic functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-108

Non-Confidential

B.12 Miscellaneous vector functions
List of miscellaneous vector functions.

Table B-11 Miscellaneous vector functions

Function

vec_step()

shuffle()

shuffle2()

B OpenCL built-in functions
B.12 Miscellaneous vector functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-109

Non-Confidential

B.13 Image read and write functions
List of image read and write functions.

Table B-12 Image read and write functions

Function

read_imagef()

read_imagei()

read_imageui()

write_imagef()

write_imagei()

write_imageui()

get_image_width()

get_image_height()

get_image_depth()

get_image_channel_data_type()

get_image_channel_order()

get_image_dim()

B OpenCL built-in functions
B.13 Image read and write functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-B-110

Non-Confidential

Appendix C
OpenCL extensions

This appendix describes the OpenCL extensions that the Mali GPU OpenCL driver supports.

It contains the following section:
• C.1 OpenCL extensions supported by the Mali™ GPU OpenCL driver on page Appx-C-112.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-C-111

Non-Confidential

C.1 OpenCL extensions supported by the Mali™ GPU OpenCL driver
The Mali GPU OpenCL driver supports several extensions on Mali GPUs.

The supported extensions are the following:

• cl_khr_byte_addressable_store.
• cl_khr_create_command_queue.
• cl_khr_egl_image.
• cl_khr_fp16.
• cl_khr_global_int32_base_atomics.
• cl_khr_global_int32_extended_atomics.
• cl_khr_icd.
• cl_khr_image2d_from_buffer.
• cl_khr_int64_base_atomics.
• cl_khr_int64_extended_atomics.
• cl_khr_local_int32_base_atomics.
• cl_khr_local_int32_extended_atomics.
• cl_khr_3d_image_writes.
• cl_khr_fp64.

The Mali GPU OpenCL driver also supports the following optional Arm extensions:
• cl_arm_core_id.
• cl_arm_import_memory.
• cl_arm_import_memory_host.
• cl_arm_import_memory_dma_buf.
• cl_arm_non_uniform_work_group_size.
• cl_arm_printf.
• cl_arm_thread_limit_hint.

Related information
The Khronos Group

C OpenCL extensions
C.1 OpenCL extensions supported by the Mali™ GPU OpenCL driver

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-C-112

Non-Confidential

http://www.khronos.org

Appendix D
Using OpenCL extensions

This appendix provides usage notes on specific OpenCL extensions.

It contains the following sections:
• D.1 Inter-operation with EGL on page Appx-D-114.
• D.2 The cl_arm_printf extension on page Appx-D-118.
• D.3 The cl_arm_import_memory extensions on page Appx-D-120.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-113

Non-Confidential

D.1 Inter-operation with EGL
The DDK supports the use of EGL images for sharing data between different Khronos APIs, such as
OpenGL and OpenCL.

This section contains the following subsections:
• D.1.1 EGL images on page Appx-D-114.
• D.1.2 ANDROID_image_native_buffer on page Appx-D-116.
• D.1.3 EGL_EXT_image_dma_buf_import on page Appx-D-117.

D.1.1 EGL images

The EGL_KHR_image_base EGL extension provides the basic mechanism for sharing EGL images.

The EGL_KHR_image_base EGL extension defines two entry points for creating and destroying EGL
images:

EGLImageKHR eglCreateImageKHR(
 EGLDisplay dpy,
 EGLContext ctx,
 EGLenum target,
 EGLClientBuffer buffer,
 const EGLint *attrib_list)

EGLBoolean eglDestroyImageKHR(
 EGLDisplay dpy,
 EGLImageKHR image)

The eglCreateImageKHR call returns an opaque handle that the Khronos APIs use for referencing EGL
images. Nothing in the extension specification precludes an EGL image from being the storage for the
content that is to be shared, but the actual role of EGL images in the DDK is to serve only as references
to memory allocations made by a low level API. There are two low level APIs for memory allocation
that the DDK actively supports:
• Gralloc on Android, which is covered in ANDROID_image_native_buffer subsection.
• dma_buf on Linux, covered in EGL_EXT_image_dma_buf_import subsection.

