ARM[®] CoreSight[™] SoC-400

Revision: r3p2

Technical Reference Manual

ARM[®] CoreSight[™] SoC-400

Technical Reference Manual

Copyright © 2011-2013, 2015, 2016 ARM. All rights reserved.

Release Information

Document History

Issue	Date	Confidentiality	Change
А	04 November 2011	Non-Confidential	First release for r0p0
В	16 April 2012	Non-Confidential	First release for r1p0
С	27 September 2012	Non-Confidential	First release for r2p0
D	14 December 2012	Non-Confidential	First release for r2p1
Е	28 June 2013	Non-Confidential	First release for r3p0
F	26 September 2013	Non-Confidential	First release for r3p1
G	16 March 2015	Non-Confidential	First release for r3p2 (product revision r3p2-00rel0)
0302-01	17 June 2016	Non-Confidential	Second release for r3p2 (product revision r3p2-00rel1)

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of ARM. **No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.**

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to ARM's customers is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with [®] or [™] are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow ARM's trademark usage guidelines at *http://www.arm.com/about/trademark-usage-guidelines.php*

Copyright © 2011-2013, 2015, 2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Contents ARM[®] CoreSight[™] SoC-400 Technical Reference Manual

Preface

		About this book	8	
		Feedback		
Chapter 1	Abo	out CoreSight™ SoC-400		
	1.1	About CoreSight [™] SoC-400		
	1.2	Compliance		
	1.3	Features		
	1.4	Interfaces		
	1.5	Configurable options	1-21	
	1.6	Test features		
	1.7	Product documentation and design flow		
	1.8	Product revisions		
Chapter 2	Functional Overview			
	2.1	DAP components	2-27	
	2.2	APB components		
	2.3	ATB interconnect components		
	2.4	Timestamp components		
	2.5	Embedded Cross Trigger components		
	2.6	Trace sink components		
	2.7	Authentication bridges		

	2.8	Granular Power Requester	2-55		
Chapter 3	About the programmers model				
	3.1	About the programmers model			
	3.2	Granular Power Requester registers			
	3.3	APB interconnect registers			
	3.4	ATB funnel registers			
	3.5	ATB replicator registers			
	3.6	ETB registers			
	3.7	TPIU registers	3-143		
	3.8	CTI registers			
	3.9	DAP registers			
	3.10	Timestamp generator			
Chapter 4	Debu	ug Access Port			
	4.1	About the Debug Access Port			
	4.2	SWJ-DP			
	4.3	DAPBUS interconnect			
	4.4	DAPBUS asynchronous bridge			
	4.5	DAPBUS synchronous bridge	4-270		
	4.6	JTAG-AP	4-271		
	4.7	AXI-AP			
	4.8	AHB-AP	4-278		
	4.9	APB-AP			
Chapter 5	APB	Interconnect Components			
	5.1	APB Interconnect with ROM table	5-286		
	5.2	APB asynchronous bridge	5-288		
	5.3	APB synchronous bridge	5-289		
Chapter 6	ATB Interconnect Components				
	6.1	ATB replicator			
	6.2	ATB funnel			
	6.3	ATB upsizer	6-296		
	6.4	ATB downsizer			
	6.5	ATB asynchronous bridge	6-298		
	6.6	ATB synchronous bridge			
Chapter 7	Time	estamp Components			
	7.1	About the timestamp components			
	7.2	Timestamp generator			
	7.3	Timestamp encoder			
	7.4	Narrow timestamp replicator			
	7.5	Narrow timestamp asynchronous bridge			
	7.6	Narrow timestamp synchronous bridge			
	7.7	Timestamp decoder			
	7.8	Timestamp interpolator			
Chapter 8	Embedded Cross Trigger				
	8.1	Cross-triggering components			
	8.2	СТІ			

	8.3	СТМ		
	8.4	Event asynchronous bridge		
	8.5	Register slice		
	8.6	Channel asynchronous bridge		
	8.7	Cross Trigger to System Trace Macrocell		
Chapter 9	Trac	e Port Interface Unit		
	9.1	About the Trace Port Interface Unit		
	9.2	Clocks and resets		
	9.3	Functional interfaces		
	9.4	Trace out port		
	9.5	Trace port triggers		
	9.6	Programming the TPIU for trace capture		
	9.7	Example configuration scenarios		
	9.8	TPIU pattern generator		
Chapter 10	Embedded Trace Buffer			
	10.1	About the ETB	10-335	
	10.2	Clocks and resets		
	10.3	Functional Interfaces	10-337	
	10.4	ETB trace capture and formatting		
	10.5	ETB RAM support	10-344	
Chapter 11	Granular Power Requester			
	11.1	Granular Power Requester interfaces	11-346	
Appendix A	Sign	al Descriptions		
	A.1	Debug Access Port signals	Аррх-А-348	
	A.2	APB component signals	Аррх-А-360	
	A.3	ATB interconnect signals	Аррх-А-364	
	A.4	Timestamp component signals	Аррх-А-371	
	A.5	Trigger component signals	Аррх-А-378	
	A.6	Trace sink signals	Аррх-А-381	
	A.7	Authentication and event bridges	Аррх-А-384	
	A.8	Granular power requester signals	Аррх-А-386	
Appendix B	Revi	sions		
	B.1	Revisions	Аррх-В-388	

Preface

This preface introduces the ARM[®] CoreSight[™] SoC-400 Technical Reference Manual.

It contains the following:

- *About this book* on page 8.
- *Feedback* on page 12.

About this book

ARM CoreSight SoC-400 Technical Reference Manual (TRM). This book describes how to incorporate CoreSight System Components into designs and produce real-time instruction and data trace information from a SoC.

Product revision status

The *rmpn* identifier indicates the revision status of the product described in this book, for example, r1p2, where:

- rm Identifies the major revision of the product, for example, r1.
- pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is written for the following audiences:

- Hardware and software engineers who want to incorporate CoreSight[™] SoC-400 into their design and produce real-time instruction and data trace information from a SoC.
- Software engineers writing tools to use CoreSight SoC-400.

This book assumes that readers are familiar with AMBA® bus design and JTAG methodology.

Using this book

This book is organized into the following chapters:

Chapter 1 About CoreSight[™] SoC-400

This chapter introduces CoreSight SoC-400.

Chapter 2 Functional Overview

This chapter introduces the components available for building a CoreSight SoC-400 trace and debug infrastructure. It describes the basic function of each block and its I/O signals. The configurable parameters for each block are described.

Chapter 3 About the programmers model

This chapter describes the programmers model for the CoreSight SoC-400 components.

Chapter 4 Debug Access Port

This chapter describes the Debug Access Port.

Chapter 5 APB Interconnect Components

This chapter describes the APB interconnect components.

Chapter 6 ATB Interconnect Components

This chapter describes the ATB interconnect components.

Chapter 7 Timestamp Components

This chapter describes the timestamp components.

Chapter 8 Embedded Cross Trigger This chapter describes the cross-triggering components.

Chapter 9 Trace Port Interface Unit

This chapter describes the TPIU.

Chapter 10 Embedded Trace Buffer

This chapter describes the ETB for CoreSight.

Chapter 11 Granular Power Requester

This chapter describes the granular power requester.

Appendix A Signal Descriptions

This appendix describes the CoreSight SoC-400 port and interface signals.

Appendix B Revisions

This appendix describes the technical changes between released issues of this book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic

Introduces special terminology, denotes cross-references, and citations.

bold

Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

monospace

Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

<u>mono</u>space

Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

monospace italic

Denotes arguments to monospace text where the argument is to be replaced by a specific value. monospace **bold**

Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the *ARM glossary*. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

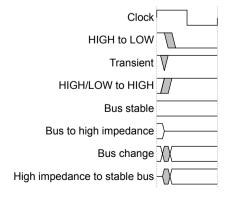


Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists relevant publications by ARM and by third parties. See the following documents for other relevant information.

ARM publications

- ARM[®] CoreSight[™] Architecture Specification (ARM IHI 0029).
- ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (ARM IHI 0031).
- ARM[®] AMBA[®] 3 AHB-Lite Protocol Specification (ARM IHI 0033).
- ARM[®] AMBA[®] APB Protocol Specification (ARM IHI 0024).
- ARM[®] AMBA[®] AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and ACE-Lite (ARM IHI 0022).
- ARM[®] CoreSight[™] Embedded Trace Macrocell Architecture Specification ETMv1.0 to ETMv3.5 (ARM IHI 0014).
- *ARM*[®] CoreSight[™]Program Flow Trace Architecture Specification PFTv1.0 to PFTv1.1 (ARM IHI 0014).

CoreSight SoC-400:

- ARM[®] CoreSight[™] SoC-400 User Guide (100490).
- ARM[®] CoreSight[™] SoC-400 System Design Guide (100495).
- ARM[®] CoreSight[™] SoC-400 Implementation Guide (100487).
- ARM[®] CoreSight[™] SoC-400 Integration Manual (100491).

Trace macrocells:

- ARM[®] CoreSight[™] ETM-A5 Technical Reference Manual (ARM DDI 0435).
- ARM[®] CoreSight[™] ETM-A5 Integration Manual (ARM DIT 0002).

_____ Note _____

ETM-A8 is tightly integrated with the processor. It is documented as part of the Cortex-A8 processor.

- ARM[®] CoreSight[™] PTM-A9 Technical Reference Manual (ARM DDI 0401).
- ARM[®] CoreSight[™] ETM-A5 Integration Manual (ARM DII 0162).

Cortex-A series documents:

- ARM[®] Cortex[®]-A5 MPCore Integration Manual (ARM DIT 0015).
- ARM[®] Cortex[®]-A5 MPCore Technical Reference Manual (ARM DDI 0434).
- ARM[®] Cortex[®]-A5 MPCore Configuration and Sign-off Guide (ARM DII 0243).
- ARM[®] Cortex[®]-A5 Integration Manual (ARM DIT 0001).
- ARM[®] Cortex[®]-A5 Technical Reference Manual (ARM DIT 0433).
- ARM[®] CoreSight[™] Design Kit for Cortex[®]-A8 Integration Manual (ARM DII 0135).
- ARM[®] Cortex[®]-A8 Configuration and Sign-off Guide (ARM DIT 0015).
- ARM[®] Cortex[®]-A8 Technical Reference Manual (ARM DDI 0344).
- ARM[®] Cortex[®]-A9 Configuration and Sign-off Guide (ARM DII 0146).
- ARM[®] Cortex[®]-A9 MPCore Technical Reference Manual (ARM DDI 0407).
- ARM[®] Cortex[®]-A9 Technical Reference Manual (ARM DIT 0015).

AMBA Designer

• ARM[®] AMBA[®] Designer ADR-400 User Guide (ARM DUI 0333).

Other publications

This section lists relevant documents published by third parties:

• Accelera documentation, http://www.accellera.org.

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to *errata@arm.com*. Give:

- The title ARM[®] CoreSight[™] SoC-400 Technical Reference Manual.
- The number ARM 100536 0302 01 en.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

_____ Note _____

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.

Chapter 1 About CoreSight[™] SoC-400

This chapter introduces CoreSight SoC-400.

It contains the following sections:

- 1.1 About CoreSight[™] SoC-400 on page 1-14.
- 1.2 Compliance on page 1-18.
- *1.3 Features* on page 1-19.
- 1.4 Interfaces on page 1-20.
- *1.5 Configurable options* on page 1-21.
- *1.6 Test features* on page 1-22.
- 1.7 Product documentation and design flow on page 1-23.
- 1.8 Product revisions on page 1-25.

1.1 About CoreSight[™] SoC-400

CoreSight SoC-400 is a solution for debug and trace of complex SoCs.

CoreSight SoC-400 includes:

- A library of configurable CoreSight components, written in Verilog, and scripts to render configured instances of the CoreSight components based on your parameter choices.
- An optional flow to graphically configure, integrate, and stitch the supplied components and ARM processors using AMBA Designer and supplied IP-XACT component views.
- Support for the *System Trace Macrocell* (STM) and *Trace Memory Controller* (TMC), which are licensed separately.

This section contains the following subsections:

- *1.1.1 Structure of CoreSight*[™] *SoC-400* on page 1-14.
- 1.1.2 CoreSight[™] SoC-400 block summary on page 1-14.
- 1.1.3 Typical CoreSight[™] SoC-400 system on page 1-16.

1.1.1 Structure of CoreSight[™] SoC-400

The CoreSight SoC-400 components are grouped into categories for control and access components, sources, links, sinks, and timestamp.

Control and access components

Provide access to other debug components and control of debug behavior. Examples include:

- Debug Access Port (DAP).
- Embedded Cross Trigger (ECT).

Sources

Generate trace data for output through the ATB. Examples include:

- Program Trace Macrocell (PTM).
- System Trace Macrocell (STM) documented separately.
- CoreSight Embedded Trace Macrocells (ETMs), documented separately.

Links

Provide connection, triggering, and flow of trace data. Examples include:

- Synchronous 1:1 ATB bridge.
- Replicator.
- Trace funnel.

Sinks

End points for trace data on the SoC. Examples include:

- Trace Port Interface Unit (TPIU) for output of trace data off-chip.
- Embedded Trace Buffer (ETB) for on-chip storage of trace data in RAM.

Timestamp

Generates and transports timestamp across the SoC. Examples include:

- Timestamp generator.
- Timestamp encoder.
- Timestamp decoder.

1.1.2 CoreSight[™] SoC-400 block summary

CoreSight SoC-400 blocks and their current versions.

Table 1-1 CoreSight SoC-400 block summary

Block name	Description	Block version	Revision in programmers model
Authentication bri	dges		
cxauthreplicator	Authentication replicator	r1p0	-
cxauthasyncbridge	Authentication asynchronous bridge	r1p1	-
cxauthsyncbridge	Authentication synchronous bridge	r1p1	-
Debug Access Port	(DAP) blocks		
cxdapahbap	AHB Access Port	r0p9	8
cxdapapbap	APB Access Port	r1p0	5
cxdapjtagap	JTAG Access Port	r0p4	3
cxdapasyncbridge	DAPBUS asynchronous bridge	r0p2	-
cxdapsyncbridge	DAPBUS synchronous bridge	r0p0	-
cxdapaxiap	AXI access port	r1p1	4
exdapbusic	DAPBUS interconnect	r1p0	-
cxdapswjdp	Serial wire and JTAG debug port:	r2p0	-
	DAPSWDP. DAPITACOD IDLEN8-0	r1p5	6
	DAPJTAGDP, IRLEN8=0.DAPJTAGDP, IRLEN8=1.	r1p5	6
		r1p0	0
APB Interconnect	components		
cxapbic	APB interconnect	r0p2	-
cxapbasyncbridge	APB asynchronous bridge	r0p2	-
cxapbsyncbridge	APB synchronous bridge	r0p0	-
ATB Interconnect	components		
cxatbfunnel	ATB funnel	r1p1	3
			3. See 3.4 ATB funnel registers on page 3-79.
cxatbupsizer	ATB upsizer	r0p1	-
cxatbdownsizer	ATB downsizer	r0p0	-
cxatbasyncbridge	ATB asynchronous bridge	r0p2	-
cxatbsyncbridge	ATB synchronous bridge	r0p2	-
cxatbreplicator	ATB replicator	r0p1	2
Timestamp compo	nents		
cxtsgen	Timestamp generator	r0p1	1
			See 3.10 Timestamp generator on page 3-244.
cxtse	Timestamp encoder	r0p3	-
cxntsreplicator	Narrow timestamp replicator	r1p1	-
cxntsasyncbridge	Narrow timestamp asynchronous bridge	_	-
		•	

Table 1-1 CoreSight SoC-400 block summary (continued)

Block name	Description	Block version	Revision in programmers model
cxtsd	Timestamp decoder	r0p3	-
extsintp	Timestamp Interpolator	r0p0	-
Embedded Cross T	Trigger		
cxcti	Cross Trigger Interface (CTI)	r1p0	5
cxctm	Cross Trigger Matrix (CTM)	r1p0	-
cxeventasyncbridge	Event asynchronous bridge	r0p2	-
Trace Port Interfac	ce Unit		
extpiu	TPIU	r1p0	5
Embedded Trace B	Buffer		
cxetb	ETB	r0p5	4
Granular Power	Requester (GPR)		
cxgpr	GPR	r0p1	0

_____ Note ____

If a block has a programmers model, the revision field of the identification register contains the block version.

1.1.3 Typical CoreSight[™] SoC-400 system

An example of CoreSight SoC-400 components in a SoC.

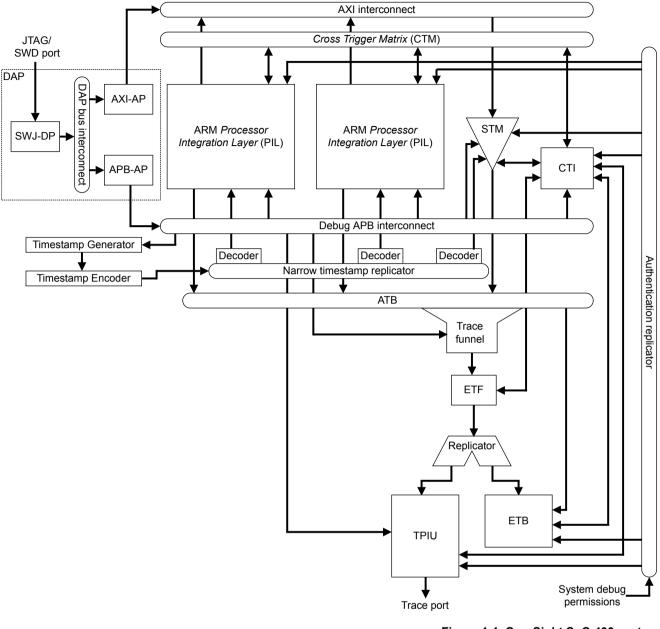


Figure 1-1 CoreSight SoC-400 system

• The STM and TMC are licensed separately.

- Note —

- The ETB and *Embedded Trace FIFO* (ETF) are configurations of the TMC.
- The TMC can also be configured as an *Embedded Trace Router* (ETR).

1.2 Compliance

Specifications with which the CoreSight SoC-400 is compliant.

- Version 2 of the *ARM*[®] *CoreSight*[™] *Architecture Specification*.
- Version 3 of the ARM[®] AMBA[®] APB Protocol Specification.
- ARM[®] AMBA[®] 4 ATB Protocol Specification ATBv1.0 and ATBv1.1.
- ARM[®] Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.
- ARM[®] AMBA[®] Specification (Rev 2.0).
- ARM[®] AMBA[®] AXI and ACE Protocol Specification.
- *IP-XACT version 1.4, defined by Accellera.*
- IEEE 1149.1-2001 IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG).

1.3 Features

The CoreSight SoC-400 provides many features to enable rapid and efficient debugging.

Some of the features provided by CoreSight SoC-400 are:

- Access to debug features and on-chip AXI, AHB, APB, and JTAG buses through a JTAG or *Serial Wire Debug* (SWD) interface.
- Merging of multiple trace sources into a single trace stream.
- Configurable trace bus widths between 8 bits and 128 bits, with upsizing and downsizing between different widths.
- Capture of trace streams on-chip or off-chip.
- Cross-triggering between different debug and trace components.
- Timestamp generation and system-wide compressed timestamp distribution, including local interpolation to provide local high-resolution timestamps synchronized to a global low-resolution timestamp.
- Support for inserting synchronous and asynchronous clock domain boundaries and power domain boundaries across internal interfaces.
- Improved configurability of components to better optimize area and power consumption.
- Integration with supported ARM processors.
- Integration of STM and TMC, licensed separately.
- IP-XACT views of all components, defining interfaces, signals, configurability, and programmers models.
- Power intent for all components in *Unified Power Format* (UPF), including definitions of how signals must be clamped when parts of the system are powered down.
- Synthesis flow.
- Flow to verify correct CoreSight system integration.
- Optional support for AMBA Designer, enabling graphical component configuration, system stitching, and verification.
- Full compliance with the CoreSight architecture, enabling integration of third-party IP and comprehensive tools support.

1.4 Interfaces

CoreSight SoC-400 interfaces for connecting to the pins of a SoC, for integration with non-CoreSight parts of the SoC, and for communication between CoreSight components.

CoreSight SoC-400 provides the following interfaces:

- JTAG and SWD, for debugger control, that share the same pins if they are both supported.
- CoreSight Trace Port, for off-chip trace capture.

CoreSight SoC-400 provides the following interfaces for integration with non-CoreSight parts of the SoC:

- AMBA AXI4.
- AMBA 3 APB.
- AMBA 2 AHB.
- JTAG, for control of legacy on-chip JTAG debug components.
- AMBA low-power interface.

CoreSight SoC-400 uses the following interfaces internally, which are used for communication between CoreSight components:

- AMBA APB3.
- AMBA ATB4.
- Event interface, for connecting trigger inputs and outputs to the CTI.
- Channel interface, for connecting CTIs to the CTM.
- Wide timestamp interface, for providing timestamps to components.
- Narrow timestamp interface, for efficient communication of the timestamp across the system.
- Authentication interface.

1.5 Configurable options

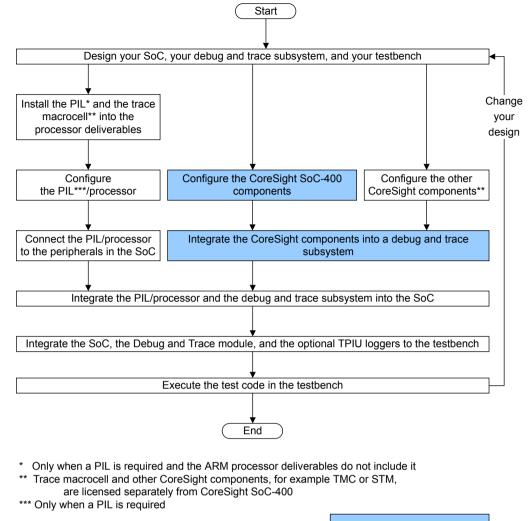
Configurable options for the CoreSight SoC-400 are not described in this manual. See the *ARM*[®] *SoC-400 Integration Manual*.

1.6 Test features

CoreSight SoC-400 has an MBIST interface for Embedded Trace Buffer (ETB) RAM.

1.7 Product documentation and design flow

The CoreSight SoC-400 design and validation workflow includes the design of the SoC and testbench, configuration and integration of the CoreSight components, and execution of your test code in the testbench.


- For information about designing a debug and trace sub system, see the *ARM*[®] *CoreSight*[™] *SoC-400 System Design Guide* (SDG) and the *ARM*[®] *CoreSight*[™] *Architecture Specification* (AS).
- For instructions on how to configure and integrate the components, see the *ARM*[®] *CoreSight*[™] *SoC-400 Integration Manual* (IM).
- For instructions on how to validate the debug and trace features of your design, see the *ARM*[®] *CoreSight*[™] *SoC-400 User Guide* (UG).
- For instructions on how to perform synthesis on your CoreSight system, see the *ARM*[®] *CoreSight*[™] *SoC-400 Implementation Guide* (IG).

—— Note —

The SDG, AS, IM, UG, and IG are confidential books that are only available to licensees.

The validation flow works with your existing SoC testbench. The validation modules, such as the cxdt, can be instantiated at the testbench level. This makes it possible to accommodate the validation flow without any modification to your SoC under test.

The following figure shows how you can design, implement, and validate the debug and trace components in a SoC that contains one or more ARM processors:

Can be done in AMBA Designer

1.8 **Product revisions**

Summary of the differences in functionality between product revisions.

r0p0	First release.		
r0p0-r1p0	Two new components added:Granular Power Requester.Timestamp interpolator.		
r1p0-r2p0	r2p0 includes fixes for all known engineering errata relating to r1p0.		
r2p0-r2p1	r2p1 includes fixes and IP-XACT changes.		
r2p1-r3p0	 r3p0 delivers: Test code written in C. Example testbenches and example debug and trace sub systems. Fixes and IP-XACT changes. 		
r3p0-r3p1	r3p1 delivers:Performance improvements to timestamp components.Fixes and IP-XACT changes.		
r3p1-r3p2	 r3p2 delivers: Configuration or I/O changes to the following components: cxdapswjdp. cxntsasyncbridge. cxdapapbap. cxetb. cxcti. cxcti. cxctm. Two new components added: cxctitocxstm. cxchannelasyncbridge. Component IP-XACT updates. Verification flow updates. 		

Chapter 2 Functional Overview

This chapter introduces the components available for building a CoreSight SoC-400 trace and debug infrastructure. It describes the basic function of each block and its I/O signals. The configurable parameters for each block are described.

It contains the following sections:

- 2.1 DAP components on page 2-27.
- 2.2 APB components on page 2-35.
- 2.3 ATB interconnect components on page 2-38.
- 2.4 Timestamp components on page 2-44.
- 2.5 Embedded Cross Trigger components on page 2-48.
- 2.6 Trace sink components on page 2-51.
- 2.7 Authentication bridges on page 2-53.
- 2.8 Granular Power Requester on page 2-55.

2.1 DAP components

The DAP is a collection of components through which off-chip debug tools access a SoC.

The DAP consists of the following components:

- Serial Wire or JTAG Debug Port.
- DAPBUS interconnect.
- DAPBUS asynchronous bridge.
- DAPBUS synchronous bridge.
- JTAG access port.
- AXI access port.
- AHB access port.
- APB access port.

This section contains the following subsections:

- 2.1.1 Serial Wire or JTAG Debug Port on page 2-27.
- 2.1.2 DAPBUS interconnect on page 2-28.
- 2.1.3 DAPBUS asynchronous bridge on page 2-28.
- 2.1.4 DAPBUS synchronous bridge on page 2-29.
- 2.1.5 JTAG access port on page 2-30.
- 2.1.6 AXI access port on page 2-30.
- 2.1.7 AHB access port on page 2-32.
- 2.1.8 APB access port on page 2-33.

2.1.1 Serial Wire or JTAG Debug Port

The *Serial Wire or JTAG Debug Port* (SWJ-DP) connects either a Serial Wire Debug or JTAG probe to the CoreSight SoC-400 debug system. This connection is the entry point into the debug infrastructure from the external debugger through the *Debug Port* (DP).

The SWJ-DP has the following configurable features:

• 4-bit or 8-bit JTAG-DP Instruction Register (IR) length.

The following figure shows the external connections on the SWJ-DP:

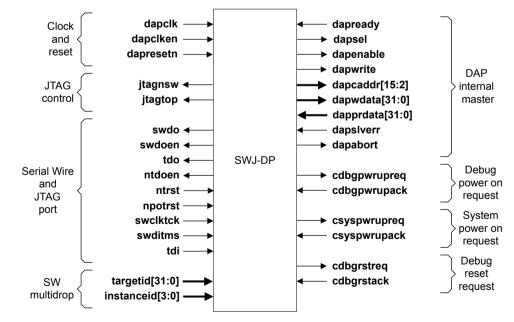


Figure 2-1 SWJ-DP block diagram

2.1.2 DAPBUS interconnect

The DAPBUS interconnect connects a debug port to a configurable number of access ports.

The DAPBUS interconnect has the following key features:

- Combinational interconnect.
- Single power domain.
- One slave interface port to connect to the DP.
- Configurable number of master interfaces from 1-32.

The following figure shows the external connections on the DAPBUS interconnect, where $\langle x \rangle$ is the interface number of the master port.

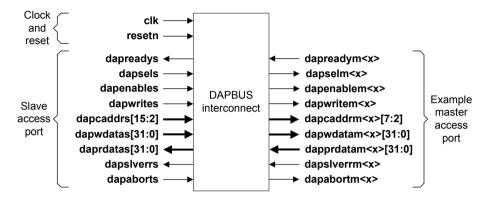


Figure 2-2 DAPBUS interconnect block diagram

2.1.3 DAPBUS asynchronous bridge

The DAPBUS asynchronous bridge enables data transfer between two asynchronous clock domains within the DAP sub system. The DAPBUS asynchronous bridge is designed to exist across two power domains and provides a *Low-power Interface* (LPI).

The DAPBUS asynchronous bridge has the following key features:

- Configurable LPI.
- · Supports asynchronous clock domain crossing.
 - Configurable as one of the following blocks:
 - A slave interface block.
 - A master interface block.
 - A full bridge including slave and master interfaces.

The following figure shows the external connections on the DAPBUS asynchronous bridge.

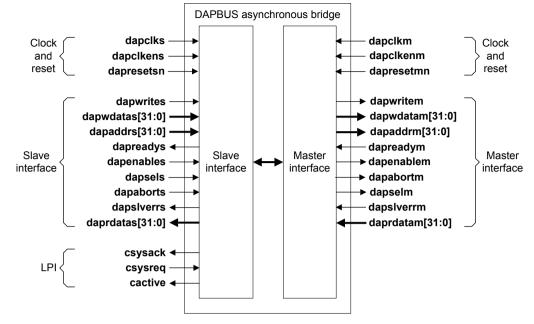


Figure 2-3 DAPBUS asynchronous bridge block diagram

2.1.4 DAPBUS synchronous bridge

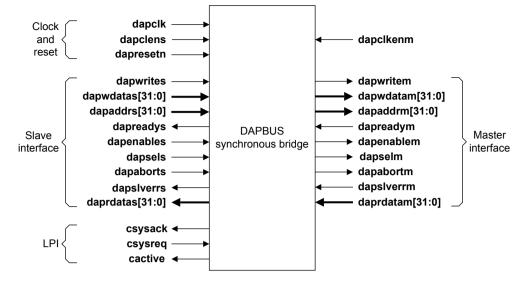
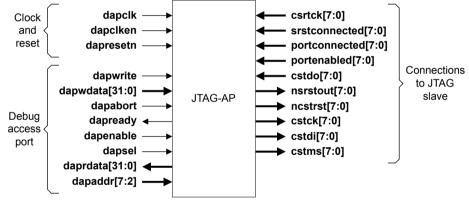
The DAPBUS synchronous bridge enables data transfer between two synchronous clock domains within the DAP sub system.

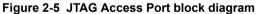
The DAPBUS also provides an LPI to support power-gating within a single voltage domain. The AMBA-compliant LPI is optional on the DAPBUS synchronous bridge.

The DAPBUS synchronous bridge has the following key features:

- · Register slice for timing closure.
- Configurable forward, backward, or full register slice.
- Supports synchronous clock domain crossing:
 - SYNC 1:1.
 - SYNC 1:n.
 - SYNC n:1.
 - SYNC n:m.

The following figure shows the external connections on the DAPBUS synchronous bridge.


Figure 2-4 DAPBUS synchronous bridge block diagram

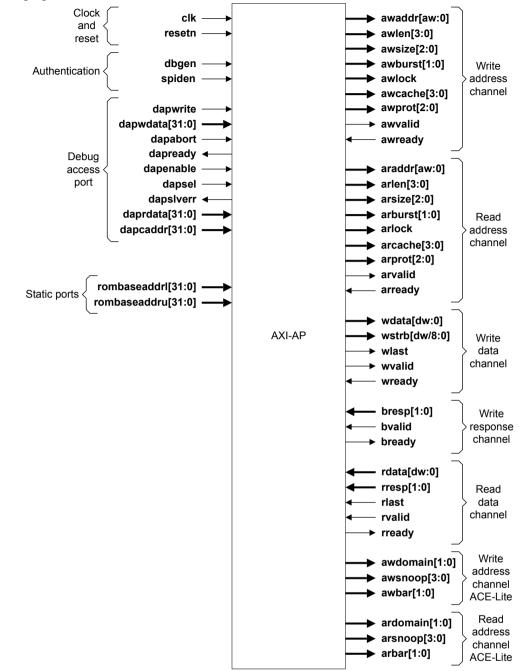
2.1.5 JTAG access port

The *JTAG Access Port* (JTAG-AP) provides JTAG access to on-chip components, operating as a JTAG master port to drive JTAG chains throughout a SoC.

The following figure shows the external connections on the JTAG-AP.

2.1.6 AXI access port

The *AXI Access Port* (AXI-AP) is an AXI bus master and enables a debugger to issue AXI transactions. You can connect it to other memory systems using a suitable bridging component.


The AXI-AP has the following features:

- Supports a single clock domain.
- Has a configurable 32-bit or 64-bit address width.
- Has a configurable 32-bit or 64-bit data width.
- Has AXI4 interface support for the following:
 - Large Physical Address Extension (LPAE).
 - Burst length of one.
 - No out-of-order transactions.
 - No multiple outstanding accesses except for barrier transactions.
 - No write data interleaving.
 - Only aligned transfers.

- No EXCLUSIVE and LOCK transactions.
- No QoS signaling.
- Has ACE-Lite support for system coherency as follows:
 - ReadOnce and WriteUnique support for shared memory regions.
 - ReadNoSnoop and WriteNoSnoop support for non-shared memory regions.
 - Synchronization and memory barrier transactions support.
- Is little-endian.
- Supports error responses.
- Supports packed transfers, enabling multiple 8-bit or 16-bit transfers to be issued with a single debugger access to the AXI-AP.

You must configure the AXI-AP during implementation, with the following parameters:

- AXI_ADDR_WIDTH, 32-bit or 64-bit.
- AXI_DATA_WIDTH, 32-bit or 64-bit.

The following figure shows the external connections on the AXI-AP.

Figure 2-6 AXI Access Port block diagram

_____ Note ____

aw and *dw* are calculated automatically from AXI_ADDR_WIDTH and AXI_DATA_WIDTH, respectively, when the RTL is rendered.

2.1.7 AHB access port

The *AHB Access Port* (AHB-AP) is an AHB bus master and enables a debugger to issue AHB transactions. You can connect it to other memory systems using a suitable bridging component.

The AHB-AP has the following features:

- Single clock domain.
- Support for AMBA 2 AHB, ARM11[™] AHB extensions, and TrustZone[®] extensions.
- Does not support the following AHB features:
 - BURST or SEQ transactions.
 - Exclusive accesses.
 - Unaligned transfers.

The following figure shows the external connections on the AHB-AP.

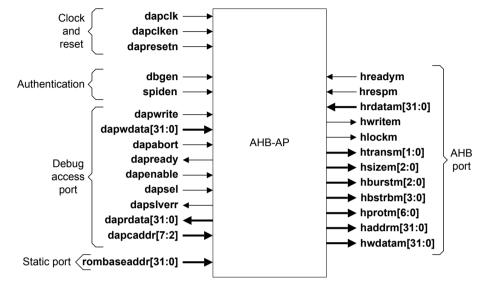
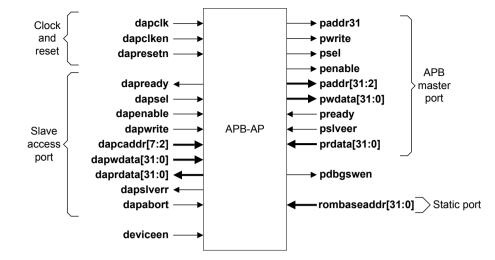


Figure 2-7 AHB Access Port block diagram


2.1.8 APB access port


The *APB Access Port* (APB-AP) is an APB bus master and enables a debugger to issue APB transactions. APB transactions are used to control a dedicated CoreSight APB bus for programming CoreSight components.

The APB-AP has the following features:

- Single clock domain.
- AMBA 3 APB support.
- A 32-bit data bus. All transactions are 32 bits wide and are aligned to a 32-bit boundary.
- PADDR31 support for distinguishing between accesses from a debugger and on-chip debug software.

The following figure shows the external connections on the APB-AP.

2.2 APB components

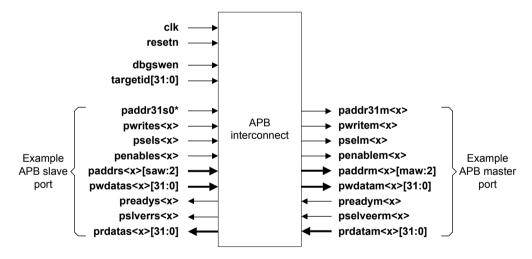
Description of the components that are used to build a debug APB interconnect.

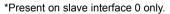
This section contains the following subsections:

- 2.2.1 APB interconnect with ROM table on page 2-35.
- 2.2.2 APB asynchronous bridge on page 2-36.
- 2.2.3 APB synchronous bridge on page 2-36.

2.2.1 APB interconnect with ROM table

The *APB InterConnect* (APBIC) with ROM table connects multiple APB masters to multiple slaves. The APBIC implements a ROM table that contains information about the components in a CoreSight SoC-400 system.


The debug APBIC has the following key features:


- Configurable number of APB slave interfaces, in the range 1-4.
- Configurable number of APB master interfaces, in the range 1-64.
- Auto-generated ROM table at offset zero.
- Enables cascading of decoders, each covering an address range, and having its own ROM table at offset zero within its address range.

The APBIC operates in a single clock domain. Use asynchronous bridges to connect other components that are not synchronous.

The following figure shows the external connections on the APBIC. <x> in the figure denotes an automatically-generated numeric interface number. The following depend on the configuration:

• aw is the APB address width.

Figure 2-9 APB interconnect with ROM table block diagram

—— Note —

saw, the slave port address width, and *maw*, the master port address width, are calculated automatically from top-level configuration parameters when the rtl is rendered.

Cascading APBICs

Systems that require more than the maximum configurable number of slaves can use a cascading approach. You can connect two or more APBICs to implement a hierarchy of APB peripherals.

For more information on cascading APB interconnects, see the CoreSight[™] SoC-400 Integration Manual.

2.2.2 APB asynchronous bridge

The APB asynchronous bridge enables data transfers between two asynchronous clock domains.

It is designed to exist across two power domains and provides an LPI.

The APB asynchronous bridge has the following key features:

- · Supports asynchronous clock domain crossing.
- Configurable generation of only slave interface, or only master interface, or full blocks.
- Configurable LPI.

The following figure shows the external connections to the APB asynchronous bridge.

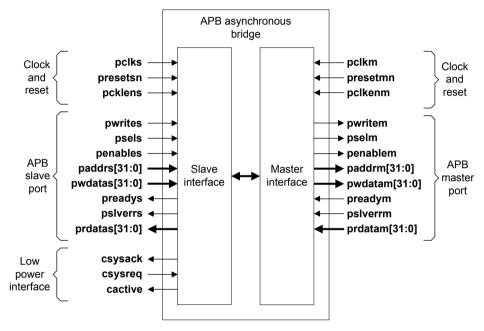


Figure 2-10 APB asynchronous bridge block diagram

2.2.3 APB synchronous bridge

The APB synchronous bridge enables data transfers between two synchronous clock domains.

It also provides an LPI to support power-gating with a single voltage domain.

The APB synchronous bridge has the following key features:

- Register slice for timing closure.
- Configurable LPI.
- Supports synchronous clock domain crossing:
 - SYNC 1:1.
 - SYNC 1:n.
 - SYNC n:1.
 - SYNC n:m.
- Configurable forward, reverse, or full register slice.

The following figure shows the external connections on the APB synchronous bridge.

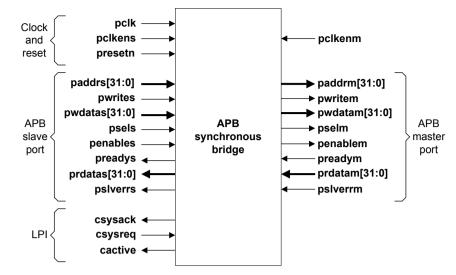


Figure 2-11 APB synchronous bridge block diagram

2.3 ATB interconnect components

The ATB interconnect facilitates the transfer of trace data around the CoreSight SoC-400 debug system. A custom-generated interconnect infrastructure also uses ATB components to provide additional functionality as required by your system architecture.

This section contains the following subsections:

- 2.3.1 ATB replicator on page 2-38.
- 2.3.2 ATB funnel on page 2-39.
- 2.3.3 ATB upsizer on page 2-39.
- 2.3.4 ATB downsizer on page 2-40.
- 2.3.5 ATB asynchronous bridge on page 2-41.
- 2.3.6 ATB synchronous bridge on page 2-42.
- 2.3.7 ATB phantom bridges on page 2-43.

2.3.1 ATB replicator

The ATB replicator propagates data from a single master to two slaves at the same time.

The ATB replicator has the following key features:

- Configurable ATB data width.
- 1:2 replicator.
- Configurable APB programming interface to enable or disable interfaces and set up ID-based filtering.

The following parameter affects the signals of the ATB replicator:

• ATB_DATA_WIDTH, which has a value of 8, 16, 32, or 64.

The following figure shows the external connections on the ATB replicator.

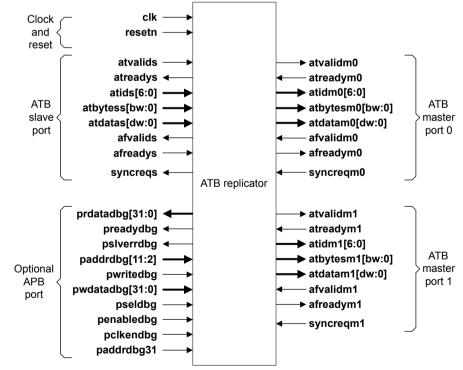


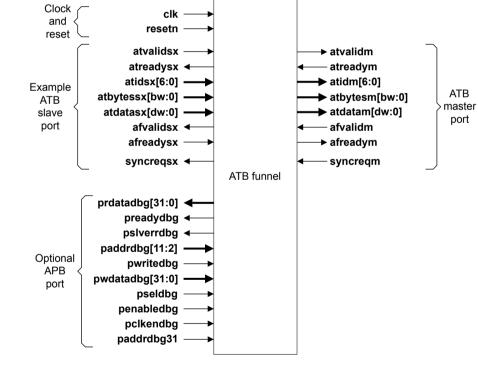
Figure 2-12 ATB replicator block diagram

— Note —

In the figure, *bw* and *dw* are generated automatically from the parameter ATB_DATA_WIDTH.

2.3.2 ATB funnel

The ATB funnel merges the trace from multiple ATB buses and sends the data to a single ATB bus.


The ATB funnel has the following key features:

- Configurable ATB data width.
- Configurable number of slave interfaces.
- Programmable arbitration scheme with the features:
 - Programmable priority between slave interfaces.
 - Round-robin arbitration between slave interfaces with the same priority.
 - Programmable enabling and disabling of each slave interface.
- Optional APB programming interface, to save area when the debugger does not have to modify the arbitration scheme or disable individual slave interfaces.

You can specify an optional APB configuration interface.

The parameter ATB_DATA_WIDTH, which can have a value of 8, 16, 32, 64, or 128, affects the bus size of some signals of the ATB funnel. See dw in the figure, where dw= ATB_DATA_WIDTH-1.

The following figure shows the external connections on the ATB funnel. $\langle x \rangle$ denotes the auto-generated interface number of the specific ATB interface.

_____ Note ____

In the figure, bw is generated automatically from the parameter ATB_DATA_WIDTH.

2.3.3 ATB upsizer

The ATB upsizer converts the trace data on a narrower ATB bus on to a wider bus.

The ATB upsizer has the following key features:

• Supports the following data width ratios:

— 1:2.

- 1:4.
- 1:8.
- 1:16.
- Configurable slave interface data width.
- Configurable master interface data width.

The following parameters affect the signals of the ATB upsizer:

- ATB_DATA_WIDTH_SLAVE, which has a value of 8, 16, 32, or 64. See *sdw* in the figure, where *sdw* = ATB_DATA_WIDTH_SLAVE-1.
- ATB_DATA_WIDTH_MASTER, which has a value of 64 or 128. See *mdw* in the figure, where *mdw* = ATB_DATA_WIDTH_MASTER-1.

The following figure shows the external connections to the ATB upsizer.

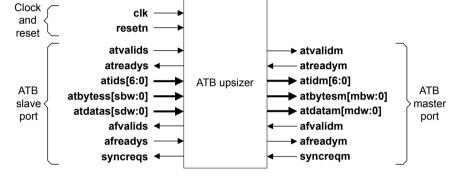


Figure 2-14 ATB upsizer block diagram

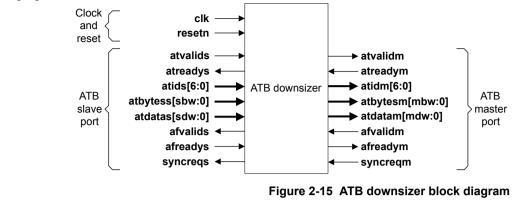
_____ Note ____

In the figure, *sbw* and *mbw* are generated automatically from the parameters ATB_DATA_WIDTH_SLAVE and ATB_DATA_WIDTH_MASTER, respectively.

2.3.4 ATB downsizer

The ATB downsizer converts the trace data on a wider ATB bus onto a narrower width bus.

The ATB downsizer has the following key features:


- Supports the following data width ratios:

 - 4:1.
 - 8:1.
 - 16:1.
- Configurable slave interface data width.
- Configurable master interface data width.

The following parameters affect the signals of the ATB downsizer:

- ATB_DATA_WIDTH_SLAVE, which has a value of 64 or 128. See *sdw* in the figure, where *sdw* = ATB_DATA_WIDTH_SLAVE-1.
- ATB_DATA_WIDTH_MASTER, which has a value of 8, 16, 32, or 64. See *mdw* in the figure, where *mdw* = ATB_DATA_WIDTH_MASTER-1.

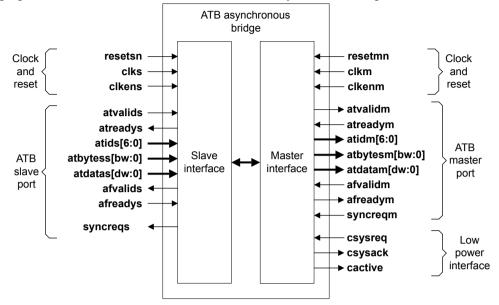
The following figure shows the external connections on the ATB downsizer.

----- Note

In the figure, *sbw* and *mbw* are generated automatically from the parameters ATB_DATA_WIDTH_SLAVE and ATB_DATA_WIDTH_MASTER, respectively.

2.3.5 ATB asynchronous bridge

The ATB asynchronous bridge enables data transfers between two asynchronous clock domains. The ATB asynchronous bridge is designed to exist across two power domains, and provides an LPI.


The ATB asynchronous bridge has the following key features:

- · Supports asynchronous clock domain crossing.
- Configurable ATB data width.
- Configurable LPI.
- Configurable as one of the following:
 - A slave interface block.
 - A master interface block.
 - A full bridge.

The following parameter affects the signals of the ATB asynchronous bridge:

• ATB_DATA_WIDTH, which has a value of 8, 16, 32, 64, or 128. See dw in the figure, where dw = ATB_DATA_WIDTH-1.

The following figure shows the external connections to the ATB asynchronous bridge.

Figure 2-16 ATB asynchronous bridge block diagram

_____ Note ____

In the figure, *bw* is generated automatically from the parameter ATB_DATA_WIDTH.

2.3.6 ATB synchronous bridge

The ATB synchronous bridge enables data transfer between two synchronous clock domains. It also provides an LPI to support power-gating with a single voltage domain.

The ATB synchronous bridge has the following key features:

- Configurable ATB data width.
- Configurable forward, backward, or full register slice.
- Supports synchronous clock domain crossing:
 - SYNC 1:1.
 - SYNC 1:n.
 - SYNC n:1.
 - SYNC n:m.
- Configurable FIFO depth in powers of 2 with a maximum depth of 256, when the bridge type is set to FULL. This can be used to implement a small trace FIFO, as an alternative to implementing an ETF.
- Configurable LPI.

The following parameter affects the signals of the ATB synchronous bridge:

ATB_DATA_WIDTH, which has a value of 8, 16, 32, 64, or 128. See dw in the figure, where $dw = ATB_DATA_WIDTH-1$.

The following figure shows the external connections to the ATB synchronous bridge.

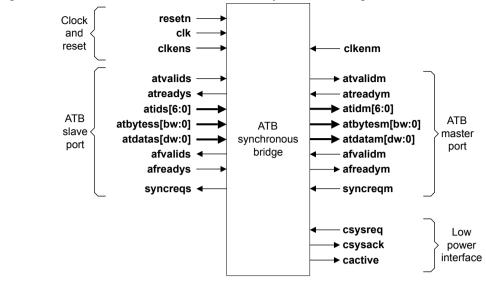


Figure 2-17 ATB synchronous bridge block diagram

_____ Note _____

In the figure, bw is generated automatically from the parameter ATB_DATA_WIDTH.

2.3.7 ATB phantom bridges

ATB components are compliant with the ATBv1.1 protocol, which is defined as part of AMBA 4, and referred to here as ATB4. Some other ATB components might be compliant with the ATBv1.0 protocol which is defined as part of AMBA 3, and referred to here as ATB3. The only difference between ATB3 and ATB4 is the optional inclusion of the **syncreq** signal in ATB4.

Two *phantom bridge* components are provided to allow IP-XACT stitchers to connect components with ATB3 and ATB4 interfaces:

- cxatb3to4bridge.
- cxatb4to3bridge.

These phantom bridge components do not contain any logic - they guide stitching tools to make the correct connections between components that have been packaged according to the two different bus definitions.

2.4 Timestamp components

The timestamp components generate timestamp values that can be used for CoreSight timestamping or processor generic time. The Narrow timestamp components distribute CoreSight timestamps to multiple destinations within a SoC. The Narrow timestamp components must not be used to distribute processor generic time.

The components available to build this system are:

- Timestamp generator.
- Timestamp encoder.
- Narrow timestamp replicator.
- · Narrow timestamp asynchronous bridge.
- Narrow timestamp synchronous bridge.
- Timestamp decoder.
- Timestamp interpolator.

This section contains the following subsections:

- 2.4.1 Timestamp generator on page 2-44.
- 2.4.2 Timestamp encoder on page 2-45.
- 2.4.3 Narrow timestamp replicator on page 2-45.
- 2.4.4 Narrow timestamp asynchronous bridge on page 2-46.
- 2.4.5 Narrow timestamp synchronous bridge on page 2-46.
- 2.4.6 *Timestamp decoder* on page 2-47.
- *2.4.7 Timestamp interpolator* on page 2-47.

2.4.1 Timestamp generator

The timestamp generator generates a timestamp value that provides a consistent view of time for multiple blocks in a SoC.

The timestamp generator can be used to generate CoreSight timestamps or processor generic time, because it is compliant with the ARM Generic Timer specification for a memory-mapped counter module. For information on the ARM Generic Timer, see the relevant ARM Architecture Reference Manual for the processor core you are debugging.

SoCs normally require both sources of timestamp values, and these must be controlled independently. You can instantiate two timestamp generators to meet this requirement.

The timestamp generator has the following key features:

- 64 bits wide to avoid roll-over issues.
- Starts from zero or a programmable value.
- A control APB interface enables the timer to be saved and restored across powerdown events.
- A read-only APB interface enables the timer value to be read by Non-secure software and debug tools.
- Input to stop the timer value incrementing during full-system debug.

The following figure shows the external connections on the timestamp generator.

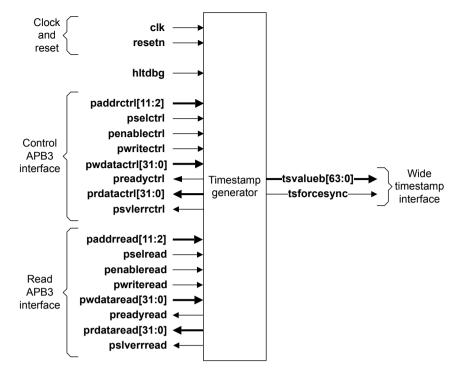
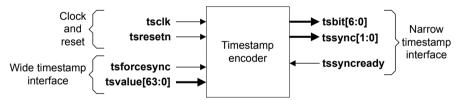



Figure 2-18 Timestamp generator block diagram

2.4.2 Timestamp encoder

The timestamp encoder converts the 64-bit timestamp value from the timestamp generator to a 7-bit encoded value, called a narrow timestamp. It also encodes and sends the timestamp value over a 2-bit synchronization channel.

The following figure shows the external connections on the timestamp encoder.

Figure 2-19 Timestamp encoder block diagram

2.4.3 Narrow timestamp replicator

The narrow timestamp replicator distributes the encoded timestamp and synchronization data to multiple master interfaces. You can configure the number of master interfaces.

The narrow timestamp replicator has the following key features:

- 1:n distribution of narrow timestamp bus.
- Configurable number of narrow timestamp master interfaces.

The following figure shows the external connections on the narrow timestamp replicator.

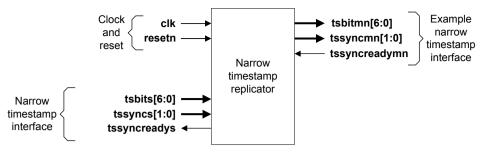


Figure 2-20 Narrow timestamp replicator block diagram

2.4.4 Narrow timestamp asynchronous bridge

The narrow timestamp asynchronous bridge enables the transfer of timestamp information across different clock and power domains.

The narrow timestamp asynchronous bridge has the following key features:

- · Supports asynchronous clock domain crossing.
- LPI, that is not configurable.

The following figure shows the external connections on the narrow timestamp asynchronous bridge.

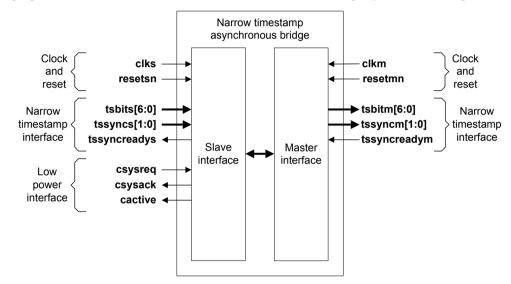


Figure 2-21 Narrow timestamp asynchronous bridge block diagram

2.4.5 Narrow timestamp synchronous bridge

The narrow timestamp synchronous bridge enables the transfer of timestamp information across clock and power domains that have individual clock enables.

The narrow timestamp synchronous bridge has the following key features:

- LPI, that is not configurable.
- Supports synchronous clock domain crossing:
 - SYNC 1:1.
 - SYNC 1:n.
 - SYNC n:1.
 - SYNC n:m.

The following figure shows the external connections on the narrow timestamp synchronous bridge.

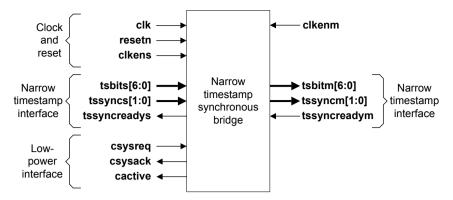


Figure 2-22 Narrow timestamp synchronous bridge block diagram

2.4.6 Timestamp decoder

The timestamp decoder converts the narrow timestamp interface and synchronization data back to a 64bit value. This is the format in which the CoreSight SoC-400 trace components require their timestamp. It decodes the narrow timestamp interface to a 64-bit wide timestamp signal.

The following figure shows the external connections on the timestamp decoder.

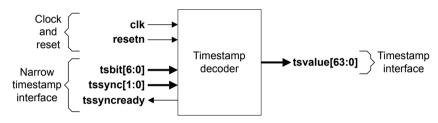


Figure 2-23 Timestamp decoder block diagram

2.4.7 Timestamp interpolator

CoreSight components require timestamp values that allow software to correlate events. The timestamp generator generates timestamp values at a clock rate that is typically much slower than the operating frequency of CoreSight components. The timestamp interpolator uses these timestamp values as a reference and generates timestamp values at a rate required by CoreSight components.

The timestamp interpolator has the following key features:

- Configurable ratio of SCLK base frequency to SCLK minimum frequency.
- · Configurable ratio of FCLK maximum frequency to SCLK base frequency.
- Single clock domain operation.
- Supports dynamic variation in clock frequencies.

The following figure shows the external connections on the timestamp interpolator.

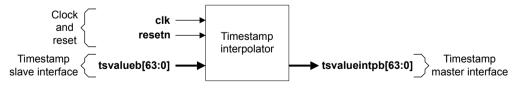
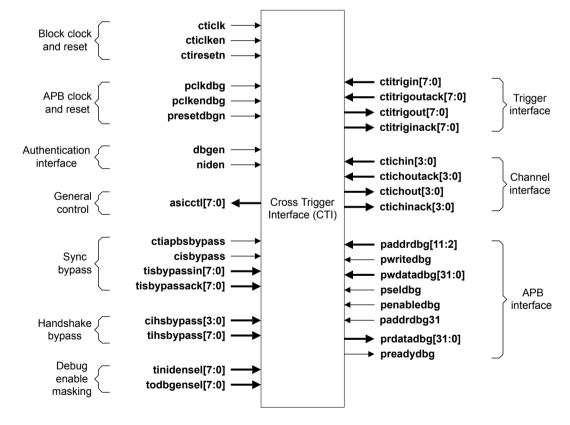


Figure 2-24 Timestamp interpolator block diagram

2.5 Embedded Cross Trigger components

CoreSight SoC-400 contains the *Cross Trigger Interface* (CTI), *Cross Trigger Matrix* (CTM), and Event asynchronous bridge cross-trigger components to control the logging of debug information.

The CTI, CTM, and Event asynchronous bridge form the ECT sub-system that passes debug events from one debug component to another. For example, the ECT can communicate debug state information from one processor to the others so that you can stop the program execution on one or more processors at the same time if required.


This section contains the following subsections:

- 2.5.1 Cross Trigger Interface on page 2-48.
- 2.5.2 Cross Trigger Matrix on page 2-48.
- 2.5.3 Event asynchronous bridge on page 2-49.
- 2.5.4 Channel asynchronous bridge on page 2-49.
- 2.5.5 Cross Trigger to System Trace Macrocell on page 2-49.

2.5.1 Cross Trigger Interface

The CTI combines and maps the trigger requests, and broadcasts them to all other interfaces on the ECT sub system. When the CTI receives a trigger request it maps this onto a trigger output. This enables the CoreSight sub systems to cross trigger with each other.

in the following figure shows the external connections on the CTI.

Figure 2-25 Cross Trigger Interface block diagram

2.5.2 Cross Trigger Matrix

The CTM block distributes the trigger events. It connects to at least two CTIs and to other CTMs where required in a design.

The following figure shows the external connections on the CTM block.

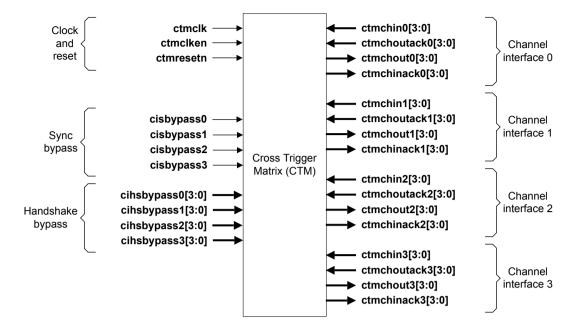


Figure 2-26 Cross Trigger Matrix block diagram

2.5.3 Event asynchronous bridge

The event asynchronous bridge is a fixed component that synchronizes events on a single channel from the slave domain to the master domain. The event acknowledge from the master domain is synchronized and presented to the slave domain.

If the event is a pulse, the bridge internally stretches the event until it receives an acknowledge from the master domain. In this mode of operation, additional events from the slave domain are ignored until the acknowledge is received at the slave domain.

The following figure shows the external connections on the event asynchronous bridge.

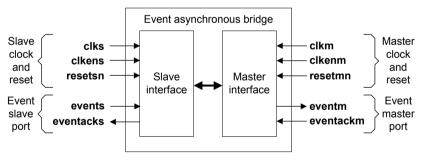


Figure 2-27 Event asynchronous bridge block diagram

2.5.4 Channel asynchronous bridge

The channel asynchronous bridge is a wrapper component that instantiates four event asynchronous bridges. This component is provided for convenience when using automated stitching tools.

2.5.5 Cross Trigger to System Trace Macrocell

The excitioexstm component is provided to simplify connection of triggers from a CTI to the hardware event inputs of an STM. The component is combinatorial, and provides direct and inverted event outputs from a single trigger input.

The following figure shows the exctitoexstm component.

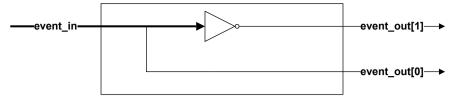


Figure 2-28 cxctitocxstm component

2.6 Trace sink components

CoreSight SoC-400 contains the Trace Port Interface Unit and Embedded Trace Buffer trace sink components.

These components receive trace information that is then formatted and captured on-chip, or transmitted off-chip.

This section contains the following subsections:

- 2.6.1 Trace Port Interface Unit on page 2-51.
- 2.6.2 Embedded Trace Buffer on page 2-51.

2.6.1 Trace Port Interface Unit

The TPIU connects an ATB to an external trace port.

in the following figure shows the external connections on the TPIU.

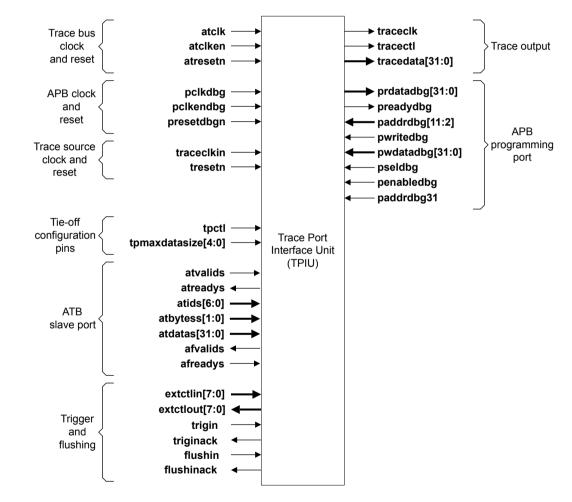


Figure 2-29 Trace Port Interface Unit block diagram

2.6.2 Embedded Trace Buffer

The ETB stores trace data in an on-chip RAM for later inspection by debug tools. The trace data buffer RAM size is configurable.

The following figure shows the external connections of the ETB. In the figure, *aw* is the highest order bit of the RAM address bus, and is dependent on the configured RAM size.

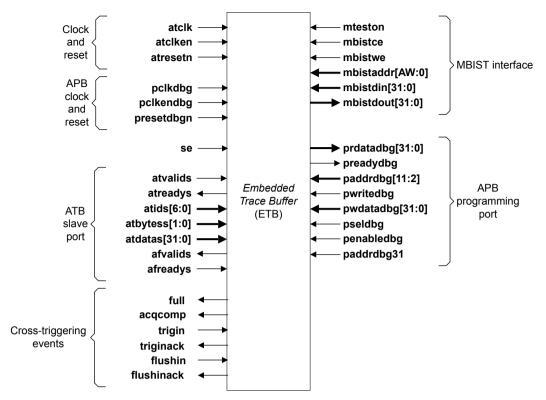


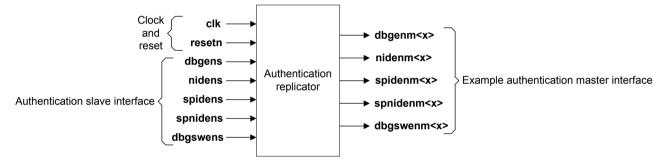
Figure 2-30 Embedded Trace Buffer block diagram

2.7 Authentication bridges

The additional bridges are Authentication replicator, Authentication asynchronous bridge, and Authentication synchronous bridge. The authentication bridges provide authenticated debug control links in security-enabled CoreSight SoC-400 systems. These components are not required if this security is not required.

This section contains the following subsections:

- 2.7.1 Authentication replicator on page 2-53.
- 2.7.2 Authentication asynchronous bridge on page 2-53.
- 2.7.3 Authentication synchronous bridge on page 2-54.


2.7.1 Authentication replicator

The authentication replicator enables the transfer of authentication signals from one master to multiple slaves.

The authentication replicator has the following key features:

- Configurable for specific authentication signals.
- Configurable for a number of authentication masters.

The following figure shows the external connections on the authentication replicator.

Figure 2-31 Authentication replicator block diagram

2.7.2 Authentication asynchronous bridge

The authentication asynchronous bridge enables transfer of authentication signals between two asynchronous clock domains.

The authentication asynchronous bridge has the following key features:

- Configurable for specific authentication signals.
- Supports asynchronous clock domain crossing.

The following figure shows the external connections on the authentication asynchronous bridge.

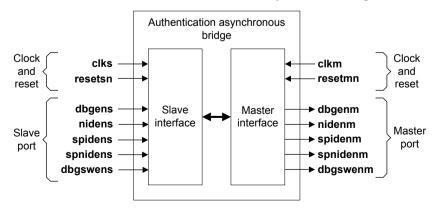


Figure 2-32 Authentication asynchronous bridge block diagram

2.7.3 Authentication synchronous bridge

The authentication synchronous bridge enables the transfers of authentication signals between two synchronous clock domains. It can also be used as a register slice to break long timing paths.

The authentication synchronous bridge has the following key features:

- Configurable for specific authentication signals.
- Register slice for timing closure.

The following figure shows the external connections on the authentication synchronous bridge.

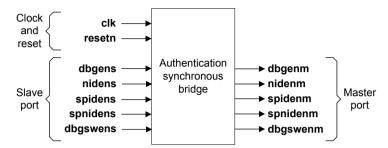


Figure 2-33 Authentication synchronous bridge block diagram

2.8 Granular Power Requester

The *Granular Power Requester* (GPR) enables a debugger to control powerup and powerdown of specific components within a debug and trace sub system. Without the GPR, the CoreSight DAP components only support system level powerup and powerdown of the entire CoreSight system. The finer granularity provided by the GPR enables implementation of power strategies during both debug and ATPG testing.

The GPR has a configurable number of power-control interfaces, up to 32. Synchronizers are implemented on the **cpwrupack** input signals, enabling the power-control interfaces to connect to components in a different clock domain.

The following figure shows the external connections on the GPR.

You must configure the GPR during implementation with the following parameters:

• NUM_CPWRUPM. See the following figure.

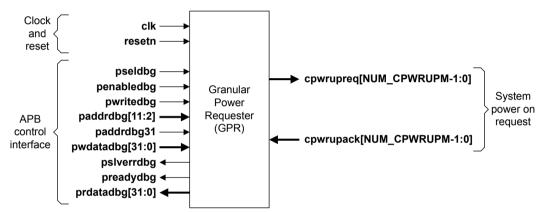


Figure 2-34 Granular Power Requester block diagram

Chapter 3 About the programmers model

This chapter describes the programmers model for the CoreSight SoC-400 components.

It contains the following sections:

- 3.1 About the programmers model on page 3-57.
- 3.2 Granular Power Requester registers on page 3-58.
- 3.3 APB interconnect registers on page 3-72.
- 3.4 ATB funnel registers on page 3-79.
- 3.5 ATB replicator registers on page 3-100.
- 3.6 ETB registers on page 3-117.
- 3.7 TPIU registers on page 3-143.
- 3.8 CTI registers on page 3-181.
- 3.9 DAP registers on page 3-214.
- 3.10 Timestamp generator on page 3-244.

3.1 About the programmers model

All CoreSight SoC component registers are 32 bits wide. The base address is not fixed, and can be different for any particular system implementation. The offset of each register from the base address is fixed.

Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in UNPREDICTABLE behavior.

Unless otherwise stated in the accompanying text:

- Do not modify UNDEFINED register bits.
- Ignore UNDEFINED register bits on a read operation.
- A system or powerup reset resets all register bits to 0.

Where only a single value is shown for a multi-bit register field, it is the default value. Other values might be architecturally-defined but are not available in the given component.

Access types are described as follows:

RW	Read and write.
RO	Read-only.
WO	Write-only.
SBZ	Should-Be-Zero.
SBZP	Should-Be-Zero-or-Preserved.
RAZ	Read-As-Zero.
RAZ/WI	Read-As-Zero, Writes Ignored.

3.2 Granular Power Requester registers

The Granular Power Requester (GPR) can be used to control multiple debug power domains.

This section contains the following subsections:

- 3.2.1 Granular Power Requester register summary on page 3-58.
- 3.2.2 Debug Power Request register, CPWRUPREQ on page 3-59.
- 3.2.3 Debug Power Acknowledge register, CPWRUPACK on page 3-60.
- *3.2.4 Integration Mode Control register, ITCTRL* on page 3-60.
- 3.2.5 Claim Tag Set register, CLAIMSET on page 3-61.
- 3.2.6 Claim Tag Clear register, CLAIMCLR on page 3-61.
- 3.2.7 Lock Access Register, LAR on page 3-62.
- 3.2.8 Lock Status Register; LSR on page 3-62.
- 3.2.9 Authentication Status register, AUTHSTATUS on page 3-63.
- 3.2.10 Device Architecture register, DEVARCH on page 3-64.
- 3.2.11 Device Configuration register, DEVID on page 3-65.
- 3.2.12 Device Type Identifier register, DEVTYPE on page 3-65.
- 3.2.13 Peripheral ID0 Register, PIDR0 on page 3-66.
- 3.2.14 Peripheral ID1 Register, PIDR1 on page 3-66.
- 3.2.15 Peripheral ID2 Register, PIDR2 on page 3-67.
- 3.2.16 Peripheral ID3 Register, PIDR3 on page 3-68.
- 3.2.17 Peripheral ID4 Register, PIDR4 on page 3-68.
- 3.2.18 Component ID0 Register, CIDR0 on page 3-69.
- 3.2.19 Component ID1 Register, CIDR1 on page 3-69.
- 3.2.20 Component ID2 Register, CIDR2 on page 3-70.
- 3.2.21 Component ID3 Register, CIDR3 on page 3-70.

3.2.1 Granular Power Requester register summary

Summary of the GPR registers in offset order from the base memory address.

Table 3-1 Gr	anular Power R	Requester (cxgpr)	register summary
--------------	----------------	-------------------	------------------

Offset	Name	Туре	Reset	Description
0x000	CPWRUPREQ	RW	0x00000000	3.2.2 Debug Power Request register; CPWRUPREQ on page 3-59
0x004	CPWRUPACK	RO	0x00000000	3.2.3 Debug Power Acknowledge register, CPWRUPACK on page 3-60
0xF00	ITCTRL	RO	0x00000000	3.2.4 Integration Mode Control register, ITCTRL on page 3-60
0xFA0	CLAIMSET	RW	0x0000000F	3.2.5 Claim Tag Set register, CLAIMSET on page 3-61
0xFA4	CLAIMCLR	RW	0x00000000	3.2.6 Claim Tag Clear register; CLAIMCLR on page 3-61
0xFB0	LAR	WO	0x00000000	3.2.7 Lock Access Register; LAR on page 3-62
0xFB4	LSR	RO	0x00000003	3.2.8 Lock Status Register, LSR on page 3-62
0xFB8	AUTHSTATUS	RO	0x00000000	3.2.9 Authentication Status register, AUTHSTATUS on page 3-63
0xFBC	DEVARCH	RO	0x00000000	3.2.10 Device Architecture register, DEVARCH on page 3-64
0xFC8	DEVID	RO	0x00000001	3.2.11 Device Configuration register, DEVID on page 3-65
0xFCC	DEVTYPE	RO	0x00000034	3.2.12 Device Type Identifier register, DEVTYPE on page 3-65
0xFD0	PIDR4	RO	0x00000004	3.2.17 Peripheral ID4 Register; PIDR4 on page 3-68
0xFD4	-	-		Reserved
0xFD8	-	-		Reserved
0xFDC	-	-		Reserved

Offset	Name	Туре	Reset	Description
0xFE0	PIDR0	RO	0x000000A4	3.2.13 Peripheral ID0 Register, PIDR0 on page 3-66
0xFE4	PIDR1	RO	0x000000B9	3.2.14 Peripheral ID1 Register; PIDR1 on page 3-66
0xFE8	PIDR2	RO	0x0000000B	3.2.15 Peripheral ID2 Register; PIDR2 on page 3-67
0xFEC	PIDR3	RO	0x00000000	3.2.16 Peripheral ID3 Register; PIDR3 on page 3-68
0xFF0	CIDR0	RO	0x0000000D	3.2.18 Component ID0 Register; CIDR0 on page 3-69
0xFF4	CIDR1	RO	0x00000090	3.2.19 Component ID1 Register; CIDR1 on page 3-69
0xFF8	CIDR2	RO	0x00000005	3.2.20 Component ID2 Register; CIDR2 on page 3-70
0xFFC	CIDR3	RO	0x000000B1	3.2.21 Component ID3 Register; CIDR3 on page 3-70

Table 3-1 Granular Power Requester (cxgpr) register summary (continued)

3.2.2 Debug Power Request register, CPWRUPREQ

The CPWRUPREQ register Controls the values of the cpwrupreq outputs from the GPR.

Each bit in CPWRUPREQ register controls the corresponding output on the **cpwrupreq** port. The GPR contains hardware logic to ensure that the 4-phase handshake is not violated on the CPWRUP interfaces.

When the GPR asserts a powerup request that is not acknowledged, that is, **cpwrupreq[n]** = 1 and **cpwrupack[n]** = 0, writing a 0 to the CPWRUPREQ register bit[n] does not affect the **cpwrupreq[n]** output.

