
Arm® Cortex®-R8 MPCore Processor
Revision: r0p3

Technical Reference Manual

Copyright © 2015–2019 Arm Limited or its affiliates. All rights reserved.
100400_0003_01_en

Arm® Cortex®-R8 MPCore Processor
Technical Reference Manual
Copyright © 2015–2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-01 14 December 2015 Confidential First release for r0p0

0001-02 09 March 2016 Confidential First release for r0p1

0001-03 03 March 2017 Non-Confidential Second release for r0p1

0002-00 10 September 2018 Non-Confidential First release for r0p2

0003-01 13 February 2019 Non-Confidential First release for r0p3

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2015–2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

 Arm® Cortex®-R8 MPCore Processor

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Cortex®-R8 MPCore Processor

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com

Contents
Arm® Cortex®-R8 MPCore Processor Technical
Reference Manual

Preface
About this book 9
Feedback .. 12

Chapter 1 Introduction
1.1 About the Cortex®-R8 processor .. 1-14
1.2 Compliance .. 1-15
1.3 Processor features 1-16
1.4 Processor interfaces .. 1-17
1.5 Configurable options .. 1-18
1.6 Redundant processor core comparison 1-20
1.7 Test features .. 1-21
1.8 Product documentation and design flow .. 1-22
1.9 Product revisions 1-24

Chapter 2 Functional Description
2.1 About the functions .. 2-26
2.2 Interfaces 2-28
2.3 Clocking, resets, and initialization 2-29
2.4 Power management 2-36
2.5 Processor ports 2-42

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 3 Programmers Model
3.1 About the programmers model .. 3-52
3.2 The VFP extension .. 3-53
3.3 Multiprocessing extensions 3-54
3.4 Memory formats 3-55
3.5 Addresses in the processor 3-56

Chapter 4 System Control
4.1 About system control 4-58
4.2 Register summary 4-59
4.3 Register descriptions 4-70

Chapter 5 Floating Point Unit Programmers Model
5.1 About the FPU programmers model .. 5-100
5.2 IEEE 754 standard compliance 5-101
5.3 Instruction throughput and latency 5-102
5.4 FPU register summary 5-104
5.5 FPU register descriptions 5-106

Chapter 6 Level 1 Memory System
6.1 About the L1 memory system 6-111
6.2 Fault handling 6-112
6.3 About the TCMs 6-116
6.4 About the caches 6-117
6.5 Local exclusive monitor 6-125
6.6 Memory types and L1 memory system behavior 6-126
6.7 Error detection events 6-127

Chapter 7 Fault Detection
7.1 About fault detection .. 7-129
7.2 RAM protection .. 7-130
7.3 Logic protection 7-136
7.4 External memory and bus protection 7-137
7.5 Programmers view 7-139
7.6 Lock-step 7-141
7.7 Static split/lock 7-144

Chapter 8 Determinism Support
8.1 About determinism support .. 8-147
8.2 Memory Protection Unit 8-148
8.3 Branch prediction 8-157
8.4 Low-latency interrupt mode 8-158
8.5 System configurability and QoS 8-159
8.6 Instruction and data TCM 8-161

Chapter 9 Multiprocessing
9.1 About multiprocessing and the SCU .. 9-164
9.2 Multiprocessing programmers view 9-166
9.3 SCU registers 9-167
9.4 Interrupt controller 9-189
9.5 Private timer and watchdog 9-201

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

9.6 Global timer 9-207
9.7 Accelerator Coherency Port 9-211

Chapter 10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit 10-215
10.2 Memory Reconstruction Port 10-222
10.3 Embedded Trace Macrocell 10-223
10.4 Debug .. 10-224

Chapter 11 Embedded Trace Macrocell
11.1 About the ETM 11-239
11.2 Functional description .. 11-244
11.3 Interfaces 11-246
11.4 Clocking and resets 11-248
11.5 Operation 11-249
11.6 Controlling ETM programming 11-253
11.7 ETM registers 11-254
11.8 Register descriptions 11-266

Chapter 12 Level 2 Interface
12.1 About the L2 interface 12-344
12.2 Optimized accesses to the L2 memory interface 12-350
12.3 Accessing RAMs using the AXI3 interface 12-351
12.4 STRT instructions .. 12-352
12.5 Event communication with an external agent using WFE/SEV 12-353
12.6 Accelerator Coherency Port interface .. 12-354

Appendix A Signal Descriptions
A.1 About the signal descriptions Appx-A-357
A.2 Clock and control signals Appx-A-358
A.3 Reset signals Appx-A-360
A.4 Interrupt controller signals Appx-A-361
A.5 Configuration signals Appx-A-362
A.6 Standby signals Appx-A-366
A.7 Power management signals Appx-A-367
A.8 AXI3 interfaces Appx-A-368
A.9 Performance monitoring signals Appx-A-382
A.10 Exception flag signals .. Appx-A-383
A.11 Error detection notification signals Appx-A-384
A.12 Test interface Appx-A-395
A.13 MBIST interface Appx-A-396
A.14 External debug signals Appx-A-397
A.15 ETM signals Appx-A-401
A.16 Memory reconstruction port signals Appx-A-404
A.17 Power gating interface signals Appx-A-405

Appendix B Cycle Timings and Interlock Behavior
B.1 About instruction cycle timing Appx-B-408
B.2 Data-processing instructions Appx-B-409
B.3 Load and store instructions .. Appx-B-410
B.4 Multiplication instructions Appx-B-414

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

B.5 Branch instructions Appx-B-415
B.6 Serializing instructions Appx-B-416

Appendix C Revisions
C.1 Revisions Appx-C-418

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

Preface

This preface introduces the Arm® Cortex®‑R8 MPCore Processor Technical Reference Manual.

It contains the following:
• About this book on page 9.
• Feedback on page 12.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

 About this book
Arm® Cortex®‑R8 MPCore Technical Reference Manual (TRM) providing reference information on the
processor design, implementation, registers, and interfaces. The guide includes documentation on the
Memory Protection Unit (MPU), interrupt controller, debug, level 1 and level 2 interfaces. Available as
PDF.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the Cortex®‑R8 processor.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the Cortex‑R8 processor and its features.

Chapter 2 Functional Description
This chapter describes the functionality of the Cortex‑R8 processor.

Chapter 3 Programmers Model
This chapter describes the programmers model.

Chapter 4 System Control
This chapter describes the system control registers, their structure and operation, and how to use
them.

Chapter 5 Floating Point Unit Programmers Model
This chapter describes the programmers model of the optional Floating-Point Unit (FPU).

Chapter 6 Level 1 Memory System
This chapter describes the L1 memory system.

Chapter 7 Fault Detection
This chapter describes the fault detection features of the Cortex‑R8 processor.

Chapter 8 Determinism Support
This chapter describes the determinism support features of the Cortex‑R8 processor.

Chapter 9 Multiprocessing
This chapter describes the multiprocessing features of the Cortex‑R8 processor, including the
SCU.

Chapter 10 Monitoring, Trace, and Debug
This chapter describes the monitoring, trace, and debug features of the Cortex‑R8 processor.

Chapter 11 Embedded Trace Macrocell
This chapter describes the Embedded Trace Macrocell for the Cortex‑R8 processor.

Chapter 12 Level 2 Interface
This chapter describes the L2 memory interface.

 Preface
 About this book

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Appendix A Signal Descriptions
This appendix describes the Cortex‑R8 processor signals. Signal name, direction, and source/
destination details are provided for each signal.

Appendix B Cycle Timings and Interlock Behavior
This appendix describes the cycle timings of integer instructions on Cortex‑R8 processor cores.

Appendix C Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

 Preface
 About this book

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• Arm® Cortex®‑R8 MPCore Integration Manual (100402).
• Arm® Cortex®‑R8 MPCore Processor Configuration and Sign-off Guide (100401).
• Arm®Architecture Reference Manual Armv7-A and Armv7-R edition (DDI 0406).
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (IHI 0064).
• Arm® CoreSight™ Architecture Specification (IHI 0029).
• Arm® CoreSight™ SoC‑400 Technical Reference Manual (DDI 0480).
• Arm® CoreSight™ SoC‑400 Implementation Guide (DII 0267).
• Arm® CoreSight™ SoC‑400 Integration Manual (DIT 0037).
• Arm® CoreSight™ SoC‑400 System Design Guide (DGI 0018).
• Arm® CoreSight™ SoC‑400 User Guide (DUI 0563).
• Arm® CoreSight™ DAP-Lite2 Technical Reference Manual (DDI 0316).
• Arm® AMBA® AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite, ACE and

ACE-Lite (IHI 0022).
• Arm® AMBA® 3 AHB-Lite Protocol Specification (IHI 0033).
• Arm® AMBA® APB Protocol Specification (IHI 0024).
• Arm® Design Simulation Model User Guide (DUI 0302).
• Arm® Generic Interrupt Controller Architecture Specification (IHI 0048B).
• Arm® CoreLink™ Level 2 Cache Controller L2C-310 Technical Reference Manual (DDI

0246).
• Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (IHI 0031).

Other publications
This section lists relevant documents published by third parties:
• None.

 Preface
 About this book

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Cortex‑R8 MPCore Processor Technical Reference Manual.
• The number 100400_0003_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter introduces the Cortex‑R8 processor and its features.

It contains the following sections:
• 1.1 About the Cortex®‑R8 processor on page 1-14.
• 1.2 Compliance on page 1-15.
• 1.3 Processor features on page 1-16.
• 1.4 Processor interfaces on page 1-17.
• 1.5 Configurable options on page 1-18.
• 1.6 Redundant processor core comparison on page 1-20.
• 1.7 Test features on page 1-21.
• 1.8 Product documentation and design flow on page 1-22.
• 1.9 Product revisions on page 1-24.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.1 About the Cortex®-R8 processor
The Cortex‑R8 processor is a mid-range processor for use in deeply-embedded, real-time systems. It
implements the Armv7‑R architecture, and includes Thumb®-2 technology for optimum code density and
processing throughput.

The pipeline has a dual Arithmetic Logic Unit (ALU), with dual-issuing of instructions for efficient
utilization of other resources such as the register file.

The processor has Level 1 (L1) data cache coherency in a cluster with up to four cores. An optional
hardware Accelerator Coherency Port (ACP) is provided to reduce software cache maintenance
operations when sharing memory regions with other masters.

Interrupt latency is kept low by interrupting and restarting load-store multiple instructions, and by use of
an integrated interrupt controller. The Cortex‑R8 processor provides two specialized memory solutions
for low-latency and determinism:
• Tightly-Coupled Memory (TCM) offers determinism and very low latency, but has limited memory

space.
• Local RAM, cached by L1, offers a better low latency than TCM, but latencies are still bounded, so it

is deterministic. This solution offers larger memory space than TCM, and is coherent in
multiprocessor configurations.

Optional Error Correcting Code (ECC) can be used on all processor ports and in L1 memories to provide
improved reliability and address fault-critical applications.

Many of the features, including the caches, TCM, and ECC are configurable so that a given processor
implementation can be tailored to the application for efficient power and area usage.

1 Introduction
1.1 About the Cortex®-R8 processor

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

1.2 Compliance
This TRM complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these sources.

The Cortex‑R8 processor complies with, or implements, the specifications that are described in the
following sections.

1.2.1 Arm® architecture

The Cortex‑R8 processor implements the Armv7‑R architecture and Armv7 debug architecture. The
Armv7‑R architecture provides 32-bit Arm and 16-bit and 32-bit Thumb instruction sets, including a
range of Single Instruction, Multiple Data (SIMD) Digital Signal Processing (DSP) instructions that
operate on 16-bit or 8-bit data values in 32-bit registers.

The optional Floating Point Unit (FPU) implements the VFPv3-D16 architecture that includes the
VFPv3 instruction set. See the Arm® Architecture Reference Manual, Arm®v7‑A and Arm®v7‑R edition.

1.2.2 Trace macrocell

Each Cortex‑R8 core can include an optional Embedded Trace Macrocell (ETM) that can be shared with
other cores, or each core can have an optional dedicated ETM. This ETM implements ETM architecture
version 4.

See Arm® Embedded Trace Macrocell Architecture Specification ETMv4.

1.2.3 Advanced Microcontroller Bus Architecture

The Cortex‑R8 processor complies with the AMBA 3 protocol.

See Arm® AMBA® AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite, ACE and ACE-Lite
and Arm® AMBA® 3 APB Protocol Specification.

1.2.4 Debug architecture

The Cortex‑R8 processor implements version 7 of the Arm Debug architecture that includes support for
Security Extensions and CoreSight.

See the Arm® CoreSight™ Architecture Specification.

1.2.5 Generic Interrupt Controller architecture

The Cortex‑R8 processor implements the Arm Generic Interrupt Controller (GIC) v1.0 architecture.

See the Arm® Generic Interrupt Controller Architecture Specification.

1 Introduction
1.2 Compliance

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.3 Processor features
The Cortex‑R8 processor includes up to four cores, a Snoop Control Unit (SCU), integrated timers, the
ability to implement redundant processor logic, and numerous other advanced features.

The Cortex‑R8 processor includes the following features:
• Up to four cores, with the following features:

— A superscalar, variable-length, out-of-order pipeline.
— Static and dynamic branch prediction. The dynamic branch prediction has PREDictor (PRED)

RAM for the Global History Buffer (GHB), and an 8-entry return stack.
— Support for both low interrupt latency mode and normal interrupt latency mode.
— Non-maskable interrupt.
— An optional Floating Point Unit (FPU) in each core. If you choose to instantiate the FPU, there

are two possible designs, either an optimized FPU, which is single-precision and half-precision, or
a full FPU, which is single-precision, half-precision, and double-precision.

— An APB Debug slave interface.
— An optional Memory Reconstruction Port (MRP) for each core for memory reconstruction.
— A Performance Monitoring Unit (PMU) in each core.
— An ECC fatal error signal that indicates data written from the core might be corrupted. The

system can use this signal to disable writes to external memory.
• A Harvard L1 memory system for each core with:

— An Armv7‑R architecture Memory Protection Unit (MPU) with 12, 16, 20 or 24 regions, each
region with a minimum resolution of 256 bytes.

— Optional data and instruction TCM, configurable from 0KB to 1024KB.
— Optional instruction cache and data cache, with configurable sizes of 0KB, 4KB, 8KB, 16KB,

32KB, or 64KB.
— Optional ECC support on the RAM arrays.

• A Snoop Control Unit (SCU) that connects each core to the memory system through the AXI3
interfaces.

• An integrated Generic Interrupt Controller (GIC) supporting a configurable number of external
IRQs, from 0-480 Shared Peripheral Interrupts (SPIs) in increments of 32. There are always 32
internal IRQ lines reserved for inter-processor interrupts, and timer interrupts.

• Integrated private timers, a watchdog timer, and a global timer.
• The ability to implement redundant processor logic, for example, for fault detection.
• High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces

(AXI3):
— A single 64-bit master interface.
— An optional 64-bit slave Accelerator Coherency Port (ACP).
— An optional second 64-bit master interface, memory mapped and with address filtering support.
— An optional memory-mapped 32-bit fast peripheral port (FPP) per core, with address filtering.
— A low-latency memory-mapped 32-bit peripheral port.
— An optional 64-bit TCM slave port.
— Optional ECC protection on all AXI interface data and parity on control bits.

• Optional ETM/ATB interface with full instruction and data trace, with either:
— One ETM, statically shared between each core.
— Up to four ETMs, one dedicated to each core depending on how many cores are implemented.

1 Introduction
1.3 Processor features

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.4 Processor interfaces
Reference information for each of the Cortex‑R8 processor external access interfaces.

1.4.1 AXI interfaces

Several AMBA 3.0 AXI interfaces are implemented.

1.4.2 APB Debug interface

AMBA APBv3 is used for debugging purposes.

1.4.3 ETM/ATB interface

You can implement the Cortex‑R8 processor with an optional ETM per core, or one optional ETM shared
by each core. If an ETM is present, there is a dedicated ETM and AMBA Trace Bus (ATB) interface. The
ETM provides instruction and data trace for the processor.

Related reference
A.15 ETM signals on page Appx-A-401
Chapter 11 Embedded Trace Macrocell on page 11-238

1.4.4 CTM interface

The processor implements a single cross trigger channel interface. This external interface is connected to
the CoreSight Cross Trigger Interface (CTI) corresponding to each core through a Cross Trigger Matrix
(CTM).

1.4.5 PMU interface

The Cortex‑R8 processor PMU provides eight counters to gather statistics on the operation of the core
and memory system. Each counter can count any of the 64 events available in each core.

Related reference
10.1 Performance Monitoring Unit on page 10-215

1.4.6 Test interface

The test interface provides support for test during manufacture of the Cortex‑R8 processor using Memory
Built-In Self Test (MBIST).

See the Arm® Cortex®‑R8 MPCore Processor Integration Manual for information about the timings of the
MBIST signals.

Related reference
A.13 MBIST interface on page Appx-A-396

1 Introduction
1.4 Processor interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.5 Configurable options
List of features of the Cortex‑R8 processor that can be configured using either build or pin
configurations. Many of these features, if included, can also be enabled and disabled during software
configuration.

Table 1-1 Configurable options

Feature Range of options Sub-options Build or pin
configuration

Number of cores One to four - Build

Single core with optional
redundancy

Single core, no redundancy One processing core Build

Single core with redundancy Two cores, one built for lock-step
mode

Build

Dual core with optional
redundancy

Dual core, no redundancy Two processing cores Build

Dual core with redundancy Two cores, one built for lock-step
mode

Build and pin

Two processing cores Build and pin

Three cores Three cores, no redundancy Three processing cores Build

Four cores Four cores, no redundancy Four processing cores Build

Instruction cache No instruction cachea - Build

Instruction cache included No ECCb

64-bit ECC

Build

4KB, 8KB, 16KB, 32KB, or 64KB Build

Data cache No data cachec - Build

Data cache included No ECCb

32-bit ECC

Build

4KB, 8KB, 16KB, 32KB, or 64KB Build

Instruction TCM No Instruction TCM - Build

Instruction TCM included No ECCb

64-bit ECC

Build

4KB, 8KB, 16KB, 32KB, 64KB,
128KB, 256KB, 512KB, or 1024KB

Build

Data TCM No Data TCM - Build

Data TCM included No ECCb

32-bit ECC

Build

4KB, 8KB, 16KB, 32KB, 64KB,
128KB, 256KB, 512KB, or 1024KB

Build

Branch Target Address Cache
(BTAC) size

512 entries -b Build

a If you select no instruction cache, you must also select no data cache.
b The ECC parameter is global for the instruction and data cache RAMs, and ITCM and DTCM. BTAC and PRED RAM are protected by parity, initiated using the

same ECC parameter.
c If you select no data cache, you must also select no instruction cache.

1 Introduction
1.5 Configurable options

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

Table 1-1 Configurable options (continued)

Feature Range of options Sub-options Build or pin
configuration

PREDictor (PRED) RAM size 4096 entries -b Build

FPU Not included - Build

Included Single-precision implementation Build

Double-precision implementation Build

MPU Number of regions 12 region option Build

16 region option Build

20 region option Build

24 region option Build

AXI master ports One port or two ports Port 0 Build

Port 1, with address filtering Build and pin

AXI low-latency peripheral port Not included - Build

Included - Build and pin

AXI fast peripheral port Not included - Build

Included One per core Build and pin

ETM Not included - Build

Included One per core Build

One shared with all cores Build

Memory Reconstruction Port
(MRP)

Included or not - Build

Support for ECC Used or not - Build

Number of interrupts 0-480 in range of 32 - Build

Related concepts
1.8 Product documentation and design flow on page 1-22

1 Introduction
1.5 Configurable options

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

1.6 Redundant processor core comparison
A Cortex‑R8 processor that has either only one or only two cores can be implemented with a second,
redundant copy of most of the logic. This is known as a dual-redundant configuration. The redundant
logic includes a second core that shares the input pins and the cache and TCM of the primary core, so
only one set of cache and TCM is required.

The redundant logic includes the second core logic, but not the ETM logic if an ETM is present. The
redundant logic operates in lock-step with the primary core, but does not directly affect the primary core
behavior in any way. The primary core drives the output pins and the RAMs. The redundant logic also
includes a copy of:
• SCU logic. The SCU tag RAM is not duplicated.
• AXI TCM slave, if TCM is present.

Comparison logic can be included at build time. This logic compares the outputs of the primary core,
SCU, and AXI TCM slave with those of their redundant copy. These comparators are enabled through
the COMPENABLE input signal. If a fault occurs in either the primary or redundant logic because of
radiation or circuit failure, the comparison logic detects it and asserts the COMPFAULT output signal.
Used with the RAM error detection schemes, this can help protect the system from faults.
COMPENABLE can be asserted only after an initialization phase, see the Arm® Cortex®‑R8 MPCore
Processor Configuration and Sign-off Guide. See the Arm® Cortex®‑R8 MPCore Processor Integration
Manual for more information about COMPENABLE and COMPFAULT or contact your system
integrator.

Arm provides example comparison logic, but you can change this during implementation. If you are
implementing a dual-redundant configuration, contact Arm for more information.

1.6.1 Split/lock

If the Cortex‑R8 processor has only two cores and the Split/lock infrastructure implemented, the two
core cluster can operate in either split mode or locked mode.

Split mode
Operates as a multiprocessing configuration, with both cores capable of processing, by
maintaining L1 data cache coherency. Each core uses its dedicated cache RAM. Also known as
performance mode.

Locked mode
Operates in lock-step mode. The second core works as redundant logic for the primary core
logic, and the SCU logic, but not the ETM logic if the ETM is present. The redundant core-side
cache RAM remains implemented but not used.

You can select the usage mode with the SAFEMODE input signal. This input can be changed only while
the two core processor is held in reset and must remain stable when out of reset.

For more information about how to make a change in your system, contact your system integrator.

If you are implementing a Split/lock configuration, contact Arm for more information.

1 Introduction
1.6 Redundant processor core comparison

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.7 Test features
The Cortex‑R8 processor is delivered as fully-synthesizable RTL and is a fully-static design. Scan-chains
and test wrappers for production test can be inserted into the design by the synthesis tools during
implementation.

Production test of the processor cache and TCM RAMs can be done through the dedicated, pipelined
MBIST interface. To improve the potential frequency compared to adding multiplexers to the RAM
modules, this interface shares some of the multiplexing present in the processor design.

The TCM RAMs can be read and written directly by the program running on the Cortex‑R8 processor.
You can also use the dedicated AXI3 TCM slave interface to access the TCMs.

Related concepts
12.3 Accessing RAMs using the AXI3 interface on page 12-351

1 Introduction
1.7 Test features

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

1.8 Product documentation and design flow
The Cortex‑R8 MPCore processor is delivered as synthesizable RTL. Before it can be used in a product,
the RTL must go through the implementation, integration, and programming design flow processes. The
product documentation describes these design flow processes.

1.8.1 Documentation

The Cortex‑R8 documentation set includes a Technical Reference Manual (TRM), Configuration and
Signoff Guide (CSG), and Implementation Manual (IM).

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the Cortex‑R8 processor. It is required at all stages of the design flow.
The choices made in the design flow can mean that some behavior described in the TRM is not
relevant. If you are programming the Cortex‑R8 processor, then contact:
• The implementer to determine:

— The build configuration of the implementation.
— What integration, if any, was performed before implementing the Cortex‑R8 processor.

• The integrator to determine the pin configuration of the Cortex‑R8 processor that you are
using.

Configuration and Sign-off Guide
The Configuration and Sign-off Guide (CSG) describes:
• The available build configuration options and related issues in selecting them.
• How to configure the Register Transfer Level (RTL) description with the build configuration

options.
• The processes to sign off the configured design.

The Arm product deliverables include reference scripts and information about using them to
implement your design. Reference methodology flows supplied by Arm are example reference
implementations. Contact your EDA vendor for EDA tool support.

The CSG is a confidential book that is only available to licensees.

Integration Manual

The Integration Manual (IM) describes how to integrate the Cortex‑R8 processor into a SoC. It
includes describing the pins that the integrator must tie off to configure the macrocell for the
required integration. Some of the integration is affected by the configuration options that are
used when implementing the Cortex‑R8 processor.

The IM is a confidential book that is only available to licensees.

1.8.2 Design flow

The Cortex‑R8 processor is delivered as synthesizable RTL. Before the RTL can be used in a product, it
must go through implementation, integration, and programming processes.

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This might
include integrating RAMs into the design.

Integration
The integrator connects the implemented design into a SoC. This includes connecting it to a
memory system and peripherals.

Programming
This is the last process. The system programmer develops the software required to configure and
initialize the processor, and tests the required application software.

Each process:

1 Introduction
1.8 Product documentation and design flow

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

• Can be performed by a different party.
• Can include implementation and integration choices that affect the behavior and features of the

Cortex‑R8 processor.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are preprocessed.
These options usually include or exclude logic that affects one or more of the area, maximum
frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the processor by tying inputs to specific values.
These configurations affect the start-up behavior before any software configuration is made.
They can also limit the options available to the software.

Software configuration
The programmer configures the processor by programming particular values into registers. This
affects the behavior of the processor.

 Note

This manual refers to implementation-defined features that are applicable to build configuration options.
Reference to a feature that is included means that the appropriate build and pin configuration options are
selected. Reference to an enabled feature means one that has also been configured by software.

1 Introduction
1.8 Product documentation and design flow

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

1.9 Product revisions
Summary of the differences in functionality between product revisions.

r0p0
First release.

r0p1
Fixes errata from r0p0.

r0p2
Set all RAMs on rising edge.

r0p3
Fixes 2 errata from r0p2.

1 Introduction
1.9 Product revisions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

Chapter 2
Functional Description

This chapter describes the functionality of the Cortex‑R8 processor.

It contains the following sections:
• 2.1 About the functions on page 2-26.
• 2.2 Interfaces on page 2-28.
• 2.3 Clocking, resets, and initialization on page 2-29.
• 2.4 Power management on page 2-36.
• 2.5 Processor ports on page 2-42.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

2.1 About the functions
The Cortex‑R8 processor is a highly configurable processor for use in deeply-embedded systems.

2.1.1 Processor block diagram

Figure showing a Cortex‑R8 processor design with two cores.

Cortex-R8 Core 0 Cortex-R8 Core 1

FPU1*

Optional second 64-bit AXI
interface with address filtering

CoreSight trace delivery infrastructure (ROM table, CTIs, and CTMs)

Timers

Primary AMBA3
64-bit AXI
interface

Integrated GIC

32-bit AXI
Peripheral port

SCU

ATB
Debug interface

Coherent DMA controller

TCM
slave
port

*Optional

ETM* ETM*

32-bit AXI FPP1*32-bit AXI FPP0*

DTCM0*

FPU0*

ITCM0*

Data
cache 0*

Instruction
cache 0*

Instruction
cache 1*

Data
cache 1* DTCM1*

ITCM1*

ACP*

Figure 2-1 Cortex-R8 processor block diagram with two cores

2.1.2 Components of the Cortex®-R8 processor

Functional description of the main components of the Cortex‑R8 processor.

L1 memory system

The L1 memory system has 64-bit data paths throughout the memory system, export of memory
attributes for external memory systems, and separate optional instruction and data caches each with a
fixed line length of 32 bytes.

2 Functional Description
2.1 About the functions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

Snoop Control Unit

The SCU connects the Cortex‑R8 processor cores to the memory system and peripherals through the
AXI3 interfaces. The SCU has an optional AXI3 64-bit slave port, the Accelerator Coherency Port
(ACP).

 Note

The SCU supports L1 data cache coherency, but does not support hardware management of coherency of
the instruction caches.

Related concepts
9.1 About multiprocessing and the SCU on page 9-164
2.5.6 AXI slave Accelerator Coherency Port on page 2-48

Interrupt controller

The interrupt controller provides support for handling multiple interrupt sources.

Related reference
9.4 Interrupt controller on page 9-189

Timers

The Timers provide the ability to schedule events and trigger interrupts.

Related concepts
9.6 Global timer on page 9-207
Related reference
9.5 Private timer and watchdog on page 9-201

Debug and Trace

The debug and trace logic includes support for Armv7 Debug architecture with an APB slave interface
for access to the debug registers.

The debug and trace logic also includes:
• Performance Monitor Unit (PMU) based on the PMUv1 architecture.
• Embedded Trace Macrocell (ETM) based on the ETMv4 architecture and dedicated ATB interface

per core.
• Cross Trigger Interface (CTI) and Cross Trigger Matrix (CTM) for multicore debugging.

Related reference
10.1 Performance Monitoring Unit on page 10-215
10.3 Embedded Trace Macrocell on page 10-223
10.4 Debug on page 10-224

Split/lock

The Cortex‑R8 processor can be configured so that it can be switched, under reset, between a twin-core
performance mode and a dual-redundant lock-step mode. This feature imposes extra constraints on the
software usage model. Arm provides an init code sequence to guarantee the master core and the
redundant core leave reset in exactly the same state.

Related concepts
7.7 Static split/lock on page 7-144

2 Functional Description
2.1 About the functions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

2.2 Interfaces
The Cortex‑R8 processor provides external interfaces for AXI3, Debug, PMU APB, ATB, DFT, and
MBIST controller.