The availability of the memory allocation methods depends on the platform, the EGL_KHR_image_base
extension relies on additional extensions to define platform-specific values for the target and buffer
parameters on the eglCreateImageKHR call.

The EGL_KHR_image_base extension only states that the target parameter is a unique number
identifying the content source. The buffer parameter is an extension-specific handle that is cast to
EGLClientBuffer, a void pointer on the official Khronos EGL headers.

Preserving EGL images for portability

Applications needing the EGL image contents to be preserved must set EGL_IMAGE_PRESERVED_KHR to
EGL_TRUE rather than relying on the default value.

The only attribute defined by the EGL_KHR_image_base extension is EGL_IMAGE_PRESERVED_KHR, which
is a boolean defining whether the image contents are undefined after the eglCreateImageKHR call
returns. The default value for EGL_IMAGE_PRESERVED_KHR is EGL_FALSE, meaning that undefined
contents are acceptable unless the application explicitly sets the value to EGL_TRUE.

Failing to set EGL_IMAGE_PRESERVED_KHR to EGL_TRUE can lead to applications relying on undefined
behavior, that is subject to change between Mali DDK releases.

OpenCL support for EGL images

There are two OpenCL mechanisms for supporting data sharing with other APIs from the Khronos
ecosystem.

The two OpenCL mechanisms for supporting data sharing with other APIs from the Khronos ecosystem
are:

D Using OpenCL extensions
D.1 Inter-operation with EGL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-114

Non-Confidential

cl_khr_egl_image
Mali DDK supports this API for importing EGL images.

cl_khr_gl_sharing
Mali DDK does not support this API for importing OpenGL or OpenGL ES objects such as
vertex buffers, index buffers, textures, or render buffer objects. This API does not add any
substantial benefit to the EGL image mechanism and is tightly coupled to the OpenGL
semantics.

Because customers can implement all their relevant use cases with the cl_khr_egl_image path,
cl_khr_gl_sharing extension has been unsupported on the Mali DDK since the r18p0-01rel0 release for
Midgard.

The supported cl_khr_egl_image OpenCL extension defines an entry point for creating cl_mem objects
out of EGL images:

cl_mem clCreateFromEGLImageKHR (
 cl_context context,
 CLeglDisplayKHR display,
 CLeglImageKHR image,
 cl_mem_flags flags,
 const cl_egl_image_properties_khr * properties,
 cl_int * errcode_ret)

The image parameter is an EGL image handle that is returned by eglCreateImageKHR. The flags are a
subset of the flags that are accepted by clCreateBuffer, where the accepted flags are only
CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE. The list of properties is present
on the extension for allowing future additions, but no such properties currently exist.

Synchronization when using the cl_khr_egl_image extension

Applications are responsible for flushing the work when one Khronos API consumes the output from
another.

For example, if an application produces an OpenGL ES render that OpenCL has to consume, then it is
the responsibility of the application to issue a glFinish before the OpenCL access happens.

The same application responsibility is also required when OpenCL outputs data that OpenGL is going to
use. For example, an OpenGL ES rendering application that consumes some OpenCL output needs to
ensure that it calls clFinish or clWaitForEvents to guarantee that the data is available for consumption
before using OpenGL ES to access it.

In addition to flushing, there are GPU architectures that require the EGL images that are consumed or
produced by OpenCL to be transferred between different device memories. That kind of architecture is
common on discrete graphics cards for desktop PCs. The Mali implementations, on the other hand, uses
the same main memory as the application processor, rather than a dedicated memory. Therefore there is
no requirement to transfer data between the application processor and any dedicated GPU memory.

The OpenCL API delegates to the applications to choose the times at which the transfers happen by
explicitly signaling when the accesses start and end.