Similarly, when the GPR sends a powerdown request that is not acknowledged, that is, **cpwrupreq[n]** is 0 and **cpwrupack[n]** = 1, writing a 1 to the CPWRUPREQ register bit[n] does not affect the **cpwrupreq[n]** output.

The CPWRUPREQ register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
	The number of fields implemented in this register depends on the configuration of the component.
Attributes	See the GPR register summary table.

There is a one-to-one mapping between the register locations and the CPWRUPREQ bits.

The following table shows the bit assignments.

_____ Note _____

n represents each bit in the register and takes the values [number of implemented fields-1:0].

Table 3-2 CPWRUPREQ register bit assignments

Bits	Name	Function		
[n]	CPWRUPREQBit <n></n>	Sit[n] of the cpwrupreq output port.		
		0	Drive 0 on cpwrupreq[n] output port.	
		1	Drive 1 on cpwrupreq[n] output port.	

3.2.3 Debug Power Acknowledge register, CPWRUPACK

The CPWRUPACK register returns the value of the **cpwrupack** input port. Each bit in this register reflects the status of a powerup request.

The CPWRUPACK register characteristics are:

Usage constraints Configurations	There are no usage constraints. This register is available in all configurations.			
	The number of fields implemented in this register depends on the configuration of the component.			
Attributes	See the GPR register summary table.			
There is a one-to-one map	ping between the register locations and the CPWRUPACK bits.			

The following table shows the bit assignments.

—— Note –

n represents each bit in the register and takes the values [number of implemented fields-1:0].

Table 3-3 CPWRUPACK register bit assignments

Bits	Name	Function	
[n]	CPWRUPACKBit <n></n>	Bit[n] of the cpwrupack input port:	
		0	cpwrupack[n] input port is LOW.
		1	cpwrupack[n] input port is HIGH.

3.2.4 Integration Mode Control register, ITCTRL

The ITCTRL register enables topology detection.

See the ARM[®] Architecture Specification.

The ITCTRL register characteristics are:

Usage constraints There are no usage constraints.	
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-1 ITCTRL register bit assignments

The following table shows the bit assignments.

Table 3-4 ITCTRL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	IME	Integration Mode Enable.	
		0	Disable integration mode.
		1	Enable integration mode.

3.2.5 Claim Tag Set register, CLAIMSET

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

The CLAIMSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

31					4	3	0
		Res	erved			SE	ΞT

Figure 3-2 CLAIMSET register bit assignments

The following table shows the bit assignments.

Table 3-5 CLAIMSET register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	SET	On reads, for each bit:	
		1	Claim tag bit is implemented
		On writes, for each bit:	
		0	Has no effect.
		1	Sets the relevant bit of the claim tag.

3.2.6 Claim Tag Clear register, CLAIMCLR

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits to 0 in the claim tag, and determines the current value of the claim tag.

The CLAIMCLR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Res	erved			CLR
		INC SI	eiveu			

Figure 3-3 CLAIMCLR register bit assignments

The following table shows the bit assignments.

Table 3-6 CLAIMCLR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CLR	On reads, for each bit:	
		0	Claim tag bit is not set.
		1	Claim tag bit is set.
		On writes, for each bit:	
		0	Has no effect.
		1	Clears the relevant bit of the claim tag.

3.2.7 Lock Access Register, LAR

The LAR controls write access from self-hosted, on-chip accesses. The LAR does not affect the accesses using the external debugger interface.

The LAR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

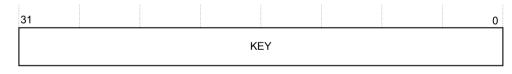


Figure 3-4 LAR bit assignments

The following table shows the bit assignments.

Table 3-7 LAR bit assignments

Bits Name Function

[31:0] KEY Software lock key value.

0xC5ACCE55 Clear the software lock.

All other write values set the software lock.

3.2.8 Lock Status Register, LSR

The LSR indicates the status of the lock control mechanism. This lock prevents accidental writes. When locked, write accesses are denied for all registers except for the LAR. The lock registers do not affect accesses from the external debug interface. This register reads as 0 when accessed from the external debug interface.

The LSR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

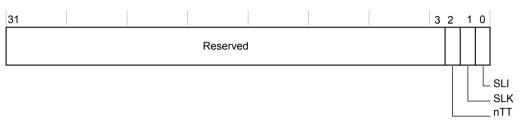
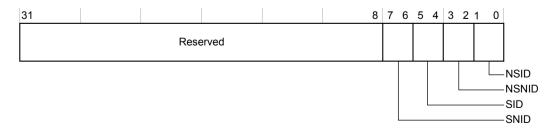


Figure 3-5 LSR bit assignments

The following table shows the bit assignments.

Table 3-8 LSR bit assignments

Bits	Name	Function	
[31:3]	Reserved	-	
[2]	nTT	Register size indicator. Alway	ys 0. Indicates that the LAR is implemented as 32-bit.
[1]	SLK	Software Lock Status. Return	s the present lock status of the device, from the current interface.
		0	Indicates that write operations are permitted from this interface.
		1	Indicates that write operations are not permitted from this interface. Read operations are permitted.
[0]	SLI	Software Lock Implemented.	Indicates that a lock control mechanism is present from this interface.
		0	Indicates that a lock control mechanism is not present from this interface. Write operations to the LAR are ignored.
		1	Indicates that a lock control mechanism is present from this interface.


3.2.9 Authentication Status register, AUTHSTATUS

The AUTHSTATUS register reports the required security level and present status.

The AUTHSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

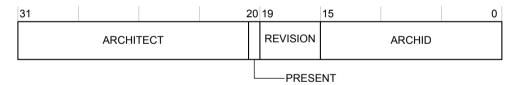
The following figure shows the bit assignments.

Figure 3-6 AUTHSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-9 AUTHSTATUS register bit assignments

Bits	Name	Function					
[31:8]	Reserved	-					
[7:6]	SNID	Indicates the security level fo	r Secure non-invasive debug:				
		0b00	Functionality is not implemented or is controlled elsewhere.				
[5:4]	SID	Indicates the security level fo	Indicates the security level for Secure invasive debug:				
		0600	Functionality is not implemented or is controlled elsewhere.				
[3:2]	NSNID	Indicates the security level for Non-secure non-invasive debug:					
		0b00	Functionality is not implemented or is controlled elsewhere.				
[1:0]	NSID	Indicates the security level fo	Indicates the security level for Non-secure invasive debug:				
		0b00	Functionality is not implemented or is controlled elsewhere.				


3.2.10 Device Architecture register, DEVARCH

The DEVARCH register returns the device architecture identifier value.

The DEVARCH register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-7 DEVARCH register bit assignments

The following table shows the bit assignments.

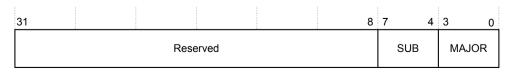
Table 3-10 DEVARCH register bit assignments

Bits	Name	Description	
[31:21]	ARCHITECT	Indicates the component arc	hitect:
		0x23B	ARM.
[20]	PRESENT	Indicates whether the DEVA	RCH register is present:
		0x1	Present.

Table 3-10 DEVARCH register bit assignments (continued)

Bits	Name	Description							
[19:16]	REVISION	Indicates the archite	ecture revision:						
		0x1	Revision 0.						
[15:0]	ARCHID	Indicates the compo	onent:						
		0x0A34	CoreSight C	PR.					
3.2.11	Device	Configuration re	gister, DEVID						
	Th	e DEVID register in	dicates the capabili	ties of the co	omponent.				
	Th	e DEVID register ch	naracteristics are:		-				
		age constraints	There are no u	sage constra	ints.				
		nfigurations	This register is available in all configurations.						
		tributes	See the GPR register summary table.						
	Th	e following figure sl							
		31					6	5	0
				Reserve	ed				
						CI	PWRUPM_C		
		Figure 3-8 DEVID register bit assignn							nments
	Th	ne following table shows the bit assignments.							
					Table	3-11 DEV	ID register	bit assig	nments
Bits	Name	Function							

[31:6]	Reserved	-
[5:0]	CPWRUPM_COUN	T This value is the number of CPWRUP master interfaces on the cxgpr component. Permitted range is
		0x1-0x20.


3.2.12 Device Type Identifier register, DEVTYPE

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

The DEVTYPE register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-9 DEVTYPE register bit assignments

The following table shows the bit assignments.

Table 3-12 DEVTYPE register bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:4]	SUB	Sub-classification of the type of the debug component as specified in the <i>ARM</i> [®] <i>Architecture Specification</i> within the major classification as specified in the MAJOR field.				
		0b0011	Indicates that this component controls powering up and powering down the components in a CoreSight SoC-400 system.			
[3:0]	[3:0] MAJOR Major classification of the type of the debug component as specified in debug and trace component.		pe of the debug component as specified in the ARM® Architecture Specification for this			
		0b0100	Indicates that this component allows a debugger to control other components in a CoreSight SoC-400 system.			

3.2.13 Peripheral ID0 Register, PIDR0

The PIDR0 is part of the set of peripheral identification registers. Contains part of the designer-specific part number.

The PIDR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-10 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-13 PIDR0 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PART_0	Bits[7:0] of the 12-bit part nu	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0xA4	Indicates bits[7:0] of the part number of the component.	

3.2.14 Peripheral ID1 Register, PIDR1

The PIDR1 is part of the set of peripheral identification registers. Contains part of the designer-specific part number and part of the designer identity.

The PIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

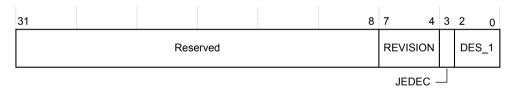
The following figure shows the bit assignments.

Figure 3-11 PIDR1 bit assignments

The following table shows the bit assignments.

Table 3-14 PIDR1 bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:4]	DES_0	Together, PIDR1.DES_0, PID	ogether, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.			
		0b1011	ARM. Bits[3:0] of the JEDEC JEP106 Identity Code.			
[3:0]	PART_1	Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns this part number.				
		0b1001	Indicates bits[11:8] of the part number of the component.			


3.2.15 Peripheral ID2 Register, PIDR2

The PIDR2 is part of the set of peripheral identification registers. Contains part of the designer identity and the product revision.

The PIDR2 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-12 PIDR2 bit assignments

The following table shows the bit assignments.

Table 3-15 PIDR2 bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:4]	REVISION	06000	b0000 This device is at r0p1.			
[3]	JEDEC	Always 1. Indicates that the JEDEC-assigned designer ID is used.				
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.				
		0b011	ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.			

3.2.16 Peripheral ID3 Register, PIDR3

The PIDR3 is part of the set of peripheral identification registers. Contains the REVAND and CMOD fields.

The PIDR3 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

31				8	7 4	30
		Reserved			REVAND	CMOD

Figure 3-13 PIDR3 bit assignments

The following table shows the bit assignments.

Table 3-16 PIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVAND	06000	Indicates that there are no errata fixes to this component.
[3:0]	CMOD	Customer Modified. Indicates whether the customer has modified the behavior of the component. In most cases this field is 0b0000 . Customers change this value when they make authorized modifications to this component.	
		06000	Indicates that the customer has not modified this component.

3.2.17 Peripheral ID4 Register, PIDR4

The PIDR4 is part of the set of peripheral identification registers. Contains part of the designer identity and the memory size.

The PIDR4 characteristics are:

Usage constraints

There are no usage constraints.

Configurations

This register is available in all configurations.

Attributes

See the GPR register summary table.

The following figure shows the bit assignments.

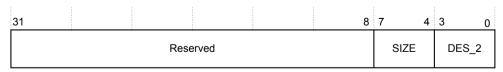


Figure 3-14 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-17 PIDR4 bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.
		0b0100

JEDEC continuation code.

3.2.18 Component ID0 Register, CIDR0

The CIDR0 is a component identification register that indicates the presence of identification registers.

The CIDR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-15 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-18 CIDR0 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7:0] of the component identification code.		
		0x0D	Bits[7:0] of the identification code.	

3.2.19 Component ID1 Register, CIDR1

The CIDR1 is a component identification register that indicates the presence of identification registers. It also indicates the component class.

The CIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

31				8	7 4	3	0
		Reserve	ed		CLASS	PRMBI	L_1

Figure 3-16 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-19 CIDR1 bit assignments

Bits	Name	Function									
[31:8]	Reserved	-									-
[7:4]	CLASS		•	nponent. Indicates, for example, whether the component is a ROM table or a generic CoreSight tains bits[15:12] of the component identification code.							
		0b1001		Indicates	that the com	ponent is a C	CoreSight cor	nponent.			
[3:0]	PRMBL_1	Preamble[1]. C	Contains bits	[11:8] of the	component i	dentificatior	code.				
		0b0000		Bits[11:8]	of the ident	ification cod	le.				
		The CIDR2 is The CIDR2 is	a compone	nt identifica	tion registe	r that indic	ates the pre	sence of ide	entification		
		Usage constra Configuration Attributes	15	This regis See the G	PR register	able in all c	onfiguration table.	ns.			
		The following	figure show	ws the bit as	signments.						
			31					8	7		0
				Reserved PRMBL_2							

Figure 3-17 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-20 CIDR2 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_2	Preamble[2]. Contains bits[2	3:16] of the component identification code.
		0x05	Bits[23:16] of the identification code.

3.2.21 Component ID3 Register, CIDR3

The CIDR3 is a component identification register that indicates the presence of identification registers.

The CIDR3 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the GPR register summary table.

The following figure shows the bit assignments.

Figure 3-18 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-21 CIDR3 bit assignments

Bits	Name	Function			
[31:8]	Reserved	-			
[7:0]	PRMBL_3	Preamble[3]. Contains bits[3	Preamble[3]. Contains bits[31:24] of the component identification code.		
		0xB1	Bits[31:24] of the identification code.		

3.3 APB interconnect registers

The APB InterConnect (APBIC) with ROM table connects multiple APB masters to multiple slaves.

This section contains the following subsections:

- 3.3.1 APB interconnect register summary on page 3-72.
- 3.3.2 ROM Table Entry on page 3-72.
- 3.3.3 Peripheral ID4 Register, PIDR4 on page 3-73.
- 3.3.4 Peripheral ID0 Register, PIDR0 on page 3-74.
- 3.3.5 Peripheral ID1 Register, PIDR1 on page 3-75.
- 3.3.6 Peripheral ID2 Register, PIDR2 on page 3-75.
- 3.3.7 Peripheral ID3 Register, PIDR3 on page 3-76.
- 3.3.8 Component ID0 Register; CIDR0 on page 3-76.
- 3.3.9 Component ID1 Register; CIDR1 on page 3-77.
- 3.3.10 Component ID2 Register, CIDR2 on page 3-77.
- 3.3.11 Component ID3 Register, CIDR3 on page 3-78.

3.3.1 APB interconnect register summary

Summary of the APB interconnect registers in offset order from the base memory address.

Table 3-22 APB interconnect register summary

Offset	Name	Туре	Reset	Description
0x000-0x0FC	ROM_ENTRY_n ^a	RO	_b	3.3.2 ROM Table Entry on page 3-72
0xFD0	PIDR4	RO	UNKNOWN ^C	3.3.3 Peripheral ID4 Register, PIDR4 on page 3-73
0xFD4	-	-	-	Reserved
0xFD8	-	-	-	Reserved
ØxFDC	-	-	-	Reserved
0xFE0	PIDR0	RO	_d	3.3.4 Peripheral ID0 Register, PIDR0 on page 3-74
0xFE4	PIDR1	RO	UNKNOWN ^e	3.3.5 Peripheral ID1 Register, PIDR1 on page 3-75
0xFE8	PIDR2	RO	UNKNOWN ^f	3.3.6 Peripheral ID2 Register, PIDR2 on page 3-75
0xFEC	PIDR3	RO	0x00000000	3.3.7 Peripheral ID3 Register, PIDR3 on page 3-76
0xFF0	CIDR0	RO	0x0000000D	3.3.8 Component ID0 Register; CIDR0 on page 3-76
0xFF4	CIDR1	RO	0x00000010	3.3.9 Component ID1 Register; CIDR1 on page 3-77
0xFF8	CIDR2	RO	0x00000005	3.3.10 Component ID2 Register; CIDR2 on page 3-7
0xFFC	CIDR3	RO	0x000000B1	3.3.11 Component ID3 Register, CIDR3 on page 3-7
-		-		

3.3.2 ROM Table Entry

The ROM Table Entry register returns the value of ROM_ENTRY_*n*, where *n* is 0-63.

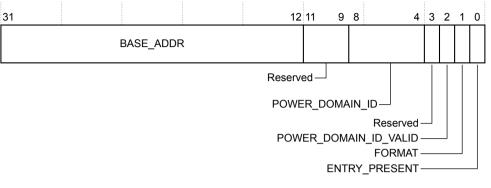
The ROM_ENTRY_n register characteristics are:

Usage constraints There are no usage constraints.

^a Where *n* is 0-63.

^b The reset value depends on the value of the MASTER_INTFn_BASE_ADDR parameter, where *n* is 0-63.

^c See 3.2.17 Peripheral ID4 Register, PIDR4 on page 3-68 for information on the reset value and its dependencies.


d The reset value depends on the system configuration, and identifies this as either a generic ROM table or a top-level ROM table.

e See 3.2.14 Peripheral ID1 Register, PIDR1 on page 3-66 for information on the reset value and its dependencies.

f See 3.2.15 Peripheral ID2 Register, PIDR2 on page 3-67 for information on the reset value and its dependencies.

Configurations	The content of this register is determined by the configuration parameters when the rtl is generated.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

Figure 3-19 ROM_ENTRY_n

The following table shows the bit assignments.

Table 3-23 ROM_ENTRY_n register bit assignments

Bits	Name	Function		
[31:12]	BASE_ADDR	Base address for master interface 0. Bit[31] is always 0.		
[11:9]	Reserved	-		
[8:4]	POWER_DOMAIN_ID	Indicates the power domain ID of the component. This field is only valid whe this register is 0b1 . Otherwise this field is 0b1 .		
		Up to 32 power domai	ns are supported using the values 0x00-0x1F.	
[3]	Reserved	-		
[2]	POWER_DOMAIN_ID_VALID	Indicates whether there is a power domain ID specified in the ROM Table entry.		
		0	Indicates that the POWER_DOMAIN_ID field of this register is not valid.	
		1	Indicates that the POWER_DOMAIN_ID field of this register is valid.	
[1]	FORMAT	Indicates the ROM tab	le entry format.	
		1	ROM table entry is of 32-bit format.	
[0]	ENTRY_PRESENT	Indicates whether there is a valid ROM entry at this location.		
		0	Valid ROM table entry not present at this address location.	
		1	Valid ROM table entry present at this address location.	

3.3.3 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. Contains part of the designer identity and the memory size.

The PIDR4 register characteristics are:

Usage constraints There are no usage constraints.

Configurations	This register is available in all configurations.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

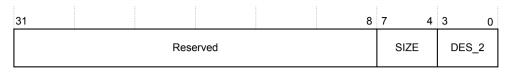


Figure 3-20 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-24 PIDR4 bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.
		Either targetid[11:8] from the DAP or a sub system specific value.

3.3.4 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. It contains part of the designerspecific part number.

The PIDR0 characteristics are:

Usage constraints

There are no usage constraints.

Configurations

This register is available in all configurations.

Attributes

See the APB interconnect register summary table.

The following figure shows the bit assignments.

Figure 3-21 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-25 PIDR0 bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	PART_0	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.
		Either targetid[23:16] from the DAP or a sub-system identifier.

3.3.5 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. It contains part of the designerspecific part number and part of the designer identity.

The PIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

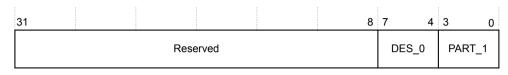


Figure 3-22 PIDR1 bit assignments

The following table shows the bit assignments.

Table 3-26 PIDR1 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	DES_0	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		Either the targetid [4:1] from the DAP or a sub-system identifier.	
[3:0]	PART_1	Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		Either the targetid[27:24] from the DAP or a sub-system identifier.	

3.3.6 Peripheral ID2 Register, PIDR2

The PIDR2 register is part of the set of peripheral identification registers. It contains part of the designer identity and the product revision.

The PIDR2 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

Figure 3-23 PIDR2 bit assignments

The following table shows the bit assignments.

Table 3-27 PIDR2 bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:4]	REVISION	This reflects either the targetid [31:28] from the DAP or a sub-system identifier.
[3]	JEDEC	Always 1. Indicates that the JEDEC-assigned designer ID is used.
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.
		Either the targetid[7:5] from the DAP, or a sub-system identifier.

3.3.7 Peripheral ID3 Register, PIDR3

The PIDR3 register is part of the set of peripheral identification registers. It contains the REVAND and CMOD fields.

The PIDR3 characteristics are:

Usage constraints

There are no usage constraints.

Configurations

This register is available in all configurations.

Attributes

See the APB interconnect register summary table.

The following figure shows the bit assignments.

Figure 3-24 PIDR3 bit assignments

The following table shows the bit assignments.

Table 3-28 PIDR3 bit assignments

Bits	Name	Name Function		
[31:8]	Reserved	-		
[7:4]	REVAND	0b0000		
		Indicates that there	e are no errata fixes to this component.	
[3:0]	3:0] CMOD Customer Modified. Indicates whether the customer has modified the behavior of the component. In m this field is 0b0000 . Customers change this value when they make authorized modifications to this contact of the component.			
		0b0000		
		Indicates that the c	customer has not modified this component.	
3.3.8	Con	nponent ID0 Register, (CIDR0	
		The CIDR0 register is a co	omponent identification register that indicates the presence of identification	
		registers.	simponent identification register that indicates the presence of identification	
		registers.		

Attributes

See the APB interconnect register summary table.

The following figure shows the bit assignments.

31		8	7		0
	Reserved		PR	MBL_0	

Figure 3-25 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-29 CIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7:0] of the component identification code.	
		0x0D	Bits[7:0] of the identification code.

3.3.9 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

The CIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

Figure 3-26 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-30 CIDR1 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:4]	CLASS Class of the component, for example, whether the component is a ROM table or a generic Cores Contains bits[15:12] of the component identification code.			
		0b0001	Indicates that the component is a ROM table.	
[3:0]	PRMBL_1	Preamble[1]. Contains bits[11:8] of the component identification code.		
		0b0000	Bits[11:8] of the identification code.	

3.3.10 Component ID2 Register, CIDR2

The CIDR2 register is a component identification register that indicates the presence of identification registers.

The CIDR2 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

Figure 3-27 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-31 CIDR2 bit assignments

Bits	Name	Function			
[31:8]	Reserved	-			
[7:0]	PRMBL_2	Preamble[2]. Contains bits[2]	Preamble[2]. Contains bits[23:16] of the component identification code.		
		0x05	Bits[23:16] of the identification code.		

3.3.11 **Component ID3 Register, CIDR3**

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the APB interconnect register summary table.

The following figure shows the bit assignments.

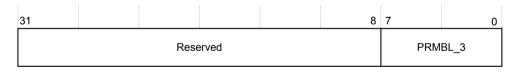


Figure 3-28 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-32 CIDR3 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_3	Preamble[3]. Contains bits[31:24] of the component identification code.		
		0xB1	Bits[31:24] of the identification code.	

3.4 ATB funnel registers

The ATB funnel merges the trace from multiple ATB buses and sends the data to a single ATB bus. The ATB funnel registers are only present when the APB programming interface is chosen.

This section contains the following subsections:

- 3.4.1 ATB funnel register summary on page 3-79.
- *3.4.2 Funnel Control register, Ctrl_Reg* on page 3-80.
- 3.4.3 Priority Control Register, Priority_Ctrl_Reg on page 3-82.
- 3.4.4 Integration Test ATB Data0 register, ITATBDATA0 on page 3-84.
- 3.4.5 Integration Test ATB Control 2 Register on page 3-86.
- 3.4.6 Integration Test ATB Control 1 Register, ITATBCTR1 on page 3-87.
- 3.4.7 Integration Test ATB Control 0 Register, ITATBCTR0 on page 3-88.
- 3.4.8 Integration Mode Control register, ITCTRL on page 3-89.
- 3.4.9 Claim Tag Set register, CLAIMSET on page 3-89.
- 3.4.10 Claim Tag Clear register, CLAIMCLR on page 3-90.
- 3.4.11 Lock Access Register, LAR on page 3-91.
- 3.4.12 Lock Status Register, LSR on page 3-91.
- 3.4.13 Authentication Status register, AUTHSTATUS on page 3-92.
- 3.4.14 Device Configuration register, DEVID on page 3-93.
- 3.4.15 Device Type Identifier register, DEVTYPE on page 3-94.
- 3.4.16 Peripheral ID0 Register, PIDR0 on page 3-94.
- 3.4.17 Peripheral ID1 Register, PIDR1 on page 3-95.
- 3.4.18 Peripheral ID2 Register, PIDR2 on page 3-95.
- 3.4.19 Peripheral ID3 Register, PIDR3 on page 3-96.
- 3.4.20 Peripheral ID4 Register, PIDR4 on page 3-97.
- 3.4.21 Component ID0 Register, CIDR0 on page 3-97.
- 3.4.22 Component ID1 Register, CIDR1 on page 3-98.
- 3.4.23 Component ID2 Register, CIDR2 on page 3-98.
- 3.4.24 Component ID3 Register, CIDR3 on page 3-99.

3.4.1 ATB funnel register summary

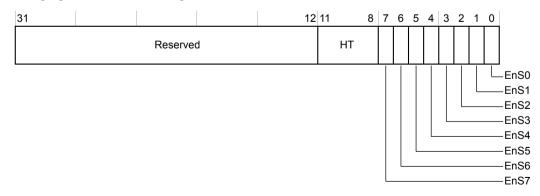
Summary of the ATB funnel registers in offset order from the base memory address.

Table 3-33 ATB funnel register summary

Offset	Name	Туре	Reset	Description
0x000	Ctrl_Reg	RW	0x00000300	3.4.2 Funnel Control register, Ctrl_Reg on page 3-80
0x004	Priority_Ctrl_Reg	RW	0x00000000	3.4.3 Priority Control Register, Priority_Ctrl_Reg on page 3-82
ØxEEC	ITATBDATA0	RW	0x00000000	3.4.4 Integration Test ATB Data0 register, ITATBDATA0 on page 3-84
0xEF0	ITATBCTR2	RW	0x00000000	3.4.5 Integration Test ATB Control 2 Register on page 3-86
0xEF4	ITATBCTR1	RW	0x00000000	3.4.6 Integration Test ATB Control 1 Register, ITATBCTR1 on page 3-87
0xEF8	ITATBCTR0	RW	0x00000000	3.4.7 Integration Test ATB Control 0 Register, ITATBCTR0 on page 3-88
0xF00	ITCTRL	RW	0x00000000	3.4.8 Integration Mode Control register, ITCTRL on page 3-89
0xFA0	CLAIMSET	RW	0x0000000F	3.4.9 Claim Tag Set register; CLAIMSET on page 3-89
0xFA4	CLAIMCLR	RW	0x00000000	3.4.10 Claim Tag Clear register; CLAIMCLR on page 3-90
0xFB0	LOCKACCESS	WO	0x00000000	3.4.11 Lock Access Register, LAR on page 3-91
0xFB4	LOCKSTATUS	RO	0x00000003	3.4.12 Lock Status Register, LSR on page 3-91
0xFB8	AUTHSTATUS	RO	0x00000000	3.4.13 Authentication Status register, AUTHSTATUS on page 3-92

Table 3-33 ATB funnel register summary (continued)

Offset	Name	Туре	Reset	Description
0xFC8	DEVID	RO	0x00000038	3.4.14 Device Configuration register, DEVID on page 3-93
0xFCC	DEVTYPE	RO	0x00000012	3.4.15 Device Type Identifier register; DEVTYPE on page 3-94
0xFD0	PIDR4	RO	0x00000004	3.4.20 Peripheral ID4 Register; PIDR4 on page 3-97
0xFD4	-	-	-	Reserved
0xFD8	-	-	-	Reserved
0xFDC	-	-	-	Reserved
0xFE0	PIDR0	RO	0x0000008	3.4.16 Peripheral ID0 Register; PIDR0 on page 3-94
0xFE4	PIDR1	RO	0x000000B9	3.4.17 Peripheral ID1 Register; PIDR1 on page 3-95
0xFE8	PIDR2	RO	0x0000003B	3.4.18 Peripheral ID2 Register; PIDR2 on page 3-95
ØxFEC	PIDR3	RO	0x00000000	3.4.19 Peripheral ID3 Register; PIDR3 on page 3-96
0xFF0	CIDR0	RO	0x0000000D	3.4.21 Component ID0 Register, CIDR0 on page 3-97
0xFF4	CIDR1	RO	0x00000090	3.4.22 Component ID1 Register; CIDR1 on page 3-98
0xFF8	CIDR2	RO	0x00000005	3.4.23 Component ID2 Register; CIDR2 on page 3-98
0xFFC	CIDR3	RO	0x000000B1	3.4.24 Component ID3 Register; CIDR3 on page 3-99


3.4.2 Funnel Control register, Ctrl_Reg

The Ctrl_Reg register enables the slave ports and defines the hold time of the slave ports. Hold time refers to the number of transactions that are output on the funnel master port from the same slave when that slave port **atvalidsx** is HIGH. Hold time does not mention clock cycles in this context.

The Ctrl_Reg characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
	The number of fields implemented in this register depends on the configuration of the component.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-29 Ctrl_Reg bit assignments

The following table shows the bit assignments.

Table 3-34 Ctrl_Reg bit assignments

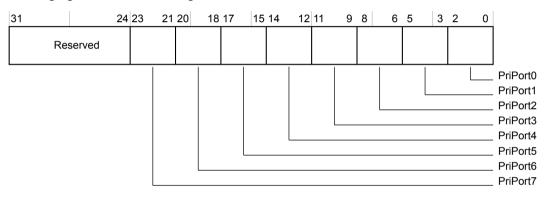
Bits	Name	Function			
[31:12]	Reserved	-			
[11:8]	HT	Hold Time. The formatting scheme can become inefficient when fast switching occurs, and you can use this setting to minimize switching. When a source has nothing to transmit, then another source is selected irrespective of the minimum number of transactions. The ATB funnel holds for the minimum hold time and one additional transaction. The actual hold time is the register value plus 1. The maximum value that can be entered is 0b1110 and this equates to 15 transactions. 0b1111 is reserved.			
		0b0000	1 transaction hold time.		
		0b0001	2 transactions hold time.		
		0b0010	3 transactions hold time.		
		0b0011	4 transactions hold time.		
		0b0100	5 transactions hold time.		
		0b0101	6 transactions hold time.		
		0b0110	7 transactions hold time.		
		0b0111	8 transactions hold time.		
		0b1000	9 transactions hold time.		
		0b1001	10 transactions hold time.		
		0b1010	11 transactions hold time.		
		0b1011	12 transactions hold time.		
		0b1100	13 transactions hold time.		
		0b1101	14 transactions hold time.		
		0b1110	15 transactions hold time.		
[7]	EnS7	Enable slave port 7.			
		The reset value is 0.			
		0	Slave port disabled.		
			This excludes the port from the priority selection scheme.		
		1	Slave port enabled.		
[6]	EnS6	Enable slave port 6.			
		The reset value is 0.			
		0	Slave port disabled.		
			This excludes the port from the priority selection scheme.		
		1	Slave port enabled.		
[5]	EnS5	Enable slave port 5.			
		The reset value is 0.			
		0	Slave port disabled.		
			This excludes the port from the priority selection scheme.		
		1	Slave port enabled.		

Table 3-34 Ctrl_Reg bit assignments (continued)

Bits	Name	Function	
[4]	EnS4	Enable slave port 4.	
		The reset value is 0.	
		0	Slave port disabled.
			This excludes the port from the priority selection scheme.
		1	Slave port enabled.
[3]	EnS3	Enable slave port 3.	
		The reset value is 0.	
		0	Slave port disabled.
			This excludes the port from the priority selection scheme.
		1	Slave port enabled.
[2]	EnS2	Enable slave port 2.	
		The reset value is 0.	
		0	Slave port disabled.
			This excludes the port from the priority selection scheme.
		1	Slave port enabled.
[1]	EnS1	Enable slave port 1.	
		The reset value is 0.	
		0	Slave port disabled.
			This excludes the port from the priority selection scheme.
		1	Slave port enabled.
[0]	EnS0	Enable slave port 0.	
		The reset value is 0.	
		0	Slave port disabled.
			This excludes the port from the priority selection scheme.
		1	Slave port enabled.

3.4.3 Priority Control Register, Priority_Ctrl_Reg

The Priority_Ctrl_Reg register defines the order in which inputs are selected. Each 3-bit field is a priority for each particular slave interface.


For example: The values represent the priority value for each port number. If you want to give the highest priority to a particular slave port, program the corresponding port with the lowest value. Typically, this is likely to be a port that has more important data or that has a small FIFO and is therefore likely to overflow. If you want to give lowest priority to a particular slave port, program the corresponding slave port with the highest value. The arbitration logic selects the slave with the lowest port number when the same priority value is entered for multiple slaves.

Location 0	Has the priority value for the first slave port.
Location 1	Has the priority value for the second slave port.
Location 2	Has the priority value for the third slave port.
•••	
Location 7	Has the priority value for the eighth slave port.

The Priority_Ctrl_Reg characteristics are:

Usage constraints	Priority values must not be changed while the corresponding slave port is enabled. Before changing the priority level for one or more slave ports, disable those slave ports using the Funnel Control Register.
Configurations	This register is available in all configurations.
	The number of fields implemented in this register depends on the configuration of the component.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

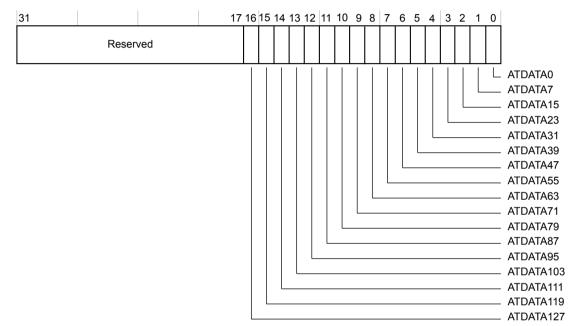
Figure 3-30 Priority_Ctrl_Reg bit assignments

The following table shows the bit assignments.

Table 3-35 Priority_Ctrl_Reg bit assignments

Bits	Name	Function
[31:24]	Reserved	-
[23:21]	PriPort7	Priority value of the eighth slave port.
[20:18]	PriPort6	Priority value of the seventh slave port.
[17:15]	PriPort5	Priority value of the sixth slave port.
[14:12]	PriPort4	Priority value of the fifth slave port.
[11:9]	PriPort3	Priority value of the fourth slave port.
[8:6]	PriPort2	Priority value of the third slave port.
[5:3]	PriPort1	Priority value of the second slave port.
[2:0]	PriPort0	Priority value of the first slave port.

3.4.4 Integration Test ATB Data0 register, ITATBDATA0


The ITATBDATA0 register performs different functions depending on whether the access is a read or a write.

- A read returns the data from **atdatas***n*, where *n* is the index of the slave port that is enabled. The read data is only valid when **atvalids***n* is HIGH.
- A write outputs data to the byte boundaries of atdatam.

The ITATBDATA0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-31 ITATBDATA0 register bit assignments

The following table shows the bit assignments.

Table 3-36 ITATBDATA0 register bit assignments

Bits	Name	Function	
[31:17]	Reserved	-	
[16]	ATDATA127	lue of atdatas <x>[127] of the enabled port. A write access writes to atdatam[127]</x>	
		0	atdata[127] of the enabled port is LOW.
		1	atdata[127] of the enabled port is HIGH.
[15]	ATDATA119	A read access returns the va of the enabled port.	lue of atdatas<x>[119]</x> of the enabled port. A write access writes to atdatam[119]
		0	atdata[119] of the enabled port is LOW.
		1	atdata[119] of the enabled port is HIGH.

Table 3-36 ITATBDATA0 register bit assignments (continued)

Bits	Name	Function	
[14]	ATDATA111	A read access returns the val of the enabled port.	lue of atdatas<x>[111]</x> of the enabled port. A write access writes to atdatam[111]
		0	atdata[111] of the enabled port is LOW.
		1	atdata[111] of the enabled port is HIGH.
[13]	ATDATA103	A read access returns the val of the enabled port.	lue of atdatas<x>[103]</x> of the enabled port. A write access writes to atdatam[103]
		0	atdata[103] of the enabled port is LOW.
		1	atdata[103] of the enabled port is HIGH.
[12]	ATDATA95	A read access returns the val the enabled port.	lue of atdatas <x>[95] of the enabled port. A write access writes to atdatam[95] of</x>
		0	atdata[95] of the enabled port is LOW.
		1	atdata[95] of the enabled port is HIGH.
[11]	ATDATA87	A read access returns the val the enabled port.	lue of atdatas<x>[87]</x> of the enabled port. A write access writes to atdatam[87] of
		0	atdata[87] of the enabled port is LOW.
		1	atdata[87] of the enabled port is HIGH.
[10]	ATDATA79	A read access returns the val the enabled port.	lue of atdatas<x>[79]</x> of the enabled port. A write access writes to atdatam[79] of
		0	atdata[79] of the enabled port is LOW.
		1	atdata[79] of the enabled port is HIGH.
[9]	ATDATA71	A read access returns the val the enabled port.	lue of atdatas<x>[71]</x> of the enabled port. A write access writes to atdatam[71] of
		0	atdata[71] of the enabled port is LOW.
		1	atdata[71] of the enabled port is HIGH.
[8]	ATDATA63	A read access returns the val the enabled port.	lue of atdatas<x>[63]</x> of the enabled port. A write access writes to atdatam[63] of
		0	atdata[63] of the enabled port is LOW.
		1	atdata[63] of the enabled port is HIGH.
[7]	ATDATA55	A read access returns the val the enabled port.	lue of atdatas <x>[55] of the enabled port. A write access writes to atdatam[55] of</x>
		0	atdata[55] of the enabled port is LOW.
		1	atdata[55] of the enabled port is HIGH.

Table 3-36 ITATBDATA0 register bit assignments (continued)

Bits	Name	Function	
[6]	ATDATA47	A read access returns the v the enabled port.	value of atdatas<x>[47]</x> of the enabled port. A write access writes to atdatam[47] of
		0	atdata[47] of the enabled port is LOW.
		1	atdata[47] of the enabled port is HIGH.
[5]	ATDATA39	A read access returns the v the enabled port.	value of atdatas<x>[39]</x> of the enabled port. A write access writes to atdatam[39] of
		0	atdata[39] of the enabled port is LOW.
		1	atdata[39] of the enabled port is HIGH.
[4]	ATDATA31	A read access returns the v the enabled port.	value of atdatas<x>[31]</x> of the enabled port. A write access writes to atdatam[31] of
		0	atdata[31] of the enabled port is LOW.
		1	atdata[31] of the enabled port is HIGH.
[3]	ATDATA23	A read access returns the v the enabled port.	value of atdatas<x>[23]</x> of the enabled port. A write access writes to atdatam[23] of
		0	atdata[23] of the enabled port is LOW.
		1	atdata[23] of the enabled port is HIGH.
[2]	ATDATA15	A read access returns the v the enabled port.	value of atdatas<x>[15]</x> of the enabled port. A write access writes to atdatam[15] of
		0	atdata[15] of the enabled port is LOW.
		1	atdata[15] of the enabled port is HIGH.
[1]	ATDATA7	A read access returns the v the enabled port.	value of atdatas<x>[7]</x> of the enabled port. A write access writes to atdatam[7] of
		0	atdata[7] of the enabled port is LOW.
		1	atdata[7] of the enabled port is HIGH.
[0]	ATDATA0	A read access returns the v the enabled port.	value of atdatas<x>[0]</x> of the enabled port. A write access writes to atdatam[0] of
		0	atdata[0] of the enabled port is LOW.
		1	atdata[0] of the enabled port is HIGH.

3.4.5 Integration Test ATB Control 2 Register

The ITATBCTR2 register performs different functions depending on whether the access is a read or a write.

- A read returns the data from **atreadym** and **afvalidm**.
- A write outputs data on **atreadys***n* and **afvalids***n*, where the value of the Ctrl_Reg at 0x000 defines *n*.

The ITATBCTR2 characteristics are:

Usage constraints There are no usage constraints.

Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

31						2	1	0
		F	Reserved					
					AFVA	LID -		

ATREADY —

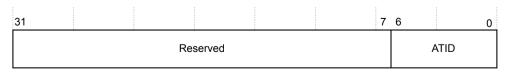
Figure 3-32 ITATBCTR2 bit assignments

The following table shows the bit assignments.

Table 3-37 ITATBCTR2 bit assignments

Bits	Name	Function			
[31:2]	Reserved	-			
[1]	AFVALID	A read access returns the val	ue of afvalidm .		
		A write access outputs the da	ata to afvalids <i>n</i> , where the value of the Ctrl_Reg at 0x000 defines n.		
		0	Pin is at logic 0.		
		1	Pin is at logic 1.		
[0]	ATREADY	Y A read access returns the value of atreadym .			
	A write access outputs the data to atreadysn , where the value of the Ctrl_Reg at 0x000 defines		ata to atreadys <i>n</i> , where the value of the Ctrl_Reg at 0x000 defines n.		
		0	Pin is at logic 0.		
		1	Pin is at logic 1.		

3.4.6 Integration Test ATB Control 1 Register, ITATBCTR1


The ITATBCTR1 register performs different functions depending on whether the access is a read or a write.

- A read returns the value of the **atids***n* signals, where the value of the Control Register at 0×000 defines *n*.
- A write operation in the register outputs the value written in the register to atidm.

The ITATBCTR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

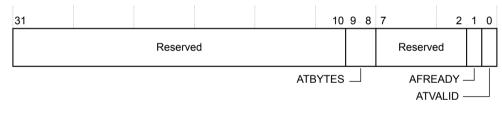
Figure 3-33 ITATBCTR1 bit assignments

The following table shows the bit assignments.

Table 3-38 ITATBCTR1 bit assignments

Bits	Name	Function
[31:7]	Reserved	-
[6:0]	ATID	A read returns the value of the atids <i>n</i> signals, where the value of the Control Register at 0×000 defines <i>n</i> .
		A write outputs the value to the atidm port.

3.4.7 Integration Test ATB Control 0 Register, ITATBCTR0


The ITATBCTR0 register performs different functions depending on whether the access is a read or a write.

- A read returns the value of the **atvalids***n*, **atbytess***n*, and **afreadys***n* signals, where the value of the Control Register at 0x000 defines *n*.
- A write sets the value of the atvalidm, atbytesm, and afreadym signals.

The ITATBCTR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-34 ITATBCTR0 bit assignments

The following table shows the bit assignments.

Table 3-39 ITATBCTR0 bit assignments

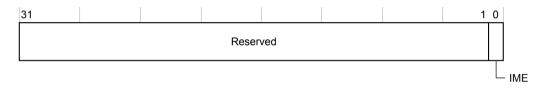
Bits	Name	Function
[31:10]	Reserved	-
[9:8]	ATBYTES	A read returns the value of the atbytess <i>n</i> signal, where the value of the Ctrl_Reg at 0×000 defines <i>n</i> .
		A write outputs the value to atbytesm .
[7:2]	Reserved	-
[1]	AFREADY	A read returns the value of the afreadysn signal, where the value of the Ctrl_Reg at 0x000 defines <i>n</i> .
		A write outputs the value to afreadym .
[0]	ATVALID	A read returns the value of the atvalids <i>n</i> signal, where the value of the Ctrl_Reg at 0×000 defines <i>n</i> .
		A write outputs the value to atvalidm .

3.4.8 Integration Mode Control register, ITCTRL

- Note -

The ITCTRL register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.

See the ARM[®] Architecture Specification.


When a device is in integration mode, the intended functionality might not be available.

After performing integration or topology detection, reset the system to ensure correct behavior of CoreSight and other connected system components that the integration or topology detection can affect.

The ITCTRL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-35 ITCTRL register bit assignments

The following table shows the bit assignments.

Table 3-40 ITCTRL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	IME	Integration Mode Enable.	
		0	Disable integration mode.
		1	Enable integration mode.

3.4.9 Claim Tag Set register, CLAIMSET

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

The CLAIMSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

31					4	3	0
		Rese	erved			SE	

Figure 3-36 CLAIMSET register bit assignments

The following table shows the bit assignments.

Table 3-41 CLAIMSET register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	SET	On reads, for each bit:	
		1	Claim tag bit is implemented
		On writes, for each bit:	
		0	Has no effect.
		1	Sets the relevant bit of the claim tag.

3.4.10 Claim Tag Clear register, CLAIMCLR

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

The CLAIMCLR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-37 CLAIMCLR register bit assignments

The following table shows the bit assignments.

Table 3-42 CLAIMCLR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CLR	On reads, for each bit:	
		0	Claim tag bit is not set.
		1	Claim tag bit is set.
		On writes, for each bit:	
		0	Has no effect.
		1	Clears the relevant bit of the claim tag.

3.4.11 Lock Access Register, LAR

The LAR register Controls write access from self-hosted, on-chip accesses. The LAR does not affect the accesses using the external debugger interface.

The LAR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

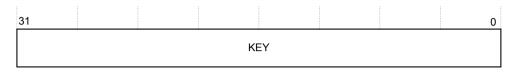


Figure 3-38 LAR bit assignments

The following table shows the bit assignments.

Table 3-43 LAR bit assignments

Name Function Bits [31:0] KEY Software lock key value. Clear the software lock.

0xC5ACCE55

All other write values set the software lock.

3.4.12 Lock Status Register, LSR

The LSR register indicates the status of the lock control mechanism. This lock prevents accidental writes. When locked, write accesses are denied for all registers except for the LAR. The lock registers do not affect accesses from the external debug interface. This register reads as 0 when accessed from the external debug interface.

The LSR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

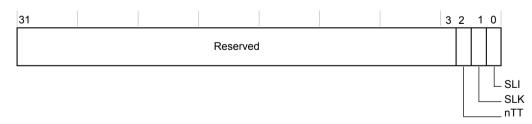
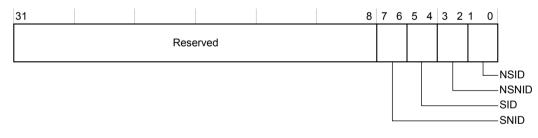


Figure 3-39 LSR bit assignments

The following table shows the bit assignments.

Table 3-44 LSR bit assignments

Bits	Name	Function	
[31:3]	Reserved	-	
[2]	nTT	Register size indicator. Alway	ys 0. Indicates that the LAR is implemented as 32-bit.
[1] SLK		Software Lock Status. Return	s the present lock status of the device, from the current interface.
		0	Indicates that write operations are permitted from this interface.
		1	Indicates that write operations are not permitted from this interface. Read operations are permitted.
[0]	SLI	Software Lock Implemented.	Indicates that a lock control mechanism is present from this interface.
		0	Indicates that a lock control mechanism is not present from this interface. Write operations to the LAR are ignored.
		1	Indicates that a lock control mechanism is present from this interface.


3.4.13 Authentication Status register, AUTHSTATUS

The AUTHSTATUS register reports the required security level and present status.

The AUTHSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-40 AUTHSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-45 AUTHSTATUS register bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:6]	SNID	Indicates the security level fo	Indicates the security level for Secure non-invasive debug:	
		0600	Functionality is not implemented or is controlled elsewhere.	
[5:4]	SID	Indicates the security level for Secure invasive debug:		
		0b00	Functionality is not implemented or is controlled elsewhere.	

Table 3-45 AUTHSTATUS register bit assignments (continued)

Bits	Name	Function	Function		
[3:2]	NSNID	Indicates the security level for	Indicates the security level for Non-secure non-invasive debug:		
		0b00	Functionality is not implemented or is controlled elsewhere.		
[1:0]	NSID	Indicates the security level for Non-secure invasive debug:			
		0b00	Functionality is not implemented or is controlled elsewhere.		

3.4.14 Device Configuration register, DEVID

The DEVID register indicates the capabilities of the component.

The DEVID register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-41 DEVID register bit assignments

The following table shows the bit assignments.

Table 3-46 DEVID register bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:4]	SCHEME	Indicates the priority scheme implemented in this component.		
		0b0011	Program the slave ports to have higher or lower priority with respect to each other.	
[3:0]	PORTCOUNT	T Indicates the number of input ports connected. 0x0 and 0x1 are illegal values.		
		0b0010	Two ATB slave ports.	
		0b0011	Three ATB slave ports.	
		0b0100	Four ATB slave ports.	
		0b0101	Five ATB slave ports.	
		0b0110	Six ATB slave ports.	
		0b0111	Seven ATB slave ports.	
		0b1000	Eight ATB slave ports.	

3.4.15 Device Type Identifier register, DEVTYPE

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

The DEVTYPE register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

31			8	7	4	3	0
	Reserved			SU	В	MAJO	OR

Figure 3-42 DEVTYPE register bit assignments

The following table shows the bit assignments.

Table 3-47 DEVTYPE register bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4] SUB Sub-classification of the type of the debug component as specified in the <i>ARM</i> [®] <i>Architet</i> the major classification as specified in the MAJOR field:			
		0b0001	This component arbitrates ATB inputs mapping to ATB outputs.
[3:0]	0] MAJOR Major classification of the type of the debug component as specified in the <i>ARM</i> [®] <i>Architectus</i> debug and trace component:		pe of the debug component as specified in the ARM [®] Architecture Specification for this
		0b0010	This component has both ATB inputs and ATB outputs.

3.4.16 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number.

The PIDR0 register characteristics are:

Usage constraints There are no usage constraints.

Configurations This register is available in all configurations.

Attributes See the ATB funnel register summary table.

The following figure shows the bit assignments.

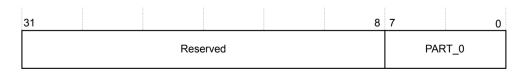


Figure 3-43 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-48 PIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PART_0	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0×08	Indicates bits[7:0] of the part number of the component.

3.4.17 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number and part of the designer identity.

The PIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the PIDR1 bit assignments.

Figure 3-44 PIDR1 bit assignments

The following table shows the PIDR1 bit assignments.

Table 3-49 PIDR1 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	DES_0	Together, PIDR1.DES_0, PID	DR2.DES_1, and PIDR4.DES_2 identify the designer of the component.
		0b1011	ARM. Bits[3:0] of the JEDEC JEP106 Identity Code.
[3:0]	PART_1	Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0b1001	Indicates bits[11:8] of the part number of the component.

3.4.18 Peripheral ID2 Register, PIDR2

The PIDR2 register is part of the set of peripheral identification registers. Contains part of the designer identity and the product revision.

The PIDR2 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the PIDR2 bit assignments.

Figure 3-45 PIDR2 bit assignments

The following table shows the PIDR2 bit assignments.

Table 3-50 PIDR2 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVISION	0b0011	This device is at r1p1.
[3]	JEDEC	Always 1. Indicates that the JEDEC assigned-designer ID is used.	
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b011	ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.

3.4.19 Peripheral ID3 Register, PIDR3

The PIDR3 register is part of the set of peripheral identification registers. Contains the REVAND and CMOD fields.

The PIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the PIDR3 bit assignments.

Figure 3-46 PIDR3 bit assignments

The following table shows the PIDR3 bit assignments.

Table 3-51 PIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVAND	06000	Indicates that there are no errata fixes to this component.
[3:0]	CMOD	D Customer Modified. Indicates whether the customer has modified the behavior of the component. In this field is 0b0000 . Customers change this value when they make authorized modifications to this	
		06000	Indicates that the customer has not modified this component.

3.4.20 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. Contains part of the designer identity and the memory size.

The PIDR4 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

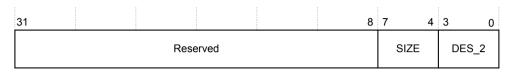


Figure 3-47 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-52 PIDR4 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.	
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b0100	JEDEC continuation code.

3.4.21 Component ID0 Register, CIDR0

The CIDR0 register is a component identification register that indicates the presence of identification registers.

The CIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-48 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-53 CIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7:0] of the component identification code.	
		0×0D	Bits[7:0] of the identification code.

3.4.22 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

The CIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-49 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-54 CIDR1 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	CLASS Class of the component, for example, whether the component is a ROM table or a generic Co Contains bits[15:12] of the component identification code.		
		0b1001	Indicates that the component is a CoreSight component.
[3:0]	PRMBL_1	1 Preamble[1]. Contains bits[11:8] of the component identification code.	
		06000	Bits[11:8] of the identification code.

3.4.23 Component ID2 Register, CIDR2

The CIDR2 register is a component identification register that indicates the presence of identification registers.

The CIDR2 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-50 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-55 CIDR2 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_2	2 Preamble[2]. Contains bits[23:16] of the component identification code.		
		0x05	Bits[23:16] of the identification code.	

3.4.24 Component ID3 Register, CIDR3

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB funnel register summary table.

The following figure shows the bit assignments.

Figure 3-51 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-56 CIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_3	Preamble[3]. Contains bits[31:24] of the component identification code.	
		0xB1	Bits[31:24] of the identification code.

3.5 ATB replicator registers

The ATB replicator propagates data from a single master to two slaves at the same time.

This section contains the following subsections:

- 3.5.1 ATB replicator register summary on page 3-100.
- 3.5.2 ID filtering for ATB master port 0, IDFILTER0 on page 3-101.
- 3.5.3 ID filtering for ATB master port 1, IDFILTER1 on page 3-102.
- 3.5.4 Integration Mode ATB Control 0 Register, ITATBCTR0 on page 3-104.
- 3.5.5 Integration Mode ATB Control 1 Register, ITATBCTR1 on page 3-105.
- 3.5.6 Integration Mode Control register, ITCTRL on page 3-106.
- 3.5.7 Claim Tag Set register, CLAIMSET on page 3-106.
- 3.5.8 Claim Tag Clear register, CLAIMCLR on page 3-107.
- 3.5.9 Lock Access Register, LAR on page 3-108.
- 3.5.10 Lock Status Register, LSR on page 3-108.
- 3.5.11 Authentication Status register, AUTHSTATUS on page 3-109.
- 3.5.12 Device Configuration register, DEVID on page 3-110.
- 3.5.13 Device Type Identifier register, DEVTYPE on page 3-110.
- 3.5.14 Peripheral ID4 Register, PIDR4 on page 3-111.
- 3.5.15 Peripheral ID0 Register, PIDR0 on page 3-111.
- 3.5.16 Peripheral ID1 Register, PIDR1 on page 3-112.
- 3.5.17 Peripheral ID2 Register, PIDR2 on page 3-112.
- 3.5.18 Peripheral ID3 Register, PIDR3 on page 3-113.
- 3.5.19 Component ID0 Register, CIDR0 on page 3-114.
- 3.5.20 Component ID1 Register, CIDR1 on page 3-114.
- 3.5.21 Component ID2 Register, CIDR2 on page 3-115.
- 3.5.22 Component ID3 Register, CIDR3 on page 3-115.

3.5.1 ATB replicator register summary

Summary of the ATB replicator registers in offset order from the base memory address.

Table 3-57 ATB replicator register summary

Offset	Name	Туре	Reset	Description
0x000	IDFILTER0	RW	0x00000000	3.5.2 ID filtering for ATB master port 0, IDFILTER0 on page 3-101
0x004	IDFILTER1	RW	0x00000000	3.5.3 ID filtering for ATB master port 1, IDFILTER1 on page 3-102
0xEFC	ITATBCTR0	WO	0x00000000	3.5.4 Integration Mode ATB Control 0 Register, ITATBCTR0 on page 3-104
0xEF8	ITATBCTR1	RO	0x00000000	3.5.5 Integration Mode ATB Control 1 Register, ITATBCTR1 on page 3-105
0xF00	ITCTRL	RW	0x00000000	3.5.6 Integration Mode Control register, ITCTRL on page 3-106
0xFA0	CLAIMSET	RW	0x0000000F	3.5.7 Claim Tag Set register; CLAIMSET on page 3-106
0xFA4	CLAIMCLR	RW	0x00000000	3.5.8 Claim Tag Clear register, CLAIMCLR on page 3-107
0xFB0	LAR	WO	0x00000000	3.5.9 Lock Access Register, LAR on page 3-108
0xFB4	LSR	RO	0x00000003	3.5.10 Lock Status Register; LSR on page 3-108
0xFB8	AUTHSTATUS	RO	0x00000000	3.5.11 Authentication Status register, AUTHSTATUS on page 3-109
0xFC8	DEVID	RO	0x00000002	3.5.12 Device Configuration register, DEVID on page 3-110
0xFCC	DEVTYPE	RO	0x00000022	3.5.13 Device Type Identifier register, DEVTYPE on page 3-110
0xFD0	PIDR4	RO	0x00000004	3.5.14 Peripheral ID4 Register, PIDR4 on page 3-111
0xFD4	-	-	-	Reserved

Table 3-57 ATB replicator register summary (continued)

Offset	Name	Туре	Reset	Description
0xFD8	-	_	-	Reserved
ØxFDC	-	-	-	Reserved
0xFE0	PIDR0	RO	0x00000009	3.5.15 Peripheral ID0 Register; PIDR0 on page 3-111
0xFE4	PIDR1	RO	0x000000B9	3.5.16 Peripheral ID1 Register; PIDR1 on page 3-112
0xFE8	PIDR2	RO	0x0000002B	3.5.17 Peripheral ID2 Register; PIDR2 on page 3-112
0xFEC	PIDR3	RO	0x00000000	3.5.18 Peripheral ID3 Register; PIDR3 on page 3-113
0xFF0	CIDR0	RO	0x0000000D	3.5.19 Component ID0 Register, CIDR0 on page 3-114
0xFF4	CIDR1	RO	0x00000090	3.5.20 Component ID1 Register, CIDR1 on page 3-114
0xFF8	CIDR2	RO	0x00000005	3.5.21 Component ID2 Register, CIDR2 on page 3-115
0xFFC	CIDR3	RO	0x000000B1	3.5.22 Component ID3 Register, CIDR3 on page 3-115

3.5.2 ID filtering for ATB master port 0, IDFILTER0

The IDFILTER0 register enables the programming of ID filtering for master port 0.

The IDFILTER0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

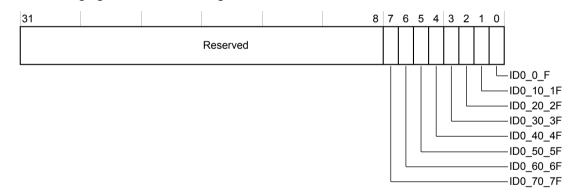


Figure 3-52 IDFILTER0 register bit assignments

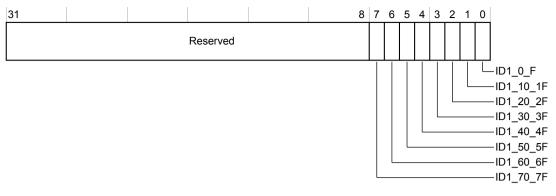
The following table shows the bit assignments.

Table 3-58 IDFILTER0 register bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7]	ID0_70_7F	Enable or disable ID filtering for IDs 0x70-0x7F.				
		0	Transactions with these IDs are passed on to ATB master port 0.			
		1	Transactions with these IDs are discarded by the replicator.			

Table 3-58 IDFILTER0 register bit assignments (continued)

Bits	Name	Function	
[6]	ID0_60_6F	Enable or disable ID filtering	; for IDs 0x60-0x6F.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.
[5]	ID0_50_5F	Enable or disable ID filtering	; for IDs 0x50-0x5F.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.
[4]	ID0_40_4F	Enable or disable ID filtering	; for IDs 0x40-0x4F.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.
[3]	ID0_30_3F	Enable or disable ID filtering	for IDs 0x30-0x3F.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.
[2]	ID0_20_2F	Enable or disable ID filtering	; for IDs 0x20-0x2F.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.
[1]	ID0_10_1F	Enable or disable ID filtering	for IDs 0x10-0x1F.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.
[0]	ID0_0_F	Enable or disable ID filtering	for IDs 0x0-0xF.
		0	Transactions with these IDs are passed on to ATB master port 0.
		1	Transactions with these IDs are discarded by the replicator.


3.5.3 ID filtering for ATB master port 1, IDFILTER1

The IDFILTER1 register enables the programming of ID filtering for master port 1.

The IDFILTER1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

Figure 3-53 IDFILTER1 register bit assignments

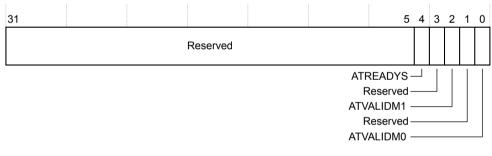
The following table shows the bit assignments.

Table 3-59 IDFILTER1 register bit assignments

isable ID filtering for IDs 0x70-0x7F. Transactions with these IDs are passed on to ATB master port 1. Transactions with these IDs are discarded by the replicator. isable ID filtering for IDs 0x60-0x6F. Transactions with these IDs are passed on to ATB master port 1. Transactions with these IDs are discarded by the replicator.
Transactions with these IDs are passed on to ATB master port 1. Transactions with these IDs are discarded by the replicator. isable ID filtering for IDs 0x60-0x6F. Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are discarded by the replicator. isable ID filtering for IDs 0x60-0x6F. Transactions with these IDs are passed on to ATB master port 1.
isable ID filtering for IDs 0x60-0x6F. Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are discarded by the replicator.
isable ID filtering for IDs 0x50-0x5F.
Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are discarded by the replicator.
isable ID filtering for IDs 0x40-0x4F.
Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are discarded by the replicator.
isable ID filtering for IDs 0x30-0x3F.
Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are discarded by the replicator.
isable ID filtering for IDs 0x20-0x2F.
Transactions with these IDs are passed on to ATB master port 1.
Transactions with these IDs are discarded by the replicator.
i

Table 3-59 IDFILTER1 register bit assignments (continued)

Bits	Name	Function	
[1]	ID1_10_1F	Enable or disable ID filtering	g for IDs 0x10-0x1F.
		0	Transactions with these IDs are passed on to ATB master port 1.
		1	Transactions with these IDs are discarded by the replicator.
[0]	ID1_0_F	Enable or disable ID filtering	g for IDs 0x0-0xF.
		0	Transactions with these IDs are passed on to ATB master port 1.
		1	Transactions with these IDs are discarded by the replicator.


3.5.4 Integration Mode ATB Control 0 Register, ITATBCTR0

The ITATBCTR0 register controls the value of the **atvalidm0**, **atvalidm1**, and **atreadys** outputs in integration mode.

The ITATBCTR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

Figure 3-54 ITATBCTR0 bit assignments

The following table shows the bit assignments.

Table 3-60 ITATBCTR0 bit assignments

Bits	Name	Function	
[31:5]	Reserved	-	
[4]	ATREADYS	Sets the value of the atread	ys output.
		0	Drive logic 0 on the atreadys output.
		1	Drive logic 1 on the atreadys output.
[3]	Reserved	-	
[2]	ATVALIDM1	Sets the value of the atvalid	lm1 output.
		0	Drive logic 0 on the atvalidm1 output.
		1	Drive logic 1 on the atvalidm1 output.

Table 3-60 ITATBCTR0 bit assignments (continued)

Bits	Name	Function									
[1]	Reserved	-									
[0]	ATVALIDM0	Sets the value of the atv	alidm0 output.								
		0	Drive logi	c 0 on the atv	alidm0 outp	out.					
		1	Drive logi	c 1 on the atv	alidm0 outp	out.					
3.5.5	Integra	tion Mode ATB Cor	ntrol 1 Regis	ter, ITATB	CTR1						
		e ITATBCTR1 register egration mode.	returns the va	lue of the at	readym0, a	atreadym	I, and	atva	lids	s inp	outs in
	The	e ITATBCTR1 charact	eristics are:								
	Us	age constraints	There are no	usage cons	traints.						
	Со	onfigurations This register is available in all configurations.									
	At	tributes See the ATB replicator register summary table.									
	Th	The following figure shows the bit assignments.									
	31 4							3	21	0	
			Reser	ved							
	L							<u> </u>			ATREADYM0

Figure 3-55 ITATBCTR1 bit assignments

ATREADYM1 Reserved ATVALIDS

The following table shows the bit assignments.

Table 3-61 ITATBCTR1 bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3]	ATVALIDS	Reads the value of the at	valids input.
		0	Pin is at logic 0.
		1	Pin is at logic 1.
[2]	Reserved	-	
[1]	ATREADYM1	Reads the value of the at	readym1 input.
		0	Pin is at logic 0.
		1	Pin is at logic 1.
[0]	ATREADYM0	Reads the value of the at	readym0 input.
		0	Pin is at logic 0.
		1	Pin is at logic 1.

3.5.6 Integration Mode Control register, ITCTRL

– Note –

The ITCTRL register enables the component to switch from a functional mode, which is the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.

See the ARM[®] Architecture Specification.

When a device is in integration mode, the intended functionality might not be available.

After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that the integration or topology detection can affect.

The ITCTRL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

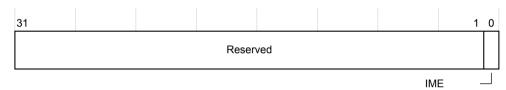


Figure 3-56 ITCTRL register bit assignments

The following table shows the bit assignments.

Table 3-62 ITCTRL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	IME	Integration Mode Enable.	
		0	Disable integration mode.
		1	Enable integration mode.

3.5.7 Claim Tag Set register, CLAIMSET

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

The CLAIMSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

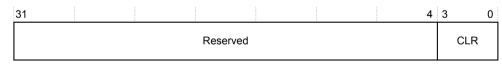
31					4	3	0
		Rese	erved				SET

Figure 3-57 CLAIMSET register bit assignments

The following table shows the bit assignments.

Table 3-63 CLAIMSET register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	SET	On reads, for each bit:	
		1	Claim tag bit is implemented
		On writes, for each bit:	
		0	Has no effect.
		1	Sets the relevant bit of the claim tag.


3.5.8 Claim Tag Clear register, CLAIMCLR

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

The CLAIMCLR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

Figure 3-58 CLAIMCLR register bit assignments

The following table shows the bit assignments.

Table 3-64 CLAIMCLR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CLR	On reads, for each bit:	
		0	Claim tag bit is not set.
		1	Claim tag bit is set.
		On writes, for each bit:	
		0	Has no effect.
		1	Clears the relevant bit of the claim tag.

3.5.9 Lock Access Register, LAR

The LAR register controls write access from self-hosted, on-chip accesses. The LAR does not affect the accesses using the external debugger interface.

The LAR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

31				0
		KEY		

Figure 3-59 LAR bit assignments

The following table shows the bit assignments.

Table 3-65 LAR bit assignments

Bits Name Function

[31:0] KEY Software lock key value.

0xC5ACCE55 Clear the software lock.

All other write values set the software lock.

3.5.10 Lock Status Register, LSR

The LSR register indicates the status of the lock control mechanism. This lock prevents accidental writes. When locked, write accesses are denied for all registers except for the LAR. The lock registers do not affect accesses from the external debug interface. This register reads as 0 when accessed from the external debug interface.

The LSR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

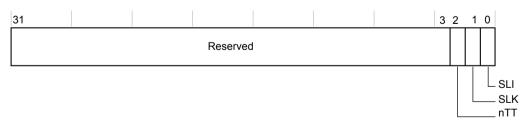
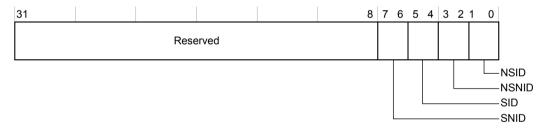


Figure 3-60 LSR bit assignments

The following table shows the bit assignments.

Table 3-66 LSR bit assignments

Bits	Name	Function					
[31:3]	Reserved	d -					
[2]	nTT	Register size indicator. Always 0. Indicates that the LAR is implemented as 32-bit.					
[1]	SLK	Software Lock Status. Return	s the present lock status of the device, from the current interface.				
		0	Indicates that write operations are permitted from this interface.				
		1	Indicates that write operations are not permitted from this interface. Read operations are permitted.				
[0]	SLI	Software Lock Implemented.	Indicates that a lock control mechanism is present from this interface.				
		0	Indicates that a lock control mechanism is not present from this interface. Write operations to the LAR are ignored.				
		1	Indicates that a lock control mechanism is present from this interface.				


3.5.11 Authentication Status register, AUTHSTATUS

The AUTHSTATUS register reports the required security level and present status.

The AUTHSTATUS register characteristics are:

Usage constraints	There are no usage constraints.			
Configurations	This register is available in all configurations.			
Attributes	See the ATB replicator register summary table.			

The following figure shows the bit assignments.

Figure 3-61 AUTHSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-67 AUTHSTATUS register bit assignments

Bits	Name	Function					
[31:8]	Reserved	-					
[7:6]	SNID	Indicates the security level fo	idicates the security level for Secure non-invasive debug:				
		0600	Functionality is not implemented or is controlled elsewhere.				
[5:4]	SID	Indicates the security level fo	r Secure invasive debug:				
		0b00	Functionality is not implemented or is controlled elsewhere.				

Table 3-67 AUTHSTATUS register bit assignments (continued)

Bits	Name	Function	Function					
[3:2]	NSNID	Indicates the security level for	dicates the security level for Non-secure non-invasive debug:					
		0b00	Functionality is not implemented or is controlled elsewhere.					
[1:0]	NSID	Indicates the security level for	or Non-secure invasive debug:					
		0600	Functionality is not implemented or is controlled elsewhere.					

3.5.12 Device Configuration register, DEVID

The DEVID register indicates the capabilities of the component.

The DEVID register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Rese	erved		PC	ORTNUM

Figure 3-62 DEVID register bit assignments

The following table shows the bit assignments.

Table 3-68 DEVID register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	PORTNUM	Indicates the number of mas	ter ports implemented.
		0b0010	Two master ports are implemented.

3.5.13 Device Type Identifier register, DEVTYPE

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

The DEVTYPE register characteristics are:

Usage constraints	There are no usage constraints.				
Configurations	This register is available in all configurations.				
Attributes	See the ATB replicator register summary table.				

The following figure shows the bit assignments.

31						8	7	4	3	0
	Reserved						SU	IB	MAJO	R

Figure 3-63 DEVTYPE register bit assignments

The following table shows the bit assignments.

Table 3-69 DEVTYPE register bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	SUB	Sub-classification of the type the major classification as spo	of the debug component as specified in the <i>ARM</i> [®] <i>Architecture Specification</i> within ecified in the MAJOR field.
		0b0010	Indicates that this component replicates trace from a single source to multiple targets.
[3:0]	MAJOR	Major classification of the typ debug and trace component.	pe of the debug component as specified in the ARM [®] Architecture Specification for this
		0b0010	Indicates that this component has ATB inputs and outputs.

3.5.14 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. The register contains part of the designer identity and the memory size.

The PIDR4 characteristics are:

Usage constraints	There are no usage constraints.			
Configurations	This register is available in all configurations.			
Attributes	See the ATB replicator register summary table.			

The following figure shows the bit assignments.

31				8	7 4	3 0
		Reserved			SIZE	DES_2

Figure 3-64 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-70 PIDR4 bit assignments

Bits	Name	Function	Function				
[31:8]	Reserved						
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.					
[3:0]	DES_2	Together, PIDR1.DES_0, PID	ogether, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.				
		0b0100	JEDEC continuation code.				

3.5.15 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. The register contains part of the designer-specific part number.

The PIDR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

Figure 3-65 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-71 PIDR0 bit assignments

Bits	Name	Function					
[31:8]	Reserved	-					
[7:0]	PART_0	Bits[7:0] of the 12-bit part nu	its[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.				
		0x09	Indicates bits[7:0] of the part number of the component.				

3.5.16 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. The register contains part of the designer-specific part number and part of the designer identity.

The PIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

Figure 3-66 PIDR1 bit assignments

The following table shows the bit assignments.

Table 3-72 PIDR1 bit assignments

Bits	Name	Function					
[31:8]	Reserved	-					
[7:4]	DES_0	Together, PIDR1.DES_0, PIE	ogether, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.				
		0b1011	ARM. Bits[3:0] of the JEDEC JEP106 Identity Code.				
[3:0]	PART_1	Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns this part number.					
		0b1001	Indicates bits[11:8] of the part number of the component.				

3.5.17 Peripheral ID2 Register, PIDR2

The PIDR2 register is part of the set of peripheral identification registers. Contains part of the designer identity and the product revision.

The PIDR2 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

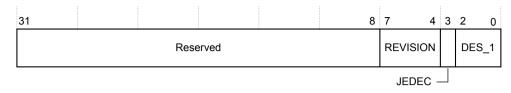


Figure 3-67 PIDR2 bit assignments

The following table shows the bit assignments.