2.2.1 AXI3 interface

The Cortex‑R8 processor implements the AMBA 3.0 AXI.

The AMBA 3.0 AXI includes:
• A primary 64-bit master port interface.
• An optional secondary 64-bit master port interface, depending on the build configuration.
• A low-latency peripheral 32-bit master port interface.
• An optional 32-bit fast peripheral port for each core, depending on the build configuration.
• An optional 64-bit ACP slave port, depending on the build configuration.
• An optional 64-bit TCM slave port, depending on the build configuration.

Related concepts
2.5 Processor ports on page 2-42

2.2.2 Debug and PMU APB interface

The Cortex‑R8 processor implements an APB slave interface that enables access to Debug and PMU
registers, CoreSight components (local ROM table, CTIs, and CTMs), and ETM.

See the Arm® CoreSight™ Architecture Specification for more information.

2.2.3 ATB interface

The Cortex‑R8 processor implements two dedicated ATB interfaces for each core, that output trace
information for debugging. The ATB interfaces are compatible with the CoreSight architecture.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for more information.

Related reference
A.15 ETM signals on page Appx-A-401

2.2.4 DFT interface

The Cortex‑R8 processor implements a Design for Test (DFT) interface that enables an industry standard
Automatic Test Pattern Generation (ATPG) tool to test logic outside of the embedded memories.

2.2.5 MBIST controller interface

The MBIST controller interface provides support for manufacturing testing of the memories embedded
in the Cortex‑R8 processor. MBIST is the industry standard method of testing embedded memories.
MBIST works by performing sequences of reads and writes to the memory based on test algorithms.

Related reference
A.13 MBIST interface on page Appx-A-396

2 Functional Description
2.2 Interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

2.3 Clocking, resets, and initialization
Functional description of clocking, resets, and initialization.

This section contains the following subsections:
• 2.3.1 Clocking on page 2-29.
• 2.3.2 Resets on page 2-29.
• 2.3.3 Input synchronization on page 2-33.
• 2.3.4 Initialization on page 2-33.

2.3.1 Clocking

The Cortex‑R8 processor includes the CLK, PERIPHCLK, and PERIPHCLKEN clocks. In addition,
the DUALPERIPHCLK clock is present if lock-step or split/lock is implemented.

CLK

This is the main clock of the Cortex‑R8 processor. All the cores in the device and the SCU are clocked
with a distributed version of CLK. It is also the main clock for the ETMs and the local CoreSight
infrastructure.

PERIPHCLK

This signal clocks the interrupt controller, global timer, private timers, and watchdog. PERIPHCLK
must be synchronous with CLK, and the PERIPHCLK clock period, N, must be configured as a
multiple of the CLK clock period. This multiple N must be equal to, or greater than two.

PERIPHCLKEN

This is the clock enable signal for the interrupt controller and timers. The PERIPHCLKEN signal is
generated at CLK clock speed. PERIPHCLKEN HIGH on a CLK rising edge indicates that there is a
corresponding PERIPHCLK rising edge.

The following figure shows an example of clocking the peripherals using these enable signals at a 3:1
ratio.

CLK

PERIPHCLK

PERIPHCLKEN

N=3

Figure 2-2 Clocking example on MPCore peripherals

DUALPERIPHCLK and DUALPERIPHCLKEN

This clock and clock enable signal are present if lock-step or split/lock is implemented.

Related reference
A.2 Clock and control signals on page Appx-A-358

2.3.2 Resets

The Cortex‑R8 processor reset signals enable you to reset parts of your design independently of one
another.

In the following list of reset signals, CN represents the number of configured cores minus one. For
example DBGACK[CN:0], if the number of configured cores is 2, CN = 1.

The Cortex‑R8 processor has the following reset signals:

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

• CPUCLKOFF[CN:0].
• nCPURESET[CN:0].
• nDBGRESET[CN:0].
• DBGCLKOFF[CN:0].
• nPERIPHRESET.
• nSCURESET.
• nCPUHALT[CN:0].
• nWDRESET[CN:0].
• WDRESETREQ[CN:0].

The following reset signals are present for CoreSight debug logic:

• nCTRESET.
• CTCLKOFF.

The following reset signals are present if an ETM is present. The x in the signal name represents 0 for
ETM0, 1 for ETM1, 2 for ETM2 or 3 for ETM3:

• nETMxRESET.
• ETMxCLKOFF.

The following additional reset signals are present if lock-step or split/lock is implemented:
• SCUCLKOFF.
• PERIPHCLKOFF.
• DUALPERIPHCLKOFF.

The reset signals in the Cortex‑R8 processor design enable you to reset different parts of the design
independently. The following table shows the supported reset combinations in a Cortex‑R8 processor
system. [n] refers to the core that receives a reset.

Table 2-1 Reset combinations in a Cortex-R8 processor system

Reset signals Cortex-R8 processor Individual cores Cortex-R8
processor
debug

Individual cores

Power up Software Power up Software Debug Watchdog flag

nSCURESET and
nPERIPHRESET

0 0 1 1 1 1 1

nCPURESET[CN:0] All 0 All 0 [n] = 0 [n] = 0 All 1 All 1 All 1

nDBGRESET[CN:0] All 0 All 1 [n] = 0 All 1 All 0 [n] = 0 All 1

nWDRESET[CN:0] All 0 All 0 [n] = 0 or all 1 [n] = 0 or all 1 All 1 All 1 [n] = 0

Cortex®-R8 processor power up reset

You must apply power up, or cold, reset to the Cortex‑R8 processor when power is first applied to the
system. For power up reset, the leading edges, that are the falling edges, of the reset signals do not have
to be synchronous to CLK, but the rising edges must be. To ensure correct reset behavior, you must
assert the reset signals for at least ten CLK cycles.

If lock-step or split/lock is enabled, you must generate DUALPERIPHCLK, DUALPERIPHCLKEN,
and DUALPERIPHCLKOFF as delayed versions of the equivalent primary core signals. Use the same
delay as between the primary core and the redundant core.

Arm recommends the following reset sequence:

1. Apply nCPURESET, nDBGRESET, nWDRESET, nSCURESET, nPERIPHRESET,
nCTRESET, nETMxRESET if an ETM is present.

2. Wait for at least ten CLK cycles, or more if required by other components. There is no harm in
applying more clock cycles than this, and maximum redundancy can be achieved by, for example,
applying 15 cycles on every clock domain.

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

3. Stop the CLK clock input to the Cortex‑R8 processor. You can use an integrated clock gating cell
that is driven by a reset controller to stop the CLK.

4. Wait for the equivalent of approximately ten cycles, depending on your implementation. This
compensates for clock and reset tree latencies.

5. Release all resets.
6. Wait for the equivalent of approximately ten cycles to compensate for clock and reset tree latencies.
7. Restart the CLK clock input.
For a lock-step or split/lock implementation, use the following reset sequence:
1. Apply nCPURESET, nDBGRESET, nWDRESET, nSCURESET, nPERIPHRESET,

nCTRESET, nETMxRESET if an ETM is present.
2. Wait for at least ten CLK cycles, or more if required by other components. There is no harm in

applying more clock cycles than this, and maximum redundancy can be achieved by, for example,
applying ten cycles on every clock domain.

3. Drive DUALPERIPHCLKOFF, SCUCLKOFF, and PERIPHCLKOFF HIGH.
4. Stop the CLK clock input to the Cortex‑R8 processor.
5. Wait for the equivalent of approximately ten cycles, depending on your implementation. This

compensates for clock and reset tree latencies.
6. Release all resets.
7. Wait for the equivalent of approximately ten cycles, to compensate for clock and reset tree latencies.
8. Restart the CLK clock and maintain DUALPERIPHCLKOFF HIGH.

SCUCLKOFF and PERIPHCLKOFF are driven LOW. You can maintain these two signals HIGH a
few more clock cycles, but this is not required.

9. After P* CLK cycles, after PERIPHCLKOFF is driven LOW, drive DUALPERIPHCLKOFF
LOW.

 Note

P* is defined by the number of delay cycles introduced between the main core and the dual-redundant
core. It is configurable and IMPLEMENTATION DEFINED. The default value that is used in the Cortex‑R8
processor is two CLK cycles.

Individual core power up reset

This reset applies to an individual core. It initializes the whole logic in a single core, including its debug
logic. It is expected to be applied when this core exits from powerdown or dormant state. This reset only
applies to configurations where each core is implemented in its own power domain. The x at the end of
the signal name represents either the core or ETM ID number.

The reset sequence is as follows:

1. Apply nCPURESETx and nDBGRESETx. If you want to reset the corresponding watchdog flag,
you can apply the nWDRESETx reset.

2. Wait for at least ten CLK cycles, or more if required by other components. There is no harm in
applying more clock cycles than this.

3. Assert CPUCLKOFFx and DBGCLKOFFx with a value of 0b1.
4. Wait for the equivalent of approximately ten cycles, depending on your implementation. This

compensates for clock and reset tree latencies.
5. Release all resets.
6. Wait for the equivalent of approximately ten cycles, to compensate for clock and reset tree latencies.
7. Deassert CPUCLKOFFx and DBGCLKOFFx. This ensures that all registers in the core see the

same CLK edge on exit from the reset sequence.

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

A core power up reset can be extended to enable its corresponding ETM to be powered down. To wake
up from powerdown or dormant mode with the ETM, use the nETMxRESET and ETMxCLKOFF
signals in the same way as nCPURESETx and CPUCLKOFFx.

 Note

When resetting a core from a powerdown state while the corresponding ETM is not reset, Arm
recommends that you disable the ETM using the APB port before resetting the core. This avoids the risk
of tracing bad data at the point when the core is reset.

Individual core software reset

This reset applies to an individual core, without debug logic. It initializes all functional logic in a single
core apart from its debug logic. All breakpoints and watchpoints are retained during this individual
Warm reset. This reset only applies to configurations where each core is implemented in its own power
domain. The x in the signal name represents either the core or ETM ID number.

Arm recommends that you use the reset sequence for the individual core power up reset. To ensure that
the debug registers of the individual cores retain their values, the following signals must not be asserted
during the reset sequence:
• nDBGRESET
• nCTRESET
• nETMxRESET

Related concepts
Individual core power up reset on page 2-31

Cortex®-R8 processor debug reset

This reset initializes the debug logic in all cores present in the cluster. To perform a Cortex‑R8 processor
debug reset, assert all nDBGRESET signals for a several CLK cycles. CPUCLKOFFx, and
ETMxCLKOFF if an ETM is present, must remain deasserted during this reset sequence.

Individual core debug reset

This reset initializes the debug logic in an individual core in the cluster. To perform an individual core
debug reset, assert the corresponding nDBGRESETx signal for several CLK cycles. CPUCLKOFFx,
and ETMxCLKOFF if the ETM is present, must remain deasserted during this reset sequence.

 Note

When lock-step or split/lock is implemented, the software must clear the INTdis bit of the Debug Status
and Control Register (DBGDSCR) before applying a debug reset. This is because if a pending interrupt
is masked by the INTdis bit and a debug reset occurs, this bit is cleared by the reset, and the interrupt is
taken immediately by all cores on the same clock cycle.

Individual core watchdog flag reset

This reset clears the watchdog flag associated with a specific core. Watchdog functionality is
independent of all other core functionality, so this reset is independent of all other resets.

 Note

When a watchdog reset request occurs and when lock-step or split/lock is implemented, the reset must
not be applied immediately to all cores in the Cortex‑R8 processor. This is because after reset the sticky
flag is set in one core, but not the other and this leads to the assertion of COMPFAULT. Therefore, if
one core has its watchdog flag set, the other core must reach the same state, that is, also having its

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

watchdog flag set. This can be controlled using the PERIPHCLKOFF and DUALPERIPHCLKOFF
signals.

Related reference
A.2 Clock and control signals on page Appx-A-358
A.3 Reset signals on page Appx-A-360

2.3.3 Input synchronization

All external signals must be synchronous to the CLK input.

This is not done internally, therefore synchronization must be done before connecting to the Cortex‑R8
processor.

2.3.4 Initialization

Most of the architectural registers in the Cortex‑R8 processor, such as r0-r14, and s0-s31 and d0-d15
when floating-point is included, have an unknown value after reset. Therefore, you must initialize these
registers for all modes before they are used, using an immediate-MOV instruction, or a PC-relative load
instruction.

The Current Program Status Register (CPSR) is given a known value on reset. This is described in the
Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

In addition, before you run an application, you might want to:
• Program particular values into various registers, for example, Stack Pointers.
• Enable various features, for example, error correction.
• Program particular values into memory, for example, the TCMs.

MPU

Before you can use the MPU you must program and enable at least one of the regions, and enable the
MPU in the SCTLR.

Do not enable the MPU unless at least one MPU region is programmed and active. If the MPU is
enabled, before using the TCM interfaces you must program MPU regions to cover the TCM regions to
give access permissions to them.

Related reference
4.3.9 System Control Register on page 4-77

FPU

If the Cortex‑R8 processor has been built with an FPU, you must enable it before Vector Floating Point
(VFP) instructions can be executed.

Enable the FPU as follows:
• Enable access to the FPU in the coprocessor access control register.
• Enable the FPU by setting the EN-bit in the FPEXC register.

Related concepts
5.5.3 Floating-Point Exception Register on page 5-108
Related reference
4.3.11 Coprocessor Access Control Register on page 4-81

Caches

If the Cortex‑R8 processor has been built with instruction or data caches, they must be invalidated before
they are enabled, otherwise UNPREDICTABLE behavior can occur.

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

An invalidate all operation never reports any ECC errors.

Related concepts
6.4 About the caches on page 6-117
Related reference
4.3.10 Auxiliary Control Register on page 4-80

TCM

The Cortex‑R8 processor does not initialize the TCM RAMs, so you must initialize all the TCMs. In
addition, you might want to preload instructions or data into the TCM for the main application to use.
This section describes various ways that you can perform data preloading. You can also configure the
Cortex‑R8 processor to use the TCMs from reset.

Preloading TCMs

You can write data to the TCMs using either store instructions or the AXI3 TCM slave interface.

Depending on the method you choose, you might require:
• Particular hardware on the SoC that you are using.
• Boot code.
• A debugger connected to the Cortex‑R8 processor.

Methods to preload TCMs include:

Memory copy with running boot code
The boot code includes a memory copy routine that reads data from a ROM, and writes it into
the appropriate TCM. You must enable the TCM to do this, and it might be necessary to give the
TCM one base address while the copy is occurring, and a different base address when the
application is being run.

Copy data from the debug communications channel
The boot code includes a routine to read data from the Debug Communications Channel (DCC)
and write it into the TCM. The debug host feeds the data for this operation into the DCC by
writing to the appropriate registers on the Cortex‑R8 processor APB debug port.

Execute code in debug halt state
The debug host puts the Cortex‑R8 processor into debug halt state and then feeds instructions
into it through the Instruction Transfer Register (DBGITR). The Cortex‑R8 processor executes
these instructions, that replace the boot code in either of the two methods previously described.

DMA into TCM
The SoC includes a Direct Memory Access (DMA) device that reads data from a ROM, and
writes it to the TCMs through the optional AXI TCM slave interface.

Preloading TCMs with ECC

The error code bits in the TCM RAM, if configured with an error scheme, are not initialized by the
Cortex‑R8 processor. Before a RAM location is read with ECC enabled, the error code bits must be
initialized. To calculate the error code bits correctly, the logic must have all the data in the data chunk
that those bits protect. Therefore, when the TCM is being initialized, the writes must be of the same
width and aligned to the data chunk that the error scheme protects.

You can initialize the TCM RAM with error checking turned on or off, according to the following rules.
You can use the ITCMECCEN signal to enable the ITCM when leaving reset.

Before ECC checking is enabled, the entire TCM address space must be initialized with valid data and
ECC values. This is because the Cortex‑R8 processor can direct speculative accesses into the entire TCM
address space at any time.

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

 Note

The entire TCM address range must be initialized as the MPU region programming cannot be used to
prevent speculative reads into the TCM.

If the slave port is used, for TCM memory accesses, the transactions must start at a 32-bit aligned
address for data or 64-bit aligned address for instructions, and read or write a continuous block of
memory, containing a multiple of 4 bytes for data or 8 bytes for instruction. All bytes in the block must
be written, that is, have their byte lane strobe asserted.

If initialization is done by running code on the Cortex‑R8 processor, this is best done by a loop of stores
that write to the whole of the TCM memory as follows:
• If the scheme is 32-bit ECC, use Store Word (STR), Store Two Words (STRD), or Store Multiple

Words (STM) instructions to 32-bit aligned addresses.
• If the scheme is 64-bit ECC, use STRD or STM, that has an even number of registers in the register

list with a 64-bit aligned starting address.

 Note

You can use the alignment-checking features of the Cortex‑R8 processor to help you ensure that memory
accesses are 32-bit aligned, but there is no checking for 64-bit alignment. If you are using STRD or
STM, an alignment fault is generated if the address is not 32-bit aligned. For the same behavior with STR
instructions, enable strict-alignment-checking by setting the A-bit in the System Control Register.

Related reference
4.3.10 Auxiliary Control Register on page 4-80
4.3.9 System Control Register on page 4-77

Using TCMs from reset

You can pin-configure the Cortex‑R8 processor to enable the TCM interfaces from reset and to select the
address at which each TCM appears from reset. This enables you to configure the processor to boot from
TCM but, to do this, the TCM must first be preloaded with the boot code.

The nCPUHALT input can be asserted while the processor is in reset to prevent the processor from
fetching and executing instructions after coming out of reset. While the processor is halted in this way,
the TCMs can be preloaded with the appropriate data. When the nCPUHALT input is deasserted, the
processor starts fetching instructions from the reset vector address in the normal way.

 Note

When nCPUHALT has been deasserted to start the processor fetching, it must not be asserted again
except when the processor is under processor or power up reset.

Related concepts
2.3.2 Resets on page 2-29
Related concepts
8.6 Instruction and data TCM on page 8-161
Related reference
4.3.13 DTCM Region Register on page 4-88
4.3.14 ITCM Region Register on page 4-89
Related reference
4.2.8 c15 registers on page 4-63

2 Functional Description
2.3 Clocking, resets, and initialization

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

2.4 Power management
The Cortex‑R8 processor provides mechanisms and support to control both dynamic and static power
dissipation.

This section contains the following subsections:
• 2.4.1 Individual core power management on page 2-36.
• 2.4.2 Power domains on page 2-41.

2.4.1 Individual core power management

Placeholders for clamps are inserted around each core to simplify implementation of different power
domains.

See the Arm® Cortex®‑R8 MPCore Processor Configuration and Sign-off Guide for implementation
information about the different power domains and the signals that require specific clamp values.
Software is responsible for signaling to the Snoop Control Unit and the interrupt controller that a core is
shut off so that the core can be seen as non-existent in the cluster. The following table shows the power
modes and the wake-up mechanisms for each mode:

Table 2-2 Core power modes

Mode Description Wake-up mechanism

Run The entire device is clocked and powered up. -

Standby The core clock is stopped. Only logic required for wakeup is
still active.

Standard standby mode wakeup events

Standby mode with
RAM retention

The core clock is stopped. Only logic required for wakeup is
still active. RAMs are in retention.

Dynamic RAM
retention

Some RAM arrays that are not used or are temporarily disabled
are put in retention dynamically.

Normal request from core logic

Dormant The entire device is powered off except RAM arrays that are in
retention mode.

External wakeup event to the power controller,
that can perform a reset of the core

Shutdown The entire device is powered off.

Entry to Dormant or powered-off mode must be controlled through an external power controller. The
CPU Power Status Register in the SCU is used with CPU WFI entry flag to signal to the power controller
the power domain that it can cut, using the PWRCTLOx bus.

Entry to or exit from Standby mode with RAM retention or dynamic RAM retention must be controlled
through an external power controller. See the Arm® Cortex®‑R8 MPCore Processor Configuration and
Sign-off Guide for more information on the interface for RAM retention.

Run mode

Run mode is the normal mode of operation, where all the functionality of the core is available.
Everything is clocked and powered up.

Standby modes

There are two standby modes in Cortex‑R8 processor cores, wait for interrupt, and wait for event.

Wait for Interrupt

Wait for Interrupt (WFI) is a feature of the Armv7‑R architecture that puts the core in idle mode by
disabling most of the clocks in the core while keeping the core powered up. Only the logic required for
wake-up is still active.

2 Functional Description
2.4 Power management

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

WFI reduces the power that is drawn due to the static leakage current, leaving a small clock power
overhead to enable the core to wake up from WFI mode. A core enters WFI mode by executing the WFI
instruction.

When executing the WFI instruction, the core waits for all instructions in the core to complete before
entering the idle mode.

While the core is in WFI mode, the clocks in the core are temporarily enabled without causing the core to
exit WFI mode, when any of the following events are detected:

• A snoop request that must be serviced by the core L1 data cache.
• An APB access to the debug or trace registers residing in the core power domain.
• An AXI TCM slave port access can also temporarily enable the core without causing the core to exit

WFI mode.

Exit from WFI mode occurs when the core detects a reset or one of the WFI wake up events as described
in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition. CP15 broadcasting
operations also force an exit from WFI mode.

On entry into WFI mode, STANDBYWFI for that core is asserted. Assertion of STANDBYWFI
guarantees that the core is in idle mode.

 Note

If an ETM is present, the ETMACTIVEx primary output must be taken into account to ensure the ETM
has completed tracing.

STANDBYWFI continues to assert even if the clocks in the core are temporarily enabled because of:
• A L1 Cache Controller snoop request, if present.
• An APB access.
• An AXI TCM slave port request.

Wait for Event

Wait for Event (WFE) is a feature of the Armv7‑R architecture that uses a locking mechanism based on
events to put the core in idle mode by disabling most of the clocks in the core while keeping the core
powered up. This reduces the power drawn to the static leakage current, leaving a small clock power
overhead to enable the core to wake up from WFE mode.

A core enters WFE mode by executing the WFE instruction. When executing the WFE instruction, the core
waits for all instructions in the core to complete before entering the idle mode. The WFE instruction
ensures that all explicit memory accesses, that are before the WFE instruction in program order, have
completed.

While a core is in WFE mode, the clocks in the core are temporarily enabled without causing the core to
exit out of WFE mode, when any of the following events are detected:

• A snoop request that must be serviced by the core L1 data cache.
• An APB access to the debug or trace registers residing in the core power domain.
• An AXI TCM slave port access can also temporarily enable the core without causing the core to exit

WFI mode.

Exit from WFE mode occurs when the core detects a reset, an AXI TCM slave port request, the assertion
of the EVENTI input signal, or one of the WFE wake up events as described in the Arm® Architecture
Reference Manual Arm®v7‑A and Arm®v7‑R edition. CP15 broadcasting operations also force an exit
from WFE mode.

2 Functional Description
2.4 Power management

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

On entry into WFE mode, STANDBYWFE for that core is asserted. Assertion of STANDBYWFE
guarantees that the core is in idle mode. STANDBYWFE continues to assert even if the clocks in the
core are temporarily enabled because of:
• An L1 Cache Controller snoop request, if present.
• An APB access.
• An AXI TCM slave port request.

Standby mode with RAM retention

The core logic is in WFI mode, and the RAM arrays are in retention mode.

The RAM can be:

• The entire instruction cache.
• The entire data cache.
• The entire ITCM.
• The entire DTCM.
• The Prediction RAMs, BTAC, and PRED.
• The SCU tag RAM, if all cores are in WFI.

A WFI instruction must be executed. The STANDBYWFI primary output indicates the WFI mode. A
temporary wakeup of the RAM can happen:
• On L1 data cache when a snoop coherency request occurs.
• On DTCM when an AXI TCM slave port request to the data TCM occurs.
• On ITCM when an AXI TCM slave port request to the instruction TCM occurs.

To avoid waking up the data cache when a core is in WFI, you can exclude the core from the coherency
domain. To do this, the state of the core must be saved in the same way as when entering Dormant mode.
The core then indicates to the power controller that the device is ready to be powered down in the same
way as when entering Dormant mode. The external power controller can then put the RAM in retention.

For information about the entry and exit signals, and the protocol to handle RAM retention, see the Arm®

Cortex®‑R8 MPCore Processor Configuration and Sign-off Guide.

Dynamic RAM retention

Some RAM arrays that are not used or are temporarily disabled, are put in retention dynamically.

The RAM can be:
• The entire instruction cache or data cache.
• The entire ITCM or DTCM.
• A subset of the TCMs, using several address bits to select the address range of the TCMs.

 Note

The Prediction RAMs, that is, BTAC and PRED, and the SCU tag RAM are not affected in this mode.

The external power controller determines when to put the RAMs in retention, and when to wake them
up.For information about the entry and exit signals, and the protocol to handle RAM retention, see the
Arm® Cortex®‑R8 MPCore Processor Configuration and Sign-off Guide.

Dormant mode

Dormant mode is designed to enable a core to be powered down, while leaving the RAMs powered up
and maintaining their state.

The RAM blocks that are to remain powered up must be implemented on a separate power domain, and
there is a requirement to clamp all the inputs to the RAMs to a known logic level, with the chip enable
being held inactive. This clamping is not implemented in gates as part of the default synthesis flow
because it would contribute to a tight critical path. Implementations that want to implement Dormant
mode must add these clamps around the RAMs, either as explicit gates in the RAM power domain, or as

2 Functional Description
2.4 Power management

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

pull-down transistors that clamp the values while the core is powered down. All RAM blocks must
remain powered up during Dormant mode.

Before entering Dormant mode, the state of the core, excluding the contents of the RAMs that remain
powered up in dormant mode, must be saved to external memory. These state saving operations must
ensure that the following occur:

• All Arm registers, including CPSR and SPSR registers are saved.
• All system registers are saved.
• All debug-related states must be saved.
• The core must correctly set the CPU Power Status Register in the SCU so that it enters Dormant

Mode.
• A Data Synchronization Barrier instruction is executed to ensure that all state saving has been

completed.
• The core then communicates with the power controller that it is ready to enter dormant mode by

performing a WFI instruction so that power control output reflects the value of SCU CPU Power
Status Register.

 Note

If an ETM is present, the ETMACTIVEx primary output must be taken into account to ensure that the
ETM has completed tracing before powering off the core or the ETM.

Transition from Dormant mode to Run mode is triggered by the external power controller. The external
power controller must assert reset to the core until the power is restored. After power is restored, the core
leaves reset and, by interrogating the power control register in the SCU, can determine that the saved
state must be restored.

The following figure shows the power down sequence.

CLK

CLKOFF

nISOLATE

nRESET

PWRUPREQ

PWRUPACK

t0 t1 t2 t3 t4

Figure 2-3 Power down sequence

The following figure shows the power up sequence.

2 Functional Description
2.4 Power management

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

CLK

CLKOFF

nISOLATE

nRESET

PWRUPREQ

PWRUPACK

t4 t5 t6 t7 t8 t9 t10 t11 t12

Core power up reset

> 9 cycles > 10 cycles > 10 cycles

Figure 2-4 Power up sequence

Related reference
9.3.3 SCU CPU Power Status Register on page 9-173

Shutdown mode

Shutdown mode has the entire device powered down, and all states, including cache, must be saved
externally by software.

The part is returned to the run state by the assertion of reset. This state saving is performed with
interrupts disabled, and finishes with a DSB operation. The processor then indicates to the power
controller that the device is ready to be powered down in the same way as when entering Dormant mode
but, in this case, the processor must set the power mode in the SCU CPU Power Status Register to power
down.

 Note

If an ETM is present, the ETMACTIVEx primary output must be taken into account to ensure that the
ETM has completed tracing before powering off the core or the ETM.

Communication to the power management controller

Communication between the core and the external power management controller can be performed using
the PWRCTLOx Cortex‑R8 processor output signals and Cortex‑R8 processor input clamp signals.

The PWRCTLOx Cortex‑R8 processor output signals constrain the external power management
controller. The value of PWRCTLOx depends on the value of the SCU CPU Power Status Register. The
SCU CPU Power Status Register value is only copied to PWRCTLOx after the core signals that it is
ready to enter low-power mode by executing a WFI instruction and subsequent STANDBYWFI output
assertion.

Related reference
9.3.3 SCU CPU Power Status Register on page 9-173

Powerdown sequence

To power down a core, perform the following steps:

Procedure
1. Disable the GIC CPU interface for this processor core.
2. Mask IRQ, FIQ, and imp-abort interrupts, with the CPSID I, F, A bits respectively.

2 Functional Description
2.4 Power management

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

3. Execute an ISB instruction.
4. Clean and invalidate the data cache.
5. Disable the data cache.
6. Clear the SMP bit in ACTLR. See 4.3.10 Auxiliary Control Register on page 4-80.
7. Write the power status of the core with value 0x3 in the SCU CPU Power Status Register, with a

store-byte.
8. Execute a DSB instruction.
9. Execute a WFI instruction.

2.4.2 Power domains

The Cortex‑R8 processor supports several power domains, including one for each processor, and one for
each of the individual processor Cache RAM arrays.