The start and end of the EGL image accesses by OpenCL applications must be signaled by enqueuing
clEnqueueAcquireEGLObjectsKHR and clEnqueueReleaseEGLObjectsKHR commands on an OpenCL
command queue before and after a kernel accesses the EGL image data. An OpenCL kernel that uses an
EGL image that it has not previously acquired gets an error at kernel enqueue time, for ensuring
portability and compliance with the OpenCL standard, even on Mali implementations.

EGL images limitation

It is not possible to query an EGL image for its format or dimensions through the EGL API. The Mali
OpenCL driver, on the other hand, allows querying for the format and dimensions of an OpenCL image
created out of an EGL image.

However, the reported OpenCL format is only meaningful for formats that have a mapping between the
EGL image source format and a format defined in the OpenCL specification.

D Using OpenCL extensions
D.1 Inter-operation with EGL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-115

Non-Confidential

A second limitation is that OpenCL images created out of EGL images cannot be memory mapped by
means of clEnqueueImageMap and clEnqueueUnmapMemObject. The Khronos specifications do not
explicitly say whether the memory mapping must be supported for this kind of OpenCL images. The
DDK does not support memory mapping.

D.1.2 ANDROID_image_native_buffer

The Android graphics stack builds on top of the Gralloc memory allocation library. Processes can share
the handles that reference the Gralloc allocations. This interprocess shareability is key for supporting
common use cases such as a camera driver sharing data with a rendering application.

SurfaceFlinger, the window composition service, can run on its own process and consume data from
rendering applications because the Gralloc allocations are accessible across processes, making Android a
very modular system.

A Gralloc allocation consists only of a chunk of memory and lacks any internal state describing what is
stored on the buffer or any hint on how the buffer is used.

The next level of abstraction in the Android graphics stack is the user interface (UI) library, where an
ANativeWindowBuffer struct is defined by putting together a Gralloc buffer with a description of its
content and usage.

The ANativeBuffer struct is wrapped around a GraphicBuffer object that adds some convenient
methods to the plain struct.

The application must create a Gralloc buffer by instantiating a GraphicBuffer, as in the following code
example:

GraphicBuffer* graphicBuffer =
 new GraphicBuffer(
 width,
 height,
 (PixelFormat)pixel_format,
 GraphicBuffer::USAGE_HW_TEXTURE |
 GraphicBuffer::USAGE_HW_RENDER |
 GraphicBuffer::USAGE_SW_WRITE_RARELY |
 GraphicBuffer::USAGE_SW_READ_RARELY);

A pointer to a GraphicBuffer, the wrapper for an ANativeWindowBuffer, that is created in that way, can
be used for specifying the image storage that an EGL image references to. In order to allow the creation
of an EGL image out of an ANativeWindowBuffer pointer, Google requires that all Android vendors
support the ANDROID_image_native_buffer extension, sitting on top of EGL_KHR_image_base. The
ANDROID_image_native_buffer extension defines values for the eglCreateImageKHR parameters that
must be supported on Android. When the target parameter is EGL_NATIVE_BUFFER_ANDROID then the
buffer parameter can be an ANativeWindowBuffer pointer cast to EGLClientBuffer. To create an EGL
image for the GraphicBuffer instance from the previous example, invoke eglCreateImageKHR as:

EGLImageKHR eglImage = eglCreateImageKHR(
 display,
 contenxt,
 EGL_NATIVE_BUFFER_ANDROID,
 graphicBuffer->getNativeBuffer(),
 NULL);

The resulting EGL image can be used in OpenGL and OpenCL.

OpenCL supported formats

Shareable buffer formats that are supported for OpenCL.

The list of ANativeWindowBuffer formats that are supported for sharing data between OpenGL and
OpenCL are as follows:

• HAL_PIXEL_FORMAT_RGBA_8888
• HAL_PIXEL_FORMAT_BGRA_8888
• HAL_PIXEL_FORMAT_RGB_565

D Using OpenCL extensions
D.1 Inter-operation with EGL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-116

Non-Confidential

• HAL_PIXEL_FORMAT_RGBX_8888
• HAL_PIXEL_FORMAT_YV12

OpenCL image writing is only allowed for:
• HAL_PIXEL_FORMAT_RGBA_8888
• HAL_PIXEL_FORMAT_BGRA_8888
• HAL_PIXEL_FORMAT_RGB_565
• HAL_PIXEL_FORMAT_RGBX_8888

The result of writing to any format not listed here is undefined.