Table 3-73 PIDR2 bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:4]	REVISION	0b0010	This device is at r0p1.			
[3]	JEDEC	Always 1. Indicates that the	JEDEC-assigned designer ID is used.			
[2:0]	DES_1	Together, PIDR1.DES_0, PI	gether, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.			
		0b011	ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.			

3.5.18 Peripheral ID3 Register, PIDR3

The PIDR3 register is part of the set of peripheral identification registers. The register Contains the REVAND and CMOD fields.

The PIDR3 characteristics are:

Usage constraints	There are no usage constraints.			
Configurations	This register is available in all configurations.			
Attributes	See the ATB replicator register summary table.			

The following figure shows the bit assignments.

31						8	7 4	3 0
						REVAND	CMOD	

Figure 3-68 PIDR3 bit assignments

The following table shows the bit assignments.

Table 3-74 PIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVAND	0b0000	Indicates that there are no errata fixes to this component.
[3:0]	CMOD	. Indicates whether the customer has modified the behavior of the component. In most cases . Customers change this value when they make authorized modifications to this component.	
		0b0000	Indicates that the customer has not modified this component.

The CIDR0 register is a component identification register that indicates the presence of identification registers.

The CIDR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

31				8	7		0
		Reserved			PRM	1BL_0	

Figure 3-69 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-75 CIDR0 bit assignments

Bits	Name	Function			
[31:8]	Reserved	-			
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7	Preamble[0]. Contains bits[7:0] of the component identification code.		
		0×0D	Bits[7:0] of the identification code.		

3.5.20 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

The CIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

31				8	7 4	3	0
		Reserved	t		CLASS	PRMBL_	1

Figure 3-70 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-76 CIDR1 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	CLASS	· ·	or example, whether the component is a ROM table or a generic CoreSight component. e component identification code.
		0b1001	Indicates that the component is a CoreSight component.
[3:0]	PRMBL_1	Preamble[1]. Contains bits	[11:8] of the component identification code.
		0b0000	Bits[11:8] of the identification code.
]	registers. The CIDR2 register chara	component identification register that indicates the presence of identification acteristics are:
		Usage constraints Configurations Attributes	There are no usage constraints. This register is available in all configurations. See the ATB replicator register summary table.
		The following figure sho	ws the bit assignments.
		31	8 7 0
			Reserved PRMBL_2

Figure 3-71 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-77 CIDR2 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_2	Preamble[2]. Contains bits[2]	3:16] of the component identification code.
		0x05	Bits[23:16] of the identification code.

3.5.22 Component ID3 Register, CIDR3

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB replicator register summary table.

The following figure shows the bit assignments.

Figure 3-72 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-78 CIDR3 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_3	Preamble[3]. Contains bits[31:24] of the component identification code.		
		0xB1	Bits[31:24] of the identification code.	

3.6 ETB registers

The ETB captures trace from an ATB slave interface and stores it in an on-chip RAM for later inspection by debug tools.

This section contains the following subsections:

- 3.6.1 ETB register summary on page 3-117.
- 3.6.2 ETB RAM Depth register, RDP on page 3-118.
- 3.6.3 ETB Status register, STS on page 3-119.
- 3.6.4 ETB RAM Read Data register; RRD on page 3-120.
- 3.6.5 ETB RAM Read Pointer register, RRP on page 3-121.
- 3.6.6 ETB RAM Write Pointer register, RWP on page 3-121.
- 3.6.7 ETB Trigger Counter register, TRG on page 3-122.
- 3.6.8 ETB Control register, CTL on page 3-122.
- 3.6.9 ETB RAM Write Data register, RWD on page 3-123.
- 3.6.10 ETB Formatter and Flush Status Register, FFSR on page 3-124.
- 3.6.11 ETB Formatter and Flush Control Register, FFCR on page 3-124.
- 3.6.12 Integration Test Miscellaneous Output register 0, ITMISCOP0 on page 3-126.
- 3.6.13 Integration Test Trigger In and Flush In Acknowledge register, ITTRFLINACK on page 3-127.
- 3.6.14 Integration Test Trigger In and Flush In register, ITTRFLIN on page 3-128.
- 3.6.15 Integration Test ATB Data register 0, ITATBDATA0 on page 3-128.
- 3.6.16 Integration Test ATB Control Register 2, ITATBCTR2 on page 3-129.
- 3.6.17 Integration Test ATB Control Register 1, ITATBCTR1 on page 3-130.
- 3.6.18 Integration Test ATB Control Register 0, ITATBCTR0 on page 3-131.
- 3.6.19 Integration Mode Control register, ITCTRL on page 3-131.
- 3.6.20 Claim Tag Set register, CLAIMSET on page 3-132.
- 3.6.21 Claim Tag Clear register, CLAIMCLR on page 3-133.
- 3.6.22 Lock Access Register, LAR on page 3-133.
- 3.6.23 Lock Status Register, LSR on page 3-134.
- 3.6.24 Authentication Status register, AUTHSTATUS on page 3-135.
- 3.6.25 Device Configuration register, DEVID on page 3-136.
- 3.6.26 Device Type Identifier register, DEVTYPE on page 3-136.
- 3.6.27 Peripheral ID4 Register, PIDR4 on page 3-137.
- 3.6.28 Peripheral ID0 Register, PIDR0 on page 3-137.
- 3.6.29 Peripheral ID1 Register, PIDR1 on page 3-138.
- 3.6.30 Peripheral ID2 Register, PIDR2 on page 3-138.
- 3.6.31 Peripheral ID3 Register, PIDR3 on page 3-139.
- 3.6.32 Component ID0 Register, CIDR0 on page 3-140.
- 3.6.33 Component ID1 Register, CIDR1 on page 3-140.
- 3.6.34 Component ID2 Register, CIDR2 on page 3-141.
- 3.6.35 Component ID3 Register, CIDR3 on page 3-141.

3.6.1 ETB register summary

Summary of the ETB registers in offset order from the base memory address.

Table 3-79 ETB register summary

Offset	Name	Туре	Reset	Description
0x004	RDP	RO	0x00000000	3.6.2 ETB RAM Depth register, RDP on page 3-118
0x00C	STS	RO	0x0000008	3.6.3 ETB Status register, STS on page 3-119
0x010	RRD	RO	0x00000000	3.6.4 ETB RAM Read Data register; RRD on page 3-120
0x014	RRP	RW	0x00000000	3.6.5 ETB RAM Read Pointer register, RRP on page 3-121
0x018	RWP	RW	0x00000000	3.6.6 ETB RAM Write Pointer register; RWP on page 3-121

Table 3-79 ETB register summary (continued)

Offset	Name	Туре	Reset	Description
0x01C	TRG	RW	0x00000000	3.6.7 ETB Trigger Counter register, TRG on page 3-122
0x020	CTL	RW	0x00000000	3.6.8 ETB Control register, CTL on page 3-122
0x024	RWD	WO	0x00000000	3.6.9 ETB RAM Write Data register, RWD on page 3-123
0x300	FFSR	RO	0x00000002	3.6.10 ETB Formatter and Flush Status Register, FFSR on page 3-124
0x304	FFCR	RW	0x00000000	3.6.11 ETB Formatter and Flush Control Register, FFCR on page 3-124
0xEE0	ITMISCOP0	WO	0x00000000	3.6.12 Integration Test Miscellaneous Output register 0, ITMISCOP0 on page 3-126
0xEE4	ITTRFLINACK	WO	0x00000000	<i>3.6.13 Integration Test Trigger In and Flush In Acknowledge register, ITTRFLINACK</i> on page 3-127
0xEE8	ITTRFLIN	RO	0x00000000	3.6.14 Integration Test Trigger In and Flush In register, ITTRFLIN on page 3-128
0xEEC	ITATBDATA0	RO	0x00000000	3.6.15 Integration Test ATB Data register 0, ITATBDATA0 on page 3-128
0xEF0	ITATBCTR2	WO	0x00000000	3.6.16 Integration Test ATB Control Register 2, ITATBCTR2 on page 3-129
0xEF4	ITATBCTR1	RO	0x00000000	3.6.17 Integration Test ATB Control Register 1, ITATBCTR1 on page 3-130
0xEF8	ITATBCTR0	RO	0x00000000	3.6.18 Integration Test ATB Control Register 0, ITATBCTR0 on page 3-131
0xF00	ITCTRL	RW	0x00000000	3.6.19 Integration Mode Control register; ITCTRL on page 3-131
0xFA0	CLAIMSET	RW	0x0000000F	3.6.20 Claim Tag Set register, CLAIMSET on page 3-132
0xFA4	CLAIMCLR	RW	0x00000000	3.6.21 Claim Tag Clear register; CLAIMCLR on page 3-133
0xFB0	LAR	WO	0x00000000	3.6.22 Lock Access Register, LAR on page 3-133
0xFB4	LSR	RO	0x00000003	3.6.23 Lock Status Register, LSR on page 3-134
0xFB8	AUTHSTATUS	RO	0x00000000	3.6.24 Authentication Status register, AUTHSTATUS on page 3-135
0xFC8	DEVID	RO	0x00000000	3.6.25 Device Configuration register, DEVID on page 3-136
0xFCC	DEVTYPE	RO	0x00000021	3.6.26 Device Type Identifier register, DEVTYPE on page 3-136
0xFD0	PIDR4	RO	0x00000004	3.6.27 Peripheral ID4 Register, PIDR4 on page 3-137
0xFD4	-	-	-	Reserved
0xFD8	-	-	-	Reserved
0xFDC	-	-	-	Reserved
0xFE0	PIDR0	RO	0x00000007	3.6.28 Peripheral ID0 Register; PIDR0 on page 3-137
0xFE4	PIDR1	RO	0x000000B9	3.6.29 Peripheral ID1 Register, PIDR1 on page 3-138
0xFE8	PIDR2	RO	0x0000003B	3.6.30 Peripheral ID2 Register; PIDR2 on page 3-138
0xFEC	PIDR3	RO	0x00000000	3.6.31 Peripheral ID3 Register; PIDR3 on page 3-139
0xFF0	CIDR0	RO	0x0000000D	3.6.32 Component ID0 Register; CIDR0 on page 3-140
0xFF4	CIDR1	RO	0x00000090	3.6.33 Component ID1 Register; CIDR1 on page 3-140
0xFF8	CIDR2	RO	0x00000005	3.6.34 Component ID2 Register; CIDR2 on page 3-141
0xFFC	CIDR3	RO	0x000000B1	3.6.35 Component ID3 Register; CIDR3 on page 3-141

3.6.2 ETB RAM Depth register, RDP

The RDP register defines the depth, in words, of the trace RAM.

The RDP register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

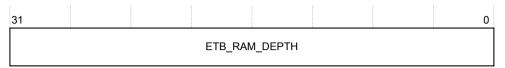
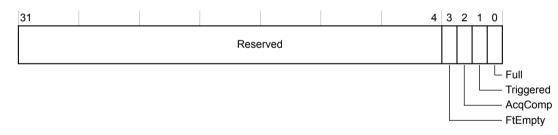


Figure 3-73 RDP register bit assignments

The following table shows the bit assignments.

Table 3-80 RDP register bit assignments

Bits	Name	Function
[31:0]	ETB_RAM_DEPTH	Defines the depth, in words, of the trace RAM.


3.6.3 ETB Status register, STS

The STS register indicates the status of the ETB.

The STS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-74 STS register bit assignments

The following table shows the bit assignments.

Table 3-81 STS register bit assignments

Bits	Name	Function		
[31:4]	Reserved	-		
[3]	FtEmpty	Formatter pipeline is empty. All data is stored to RAM.		
		0	Formatter pipeline is not empty.	
		1	Formatter pipeline is empty.	

Table 3-81 STS register bit assignments (continued)

Bits	Name	Function				
[2]	AcqComp		g indicates that the capture is completed when the formatter stops because of any of FCR, or CTL.TraceCaptEn is 0. This sets FFSR.FtStopped to 1.			
		0	Acquisition is not complete.			
		1	Acquisition is complete.			
[1]	Triggered	Note	h the component observes a trigger during programming the FFCR. hat the formatter embedded a trigger in the trace data.			
		0	A trigger is not observed.			
		1	A trigger is observed.			
[0]	Full	The flag indicates whether the	ne RAM is full or not.			
		0	The RAM write pointer is not wrapped around. The RAM is not full.			
		1	The RAM write pointer is wrapped around. The RAM is full.			

3.6.4 ETB RAM Read Data register, RRD

When trace capture is disabled, the contents of the ETB Trace RAM at the location addressed by the RAM Read Pointer Register are placed in this register. Reading the RRD register increments the RAM Read Pointer Register and triggers a RAM access cycle.

When trace capture is enabled, a read from this register outputs 0xFFFFFFF when the following conditions are met:

- FFSR.FtStopped is 0.
- CTL.TraceCaptEn is 1.
- ETB RAM attempts a read operation.

In this situation the RAM Read Pointer Register does not auto-increment.

A constant output of 1s corresponds to a synchronization output in the formatter protocol that is not applicable to the ETB, and so can be used to indicate a read error when formatting is enabled.

The RRD register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

51	 				 	
		R	AM_Read_Da	ta		

Figure 3-75 RRD register bit assignments

The following table shows the bit assignments.

Table 3-82 RRD register bit assignments

Bits	Name	Function
[31:0]	RAM_Read_Data	Data read from the ETB Trace RAM.

3.6.5 ETB RAM Read Pointer register, RRP

The RRP register sets the read pointer to the required value. Writing to this register initiates a RAM access. The RAM Read Data Register is then updated.

You can also read this register to determine which memory location is currently referenced.

You must not write to this register when trace capture is enabled, that is, when FFSR.FtStopped is 0 and CTL.TraceCaptEn is 1. When trace capture is enabled, it is not possible to update the register even if there is a write operation.

The RRP register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31				10 9			0
	F	Reserved			RAM_	_Read_Pointer	

Figure 3-76 RRP register bit assignments

The following table shows the bit assignments.

Table 3-83 RRP register bit assignments

Bits	Name	Function
[31:10]	Reserved	-
[9:0]	RAM_Read_Pointer	Sets the read pointer to the required value. The read pointer reads entries from the Trace RAM through the APB interface.

3.6.6 ETB RAM Write Pointer register, RWP

The RWP register sets the write pointer to the required value. The Write Pointer writes entries from the CoreSight bus to the Trace RAM. During trace capture, the pointer increments when the formatter asserts the DataValid flag. When this register wraps around from its maximum value to 0, the Full flag is set. You can also write to this register through APB to set the pointer for write accesses.

You must not write to this register when trace capture is enabled, FFSR.FtStopped is 0, and CTL.TraceCaptEn is 1. When trace capture is enabled, it is not possible to update the register even if you do a write operation.

You can also read this register to determine which memory location is currently referenced. ARM recommends that addresses are 128-bit aligned when you use the formatter in normal or continuous modes.

The RWP register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

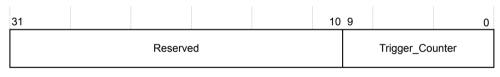
31		10	9			0
	Reserved			RAM_Write_	Pointer	

Figure 3-77 RWP register bit assignments

The following table shows the bit assignments.

Table 3-84 RWP register bit assignments

Bits	Name	Function
[31:10]	Reserved	-
[9:0]	RAM_Write_Pointer	The RAM Write Pointer Register sets the write pointer to the required value. The write pointer writes entries from the CoreSight bus to the Trace RAM.


3.6.7 ETB Trigger Counter register, TRG

The TRG register stops the formatter after a defined number of words are stored following the trigger event and disables write access to the trace RAM. The number of 32-bit words written to the trace RAM following the trigger event is equal to the value stored in this register plus 1.

The TRG register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-78 TRG register bit assignments

The following table shows the bit assignments.

Table 3-85 TRG register bit assignments

Bits	Name	Function	
[31:10]	Reserved	-	
[9:0]	Trigger_Counter	FFSR.FtStopped is	as follows: You must not write to this register when trace capture is enabled, 0, and CTL.TraceCaptEn is 1. If a write is attempted, the register is not updated. A read ed when trace capture is enabled.
		Trace after	The counter is set to a large value, slightly less than the number of entries in the RAM.
		Trace before	The counter is set to a small value.
		Trace about	The counter is set to half the depth of the trace RAM.

3.6.8 ETB Control register, CTL

Controls trace capture by the ETB.

The CTL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

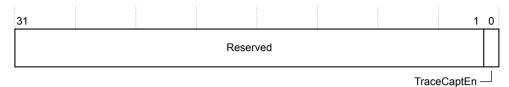


Figure 3-79 CTL register bit assignments

The following table shows the bit assignments.

Table 3-86 CTL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	TraceCaptEn	LOW. When capture is disab data is stored, the formatter of	This is the master enable bit that sets FtStopped to HIGH when TraceCaptEn is bled, any remaining data in the ATB formatter is stored to RAM. When all of the outputs FtStopped . Capture is fully disabled, or complete, when FtStopped goes <i>natter and Flush Status Register, FFSR</i> on page 3-124.
		0	Disable trace capture.
		1	Enable trace capture.

3.6.9 ETB RAM Write Data register, RWD

Provides data that writes to ETB Trace RAM.

The RWD register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31						0
		R	AM_Write_Da	ata		

Figure 3-80 RWD register bit assignments

The following table shows the bit assignments.

Table 3-87 RWD register bit assignments

	Name	Func	tion							
[31:0]	RAM_Wri	 Write_Data When CTL.TraceCaptEn is 0: Writes to this register write the data to the ETB trace RAM. The RAM Write Pointer Register value incremented. Reads of this register return an UNKNOWN value. 								Register value is
		• W Pc	rites to thi binter is no	eCaptEn is 1: is register are i ot affected. s register retur				ne ETB trac	e RAM and t	he RAM Write
3.6.10) ETB	Formatter a	and Flus	sh Status R	egister, F	FSR				
		Indicates the implemented trigger counter multipliers and other supported features of the trigger s							trigger system.	
		The FFSR cha	aracteristi	ics are:						
		Usage constr Configuratio Attributes	This reg	There are no usage constraints. This register is available in all configurations. See the ETB register summary table.						
		The following	g figure sl	hows the bit	assignment	s.				
			31							2 1 0
		31 Reserved								
	F							I_I		
										FtStopped — FIInProg — —
								Figure 3		
		The following	g table sho	ows the bit a	ssignments.			Figure 3		FIInProg —
		The following	g table sho	ows the bit a	ssignments.			-	-81 FFSR b	FIInProg —
Bits	Name	The following Function	g table sho	ows the bit a	ssignments.			-	-81 FFSR b	FllnProg ———
		Function	g table sho	ows the bit a	ssignments.			-	-81 FFSR b	FllnProg ———
	Name Reserved	Function	ped. The f	formatter has r	eceived a sto	op request s	e	Table 3	-81 FFSR k -88 FFSR k	FIInProg — bit assignment bit assignment
[31:2]	Name Reserved	Function - Formatter stop	ped. The f	formatter has r	eceived a sto	op request s d and atrea	e	Table 3	-81 FFSR k -88 FFSR k	FIInProg — bit assignment bit assignment
[31:2]	Name Reserved	Function - Formatter stop additional trac	ped. The f	formatter has r the ATB interf Formatte	eceived a sto ace is ignore	pp request s d and atrea ped.	e	Table 3	-81 FFSR k -88 FFSR k	FIInProg — bit assignment bit assignment
[31:2]	Name Reserved	Function - Formatter stop additional trac 0	ped. The f e data on t	formatter has r the ATB interf Formatte Formatte	eceived a sto ace is ignore er is not stop er is stopped.	pp request s d and atrea ped.	dys goes H	Table 3	-81 FFSR k -88 FFSR k	FIInProg — bit assignment bit assignment
[31:2] [1]	Name Reserved FtStopped	Function - Formatter stop additional trac 0 1	ped. The f e data on t	formatter has r the ATB interf Formatte Formatte s an indicatior	eceived a sto ace is ignore er is not stop er is stopped.	pp request s d and atrea ped.	dys goes H	Table 3	-81 FFSR k -88 FFSR k	FIInProg — bit assignment bit assignment

3.6.11 ETB Formatter and Flush Control Register, FFCR

Selects the formatter mode, and controls the generation of stop, trigger, and flush events.

— Note —

To perform a stop on flush completion through a manually generated flush request, two write operations to the register are required:

- To enable the stop event, if it is not already enabled.
- To generate the manual flush.

The FFCR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

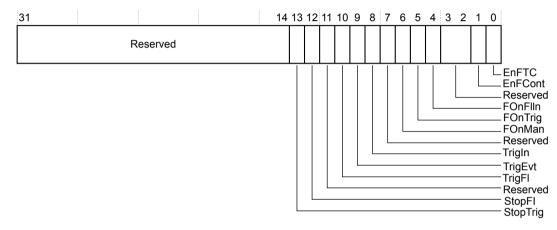


Figure 3-82 FFCR bit assignments

The following table shows the bit assignments.

Table 3-89 FFCR bit assignments

Bits	Name	Function				
[31:14]	Reserved	-				
[13]	StopTrig	StopTrig Stops trace capture after a trigger event is observed. The reset value is 0.				
		0	Disable stopping of the formatter after a trigger event is observed.			
		1	Enable stopping of the formatter after a trigger event is observed.			
[12] StopFl Stops trace capture after the next flush completes. The reset value is 0.			next flush completes. The reset value is 0.			
		0	Disable stopping the formatter when a flush completes.			
		1	Enable stopping the formatter when a flush completes.			
[11]	Reserved	-				
[10]	TrigFl	Indicates a Trigger-on-Flush	completion.			
		0	Disable trigger indication on flush completion.			
		1	Enable trigger indication on flush completion.			

Table 3-89 FFCR bit assignments (continued)

Bits	Name	Function					
[9]	TrigEvt	Indicates a trigger on a trigge	er event.				
		0	Disable trigger indication on a trigger event.				
		1	Enable trigger indication on a trigger event.				
[8]	TrigIn	Indicates a trigger when trig	in is asserted.				
		0	Disable trigger indication when trigin is asserted.				
		1	Enable trigger indication when trigin is asserted.				
[7]	Reserved	-					
[6]	FOnMan	Initiates a manual flush. This	bit is set to 0 after the flush has been serviced. The reset value is 0.				
		0	Manual flush is not initiated.				
		1	Manual flush is initiated.				
[5]	FOnTrig	Flushes the data in the system	n when a trigger event occurs. The reset value is 0.				
		0	Disable flush generation when a trigger event occurs.				
		1	Enable flush generation when a trigger event occurs.				
[4]	FOnFlIn	Enables use of the flushin input. The reset value is 0.					
		0	Disable flush generation using the flushin interface.				
		1	Enable flush generation using the flushin interface.				
[3:2]	Reserved	-					
[1]	EnFCont	 When EnFTC is 1, this bit controls whether triggers are recorded in the trace stream. Most usage models require Continuous mode, where this bit is set to 1. The reset value is 0. Note 					
		This bit can only be changed	when FtStopped is HIGH.				
		0	Triggers are not embedded in the trace stream.				
		1	Triggers are embedded in the trace stream.				
[0]	EnFTC	Enable formatting. Most usag	ge models require Continuous mode, where this bit is set to 1. The reset value is 0.				
		This bit can only be changed	when FtStopped is HIGH.				
		0	Formatting is disabled.				
		1	Formatting is enabled.				


3.6.12 Integration Test Miscellaneous Output register 0, ITMISCOP0

The ITMISCOP0 register controls the values of some outputs from the ETB.

The ITMISCOP0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

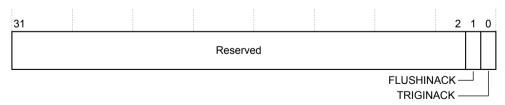
The following figure shows the bit assignments.

Figure 3-83 ITMISCOP0 register bit assignments

The following table shows the bit assignments.

Table 3-90 ITMISCOP0 register bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1]	FULL	Sets the value of full	output.
		0	Sets the value to 0.
		1	Sets the value to 1.
[0]	ACQCOMP	Sets the value of acqo	comp output.
		0	Sets the value to 0.
		1	Sets the value to 1.


3.6.13 Integration Test Trigger In and Flush In Acknowledge register, ITTRFLINACK

The ITTRFLINACK register enables control of the triginack and flushinack outputs from the ETB.

The ITTRFLINACK register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

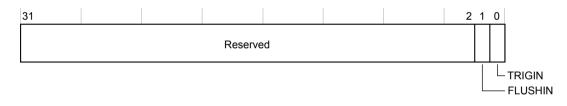
The following figure shows the bit assignments.

Figure 3-84 ITTRFLINACK register bit assignments

The following table shows the bit assignments.

Table 3-91 ITTRFLINACK register bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1] FLUSHINACK Sets the value of flushinack .		κ.	
		0	Sets the value of FLUSHINACK to 0.
		1	Sets the value of FLUSHINACK to 1.
[0]	TRIGINACK	Sets the value of triginack .	
		0	Sets the value of TRIGINACK to 0.
		1	Sets the value of TRIGINACK to 1.


3.6.14 Integration Test Trigger In and Flush In register, ITTRFLIN

The ITTRFLIN register contains the values of the flushin and trigin inputs to the ETB.

The ITTRFLIN register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

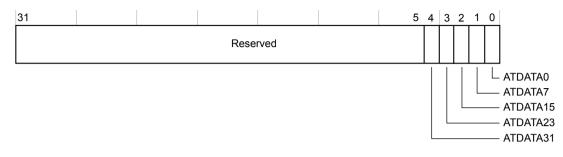
The following figure shows the bit assignments.

Figure 3-85 ITTRFLIN register bit assignments

The following table shows the bit assignments.

Table 3-92 ITTRFLIN register bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1]	FLUSHIN	Reads the value of flushin .	
		0	flushin is LOW.
		1	flushin is HIGH.
[0]	TRIGIN	Reads the value of trigin.	
		0	trigin is LOW.
		1	trigin is HIGH.


3.6.15 Integration Test ATB Data register 0, ITATBDATA0

The ITATBDATA0 register contains the value of the **atdatas** inputs to the ETB. The values are only valid when **atvalids** is HIGH.

The ITATBDATA0 register characteristics are:

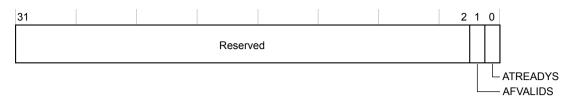
Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-86 ITATBDATA0 register bit assignments

The following table shows the bit assignments.

Table 3-93 ITATBDATA0 register bit assignments


Bits	Name	Function			
[31:5]	Reserved	-			
[4]	ATDATA_31	Reads the value of atdatas[31].		
		0	atdatas[31] is 0.		
		1	atdatas[31] is 1.		
[3]	ATDATA_23	Reads the value of atdatas	23].		
		0	atdatas[23] is 0.		
		1	atdatas[23] is 1.		
[2] ATDATA_15 Reads the value of atdatas [15].		15].			
		0	atdatas[15] is 0.		
		1	atdatas[15] is 1.		
[1]	ATDATA_7	Reads the value of atdatas [7].			
		0	atdatas[7] is 0.		
		1	atdatas[7] is 1.		
[0]	ATDATA_0	Reads the value of atdatas[0].		
		0	atdatas[0] is 0.		
		1	atdatas[0] is 1.		

The ITATBCTR2 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.

Attributes See the ETB register summary table.

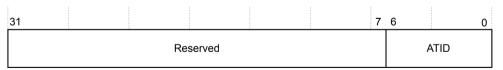
The following figure shows the bit assignments.

Figure 3-87 ITATBCTR2 bit assignments

The following table shows the bit assignments.

Table 3-94 ITATBCTR2 bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1]	AFVALIDS	Sets the value of afvalids .	
		0	Sets the value of afvalids to 0.
		1	Sets the value of afvalids to 1.
[0]	ATREADYS	Sets the value of atreadys .	
		0	Sets the value of atreadys to 0.
		1	Sets the value of atreadys to 1.


3.6.17 Integration Test ATB Control Register 1, ITATBCTR1

The ITATBCTR1 register contains the value of the **atids** input to the ETB. This value is valid only when **atvalids** is HIGH.

The ITATBCTR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

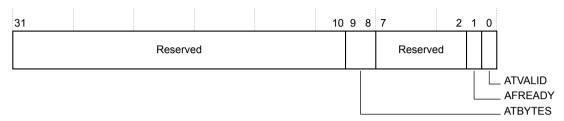
The following figure shows the bit assignments.

Figure 3-88 ITATBCTR1 bit assignments

The following table shows the bit assignments.

Table 3-95 ITATBCTR1 bit assignments

Bits	Name	Function
[31:7]	Reserved	-
[6:0]	ATID	Reads the value of atids .


3.6.18 Integration Test ATB Control Register 0, ITATBCTR0

The ITATBCTR0 register captures the values of the **atvalids**, **afreadys**, and **atbytess** inputs to the ETB. To ensure that the integration registers work correctly in a system, the value of **atbytess** is valid only when **atvalids**, bit[0], is HIGH.

The ITATBCTR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-89 ITATBCTR0 bit assignments

The following table shows the bit assignments.

Table 3-96 ITATBCTR0 bit assignments

Bits	Name	Name Func
[31:10]	Reserved	Reserved -
[9:8]	ATBYTES	ATBYTES Reads
[7:2]	Reserved	Reserved -
[1]	AFREADY	AFREADY Reads
		0
		1
[0]	ATVALID	ATVALID Reads
		0
		1

3.6.19 Integration Mode Control register, ITCTRL

The ITCTRL register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.

For information on topology detection, see the ARM[®] Architecture Specification.

_____ Note ____

When a device is in integration mode, the intended functionality might not be available.

After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that the integration or topology detection can affect.

The ITCTRL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.



Figure 3-90 ITCTRL register bit assignments

The following table shows the bit assignments.

Table 3-97 ITCTRL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	IME	Integration Mode Enable.	
		0	Disable integration mode.
		1	Enable integration mode.

3.6.20 Claim Tag Set register, CLAIMSET

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

The CLAIMSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Rese	erved			SET

Figure 3-91 CLAIMSET register bit assignments

The following table shows the bit assignments.

Table 3-98 CLAIMSET register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	SET	On reads, for each bit:	
		1	Claim tag bit is implemented.
		On writes, for each bit:	
		0	Has no effect.
		1	Sets the relevant bit of the claim tag.

3.6.21 Claim Tag Clear register, CLAIMCLR

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

The CLAIMCLR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31					43	0
		Res	erved			CLR

Figure 3-92 CLAIMCLR register bit assignments

The following table shows the bit assignments.

Table 3-99 CLAIMCLR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CLR	On reads, for each bit:	
		0	Claim tag bit is not set.
		1	Claim tag bit is set.
		On writes, for each bit:	
		0	Has no effect.
		1	Clears the relevant bit of the claim tag.

3.6.22 Lock Access Register, LAR

The LAR register controls write access from self-hosted, on-chip accesses. The LAR does not affect the accesses that are using the external debugger interface.

The LAR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.

Attributes

See the ETB register summary table.

The following figure shows the bit assignments.

31					0
		KEY	,		

Figure 3-93 LAR bit assignments

The following table shows the bit assignments.

Table 3-100 LAR bit assignments

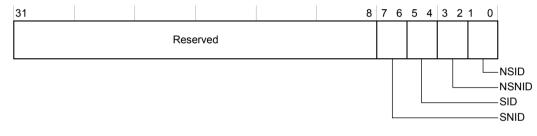
Bits	Name	Function						
[31:0]	KEY	Software lock key value.						
		ØxC5ACCE55	Clear the software lock.					
		All other write values set th	he software lock.					
3.6.23	L	ock Status Register, L	_SR					
		write accesses are den	the lock control mechanism. This lock prevents accidental writes. When locked, hied for all registers except for the LAR. The lock registers do not affect accesses ug interface. This register reads as 0 when accessed from the external debug					
		The LSR characteristics are:						
		Usage constraints There are no usage constraints.						
		Configurations	This register is available in all configurations.					
		Attributes See the ETB register summary table.						
		The following figure s	shows the bit assignments.					
		31						
			Reserved					
			Figure 3-94 LSR bit assignment					
		The following table sh	nows the bit assignments.					

Table 3-101 LSR bit assignments

Bits	Name	Function
[31:3]	Reserved	-
[2]	nTT	Register size indicator. Always 0. Indicates that the LAR is implemented as 32-bit.

Table 3-101 LSR bit assignments (continued)

Bits	Name	Function					
[1]	SLK	Software Lock Status. Returns the present lock status of the device, from the current interface.					
		0	Indicates that write operations are permitted from this interface.				
		1	Indicates that write operations are not permitted from this interface. Read operations are permitted.				
[0]	SLI	Software Lock Implemented	. Indicates that a lock control mechanism is present from this interface.				
		0	Indicates that a lock control mechanism is not present from this interface. Write operations to the LAR are ignored.				
		1	Indicates that a lock control mechanism is present from this interface.				


3.6.24 Authentication Status register, AUTHSTATUS

The AUTHSTATUS register reports the required security level and present status.

The AUTHSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

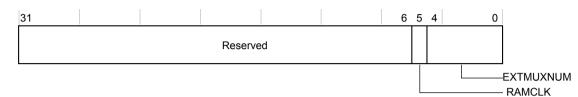
The following figure shows the bit assignments.

Figure 3-95 AUTHSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-102 AUTHSTATUS register bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:6]	SNID	Indicates the security level for	r Secure non-invasive debug:
		0600	Functionality is not implemented or is controlled elsewhere.
[5:4]	SID	Indicates the security level for Secure invasive debug:	
		0b00	Functionality is not implemented or is controlled elsewhere.
[3:2]	NSNID	ID Indicates the security level for Non-secure non-invasive debug:	
		0b00	Functionality is not implemented or is controlled elsewhere.
[1:0]	NSID	Indicates the security level for Non-secure invasive debug:	
		0b00	Functionality is not implemented or is controlled elsewhere.


3.6.25 Device Configuration register, DEVID

The DEVID register indicates the capabilities of the component.

The DEVID register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

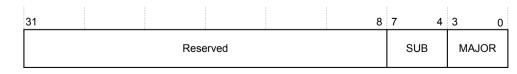
The following figure shows the bit assignments.

Figure 3-96 DEVID register bit assignments

The following table shows the DEVID register bit assignments.

Table 3-103 DEVID register bit assignments

Bits	Name	Function	
[31:6]	Reserved	-	
[5]	RAMCLK	This bit returns 0 on reads to	o indicate that the ETB RAM operates synchronously to atclk.
		0	The ETB RAM operates synchronously to atclk .
[4:0]	EXTMUXNUM	Number of external multiple input to the ATB.	exing available. Non-zero values indicate the type of ATB multiplexing on the
		06000	Only 0×00 is supported, that is, no multiplexing is present. This value helps detect the ATB structure.


3.6.26 Device Type Identifier register, DEVTYPE

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

The DEVTYPE register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-97 DEVTYPE register bit assignments

The following table shows the bit assignments.

Table 3-104 DEVTYPE register bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	SUB	Sub-classification of the type of the debug component as specified in the <i>ARM®</i> Architecture Specification withit the major classification as specified in the MAJOR field.	
		060010	This component is a trace buffer, ETB.
[3:0]	MAJOR	PR Major classification of the type of the debug component as specified in the ARM [®] Architecture Specification f debug and trace component.	
		060001	This component is a trace sink component.

3.6.27 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. It contains part of the designer identity and the memory size.

The PIDR4 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31			8	7 4	30
	Reserved			SIZE	DES_2

Figure 3-98 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-105 PIDR4 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.	
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b0100	JEDEC continuation code.

3.6.28 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. It contains part of the designerspecific part number.

The PIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-99 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-106 PIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PART_0	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0x07	Indicates bits[7:0] of the part number of the component.

3.6.29 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. It contains part of the designerspecific part number and part of the designer identity.

The PIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-100 PIDR1 bit assignments

The following table shows the PIDR1 bit assignments.

Table 3-107 PIDR1 bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:4]	[4] DES_0 Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.					
		0b1011	ARM. Bits[3:0] of the JEDEC JEP106 Identity Code.			
[3:0] PART_1 Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns		number of the component. The designer of the component assigns this part number.				
		0b1001	Indicates bits[11:8] of the part number of the component.			
3.6.30) Per	ipheral ID2 Register, Pl	IDR2			
		The PIDR2 register is particle to the product re-	t of the set of peripheral identification registers. It contains part of the designer evision.			
		The PIDR2 register charac	cteristics are:			
		Usage constraints	There are no usage constraints.			

ConfigurationsThis register is available in all configurations.AttributesSee the ETB register summary table.

The following figure shows the bit assignments.

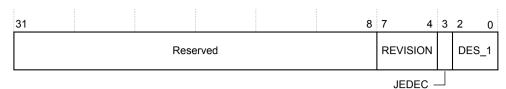


Figure 3-101 PIDR2 bit assignments

The following table shows the bit assignments.

Table 3-108 PIDR2 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVISION	0b0100	This device is at r0p5.
[3]	JEDEC	Always 1. Indicates that the JEDEC-assigned designer ID is used.	
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b011	ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.

3.6.31 Peripheral ID3 Register, PIDR3

The PIDR3 register is part of the set of peripheral identification registers. It contains the REVAND and CMOD fields.

The PIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31				8	7 4	3 <u>0</u>
		Reserved			REVAND	CMOD

Figure 3-102 PIDR3 bit assignments

The following table shows the bit assignments.

Table 3-109 PIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVAND	0b0000	Indicates that there are no errata fixes to this component.
[3:0]	CMOD		es whether the customer has modified the behavior of the component. In most cases hers change this value when they make authorized modifications to this component.
		06000	Indicates that the customer has not modified this component.

The CIDR0 register is a component identification register that indicates the presence of identification registers.

The CIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31				8	7		0
		Reserved			PF	RMBL_0	

Figure 3-103 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-110 CIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7:0] of the component identification code.	
		0x0D	Bits[7:0] of the identification code.

3.6.33 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

The CIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

31				8	7 4	3 0
		Reserved	d		CLASS	PRMBL_1

Figure 3-104 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-111 CIDR1 bit assignments

Bits	Name	Function						
[31:8]	Reserved	-						
[7:4]	CLASS	-	for example, whether the component is a ROM table or a generic CoreSight component. he component identification code.					
		0b1001	Indicates that the component is a CoreSight component.					
[3:0]	PRMBL_1	Preamble[1]. Contains b	its[11:8] of the component identification code.					
		0b0000	Bits[11:8] of the identification code.					
		The CIDR2 register is a registers.	a component identification register that indicates the presence of identification					
	1	registers.						
		The CIDR2 register cha	aracteristics are:					
		Usage constraints	There are no usage constraints.					
		Configurations	This register is available in all configurations.					
		Attributes	See the ETB register summary table.					
		The following figure sh	nows the bit assignments.					
		31	8 7					
			Reserved PRMBL 2					

Reserved	PRMBL_2

Figure 3-105 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-112 CIDR2 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_2	Preamble[2]. Contains bits[23:16] of the component identification code.		
		0x05	Bits[23:16] of the identification code.	

3.6.35 Component ID3 Register, CIDR3

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ETB register summary table.

The following figure shows the bit assignments.

Figure 3-106 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-113 CIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_3	Preamble[3]. Contains bits[31:24] of the component identification code.	
		0xB1	Bits[31:24] of the identification code.

3.7 TPIU registers

The TPIU connects an ATB to an external trace port.

This section contains the following subsections:

- 3.7.1 TPIU register summary on page 3-143.
- 3.7.2 Supported Port Size register, Supported Port Sizes on page 3-145.
- 3.7.3 Current Port Size register, Current port size on page 3-149.
- 3.7.4 Supported Trigger Modes register, Supported_trigger_modes on page 3-154.
- 3.7.5 Trigger Counter Value register, Trigger_counter_value on page 3-155.
- 3.7.6 Trigger Multiplier register, Trigger_multiplier on page 3-156.
- 3.7.7 Supported Test Patterns/Modes register, Supported_test_pattern_modes on page 3-157.
- 3.7.8 Current Test Pattern/Modes register, Current test pattern mode on page 3-158.
- 3.7.9 TPIU Test Pattern Repeat Counter Register, TPRCR on page 3-159.
- 3.7.10 Formatter and Flush Status Register, FFSR on page 3-160.
- 3.7.11 Formatter and Flush Control Register, FFCR on page 3-160.
- 3.7.12 Formatter Synchronization Counter Register, FSCR on page 3-163.
- 3.7.13 TPIU EXCTL In Port register, EXTCTL In Port on page 3-164.
- 3.7.14 TPIU EXCTL Out Port register, EXTCTL Out Port on page 3-164.
- 3.7.15 Integration Test Trigger In and Flush In Acknowledge register, ITTRFLINACK on page 3-165.
- 3.7.16 Integration Test Trigger In and Flush In register, ITTRFLIN on page 3-165.
- 3.7.17 Integration Test ATB Data register 0, ITATBDATA0 on page 3-166.
- 3.7.18 Integration Test ATB Control Register 2, ITATBCTR2 on page 3-167.
- 3.7.19 Integration Test ATB Control Register 1, ITATBCTR1 on page 3-168.
- 3.7.20 Integration Test ATB Control Register 0, ITATBCTR0 on page 3-168.
- 3.7.21 Integration Mode Control register, ITCTRL on page 3-169.
- 3.7.22 Claim Tag Set register, CLAIMSET on page 3-170.
- 3.7.23 Claim Tag Clear register, CLAIMCLR on page 3-171.
- 3.7.24 Lock Access Register, LAR on page 3-171.
- 3.7.25 Lock Status Register, LSR on page 3-172.
- 3.7.26 Authentication Status register, AUTHSTATUS on page 3-172.
- 3.7.27 Device Configuration register, DEVID on page 3-173.
- 3.7.28 Device Type Identifier register, DEVTYPE on page 3-174.
- 3.7.29 Peripheral ID4 Register, PIDR4 on page 3-175.
- 3.7.30 Peripheral ID0 Register, PIDR0 on page 3-175.
- 3.7.31 Peripheral ID1 Register, PIDR1 on page 3-176.
- 3.7.32 Peripheral ID2 Register, PIDR2 on page 3-176.
- 3.7.33 Peripheral ID3 Register, PIDR3 on page 3-177.
- 3.7.34 Component ID0 Register, CIDR0 on page 3-178.
- 3.7.35 Component ID1 Register, CIDR1 on page 3-178.
- 3.7.36 Component ID2 Register, CIDR2 on page 3-179.
- 3.7.37 Component ID3 Register, CIDR3 on page 3-179.

3.7.1 TPIU register summary

Summary of the TPIU registers in offset order from the base memory address.

Table 3-114 TPIU register summary

Offset	Name	Туре	Reset	Description
0x000	Supported_Port_Sizes	RO	0x00000001	3.7.2 Supported Port Size register, Supported_Port_Sizes on page 3-145
0x004	Current_port_size	RW	0x00000001	3.7.3 Current Port Size register, Current_port_size on page 3-149
0x100	Supported_trigger_modes	RO	0x0000011F	3.7.4 Supported Trigger Modes register, Supported_trigger_modes on page 3-154

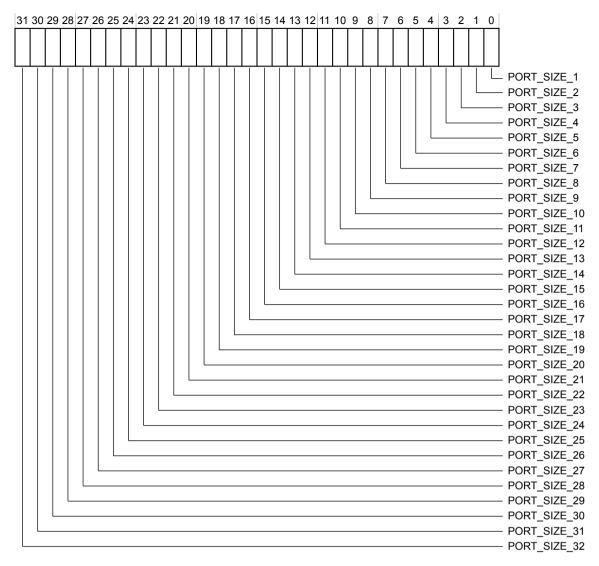
Table 3-114 TPIU register summary (continued)

Offset	Name	Туре	Reset	Description
0x104	Trigger_counter_value	RW	0x00000000	<i>3.7.5 Trigger Counter Value register, Trigger_counter_value</i> on page 3-155
0x108	Trigger_multiplier	RW	0x00000000	3.7.6 Trigger Multiplier register, Trigger_multiplier on page 3-156
0x200	Supported_test_pattern_modes	RO	0x0003000F	3.7.7 Supported Test Patterns/Modes register, Supported_test_pattern_modes on page 3-157
0x204	Current_test_pattern_mode	RW	0x00000000	3.7.8 Current Test Pattern/Modes register, Current_test_pattern_mode on page 3-158
0x208	TPRCR	RW	0x00000000	<i>3.7.9 TPIU Test Pattern Repeat Counter Register, TPRCR</i> on page 3-159
0x300	FFSR	RO	0x00000000	3.7.10 Formatter and Flush Status Register; FFSR on page 3-160
0x304	FFCR	RW	0x00000000	3.7.11 Formatter and Flush Control Register, FFCR on page 3-160
0x308	FSCR	RW	0x00000040	<i>3.7.12 Formatter Synchronization Counter Register, FSCR</i> on page 3-163
0x400	EXTCTL_In_Port	RO	0x00000000	3.7.13 TPIU EXCTL In Port register, EXTCTL_In_Port on page 3-164
0x404	EXTCTL_Out_Port	RW	0x00000000	3.7.14 TPIU EXCTL Out Port register, EXTCTL_Out_Port on page 3-164
0xEE4	ITTRFLINACK	WO	0x00000000	3.7.15 Integration Test Trigger In and Flush In Acknowledge register, ITTRFLINACK on page 3-165
0xEE8	ITTRFLIN	RO	0x00000000	<i>3.7.16 Integration Test Trigger In and Flush In register, ITTRFLIN</i> on page 3-165
0xEEC	ITATBDATA0	RO	0x00000000	<i>3.7.17 Integration Test ATB Data register 0, ITATBDATA0</i> on page 3-166
0xEF0	ITATBCTR2	WO	0x00000000	<i>3.7.18 Integration Test ATB Control Register 2, ITATBCTR2</i> on page 3-167
0xEF4	ITATBCTR1	RO	0x00000000	<i>3.7.19 Integration Test ATB Control Register 1, ITATBCTR1</i> on page 3-168
0xEF8	ITATBCTR0	RO	0x00000000	<i>3.7.20 Integration Test ATB Control Register 0, ITATBCTR0</i> on page 3-168
0xF00	ITCTRL	RW	0x00000000	3.7.21 Integration Mode Control register, ITCTRL on page 3-169
0xFA0	CLAIMSET	RW	0×0000000F	3.7.22 Claim Tag Set register, CLAIMSET on page 3-170
0xFA4	CLAIMCLR	RW	0×00000000	3.7.23 Claim Tag Clear register, CLAIMCLR on page 3-171
0xFB0	LAR	WO	0×00000000	3.7.24 Lock Access Register, LAR on page 3-171
0xFB4	LSR	RO	0x00000003	3.7.25 Lock Status Register; LSR on page 3-172
0xFB8	AUTHSTATUS	RO	0x00000000	3.7.26 Authentication Status register, AUTHSTATUS on page 3-172
0xFC8	DEVID	RO	0x000000A0	3.7.27 Device Configuration register, DEVID on page 3-173
0xFCC	DEVTYPE	RO	0x00000011	3.7.28 Device Type Identifier register, DEVTYPE on page 3-174
0xFD0	PIDR4	RO	0x00000004	3.7.29 Peripheral ID4 Register, PIDR4 on page 3-175
0xFD4	-	-	-	Reserved
0xFD8	-	-	-	Reserved

Table 3-114 TPIU register summary (continued)

Offset	Name	Туре	Reset	Description
0xFDC	-	-	-	Reserved
0xFE0	PIDR0	RO	0x00000012	3.7.30 Peripheral ID0 Register; PIDR0 on page 3-175
0xFE4	PIDR1	RO	0x000000B9	3.7.31 Peripheral ID1 Register, PIDR1 on page 3-176
0xFE8	PIDR2	RO	0x0000005B	3.7.32 Peripheral ID2 Register; PIDR2 on page 3-176
0xFEC	PIDR3	RO	0x00000000	3.7.33 Peripheral ID3 Register; PIDR3 on page 3-177
0xFF0	CIDR0	RO	0x0000000D	3.7.34 Component ID0 Register; CIDR0 on page 3-178
0xFF4	CIDR1	RO	0x00000090	3.7.35 Component ID1 Register; CIDR1 on page 3-178
0xFF8	CIDR2	RO	0x00000005	3.7.36 Component ID2 Register; CIDR2 on page 3-179
ðxFFC	CIDR3	RO	0x000000B1	3.7.37 Component ID3 Register; CIDR3 on page 3-179

3.7.2 Supported Port Size register, Supported_Port_Sizes


Each bit location is a single port size that is supported on the device, that is, 32-1 in bit locations [31:0]. When the bit is set then that port size is permitted. By default the RTL is designed to support all port sizes, set to 0xFFFFFFFF.

The value returned by this register is controlled by the input tie-off **tpmaxdatasize**. The external tie-off, **tpmaxdatasize**, must be set during finalization of the ASIC to reflect the actual number of **tracedata** signals being wired to physical pins. This is to ensure that tools do not attempt to select a port width that cannot be captured by an attached TPA.

The value on **tpmaxdatasize** causes bits within the Supported Port Size register that represent wider widths to be clear, that is, unsupported.

The Supported_Port_Sizes register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

Figure 3-107 Supported_Port_Sizes register bit assignments

The following table shows the bit assignments.

Table 3-115 Supported_Port_Sizes register bit assignments

Bits	Name	Function	
[31]	PORT_SIZE_32	Indicates whether the TPIU	supports port size of 32-bit.
		0	Port size is not supported.
		1	Port size is supported.
[30]	PORT_SIZE_31	Indicates whether the TPIU	supports port size of 31-bit.
		0	Port size is not supported.
		1	Port size is supported.
[29]	PORT_SIZE_30	Indicates whether the TPIU	supports port size of 30-bit.
		0	Port size is not supported.
		1	Port size is supported.

Bits	Name	Function	
[28]	PORT_SIZE_29	Indicates whether the TPIU	supports port size of 29-bit.
		0	Port size is not supported.
		1	Port size is supported.
[27]	PORT_SIZE_28	Indicates whether the TPIU	supports port size of 28-bit.
		0	Port size is not supported.
		1	Port size is supported.
[26]	PORT_SIZE_27	Indicates whether the TPIU	supports port size of 27-bit.
		0	Port size is not supported.
		1	Port size is supported.
[25]	PORT_SIZE_26	Indicates whether the TPIU	supports port size of 26-bit.
		0	Port size is not supported.
		1	Port size is supported.
[24]	PORT_SIZE_25	Indicates whether the TPIU	supports port size of 25-bit.
		0	Port size is not supported.
		1	Port size is supported.
[23]	PORT_SIZE_24	Indicates whether the TPIU	supports port size of 24-bit.
		0	Port size is not supported.
		1	Port size is supported.
[22]	PORT_SIZE_23	Indicates whether the TPIU	supports port size of 23-bit.
		0	Port size is not supported.
		1	Port size is supported.
[21]	PORT_SIZE_22	Indicates whether the TPIU	supports port size of 22-bit.
		0	Port size is not supported.
		1	Port size is supported.
[20]	PORT_SIZE_21	Indicates whether the TPIU	supports port size of 21-bit.
		0	Port size is not supported.
_		1	Port size is supported.
[19]	PORT_SIZE_20	Indicates whether the TPIU	supports port size of 20-bit.
		0	Port size is not supported.
		1	Port size is supported.

Table 3-115 Supported_Port_Sizes register bit assignments (continued)

Bits	Name	Function	
[18]	PORT_SIZE_19	Indicates whether the TPIU	supports port size of 19-bit.
		0	Port size is not supported.
		1	Port size is supported.
[17]	PORT_SIZE_18	Indicates whether the TPIU	supports port size of 18-bit.
		0	Port size is not supported.
		1	Port size is supported.
[16]	PORT_SIZE_17	Indicates whether the TPIU	supports port size of 17-bit.
		0	Port size is not supported.
		1	Port size is supported.
[15]	PORT_SIZE_16	Indicates whether the TPIU	supports port size of 16-bit.
		0	Port size is not supported.
		1	Port size is supported.
[14]	PORT_SIZE_15	Indicates whether the TPIU	supports port size of 15-bit.
		0	Port size is not supported.
		1	Port size is supported.
[13]	PORT_SIZE_14	Indicates whether the TPIU	supports port size of 14-bit.
		0	Port size is not supported.
		1	Port size is supported.
[12]	PORT_SIZE_13	Indicates whether the TPIU	supports port size of 13-bit.
		0	Port size is not supported.
		1	Port size is supported.
[11]	PORT_SIZE_12	Indicates whether the TPIU	supports port size of 12-bit.
		0	Port size is not supported.
		1	Port size is supported.
[10]	PORT_SIZE_11	Indicates whether the TPIU	supports port size of 11-bit.
		0	Port size is not supported.
		1	Port size is supported.
[9]	PORT_SIZE_10	Indicates whether the TPIU	supports port size of 10-bit.
		0	Port size is not supported.
		1	Port size is supported.

Table 3-115 Supported_Port_Sizes register bit assignments (continued)

Bits	Name	Function	
[8]	PORT_SIZE_9	Indicates whether the TPIU	supports port size of 9-bit.
		0	Port size is not supported.
		1	Port size is supported.
[7]	PORT_SIZE_8	Indicates whether the TPIU	supports port size of 8-bit.
		0	Port size is not supported.
		1	Port size is supported.
[6]	PORT_SIZE_7	Indicates whether the TPIU	supports port size of 7-bit.
		0	Port size is not supported.
		1	Port size is supported.
[5]	PORT_SIZE_6	Indicates whether the TPIU	supports port size of 6-bit.
		0	Port size is not supported.
		1	Port size is supported.
[4]	PORT_SIZE_5	Indicates whether the TPIU	supports port size of 5-bit.
		0	Port size is not supported.
		1	Port size is supported.
[3]	PORT_SIZE_4	Indicates whether the TPIU	supports port size of 4-bit.
		0	Port size is not supported.
		1	Port size is supported.
[2]	PORT_SIZE_3	Indicates whether the TPIU	supports port size of 3-bit.
		0	Port size is not supported.
		1	Port size is supported.
[1]	PORT_SIZE_2	Indicates whether the TPIU	supports port size of 2-bit.
		0	Port size is not supported.
		1	Port size is supported.
[0]	PORT_SIZE_1	Indicates whether the TPIU	supports port size of 1-bit.
		0	Port size is not supported.
		1	Port size is supported.

Table 3-115 Supported_Port_Sizes register bit assignments (continued)

3.7.3 Current Port Size register, Current_port_size

Has the same format as the Supported Port Sizes register but only one bit is set, and all others must be 0. Writing values with more than one bit set or setting a bit that is not indicated as supported is not supported and causes unpredictable behavior. On reset, this defaults to the smallest possible port size, 1 bit, that is, 0x0000001.

— Note –

Do not modify the value while the Trace Port is still active, or without correctly stopping the formatter. . This can result in data not being aligned to the port width. For example, data on an 8-bit trace port might not be byte aligned.

The Current_port_size register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PORT_SIZE_1 PORT_SIZE_2 PORT SIZE 3 PORT_SIZE_4 PORT_SIZE_5 PORT SIZE 6 PORT SIZE 7 PORT_SIZE_8 PORT SIZE 9 PORT SIZE 10 PORT_SIZE_11 PORT_SIZE_12 PORT SIZE 13 PORT SIZE 14 - PORT SIZE 15 - PORT SIZE 16 PORT_SIZE_17 - PORT_SIZE_18 - PORT_SIZE_19 PORT SIZE 20 PORT_SIZE_21 - PORT SIZE 22 PORT SIZE 23 PORT_SIZE_24 PORT_SIZE_25 PORT_SIZE_26 PORT_SIZE_27 PORT_SIZE_28 - PORT_SIZE_29 PORT_SIZE_30 PORT SIZE 31 PORT_SIZE_32

Figure 3-108 Current_port_size register bit assignments

	Table 3-116	Current_port_s	size register bit	assignments
--	-------------	----------------	-------------------	-------------

Bits	Name	Function	
[31]	PORT_SIZE_32	Indicates whether the curren	nt port size of the TPIU is 32-bit.
		0	Current port size is not 32.
		1	Current port size is 32.
[30]	PORT_SIZE_31	Indicates whether the currer	nt port size of the TPIU is 31-bit.
		0	Current port size is not 31.
		1	Current port size is 31.
[29]	PORT_SIZE_30	Indicates whether the current	nt port size of the TPIU is 30-bit.
		0	Current port size is not 30.
		1	Current port size is 30.
[28]	PORT_SIZE_29	Indicates whether the curren	nt port size of the TPIU is 29-bit.
		0	Current port size is not 29.
		1	Current port size is 29.
[27]	PORT_SIZE_28	Indicates whether the curren	nt port size of the TPIU is 28-bit.
		0	Current port size is not 28.
		1	Current port size is 28.
[26]	PORT_SIZE_27	Indicates whether the curren	nt port size of the TPIU is 27-bit.
		0	Current port size is not 27.
		1	Current port size is 27.
[25]	PORT_SIZE_26	Indicates whether the current	nt port size of the TPIU is 26-bit.
		0	Current port size is not 26.
		1	Current port size is 26.
[24]	PORT_SIZE_25	Indicates whether the curren	nt port size of the TPIU is 25-bit.
		0	Current port size is not 25.
		1	Current port size is 25.
[23]	PORT_SIZE_24	Indicates whether the currer	nt port size of the TPIU is 24-bit.
		0	Current port size is not 24.
		1	Current port size is 24.
[22]	PORT_SIZE_23	Indicates whether the currer	nt port size of the TPIU is 23-bit.
		0	Current port size is not 23.
		1	Current port size is 23.

Table 3-116 Current_port_size register bit assignments (continue
--

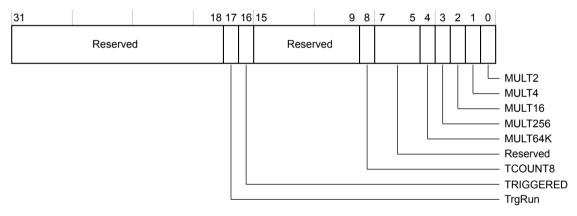
Bits	Name	Function	
[21]	PORT_SIZE_22	Indicates whether the current	t port size of the TPIU is 22-bit.
		0	Current port size is not 22.
		1	Current port size is 22.
[20]	PORT_SIZE_21	Indicates whether the current	t port size of the TPIU is 21-bit.
		0	Current port size is not 21.
		1	Current port size is 21.
[19]	PORT_SIZE_20	Indicates whether the current	t port size of the TPIU is 20-bit.
		0	Current port size is not 20.
		1	Current port size is 20.
[18]	PORT_SIZE_19	Indicates whether the current	t port size of the TPIU is 19-bit.
		0	Current port size is not 19.
		1	Current port size is 19.
[17]	PORT_SIZE_18	Indicates whether the current	t port size of the TPIU is 18-bit.
		0	Current port size is not 18.
		1	Current port size is 18.
[16]	PORT_SIZE_17	Indicates whether the current	t port size of the TPIU is 17-bit.
		0	Current port size is not 17.
		1	Current port size is 17.
[15]	PORT_SIZE_16	Indicates whether the current	t port size of the TPIU is 16-bit.
		0	Current port size is not 16.
		1	Current port size is 16.
[14]	PORT_SIZE_15	Indicates whether the current	t port size of the TPIU is 15-bit.
		0	Current port size is not 15.
		1	Current port size is 15.
[13]	PORT_SIZE_14	Indicates whether the current	t port size of the TPIU is 14-bit.
		0	Current port size is not 14.
		1	Current port size is 14.
[12]	PORT_SIZE_13	Indicates whether the curren	t port size of the TPIU is 13-bit.
		0	Current port size is not 13.
		1	Current port size is 13.

Table 3-116 Current_port_size register bit assignments (continued)
--

Bits	Name	Function	
[11]	PORT_SIZE_12	Indicates whether the current	t port size of the TPIU is 12-bit.
		0	Current port size is not 12.
		1	Current port size is 12.
[10]	PORT_SIZE_11	Indicates whether the current	t port size of the TPIU is 11-bit.
		0	Current port size is not 11.
		1	Current port size is 11.
[9]	PORT_SIZE_10	Indicates whether the curren	t port size of the TPIU is 10-bit.
		0	Current port size is not 10.
		1	Current port size is 10.
[8]	PORT_SIZE_9	Indicates whether the curren	t port size of the TPIU is 9-bit.
		0	Current Port size is not 9.
		1	Current Port size is 9.
[7]	PORT_SIZE_8	Indicates whether the current	t port size of the TPIU is 8-bit.
		0	Current port size is not 8.
		1	Current port size is 8.
[6]	PORT_SIZE_7	Indicates whether the curren	t port size of the TPIU is 7-bit.
		0	Current port size is not 7.
		1	Current port size is 7.
[5]	PORT_SIZE_6	Indicates whether the curren	t port size of the TPIU is 6-bit.
		0	Current port size is not 6.
		1	Current port size is 6.
[4]	PORT_SIZE_5	Indicates whether the curren	t port size of the TPIU is 5-bit.
		0	Current port size is not 5.
		1	Current port size is 5.
[3]	PORT_SIZE_4	Indicates whether the current	t port size of the TPIU is 4-bit.
		0	Current port size is not 4.
		1	Current port size is 4.
[2]	PORT_SIZE_3	Indicates whether the curren	t port size of the TPIU is 3-bit.
		0	Current port size is not 3.
		1	Current port size is 3.

Table 3-116 Current_port_size register bit assignments (continue
--

Bits	Name	Function	
[1]	PORT_SIZE_2	Indicates whether the current	nt port size of the TPIU is 2-bit.
		0	Current port size is not 2.
		1	Current port size is 2.
[0]	PORT_SIZE_1	Indicates whether the current	nt port size of the TPIU is 1-bit.
		0	Current port size is not 1.
		1	Current port size is 1.


3.7.4 Supported Trigger Modes register, Supported_trigger_modes

The Supported_trigger_modes register indicates the implemented trigger counter multipliers and other supported features of the trigger system.

The Supported_trigger_modes register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-109 Supported_trigger_modes register bit assignments

The following table shows the bit assignments.

Table 3-117 Supported_trigger_modes register bit assignments

Bits	Name	Function	
[31:18]	Reserved	-	
[17]	TrgRun	A trigger has occurre	d but the counter is not at 0.
		0	Either a trigger has not occurred or the counter is at 0.
		1	A trigger has occurred but the counter is not at 0.

Bits	Name	Function	
[16]	TRIGGERED	A trigger has occurred and t	he counter has reached 0.
		0	Trigger has not occurred.
		1	Trigger has occurred.
[15:9]	Reserved	-	
[8]	TCOUNT8	Indicates whether an 8-bit w	vide counter register is implemented.
		1	8-bit wide counter register is implemented.
[7:5]	Reserved	-	
[4]	MULT64K	Indicates whether multiplyin	ng the trigger counter by 65536 is supported.
		1	Multiplying the trigger counter by 65536 supported.
[3]	MULT256	Indicates whether multiplyin	ng the trigger counter by 256 is supported.
		1	Multiplying the trigger counter by 256 supported.
[2]	MULT16	Indicates whether multiplyin	ng the trigger counter by 16 is supported.
		1	Multiplying the trigger counter by 16 supported.
[1]	MULT4	Indicates whether multiplyin	ng the trigger counter by 4 is supported.
		1	Multiplying the trigger counter by 4 supported.
[0]	MULT2	Indicates whether multiplyin	ng the trigger counter by 2 is supported.
		1	Multiplying the trigger counter by 2 supported.

Table 3-117 Supported_trigger_modes register bit assignments (continued)

3.7.5 Trigger Counter Value register, Trigger_counter_value

The Trigger_counter_value register enables delaying the indication of triggers to any external connected trace capture or storage devices. This counter is only eight bits wide and is intended to be used only with the counter multipliers in the Trigger Multiplier register, 0×108 . When a trigger is started, this value, in combination with the multiplier, is the number of words before the trigger is indicated. When the trigger counter reaches 0, the value written here is reloaded. Writing to this register causes the trigger counter value to reset but does not reset any values on the multiplier. Reading this register returns the preset value, not the current count.

The Trigger_counter_value register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

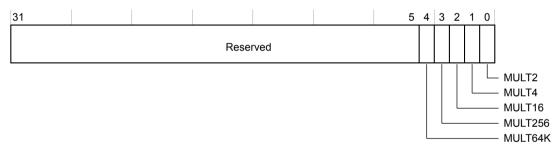
The following figure shows the bit assignments.

31				8	7		0
		Reserved			Triç	gCount	

Figure 3-110 Trigger_counter_value register bit assignments

Table 3-118 Trigger_counter_value register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	TrigCount	8-bit counter value for the number of words to be output from the formatter before a trigger is inserted. At reset the value is 0b00000000 and this value has the effect of disabling the register, that is, there is no delay.


3.7.6 Trigger Multiplier register, Trigger_multiplier

The Trigger_multiplier register contains the selectors for the trigger counter multiplier. Several multipliers can be selected to create the required multiplier value, that is, any value between one and approximately $2x10^9$. The default value is 0x0, which means that the multiplier value is one. Writing to this register causes the internal trigger counter and the state in the multipliers to be reset to the initial count position, that is, the trigger counter is reloaded with the Trigger Counter register value and all multipliers are reset.

The Trigger_multiplier register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the Trigger_multiplier register bit assignments.

Figure 3-111 Trigger_multiplier register bit assignments

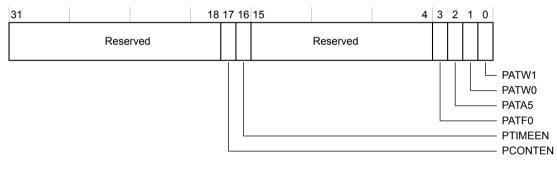
The following table shows the Trigger_multiplier register bit assignments.

Table 3-119 Trigger_multiplier register bit assignments

Bits	Name	Function	
[31:5]	Reserved	-	
[4]	MULT64K	Multiply the Trigger Counter	r by 65536 (2^16).
		0	Multiplier disabled.
		1	Multiplier enabled.
[3]	MULT256	Multiply the Trigger Counter	r by 256 (2^8).
		0	Multiplier disabled.
		1	Multiplier enabled.
[2]	MULT16	Multiply the Trigger Counter	r by 16 (2^4).
		0	Multiplier disabled.
		1	Multiplier enabled.

Table 3-119 Trigger_multiplier register bit assignments (continued)

Name	Function	
MULT4	Multiply the Trigger Counte	r by 4 (2^2).
	0	Multiplier disabled.
	1	Multiplier enabled.
MULT2	Multiply the Trigger Counte	r by 2 (2^1).
	0	Multiplier disabled.
	1	Multiplier enabled.
	MULT4	MULT4 Multiply the Trigger Counter 0 1 MULT2 Multiply the Trigger Counter 0 1


3.7.7 Supported Test Patterns/Modes register, Supported_test_pattern_modes

The Supported_test_pattern_modes register provides a set of known bit sequences or patterns that can be output over the trace port and can be detected by the TPA or other associated trace capture device.

The Supported_test_pattern_modes register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-112 Supported_test_pattern_modes register bit assignments

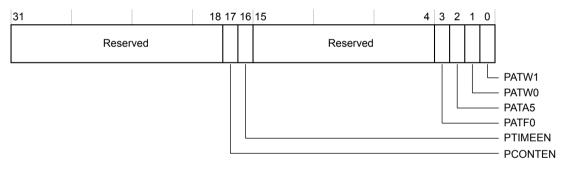
The following table shows the bit assignments.

Table 3-120 Supported_test_pattern_modes register bit assignments

Bits	Name	Function	
[31:18]	Reserved	-	
[17]	PCONTEN	Indicates whether continuou	s mode is supported.
		1	Mode supported.
[16]	PTIMEEN	Indicates whether timed mode is supported.	
		1	Mode supported.
[15:4]	Reserved	-	
[3]	PATF0	Indicates whether the FF/00 pattern is supported as output over the trace port.	
		1	Pattern supported.
			**

Bits	Name	Function	
[2]	PATA5 Indicates whether the AA/55 pattern is supported as output over the trace port.		5 pattern is supported as output over the trace port.
		1	Pattern supported.
[1]	PATW0	Indicates whether the walking 0s pattern is supported as output over the trace port.	
		1	Pattern supported.
[0]	PATW1	Indicates whether the walking	ng 1s pattern is supported as output over the trace port.
		1	Pattern supported.

Table 3-120 Supported_test_pattern_modes register bit assignments (continued)


3.7.8 Current Test Pattern/Modes register, Current_test_pattern_mode

Indicates the current test pattern or mode selected. Only one of the modes can be set, using bits[17:16], but a multiple number of bits for the patterns can be set using bits[3:0]. When timed mode is selected, after the allotted number of cycles is reached, the mode automatically switches to off mode. On reset, this register is set to 0x00000 that indicates the off mode with no selected patterns.

The Current test pattern mode register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-113 Current_test_pattern_mode register bit assignments

The following table shows the bit assignments.

Table 3-121 Current_test_pattern_mode register bit assignments

Bits	Name	Function	
[31:18]	Reserved	-	
[17]	PCONTEN	Indicates whether Continuou	is Mode is enabled.
		0	Mode disabled.
		1	Mode enabled.
[16]	PTIMEEN	Indicates whether Timed Mo	ode is enabled.
		0	Mode disabled.
		1	Mode enabled.

Bits	Name	Function	
[15:4]	Reserved	-	
[3]	PATF0	Indicates whether the FF/00	pattern is enabled as output over the Trace Port.
		0	Pattern disabled.
		1	Pattern enabled.
[2]	PATA5	Indicates whether the AA/5	5 pattern is enabled as output over the Trace Port.
		0	Pattern disabled.
		1	Pattern enabled.
[1]	PATW0	Indicates whether the walki	ng 0s pattern is enabled as output over the Trace Port.
		0	Pattern disabled.
		1	Pattern enabled.
[0]	PATW1	Indicates whether the walki	ng 1s pattern is enabled as output over the Trace Port.
		0	Pattern disabled.
		1	Pattern enabled.

Table 3-121 Current_test_pattern_mode register bit assignments (continued)

3.7.9 TPIU Test Pattern Repeat Counter Register, TPRCR

The TPRCR register is an 8-bit counter start value that is decremented. A write sets the initial counter value and a read returns the programmed value. On reset this value is set to 0.

The TPRCR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31				8	7		0
		Reserved			PATT	COUNT	

Figure 3-114 TPRCR bit assignments

The following table shows the bit assignments.

Table 3-122 TPRCR bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	PATTCOUNT	8-bit counter value to indicate the number of traceclkin cycles for which a pattern runs before it switches to the next pattern.
		The default value is 0.

3.7.10 Formatter and Flush Status Register, FFSR

The FFSR register indicates the current status of the formatter and flush features available in the TPIU.

The FFSR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

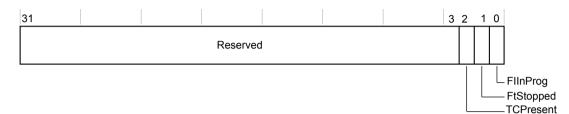


Figure 3-115 FFSR bit assignments

The following table shows the bit assignments.

Table 3-123 FFSR bit assignments

Bits	Name	Function		
[31:3]	Reserved	-		
[2]	TCPresent	t Indicates whether the TRAC	ECTL pin is available for use.	
		0	TRACECTL pin not present.	
		1	TRACECTL pin present.	
[1]	FtStopped		The formatter has received a stop request signal and all trace data and post-amble is sent. Any additional trace data on the ATB interface is ignored and atreadys goes HIGH.	
		0	Formatter has not stopped.	
		1	Formatter has stopped.	
[0]	FlInProg	Flush in progress.		
		0	afvalids is LOW.	
		1	afvalids is HIGH.	

3.7.11 Formatter and Flush Control Register, FFCR

The FFCR register controls the generation of stop, trigger, and flush events. To disable formatting and put the formatter into bypass mode, bits[1:0] must be 0. Setting both bits is the same as setting bit[1]. All three flush-generating conditions can be enabled together. However, if a second or third flush event is generated from another condition then the current flush completes before the next flush is serviced.