The Cortex‑R8 processor can support the following power domains:
• One for each core.
• One for each core Cache RAM array, including the Branch Predictor (BP) RAMs.
• One for each core TCM RAM array.
• One for the SCU duplicated tag RAMs.
• One for the remaining logic, the SCU logic cells, and private peripherals.

 Note

If an ETM is included for each core, each ETM has its own power domain. In addition, the local
CoreSight logic, that is, CTI0 and CTI1, CTI2, CTI3, CTM, APB multiplexer, and ROM table, are also
in a separate power domain.

Each power domain has its own clock and reset signal, and its own clock off signal. When a power
domain is powered-off, some clamp values might be driven HIGH. See the Arm® Cortex®‑R8 MPCore
Processor Configuration and Sign-off Guide for more information.

2 Functional Description
2.4 Power management

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

2.5 Processor ports
Functional description of the Cortex‑R8 processor ports.

The Cortex‑R8 processor has the following processor ports:
• AXI master port 0.
• AXI master port 1.
• AXI low-latency peripheral port.
• AXI Fast Peripheral Port.
• AXI TCM slave port.
• Accelerator Coherency.
• Memory Reconstruction.
• Private memory region.

This section contains the following subsections:
• 2.5.1 AXI master port 0 on page 2-42.
• 2.5.2 AXI master port 1 on page 2-42.
• 2.5.3 AXI low-latency peripheral port on page 2-43.
• 2.5.4 AXI Fast Peripheral Port on page 2-44.
• 2.5.5 AXI TCM slave port on page 2-45.
• 2.5.6 AXI slave Accelerator Coherency Port on page 2-48.
• 2.5.7 Memory Reconstruction Port on page 2-48.
• 2.5.8 Private memory region on page 2-48.

2.5.1 AXI master port 0

AXI master port 0 has optional ECC protection on data, and parity on control bits. It does not support
AXI locked writes, that is, AWLOCKM0[1] is always 0b0.

This port supports five bits of AXI IDs, although AXI IDs can be larger if the ACP has more than four
bits of ID. For example, if the ACP ID has four bits, there are five bits on the AXI master port. If the
ACP ID has eight bits, there are nine bits on the AXI master port.

 Note

• ID bit encoding is used to differentiate between different types of traffic happening in parallel. The
encoding of the IDs is IMPLEMENTATION SPECIFIC.

• You can use the AxUSER buses to identify the origin of the traffic, that is, the core number, or the
ACP.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137

2.5.2 AXI master port 1

AXI master port 1 is optional, and has optional ECC protection on data, and parity on control bits. It has
an address filtering feature enabled by the SCU Control Register.

When the master address filtering is enabled through the MFILTEREN input or the SCU Control
Register, any access in the address range between the master filtering start address and the master
filtering end address is issued on AXI master port 1. All other accesses outside of this range are directed
onto AXI master port 0. The start and end addresses are configurable in the following SCU registers:

• Master Filtering Start Address Register, where the value is defined by the MFILTERSTART[11:0]
input when leaving reset.

• Master Filtering End Address Register, where the value is defined by the MFILTEREND[11:0] input
when leaving reset.

The granularity of the mapped memory is 1MB and is defined by the formula:

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

Memory_space (MB) = End to Start + 1.

This filtering rule is applied independently of the AXI request type and attributes.

When master address filtering is disabled, accesses can be issued on either AXI master port 0 or AXI
master port 1, if the AXI ordering rules are respected. In this case, locked and exclusive accesses are
always issued on AXI master port 0.

This port does not support locked writes, that is, AWLOCKM1[1] is always 0b0.

This port supports five bits of AXI IDs, although AXI IDs can be larger if the ACP has more than four
bits of ID. For example, if the ACP ID has four bits, there are five bits on the AXI master port. If the
ACP ID has eight bits, there are nine bits on the AXI master port.

 Note

ID bit encoding is used to differentiate between different types of traffic happening in parallel. The
encoding of the IDs is IMPLEMENTATION SPECIFIC.

If you connect an L2 cache controller to AXI master port 0 and AXI master port 1, you cannot enable
address filtering on AXI master port 1. There is no restriction on enabling address filtering on the AXI
low-latency peripheral port. Some L2 cache controllers, such as the CoreLink Level 2 Cache Controller,
can enable their own address filtering.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137
Related reference
9.3.1 SCU Control Register on page 9-169
9.3.5 Master Filtering Start Address Register on page 9-176
9.3.6 Master Filtering End Address Register on page 9-177

2.5.3 AXI low-latency peripheral port

The AXI low-latency peripheral port is a dedicated memory-mapped 32-bit AXI bus. It is used to access
certain peripherals with a low latency and having burst support. The memory mapping is done by address
filtering.

The following table shows the AXI low-latency port attributes.

Table 2-3 AXI low-latency port attributes

Attribute Format

Write issuing capability 15

Read issuing capability 15

Combined issuing capability 30

Write interleave capability 1.

The AXI peripheral port has optional ECC protection on data and parity on control bits.

This port does not support locked writes. AWLOCKMP[1] is always 0b0.

The AXI peripheral port does not support 64-bit accesses, including instruction fetches. These accesses
always abort. Processor cacheable accesses mapped to the peripheral port also abort, because they are
doing linefill requests, that is, four 64-bit accesses. Normal memory accesses to the peripheral port also
abort. These accesses abort because of their size, not because of their memory attributes.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

Any access in the address range between the peripheral filtering start address and the peripheral filtering
end address is issued on the AXI peripheral port. All other accesses outside of this range are directed
onto the AXI master ports. The start and end addresses are configurable in the following SCU registers:

• LLP Filtering Start Address Register, where the value is defined by PFILTERSTART[11:0] input
when leaving reset.

• LLP Filtering End Address Register, where the value is defined by PFILTEREND[11:0] input when
leaving reset.

The granularity of the mapped memory is 1MB and is defined by the formula:

Memory_space (MB) = End to Start + 1.

This filtering rule is applied independently of the AXI request type and attributes. .

This port supports five bits of AXI IDs, although AXI IDs can be larger if the ACP has more than four
bits of ID. For example, if the ACP ID has four bits, there are five bits on the AXI peripheral port. If the
ACP ID has eight bits, there are nine bits on the AXI peripheral port.

 Note

• ID bit encoding is used to differentiate between different types of traffic happening in parallel. The
encoding of the IDs is IMPLEMENTATION SPECIFIC.

• If the address filtering of the peripheral port, and the address filtering of AXI master port 1 overlap,
the peripheral port has priority.

• If the address filtering of the fast peripheral port, and the address filtering of the peripheral port
overlap, the fast peripheral port has priority.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137
Related reference
9.3 SCU registers on page 9-167
9.3.7 LLP Filtering Start Address Register on page 9-177
9.3.8 LLP Filtering End Address Register on page 9-178

2.5.4 AXI Fast Peripheral Port

Each Cortex‑R8 processor core can be implemented with a dedicated fast peripheral port. This is a
memory-mapped 32-bit AXI peripheral port that provides fast accesses to a dedicated peripheral.

The following table shows the AXI Fast Peripheral Port attributes.

Table 2-4 AXI Fast Peripheral Port attributes

Attribute Format

Write issuing capability 8

Read issuing capability 4

Combined issuing capability 12

Write interleave capability 1

The FPP has optional ECC protection on data, and parity on control bits.

The FPP:
• Does not support locked writes, that is, AWLOCKMFPx[1] is always 0b0.
• Does not support 64-bit accesses, including instruction fetches. These accesses always abort.

Cacheable accesses, or normal memory accesses through the FPP always abort.
• Does not implement the optional AXI ID fields because all accesses are treated as if they use the

same ID.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-44

Non-Confidential

Address filtering

An FPP access to a core is determined by the FPP filtering start address and FPP filtering end address
setup for that core and issued by the FPP dedicated to that core. Accesses that are outside of the address
filtering range are directed either to the AXI master ports or to the AXI low-latency peripheral port.

The FPP, LLPP, and master port 1 each have a designated memory-mapped address filtering region. If an
access overlaps the address filtering region of two ports, the access is routed to the port with the highest
priority. The order of priority of each port is:

• FPP, high priority.
• LLPP.
• Master port 1, low priority.

For example, if the access overlaps the FPP and LLPP regions, the FPP is accessed.

 Note

The AXI ordering rules for accesses to the FPP and LLPP are applied independently to each of the two
interfaces.

The start and end filtering addresses are configurable in the following SCU registers:

• FPP Filtering Start Address Registers, where the value is defined by the FPFILTERSTARTx[11:0]
input when leaving reset.

• FPP Filtering End Address Registers, where the value is defined by the FPFILTERENDx[11:0]
input when leaving reset.

The granularity of the mapped memory is 1MB and is defined by the formula:

Memory_space (MB) = End to Start + 1.

This filtering rule is applied independently of the AXI request type and attributes.

Related reference
9.3.14 FPP Filtering Start Address Registers 0-3 on page 9-186
9.3.15 FPP Filtering End Address Registers 0-3 on page 9-187

QoS

When ACTLR.QoS is set for a core, all traffic using the corresponding FPP is treated as high priority.
High priority traffic transfers can access either the AXI master port 1 with address filtering enabled, the
FPP with address filtering enabled, the AXI low-latency peripheral port, or the data TCM. If the QoS bit
is set for several cores, the SCU manages each type of high priority traffic by arbitration. Arm
recommends that the QoS bit is set for one core only.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137

2.5.5 AXI TCM slave port

The AXI TCM slave port enables AXI masters, including the AXI master port of the processor if
connected externally, to access data and instruction TCMs on the AXI system bus. You can use this for
Direct Memory Access (DMA) to and from the TCM RAMs, and for software test of the TCM.

The following table shows the AXI TCM Slave Port attributes.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-45

Non-Confidential

Table 2-5 AXI TCM Slave Port attributes

Attribute Format

Write acceptance capability 2

Read acceptance capability 2

The AXI TCM slave port has optional ECC protection on data, and provides parity on control bits.

The AXI TCM slave port also has optional inline single ECC error correction on read accesses for
DTCM and ITCM.

The AXI slave port accesses have lower priority than the Load Store Unit (LSU) or PreFetch Unit (PFU)
accesses. The MPU does not check accesses from the AXI TCM slave.

The AXI TCM slave port is 64 bits wide and conforms to the AXI standard. Within the AXI standard, the
slave port uses the AWUSERST and ARUSERST signals as two separate chip select input signals to
enable access as the following table shows.

Table 2-6 AXI TCM slave port access

AxUSERST[2:0] Access

0b000 Instruction TCM for core 0

0b001 Data TCM for core 0

0b010 Instruction TCM for core 1

0b011 Data TCM for core 1

0b100 Instruction TCM for core 2

0b101 Data TCM for core 2

0b110 Instruction TCM for core 3

0b111 Data TCM for core 3

The external AXI system must generate the chip select signals. The AXI TCM slave interface routes the
access to the required RAM.

Limitations of the core and AXI slave port interactions

Do not use the ITCM to store data that is shared with an external master because frequent core read
accesses to the ITCM can lock out AXI slave port accesses.

Care must be taken when constructing any mail boxing code where the processor core shares a location
in the DTCM with an external master. Any polling of a location by the processor core must be periodic
rather than a continuous stream of reads.

Configurable AXI ID bits

You can configure the number of bits for the AXI IDs in the AXI TCM slave port at the implementation
level. This number must be greater than or equal to 1.

Supported AXI transfers

Accesses supported by the AXI TCM slave port.

The following tables show the accesses that the AXI TCM slave port supports.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-46

Non-Confidential

Table 2-7 Doubleword accesses, aligned on 64-bit address

Signal Access

AxSIZEST[2:0] 0x3

AxLENST[3:0] Any

AxBURSTST[1:0] Any (FIXED, INCR, or WRAP)

AxADDRST[2:0] 0x0

Table 2-8 Single word accesses, aligned on 32-bit address

Signal Access

AxSIZEST[2:0] 0x2

AxLENST[3:0] 0x0

AxBURSTST[1:0] Ignored

AxADDRST[1:0] 0x0

Table 2-9 Single halfword accesses, aligned on 16-bit address

Signal Access

AxSIZEST[2:0] 0x1

AxLENST[3:0] 0x0

AxBURSTST[1:0] Ignored

AxADDRST[0] 0x0

Table 2-10 Single byte accesses

Signal Access

AxSIZEST[2:0] 0x0

AxLENST[3:0] 0x0

AxBURSTST[1:0] Ignored

Any other AXI accesses, such as unaligned or multiple accesses, result in a slave error, that is,
xRESPST[1:0] = 0b10.

The AXI TCM slave port also supports the following accesses, but with limited bandwidth:

• Doubleword accesses to the DTCM or ITCM where all byte strobes are not set, that is,
WSTRBST[7:0] is not 0xFF.

• Word accesses to the DTCM where all byte strobes are not set, that is, WSTRBST[7:0] is not 0x0F
or 0xF0.

• Word accesses to the ITCM, regardless of the byte strobe setting.
• Halfword accesses to the DTCM or ITCM, regardless of the byte strobe setting.
• Byte accesses to the DTCM or ITCM.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-47

Non-Confidential

In the following cases, the AXI TCM slave port also gives a slave error:
• Nonsingle byte, halfword, or word accesses, that is, AxSIZEST[1:0] is not 0x3 and AxLENST[3:0]

is not 0x0.
• The address for the TCM corresponding to AxUSERST[1:0] exceeds the targeted TCM size, defined

by the DTCMRR or ITCMRR register.
• The access is targeting a TCM of a core that is not present.

The AxLOCKST, AxCACHEST, and AxPROTST signals are not implemented on the AXI TCM slave
port. This means that the AXI TCM slave interface does not support locked or exclusive accesses. There
is no exclusive monitor. If any master attempts an exclusive read, the AXI TCM slave port returns an
OKAY response instead of an EXOKAY response. The master can treat this as an error condition
indicating that the exclusive access is not supported. Arm recommends that the master does not perform
the write portion of this exclusive operation.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137
Related concepts
7.4.2 ECC on external AXI bus on page 7-137

2.5.6 AXI slave Accelerator Coherency Port

The AXI slave Accelerator Coherency Port (ACP) is optional, and has optional ECC protection on data
and parity on control bits. The ACP is an AXI3 64-bit slave port that can be connected to noncached
AXI3 master peripherals, such as a DMA engine or cryptographic engine.

The following table shows the AXI Accelerator Coherency Port attributes.

Table 2-11 AXI slave Accelerator Coherency Port attributes

Attribute Format

Write acceptance capability 17 non-shared or 5 shared (without ACP bridge)

18 non-shared or 6 shared (with ACP bridge)

Read acceptance capability 17 non-shared or shared (without ACP bridge)

18 non-shared or shared (with ACP bridge)

This AMBA3 AXI-compatible slave interface on the SCU provides an interconnect point for a range of
system masters that, for overall system performance, power consumption, or to simplify software, are
better interfaced directly with the Cortex‑R8 processor.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137
9.7 Accelerator Coherency Port on page 9-211
12.6 Accelerator Coherency Port interface on page 12-354

2.5.7 Memory Reconstruction Port

There is an MRP for each core. All write accesses, regardless of their memory attributes, are exported
from the core through this port so that an image of the memory can be reconstructed.

Related reference
10.2 Memory Reconstruction Port on page 10-222

2.5.8 Private memory region

All registers accessible by all cores within a Cortex‑R8 processor design are grouped into two contiguous
4KB pages accessed through a dedicated internal bus.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-48

Non-Confidential

The base address of these pages is defined by the configuration signal PERIPHBASE[31:13] inputs.

Global control registers and peripherals must be accessed through memory-mapped transfers to the
private memory region.

Memory regions used for these registers must be marked as Device or Strongly-Ordered in the MPU.

Access to the private memory region is little-endian only.

Access these registers with single load/store instructions. Load or store multiple accesses cause an abort
to the requesting core and the Fault Status Register shows this as a SLVERR.

The following table shows the permitted access sizes for the private memory regions.

Table 2-12 Permitted access sizes for private memory regions

Private memory region Permitted access sizes

Byte Halfwordd Worde Doublewordd

Global timer, private timers, and watchdogs No No Yes No

SCU registers Yes No Yes No

Processor interrupt interfaces

Interrupt distributor

The ACP cannot access any of the registers in this memory region.

The following table shows register addresses for the Cortex‑R8 processor relative to this base address.

Table 2-13 Cortex-R8 processor private memory region

Offset from PERIPHBASE[31:13] Peripheral Description

0x0000-0x00FF SCU registers 9.3 SCU registers on page 9-167

0x0100-0x01FF Interrupt controller interfaces 9.4 Interrupt controller on page 9-189

0x0200-0x02FF Global timer 9.6 Global timer on page 9-207

0x0300-0x03FF Reserved Any access to this region causes an SLVERR abort exception

0x0400-0x04FF

0x0500-0x05FF

0x0600-0x06FF Private timers and watchdogs 9.5 Private timer and watchdog on page 9-201

0x0700-0x07FF Reserved Any access to this region causes an SLVERR abort exception

0x0800-0x08FF

0x0900-0x09FF

0x0A00-0x0AFF

0x0B00-0x0FFF

0x1000-0x1FFF Interrupt Distributor 9.4.4 Distributor register descriptions on page 9-190

Related concepts
9.6 Global timer on page 9-207
Related reference
A.5 Configuration signals on page Appx-A-362

d Halfword or doubleword accesses cause an abort to the requesting core and the Fault Status Register shows this as a SLVERR.
e A word access with strobes not all set causes an abort to the requesting core and the Fault Status Register shows this as a SLVERR.

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-49

Non-Confidential

9.3 SCU registers on page 9-167
9.4 Interrupt controller on page 9-189
9.5 Private timer and watchdog on page 9-201
9.4.4 Distributor register descriptions on page 9-190

2 Functional Description
2.5 Processor ports

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

2-50

Non-Confidential

Chapter 3
Programmers Model

This chapter describes the programmers model.

It contains the following sections:
• 3.1 About the programmers model on page 3-52.
• 3.2 The VFP extension on page 3-53.
• 3.3 Multiprocessing extensions on page 3-54.
• 3.4 Memory formats on page 3-55.
• 3.5 Addresses in the processor on page 3-56.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

3.1 About the programmers model
The Cortex‑R8 processor implements the Armv7‑R architecture.

The Armv7‑R architecture includes:
• The 32-bit Arm instruction set.
• The Thumb instruction set that has both 16-bit and 32-bit instructions.
• Vector Floating Point (VFP) extensions.
• The Multiprocessing Extensions.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for more information.

3 Programmers Model
3.1 About the programmers model

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

3.2 The VFP extension
The VFP extension performs single-precision and double-precision floating-point operations, and some
half-precision operations.

There are build options to implement a single-precision FPU or a double-precision FPU.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for more information
about the VFP extension.

Related reference
Chapter 5 Floating Point Unit Programmers Model on page 5-99

3 Programmers Model
3.2 The VFP extension

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

3.3 Multiprocessing extensions
The Multiprocessing Extensions are a set of features that enhance multiprocessing functionality.

For implementation-specific details about the Multiprocessing Extensions, see system control and
multiprocessing for more information.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for more information.

Related reference
Chapter 4 System Control on page 4-57
Chapter 9 Multiprocessing on page 9-163

3 Programmers Model
3.3 Multiprocessing extensions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.4 Memory formats
The Cortex‑R8 processor views memory as a linear collection of bytes numbered in ascending order
from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word.

The Cortex‑R8 processor can store words in memory as either:

• Big-endian format.
• Little-endian format.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for more information
about big-endian and little-endian memory systems.

 Note

Instructions are always treated as little-endian.

3 Programmers Model
3.4 Memory formats

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

3.5 Addresses in the processor
All addresses are physical addresses. Address translation is not supported.

The instruction and data address spaces are unified.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for a description of the
default memory map, and for more information about memory addresses and access permissions.

Related concepts
6.2 Fault handling on page 6-112

3 Programmers Model
3.5 Addresses in the processor

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

Chapter 4
System Control

This chapter describes the system control registers, their structure and operation, and how to use them.

It contains the following sections:
• 4.1 About system control on page 4-58.
• 4.2 Register summary on page 4-59.
• 4.3 Register descriptions on page 4-70.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

4.1 About system control
The system control coprocessor, CP15, controls and provides status information for the functions
implemented in the Cortex‑R8 processor. There is one CP15 coprocessor for each core in the Cortex‑R8
processor.

The main functions of the system control coprocessor are:
• Overall system control and configuration.
• MPU configuration and management.
• Cache configuration and management.
• TCM configuration and management.
• System performance monitoring.

4 System Control
4.1 About system control

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

4.2 Register summary
The system control coprocessor is a set of registers that you can write to and read from. Some of the
registers permit more than one type of operation.

For more information on using the CP15 system control registers, see the Arm® Architecture Reference
Manual Arm®v7‑A and Arm®v7‑R edition.

The following table describes the column headings that the CP15 register summary tables use.

Table 4-1 Column headings definition for CP15 register summary tables

Column name Description

CRn Register number within the system control coprocessor

Op1 Opcode_1 value for the register

CRm Operational register number within CRn

Op2 Opcode_2 value for the register

Name Short form architectural, operation, or code name for the register

Reset Reset value of register

Description Cross-reference to register description

This section contains the following subsections:
• 4.2.1 c0 registers on page 4-59.
• 4.2.2 c1 registers on page 4-60.
• 4.2.3 c5 registers on page 4-61.
• 4.2.4 c6 registers on page 4-61.
• 4.2.5 c7 registers on page 4-61.
• 4.2.6 c9 registers on page 4-62.
• 4.2.7 c13 registers on page 4-63.
• 4.2.8 c15 registers on page 4-63.
• 4.2.9 System identification, control, and configuration register on page 4-64.
• 4.2.10 Fault handling registers on page 4-65.
• 4.2.11 MPU registers on page 4-66.
• 4.2.12 Cache maintenance operations on page 4-66.
• 4.2.13 Interface control and configuration registers on page 4-67.
• 4.2.14 Performance monitor registers on page 4-67.
• 4.2.15 Miscellaneous system control registers on page 4-68.
• 4.2.16 Implementation-defined registers on page 4-68.

4.2.1 c0 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c0.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

Table 4-2 c0 register summary

Op1 CRm Op2 Name Reset Description

0 c0 0 MIDR 0x410FC183 4.3.1 Main ID Register on page 4-70

1 CTR 0x8333C003 Cache Type Registerf

2 TCMTR Implementation dependentg TCM Type Registerf

4 MPUIR Implementation dependenth 4.3.2 MPU Type Register on page 4-71

5 MPIDR Implementation dependenti 4.3.3 Multiprocessor Affinity Register on page 4-72

6 REVIDR Implementation dependent 4.3.4 Revision ID Register on page 4-73

c1 0 ID_PFR0 0x00000131 Processor Feature Register 0f

1 ID_PFR1 0x00000001 Processor Feature Register 1f

2 ID_DFR0 0x00010404 Debug Feature Registerf

3 ID_AFR0 0x00000000 Auxiliary Feature Register 0f

4 ID_MMFR0 0x00110130 Memory Model Feature Register 0f

5 ID_MMFR1 0x00000000 Memory Model Feature Register 1f

6 ID_MMFR2 0x01200000 Memory Model Feature Register 2f

7 ID_MMFR3 0x00002111 Memory Model Feature Register 3f

c2 0 ID_ISAR0 0x02101111 Instruction Set Attributes Register 0f

1 ID_ISAR1 0x13112111 Instruction Set Attributes Register 1f

2 ID_ISAR2 0x21232141 Instruction Set Attributes Register 2f

3 ID_ISAR3 0x01112131 Instruction Set Attributes Register 3f

4 ID_ISAR4 0x00010142 Instruction Set Attributes Register 4f

1 c0 0 CCSIDR UNK 4.3.5 Cache Size ID Register on page 4-74

1 CLIDR Implementation dependentj 4.3.6 Cache Level ID Register on page 4-75

7 AIDR 0x00000000 4.3.7 Auxiliary ID Register on page 4-76

2 c0 0 CSSELR Implementation dependent 4.3.8 Cache Size Selection Register on page 4-76

4.2.2 c1 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c1.

Table 4-3 c1 register summary

Op1 CRm Op2 Name Reset Description

0 c0 0 SCTLR UNK 4.3.9 System Control Register on page 4-77

1 ACTLR 0x00000000 4.3.10 Auxiliary Control Register on page 4-80

2 CPACR 0xC0000000 4.3.11 Coprocessor Access Control Register on page 4-81

f For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.
g If TCMs are implemented 0x80010001. If TCMs are not implemented 0x00000000.
h For 12 MPU regions 0x00000c00. For 16 MPU regions 0x00001000. For 20 MPU regions 0x00001400. For 24 MPU regions 0x00001800.
i Dependent on external signal CLUSTERID and the number of configured cores in the Cortex‑R8 processor.
j If cache present 0x09200003. If cache not present 0x00000000.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

4.2.3 c5 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c5.

Table 4-4 c5 register summary

Op1 CRm Op2 Name Reset Description

0 c0 0 DFSR - Data Fault Status Registerk

1 IFSR - Instruction Fault Status Registerk

4.2.4 c6 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c6.

Table 4-5 c6 register summary

Op1 CRm Op2 Name Reset Description

0 c0 0 DFAR - Data Fault Address Registerl

2 IFAR - Instruction Fault Address Registerl

c1 0 DRBAR UNK MPU Region Base Address Registers on page 4-83

2 DRSR 0x00000000 MPU Region Size and Enable Registers on page 4-84

4 DRACR UNK MPU Region Access Control Registers on page 4-85

c2 0 RGNR UNK MPU Memory Region Number Registers on page 4-87

4.2.5 c7 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c7.

k For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.
l For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

Table 4-6 c7 register summary

Op1 CRm Op2 Name Resetm Description

0 c0 4 NOP - No operationn

c1 0 ICIALLUIS - Invalidate all instruction caches to PoU Inner Shareablen,

6 BPIALLIS - Invalidate entire branch predictor array Inner Shareablen

c5 0 ICIALLU - Invalidate entire instruction cachen

1 ICIMVAU - Invalidate instruction cache by VA to PoUn

4 CP15ISB - Instruction Synchronization Barrier operationn

6 BPIALL - Invalidate entire branch predictor arrayn

7 BPIMVA - Invalidate MVA from branch predictorsn

c6 1 DCIMVAC - Invalidate data cache line by VA to PoCn

2 DCISW - Invalidate data cache line by Set/Wayn

c10 1 DCCMVAC - Clean data cache line to PoC by VAn

2 DCCSW - Clean data cache line by Set/Wayn

4 CP15DSB - Data Synchronization Barrier operationn

5 CP15DMB - Data Memory Barrier operationn

0 c11 1 DCCMVAU - Clean data or unified cache line by VA to PoUn

c14 1 DCCIMVAC - Clean and invalidate data cache line by VA to PoCn

2 DCCISW - Clean and invalidate data cache line by Set/Wayn

4.2.6 c9 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c9.

m These registers do not have a reset value because they are write-only.
n For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

Table 4-7 c9 register summary

Op1 CRm Op2 Name Reset Description

0 c1 0 DTCMRR UNK 4.3.13 DTCM Region Register on page 4-88

1 ITCMRR UNK 4.3.14 ITCM Region Register on page 4-89

c12 0 PMCR 0x41184000 Performance Monitor Control Registero

1 PMCNTENSET 0x00000000 Count Enable Set Registero

2 PMCNTENCLR 0x00000000 Count Enable Clear Registero

3 PMOVSR 0x00000000 Overflow Flag Status Registero

4 PMSWINC UNK Software Increment Registero

5 PMSELR 0x00000000 Event Counter Selection Registero

c13 0 PMCCNTR UNK Cycle Count Registero

1 PMXEVTYPER UNK Event Selection Registero

2 PMXEVCNTR UNK Performance Monitor Count Registerso

c14 0 PMUSERENR 0x00000000 User Enable Registero

1 PMINTENSET 0x00000000 Interrupt Enable Set Registero

2 PMINTENCLR 0x00000000 Interrupt Enable Clear Registero

4.2.7 c13 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c13.