As a courtesy to OpenCL developers, the Mali OpenCL driver returns informative error codes on the
clCreateFromEGLImageKHR calls:

CL_IMGE_FORMAT_NOT_SUPPORTED
If the format is not supported by the OpenCL driver.

CL_INVALID_OPERATION
If the format is known but the flags are invalid, because the CL_MEM_WRITE_ONLY or
CL_MEM_READ_WRITE flags are specified for a format for which writing is not supported.

D.1.3 EGL_EXT_image_dma_buf_import

The DDK supports the EGL_EXT_image_dma_buf_import extension on all the Linux variants and also on
Android. This extension allows applications to import images allocated through the dma_buf low level
API.

The extension defines acceptable values for the target and buffer parameters from the
eglCreateImageKHR call:

target
Target must be EGL_LINUX_DMA_BUF_EXT.

buffer
Buffer must be NULL.

Additional properties also defined by the extension are used for telling the dma_buf file descriptors,
format, width, and height.

D Using OpenCL extensions
D.1 Inter-operation with EGL

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-117

Non-Confidential

D.2 The cl_arm_printf extension
The OpenCL extension cl_arm_printf enables you to use the printf() function in your kernels.

 Note

the printf() function is included in OpenCL 1.2.

This section contains the following subsections:
• D.2.1 About the cl_arm_printf extension on page Appx-D-118.
• D.2.2 cl_arm_printf example on page Appx-D-118.

D.2.1 About the cl_arm_printf extension

The implementation of the cl_arm_printf extension uses a callback function that delivers the output
data to the host from the device. You must write this callback function.

You must register the callback function as a property of the context when the OpenCL context is created.
It is called when an OpenCL kernel completes. If the callback is not registered, the printf() output is
still produced but it is not available.

Messages are stored atomically and complete in the output buffer. The buffer is implemented as a
circular buffer so if the output is longer than the buffer size, the output wraps around on itself. In this
case, only the last part of the output is available.

You can configure the size of the buffer. The default size is 1MB.

Related information
http://www.khronos.org

D.2.2 cl_arm_printf example

The example code shows the cl_arm_printf extension in use. It shows how to use the buffer-size
property and the callback property that is required to get output.

The example code prints Hello, World! on the console:

#include <stdio.h>
#include <CL/cl.h>
#include <CL/cl_ext.h>
const char *opencl =
 "__kernel void hello()\n"
 "{\n"
 " printf(\"Hello, World!\\n\");\n"
 "}\n";

void callback(const char *buffer, size_t length, size_t final, void *user_data)
{
 fwrite(buffer, 1, length, stdout);
}

int main()
{
 cl_platform_id platform;
 cl_device_id device;
 cl_context context;
 cl_context_properties context_properties[] =
 {
 CL_CONTEXT_PLATFORM, 0,
 CL_PRINTF_CALLBACK_ARM, (cl_context_properties)callback,
 CL_PRINTF_BUFFERSIZE_ARM, 0x1000,
 0
 };
 cl_command_queue queue;
 cl_program program;
 cl_kernel kernel;

 clGetPlatformIDs(1, &platform, NULL);
 context_properties[1] = (cl_context_properties)platform;
 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
 context = clCreateContext(context_properties, 1, &device, NULL, NULL, NULL);

D Using OpenCL extensions
D.2 The cl_arm_printf extension

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-118

Non-Confidential

http://www.khronos.org

 queue = clCreateCommandQueue(context, device, 0, NULL);

 program = clCreateProgramWithSource(context, 1, &opencl, NULL, NULL);
 clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
 kernel = clCreateKernel(program, "hello", NULL);
 clEnqueueTask(queue, kernel, 0, NULL, NULL);

 clFinish(queue);
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseCommandQueue(queue);
 clReleaseContext(context);

 return 0;
}

D Using OpenCL extensions
D.2 The cl_arm_printf extension

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-119

Non-Confidential

D.3 The cl_arm_import_memory extensions
The cl_arm_import_memory extensions enable you to directly import memory into OpenCL using the
clImportMemoryARM() function.