Flush from **flushin** takes priority over flush from trigger, which in turn completes before a manuallyactivated flush. All trigger indication conditions can be enabled simultaneously although this can cause the appearance of multiple triggers if flush using trigger is also enabled. Both Stop On settings can be enabled although if Flush on Trigger is set up, none of the flushed data is stored. When the system stops, it returns **atreadys** and does not store the accepted data packets. This is to avoid stalling of any other devices that are connected to a trace replicator. If an event in the FFCR is required, it must be enabled before the originating event starts. Because requests from flushes and triggers can originate in an asynchronous clock domain, the exact time the component acts on the request cannot be determined during control configuration. To perform a stop on flush completion through a manually generated flush request, two write operations to the register are required:

- One to enable the stop event, if it is not already enabled.
- One to generate the manual flush.

_____ Note _____

ARM recommends that you change the trace port width without enabling continuous mode. Enabling continuous mode causes data to be sent from the trace port and modifying the port size can result in data not being aligned for power 2 port widths.

The FFCR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

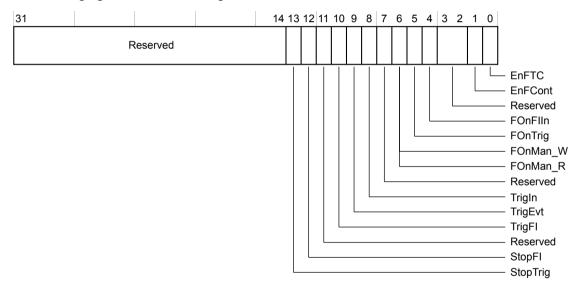


Figure 3-116 FFCR bit assignments

The following table shows the bit assignments.

Table 3-124 FFCR bit assignments

Bits	Name	Function	
[31:14]	Reserved	-	
[13]	StopTrig	g Stops the formatter after a trigger event is observed. Reset to disabled or 0.	
		0	Disable stopping the formatter after a trigger event is observed.
		1	Enable stopping the formatter after a trigger event is observed.

Table 3-124 FFCR bit assignments (continued)

Bits	Name	Function		
[12]	StopFl	Forces the FIFO to drain off any part-completed packets.		
		The reset value is 0.		
		0	Disable stopping the formatter on return of afreadys .	
		1	Enable stopping the formatter on return of afreadys .	
[11]	Reserved	-		
[10]	TrigFl	Indicates a trigger when flue	sh completion on afreadys is returned.	
		0	Disable trigger indication on return of afreadys .	
		1	Enable trigger indication on return of afreadys .	
[9]	TrigEvt	Indicates a trigger on a trigg	ger event.	
		0	Disable trigger indication on a trigger event.	
		1	Enable trigger indication on a trigger event.	
[8]	TrigIn	Indicates a trigger when trig	gin is asserted.	
		0	Disable trigger indication when trigin is asserted.	
		1	Enable trigger indication when trigin is asserted.	
[7]	Reserved	-		
[6]	FOnMan_W	Man_W Generates a flush. This bit is set to 1 when the flush has been serviced.		
		The reset value is 0.		
		0	Manual flush is not initiated.	
		1	Manual flush is initiated.	
[6]	FOnMan_R	Generates a flush. This bit i	s set to 0 when this flush is serviced.	
		The reset value is 0.		
		0	Manual flush is not initiated.	
		1	Manual flush is initiated.	
[5]	FOnTrig	Initiates a manual flush of d	ata in the system when a trigger event occurs.	
		The reset value is 0.		
		A trigger event occurs when	the trigger counter reaches 0, or, if the trigger counter is 0, when trigin is HIGH.	
		0	Disable generation of flush when a Trigger Event occurs.	
		1	Enable generation of flush when a Trigger Event occurs.	
[4]	FOnFlIn	Enables the use of the flush	in connection.	
		The reset value is 0.		
		0	Disable generation of flush using the flushin interface.	
		1	Enable generation of flush using the flushin interface.	

Table 3-124 FFCR bit assignments (continued)

Bits	Name	Function	
[3:2]	Reserved	-	
[1]	EnFCont	Is embedded in trigger packets and indicates that no cycle is using sync packets. The reset value is 0. Note	
		This bit can only be change	d when FtStopped is HIGH.
		0	Continuous formatting disabled.
		1	Continuous formatting enabled.
[0]	EnFTC	where present. The reset value is 0. Note	the formatted stream. Trace disable cycles and triggers are indicated by tracectl ,
		0	Formatting disabled.
		1	Formatting enabled.

3.7.12 Formatter Synchronization Counter Register, FSCR

The FSCR register enables the frequency of synchronization information to be optimized to suit the *Trace Port Analyzer* (TPA) capture buffer size.

This register determines the reload value of the Formatter Synchronization Counter. It is a 12-bit register with a maximum value of 4096. This equates to synchronization every 65536 bytes, that is, 4096 packets x 16 bytes per packet. The default is set up for a synchronization packet every 1024 bytes, that is, every 64 formatter frames. If the formatter is configured for continuous mode, full and half-word sync frames are inserted during normal operation. Under these circumstances, the count value is the maximum number of complete frames between full synchronization packets.

The FSCR characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-117 FSCR bit assignments

Table 3-125 FSCR bit assignments

Bits	Name	Function
[31:12]	Reserved	-
[11:0]	CycCount	12-bit counter reload value. Indicates the number of complete frames between full synchronization packets. The default value is 0x40.

3.7.13 TPIU EXCTL In Port register, EXTCTL_In_Port

Two ports can be used as a control and feedback mechanism for any serializers, pin sharing multiplexers, or other solutions that might be added to the trace output pins either for pin control or a high-speed trace port solution. These ports are raw register banks that sample or export the corresponding external pins. The output register bank is set to all 0s on reset. The input registers sample the incoming signals and are therefore undefined.

The EXTCTL_In_Port register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-118 EXTCTL_In_Port register bit assignments

The following table shows the bit assignments.

Table 3-126 EXTCTL_In_Port register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	EXTCTLIN	EXTCTL inputs.

3.7.14 TPIU EXCTL Out Port register, EXTCTL_Out_Port

Two ports can be used as a control and feedback mechanism for any serializers, pin sharing multiplexers, or other solutions that might be added to the trace output pins either for pin control or a high speed trace port solution. These ports are raw register banks that sample or export the corresponding external pins. The output register bank is set to all 0s on reset. The input registers sample the incoming signals and are therefore undefined.

The EXTCTL_Out_Port register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

31				8	7		0
		Reserved			EXT	CTLOUT	

Figure 3-119 EXTCTL_Out_Port register bit assignments

The following table shows the bit assignments.

Table 3-127 EXTCTL_Out_Port register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	EXTCTLOUT	EXTCTL outputs.

3.7.15 Integration Test Trigger In and Flush In Acknowledge register, ITTRFLINACK

The ITTRFLINACK register enables control of the triginack and flushinack outputs from the TPIU.

See the ATB TPIU register summary table.

The ITTRFLINACK register characteristics are:

Usage constraints There are no usage constraints.

Configurations This register is available in all configurations.

Attributes

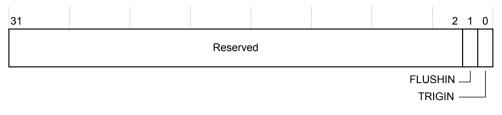
The following figure shows the bit assignments.

Figure 3-120 ITTRFLINACK register bit assignments

The following table shows the bit assignments.

Table 3-128 ITTRFLINACK register bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1]	FLUSHINACK	Sets the value of flushinack .	
		0	Sets the value of flushinack to 0.
		1	Sets the value of flushinack to 1.
[0]	TRIGINACK	Sets the value of triginack .	
		0	Sets the value of triginack to 0.
		1	Sets the value of triginack to 1.


3.7.16 Integration Test Trigger In and Flush In register, ITTRFLIN

The ITTRFLIN register contains the values of the flushin and trigin inputs to the TPIU.

The ITTRFLIN register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

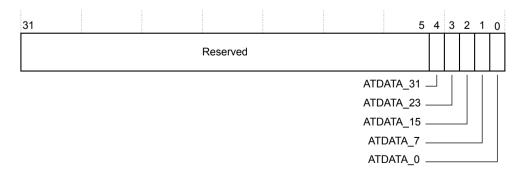
The following figure shows the bit assignments.

Figure 3-121 ITTRFLIN register bit assignments

The following table shows the bit assignments.

Table 3-129 ITTRFLIN register bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1]	FLUSHIN	Reads the value of flushin .	
		0	flushin is LOW.
		1	flushin is HIGH.
[0]	TRIGIN	Reads the value of trigin .	
		0	trigin is LOW.
		1	trigin is HIGH.


3.7.17 Integration Test ATB Data register 0, ITATBDATA0

The ITATBDATA0 register contains the value of the **atdatas** inputs to the TPIU. The values are valid only when **atvalids** is HIGH.

The ITATBDATA0 register characteristics are:

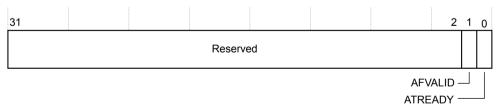
Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-122 ITATBDATA0 register bit assignments

Table 3-130 ITATBDATA0 register bit assignments

Bits	Name	Function	
[31:5]	Reserved	-	
[4]	ATDATA_31	Reads the value of atdatas	[31].
		1	atdatas[31] is 1.
		0	atdatas[31] is 0.
[3]	ATDATA_23	Reads the value of atdatas	[23].
		1	atdatas[23] is 1.
		0	atdatas[23] is 0.
[2]	ATDATA_15	Reads the value of atdatas	[15].
		1	atdatas[15] is 1.
		0	atdatas[15] is 0.
[1]	ATDATA_7	Reads the value of atdatas	[7].
		1	atdatas[7] is 1.
		0	atdatas[7] is 0.
[0]	ATDATA_0	Reads the value of atdatas	[0].
		1	atdatas[0] is 1.
		0	atdatas[0] is 0.


3.7.18 Integration Test ATB Control Register 2, ITATBCTR2

Enables control of the atreadys and afvalids outputs of the TPIU.

The ITATBCTR2 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-123 ITATBCTR2 bit assignments

Table 3-131 ITATBCTR2 bit assignments

Bits	Name	Function	
[31:2]	Reserved	-	
[1]	AFVALID	Sets the value of afvalid .	
		0	Sets the value of afvalid to 0.
		1	Sets the value of afvalid to 1.
[0]	ATREADY	Sets the value of atready .	
		0	Sets the value of atready to 0.
		1	Sets the value of atready to 1.

3.7.19 Integration Test ATB Control Register 1, ITATBCTR1

The ITATBCTR1 register contains the value of the **atids** input to the TPIU. This is only valid when **atvalids** is HIGH.

The ITATBCTR1 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31				7	6		0
		Reserved				ATID	

Figure 3-124 ITATBCTR1 bit assignments

The following table shows the bit assignments.

Table 3-132 ITATBCTR1 bit assignments

Bits	Name	Function
[31:7]	Reserved	-
[6:0]	ATID	Reads the value of atids .

3.7.20 Integration Test ATB Control Register 0, ITATBCTR0

The ITATBCTR0 register captures the values of the **atvalids**, **afreadys**, and **atbytess** inputs to the TPIU. To ensure the integration registers work correctly in a system, the value of **atbytess** is only valid when **atvalids**, bit[0], is HIGH.

The ITATBCTR0 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

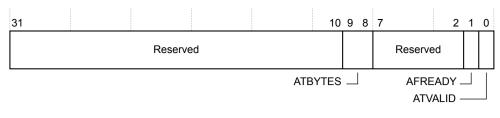


Figure 3-125 ITATBCTR0 bit assignments

The following table shows the bit assignments.

Table 3-133 ITATBCTR0 bit assignments

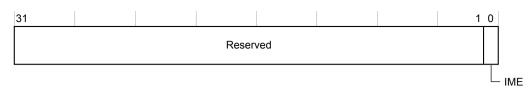
Bits	Name	Function	
[31:10]	Reserved	-	
[9:8]	ATBYTES	Reads the value of atbytess .	
[7:2]	Reserved	-	
[1]	AFREADY	Reads the value of afreadys	
		0	afreadys is 0.
		1	afreadys is 1.
[0]	ATVALID	Reads the value of atvalids .	
		0	atvalids is 0.
		1	atvalids is 1.

3.7.21 Integration Mode Control register, ITCTRL

The ITCTRL register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for integration testing and topology detection.

The ITCTRL register enables topology detection. See the ARM® Architecture Specification.

------ Note -


When a device is in integration mode, the intended functionality might not be available.

After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that the integration or topology detection can affect.

The registers in the TPIU enable the system to set the **flushinack** and **triginack** output pins. The **flushin** and **trigin** inputs to the TPIU can also be read. The other Integration Test registers are for testing the integration of the ATB slave interface on the TPIU.

The ITCTRL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

Figure 3-126 ITCTRL register bit assignments

The following table shows the bit assignments.

Table 3-134 ITCTRL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	IME	Integration Mode Enable.	
		0	Disable integration mode.
		1	Enable integration mode.

3.7.22 Claim Tag Set register, CLAIMSET

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

The CLAIMSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-127 CLAIMSET register bit assignments

The following table shows the bit assignments.

Table 3-135 CLAIMSET register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	SET	On reads, for each bit:	
		1	Claim tag bit is implemented
		On writes, for each bit:	
		0	Has no effect.
		1	Sets the relevant bit of the claim tag.

3.7.23 Claim Tag Clear register, CLAIMCLR

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

The CLAIMCLR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Res	erved			CLR

Figure 3-128 CLAIMCLR register bit assignments

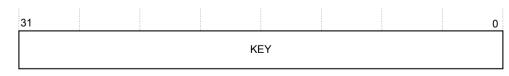
The following table shows the bit assignments.

Table 3-136 CLAIMCLR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CLR	On reads, for each bit:	
		0	Claim tag bit is not set.
		1	Claim tag bit is set.
		On writes, for each bit:	
		0	Has no effect.
		1	Clears the relevant bit of the claim tag.

3.7.24 Lock Access Register, LAR

The LAR register controls write access from self-hosted, on-chip accesses. The LAR does not affect the accesses using the external debugger interface.


The LAR register characteristics are:

Usage constraints	There are no usage constraints.		
Configurations	This register is available in all config		

Configurations	This register is available i	n all configurations.

Attributes See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-129 LAR bit assignments

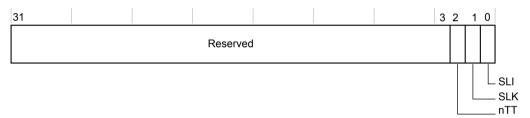
Table 3-137 LAR bit assignments

Bits Name Function

[31:0] KEY Software lock key value.

0xC5ACCE55 Clear the software lock.

All other write values set the software lock.


3.7.25 Lock Status Register, LSR

The LSR register indicates the status of the lock control mechanism. This lock prevents accidental writes. When locked, write accesses are denied for all registers except for the LAR. The lock registers do not affect accesses from the external debug interface. This register reads as 0 when accessed from the external debug interface.

The LSR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

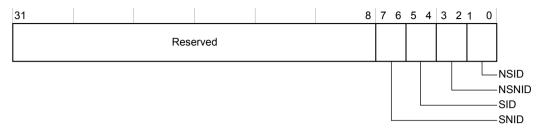
The following figure shows the bit assignments.

Figure 3-130 LSR bit assignments

The following table shows the bit assignments.

Table 3-138 LSR bit assignments

Bits	Name	Function			
[31:3]	Reserved	-			
[2]	nTT	Register size indicator. Alway	vs 0. Indicates that the LAR is implemented as 32-bit.		
[1]] SLK Software Lock Status. Returns the present lock status of the device, from the current interface.				
		0	Indicates that write operations are permitted from this interface.		
		1	Indicates that write operations are not permitted from this interface. Read operations are permitted.		
[0]	SLI	Software Lock Implemented.	Indicates that a lock control mechanism is present from this interface.		
		0	Indicates that a lock control mechanism is not present from this interface. Write operations to the LAR are ignored.		
		1	Indicates that a lock control mechanism is present from this interface.		


3.7.26 Authentication Status register, AUTHSTATUS

The AUTHSTATUS register reports the required security level and present status.

The AUTHSTATUS register characteristics are:

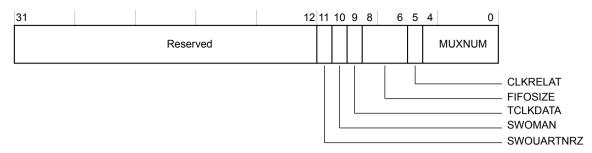
Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-131 AUTHSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-139 AUTHSTATUS register bit assignments


Bits	Name	Function	
[31:8]	Reserved	-	
[7:6]	SNID	Indicates the security level fo	r Secure non-invasive debug:
		0600	Functionality is not implemented or is controlled elsewhere.
[5:4]	SID	Indicates the security level for Secure invasive debug:	
		0b00	Functionality is not implemented or is controlled elsewhere.
[3:2]	NSNID	Indicates the security level for Non-secure non-invasive debug:	
		0600	Functionality is not implemented or is controlled elsewhere.
[1:0]	NSID	Indicates the security level for Non-secure invasive debug:	
		0b00	Functionality is not implemented or is controlled elsewhere.

3.7.27 Device Configuration register, DEVID

The DEVID register indicates the capabilities of the component.

The DEVID register characteristics are:

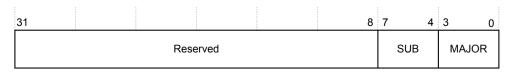
Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

Figure 3-132 DEVID register bit assignments

The following table shows the bit assignments.

Table 3-140 DEVID register bit assignments

Bits	Name	Function		
[31:12]	Reserved	-		
[11]	SWOUARTNRZ	Indicates whether Serial Wi	re Output, UART or NRZ, is supported.	
		0	Serial Wire Output, UART or NRZ, is not supported.	
[10]	SWOMAN	Indicates whether Serial Wi	re Output, Manchester encoded format, is supported.	
		0	Serial Wire Output, Manchester encoded format, is not supported.	
[9]	TCLKDATA	Indicates whether trace clock plus data is supported.		
		0	Trace clock and data is supported.	
[8:6]	FIFOSIZE	FIFO size in powers of 2.		
		0b010	FIFO size of 4 entries, that is, 16 bytes.	
[5]	CLKRELAT	Indicates the relationship be	tween atclk and traceclkin.	
		1	atclk and traceclkin are asynchronous.	
[4:0]	MUXNUM		f input multiplexing. When non-zero, this value indicates the type of the ATB. Currently only 0x00 is supported, that is, no multiplexing is present ATB structure.	


3.7.28 Device Type Identifier register, DEVTYPE

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

The DEVTYPE register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-133 DEVTYPE register bit assignments

The following table shows the bit assignments.

Table 3-141 DEVTYPE register bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	SUB	Sub-classification of the type the major classification as sp	of the debug component as specified in the <i>ARM[®]</i> Architecture Specification within ecified in the MAJOR field.
		0b0001	Indicates that this component is a trace port component.
[3:0]	MAJOR	Major classification of the ty debug and trace component.	pe of the debug component as specified in the ARM® Architecture Specification for this
		0b0001	Indicates that this component is a trace sink component.

3.7.29 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. Contains part of the designer identity and the memory size.

The PIDR4 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31				8	7 4	30
		Reserved			SIZE	DES_2

Figure 3-134 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-142 PIDR4 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	SIZE	Always 0b0000. Indicates that the device only occupies 4KB of memory.	
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b0100	JEDEC continuation code.

3.7.30 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number.

The PIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

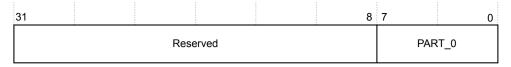


Figure 3-135 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-143 PIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PART_0	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0x12	Indicates bits[7:0] of the part number of the component.

3.7.31 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number and part of the designer identity.

The PIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-136 PIDR1 bit assignments

The following table shows the bit assignments.

Table 3-144 PIDR1 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	DES_0	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b1011	ARM. Bits[3:0] of the JEDEC JEP106 Identity Code.
[3:0]	PART_1	Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0b1001	Indicates bits[11:8] of the part number of the component.

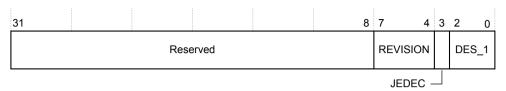
3.7.32 Peripheral ID2 Register, PIDR2

The PIDR2 register is part of the set of peripheral identification registers. Contains part of the designer identity and the product revision.

The PIDR2 register characteristics are:

Usage constraints

There are no usage constraints.


Configurations

This register is available in all configurations.

Attributes

See the ATB TPIU register summary table.

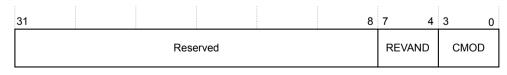
The following figure shows the bit assignments.

Figure 3-137 PIDR2 bit assignments

The following table shows the bit assignments.

Table 3-145 PIDR2 bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:4]	REVISION	0b0101
		This device is at r1p0.
[3]	JEDEC	Always 1. Indicates that the JEDEC-assigned designer ID is used.
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.
		0b011
		ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.


3.7.33 Peripheral ID3 Register, PIDR3

The PIDR3 register is part of the set of peripheral identification registers. Contains the REVAND and CMOD fields.

The PIDR3 characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

Figure 3-138 PIDR3 bit assignments

Table 3-146 PIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVAND	06000	Indicates that there are no errata fixes to this component.
[3:0]	CMOD		d. Indicates whether the customer has modified the behavior of the component. In most cases,i0. Customers change this value when they make authorized modifications to this component.
		0b0000	Indicates that the customer has not modified this component.

The CIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31				8	7		0
		Reserved				PRMBL_0	

Figure 3-139 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-147 CIDR0 bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7	Preamble[0]. Contains bits[7:0] of the component identification code.			
		0×0D	Bits[7:0] of the identification code.			

3.7.35 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

The CIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

The following figure shows the bit assignments.

31				8	7 4	3 0
		Reserved	d		CLASS	PRMBL_1

Figure 3-140 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-148 CIDR1 bit assignments

Bits	Name	Function						
[31:8]	Reserved	-						
[7:4]	CLASS Class of the component, for example, whether the component is a ROM table or a generic CoreS Contains bits[15:12] of the component identification code.							
		0b1001	Indicates that the component is a CoreSight component.					
[3:0]	PRMBL_1	Preamble[1]. Contains b	its[11:8] of the component identification code.					
		0b0000	Bits[11:8] of the identification code.					
		The CIDR2 register is a component identification register that indicates that the presence of identification registers.						
		The CIDR2 register cha	aracteristics are:					
		Usage constraints	There are no usage constraints.					
		Configurations	This register is available in all configurations.					
		Attributes	See the ATB TPIU register summary table.					
		The following figure sh	nows the bit assignments.					
		31	8 7					

31			8	7	0
	Rese	rved		PRM	IBL_2

Figure 3-141 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-149 CIDR2 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_2	MBL_2 Preamble[2]. Contains bits[23:16] of the component identification code.		
		0x05	Bits[23:16] of the identification code.	

3.7.37 Component ID3 Register, CIDR3

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the ATB TPIU register summary table.

Figure 3-142 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-150 CIDR3 bit assignments

Bits	Name	Function			
[31:8]	Reserved	-			
[7:0]	PRMBL_3	Preamble[3]. Contains bits[3	Preamble[3]. Contains bits[31:24] of the component identification code.		
		0xB1	Bits[31:24] of the identification code.		

3.8 CTI registers

The CTI combines and maps the trigger requests, and broadcasts them to all other interfaces on the ECT sub system.

This section contains the following subsections:

- 3.8.1 CTI register summary table on page 3-182.
- 3.8.2 CTI Control register; CTICONTROL on page 3-183.
- 3.8.3 CTI Interrupt Acknowledge register, CTIINTACK on page 3-184.
- 3.8.4 CTI Application Trigger Set register, CTIAPPSET on page 3-185.
- 3.8.5 CTI Application Trigger Clear register, CTIAPPCLEAR on page 3-185.
- 3.8.6 CTI Application Pulse register; CTIAPPPULSE on page 3-186.
- 3.8.7 CTI Trigger 0 to Channel Enable register; CTIINEN0 on page 3-186.
- 3.8.8 CTI Trigger 1 to Channel Enable register, CTIINEN1 on page 3-187.
- 3.8.9 CTI Trigger 2 to Channel Enable register, CTIINEN2 on page 3-188.
- 3.8.10 CTI Trigger 3 to Channel Enable register, CTIINEN3 on page 3-188.
- 3.8.11 CTI Trigger 4 to Channel Enable register, CTIINEN4 on page 3-189.
- 3.8.12 CTI Trigger 5 to Channel Enable register, CTIINEN5 on page 3-189.
- 3.8.13 CTI Trigger 6 to Channel Enable register, CTIINEN6 on page 3-190.
- 3.8.14 CTI Trigger 7 to Channel Enable register, CTIINEN7 on page 3-191.
- 3.8.15 CTI Channel to Trigger 0 Enable register, CTIOUTEN0 on page 3-191.
- 3.8.16 CTI Channel to Trigger 1 Enable register, CTIOUTEN1 on page 3-192.
- 3.8.17 CTI Channel to Trigger 2 Enable register, CTIOUTEN2 on page 3-192.
- 3.8.18 CTI Channel to Trigger 3 Enable register, CTIOUTEN3 on page 3-193.
- 3.8.19 CTI Channel to Trigger 4 Enable register, CTIOUTEN4 on page 3-194.
- 3.8.20 CTI Channel to Trigger 5 Enable register, CTIOUTEN5 on page 3-194.
- 3.8.21 CTI Channel to Trigger 6 Enable register, CTIOUTEN6 on page 3-195.
- 3.8.22 CTI Channel to Trigger 7 Enable register, CTIOUTEN7 on page 3-195.
- 3.8.23 CTI Trigger In Status register, CTITRIGINSTATUS on page 3-196.
- 3.8.24 CTI Trigger Out Status register, CTITRIGOUTSTATUS on page 3-196.
- 3.8.25 CTI Channel In Status register, CTICHINSTATUS on page 3-197.
- 3.8.26 CTI Channel Out Status register, CTICHOUTSTATUS on page 3-198.
- 3.8.27 Enable CTI Channel Gate register, CTIGATE on page 3-198.
- 3.8.28 External Multiplexer Control register, ASICCTL on page 3-199.
- 3.8.29 Integration Test Channel Input Acknowledge register, ITCHINACK on page 3-199.
- 3.8.30 Integration Test Trigger Input Acknowledge register, ITTRIGINACK on page 3-200.
- 3.8.31 Integration Test Channel Output register, ITCHOUT on page 3-200.
- 3.8.32 Integration Test Trigger Output register, ITTRIGOUT on page 3-201.
- 3.8.33 Integration Test Channel Output Acknowledge register, ITCHOUTACK on page 3-201.
- 3.8.34 Integration Test Trigger Output Acknowledge register, ITTRIGOUTACK on page 3-201.
- 3.8.35 Integration Test Channel Input register, ITCHIN on page 3-202.
- 3.8.36 Integration Test Trigger Input register, ITTRIGIN on page 3-202.
- 3.8.37 Integration Mode Control register, ITCTRL on page 3-203.
- 3.8.38 Claim Tag Set register, CLAIMSET on page 3-204.
- 3.8.39 Claim Tag Clear register, CLAIMCLR on page 3-204.
- 3.8.40 Lock Access Register, LAR on page 3-205.
- 3.8.41 Lock Status Register, LSR on page 3-206.
- 3.8.42 Authentication Status register, AUTHSTATUS on page 3-206.
- 3.8.43 Device Configuration register, DEVID on page 3-207.
- 3.8.44 Device Type Identifier register, DEVTYPE on page 3-208.
- 3.8.45 Peripheral ID4 Register, PIDR4 on page 3-208.
- 3.8.46 Peripheral ID0 Register, PIDR0 on page 3-209.
- 3.8.47 Peripheral ID1 Register, PIDR1 on page 3-209.
- 3.8.48 Peripheral ID2 Register, PIDR2 on page 3-210.
- 3.8.49 Peripheral ID3 Register, PIDR3 on page 3-211.
- 3.8.50 Component ID0 Register, CIDR0 on page 3-211.

- 3.8.51 Component ID1 Register, CIDR1 on page 3-212.
- 3.8.52 Component ID2 Register, CIDR2 on page 3-212.
- 3.8.53 Component ID3 Register, CIDR3 on page 3-213.

3.8.1 CTI register summary table

Summary of the CTI registers in offset order from the base memory address.

Table 3-151 CTI register summary

Offset	Name	Туре	Reset	Description
0x000	CTICONTROL	RW	0x00000000	3.8.2 CTI Control register; CTICONTROL on page 3-183
0x010	CTIINTACK	WO	0x00000000	3.8.3 CTI Interrupt Acknowledge register, CTIINTACK on page 3-184
0x014	CTIAPPSET	RW	0x00000000	3.8.4 CTI Application Trigger Set register, CTIAPPSET on page 3-185
0x018	CTIAPPCLEAR	WO	0x00000000	3.8.5 CTI Application Trigger Clear register, CTIAPPCLEAR on page 3-185
0x01C	CTIAPPPULSE	WO	0x00000000	3.8.6 CTI Application Pulse register, CTIAPPPULSE on page 3-186
0x020	CTIINEN0	RW	0x00000000	3.8.7 CTI Trigger 0 to Channel Enable register; CTIINEN0 on page 3-186
0x024	CTIINEN1	RW	0x00000000	3.8.8 CTI Trigger 1 to Channel Enable register; CTIINEN1 on page 3-187
0x028	CTIINEN2	RW	0x00000000	3.8.9 CTI Trigger 2 to Channel Enable register; CTIINEN2 on page 3-188
0x02C	CTIINEN3	RW	0x00000000	3.8.10 CTI Trigger 3 to Channel Enable register, CTIINEN3 on page 3-188
0x030	CTIINEN4	RW	0x00000000	3.8.11 CTI Trigger 4 to Channel Enable register, CTIINEN4 on page 3-189
0x034	CTIINEN5	RW	0x00000000	3.8.12 CTI Trigger 5 to Channel Enable register, CTIINEN5 on page 3-189
0x038	CTIINEN6	RW	0x00000000	3.8.13 CTI Trigger 6 to Channel Enable register, CTIINEN6 on page 3-190
0x03C	CTIINEN7	RW	0x00000000	3.8.14 CTI Trigger 7 to Channel Enable register, CTIINEN7 on page 3-191
0x0A0	CTIOUTEN0	RW	0x00000000	3.8.15 CTI Channel to Trigger 0 Enable register, CTIOUTEN0 on page 3-191
0x0A4	CTIOUTEN1	RW	0x00000000	3.8.16 CTI Channel to Trigger 1 Enable register, CTIOUTEN1 on page 3-192
0x0A8	CTIOUTEN2	RW	0x00000000	<i>3.8.17 CTI Channel to Trigger 2 Enable register, CTIOUTEN2</i> on page 3-192
0x0AC	CTIOUTEN3	RW	0x00000000	3.8.18 CTI Channel to Trigger 3 Enable register, CTIOUTEN3 on page 3-193
0x0B0	CTIOUTEN4	RW	0x00000000	<i>3.8.19 CTI Channel to Trigger 4 Enable register, CTIOUTEN4</i> on page 3-194
0x0B4	CTIOUTEN5	RW	0x00000000	<i>3.8.20 CTI Channel to Trigger 5 Enable register, CTIOUTEN5</i> on page 3-194
0x0B8	CTIOUTEN6	RW	0x00000000	3.8.21 CTI Channel to Trigger 6 Enable register, CTIOUTEN6 on page 3-195
0x0BC	CTIOUTEN7	RW	0x00000000	3.8.22 CTI Channel to Trigger 7 Enable register, CTIOUTEN7 on page 3-195
0x130	CTITRIGINSTATUS	RO	0x00000000	3.8.23 CTI Trigger In Status register, CTITRIGINSTATUS on page 3-196
0x134	CTITRIGOUTSTATUS	RO	0x00000000	3.8.24 CTI Trigger Out Status register, CTITRIGOUTSTATUS on page 3-196
0x138	CTICHINSTATUS	RO	0x00000000	3.8.25 CTI Channel In Status register, CTICHINSTATUS on page 3-197
0x13C	CTICHOUTSTATUS	RO	0x00000000	3.8.26 CTI Channel Out Status register, CTICHOUTSTATUS on page 3-198

Table 3-151 CTI register summary (continued)

Offset	Name	Туре	Reset	Description
0x140	CTIGATE	RW	0x0000000F	3.8.27 Enable CTI Channel Gate register, CTIGATE on page 3-198
0x144	asicctl	RW	0x00000000	3.8.28 External Multiplexer Control register; ASICCTL on page 3-199
ØxEDC	ITCHINACK	WO	0x00000000	<i>3.8.29 Integration Test Channel Input Acknowledge register, ITCHINACK</i> on page 3-199
0xEE0	ITTRIGINACK	WO	0x00000000	<i>3.8.30 Integration Test Trigger Input Acknowledge register, ITTRIGINACK</i> on page 3-200
0xEE4	ITCHOUT	WO	0x00000000	3.8.31 Integration Test Channel Output register, ITCHOUT on page 3-200
0xEE8	ITTRIGOUT	WO	0x00000000	3.8.32 Integration Test Trigger Output register, ITTRIGOUT on page 3-201
ØxEEC	ITCHOUTACK	RO	0x00000000	3.8.33 Integration Test Channel Output Acknowledge register, ITCHOUTACK on page 3-201
0xEF0	ITTRIGOUTACK	RO	0x00000000	3.8.34 Integration Test Trigger Output Acknowledge register, ITTRIGOUTACK on page 3-201
0xEF4	ITCHIN	RO	0x00000000	3.8.35 Integration Test Channel Input register, ITCHIN on page 3-202
0xEF8	ITTRIGIN	RO	0x00000000	3.8.36 Integration Test Trigger Input register, ITTRIGIN on page 3-202
0xF00	ITCTRL	RW	0x00000000	3.8.37 Integration Mode Control register, ITCTRL on page 3-203
0xFA0	CLAIMSET	RW	0x0000000F	3.8.38 Claim Tag Set register; CLAIMSET on page 3-204
0xFA4	CLAIMCLR	RW	0x00000000	3.8.39 Claim Tag Clear register, CLAIMCLR on page 3-204
0xFB0	LAR	WO	0x00000000	3.8.40 Lock Access Register, LAR on page 3-205
0xFB4	LSR	RO	0x0000003	3.8.41 Lock Status Register, LSR on page 3-206
0xFB8	AUTHSTATUS	RO	0x00000005	3.8.42 Authentication Status register, AUTHSTATUS on page 3-206
0xFC8	DEVID	RO	0x00040800	3.8.43 Device Configuration register, DEVID on page 3-207
0xFCC	DEVTYPE	RO	0x00000014	3.8.44 Device Type Identifier register, DEVTYPE on page 3-208
0xFD0	PIDR4	RO	0x00000004	3.8.45 Peripheral ID4 Register; PIDR4 on page 3-208
0xFD4	-	-	-	Reserved
0xFD8	-	-	-	Reserved
0xFDC	-	-	-	Reserved
0xFE0	PIDR0	RO	0x0000006	3.8.46 Peripheral ID0 Register; PIDR0 on page 3-209
0xFE4	PIDR1	RO	0x000000B9	3.8.47 Peripheral ID1 Register; PIDR1 on page 3-209
0xFE8	PIDR2	RO	0x0000005B	3.8.48 Peripheral ID2 Register; PIDR2 on page 3-210
0xFEC	PIDR3	RO	0x00000000	3.8.49 Peripheral ID3 Register; PIDR3 on page 3-211
0xFF0	CIDR0	RO	0x0000000D	3.8.50 Component ID0 Register, CIDR0 on page 3-211
0xFF4	CIDR1	RO	0x00000090	3.8.51 Component ID1 Register; CIDR1 on page 3-212
0xFF8	CIDR2	RO	0x00000005	3.8.52 Component ID2 Register; CIDR2 on page 3-212
0xFFC	CIDR3	RO	0x000000B1	3.8.53 Component ID3 Register, CIDR3 on page 3-213


3.8.2 CTI Control register, CTICONTROL

The CTICONTROL register enables the CTI.

The CTICONTROL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

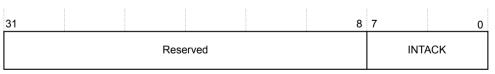
The following figure shows the bit assignments.

Figure 3-143 CTICONTROL register bit assignments

The following table shows the bit assignments.

Table 3-152 CTICONTROL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	GLBEN	Enables or disables the CTI.	
		0	When this bit is 0, all cross-triggering mapping logic functionality is disabled.
		1	When this bit is 1, cross-triggering mapping logic functionality is enabled.


3.8.3 CTI Interrupt Acknowledge register, CTIINTACK

The CTIINTACK register is a software acknowledge for a trigger output. This register is used when **ctitrigout** is used as a sticky output. That is, no hardware acknowledge is available and software acknowledge is required.

The CTIINTACK register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-144 CTIINTACK register bit assignments

The following table shows the bit assignments.

Table 3-153 CTIINTACK register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	INTACK	Acknowledges the corresponding ctitrigout output. There is one bit of the register for each ctitrigout output. When a 1 is written to a bit in this register, the corresponding ctitrigout is acknowledged, causing it to be cleared.

3.8.4 CTI Application Trigger Set register, CTIAPPSET

Writing to the CTIAPPSET register causes a channel event to be raised, corresponding to the bit written to.

The CTIAPPSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31				4	3 0
		Reserved			APPSET

Figure 3-145 CTIAPPSET register bit assignments

The following table shows the bit assignments.

Table 3-154 CTIAPPSET register bit assignments

Bits	Name	Function			
[31:4]	Reserved	-			
[3:0]	APPSET	Setting a bit HIGH generates a channel event for the selected channel. There is one bit of the register channel.			
		Reads as follows:			
		0	Application trigger is inactive.		
		1	Application trigger is active.		
		Writes as follows:			
		0	No effect.		
		1	Generate channel event.		

3.8.5 CTI Application Trigger Clear register, CTIAPPCLEAR

Writing to a bit in the CTIAPPCLEAR register clears the corresponding channel event.

The CTIAPPCLEAR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-146 CTIAPPCLEAR register bit assignments

The following table shows the bit assignments.

Table 3-155 CTIAPPCLEAR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0] APPCLEAR Sets the corresponding bits in the CTIAPPSET to 0. There is one bit of the register for each ch for each bit:		n the CTIAPPSET to 0. There is one bit of the register for each channel. On writes,	
		0	Has no effect.
		1	Clears the corresponding channel event.

3.8.6 CTI Application Pulse register, CTIAPPPULSE

A write to this register causes a channel event pulse, one **cticlk** period, to be generated, corresponding to the bit written to. The pulse external to the CTI can be extended to multi-cycle by the handshaking interface circuits. This register clears itself immediately, so it can be repeatedly written to without software having to clear it.

The CTIAPPPULSE register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

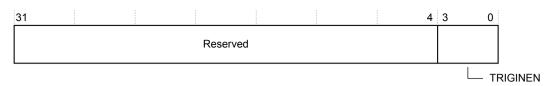
31					4	3 0
		Res	erved			APPULSE

Figure 3-147 CTIAPPPULSE register bit assignments

The following table shows the bit assignments.

Table 3-156 CTIAPPPULSE register bit assignments

Bits	Name	Function		
[31:4]	Reserved	-		
[3:0]	APPULSE	Setting a bit HIGH generates a channel event pulse for the selected channel. There is one bit of the register for each channel. On writes, for each bit:		
		0	Has no effect.	
		1	Generate an event pulse on the corresponding channel.	


3.8.7 CTI Trigger 0 to Channel Enable register, CTIINEN0

The CTIINEN0 register enables the signaling of an event on CTM channels when a trigger event is received by the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-148 CTIINEN0 register bit assignments

The following table shows the bit assignments.

Table 3-157 CTIINEN0 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGINEN	66	t to the corresponding channel when a ctitrigin input is activated. There is one bit of channels. On writes, for each bit:
		0	Input trigger 0 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 0, ctitrigin[0] , generate an event on the channel corresponding to this bit.

3.8.8 CTI Trigger 1 to Channel Enable register, CTIINEN1

The CTIINEN1 register enables the signaling of an event on CTM channels when the core issues a trigger, **ctitrigin**, to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-149 CTIINEN1 register bit assignments

The following table shows the bit assignments.

Table 3-158 CTIINEN1 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGINEN	66	vent to the corresponding channel when a ctitrigin input is activated. There is one bit of four channels. On writes, for each bit:
		0	Input trigger 1 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 1, ctitrigin[1] , generate an event on the channel corresponding to this bit.

3.8.9 CTI Trigger 2 to Channel Enable register, CTIINEN2

The CTIINEN2 register enables the signaling of an event on CTM channels when the core issues a trigger, **ctitrigin**, to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN2 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the assignments.

31					4 3	0	
		Rese	erved				
							GINE

Figure 3-150 CTIINEN2 register bit assignments

The following table shows the bit assignments.

Table 3-159 CTIINEN2 register bit assignments

Bits	Name	Function		
[31:4]	Reserved	-		
[3:0]	TRIGINEN		Enables a cross trigger event to the corresponding channel when a ctitrigin input is activated. There is one bit o the field for each of the four channels. On writes, for each bit:	
		0	Input trigger 2 events are ignored by the corresponding channel.	
		1	When an event is received on input trigger 2, ctitrigin[2] , generate an event on the channel corresponding to this bit.	

3.8.10 CTI Trigger 3 to Channel Enable register, CTIINEN3

The CTIINEN3 register enables the signaling of an event on cross trigger channels when the core issues a trigger, **ctitrigin**, to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN3 register characteristics are:

Purpose	Enables the signaling of an event on CTM channels when the core issues a trigger, ctitrigin , to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.
Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					4 3	0	
		Rese	erved				
							SINEN

Figure 3-151 CTIINEN3 register bit assignments

The following table shows the bit assignments.

Table 3-160 CTIINEN3 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGINEN		to the corresponding channel when a ctitrigin input is activated. There is one bit of channels. On writes, for each bit:
		0	Input trigger 3 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 3, ctitrigin[3] , generate an event on the channel corresponding to this bit.

3.8.11 CTI Trigger 4 to Channel Enable register, CTIINEN4

The CTIINEN4 register enables the signaling of an event on CTM channels when the core issues a trigger, **ctitrigin**, to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN4 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the CTIINEN4 register bit assignments.

Figure 3-152 CTIINEN4 register bit assignments

The following table shows the CTIINEN4 register bit assignments.

Table 3-161 CTIINEN4 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGINEN	Enables a cross trigger event to the corresponding channel when a ctitrigin input is activated. There is one bit the field for each of the four channels. On writes, for each bit:	
		0	Input trigger 4 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 4, ctitrigin[4] , generate an event on the channel corresponding to this bit.

3.8.12 CTI Trigger 5 to Channel Enable register, CTIINEN5

The CTIINEN5 register enables the signaling of an event on CTM channels when the core issues a trigger, **ctitrigin**, to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN5 register characteristics are:

Usage constraints There are no usage constraints.

ConfigurationsThis register is available in all configurations.AttributesSee the CTI register summary table.

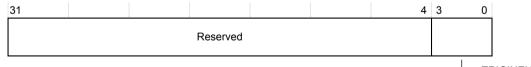
The following figure shows the bit assignments.

Figure 3-153 CTIINEN5 register bit assignments

The following table shows the bit assignments.

Table 3-162 CTIINEN5 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGINEN	Enables a cross trigger event to the corresponding channel when a ctitrigin input is activated. There is one bit of the field for each of the four channels. On writes, for each bit:	
		0	Input trigger 5 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 5, ctitrigin [5], generate an event on the channel corresponding to this bit.


3.8.13 CTI Trigger 6 to Channel Enable register, CTIINEN6

The CTIINEN6 register does not affect the application trigger operations.

The CTIINEN6 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

- TRIGINEN

Figure 3-154 CTIINEN6 register bit assignments

The following table shows the bit assignments.

Table 3-163 CTIINEN6 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0] TRIGINEN Enables a cross trigger event to the corresponding channel when a ctitrigin input is activa the field for each of the four channels. On writes, for each bit:			
		0	Input trigger 6 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 6, ctitrigin[6] , generate an event on the channel corresponding to this bit.

3.8.14 CTI Trigger 7 to Channel Enable register, CTIINEN7

The CTIINEN7 register enables the signaling of an event on CTM channels when the core issues a trigger, **ctitrigin**, to the CTI. There is a bit for each of the four channels implemented. This register does not affect the application trigger operations.

The CTIINEN7 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

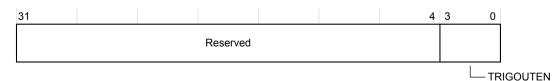
31					4	3	0	
		Rese	erved					
						[I — TRI	GINEN

Figure 3-155 CTIINEN7 register bit assignments

The following table shows the bit assignments.

Table 3-164 CTIINEN7 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGINEN	Enables a cross trigger event to the corresponding channel when a ctitrigin input is activated. There is one bit of the field for each of the four channels. On writes, for each bit:	
		0	Input trigger 7 events are ignored by the corresponding channel.
		1	When an event is received on input trigger 7, ctitrigin [7], generate an event on the channel corresponding to this bit.


3.8.15 CTI Channel to Trigger 0 Enable register, CTIOUTEN0

The CTIOUTEN0 register defines which channels can generate a **ctitrigout[0]** output. There is a bit for each of the four channels implemented. This register affects the mapping from application trigger to trigger outputs.

The CTIOUTEN0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

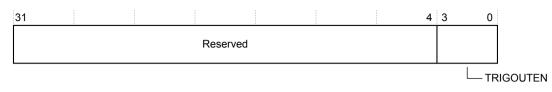
Figure 3-156 CTIOUTEN0 register bit assignments

The following table shows the bit assignments.

Table 3-165 CTIOUTEN0 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGOUTEN		er event to ctitrigout when the corresponding channel is activated. There is one bit of the our channels. On writes, for each bit
		0	The corresponding channel is ignored by the output trigger 0.
		1	When an event occurs on the channel corresponding to this bit, generate an even on output event 0, ctitrigout[0] .
3.8.16	CTI Ch	annel to Trigger 1	Enable register, CTIOUTEN1
	eac		ster defines which channels can generate a ctitrigout[1] output. There is a bit for is implemented. This register affects the mapping from application trigger to
	The	e CTIOUTEN1 regis	ster characteristics are:
	Usa	age constraints	There are no usage constraints.
	Co	nfigurations	This register is available in all configurations.
	Att	ributes	See the CTI register summary table.
	The	e following figure sh	lows the bit assignments.
		31	4 3 0
			Reserved
			Figure 3-157 CTIOUTEN1 register bit assignme
	Th	a following table sho	ows the bit assignments.
	111	c tonowing table sho	-
			Table 3-166 CTIOUTEN1 register bit assignme
Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGOUTEN		er event to ctitrigout when the corresponding channel is activated. There is one bit of the our channels. On writes, for each bit:
		0	The corresponding channel is ignored by the output trigger 1.

0 The corresponding channel is ignored by the output trigger 1.
1 When an event occurs on the channel corresponding to this bit, generate an event on output event 1, ctitrigout[1].


3.8.17 CTI Channel to Trigger 2 Enable register, CTIOUTEN2

The CTIOUTEN2 register defines which channels can generate a **ctitrigout[2]** output. There is a bit for each of the four channels implemented. This register affects the mapping from application trigger to trigger outputs.

The CTIOUTEN2 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-158 CTIOUTEN2 register bit assignments

The following table shows the bit assignments.

Table 3-167 CTIOUTEN2 register bit assignments

Bits	Name	Function		
[31:4]	Reserved	-		
[3:0]	TRIGOUTEN	Enables a cross trigger event to ctitrigout when the corresponding channel is activated. There is one bit of the field for each of the four channels. On writes, for each bit:		
		0	The corresponding channel is ignored by the output trigger 2.	
		1	When an event occurs on the channel corresponding to this bit, generate an event on output event 2, ctitrigout[2] .	

3.8.18 CTI Channel to Trigger 3 Enable register, CTIOUTEN3

The CTIOUTEN3 register defines which channels can generate a **ctitrigout[3]** output. There is a bit for each of the four channels implemented. This register affects the mapping from application trigger to trigger outputs.

The CTIOUTEN3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

-TRIGOUTEN

Figure 3-159 CTIOUTEN3 register bit assignments

The following table shows the bit assignments.

Table 3-168 CTIOUTEN3 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGOUTEN		t to ctitrigout when the corresponding channel is activated. There is one bit of the annels. On writes, for each bit:
		0	The corresponding channel is ignored by the output trigger 3.
		1	When an event occurs on the channel corresponding to this bit, generate an event on output event 3, ctitrigout[3] .

3.8.19 CTI Channel to Trigger 4 Enable register, CTIOUTEN4

The CTIOUTEN4 register defines which channels can generate a **ctitrigout[4]** output. There is a bit for each of the four channels implemented. This register affects the mapping from application trigger to trigger outputs.

The CTIOUTEN4 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

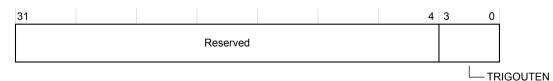
Received	Reserved					4 3	0
			Rese	arved			

Figure 3-160 CTIOUTEN4 register bit assignments

The following table shows the bit assignments.

Table 3-169 CTIOUTEN4 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0] TRIGOUTEN Enables a cross trigger event to ctitrigout when the corresponding channel is activated. There is field for each of the four channels. On writes, for each bit:			
		0	The corresponding channel is ignored by the output trigger 4.
		1	When an event occurs on the channel corresponding to this bit, generate an event on output event 4, ctitrigout[4] .


3.8.20 CTI Channel to Trigger 5 Enable register, CTIOUTEN5

The CTIOUTEN5 register defines which channels can generate a **ctitrigout[5]** output. There is a bit for each of the four channels implemented. This register affects the mapping from application trigger to trigger outputs.

The CTIOUTEN5 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-161 CTIOUTEN5 register bit assignments

The following table shows the bit assignments.

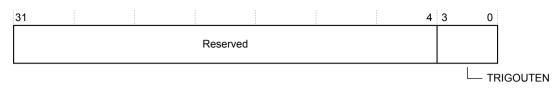
Table 3-170 CTIOUTEN5 register bit assignments

Bits	Name	Function						
[31:4]	Reserved	-						
[3:0]	TRIGOUTEN		event to ctitrigout when the corresponding channel is activated. There is one bit of the ur channels. On writes, for each bit:					
		0	The corresponding channel is ignored by the output trigger 5.					
		1	When an event occurs on the channel corresponding to this bit, generate an event on output event 5, ctitrigout[5] .					
3.8.21	CTI Cha	annel to Trigger 6	Enable register, CTIOUTEN6					
	eac		er defines which channels can generate a ctitrigout[6] output. There is a bit for s implemented. This register affects the mapping from application trigger to					
	The	e CTIOUTEN6 regist	er characteristics are:					
	Usa	age constraints	There are no usage constraints.					
	Co	nfigurations	This register is available in all configurations.					
	Att	ributes	See the CTI register summary table.					
	The	e following figure sho	ows the bit assignments.					
		31	4 3 0					
			Reserved					
			Figure 3-162 CTIOUTEN6 register bit assignment					
	The	e following table shows the bit assignments.						
		C						
			Table 3-171 CTIOUTEN6 register bit assignmen					
Bits	Name	Function						
[31:4]	Reserved	-						
[3:0]	TRIGOUTEN		event to ctitrigout when the corresponding channel is activated. There is one bit of the					
[]		field for each of the for	ur channels. On writes, for each bit:					

The corresponding channel is ignored by the output trigger 6.
When an event occurs on the channel corresponding to this bit, generate an event

on output event 6, ctitrigout[6].

3.8.22 CTI Channel to Trigger 7 Enable register, CTIOUTEN7


1

The CTIOUTEN7 register defines which channels can generate a **ctitrigout**[7] output. There is a bit for each of the four channels implemented. This register affects the mapping from application trigger to trigger outputs.

The CTIOUTEN7 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-163 CTIOUTEN7 register bit assignments

The following table shows the bit assignments.

Table 3-172 CTIOUTEN7 register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	TRIGOUTEN	N Enables a cross trigger event to ctitrigout when the corresponding channel is activated. There is on field for each of the four channels. On writes, for each bit:	
		0	The corresponding channel is ignored by the output trigger 7.
		1	When an event occurs on the channel corresponding to this bit, generate an event on output event 7, ctitrigout [7].

3.8.23 CTI Trigger In Status register, CTITRIGINSTATUS

The CTITRIGINSTATUS register provides the status of the **ctitrigin** inputs.

The CTITRIGINSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

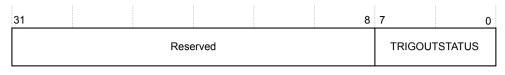
The following figure shows the bit assignments.

Figure 3-164 CTITRIGINSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-173 CTITRIGINSTATUS register bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0] TRIGINSTATUS Shows the status of the ctitrigin inputs. There is one bit of the field register provides a view of the raw ctitrigin inputs, the reset value			
		1	ctitrigin is active.
		0	ctitrigin is inactive.


3.8.24 CTI Trigger Out Status register, CTITRIGOUTSTATUS

The CTITRIGOUTSTATUS register provides the status of the ctitrigout outputs.

The CTITRIGOUTSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-165 CTITRIGOUTSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-174 CTITRIGOUTSTATUS register bit assignments

	1 0 I In Status regis	ctitrigou ctitrigou ter, CTICHINS	t is active. t is inactive.	s one bit of t	he field fo	r each t	rigger	output
CTI Channe	1 0 I In Status regis	ctitrigou ctitrigou ter, CTICHINS	t is active. t is inactive.	s one bit of t	he field fo	r each t	rigger	output
	0 I In Status regis	ctitrigou ter, CTICHIN	t is inactive.					
	I In Status regis	ter, CTICHINS	STATUS					
	-							
The CTI	CHINSTATUS reg	ister provides th						
		The CTICHINSTATUS register provides the status of the ctichin inputs.						
The CTI	CHINSTATUS reg	ister characteris	stics are:					
Usage co	nstraints	There are no us	sage constrai	ints.				
Configu	ations	This register is	available in	all configu	irations.			
Attribut	es	See the CTI reg	gister summa	ary table.				
The follo	wing figure shows	the bit assignn	nents.					
31						43		0
	<u>.</u> :	Reserved	; 1	:	:			
	The follo	The following figure shows	The following figure shows the bit assignn	The following figure shows the bit assignments.				

Figure 3-166 CTICHINSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-175 CTICHINSTATUS register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CTICHINSTATUS		chin inputs. There is one bit of the field for each channel input.Because the the raw ctichin inputs, the reset value is UNKNOWN.
		0	ctichin is inactive.
		1	ctichin is active.

3.8.26 CTI Channel Out Status register, CTICHOUTSTATUS

The CTICHOUTSTATUS register provides the status of the CTI ctichout outputs.

The CTICHOUTSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

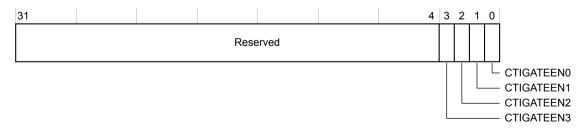
CTICHOUTSTATUS –

Figure 3-167 CTICHOUTSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-176 CTICHOUTSTATUS register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CTICHOUTSTATUS	Shows the status of the cti	ichout outputs. There is one bit of the field for each channel output.
		0	ctichout is inactive.
		1	ctichout is active.


3.8.27 Enable CTI Channel Gate register, CTIGATE

The CTIGATE register prevents the channels from propagating through the CTM to other CTIs. This enables local cross-triggering, for example for causing an interrupt when the ETM trigger occurs. It can be used effectively with CTIAPPSET, CTIAPPCLEAR, and CTIAPPPULSE for asserting trigger outputs by asserting channels, without affecting the rest of the system. On reset, this register is 0xF, and channel propagation is enabled.

The CTIGATE register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-168 CTIGATE register bit assignments

The following table shows the bit assignments.

Table 3-177 CTIGATE register bit assignments

Bits	Name	Function
[31:4]	Reserved	-
[3]	CTIGATEEN3	Enable ctichout3 . Set to 0 to disable channel propagation.
[2]	CTIGATEEN2	Enable ctichout2 . Set to 0 to disable channel propagation.
[1]	CTIGATEEN1	Enable ctichout1 . Set to 0 to disable channel propagation.
[0]	CTIGATEEN0	Enable ctichout0 . Set to 0 to disable channel propagation.

3.8.28 External Multiplexer Control register, ASICCTL

Implementation defined ASIC control. The value written to the register is output on asicctl[7:0].

The ASICCTL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

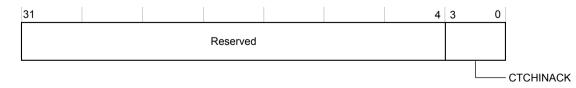
31				8 7		0
		Reserved			ASICCTL	

Figure 3-169 ASICCTL register bit assignments

The following table shows the bit assignments.

Table 3-178 ASICCTL register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	ASICCTL	When external multiplexing is implemented for trigger signals, then the number of multiplexed signals on each trigger must be shown in the Device ID Register. This is done using a Verilog define EXTMUXNUM.


3.8.29 Integration Test Channel Input Acknowledge register, ITCHINACK

The ITCHINACK register sets the value of the ctichinack outputs.

The ITCHINACK register characteristics are:

- **Usage constraints** There are no usage constraints.
- **Configurations** This register is available in all configurations.
- Attributes See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-170 ITCHINACK register bit assignments

The following table shows the bit assignments.

Table 3-179 ITCHINACK register bit assignments

Bits	Name	Function
[31:4]	Reserved	-
[3:0]	CTCHINACK	Sets the value of the ctichinack outputs.

3.8.30 Integration Test Trigger Input Acknowledge register, ITTRIGINACK

The ITTRIGINACK register sets the value of the ctitriginack outputs.

The ITTRIGINACK register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31			8	7	0
	Reser	ved		CTTRIC	GINACK

Figure 3-171 ITTRIGINACK register bit assignments

The following table shows the bit assignments.

Table 3-180 ITTRIGINACK register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	CTTRIGINACK	Sets the value of the ctitriginack outputs.

3.8.31 Integration Test Channel Output register, ITCHOUT

The ITCHOUT register sets the value of the **ctichout** outputs.

The ITCHOUT register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Res	served		СТ	сноит

Figure 3-172 ITCHOUT register bit assignments

The following table shows the bit assignments.

Table 3-181 ITCHOUT register bit assignments

Bits	Name	Function
[31:4]	Reserved	-
[3:0]	CTCHOUT	Sets the value of the ctichout outputs.

3.8.32 Integration Test Trigger Output register, ITTRIGOUT

The ITTRIGOUT register sets the value of the **ctitrigout** outputs.

The ITTRIGOUT register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31			8	7	0
	Reser	ved		CTTR	IGOUT

Figure 3-173 ITTRIGOUT register bit assignments

The following table shows the bit assignments.

Table 3-182 ITTRIGOUT register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	CTTRIGOUT	Sets the value of the ctitrigout outputs.

3.8.33 Integration Test Channel Output Acknowledge register, ITCHOUTACK

The ITCHOUTACK register reads the values of the ctichoutack inputs.

The ITCHOUTACK register characteristics are:

Usage constraints T	here are no usage constraints.
---------------------	--------------------------------

Configurations This register is available in all configurations.

Attributes See the CTI register summary table.

The following figure shows the bit assignments.

— CTCHOUTACK

Figure 3-174 ITCHOUTACK register bit assignments

The following table shows the bit assignments.

Table 3-183 ITCHOUTACK register bit assignments

Bits	Name	Function
[31:4]	Reserved	-
[3:0]	CTCHOUTACK	Reads the values of the ctichoutack inputs.

3.8.34 Integration Test Trigger Output Acknowledge register, ITTRIGOUTACK

The ITTRIGOUTACK register reads the values of the **ctitrigoutack** inputs.

The ITTRIGOUTACK register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-175 ITTRIGOUTACK register bit assignments

The following table shows the bit assignments.

Table 3-184 ITTRIGOUTACK register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	CTTRIGOUTACK	Reads the value of the ctitrigoutack inputs.

3.8.35 Integration Test Channel Input register, ITCHIN

The ITCHIN register reads the values of the ctichin inputs.

The ITCHIN register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					4	3 0
		Res	erved			CTCHIN

Figure 3-176 ITCHIN register bit assignments

The following table shows the bit assignments.

Table 3-185 ITCHIN register bit assignments

Bits	Name	Function
[31:4]	Reserved	-
[3:0]	CTCHIN	Reads the value of the ctichin inputs.

3.8.36 Integration Test Trigger Input register, ITTRIGIN

The ITTRIGIN register reads the values of the **ctitrigin** inputs.

The ITTRIGIN register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31				8 7		0
		Reserved			CTTRIGIN	

Figure 3-177 ITTRIGIN register bit assignments

The following table shows the bit assignments.

Table 3-186 ITTRIGIN register bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:0]	CTTRIGIN	Reads the values of the ctitrigin inputs.

3.8.37 Integration Mode Control register, ITCTRL

The ITCTRL register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.

This register enables topology detection. See the ARM® Architecture Specification.

_____ Note ____

When a device is in integration mode, the intended functionality might not be available.

After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight SoC-400 and other connected system components that the integration or topology detection can affect.

The ITCTRL register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-178 ITCTRL register bit assignments

The following table shows the bit assignments.

Table 3-187 ITCTRL register bit assignments

Bits	Name	Function	
[31:1]	Reserved	-	
[0]	IME	Integration Mode Enable.	
		0	Disable integration mode.
		1	Enable integration mode.
			Note
			The CTI must also be enabled using the CTICONTROL register for integration mode operation.

3.8.38 Claim Tag Set register, CLAIMSET

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

The CLAIMSET register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Rese	erved			SET

Figure 3-179 CLAIMSET register bit assignments

The following table shows the bit assignments.

Table 3-188 CLAIMSET register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	SET	On reads, for each bit:	
		1	Claim tag bit is implemented
		On writes, for each bit:	
		0	Has no effect.
		1	Sets the relevant bit of the claim tag.

3.8.39 Claim Tag Clear register, CLAIMCLR

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

The CLAIMCLR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					4 3	0
		Rese	erved			CLR

Figure 3-180 CLAIMCLR register bit assignments

The following table shows the bit assignments.

Table 3-189 CLAIMCLR register bit assignments

Bits	Name	Function	
[31:4]	Reserved	-	
[3:0]	CLR	On reads, for each bit:	
		0	Claim tag bit is not set.
		1	Claim tag bit is set.
		On writes, for each bit:	
		0	Has no effect.
		1	Clears the relevant bit of the claim tag.

3.8.40 Lock Access Register, LAR

The LAR register controls write access from self-hosted, on-chip accesses. The LAR does not affect the accesses that use the external debugger interface.

The LAR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					0
		K	EY		

Figure 3-181 LAR bit assignments

The following table shows the bit assignments.

Table 3-190 LAR bit assignments

Bits	Name	Function	
[31:0]	KEY	Software lock key value.	
		ØxC5ACCE55	Clear the software lock.
		All other write values set the s	oftware lock.

3.8.41 Lock Status Register, LSR

The LSR register indicates the status of the lock control mechanism. This lock prevents accidental writes. When locked, write accesses are denied for all registers except for the LAR. The lock registers do not affect accesses from the external debug interface. This register reads as 0 when accessed from the external debug interface.

The LSR register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

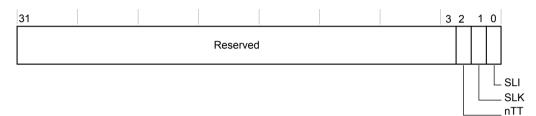
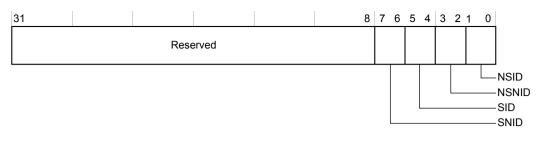


Figure 3-182 LSR bit assignments

The following table shows the bit assignments.

Table 3-191 LSR bit assignments

Bits	Name	Function	
[31:3]	Reserved	-	
[2]	nTT	Register size indicator. Alway	vs 0. Indicates that the LAR is implemented as 32-bit.
[1]	SLK	Software Lock Status. Return	s the present lock status of the device, from the current interface.
		0	Indicates that write operations are permitted from this interface.
		1	Indicates that write operations are not permitted from this interface. Read operations are permitted.
[0]	SLI	Software Lock Implemented.	Indicates that a lock control mechanism is present from this interface.
		0	Indicates that a lock control mechanism is not present from this interface. Write operations to the LAR are ignored.
		1	Indicates that a lock control mechanism is present from this interface.


3.8.42 Authentication Status register, AUTHSTATUS

The AUTHSTATUS register reports the required security level and present status.

The AUTHSTATUS register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-183 AUTHSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-192 AUTHSTATUS register bit assignments

Bits	Name	Function						
[31:8]	Reserved	-						
[7:6]	SNID	Always 0b00. The security le	vel for Secure non-invasive debug is not implemented or is controlled elsewhere.					
[5:4]	SID	Always 0b00 Secure invasive	Always 0b00 Secure invasive debug is not implemented or is controlled elsewhere.					
[3:2] NSNID Indicates the security level for Non-secure non-invasive debug:								
		0b10	Disabled.					
		0b11	Enabled.					
[1:0]	NSID	Indicates the security level for	Non-secure invasive debug:					
		0b10	Disabled.					
		0b11	Enabled.					

3.8.43 Device Configuration register, DEVID

The DEVID register indicates the capabilities of the component.

The DEVID register characteristics are:

Usage constraints	There are no usage constraints.				
Configurations	This register is available in all configurations.				
Attributes	See the CTI register summary table.				

The following figure shows the bit assignments.

31	2	0 19 16	15 8	75	4 0	
	Reserved	NUMCH	NUMTRIG		EXTMUXNUM	
			•			- Reserved

Figure 3-184 DEVID register bit assignments

The following table shows the bit assignments.

Table 3-193 DEVID register bit assignments

Bits	Name	Function
[31:20]	Reserved	-
[19:16]	NUMCH	Number of ECT channels available.

Table 3-193 DEVID register bit assignments (continued)

Bits	Name	Function								
[15:8]	NUMTR	IG Number of ECT tr	iggers available.							
[7:5]	Reserved	1 -								
[4:0]	EXTMU		ber of multiplexers available on Trigger Inputs and Trigger Outputs that are using asicctl . of 0b00000 indicates that no multiplexing is present.							
		This value of this l	bit depends on the Verilog define EXTMUXNUM that you must change accordingly.							
3.8.44	Dev	vice Type Identifier reg	gister, DEVTYPE							
			provides a debugger with information about the component when the Part gnized. The debugger can then report this information. characteristics are:							
		Usage constraints	There are no usage constraints.							
		Configurations	This register is available in all configurations.							
		Attributes	See the CTI register summary table.							
		The following figure sho	ows the bit assignments.							
		31	8 7 4 3 0							
			Reserved SUB MAJOR							
			Figure 3-185 DEVTYPE register bit assignments							
		The following table show	ws the bit assignments.							
		Table 3-194 DEVTYPE register bit assignment								
Bits	Name	Function								
[31:8]	Reserved	-								
[7:4]	SUB	-	pe of the debug component as specified in the <i>ARM® Architecture Specification</i> within specified in the MAJOR field.							
		0b0001	Indicates that this component is a cross-triggering component.							

Øb0100Indicates that this component allows a debugger to control other components in a
CoreSight SoC-400 system.

3.8.45 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. Contains part of the designer identity and the memory size.

The PIDR4 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-186 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-195 PIDR4 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.		
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.		
		0b0100	JEDEC continuation code.	


3.8.46 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. Contains part of the designer-specific part number.

The PIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-187 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-196 PIDR0 bit assignments

Bits	Name	Function			
[31:8]	Reserved	-			
[7:0]	PART_0	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number			
		0x06	Indicates bits[7:0] of the part number of the component.		

3.8.47 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number and part of the designer identity.

The PIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.

Attributes

See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-188 PIDR1 bit assignments

The following table shows the bit assignments.

Table 3-197 PIDR1 bit assignments

Bits	Name	Function											
[31:8]	Reserved	-											
[7:4]	DES_0	Together, PIDR	1.DES_0, PI	DR2.DES_	1, and PIDF	R4.DES_2 id	lentify the des	igner of th	ne co	mponent.			
		0b1011		ARM. Bi	ts[3:0] of th	e JEDEC JE	EP106 Identity	Code.					
[3:0]	PART_1	Bits[11:8] of the	e 12-bit part	number of t	he compone	ent. The des	igner of the co	omponent	assig	ns this pa	rt n	umł	oer.
		0b1001		Indicates	bits[11:8] c	of the part nu	umber of the c	omponent					
3.8.48	B Per	ipheral ID2 R	legister, P	IDR2									
		The PIDR2 reprint the PIDR2 re			t of periph	eral identif	ication regis	ters. Con	tains	s part of	the	des	igner
		The PIDR2 re	gister chara	cteristics a	are:								
		Usage constraints There are no usage constraints.											
		Configuration	ns	This reg	ister is ava	ailable in al	l configurati	ons.					
		Attributes		See the	CTI regist	er summary	v table.						
		The following	; figure show	ws the bit a	assignmen	ts.							
			31						8	7	4	3	2 0
					R	eserved				REVISIO	N		DES_1
										JEDE	С -		
							Fig	gure 3-18	39 F	IDR2 bit	as	sig	nment
		The following table shows the bit assignments.											
		The following	; table show	s the bit as	ssignments	l.							
		The following	, table show	s the bit as	ssignments	i.	т	able 3-19	98 F	PIDR2 bit	tas	sig	nment
Bits	Name	The following Function	g table show	s the bit as	ssignments		т	able 3-19	98 P	PIDR2 bit	as	sig	nment
Bits [31:8]			g table show	s the bit as	ssignments	i.	T	able 3-19	98 P	PIDR2 bit	as	sig	nment

[3]	JEDEC	Always 1. Indicates that the JEDEC-assigned designer ID is used.				
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.				
		0b011	ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.			

3.8.49 Peripheral ID3 Register, PIDR3

The PIDR3 register is part of the set of peripheral identification registers. Contains the REVAND and CMOD fields.

The PIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31					8	7 4	30
	Reserved					REVAND	CMOD

Figure 3-190 PIDR3 bit assignments

The following table shows the bit assignments.

Table 3-199 PIDR3 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:4]	REVAND	Indicates minor errata fixes specific to the revision of the component being used, for example metal fixes after implementation. In most cases, this field is 0b0000 . ARM recommends that the component designers ensure that a metal fix can change this field if required, for example, by driving it from registers that reset to 0b0000 .		
		0b0000	Indicates that there are no errata fixes to this component.	
[3:0]			es whether the customer has modified the behavior of the component. In most cases, hers change this value when they make authorized modifications to this component.	
		06000	Indicates that the customer has not modified this component.	

3.8.50 Component ID0 Register, CIDR0

The CIDR0 register is a component identification register that indicates the presence of identification registers.

The CIDR0 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31				8 7		0
		Reserved			PRMBL_0	

Figure 3-191 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-200 CIDR0 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7:0] of the component identification code.		
		0x0D	Bits[7:0] of the identification code.	

3.8.51 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

The CIDR1 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31				8	7 4	3 0
		Reserve	d		CLASS	PRMBL_1

Figure 3-192 CIDR1 bit assignments

The following table shows the bit assignments.

Table 3-201 CIDR1 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:4]	CLASS	Class of the component, for example, whether the component is a ROM table or a generic CoreSight compo Contains bits[15:12] of the component identification code.		
		0b1001	Indicates that the component is a CoreSight component.	
[3:0]	PRMBL_1	Preamble[1]. Contains bits[1	1:8] of the component identification code.	
		06000	Bits[11:8] of the identification code.	

3.8.52 Component ID2 Register, CIDR2

The CIDR2 register is a component identification register that indicates the presence of identification registers.

The CIDR2 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

Figure 3-193 CIDR2 bit assignments

The following table shows the bit assignments.

Table 3-202 CIDR2 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_2 Preamble[2]. Contains bits[23:16] of the component identification code.		
		0x05	Bits[23:16] of the identification code.

3.8.53 Component ID3 Register, CIDR3

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Configurations	This register is available in all configurations.
Attributes	See the CTI register summary table.

The following figure shows the bit assignments.

31			8 7		0
	Reserved			PRMBL_3	

Figure 3-194 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-203 CIDR3 bit assignments

Bits	Name	Function		
[31:8]	Reserved	-		
[7:0]	PRMBL_3	Preamble[3]. Contains bits[31:24] of the component identification code.		
		0xB1	Bits[31:24] of the identification code.	

3.9 DAP registers

The DAP is a collection of components through which off-chip debug tools access a SoC.