Table 4-8 c13 register summary

Op1 CRm Op2 Name Reset Description

0 c0 1 CONTEXTIDR UNK Context ID Registerp

2 TPIDRURW UNK User Read/Write Software Thread Registerp

3 TPIDRURO UNK User Read Only Software Thread Registerp

4 TPIDRPRW UNK Privileged Only Software Thread Registerp

4.2.8 c15 registers

Summary of the 32-bit wide CP15 system control registers when CRn is c15.

o For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.
p For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

Table 4-9 c15 register summary

Op1 CRm Op2 Name Reset Description

0 c0 0 PCR 0x0 4.3.15 Power Control Register on page 4-90

c1 0 CTDOR UNK 4.3.16 Cache and TCM Debug Operation Register on page 4-91

1 RADRLO UNK 4.3.17 RAM Access Data Registers on page 4-93, bits[31:0]

2 RADRHI UNK 4.3.17 RAM Access Data Registers on page 4-93, bits[63:32]

3 RAECCRq UNK 4.3.18 RAM Access ECC Register on page 4-94

c2 0 D_ECC_ENTRY_0q UNK 4.3.19 ECC Error Registers on page 4-95

1 D_ECC_ENTRY_1q UNK

2 D_ECC_ENTRY_2q UNK

c3 0 I_ECC_ENTRY_0q UNK

1 I_ECC_ENTRY_1q UNK

2 I_ECC_ENTRY_2q UNK

c4 0 DTCM_ECC_ENTRYr UNK

c5 0 ITCM_ECC_ENTRYr UNK

4 c0 0 CBAR UNK 4.3.20 Configuration Base Address Register on page 4-97

4.2.9 System identification, control, and configuration register

Summary of the system identification, control, and configuration registers.

q Only present if ECC is present, otherwise RAZ/WI.
r Only present if ECC and TCM are present, otherwise RAZ/WI.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

Table 4-10 System identification, control, and configuration registers

Name CRn Op1 CRm Op2 Reset Description

MIDR c0 0 c0 0 0x410FC183 4.3.1 Main ID Register on page 4-70

CTR 1 0x8333C003 Cache Type Registers

TCMTR 2 Implementation dependentt TCM Type Registers

MPUIR 4 Implementation dependentu 4.3.2 MPU Type Register on page 4-71

MPIDR 5 Implementation dependentv 4.3.3 Multiprocessor Affinity Register on page 4-72

REVIDR 6 Implementation dependent 4.3.4 Revision ID Register on page 4-73

ID_PFR0 c1 0 0x00000131 Processor Feature Register 0s

ID_PFR1 1 0x00000001 Processor Feature Register 1s

ID_DFR0 2 0x00010404 Debug Feature Registers

ID_AFR0 3 0x00000000 Auxiliary Feature Register 0s

ID_MMFR0 4 0x00110130 Memory Model Feature Register 0s

ID_MMFR1 5 0x00000000 Memory Model Feature Register 1s

ID_MMFR2 6 0x01200000 Memory Model Feature Register 2s

ID_MMFR3 7 0x00002111 Memory Model Feature Register 3s

ID_ISAR0 c2 0 0x02101111 Instruction Set Attributes Register 0s

ID_ISAR1 1 0x13112111 Instruction Set Attributes Register 1s

ID_ISAR2 c0 0 c2 2 0x21232141 Instruction Set Attributes Register 2s

ID_ISAR3 3 0x01112131 Instruction Set Attributes Register 3s

ID_ISAR4 4 0x00010142 Instruction Set Attributes Register 4s

CCSIDR c0 1 c0 0 UNKw 4.3.5 Cache Size ID Register on page 4-74

CLIDR 1 Implementation dependentx 4.3.6 Cache Level ID Register on page 4-75

AIDR 7 0x00000000 4.3.7 Auxiliary ID Register on page 4-76

CSSELR 2 c0 0 Implementation dependent 4.3.8 Cache Size Selection Register on page 4-76

SCTLR c1 0 c0 0 - 4.3.9 System Control Register on page 4-77

ACTLR 1 0x00000000 4.3.10 Auxiliary Control Register on page 4-80

CPACR 2 0xC0000000 4.3.11 Coprocessor Access Control Register on page 4-81

4.2.10 Fault handling registers

Summary of the fault handling registers.

s For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.
t If TCMs are implemented 0x80010001. If TCMs are not implemented 0x00000000.
u For 12 MPU regions 0x00000c00. For 16 MPU regions 0x00001000. For 20 MPU regions 0x00001400. For 24 MPU regions 0x00001800.
v Dependent on external signal CLUSTERID and the number of configured cores in the Cortex‑R8 processor.
w Dependent on cache sizes and whether cache is on or off.
x If cache present 0x09200003. If cache not present 0x00000000.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-65

Non-Confidential

Table 4-11 Fault handling registers

Name CRn Op1 CRm Op2 Reset Description

DFSR c5 0 c0 0 - Data Fault Status Registery

IFSR 1 - Instruction Fault Status Registery

DFAR c6 0 c0 0 - Data Fault Address Registery

IFAR 2 - Instruction Fault Address Registery

4.2.11 MPU registers

Summary of the Memory Protection Unit (MPU) registers.

Table 4-12 MPU registers

Name CRn Op1 CRm Op2 Reset Description

DRBAR c6 0 c1 0 UNK MPU Region Base Address Registers on page 4-83

DRSR 2 0x00000000 MPU Region Size and Enable Registers on page 4-84

DRACR 4 UNK MPU Region Access Control Registers on page 4-85

RGNR c2 0 UNK MPU Memory Region Number Registers on page 4-87

4.2.12 Cache maintenance operations

Summary of the cache maintenance operations.

y For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

Table 4-13 Cache maintenance operations

Name CRn Op1 CRm Op2 Reset Description

NOP c7 0 c0 4 - No operationz

ICIALLUIS c1 0 - Invalidate all instruction caches to PoU Inner Shareablez

BPIALLIS 6 - Invalidate entire branch predictor array Inner Shareablez

ICIALLU c5 0 - Invalidate entire instruction cachez

ICIMVAU 1 - Invalidate instruction cache by VA to PoUz

CP15ISB 4 - Instruction Synchronization Barrier operationz

BPIALL 6 - Invalidate entire branch predictor arrayz

BPIMVA 7 - Invalidate MVA from branch predictorsz

DCIMVAC c6 1 - Invalidate data cache line by VA to PoCz

DCISW 2 - Invalidate data cache line by Set/Wayz

DCCMVAC c10 1 - Clean data cache line to PoC by VAz

DCCSW 2 - Clean data cache line by Set/Wayz

CP15DSB c10 4 - Data Synchronization Barrier operationz

CP15DMB 5 - Data Memory Barrier operationz

DCCMVAU c11 1 - Clean data or unified cache line by VA to PoUz

DCCIMVAC c14 1 - Clean and invalidate data cache line by VA to PoCz

DCCISW 2 - Clean and invalidate data cache line by Set/Wayz

4.2.13 Interface control and configuration registers

Summary of the interface control and configuration registers.

Table 4-14 Interface control and configuration registers

Name CRn Op1 CRm Op2 Reset Description

DTCMRR c9 0 c1 0 UNK 4.3.13 DTCM Region Register on page 4-88

ITCMRR 1 UNK 4.3.14 ITCM Region Register on page 4-89

4.2.14 Performance monitor registers

Summary of the performance monitor registers.

The following table shows the performance monitor registers.

z For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

Table 4-15 Performance monitor registers

Name CRn Op1 CRm Op2 Reset Description

PMCR c9 0 c12 0 0x41184000 Performance Monitor Control Registeraa

PMCNTENSET 1 0x00000000 Count Enable Set Registeraa

PMCNTENCLR 2 0x00000000 Count Enable Clear Registeraa

PMOVSR 3 0x00000000 Overflow Flag Status Registeraa

PMSWINC 4 UNK Software Increment Registeraa

PMSELR 5 0x00000000 Event Counter Selection Registeraa

PMCCNTR c13 0 UNK Cycle Count Registeraa

PMXEVTYPER 1 UNK Event Selection Registeraa

PMXEVCNTR c13 2 UNK Performance Monitor Count Registersaa

PMUSERENR c14 0 0x00000000 User Enable Registeraa

PMINTENSET 1 0x00000000 Interrupt Enable Set Registeraa

PMINTENCLR 2 0x00000000 Interrupt Enable Clear Registeraa

4.2.15 Miscellaneous system control registers

Summary of the miscellaneous system control registers.

Table 4-16 Miscellaneous system control registers

Name CRn Op1 CRm Op2 Reset Description

CONTEXTIDR c13 0 c0 1 UNK Context ID Registerab

TPIDRURW 2 UNK User Read/Write Software Thread Registerab

TPIDRURO 3 UNK User Read Only Software Thread Registerab

TPIDRPRW 4 UNK Privileged Only Software Thread Registerab

4.2.16 Implementation-defined registers

Summary of the implementation-defined registers.

aa For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.
ab For information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

Table 4-17 Implementation-defined registers

Name CRn Op1 CRm Op2 Reset Description

PCR c15 0 c0 0 0x0 4.3.15 Power Control Register on page 4-90

CTDOR c1 0 UNK 4.3.16 Cache and TCM Debug Operation Register on page 4-91

RADRLO 1 UNK 4.3.17 RAM Access Data Registers on page 4-93, bits[31:0]

RADRHI 2 UNK 4.3.17 RAM Access Data Registers on page 4-93, bits[63:32]

RAECCRac 3 UNK 4.3.18 RAM Access ECC Register on page 4-94

D_ECC_ENTRY_0ac c2 0 UNK 4.3.19 ECC Error Registers on page 4-95

D_ECC_ENTRY_1ac 1 UNK

D_ECC_ENTRY_2ac 2 UNK

I_ECC_ENTRY_0ac c3 0 UNK

I_ECC_ENTRY_1ac 1 UNK

I_ECC_ENTRY_2ac 2 UNK

DTCM_ECC_ENTRYad c4 0 UNK

ITCM_ECC_ENTRYad c5 0 UNK

CBAR 4 c0 0 UNK 4.3.20 Configuration Base Address Register on page 4-97

ac Only present if ECC is present, otherwise RAZ/WI.
ad Only present if ECC and TCM are present, otherwise RAZ/WI.

4 System Control
4.2 Register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

4.3 Register descriptions
Usage constraints, configurations, attributes, and bit assignments for the CP15 system control registers.
The registers are described in coprocessor register number order.

This section contains the following subsections:
• 4.3.1 Main ID Register on page 4-70.
• 4.3.2 MPU Type Register on page 4-71.
• 4.3.3 Multiprocessor Affinity Register on page 4-72.
• 4.3.4 Revision ID Register on page 4-73.
• 4.3.5 Cache Size ID Register on page 4-74.
• 4.3.6 Cache Level ID Register on page 4-75.
• 4.3.7 Auxiliary ID Register on page 4-76.
• 4.3.8 Cache Size Selection Register on page 4-76.
• 4.3.9 System Control Register on page 4-77.
• 4.3.10 Auxiliary Control Register on page 4-80.
• 4.3.11 Coprocessor Access Control Register on page 4-81.
• 4.3.12 MPU memory region programming registers on page 4-83.
• 4.3.13 DTCM Region Register on page 4-88.
• 4.3.14 ITCM Region Register on page 4-89.
• 4.3.15 Power Control Register on page 4-90.
• 4.3.16 Cache and TCM Debug Operation Register on page 4-91.
• 4.3.17 RAM Access Data Registers on page 4-93.
• 4.3.18 RAM Access ECC Register on page 4-94.
• 4.3.19 ECC Error Registers on page 4-95.
• 4.3.20 Configuration Base Address Register on page 4-97.

4.3.1 Main ID Register

The MIDR provides identification information for the Cortex‑R8 processor, including an implementer
code for the device and a device ID number.

Usage constraints
The MIDR is:
• Only accessible in privileged mode.
• A read-only register.

Configurations

Available in all configurations.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the MIDR bit assignments.

VariantImplementer

31 23 20 19 16 15 4 3 0

Architecture Primary part number Revision

24

Figure 4-1 MIDR bit assignments

The following table shows the MIDR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

Table 4-18 MIDR bit assignments

Bits Name Function

[31:24] Implementer Indicates the implementer code.

[23:20] Variant Indicates the variant number of the processor. This is the major revision number m of the rmpn revision
status.

[19:16] Architecture Indicates the architecture code.

[15:4] Primary part number Indicates the primary part number.

[3:0] Revision Indicates the revision number of the processor. This is the minor revision number n of the rmpn
revision status.

To access the MIDR, read the CP15 register with:

MRC p15, 0, <Rd>, c0, c0, 0 ; Read Main ID Register

Related reference
4.2.1 c0 registers on page 4-59

4.3.2 MPU Type Register

The MPUIR indicates the number of MPU regions, 12, 16, 20, or 24, and the type of MPU regions,
unified or separate.

Usage constraints
The MPUIR is:
• Only accessible in privileged mode.
• A read-only register.

Configurations

Available in all configurations.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the MPUIR bit assignments.

Number of MPU regions

31 16 15 8 7 1 0

SBZSBZ

MPU region type

Figure 4-2 MPUIR bit assignments

The following table shows the MPUIR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

Table 4-19 MPUIR bit assignments

Bits Name Function

[31:16] - Reserved. SBZ.

[15:8] Number of MPU regions Indicates the number of regions:

0b00011000 24 regions.

0b00010100 20 regions.

0b00010000 16 regions.

0b00001100 12 regions.

[7:1] - Reserved. SBZ.

[0] MPU region type Specifies the type of MPU regions, unified or separate, in the processor.

Always set to 0b0 because the Cortex‑R8 processor has unified memory regions. See
3.5 Addresses in the processor on page 3-56.

To access the MPUIR, read the CP15 register with:

MRC p15,0,<Rt>,c0,c0,4 ; Read CP15 MPU Type Register

Related concepts
3.5 Addresses in the processor on page 3-56
Related reference
4.2.1 c0 registers on page 4-59

4.3.3 Multiprocessor Affinity Register

The MPIDR provides an additional processor identification mechanism for scheduling purposes in a
multiprocessor system.

Usage constraints
The MPIDR is only accessible in privileged mode.

Configurations
Available in all configurations. The value of the U bit, bit[30], indicates a multiprocessor or a
uniprocessor configuration.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the MPIDR bit assignments.

31 8 7 0

SBZ SBZ

12 11

Cluster ID

1

1

U bit

30 29

CPU ID

2

Figure 4-3 MPIDR bit assignments

The following table shows the MPIDR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

Table 4-20 MPIDR bit assignments

Bits Name Function

[31] - Indicates the register uses the new multiprocessor format. This is always 0b1.

[30] U bit Multiprocessing Extensions:

0b0 Indicates the Cortex‑R8 processor is a multiprocessor configuration,
meaning it has several cores.

[29:12] - Reserved. SBZ.

[11:8] Cluster ID Value read in CLUSTERID configuration inputs. It identifies a Cortex‑R8 processor in a system that has several
Cortex‑R8 processors present.

[7:2] - Reserved. SBZ.

[1:0] CPU ID Indicates the core number in the multiprocessor configuration:

0x00 Core 0.

0x01 Core 1.

0x10 Core 2.

0x11 Core 3.

To access the MPIDR, read the CP15 register with:

MRC p15,0,<Rd>,c0,c0,5 ; read Multiprocessor ID register

Related reference
4.2.1 c0 registers on page 4-59

4.3.4 Revision ID Register

The REVIDR provides implementation-specific minor revision information that can only be interpreted
in conjunction with the MIDR.

Usage constraints
The REVIDR is only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the REVIDR bit assignments.

ID number

31 0

Figure 4-4 REVIDR bit assignments

The following table shows the REVIDR bit assignments.

Table 4-21 REVIDR bit assignments

Bits Name Function

[31:0] ID number Implementation-specific revision information. The reset value is determined by the specific Cortex‑R8 processor
implementation.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

To access the REVIDR, read the CP15 register with:

MRC p15,0,<Rd>,c0,c0,6 ; read Revision ID register

Related reference
4.2.1 c0 registers on page 4-59

4.3.5 Cache Size ID Register

The CCSIDR provides information about the architecture of the caches selected by CSSELR.

Usage constraints
The CCSIDR is only accessible in privileged mode.

Configurations
Available in configurations with caches implemented. If caches are not implemented, the value
of this register is UNKNOWN.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the CCSIDR bit assignments.

LineSize

31 30 29 28 27 13 12 2 0

NumSets Associativity

WT
WB
RA
WA

3

Figure 4-5 CCSIDR bit assignments

The following table shows the CCSIDR bit assignments.

Table 4-22 CCSIDR bit assignments

Bits Name Function

[31] WT Indicates support available for Write-Through:

0b0 Write-Through support not available.

[30] WB Indicates support available for Write-Back:

0b0 Write-Back support not available.

0b1 Write-Back support available.

[29] RA Indicates support available for read allocation:

0b0 Read allocation support not available.

0b1 Read allocation support available.

[28] WA Indicates support available for write allocation:

0b0 Write allocation support not available.

0b1 Write allocation support available.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

Table 4-22 CCSIDR bit assignments (continued)

Bits Name Function

[27:13] NumSets Indicates number of sets:

0x1F 4KB cache size.

0x3F 8KB cache size.

0x7F 16KB cache size.

0xFF 32KB cache size.

0x1FF 64KB cache size.

[12:3] Associativity Indicates number of ways:

0b0000000011
Four ways.

[2:0] LineSize Indicates number of words:

0b001 Eight words per line.

To access the CCSIDR, read the CP15 register with:

MRC p15, 1, <Rd>, c0, c0, 0 ; Read current Cache Size Identification Register

If the CSSELR reads the instruction cache values and caches are implemented, bits[31:28] are 0b0010.

If the CSSELR reads the data cache values and caches are implemented, bits[31:28] are 0b0111.

Related reference
4.2.1 c0 registers on page 4-59
4.3.8 Cache Size Selection Register on page 4-76

4.3.6 Cache Level ID Register

The CLIDR indicates the cache levels that are implemented in the Cortex‑R8 processor and under the
control of the System Control Coprocessor. If caches are not implemented, this register value is 0x0.

Usage constraints
The CLIDR is:
• Only accessible in privileged mode.
• A read-only register.

Configurations

Available in all configurations.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the CLIDR bit assignments.

L oUIS CL 7 CL 6 CL 5 CL 4 CL 3 CL 2 CL 1

Reserved

31 30 29 27 26 24 23 21 20 18 17 15 14 12 11 9 8 6 5 3 2 0

LoU LoC

Figure 4-6 CLIDR bit assignments

The following table shows the CLIDR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

Table 4-23 CLIDR bit assignments

Bits Name Function

[31:30] - UNP or SBZ

[29:27] LoU 0b001 Level of unification

[26:24] LoC 0b001 Level of coherency

[23:21] LoUIS 0b001 Level of Unification Inner Shareable

[20:18] CL 7 0b000 No cache at CL 7

[17:15] CL 6 0b000 No cache at CL 6

[14:12] CL 5 0b000 No cache at CL 5

[11:9] CL 4 0b000 No cache at CL 4

[8:6] CL 3 0b000 No cache at CL 3

[5:3] CL 2 0b000 No unified cache at CL 2

[2:0] CL 1 0b000 Caches not implemented

0b011 Separate instruction and data caches at CL 1

To access the CLIDR, read the CP15 register with:

MRC p15, 1,<Rd>, c0, c0, 1 ; Read CLIDR

Related reference
4.2.1 c0 registers on page 4-59

4.3.7 Auxiliary ID Register

This register is not implemented.

4.3.8 Cache Size Selection Register

The CSSELR selects the current CCSIDR.

Usage constraints
The CSSELR is only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c0 register summary, 4.2.1 c0 registers on page 4-59.

The following figure shows the CSSELR bit assignments.

Reserved Level

4 3 1 0

InD

31

Figure 4-7 CSSELR bit assignments

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

The following table shows the CSSELR bit assignments.

Table 4-24 CSSELR bit assignments

Bits Name Function

[31:4] - Reserved. UNP or SBZ.

[3:1] Level Cache level selected, RAZ/WI.

There is only one level of cache in the Cortex‑R8 processor so the value for this field is 0b000.

[0] InD 0b1 Instruction cache.

0b0 Data cache.

To access the CSSELR, read the CP15 register with:

MRC p15, 2, <Rd>, c0, c0, 0 ; Read CSSELR

MCR p15, 2, <Rd>, c0, c0, 0 ; Write CSSELR

Related reference
4.2.1 c0 registers on page 4-59

4.3.9 System Control Register

System Control Register (SCTLR) characteristics and bit assignments.

The SCTLR provides control and configuration of:
• Memory alignment and endianness.
• Memory protection and fault behavior.
• MPU and cache enables.
• Interrupts and behavior of interrupt latency.
• Location for exception vectors.
• Program flow prediction.

The following figure shows the SCTLR bit assignments.

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 0

MI

NMFI
Reserved

ReservedV Z C A

22 21 20 19 9

SW

18 17 16

TE

EE

BR
Reserved

FI

DZ
ReservedReserved

Reserved

Reserved

Reserved

Figure 4-8 SCTLR bit assignments

The following table shows the SCTLR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

Table 4-25 SCTLR bit assignments

Bits Name Access Function

[31] - - Reserved. RAZ/SBZP.

[30] TE RW Thumb exception Enable:

0b0 Exceptions including reset are handled in Arm state.

0b1 Exceptions including reset are handled in Thumb state.

The TEINIT signal defines the reset value.

[29:28] - - Reserved. RAZ/SBZP.

[27] NMFI RO Nonmaskable FIQ support.

The bit cannot be configured by software.

The CFGNMFI signal defines the reset value.

[26] - - Reserved. RAZ/SBZP.

[25] EE RW Exception Endianness. This bit determines how the E bit in the CPSR is set on an exception:

0b0 CPSR E bit is set to 0b0 on an exception.

0b1 CPSR E bit is set to 0b1 on an exception.

The CFGEND signal defines the reset value.

[24] - - Reserved. RAZ/WI.

[23:22] - - Reserved. RAO/SBOP.

[21] FI RW Fast Interrupts configuration enable bit.

This bit can be used to reduce interrupt latency. The permitted values of this bit are:

0b0 All performance features enabled. This is the reset value.

0b1 Low interrupt latency configuration. Some performance features
disabled.

[20] - - Reserved. RAZ/SBZP.

[19] DZ RW Divide by Zero fault enable bit.

This bit controls whether an integer divide by zero causes an UNDEFINED Instruction exception:

0b0 Divide by zero returns the result zero, and no exception is taken. This is
the reset value.

0b1 Attempting a divide by zero causes an UNDEFINED Instruction exception
on the SDIV or UDIV instruction.

[18] - - Reserved. RAO/SBOP.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

Table 4-25 SCTLR bit assignments (continued)

Bits Name Access Function

[17] BR RW Background Region bit.

When the MPU is enabled this bit controls how an access that does not map to any MPU memory region
is handled:

0b0 Any access to an address that is not mapped to an MPU region
generates a Background Fault memory abort. This is the reset value.

0b1 The default memory map is used as a background region:
• A privileged access to an address that does not map to an MPU

region takes the properties defined for that address in the default
memory map.

• An unprivileged access to an address that does not map to an MPU
region generates a Background Fault memory abort.

[16] - - Reserved. RAO/SBOP.

[15] - - Reserved. RAZ/SBZP.

[14] - - Reserved. RAZ/WI.

[13] V RW Vectors bit. This bit selects the base address of the exception vectors:

0b0 Normal exception vectors, base address 0x00000000.

0b1 High exception vectors, Hivecs, base address 0xFFFF0000.

At reset, the value of this bit is taken from VINITHI.

[12] Iae - Determines if instructions can be cached at any available cache level:

0b0
Instruction caching disabled at all levels. This is the reset value.

0b1
Instruction caching enabled.

[11] Z RW Enables program flow prediction:

0b0 Program flow prediction disabled. This is the reset value.

0b1 Program flow prediction enabled.

[10] SW RW Swap/Swap Byte (SWP/SWPB) enable bit:

0b0 SWP and SWPB are UNDEFINED. This is the reset value.

0b1 SWP and SWPB perform normally.

[9:7] - - Reserved. RAZ/SBZP.

[6:3] - - Reserved. RAO/SBOP.

[2] Cae RW Determines if data can be cached at any available cache level:

0b0 Data caching disabled at all levels. This is the reset value.

0b1 Data caching enabled.

ae RW if caches implemented, RAZ/WI if no caches.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

Table 4-25 SCTLR bit assignments (continued)

Bits Name Access Function

[1] A RW Enables strict alignment of data to detect alignment faults in data accesses:

0b0 Strict alignment fault checking disabled. This is the reset value.

0b1 Strict alignment fault checking enabled.

Any unaligned access to Device or Strongly-Ordered memory generates an alignment fault and therefore
does not cause any peripheral interface access. This means that the access examples given in this manual
never show unaligned accesses to Device or Strongly-Ordered memory.

[0] M RW Enables the MPU:

0b0 MPU disabled. This is the reset value.

0b1 MPU enabled.

Attempts to modify read-only bits are ignored.

To access the SCTLR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c1, c0, 0 ; Read SCTLR

MCR p15, 0, <Rd>, c1, c0, 0 ; Write SCTLR

4.3.10 Auxiliary Control Register

Auxiliary Control Register (ACTLR) characteristics and bit assignments.

The ACTLR controls:
• QoS settings.
• ECC checking, if implemented.
• Allocation in one way.
• Automatic data cache coherency.
• Broadcast of cache, branch predictor, and maintenance operations.
• Enabling the MRP, if implemented.

The following figure shows the ACTLR bit assignments.

UNP/SBZP

31 1 06 5

FW

SMP

7

SBZ

89

ECC on caches and DTCM

10

Alloc in one way

1112

QoS
ECC on ITCM

RAZ/WI

23

SBZ

4

MRP enable

Figure 4-9 ACTLR bit assignments

The following table shows the ACTLR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

Table 4-26 ACTLR bit assignments

Bits Name Function

[31:12] - Reserved. UNP/SBZP.

[11] QoS Quality of Service bit:

0b0 Disabled. This is the reset value.

0b1 Enabled.

See 8.5 System configurability and QoS on page 8-159.

[10] ECC on ITCM Support for ECC on ITCM, if implemented:

0b0 Disabled.

0b1 Enabled.

The reset value is defined by the ITCMECCEN signal. If ECC is not implemented this bit is
RAZ/WI.

[9] ECC on caches and
DTCM

Support for ECC on instruction and data cache and DTCM, if implemented:

0b0 Disabled. This is the reset value.

0b1 Enabled.

If ECC is not implemented this bit is RAZ/WI.

[8] Alloc in one way Enable allocation in one cache way only. For use with memory copy operations to reduce cache
pollution. The reset value is zero.

[7] - Reserved. SBZ.

[6] SMP Signals if the Cortex‑R8 processor is taking part in coherency or not.

If this bit is set, then Inner Write-Back Shareable is treated as Cacheable. The reset value is zero.

[5:4] - Reserved. RAZ/WI.

[3] MRP enable MRP enable:

0b0 Disabled. This is the reset value.

0b1 Enabled.

[2:1] - Reserved. SBZ.

[0] FW Cache maintenance broadcast:

0b0 Disabled. This is the reset value.

0b1 Enabled.

RAZ/WI if only one core is present.

To access the ACTLR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c1, c0, 1 ; Read ACTLR

MCR p15, 0, <Rd>, c1, c0, 1 ; Write ACTLR

4.3.11 Coprocessor Access Control Register

Coprocessor Access Control Register (CPACR) characteristics and bit assignments.

The CPACR:

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

• Sets access rights for the coprocessors CP11 and CP10.
• Enables software to determine if any particular coprocessor exists in the system.

 Note

This register has no effect on access to CP14 or CP15.

The following figure shows the CPACR bit assignments.

31 24 23 22 21 20 19 0

cp11 cp10RAZ/WI RAZ/WI

Figure 4-10 CPACR bit assignments

The following table shows the CPACR bit assignments.

Table 4-27 CPACR bit assignments

Bits Name Function

[31:24] - Reserved. RAZ/WI.

[23:22] cp11 Defines access permissions for CP11:

0b00 Access denied. This is the reset value, and the behavior for non-existent
coprocessors. Attempted access generates an Undefined Instruction exception.

0b01 Privileged mode access only.

0b10 Reserved.

0b11 Privileged and user mode access.

[21:20] cp10 Defines access permissions for CP10:

0b00 Access denied. This is the reset value, and the behavior for non-existent
coprocessors. Attempted access generates an Undefined Instruction exception.

0b01 Privileged mode access only.

0b10 Reserved.

0b11 Privileged and user mode access.

[19:0] - Reserved. RAZ/WI.

To access the CPACR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c1, c0, 2 ; Read Coprocessor Access Control Register

MCR p15, 0, <Rd>, c1, c0, 2 ; Write Coprocessor Access Control Register

You must execute an ISB immediately after an update of the CPACR. See Memory Barriers in the Arm®

Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition. You must not attempt to execute any
instructions that are affected by the change of access rights between the ISB and the register update.

To determine if any particular coprocessor exists in the system, write the access bits for the coprocessor
of interest with 0b11. If the coprocessor does not exist in the system the access rights remain set to 0b00.

 Note

You must enable both CP10 and CP11 before accessing any VFP system registers. If the access control
bits are programmed differently for CP10 and CP11, operation of VFP features is UNPREDICTABLE. This
behavior is applicable for both FPU modes, that is, full or optimized.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

4.3.12 MPU memory region programming registers

The MPU memory region programming registers program the MPU regions.

There is one register that specifies which set of region registers is to be accessed. Each region has its own
register to specify:

• Region base address.
• Region size and enable.
• Region access control.

You can implement the processor with 12, 16, 20, or 24 regions.

 Note

• When the MPU is enabled:
— The MPU determines the access permissions for all accesses to memory, including the TCMs.

Therefore, you must ensure that the memory regions in the MPU are programmed to cover the
complete TCM address space with the appropriate access permissions. You must define at least
one of the regions in the MPU.