The extensions cl_arm_import_memory, cl_arm_import_memory_host, and
cl_arm_import_memory_dma_buf enable OpenCL kernels to access imported memory buffers and
process images created from imported buffers.

The Mali Driver Development Kit includes tests that demonstrate how you can use these features.
 Note

For more information about these extensions, see the Khronos extension specifications at https://
www.khronos.org/.

D Using OpenCL extensions
D.3 The cl_arm_import_memory extensions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-D-120

Non-Confidential

https://www.khronos.org/
https://www.khronos.org/

Appendix E
OpenCL 1.2

This appendix describes some of the important changes to the Mali OpenCL driver in OpenCL 1.2.

It contains the following sections:
• E.1 OpenCL 1.2 compiler options on page Appx-E-122.
• E.2 OpenCL 1.2 compiler parameters on page Appx-E-123.
• E.3 OpenCL 1.2 functions on page Appx-E-124.
• E.4 Functions deprecated in OpenCL 1.2 on page Appx-E-125.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-E-121

Non-Confidential

E.1 OpenCL 1.2 compiler options
OpenCL 1.2 adds options for offline and online compilation.

The following options are added in OpenCL 1.2:

Online compilation
In OpenCL 1.2, you can compile and link separate OpenCL files during online compilation. Any
compiler flags you specify for compilation are used for frontend and middle-level optimizations.
These flags are discarded during backend compilation and linking. You can also specify a
limited list of compiler flags during the linking phase. These flags are forwarded to the compiler
backend after linking.
You can supply different flags during the compilation of different modules because they only
affect the frontend and mid-level transformation of separate modules. Later in the build process,
the commonly linked module overrides these flags with the flags passed during the linking
phase, to the overall linking program. It is safe to mix modules that are compiled separately with
different various options, because only a limited set of linking flags are applied to the overall
program.
The full set of flags can only affect early compilation steps. For example, if -cl-opt-disable
is passed, it only disables the early optimization phases. During the linking phase, the -cl-opt-
disable option is ignored and the backend optimizes the module. -cl-opt-disable is ignored
because it is not a permitted link-time option.

Offline compilation
For customers with access to the mali_clcc offline compiler, in OpenCL 1.2, the compilation
and linking steps are not available separately on the command line. Compilation and linking
occur in one stage, with the source files you specify on the command line.
You can specify several build options together with the source files. These flags are applied to
all files and all compilation phases from the frontend to the backend, to produce the final binary.
For example:

mali_clcc -cl-opt-disable file1.cl file2.cl -o prog.bin

E OpenCL 1.2
E.1 OpenCL 1.2 compiler options

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-E-122

Non-Confidential

E.2 OpenCL 1.2 compiler parameters
OpenCL 1.2 adds a number of compiler parameters.

OpenCL 1.2 includes the following compiler parameters:

-create-library.
The compiler creates a library of compiled binaries.

-enable-link-options.
This enables you to modify the behavior of a library you create with -create-library.

-cl-kernel-arg-info.
This enables the compiler to store information about the arguments of kernels, in the program
executable.

E OpenCL 1.2
E.2 OpenCL 1.2 compiler parameters

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-E-123

Non-Confidential

E.3 OpenCL 1.2 functions
The following API functions are added in OpenCL 1.2.

OpenCL includes the following API functions:

clEnqueueFillBuffer()
Arm recommends you use this function in place of writing your own.

clEnqueueFillImage()
Arm recommends you use this function in place of writing your own.

clCreateImage()
This includes support for 1D and 2D image arrays.