This section contains the following subsections:

- 3.9.1 JTAG-AP registers on page 3-214.
- 3.9.2 AHB-AP registers on page 3-217.
- 3.9.3 AXI-AP registers on page 3-221.
- 3.9.4 APB-AP registers on page 3-228.
- *3.9.5 Debug port registers* on page 3-232.
- 3.9.6 JTAG-DP registers on page 3-233.

3.9.1 JTAG-AP registers

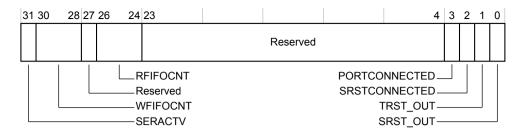
The *JTAG Access Port* (JTAG-AP) provides JTAG access to on-chip components, operating as a JTAG master port to drive JTAG chains throughout a SoC.

JTAG-AP registers summary table

Summary of the CTI registers in offset order from the base memory address.

All the registers are described in ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

Table 3-204 JTAG-AP register summary


Offset	Туре	Reset value	Name
0x00	RW	0x00000000	JTAG-AP Control/Status Word register, CSW, 0x00 on page 3-214, CSW.
0x04	RW	0x00	JTAG-AP Port Select register, PORTSEL, 0x04 on page 3-215, PORTSEL.
0x08	RW	0x00	JTAG-AP Port Status register, PSTA, 0x08 on page 3-216, PSTA.
0x0C	-	-	Reserved.
0x10	RW	UNDEFINED	JTAG-AP Byte FIFO registers, BFIFOn, 0x10-0x1C on page 3-216.
0x14	RW	UNDEFINED	-
0x18	RW	UNDEFINED	-
0x1C	RW	UNDEFINED	-
0x20-0xF8	-	-	Reserved, SBZ.
0xFC	RO	0x24760010	JTAG-AP Identification Register, IDR on page 3-217, IDR. Required by all access ports.

JTAG-AP Control/Status Word register, CSW, 0x00

The JTAG-AP Control/Status Word register configures and controls transfers through the JTAG interface.

Attributes See the JTAG-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-195 JTAG-AP CSW register bit assignments

The following table shows the bit assignments. The register must not be modified while there are outstanding commands in the Write FIFO.

Table 3-205 JTAG-AP CSW register bit assignments

Bits	Туре	Name	Function
[31]	RO	SERACTV	JTAG serializer active.
			The reset value is 0b0 .
[30:28]	RO	WFIFOCNT	Outstanding write FIFO byte count.
			The reset value is 0b000 .
[27]	-	-	Reserved, SBZ.
[26:24]	RO	RFIFOCNT	Outstanding read FIFO byte count.
			The reset value is 0b000 .
[23:4]	-	-	Reserved, SBZ.
[3]	RO	PORTCONNECTED	PORT connected. AND of portconnected inputs of currently selected ports.
			The reset value is 0.
[2]	RO	SRSTCONNECTED ^g	SRST connected.
			AND of srstconnected inputs of currently selected ports. If multiple ports are selected, it is the AND of all the srstconnected inputs from the selected ports.
			The reset value is 0.
[1]	RW	TRST_OUT	TRST assert, not self-clearing. The JTAG Test Access Port (TAP) controller reset.
			The reset value is 0.
[0]	RW	SRST_OUT	SRST assert, not self-clearing. Core reset.
			The reset value is 0.

JTAG-AP Port Select register, PORTSEL, 0x04

The PORTSEL register enables ports if connected and the slave port is currently enabled.

The Port Select register must be written when the following conditions are met:

- The TCK engine is idle.
- SERACTV is 0.
- WFIFO and WFIFOCNT are 0, that is, they are empty.

Writing at other times can generate unpredictable results.

g SRSTCONNECTED is a strap pin on the multiplexer inputs. It is set to 1 to indicate that the target JTAG device supports individual SRST controls.

Attributes

See the JTAG-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-196 JTAG-AP Port Select register bit assignments

The following table shows the bit assignments.

Table 3-206 JTAG-AP Port Select register bit assignments

Bits	Туре	Name	Function
[31:8]	-	-	Reserved SBZ.
[7:0]	RW	PORTSEL	Port Select.
			The reset value is 0x00 .

JTAG-AP Port Status register, PSTA, 0x08

The PSTA register is a sticky register that captures the state of a connected and selected port on every clock cycle. If a connected and selected port is disabled or powered down, even transiently, the corresponding bit in the Port Status register is set. It remains 1 until the corresponding bit is set o 1.

Attributes See the JTAG-AP registers summary table.

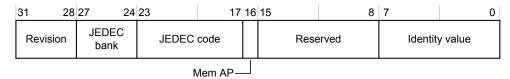
The following figure shows the bit assignments.

Figure 3-197 JTAG-AP Port Status register bit assignments

The following table shows the bit assignments.

Table 3-207 JTAG-AP Port Status register bit assignments

Bits	Туре	Name	Function
[31:8]	-	-	Reserved, SBZ.
[7:0]	RW	PSTA	Port Status.
			The reset value is 0x00 .


JTAG-AP Byte FIFO registers, BFIFOn, 0x10-0x1C

The BFIFOx is a word interface to one, two, three, or four parallel byte entries in the byte command FIFO, LSB first. The DAP internal bus is a 32-bit interface with no SIZE field. An address decoding designates size, because the JTAG-AP engine JTAG protocol is byte encoded.

Writes to the BFIFOx that are larger than the current write FIFO depth stall on **dapready** in normal mode. Reads to the BFIFOx that are larger than the current read FIFO depth stall on **dapready** in normal mode. For reads less than the full 32 bits, the upper bits are 0. For example, for a 24-bit read, **daprdata[31:24]** is 0×00 .

JTAG-AP Identification Register, IDR

IDR bit assignments.

Figure 3-198 JTAG-AP Identification Register bit assignments

The following table shows the bit assignments.

Table 3-208 JTAG-AP Identification Register bit assignments

Bits	Type	Name	Value	Function
2.10	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Talao	
[31:28]	RO	Revision	0x3	r0p4
[27:24]	RO	JEDEC bank	0x4	Designed by ARM
[23:17]	RO	JEDEC code	0x3B	Designed by ARM
[16]	RO	Mem AP	0x0	Is not a Mem AP
[15:8]	-	Reserved	0x00	-
[7:0]	RO	Identity value	0x10	JTAG-AP

3.9.2 AHB-AP registers

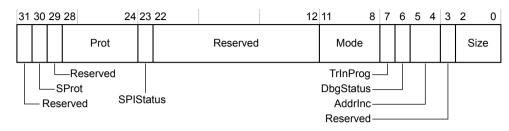
The AHB Access Port (AHB-AP) is an AHB bus master and enables a debugger to issue AHB transactions. You can connect it to other memory systems using a suitable bridging component.

AHB-AP register summary

Summary of the AHB-AP registers

Table 3-209 AHB-AP register summary

Offset	Туре	Reset value	Name
0x00	RW	0x40000002	AHB-AP Control/Status Word register; CSW, 0x00 on page 3-218, CSW.
0x04	RW	0x0000000	AHB-AP Transfer Address Register, TAR, 0x04 on page 3-219, TAR.
0x08	-	-	Reserved, SBZ.
0x0C	RW	-	AHB-AP Data Read/Write register, DRW, 0x0C on page 3-219, DRW.
0x10	RW	-	AHB-AP Banked Data registers, BD0-BD03, 0x10-0x1C on page 3-220.
0x14	RW	-	-
0x18	RW	-	-
0x1C	RW	-	-
0x20-0xF7	-	-	Reserved, SBZ.
0xF8	RO	IMPLEMENTATION DEFINED	AHB-AP Debug Base Address register, BASE, 0xF8 on page 3-220.
0xFC	RO	0x64770001	AHB-AP Identification Register, IDR, 0xFC on page 3-220, IDR.


AHB-AP Control/Status Word register, CSW, 0x00

AHB-AP CSW register configures and controls transfers through the AHB interface.

Configures and controls transfers through the AHB interface.

Attributes See the AHB-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-199 AHB-AP CSW register bit assignments

The following table shows the bit assignments.

Table 3-210 AHB-AP Control/Status Word register bit assignments

Bits	Туре	Name	Function			
[31]	-	-	Reserved SBZ.			
[30]	RW	SProt	Specifies that a Secure transfer is requested.			
			SProt HIGH indicates a Non-secure transfer. SProt LOW indicates a Secure transfer.			
			• If this bit is LOW, and spiden is HIGH, hprot[6] is asserted LOW on an AHB transfer.			
			• If this bit is LOW, and spiden is LOW, hprot[6] is asserted HIGH and the AHB transfer is not initiated.			
			• If this bit is HIGH, the state of spiden is ignored. hprot[6] is HIGH.			
			The reset value is 1 .			
			This field is Non-secure.			
[29]	-	-	Reserved, SBZ.			
[28:24]	RW	Prot	Specifies the protection signal encoding to be output on hprot[4:0].			
			The reset value is 0b00011.			
			This field is Non-secure, non-exclusive, non-cacheable, non-bufferable, and privileged.			
[23]	RO	SPIStatus	Indicates the status of the spiden port. If SPIStatus is LOW, no Secure AHB transfers are carried out.			
[22:12]	-	-	Reserved, SBZ.			
[11:8]	RW	Mode	Specifies the mode of operation.			
			Øb0000 Normal download or upload model.			
			0b0001-0b1111 Reserved, SBZ.			
			The reset value is 0b0000.			
[7]	RO	TrInProg	Transfer in progress. This field indicates whether a transfer is currently in progress on the AHB master			
			port.			
[6]	RO	DbgStatus	Indicates the status of the dbgen port. If DbgStatus is LOW, no AHB transfers are carried out.			
			1 AHB transfers permitted.			
			0 AHB transfers not permitted.			

Bits	Туре	Name	Function				
[5:4]	RW	AddrInc	Auto address increment and packing mode on RW data access. Only increments if the current transaction completes without an error response and the transaction is not aborted.				
			Auto address incrementing and packed transfers are not performed on access to Banked Data registers, 0x10-0x1C . The status of these bits is ignored in these cases.				
	incrementin		incrementing from 0x14	ng and wrapping is performed within a 1KB address boundary, for example, for word ng from 0x1400-0x17FC. If the start is at 0x14A0, then the counter increments to 0x17FC, x1400, then continues incrementing to 0x149C.			
			0b00	Auto increment OFF.			
		0b00 Increment,		Increment, single.			
			Single transfer from corre	esponding byte lane.			
			0b10	Increment, packed.			
			Word	Same effect as single increment.			
			Byte or halfword	Packs four 8-bit transfers or two 16-bit transfers into a 32-bit DAP transfer. Multiple transactions are carried out on the AHB interface.			
			0b11	Reserved, SBZ. No transfer.			
			Size of address incremen	t is defined by the Size field, bits [2:0].			
			The reset value is 0b00.				
[3]	RW	-	Reserved, SBZ.				
			The reset value is 0.				
[2:0]	RW	Size	Size of the data access to	perform.			
			0b000	8 bits.			
			0b001	16 bits.			
			0b010	32 bits.			
			0b011-0b111	Reserved, SBZ.			
			The reset value is 0b010				

Table 3-210 AHB-AP Control/Status Word register bit assignments (continued)

AHB-AP Transfer Address Register, TAR, 0x04

AHB-AP Transfer Address register bit assignments.

Table 3-211 AHB-AP Transfer Address register bit assignments

Bits	Туре	Name	Function
[31:0]	RW	Address	Address of the current transfer.
			The reset value is 0×00000000 .

AHB-AP Data Read/Write register, DRW, 0x0C

AHB-AP Data Read/Write register bit assignments.

Table 3-212 AHB-AP Data Read/Write register bit assignments

Bits Type	Name	Function	
[31:0] RW	Data	Write mode	Data value to write for the current transfer.
		Read mode	Data value that is read from the current transfer.

AHB-AP Banked Data registers, BD0-BD03, 0x10-0x1C

The BD0-BD3 registers provide a mechanism for directly mapping through DAP accesses to AHB transfers without having to rewrite the TAR within a four-location boundary. BD0 is RW from TA. BD1 is RW from TA+4.

Attributes See the AHB-AP registers summary table.

The following table shows the bit assignments.

Table 3-213 Banked Data register bit assignments

Bits	Туре	Name	Function If dapcaddr[7:4] = 0x0001, it is accessing AHB-AP registers in the range 0x10-0x1C, and the derived haddr[31:0] is:	
[31:0]	RW	Data		
			Write mode	Data value to write for the current transfer to external address TAR[31:4] + dapcaddr[3:2] + 0b00.
			Read mode	Data value that is read from the current transfer from external address TAR[31:4] + dapcaddr[3:2] + 0b00.
			Auto address incrementing i	s not performed on DAP accesses to BD0-BD3.
			Banked transfers are only supported for word transfers. Non-word banked transfers are reserved and UNPREDICTABLE. Transfer size is currently ignored for banked transfers.	

AHB-AP Debug Base Address register, BASE, 0xF8

AHB-AP Debug Base Address register bit assignments.

Table 3-214 AHB-AP Debug Base Address register bit assignments

Bits	Туре	Name	Function
[31:0]	RO	Debug Base Address	Base address of a CoreSight component, typically a ROM table. Bit[1] is always 1, and the other bits are set to the tie-off value on the static input port, rombaseaddr .
			Set bit[0] to 1 if the base address points to a CoreSight component.
			Set bit[0] to 0 if there are no CoreSight components on this bus.

AHB-AP Identification Register, IDR, 0xFC

AHB-AP Identification Register bit assignments.

31 28	27 24	23 17	7 16 ⁻	15 8	7	0
Revision	JEDEC bank	JEDEC code		Reserved	Identity value	

Mem AP

Figure 3-200 AHB-AP Identification Register bit assignments

Table 3-215 AHB-AP Identification Register bit assignments

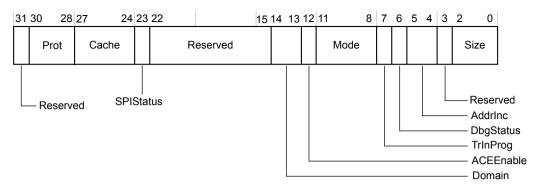
Bits	Туре	Name	Value	Function
[31:28]	RO	Revision	0x8	r0p9
[27:24]	RO	JEDEC bank	0x4	Designed by ARM
[23:17]	RO	JEDEC code	0x3B	Designed by ARM
[16]	RO	Mem AP	0x1	Is a Mem AP
[15:8]	-	Reserved	0x00	-
[7:0]	RO	Identity value	0x01	AHB-AP

3.9.3 AXI-AP registers

The AXI Access Port (AXI-AP) is an AXI bus master and enables a debugger to issue AXI transactions. You can connect it to other memory systems using a suitable bridging component.

AXI-AP register summary

Summary of the AXI-AP registers.


Table 3-216 AXI-AP register summary

Offset	Туре	Reset value	Name
0x00	RW	-	AXI-AP Control/Status Word register on page 3-221, CSW.
0x04	RW	-	AXI-AP Transfer Address Register on page 3-223, TAR.
0x08	RW	-	-
0x0C	RW	-	AXI-AP Data RW register on page 3-224, DRW.
0x10	RW	-	AXI-AP Banked Data registers on page 3-225.
0x14	RW	-	-
0x18	RW	-	-
0x1C	RW	-	-
0x20	RW	-	AXI-AP ACE Barrier Transaction register on page 3-225.
0x24-0xEC	-	-	Reserved, SBZ.
0xF0	RO	Implementation defined	AXI-AP Debug Base Address register; BASE [63:32] on page 3-226.
0xF4	RO	-	AXI-AP Configuration register on page 3-227
0xF8	RO	Implementation defined	AXI-AP Debug Base Address register; BASE [31:0] on page 3-226.
0xFC	RO	-	AXI-AP Identification Register, IDR on page 3-227.

AXI-AP Control/Status Word register

AXI-AP Control/Status Word register configures and controls transfers through the AXI interface.

Attributes See the AXI-AP registers summary table.

Figure 3-201 AXI-AP CSW register bit assignments

The following table shows the bit assignments.

Table 3-217 AXI-AP CSW register bit assignments

Bits	Туре	Name	Reset value	Function			
[31]	-	Reserved	-	-			
[30:28]	RW	Prot	0b011	Specifies protection	Specifies protection encoding as AMBA AXI protocol describes.		
[27:24]	RW	Cache	0b0000	Specifies the cache encoding as AMBA AXI protocol describes.			
[23]	RO	SPIStatus	-	Indicates the status of are carried out.	Indicates the status of the spiden port. If SPIStatus is LOW, then no Secure AXI transfers are carried out.		
[22:15]	-	Reserved	-	-			
[14:13]	RW	Domain	0b11	Shareable transaction	n encoding for ACE.		
				0b00	Non-shareable.		
				0b01	Shareable, inner domain, includes additional masters.		
				0b10	Shareable, outer domain, also includes inner or additional masters.		
				0b11	Shareable, system domain, all masters included.		
					AP prior to r0p3, this field was reset to 0b00 . ARM recommends that a valid value before issuing any AXI transactions, for compatibility to r0p3.		
[12]	RW	ACEEnable	0b0	Enable ACE transact	tions, including barriers.		
				0	Disable.		
				1	Enable.		
[11:8]	RW	Mode	0b0000	Specifies the mode of	of operation:		
				060000	Normal download or upload.		
				0b0001	Barrier transaction.		
				0b0010-0b1111	Reserved, SBZ.		
[7]	RO	TrInProg	-	Transfer in progress. This field indicates whether a transfer is currently in progress on the AXI master port.			

Table 3-217 AXI-AP CSW register bit assignments (continued)

Bits	Туре	Name	Reset value	Function	
[6] RO		DbgStatus		Indicates the status of carried out.	f DBGEN port. If DbgStatus is LOW, then no AXI transfers are
				0	AXI transactions are stopped.
				1	AXI transactions are permitted.
[5:4]	RW	AddrInc	0b00		ent and packing mode on RW data access. Only increments if the ompletes without an Error response and the transaction is not aborted
					enting and packed data transfers are not performed on access to 0x10-0x1C. The status of these bits is ignored in these cases.
				The following values	represent the increments and wraps within a 1K address boundary:
				The size of address in	acrement is defined by the Size field.
				0b00	Auto increment OFF.
				0b01	Single increment. Single transfer from byte lane.
				0b10	Increment packed.
				Word	Same effect as single increment.
				Byte or Halfword	Packs of four 8-bit transfers or two 16-bit transfers into a 32-bit DAP transfer.
				0b11	Reserved, no transfer.
[3]	-	Reserved		-	
[2:0]	RW	Size	0b010	Size of the data acces	is to perform.
				0b000	8-bit.
				0b001	16-bit.
				0b010	32-bit.
				0b011	64-bit.
				0b100-0b111	Reserved, SBZ.

AXI-AP Transfer Address Register

The AXI-AP Transfer Address register defines the current address of the transfer.

- For a 32-bit address, this contains the entire address value.
- For an LPAE, this contains only the lower 32 bits of the address.

Attributes

See the AXI-AP registers summary table.

The following figure shows the bit assignments.

31				0
		Address		

Figure 3-202 AXI-AP Transfer Address register bit assignments

Bits	Туре	Name	Reset value	Function
[63:32]	RW	Address	0x00000000	Address of the current transfer.
[31:0]	RW	Address	0x00000000	Address of the current transfer.

Table 3-218 AXI-AP Transfer Address register bit assignments

AXI-AP Data RW register

The AXI-AP Data RW register stores the read data to be read for a read transfer. For a write transfer, write data must be written in the register.

Attributes See the AXI-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-203 AXI-AP Data RW register bit assignments

The following table shows the bit assignments.

Table 3-219 AXI-AP Data RW register bit assignments

Name	Function	
Data	For 32-bit data acces	as on the AXI-interface, store or write the 32 bits of data into this register once.
	Read mode	Data value read from the current transfer.
	Write mode	Data value to write for the current transfer.
	—— Note ——	
For	64-bit access, mult	tiple accesses must be initiated to DRW to make a single AXI access.
Rea	ad	The first read of DRW in a sequence initiates a memory access. The first read returns the lower 32 bits of data. Subsequent read access returns the upper 32 bits of data. If a write to the CSW or TAR is initiated before the sequence completes, then the read access is terminated, and read data is no longer available.
Wr	ite	The first write to DRW specifies the lower 32 bits of data to be written. Subsequent write access specifies the upper 32 bits to be written. If a write to the CSW is initiated before the sequence completes, then the write acces is not initiated on the AXI interface.
		 Combining partial reads and writes in a sequence terminates the earlier access. Also, the latest access is not recognized. Any write access to the CSW register, TAR, or to any other register in the AP during a sequence terminates the ongoing access. Also, the current access is not recognized. If a write sequence is terminated, then there is no write on the AXI interface.
	Data For Re s	Read mode Write mode

AXI-AP Banked Data registers

BD0-3 provide a mechanism for direct mapping through DAP accesses to AXI transfers without having to rewrite the TAR within a 4-location boundary. For example, BD0 reads and writes from TAR. BD1 reads and writes from TAR+4. This is applicable for a 32-bit access.

Attributes See the AXI-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-204 AXI-AP Banked DATA register bit assignments

The following table shows the bit assignments.

Table 3-220 AXI-AP Banked Data registers bit assignments

Bits	Туре	Name	Function
[31:0]	RW	Data	If dapcaddr [7:4] = 0x0001, it is accessing AXI-AP registers in the range 0x10-0x1C, and the derived ADDR[ADDR_WIDTH-1:0] in RW, 32-bit mode is as follows:
			 For a 32-bit address mode, the external address is TAR[31:4] + DAPADDR[3:2] + 0b00. For the LPAE mode, the external address is TAR[63:4] + DAPADDR[3:2] + 0b00.
			Auto address incrementing is not performed on DAP accesses to BD0-BD3.
			Banked transfers are only supported for word transfers for 32-bit data. Non-word banked transfers are reserved and UNPREDICTABLE. Transfer size is ignored for banked transfers.

AXI-AP ACE Barrier Transaction register enables or disables the ACE barrier transactions.

Attributes

See the AXI-AP registers summary table.

The following figure shows the bit assignments.

TrgBarTran ——

Figure 3-205 ACE Barrier Transaction register bit assignments

Table 3-221	ACE Barrier	Transaction	register	bit assignments	

Bits	Туре	Name	Reset value	Function	
[31:3]	-	Reserved		-	
[2:1]	RW	BarTran	0b00	Barrier transactions.	
				0b00	Barrier with normal access.
				0b01	Memory barrier.
				0b10	Reserved.
				0b11	Synchronization barrier.
[0]	RW	TrgBarTran	0b0	The possible values are	Σ
				0	Disable barrier transaction.
				1	Enable barrier transaction.

AXI-AP Debug Base Address register

Provides an index into the connected memory-mapped resource.

Purpose	The AXI-AP Debug Base Address register points to one of these resources:The start of a set of debug registers.The ROM table that describes the connected debug component.
	When the long address extension is implemented, the Debug Base Address Register is:
	• A 64-bit register.
	• Split between offsets 0xF0 and 0xF8 in the register space.
	• The third register in the last register bank 0xF:
	— BASE[$63:32$] are at offset $0 \times F0$.
	— BASE[31:0] are at offset 0xF8.
Attributes	See the AXI-AP registers summary table.
AXI-AP Debug Base	Address register, BASE [63:32]

Bit assignments for the AXI-AP Debug Base Address register, BASE [63:32].

31					0
	Debug E	Base Address	bits[63:32]		

Figure 3-206 AXI-AP Debug Base Address register, BASE[63:32] bit assignments

The following table shows the bit assignments for BASE[63:32].

Table 3-222 AXI-AP Debug Base Address register, BASE[63:32] bit assignments

Bits	Туре	Name	Function
[63:32]	RO	Debug Base Address	Base address of a CoreSight component, typically a ROM table.
		bits [63:32]	Bits[63:32] are set to the tie-off value on the static input port, rombaseaddru[31:0].
			See AXI-AP Debug Base Address register; BASE [31:0] on page 3-226 for more information.

AXI-AP Debug Base Address register, BASE [31:0]

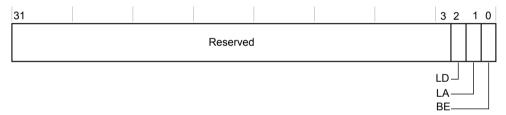
Bit assignments for BASE[31:0].

31						0
		Debug E	Base Address	bits[31:0]		

Figure 3-207 AXI-AP Debug Base Address register, BASE[31:0] bit assignments

The following table shows the bit assignments for BASE[31:0].

Table 3-223 AXI-AP Debug Base Address register, BASE[31:0] bit assignments


Bits	Туре	Name	Function
[31:0]	RO	Debug Base	Base address of a CoreSight component, typically a ROM table.
		Address bits [31:0]	Bit[1] is always 1, and the other bits are set to the tie-off value on the static input port, rombaseaddrl[31:0] .
			Set bit[0] to 1 if the base address points to a CoreSight component.
			Set bit[0] to 0 if there are no CoreSight components on this bus.

AXI-AP Configuration register

The AXI-AP Configuration register provides information about the revision.

Attributes See the AXI-AP registers summary table.

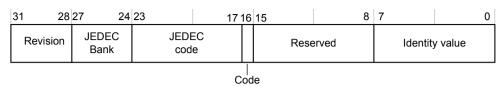
The following figure shows the bit assignments.

Figure 3-208 AXI-AP Configuration register bit assignments

The following table shows the bit assignments.

Table 3-224 AXI-AP Configuration register bit assignments

Bits	Туре	Name	Function	
[31:3]	-	Reserved	-	
[2]	RO	LD	Large data. Indicates suppo	ort for data items larger then 32 bits.
			0	Only 8, 16, 32-bit data items are supported.
			1	Support for 64-bit data item in addition to 8, 16, 32-bit data.
[1]	RO	LA	Long address. Indicates sup	oport for greater than 32 bits of addressing.
			0	32 or fewer bits of addressing. Registers 0x08 and 0xF0 are reserved.
			1	64 or fewer bits of addressing. TAR.l and DBAR.l occupy two locations, at 0x04 and 0x08, and at 0xF8 and 0xF0 respectively.
[0]	RO	BE	Big-endian. Always read as	s 0, because AXI-AP supports little-endian.


AXI-AP Identification Register, IDR

The IDR register provides information about revision.

Purpose Attributes

Provides information about revision. See the AXI-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-209 AXI-AP Identification Register bit assignments

Table 3-225 AXI-AP Identification Register bit assignments

The following table shows bit assignments.

Bits	Туре	Name	Reset value	Function
[31:28]	RO	Revision	0x4	r1p1.
[27:24]	RO	JEDEC Bank	0x4	Designed by ARM.
[23:17]	RO	JEDEC Code	0x3B	Designed by ARM.
[16]	RO	Mem AP	0x1	Mem AP.
[15:8]	-	Reserved	0x00	-
[7:0]	RO	Identity value	0x04	AXI-AP.

3.9.4 APB-AP registers

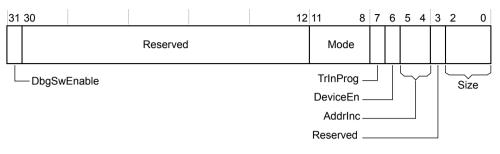
The APB-AP implements the MEM-AP architecture to connect directly to an APB based system. This bus is normally dedicated to CoreSight and other debug components.

APB-AP register summary

Summary of the APB-AP registers.

Table 3-226 APB-AP register summary

Offset	Туре	Reset value	Name
0x00	RW	0x00000002	APB-AP Control/Status Word register, CSW, 0x00 on page 3-229, CSW.
0x04	RW	0x0000000	APB-AP Transfer Address Register; TAR, 0x04 on page 3-230, TAR.
0x08	-	-	Reserved, SBZ.
0x0C	RW	-	APB-AP Data Read/Write register, DRW, 0x0C on page 3-231, DRW.
0x10	RW	-	APB-AP Banked Data registers, BD0-BD3, 0x10-0x1C on page 3-231.
0x14	RW	-	-
0x18	RW	-	-
0x1C	RW	-	-
0x20-0xF4	-	-	Reserved, SBZ.
0xF8	RO	Implementation defined	APB-AP Debug Base Address register; BASE, 0xF8 on page 3-231, BAS
0xFC	RO	0x54770002	APB-AP Identification Register on page 3-231, IDR.


APB-AP Control/Status Word register, CSW, 0x00

The CSW register configures and controls transfers through the APB interface.

Attributes

See the APB-AP registers summary table.

The following figure shows the bit assignments.

Figure 3-210 APB-AP Control/Status Word register bit assignments

The following table shows the bit assignments.

Table 3-227 APB Control/Status Word register bit assignments

Bits	Туре	Name	Function
[31]	RW	DbgSwEnable	Software access enable.
			Drives pdbgswen to enable or disable software access to the Debug APB bus in the APB interconnect
			0 Disable software access.
			1 Enable software access.
			The reset value is 0. On exit from reset, the default value is 1 to enable software access.
[30:12]	-	-	Reserved, SBZ.
[11:8]	RW	Mode	Specifies the mode of operation.
			0b0000 Normal download or upload model. 0b0001-0b1111 Reserved, SBZ. The reset value is 0b0000. The reset value is 0b0000.
[7]	RO	TrInProg	Transfer in progress. This field indicates whether a transfer is currently in progress on the APB master port.
[6]	RO	DeviceEn	 Indicates the status of the deviceen input. If APB-AP is connected to the Debug APB, a bus connected only to debug and trace components, it must be permanently enabled by tying deviceen HIGH. This ensures that trace components can still be programmed when dbgen is LOW. In practice, the APB-AP is normally used in this way. If APB-AP is connected to a system APB dedicated to the Non-secure world, deviceen must be connected to dbgen. If APB-AP is connected to a system APB dedicated to the Secure world, deviceen must be connected to system APB dedicated to the Secure world, deviceen must be connected to spiden.

Bits	Туре	Name	Function
[5:4]	5:4] RW AddrIn		Auto address increment and packing mode on Read or Write data access. Increment occurs in word steps. Does not increment if the transaction completes with an error response or the transaction is aborted.
			Auto address incrementing is not performed on accesses to banked data registers 0x10-0x1C.
			The status of these bits is ignored in this case.
			0b11 Reserved. 0b10 Reserved. 0b01 Increment. 0b00 Auto increment OFF. The reset value is 0b00.
[3]	-	-	Reserved, SBZ.
[2:0]	RO	Size	Size of the access to perform. Fixed at 0b010, 32 bits. The reset value is 0b010.

Table 3-227 APB Control/Status Word register bit assignments (continued)

APB-AP Transfer Address Register, TAR, 0x04

The APB-AP Transfer Address Register holds the address of the current transfer.

Attributes

See the AHB-AP registers summary table.

The following figure shows the bit assignments.

31						2	1	0
		A	Address					
		,	laareee					
					Reser	ved		

Figure 3-211 APB-AP Transfer Address register bit assignments

Writes to the TAR from the DAP interface, write to bits [31:2] only. Bits [1:0] of **dapwdata** are ignored on writes to the TAR.

The following table shows the bit assignments.

Table 3-228 APB-AP Transfer Address register bit assignments

Bits	Туре	Name	Function
[31:2]	RW	Address[31:2]	Address[31:2] of the current transfer.
			paddr[31:2]=TAR[31:2] for accesses from Data RW Register at 0x0C.
			paddr[31:2] =TAR[31:4]+ dapcaddr[3:2] for accesses from Banked Data Registers at 0x10-0x1C and 0x0C.
[1:0]	-	Reserved, SBZ	Set to 0b00. SBZ/RAZ.

APB-AP Data Read/Write register, DRW, 0x0C

ABP-AP Data Read/Write register bit assignments.

Table 3-229 ABP-AP Data Read/Write register bit assignments

Bits	Туре	Name	Function	
[31:0]	RW	Data	The possible modes are:	
			Write mode	Data value to write for the current transfer.
			Read mode	Data value read from the current transfer.

BD0-BD3 provide a mechanism for directly mapping through DAP accesses to APB transfers without having to rewrite the TAR within a four-word boundary. For example, BD0 RW from TAR, and BD1 from TAR+4.

Attributes See the APB-AP register summary table.

The following table shows the bit assignments.

Table 3-230 APB-AP Banked Data registers bit assignments

Bits	Туре	Name	Function	
[31:0]	[31:0] RW		If dapcaddr[7:4] = 0x0001, it is accessing APB-AP registers in the range 0x10-0x1C, and the derived paddr[31:0] is:	
			Write mode	Data value to write for the current transfer to external address TAR[31:4] + dapcaddr[3:2] + 0b00.
			Read mode	Data value read from the current transfer from external address TAR[31:4] + dapcaddr[3:2] + 0b00.
			Auto address incrementing i	is not performed on DAP accesses to BD0-BD3.
			The reset value is 0x00000	000.

APB-AP Debug Base Address register, BASE, 0xF8

Debug Base Address register bit assignments.

Table 3-231 Debug Base Address register bit assignments

Bits	Туре	Name	Function
[31:0]	RO	Debug Base	Base address of a CoreSight component, typically a ROM table.
		Address	Bit[1] is always 1, and the other bits are set to the tie-off value on the static input port, rombaseaddr .
			Set bit[0] to 1 if the base address points to a CoreSight component.
			Set bit[0] to 0 if there are no CoreSight components on this bus.
			For most debug APB systems, this value is 0x80000003.

APB-AP Identification Register

APB-AP Identification Register bit assignments.

31 28	27 24	23 17	16	15 8	7 0
Revision	JEDEC bank	JEDEC code		Reserved	Identity value

Mem AP—

Figure 3-212 APB-AP Identification register bit assignments

The following table shows the bit assignments.

Table 3-232 APB-AP Identification register bit assignments

Bits	Туре	Name
[31:28]	RO	Revision.
		0x5 . This component is at r1p0.
[27:24]	RO	JEDEC bank. 0x4 indicates ARM.
[23:17]	RO	JEDEC code. 0x3B indicates ARM.
[16]	RO	Memory AP. 0x1 indicates a standard register map is used.
[15:8]	-	Reserved, SBZ.
[7:0]	RO	Identity value.
		The reset value is 0x02 for APB-AP.

3.9.5 Debug port registers

Summary of the DP registers, showing which registers are implemented on a JTAG-DP and which are implemented on an SW-DP.

Table 3-233 Debug port register summary

Name	JTAG-DP	SW-DP	Description
ABORT	Yes	Yes	AP Abort Register. See AP Abort register; ABORT on page 3-233.
IDCODE	Yes	No	ID Code Register. See Identification Code register, IDCODE on page 3-234.
DPIDR	No	Yes	Debug Port Identification Register. See <i>Debug Port Identification Register, DPIDR</i> on page 3-235.
CTRL/STAT	Yes	Yes	Control/Status Register. See Control/Status register; CTRL/STAT on page 3-236.
SELECT	Yes	Yes	AP Select Register. See AP Select register; SELECT on page 3-238.
RDBUFF	Yes	Yes	Read Buffer Register. See Read Buffer register, RDBUFF on page 3-240.
DLCR	No	Yes	Data Link Control Register. See Data Link Control Register, DLCR (SW-DP only) on page 3-240.
TARGETID	No	Yes	Target Identification Register. See <i>Target Identification register</i> , <i>TARGETID (SW-DP only)</i> on page 3-242.
DLPIDR	No	Yes	Data Link Protocol Identification Register. See <i>Data Link Protocol Identification Register</i> , <i>DLPIDR (SW-DP only)</i> on page 3-242.
RESEND	No	Yes	Read Resend Register. See Read Resend register; RESEND (SW-DP only) on page 3-243.

3.9.6 JTAG-DP registers

The Serial Wire or JTAG Debug Port (SWJ-DP) connects either a Serial Wire Debug or JTAG probe to the CoreSight SoC-400 debug system. The *Debug Port* (DP) is the entry point to the debug infrastructure from the external debugger.

For more information about JTAG-DP registers, their features, and how to access them, see the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.* Also see 4.2.9 *Common debug port features and registers* on page 4-266.

JTAG-DP register summary

Summary of all the implemented registers accessible through the JTAG interface.

Instruction Register (IR) encodings Øb0xxx and Øb0xxxxxx are implemented as BYPASS. These encodings may be used by a separately-implemented controller, for example to implement JTAG boundary scan features.

IR encodings **0b1**××× and **0b1**×××××× that are not explicitly listed in the table are architecturally RESERVED. The JTAG-DP implements these as BYPASS. JTAG tools must not rely on this behavior.

4-bit IR instruction value ^h	8-bit IR instruction value ⁱ	JTAG-DP register	DR scan width	Description
0b1000	0b11111000	ABORT	35	JTAG-DP Abort Register, ABORT.
0b1010	0b11111010	DPACC	35	JTAG DP/AP Access Registers, DPACC/
0b1011	0b11111011	APACC	35	— APACC.
0b1110	0b1111110	IDCODE	32	JTAG Device ID Code Register, IDCODE.
0b1111	0b1111111	BYPASS	1	JTAG Bypass Register, BYPASS.

Table 3-234 JTAG-DP register summary

_____ Note _____

When the cxdapswjdp is implemented with an 8-bit instruction register, the instruction encodings are sign-extended versions of the original 4-bit IR encodings.

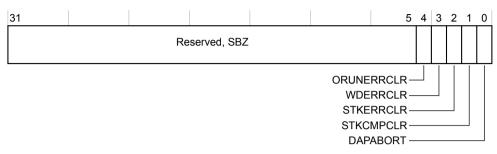
AP Abort register, ABORT

The AP Abort is present in all debug port implementations. It forces a DAP abort on SW-DP. It also clears error and sticky flag conditions.

The AP Abort is always accessible, and returns an OK response if a valid transaction is received.

JTAG-DP	It is at address 0x0 when the IR contains ABORT.
SW-DP	It is at address 0x0 on write operations when the APnDP bit is equal to 0. Access to ABORT is not affected by the value of DPBANKSEL in the Select Register.

Accesses to this register always complete on the first attempt.


h cxdapswjdp implemented with parameter IRLEN8=0.

ⁱ cxdapswjdp implemented with parameter IRLEN8=1.

Figure 3-213 JTAG-DP ABORT bit assignments

The following figure shows the bit assignments.

Figure 3-214 SW-DP ABORT bit assignments

The following table shows the bit assignments.

Table 3-235 ABORT register bit assignments

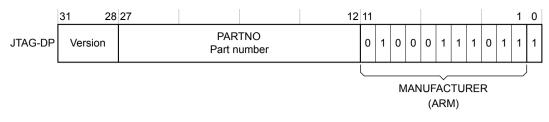
Bits	Function	Description
[31:5]	-	Reserved, SBZ.
[4]	ORUNERRCLR ^j	Setting this bit to 1 sets the STICKYORUN overrun error flag ^k to 0.
[3]	WDERRCLR ^j	Setting this bit to 1 sets the WDATAERR write data error $flag^k$ to 0.
[2]	STKERRCLR ^j	Setting this bit to 1 sets the STICKYERR sticky error flag ^k to 0.
[1]	STKCMPCLR ^j	Setting this bit to 1 sets the STICKYCMP sticky compare flag ^k to 0.
[0]	DAPABORT	Setting this bit to 1 generates a DAP abort, which in turn aborts the current AP transaction.
		Note
		Perform this only if the debugger has received WAIT responses over an extended period

Perform this only if the debugger has received WAIT responses over an extended period.

Identification Code register, IDCODE

Provides identification information about the JTAG-DP. The IDCODE register is accessed through its own scan chain.

The Identification Code register is:


- A RO Register.
- Always accessible.

Attributes

See the JTAG-AP registers summary table.

J Implemented on SW-DP only. On a JTAG-DP this bit is Reserved, SBZ.

In the Control/Status Register, see *Control/Status register*, *CTRL/STAT* on page 3-236.

Figure 3-215 Identification Code register bit assignments

The following table shows the bit assignments.

Bits	Function	Description
[31:28]	Version	 Version code: Øx6 for JTAG-DP implementations with 4-bit IR (IRLEN8=0). Øx0 for JTAG-DP implementations with 8-bit IR (IRLEN8=1).
		For more information on available SWJ-DP configuration options, see the <i>CoreSight™ SoC-400 Integration Manual.</i>
[27:12]	PARTNO	 Part Number for the debug port: ØxBA00 for JTAG-DP implementations with 4-bit IR (IRLEN8=0). ØxBA03 for JTAG-DP implementations with 8-bit IR (IRLEN8=1). For more information on available SWJ-DP configuration options, see the <i>CoreSight</i>[™] SoC-400 Integration Manual.
[11:1]	MANUFACTURER	JEDEC Manufacturer ID, an 11-bit JEDEC code that identifies the designer of the device. See <i>JEDEC</i> <i>Manufacturer ID</i> on page 3-235. The Identification Code register bit assignments figure shows the ARM value for this field as 0x23B. This value must not be changed.
[0]	-	Always 1.

JEDEC Manufacturer ID

JEDEC codes are assigned by the JEDEC Solid State Technology Association, see JEP106M, Standard Manufactures Identification Code.

The JEDEC code is also described as the JEP-106 manufacturer identification code, and can be subdivided into two fields, as the following table shows.

Table 3-237 JEDEC JEP-106 manufacturer ID code, with ARM values

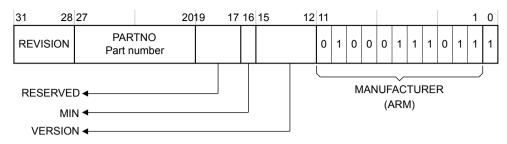
JEP-106 field	Bits ¹	ARM registered value
Continuation code	4 bits, [11:8]	0b0100, 0x4.
Identity code	7 bits, [7:1]	0b0111011, 0x3B.

Debug Port Identification Register, DPIDR

The DPIDR register provides identification information about the SW-DP. It is at address 0b00 on read operations when the APnDP bit = 0. The value of DPBANKSEL in the SELECT register does not affect access to the DPIDR.

The DPIDR register is:

- A RO Register.
- Always accessible.


1

Field width, in bits, and the corresponding bits in the Identification Code Register.

Attributes

See the JTAG-AP registers summary table.

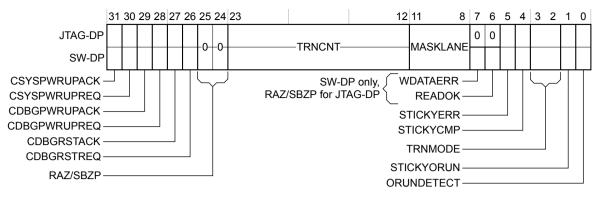
The following figure shows the bit assignments.

Figure 3-216 Debug Port Identification register bit assignments

The following table shows the bit assignments.

Table 3-238 Debug Port Identification register bit assignments

Bits	Function	Description
[31:28]	REVISION	Revision code, 0x6
[27:20]	PARTNO	Part Number for this debug port, 0xBA.
[19:17]	-	Reserved, SBZ.
[16]	MIN	Reads as 0, indicating that the Minimal Debug Port (MINDP) architecture is not implemented.
[15:12]	VERSION	0x2, indicating version 2 of the DP architecture is implemented.
[11:1]	MANUFACTURER	JEDEC Manufacturer ID, an 11-bit JEDEC code that identifies the designer of the device. The Debug Port Identification register bit assignments figure shows the ARM value for this field as 0x23B . This value must not be changed.
[0]	-	Always 1.


Control/Status register, CTRL/STAT

The CTRL/STAT register is present in all debug port implementations. It provides control to the debug port, and status information about the debug port. JTAG-DP is at address 0×4 when the IR contains DPACC. SW-DP is at address $0 \times 0 \ge 0$ on read and write operations when the APnDP bit = 0 and DPBANKSEL in the Select Register is set to 0×0 .

The Control/Status Register is an RW register, in which some bits have different access rights. Support to some fields in the register is implementation defined.

Attributes

See the Debug port implementation-specific registers.

Figure 3-217 Control/Status Register bit assignments

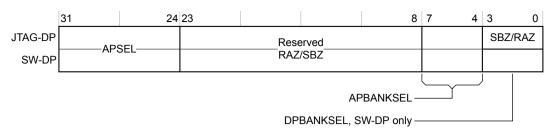
The following table shows the Control/Status Register bit assignments.

Table 3-239 Control/Status Register bit assignments

Bits	Access	Function	Description
[31]	RO	CSYSPWRUPACK	System powerup acknowledge.
[30]	RW	CSYSPWRUPREQ	System powerup request.
			The reset value is 0.
[29]	RO	CDBGPWRUPACK	Debug powerup acknowledge.
[28]	RW	CDBGPWRUPREQ	Debug powerup request.
			The reset value is 0.
[27]	RO	CDBGRSTACK	Debug reset acknowledge.
[26]	RW	CDBGRSTREQ	Debug reset request.
			The reset value is 0.
[25:24]	-	-	Reserved, RAZ/SBZP.
[23:12]	RW	TRNCNT	Transaction counter.
			The reset value is UNPREDICTABLE.
[11:8]	RW	MASKLANE	Indicates the bytes to be masked in pushed compare and pushed verify operations.
			The reset value is UNPREDICTABLE.
[7]	RO ^m	WDATAERR ^m	This bit is set to 1 if a Write Data Error occurs. It is set if:
			• There is a parity or framing error on the data phase of a write.
			• A write that the debug port accepted is then discarded without being submitted to the access port.
			This bit can only be set to 0 by writing 1 to ABORT.WDERRCLR.
			The reset value after a powerup reset is 0.
[6]	RO ^m	READOK ^m	This bit is set to 1 if the response to a previous access port or RDBUFF was OK. It is set to 0 if the response was not OK.
			This flag always indicates the response to the last access port read access.
			The reset value after a powerup reset is 0.

^m Implemented on SW-DP only. On a JTAG-DP this bit is Reserved, RAZ/SBZP.

Table 3-239 Control/Status Register bit assignments (continued)


Bits	Access	Function	Description
[5]	RO ⁿ	STICKYERR	This bit is set to 1 if an error is returned by an access port transaction. To set this bit to 0:
			JTAG-DP Write 1 to this bit of this register.
			SW-DP Write 1 to ABORT.STKERRCLR.
			After a powerup reset this bit is LOW.
[4]	RO ⁿ	STICKYCMP	This bit is set to 1 when a match occurs on a pushed compare or a pushed verify operation. To set this bit to 0:
			JTAG-DP Write 1 to this bit of this register.
			SW-DP Write 1 to ABORT.STKCMPCLR.
			The reset value after a powerup reset is 0.
[3:2]	RW	TRNMODE	This field sets the transfer mode for access port operations.
			After a powerup reset the reset value is UNPREDICTABLE.
[1]	RO ⁿ	STICKYORUN	If overrun detection is enabled, this bit is set to 1 when an overrun occurs. To set this bit to 0:
			JTAG-DP
			Write 1 to this bit of this register. SW-DP
			Write 1 to ABORT.ORUNERRCLR.
			After a powerup reset the reset value is 0. See bit[0] of this register.
[0]	RW	ORUNDETECT	This bit is set to 1 to enable overrun detection.
			The reset value is 0.

AP Select register, SELECT

The AP Select register is present in all debug port implementations. Its main purpose is to select the current access port and the active 4-word register window in that access port. On a SW-DP, it also selects the debug port address bank.

JTAG-DP	It is at address 0x8 when the IR contains DPACC, and is a RW register.
SW-DP	It is at address $0b10$ on write operations when the APnDP bit = 0, and is a WO register. Access to the AP Select Register is not affected by the value of DPBANKSEL.
Attributes	See the Debug port implementation-specific registers.

ⁿ RO on SW-DP. On a JTAG-DP, this bit can be read normally, and writing 1 to this bit sets the bit to 0.

Figure 3-218 AP Select Register bit assignments

The following table shows the bit assignments.

Table 3-240 AP Select Register bit assignments

Bits	Function	Description		
[31:24]	APSEL	Selects the current a	ccess port.	
		0x00	Selects the AP connected to master interface 0 of the DAPBUS interconnect.	
		0x01	Selects the AP connected to master interface 1 of the DAPBUS interconnect, if present.	
		0x02	Selects the AP connected to master interface 2 of the DAPBUS interconnect, if present.	
		0x03	Selects the AP connected to master interface 3 of the DAPBUS interconnect, if present.	
		0x1F	Selects the AP connected to master interface 31 of the DAPBUS interconnect, if present.	
		The reset value is UN	IPREDICTABLE. ⁰	
[23:8]	Reserved. SBZ/RAZ ^a .	Reserved. SBZ/RAZ ^a .		
[7:4]	APBANKSEL	Selects the active 4-word register window on the current access port.		
		The reset value is UN	IPREDICTABLE. ^a	
[3:0]	DPBANKSEL ^p	Selects the register that appears at DP register 0x4.		
		0x0	CTRL/STAT, RW.	
		0x1	DLCR, RW.	
		0x2	TARGETID, RO.	
		0x3	DLPIDR, RO.	
		All other values are	reserved. Writing a reserved value to this field is UNPREDICTABLE.	
			ent access port, all access port transactions return RAZ/WI.	
		Note —		
	Every ARN	Debug Interface in	nplementation must include at least one access port.	

⁰ On a SW-DP the register is write-only, therefore you cannot read the field value.

^p SW-DP only. On a JTAG-DP this bit is Reserved, SBZ/RAZ.

Read Buffer register, RDBUFF

Present in all debug port implementations. However, there are significant differences in its implementation on JTAG and SW Debug Ports.

JTAG-DP	It is at address 0xC when the IR contains DPACC, and is a RAZ, RAZ/WI register.
SW-DP	It is at address 0b11 on read operations when the APnDP bit = 0 and is a RO register. Access to the Read Buffer is not affected by the value of DPBANKSEL in the SELECT Register.
Attributes	See the Debug port implementation-specific registers.

Read Buffer implementation and use on a JTAG-DP

On a JTAG-DP, the read buffer is RAZ/WI. The read buffer is architecturally defined to provide a debug port read operation that does not have any side effects. This means that a debugger can insert a debug port read of the read buffer at the end of a sequence of operations, to return the final read result and ACK values.

Read Buffer implementation and use on an SW-DP

On an SW-DP, performing a read of the read buffer captures data from the access port, presented as the result of a previous read, without initiating a new access port transaction. This means that reading the read buffer returns the result of the last access port read access, without generating a new AP access.

After you read the read buffer, its contents are no longer valid. The result of a second read of the read buffer is UNPREDICTABLE.

If you require the value from an access port register read, that read must be followed by one of:

- A second access port register read. You can read the CSW if you want to ensure that this second read has no side effects.
- A read of the DP Read Buffer.

This second access, to the access port or the debug port depending on which option you use, stalls until the result of the original access port read is available.

Data Link Control Register, DLCR (SW-DP only)

The DLCR register is present in any SW-DP implementation. The DLCR register selects the operating mode of the physical serial port connection to the SW-DP.

It is a read/write register at address 0b01 on read and write operations when DPBANKSEL in the Select Register is set to 0b0001.

– Note –

When DPBANKSEL is set to 0b0001, to enable access to the WCR, the DP Control/Status Register is not accessible.

Many features of the Data Link Control Register are IMPLEMENTATION DEFINED.

Attributes See the Debug port implementation-specific registers.

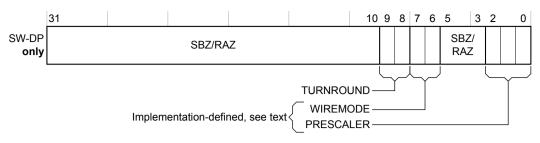


Figure 3-219 Data Link Control Register bit assignments

The following table shows the bit assignments.

Table 3-241 Data Link Control Register bit assignments

Bits	Function	Description				
[31:10] -		Reserved, SBZ/RAZ.				
[9:8]	TURNROUND	Turnaround tristate period, see <i>Turnaround tristate period</i> , <i>TURANROUND</i> , <i>bits</i> [9:8] on page 3-241.				
		The reset value is 0b00 .				
[7:6]	WIREMODE	Identifies the operating mode for the wire connection to the debug port, see <i>Wire operating mode</i> , <i>WIREMODE</i> , <i>bits</i> [7:6] on page 3-241.				
		The reset value is 0b01 .				
[5:3]	-	Reserved, SBZ/RAZ.				
[2:0]	PRESCALER	Reserved, SBZ/RAZ.				

Turnaround tristate period, TURANROUND, bits [9:8]

This field defines the turnaround tristate period. This turnaround period permits pad delays when using a high sample clock frequency.

The following table shows the permitted values of this field, and their meanings.

Table 3-242 Turnaround tristate period field bit definitions

TURNAROUND ^q	Turnaround tristate period
0b00	1 sample period
0b01	2 sample periods
0b10	3 sample periods
0b11	4 sample periods

Wire operating mode, WIREMODE, bits [7:6]

This field identifies SW-DP as operating in Synchronous mode only.

This field is required, and in the following table shows the permitted values of the field, and their meanings.

q Bits[9:8] of the DLCR.

r Bits[7:6] of the DLCR.

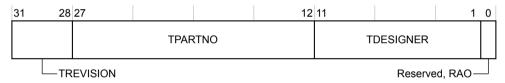
Table 3-243 Wire operating mode bit definitions

WIREMODE	Wire operating mode
0600	Reserved.
0b01	Synchronous, that is, no oversampling.
0b1x	Reserved.

Target Identification register, TARGETID (SW-DP only)

The TARGETID register provides information about the target when the host is connected to a single device.

The TARGETID register is:


- A RO register.
- Accessed by a read of DP register 0x4 when the DPBANKSEL bit in the SELECT Register is set to 0x2.

The value of this register reflects the value of the targetid[31:0] input.

Attributes

See the Debug port implementation-specific registers.

The following figure shows the bit assignments.

Figure 3-220 Target Identification register bit assignments

The following table shows the bit assignments.

Table 3-244 Target Identification register bit assignments

Bits	Function	Description
[31:28]	TREVISION	Target revision.
[27:12]	TPARTNO	Configuration-dependent
		This value is assigned by the designer of the part and must be unique to that part.
[11:1]	TDESIGNER	IMPLEMENTATION DEFINED. This field identifies the designer of the part. The value is based on the code assigned to the designer by JEDEC standard JEP-106, as used in IEEE 1149.1.
[0]	-	Reserved, RAO.

Data Link Protocol Identification Register, DLPIDR (SW-DP only)

The DLPIDR register provides information about the Serial Wire protocol version.

The DLPIDR register is:

- A RO register.
- Accessed by a read of DP register 0x4 when the **DPBANKSEL** bit in the SELECT Register is set to 0x3.

The contents of this register are data link defined.

Purpose

- Provides information about the Serial Wire protocol version. It is:A RO register.
- Accessed by a read of DP register 0x4 when the **DPBANKSEL** bit in the SELECT Register is set to 0x3.

The contents of this register are data link defined.

See the Debug port implementation-specific registers.

Attributes

The following figure shows the bit assignments.

31 28	27			4 3 0
Target Instance		Reserve	d	Protocol Version

Figure 3-221 Data Link Protocol Identification Register bit assignments

The following table shows the bit assignments.

Table 3-245 Data Link Protocol Identification Register bit assignments

Bits	Function	Description
[31:28]	Target Instance	Configuration-dependent
		This field defines a unique instance number for this device within the system. This value must be unique for all devices that are connected together in a multi-drop system with identical values in the TREVISION fields in the TARGETID Register. The value of this field reflects the value of the instanceid[3:0] input.
[27:4]	-	Reserved.
[3:0]	Protocol Version	Defines the serial wire protocol version. This value is $0x1$, which indicates SW protocol version 2.

Read Resend register, RESEND (SW-DP only)

The RESEND register is present in any SW-DP implementation. It enables read data recovery from a corrupted debugger transfer, without repeating the original AP transfer.

It is a 32-bit read-only register at address **0b10** on read operations. Access to the Read Resend Register is not affected by the value of the DPBANKSEL bit in the SELECT Register.

Performing a read to the RESEND register does not capture new data from the access port. It returns the value that was returned by the last AP read or DP RDBUFF read.

Reading the RESEND register enables read data recovery from a corrupted transfer without having to reissue the original read request or generate a new DAP or system level access.

The RESEND register can be accessed multiple times. It always returns the same value until a new access is made to the DP RDBUFF register or to an access port register.

Attributes See the Debug port implementation-specific registers.

3.10 Timestamp generator

The timestamp generator generates the timestamp value that is distributed over the rest of the timestamp interconnect.

This section contains the following subsections:

- 3.10.1 Timestamp generator register summary table on page 3-244.
- 3.10.2 Counter Control Register, CNTCR on page 3-245.
- 3.10.3 Counter Status Register, CNTSR on page 3-246.
- 3.10.4 Current Counter Value Lower register, CNTCVL on page 3-246.
- 3.10.5 Current Counter Value Upper register, CNTCVU on page 3-247.
- 3.10.6 Base Frequency ID register; CNTFID0 on page 3-247.
- 3.10.7 Peripheral ID4 Register; PIDR4 on page 3-248.
- 3.10.8 Peripheral ID0 Register, PIDR0 on page 3-248.
- 3.10.9 Peripheral ID1 Register, PIDR1 on page 3-249.
- 3.10.10 Peripheral ID2 Register, PIDR2 on page 3-249.
- 3.10.11 Peripheral ID3 Register, PIDR3 on page 3-250.
- 3.10.12 Component ID0 Register, CIDR0 on page 3-251.
- 3.10.13 Component ID1 Register, CIDR1 on page 3-251.
- 3.10.14 Component ID2 Register, CIDR2 on page 3-252.
- 3.10.15 Component ID3 Register, CIDR3 on page 3-252.

3.10.1 Timestamp generator register summary table

Summary of the timestamp generator registers.

Table 3-246 Timestamp generator register summary

Offset	Name	Туре	Reset	Description
PSELC	TRL region	1		
0x000	CNTCR	RW	0x00000000	3.10.2 Counter Control Register, CNTCR on page 3-245
0x004	CNTSR	RO	0x00000000	3.10.3 Counter Status Register, CNTSR on page 3-246
0x008	CNTCVL	RW	0x00000000	3.10.4 Current Counter Value Lower register, CNTCVL on page 3-246
0x00C	CNTCVU	RW	0x00000000	3.10.5 Current Counter Value Upper register, CNTCVU on page 3-247
0x020	CNTFID0	RW	0x00000000	3.10.6 Base Frequency ID register; CNTFID0 on page 3-247
PSELC	TRL region	n Mana	gement registe	rs
0xFD0	PIDR4	RO	0x00000004	3.10.7 Peripheral ID4 Register; PIDR4 on page 3-248
0xFD4	PIDR5	RO	0x00000000	0x00, Reserved
0xFD8	PIDR6	RO	0x00000000	0x00, Reserved
0xFDC	PIDR7	RO	0x00000000	0x00, Reserved
0xFE0	PIDR0	RO	0x00000001	3.10.8 Peripheral ID0 Register; PIDR0 on page 3-248
0xFE4	PIDR1	RO	0x000000B1	3.10.9 Peripheral ID1 Register; PIDR1 on page 3-249
0xFE8	PIDR2	RO	0x0000001B	3.10.10 Peripheral ID2 Register, PIDR2 on page 3-249
0xFEC	PIDR3	RO	0x00000000	3.10.11 Peripheral ID3 Register, PIDR3 on page 3-250
0xFF0	CIDR0	RO	0x0000000D	3.10.12 Component ID0 Register; CIDR0 on page 3-251
0xFF4	CIDR1	RO	0x000000F0	3.10.13 Component ID1 Register; CIDR1 on page 3-251
0xFF8	CIDR2	RO	0x00000005	3.10.14 Component ID2 Register, CIDR2 on page 3-252

Table 3-246 Timestamp generator register summary (continu

Offset	Name	Туре	Reset	Description		
0xFFC	CIDR3	RO	0x000000B1	3.10.15 Component ID3 Register; CIDR3 on page 3-252		
PSELR	EAD region	1				
0x000	CNTCVL	RO	0x00000000	3.10.3 Counter Status Register, CNTSR on page 3-246		
0x004	CNTCVU	RO	0x00000000	3.10.5 Current Counter Value Upper register, CNTCVU on page 3-247		
PSELR	EAD regio	n Mana	igement registe	ers		
0xFD0	PIDR4	RO	0x00000004	3.10.7 Peripheral ID4 Register; PIDR4 on page 3-248		
0xFD4	PIDR5	RO	0x00000000	Reserved		
0xFD8	PIDR6	RO	0x00000000	Reserved		
0xFDC	PIDR7	RO	0x00000000	Reserved		
0xFE0	PIDR0	RO	0x00000001	3.4.16 Peripheral ID0 Register; PIDR0 on page 3-94		
0xFE4	PIDR1	RO	0x000000B1	3.10.9 Peripheral ID1 Register; PIDR1 on page 3-249		
0xFE8	PIDR2	RO	0x0000001B	3.10.10 Peripheral ID2 Register, PIDR2 on page 3-249		
0xFEC	PIDR3	RO	0x00000000	3.10.11 Peripheral ID3 Register, PIDR3 on page 3-250		
0xFF0	CIDR0	RO	0x0000000D	3.6.32 Component ID0 Register; CIDR0 on page 3-140		
0xFF4	CIDR1	RO	0x000000F0	3.6.33 Component ID1 Register, CIDR1 on page 3-140		
0xFF8	CIDR2	RO	0x00000005	3.6.34 Component ID2 Register, CIDR2 on page 3-141		
0xFFC	CIDR3	RO	0x000000B1	3.6.35 Component ID3 Register; CIDR3 on page 3-141		

3.10.2 Counter Control Register, CNTCR

The CNTCR register controls the counter increments.

The CNTCR characteristics are:

Usage constraintsThis register is not accessible to the read-only programming interface.AttributesSee the timestamp generator register summary table.

The following figure shows the bit assignments.

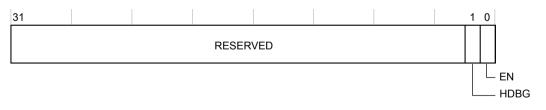


Figure 3-222 CNTCR bit assignments

Table 3-247 CNTCR bit assignments

Name	Function	
UNK/SBZP	Reserved	
HDBG	Halt on Debug.	
	0	Do not halt on debug, HLTDBG signal into the counter has no effect.
	1	Halt on debug, when HLTDBG is driven HIGH, the count value is held static
EN	Enable.	
	0	The counter is disabled and not incrementing.
	1	The counter is enabled and is incrementing.
	UNK/SBZP HDBG	UNK/SBZP Reserved HDBG Halt on Debug. 0 1 EN Enable.

3.10.3 Counter Status Register, CNTSR

The CNTSR register identifies the status of the counter.

The CNTSR characteristics are:

Usage constraints This register is not accessible to the read-only programming interface.

Attributes See the timestamp generator register summary table.

The following figure shows the bit assignments.

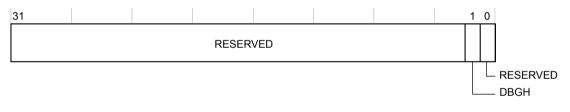


Figure 3-223 CNTSR bit assignments

The following table shows the bit assignments.

Table 3-248 CNTSR bit assignments

Bits	Name	Function		
[31:2]	UNK/SBZP	Reserved.		
[1]	DBGH	Debug Halted.		
[0]	UNK/SBZP	Reserved.		

3.10.4 Current Counter Value Lower register, CNTCVL

The CNTCVL register reads or writes the lower 32 bits of the current counter value.

The CNTCVL register characteristics are:

Purpose	Reads or writes the lower 32 bits of the current counter value.
Usage constraints	The read-only programming interface can read but not write to this register. The control interface must clear the CNTCR.EN bit before writing to this register.
Attributes	See the timestamp generator register summary table.

31								0	
	CNTCVL_L_32								
					_				

Figure 3-224 CNTCVL register bit assignments

The following table shows the bit assignments.

Table 3-249 CNTCVL register bit assignments

Bits	Name	Function
[31:0]	CNTCVL_L_32	Current value of the timestamp counter, lower 32 bits. To change the current timestamp value, write the lower 32 bits of the new value to this register before writing the upper 32 bits to CNTCVU. The timestamp value is not changed until the CNTCVU register is written to.

3.10.5 **Current Counter Value Upper register, CNTCVU**

The CNTCVU register reads or writes the upper 32 bits of the current counter value.

The CNTCVU register characteristics are:

Usage constraints The read-only programming interface can read but not write this register. The control interface must clear the CNTCR.EN bit before writing to this register. See the timestamp generator register summary table.

Attributes

The following figure shows the bit assignments.

31						0
				0		
		C	NTCVU_U_32	2		

Figure 3-225 CNTCUV register bit assignments

The following table shows the bit assignments.

Table 3-250 CNTCUV register bit assignments

Bits	Name	Function
[31:0]	CNTCVU_U_32	Current value of the timestamp counter, upper 32 bits. To change the current timestamp value, write the lower 32 bits of the new value to CNTCVL before writing the upper 32 bits to this register. The 64-bit timestamp value is updated with the value from both writes when this register is written to.

3.10.6 **Base Frequency ID register, CNTFID0**

You must program this register to match the clock frequency of the timestamp generator, in ticks per second. For example, for a 50 MHz clock, program 0x02FAF080.

The CNTFID0 register characteristics are:

Usage constraints This register is not accessible to the read-only programming interface. Attributes See the timestamp generator register summary table.

31					0
		F	REQ		

Figure 3-226 CNTFID0 register bit assignments

The following table shows the bit assignments.

Table 3-251 CNTFID0 register bit assignments

Bits	Name	Function
[31:0]	FREQ	Frequency in number of ticks per second. You can specify up to 4GHz.

3.10.7 Peripheral ID4 Register, PIDR4

The PIDR4 register is part of the set of peripheral identification registers. Contains part of the designer identity and the memory size.

The PIDR4 characteristics are:

Usage constraints There are no usage constraints.

Attributes See the timestamp generator register summary table.

The following figure shows the bit assignments.

31					8	7 4	30
	Reserved						DES_2

Figure 3-227 PIDR4 bit assignments

The following table shows the bit assignments.

Table 3-252 PIDR4 bit assignments

Bits	Name	Function				
[31:8]	Reserved	-				
[7:4]	SIZE	Always 0b0000 . Indicates that the device only occupies 4KB of memory.				
[3:0]	DES_2	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.				
		0b0100	JEDEC continuation code.			

3.10.8 Peripheral ID0 Register, PIDR0

The PIDR0 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number.

The PIDR0 characteristics are:

Usage constraints	There are no usage constraints.
Attributes	See the timestamp generator register summary table.

31				87		0
		Reserved			PART_0	

Figure 3-228 PIDR0 bit assignments

The following table shows the bit assignments.

Table 3-253 PIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PART_0	Bits[7:0] of the 12-bit part number of the component. The designer of the component assigns this part number.	
		0x01	Indicates bits[7:0] of the part number of the component.

3.10.9 Peripheral ID1 Register, PIDR1

The PIDR1 register is part of the set of peripheral identification registers. Contains part of the designerspecific part number and part of the designer identity.

The PIDR1 characteristics are:

Usage constraints	There are no usage constraints.
Attributes	See the timestamp generator register summary table.

See the timestamp generator register sun

The following figure shows the bit assignments.

31			8	7 4	30
	Reserved			DES_0	PART_1

Figure 3-229 PIDR1 bit assignments

The following table shows the bit assignments.

Table 3-254 PIDR1 bit assignments

Bits	Name	Function			
[31:8]	Reserved	-			
[7:4]	DES_0	Together, PIDR1.DES_0, PID	Fogether, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.		
		0b1011	ARM. Bits[3:0] of the JEDEC JEP106 Identity Code.		
[3:0]	PART_1	Bits[11:8] of the 12-bit part number of the component. The designer of the component assigns this part number.			
		0b0001	Indicates bits[11:8] of the part number of the component.		

3.10.10 Peripheral ID2 Register, PIDR2

The PIDR2 register is part of the set of peripheral identification registers. Contains part of the designer identity and the product revision.

The PIDR2 characteristics are:

Usage constraints	There are no usage constraints.
Attributes	See the timestamp generator register summary table.

The following figure shows the bit assignments.

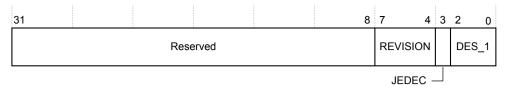


Figure 3-230 PIDR2 bit assignments

The following table shows the bit assignments.

Table 3-255 PIDR2 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVISION	0b0001	This device is at r0p1.
[3]	JEDEC	Always 1. Indicates that the JEDEC-assigned designer ID is used.	
[2:0]	DES_1	Together, PIDR1.DES_0, PIDR2.DES_1, and PIDR4.DES_2 identify the designer of the component.	
		0b011	ARM. Bits[6:4] of the JEDEC JEP106 Identity Code.

3.10.11 Peripheral ID3 Register, PIDR3

The PIDR3 registers are part of the set of peripheral identification registers. This register contains the REVAND and CMOD fields.

The PIDR3 characteristics are:

Usage constraints There are no usage constraints.

Attributes See the timestamp generator register summary table.

The following figure shows the bit assignments.

Figure 3-231 PIDR3 bit assignments

The following table shows the bit assignments.

Table 3-256 PIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:4]	REVAND	06000	Indicates that there are no errata fixes to this component.
[3:0]	0] CMOD Customer Modified. Indicates whether the customer has modified the behavior of the compone this field is 0b0000 . Customers change this value when they make authorized modifications to		1
		06000	Indicates that the customer has not modified this component.

3.10.12 Component ID0 Register, CIDR0

Attributes

The CIDR0 register is a component identification register that indicates the presence of identification registers.

The CIDR0 register characteristics are:

Usage constraints There are no usage constraints.

See the timestamp generator register summary table.

The following figure shows the bit assignments.

Figure 3-232 CIDR0 bit assignments

The following table shows the bit assignments.

Table 3-257 CIDR0 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_0	Preamble[0]. Contains bits[7:0] of the component identification code.	
		0x0D	Bits[7:0] of the identification code.

3.10.13 Component ID1 Register, CIDR1

The CIDR1 register is a component identification register that indicates the presence of identification registers. This register also indicates the component class.

See the timestamp generator register summary table.

The CIDR1 register characteristics are:

Usage constraints There are no usage constraints.

Attributes

The following figure shows the bit assignments.

31				8	7 4	3 0
		Reserve	d		CLASS	PRMBL_1

Figure 3-233 CIDR1 bit assignments

Table 3-258 CIDR1 bit assignments

Bits	Name	Function
[31:8]	Reserved	-
[7:4]	CLASS	Class of the component, for example, whether the component is a ROM table or a generic CoreSight component. Contains bits[15:12] of the component identification code.
		0b1111 Indicates the component is a CoreLink [™] , PrimeCell or system component.
		Note
		The Timestamp generator is a PrimeCell component because it can be used for non-debug purposes, for example as a source of generic system time. See the <i>ARM</i> [®] <i>CoreSight</i> [™] <i>SoC-400 System Design Guide</i> for more information.
[3:0]	PRMBL_1	Preamble[1]. Contains bits[11:8] of the component identification code.
		0b0000 Bits[11:8] of the identification code.
		Jsage constraints There are no usage constraints. Attributes See the timestamp generator register summary table. The following figure shows the bit assignments. 8 7 0 Barrier 8 7 0 Reserved PRMBL_2
		Figure 3-234 CIDR2 bit assignments The following table shows the bit assignments. Table 3-259 CIDR2 bit assignments
Bits	Name	Function
[31:8]	Reserved	-
[7:0]	PRMBL_2	Preamble[2]. Contains bits[23:16] of the component identification code.
		0x05 Bits[23:16] of the identification code.
3.10.1	5 Com	ponent ID3 Register, CIDR3

The CIDR3 register is a component identification register that indicates the presence of identification registers.

The CIDR3 register characteristics are:

Usage constraints	There are no usage constraints.
Attributes	See the timestamp generator register summary table.

Figure 3-235 CIDR3 bit assignments

The following table shows the bit assignments.

Table 3-260 CIDR3 bit assignments

Bits	Name	Function	
[31:8]	Reserved	-	
[7:0]	PRMBL_3	Preamble[3]. Contains bits[3	1:24] of the component identification code.
		0xB1	Bits[31:24] of the identification code.

Chapter 4 **Debug Access Port**

This chapter describes the Debug Access Port.

It contains the following sections:

- 4.1 About the Debug Access Port on page 4-255.
- 4.2 SWJ-DP on page 4-259.
- *4.3 DAPBUS interconnect* on page 4-268.
- 4.4 DAPBUS asynchronous bridge on page 4-269.
- 4.5 DAPBUS synchronous bridge on page 4-270.
- 4.6 JTAG-AP on page 4-271.
- *4.7 AXI-AP* on page 4-273.
- 4.8 AHB-AP on page 4-278.
- 4.9 APB-AP on page 4-283.