— An access to an UNDEFINED area of memory generates a background fault.
• For the TCM space, the processor uses the access permissions but ignores the region attributes from

MPU.

CP15, c9 sets the location of the TCM base address.

MPU Region Base Address Registers

The DRBAR describe the base address of the region specified by the RGNR. The region base address
must always align to the region size.

Usage constraints
The DRBAR are only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c6 register summary, 4.2.4 c6 registers on page 4-61.

The following figure shows the DRBAR bit assignments.

31 0

Base address

45

SBZ

Figure 4-11 DRBAR bit assignments

The following table shows the DRBAR bit assignments.

Table 4-28 DRBAR bit assignments

Bits Name Function

[31:5] Base address Physical base address. Defines the base address of a region.

[4:0] - Reserved. SBZ.

To access the DRBAR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c6, c1, 0 ; Read MPU Region Base Address Register

MCR p15, 0, <Rd>, c6, c1, 0 ; Write MPU Region Base Address Register

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

Related reference
4.2.4 c6 registers on page 4-61

MPU Region Size and Enable Registers

MPU Region Size and Enable Registers (DRSR) characteristics and bit assignments.

The DRSR:
• Specify the size of the region specified by the RGNR.
• Identify the address ranges that are used for a particular region.
• Enable or disable the region, and its sub-regions, specified by the RGNR.

The following figure shows the DRSR bit assignments.

SBZ Sub-region disable

31 6 5 0

Region sizeSBZ

1781516

Enable

Figure 4-12 DRSR bit assignments

The following table shows the DRSR bit assignments.

Table 4-29 DRSR bit assignments

Bits Name Function

[31:16] - Reserved. SBZ.

[15:8] Sub-region
disable

Each bit position represents a sub-region, 0-7af.

Bit[8] corresponds to sub-region 0.

...

Bit[15] corresponds to sub-region 7.

The meaning of each bit is:

0b0 Address range is part of this region.

0b1 Address range is not part of this region.

[7:6] - Reserved. SBZ.

af Sub-region 0 covers the least significant addresses in the region, while sub-region 7 covers the most significant addresses in the region.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

Table 4-29 DRSR bit assignments (continued)

Bits Name Function

[5:1] Region
size

Defines the region size:

0b00000-0b00110
UNPREDICTABLE.

0b00111
256 bytes.

0b01000
512 bytes.

0b01001
1KB.

0b01010
2KB.

0b01011
4KB.

0b01100
8KB.

0b01101
16KB.

0b01110 32KB.

0b01111 64KB.

0b10000 128KB.

0b10001 256KB.

0b10010 512KB.

0b10011 1MB.

0b10100 2MB.

0b10101 4MB.

0b10110 8MB.

0b10111 16MB.

0b11000 32MB.

0b11001 64MB.

0b11010 128MB.

0b11011 256MB.

0b11100 512MB.

0b11101 1GB.

0b11110 2GB.

0b11111 4GB.

[0] Enable Enables or disables a memory region:

0b0 Memory region disabled. Memory regions are disabled on reset.

0b1 Memory region enabled. A memory region must be enabled before it is
used.

To access the DRSR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c6, c1, 2 ; Read Data MPU Region Size and Enable Register

MCR p15, 0, <Rd>, c6, c1, 2 ; Write Data MPU Region Size and Enable Register

Writing a region size that is outside the range results in UNPREDICTABLE behavior.

Related reference
Subregions on page 8-149

MPU Region Access Control Registers

The DRACR registers hold the region attributes and access permissions for the region specified by the
RGNR.

Usage constraints
The DRACR are only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c6 register summary, 4.2.4 c6 registers on page 4-61.

The following figure shows the DRACR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

SBZ BC

31 3 0

SBZ TEX S

12567811 1012

XN AP

SBZ

13

Figure 4-13 DRACR bit assignments

The following table shows the DRACR bit assignments.

Table 4-30 DRACR bit assignments

Bits Name Function

[31:13] - Reserved. SBZ.

[12] XN Execute never. Determines if a region of memory is executable:

0b0 All instruction fetches enabled.

0b1 No instruction fetches enabled.

[11] - Reserved. SBZ.

[10:8] AP Access permission. Defines the data access permissions. For more information on AP bit values, see MPU Region
Access Control Registers on page 4-85.

[7:6] - Reserved. SBZ.

[5:3] TEX Type extension. Defines the type extension attribute. For more information on this region attribute, see 8.2.3 Region
attributes on page 8-152.

[2] S Share. Determines if the memory region is Shareable or Non-Shareable:

0b0 Non-Shareable.

0b1 Shareable.

This bit only applies to Normal, not Device or Strongly-Ordered memory.

[1] C C bit. For more information on this region attribute, see 8.2.3 Region attributes on page 8-152.

[0] B B bit. For more information on this region attribute, see 8.2.3 Region attributes on page 8-152.

The following table shows the AP bit values that determine the permissions for privileged and user data
access.

Table 4-31 Access data permission bit encoding

AP bit values Privileged permissions User permissions Description

0b000 No access No access All accesses generate a permission fault

0b001 Read/write No access Privileged access only

0b010 Read/write Read-only Writes in user mode generate permission faults

0b011 Read/write Read/write Full access

0b100 UNP UNP Reserved

0b101 Read-only No access Privileged read-only

0b110 Read-only Read-only Privileged/user read-only

0b111 UNP UNP Reserved

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

To access the DRACR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c6, c1, 4 ; Read Region Access Control Register

MCR p15, 0, <Rd>, c6, c1, 4 ; Write Region Access Control Register

To execute instructions in user and privileged modes:
• The region must have read access as defined by the AP bits.
• The XN bit must be set to 0b0.

Related concepts
8.2.3 Region attributes on page 8-152
Related reference
4.2.4 c6 registers on page 4-61
MPU Region Access Control Registers on page 4-85

MPU Memory Region Number Registers

The RGNR determine which register is accessed. There is one register for each implemented memory
region.

Usage constraints
The RGNR are only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c6 register summary, 4.2.4 c6 registers on page 4-61.

The following figure shows the RGNR bit assignments.

31 4 0

SBZ Region

5

Figure 4-14 RGNR bit assignments

The following table shows the RGNR bit assignments.

Table 4-32 RGNR bit assignments

Bits Name Function

[31:5] - Reserved. SBZ.

[4:0] Region Defines the group of registers to be accessed. Read the MPU Type Register to determine the number of supported
regions, see 4.3.2 MPU Type Register on page 4-71.

To access the RGNR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c6, c2, 0 ; Read MPU Memory Region Number Register

MCR p15, 0, <Rd>, c6, c2, 0 ; Write MPU Memory Region Number Register

Writing this register with a value greater than or equal to the number of regions from the MPU Type
Register is UNPREDICTABLE. Associated register bank accesses are also UNPREDICTABLE.

Related reference
4.2.4 c6 registers on page 4-61
4.3.2 MPU Type Register on page 4-71
MPU Memory Region Number Registers on page 4-87
4.3.13 DTCM Region Register on page 4-88

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

4.3.14 ITCM Region Register on page 4-89

4.3.13 DTCM Region Register

The DTCMRR indicates the base address and size of the Data TCM.

Usage constraints
The DTCMRR is only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c9 register summary, 4.2.6 c9 registers on page 4-62.

The following figure shows the DTCMRR bit assignments.

0Data TCM region base address

31 12 11 6 2 1 0

SBZ Data TCM size

Enable bit
SBZ

7

Figure 4-15 DTCMRR bit assignments

The following table shows the DTCMRR bit assignments.

Table 4-33 DTCMRR bit assignments

Bits Name Function

[31:12] Data TCM region base
address

Indicates the Data TCM region base address. The reset value is 0.

[11:7] - Reserved. SBZ.

[6:2] Data TCM size Indicates the Data TCM region size:

0b00000 0KB.

0b00011 4KB.

0b00100 8KB.

0b00101 16KB.

0b00110 32KB.

0b00111 64KB.

0b01000 128KB.

0b01001 256KB.

0b01010 512KB.

0b01011 1024KB.

All other values are Reserved.

[1] - Reserved. SBZ.

[0] Enable bit Enable bit:

0b0 Disabled. This is the reset value.

0b1 Enabled.

If Data TCM is not implemented, this field is Read-only and its value is 0b0.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

To access the DTCMRR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c9, c1, 0 ; Read DTCM Region Register

MCR p15, 0, <Rd>, c9, c1, 0 ; Write DTCM Region Register

Related reference
4.2.6 c9 registers on page 4-62

4.3.14 ITCM Region Register

The ITCMRR Indicates the base address and size of the instruction TCM, and enables the Instruction
TCM directly from reset.

Usage constraints
The ITCMRR is:
• Only accessible in privileged mode.
• For use with INITRAM0.

Configurations

Available in all configurations.

Attributes
See the c9 register summary, 4.2.6 c9 registers on page 4-62.

The following figure shows the ITCMRR bit assignments.

0Instruction TCM region base address

31 12 11 6 2 1 0

SBZ Instruction
TCM size

Enable bit
SBZ

7

Figure 4-16 ITCMRR bit assignments

The following table shows the ITCMRR bit assignments.

Table 4-34 ITCMRR bit assignments

Bits Name Function

[31:12] Instruction TCM
region base
address

Indicates the Instruction TCM region base address.

When INITRAM0 is HIGH and VINITH0 is HIGH for core 0, the reset value is 0xFFFF0, otherwise
the reset value is 0x00000.

The same applies for core 1, 2 and 3, if present.

[11:7] - Reserved. SBZ.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

Table 4-34 ITCMRR bit assignments (continued)

Bits Name Function

[6:2] Instruction TCM
size

Indicates the Instruction TCM region size:

0b00000 0KB.

0b00011 4KB.

0b00100 8KB.

0b00101 16KB.

0b00110 32KB.

0b00111 64KB.

0b01000 128KB.

0b01001 256KB.

0b01010 512KB.

0b01011 1024KB.

All other values are Reserved.

[1] - Reserved. SBZ.

[0] Enable bit Enable bit:

0b0 Disabled. This is the reset value.

0b1 Enabled.

When INITRAM0 is HIGH this enables the Instruction TCM for core 0 directly from reset.

The same applies for core 1, 2, and 3 if present.

If Instruction TCM is not implemented, this field is Read-only and its value is 0b0.
 Note

If the processor is not configured to include an Instruction TCM, this field must not be set to 1.

To access the ITCMRR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c9, c1, 1 ; Read ITCM Region Register

MCR p15, 0, <Rd>, c9, c1, 1 ; Write ITCM Region Register

Related reference
4.2.6 c9 registers on page 4-62

4.3.15 Power Control Register

The PCR enables you to set dynamic clock gating.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See the c15 register summary, 4.2.8 c15 registers on page 4-63.

The following figure shows the PCR bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

31 1 0

Enable dynamic clock gating

Reserved

Figure 4-17 PCR bit assignments

The following table shows the PCR bit assignments.

Table 4-35 PCR bit assignments

Bits Name Function

[31:1] - Reserved

[0] Enable dynamic clock gating Disabled at reset

To access the Power Control Register, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c0, 0 ; Read Power Control Register

MCR p15, 0, <Rd>, c15, c0, 0 ; Write Power Control Register

Related reference
4.2.8 c15 registers on page 4-63

4.3.16 Cache and TCM Debug Operation Register

The CTDOR describes the access operation required for cache and TCM debug.

Usage constraints
The CTDOR is write accessible in privileged mode only.

Configurations
Available in all configurations.

Attributes
See the c15 register summary, 4.2.8 c15 registers on page 4-63.

The following figure shows CTDOR bit assignments for cache RAMs.

31 30 29 23 22 21 20 19 14 13 5 4 2 1 0

0RAZ/WI

Select cache
RAMs or TCMs

Select tag or data RAMs
Select data or instruction side

RAZ/WI Cache index

Select read or write operation

RAZ/WI

Word in data RAMWay select

Figure 4-18 CTDOR bit assignments for cache RAMs

The following table shows the CTDOR bit assignments for cache RAMs.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

Table 4-36 CTDOR bit assignments for cache RAMs

Bits Name Function

[31:30] Way select Indicates the way to select in the cache.

0b00 Way 0.

0b01 Way 1.

0b10 Way 2.

0b11 Way 3.

[29:23] - Reserved. RAZ/WI.

[22] Select cache RAMs or TCMs 0b0 Use with cache RAMs.

[21] Select tag or data RAMs 0b0 Use with tag RAMs.

0b1 Use with data RAMs.

[20] Select data or instruction side 0b0 Select data side.

0b1 Select instruction side.

[19:14] - Reserved. RAZ/WI.

[13:5] Cache index Indicates the cache index.

[4:2] Word in data RAM Indicates the 32-bit word in the cache line.

Not required if accessing tag RAMs.

[1] - Reserved. RAZ/WI.

[0] Select read or write operation 0b0 Read operation.

0b1 Write operation.

The following figure shows the CTDOR bit assignments for TCM RAMs.

31 23 22 21 20 19 2 1 0

1RAZ/WI

Select cache or TCM RAMs
RAZ/WI

Select data or instruction side

Address

Select read or write operation
RAZ/WI

Figure 4-19 CTDOR bit assignments for TCMs

The following table shows the CTDOR bit assignments for TCM RAMs.

Table 4-37 CTDOR bit assignments for TCMs

Bits Name Function

[31:23] - Reserved. RAZ/WI.

[22] Select cache or TCM RAMs 0b1 Use with TCMs.

[21] - Reserved. RAZ/WI.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

Table 4-37 CTDOR bit assignments for TCMs (continued)

Bits Name Function

[20] Select data or instruction side 0b0 Select data side.

0b1 Select instruction side.

[19:2] Address Indicates the address of the TCM RAM.

[1] - Reserved. RAZ/WI.

[0] Select read or write operation 0b0 Read operation.

0b1 Write operation.

To access the CTDOR, write the CP15 register with:

MCR p15, 0, <Rd>, c15, c1, 0 ; Write Cache and TCM Debug Operation Register

Using the CTDOR

Example showing how to use the Cache and TCM Debug Operation Register (CTDOR).

Corrupting a single bit in word x of a data cache

Assumptions:

• The data to be corrupted is present in L1, way 1. Ways are numbered 0-3.
• Word 2. Words are numbered 0-7.
• The address of the data is stored in r0.

Use the register as follows:
1. Write the CTDOR:

MOV r2, #0x3F00 ; Index mask (high bits)
ORR r2, r2, #0xE0 ; Index mask (low bits)
AND r1, r0, r2 ; Index extraction for cache access
ORR r1, r1, #1<<30 ; Way indication
ORR r1, r1, #1<<22 ; Cache RAM selection
ORR r1, r1, #1<<21 ; Data RAM selection
BIC r1, r1, #1<<20 ; Data side memory selection
ORR r1, r1, #2<<2 ; Word selection
BIC r1, r1, #1<<0 ; Read operation
MCR p15, 0, r1, c15, c1, 0 ; Write CTDOR with operation selected above

2. The word to corrupt is now stored in c15,0,c1,1 and its ECC chunk in c15,0,c1,2:

MRC p15, 0, r3, c15, c1, 1 ; Read data
MRC p15, 0, r4, c15, c1, 3 ; Read ECC chunk (useless in this case)
ORR r3, r3, #1<<5 ; We want to corrupt bit 5 in read word
MRC p15, 0, r3, c15, c1, 1 ; Copy corrupted data to CP15 register
MRC p15, 0, r4, c15, c1, 3 ; Copy corrupted ECC chunk to CP15 register (useless
in this case)

3. Write the CTDOR to write the corrupted word on the data cache:

ORR r1, r1, #1<<0 ; Write operation
MCR p15, 0, r1, c15, c1, 0 ; Actual write of corrupted data and chunk to L1 cache

Related reference
4.2.8 c15 registers on page 4-63

4.3.17 RAM Access Data Registers

RAM Access Data Registers (RADRLO and RADRHI) characteristics and bit assignments.

The RADRLO and RADRHI:

Read
Returns the 32-bit data value for the debug operation.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

Write
Sets the value to be written by the direct RAM access operation.

 Note

Accesses to data cache use only RADRLO. RADRHI is RAZ/WI.

Accesses to instruction cache use both RADRLO and RADRHI because these accesses require
64-bit values.

Usage constraints

The RADRLO and RADRHI are only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c15 register summary, 4.2.8 c15 registers on page 4-63.

The following figure shows the RADRLO bit assignments.

Data value for debug RAM operation

31 0

Figure 4-20 RADRLO bit assignments

 Note

Bits [31:29] are 0b000 when the tag RAM is read. Only bits [28:0] are meaningful.

The following figure shows the RADRHI bit assignments.

Data value for debug RAM operation

63 32

Figure 4-21 RADRHI bit assignments

To access the RADRLO, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c1, 1 ; Read the CP15 debug cache/tcm access data register
MCR p15, 0, <Rd>, c15, c1, 1 ; Write the CP15 debug cache/tcm access data register

To access the RADRHI, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c1, 2 ; Read the CP15 debug cache/tcm access data register
MCR p15, 0, <Rd>, c15, c1, 2 ; Write the CP15 debug cache/tcm access data register

Related reference
4.2.8 c15 registers on page 4-63

4.3.18 RAM Access ECC Register

RAM Access ECC Register (RAECCR) characteristics and bit assignments.

Read
Returns the ECC chunk value selected according to the operation register, and associated with
the selected data value.

Write
Sets the ECC chunk to be written by the next direct RAM access operation.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-94

Non-Confidential

Usage constraints
The RAECCR is only accessible in privileged mode.

Configurations
Available only if ECC is implemented.

Attributes
See the c15 register summary, 4.2.8 c15 registers on page 4-63.

The following figure shows the RAECCR bit assignments.

31 7 6

RAZ/WI

0

ECC value for debug
RAM operation

Figure 4-22 RAECCR bit assignments

The following table shows the RAECCR bit assignments.

Table 4-38 RAECCR bit assignments

Bits Name Function

[31:7] - Reserved. RAZ/WI

[6:0] ECC value for debug RAM operation ECC chunk value for the selected debug operation

To access the RAECCR, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c1, 3 ; Read the ECC chunk value for the debug operation
MCR p15, 0, <Rd>, c15, c1, 3 ; Write the ECC chunk value for the debug operation

Related reference
4.2.8 c15 registers on page 4-63

4.3.19 ECC Error Registers

ECC Error Registers characteristics and bit assignments.

There are four banks of ECC Error Registers:
• One bank for the data cache.
• One bank for the instruction cache.
• One bank for the data TCM.
• One bank for the instruction TCM.

Banks for data cache and instruction caches have three entries, DEER0-2/IEER0-2. Banks for data TCM
and instruction TCM have one entry, DTCMEER/ITCMEER.

The DEER0-2/IEER0-2 and DTCMEER/ITCMEER indicate where ECC errors have occurred.

Usage constraints
The DEER0-2/IEER0-2 and DTCMEER/ITCMEER are only accessible in privileged mode.

Configurations
Available in all configurations.

Attributes
See the c15 register summary, 4.2.8 c15 registers on page 4-63.

The following table shows the DEER0-2 bit assignments.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-95

Non-Confidential

Table 4-39 DEER0-2 bit assignments

Bits Function

[31:28] Way affected in one-hot encoding.

[27:26] Reserved. RAZ/WI.

[25] A fatal error has occurred.

[24:19] Reserved. RAZ/WI.

[18] Error occurred in data RAM.

[17] Error occurred in tag RAM.

[16] Error occurred in SCU RAM.

[15:14] Reserved. RAZ/WI.

[13:5] Faulty address where error has occurred.

[4:2] Faulty word affected by ECC error.

[1] Error is hard, that is, only software can write on it.

[0] This entry contains valid information.

The following table shows the IEER0-2 bit assignments.

Table 4-40 IEER0-2 bit assignments

Bits Function

[31:28] Way affected in one-hot encoding.

[27:26] Reserved. RAZ/WI.

[25] A fatal error has occurred.

[24:14] Reserved. RAZ/WI.

[13:5] Faulty address where error has occurred.

[4:2] Faulty word affected by ECC error.

[1] Error is hard, that is, only software can write on it.

[0] This entry contains valid information.

The following table shows the DTCMEER/ITCMEER bit assignments.

Table 4-41 DTCMEER/ITCMEER bit assignments

Bits Function

[31:26] Reserved. RAZ/WI.

[25] A fatal error has occurred.

[24:20] Reserved. RAZ/WI.

[19:2] Faulty address where error has occurred.

[1] Error is hard, that is, only software can write on it.

[0] This entry contains valid information.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-96

Non-Confidential

When an error is detected by the processor circuitry, the first available ECC Error Register is updated
with the memory information of where the error has been found, for example, index, way, or memory
type, and bit[0] is set to 0b1. Bit[1] can only be accessed by the software and is used to mark entries
where there are hard errors. Writing zeros to bits[25] and [1:0] enables their contents to be reset.
Resetting the ECC information is therefore possible by writing these six registers successively, two for
each entry.

If bit[16] is set to 0b1, the error has been detected by the SCU, therefore this index-way pair is also
present in the SCU error bank. When resetting an entry, if this bit is set, you must clear the corresponding
SCU entry to maintain the coherence between the SCU error bank and the D-side error bank. This bit is
only accessible for the Data Side.

The following table shows the meaning of the error status bits.

Table 4-42 Error status bit encoding

Bits[1:0] Meaning

00 No error. Entry available, no index masking, not yet processed by the external system.

01 Unanalyzed error. Entry not available, index masking, not yet processed by the external system. It can be either soft or
hard. This state is entered when any ECC error occurs.

10 Not used.

11 Permanent error. Entry not available, index masking, already processed by the external system.

All errors captured between two analyses of the global monitor or left in the bank by it are visible in this
bank, as long as the bank has not been filled.

To access the DEER0-2, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c2, n ; Read ECC entry no. n, n in set [0, 1, 2]

MCR p15, 0, <Rd>, c15, c2, n ; Write ECC entry no. n, n in set [0, 1, 2]

To access the IEER0-2, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c3, n ; Read ECC entry no. n, n in set [0, 1, 2]

MCR p15, 0, <Rd>, c15, c3, n ; Write ECC entry no. n, n in set [0, 1, 2]

To access the DTCMEER, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c4, 0 ; Read TCM ECC entry

MCR p15, 0, <Rd>, c15, c4, 0 ; Write TCM ECC entry

To access the ITCMEER, read or write the CP15 register with:

MRC p15, 0, <Rd>, c15, c5, 0 ; Read TCM ECC entry

MCR p15, 0, <Rd>, c15, c5, 0 ; Write TCM ECC entry

Related reference
4.2.8 c15 registers on page 4-63

4.3.20 Configuration Base Address Register

The CBAR holds the physical base address of the memory-mapped interrupt controller registers.

Usage constraints
The CBAR is a read-only register.

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-97

Non-Confidential

Configurations
Reset to PERIPHBASE[31:13] so that software can determine the location of the private
memory region.

Attributes
See the c15 register summary, 4.2.8 c15 registers on page 4-63.

The following figure shows the CBAR bit assignments.

Base address

31 0

Figure 4-23 CBAR bit assignments

To access the CBAR, read the CP15 register with:

MRC p15, 4, <Rd>, c15, c0, 0 ; Read Configuration Base Address Register

Related reference
4.2.8 c15 registers on page 4-63

4 System Control
4.3 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

4-98

Non-Confidential

Chapter 5
Floating Point Unit Programmers Model

This chapter describes the programmers model of the optional Floating-Point Unit (FPU).

It contains the following sections:
• 5.1 About the FPU programmers model on page 5-100.
• 5.2 IEEE 754 standard compliance on page 5-101.
• 5.3 Instruction throughput and latency on page 5-102.
• 5.4 FPU register summary on page 5-104.
• 5.5 FPU register descriptions on page 5-106.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-99

Non-Confidential

5.1 About the FPU programmers model
The FPU implements the VFPv3-D16 architecture and the Common VFP Sub-Architecture v2. This
includes the instruction set of the VFPv3 architecture.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for information on the
VFPv3 instruction set.

5.1.1 FPU functionality

The FPU is an implementation of the ARM Vector Floating Point v3 architecture with 16 double-
precision registers or 32 single-precision registers, VFPv3-D16. It provides floating-point computation
functionality that is compliant with the ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-
Point Arithmetic, referred to as the IEEE 754 standard.

The FPU supports all data-processing instructions and data types in the VFPv3 architecture as described
in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

The FPU fully supports add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and
floating-point constant instructions. The FPU does not support any data processing operations on vectors
in hardware. Any data processing instruction that operates on a vector generates an UNDEFINED exception.
The operation can then be emulated in software if necessary.

5 Floating Point Unit Programmers Model
5.1 About the FPU programmers model

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-100

Non-Confidential

5.2 IEEE 754 standard compliance
Summary of the issues related to the IEEE 754 standard compliance for hardware and software
components, and for software-based components and their availability.

5.2.1 Implementation of the IEEE 754 standard

Implementation choices permitted by the IEEE 754 standard, and list of operations that are not
supported.

Some of the implementation choices permitted by the IEEE 754 standard and used in the VFPv3
architecture are described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

The following operations are not supported:
• Remainder.
• Round floating-point number to integer-valued floating-point number.
• Binary-to-decimal conversions.
• Decimal-to-binary conversions.
• Direct comparison of single-precision and double-precision values.

5.2.2 Supported formats

The Cortex‑R8 processor supports two build options for the FPU, an optimized FPU is single-precision
and half-precision, and a full FPU is single-precision, half-precision, and double-precision.

5 Floating Point Unit Programmers Model
5.2 IEEE 754 standard compliance

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-101

Non-Confidential

5.3 Instruction throughput and latency
Complex instruction dependencies and memory system interactions make it impossible to describe the
exact cycle timing for all instructions in all circumstances. However, the timing figures provided here are
accurate in most cases. For precise timing, you must use a cycle-accurate model of your processor.

The definitions of throughput and latency are:

Throughput
Throughput is the number of cycles after issue that another instruction can begin execution.

Latency

Latency is the number of cycles after which the data is available for another operation. The
forward latency, Fwd, is relevant for Read-After-Write (RAW) hazards. The writeback latency,
Wbck, is relevant for Write-After-Write (WAW) hazards.

Latency values assume that the instruction has been issued and that the FPU pipeline or the
Cortex‑R8 processor pipeline are not stalled.

The following table shows:
• The FPU instruction throughput and latency cycles for all operations except loads, stores, and system

register accesses.
• The old Arm assembler mnemonics and the Arm Unified Assembler Language (UAL) mnemonics.

Table 5-1 FPU instruction throughput and latency cycles

Old Arm assembler mnemonic UAL Single-precision Double-precision

Throughput Latency Throughput Latency

Fwd Wbck Fwd Wbck

FADD

FSUB

FCVT

FSHTOD, FSHTOS

FSITOD, FSITOS

FTOSHD, FTOSHS

FTOSID, FTOSIS

FTOSL, FTOUH

FTOUI{Z}D, FTOUI{Z}S

FTOULD, FTOULS, FUHTOD, FUHTOS

FUITOD, FUITOS

FULTOD, FULTOS

VADD

VSUB

VCVT

1 4 4 1 4 4

FMUL

FNMUL

VMUL

VNMUL

1 4 4 2 6 6

5 Floating Point Unit Programmers Model
5.3 Instruction throughput and latency

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-102

Non-Confidential

Table 5-1 FPU instruction throughput and latency cycles (continued)

Old Arm assembler mnemonic UAL Single-precision Double-precision

Throughput Latency Throughput Latency

Fwd Wbck Fwd Wbck

FMAC

FNMAC

FMSC

FNMSC

VMLA

VMLS

VNMLS

VNMLA

1 7 7 2 9 9

FCPY

FABS

FNEG

FCONST

VMOV

VABS

VNEG

VMOV

1 1 2 1 1 2

FMRSag

FMRR(S/D)

FMRD(L/H)

VMOV 1

2

1

- 3 1 - 3

FMSRah

FM(S/D)RR

FMD(L/H)R

VMOV 1 1 2 1 1 2

FMSTAT VMRS 1 - 3 1 - 3

FDIV VDIV 10 15 15 20 25 25

FSQRT VSQRT 13 17 17 28 32 32

FCMP

FCMPE

FCMPZ

FCMPEZ

VCMP

VCMP{E}

VCMP{E}

VCMP{E}

1 1 4 1 1 4

- FCVT(T/B)

.F16.F32

1 2 2 - - -

- FCVT(T/B)

.F32.F16

1 - 4 - - -

ag FPU to Arm.
ah Arm to FPU.

5 Floating Point Unit Programmers Model
5.3 Instruction throughput and latency

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-103

Non-Confidential

5.4 FPU register summary
Summary of the FPU system registers. All FPU system registers are 32-bit wide. Reserved register
addresses are RAZ/WI.

Table 5-2 FPU system registers

Name Type Reset Description

FPSID RO 0x41023180 See 5.5.1 Floating-Point System ID Register on page 5-106

FPSCR RW 0x00000000 See 5.5.2 Floating-Point Status and Control Register on page 5-106

MVFR1 RO 0x01000011 See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition

MVFR0 RO 0x10110221ai

0x10110021aj

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition

FPEXC RW 0x00000000 See 5.5.3 Floating-Point Exception Register on page 5-108

This section contains the following subsections:
• 5.4.1 Processor modes for accessing the FPU system registers on page 5-104.
• 5.4.2 Accessing the FPU registers on page 5-105.