 Note

This function deprecates all previous image creation functions.

clLinkProgram()
Using this typically does not provide much performance benefit in the Mali OpenCL driver.

clCompileProgram()
Using this typically does not provide much performance benefit in the Mali OpenCL driver.

clEnqueueMarkerWithWaitList()

clEnqueueBarrierWithWaitList()

clEnqueueMigrateMemObjects()
The Mali OpenCL driver supports the memory object migration API
clEnqueueMigrateMemObjects(), but this does not provide any benefit because Mali GPUs
use a unified memory architecture.

OpenCL 1.2 includes the following built-in function:

printf()

 Note

The flag CL_MAP_WRITE_INVALIDATE_REGION has no effect in the Mali OpenCL driver.

E OpenCL 1.2
E.3 OpenCL 1.2 functions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-E-124

Non-Confidential

E.4 Functions deprecated in OpenCL 1.2
Several functions are deprecated in OpenCL 1.2 but are still available in the Mali OpenCL driver.

The deprecated functions are:
• clEnqueueMarker()
• clEnqueueBarrier()
• clEnqueueWaitForEvents()
• clCreateImage2D()
• clCreateImage3D()
• clUnloadCompiler()
• clGetExtensionFunctionAddress()

E OpenCL 1.2
E.4 Functions deprecated in OpenCL 1.2

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-E-125

Non-Confidential

Appendix F
Revisions

This appendix contains a list of technical changes made between releases and where they are documented
in this guide.

It contains the following section:
• F.1 Revisions on page Appx-F-127.

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-F-126

Non-Confidential

F.1 Revisions
Technical changes between released issues of this guide.

Table F-1 Issue 0302_00

Change Location Affects

Addition of various optimizations Chapter 9 OpenCL optimizations list
on page 9-75

All.

Addition of Mali Bifrost GPU-specific
optimizations section

Removed in version 3.12 Mali Bifrost GPUs.

Addition of extension
cl_khr_image2d_from_buffer

C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Table F-2 Issue 0303_00

Change Location Affects

Removed extensions:

cl_khr_gl_sharing

cl_khr_egl_event

egl_khr_cl_event

C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Removed section on OpenCL inter-
operation with OpenGL ES

D.1 Inter-operation with EGL
on page Appx-D-114

All.

Removed functions:

clCreateFromGLTexture2D()

clCreateFromGLTexture3D()

E.4 Functions deprecated in OpenCL 1.2
on page Appx-E-125

All.

Table F-3 Issue 0304_00

Change Location Affects

Addition of
cl_arm_import_memory_host
extension

C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Updated the lists of supported extensions. C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Addition of explanation of
cl_arm_import_memory extensions

D.3 The cl_arm_import_memory
extensions on page Appx-D-120

All.

Table F-4 Issue 0305_00

Change Location Affects

Addition of chapter on OpenCL 2.0. - Mali Bifrost GPUs.

Updated the lists of supported extensions. C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

F Revisions
F.1 Revisions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-F-127

Non-Confidential

Table F-5 Issue 0306_00

Change Location Affects

Updated the lists of supported extensions. C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Table F-6 Issue 0307_00

Change Location Affects

Updated the lists of supported extensions. C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Table F-7 Issue 0308_00

Change Location Affects

Minor typographical, grammatical updates.
Minor clarifications. No functional
changes.

Various locations All.

Table F-8 Issue 0309_00

Change Location Affects

Updates to the EGL image support in the
Using OpenCL extensions

D.1 Inter-operation with EGL
on page Appx-D-114

All.

Table F-9 Issue 0310_00

Change Location Affects

Minor clarifications and editorial updates Appendix D Using OpenCL extensions
on page Appx-D-113

All.

Table F-10 Issue 0311_00

Change Location Affects

Updated the lists of supported extensions. C.1 OpenCL extensions supported by the
Mali™ GPU OpenCL driver
on page Appx-C-112

All.