4.1 About the Debug Access Port

The DAP is a collection of components through which off-chip debug tools access a SoC. It is an implementation of the ARM Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

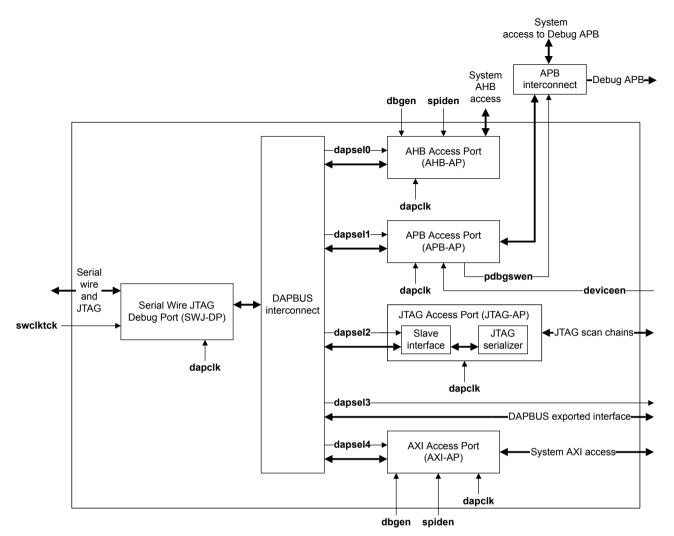
This section contains the following subsections:

- 4.1.1 DAP components on page 4-255.
- 4.1.2 DAP flow of control on page 4-257.

4.1.1 DAP components

The DAP consists of a DP, Access Ports (APs), and a DAPBUS interconnect.

The DAP consists of the following components:


- A DP to manage the connection to an external debugger.
- APs to access on-chip system resources. There can be more than one of each type of AP.
- DAPBUS interconnect to connect the DP to one or more APs.

The APs provide non-invasive access to:

- The programmers model of CoreSight components. This is normally done through a system-wide CoreSight APB bus, through an APB-AP.
- Memory-mapped system components, normally using an AXI-AP or AHB-AP.
- Legacy JTAG-configured debug components, using a JTAG-AP.

Also, some CoreSight-enabled processors connect directly to the DAPBUS interconnect and implement their own ADIv5 compliant AP.

The following figure shows the structure of the CoreSight SoC-400 DAP components.

Figure 4-1 Structure of the CoreSight SoC-400 DAP components

CoreSight SoC has a single multi-function DP as follows:

SWJ-DP	This is a combined debug port that can communicate in either JTAG or Serial Wire protocols as defined by ADIv5.1. It contains two debug ports, the SW-DP and the JTAG-DP, that you can select through an interface
	sequence to move between debug port interfaces. The JTAG-DP is compliant with DP architecture version 0. The SW-DP is

compliant with DP architecture version 2 and Serial Wire protocol version 2, that enables an SW-DP to share a target connection with other SW-DPs or other components implementing different protocols.

The access ports included in CoreSight SoC are:

AXI-AP	The AXI-AP implements the ADIv5 <i>Memory Access Port</i> (MEM-AP) architecture to directly connect to an AXI memory system. You can connect it to other memory systems using a suitable bridging component.
АНВ-АР	The AHB-AP provides an AHB-Lite master for access to a system AHB bus. This is compliant with the MEM-AP in ADIv5.1 and can perform 8 to 32-bit accesses.

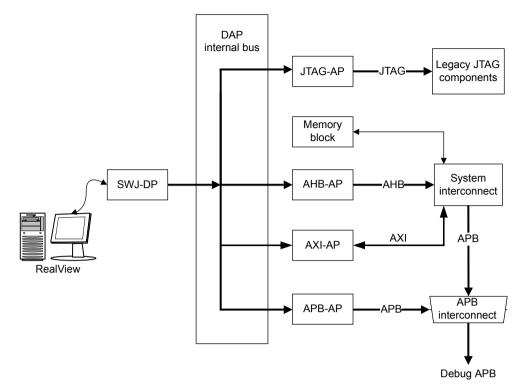
APB-AP	The APB-AP provides an APB master in AMBA v3.0 for access to the Debug APB bus. This is compliant with the MEM-AP architecture with a fixed transfer size of 32 bits.
JTAG-AP	The JTAG-AP provides JTAG access to on-chip components, operating as a JTAG master port to drive JTAG chains throughout the ASIC. This is an implementation of the JTAG-AP in ADIv5.1.

The DAPBUS interconnect connects the DP to the APs. A system might not include some types of AP, or it might include more than one of the same type of AP.

Certain processors implement their own AP, and these connect directly to the DAPBUS interconnect using the same interface as any other AP. In some documentation this is referred to as an *Auxiliary Access Port* (AUX-AP) connection.

A DAPBUS asynchronous bridge and a DAPBUS synchronous bridge are provided to enable APs to be implemented in a different clock or power domain to the SWJ-DP.

The ROM table provides a list of memory locations of the CoreSight components that are connected to the debug APB. The ROM table is embedded within the APB interconnect. This is visible from both tools and on-chip self-hosted access. The ROM table indicates the position of all CoreSight components in a system and assists in topology detection.


4.1.2 DAP flow of control

The DAP acts as a component to translate data transfers from one external interface format to another internal interface. The external interface is either JTAG or serial wire. This provides a link for an external debug tool to generate accesses into a SoC.

The debug port controls the JTAG-AP, AXI-AP, AHB-AP, and APB-AP through a standard bus interface:

- The JTAG-AP receives these bus transactions and translates them into JTAG instructions for control of any connected TAP controllers such as a processor.
- The AXI-AP implements the MEM-AP architecture to directly connect to an AXI memory system. You can connect it to other memory systems using a suitable bridging component.
- The AHB-AP is a bus master, together with any connected cores, on the system interconnect that can access slaves connected to that bus, for example shared memory.
- The APB-AP can only access the Debug APB. Use this to control and access CoreSight components. Control of non-debug APB peripherals is possible through the system interconnect and APBIC.

The following figure shows the flow of control for the DAP when used with an off-chip debugging unit.

Figure 4-2 DAP flow of control

The external hardware tools directly communicate with the SWJ-DP in the DAP and perform a series of operations to the debug port. Some of these accesses result in operations being performed on the DAP internal bus.

The DAP internal bus implements memory-mapped accesses to the components that are connected using the parallel address buses for read and write data. The debug port, SWJ-DP, is the bus master that initiates transactions on the DAP internal bus in response to some of the transactions that are received over the debug interface. Debug interface transfers are memory-mapped to registers in the DAP, and both the bus master and the slaves contain registers. This DAP memory map is independent of the memory maps that exist in the target system.

Some of the registers in the access ports can translate interactions into transfers on the interconnects to which they are connected. For example, in the JTAG-AP, a number of registers are allocated for reading and writing commands that result in *Test Access Port* (TAP) instructions on connected devices, for example, processors. The processor is also a bus master on a system memory structure to which the AHB-AP has access, so both the processor and AHB-AP have access to shared memory devices, or other bus slave components.

4.2 SWJ-DP

The SWJ-DP is a combined JTAG-DP and SW-DP that enables you to connect either an SWD or JTAG probe to a target. It is the standard CoreSight debug port, and enables access either to the JTAG-DP or SW-DP blocks.

This section contains the following subsections:

- 4.2.1 Auto-detect mechanism on page 4-259.
- 4.2.2 Structure of the SWJ-DP on page 4-259.
- 4.2.3 Operation of the SWJ-DP on page 4-259.
- 4.2.4 JTAG and SWD interface on page 4-260.
- 4.2.5 Operation in JTAG-DP mode on page 4-260.
- 4.2.6 Operation in SW-DP mode on page 4-261.
- 4.2.7 Clock, reset, and power domain support on page 4-265.
- 4.2.8 SWD and JTAG selection mechanism on page 4-266.
- 4.2.9 Common debug port features and registers on page 4-266.

4.2.1 Auto-detect mechanism

To make efficient use of package pins, serial wire shares, or overlays, the JTAG pins use an auto-detect mechanism that switches between JTAG-DP and SW-DP depending on which probe is connected.

A special sequence on the **swdiotms** pin switches between JTAG-DP and SW-DP. When the switching sequence is transmitted to the SWJ-DP, it behaves as a dedicated JTAG-DP or SW-DP depending on which sequence is performed.

_____ Note _____

For programming capabilities and features of the SWJ-D, refer to the JTAG-DP mode and SW-DP mode operations.

4.2.2 Structure of the SWJ-DP

The SWJ-DP consists of a wrapper around the JTAG-DP and SW-DP. It selects JTAG or SWD as the connection mechanism and enables either JTAG-DP or SW-DP as the interface to the DAP.

The following figure shows the structure of the SWJ-DP.

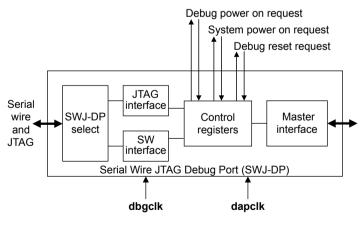


Figure 4-3 SWJ-DP

4.2.3 Operation of the SWJ-DP

SWJ-DP enables you to design an *Application-Specific Integrated Circuit* (ASIC) that you can use in systems that require either a JTAG interface or an SWD interface.

There is a trade-off between the number of pins used and compatibility with existing hardware and test devices. There are several scenarios where you must use a JTAG debug interface. These enable:

- Inclusion in an existing scan chain, usually on-chip TAPs used for test or other purposes.
- The device to be cascaded with legacy devices that use JTAG for debug.
- Use of existing debug hardware with the corresponding test TAPs, for example in *Automatic Test Equipment* (ATE).

You can connect an ASIC that has the SWJ-DP support to legacy JTAG devices without making any changes. If an SWD tool is available, only two pins are required, instead of the usual four pins used for JTAG. You can therefore use the other two pins for other purposes.

You can only use these two pins if there is no conflict with their use in JTAG mode. To support use of SWJ-DP in a scan chain with other JTAG devices, the default state after reset must be to use these pins for their JTAG function. If the direction of the alternative function is compatible with being driven by a JTAG debug device, the transition to a shift state can be used to transition from the alternative function to JTAG mode. You cannot use the other function while the ASIC is in JTAG debug mode.

The switching scheme is arranged so that, provided there is no conflict on the **tdi** and **tdo** pins, a JTAG debugger can connect by sending a specific sequence. The connection sequence used for SWD is safe when applied to the JTAG interface, even if hot-plugged, enabling the debugger to continually retry its access sequence. A sequence with **tms=1** ensures that JTAG-DP, SW-DP, and the watcher circuit are in a known reset state. The pattern used to select SWD has no effect on JTAG targets. SWJ-DP is compatible with a free-running **tck** or a gated clock that external tools provide.

4.2.4 JTAG and SWD interface

The external JTAG interface has four mandatory pins, **tck**, **tms**, **tdi**, and **tdo**, and an optional reset, **ntrst**. JTAG-DP and SW-DP also require a separate powerup reset, **npotrst**.

The external SWD interface requires two pins:

- A bidirectional **swdio** signal.
- A clock, swclk, that can be input or output from the device.

The block level interface has two pins for data and an output enable that must be used to drive a bidirectional pad for the external interface, and clock and reset signals. To enable sharing of the connector for either JTAG or SWD, connections must be made external to the SWJ-DP block. In particular, **tms** must be a bidirectional pin to support the bidirectional **swdio** pin in SWD mode.

4.2.5 Operation in JTAG-DP mode

The JTAG-DP contains a debug port state machine that controls the JTAG-DP mode operation, including controlling the scan chain interface that provides the external physical interface to the JTAG-DP. It is based closely on the JTAG TAP State Machine.

See IEEE Std 1149.1-2001.

When operating as a JTAG-DP, the Debug Port operates as defined in the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2*. The specification also contains an explanation of its programmers model, capabilities, and features.

Overview

The JTAG-DP IEEE 1149.1 compliant scan chains are used to read or write register information. A pair of scan chain registers accesses the main control and access registers within the Debug Port.

The scan chain registers are:

- DPACC, for DP accesses.
- APACC, for AP accesses. An APACC access might access a register of a debug component of the system to which the interface is connected.

The scan chain model implemented by a JTAG-DP has the concepts of capturing the current value of APACC or DPACC, and of updating APACC or DPACC with a new value. An update might cause a read

or write access to a DAP register that might then cause a read or write access to a debug register of a connected debug component. For information on the operations available on JTAG-DP, see the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.*

Implementation-specific information

There are no implementation-specific requirements for operating in JTAG-DP mode.

Physical interface

This section lists details of the JTAG-DP physical interface, including implementation signal name, ADIv5.2 signal name, and signal type information.

The following table shows the physical interface for JTAG-DP and the relationship to the signal references in the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2*. The JTAG-DP interface permits an optional return clock signal. However, the CoreSight SoC-400 JTAG-DP implementation does not include a return clock signal.

Table 4-1 JTAG-DP physical interface

Implementation signal name, JTAG-DP	ADIv5.2 signal name, JTAG-DP	Туре	JTAG-DP signal description
tdi	DBGTDI	Input	Debug data in
tdo	DBGTDO	Output	Debug data out
swelktek	ТСК	Input	Debug clock
swditms	DBGTMS	Input	Debug mode select
ntrst	DBGTRSTn	Input	Debug TAP reset

4.2.6 Operation in SW-DP mode

The SW-DP Interface operates with a synchronous serial interface. It uses a single bidirectional data signal and a clock signal.

This implementation is taken from the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2*.

Overview

The SW-DP provides a low pin count, bidirectional serial connection to the DAP with a reference clock signal for synchronous operation.

Communications with the SW-DP use a 3-phase protocol:

- A host-to-target packet request.
- A target-to-host acknowledge response.
- A data transfer phase, if required. This can be target-to-host or host-to-target, depending on the request made in the first phase.

A packet request from a debugger indicates whether the required access is to a DP register, DPACC, or to an AP register, APACC, and includes a 2-bit register address. See the *ARM*[®] *Debug Interface Architecture Specification*, *ADIv5.0 to ADIv5.2* for more information.

Implementation-specific information

This section lists SW-DP Interface implementation-specific information for the clocking and debug interface.

Clocking

The SW-DP clock, **swclktck**, can be asynchronous to the **dapclk**. **swclktck** can be stopped when the debug port is idle.

The host must continue to clock the interface for a number of cycles after the data phase of any data transfer. This ensures that the transfer can be clocked through the SW-DP. This means that after the data phase of any transfer the host must do one of the following:

- Immediately start a new SW-DP operation.
- Continue to clock the SW-DP serial interface until the host starts a new SW-DP operation.
- After clocking out the data parity bit, continue to clock the SW-DP serial interface until it has clocked out at least eight more clock rising edges, before stopping the clock.

Overview of debug interface

This section describes the physical interface that the SW-DP uses.

Line interface	The SW-DP uses a serial wire for both host and target sourced signals. The host emulator drives the protocol timing, that is, only the host emulator generates packet headers.
	The SW-DP operates in synchronous mode, and requires a clock pin and a data pin.
	Synchronous mode uses a clock reference signal that can be sourced from an on-chip source and exported, or provided by the host device. The host uses this clock as a reference for generation and sampling of data so that the target is not required to perform any over-sampling.
	Both the target and host are capable of driving the bus HIGH and LOW, or tri-stating it. The ports must be able to tolerate short periods of contention so that it can handle loss of synchronization.
Line pull-up	Both the host and target are able to drive the line HIGH or LOW, so it is important to ensure that contention does not occur by providing undriven time slots as part of the hand-over. So that the line can be assumed to be in a known state when neither host nor target is driving the line, a 100k Ω pull-up is required at the target, but this can only be relied on to maintain the state of the wire. If the wire is tied LOW and released, the pull-up resistor eventually brings the line to the HIGH state, but this takes many bit periods. The pull-up is intended to prevent false detection of signals when no host device is connected. It must be of a high value to reduce IDLE state current consumption from the target when the host actively pulls down the line.
	Note
	Whenever the line is tied LOW, this results in a small current drain from the target. If the interface is left connected over an extended period with the target in low-power mode, the host must hold the line HIGH until the interface is re-activated.
Line turn-round	To avoid contention, a turnaround period is required whenever the device driving the wire changes.

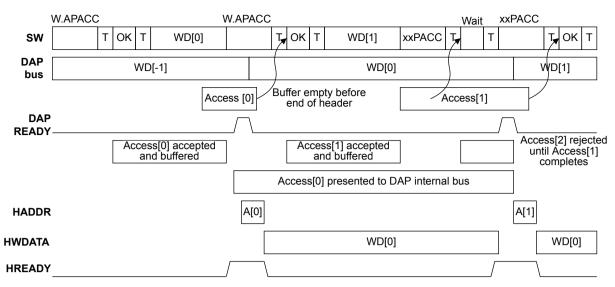
Idle and resetBetween transfers, the host must either drive the line LOW to the IDLE
state, or continue immediately with the start bit of a new transfer. The host is
also free to leave the line HIGH after a packet. This reduces the static
current drain, but if this approach is used with a free running clock, a
minimum of 50 clock cycles must be used, followed by a read ID request
that initiates a new reconnection sequence.

There is no explicit reset signal for the protocol. Resynchronization following the detection of protocol errors, or after reset, is achieved by providing 50 clock cycles with the line HIGH, followed by a read ID request.

If the SW-DP detects that it has lost synchronization, for example, if no stop bit is seen when expected, it leaves the line undriven and waits for the host to either re-try with a new header after a minimum of one cycle with the line LOW, or signals a reset by not driving the line itself. If the SW-DP detects two bad data sequences in a row, it locks out until a reset sequence of 50 clock cycles with **swditms** HIGH is seen.

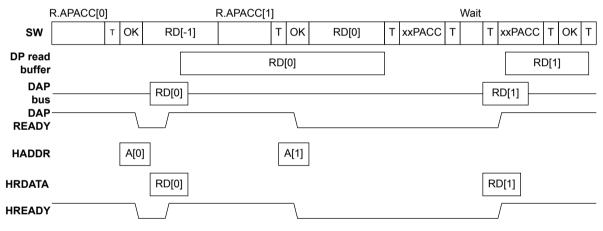
If the host does not see an expected response from SW-DP, it must allow time for SW-DP to return a data payload. The host can then retry with a read to the SW-DP ID code register. If this is unsuccessful, the host must attempt a reset.

Transfer timings


Access port accesses result in the generation of transfers on the DAP internal bus. These transfers have an address phase and a data phase. The data phase can be extended by the access if it requires extra time to process the transaction, for example, if it must perform an AHB access to the system bus to read data.

The following table shows the terms used in SW-DP timing.

Term	Description
W.APACC	Write a DAP access port register.
R.APACC	Read a DAP access port register.
xxPACC	Read or write, to debug port or access port register.
WD[0]	First write packet data.
WD[-1]	Previous write packet data. A transaction that happened before this timeframe.
WD[1]	Second write packet data.
RD[0]	First read packet data.
RD[1]	Second read packet data.


Table 4-2 Terms used in SW-DP timing

The following figure shows a sequence of write transfers. It shows that a single new transfer, WD[1], can be accepted by the serial engine, while a previous write transfer, WD[0], is completing. Any subsequent transfer must be stalled until the first transfer completes.

Figure 4-4 SW-DP to DAP bus timing for write

The following figure shows a sequence of read transfers. It shows that the payload for an access port read transfer provides the data for the previous read request. A read transfer only stalls if the previous transfer has not completed, in which case the first read transfer returns undefined data. It is still necessary to return data to ensure that the protocol timing remains predictable.

Figure 4-5 SW-DP to DAP bus timing for read

The following figure shows a sequence of transfers separated by IDLE periods. It shows that the wire is always handed back to the host after a transfer.

W.APACC				R.APACC						Wait	
Т	ОК	Т	WDATA		ок	RDATA	Т	XXPACC	Т	Т	

Figure 4-6 SW-DP idle timing

After the last bit in a packet, the line can be LOW, or Idle, for any period longer than a single bit, to enable the Start bit to be detected for back-to-back transactions.

SW-DP multi-drop support

The SW-DP implements multi-drop extensions that are fully backwards compatible. All targets are selected following a Wire Reset, and remain selected unless a TARGETSEL command is received that selects a single target.

The SW-DP implements the multi-drop extensions defined as part of Serial Wire protocol version 2 in the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2*. This enables multiple SW-DP implementations supporting multi-drop extensions to share a single target connection.

Each target must be configured with a unique combination of target ID and instance ID, to enable a debugger to select a single target to communicate with:

- The target ID is a 32-bit field that uniquely identifies the system accessed by the SW-DP.
- The instance ID is a 4-bit field that distinguishes between multiple instances of the same target in a system. For example, because the same chip is used more than once on a board.

The multi-drop extensions do not enable the target ID and instance ID of targets to be read when multiple targets share a connection. The debugger must either be programmed with the target ID and instance ID of each target in advance, or must iterate through a list of known target IDs and instance IDs to discover which targets are connected.

Target ID

The SW-DP target ID is configured using a 32-bit input to the SW-DP, targetid[31:0].

The following table shows how it must be connected.

Table 4-3 TARGETID input connections

Bits	Name	Description
[31:28]	Revision	The revision of the part. This field is not used when selecting a target.
[27:12]	Part number	Identifies the part.
[11:1]	Designer	Identifies the designer of the part. The code used is assigned by JEDEC standard JEP-106 as used in IEEE 1149.1 and CoreSight identification registers. Bits[11:8] identify the bank, and bits[7:1] identify the position within that bank.
[0]	Reserved	Must be HIGH.

The target ID must be configured even in systems where multi-drop operation is not required, because it can be used for part identification. For more information on how to define the target ID, see the *CoreSight*[™] SoC-400 System Design Guide.

Instance ID

The SW-DP instance ID is configured using a 4-bit input to the SW-DP, **instanceid[3:0**]. If multiple targets with the same target ID might share a connection, **instanceid** must be driven differently for each target, for example by using non-volatile storage configured differently for each target. In most cases, you can tie this input as LOW.

4.2.7 Clock, reset, and power domain support

In the **swelktek** clock domain, there are registers to enable power control for the on-chip debug infrastructure. This enables the majority of the debug logic, for example, trace link components such as funnel, and trace sink components such as ETR, to be powered down by default. In this situation, only the serial engine must be clocked. A debug session then starts by powering up the debug sub-system.

Optionally, the debugger can write to registers in the cxgpr, if present within the debug sub-system, to power up debug components selectively. In SWJ-DP, either JTAG-DP or SW-DP can make power up or reset requests but only if they are the selected device. Even in a system that does not provide a clock and reset control interface to the DAP, it is necessary to connect these signals so that it appears that a clock and reset controller is present. This permits correct handshaking of the request and acknowledge signals.

The SWJDP must be placed in an always-on domain. By instantiating an asynchronous DAPBUS bridge on the DAPBUS output of the SWJDP, the SWJDP can be power-isolated from the Debug domain.

4.2.8 SWD and JTAG selection mechanism

SWJ-DP enables JTAG protocol mode, Serial Wire Debug protocol mode, or Dormant mode to be selected.

When in dormant mode, the **tms**, **tdi**, and **tdo** signals can be used for other purposes, enabling other devices connected to the same pins to use alternative debug protocols.

The switcher defaults to JTAG operation on power-up reset. Therefore the JTAG protocol can be used from reset without sending a selection sequence.

The SWJ-DP contains a mode status output, **jtagnsw**, that is HIGH when the SWJ-DP is in JTAG mode and LOW when in SWD or Dormant mode. This signal can be used to:

- Disable other TAP controllers when the SWJ-DP is in SWD or dormant mode, for example by disabling **tck** or forcing **tms** HIGH.
- Multiplex the SWO, traceswo, onto another pin such as tdo when not in JTAG mode.

Another status output, jtagtop, indicates the state of the JTAG-DP TAP controller. The states are:

- Test-Logic-Reset.
- Run-Test/Idle.
- Select-DR-Scan.
- Select-IR-Scan.

This signal can be used with **jtagnsw** to control multiplexers so that, for example, **tdo** and **tdi** can be reused as *General Purpose Input/Output* (GPIO) signals when the device is not in JTAG mode, or during cycles when these signals are not in use by the JTAG-DP TAP controller.

See the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2* for information on the SWJ-DP switching sequences.

4.2.9 Common debug port features and registers

This section describes features and registers that are present in this implementation of SW-DP and JTAG-DP as part of the SWJ-DP.

See the ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

Features overview

Both the SW-DP and JTAG-DP views within the SWJ-DP contain the same features as those that are defined in the ARM Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

The following features are included:

- Sticky flags and debug port error responses as a result of either a read and write error response from the system or because of an overrun detection, STICKYORUN.
- Pushed compare and pushed verify to enable more optimized control from a debugger by performing a set of write transactions and enabling any comparison operation to be done within the debug port.
- Transaction counter to recover to a point within a repeated operation.
- System and debug power and debug reset control. This is to enable an external debugger to connect to a potentially turned-off system and to power up as much as is required to get a basic level of debug access with minimal understanding of the system.

For more information, see the ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2

Example pushed operations

Example use of pushed verify operation on an AHB-AP and use of pushed find operation on an AHB-AP.

These are two examples that use this specific implementation of the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.* All register and feature references relate to this specification.

Example use of pushed verify operation on an AHB-AP

You can use pushed verify to verify the contents of system memory.

- 1. Make sure that the AHB-AP *Control/Status Word* (CSW) is set up to increment the *Transfer Address Register* (TAR) after each access.
- 2. Write to the TAR to indicate the start address of the Debug Register region that is to be verified.
- 3. Write a series of expected values as access port transactions. On each write transaction, the debug port issues an access port read access, compares the result against the value from the access port write transaction, and sets the STICKYCMP bit in the CTRL/STAT Register if the values do not match. The TAR is incremented on each transaction.

In this way, the series of values is compared against the contents of the access port locations and STICKYCMP is set if they do not match.

Example use of pushed find operation on an AHB-AP

You can use pushed find to search system memory for a particular word. If you use pushed find with byte lane masking you can search for one or more bytes.

- 1. Make sure that the AHB-AP CSW is set up to increment the TAR after each access.
- 2. Write to the TAR to indicate the start address of the Debug Register region that is to be searched.
- 3. Write the value to be searched for as an AP write transaction. The debug port repeatedly reads the location indicated by the TAR. On each debug port read:
 - The value returned is compared with the value from the access port write transaction. If they match, the STICKYCMP flag is set.
 - The TAR is incremented.

This continues until STICKYCMP is set or you terminate the search using ABORT.

You can also use pushed find without address incrementing to poll a single location, for example, to test for a flag being set on completion of an operation.

4.3 DAPBUS interconnect

The DAPBUS interconnect is a combinational component for connecting the DP to the APs in the DAP.

This section contains the following subsections:

- 4.3.1 Clock and reset on page 4-268.
- 4.3.2 Functional interfaces on page 4-268.
- 4.3.3 Operation on page 4-268.

4.3.1 Clock and reset

There are no clock or reset pins because this component is a combinational block.

4.3.2 Functional interfaces

The DAPBUS interconnect has one DAPBUS slave interface. It has a configurable number of DAPBUS master interfaces. This is defined at design time.

4.3.3 Operation

To address a particular AP, the DP uses the eight MSBs of its address bus, **dapcaddrs[15:2]**. The value driven on these address lines is determined by the APSEL[7:0] field in the AP Select register.

The AP Select register register is present on all DP implementations that are compliant with the *ARM*[®] *Debug Interface Architecture Specification*, *ADIv5.0 to ADIv5.2*.

An access to a master interface that does not exist goes to the default slave, which ignores writes and returns zero on reads.

4.4 DAPBUS asynchronous bridge

The DAPBUS asynchronous bridge enables data transfer between two asynchronous clock domains. It also provides an optional LPI to support its use between two power domains.

This section contains the following subsections:

- 4.4.1 Clock and reset on page 4-269.
- 4.4.2 Functional interfaces on page 4-269.
- 4.4.3 Functional description on page 4-269.
- *4.4.4 Low-power features* on page 4-269.

4.4.1 Clock and reset

This section describes the DAPBUS asynchronous bridge clocks and resets.

dapclkm	Clock for the master interface.
dapclks	Clock for the slave interface.
dapclkenm	Clock enable for the master interface.
dapclkens	Clock enable for the slave interface.
dapresetmn	Active-LOW reset for the master interface. This is asynchronously asserted and must be synchronously deasserted.
dapresetsn	Active-LOW reset for the slave interface. This is asynchronously asserted and must be synchronously deasserted.

4.4.2 Functional interfaces

This section describes the interfaces of the DAPBUS asynchronous bridge.

- One DAPBUS master interface.
- One DAPBUS slave interface.
- One optional LPI slave interface.

4.4.3 Functional description

The DAPBUS asynchronous bridge carries one transaction at a time across the clock domain boundary.

Aborting the current
transactionThe SWJ-DP can abort a transaction in progress by driving dapaborts to
HIGH. The bridge responds to the abort by driving dapreadys HIGH,
ending the current transaction. However, the next transaction is stalled until
the previously aborted transaction completes on the master interface.

4.4.4 Low-power features

The DAPBUS asynchronous bridge supports an optional LPI to a power controller. The power controller can request the master interface of the bridge to go into low-power state through the LPI. The bridge enters low-power state when there are no pending transactions.

When the bridge is in low-power mode and it receives a new transaction, it generates a wake-up request on the LPI by driving **cactive** HIGH and issues the transaction through its master interface when the power controller brings the master interface out of low-power state. The bridge stalls the transaction on the slave interface until the master interface is brought out of low-power state, and ensures that there is no loss of data transferred through the bridge.

4.5 DAPBUS synchronous bridge

The DAPBUS synchronous bridge enables data transfer between two synchronous clock domains. It can be used as a register slice within a clock domain to break long timing paths. It also includes an optional LPI to support its use between two power domains.

This section contains the following subsections:

- 4.5.1 Clock and reset on page 4-270.
- 4.5.2 Functional interface on page 4-270.
- 4.5.3 Functional description on page 4-270.
- 4.5.4 Low power features on page 4-270.

4.5.1 Clock and reset

The two synchronous clock domains must use the same clock input. Clock enable inputs are used to indicate the relative speeds of the two clock domains.

The clocks and resets of the DAPBUS synchronous bridge are:

dapclk	Clock.
dapresetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
dapclkens	Clock enable for the slave interface.
dapclkenm	Clock enable for the master interface.

4.5.2 Functional interface

The DAPBUS synchronous bridge has one DAPBUS master interface, and one optional LPI slave interface.

4.5.3 Functional description

The DAPBUS synchronous bridge carries one transaction at a time. The bridge can be used as a register slice to aid timing closure.

Special considerations apply when using the clock enable inputs to interface between synchronous clock domains. For more information, see the *CoreSight*[™] *SoC-400 Integration Manual*.

4.5.4 Low power features

The DAPBUS synchronous bridge LPI interface functions in the same way as the DAPBUS asynchronous bridge LPI interface.

4.6 JTAG-AP

The JTAG-AP provides JTAG access to on-chip components, operating as a JTAG master port to drive JTAG chains throughout a SoC. The JTAG command protocol is byte-oriented, with a word wrapper on the read and write ports to yield acceptable performance from the 32-bit internal data bus in the DAP. Daisy chaining is avoided by using a port multiplexer. In this way, slower cores do not impede faster cores.

See the ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2.

This section contains the following subsections:

- 4.6.1 External interfaces on page 4-271.
- 4.6.2 RTCK connections on page 4-271.

4.6.1 External interfaces

Each of the eight JTAG scan chains is on the same bit position for each JTAG signal. For example, connections for scan chain 0 can be located on bit [0] of each bus connection of **cstck**, **cstms**, **cstdi**, and **portconnected**.

The following table shows the JTAG to slave device signals.

Table 4-4 JTAG to slave device signals

Name	Туре	Description
nsrstout[7:0]	Output	Sub system reset out.
srstconnected[7:0]	Input	Sub system reset is present.
ncstrst[7:0]	Output	JTAG test reset.
cstck[7:0]	Output	JTAG test clock.
cstms[7:0]	Output	JTAG test mode select.
cstdi[7:0]	Output	JTAG test data in, to external TAP.
cstdo[7:0]	Input	JTAG test data out, from external TAP.
csrtck[7:0]	Input	Return test clock, target pacing signal.
portconnected[7:0]	Input	JTAG port is connected, status signal.
portenabled[7:0]	Input	JTAG port is enabled, for example, it might be deasserted by a processor powering down.

4.6.2 RTCK connections

RTCK connnections are implementation-specific features of the JTAG-AP.

Global port and RTCK

When more than one bit of **portsel[7:0]** is set, all active JTAG-AP multiplexer port **rtck** connections are combined.

- If **tck**=0 then select OR of active **rtck** connections.
- If tck=1 then select AND of active rtck connections.

An active **rtck** is generated by an active port that is defined as a port which:

- Is selected, when its portsel[7:0] bit is set.
- Is connected, when its portconnected[7:0] bit is set.
- Has not been disabled or powered down in this session, when its PSTA bit is 0.

If no ports are active, **rtck** is connected directly to **tck**. This means that disabling or powering down a JTAG slave cannot lock up the **rtck** interface.

Asynchronous TAP controllers that do not require an **rtck** connection must connect their **tck** output from JTAG-AP to the corresponding **rtck** input.

RTCK wrapper

Where devices do not have a return clock, an **rtck** wrapper must be used to register **tck** against the processor clock.

—— Note –

This information applies only to synchronous TAP controllers.

See the applicable Integration Manual for information on how to implement an rtck wrapper.

4.7 AXI-AP

The AXI-AP implements the MEM-AP architecture to directly connect to an AXI memory system. You can connect it to other memory systems using a suitable bridging component.

This section contains the following subsections:

- 4.7.1 Clock and reset on page 4-273.
- 4.7.2 Functional interfaces on page 4-273.
- 4.7.3 AXI-AP features on page 4-273.
- 4.7.4 DAP transfer abort on page 4-274.
- 4.7.5 Error responses on page 4-274.
- 4.7.6 AXI transfers on page 4-275.
- 4.7.7 Packed transfers on page 4-276.
- 4.7.8 Valid combinations of AxCACHE and AxDOMAIN table on page 4-277.

4.7.1 Clock and reset

The AXI-AP operates in a single clock domain, which must be used for both the DAPBUS interface and the AXI interface.

The clock and reset signals of the AHB-AP are:

clk	Clock
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

On AXI-AP reset, the entire AXI-AP module is reset and the transaction history is lost. ARM recommends that reset is not asserted while an AXI transfer is in progress. However, AXI-AP permits reset to be asserted with the understanding that all transaction history is lost.

4.7.2 Functional interfaces

AXI-AP bus interfaces.

- DAPBUS slave interface that connects to the DAPBUS interconnect.
- Authentication slave interface.
- AXI4 master interface.

4.7.3 AXI-AP features

List of features that are implemented by AXI-AP.

Table 4-5 AXI-AP features

Feature	Comment
AXI4 interface support	-
Auto-incrementing TAR	-
Stalling accesses	-
Access size	8, 16, 32, or 64 bits.
Endianness	Little-endian.
Error response	-
Packed transfers	-
ROM table pointer register	-
Long address support	-

Table 4-5 AXI-AP features (continued)

Feature	Comment	
AXI transfers	Write, read transfers.	
	Burst size of 1 only.	
	No out-of-order transactions.	
	No multiple outstanding accesses.	
	Only aligned transfers are supported.	
ACE-Lite	Limited set of commands to support coherency in the system	
	All transactions to non-shareable memory regions.	
	Limited subset of transactions to shareable memory regions.	
	For reads only. Supports the ReadOnce transaction type.	
	For writes only. Supports the WriteUnique transaction type.	
	Barrier transactions	

4.7.4 DAP transfer abort

If the DP issues an abort over the DAPBUS interface, the AXI-AP completes the transaction on its DAPBUS slave interface immediately. The DAP transfer abort does not cancel the ongoing AXI transfer.

4.7.5 Error responses

The AXI-AP produces error responses for AXI initiated, AP initiated, AXI and AP initiated, AXI transfers, and Packed transfers.

AXI initiated error responses

An error response received on the AXI master interface propagates onto the DAP bus as the transfer is completed.

For 64-bit data transfer, a sequence of two reads or writes must be generated on the DAP bus for a single 64-bit access on the AXI interface. For reads, the first read request on the DAP bus sends a read request on the AXI interface while for writes, a write access is sent on the AXI interface only after two write requests are received on the DAP bus.

Therefore, an error response received for a read request is for the first read request on the DAP bus while an error response received for a write request is for the second write request on the DAP bus.

AP initiated error response

AXI-AP writes after an abort	After a DP-initiated abort operation is carried out, and an external transfer is still pending, that is, the transfer in progress bit remains HIGH, all writes to the AXI-AP return an error response which you can ignore.
	AXI-AP writes return an error until the transfer in progress, the TrInProg bit, is set to 0 when the system transfer completes.
AXI-AP reads after a 64-bit AXI read sequence is broken	Read requests from the DAP bus must access both BDx registers of the pair, and must access the lower-numbered register first. For a DRW, two write requests are required to get the entire 64-bit word from AXI interface.
	All other accesses, such as a read followed by a write access to the same or different registers, return an error response to the DP.

AXI-AP writes after a 64-bit write sequence is broken	Write requests from the DAP interface must access both BDx registers of the pair and must access the lower-numbered register first. For a DRW, two write requests are required to build a 64-bit packet as write data on the AXI interface.
	All other accesses, such as a write followed by another read-write access to different registers, return an error response.
	For example, after accessing DRW, the next access on the DAP bus must be a write to DRW. Any other access returns an error response.
	Similarly, after accessing BD0, the next access must be a write to BD1. Any other access returns an error response.
Aborted AXI barrier transaction	It is possible to abort a barrier transaction that has not yet completed. When the abort request is generated, the DAPBUS transaction is completed in the next cycle. However the CSW.TrInPrg bit remains set to indicate that the AXI interface is busy waiting to complete the transaction. While the AXI interface is busy, a read-write request to DRW or BDx registers that results in a transaction on the AXI interface, causes the AXI-AP to return an error response to the DP.

AXI and AP initiated error responses

If an error response is given on the DAPBUS slave interface and TrInProg is LOW in the CSW Register, the error is from either:

- A system error response if **dbgen** and **spiden** permit the transfer to be initiated.
- An AXI-AP error response if dbgen and spiden do not permit the transfer.

The following table shows the difference between an AXI and an AP initiated error response.

CSW.Prot[1]	spiden	dbgen	Error response from	Reason
Х	Х	0	AXI-AP	All transfers blocked.
0	0	1	AXI-AP	Secure transfers blocked.
0	1	1	System	Secure transfer produced an error response.
1	Х	1	System	Non-secure transfer produced an error response.

Table 4-6 Difference between AXI and AP initiated error response

If an error response is given and TrInProg is HIGH, then the error is from an access port error response. This case can only occur after the initiation of an abort when the system transfer has not completed.

4.7.6 AXI transfers

Features supported by the AMBA4 AXI-compliant Master Port.

- Bursts of single transfer.
- Master processes one transaction at a time in the order they are issued.
- No out-of-order transactions.
- No issuing of multiple outstanding addresses.

Burst length

The AXI-AP supports burst length of one transfer only. **ARLEN[3:0]** and **AWLEN[3:0]** are always 0b0000.

Packed 8 or 16-bit transfers are treated as individual burst lengths of one transfer at the AXI interface. This ensures that there are no issues with boundary wrapping to avoid additional AXI-AP complexity.

Burst size

Supported burst sizes are:

- 8-bit.
- 16-bit.
- 32-bit.
- 64-bit.

Burst type

ARBURST and AWBURST signals are always 0b01.

Because only bursts of one transfer are supported, burst type has no meaning in this context.

Atomic accesses

AXI-AP supports normal accesses only.

ARLOCK and AWLOCK signals are always 0b00.

Unaligned accesses

Unaligned accesses are not supported. Depending on the size of the transfers, addresses must be aligned. For example, for 16-bit transfers, addresses must be half-word aligned, for 32-bit word transfers, addresses must be word-aligned, and for 64-bit double-word transfers, addresses must be double-word aligned.

- For 16-bit half word transfers:
 - Base address 0×01 is aligned and $A \times ADDR[7:0] = 0 \times 00$.
 - Base address 0×02 is retained and $A \times ADDR[7:0] = 0 \times 02$.
- For 32-bit word transfers:
 - Base address 0×01 to 0×03 is aligned and $A \times ADDR[7:0] = 0 \times 00$.
 - Base address 0×04 is retained and $A \times ADDR[7:0] = 0 \times 04$.
- For 64-bit word transfers:
 - Base address 0×04 is aligned and $A \times ADDR[7:0] = 0 \times 00$.
 - Base address 0×08 is retained and $AxADDR[7:0] = 0 \times 08$.

4.7.7 Packed transfers

The DAPBUS interface is a 32-bit data bus. However, 8-bit or 16-bit transfers can be formed on AXI according to the size field in the CSW register, 0x000. The AddrInc field in the CSW Register permits optimized use of DAPBUS to reduce the number of accesses to the DAP. It indicates whether the entire data word can be used to pack more than one transfer. If packed transfers are initiated, then address incrementing is automatically enabled. Multiple transfers are carried out in sequential addresses, with the size of the address increment based on the size of the transfer.

Examples of the transactions are:

For an unpacked 16-bit write at a base address of base 0x2, that is, CSW[2:0] = 0b001, CSW[5:4] = 0b01, **WDATA[31:16]** is written from bits [31:16] in the DRW register.

For an unpacked 8-bit read at a base address of base 0x1, that is, CSW[2:0] = 0b000, CSW[5:4] = 0b01, **RDATA[31:16]** and **RDATA[7:0]** are zero, **RDATA[15:8]** contains read data.

For a packed byte write at base address of base 0x2, that is, CSW[2:0] = 0b000 and CSW[5:4] = 0b10, four write transfers are initiated, and the order of data that is sent is:

- WDATA[23:16], from DRW[23:16] to AWADDR[31:0] = 0x00000002.
- WDATA[31:24], from DRW[31:24] to AWADDR[31:0] = 0x00000003.
- WDATA[7:0], from DRW[7:0] to AWADDR[31:0] = 0x00000004.
- WDATA[15:8], from DRW[15:8] to AWADDR[31:0] = 0x00000005.

For a packed half-word read at a base address of base 0x2, that is, CSW[2:0] = 0b001, CSW[5:4] = 0b10, two read transfers are initiated:

- **RDATA**[31:16] is stored into **DRW**[31:16] from **ARADDR**[31:0] = 0x00000002.
- RDATA[15:0] is stored into DRW[15:0] from ARADDR[31:0] = 0x00000004.

The AXI-AP only asserts **DAPREADY** HIGH when all packed transfers from the AXI interface have completed.

If the current transfer is aborted or the current transfer receives an ERROR response, the AXI-AP does not complete the subsequent packed transfers and returns **DAPREADY** HIGH immediately after the current packed transfer.

4.7.8 Valid combinations of AxCACHE and AxDOMAIN table

Valid combinations of AxCACHE and AxDOMAIN.

AxCACHE[3:0]	Access type	AxDOMAIN	Domain type	Valid
0000	Device	00	Non-shareable No	
0001	-	01	Inner-shareable No	
		10	Outer-shareable	No
		11	System	Yes
0010	Non-Cacheable	00	Non-shareable	Enable
0011	-	01	Inner-shareable	Enable
		10	Outer-shareable	Enable
		11	System	Yes
010x	-	-	-	No
100x	-	-	-	
110x	-	-	-	
011x	Write	00	Non-shareable	Yes
101x	Through	01	Inner-shareable	Yes
111x	Write	10	Outer-shareable	Yes
	Back	11	System	No

Table 4-7 Valid combination of AxCACHE and AxDOMAIN values

4.8 AHB-AP

The AHB-AP implements the MEM-AP architecture to directly connect to an AHB-based memory system. Connection to other memory systems is possible through suitable bridging.

As part of the MEM-AP description, the AHB-AP has the following implementation-specific features:

- Clock and reset.
- External interfaces.
- Implementation features.
- DAP transfers.
- Differentiation between system and access port initiated error responses.

For information about all the registers and features in a MEM-AP, see the *ARM*[®] *Debug Interface Architecture Specification*, *ADIv5.0 to ADIv5.2*.

This section contains the following subsections:

- 4.8.1 Clock and reset on page 4-278.
- 4.8.2 External interfaces on page 4-278.
- 4.8.3 Interfacing an AHB5 slave to the cxdapahbap on page 4-280.
- 4.8.4 Implementation features on page 4-281.
- 4.8.5 DAP transfers on page 4-281.
- 4.8.6 Differentiation between system and access port initiated error responses on page 4-282.

4.8.1 Clock and reset

The AHB-AP operates in a single clock domain, which must be used for both the DAPBUS interface and the AHB interface.

The clock and reset signals of the AHB-AP are:

dapclk	Clock.
dapclken	Clock enable.
dapresetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

The **dapresetn** signal must only be asserted LOW when there is no pending transaction on the AHB interface.

4.8.2 External interfaces

The primary external interface to the system is an AHB-Lite master port that supports AHB in AMBA v2.0, ARM11 AMBA extensions, and TrustZone extensions.

– Note –

The ARM11 AMBA extensions and TrustZone extentions implemented by the cxdapahbap are not directly compatible with the AMBA AHB5 specification. See *4.8.3 Interfacing an AHB5 slave to the cxdapahbap* on page 4-280 for more information on how to connect an AHB5 slave to the cxdapahbap.

The AHB-Lite master port does not support:

- BURST and SEQ.
- Exclusive accesses.
- Unaligned transfers.

The following table shows the other AHB-AP ports.

Name Type Description

dbgen Inpu	Enables AHB-AP transfers if HIGH. Access to the AHB-AP registers is still permitted if dbgen is LOW, but no AHB
	transfers are initiated. If a transfer is attempted when dbgen is LOW, then the DAP bus returns dapslverr HIGH.

spiden Input Permits Secure transfers to take place on the AHB-AP. If spiden is HIGH, then hprot[6] can be asserted as programmed into the SProt bit in the CSW Register.

HPROT encodings

hprot[6:0] is provided as an external port and is programmed from the Prot field in the CSW register.

The cxdapahbap implements **hprot[6:0]** according to the AMBA v2 AHB-Lite specification plus the ARM11 extensions and TrustZone extensions.

This implementation of hprot is not directly compatible with the AMBA 5 AHB specification.

See 4.8.3 Interfacing an AHB5 slave to the cxdapahbap on page 4-280 for more information on how to connect an AHB5 slave to the cxdapahbap.

The following conditions apply:

- **hprot[4:0]** programming is supported.
- hprot[5] is not programmable and is always LOW. Exclusive access is not supported, and therefore hprot[2] is not supported.
- hprot[6] programming is supported. hprot[6] HIGH is a Non-secure transfer. hprot[6] LOW is a Secure transfer. hprot[6] can be asserted LOW by writing to the SProt field in the CSW Register. A Secure transfer can only be initiated if spiden is HIGH. If SProt is set LOW in the CSW Register to perform a Secure transfer, but spiden is LOW, then no AHB transfer takes place.

See the CoreSight SoC-400 programmers model for the values of the Prot field.

HRESP

hresp[0] is the only RESPONSE signal that the AHB-AP requires.

The following conditions apply:

- AHB-Lite devices do not support SPLIT and RETRY and therefore **hresp[1]** is not required. It is still provided as an input, and if not present on any slave it must be tied LOW. Any **hresp[1:0]** response that is not 0b00, OKAY, is treated as an ERROR response.
- hresp[2] is not required because exclusive accesses are not supported in the AHB-AP.

HBSTRB support

hbstrb[3:0] signals are automatically generated based on the transfer size hsize[2:0] and haddr[1:0]. Byte, half-word, and word transfers are supported. It is not possible for you to directly control hbstrb[3:0].

Unaligned transfers are not supported. The following table shows an example of the generated **hbstrb[3:0]** signals for different-sized transfers.

Transfer description	haddr[1:0]	hsize[2:0]	hbstrb[3:0]
8-bit access to 0x1000	0b00	0b000	0b0001
8-bit access to 0x1003	0b11	0b000	0b1000

Table 4-9 Example generation of byte lane strobes

Transfer description	haddr[1:0]	hsize[2:0]	hbstrb[3:0]
16-bit access to 0x1002	0b10	0b001	0b1100
32-bit access to 0x1004	0b00	0b010	0b1111

Table 4-9 Example generation of byte lane strobes (continued)

AHB-AP transfer types and bursts

The AHB-AP cannot initiate a new AHB transfer every clock cycle because of the additional cycles required to serial scan in the new address or data value through a debug port. The AHB-AP supports two **htrans** transfer types, IDLE and NONSEQ.

The following conditions apply:

- When a transfer is in progress, it is of type NONSEQ.
- When no transfer is in progress and the AHB-AP is still granted the bus, the transfer is of type IDLE.

The only unpacked **hburst** encoding supported is SINGLE. Packed 8-bit transfers or 16-bit transfers are treated as individual NONSEQ, SINGLE transfers at the AHB-Lite interface. This ensures that there are no issues with boundary wrapping, to avoid additional AHB-AP complexity.

A full AHB master interface can be created by adding an AHB-Lite to AHB wrapper to the output of the AHB-AP, as provided in the *AMBA*[®] *Design Kit*.

4.8.3 Interfacing an AHB5 slave to the cxdapahbap

The AMBA 5 AHB specification extends the AMBA v2 definition of the **HPROT** bus and adds the **HNONSEC** signal to carry the Secure/Non-secure status of each transaction.

The following table shows the signal mapping that must be used when connecting the cxdapahbap to an AHB5 slave.

CoreSight SoC-400 AHB-AP (cxdapahbap.v)	Connects to	AMBA 5 AHB slave
Output		Input
hprot[0]	\rightarrow	HPROT[0]
hprot[1]	\rightarrow	HPROT[1]
hprot[2]	\rightarrow	HPROT[2]
hprot[3]	\rightarrow	HPROT[3]
		HPROT[4]
		HPROT[6]
hprot[4]	No connection	
hprot[5]	No connection	
	Tie to 1'b0	HPROT[5]
hprot[6]	\rightarrow	HNONSEC

Table 4-10 CoreSight \rightarrow AHB5 signal mapping

The following example shows the same mapping using Verilog code:

```
Signal Connection - Verilog Example
<code>
wire [6:0] cssoc_ahbap_hprot;
wire [6:0] ahb5_hprot;
wire ahb5_hnonsec;
assign ahb5_hnonsec = cssoc_ahbap_hprot[6];
```

```
assign ahb5_hprot[6] = cssoc_ahbap_hprot[3];
assign ahb5_hprot[5] = 1'b0;
assign ahb5_hprot[4] = cssoc_ahbap_hprot[3];
assign ahb5_hprot[3:0] = cssoc_ahbap_hprot[3:0];
</code>
```

4.8.4 Implementation features

The AHB-AP supports several MEM-AP features.

MEM-AP features that are provided by the AHB-AP:

- · Auto-incrementing of the Transfer Address Register with address wrapping on 1KB boundaries.
- · Word, halfword, and byte accesses to devices present on the AHB memory system.
- Packed transfers on subword transfers.

The AHB-AP does not support the following MEM-AP features:

- · Big-endian. All accesses are performed as expected to be to a little-endian memory structure.
- Slave memory port disabling. The AHB-Lite master interface is not shared with any other connection so there is no slave port to disable access to this interface. If the memory map presented to the AHB-AP is to be shared with another AHB-Lite master, then disabling is implemented externally to the DAP.

4.8.5 DAP transfers

DAP transfer aborts and error response generation.

DAP transfer aborts

The AHB-AP does not cancel the system-facing operation and returns **dapready** HIGH one cycle after **dapabort** has been asserted by the driving debug port. The externally driving AHB master port does not violate the AHB protocol. After a transfer has been aborted, the CSW Register can be read to determine the state of the transfer in progress bit, TrInProg. When TrInProg returns to zero, either because the external transfer completes, or because of a reset, the AHB-AP returns to normal operation. All other writes to the AHB-AP are ignored until this bit is returned LOW after a transfer abort.

Error response generation

Error response generation for a system initiated error response, AHP-AP reads after an abort, and AHB-AP writes after an abort.

System initiated error response

An error response received on the system driving master propagates onto the DAP bus when the transfer is completed. This response is received by the debug ports.

AHB-AP reads after an abort

After a **dapabort** operation is carried out, and an external transfer is still pending, that is, the TrInProg bit remains HIGH, reads of all registers return a normal response except for reads of the Data read-write Register and banked registers. Reads of the Data Read/Write Register and banked registers return an error response because they cannot initiate a new system read transfer until the CSW.TrInProg is set to 0 either by completing the system transfer or by a reset.

AHB-AP writes after an abort

After a **dapabort** operation is carried out, and an external transfer is still pending, that is, the transfer in progress bit remains HIGH, all writes to the access port return an error response, because they are ignored until the TrInProg bit is set to 0.

4.8.6 Differentiation between system and access port initiated error responses

If **dapslverr** is HIGH and TrInProg is LOW in the CSW Register, the error is from either a system error response if **dbgen** and **spiden** permit the transfer to be initiated, or an AHB-AP error response if **dbgen** and **spiden** do not permit the transfer to be initiated.

The following table shows the error responses.

SProt	SPIDEN	DBGEN	Error response from	Reason
x	х	0	AHB-AP	No transfers permitted
0	0	1	AHB-AP	Secure transfers not permitted
0	1	1	System	Secure transfer produced an error response
1	x	1	System	Non-secure transfer produced an error response

Table 4-11 Error responses with DAPSLVERR HIGH and TrinProg LOW

If **dapslverr** is HIGH and TrInProg is HIGH, then the error is from an access port error response. The transfer has not been accepted by the access port. This case can only occur after an abort has been initiated and while the system transfer has not completed.

4.9 APB-AP

The APB-AP implements the MEM-AP architecture to connect directly to an APB based system. This bus is normally dedicated to CoreSight and other debug components.

As part of the MEM-AP description, the APB-AP has the following implementation-specific features:

- Clock and reset.
- External interfaces.
- Implementation features.
- DAP transfers.
- Authentication requirements.

For information on all the registers and features in a MEM-AP, see the *ARM*[®] *Debug Interface Architecture Specification*, *ADIv5.0 to ADIv5.2*

This section contains the following subsections:

- 4.9.1 Clock and reset on page 4-283.
- 4.9.2 External interfaces on page 4-283.
- 4.9.3 Implementation features on page 4-283.
- 4.9.4 DAP transfers on page 4-284.
- 4.9.5 Authentication requirements for APB-AP on page 4-284.

4.9.1 Clock and reset

The APB-AP operates in a single clock domain, which must be used for both the DAPBUS interface and the APB interface.

The clock and reset signals of the APB-AP are:

dapclk	Clock.	
dapclken	Clock enable.	
dapresetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.	

The **dapresetn** signal must only be asserted LOW when there is no pending transaction on the APB interface.

4.9.2 External interfaces

The primary interface on APB-AP is an APB AMBA 3 compliant interface supporting extended slave transfers, and transfer response errors.

The following table shows the other APB-AP ports.

Table 4-12 APB-AP other ports

Name	Туре	Description
pdbgswen	Output	Enables self-hosted access to the debug APB at the APB multiplexer.
deviceen	Input	Disables device when LOW.

4.9.3 Implementation features

MEM-AP features that are provided by the APB-AP.

- Auto-incrementing of the Transfer Address Register with address wrapping on 1KB boundaries.
- Slave memory port disabling a slave interface is provided through the APB interconnect to enable another APB master to connect to the same memory map as the APB-AP.

The APB-AP does not support the following MEM-AP features:

- Big-endian. All accesses must be to a little-endian memory structure.
- Sub-word transfers. Only word transfers are supported.

The APB-AP has one clock domain, **dapclk**. It drives the complete APB-AP. This must be connected to **pclkdbg** for the APB interface.

dapresetn resets the internal DAP interface and the APB interface.

4.9.4 DAP transfers

Effects of DAPABORT, APB-AP error response generation, system initiated error response, AP-initiated error response, and differentiation between system-initiated and AP-initiated error responses.

Effects of DAPABORT

The APB-AP does not cancel the system-facing operation, and returns **dapready** HIGH one cycle after **dapabort** is asserted by the debug port. The externally driving APB master port does not violate the APB protocol. After a transfer is aborted, the Control and Status Register can be read to determine the state of the transfer in progress bit, TrInProg. When TrInProg returns to zero, after completing the external transfer or on a reset, the APB-AP returns to normal operation. All other writes to the APB-AP are ignored until the TrInProg bit is returned LOW after a transfer Abort.

APB-AP error response generation

APB-AP error response generation for the system initiated error response, AP-initiated error response, and the differences between System-initiated and AP-initiated error responses.

System initiated error response

An error response received on the APB master interface propagates onto the DAP bus when the transfer is completed. This is received by the debug ports.

AP-initiated error response

After a DP-initiated abort operation is carried out, and an external transfer is still pending, that is, the TrInProg bit in the CSW Register remains HIGH.

- Reads of all registers return a normal response except for reads of the Data Read/Write Register and banked registers. Reads of the Data Read/Write Register and banked registers return an error response because they cannot initiate a new system read transfer until CSW.TrInProg is set to 0 either by completing the system transfer or by a reset.
- Writes to the access port return an error response, because they are ignored until the TrInProg bit has been set to 0.

Differentiation between System-initiated and AP-initiated error responses

If **dapslverr** is HIGH and TrInProg is LOW, then the error is from a system error response.

If **dapslverr** is HIGH and TrInProg is HIGH, then the error is from an access port error response. The transfer has not been accepted by the access port. This case can occur after an abort has been initiated and while the system transfer has not completed.

4.9.5 Authentication requirements for APB-AP

APB-AP has one authentication signal, namely deviceen.

- If the APB-AP is connected to a debug bus, deviceen must be tied HIGH.
- If the APB-AP is connected to a system bus dedicated to the Secure state, this signal must be connected to **spiden**.
- If the APB-AP is connected to a system bus dedicated to the Non-secure state, this signal must be connected to **dbgen**.

For more information, see the ARM[®] Architecture Specification.

Chapter 5 APB Interconnect Components

This chapter describes the APB interconnect components.

It contains the following sections:

- 5.1 APB Interconnect with ROM table on page 5-286.
- 5.2 APB asynchronous bridge on page 5-288.
- 5.3 APB synchronous bridge on page 5-289.

5.1 APB Interconnect with ROM table

The APB interconnect connects one or more APB bus masters, for example an APB-AP and an APB interface driven by an on-chip processor. APB interconnects can be cascaded, for example to split across multiple clock or power domains.

Each APB Interconnect implements a ROM table at address 0x0000000, which identifies the locations of the CoreSight components accessed through it.

The APB Interconnect implements a 32-bit data bus.

This section contains the following subsections:

- 5.1.1 Clock and reset on page 5-286.
- 5.1.2 Functional interfaces on page 5-286.
- 5.1.3 Device operation on page 5-286.

5.1.1 Clock and reset

This component has a single clock domain, **clk**, driven by the debug APB clock. The master and slave interfaces operate on the same clock, **clk**.

This component has a single reset input, resetn, that is an asynchronous active-LOW reset input.

5.1.2 Functional interfaces

The APB interconnect with the ROM table has a configurable number of AMBA 3 APB-compliant slave interfaces and AMBA 3 APB-compliant master interfaces. Each master interface can address a configurable address size, to support CoreSight components that require more than 4KB of address space. The base address of each master must align to its size.

The DbgSwEnable bit in the APB-AP can be used to prevent self-hosted, on-chip, accesses.

5.1.3 Device operation

Device operation details for accessess to ROM, arbitration, error response, address width on master interfaces, and address width on slave interfaces.

Accesses to ROM table

Accesses to addresses in the range 0x0000-0x0FFC are decoded to the ROM table. See the *ARM*[®] *Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2* for information on ROM tables.

Arbitration

The internal arbitrates between competing slave interfaces for access to debug APB, as the following algorithm demonstrates:

- When a slave interface raises a request, the highest priority is given to the slave interface with the lowest instance suffix, that is, SlvIntf0 > SlvIntf1 > SlvIntf2 > ... > SlvIntf(n-1). The order in which these slave interfaces raised their requests relative to each other is not used in arbitration.
- The arbitration is re-evaluated after every access.

Error response

The APB interconnect returns an error on its slave interface under any of the following conditions:

- The targeted debug APB device returns an error response.
- The address accessed by a slave interface does not decode to any debug APB device.
- A system access is attempted to a debug APB device when not permitted. This occurs when the DbgSwEnable bit in the APB-AP is cleared, and self-hosted, on-chip, accesses are attempted.

Address width on master interfaces

The width of the address bus on the master interface depends on the size of the address space allocated to that interface through bit[31] of the address bus. Bit[31] is always exported onto the master interface. The following table shows the address bus widths for each setting of size.

Size of address space	Address bus on the master interface,
	where x=0 to NUM_MASTER_INTF-1
4KB	paddrm <x>[11:2]</x>
8KB	paddrm <x>[12:2]</x>
16KB	paddrm <x>[13:2]</x>
32KB	paddrm <x>[14:2]</x>
64KB	paddrm <x>[15:2]</x>
128KB	paddrm <x>[16:2]</x>
256KB	paddrm <x>[17:2]</x>
512KB	paddrm <x>[18:2]</x>
1MB	paddrm <x>[19:2]</x>
2MB	paddrm <x>[20:2]</x>
4MB	paddrm <x>[21:2]</x>
8MB	paddrm <x>[22:2]</x>
16MB	paddrm <x>[23:2]</x>
32MB	paddrm <x>[24:2]</x>
64MB	paddrm <x>[25:2]</x>
128MB	paddrm <x>[26:2]</x>
256MB	paddrm <x>[27:2]</x>
512MB	paddrm <x>[28:2]</x>
1GB	paddrm <x>[29:2]</x>

Table 5-1 Address bus on the master interfaces

— Note —

<x> is the master interface number, from 0 to NUM_MASTER_INTF - 1. Master port base addresses must be aligned to their size.

Address width on slave interfaces

The address width on the APB slave interfaces depends on the total memory footprint occupied by the defined master interfaces and the 4KB footprint of the ROM Table.

5.2 APB asynchronous bridge

The APB asynchronous bridge enables data transfer between two asynchronous clock domains. The APB asynchronous bridge is designed to exist across two power domains and provides an optional LPI.

This section contains the following subsections:

- 5.2.1 Clock and reset on page 5-288.
- 5.2.2 Functional interfaces on page 5-288.
- 5.2.3 Low-power features on page 5-288.

5.2.1 Clock and reset

This section provides a summary of the APB asynchronous bridge clocks and resets.

pclkm	Clock for master interface.	
pclkenm	Clock enable for master interface.	
presetmn	Active-LOW reset for master interface. This is asynchronously asserted and must be synchronously deasserted.	
pclks	Clock for slave interface.	
pclkens	Clock enable for slave interface.	
presetsn	Active-LOW reset for slave interface. This is asynchronously asserted and must be synchronously deasserted.	

5.2.2 Functional interfaces

The APB asynchronous bridge has one APB master compliant with APB3, one APB slave compliant with APB3, and one optional LPI slave.

5.2.3 Low-power features

The APB asynchronous bridge supports an optional LPI to a power controller. The power controller can request the master interface of the bridge to go into low-power state through the LPI. The bridge enters low-power state when there are no pending transactions.

When the bridge is in low-power mode and it receives a new transaction, it generates a wake-up request on the LPI by driving **cactive** HIGH and issues the transaction through its master interface when the power controller brings the master interface out of low-power state. The bridge stalls the transaction on the slave interface until the master interface is brought out of low-power state, and ensures that there is no loss of data transferred through the bridge.

5.3 APB synchronous bridge

The APB synchronous bridge enables data transfer between two synchronous clock domains.

This section contains the following subsections:

- 5.3.1 Clock and reset on page 5-289.
- 5.3.2 Functional interface on page 5-289.
- 5.3.3 Functional description on page 5-289.
- 5.3.4 Low-power features on page 5-289.

5.3.1 Clock and reset

The APB synchronous bridge operates in a single clock domain with one asynchronous reset.

The clocks and resets of the APB synchronous bridge are:

pclk	Clock.
presetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
pclkenm	Clock enable for master interface.
pclkens	Clock enable for slave interface.

5.3.2 Functional interface

The APB synchronous bridge has one APB master compliant with APB3, one APB slave compliant with APB3, and one optional LPI port.

5.3.3 Functional description

The APB synchronous bridge can be used as a register slice on the APB path. Special considerations apply when using the clock enable inputs to interface between synchronous clock domains.

For more information, see the CoreSight™ SoC-400 Integration Manual.

5.3.4 Low-power features

The APB synchronous bridge LPI functions in the same way as the APB asynchronous bridge LPI interface.

Chapter 6 ATB Interconnect Components

This chapter describes the ATB interconnect components.

It contains the following sections:

- 6.1 ATB replicator on page 6-291.
- 6.2 ATB funnel on page 6-292.
- 6.3 ATB upsizer on page 6-296.
- 6.4 ATB downsizer on page 6-297.
- 6.5 ATB asynchronous bridge on page 6-298.
- 6.6 ATB synchronous bridge on page 6-299.

6.1 ATB replicator

The ATB replicator propagates the data from a single ATB master to two ATB slaves at the same time. If the optional APB interface is implemented, it can also separately filter the trace for each ATB master interface.

This section contains the following subsections:

- 6.1.1 Clock and reset on page 6-291.
- 6.1.2 Functional interfaces on page 6-291.
- 6.1.3 Functional overview on page 6-291.

6.1.1 Clock and reset

The ATB replicator clock and reset signals are clk, resetn, and pclkendbg.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
pclkendbg	Clock enable for the optional debug APB interface.

6.1.2 Functional interfaces

The ATB replicator has a single slave ATB port, two ATB master ports, and one optional APB port.

6.1.3 Functional overview

The ATB replicator permits the connection of two trace sinks. If more than two trace sinks are required then multiple replicators can be used.

ID Filtering	If the optional APB interface is implemented, the replicator can filter the trace for each ATB master interface according to the trace ID. Most trace sources use a single trace ID for their trace, and so the replicator can be programmed to control which trace sources are captured by each trace sink.
	After reset the replicator behavior matches the behavior of a non- programmable replicator, and no filtering is performed. The filtering settings can be changed at any time.
Trace data flow	As data is received from the trace source, it is passed on to all trace sinks at the same time. The replicator does not accept more data from the trace source until all the trace sinks have accepted this data. This has the impact of reducing the throughput of the replicator to match that of the slowest trace sink.
	If the optional APB interface is implemented, a trace sink which supports high bandwidth trace, such as an ETB, can be enabled at the same time as a trace sink which supports only lower bandwidth trace, such as a TPIU. Higher bandwidth trace sources can be filtered out of the trace seen by the TPIU, so that it does not give backpressure to the replicator and therefore impact the trace seen by the ETB.

6.2 ATB funnel

The ATB funnel component merges multiple ATB buses into a single ATB bus. If the optional APB interface is implemented, a debugger can also control the arbitration scheme and selectively enable the ATB slave interfaces for tracing.

This section contains the following subsections:

- 6.2.1 Clock and reset on page 6-292.
- 6.2.2 Functional interface on page 6-292.
- 6.2.3 ATB slave interface enable on page 6-292.
- 6.2.4 Arbitration on page 6-292.
- 6.2.5 Cascaded funnel support on page 6-294.
- 6.2.6 Topology detection on page 6-294.
- 6.2.7 Non-programmable funnel on page 6-295.

6.2.1 Clock and reset

The clock and reset signals of the ATB funnel are clk, resetn, and pclkendbg.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
pclkendbg	Clock enable for the optional debug APB interface.

6.2.2 Functional interface

The ATB funnel has a configurable number of ATB slave interfaces and one ATB master interface. The widths of the ATB interfaces are configurable but they must be configured to be the same and to match the ATB data width.

6.2.3 ATB slave interface enable

The ATB slave interfaces can be independently enabled and disabled using the optional APB programming interface. The settings can be changed at any time.

If the APB programming interface is not implemented then all ATB slave interfaces are enabled.

6.2.4 Arbitration

The funnel implements fixed priority and round robin arbitration schemes. Both schemes can be used at the same time.

Priority values for each ATB slave interface are defined in a 3-bit field in the Priority Control register. Fixed priority arbitration is used between interfaces programmed with different priority values, with priority level 0 having the highest priority and priority level 7 having the lowest priority. Round robin arbitration is used between interfaces programmed with the same priority value.

At reset, all ports have a value of 0, and round robin arbitration is used between all interfaces.

A minimum hold time value can be set in the Funnel Control register, which affects both arbitration schemes. At reset, a minimum hold time of four transactions is selected.

The arbitration scheme prioritizes ATB interfaces as follows:

- 1. The interface that was previously selected, if it has valid trace available with the same ID as previously, and the minimum hold time has not been reached. The hold time is the number of successive times the same interface has been selected, ignoring cycles where no interfaces had valid trace.
- 2. Interfaces in the flush state. When a flush occurs the flush request is propagated to all slave interfaces, and those which have not yet completed the flush are given priority over those which have completed the flush.
- 3. Interfaces with a higher programmed priority level. This is the fixed priority arbitration scheme.

- 4. Interfaces which were not previously selected. This is the round robin arbitration scheme. When an interface has been selected, it is marked as having lower priority than other interfaces with the same programmed priority level. When an interface that has already been marked is selected again, for example because all of the interfaces at that priority level have been selected in turn, the marks are cleared for other interfaces at the same programmed priority level and the scheme starts again.
- 5. Interfaces with a lower port number.

Minimum hold time

If the funnel switches between interfaces, and therefore ATB IDs, this can frequently result in inefficiency:

- The formatter in the trace sink must add extra trace to indicate the change of ATB ID.
- An upsizer placed downstream of the funnel is less efficient, because trace with different IDs cannot be combined into a single cycle.

The minimum hold time setting reduces the frequency of switching between interfaces:

- If you reduce the minimum hold time then the overall bandwidth of the trace system might be reduced, because of more frequent switching.
- If you increase the minimum hold time then the FIFOs of individual trace sources might be insufficient, leading to greater overflow.

ARM recommends the default value of four transactions in most cases.

Example minimum hold time waveform

The following figure shows the effect of minimum hold time for a two ATB slave port funnel programmed as follows:

- Slave port priority arbitration, where slave port 0 has the higher priority, and slave port 1 has the lower priority.
- A minimum hold time of 4.

Figure 6-1 ATB funnel minimum hold time example

The following table shows the sequence of events in the figure.

Table 6-1 Event sequence

Time	Time Event	
t ₀	•	Slave port 1 is currently selected. Higher priority slave port 0 has a pending transfer. Slave port 1 remains selected because the minimum hold time has not expired.
t ₁	•	Slave port 1 remains selected because the minimum hold time has not expired.
t ₂	•	Minimum hold time expires for slave port 1 and funnel switches to slave port 0.
t ₃	•	Slave port 0 has no more data to transfer and the funnel switches back to slave port 1.

6.2.5 Cascaded funnel support

The funnel is a combinatorial block, and when a cascaded funnel configuration is implemented, a register slice that is a forward, reverse, or full register slice must be instantiated between the cascaded funnels to avoid combinatorial timing loops.

6.2.6 Topology detection

The funnel supports topology detection through a set of integration registers that enable reading or writing **atvalid** and **atready** of all the ATB interfaces. Integration mode is enabled by setting the Integration mode bit in the ITCTRL register.

Register ITATBCTR2 is the Integration Test ATB Control 2 register. A write to ITATBCTR2 outputs data on **atreadysn**, where n is defined by the status of the Ctrl_Reg. A read from ITATBCTR2 returns the data from **atreadym**.

Register ITATBCTR0 is the Integration Test ATB Control 0 register. A write to ITATBCTR0 sets the value of **atvalidm**. A read from ITATBCTR0 returns the value of **atvalidsn**, where n is defined by the status of the Ctrl_Reg.

It is illegal to have more than one ATB slave port enabled while in integration mode and performing topology detection. No hardware protection exists and enabling multiple ports is considered to be a programming error.

After performing integration or topology detection, you must reset the system to ensure the correct behavior of CoreSight SoC-400 and other connected system components that are affected by the integration or topology detection.

6.2.7 Non-programmable funnel

In the non-programmable configuration, the funnel does not have an APB interface.

The funnel behavior is equivalent to the following register settings:

- Ctrl_Reg = 0x000003FF. All ATB slave interfaces are enabled, where present, and the hold time is four transfers.
- Priority_Ctrl_Reg = 0x00000000. All slave interfaces have the same priority and the round-robin scheme is used to select between them.
- ITCTRL = 0x00000000. Integration mode is not supported and the funnel is transparent for topology detection.

6.3 ATB upsizer

The ATB upsizer enables the ATB bus width to be increased, for example before a trace funnel with a wider ATB bus width.