5.4.1 Processor modes for accessing the FPU system registers

Summary of the processor modes for accessing the FPU system registers.

Table 5-3 Accessing FPU system registers

Register Privileged access User access

FPEXC EN=0 FPEXC EN=1 FPEXC EN=0 FPEXC EN=1

FPSID Permitted Permitted Not permitted Not permitted

FPSCR Not permitted Permitted Not permitted Permitted

MVFR0, MVFR1 Permitted Permitted Not permitted Not permitted

FPEXC Permitted Permitted Not permitted Not permitted

ai For full FPU implementation, with double precision.
aj For single-precision FPU implementation.

5 Floating Point Unit Programmers Model
5.4 FPU register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-104

Non-Confidential

5.4.2 Accessing the FPU registers

Access to the FPU registers is controlled by the CPACR.

To use the FPU, you must define the CPACR and Floating-Point Exception Register (FPEXC) registers
to enable the FPU:

Procedure
1. Set the CPACR for access to CP10 and CP11 (the FPU coprocessors):

LDR r0, =(0xF << 20)
MCR p15, 0, r0, c1, c0, 2

2. Set the FPEXC EN bit to enable the FPU:

MOV r3, #0x40000000 VMSR FPEXC, r3

Related reference
4.3.11 Coprocessor Access Control Register on page 4-81

5 Floating Point Unit Programmers Model
5.4 FPU register summary

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-105

Non-Confidential

5.5 FPU register descriptions
Characteristics and bit assignments of the FPU system registers.

This section contains the following subsections:
• 5.5.1 Floating-Point System ID Register on page 5-106.
• 5.5.2 Floating-Point Status and Control Register on page 5-106.
• 5.5.3 Floating-Point Exception Register on page 5-108.

5.5.1 Floating-Point System ID Register

The FPSID Register provides information about the VFP implementation.

Usage constraints
Only accessible in privileged modes.

Configurations
Available in all FPU configurations.

Attributes
See the FPU system registers summary, 5.4 FPU register summary on page 5-104.

The following figure shows the FPSID Register bit assignments.

31 24 23 22 16 15 8 7 4 3 0

Subarchitecture Part number Variant RevisionImplementer

SW

Figure 5-1 FPSID Register bit assignments

The following table shows the FPSID Register bit assignments.

Table 5-4 FPSID Register bit assignments

Bits Name Function

[31:24] Implementer Denotes Arm

[23] SW Hardware implementation with no software emulation

[22:16] Subarchitecture The v2 VFP sub-architecture

[15:8] Part number VFPv3

[7:4] Variant Cortex‑R8

[3:0] Revision Revision 0

You can access the FPSID Register with the following VMRS instruction:

VMRS <Rd>, FPSID ; Read Floating-Point System ID Register

Related reference
5.4 FPU register summary on page 5-104

5.5.2 Floating-Point Status and Control Register

The FPSCR provides user-level control and status of the FPU.

Usage constraints
There are no usage constraints.

Configurations
Available in all FPU configurations.

5 Floating Point Unit Programmers Model
5.5 FPU register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-106

Non-Confidential

Attributes
See the FPU system registers summary, 5.4 FPU register summary on page 5-104.

The following figure shows the FPSCR bit assignments.

N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 5 4 3 2 1 0

Z C V Len UNK/SBZP

UNK/SBZP
AHP

DN
FZ

RMode
Stride

UNK/SBZP

IXC
UFC
OFC
DZC
IOC

78 6

IDC
UNK/SBZP

Figure 5-2 FPSCR bit assignments

The following table shows the FPSCR bit assignments.

Table 5-5 FPSCR bit assignments

Bits Name Function

[31] N Set to 0b1 if a comparison operation produces a less than result.

[30] Z Set to 0b1 if a comparison operation produces an equal result.

[29] C Set to 0b1 if a comparison operation produces an equal, greater than, or unordered result.

[28] V Set to 0b1 if a comparison operation produces an unordered result.

[27] - Reserved. UNK/SBZP.

[26] AHP Alternative half-precision control bit:

0b0 IEEE half-precision format selected.
0b1 Alternative half-precision.

[25] DN Default NaN mode control bit:

0b0 NaN operands propagate through to the output of a floating-point operation.
0b1 Any operation involving one or more NaNs returns the Default NaN.

Advanced SIMD arithmetic always uses the Default NaN setting, regardless of the value of the DN bit.

[24] FZ Flush-to-zero mode control bit:

0b0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.

0b1 Flush-to-zero mode enabled.

Advanced SIMD arithmetic always uses the Flush-to-zero setting, regardless of the value of the FZ bit.

[23:22] RMode Rounding Mode control field:

0b00 Round to nearest (RN) mode.
0b01 Round towards plus infinity (RP) mode.
0b10 Round towards minus infinity (RM) mode.
0b11 Round towards zero (RZ) mode.

Advanced SIMD arithmetic always uses the Round to nearest setting, regardless of the value of the RMode bits.

5 Floating Point Unit Programmers Model
5.5 FPU register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-107

Non-Confidential

Table 5-5 FPSCR bit assignments (continued)

Bits Name Function

[21:20] Stride Stride control used for backwards compatibility with short vector values.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

[19] - Reserved. UNK/SBZP.

[18:16] Len Vector length, used for backwards compatibility with short vector values.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

[15:8] - Reserved. UNK/SBZP.

[7] IDC Input Denormal cumulative exception flag.ak

[6:5] - Reserved. UNK/SBZP.

[4] IXC Inexact cumulative exception flag.a

[3] UFC Underflow cumulative exception flag.a

[2] OFC Overflow cumulative exception flag.a

[1] DZC Division by Zero cumulative exception flag.a

[0] IOC Invalid Operation cumulative exception flag.a

You can access the FPSCR with the following VMSR instructions:

VMRS <Rd>, FPSCR ; Read Floating-Point Status and Control Register

VMSR FPSCR, <Rt> ; Write Floating-Point Status and Control Register

Related reference
5.4 FPU register summary on page 5-104

5.5.3 Floating-Point Exception Register

The FPEXC Register provides global enable control of the Advanced SIMD and VFP extensions.

Usage constraints
Accessible in all FPU configurations, with restrictions.

Configurations
Available in all FPU configurations.

Attributes
See the FPU system registers summary, 5.4 FPU register summary on page 5-104.

The following figure shows the FPEXC Register bit assignments.

RAZ/WI

31 30 29 28 0

UNK/SBZP

DEX
EN
EX

26 25

Figure 5-3 FPEXC Register bit assignments

The following table shows the FPEXC Register bit assignments.

ak The exception flags, bit[7], and bits[4:0] of the FPSCR are exported on the FPUFLAGS output so they can be monitored externally to the processor, if necessary.

5 Floating Point Unit Programmers Model
5.5 FPU register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-108

Non-Confidential

Table 5-6 FPEXC Register bit assignments

Bits Name Function

[31] EX Exception bit:

This bit reads-as-zero and ignores writes.

The Cortex‑R8 processor FPU never requires asynchronous exception handling.

[30] EN Enable bit:

0b0 VFP extension is disabled.
0b1 VFP extension is enabled and operates normally.

The EN bit is cleared to 0b0 at reset.

[29] DEXal Defined synchronous instruction exceptional flag:

0b0 No exception has occurred.
0b1 Attempt to perform a VFP vector operation has been trappedam.

The DEX bit is cleared to 0b0 at reset.

[28:26] - Reserved. RAZ/WI.

[25:0] - Reserved. UNK/SBZP.

You can access the FPEXC Register with the following VMSR instructions:

VMRS <Rd>, FPEXC ; Read Floating-Point Exception Register

VMSR FPEXC, <Rt> ; Write Floating-Point Exception Register

Related reference
5.4.1 Processor modes for accessing the FPU system registers on page 5-104
5.4 FPU register summary on page 5-104

al In single-precision only configurations, this bit is not set for any double-precision operations, regardless of whether they are vector operations or not.
am The Cortex‑R8 processor FPU hardware does not support the deprecated VFP short vector feature. Attempts to execute VFP data-processing instructions when the

FPSCR.LEN field is nonzero result in the FPSCR.DEX bit being set and a synchronous UNDEFINED instruction exception being taken. You can use software to
emulate the short vector feature, if necessary.

5 Floating Point Unit Programmers Model
5.5 FPU register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

5-109

Non-Confidential

Chapter 6
Level 1 Memory System

This chapter describes the L1 memory system.

It contains the following sections:
• 6.1 About the L1 memory system on page 6-111.
• 6.2 Fault handling on page 6-112.
• 6.3 About the TCMs on page 6-116.
• 6.4 About the caches on page 6-117.
• 6.5 Local exclusive monitor on page 6-125.
• 6.6 Memory types and L1 memory system behavior on page 6-126.
• 6.7 Error detection events on page 6-127.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-110

Non-Confidential

6.1 About the L1 memory system
The processor L1 memory system can be configured during implementation and integration.

L1 memory system consists of:
• Optional separate Harvard instruction and data caches.
• Two optional TCM areas:

— a configurable Data TCM (DTCM) from 0KB to 1024KB with no wait state support.
— a configurable Instruction TCM (ITCM) from 0KB to 1024KB with optional wait state support.

• An MPU.

 Note

• If both caches and TCMs are present, instructions can be accessed from both the instruction cache
and the ITCM.

• Instructions cannot be accessed from the DTCM.

Each TCM and cache can be configured at implementation time to have an error detection and correction
scheme to protect the data stored in the memory from errors. The TCMs are protected by ECC.

The MPU is unified, and handles accesses to both the instruction and data sides. The MPU is responsible
for protection checking, address access permissions, and memory attributes. Some of these functions can
be passed to the L2 memory system through the AXI master.

The L1 memory system includes a local monitor for exclusive accesses. Exclusive load and store
instructions can be used, for example, LDREX, STREX, with the appropriate memory monitoring to provide
inter-process or inter-processor synchronization and semaphores. See the Arm® Architecture Reference
Manual Arm®v7‑A and Arm®v7‑R edition for more information.

6.1.1 Data cache policy

Memory regions that are cached in L1 data cache.

The following memory regions are cached in L1 data cache:
• Normal memory, Write-Back, Non-Shareable.
• Normal memory, Write-Back, Shareable if multiprocessing is enabled.

 Note

The Write-Through cache policy is not supported. The Memory Reconstruction Port (MRP) provides a
way to rebuild step-by-step memory accesses.

Related concepts
8.2 Memory Protection Unit on page 8-148
2.5.7 Memory Reconstruction Port on page 2-48
Related reference
Chapter 7 Fault Detection on page 7-128

6 Level 1 Memory System
6.1 About the L1 memory system

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-111

Non-Confidential

6.2 Fault handling
Faults can occur on instruction fetches and on data accesses. When a fault occurs, information about the
cause of the fault is recorded in a number of registers, depending on the type of abort. Exactly how you
program the Cortex‑R8 processor to handle errors depends on the configuration of your processor and
system, and what you are trying to achieve.

Faults can occur on instruction fetches for the following reasons:

• MPU background fault.
• MPU permission fault.
• External AXI3 slave error (SLVERR).
• External AXI3 decode error (DECERR).
• Breakpoints, and vector capture events.

Faults can occur on data accesses for the following reasons:
• MPU background fault.
• MPU permission fault.
• MPU alignment fault.
• External AXI3 slave error (SLVERR).
• External AXI3 decode error (DECERR).
• Watchpoints.

This section contains the following subsections:
• 6.2.1 Fault classes on page 6-112.
• 6.2.2 Fault status information on page 6-113.
• 6.2.3 Usage models on page 6-114.

6.2.1 Fault classes

The classes of fault that can occur are MPU faults, external faults, debug events, synchronous aborts, and
asynchronous aborts.

MPU faults

The MPU can generate an abort for various reasons. MPU faults are always synchronous, and take
priority over other types of abort. If an MPU fault occurs on an access that is not in the TCM, and is
Non-Cacheable, or has generated a cache-miss, the AXI3 transactions for that access are not performed.

Related concepts
8.2.5 MPU faults on page 8-155

External faults

A memory access performed through the AXI3 master interface can generate two different types of error
response, a slave error (SLVERR) or decode error (DECERR). These are known as external errors,
because they are generated by the AXI3 system outside the processor. Synchronous aborts are generated
for instruction fetches. All loads and stores generate asynchronous aborts.

Debug events

The debug logic in the processor can be configured to generate breakpoints or vector capture events on
instruction fetches, and watchpoints on data accesses. If the processor is software-configured for
monitor-mode debugging, an abort is taken when one of these events occurs, or when a BKPT instruction
is executed.

Related reference
10.4 Debug on page 10-224

6 Level 1 Memory System
6.2 Fault handling

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-112

Non-Confidential

Synchronous aborts

An abort is synchronous when the exception is guaranteed to be taken on the instruction that generated
the aborting memory access. The abort handler can use the value in the Link Register (r14_abt) to
determine which instruction generated the abort, and the value in the Saved Program Status Register
(SPSR_abt) to determine the state of the processor when the abort occurred.

Asynchronous aborts

An abort is asynchronous when the exception is taken on an instruction after the instruction that
generated the aborting memory access. The abort handler cannot determine which instruction generated
the abort or the state of the processor when the abort occurred. Therefore, asynchronous aborts are
normally fatal.

All external aborts on both loads and stores to any memory type, that is, Normal, Device, or Strongly-
Ordered, generate asynchronous aborts on the Cortex‑R8 processor. When the store instruction is
committed, the data is normally written into a buffer that holds the data until the memory system has
sufficient bandwidth to perform the write access. This gives read accesses higher priority. The write data
can be held in the buffer for a long period, during which many other instructions can complete. If an
error occurs when the write is finally performed, this generates an asynchronous abort.

Speculative data fetches that receive an error response from the memory system have the potential to
trigger an asynchronous abort. Therefore, to prevent spurious data aborts, the MPU must be programmed
to prevent speculative data accesses to memory locations that can return an error response. The memory
location should be programmed as one of the following:
• No MPU region defined.
• No access.
• Device memory.
• Strongly ordered memory.

Asynchronous abort masking

The nature of asynchronous aborts means that they can occur while the processor is handling a different
abort. If an asynchronous abort generates a new exception in such a situation, the r14_abt and SPSR_abt
values are overwritten. If this occurs before the data is pushed to the stack in memory, the state
information about the first abort is lost. To prevent this from happening, the CPSR contains a mask bit,
the A-bit, to indicate that an asynchronous abort cannot be accepted. When the A-bit is set, any
asynchronous abort that occurs is held pending by the processor until the A-bit is cleared, when the
exception is taken. The A-bit is automatically set when abort, IRQ, or FIQ exceptions are taken, and on
reset. You must only clear the A-bit in an abort handler after the state information has either been stacked
to memory, or is no longer required.

The processor supports only one pending asynchronous external abort. If a subsequent asynchronous
external abort is signaled while another one is pending, the later one is ignored and only one abort is
taken.

Memory barriers

When a store instruction, or series of instructions has been executed, it is sometimes necessary to
determine whether any errors occurred because of these instructions. Because most of these errors are
reported asynchronously, they might not generate an abort exception until some time after the
instructions are executed.

To ensure that all possible errors have been reported, you must execute a DSB instruction. If the CSPR A-
bit is clear, these errors are not masked and the abort exceptions are taken. If the A-bit is set, the aborts
are held pending.

6.2.2 Fault status information

When an abort occurs, information about the cause of the fault is recorded in several registers, depending
on the type of abort.

6 Level 1 Memory System
6.2 Fault handling

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-113

Non-Confidential

Abort exceptions

The Link Register, Saved Program Status Register, and Fault Status Register are updated when any abort
exception is taken.

Link Register
The r14_abt register is updated to provide information about the address of the instruction that
the exception was taken on, in a similar way to other types of exception. This information can
be used to resume program execution after the abort has been handled.

 Note

When a Prefetch Abort has occurred, Arm recommends that you do not use the link register
value for determining the aborting address, because 32-bit Thumb instructions do not have to be
word aligned and can cause an abort on either halfword. This applies even if all the code in the
system does not use the extra 32-bit Thumb instructions introduced in ARMv6T2, because the
earlier BL and BLX instructions are both 32 bits long.

Saved Program Status Register

The SPSR_abt register is updated to record the state and mode of the processor when the
exception was taken, in a similar way to other types of exception.

Fault Status Register
There are two fault status registers, one for Prefetch Aborts, Instruction Fault Status Register
(IFSR) and one for Data Aborts, Data Fault Status Register (DFSR). These record the type of
abort that occurred, and whether it occurred on a read or a write. In particular, this enables the
abort handler to distinguish between synchronous aborts, asynchronous aborts, and debug
events.

Synchronous abort exceptions

The Fault Address Register is updated when a synchronous abort exception is taken.

Fault Address Register
There are two fault address registers, one for Prefetch Aborts, Instruction Fault Address
Register (IFAR) and one for Data Aborts, Data Fault Address Register (DFAR). These indicate
the address of the memory access that caused the fault.

6.2.3 Usage models

How you program the Cortex‑R8 processor to handle errors depends on the configuration of your
processor and system, and what you are trying to achieve.

If an abort exception is taken, the abort handler reads the information in the link register, SPSR, and fault
status registers to determine the type of abort. Some types of abort are fatal to the system, and others can
be fixed, and program execution resumed. For example, an MPU background fault might indicate a stack
overflow, and be rectified by allocating more stack and reprogramming the MPU to reflect this.
Alternatively, an asynchronous external abort might indicate that a software error meant that a store
instruction occurred to an unmapped memory address. This type of abort is fatal to the system or process
because no information is recorded about the address the error occurred on, or the instruction that caused
the error.

The following table shows which types of abort are typically fatal because either the location of the error
is not recorded or the error is unrecoverable. Some aborts that are marked as not fatal might be fatal in
some systems when the cause of the error is determined. For example, an MPU background fault might
indicate something that can be rectified, for example a stack overflow. It might also indicate something
that is fatal, for example that because of a bug, the software has accessed a non-existent memory
location. These cases can be distinguished by determining the location where the error occurred. If an
error is unrecoverable, it is normally fatal regardless of whether the location of the error is recorded.

6 Level 1 Memory System
6.2 Fault handling

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-114

Non-Confidential

Table 6-1 Types of aborts

Type Conditions Source Synchronous Fatal

MPU fault Access not permitted by MPU MPU Yes No

Asynchronous external Any external access AXI3 No Yes

Correctable errors

You can configure the processor to respond to and automatically correct ECC errors. Connect the event
output or outputs that indicate a correctable error to an interrupt controller.

When such an event occurs, the interrupt input to the processor is set, and the processor takes an interrupt
exception. When your interrupt handler has identified the source of the interrupt as a correctable error, it
can read the ECC Error Registers to determine where the ECC error occurred. You can examine this
information to identify trends in such errors. By masking the interrupt when necessary, your software can
ensure that when critical code is executing, the processor corrects the errors automatically, but delays
examining information about the error until after the critical code has completed.

When the processor is in debug state, any correctable error is corrected. However, in the case of a load
instruction, the memory access replay to read the corrected data is not done, and therefore the instruction
generating the error does not complete successfully. Instead, the sticky synchronous abort flag in the
DBGDSCR is set.

Related reference
4.3.19 ECC Error Registers on page 4-95

Debugging cache and TCM access

Refer to the Cache and TCM Debug Operation Register.

Related reference
4.3.16 Cache and TCM Debug Operation Register on page 4-91
Related concepts
8.2.5 MPU faults on page 8-155

6 Level 1 Memory System
6.2 Fault handling

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-115

Non-Confidential

6.3 About the TCMs
Instruction and data TCMs are tightly-coupled in the Cortex‑R8 processor. There are no external ports
for the TCMs and only SRAM memory is supported.

Related concepts
8.6 Instruction and data TCM on page 8-161

6 Level 1 Memory System
6.3 About the TCMs

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-116

Non-Confidential

6.4 About the caches
The L1 memory system can be configured to include instruction and data caches of varying sizes. You
can configure the size of each cache independently. The cached instructions or data are fetched from
external memory using the L2 memory interface. The cache controllers use the RAMs that are integrated
into the Cortex‑R8 processor macrocell during implementation.

If an access is to Cacheable memory, and the cache is enabled, a lookup is performed in the cache and, if
found in the cache, that is, a cache hit, the data is fetched from or written into the cache. When the cache
is not enabled and for Non-Cacheable memory, the accesses are performed using the L2 memory
interface.

The cache controllers also manage the cache maintenance operations.

Each cache can also be configured with ECC error checking schemes. If an error checking scheme is
implemented and enabled, then the tags associated with each line, and data read from the cache are
checked whenever a lookup is performed in the cache.

For more information on the general rules about memory attributes and behavior, see the Arm®

Architecture Reference Manual Arm®v7‑A and Arm®v7‑Redition.

This section contains the following subsections:
• 6.4.1 Cache maintenance operations on page 6-117.
• 6.4.2 Cache error detection and correction on page 6-117.
• 6.4.3 Data cache RAM organization on page 6-120.
• 6.4.4 Cache interaction with memory system on page 6-123.

6.4.1 Cache maintenance operations

All cache maintenance operations are done through the system control coprocessor, CP15.

The system control coprocessor operations supported for the data cache are:

• Invalidate by address (MVA).
• Invalidate by Set/Way combination.
• Clean by address (MVA).
• Clean by Set/Way combination.
• Clean and Invalidate by address (MVA).
• Clean and Invalidate by Set/Way combination.
• Data Memory Barrier (DMB) and Data Synchronization Barrier (DSB) operations.

The system control coprocessor operations supported for the instruction cache are:
• Invalidate all.
• Invalidate by address.

6.4.2 Cache error detection and correction

The processor can detect, handle, report, and correct cache memory errors.

Error build options

The caches can detect and correct errors depending on the build options used in the implementation.

If the ECC build option is enabled:
• The instruction cache is protected by a 64-bit ECC scheme. The data RAMs include eight bits of

ECC code for every 64 bits of data. The tag RAMs include seven bits of ECC code to cover the tag
and valid bit.

• The data cache is protected by a 32-bit ECC scheme. The data RAMs include seven bits of ECC code
for every 32 bits of data. The tag RAMs include seven bits of ECC code to cover the tag and control
bits.

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-117

Non-Confidential

Address decoder faults

The error detection schemes described in this section provide protection against errors that occur in the
data stored in the cache RAMs. Each RAM normally includes a decoder that enables access to that data
and, if an error occurs in this logic, it is not normally detected by these error detection schemes. The
processor includes features that enable it to detect some address decoder faults.

Handling cache ECC errors

When ECC checking is enabled, hardware recovery is always enabled. When an ECC error is detected,
the processor tries to evict the cache line containing the error.

If the line is clean, it is invalidated, and the correct data is reloaded from the L2 memory system. If the
line is dirty, the eviction writes the dirty data out to the L2 memory system, and in the process it corrects
any 1-bit errors. The corrected data is then reloaded from the L2 memory system.

The following table shows the behavior of the processor on a cache ECC error, depending on bit[9] of
the ACTLR.

Table 6-2 Cache ECC error behavior

Bit Behavior

[9] ECC on

For details about changing these bits, see this TRM for information on disabling or enabling error
checking.

If a 2-bit error is detected in data RAM for a dirty line or in tag RAM, the error is not correctable. If the
2-bit error is in the tag RAM, no data is written to the L2 memory system. If the 2-bit error is in the data
RAM, the cache line is written to the L2 memory system, but the AXI master port WSTRBM signal is
LOW for the data that contains the error. If an uncorrectable error is detected, an ECC primary output is
always generated because data might have been lost. It is expected that such a situation can be fatal to the
software process running.

Related reference
Disabling or enabling error checking on page 6-124

Errors on instruction cache read

All ECC errors detected on instruction cache reads are correctable.

All detectable errors in the instruction cache can always be recovered from because the instruction cache
never contains dirty data.

Errors on evictions

If the cache controller has determined a cache miss has occurred, it might have to do an eviction before a
linefill can take place. This can occur on reads and writes.

Certain cache maintenance operations also generate evictions. If it is a data-cache line that is dirty, an
ECC error might be detected on the line being evicted:
• If the error is correctable, it is corrected inline before the data is written to the external memory using

the L2 memory interface.
• If there is an uncorrectable error in the tag RAM, the write is not done.
• If there is an uncorrectable error in the data RAM, the AXI master port WSTRBM signal is

deasserted for the words with an error.

Errors on cache maintenance operations

Details about how the processor handles errors on cache maintenance operations.

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-118

Non-Confidential

Invalidate all instruction cache

This operation does not generate any errors.

Invalidate instruction cache by address

This operation requires a cache lookup. Any errors found in the set that was looked up are fixed by
invalidating that line and, if the address in question is found in the set, it is invalidated.

Any detected error is signaled with the appropriate event.

Invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked up are
fixed and, if the address in question is found in the set, it is invalidated.

Any detected error is signaled with the appropriate event.

Invalidate data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

Clean data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked up are
fixed and, if the address in question is found in the set, the instruction carries on with the clean operation.

If the tag RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable error, the
words with the error have their WSTRBM AXI signal deasserted. If there is a correctable error, the line
has the error corrected inline before it is written back to memory.

Any detected error is signaled with the appropriate event.

Clean data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

The tag RAMs for the cache line are checked.

If the tag RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable error, the
words with the error have their WSTRBM AXI signal deasserted. If there is a correctable error, the line
has the error corrected inline before it is written back to memory.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by address

This operation requires a cache lookup. Any correctable errors found in the set that was looked up are
fixed and, if the address in question is found in the set, the instruction carries on with the clean and
invalidate operation.

If the tag RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable error, the
words with the error have their WSTRBM AXI signal deasserted. If there is a correctable error, the line
has the error corrected inline before it is written back to memory.

Any detected error is signaled with the appropriate event.

Clean and invalidate data cache by set/way

This operation does not require a cache lookup. It refers to a particular cache line.

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-119

Non-Confidential

The tag RAMs for the cache line are checked.

If the tag RAM has an uncorrectable error, the data is not written to memory.

If the line is dirty, the data is written back to external memory. If the data has an uncorrectable error, the
words with the error have their WSTRBM AXI signal deasserted. If there is a correctable error, the line
has the error corrected inline before it is written back to memory.

Any detected error is signaled with the appropriate event.

6.4.3 Data cache RAM organization

Organization of the tag RAM and data RAM caches.

Tag RAM

The tag RAMs consist of four ways of up to 512 lines. The width of the RAM depends on the build
options selected, and the size of the cache.

The following tables show the tag RAM bits where:
• The tag RAM bits when ECC is implemented.
• The tag RAM bits when ECC is not implemented.

Table 6-3 Tag RAM bit descriptions, with ECC

Bit in tag cache line Description

Bits[35:29] ECC code bits

Bits[28:27] Outer attribute

Bit[26] Inner allocate attribute

Bit[25] Dirty bit

Bit[24] Shareable bit

Bit[23] Exclusive bit

Bit[22] Valid bit

Bits[21:0] Tag value

Table 6-4 Tag RAM bit descriptions, no ECC

Bit in tag cache line Description

Bits[28:27] Outer attribute

Bit[26] Inner allocate attribute

Bit[25] Dirty bit

Bit[24] Shareable bit

Bit[23] Exclusive bit

Bit[22] Valid bit

Bits[21:0] Tag value

A cache line is marked as valid by bit[22] of the tag RAM. Each valid bit is associated with a whole
cache line, so evictions always occur on the entire line.

The following table shows the tag RAM cache sizes and associated RAM organization, assuming no
ECC. For ECC, the width of the tag RAMs must be increased by seven bits.

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-120

Non-Confidential

Table 6-5 Cache sizes and tag RAM organization

Cache size Tag RAM organization

4KB 4 banks 29 bits 32 lines

8KB 4 banks 28 bits 64 lines

16KB 4 banks 27 bits 128 lines

32KB 4 banks 26 bits 256 lines

64KB 4 banks 25 bits 512 lines

Data RAM

Data RAM is organized as eight banks of 32-bit wide lines, or in the instruction cache as four banks of
64-bit wide lines.

This RAM organization means that it is possible to:
• Perform a cache lookup with one RAM access, all banks selected together. This is done for

nonsequential read operations, as shown in the figure for nonsequential read operation performed
with one RAM access.

• Select the appropriate bank RAM for sequential read operations, as shown in the figure for sequential
read operation performed with one RAM access.

• Write a line to the eviction buffer in one cycle, a 256-bit read access.
• Fill a line in one cycle from the linefill buffer, a 256-bit write access.

The following figure shows a cache lookup being performed on all banks with one RAM access.