Removed section E.5. - All.

Table F-11 Issue 0312_00

Change Location Affects

Updated the documentation to only support
Midgard.

Various locations. All.

Removed Appendix F OpenCL 2.0. - All.

Removed 9.6 Mali Bifrost GPU specific
optimizations.

- All.

F Revisions
F.1 Revisions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-F-128

Non-Confidential

Table F-12 Issue 0313_00

Change Location Affects

Removed the note about
cl_arm_thread_limit_hint extension.

9.2 Kernel optimizations on page 9-78 All.

Removed the Utgard specific information. Various locations All.

F Revisions
F.1 Revisions

100614_0313_00_en Copyright © 2012, 2013, 2015–2019 Arm Limited or its affiliates. All
rights reserved.

Appx-F-129

Non-Confidential

	Arm® Mali™ Midgard OpenCL Developer Guide
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About Arm® Mali™ GPUs
	1.2 : About OpenCL
	1.3 : About the Mali GPU OpenCL driver and support

	2 : Parallel processing concepts
	2.1 : About parallel processing
	2.2 : Types of parallelism
	2.2.1 : Data parallelism
	2.2.2 : Task parallelism
	2.2.3 : Pipelines

	2.3 : Mixing different types of parallelism
	2.4 : Embarrassingly parallel applications
	2.5 : Limitations of parallel processing and Amdahl's law
	2.6 : Concurrency

	3 : OpenCL concepts
	3.1 : Using OpenCL
	3.2 : OpenCL applications
	3.3 : OpenCL execution model
	3.4 : OpenCL data processing
	3.5 : OpenCL work-groups
	3.6 : OpenCL identifiers
	3.7 : OpenCL memory model
	3.7.1 : OpenCL memory model overview
	3.7.2 : Memory types in OpenCL

	3.8 : Mali™ GPU OpenCL memory model
	3.9 : OpenCL concepts summary

	4 : Developing an OpenCL application
	4.1 : Software and hardware requirements for Mali™ GPU OpenCL development
	4.2 : Development stages for OpenCL

	5 : Execution stages of an OpenCL application
	5.1 : About the execution stages
	5.1.1 : Platform setup
	5.1.2 : Runtime setup

	5.2 : Finding the available compute devices
	5.3 : Initializing and creating OpenCL contexts
	5.4 : Creating a command queue
	5.5 : Creating OpenCL program objects
	5.6 : Building a program executable
	5.7 : Creating kernel and memory objects
	5.7.1 : Creating kernel objects
	5.7.2 : Creating memory objects

	5.8 : Executing the kernel
	5.8.1 : Determining the data dimensions
	5.8.2 : Determining the optimal global work size
	5.8.3 : Determining the local work-group size
	5.8.4 : Enqueuing kernel execution
	5.8.5 : Executing kernels

	5.9 : Reading the results
	5.10 : Cleaning up unused objects

	6 : Converting existing code to OpenCL
	6.1 : Profiling your application
	6.2 : Analyzing code for parallelization
	6.2.1 : About analyzing code for parallelization
	6.2.2 : Finding data parallel operations
	6.2.3 : Finding operations with few dependencies
	6.2.4 : Analyze loops

	6.3 : Parallel processing techniques in OpenCL
	6.3.1 : Use the global ID instead of the loop counter
	Simplified loop example

	6.3.2 : Compute values in a loop with a formula instead of using counters
	6.3.3 : Compute values per frame
	6.3.4 : Perform computations with dependencies in multiple-passes
	6.3.5 : Pre-compute values to remove dependencies
	6.3.6 : Use software pipelining
	6.3.7 : Use task parallelism

	6.4 : Using parallel processing with non-parallelizable code
	6.5 : Dividing data for OpenCL
	6.5.1 : About dividing data for OpenCL
	6.5.2 : Use concurrent data structures
	6.5.3 : Data division examples
	One-dimensional data
	Two-dimensional data
	Three-dimensional data