This section contains the following subsections:

- 6.3.1 Clocks and reset on page 6-296.
- 6.3.2 Functional interface on page 6-296.
- 6.3.3 Component functionality on page 6-296.

6.3.1 Clocks and reset

The clock and reset signals of the ATB upsizer are clk and resetn.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be
	synchronously deasserted.

6.3.2 Functional interface

The ATB upsizer has a slave interface of narrow width and a master interface of wider width. The width of the master and slave interfaces is configurable.

6.3.3 Component functionality

The ATB upsizer attempts to make efficient use of the increased width of the master ATB interface, by combining multiple cycles of trace on the slave interface into a single cycle of trace on the master interface.

The upsizer implements an internal buffer which stores trace data on the slave interface to form the transfer to be output on the master interface. The FIFO contents are output on the master interface when:

- The next trace transfer on the slave interface has a different ATB ID to the trace in the buffer.
- The last trace to be written to the buffer did not use all the bytes of the trace bus, that is, some bits of **atbytes** were zero.
- The buffer is full.
- An ATB flush is received.

To ensure maximum efficiency of the upsizer, trace sources must aim to use the full width of the ATB bus wherever possible.

6.4 ATB downsizer

The ATB downsizer enables the ATB bus width to be decreased, for example before connecting to a trace sink with limited bandwidth.

This section contains the following subsections:

- 6.4.1 Clocks and reset on page 6-297.
- *6.4.2 Functional interface* on page 6-297.
- 6.4.3 Component functionality on page 6-297.

6.4.1 Clocks and reset

The clock and reset signals of the ATB downsizer are clk and resetn.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

6.4.2 Functional interface

The ATB downsizer has one ATB slave interface and one ATB master interface of narrower width. The width of the master and slave interfaces is configurable.

6.4.3 Component functionality

The ATB downsizer splits transfers that are wider than the master interface into multiple transfers on the master interface.

6 ATB Interconnect Components 6.5 ATB asynchronous bridge

6.5 ATB asynchronous bridge

The ATB asynchronous bridge permits data transfer between two asynchronous clock domains. The ATB asynchronous bridge is designed to exist across two power domains, and provides an LPI to bring the bridge into a safe state before removing power from one power domain.

This section contains the following subsections:

- 6.5.1 Functional interfaces on page 6-298.
- 6.5.2 Clocks and resets on page 6-298.
- 6.5.3 Device operation on page 6-298.
- 6.5.4 Low-power features on page 6-298.

6.5.1 Functional interfaces

The ATB asynchronous bridge has an ATB slave interface, an ATB master interface, and a non-configurable LPI.

6.5.2 Clocks and resets

This section describes the clock and reset signals used by the ATB asynchronous bridge.

The clock and reset signals are:

clks	Clock for the slave interface.
resetsn	Active-LOW reset for the slave interface. This is asynchronously asserted and must be synchronously deasserted.
clkens	Clock enable for the slave interface.
clkm	Clock for the master interface.
resetmn	Active-LOW reset for the master interface. This is asynchronously asserted and must be synchronously deasserted.
clkenm	Clock enable for the master interface.

6.5.3 Device operation

The ATB asynchronous bridge passes trace data between two clock domains by using a buffer. Each transfer takes a number of cycles to pass from the slave interface to the master interface, and this buffer is large enough to ensure that the bridge does not limit the throughput of trace data.

When a flush is received, the bridge ensures that the buffer is empty before the bridge signals that the flush is complete.

6.5.4 Low-power features

The ATB asynchronous bridge supports two power domains. Before a domain is powered down, the power controller must ensure that the bridge is in a safe state by using the low-power interface. Failure to do this might cause incorrect operation when the domain is powered up again.

When a low power request is issued to the bridge by driving **csysreq** LOW, the bridge:

- Flushes components connected to its slave interface. This enables those components to also be powered down, provided that any other component-specific requirements are first met.
- Accepts and discards any subsequent trace that it receives on its ATB slave interface.
- Drains the bridge of trace data.
- Responds to subsequent flush requests received on its ATB master interface without forwarding the flush request to the slave interface.
- Brings the internal logic of the bridge to a safe state for one side to be powered down without the other.

The bridge never requests powerup using the LPI, and always drives cactive LOW.

6.6 ATB synchronous bridge

The ATB synchronous bridge enables trace data transfer between two synchronous clock domains.

The bridge implements a non-configurable Low Power Interface to enable a power domain boundary to be implemented next to the bridge, and a configurable size trace buffer to smooth out bursts of trace. The ATB synchronous bridge can be used as a register slice for timing closure.

When the ATB synchronous bridge is used for timing closure, only the FULL bridge type configuration provides isolation of all paths between the master and slave port. ARM recommends that asynchronous bridges are used in preference to synchronous bridges, particularly in more complex designs. This reduces the risk of problems with timing closure which can only be identified late in the design flow.

This section contains the following subsections:

- 6.6.1 Clock and reset on page 6-299.
- 6.6.2 Functional interfaces on page 6-299.
- 6.6.3 Operation on page 6-299.
- 6.6.4 Low-power control on page 6-299.

6.6.1 Clock and reset

The two synchronous clock domains must use the same clock input. Clock enable inputs are used to indicate the relative speeds of the two clock domains.

The ATB synchronous bridge uses the following clock and reset signals:

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
clkens	Clock enable for the slave port.
clkenm	Clock enable for the master port.

6.6.2 Functional interfaces

The ATB synchronous bridge consists of a slave ATB interface and a master ATB interface.

6.6.3 Operation

The ATB synchronous bridge can implement a trace buffer to supplement the buffers of the trace sources in your system. When only a small trace buffer is required, this can be a lower-area alternative to implementing an *Embedded Trace FIFO* (ETF), which is provided by the TMC product, licensed separately.

The bridge can be used as a register slice, by selecting the smallest buffer size and tying both clock enable inputs HIGH.

Special considerations apply when using the clock enable inputs to interface between synchronous clock domains. For more information, see the *CoreSight*[™] *SoC-400 Integration Manual*.

6.6.4 Low-power control

The ATB synchronous bridge supports a power domain boundary on the slave interface, outside the bridge.

Before a domain is powered down, the power controller must ensure that the bridge is in a safe state by using the low-power interface. Failure to do this might cause incorrect operation when the domain is powered up again.

When a low power request is issued to the bridge by driving **csysreq** LOW, the bridge:

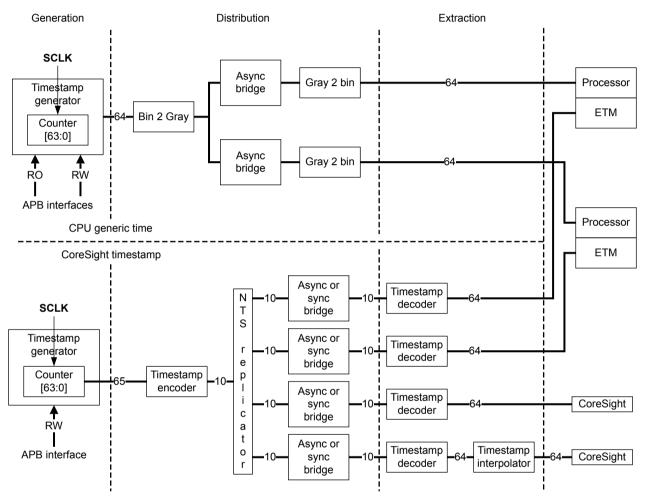
- Flushes components connected to its slave interface. This enables those components to also be powered down, provided that any other component-specific requirements are first met.
- Accepts and discards any subsequent trace that it receives on its ATB slave interface.
- Drains the bridge of trace data.
- Responds to subsequent flush requests received on its ATB master interface without forwarding the flush requests to the slave interface.

The bridge never requests powerup using the LPI, and always drives cactive LOW.

Chapter 7 Timestamp Components

This chapter describes the timestamp components.

It contains the following sections:


- 7.1 About the timestamp components on page 7-302.
- 7.2 Timestamp generator on page 7-304.
- 7.3 Timestamp encoder on page 7-306.
- 7.4 Narrow timestamp replicator on page 7-307.
- 7.5 Narrow timestamp asynchronous bridge on page 7-308.
- 7.6 Narrow timestamp synchronous bridge on page 7-310.
- 7.7 Timestamp decoder on page 7-311.
- 7.8 *Timestamp interpolator* on page 7-312.

7.1 About the timestamp components

The timestamp components generate and distribute consistent timestamp values to multiple destinations in a SoC.

The timestamp generator can be used to generate CoreSight timestamps or processor generic time. The Narrow Timestamp components can be used to distribute CoreSight timestamps around the SoC.

Components used to distribute Wide timestamps for processor generic time are not delivered as part of CoreSight SoC-400. The following figure shows an example timestamp system.

Figure 7-1 Timestamp example system

The Narrow timestamp interconnect provides a mechanism for efficiently distributing CoreSight timestamp values across a potentially large system in a cost-effective way. It has the following features:

- Full 64-bit timestamp values are distributed using a 10-bit interface that eases system wire routing.
- Decoded timestamp value is presented as a natural binary number to software.
- Decoded timestamp value of zero indicates an unknown timestamp, for example when resynchronizing.

The timestamp generator is a Wide timestamp component that can be used independently of the Narrow timestamp distribution components. It has the following features:

- Writable and readable count value.
- Can be used to as a source for CoreSight timestamping, or for processor generic time.

The interconnect ensures that any components that use the distributed timestamp are synchronized to the distributed count value with minimal skew while the timestamp interconnect is clocked. When a portion

of the timestamp interconnect is reset, it can resynchronize to the new timestamp value. You must not stop the clock to any part of the timestamp interconnect unless you reset that part of the timestamp interconnect when the clock restarts, otherwise it does not resynchronize to the correct timestamp.

Only the timestamp generator is programmable. The other components have no programmers model and operate autonomously.

7.2 Timestamp generator

The timestamp generator generates the timestamp value that is distributed over the rest of the timestamp interconnect.

This section contains the following subsections:

- 7.2.1 Clock and reset on page 7-304.
- 7.2.2 Processor generic time on page 7-304.
- 7.2.3 Control APB interface on page 7-304.
- 7.2.4 Read-only APB interface on page 7-305.
- 7.2.5 hltdbg signal on page 7-305.
- 7.2.6 Counter overflow on page 7-305.

7.2.1 Clock and reset

The timestamp generator clocks and resets are clk and resetn. There is no **pclkendbg** input. The APB interface must be run at the full speed of **clk**.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

7.2.2 Processor generic time

The CoreSight timestamp generator can be used to generate the time reported by ARM processors that implement the Generic Timer specification, or to generate the time used to align traces and other debug information in the CoreSight system.

When generating the time reported by ARM processors that implement the Generic Timer specification, software expects that this time does not count backwards, and so it is important that only Secure software can change the timestamp value. The programmers model of the timestamp generator has been designed to enable Non-secure software to read the timestamp value while only permitting Secure software to change the timestamp value.

When generating the time used to align traces and other debug information in the CoreSight system, the timestamp generator is controlled by debug software and connected to the debug APB interconnect. The read-only interface is not used.

—— Note —

The timestamp distribution networks for processor time and CoreSight timestamping must be kept separate and must not be shared.

7.2.3 Control APB interface

The control APB interface is designed to be accessible only to Secure software.

Through the control APB interface, software can:

- Start and stop the timestamp incrementing. When enabled, the timestamp increments by one every clock cycle.
- Cause the timestamp counter to stop when debug state is entered. This requires the **hltdbg** input to be driven by a CTI trigger output. To enable this feature, debug software must configure the CTI to signal to the timestamp generator when system-wide debug state has been entered.
 - _____ Note ____

When Secure software enables this feature, it gives debug software very flexible control over when the timestamp counter is halted, which is not limited to debug halt events.

- Read the current timestamp value.
- Change the current timestamp value, for example to restore an earlier value when powering up the system. The timestamp counter must be halted while it is changed. When the timestamp value is changed, the timestamp generator issues a force synchronization event through the timestamp interconnect. The new value might take some time to propagate if the timestamp interconnect includes slow clock domains.
- Change the reported timestamp increment.

7.2.4 Read-only APB interface

The read-only APB interface is designed to be accessible to Non-secure software and debug software. Through this interface, software can read the current timestamp value.

7.2.5 hltdbg signal

The **hltdbg** signal is an event interface. When the timestamp generator is used to distribute the processor generic time, **hltdbg** must be connected to a CTI trigger output.

7.2.6 Counter overflow

The timestamp counter is 64 bits, which is large enough to make overflow unlikely in normal usage models. However, if the counter does overflow, then it wraps around to zero, and a force synchronization event is issued through the timestamp interconnect.

7.3 Timestamp encoder

The timestamp encoder converts a 64-bit binary timestamp into the narrow timestamp interface used inside the timestamp interconnect. It also resynchronizes the timestamp interconnect when the **tsforcesync** input signal is asserted.

In most systems, there is one timestamp encoder, connected directly to the timestamp generator.

This section contains the following subsections:

• 7.3.1 Clock and reset on page 7-306.

7.3.1 Clock and reset

The clock and reset signals of the timestamp encoder are tsclk and tsresetn.

tsclk	Clock.
tsresetn	Active-LOW reset. This is asynchronously asserted and must be
	synchronously deasserted.

7.4 Narrow timestamp replicator

The narrow timestamp replicator enables multiple components to receive a timestamp value encoded in the narrow timestamp interface.

This section contains the following subsections:

• 7.4.1 Clock and reset on page 7-307.

7.4.1 Clock and reset

The clock and reset signals of the narrow timestamp replicator are **clk** and **resetn**.

С

clk resetn Clock. Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

7.5 Narrow timestamp asynchronous bridge

The narrow timestamp asynchronous bridge transmits the narrow timestamp across an asynchronous clock domain boundary. It can be implemented across two power domains, and supports an LPI for this purpose.

This section contains the following subsections:

- 7.5.1 Functional interfaces on page 7-308.
- 7.5.2 Clocks and resets on page 7-308.
- 7.5.3 Operation on page 7-308.
- 7.5.4 Low-power features on page 7-308.
- 7.5.5 *Timestamp recovery from stopped clock* on page 7-309.

7.5.1 Functional interfaces

The narrow timestamp asynchronous bridge has a narrow timestamp slave interface, a narrow timestamp master interface, and an LPI.

7.5.2 Clocks and resets

The clock and reset signals of the narrow timestamp replicator are clks, resetsn, clkm, and resetmn.

clks	Clock for the slave interface.
resetsn	Reset for the slave interface. This is asynchronously asserted and must be synchronously deasserted.
clkm	Clock for the master interface.
resetmn	Reset for the master interface. This is asynchronously asserted and must be synchronously deasserted.

7.5.3 Operation

The bridge implements an internal buffer to pass timestamp messages between the two clock domains, so that the timestamp resolution is maintained.

When the master interface of the bridge is running at a slower clock speed to the slave interface, the bridge discards some timestamp packets. It ensures that the packets that remain convey the same time information, but incrementing in larger steps with lower resolution.

7.5.4 Low-power features

The narrow timestamp asynchronous bridge supports two power domains. Before a domain is powered down, the power controller must ensure that the bridge is in a safe state by using the low-power interface. Failure to do this might cause the rest of the timestamp interconnect to behave incorrectly, or corrupt timestamp values to be returned when the domain is powered up again.

When a low-power request is issued to the bridge by driving **csysreq** LOW, the bridge:

- Drives tssyncreadys HIGH so that the clock can be stopped without affecting the rest of the system.
- Empties the internal buffer of timestamp messages. The clock of components connected to the master interface must still be running to enable these messages to be received.
- Brings the internal logic of the bridge to a safe state for one side to be powered down without the other.

When a power-up request is issued to the bridge by driving **csysreq** HIGH, the bridge:

- Resynchronizes to the current timestamp value.
- Sends a resynchronization event through the narrow timestamp master interface so that downstream components synchronize to the correct timestamp value.

The bridge never requests powerup using the LPI, and always drives cactive LOW.

7.5.5 Timestamp recovery from stopped clock

The bridge is designed to ensure there is a limit to the deviation in output timestamps compared to the input.

When the master interface of the bridge is running at a slower clock speed than the slave interface, some values of timestamp are discarded in the bridge. The master interface might always be running at a slower frequency than the slave interface, for example if the timestamp generator is clocked at a higher frequency than the timestamp destination. Alternatively the master interface might normally be running at a higher frequency than the slave interface but is occasionally stopped for power saving purposes. In both of these scenarios, some values of the timestamp are discarded in the bridge.

The bridge ensures that the deviation is limited to the clock ratio rounded up to the next power of 2. For example, for a slave:master clock ratio of 10:1, where the slave interface is running 10 times faster than the master interface, the output timestamps are no more than 16 lower than the input timestamps.

In situations where the master interface clock is stopped for extended periods of time, such as a low power state, the bridge has a mechanism to force an automatic resynchronization if the deviation gets beyond a predetermined limit. This limit is set in the THRESHOLD configuration option. This mechanism can also guard against the master clock being set to run more slowly than intended.

See the ARM® SoC-400 Integration Manual for a description of how to set the threshold.

7.6 Narrow timestamp synchronous bridge

The narrow timestamp synchronous bridge transmits the narrow timestamp across a synchronous clock domain boundary. It can be implemented across two power domains, and supports an LPI for this purpose. It can also be used as a register slice to aid timing closure.

This section contains the following subsections:

- 7.6.1 Functional interfaces on page 7-310.
- 7.6.2 Clocks and resets on page 7-310.
- 7.6.3 Functionality on page 7-310.
- 7.6.4 Low-power features on page 7-310.

7.6.1 Functional interfaces

The narrow timestamp synchronous bridge has a narrow timestamp slave interface, a narrow timestamp master interface, and an LPI.

7.6.2 Clocks and resets

The two synchronous clock domains must use the same clock input. Clock enable inputs are used to indicate the relative speeds of the two clock domains.

The narrow timestamp synchronous bridge uses the following clock and reset signals:

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
clkenm	Clock enable for the master interface.
clkens	Clock enable for the slave interface.

7.6.3 Functionality

The bridge can be used as a register slice, by tying both clock enable inputs HIGH.

Special considerations apply when using the clock enable inputs to interface between synchronous clock domains. For more information, see the *CoreSight*[™] SoC-400 Integration Manual.

7.6.4 Low-power features

The narrow timestamp asynchronous bridge supports a power domain boundary on the slave interface, outside the bridge.

Before a domain is powered down, the power controller must ensure that the bridge is in a safe state by using the low-power interface. Failure to do this might cause the rest of the timestamp interconnect to behave incorrectly, or corrupt timestamp values to be returned when the domain is powered up again.

When a low-power request is issued to the bridge by driving **csysreq** LOW, the bridge:

- Drives tssyncreadys HIGH, so that the clock can be stopped without affecting the rest of the system.
- Brings the internal logic of the bridge to a safe state for power-down.

When a power up request is issued to the bridge by driving csysreq HIGH, the bridge:

- Resynchronizes to the current timestamp value.
- Sends a resynchronization event through the narrow timestamp master interface so that downstream components synchronize to the correct timestamp value.

The bridge never requests powerup using the LPI, and always drives cactive LOW.

7.7 Timestamp decoder

The timestamp decoder converts a narrow timestamp interface into a 64-bit binary timestamp that can be used by other components in the system. After reset, it outputs a value of zero until it has synchronized to the correct timestamp value.

This section contains the following subsections:

• 7.7.1 Clock and reset on page 7-311.

7.7.1 Clock and reset

The clock and reset signals of the timestamp encoder are **clk** and **resetn**.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be
	synchronously deasserted.

7.8 Timestamp interpolator

The timestamp interpolator increases the resolution of a timestamp. It shifts the input timestamp left by a number of bits, which is configurable but is normally eight, and uses the extra low-order bits to provide a more accurate timestamp value. It does this by monitoring changes to the input timestamp value over time to predict how fast it counts.

This section contains the following subsections:

- 7.8.1 Clock and reset on page 7-312.
- 7.8.2 Functional interface on page 7-312.
- 7.8.3 *Limitations* on page 7-312.

7.8.1 Clock and reset

The clock and reset signals of the timestamp interpolator are clk and resetn.

clk	Clock.
resetn	Active-LOW reset. This is asynchronously asserted and must be
	synchronously deasserted.

7.8.2 Functional interface

The timestamp interpolator adjusts to changes in the rate of the incoming timestamp. It ensures that the interpolated timestamp never counts backwards, and pauses incrementing the interpolated timestamp if it gets ahead of the input timestamp value.

7.8.3 Limitations

The timestamp interpolator must not be used in the timestamp network used to distributed processor time. There must be only one timestamp interpolator between the timestamp generator and a component that receives the timestamp.

Chapter 8 Embedded Cross Trigger

This chapter describes the cross-triggering components.

It contains the following sections:

- 8.1 Cross-triggering components on page 8-314.
- *8.2 CTI* on page 8-315.
- 8.3 CTM on page 8-317.
- 8.4 Event asynchronous bridge on page 8-318.
- 8.5 Register slice on page 8-319.
- 8.6 Channel asynchronous bridge on page 8-320.
- 8.7 Cross Trigger to System Trace Macrocell on page 8-321.

8.1 Cross-triggering components

The cross-triggering components enable CoreSight components to broadcast events between each other. Cross triggering can take place between trigger inputs and outputs on a single CTI, or between multiple CTIs. CTIs can be programmed not to broadcast events carried on selected channels, so that certain events only cause trigger outputs on the same CTI. Only the CTIs are programmable.

Events are distributed as follows:

- Each event type is connected to a trigger input on a CTI.
- Each CTI can be programmed to connect each trigger input to each of four channels. If programmed to do so, when an input event occurs, it causes an event on the corresponding channel.
- CTIs are connected to each other using one or more CTMs, through channel interfaces. When an event occurs on a channel, it is broadcast on that channel to all other CTIs in the system.
- Each CTI can be programmed to connect each channel to each of a number of trigger outputs. If programmed to do so, when a channel event occurs, it causes an event on the trigger output.
- Each CTI trigger output can be connected to a CoreSight component event input.

This section contains the following subsections:

• 8.1.1 Event signaling protocol on page 8-314.

8.1.1 Event signaling protocol

The cross-triggering system does not attempt to interpret the events that are signaled through it. Events are broadcast as a level. When an event passes across a clock domain boundary, handshaking occurs to ensure that the event lasts for at least one clock cycle in the destination clock domain.

It is not usually meaningful to count the number of cycles that an event is active for. When an event is signaled between clock domains, it might be active for a different number of cycles in the new domain. For example, an event which is active for one cycle in one clock domain might be active for several cycles if connected to a slower clock domain. Therefore for most event types, components use the rising edge of a trigger output signal to indicate an event.

In usage models that count events passed through the cross-triggering system, events that occur close together might be merged into a single event with a single rising edge when passed to another clock domain. This might occur even when passing from a slower clock domain to a faster clock domain, because of the delay associated with synchronizing between two clock domains.

8.2 CTI

Information about the CTI clocks and resets, functional interface, disabling a CTI, and authentication.

This section contains the following subsections:

- 8.2.1 Clocks and resets on page 8-315.
- 8.2.2 Functional interface on page 8-315.
- 8.2.3 Disabling a CTI on page 8-315.
- 8.2.4 Authentication on page 8-315.

8.2.1 Clocks and resets

The clock and reset signals of the CTI are cticlk, ctiresetn, cticlken, pclkdbg, pclkendbg, and presetdbgn.

cticlk	CTI clock.
ctiresetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
cticlken	CTI clock enable.
pclkdbg	APB interface clock.
pclkendbg	APB clock enable.
presetdbgn	APB interface active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

The CTI includes an asynchronous bridge between the **cticlk** and **pclkdbg** domains, which can be disabled. It also includes configurable synchronizers to enable trigger inputs, trigger outputs, and the channel interface to connect to components in different clock domains. For more information on configuring these features, see the *CoreSight*^{max} SoC-400 Integration Manual.

8.2.2 Functional interface

The CTI includes configuration tie-off inputs that enable several different trigger input and output types to be connected.

The CTI has the following functional interfaces:

- Eight trigger inputs, enabling events to be signaled to the CTI.
- Eight trigger outputs, enabling the CTI to signal events to other components.
- Channel interface, for connecting CTIs together using one or more CTMs.
- APB interface, for accessing the registers of the CTI.
- Authentication interface, for controlling access to certain debug events.

For more information on configuring the trigger inputs and outputs, see the *CoreSight*[™] SoC-400 Integration Manual.

8.2.3 Disabling a CTI

ARM recommends that the CTI that is connected to a processor is disabled before the processor clock is stopped. This minimizes the likelihood of unexpected events entering the cross-triggering system or affecting the processor when its clock is restarted.

Procedure

- 1. Clear the event-to-channel mapping in the CTIINEN registers.
- 2. Clear the channel-to-event mapping in the CTIOUTEN registers.

8.2.4 Authentication

Authentication ignals used to control input aoutput of triggers

The CTI can control access to the following debug events:

- Trigger outputs can be masked when **dbgen** is LOW, to avoid debug tools changing the behavior of the system. They are masked by **dbgen** if the corresponding bit of **todbgensel** is LOW. Trigger outputs ignore **dbgen** when the corresponding bit of **todbgensel** is HIGH.
- Trigger inputs can be masked when **niden** is LOW, to avoid debug tools being able to observe the state of the system. They are masked by **niden** if the corresponding bit of **tinidensel** is LOW. Trigger inputs ignore **niden** when the corresponding bit of **tinidensel** is HIGH.

Most bits of **tinidensel** and **todbgensel** can be tied HIGH, because the components with event interfaces have authentication interfaces and mask the events locally when necessary. This includes connections to other CoreSight components. **todbgensel** must by tied LOW for trigger outputs that request an interrupt using a direct connection to the processor interrupt request pin, because the processor cannot tell that the interrupt request comes from a debug component.

Most ARM processors either integrate the CTI or ship with a *Processor Integration Layer* (PIL) that shows how these signals must be connected. For more information, see the documentation for the relevant ARM processor.

When trigger inputs or outputs are masked by this mechanism, they cannot be observed or influenced from the programmer model, including using the integration registers.

8.3 CTM

This section provides information about the CTM clocks and resets, and functional interface.

This section contains the following subsections:

- 8.3.1 Clocks and resets on page 8-317.
- 8.3.2 Functional interface on page 8-317.

8.3.1 Clocks and resets

The clock and reset signals of the CTM are ctmclk, ctmresetn, and ctmclken.

ctmclk	Clock.
ctmresetn	Active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
ctmclken	Clock enable.

To minimize signaling issues caused by events that occur close together in usage models that count events passed through the cross-triggering system, ARM recommends that the CTM clock runs at the rate of the fastest CTI that it is connected to.

The CTM includes configurable synchronizers to enable each channel interface to connect to a CTI or CTM in a different clock domain. For more information on configuring these features, see the *CoreSight*™ *SoC-400 Integration Manual*.

8.3.2 Functional interface

The CTM has four channel interfaces. If you have to connect more than four CTIs in your system, you can connect a CTM channel interface to a channel interface of another CTM.

If you do not require all of the channel interfaces of a CTM, the unused channel interfaces must be tied off as follows:

- All the bits of **ctmchin** must be tied LOW.
- All the bits of **ctmchoutack** must be tied HIGH.

8.4 Event asynchronous bridge

The event asynchronous bridge enables an event signal to cross a clock domain boundary. In most cases, the synchronizing logic in the CTI can be used instead, but the event asynchronous bridge can be useful when the clock domain boundary does not align with the position of the CTI, or if connecting a trigger input or output to a component in a different clock domain that does not implement an acknowledge signal for that event.

There is no event synchronous bridge. You can use the event asynchronous bridge instead.

This section contains the following subsections:

- 8.4.1 Clocks and resets on page 8-318.
- 8.4.2 Connecting eventack signals on page 8-318.

8.4.1 Clocks and resets

The clock and reset signals of the event asynchronous bridge are **clks**, **resetsn**, **clkens**, **clkm**, **resetmn**, and **clkenm**.

clks	Slave interface clock.
resetsn	Slave interface active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
clkens	Slave interface clock enable.
clkm	Master interface clock.
resetmn	Master interface active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
clkenm	Master interface clock enable.

8.4.2 Connecting eventack signals

If the slave interface connects to an event without an acknowledge signal, the **eventacks** output can be left unconnected. If the master interface connects to an event without an acknowledge signal, the **eventackm** input must be tied HIGH.

For more information on how to connect the event asynchronous bridge to components, see the *CoreSight*[™] SoC-400 Integration Manual.

8.5 Register slice

There is no register slice component to assist in meeting timing on long paths to trigger inputs or outputs, or channel interfaces. You can place additional registers on these paths to improve synthesis timing, if required.

8.6 Channel asynchronous bridge

The channel asynchronous bridge instantiates four copies of the event asynchronous bridge.

8.7 Cross Trigger to System Trace Macrocell

This component is combinatorial and therefore has no clocks or resets.

Chapter 9 Trace Port Interface Unit

This chapter describes the TPIU.

It contains the following sections:

- 9.1 About the Trace Port Interface Unit on page 9-323.
- 9.2 Clocks and resets on page 9-324.
- 9.3 Functional interfaces on page 9-325.
- 9.4 Trace out port on page 9-326.
- 9.5 Trace port triggers on page 9-328.
- 9.6 Programming the TPIU for trace capture on page 9-329.
- 9.7 Example configuration scenarios on page 9-330.
- 9.8 TPIU pattern generator on page 9-332.

9.1 About the Trace Port Interface Unit

The TPIU drives the external pins of a trace port, so that trace can be captured by an external *Trace Port Analyzer* (TPA).

The TPIU does the following:

- Coordinates stopping trace capture when a trigger is received.
- Inserts source ID information into the trace stream so that trace data can be re-associated with its trace source. The operation of the trace formatter is described in the *CoreSight*[™] *Architecture Specification*.
- Outputs the trace data over trace port pins.
- Outputs patterns over the trace port so that a TPA can tune its capture logic to the trace port, maximizing the speed at which trace can be captured.

9.2 Clocks and resets

The clock and reset signals of the TPIU are atclk, atclken, atresetn, pclkdbg, pclkendbg, presetdbgn, traceclkinm, and tresetn.

atclk	ATB interface clock. This is the main clock for the TPIU.
atclken	ATB interface clock enable.
atresetn	ATB interface active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
pclkdbg	APB interface clock.
pclkendbg	APB interface clock enable.
presetdbgn	APB interface active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.
traceclkin	Trace out port source clock.
tresetn	Trace out port active-LOW reset. This is asynchronously asserted and must be synchronously deasserted.

The TPIU includes an asynchronous bridge between the **traceclkin** clock domain and the rest of the design.

The TPIU requires the **atclk** and **pclkdbg** clocks to be synchronous, that is, clock tree balanced, with respect to each other. **pclkdbg** must be equivalent to, or an integer division of, **atclk**. If the **pclkendbg** and **atclken** clock enable inputs are used to change the effective update rate of the flip-flops in the TPIU then for each enabled **pclkdbg** edge, that is when **pclkendbg** = 1, there must be a corresponding enabled **atclk** edge.

An external asynchronous bridge can be used to bridge to an asynchronous domain if required.

9.3 Functional interfaces

This section describes the functional interfaces of the TPIU.

The functional interfaces are:

- ATB slave interface, for receiving trace data.
- APB slave interface, for accessing the TPIU registers.
- Trace out port, for connecting to the external trace port pins.
- **trigin** and **flushin** event interfaces. These implement synchronizers so that they can be connected to a CTI in a different clock domain.

The TPIU also supports the **extctlin**[7:0] and **extctlout**[7:0] signals. These are designed to enable debug tools to multiplex the pins used by the trace out port with other functions.

9.4 Trace out port

This section provides information about the trace out port signals, including a summary of the trace port and tie-off signals, **traceclk** alignment, and **tracectl** removal.

This section contains the following subsections:

- 9.4.1 Signals of the trace out port on page 9-326.
- 9.4.2 traceclk alignment on page 9-326.
- 9.4.3 tracectl removal on page 9-326.
- 9.4.4 tracectl encoding on page 9-327.
- 9.4.5 Off-chip based traceclkin on page 9-327.

9.4.1 Signals of the trace out port

The following table summarizes the trace out port signals and configuration tie-off signals.

Table 9-1 Trace out port signals

Name	Туре	Description
traceclk	Output	Output clock, used by the TPA to sample the other pins of the trace out port. This runs at half the speed of traceclkin , and data is valid on both edges of this clock.
tracedata[31:0]	Output	Output data. A system might not connect all the bits of this signal to the trace port pins, depending on the number of pins available and the bandwidth required to output trace.
tracectl	Output	Signal to support legacy TPAs which cannot support formatter operation in continuous mode. Connection of this signal to a pin is optional.

The following table shows configuration tie-off signals of the TPIU.

Table 9-2 Configuration tie-off signals

Name	Туре	Description
tpctl	Input	Indicates whether the tracectl pin is connected. If tracectl is not connected then this input must be tied LOW. This input affects bit 2 of the Formatter and Flush Status Register, FFSR.
tpmaxdatasize[4:0]	Input	Indicates how many pins of tracedata[31:0] are connected. The connected pins are tracedata[tpmaxdatasize:0] . For example, if tpmaxdatasize[4:0] has the value 0x0F, then only tracedata[15:0] is connected to the trace port. If tracectl is implemented then at least tracedata[1:0] must be connected, that is, the minimum value of tpmaxdatasize[4:0] is 0x01. This input affects the Supported Port Size register.

9.4.2 traceclk alignment

The TPIU does not offset the edges of **traceclk** from the edges of the trace data signals **tracedata** and **tracectl**. For compatibility with the maximum number of TPAs, ARM recommends you delay **tracectl** so its edges are in the middle of the stable phases of the data signals.

ARM recommends that, to support the widest range of targets at the maximum speed, TPAs support systems with a variety of alignments of **traceclk** relative to the data signals, including systems where edges of **traceclk** occur at the same time as transitions of the data signals.

9.4.3 tracectl removal

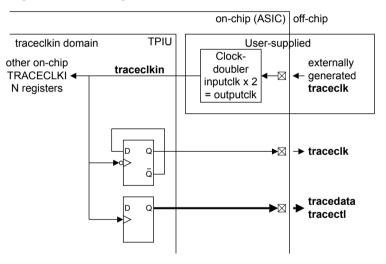
The TPIU supports **traceclk** + **tracedata** + **tracectl**, with a minimum **tracedata** width of 2, and **traceclk** + **tracedata**, with a minimum data width of 1.

The chosen mode depends on the connected trace port analyzer or capture device. Legacy capture devices use the control pin to indicate when there is valid data to capture. Newer capture devices can use more pins for data and do not require a reserved **tracectl** pin.

If support for legacy TPAs is not required, it is not necessary to implement the **tracectl** pin. This design choice must be reflected by the value of **tpctl**.

9.4.4 tracectl encoding

When **tracectl** is implemented and bypass or normal mode is selected in the Formatter and Flush Control Register, the encodings of **tracectl** and **tracedata[1:0]** are designed to be backwards compatible with systems designed without CoreSight, where a trace port is driven by a single ETM.


The encodings indicate to the TPA:

- Whether the trigger has occurred. This can be used by the TPA to stop trace capture, when the TPA is responsible for stopping trace capture.
- Whether to capture data from the trace port in this cycle.

9.4.5 Off-chip based traceclkin

CoreSight-aware TPAs can optionally directly control a clock source for the trace out port. By running through a known sequence of patterns, from the pattern generator within the TPIU, a TPA can automatically establish the port width and ramp up the clock speed until the patterns degrade, thereby establishing a maximum data rate.

in the following figure shows how to generate an off-chip traceclkin.

The off-chip clock can operate in a similar way to the currently exported **traceclk**. For example, an externally derived clock source can be double clocked to enable the exported data to change at both edges of the clock.

9.5 Trace port triggers

The TPIU trace port is designed to be backwards compatible with non-CoreSight systems where the trace port is driven directly by a single ETM. Compatibility is achieved when **tracectl** is implemented and bypass or normal mode is selected in the Formatter and Flush Control Register, FFCR.

The trigger is an indication to the TPA to stop trace capture. In CoreSight systems, the TPIU receives trigger events from trace sources through the cross-triggering system, and sends a trigger event over the trace out port to the TPA when it is ready for trace capture to stop.

The TPIU might signal a trigger as a result. This can be:

- Directly from an event such as a pin toggle from the CTI.
- A delayed event such as a pin toggle that has been delayed coming through the Trigger Counter Register.
- The completion of a flush.

The following table extends the ETMv3 specification on how a trigger is represented.

tracectl	tracedata		Trigger	Capture	e Description	
[1]		[0]	Yes/No Yes/No			
0	x	x	No	Yes	Normal trace data	
1	0	0	Yes	Yes	Trigger packet ^s	
1	1	0	Yes	No	Trigger	
1	х	1	No	No	Trace disable	

Table 9-3	CoreSight representation of trig	gers
-----------	----------------------------------	------

This section contains the following subsections:

• 9.5.1 Correlation with afvalid on page 9-328.

9.5.1 Correlation with afvalid

When the TPIU receives a trigger signal, depending on the Formatter and Flush Control Register, it can request a flush of all trace components through the ATB slave interface. This causes all information around the trigger event to be flushed from the system before normal trace information is resumed. This ensures that all information related to the trigger is output before the TPA, or other capture device, is stopped.

With FOnTrig set to 1, it is possible to indicate the trigger on completion of the flush routine. This ensures that if the TPA stops the capture on a trigger, the TPA gets all historical data relating to the trigger.

⁸ The trigger packet encoding is required for the ETMv3 protocol that uses a special encoding for triggers that always occur on the lower bits of tracedata.

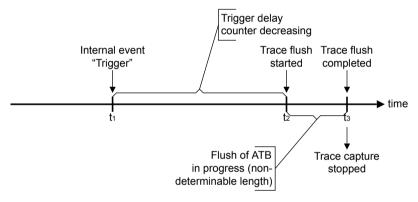
9.6 Programming the TPIU for trace capture

The following points must be considered when programming the TPIU registers for trace capture.

- TPAs that are only capable of operation with **tracectl** must only use the formatter in either bypass or normal mode, not in continuous mode.
- ARM recommends that following a trigger event within a multi-trace source configuration, a flush is performed to ensure that all historical information related to the trigger is output.
- If Flush on Trigger Event and Stop on Trigger Event options are chosen then any data after the trigger is not captured by the TPA. When the TPIU is instructed to stop, it discards any subsequent trace data, including data returned by the flush. Select Stop on Flush completion instead.
- Although multiple flushes can be scheduled using Flush on Trigger Event, Flush on **flushin**, and manual flush, when one of these requests are made, it masks additional requests of the same type. This means repeated writing to the manual flush bit does not schedule multiple manual requests unless each is permitted to complete first.
- Unless multiple triggers are required, it is not advisable to set both Trigger on Trigger Event and Trigger on Flush Completion, if Flush on Trigger Event is also enabled. In addition, if Trigger on **trigin** is enabled with this configuration, it can also cause multiple trigger markers from one trigger request.

9.7 Example configuration scenarios

This section contains example configuration scenarios for capturing trace after an event and stopping, only indicating triggers and continuing to flush, multiple trigger indications, and independent triggering and flushing.


This section contains the following subsections:

- 9.7.1 *Capturing trace after an event and stopping* on page 9-330.
- 9.7.2 Only indicating triggers and continuing to flush on page 9-330.
- 9.7.3 Multiple trigger indications on page 9-331.
- 9.7.4 Independent triggering and flushing on page 9-331.

9.7.1 Capturing trace after an event and stopping

Before a trace capture can be stopped, a suitable length of time has to elapse to encompass knock-on effects within trace data, and all historical information relating to these previous events must have been emitted.

The following figure shows a possible time-line of events where an event of interest, referred to as a trigger event, causes some trace that must be captured and thereafter the trace capture device can be stopped.

Figure 9-2 Capturing trace after an event and stopping

When one trace source is used, there is no requirement to flush the system. Instead, the length of the trigger counter delay can be increased to enable more trace to be generated, thereby pushing out historical information.

The trigger event at time t1 is signaled to the TPIU through the cross-triggering system. The trace source which generated the trigger event might also embed some trigger information in its trace stream at this point.

The TPA only registers a trigger at time t3, when it is safe to stop trace capture. The TPIU embeds a trigger in the formatted trace stream at this time, and signals a trigger on **tracectl** if it is in bypass or normal mode.

In the figure, the action that causes trace capture to be stopped at time t3 can be one of the following:

- The TPA can watch for a trigger to be indicated through **tracectl** and stop.
- The TPA can watch for a trigger to be indicated in the **tracedata** stream, using continuous mode without the requirement for **tracectl**.
- The TPIU can automatically stop trace after it has signaled the trigger to the TPA.

9.7.2 Only indicating triggers and continuing to flush

It is possible to indicate a trigger at the soonest possible moment and cause a flush while at the same time still permitting externally requested flushes. This enables trace around a key event to be captured and all historical information to be stored within a period immediately following the trigger. Use a secondary event to cause regular trace flushes.

9.7.3 Multiple trigger indications

Sending a trigger to external tools can have additional consequences apart from stopping trace capture. For example, in cases where the events immediately before the trigger might be important but only a small buffer is available, uploads to a host computer for decompression can occur, therefore reducing the amount stored in the TPA. This is also useful where the trigger originated from a device that is not directly associated with a trace source, and is a marker for a repeating interesting event.

The following figure shows multiple trigger indications from flushes.

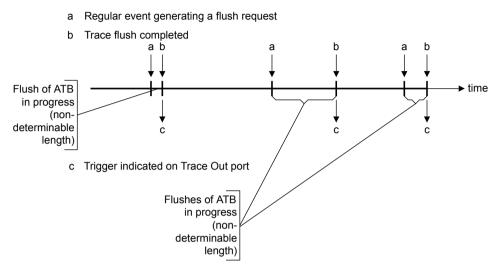


Figure 9-3 Multiple trigger indications from flushes

9.7.4 Independent triggering and flushing

The TPIU has separate inputs for flushes and triggers and, although one can be configured to generate the other, there might be a requirement to keep them separate. To enable a consistent flow of new information through the Trace Out port, there might be a regular flush scheduled, generated from a timing block connected to a CTI. These regular events must not be marked in the trace stream as triggers.

Special events coming through the CTI that require a marker must be passed through the **trigin** pin and can either be immediately indicated or, as the following figure shows, can be delayed through other flushes and then indicated to the TPA.

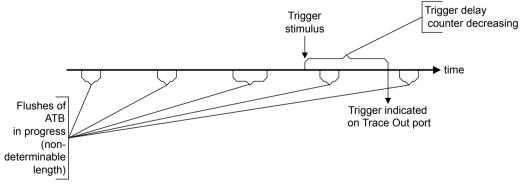


Figure 9-4 Independent triggering during repeated flushes

9.8 TPIU pattern generator

A simple set of defined bit sequences or patterns can be output over the trace port and be detected by the TPA or other associated trace capture device. Analysis of the output can indicate whether it was possible to increase or, for reliability, to decrease the trace port clock speed. The patterns can also be used to determine the timing characteristics and so alter any delay components on the data channels in a TPA, to ensure reliable data capture.

This section contains the following subsections:

- 9.8.1 Pattern generator modes of operation on page 9-332.
- 9.8.2 Supported options on page 9-332.

9.8.1 Pattern generator modes of operation

There are a number of supported patterns to enable a number of metrics to be determined, for example, timing between pins, data edge timing, voltage fluctuations, ground bounce, and cross talk.

When examining the trace port, you can choose from the following pattern modes:

Timed	Each pattern runs for a programmable number of traceclkin cycles after which the pattern generator unit reverts back to an off state where normal trace is output, assuming trace output is enabled. The first thing the trace port outputs after returning to normal trace is a synchronization packet. This is useful with special trace port analyzers and capture devices that are aware of the pattern generator. The TPIU can be set to a standard configuration that the capture device expects. The preset test pattern can then be run, after which the TPA is calibrated ready for normal operation. The TPIU switches to normal operation automatically, without the requirement to reprogram the TPIU.
Continuous	The selected pattern runs continuously until manually disabled. This is primarily intended for manual refinement of electrical characteristics and timing.
Off	When neither of the other two modes is selected, the device reverts to outputting any trace data. After timed operation finishes, the pattern generator reverts back to the off mode.

9.8.2 Supported options

Patterns operate over all the **tracedata** pins for a given port width setting. Test patterns are aware of port sizes and always align to **tracedata[0]**. Walking bit patterns wrap at the highest data pin for the selected port width even if the device has a larger port width available. Also, the alternating patterns do not affect disabled data pins on smaller trace port sizes.

Walking 1s

All output pins clear with a single bit set at a time, tracking across every **tracedata** output pin. This can be used to watch for data edge timing, or synchronization, high voltage level of logic 1, and cross talk against adjacent wires. Walking 1s can also be used as a simple way to test for broken or faulty cables and data signals.

Walking 0s

All output pins are set with a single bit cleared at a time, tracking across every **tracedata** output pin. In a similar way to the walking 1s, walking 0s can be used to watch for data edge timing, or synchronization, low voltage level of logic 0, cross talk, and ground lift.

Alternating AA/55 pattern

Alternate **tracedata** pins are set with the others clear. This alternates every cycle with the sequence starting with **tracedata[1]** set to AA pattern = $0b1010_1010$, followed by **tracedata[0]** set to 55 pattern = $0b0101_0101$. The pattern repeats over the entire selected bus width. This pattern can be used to check voltage levels, cross talk, and data edge timing.

Alternating FF/00 pattern

On each clock cycle, the **tracedata** pins are either all set FF pattern or all cleared 00 pattern. This sequence of alternating the entire set of data pins is a good way to check the power supply stability to the TPIU and the final pads, because of the stresses the drivers are under.

Combinations of patterns

Each selected pattern is repeated for a defined number of cycles before moving on to the next pattern. After all of the patterns are performed, the unit switches to normal tracing data mode. If some combination is chosen and the continuous mode is selected, each pattern runs for the number of cycles indicated in the repeat counter register before looping around enabled parameters.

Chapter 10 Embedded Trace Buffer

This chapter describes the ETB for CoreSight.

It contains the following sections:

- 10.1 About the ETB on page 10-335.
- 10.2 Clocks and resets on page 10-336.
- 10.3 Functional Interfaces on page 10-337.
- 10.4 ETB trace capture and formatting on page 10-338.
- 10.5 ETB RAM support on page 10-344.

10.1 About the ETB

The ETB captures trace from an ATB slave interface and stores it in an on-chip RAM for later inspection by debug tools.

The ETB:

- Captures trace, using the RAM as a circular buffer.
- Coordinates stopping trace capture when a trigger is received, so that trace prior to the trigger can be retrieved.
- Enables the captured trace to be read using the APB slave interface.

10.2 Clocks and resets

The clock and reset signals of the ETB are atclk, atclken, atresetn, pclkdbg, pclkendbg, and presetdbgn.

atclk	ATB interface clock. This is the main clock for the ETB, and is used to drive the RAM.
atclken	ATB interface clock enable.
atresetn	ATB interface active LOW reset. This is asynchronously asserted and must be synchronously deasserted.
pclkdbg	APB interface clock.
pclkendbg	APB interface clock enable
presetdbgn	APB interface active LOW reset. This is asynchronously asserted and must be synchronously deasserted.

The ETBrequires the **atclk** and **pclkdbg** clocks to be synchronous, that is, clock tree balanced, with respect to each other. **pclkdbg** must be equivalent to, or an integer division of, **atclk**. If the **pclkendbg** and **atclken** clock enable inputs are used to change the effective update rate of the flip-flops in the ETB then for each enabled **pclkdbg** edge, that is when **pclkendbg** = 1, there must be a corresponding enabled **atclk** edge.

An external asynchronous bridge can be used to bridge to an asynchronous domain if required.

10.3 Functional Interfaces

The ETB has a number of functional interfaces.

The functional interfaces of the ETB are:

- ATB slave interface, for receiving trace data.
- APB slave interface, for accessing the ETB registers.
- trigin, flushin, acqcomp and full event interfaces. These implement synchronizers so that they can be connected to a CTI in a different clock domain.
- MBIST interface for testing the RAM.

This section contains the following subsections:

- 10.3.1 Cross-triggering events on page 10-337.
- 10.3.2 Memory BIST interface on page 10-337.

10.3.1 Cross-triggering events

The ETB implements the following cross-triggering event interfaces, which must be connected to a CTI. Each interface includes a return acknowledgement signal which must also be connected.

The following table shows the cross-triggering event interfaces.

Table 10-1 Cross-triggering events

Name	Direction	Purpose
trigin	Input	Indicates to the ETB when a trigger has occurred, so that it can start the trace stop sequence.
flushin	Input	External request to flush the trace system. An event on this input can cause the ETB to issue a flush request through its ATB slave interface.
acqcomp	Output	Indicates that trace acquisition is complete, and the trigger counter is at 0. This usually means that trace is ready to be read by debug tools.
full	Output	Indicates that the ETB RAM has overflowed and wrapped around to write at address 0.

10.3.2 Memory BIST interface

Summary of the Memory BIST interface ports.

Table 10-2 ETB Memory BIST interface ports

Name	Туре	Description	
mbistaddr	Input	Address bus for the external BIST controller, active when mteston is HIGH.	
[CSETB_ADDR_WIDTH-1:0]		CSETB_ADDR_WIDTH defines the address bus width used, and therefore the RAM depth supported.	
mbistce	Input	Active-HIGH chip select for external BIST controller, active when mteston is HIGH.	
mbistdin[31:0]	Input	Write data bus for external BIST controller, active when mteston is HIGH.	
mbistdout[31:0]	Output	Read data bus for external BIST controller, active when mteston is HIGH.	
mbistwe	Input	Active-HIGH write enable for external BIST controller, active when mteston is HIGH.	
mteston	Input	Enable signal for the external BIST controller.	

10.4 ETB trace capture and formatting

The formatter inserts the source ID signal **atids[6:0]** into a special format data packet stream to enable trace data to be reassociated with a trace source after data is read back out of the ETB.

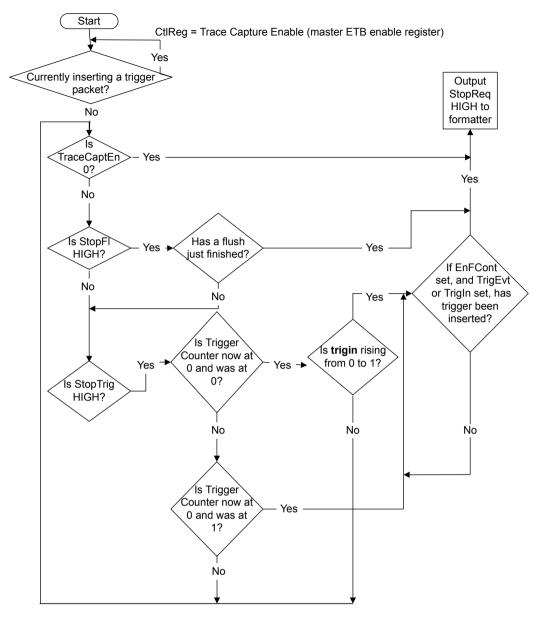
The formatter protocol is described in the CoreSight[™] Architecture Specification.

This section contains the following subsections:

- 10.4.1 Modes of operation on page 10-338.
- *10.4.2 Stopping trace* on page 10-338.
- *10.4.3 Flush assertion* on page 10-339.
- *10.4.4 Triggers* on page 10-342.

10.4.1 Modes of operation

The formatter supports the following distinct modes of operation as specified by bits[1:0] in the FFCR.


Bypass	In this mode, no formatting information is inserted into the trace stream and a raw reproduction of the incoming trace stream is stored. When trace is stopped, an additional byte of value 0x01 is written, followed by bytes of 0x00 to align the trace to a 32-bit boundary. This can be used by a trace decompressor to find the last byte of trace.				
	Note				
	This mode assumes that the source ID does not change.To select this mode, set FFCR.EnFTC to 0 and FFCR.EnFCont to 0.				
Normal	Formatting information is added to indicate the change of source ID together with the associated wrapping additions, as described in <i>CoreSight</i> ^{M} <i>Architecture Specification</i> . When tracing is stopped, the formatter frame is filled with bytes of trace with ID 0×00 if necessary to complete the frame.				
	To select this mode, set FFCR.EnFTC to 1 and FFCR.EnFCont to 0.				
Continuous	Continuous mode in the ETB corresponds to normal mode with the embedding of triggers. Most usage models use this mode, and modern debug tools do not normally require the other modes. Unlike continuous mode in the TPIU, no formatter synchronization packets are added because the formatted trace frames are always aligned to the RAM address.				
	To select this mode, set FFCR.EnFTC to 1 and FFCR.EnFCont to 1.				

10.4.2 Stopping trace

Trace capture stops when the TraceCaptEn bit of the Control Register is cleared, or when a trigger event occurs and the Trigger Counter Register reaches zero, or when a flush completes and the StopFl bit of the Formatter and Flush Control Register is set.

When trace capture stops, the FtStopped bit of the Formatter and Flush Status Register is set.

The following figure shows the conditions for stopping trace capture. This figure refers to bits from the ETB Control register (CTL) and the ETB Formatter and Flush Control Register (FFCR).

Figure 10-1 Conditions for stopping trace capture

StopTrig and StopFl in the FFCR can be enabled at the same time. For example, if FOnTrig in the FFCR is set to perform a flush on a trigger event, but StopTrig is HIGH, none of the flushed data is stored, because StopTrig is HIGH. If the situation requires that all the flushed data is captured, then StopTrig is LOW and StopFl is HIGH.

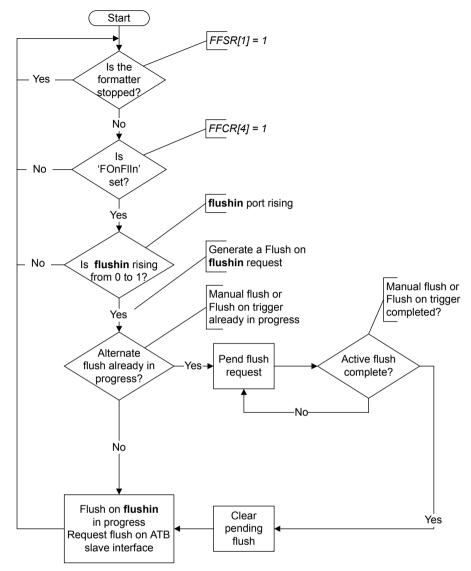
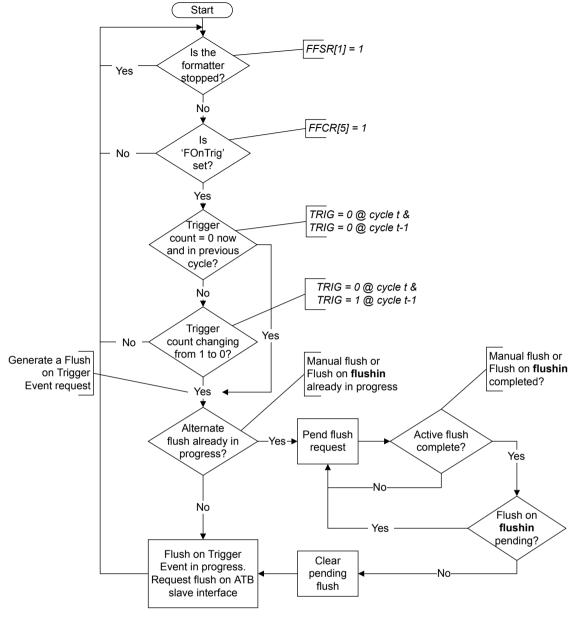
After trace capture stops, the ETB discards any additional trace it receives on the ATB slave interface to prevent the ATB bus from stalling. This is important when a replicator is present, but the received data is ignored.

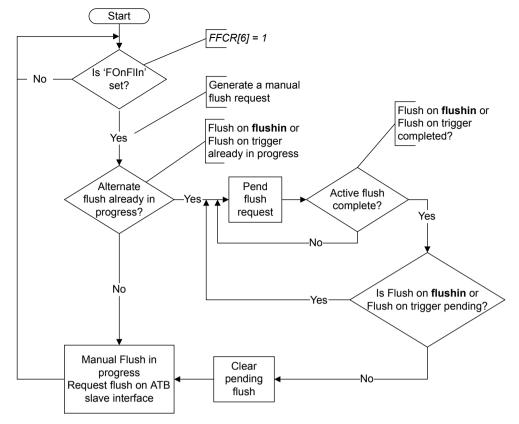
10.4.3 Flush assertion

All three flush-generating conditions (flush from **flushin**, flush from trigger, and manually activated flush) can be enabled together.

If more flush events are generated while a flush is in progress, the current flush is serviced before the next flush is started. Only one request for each source of flush can be pended. If a subsequent flush request signal is deasserted while the flush is still being serviced or pended, a second flush is not generated.

The following figure shows generation of flush on flushin.


Figure 10-2 Generation of flush on flushin

The following figure shows generation of flush from a trigger event.

Figure 10-3 Generation of flush from a trigger event

The following figure shows generation of a flush on manual.

Figure 10-4 Generation of a flush on manual

10.4.4 Triggers

A trigger event is defined as when the trigger counter reaches 0, or the trigger counter is 0 and **trigin** is HIGH. All trigger indication conditions, TrigEvt, TrigFl, and TrigIn, in the FFCR can be enabled simultaneously. This results in multiple triggers appearing in the trace stream.

The trigger counter register controls how many words are written into the trace RAM after a trigger event. After the formatter is flushed in normal or continuous mode, a complete empty frame is generated. This is a data overhead of seven extra words in the worst case. The trigger counter defines the number of 32-bit words remaining to be stored in the ETB trace RAM. If the formatter is in bypass mode, a maximum of two additional words are stored for the trace capture post-amble.

The following figure shows a flowchart defining the conditions for indicating a trigger in the formatted data. This flowchart only applies for the condition when continuous formatting is enabled (EnFCont set) in the Formatter and Flush Control Register.

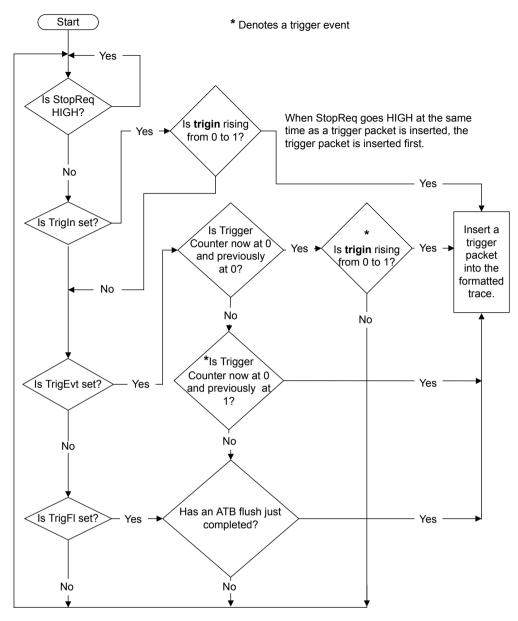


Figure 10-5 Generation of a trigger request with continuos formatting enabled

10.5 ETB RAM support

This section provides ETB RAM support reference information for access sizes, the RAM BIST interface, and RAM instantiation.

This section contains the following subsections:

- 10.5.1 Access sizes on page 10-344.
- 10.5.2 BIST interface on page 10-344.
- 10.5.3 RAM instantiation on page 10-344.

10.5.1 Access sizes

All reads and writes to the RAM are 32 bits. The ETB does not require byte write support.

10.5.2 BIST interface

The RAM BIST interface connects though the trace RAM interface block to provide test access to the trace RAM. **mteston** enables the memory BIST interface and disables all other accesses to and from the RAM.

10.5.3 RAM instantiation

Integrating the ETB RAM is described in the implementation guide.

See the CoreSight[™] SoC-400 Implementation Guide.

Chapter 11 Granular Power Requester

This chapter describes the granular power requester.

It contains the following sections:

• 11.1 Granular Power Requester interfaces on page 11-346.

11.1 Granular Power Requester interfaces

This section describes the granular power requester clock and reset, functional interfaces, and how to unlock the device.

This section contains the following subsections:

- 11.1.1 Clock and reset on page 11-346.
- 11.1.2 Functional interfaces on page 11-346.
- *11.1.3 Device unlocking* on page 11-346.

11.1.1 Clock and reset

This component has a single clock domain, **clk**, that the debug APB clock drives, and a single asynchronous active-LOW reset input, **resetn**.

11.1.2 Functional interfaces

This component has an APB3-compliant slave interface and CPWRUP master interfaces.

CPWRUP interface

The CPWRUP interface is an asynchronous request and acknowledge interface that enables a requester to communicate with a power controller through a 4-phase handshake mechanism.

Memory-mapped registers in the cxgpr control the CPWRUP interface ports. The cxgpr has hardware logic that enforces the appropriate protocol for the 4-phase handshake.

cxgpr programming interface

The cxgpr has 4KB memory map footprint and contains CoreSight management registers. The DEVTYPE Register of cxgpr returns 0x34 on a read operation to indicate that it is a power requester block.

The value 0x34 is derived from the register fields:

- MAJOR = 0x4, meaning Debug Control.
- SUB = 0x3, meaning Debug Power Requestor.

The APB interface supports zero-wait-state write operations and single-wait-state read operations on the APB.

11.1.3 Device unlocking

On reset, the device is locked. The device is unlocked when you write 0xC5ACCE55 to the LAR. Write operations to other registers in the device are permitted only when the device is unlocked. Read operations are permitted regardless of the device lock status.

When paddr31 is driven HIGH and the debugger initiates an operation:

- Write operations to the LAR are ignored.
- Read operations to the LAR return 0, indicating that no lock mechanism is present.

Appendix A Signal Descriptions

This appendix describes the CoreSight SoC-400 port and interface signals.

It contains the following sections:

- A.1 Debug Access Port signals on page Appx-A-348.
- A.2 APB component signals on page Appx-A-360.
- A.3 ATB interconnect signals on page Appx-A-364.
- *A.4 Timestamp component signals* on page Appx-A-371.
- A.5 Trigger component signals on page Appx-A-378.
- *A.6 Trace sink signals* on page Appx-A-381.
- A.7 Authentication and event bridges on page Appx-A-384.
- A.8 Granular power requester signals on page Appx-A-386.

A.1 Debug Access Port signals

Signal type and clock domain information for the DAP signals.

This section contains the following subsections:

- *A.1.1 Serial wire or JTAG Debug Port signals* on page Appx-A-349.
- A.1.2 DAPBUS interconnect signals on page Appx-A-351.
- *A.1.3 DAPBUS asynchronous bridge signals* on page Appx-A-351.
- *A.1.4 DAPBUS synchronous bridge signals* on page Appx-A-353.
- *A.1.5 JTAG Access Port signals* on page Appx-A-355.
- *A.1.6 AXI Access Port signals* on page Appx-A-355.
- *A.1.7 AHB Access Port signals* on page Appx-A-357.
- *A.1.8 APB Access Port signals* on page Appx-A-359.

A.1.1 Serial wire or JTAG Debug Port signals

Input/output type, clock domain and description for the serial wire and JTAG debug port signals.

Table A-1 Serial wire and JTAG debug port signals

Name	Туре	Clock domain	Description		
ntrst	Input	swclktck	TAP asynchronous reset.		
npotrst	Input	swelktek	JTAG powerup reset and Serial wire powerup reset.		
swclktck	Input	NA	Serial wire clock and TAP clock.		
swditms	Input	swelktek	Serial wire data input and TAP test mode select.		
tdi	Input	swelktek	JTAG TAP data in or alternative input function.		
dapresetn	Input	dapclk	DAP asynchronous reset active-LOW.		
dapclk	Input	dapclk	DAP clock.		
dapclken	Input	dapclk	DAP clock enable.		
daprdata[31:0]	Input	dapclk	DAP read data.		
dapready	Input	dapclk	DAP data bus ready.		
dapslverr	Input	dapclk	AP slave error response.		
cdbgpwrupack	Input	None	Debug power domain powerup acknowledge.		
csyspwrupack	Input	None	System power domain powerup acknowledge.		
cdbgrstack	Input	None	Debug reset acknowledge to reset controller.		
targetid[31:0]	Input	None	Target ID for SW multi-drop selection.		
instanceid[3:0]	Input	None	Instance ID for SW multi-drop selection.		
swdo	Output	swelktek	Serial wire data output.		
swdoen	Output	swelktek	Serial wire data output enable.		
tdo	Output	swelktek	JTAG TAP data out.		
ntdoen	Output	swelktek	TAP data out enable.		
dapcaddr[15:2]	Output	dapclk	Compressed DAP address.		
dapwrite	Output	dapclk	DAP bus write.		
dapenable	Output	dapclk	DAP enable transaction.		
dapabort	Output	dapclk	DAP abort.		
dapsel	Output	dapclk	DAP transaction select.		
dapwdata[31:0]	Output	dapclk	DAP write data.		
cdbgpwrupreq	Output	NA	Debug power domain powerup request.		
csyspwrupreq	Output	NA	System power domain powerup request.		
cdbgrstreq	Output	NA	Debug reset request to reset controller.		

Table A-1 Serial wire and JTAG debug port signals (continued)

Name	Туре	Clock domain	Description	
jtagnsw	Output	swclktck	HIGH LOW	If JTAG selected. If SWD selected.
jtagtop	Output	swelktek	JTAG state machine is in one of the four modes: • Test-Logic-Reset. • Run-Test/Idle. • Select-DR-Scan. • Select-IR-Scan.	

A.1.2 DAPBUS interconnect signals

Input/output type, clock domain and description for the DAPBUS interconnect signals.

Name	Туре	Clock domain	Description
clk	Input	clk	DAP clock.
resetn	Input	clk	DAP reset.
daprdatam31 <x>[31:0]</x>	Input	clk	DAP read data bus.
dapreadym <x></x>	Input	clk	DAP ready.
dapslverrm <x></x>	Input	clk	DAP error.
dapcaddrs[15:2]	Input	clk	DAP compressed address bus.
dapsels	Input	clk	DAP select.
dapenables	Input	clk	DAP enable.
dapwrites	Input	clk	DAP write or read.
dapwdatas[31:0]	Input	clk	DAP write data bus.
dapaborts	Input	clk	DAP abort.
dapcaddrm <x>[7:2]</x>	Output	clk	DAP compressed address bus.
dapselm <x></x>	Output	clk	DAP select.
dapenablem <x></x>	Output	clk	DAP enable.
dapwritem <x></x>	Output	clk	DAP write or read.
dapwdatam <x>[31:0]</x>	Output	clk	DAP write data bus.
dapabortm <x></x>	Output	clk	DAP abort.
daprdatas[31:0]	Output	clk	DAP read data bus.
dapreadys	Output	clk	DAP ready.
dapslverrs	Output	clk	DAP error.

Table A-2 DAPBUS interconnect signals

A.1.3 DAPBUS asynchronous bridge signals

Input/output type, clock domain and description for the DAPBUS asynchronous bridge signals.

Table A-3 DAPBUS asynchronous bridge signals

Signal	Туре	Clock domain	Description
dapclks	Input	dapelks	DAP clock.
dapclkens	Input	dapelks	DAP clock enable.
dapresetsn	Input	dapelks	DAP reset.
dapclkenm	Input	dapelks	DAP clock enable.
dapclkm	Input	dapclkm	DAP clock.
dapresetm	Input	dapelks	DAP reset.
dapsels	Input	dapclks	The DAP select signal. Indicates that the DAP bus master is selecting this slave device and requires a data transfer.

Table A-3 DAPBUS asynchronous bridge signals (continued)

Signal	Туре	Clock domain	Description
dapaborts	Input	dapclks	The DAP abort. When the bus master asserts dapaborts HIGH, the DAP slave aborts
			the present DAP transfer and asserts dapreadys HIGH in the next cycle.
dapenables	Input	dapelks	The DAP enable. Indicates the second and subsequent cycles of a DAP transfer.
dapwrites	Input	dapclks	The DAP RW select signal. It indicates a DAP write access when HIGH and a DAP read access when LOW.
dapaddrs[31:0]	Input	dapclks	The DAP address bus.
dapwdatas[31:0]	Input	dapclks	The DAP write data bus.
dapreadym	Input	dapclkm	The DAP ready. The slave indicates whether it has completed the present transfer and is ready for the next transfer.
dapslverrm	Input	dapclkm	The DAP slave error. The slave indicates that the present transfer has a error.
daprdatam[31:0]	Input	dapclkm	The DAP read data. The read data of the present DAP read transfer.
csysreq ^t	Input	dapclks	Clock powerdown request.
dapreadys	Output	dapclks	The DAP ready. The DAP bus slave asserts this signal HIGH to indicate that it completed the current DAP transfer and is ready for the next transfer.
dapslverrs	Output	dapclks	The DAP slave error. When HIGH, the DAP slave indicates that the present DAP transaction had an error.
daprdatas[31:0]	Output	dapclks	The DAP read data. Carries the read data of a DAP read transfer.
dapselm	Output	dapclkm	The DAP select. Indicates that the master is selecting a particular slave for RW transfer.
dapabortm	Output	dapclkm	The DAP abort. When asserted HIGH, it indicates that the master is aborting the present transaction.
dapenablem	Output	dapclkm	The DAP enable. Indicates the second and subsequent cycles of a DAP transfer.
dapwritem	Output	dapclkm	The DAP RW. Indicates a write transfer when HIGH and a read transfer when LOW.
dapaddrm[31:0]	Output	dapclkm	The DAP address bus.
dapwdatam[31:0]	Output	dapclkm	The DAP write data. The master drives this bus and carries the write data for the present write transfer.
csysack ^t	Output	dapclks	Clock powerdown acknowledge.
cactive ^t	Output	dapclks	Clock is required when driven HIGH.

Cross-domain connections table

The DAPBUS asynchronous bridge can be configured as a separate master interface component and slave interface component. If you configure the bridge in this way, you must connect the two components as shown in the table.

The following table shows DAPBUS asynchronous bridge cross-domain connections

Table A-4 DAPBUS asynchronous bridge cross-domain connections

Slave component signal	Туре	Master component signal	Туре
dapm_req_async	Output	daps_req_async	Input
dapm_ack_async	Input	daps_ack_async	Output

t This signal is only present if you configure this component to have an LPI.

ARM 100536_0302_01_en

Slave component signal	Туре	Master component signal	Туре
dapm_fwd_data_async	Output	daps_fwd_data_async	Input
dapm_rev_data_async	Input	daps_rev_data_async	Output
dapm_abort_req_async	Output	daps_abort_req_async	Input

Table A-4 DAPBUS asynchronous bridge cross-domain connections (continued)

A.1.4 DAPBUS synchronous bridge signals

Input/output type, clock domain and description for the DAPBUS synchronous bridge signals.

Table A-5 DAPBUS synchronous bridge signals

Signal	Туре	Clock domain	Description
dapclk	Input	dapclk	The DAP clock.
dapresetn	Input	dapclk	The DAP reset.
dapclkens	Input	dapclk	The DAP clock enable.
dapsels	Input	dapclk	The DAP select. Indicates that the slave device is selected and a data transfer is required.
dapaborts	Input	dapclk	The DAP abort. When this signal is asserted HIGH, then the DAP slave aborts the current DAP transfer and asserts dapreadys HIGH in the next cycle.
dapenables	Input	dapclk	The DAP enable. Indicates the second and subsequent cycles of a DAP transfer
dapwrites	Input	dapclk	The DAP RW. Indicates a DAP write access when HIGH and a DAP read access when LOW.
dapaddrs[31:0]	Input	dapclk	The DAP address bus from master.
dapwdatas[31:0]	Input	dapclk	The DAP write data. The DAP master drives this bus.
dapclkenm	Input	dapclk	The DAP clock enable.
dapreadym	Input	dapclk	The DAP ready. The slave indicates whether it has completed the current transfer and is ready for the next transfer.
dapslverrm	Input	dapclk	The DAP slave error. The slave indicates that the present transfer has an error.
daprdatam[31:0]	Input	dapclk	The DAP read data. The read data of the present DAP read transfer.
csysreq	Input	dapclk	Clock powerdown request.
dapreadys	Output	dapclk	The DAP slave ready. When asserted HIGH, it indicates that the slave completed the present DAP transfer and is ready for the next transfer.
dapslverrs	Output	dapclk	The DAP slave error. Indicates that the present DAP transaction has an error.
daprdatas[31:0]	Output	dapclk	The DAP read data. Carries the read data of a DAP read transfer.
dapselm	Output	dapclk	The DAP select. Indicates that the master is selecting a particular slave for RW transfer.
dapabortm	Output	dapclk	The DAP master abort. When asserted HIGH, it indicates that the master is aborting the current transaction.
dapenablem	Output	dapclk	The DAP enable. Indicates the second and subsequent cycles of a DAP transfer.
dapwritem	Output	dapclk	The DAP RW. Indicates a write transfer when HIGH and a read transfer when LOW.
dapaddrm[31:0]	Output	dapelk	The DAP address bus.