RAM address

0

1

2

3 Way 1
Word 6

Bank 0

Way 1
Word 7

Way 2
Word 4

Way 2
Word 5

Way 3
Word 2

Way 3
Word 3

Way 0
Word 0

Way 0
Word 1

Bank 1

Way 2
Word 6

Bank 2

Way 2
Word 7

Way 3
Word 4

Way 3
Word 5

Way 0
Word 2

Way 0
Word 3

Way 1
Word 0

Way 1
Word 1

Bank 3

Way 3
Word 6

Bank 4

Way 3
Word 7

Way 0
Word 4

Way 0
Word 5

Way 1
Word 2

Way 1
Word 3

Way 2
Word 0

Way 2
Word 1

Bank 5

Way 0
Word 7

Way 1
Word 4

Way 1
Word 5

Way 2
Word 2

Way 2
Word 3

Way 3
Word 0

Way 3
Word 1

Bank 7Bank 6

Way 0
Word 6

256-bit wide

Figure 6-1 Nonsequential read operation performed with one RAM access.

The following figure shows the appropriate bank RAM being selected for a sequential read operation.

RAM address

0

1

2

3 Way 1
Word 6

Bank 0

Way 1
Word 7

Way 2
Word 4

Way 2
Word 5

Way 3
Word 2

Way 3
Word 3

Way 0
Word 0

Way 0
Word 1

Bank 1

Way 2
Word 6

Bank 2

Way 2
Word 7

Way 3
Word 4

Way 3
Word 5

Way 0
Word 2

Way 0
Word 3

Way 1
Word 0

Way 1
Word 1

Bank 3

Way 3
Word 6

Bank 4

Way 3
Word 7

Way 0
Word 4

Way 0
Word 5

Way 1
Word 2

Way 1
Word 3

Way 2
Word 0

Way 2
Word 1

Bank 5

Way 0
Word 7

Way 1
Word 4

Way 1
Word 5

Way 2
Word 2

Way 2
Word 3

Way 3
Word 0

Way 3
Word 1

Bank 7Bank 6

Way 0
Word 6

Figure 6-2 Sequential read operation performed with one RAM access

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-121

Non-Confidential

The data RAM organization is optimized for 64-bit read operations, because with the same address, two
words on the same way can be selected.

Data RAM sizes depend on the build option selected; that is, without ECC implemented, or with ECC
implemented.

Data RAM sizes without ECC implemented

Table showing the organization for instruction caches when ECC is not implemented.

Table 6-6 Instruction cache data RAM sizes, no ECC

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 64 bits 128 lines or 8 banks 32 bits 128 lines

8KB, 4 2KB ways 4 banks 64 bits 256 lines or 8 banks 32 bits 256 lines

16KB, 4 4KB ways 4 banks 64 bits 512 lines or 8 banks 32 bits 512 lines

32KB, 4 8KB ways 4 banks 64 bits 1024 lines or 8 banks 32 bits 1024 lines

64KB, 4 16KB ways 4 banks 64 bits 2048 lines or 8 banks 32 bits 2048 lines

The following table shows the organization for data caches when ECC is not implemented.

Table 6-7 Data cache data RAM sizes, no ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 32 bits 128 lines

8KB, 4 2KB ways 8 banks 32 bits 256 lines

16KB, 4 4KB ways 8 banks 32 bits 512 lines

32KB, 4 8KB ways 8 banks 32 bits 1024 lines

64KB, 4 16KB ways 8 banks 32 bits 2048 lines

Data RAM sizes with ECC implemented

Table showing the organization for the instruction cache when ECC is implemented. ECC error detection
adds eight bits for every 64 bits, so four bits are added for each RAM bank.

Table 6-8 Instruction cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 4 banks 72 bits 128 lines or 8 banks 36 bits 128 lines

8KB, 4 2KB ways 4 banks 72 bits 256 lines or 8 banks 36 bits 256 lines

16KB, 4 4KB ways 4 banks 72 bits 512 lines or 8 banks 36 bits 512 lines

32KB, 4 8KB ways 4 banks 72 bits 1024 lines or 8 banks 36 bits 1024 lines

64KB, 4 16KB ways 4 banks 72 bits 2048 lines or 8 banks 36 bits 2048 lines

The following table shows the organization for the data cache when ECC is implemented. ECC error
detection adds seven bits for every 32 bits, so seven bits are added for each RAM bank.

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-122

Non-Confidential

Table 6-9 Data cache data RAM sizes with ECC

Cache size Data RAMs

4KB, 4 1KB ways 8 banks 39 bits 128 lines

8KB, 4 2KB ways 8 banks 39 bits 256 lines

16KB, 4 4KB ways 8 banks 39 bits 512 lines

32KB, 4 8KB ways 8 banks 39 bits 1024 lines

64KB, 4 16KB ways 8 banks 39 bits 2048 lines

The following table shows the organization of the data cache RAM bits when ECC is implemented.

Table 6-10 Data cache RAM bits, with ECC

RAM bits Description

Bits[39:32] ECC code bits for data [31:0]

Bits[31:0] Data [31:0]

6.4.4 Cache interaction with memory system

You can enable or disable error checking, and enable or disable the cache RAMs. After you enable or
disable the instruction cache, you must issue an ISB instruction to flush the pipeline to ensure that all
subsequent instruction fetches see the effect of enabling or disabling the instruction cache.

After you enable or disable the instruction cache, you must issue an ISB instruction to flush the pipeline.
This ensures that all subsequent instruction fetches see the effect of enabling or disabling the instruction
cache.

After reset, you must invalidate each cache before enabling it.

When disabling the data cache, you must clean the entire cache to ensure that any dirty data is flushed to
L2 memory.

Before enabling the data cache, you must invalidate the entire data cache if L2 memory might have
changed since the cache was disabled.

Before enabling the instruction cache, you must invalidate the entire instruction cache if L2 memory
might have changed since the cache was disabled.

Disabling or enabling instruction cache

The following code is an example of enabling the instruction cache.

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
 ORR R1, R1, #0x1 <<12 ; instruction cache enable
 MCR p15, 0, r0, c7, c5, 0 ; Invalidate entire instruction cache
 MCR p15, 0, R1, c1, c0, 0 ; enabled instruction cache
 ISB

The following code is an example of disabling the instruction cache:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
 BIC R1, R1, #0x1 <<12 ; instruction cache enable
 MCR p15, 0, R1, c1, c0, 0 ; disabled instruction cache
 ISB

Disabling or enabling data cache

The following code is an example of enabling the data cache.

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
 ORR R1, R1, #0x1 <<2

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-123

Non-Confidential

 DSB
 ; Invalidate the data cache with a loop of invalidate by set/way operations. This
routine will depend on the data cache size.
 MCR p15, 0, R1, c1, c0, 0 ; enabled data cache

The following code is an example of disabling the cache RAMs:

MRC p15, 0, R1, c1, c0, 0 ; Read System Control Register configuration data
 BIC R1, R1, #0x1 <<2
 DSB
 MCR p15, 0, R1, c1, c0, 0 ; disabled data cache
 ; Clean entire data cache. This routine will depend on the data cache size.

Disabling or enabling error checking

The following code is the recommended sequence to perform the change.

MRC p15, 0, r0, c1, c0, 0 ; Read System Control Register
 BIC r0, r0, #0x1 << 2 ; Disable data cache bit
 BIC r0, r0, #0x1 << 12 ; Disable instruction cache bit
 DSB
 MCR p15, 0, r0, c1, c0, 0 ; Write System Control Register
 ISB ; Ensures following instructions are not executed from cache
 ; Clean entire data cache. This routine will depend on the data cache size. It can
be omitted if the cache has not been enabled yet.
 MRC p15, 0, r1, c1, c0, 1 ; Read Auxiliary Control Register
 ; Change bits 10:9 as needed
 MCR p15, 0, r1, c1, c0, 1 ; Write Auxiliary Control Register
 ; Invalidate the data cache. This routine will depend on the data cache size
 MCR p15, 0, r0, c7, c5, 0 ; Invalidate entire instruction cache
 MRC p15, 0, r0, c1, c0, 0 ; Read System Control Register
 ORR r0, r0, #0x1 << 2 ; Enable data cache bit
 ORR r0, r0, #0x1 << 12 ; Enable instruction cache bit
 DSB
 MCR p15, 0, r0, c1, c0, 0 ; Write System Control Register
 ISB

PLD instruction

The Cortex‑R8 processor handles all PLD instructions in a dedicated unit with dedicated resources. This
avoids using resources in the integer core or the Load Store Unit.

PLI instruction

The Cortex‑R8 processor handles all PLI instructions as NOPs.

Related concepts
6.4.1 Cache maintenance operations on page 6-117
6.4.2 Cache error detection and correction on page 6-117

6 Level 1 Memory System
6.4 About the caches

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-124

Non-Confidential

6.5 Local exclusive monitor
The processor L1 memory system has a local exclusive monitor. This is a two state, open and exclusive,
state machine that manages load/store exclusive (LDREXB, LDREXH, LDREX, LDREXD, STREXB, STREXH,
STREX and STREXD) accesses and clear exclusive (CLREX) instructions.

You can use these instructions, operating in the L1 memory system, to construct semaphores and ensure
synchronization between different cores. By adding a global exclusive monitor, you can also use these
instructions in the L2 memory system to construct semaphores and ensure synchronization between
different cores. See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

When a load-exclusive access is performed, the local exclusive monitor moves to the exclusive state. It
can also move back to the open state for other reasons, for example, the other core has taken the
semaphore, or because of eviction of the cache line containing the semaphore value. The local exclusive
monitor holds exclusivity state for the Cortex‑R8 processor only. It does not record the address of the
memory that a load-exclusive access was performed to. Any store exclusive access performed when the
state is open fails.

Related reference
Chapter 12 Level 2 Interface on page 12-343

6 Level 1 Memory System
6.5 Local exclusive monitor

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-125

Non-Confidential

6.6 Memory types and L1 memory system behavior
The behavior of the L1 memory system depends on the type attribute of the memory that is being
accessed.

• Only Normal, Write-Back memory can be cached in the RAMs.
• Normal, Write-Through memory is treated as Non-Cacheable.
• Normal, Write-Back, Shareable memory is treated as cacheable when ACTLR.SMP is set to 1.
• Normal, Write-Back, Non-Shareable memory is always treated as cacheable.
• Only Normal memory is considered restartable. A multiword transfer can be abandoned part way

through because of an interrupt, and be restarted after the interrupt has been handled.
• Only the local exclusive monitor is used for exclusive accesses to Non-Shareable Write-Back

memory and to coherent cacheable Shareable memory. Other exclusive accesses are checked using
the local monitor and also, if necessary, any global monitor, using the L2 memory interface.

• Exclusive accesses to the ITCM fail.
• Normal Non-Cacheable exclusive accesses are handled using both local and global monitor.
• Accesses resulting from SWP and SWPB instructions to cacheable memory are not marked as locked

when performed using the L2 memory interface.
• All Inner Write-Back memory is treated as Write-Back Write-Allocate ignoring any cache allocate

hint, though this can dynamically switch to no Write-Allocate, if more than three full cache lines are
written in succession.

The following table summarizes the processor memory types and associated behavior.

Table 6-11 Memory types and associated behavior

Memory type Cacheable Merging Restartable Local exclusives Locked swaps

Normal Shareable -an Yes Yes Partiallyao Yes

Non-Shareable Yes Yes Yes Yes No

Device Shareable No No No Noap Yes

Non-Shareable No No No Noap Yes

Strongly Ordered Shareable No No No Noap Yes

an Depends on the value of the ACTLR.SMP bit: 1 = Cacheable. 0 = Non-Cacheable.
ao Depends on the value of the ACTLR.SMP bit: 1 = Exclusive accesses handled using only local monitor. 0 = Exclusive accesses handled using both local and global

monitor.
ap Exclusive accesses are handled using both local and global monitor.

6 Level 1 Memory System
6.6 Memory types and L1 memory system behavior

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-126

Non-Confidential

6.7 Error detection events
The Cortex‑R8 processor implements Arm architectural events.

Related reference
10.1.3 Performance monitoring events on page 10-219

6 Level 1 Memory System
6.7 Error detection events

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

6-127

Non-Confidential

Chapter 7
Fault Detection

This chapter describes the fault detection features of the Cortex‑R8 processor.

It contains the following sections:
• 7.1 About fault detection on page 7-129.
• 7.2 RAM protection on page 7-130.
• 7.3 Logic protection on page 7-136.
• 7.4 External memory and bus protection on page 7-137.
• 7.5 Programmers view on page 7-139.
• 7.6 Lock-step on page 7-141.
• 7.7 Static split/lock on page 7-144.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-128

Non-Confidential

7.1 About fault detection
The Cortex‑R8 processor fault detection features report any detected error to the system, and correct any
detected and correctable error.

When the system-on-chip reports a failure, the logging and status must provide all the required
information to identify the source of the failure. The intention is to detect and correct the errors as much
as possible, and identify them to the system.

For Error Correcting Code (ECC) on RAM, all errors explicitly seen must be reported, so that the error
propagation is minimized.

7.1.1 RAM and logic protection

The processor protects memories and logic in two different ways. These are independent, and can be
used separately.

• The RAMs are protected with ECC, except the branch prediction RAMs, that only have parity
protection.

• The logic of individual cores is protected by duplication with diagnostic compare. This is known as
redundant logic in a lock-step, for a single core configuration, or split/lock, for a two-core
configuration, implementation. The SCU logic is also duplicated. The AXI buses can also be
protected with ECC and parity.

These are independent, and can be used separately.

The processor uses Single Error Correction and Double Error Detection (SEC-DED) ECCs to detect and
correct errors in the RAMs and on the AXI buses. A finite number of hard, that is, permanent errors can
be detected and corrected with continued operation using dedicated error registers.

7.1.2 Analysis of errors

A monitor external to the core is responsible for analyzing the notified error and marking the corrupted
entries as reusable if it has been proven to be a soft error.

Analysis of errors can be performed as follows:
• Through the MBIST port when setting the cores of the cluster to WFI mode.
• By CP15/SCU direct cache access registers. These registers enable Limited Access to the caches and

SCU tag RAM duplicates.

 Note

MBIST routines generated by a controller external to the device can be used to analyze the full RAMs at
boot or on demand. CP15 and SCU direct accesses can analyze a particular location.

7 Fault Detection
7.1 About fault detection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-129

Non-Confidential

7.2 RAM protection
The Cortex‑R8 processor uses ECC to indicate errors on the RAMs. It implements error correction using
a clean and invalidate and retry for caches, and a correct, writeback, and retry mechanism for TCMs. The
processor notifies the detection of any error using primary output events, and the update of performance
and statistics counters.

This section contains the following subsections:
• 7.2.1 Protection method on page 7-130.
• 7.2.2 RAM protection summary table on page 7-132.
• 7.2.3 ECC on RAMs on page 7-132.
• 7.2.4 ECC codes on page 7-134.
• 7.2.5 RAM configuration on page 7-134.
• 7.2.6 Performance impact on page 7-134.

7.2.1 Protection method

The methods used by the processor to detect, correct, and report RAM errors.

Detecting errors

The Cortex‑R8 processor uses ECC to detect RAM data errors. ECC can also correct a single bit error
that might occur in a chunk, where a chunk is typically one or two words of data. However, ECC cannot
correct two or more bit errors in the same chunk.

Correcting errors

The Cortex‑R8 processor implements RAM error correction using a clean and invalidate and retry for
caches, and a correct, writeback, and retry mechanism for TCMs.

When a correctable error is detected, the corresponding index/way is cleaned and invalidated. When the
clean and invalidate operation is completed, the requester retries its access.

 Note

The detection of multiple-bit errors is not synchronous. Therefore, when such an error is notified,
corrupted data might not be contained. Contact Arm for more details about system containment of
multiple-bit ECC errors.

Instruction cache
On the instruction side, lines are always clean so that invalidating the line is sufficient. The
retried access then fetches the correct value from the upper level memory.

Data cache and TCMs
On the data side, the cache line can be dirty. The correction of the read contents is done as part
of the clean and invalidate operation for caches. This takes place in the eviction buffer and in the
cache coherency block. For TCMs, correction of the read contents is done with a correct and
writeback operation.

SCU
The detection of an error in the duplicate of the tags of a core causes a clean and invalidate in
the corresponding core tag RAM. When the clean and invalidate is done, the line in the SCU tag
RAM is marked as unusable.

Related reference
7.2.2 RAM protection summary table on page 7-132

7 Fault Detection
7.2 RAM protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-130

Non-Confidential

Handling permanent errors

Bank registers are used to mask faulty RAM locations if a hard error occurs. If a processor error occurs,
the line is cleaned and invalidated and the ECC error bank prevents any future allocation. For an SCU
error, the line is marked as unusable by the SCU error bank but the processor still sees the line as usable.

Permanent errors are handled as follows:

General behavior

If hard, or permanent, errors occur on the RAMs, the clean and invalidate, and retry scheme
might cause a deadlock, and the access is continuously replayed. To prevent this, error bank
registers are provided to mask the faulty locations as unusable and invalid. When an error is
detected, the location is pushed in the bank that masks the corresponding valid bit of the
location when reading and when allocating a new line. The line is therefore no longer used
unless the entry is reset by a CP15 access. There is a short period during which the line is still
seen by the system, but is removed from the allocation pool.

The depth of the error bank determines how many errors can be supported by the system. When
this limit is reached, the system might deadlock. The processor provides a special ECC event
indicating the number of corrupted locations to monitor the error bank status before it becomes
full. This is a condition that can cause a potential deadlock. This information is reported on
several pins signaling the usage of the error bank, that is, showing if the error bank is empty or
at least one error has been encountered.

Cortex‑R8 is robust to hard-errors, but might require software intervention. When a single-bit
error occurs in TCM, the corrected data is written to the error bank and then written back to
TCM. The access is then replayed using the error bank data.

If a second single-bit error occurs in the TCM, the error bank is not written to, but corrected data
is still written back to the TCM. This allows errors to be isolated. Isolating a hard error prevents
its RAM location becoming a double-bit error that is not correctable.

Because subsequent errors do not overwrite the error bank, the replayed access uses the
corrected data from the TCM. However, for soft or hard errors:
• If the data written back to TCM has a correctable error, then the data is corrected and used.

In this case, no software intervention is required.
• If the data written back to TCM has a hard error, then the data is not corrected and results in

permanently corrupted data, causing livelock. In this case, the RAMERR pin goes HIGH
continuously.

 Note

If you do not apply any software intervention, a soft error can behave as a hard error, and if a
second hard error then occurs, it might cause livelock. If a robust to hard errors system is not
required, then you do not require software intervention.

Interaction between SCU and cores

For a core error, the line is cleaned and invalidated and the ECC error bank prevents any future
allocation in this way. However, the line is still seen as present by the SCU, and the SCU
requests the line to the core that misses or hits, depending on whether the line has been
reallocated in another cache location.

For an SCU error, the line is marked as unusable by the SCU error bank but the core still sees
the line as usable. Therefore, a core can request an access to this way to allocate the cache line,
but the write fails in the SCU without being reported. Because of this, the error seen by SCU is
sent back to the core, and stored in the core data error bank.

Related concepts
7.5.3 Error detection notification signals on page 7-140

7 Fault Detection
7.2 RAM protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-131

Non-Confidential

Reporting errors

The Cortex‑R8 processor notifies the detection of any error using primary output events, and the update
of performance and statistics counters.

7.2.2 RAM protection summary table

The table shows how the different types of RAM are protected.

Table 7-1 RAM protection summary

RAM type Protection Parity/ECC chunk Correctable error Fatal error Hard error
support

Data tag RAM SEC-DED ECC 34 bits:
• 25 bits for tag and

status.
• 9 bits for index.

Error seen as a single bit
error

Error seen as a
multiple bit error

Up to three hard
errors, including the
SCU hard errors

Data data RAM SEC-DED ECC 32-bit data word Error seen as a single bit
error

Error seen as a
multiple bit error
on dirty lines

Instruction tag
RAM

SEC-DED ECC 28 bits:
• 23 bits for tag.
• 5 bits for index.

Any error, single or double,
on the tag or valid stored in
the RAM

None Up to three hard
errors

Instruction data
RAM

SEC-DED ECCaq 64-bit data word Any error on the data
stored in the RAM

None

BTAC Parityar 8-bit - - None

PRED Parityar 1-bit (copy) - - None

SCU tag RAM SEC-DED ECC 28 bits:
• 23 bits for tag.
• 5 bits for index.

Any error None Up to two hard errors

Data TCM SEC-DED ECC 32-bit data word Error seen as a single bit
error

Error seen as a
multiple bit error

Up to one hard error

Instruction TCM SEC-DED ECC 64-bit word Error seen as a single bit
error

Error seen as a
multiple bit error

Up to one hard error

7.2.3 ECC on RAMs

To prevent the loss of any data that might cause the processor or the system to malfunction, the ECC
protects the L1 data cache RAMs, L1 instruction cache RAMs, SCU Tag RAM, Instruction TCM, and
Data TCM.

RAM targeted

To prevent the loss of any data that might cause the Cortex‑R8 processor or the system to malfunction,
the ECC protects the L1 data cache RAMs, L1 instruction cache RAMs, SCU tag RAM, Instruction
TCM, and Data TCM.

Related reference
7.2.2 RAM protection summary table on page 7-132

aq The SEC-DED ECC is used as a Double Error Correction because the lines are clean.
ar BTAC and PRED do not prevent the system from operating correctly and only impact the performance, even if hard errors occur. Parity provides a compromise

between the area overhead in the RAMs and the ability to detect errors.

7 Fault Detection
7.2 RAM protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-132

Non-Confidential

Basic scheme

The basic ECC scheme for the L1 cache, SCU RAM, and TCM is that any error, either soft or hard, is
indicated to the system, and any error detected is stored in an error bank, waiting to be analyzed by the
system, and preventing that location from being used.

In addition:
• The system analyzes the faulty RAM location to check the full RAM space (MBIST).
• The core can also analyze the faulty RAM location to check a single location or a range of locations

(CP15 operation).
• From the analysis, the errors detected are classified as soft or hard errors. If the errors are hard, the

core updates the error bank with this information and the corresponding RAM location is not used by
subsequent accesses. There is one error bank for each of the following:
— L1 data cache RAMs.
— L1 instruction cache RAMs.
— SCU tag RAM.
— Instruction TCM.
— Data TCM.

The following table shows the basic scheme, and also the differences where it is part of the core, that is,
L1 cache and TCM, or is seen as a peripheral such as the SCU.

Table 7-2 Basic ECC scheme per RAM type

Description L1 cache SCU TCM

Correctable error notification to the system,
bits[10:9] of the ACTLR cleared

- - -

Correctable error notification to the system,
bits[10:9] of the ACTLR set

Error notificationas - Error notificationas

Uncorrectable error notification to the system Error notificationas Error notificationas Error notificationas

Logging of errors Up to three entries in the
error bank

Up to two entries in the
error bank

One entry in the error
bank

Direct access to the faulty RAM location by the
system for full RAM analysis

MBIST MBIST MBIST or slave port

Direct access to the faulty RAM location by the
core itself for single location analysis

CP15 Debug Cache
Access Registers

Memory-mapped register
in the SCU

CP15 Debug TCM
Access Registers

Access to the error bank to update it after analysis
of the faulty RAM location

CP15 Memory-mapped register
in the SCU

CP15

Related concepts
7.1.2 Analysis of errors on page 7-129
Related reference
A.11 Error detection notification signals on page Appx-A-384

Auto-check mechanism

The direct access to the faulty RAM location by the core for single location analysis also enables errors
to be injected so that the error handling mechanism can be checked. This provides a full software support
to generate errors on particular locations in the RAM, and then enabling and disabling the ECC after
those accesses.

Related reference
9.3.12 SCU Debug tag RAM access on page 9-182

as Fault detection error notification is done by the primary output pins.

7 Fault Detection
7.2 RAM protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-133

Non-Confidential

4.3.16 Cache and TCM Debug Operation Register on page 4-91

MBIST for full RAM analysis

The MBIST interface can be used during WFI. The MBIST controller has some arbitration on the RAMs
and can get a clock running in the processor clock module when the MBISTENABLE signal is active,
so that flops before and after the RAMs can be activated. Any other MBIST usage while the processor is
running is not supported.

7.2.4 ECC codes

To protect the different types of RAM, three different ECC codes are required.

• A 34-bit ECC with seven check bits for the tag RAM of the data side.
• A 32-bit ECC with seven check bits for the data RAM of the data side, the tag RAM of the

instruction side, and the tag RAMs of the SCU.
• A 64-bit ECC with eight check bits for the instruction data RAM.

 Note

The 32-bit ECC check matrix can be a subset of the 34-bit ECC check matrix, so that only two different
ECC codes are required, a 34-bit ECC and a 64-bit ECC.

7.2.5 RAM configuration

RAM configuration for ECC and parity.

The following table shows the RAM configuration with or without ECC.

Table 7-3 RAM configuration with or without ECC

RAM Storage for a RAM set without ECC Storage for a RAM set with ECC

Data tag RAM 4 × 29 bits 4 × (29 + 7) bits

Data data RAM 8 × 32 bits 8 × (32 + 7) bits

Instruction tag RAM 4 × 23 bits 4 × (23 + 7) bits

Instruction data RAM 4 × 64 bits 4 × (64 + 8) bits

SCU tag RAMs 4 × 23 bits 4 × (23 + 7) bits

Data TCM 2 × 32 bits 2 × (32 + 7) bits

Instruction TCM 4 × 64 bits 4 × (64 + 8) bits

The following table shows the RAM configuration with or without parity.

Table 7-4 RAM configuration with or without parity

RAM Storage for a set without parity Storage for a set with parity

BTAC 2 × 32 + 2 × 28 bits 2 × (32 + 4) + 2 × (28 + 4) bits

PRED 4 × 4 bits 4 × (4 + 4) bits

7.2.6 Performance impact

In an error-free system, the major performance impact is the cost of the read-modify-write scheme for
nonfull stores in the data side. If the store buffer does not have a complete ECC chunk, it must read the
word to be able to compute the check bits. The data can then be written in the RAM. This additional read
can have a negative impact in performance because it prevents the slot from being used for another write.

7 Fault Detection
7.2 RAM protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-134

Non-Confidential

The out-of-order and outstanding capabilities of the L1 memory system mask part of the additional read,
and it is negligible for most codes. However, Arm recommends that you use as few cacheable STRB/STRH
instructions as possible to reduce the performance impact.

 Note

There might be a frequency impact because XOR trees are added on the data returned from the RAMs.

7 Fault Detection
7.2 RAM protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-135

Non-Confidential

7.3 Logic protection
A Cortex‑R8 processor that has either one or two cores can have optional logic protection. When the
processor is configured with a single core and logic protection, it is implemented as a Lock-Step
configuration. When the processor is configured with two cores and logic protection, it is configured as a
Split-Lock configuration.

The logic of the primary core is protected by a duplicate core that is the exact copy of the first core. Both
cores share the same RAMs protected with ECC and the same input pins. The second core is delayed by
two clock cycles so that this redundant system can detect glitches in the inputs.

The outputs of the primary core and the duplicate core are compared on each cycle to detect any error.
The outputs of the first core are delayed so they can be synchronized with the second core. This
mechanism relies on the fact that any error occurring in the core is eventually visible on the outputs of
the core, or is inherently a low-risk failure.

On detection of an error in one core, both cores are reset before executing a code sequence, to put them
in the same initial state. They can then restart execution from a previously taken snapshot.

The Cortex‑R8 processor provides a template of the logic required for the comparison of the dual-
redundancy cores.

Related concepts
7.6 Lock-step on page 7-141
7.7 Static split/lock on page 7-144

7 Fault Detection
7.3 Logic protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-136

Non-Confidential

7.4 External memory and bus protection
On the external AXI buses, control bits are protected by parity, and data is protected by ECC bits.

This protection is available on the following bus interfaces:
• The AXI master ports.
• The AXI low-latency peripheral port.
• The AXI fast peripheral port(s).
• The optional AXI ACP slave port.
• The AXI TCM slave port.

When a parity error is detected on any control bits of the AXI transfer, no correction is done, but an event
is reported to the external system.

When a correctable ECC error is detected on the data bits, the data is corrected. If the ECC error is not
correctable, an error event is reported.

7.4.1 Reporting errors

The ECC logic protecting the AXI buses assumes that an entity in the system other than the processor is
responsible for reacting to any ECC error detected on the bus, to restart the system correctly or to take
any related actions.

For this reason, the following events are output for every protected AXI interface:

AXICORRERR
A correctable ECC error has been detected on read or write data, or a parity error on a control
bit.

AXIFATALERR
A fatal ECC error has been detected on one of the channels.

It is also assumed that any bus signal always has a defined value after reset.

7.4.2 ECC on external AXI bus

All master buses, that is, AXI master port 0 and AXI master port 1, AXI low-latency peripheral port,
AXI fast peripheral port, and the optional AXI TCM slave port, generate ECC check bits that are
computed on all signals of the bus for write accesses, such as payload and control, including the AXI
valid and AXI ready signals.

For read accesses, the complete bus is decoded:

• For single-bit errors, an inline correction is provided. A primary error detection notification output
signal is raised at the same time. The inline correction implies some extra cycles of memory latency.