	7 : Retuning existing OpenCL code
	7.1 : About retuning existing OpenCL code for Mali™ GPUs
	7.2 : Differences between desktop-based architectures and Mali™ GPUs
	7.2.1 : About desktop-based GPU architectures
	7.2.2 : About Mali™ GPU architectures
	7.2.3 : Programming OpenCL for Mali™ GPUs

	7.3 : Retuning existing OpenCL code for Mali™ GPUs
	7.3.1 : Analyze code
	7.3.2 : Locate and remove device optimizations
	Optimizations to remove for Mali™ Midgard GPUs

	7.3.3 : Optimize your OpenCL code for Mali™ GPUs

	8 : Optimizing OpenCL for Mali™ GPUs
	8.1 : The optimization process for OpenCL applications
	8.2 : Load balancing between control threads and OpenCL threads
	8.2.1 : Do not use clFinish() for synchronization
	8.2.2 : Do not use any of the clEnqueueMap() operations with a blocking call

	8.3 : Optimizing memory allocation
	8.3.1 : About memory allocation
	8.3.2 : Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory
	8.3.3 : Do not create buffers with CL_MEM_USE_HOST_PTR if possible
	8.3.4 : Do not allocate memory buffers created with malloc() for OpenCL applications
	8.3.5 : Sharing memory between I/O devices and OpenCL
	8.3.6 : Sharing memory in a fully coherent system
	8.3.7 : Sharing memory in an I/O coherent system

	9 : OpenCL optimizations list
	9.1 : General optimizations
	9.2 : Kernel optimizations
	9.3 : Code optimizations
	9.4 : Execution optimizations
	9.5 : Reducing the effect of serial computations
	9.6 : Mali™ Midgard GPU specific optimizations

	10 : Kernel auto-vectorizer and unroller
	10.1 : About the kernel auto-vectorizer and unroller
	10.2 : Kernel auto-vectorizer options
	10.2.1 : Kernel auto-vectorizer command and parameters
	10.2.2 : Kernel auto-vectorizer command examples

	10.3 : Kernel unroller options
	10.3.1 : Kernel unroller command and parameters
	10.3.2 : Kernel unroller command examples

	10.4 : The dimension interchange transformation

	A : OpenCL data types
	A.1 : About OpenCL data types
	A.2 : OpenCL data type lists
	A.2.1 : Built-in scalar data types
	A.2.2 : Built-in vector data types
	A.2.3 : Other built-in data types
	A.2.4 : Reserved data types

	B : OpenCL built-in functions
	B.1 : Work-item functions
	B.2 : Math functions
	B.3 : half_ and native_ math functions
	B.4 : Integer functions
	B.5 : Common functions
	B.6 : Geometric functions
	B.7 : Relational functions
	B.8 : Vector data load and store functions
	B.9 : Synchronization functions
	B.10 : Asynchronous copy functions
	B.11 : Atomic functions
	B.12 : Miscellaneous vector functions
	B.13 : Image read and write functions

	C : OpenCL extensions
	C.1 : OpenCL extensions supported by the Mali™ GPU OpenCL driver

	D : Using OpenCL extensions
	D.1 : Inter-operation with EGL
	D.1.1 : EGL images
	Preserving EGL images for portability
	OpenCL support for EGL images
	Synchronization when using the cl_khr_egl_image extension
	EGL images limitation

	D.1.2 : ANDROID_image_native_buffer
	OpenCL supported formats

	D.1.3 : EGL_EXT_image_dma_buf_import

	D.2 : The cl_arm_printf extension
	D.2.1 : About the cl_arm_printf extension
	D.2.2 : cl_arm_printf example

	D.3 : The cl_arm_import_memory extensions

	E : OpenCL 1.2
	E.1 : OpenCL 1.2 compiler options
	E.2 : OpenCL 1.2 compiler parameters
	E.3 : OpenCL 1.2 functions
	E.4 : Functions deprecated in OpenCL 1.2

	F : Revisions
	F.1 : Revisions