Table A-5 DAPBUS synchronous bridge signals (continued)

Signal	Туре	Clock domain	Description
dapwdatam[31:0]	Output	dapclk	The DAP write data. The master drives this bus and carries the write data for the current write transfer.
csysack	Output	dapclk	Clock powerdown acknowledge.
cactive	Output	dapclk	Clock is required when driven HIGH.

A.1.5 JTAG - Access Port signals

Input/output type, clock domain and description for the DAP JTAG-AP signals.

Table A-6 DAP JTAG access port signal

Name	Туре	Clock domain	Description
dapclk	Input	dapclk	DAP internal clock.
dapclken	Input	dapclk	DAP clock enable.
dapresetn	Input	dapclk	DAP reset.
dapsel	Input	dapclk	DAP select.
dapenable	Input	dapclk	DAP enable.
dapwrite	Input	dapclk	DAP read or write.
dapabort	Input	dapclk	DAP abort.
dapcaddr[7:2]	Input	dapclk	DAP compressed address bus.
dapwdata[31:0]	Input	dapclk	DAP write data.
csrtck[7:0]	Input	dapclk	Returns TCK from JTAG slaves.
srstconnected[7:0]	Input	dapclk	Configure SRST support for JTAG slaves.
portconnected[7:0]	Input	dapclk	Configure which JTAG slaves are connected.
portenabled[7:0]	Input	dapclk	Indicates which JTAG slaves are enabled.
cstdo[7:0]	Input	dapclk	TDO from JTAG slaves.
dapready	Output	dapclk	DAP ready.
daprdata[31:0]	Output	dapclk	DAP read data.
nsrstout[7:0]	Output	dapclk	Sub system reset to JTAG slaves.
ncstrst[7:0]	Output	dapclk	Test reset to JTAG slaves.
cstck[7:0]	Output	dapclk	Test clock to JTAG slaves.
cstdi[7:0]	Output	dapclk	Test data input to JTAG slaves.
cstms[7:0]	Output	dapclk	Test mode select to JTAG slaves.

A.1.6 AXI - Access Port signals

Input/output type, clock domain and description for the DAP AXI-AP signals.

Table A-7 DAP AXI access port signals

Name	Туре	Clock domain	Description
clk	Input	clk	Clock.
resetn	Input	clk	Reset.
dapcaddr[7:2]	Input	clk	DAP address bus.
dapsel	Input	clk	DAP select. Asserted when the master selects this DAP slave and requires a data transfer.
dapenable	Input	clk	The DAP enable. Indicates the second and subsequent cycles of a DAP transfer.

Table A-7 DAP AXI access port signals (continued)

Name	Туре	Clock domain	Description
dapwrite	Input	clk	The DAP RW. Indicates a DAP write access when HIGH and a DAP read access when LOW.
dapwdata[31:0]	Input	clk	The DAP write data.
dapabort	Input	clk	The DAP abort. When this signal is asserted HIGH, then the DAP slave aborts the present DAP transfer and asserts in the next cycle.
dbgen	Input	clk	Debug enable for AHB transfers.
spiden	Input	clk	Secure Privileged Invasive Debug Enable. Prevents Secure transfer initiation when LOW.
awready	Input	clk	Write address ready.
wready	Input	clk	Write data ready.
bresp[1:0]	Input	clk	Write response.
bvalid	Input	clk	Write response valid.
arready	Input	clk	Read address ready.
rdata[63:0]	Input	clk	Read data.
rresp[1:0]	Input	clk	Read data response.
rlast	Input	clk	Read data last transfer indication.
rvalid	Input	clk	Read data valid.
rombaseaddrl[31:0]	Input	clk	Least significant 32-bits of the AXI-AP Debug Base Address Register.
rombaseaddru[31:0]	Input	clk	Most significant 32-bits of the AXI-AP Debug Base Address Register.
daprdata[31:0]	Output	clk	The DAP read data. Carries the read data of a DAP read transfer.
dapready	Output	clk	The DAP ready. When asserted HIGH, it indicates that the slave completed the present DAP transfer and is ready for the next transfer.
dapslverr	Output	clk	The DAP slave error. Indicates that the present DAP transaction has an error.
awaddr[63:0]	Output	clk	Write address.
awlen[3:0]	Output	clk	Write burst length.
awsize[2:0]	Output	clk	Write burst size.
awburst[1:0]	Output	clk	Write burst type.
awlock	Output	clk	Write lock type.
awcache[3:0]	Output	clk	Write cache type.
awprot[2:0]	Output	clk	Write protection type.
awvalid	Output	clk	Write address valid.
wdata[63:0]	Output	clk	Write data.
wstrb[7:0]	Output	clk	Write byte-lane strobes.
wlast	Output	clk	Write data last transfer indication.
wvalid	Output	clk	Write data valid.
bready	Output	clk	Write response ready.

Table A-7 DAP AXI access port signals (continued)

Туре	Clock domain	Description
Output	clk	Read address.
Output	clk	Read burst length.
Output	clk	Read burst size.
Output	clk	Read burst type.
Output	clk	Read lock type.
Output	clk	Read cache type.
Output	clk	Read protection type.
Output	clk	Read address valid.
Output	clk	Read data ready.
Output	clk	Write domain.
Output	clk	Write snoop request type.
Output	clk	Write barrier type.
Output	clk	Write domain.
Output	clk	Read snoop request type.
Output	clk	Read barriers.
	Output Output Output Output Output Output Output Output Output Output	TypeClock domainOutputclk

A.1.7 AHB - Access Port signals

Input/output type, clock domain and description for the DAP AHB-AP signals.

Table A-8 DAP AHB access port signals

Signal	Туре	Clock domain	Description
dapabort	Input	dapelk	DAP abort.
dapcaddr[7:2]	Input	dapelk	DAP compressed address bus.
dapclk	Input	dapelk	DAP clock.
dapclken	Input	dapelk	DAP clock enable.
dapenable	Input	dapelk	DAP enable.
dapresetn	Input	dapelk	DAP reset.
dapsel	Input	dapelk	DAP select.
dapwdata[31:0]	Input	dapelk	DAP write data bus.
dapwrite	Input	dapelk	DAP write or read.
dbgen	Input	dapelk	Debug enable for AHB transfers.
hrdatam	Input	dapelk	AHB read data bus.
hreadym	Input	dapelk	AHB slave ready.
hrespm	Input	dapelk	AHB slave response.
spiden	Input	dapclk	Secure Privileged Invasive Debug Enable. Prevents Secure transfer initiation when LOW.

Table A-8 DAP AHB access port signals (continued)

Signal	Туре	Clock domain	Description
rombaseaddr[31:0]	Input	dapclk	Static port to define the debug base address.
daprdata[31:0]	Output	dapclk	DAP read data bus.
dapready	Output	dapclk	DAP ready.
dapslverr	Output	dapclk	DAP slave error.
haddrm[31:0]	Output	dapclk	AHB address bus.
hbstrbm[3:0]	Output	dapclk	AHB byte lane strobe.
hburstm[2:0]	Output	dapclk	AHB burst type.
hlockm	Output	dapclk	AHB lock transfer.
hprotm[6:0]	Output	dapclk	AHB protection type.
hsizem[2:0]	Output	dapclk	AHB transfer size.
htransm[1:0]	Output	dapclk	AHB transfer type.
hwdatam[31:0]	Output	dapclk	AHB write data bus.
hwritem	Output	dapclk	AHB write or read.

A.1.8 APB - Access Port signals

Input/output type, clock domain, and description for the DAP APB-AP signals.

Table A-9 DAP APB-AP signals

Name	Туре	Clock domain	Description
dapclk	Input	dapclk	DAP clock.
dapclken	Input	dapclk	DAP clock enable.
dapresetn	Input	dapclk	DAP reset.
dapsel	Input	dapclk	DAP select.
dapenable	Input	dapclk	DAP enable.
dapwrite	Input	dapclk	DAP write or read.
dapabort	Input	dapclk	DAP abort.
dapcaddr[7:2]	Input	dapclk	DAP compressed address bus.
dapwdata[31:0]	Input	dapclk	DAP write data bus.
pready	Input	dapclk	APB ready.
pslverr	Input	dapclk	APB slave error.
prdata[31:0]	Input	dapclk	APB read data bus.
deviceen	Input	dapclk	Device enable.
rombaseaddr[31_0]	Input	dapclk	Static port to define the debug base address.
dapready	Output	dapclk	DAP ready.
dapslverr	Output	dapclk	DAP slave error.
daprdata[31:0]	Output	dapclk	DAP read data bus.
psel	Output	dapclk	APB select.
penable	Output	dapclk	APB enable.
pwrite	Output	dapclk	APB write or read.
paddr[31:2]	Output	dapclk	APB address bus.
pwdata[31:0]	Output	dapclk	APB write data bus.
pdbgswen	Output	dapclk	Enable software access to Debug APB.

A.2 APB component signals

Signal type and clock domain information for the APB component signals.

This section contains the following subsections:

- A.2.1 APB interconnect signals on page Appx-A-360.
- A.2.2 APB asynchronous bridge signals on page Appx-A-361.
- A.2.3 APB synchronous bridge signals on page Appx-A-362.

A.2.1 APB interconnect signals

Input/output type, clock domain and description for the APB interconnect signals.

Table A-10 APB interconnect signals

Signal	Туре	Clock domain	Description	
clk	Input	clk	The clock reference signal for all APB debug interfaces. The rising edge of clk times all transfers on the APB.	
resetn	Input	clk	Active-LOW reset.	
prdatam <x>[31:0]^w</x>	Input	clk	APB read data. Drives this bus during read cycles.	
preadym <x>^w</x>	Input	clk	APB ready. Uses this signal to extend an APB transfer.	
pslverrm <x>^w</x>	Input	clk	Indicates a transfer failure. The APB peripherals are not required to support the pslverr pin.	
paddrs <x>[saw:2]^{uv}</x>	Input	clk	The APB address bus for slave interface <i><x></x></i> .	
psels <x>^u</x>	Input	clk	Select. Indicates that the slave interface <i><x></x></i> is selected, and a data transfer is required.	
penables <x>^u</x>	Input	clk	Enable. Indicates the second and subsequent cycles of an APB transfer initiated o slave interface <i><x></x></i> .	
pwrites <x>^u</x>	Input	clk	Direction. Indicates an APB write access when HIGH and an APB read access when LOW.	
pwdatas <x>[31:0]^u</x>	Input	clk	Write data that the APB master device connected to the APBIC slave interface $\langle x \rangle$ drives.	
targetid[31:0]	Input	clk	Provides information to uniquely identify the sub system connected to this APBIC.	
paddr31s0	Input	clk	Enables components to distinguish between internal accesses from system software, and external accesses from a debugger.	
dbgswen	Input	clk	Enable software access to debug APB.	
paddrm <x>[maw:2]^{wx}</x>	Output	clk	The APB address bus for master interface <i><x></x></i> .	
pselm <x>^w</x>	Output	clk	APB select. Indicates that the slave device connected to master interface <x> is selected, and a data transfer is required.</x>	
penablem <x>^w</x>	Output	clk	APB enable. Indicates the second and subsequent cycles of an APB transfer that the master interface <i><x></x></i> initiates.	
pwritem <x>^w</x>	Output	clk	APB RW transfer. Indicates an APB write access when HIGH, and an APB read access when LOW.	

^u Where $\leq x \geq =0$ to (NUM_SLAVE_INTF-1).

V Where saw is a parameter dependent number.

W Where $\langle x \rangle = 0$ to (NUM_MASTER_INTF-1).

X Where maw is a parameter dependent number.

Table A-10 APB interconnect signals (continued)

Signal	Туре	Clock domain	Description
pwdatam <x>[31:0]^w</x>	Output	clk	Write data that the APBIC master interface <i><x></x></i> drives.
prdatas <x>[31:0]^u</x>	Output	clk	Read data. The slave interface <i><x></x></i> drives this bus during read cycles.
preadys <x>u</x>	Output	clk	APB ready. The slave interface <i><x></x></i> uses this signal to extend an APB transfer.
pslverrs <x>^u</x>	Output	clk	Indicates a transfer failure.

A.2.2 APB asynchronous bridge signals

Input/output type, clock domain and description for the APB asynchronous bridge signals.

Table A-11 APB asynchronous bridge signals

Signal	Туре	Clock domain	Description	
pclks	Input	pclks	APB clock.	
presetsn	Input	pclks	APB reset.	
pclkens	Input	pclks	APB clock enable.	
pclkm	Input	pclkm	APB clock.	
presetmn	Input	pclkm	APB reset.	
pclkenm	Input	pclkm	APB clock enable.	
psels	Input	pclks	APB select. Indicates that the slave interface is selected and a data transfer is required.	
penables	Input	pclks	APB enable. Indicates the second and subsequent cycles of an APB transfer initiated on slave interface.	
pwrites	Input	pclks	APB RW transfer. Indicates an APB write access when HIGH and an APB read access when LOW.	
paddrs[31:0]	Input	pclks	APB address bus.	
pwdatas[31:0]	Input	pclks	APB write data.	
preadym	Input	pclkm	APB ready. The slave device uses this signal to extend an APB transfer.	
pslverrm	Input	pclkm	APB transfer error. Indicates a transfer failure. The APB peripherals are not required to support the pslverr pin.	
prdatam[31:0]	Input	pclkm	APB read data. The selected slave drives this bus during read cycles.	
csysreq ^y	Input	pclks	Clock powerdown request.	
preadys	Output	pclks	APB ready. The slave interface uses this signal to extend an APB transfer.	
pslverrs	Output	pclks	APB transfer error. Indicates a transfer failure. The APB peripherals are not required to support the pslverr pin.	
prdatas[31:0]	Output	pclks	APB read data. The slave interface drives this bus during read cycles.	
pselm	Output	pclkm	APB select. Indicates that the slave device connected to the master interface is selected and a data transfer is required.	
penablem	Output	pclkm	APB enable. Indicates the second and subsequent cycles of an APB transfer that the master interface initiates.	

^y This signal is present only if you configure this component to have a low-power interface, and it configured for master-only or full.

Table A-11 APB asynchronous bridge signals (continued)

Signal	Туре	Clock domain	Description
pwritem	Output	pclkm	APB RW transfer. Indicates an APB write access when HIGH and an APB read access when LOW.
paddrm[31:0]	Output	pclkm	APB address bus.
pwdatam[31:0]	Output	pclkm	APB write data. The APB master interface drives this bus.
csysack ^y	Output	pclks	Clock powerdown acknowledge.
cactive ^y	Output	pclks	Clock is required when driven HIGH.

Cross-domain connections table

The APB asynchronous bridge can be configured as a separate master interface component and slave interface component. If you configure the bridge in this way, you must connect the two components as shown in the table.

The following table shows APB asynchronous bridge cross-domain connections.

Table A-12 APB asynchronous bridge cross-domain connections

Slave component signal	Туре	Master component signal	Туре
apbm_req_async	Output	apbs_req_async	Input
apbm_ack_async	Input	apbs_ack_async	Output
apbm_fwd_data_async	Output	apbs_fwd_data_async	Input
apbm_rev_data_async	Input	apbs_rev_data_async	Output

A.2.3 APB synchronous bridge signals

Input/output type, clock domain and description for the APB synchronous bridge signals.

Table A-13 APB synchronous bridge signals

	CIOCK UDITIAIII	Description	
Input	pclk	APB clock signal for all downstream APB debug interfaces.	
Input	pclk	APB reset.	
Input	pclk	APB clock enable.	
Input	pclk	APB select. Indicates that the slave interface is selected and a data transfer is required.	
Input	pclk	APB enable. Indicates the second and subsequent cycles of an APB transfer initiated slave interface.	
Input	pclk	APB RW transfer. Indicates an APB write access when HIGH and an APB read acce when LOW.	
Input	pclk	APB address bus.	
Input	pclk	APB write data.	
Input	pclk	APB clock enable.	
Input	pclk	APB ready. The slave device uses this signal to extend an APB transfer.	
Input	pclk	APB transfer error. Indicates a transfer failure. The APB peripherals are not required to support the pslverr pin.	
	Input Input Input Input Input Input Input	InputpclkInputpclkInputpclkInputpclkInputpclkInputpclkInputpclkInputpclkInputpclkInputpclk	

Table A-13 APB synchronous bridge signals (continued)

Signal	Туре	Clock domain	Description
prdatam[31:0]	Input	pclk	APB read data. The selected slave drives this bus during read cycles.
csysreq ^z	Input	pclk	Clock powerdown request.
preadys	Output	pclk	APB ready. The slave interface uses this signal to extend an APB transfer.
pslverrs	Output	pclk	APB transfer error. Indicates a transfer failure. The APB peripherals are not required to support the pslverr pin.
prdatas[31:0]	Output	pclk	APB read data. The slave interface drives this bus during read cycles.
pselm	Output	pclk	APB select. Indicates that the slave device connected to master interface is selected and a data transfer is required.
penablem	Output	pclk	APB enable. Indicates the second and subsequent cycles of an APB transfer initiated by master interface.
pwritem	Output	pclk	APB RW transfer. Indicates an APB write access when HIGH and an APB read access when LOW.
paddrm[31:0]	Output	pclk	APB address bus.
pwdatam[31:0]	Output	pclk	APB write data. The APB master interface drives this bus.
csysack ^z	Output	pclk	Clock powerdown acknowledge.
cactive ^z	Output	pclk	Clock is required when driven HIGH.

^Z This signal is only present if you configure this component to have an LPI.

A.3 ATB interconnect signals

Signal type and clock domain information for the ATB interconnect signals.

This section contains the following subsections:

- A.3.1 ATB replicator signals on page Appx-A-364.
- A.3.2 ATB trace funnel signals on page Appx-A-365.
- *A.3.3 ATB upsizer signals* on page Appx-A-366.
- *A.3.4 ATB downsizer signals* on page Appx-A-367.
- *A.3.5 ATB asynchronous bridge signals* on page Appx-A-368.
- *A.3.6 ATB synchronous bridge signals* on page Appx-A-369.

A.3.1 ATB replicator signals

Input/output type, clock domain and description for the ATB replicator signals.

Table A-14 ATB replicator signals

Name	Туре	Clock domain	Description	
afreadys	Input	clk	ATB data flush complete on the slave port.	
afvalidm0	Input	clk	ATB data flush request on the master port 0.	
afvalidm1	Input	clk	ATB data flush request on the master port 1.	
atbytess[<bw>:0] ^{aa}</bw>	Input	clk	ATB number of valid bytes, LSB aligned, on the slave port.	
clk	Input	clk	ATB clock.	
atdatas[<dw>:0] ^{ab}</dw>	Input	clk	ATB trace data.	
atids[6:0]	Input	clk	ATB ID for current trace data.	
atreadym0	Input	clk	ATB transfer ready on master port 0.	
atreadym1	Input	clk	ATB transfer ready on master port 1.	
resetn	Input	clk	ATB reset.	
atvalids	Input	clk	ATB valid signal present.	
paddrdbg[11:2]	Input	clk	Debug APB address bus.	
penabledbg	Input	clk	Debug APB enable signal, indicates second and subsequent cycles.	
pseldbg	Input	clk	Debug APB component select.	
pwdatadbg[31:0]	Input	clk	Debug APB write data bus.	
pwritedbg	Input	clk	Debug APB write transfer.	
pclkendbg	Input	clk	Debug APB clock enable.	
paddrdbg31	Input	clk	Enables components to distinguish between internal accesses from system software, and external accesses from a debugger.	
syncreqm0	Input	clk	Synchronization request.	
syncreqm1	Input	clk	Synchronization request.	
afreadym0	Output	clk	ATB data flush complete for the master port 0.	
afreadym1	Output		ATB data flush complete for the master port 1.	

aa <bw> has a value in the range 0-3 that is calculated at configuration time.

ab <dw> is the width of the data bus minus one.

Table A-14 ATB replicator signals (continued)

Name	Туре	Clock domain	Description
afvalids	Output	clk	ATB data flush request for the master port.
atbytesm0[<bw>:0] aa</bw>	Output	clk	ATB number of valid bytes, LSB aligned, on the master port.
atbytesm1[<bw>:0] aa</bw>	Output	clk	ATB number of valid bytes, LSB aligned, on the master port.
atdatam0[<dw>:0]^{ab}</dw>	Output	clk	ATB trace data on the master port 0.
atdatam1[<dw>:0]^{ab}</dw>	Output	clk	ATB trace data on the master port 1.
atidm0[6:0]	Output	clk	ATB ID for current trace data on master port 0.
atidm1[6:0]	Output	clk	ATB ID for current trace data on master port 1.
atreadys	Output	clk	ATB transfer ready.
atvalidm0	Output	clk	ATB valid signal present on master port 0.
atvalidm1	Output	clk	ATB valid signal present on master port 1.
preadydbg	Output	clk	Debug APB ready signal.
prdatadbg[31:0]	Output	clk	Debug APB read data bus.
pslverrdbg	Output	clk	Debug APB transfer error signal.
syncreqs	Output	clk	Synchronization request.

A.3.2 ATB trace funnel signals

Input/output type, clock domain and description for the ATB trace funnel signals.

Table A-15 ATB trace funnel signals

Name	Туре	Clock domain	Description
afreadys <x>^{ac}</x>	Input	clk	ATB data flush complete for the slave port <x>.</x>
afvalidm	Input	clk	ATB data flush request for the master port.
atbytess <x>[<bw>:0]^{acad}</bw></x>	Input	clk	ATB number of valid bytes, LSB aligned, on the slave port <x>.</x>
clk	Input	clk	ATB clock.
atdatas <x>[<dw>:0] acae</dw></x>	Input	clk	ATB trace data on the slave port $\langle x \rangle$.
atids <x>[6:0] ^{ac}</x>	Input	clk	ATB ID for current trace data on slave port <x>.</x>
atreadym	Input	clk	ATB transfer ready on master port.
resetn	Input	clk	ATB reset.
atvalids <x>^{ac}</x>	Input	clk	ATB valid signal present on slave port <x>.</x>
paddrdbg[11:2]	Input	clk	Debug APB address bus.
paddrdbg31	Input	clk	Enables components to distinguish between internal accesses from system software, and external accesses from a debugger.
pclkendbg	Input	clk	Debug APB clock enable.
penabledbg	Input	clk	Debug APB enable signal, indicates second and subsequent cycles.

ac Where the value of $\langle x \rangle$ can be 0-7.

ad Where
bw> is in the range 0-3 and is automatically calculated at configuration time.

ae Where <dw> is the data width of the interface minus one.

Table A-15 ATB trace funnel signals (continued)

Name	Туре	Clock domain	Description
pseldbg	Input	clk	Debug APB component select.
pwdatadbg[31:0]	Input	clk	Debug APB write data bus.
pwritedbg	Input	clk	Debug APB write transfer.
syncreqm	Input	clk	Synchronization request.
afreadym	Output	clk	ATB data flush complete for the master port.
afvalids <x>^{ac}</x>	Output	clk	ATB data flush request for the slave port $$.
atbytesm[<bw>:0]^{ad}</bw>	Output	clk	ATB number of valid bytes, LSB aligned, on the master port.
atdatam[<dw>:0]^{ae}</dw>	Output	clk	ATB trace data on the master port.
atidm[6:0]	Output	clk	ATB ID for current trace data on master port.
atreadys <x>ac</x>	Output	clk	ATB transfer ready on slave port <x>.</x>
atvalidm	Output	clk	ATB valid signals present on master port.
prdatadbg[31:0]	Output	clk	Debug APB read data bus.
preadydbg	Output	clk	Debug APB ready signal.
syncreqs <x>^{ac}</x>	Output	clk	Synchronization request.

A.3.3 ATB upsizer signals

Input/output type, clock domain and description for the ATB upsizer signals.

Table A-16 ATB upsizer signals

Signal	Туре	Clock domain	Description
clk	Input	clk	Global ATB clock.
resetn	Input	clk	ATB interface reset when LOW. This signal is asserted LOW asynchronously, and deasserted HIGH synchronously.
atids[6:0]	Input	clk	An ID that uniquely identifies the source of the trace.
atvalids	Input	clk	A transfer is valid during this cycle. If LOW, all other ATB signals must be ignored in this cycle.
atbytess[<sbw>:0]^{af}</sbw>	Input	clk	The number of bytes on atdata to be captured, minus 1.
atdatas[<sdw>:0]^{ag}</sdw>	Input	clk	Trace data.
afreadys	Input	clk	This is a flush acknowledge. Asserted when buffers are flushed.
atreadym	Input	clk	Slave is ready to accept data.
afvalidm	Input	clk	This is the flush signal. All buffers must be flushed because trace capture is about to stop.
syncreqm	Input	clk	Synchronization request.
atreadys	Output	clk	Slave is ready to accept data.

af <sbw> has a range of 0-2.

ag <sdw> value can be 7, 15, 31, or 63.

Table A-16 ATB upsizer signals (continued)

Signal	Туре	Clock domain	Description
afvalids	Output	clk	This is the flush signal. All buffers must be flushed because trace capture is about to stop.
syncreqs	Output	clk	Synchronization request.
atvalidm	Output	clk	A transfer is valid during this cycle. If LOW, all the other ATB signals must be ignored in this cycle.
atidm[6:0]	Output	clk	An ID that uniquely identifies the source of the trace.
atbytesm[<mbw>:0]^{ah}</mbw>	Output	clk	The number of bytes on atdata to be captured, minus 1.
atdatam[<mdw>:0]^{ai}</mdw>	Output	clk	Trace data.
afreadym	Output	clk	This is a flush acknowledge. Asserted when buffers are flushed.

A.3.4 ATB downsizer signals

Input/output type, clock domain and description for the ATB downsizer signals.

Table A-17 ATB downsizer signals

Signal	Туре	Clock domain	Description
clk	Input	clk	Global ATB clock.
resetn	Input	clk	The ATB interface reset. When LOW, this signal is asserted LOW asynchronously, and deasserted HIGH synchronously.
atvalids	Input	clk	A transfer is valid during this cycle. If LOW, all the other ATB signals must be ignored in this cycle.
atids[6:0]	Input	clk	An ID that uniquely identifies the source of the trace.
atbytess[sbw:0] ^{aj}	Input	clk	The number of bytes on atdata to be captured, minus 1.
atdatas[sdw-1:0] ^{ak}	Input	clk	Trace data bus.
afreadys	Input	clk	This is a flush acknowledge. Asserted when buffers are flushed.
atreadym	Input	clk	Slave is ready to accept data.
afvalidm	Input	clk	This is the flush signal. All buffers must be flushed because trace capture is about to stop.
syncreqm	Input	clk	Synchronization request.
atreadys	Output	clk	Slave is ready to accept data.
afvalids	Output	clk	This is the flush signal. All buffers must be flushed because trace capture is about to stop.
syncreqs	Output	clk	Synchronization request.
atvalidm	Output	clk	A transfer is valid during this cycle. If LOW, all other ATB signals must be ignored in this cycle.
atidm[6:0]	Output	clk	An ID that uniquely identifies the source of the trace.

- ah <mbw> has a range of 0-3.
- ai <mdw> value can be 7, 15, 31, 63, or 127.

ak Where sdw is the data width of the slave interface.

a) Where sbw can have the range 0-3 and is automatically calculated at configuration time based on the data width of the slave interface.

Table A-17 ATB downsizer signals (continued)

Signal	Туре	Clock domain	Description
atbytesm[mbw:0] ^{al}	Output	clk	The number of bytes on ATDATA to be captured, minus 1.
atdatam[mdw:0] ^{am}	Output	clk	Trace data bus.
afreadym	Output	clk	This is a flush acknowledge. Asserted when buffers are flushed.

A.3.5 ATB asynchronous bridge signals

Input/output type, clock domain and description for the ATB asynchronous bridge signals.

Name	Туре	Clock domain	Description
clks	Input	clks	ATB clock.
resetsn	Input	clks	ATB reset.
clkens	Input	clks	ATB clock enable.
clkm	Input	clkm	ATB clock.
resetmn	Input	clkm	ATB reset.
clkenm	Input	clkm	ATB clock enable.
atvalids	Input	clks	ATB valid signal.
atreadym	Input	clkm	ATB transfer ready.
atids[6:0]	Input	clks	ATB ID for the present trace data.
atbytess[bw:0] ^{an}	Input	clks	ATB number of valid bytes, LSB aligned, on the slave port.
atdatas[dw:0] ^{ao}	Input	clks	ATB trace data.
afvalidm	Input	clkm	ATB data flush request.
afreadys	Input	clks	ATB data flush complete.
afreadym	Input	clkm	ATB data flush complete.
syncreqm	Input	clks	Synchronization request.
csysreq ^{ap}	Input	clkm	Clock powerdown request.
atvalidm	Output	clks	ATB valid signal.
atreadys	Output	clks	ATB transfer ready.
atidm[6:0]	Output	clkm	ATB ID for the present trace data.
atbytesm[bw:0] ^{an}	Output	clkm	ATB number of valid bytes, LSB aligned, on the master port.
atdatam[dw:0]	Output	clkm	ATB trace data.
afvalids	Output	clks	ATB data flush request.
syncreqs	Output	clks	Synchronization request.

Table A-18 ATB asynchronous bridge signals

al Where mbw can have the range 0-3 and is automatically calculated at configuration time based on the data width of the master interface.

am Where mdw is the data width of the master interface.

ao Where dw is either 7, 15, 31, or 63.

an Where bw has a range of 0-3.

^{ap} This signal is only present if you configure the device to have an LPI.

Name	Туре	Clock domain	Description
cactive ^{ap}	Output	clkm	Clock is required when driven HIGH.
csysack ^{ap}	Output	clkm	Clock powerdown acknowledge.

Table A-18 ATB asynchronous bridge signals (continued)

Cross-domain connections table

The ATB asynchronous bridge can be configured as a separate master interface component and slave interface component. If you configure the bridge in this way, then you must connect the two components as the table shows.

The following table shows ATB asynchronous bridge cross-domain connections.

Table A-19 ATB asynchronous bridge cross-domain connections

Slave component signal	Туре	Master component signal	Туре
atb_rev_data_in	Input	atb_rev_data_out	Output
atb_fwd_data_out	Output	atb_fwd_data_in	Input
zero_pointer_d	Input	zero_pointer	Output
slv_safe_state	Output	slv_safe_state_d	Input
syncreqs_req_async_in	Input	syncreqs_req_async_out	Output
syncreqs_ack_async_out	Output	syncreqs_ack_async_in	Input

A.3.6 ATB synchronous bridge signals

Input/output type, clock domain and description for the ATB synchronous bridge signals.

Table A-20 ATB synchronous bridge signals

Name	Туре	Clock domain	Description	
afreadys	Input	clk	ATB data flush complete.	
afvalidm	Input	clk	ATB data flush request.	
atbytess[<bw>:0]^{aq}</bw>	Input	clk	ATB number of valid bytes, LSB aligned, on the slave port.	
clk	Input	clk	ATB clock.	
clkens	Input	clk	ATB clock enable.	
clkenm	Input	clk	ATB clock enable.	
atdatas[<dw>:0]^{ar}</dw>	Input	clk	ATB trace data.	
atids[6:0]	Input	clk	ATB ID for the present trace data.	
atreadym	Input	clk	ATB transfer ready.	
resetn	Input	clk	ATB reset for the ATCLK domain.	
atvalids	Input	clk	ATB valid signal present.	
csysreq ^{as}	Input	clk	Clock powerdown request.	

aq <bw> has a range of 0-3.

ar < dw > is the data width of the interface, minus one.

as This signal is only present if you configure the device to have an LPI.

Name	Туре	Clock domain	Description
syncreqm	Input	clk	Synchronization request.
afreadym	Output	clk	ATB data flush complete.
afvalids	Output	clk	ATB data flush request.
atbytesm[<bw>:0]^{aq}</bw>	Output	clk	ATB number of valid bytes, LSB aligned, on the master port.
atdatam[<dw>:0]^{ar}</dw>	Output	clk	ATB trace data.
atidm	Output	clk	ATB ID for current trace data.
atreadys	Output	clk	ATB transfer ready.
atvalidm	Output	clk	ATB valid signals present.
cactive ^{as}	Output	clk	Clock is required when driven HIGH.
csysack ^{as}	Output	clk	Clock powerdown acknowledge.
syncreqs	Output	clk	Synchronization request.

Table A-20 ATB synchronous bridge signals (continued)

A.4 Timestamp component signals

Signal type and clock domain information for the timestamp component signals.

This section contains the following subsections:

- *A.4.1 Timestamp generator signals* on page Appx-A-371.
- *A.4.2 Timestamp encoder signals* on page Appx-A-372.
- A.4.3 Narrow timestamp replicator signals on page Appx-A-373.
- A.4.4 Narrow timestamp asynchronous bridge signals on page Appx-A-373.
- A.4.5 Narrow timestamp synchronous bridge signals on page Appx-A-375.
- *A.4.6 Timestamp decoder signals* on page Appx-A-376.
- *A.4.7 Timestamp interpolator signals* on page Appx-A-377.

A.4.1 Timestamp generator signals

Input/output type, clock domain and description for the timestamp generator signals.

Table A-21 Timestamp generator signals

Name	Туре	Clock domain	Description	
clk	Input	clk	APB clock.	
resetn	Input	clk	APB reset.	
hltdbg	Input	clk	Request to halt the counter when the processor is in debug state.	
paddrctrl[11:2]	Input	clk	APB address.	
pselctrl	Input	clk	APB select. Indicates that the slave interface is selected and a data transfer is required	
penablectrl	Input	clk	APB enable. Indicates the second and subsequent cycles of a transfer initiated on a slave interface.	
pwritectrl	Input	clk	APB RW transfer. Indicates an APB write access when HIGH and an APB read acces when LOW.	
pwdatactrl[31:0]	Input	clk	APB write data. This bus is driven by the APB master device connected to slave interface.	
paddrread[11:2]	Input	clk	APB address.	
pselread	Input	clk	APB select. Indicates that the slave interface is selected and a data transfer is required	
penableread	Input	clk	APB enable. Indicates the second and subsequent cycles of a transfer initiated on a slave interface.	
pwriteread	Input	clk	APB RW transfer. Indicates an APB write access when HIGH and an APB read when LOW. Because this is an RO interface, writes have no effect.	
pwdataread[31:0]	Input	clk	APB write data. The APB master device connected to slave interface drives this bus. Because this is an RO interface, writes have no effect.	
tsvalueb[63:0]	Output	clk	Wide timestamp value in binary.	
tsforcesync	Output	clk	Resynchronization request.	
preadyctrl	Output	clk	APB ready. The slave device uses this signal to extend an APB transfer.	
pslverrctrl	Output	clk	Indicates a transfer failure.	
prdatactrl[31:0]	Output	clk	APB read data. The slave interface drives this bus during read cycles.	
preadyread	Output	clk	APB ready. The slave device uses this signal to extend an APB transfer.	

Table A-21 Timestamp generator signals (continued)

Name	Туре	Clock domain	Description
pslverrread	Output	clk	Indicates a transfer failure.
prdataread[31:0]	Output	clk	APB read data. Slave interface drives this bus during read cycles.

A.4.2 Timestamp encoder signals

Input/output type, clock domain and description for the timestamp encoder signals.

Table A-22 Timestamp encoder signals

Name	Туре	Clock domain	Description
tsclk	Input	tsclk	Timestamp clock.
tsresetn	Input	tsclk	Timestamp reset.
tsvalue[63:0]	Input	tsclk	Timestamp generator interface value.
tsforcesync	Input	tsclk	Timestamp generator interface force synchronization.
tssyncready	Input	tsclk	Timestamp slave ready.
tsbit[6:0]	Output	tsclk	Timestamp encoded value.
tssync[1:0]	Output	tsclk	Timestamp synchronization bits.

A.4.3 Narrow timestamp replicator signals

Input/output type, clock domain and description for the narrow timestamp replicator signals.

Name Туре **Clock domain Description** clk Input clk Timestamp clock. resetn Input clk Timestamp reset. tssyncreadym<x> Input clk Timestamp slave ready. tsbits[6:0] Input clk Timestamp encoded value. tssyncs[1:0] Input clk Timestamp synchronization bits. tsbitm<x>[6:0]at Output clk Timestamp encoded value. tssyncm<x>[1:0] Output clk Timestamp synchronization bits. tssyncreadys Output clk Timestamp slave ready.

Table A-23 Narrow timestamp replicator signals

A.4.4 Narrow timestamp asynchronous bridge signals

Input/output type, clock domain and description for the narrow timestamp asynchronous bridge signals.

Table A-24 Narrow timestamp asynchronous bridge signals

Name	Туре	Clock domain	Description
clkm	Input	clkm	Clock.
resetmn	Input	clkm	Reset.
clks	Input	clks	Clock.
resetsn	Input	clks	Reset.
tsbits[6:0]	Input	clks	Timestamp encoded value.
tssyncs[1:0]	Input	clks	Timestamp synchronization bits.
csysreq ^{au}	Input	clks	Clock powerdown request.
tssyncreadym	Input	clkm	Timestamp slave ready.
tssyncreadys	Output	clks	Timestamp slave ready.
csysack ^{au}	Output	clks	Clock powerdown acknowledge.
cactive ^{au}	Output	clks	Clock is required when driven HIGH.
tsbitm[6:0]	Output	clkm	Timestamp encoded value.
tssyncm[1:0]	Output	clkm	Timestamp synchronization bits.

Cross-domain connections table

The narrow timestamp asynchronous bridge can be configured as a separate master interface component and slave interface component. If you configure the bridge in this way, then you must connect the two components as the table shows.

The following table shows narrow timestamp asynchronous bridge cross-domain connections.

at Where $\langle x \rangle$ can have any value in the range 0-15.

au This signal is only present if you configure the device to have an LPI.

Slave component signal	Туре	Master component signal	Туре
wr_ptr_gry_s	Output	wr_ptr_gry_m	Input
encd_data_s	Output	end_data_m	Input
rd_ptr_gry_s	Input	rd_ptr_gry_m	Output
rd_ptr_bin_s	Input	rd_ptr_bin_m	Output
lp_req_s	Output	lp_req_m	Input
lp_ack_s	Input	lp_ack_m	Output

Table A-25 Narrow timestamp asynchronous bridge cross-domain connections

A.4.5 Narrow timestamp synchronous bridge signals

Input/output type, clock domain and description for the narrow timestamp synchronous bridge signals.

Table A-26 Narrow timestamp synchronous bridge signals

Name	Туре	Clock domain	Description
clk	Input	clk	Clock.
resetn	Input	clk	Reset.
clkens	Input	clk	Clock enable.
clkenm	Input	clk	Clock enable.
tsbits[6:0]	Input	clk	Timestamp encoded value.
tssyncs[1:0]	Input	clk	Timestamp synchronization bits.
tssyncreadym	Input	clk	Timestamp slave ready.
csysreq ^{av}	Input	clk	Clock powerdown request.
tssyncreadys	Output	clk	Timestamp slave ready.
tsbitm[6:0]	Output	clk	Timestamp encoded value.
tssyncm[1:0]	Output	clk	Timestamp synchronization bits.
csysack ^{av}	Output	clk	Clock powerdown acknowledge.
cactive ^{av}	Output	clk	Clock is required when driven HIGH.

av This signal is only present if you configure the device to have an LPI.

A.4.6 Timestamp decoder signals

Input/output type, clock domain and description for the timestamp decoder signals.

Table A-27 Timestamp decoder signals

Name	Туре	Clock domain	Description
clk	Input	clk	Clock.
resetn	Input	clk	Reset.
tsbit[6:0]	Input	clk	Timestamp encoded value.
tssync[1:0]	Input	clk	Timestamp synchronization bits.
tssyncready	Output	clk	Timestamp slave ready.
tsvalue[63:0]	Output	clk	Timestamp decoded value. The original value exported from the timestamp generator.

A.4.7 Timestamp interpolator signals

Input/output type, clock domain and description for the timestamp interpolator signals.

Table A-28 Timestamp interpolator signals

Name	Туре	Clock domain	Description
clk	Input	clk	Clock.
resetn	Input	clk	Reset.
tsvalueb[63:0]	Input	clk	Timestamp value.
tsvalueintpb[63:0]	Output	clk	Interpolated timestamp value.

A.5 Trigger component signals

Signal type and clock domain information for the Trigger component signals.

This section contains the following subsections:

- A.5.1 Cross Trigger Interface signals on page Appx-A-378.
- A.5.2 Cross Trigger Matrix signals on page Appx-A-379.
- A.5.3 Event asynchronous bridge signals on page Appx-A-380.

A.5.1 Cross Trigger Interface signals

Input/output type, clock domain and description for the CTI signals.

Table A-29 CTI signals

Name	Туре	Clock domain	Description
cihsbypass[3:0]	Input	cticlk	Channel interface handshake bypass.
cisbypass	Input	cticlk	Channel interface sync bypass.
ctiapbsbypass	Input	cticlk	Synchronization bypass between APB and CTI clock.
ctichin[3:0]	Input	cticlk	Channel in.
ctichoutack[3:0]	Input	cticlk	Channel out acknowledge.
cticlk	Input	cticlk	CTI clock.
cticlken	Input	cticlk	CTI clock enable.
ctitrigin[7:0]	Input	cticlk	Trigger in.
ctitrigoutack[7:0]	Input	cticlk	Trigger out acknowledge.
dbgen	Input	NA	Invasive debug enable.
ctiresetn	Input	cticlk	Reset.
niden	Input	cticlk	Non-invasive debug enable.
paddrdbg[11:2]	Input	pclkdbg	Debug APB address bus.
paddrdbg31	Input	pclkdbg	Enables components to distinguish between internal accesses from system software and external accesses from a debugger.
pclkdbg	Input	pclkdbg	Debug APB clock.
pclkendbg	Input	pclkdbg	Debug APB clock enable.
penabledbg	Input	pclkdbg	Debug APB enable signal, indicates second and subsequent cycles.
presetdbgn	Input	pclkdbg	Debug APB reset.
pseldbg	Input	pclkdbg	Debug APB component select.
pwdatadbg[31:0]	Input	pclkdbg	Debug APB write data bus.
pwritedbg	Input	pclkdbg	Debug APB write transfer.
tihsbypass[7:0]	Input	cticlk	Trigger interface handshake bypass, static value.
tinidensel[7:0]	Input	cticlk	Masks when NIDEN is LOW, static value.
tisbypassack[7:0]	Input	cticlk	Trigger out acknowledge sync bypass, static value.
tisbypassin[7:0]	Input	cticlk	Trigger in sync bypass, static value.
todbgensel[7:0]	Input	cticlk	Masks when dbgen is LOW, static value.

Table A-29 CTI signals (continued)

/pe	Clock domain	Description
utput	cticlk	External multiplexer control.
utput	cticlk	Channel in acknowledge.
utput	cticlk	Channel out.
utput	cticlk	Trigger in acknowledge.
utput	cticlk	Trigger out.
utput	pclkdbg	Debug APB read data bus.
utput	pclkdbg	Debug APB ready signal.
	utput utput utput utput utput	utput cticlk utput cticlk utput cticlk utput cticlk utput cticlk utput cticlk utput pclkdbg utput pclkdbg

A.5.2 Cross Trigger Matrix signals

Input/output type, clock domain and description for the CTM signals.

Table A-30 CTM signals

Name	Туре	Clock domain	Description
cihsbypass0[3:0]	Input	ctmclk	Handshaking bypass port 0.
cihsbypass1[3:0]	Input	ctmclk	Handshaking bypass port 1.
cihsbypass2[3:0]	Input	ctmclk	Handshaking bypass port 2.
cihsbypass3[3:0]	Input	ctmclk	Handshaking bypass port 3.
cisbypass0	Input	ctmclk	Sync bypass for port 0.
cisbypass1	Input	ctmclk	Sync bypass for port 1.
cisbypass2	Input	ctmclk	Sync bypass for port 2.
cisbypass3	Input	ctmclk	Sync bypass for port 3.
ctmchin0[3:0]	Input	ctmclk	Channel in port 0.
ctmchin1[3:0]	Input	ctmclk	Channel in port 1.
ctmchin2[3:0]	Input	ctmclk	Channel in port 2.
ctmchin3[3:0]	Input	ctmclk	Channel in port 3.
ctmchoutack0[3:0]	Input	ctmclk	Channel out acknowledge port 0.
ctmchoutack1[3:0]	Input	ctmclk	Channel out acknowledge port 1.
ctmchoutack2[3:0]	Input	ctmclk	Channel out acknowledge port 2.
ctmchoutack3[3:0]	Input	ctmclk	Channel out acknowledge port 3.
ctmclk	Input	ctmclk	Clock.
ctmclken	Input	ctmclk	Clock enable.
ctmresetn	Input	ctmclk	Reset.
ctmchinack0[3:0]	Output	ctmclk	Channel in acknowledge port 0.
ctmchinack1[3:0]	Output	ctmclk	Channel in acknowledge port 1.
ctmchinack2[3:0]	Output	ctmclk	Channel in acknowledge port 2.
ctmchinack3[3:0]	Output	ctmclk	Channel in acknowledge port 3.

Table A-30 CTM signals (continued)

Name	Туре	Clock domain	Description
ctmchout0[3:0]	Output	ctmclk	Channel out port 0.
ctmchout1[3:0]	Output	ctmclk	Channel out port 1.
ctmchout2[3:0]	Output	ctmclk	Channel out port 2.
ctmchout3[3:0]	Output	ctmclk	Channel out port 3.

A.5.3 Event asynchronous bridge signals

Input/output type, clock domain and description for the event asynchronous bridge signals.

_____ Note _____

Master clock is the domain that drives the slave interface to this bridge.

Table A-31 Event asynchronous bridge signals

Name	Туре	Clock domain	Description
clks	Input	clks	Clock.
clkens	Input	clks	Clock enable.
resetsn	Input	clks	Reset.
clkm	Input	clkm	Clock.
clkenm	Input	clkm	Clock enable.
resetmn	Input	clkm	Reset.
events	Input	clks	Event request.
eventackm	Input	clkm	Event acknowledge.
eventacks	Output	clks	Event acknowledge.
eventm	Output	clkm	Event request.

A.6 Trace sink signals

Signal type and clock domain information for the Trace sink signals.

This section contains the following subsections:

- A.6.1 Trace Port Interface Unit signals on page Appx-A-381.
- *A.6.2 Embedded Trace Buffer signals* on page Appx-A-382.

A.6.1 Trace Port Interface Unit signals

Input/output type, clock domain and description for the TPIU signals.

Table A-32 TPIU signals

name	Туре	clock domain	Description
afreadys	Input	atclk	ATB data flush complete for the master port.
atbytess[1:0]	Input	atclk	ATB number of valid bytes, LSB aligned, on the slave port.
atclk	Input	atclk	ATB clock.
atclken	Input	atclk	ATB clock enable.
atdatas[31:0]	Input	atclk	ATB trace data on the slave port.
atids[6:0]	Input	atclk	ATB ID for current trace data on slave port.
atresetn	Input	atclk	ATB reset for the atclk domain.
atvalids	Input	atclk	ATB valid signals present on slave port.
extctlin[7:0]	Input	atelk	External control input.
flushin	Input	atclk	Flush input from the CTI.
paddrdbg[11:2]	Input	pclkdbg	Debug APB address bus.
paddrdbg31	Input	pclkdbg	Enables components to distinguish between internal accesses from system software and external accesses from a debugger.
pclkdbg	Input	pclkdbg	Debug APB clock.
pclkendbg	Input	pclkdbg	Debug APB clock enable.
penabledbg	Input	pclkdbg	Debug APB enable signal, indicates second and subsequent cycles.
presetdbgn	Input	pclkdbg	Debug APB asynchronous reset.
pseldbg	Input	pclkdbg	Debug APB component select.
pwdatadbg[31:0]	Input	pclkdbg	Debug APB write data bus.
pwritedbg	Input	pclkdbg	Debug APB write transfer.
tpctl	Input	atclk	Tie-off to report presence of tracectl , static value.
tpmaxdatasize[4:0]	Input	atclk	Tie-off to report maximum number of pins on tracedata , static value.
traceclkin	Input	traceclkin	Trace clock.
tresetn	Input	traceclkin	Trace clock asynchronous reset.
trigin	Input	atelk	Trigger input from the CTI.
afvalids	Output	atclk	ATB data flush request for the master port.
atreadys	Output	atclk	ATB transfer ready on slave port.

Table A-32 TPIU signals (continued)

name	Туре	clock domain	Description
extctlout[7:0]	Output	atclk	External control output.
flushinack	Output	atclk	Flush input acknowledgement.
prdatadbg[31:0]	Output	pclkdbg	Debug APB read data bus.
preadydbg	Output	pclkdbg	Debug APB ready signal.
traceclk	Output	traceclkin	Half the frequency of the exported trace port clock, traceclkin .
tracectl	Output	traceclkin	Trace port control.
tracedata[31:0]	Output	traceclkin	Trace port data.
triginack	Output	atclk	Trigger input acknowledgement.

A.6.2 Embedded Trace Buffer signals

Input/output type, clock domain and description for the ETB signals.

Table A-33 ETB signals

Name	Туре	Clock domain	Description
afreadys	Input	atclk	ATB data flush complete.
atbytess[1:0]	Input	atclk	ATB number of valid bytes, LSB aligned, on the slave port.
atclk	Input	atclk	ATB clock.
atclken	Input	atclk	ATB clock enable.
atdatas[31:0]	Input	atclk	ATB trace data.
atids[6:0]	Input	atclk	ATB ID for the current trace data.
atresetn	Input	atclk	ATB reset for the atclk domain.
atvalids	Input	atclk	ATB valid signals present.
flushin	Input	atclk	Flush input from the CTI.
mbistaddr[AW-1:0]	Input	atclk	Memory BIST address.
mbistce	Input	atclk	Memory BIST chip enable.
mbistdin[31:0]	Input	atclk	Memory BIST data in.
mbistwe	Input	atclk	Memory BIST write enable.
mteston	Input	atclk	Memory BIST test is enabled.
paddrdbg[11:2]	Input	pclkdbg	Debug APB address bus.
paddrdbg31	Input	pclkdbg	Enables components to distinguish between internal accesses from system software and external accesses from a debugger.
pclkdbg	Input	pclkdbg	Debug APB clock.
pclkendbg	Input	pclkdbg	Debug APB clock enable.
penabledbg	Input	pclkdbg	Debug APB enable signal. Indicates second and subsequent cycles.
presetdbgn	Input	pclkdbg	Debug APB reset.
pseldbg	Input	pclkdbg	Debug APB component select.

Table A-33 ETB signals (continued)

Name	Туре	Clock domain	Description
pwdatadbg[31:0]	Input	pclkdbg	Debug APB write data bus.
pwritedbg	Input	pclkdbg	Debug APB write transfer.
se	Input	N/A	Scan enable.
trigin	Input	atclk	Trigger input from the CTI.
acqcomp	Output	atclk	Trace acquisition complete.
afvalids	Output	atclk	ATB data flush request for the master port.
atreadys	Output	atclk	ATB transfer ready on slave port.
flushinack	Output	atelk	Flush input acknowledgement.
full	Output	atelk	The cxetb RAM overflowed or wrapped around.
mbistdout[31:0]	Output	atclk	Memory BIST data out.
prdatadbg[31:0]	Output	pclkdbg	Debug APB read data bus.
preadydbg	Output	pclkdbg	Debug APB ready signal. Use this signal to extend an APB transfer.
triginack	Output	atclk	Trigger input acknowledgement.

A.7 Authentication and event bridges

Signal type and clock domain information for the authentication and event bridges.

This section contains the following subsections:

- A.7.1 Authentication asynchronous bridge signals on page Appx-A-384.
- A.7.2 Authentication synchronous bridge signals on page Appx-A-384.
- *A.7.3 Authentication replicator* on page Appx-A-385.

A.7.1 Authentication asynchronous bridge signals

Input/output type, clock domain and description for the authentication asynchronous bridge signals.

Name	Туре	Clock domain	Description
clks	Input	clks	Authentication clock.
clkm	Input	clkm	Authentication clock.
resetsn	Input	clks	Authentication reset.
resetmn	Input	clkm	Authentication reset.
dbgens	Input	clks	Invasive debug enable.
nidens	Input	clks	Non-invasive debug enable.
spidens	Input	clks	Secure invasive debug enable.
spnidens	Input	clks	Secure non-invasive debug enable.
dbgswens	Input	clks	Invasive software debug enable.
dbgenm	Output	clkm	Invasive debug enable.
nidenm	Output	clkm	Non-invasive debug enable.
spidenm	Output	clkm	Secure invasive debug enable.
spnidenm	Output	clkm	Secure non-invasive debug enable.
dbgswenm	Output	clkm	Invasive software debug enable.

Table A-34 Authentication asynchronous bridge signals

Cross-domain connections table

The authentication asynchronous bridge can be configured as a separate master interface component and slave interface component. If you configure the bridge in this way, then you must connect the two components as the table shows.

The following table shows authentication asynchronous bridge cross-domain connections.

Table A-35 Authentication asynchronous bridge cross-domain connections

Slave component signal	Туре	Type Master component signa	
authm_req_async	Output	auths_req_async	Input
authm_ack_async	Input	auths_ack_async	Output
authm_fwd_data_async	Output	auths_fwd_data_async	Input

A.7.2 Authentication synchronous bridge signals

Input/output type, clock domain and description for the authentication synchronous bridge signals.

Name	Туре	Clock domain	Description
Name	Type		Description
clk	Input	clk	Authentication clock.
resetn	Input	clk	Authentication reset.
dbgens	Input	clk	Invasive debug enable.
nidens	Input	clk	Non-invasive debug enable.
spidens	Input	clk	Secure invasive debug enable
dbgswens	Input	clk	Invasive software debug enable.
spnidens	Input	clk	Secure non-invasive debug enable.
dbgenm	Output	clk	Invasive debug enable.
nidenm	Output	clk	Non invasive debug enable.
spidenm	Output	clk	Secure invasive debug enable.
spnidenm	Output	clk	Secure non-invasive debug enable.
dbgswenm	Output	clk	Invasive software debug enable.

Table A-36 Authentication synchronous bridge signals

A.7.3 Authentication replicator

Input/output type, clock domain and description for the authentication replicator signals.

Table A-37 Authentication replicator signals

Name	Туре	Clock domain	Description
clk	Input	clk	Authentication clock.
resetn	Input	clk	Authentication reset.
dbgens	Input	clk	Invasive debug enable.
nidens	Input	clk	Non-invasive debug enable.
spidens	Input	clk	Secure invasive debug enable.
spnidens	Input	clk	Secure non-invasive debug enable.
dbgswens	Input	clk	Invasive software debug enable.
dbgenm <x>^{aw}</x>	Output	clk	Invasive debug enable.
nidenm <x>^{aw}</x>	Output	clk	Non-invasive debug enable.
spidenm <x>^{aw}</x>	Output	clk	Secure invasive debug enable.
spnidenm <x>^{aw}</x>	Output	clk	Secure non-invasive debug enable.
dbgswenm <x>^{aw}</x>	Output	clk	Invasive software debug enable.

aw Where <x> is the master interface number.

A.8 Granular power requester signals

Signal type and clock domain information for the granular power requester signals.

The following table shows the input/output type, clock domain and description for each of the granular power requester signals.

Table A-38 Granular power requester signals

Name	Туре	Clock domain	Description
clk	Input	clk	Clock
resetn	Input	clk	Reset
paddr31dbg	Input	clk	Enables components to distinguish between internal accesses from system software and external accesses from a debugger.
cpwrupack[31:0]	Input	clk	Powerup acknowledge. This signal acknowledges that a system power controller responded to a powerup or powerdown request.
pseldbg	Input	clk	DAP select.
penabledbg	Input	clk	DAP enable.
pwritedbg	Input	clk	DAP write or read.
paddrdbg[11:2]	Input	clk	DAP compressed address bus.
pwdatadbg[31:0]	Input	clk	DAP write data bus.
preadydbg	Output	clk	DAP ready.
pslverrdbg	Output	clk	DAP slave error.
prdatadbg[31:0]	Output	clk	DAP compressed address bus.
cpwrupreq[31:0]	Output	clk	 Powerup request. This signal requests the system power controller to: Powerup the target power domain. Enable the clocks. De-asserting cpwrupreq indicates to a power controller that power can be removed from a domain.

Appendix B **Revisions**

This appendix describes the technical changes between released issues of this book.

It contains the following sections:

• *B.1 Revisions* on page Appx-B-388.

B.1 Revisions

This appendix describes the technical changes between released issues of this book.

Table B-1 Issue A

Change	Location	Affects
First release	-	-

Table B-2 Differences between issue A and issue B

Change	Location	Affects
Correction to signal name capitalization and signal directions.	Chapter 2 Functional Overview on page 2-26	All revisions
Correction to signal name capitalization and signal directions.	Appendix A Signal Descriptions on page Appx-A-347	All revisions
Clarification of management register description.	Chapter 3 About the programmers model on page 3-56	All revisions
Component revision updated in the identification registers.	Chapter 3 About the programmers model on page 3-56	r1p0
ATB replicator IDFILTER0 diagram updated.	3.5.2 ID filtering for ATB master port 0, IDFILTER0 on page 3-101	All revisions
Moved and updated DAPBUS interconnect and APB interconnect and ROM table chapters into subsections of the Debug Access Port.	Chapter 4 Debug Access Port on page 4-254	All revisions
Component versions updated in block summary.	1.1.2 CoreSight [™] SoC-400 block summary on page 1-14	r1p0 and above
Detail added on clock domain crossing bridges.	Chapter 4 Debug Access Port on page 4-254	All revisions
Detail added on clock domain crossing bridges.	Chapter 6 ATB Interconnect Components on page 6-290	All revisions
Detail added on clock domain crossing bridges.	Chapter 7 Timestamp Components on page 7-301	All revisions
Event Asynchronous Bridge component information included.	Entire document	All revisions
Granular Power Requester component added.	2.8 Granular Power Requester on page 2-55 and A.8 Granular power requester signals on page Appx-A-386.	r1p0 and above
Timestamp interpolator component added.	2.4.7 Timestamp interpolator on page 2-47 and A.4.7 Timestamp interpolator signals on page Appx-A-377.	r1p0 and above

Table B-3 Differences between issue B and issue C

Change	Location	Affects
Updated 1.1.1 Structure of CoreSight [™] SoC-400 on page 1-14 section.	Chapter 1 About CoreSight [™] SoC-400 on page 1-13	All revisions
Updated Narrow timestamp asynchronous bridge revision in 1.1.2 CoreSight [™] SoC-400 block summary on page 1-14.	Chapter 1 About CoreSight [™] SoC-400 on page 1-13	All revisions
Updated 1.8 Product revisions on page 1-25 for r2p0.	Chapter 1 About CoreSight [™] SoC-400 on page 1-13	r2p0

Table B-3 Differences between issue B and issue C (continued)

Change	Location	Affects
Added rombaseaddrl[31:0] and rombaseaddru[31:0] to 2.1.6 AXI access port on page 2-30.	Chapter 2 Functional Overview on page 2-26	All revisions
Added rombaseaddr[31:0] to 2.1.7 AHB access port on page 2-32.	Chapter 2 Functional Overview on page 2-26	All revisions
Updated 2.5.3 Event asynchronous bridge on page 2-49 section.	Chapter 2 Functional Overview on page 2-26	All revisions
Updated JTAG-DP register summary on page 3-233.	Chapter 3 About the programmers model on page 3-56	All revisions
Moved and updated <i>3.9.6 JTAG-DP registers</i> on page 3-233 into subsection of the <i>3.9.5 Debug port registers</i> on page 3-232.	Chapter 3 About the programmers model on page 3-56	All revisions
Reset value correction in <i>JTAG-DP register summary</i> on page 3-233.	Chapter 3 About the programmers model on page 3-56	All revisions
Updated the description in <i>AHB-AP Debug Base Address register</i> ; <i>BASE</i> , 0xF8 on page 3-220.	Chapter 3 About the programmers model on page 3-56	All revisions
Updated the description in <i>APB-AP Control/Status Word register</i> , <i>CSW</i> , 0x00 on page 3-229.	Chapter 3 About the programmers model on page 3-56	All revisions
Component revision updated in the identification registers.	Chapter 3 About the programmers model on page 3-56	r2p0
Updated 4.1.2 DAP flow of control on page 4-257 section.	Chapter 4 Debug Access Port on page 4-254	All revisions
Moved and updated 4.2.5 Operation in JTAG-DP mode on page 4-260 and 4.2.6 Operation in SW-DP mode on page 4-261 into subsection of the 4.2.4 JTAG and SWD interface on page 4-260.	Chapter 4 Debug Access Port on page 4-254	All revisions
Updated 6.3 ATB upsizer on page 6-296 section.	Chapter 6 ATB Interconnect Components on page 6-290	All revisions
Updated 6.2.4 Arbitration on page 6-292 section in 6.2 ATB funnel on page 6-292.	Chapter 6 ATB Interconnect Components on page 6-290	All revisions
Added rombaseaddrl[31:0] and rombaseaddru[31:0] to <i>A.1.6 AXI</i> - <i>Access Port signals</i> on page Appx-A-355.	Appendix A Signal Descriptions on page Appx-A-347	All revisions
Added rombaseaddr[31:0] to <i>A.1.7 AHB - Access Port signals</i> on page Appx-A-357.	Appendix A Signal Descriptions on page Appx-A-347	All revisions

Table B-4 Differences between issue C and issue D

Change	Location	Affects	
Updated the signal case for the following block diagrams:	Chapter 2 Functional Overview on page 2-26	All revisions	
• 2.5.1 Cross Trigger Interface on page 2-48.			
• 2.5.2 Cross Trigger Matrix on page 2-48.			
• 2.6.1 Trace Port Interface Unit on page 2-51.			
• 2.6.2 Embedded Trace Buffer on page 2-51.			
Updated the offset value for CIDR 0-3 in 3.10.1 Timestamp generator register summary table on page 3-244	Chapter 3 About the programmers model on page 3-56	All revisions	
Updated the top-level signal case for ECT components.	Chapter 8 Embedded Cross Trigger on page 8-313	All revisions	
Updated the top-level signal case for TPIU components.	Chapter 9 Trace Port Interface Unit on page 9-322	All revisions	
Updated the top-level signal case for ETB components.	Chapter 10 Embedded Trace Buffer on page 10-334	All revisions	

Change	Location	Affects
Updated the top-level signal case for ECT, TPIU, and ETB components.	Appendix A Signal Descriptions on page Appx-A-347	All revisions
Updated the component version references	1.1.2 CoreSight [™] SoC-400 block summary on page 1-14	All revisions
	<i>3.7.32 Peripheral ID2 Register, PIDR2</i> on page 3-176	

Table B-5 Differences between issue D and issue E

Change	Location	Affects
Updated product name to CoreSight SoC-400	Entire document	All revisions
Added compliance information	1.2 Compliance on page 1-18	All revisions
Updated signals	2.1.6 AXI access port on page 2-30	All revisions
Updated Debug Base Register descriptions	 AHB-AP Debug Base Address register, BASE, 0xF8 on page 3-220 AXI-AP Debug Base Address register on page 3-226 APB-AP Debug Base Address register, BASE, 0xF8 on page 3-231 	All revisions
Updated reset value for DOMAIN field	AXI-AP Control/Status Word register on page 3-221	r3p0
Updated figure to show JTAG-DP	Control/Status register, CTRL/STAT on page 3-236	All revisions
Modified the revision value in AHB-AP Identification register	AHB-AP Identification Register, IDR, 0xFC on page 3-220	r3p0
Added a note for Domain field in AXI-AP CSW register	AXI-AP Control/Status Word register on page 3-221	r3p0
Updated ARLOCK and AWLOCK sizes	4.7.6 AXI transfers on page 4-275	All revisions
Added synchronization request signals	 A.3.1 ATB replicator signals on page Appx-A-364 A.3.2 ATB trace funnel signals on page Appx-A-365 A.2.3 APB synchronous bridge signals on page Appx-A-362 	All revisions

Table B-6 Differences between issue E and issue F

Change	Location	Affects
Corrected case of signals.	Throughout	All revisions
Updated the component block versions.	Chapter 1 About CoreSight [™] SoC-400 on page 1-13 Chapter 3 About the programmers model on page 3-56	r3p1
Updated the example CoreSight SoC-400 system.	1.1.3 Typical CoreSight [™] SoC-400 system on page 1-16	All revisions
Improved clarity of the introduction.	Chapter 1 About CoreSight [™] SoC-400 on page 1-13	All revisions
Improved clarity of component descriptions in the functional overview, and redistributed information between this document, the <i>ARM</i> [®] <i>CoreSight</i> [™] <i>SoC-400 Integration Manual</i> , and the <i>ARM</i> [®] <i>CoreSight</i> [™] <i>SoC-400 Implementation Guide</i> to better match the intended audience of each document.	Chapter 2 Functional Overview on page 2-26	All revisions

Change	Location	Affects
Moved APB component descriptions from DAP	Chapter 2 Functional Overview on page 2-26	All revisions
component descriptions to their own sections and chapter.	Chapter 4 Debug Access Port on page 4-254	
	Chapter 5 APB Interconnect Components on page 5-285	
	Appendix A Signal Descriptions on page Appx-A-347	
Moved event asynchronous bridge description from	Chapter 2 Functional Overview on page 2-26	All revisions
authentication bridges to cross-triggering components.	Chapter 8 Embedded Cross Trigger on page 8-313	
	Appendix A Signal Descriptions on page Appx-A-347	
Changed dapaddr[7:2] to dapcaddr[7:2].	2.1.6 AXI access port on page 2-30	r3p1
	A.1.6 AXI - Access Port signals on page Appx-A-355	
Removed ts bit valid qualify signal from narrow	2.4.3 Narrow timestamp replicator on page 2-45	r3p1
timestamp replicator.	7.4 Narrow timestamp replicator on page 7-307	
	A.4.3 Narrow timestamp replicator signals on page Appx-A-373	
Corrected timestamp interpolator signal list.	2.4.7 Timestamp interpolator on page 2-47	All revisions
	A.4.7 Timestamp interpolator signals on page Appx-A-377	
Added description of the authentication replicator.	2.7 Authentication bridges on page 2-53	All revisions
	A.7 Authentication and event bridges on page Appx-A-384	
Improved clarity of various programmers model registers.	Chapter 3 About the programmers model on page 3-56	All revisions
Replaced SW-DP description of IDCODE register with DPIDR Register.	3.9.5 Debug port registers on page 3-232	All revisions
Renamed SW-DP WCR Register to DLCR Register.	3.9.5 Debug port registers on page 3-232	All revisions
Added description of Timestamp generator CNTCVL and CNTCVU registers.	3.10 Timestamp generator on page 3-244	All revisions
Reorganized, consolidated and rewrote substantial	Chapter 4 Debug Access Port on page 4-254	All revisions
information in the component description chapters to improve clarity.	Chapter 5 APB Interconnect Components on page 5-285	
	Chapter 6 ATB Interconnect Components on page 6-290	
	Chapter 7 Timestamp Components on page 7-301	
	Chapter 8 Embedded Cross Trigger on page 8-313	
	Chapter 9 Trace Port Interface Unit on page 9-322	
	Chapter 10 Embedded Trace Buffer on page 10-334	

Table B-6	Differences	between	issue E	and	issue F	(continued)
-----------	-------------	---------	---------	-----	---------	-------------

Change	Location	Affects
Added and corrected information on clocks and resets	Chapter 4 Debug Access Port on page 4-254	All revisions
for each component.	Chapter 5 APB Interconnect Components on page 5-285	
Described where synchronizers are required.	Chapter 6 ATB Interconnect Components on page 6-290	
Added note to consult the <i>ARM</i> [®] <i>CoreSight</i> [™] <i>SoC-400</i> <i>Integration Manual</i> , when using clock enables to	Chapter 7 Timestamp Components on page 7-301	
interface between synchronous clock domains.	Chapter 8 Embedded Cross Trigger on page 8-313	
	Chapter 9 Trace Port Interface Unit on page 9-322	
	Chapter 10 Embedded Trace Buffer on page 10-334	
Clarified the behavior of low power interfaces.	Chapter 5 APB Interconnect Components on page 5-285	All revisions
	Chapter 6 ATB Interconnect Components on page 6-290	
	Chapter 7 Timestamp Components on page 7-301	
Renamed SProt to CSW.Prot[1], because SProt is not	Chapter 4 Debug Access Port on page 4-254	All revisions
defined elsewhere.	Chapter 5 APB Interconnect Components on page 5-285	
	Chapter 6 ATB Interconnect Components on page 6-290	
Corrected arbitration behavior of the non- programmable funnel.	6.2.7 Non-programmable funnel on page 6-295	All revisions
Described use of ATB synchronous bridge as a trace buffer.	6.6 ATB synchronous bridge on page 6-299	All revisions
Described usage of the timestamp distribution network for processor time and CoreSight time, and clarified that the same network must not be used for both.	Chapter 7 Timestamp Components on page 7-301	All revisions
Clarified usage of the timestamp generator hltdbg signal.	7.2 Timestamp generator on page 7-304	All revisions
Updated guidance to TPA designers on traceclk alignment expectations.	9.4.2 traceclk alignment on page 9-326	All revisions
Added flowcharts from CoreSight Design Kits explaining ETB trace stop, flush, and trigger operation.	10.4 ETB trace capture and formatting on page 10-338	All revisions
Removed Granular Power Requester chapter from the book, because the information is provided in <i>2.8 Granular Power Requester</i> on page 2-55 and other sections.	Chapter 2 Functional Overview on page 2-26	All revisions
Corrected CTM signal list to show that its channel interfaces are always four channels wide.	A.5.2 Cross Trigger Matrix signals on page Appx-A-379	All revisions
Listed signals that must be connected between slave and master interface components of asynchronous bridges when separately implemented	Appendix A Signal Descriptions on page Appx-A-347	All revisions

Table B-7 Differences between issue F and issue G

Change	Location		
Updated CoreSight block summary table.	1.1.2 CoreSight [™] SoC-400 block summary on page 1-14	r3p2	
rombaseaddr port added to figure.	2.1.8 APB access port on page 2-33	r3p2	
Added ATB Phantom Bridges section.	2.3.7 ATB phantom bridges on page 2-43	r3p2	
Added Channel asynchronous bridge section.	2.5.4 Channel asynchronous bridge on page 2-49	r3p2	
	8.6 Channel asynchronous bridge on page 8-320		
Added Cross Trigger to System Trace Macrocell	2.5.5 Cross Trigger to System Trace Macrocell on page 2-49	r3p2	
section.	8.7 Cross Trigger to System Trace Macrocell on page 8-321		
Updated component revision fields.	Chapter 3 About the programmers model on page 3-56	r3p2	
Added Timestamp recovery from stopped clock section.	7.5.5 Timestamp recovery from stopped clock on page 7-309	r3p2	
Added description of JTAG instruction register configuration option.	2.1.1 Serial Wire or JTAG Debug Port on page 2-27	r3p2	
Added missing Reset values column to table.	3.10.1 Timestamp generator register summary table on page 3-244	r3p2	
Minor updates and corrections to text, figures and tables.	Throughout the document.	r3p2	

Table B-8 Differences between issue G and issue 0302-01

Change	Location	Affects All revisions	
Changed AHB-AP Debug Base Address register description.	AHB-AP Debug Base Address register, BASE, 0xF8 on page 3-220		
Changed AXI-AP Debug Base Address register, BASE[63:32] description.	AXI-AP Debug Base Address register, BASE [63:32] on page 3-226	All revisions	
Changed AXI-AP Debug Base Address register, BASE[31:0] description.	AXI-AP Debug Base Address register, BASE [31:0] on page 3-226	All revisions	
Changed APB-AP Debug Base Address register reset value.	APB-AP register summary on page 3-228	All revisions	
Changed APB-AP Debug Base Address register description.	APB-AP Debug Base Address register, BASE, 0xF8 on page 3-231	All revisions	
Changed JTAG-DP register summary.	JTAG-DP register summary on page 3-233	All revisions	
Added note to description of AHB-AP external interfaces.	4.8.2 External interfaces on page 4-278	All revisions	
Added cautionary note to HPROT encodings description.	HPROT encodings on page 4-279	r3p2	
Added new section on interfacing an AHB5 slave to the cxdapahbap.	<i>4.8.3 Interfacing an AHB5 slave to the cxdapahbap</i> on page 4-280	r3p2	
Redefined narrow timestamp features.	7.1 About the timestamp components on page 7-302	All revisions	
Added rombaseaddr[31:0] to APB - Access Port signals table.	A.1.8 APB - Access Port signals on page Appx-A-359	All revisions	