• Double-bit errors only raise a primary error detection notification output signal. The system must
determine the correct action in this case, such as an interrupt to the processor.

An external write access must be decoded on the ACP:

• A single-bit error is corrected inline and a primary error detection notification output signal is raised.
• A double-bit error raises only a primary error detection notification output signal.

An external read access encodes all signals of the bus, such as payload and control, including the AXI
valid and AXI ready signals.

 Note

• ECC is only present on data buses. All other signals are protected by parity.
• ECC on the ACP bus is supported only when the ACP bridge is implemented.
• For build options with ACP or TCM, when byte line strobes are sparse on an ACP or a TCM slave

port write access, the unused bytes are masked in the processor and assumed to be driven LOW. This

7 Fault Detection
7.4 External memory and bus protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-137

Non-Confidential

is because the ECC is computed on a 64-bit chunk. Therefore, a master driving the ACP or the TCM
slave port must compute the ECC bits together with the write data with the same assumption.

If ECC errors are found on TCM RAMs:

• For reads, the slave error is reported for a fatal error. If the error is fatal, the FATALRAMERR
output is also raised. If the error is correctable, it is corrected internally and no error is reported.

• For writes, no response is sent. If a fatal error occurs, the FATALRAMERR output is raised.

You can configure whether this logic is present in the Cortex‑R8 processor.
 Note

To enable ECC in the Cortex‑R8 processor, you must first enable ECC on the RAMs.

Related reference
9.7.6 ACP bridge on page 9-212

7 Fault Detection
7.4 External memory and bus protection

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-138

Non-Confidential

7.5 Programmers view
Various processor and SCU registers are used to enable and monitor ECC. When an error is detected,
error signals are asserted to notify the external system responsible for analyzing the fault.

This section contains the following subsections:
• 7.5.1 Processor registers on page 7-139.
• 7.5.2 SCU registers used in ECC on page 7-139.
• 7.5.3 Error detection notification signals on page 7-140.

7.5.1 Processor registers

Processor registers used in ECC.

Auxiliary Control Register (ACTLR)
Bits[10:9] of this register are used to enable ECC checking.

ECC Error Registers (DEER0-2/IEER0-2 and DTCMEER/ITCMEER)
These registers provide information on ECC errors.

Performance counters
The performance counters can be configured to monitor several ECC-related metrics.

Cache and TCM Debug Operation Register (CTDOR)
The processor contains registers that provide direct access to the caches. These registers enable
the RAM analysis on error and the auto-checking of the ECC mechanisms by software. On the
instruction side, these registers enable direct access to the instruction cache and to the
instruction data. BTAC and PRED cannot be accessed in this way. On the data side, the tag
RAM and the data cache RAM can be accessed in this way.

Related reference
4.3.10 Auxiliary Control Register on page 4-80
4.3.19 ECC Error Registers on page 4-95
10.1.3 Performance monitoring events on page 10-219
4.3.16 Cache and TCM Debug Operation Register on page 4-91

7.5.2 SCU registers used in ECC

The SCU is seen as a peripheral by the Cortex‑R8 processor core(s), and has its own memory-mapped
register file.

The following SCU registers are used in ECC:

SCU Control Register
Bits[15:12] of this register are used to enable ECC checking on the AXI ports.

SCU Error Bank Registers
Bits[13:5] of these registers hold the SCU tag RAM index, and bits[1:0] show the error status.

Performance counters
Events related to the SCU are reported to the PMU of each core. The performance counters can
be configured to monitor several ECC-related metrics.

SCU Debug Cache Registers
These registers provide information on various aspects of ECC for the SCU:
• The SCU Debug Tag RAM Operation Register shows the address and action for the SCU tag

RAM access.
• The SCU Debug Tag RAM Data Value Register and SCU Debug Tag RAM ECC Chunk

Register contain the data from the memory selected by the SCU Debug Tag RAM Operation
Register.

7 Fault Detection
7.5 Programmers view

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-139

Non-Confidential

Related reference
9.3.1 SCU Control Register on page 9-169
9.3.10 SCU Error Bank First Entry Register on page 9-180
9.3.11 SCU Error Bank Second Entry Register on page 9-181
10.1.3 Performance monitoring events on page 10-219
9.3.12 SCU Debug tag RAM access on page 9-182

7.5.3 Error detection notification signals

When an error is detected, error signals are asserted to notify the external system responsible for
analyzing the fault.

Related reference
A.11 Error detection notification signals on page Appx-A-384

7 Fault Detection
7.5 Programmers view

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-140

Non-Confidential

7.6 Lock-step
Lock-step mode requires the Cortex‑R8 processor to be implemented with a second, redundant copy of
the cpu_noram, scu_noram, and axis modules. This provides redundancy in the logic without
duplicating the RAMs that are protected by ECC.

The following figure shows how lock-step is implemented.

7 Fault Detection
7.6 Lock-step

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-141

Non-Confidential

NoRam
(Core 1)

NoRam
(Core 0)

Cache
RAM

TCM
RAM

==

SCU logic

Core 0 slave port

==

Core inputs

Core outputs

Tag
RAM0

SCU logic

Core 0 slave port

AXI bus inputs

AXI bus outputs

Delay

Delay

Delay

Delay

Redundant logic in lock-step mode

Unused logic in lock-step mode when ACP is not present

Infrastructure for normal/lock-step mode

Unused logic in lock-step mode when ACP is present or not

Figure 7-1 Lock-step

Because the dual-redundant logic has a significant impact on the area, not duplicating the RAMs
minimizes this impact. Both copies of the logic run in parallel, although offset in time, and the outputs
are compared to detect errors. There are two sets of comparators:

• One for cpu_noram output comparison.
• One for no_cpu, that is, scu_noram and axis output comparison.

7 Fault Detection
7.6 Lock-step

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-142

Non-Confidential

All outputs of the noram modules are compared, except for the debug, MRP, ETM, and MBIST signals.
 Note

COMPENABLE and COMPFAULT are global for both the core and SCU comparators.

7 Fault Detection
7.6 Lock-step

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-143

Non-Confidential

7.7 Static split/lock
Static split/lock enables you to choose between performance mode, that is, a multiprocessing
configuration with two processors, and lock-step mode, that is, a lock-step configuration with
dualredundant logic.

Because this is a static split/lock, you can only switch modes during reset. The global input
SAFEMODE enables you to choose the mode:

• SAFEMODE HIGH for lock-step mode.
• SAFEMODE LOW for performance mode.

The SAFEMODE input must be kept stable during normal operation and can only be changed at reset.

The following figure shows how split/lock is implemented.

In static split/lock, core 1 is present with both noram and ram modules. When the Cortex‑R8 processor is
operating in lock-step mode, the ram logic is clamped.

Only the core 0 slave port of the SCU is duplicated. The interface with core 1 is not required because,
when in lock-step mode, the core 1 noram is used as a redundancy of core 0.

 Note

You can implement static split/lock in a Cortex‑R8 processor that has only two cores.

7 Fault Detection
7.7 Static split/lock

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-144

Non-Confidential

NoRam
(Core 1)

NoRam
(Core 0)

Cache
RAM

TCM
RAM

==

SCU logic

Core 0 slave port

==

Core 0 inputs

Core 0 outputs

Tag
RAM0

SCU logic

Core 0 slave port

AXI bus inputs

AXI bus outputs

Cache
RAM

TCM
RAM

10

Core 1 inputs

Lock-step mode

Lock-step mode

Core 1 outputs

Tag
RAM1

Core 1 slave port

Delay

Delay

Delay

Delay

Redundant logic in lock-step mode

Unused logic in lock-step mode when ACP is not present

Infrastructure for normal/lock-step mode

Unused logic in lock-step mode when ACP is present or not

Figure 7-2 Static split/lock

7 Fault Detection
7.7 Static split/lock

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

7-145

Non-Confidential

Chapter 8
Determinism Support

This chapter describes the determinism support features of the Cortex‑R8 processor.

It contains the following sections:
• 8.1 About determinism support on page 8-147.
• 8.2 Memory Protection Unit on page 8-148.
• 8.3 Branch prediction on page 8-157.
• 8.4 Low-latency interrupt mode on page 8-158.
• 8.5 System configurability and QoS on page 8-159.
• 8.6 Instruction and data TCM on page 8-161.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-146

Non-Confidential

8.1 About determinism support
The Cortex‑R8 processor contains several features that provide deterministic timing and low interrupt
latency for hard real-time applications. These features are in each core and the SCU.

8 Determinism Support
8.1 About determinism support

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-147

Non-Confidential

8.2 Memory Protection Unit
The MPU works with the L1 memory system to control accesses to and from L1 and external memory.
The MPU enables you to partition memory into regions and set individual protection attributes for each
region.

The MPU is programmed using CP15 registers c1 and c6. Memory region control read and write access
is permitted only from privileged modes.

The MPU enables you to partition memory into regions and set individual protection attributes for each
region. The MPU supports 12, 16, 20, or 24 memory regions, depending on your implementation.

Each region is programmed with a base address and size, and the regions can be overlapped to enable
efficient programming of the memory map. To support overlapping, the regions are assigned priorities,
with region 0 having the lowest priority. For an MPU that has 16 memory regions, region 15 has the
highest priority. The MPU returns access permissions and attributes for the highest priority region where
the address hits.

For a full architectural description of the MPU and the memory map, see the Arm® Architecture
Reference Manual Arm®v7‑A and Arm®v7‑R edition.

This section contains the following subsections:
• 8.2.1 Regions on page 8-148.
• 8.2.2 Memory types on page 8-151.
• 8.2.3 Region attributes on page 8-152.
• 8.2.4 MPU interaction with memory system on page 8-154.
• 8.2.5 MPU faults on page 8-155.
• 8.2.6 MPU software-accessible registers on page 8-155.

8.2.1 Regions

The MPU regions are memory regions, overlapping regions, background regions, and TCM regions.

Memory regions

The MPU can have 12, 16, 20, or 24 regions, depending on the implementation. For each memory region
you can define the region base address, size, access permissions, and region attributes. Each region can
be split into eight equal-sized non-overlapping subregions.

Region base address

The base address defines the start of the memory region. You must align this to a region-sized boundary.
For example, if a region size of 8KB is programmed for a given region, the base address must be a
multiple of 8KB.

 Note

If the region is not aligned correctly, this results in UNPREDICTABLE behavior.

Region size

The region size is specified as a 5-bit value, encoding a range of values from 256 bytes to 4GB. See the
DRSR bit assignments for the encoding.

Related reference
A.11.2 RAM ECC error bank status signals on page Appx-A-384

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-148

Non-Confidential

Subregions

Each region can be split into eight equal sized non-overlapping subregions. An access to a memory
address in a disabled subregion does not use the attributes and permissions defined for that region.
Instead, it uses the attributes and permissions of a lower priority region or generates a background fault if
no other regions overlap at that address. This enables increased protection and memory attribute
granularity.

Region attributes

Each region can have attributes assigned for Memory type, Shareable or Non-Shareable, Non-Cacheable,
and Write-Back Write Allocate.

Related concepts
8.2.2 Memory types on page 8-151
8.2.3 Region attributes on page 8-152

Region access permissions

Each region can be given no access, read-only access, or read/write access permissions for privileged or
all modes. In addition, each region can be marked as eXecute Never (XN) to prevent instructions being
fetched from that region.

For example, if a user mode application attempts to access a Privileged mode access only region, a
permission fault occurs.

For more information, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition. For
access data permission bit encodings, see the information for the MPU Region Access Control Registers.

Related reference
MPU Region Access Control Registers on page 4-85

Overlapping regions

You can program the MPU with two or more overlapping regions. For overlapping regions, a fixed
priority scheme determines attributes and permissions for memory access to the overlapping region. In
an MPU with 12 regions, attributes and permissions for region 11 take highest priority, those for region 0
take lowest priority.

For example:

Region 2
Is 4KB in size, starting from address 0x3000. Privileged mode has full access, and user mode
has read-only access.

Region 1
Is 16KB in size, starting from address 0x0000. Both privileged and user modes have full access.

When the core performs a data write to address 0x3010 while in user mode, the address falls into both
region 1 and region 2, as the following figure shows. Because these regions have different permissions,
the permissions associated with region 2 are applied. Because user mode is read access only for this
region, a permission fault occurs, causing a Data Abort.

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-149

Non-Confidential

0x4000

0x0000

0x3000
0x3010

Region 1

Region 2

Figure 8-1 Overlapping memory regions

Example of using regions that overlap

You can use overlapping regions for stack protection.

For example: If the current process overflows the stack it uses, a write access to region 2 by the core
causes the MPU to raise a permission fault.
• Allocate to region 1 the appropriate size for all stacks.
• Allocate to region 2 the minimum region size, 256 bytes, and position it at the end of the stack for the

current process.
• Set the region 2 access permissions to No Access.

0x4000

0x0000

Region 1

Region 2

Figure 8-2 Overlay for stack protection

Example of using subregions

You can use subregions for stack protection.

For example:
• Allocate to region 1 the appropriate size for all stacks.
• Set the least-significant subregion disable bit. That is, set the subregion disable field, bits[15:8], of

the CP15 MPU Region Size Register to 0x01.

If the current process overflows the stack it uses, a write access by the core to the disabled subregion
causes the MPU to raise a background fault. The following figure shows an example of using subregions
for stack protection.

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-150

Non-Confidential

0x4000

0x0000 Guard region
0x0800

Stack

Figure 8-3 Overlapping subregion of memory

Background regions

Overlapping regions increase the flexibility of how the regions can be mapped onto physical memory
devices in the system. You can also use the overlapping properties to specify a background region.

For example, you might have several physical memory areas sparsely distributed across the 4GB address
space. If a programming error occurs, the core might issue an address that does not fall into any defined
region.

If the address that the core issues falls outside any of the defined regions, the MPU is hard-wired to abort
the access. That is, all accesses for an address that is not mapped to a region in the MPU generate a
background fault. You can override this behavior by programming region 0 as a 4GB background region.
In this way, if the address does not fall into any of the other 11, 15, 19, or 23 regions, the attributes, and
access permissions you specified for region 0 control the access.

In privileged modes, you can also override this behavior by setting the BR bit, bit[17], of the SCTLR.
This causes privileged accesses that fall outside any of the defined regions to use the default memory
map. User mode accesses to this background region cause faults.

TCM regions

Any memory address that you configure to be accessed using a TCM is mapped as having Normal, Non-
Shareable type attributes, regardless of the attributes of any MPU region that the address also belongs to.
Access permissions for an address in a TCM region are preserved from the MPU region that the address
also belongs to.

Related concepts
8.5 System configurability and QoS on page 8-159
8.6 Instruction and data TCM on page 8-161

8.2.2 Memory types

The Arm architecture defines a set of memory types with characteristics that are suited to particular
devices.

There are three mutually exclusive memory type attributes:
• Strongly Ordered.
• Device.
• Normal.

MPU memory regions must each be assigned a memory type attribute. in the following table shows a
summary of the memory types.

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-151

Non-Confidential

Table 8-1 Memory attributes summary

Memory type
attribute

Shareable or Non-
Shareable

Other attributes Description

Strongly Ordered - - All memory accesses to Strongly-Ordered memory occur in
program order. All Strongly-Ordered accesses are assumed to
be Shareable.

Device Shareable - For memory-mapped peripherals that several cores share.

Non-Shareable - For memory-mapped peripherals that only a single core uses.

Normal Shareable Non-Cacheable Write-
Back Cacheable

For normal memory that is Shareable between several cores.

Non-Shareable Non-Cacheable Write-
Back Cacheable

For normal memory that only a single core uses.

For more information on memory attributes and types, memory barriers, and ordering requirements for
memory accesses, see the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition.

Using memory types

The memory system contains a store buffer. This helps to improve the throughput of accesses to Normal
type memory.

Because of the ordering rules that they must follow, accesses to other types of memory typically have a
lower throughput and higher latency than accesses to Normal memory. In particular, reads from Device
or Strongly-Ordered memory must first drain the store buffer of all writes to Device or Strongly-Ordered
memory:

Similarly, when the core is accessing Strongly-Ordered or Device type memory, its response to interrupts
is modified, and the interrupt response latency is longer.

To ensure optimum performance, you must understand the architectural semantics of the different
memory types. Use Device memory type for appropriate memory regions, typically peripherals, and only
use Strongly-Ordered memory type for memory regions where it is essential.

8.2.3 Region attributes

Each region has several attributes associated with it. These control how a memory access is performed
when the core accesses an address that falls within a given region.

The attributes are:

• Memory type, one of:
— Strongly Ordered.
— Device.
— Normal.

• Shareable or Non-Shareable.
• Non-Cacheable.
• Write-Back Write Allocate.

The Region Access Control Registers use five bits to encode the memory region type. These are the
TEX[2:0], C, and B bits. in the following table shows the mapping of these bits to memory region
attributes.

 Note

In earlier versions of the architecture, the TEX, C, and B bits were known as the Type Extension,
Cacheable and Bufferable bits. These names no longer adequately describe the function of the B, C, and
TEX bits.

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-152

Non-Confidential

In addition, the MPU Region Access Control Registers contain the Shareable bit, S. This bit usually
determines whether the memory region is Shareable (0b1) or Non-Shareable (0b0). However, in some
cases, the Shareable attribute is forced by other attributes, for example, Strongly-Ordered memory types
are always Shareable.

Table 8-2 TEX[2:0], C, and B encodings

TEX[2:0] C B Description Memory type Shareable?

0b000 0b0 0b0 Strongly Ordered Strongly Ordered Shareable

0b000 0b0 0b1 Shareable Device Device Shareable

0b000 0b1 0bX Reserved - -

0b001 0b0 0b0 Outer and Inner Non-Cacheable Normal S bit.at

0b001 0b0 0b1 Reserved - -

0b001 0b1 0b0

0b001 0b1 0b1 Outer and Inner Write-Back, Write-Allocate Normal S bitat

0b010 0b0 0b0 Non-Shareable Device Device Non-Shareable

0b010 0b0 0b1 Reserved - -

0b010 0b1 0bX

0b011 0bX 0bX

0b1BB 0bA 0bA Cacheable memory. See the Cacheable memory policies for the encoding
for these bits.

0bAA
Inner policy

0bBB
Outer policy

Normal S bitat

Cacheable memory policies

When TEX[2] == 0b1, the memory region is cacheable memory, and the rest of the encoding defines the
Inner and Outer cache policies.

TEX[1:0]
Defines the Outer cache policy.

C, B
Defines the Inner cache policy.

The same encoding is used for the Outer and Inner cache policies. in the following table shows the
encoding.

at Region is Shareable if S == 0b1, and Non-Shareable if S == 0b0

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-153

Non-Confidential

Table 8-3 Inner and Outer cache policy encoding

Memory attribute encoding Cache policy

0b00 Non-Cacheable

0b01 Write-Back, Write-Allocate

0b1X Reserved

When the processor performs a memory access through its AXI3 bus master interface:
• The Inner attributes are indicated on the AxUSERMx signals.
• The Outer attributes are indicated on the AxCACHEMx signals.

For more information on region attributes, see the Arm® Architecture Reference Manual Arm®v7‑A and
Arm®v7‑R edition.

Related concepts
8.2.2 Memory types on page 8-151
Related reference
MPU Region Access Control Registers on page 4-85

8.2.4 MPU interaction with memory system

After you enable or disable the MPU, the pipeline must be flushed using ISB and DSB instructions to
ensure that all subsequent instruction fetches see the effect of turning on or off the MPU.

Before you enable or disable the MPU you must:
1. Program all relevant CP15 registers. This includes setting up at least one memory region that covers

the currently executing code, and that provides read and execute permissions in at least privileged
mode.

2. Invalidate the instruction cache.
3. Enable the instruction cache.
4. Invalidate the data cache.

The following code is an example of enabling the MPU:

MRC p15, 0, R1, c1, c0, 0 ; read CP15 register 1

ORR R1, R1, #0x1

DSB

MCR p15, 0, R1, c1, c0, 0 ; enable MPU

ISB

Fetch from programmed memory map

Fetch from programmed memory map

Fetch from programmed memory map

Fetch from programmed memory map

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-154

Non-Confidential

The following code is an example of disabling the MPU:

MRC p15, 0, R1, c1, c0, 0 ; read CP15 register 1

BIC R1, R1, #0x1

DSB

MCR p15, 0, R1, c1, c0, 0 ; disable MPU

ISB

Fetch from default memory map

Fetch from default memory map

Fetch from default memory map

Fetch from default memory map

The MPU does not check accesses from the AXI TCM slave. You can configure the core to enable access
to the TCM interfaces from the AXI TCM slave port.

For more information on the default memory map, see the Arm® Architecture Reference Manual
Arm®v7‑A and Arm®v7‑R edition.

8.2.5 MPU faults

The MPU can generate background faults, permission faults, and alignment faults. When a fault occurs,
the memory access or instruction fetch is synchronously aborted, and a Prefetch Abort or Data Abort
exception is taken as appropriate. No memory accesses are performed on the AXI3 bus master interface.

Background fault

A background fault is generated when the MPU is enabled and a memory access is made to an address
that is not within an enabled subregion of an MPU region. A background fault does not occur if the
background region is enabled and the access is Privileged.

Permission fault

A permission fault is generated when a memory access does not meet the requirements of the
permissions defined for the memory region that it accesses.

Related reference
Region access permissions on page 8-149

Alignment fault

An alignment fault is generated if a data access is performed to an address that is not aligned for the size
of the access, and strict alignment is required for the access. Several instructions that access memory, for
example, LDM and STC, require strict alignment.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for more information. In
addition, strict alignment can be required for all data accesses by setting the A-bit in the System Control
Register.

Related reference
4.3.9 System Control Register on page 4-77
Related concepts
6.2 Fault handling on page 6-112

8.2.6 MPU software-accessible registers

The MPU memory region programming registers (CP15 registers) program the MPU regions.

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-155

Non-Confidential

Related concepts
8.2.4 MPU interaction with memory system on page 8-154
Related reference
4.3.12 MPU memory region programming registers on page 4-83

8 Determinism Support
8.2 Memory Protection Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-156

Non-Confidential

8.3 Branch prediction
Branch prediction uses both static and dynamic techniques. Dynamic branch prediction is used by
default. But when there is no information history, static prediction is used instead.

Branch prediction predicts:
• That there is a branch instruction at a given address.
• The type of the branch:

— Unconditional or conditional.
— Immediate or load.
— Normal branch, function call, or function return.

• The target address or the state of the branch, either Arm or Thumb.
• The direction of conditional branch, either taken or not taken.

The static branch prediction is based on decoding the instruction. Therefore, it can see branches on fresh
code, without any history, but the prediction is done only at the decoding stage, so no fetch decision can
be made before this stage, that is, speculative fetches from the branch target cannot be made.

The dynamic branch prediction estimates the instructions based on history, so that it can fetch
speculatively to an arbitrary chosen branch of the execution code. More hardware is required, but it saves
some unnecessary i-cache lookup/memory accesses, and the prediction quality is higher for previously
seen branches.

By default, the dynamic branch prediction is used and, if there is no information in its history, the static
prediction is used instead.

8 Determinism Support
8.3 Branch prediction

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-157

Non-Confidential

8.4 Low-latency interrupt mode
The low-latency interrupt mode can be enabled or disabled using the System Control Register. The fast
interrupt bit controlling the interrupt mode is disabled by default to allow some enhanced performance,
and can be modified if you require a higher level of control on the determinism. By enabling low-latency
interrupt mode, entry into an interrupt routine is slightly quicker, but with a slight reduction in global
core performance.

When the low-latency interrupt mode is disabled, the interrupts are inserted in the decoder stage and are
seen as a branch instruction targeting the interrupt vector. This means that all instructions in the pipeline
must finish their execution before starting to execute new instructions from the interrupt handler. When
those instructions in the pipeline depend on a load that misses, this time depends on the external memory
latency. Another case of instructions that might take time to complete are long instructions such as VDIV
and VSQRT. This mode enables better speculative instruction execution, and therefore better average
performance.

When the low-latency interrupt mode is enabled, the following are flushed:

• All loads and stores that have not started.
• Those loads and stores that have started to normal memory, and are still speculative.
• VDIV and VSQRT operations.
• Any pending CP15 operations with CRn=7.
• Any pending DMB or DSB operations.
• Instructions that follow these that are already in the pipeline.

 Note

The following are not flushed when they have started:
• Loads/stores to Strongly-Ordered or Device memory region.
• Swap accesses. These accesses are deprecated in the Armv7 architecture.

This behavior has the following effect on the data side:
• The ability to flush instructions requires keeping them speculative for their lifetime, because the

register renaming of the integer core requires a recovery mechanism. This impacts the average
performance by 3-4%.

• This frees up resources in the pipeline, and in the four slots of the LSU, accelerating the handling of
the interrupt routine.

The core LSU supports up to four accesses so that, for example, a load with a significant memory latency
does not block a subsequent load/store access requested by the integer core. This is the normal behavior
when the low-latency interrupt mode is disabled. When the low-latency interrupt mode is enabled, the
following table shows that Strongly-Ordered and Device read accesses, in addition to all store accesses,
affect the performance because they wait for cacheable loads to have their data returned.

Table 8-4 Performance and determinism effects in low-latency interrupt mode

Low-latency interrupt mode Instructions per cycle performance Level of determinism

Disabled High Medium

Enabled High minus 3-4% High

Related reference
4.3.9 System Control Register on page 4-77

8 Determinism Support
8.4 Low-latency interrupt mode

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-158

Non-Confidential

8.5 System configurability and QoS
You can use the Quality of Service (QoS) to ensure that low priority cacheable traffic does not block the
flow of accesses from peripherals, data TCM, and the optional AXI master port 1.

 Caution

If the processor uses the QoS feature and address filtering is enabled for AXI master port 1, the slave
connected to AXI master port 1 must be private to the processor. When QoS is not enabled, no such
system constraint exists.

A real-time system with two AXI3 master ports and address filtering can stream critical tasks and
background tasks so that the flow of background tasks, particularly cached low priority tasks that can
have significant memory latency, does not block the flow of critical tasks:

• High-priority traffic consists of transfers accessing either an AXI fast peripheral port, AXI master
port 1 when used with address filtering, the AXI low-latency peripheral port, or the data TCM.

• Any other transfers going through AXI master port 0 are considered to have low priority.

QoS is enabled by the QoS bit in the Auxiliary Control Register:

• If this bit is set, some hardware resources are blocked for low-priority traffic in the processor. This
means that the high-priority traffic has the necessary resources to start its execution, typically after an
interrupt has occurred. When the low-priority traffic has completed its pending transfers, the high-
priority traffic can use all the hardware resources.

• If this bit is not set, no hardware resources are blocked for low-priority traffic, and both the low and
high-priority traffic share and use all the available resources. This configuration has better average
performance because all hardware resources are available to all traffic.

The QoS bit can be used to ensure that low-priority cacheable traffic does not block the flow of accesses
from the following:

• Peripherals connected to the AXI fast peripheral ports.
• Peripherals connected on the AXI low-latency peripheral port.
• Data TCM accesses.
• Cacheable traffic that is connected on the optional external AXI master port 1 when used with

address filtering.

You can set the QoS bit on a per core basis using ACTLR.QoS to ensure that low-priority cacheable
traffic with significant memory latencies does not block the flow of traffic from these tasks. The SCU
offers some QoS when the filtering is enabled on AXI master port 1.

You can use the QoS bit to set different mixes of traffic flows:

• If the QoS bit is not set, all traffic can use all hardware resources regardless of priority.
• If the QoS bit is set, low-priority traffic cannot use all the hardware resources.

The following table shows the recommended QoS bit settings according to traffic types.

8 Determinism Support
8.5 System configurability and QoS

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-159

Non-Confidential

Table 8-5 Recommended QoS bit settings according to traffic types

Traffic flow types Low-priority cacheable traffic types

Small and bounded
memory latency

Potentially large and
unbounded memory
latency

Peripheral and data TCM traffic only. Do not set QoS bit Do not set QoS bit

Peripheral and low-priority cacheable traffic, the data TCM can be
present or not, and low-priority traffic is on AXI master port 0.

Do not set QoS bit Set QoS bit

Peripheral traffic, low and high-priority cacheable traffic, the data
TCM can be present or not, and low-priority traffic is on AXI
master port 0, with high-priority traffic on AXI master port 1.

Do not set QoS bit Set QoS bit

The recommended QoS bit settings make the following assumptions:
• The design implements AXI master port 0, and AXI master port 1 with address filtering.
• High-priority traffic consists of transfers accessing either the local SRAM on AXI master port 1, the

AXI low-latency peripheral port, an AXI fast peripheral port, or the data TCM.
• Other transfers, namely the cacheable transfers going through the AXI master port 0, have low

priority.

Related reference
4.3.10 Auxiliary Control Register on page 4-80

8 Determinism Support
8.5 System configurability and QoS

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-160

Non-Confidential

8.6 Instruction and data TCM
Instruction and data TCMs are tightly-coupled in the Cortex‑R8 processor. There are no external ports
for the TCMs and only SRAM memory is supported. Instructions cannot be stored in the Data TCM. An
instruction fetch to the Data TCM goes to the AXI interface and not the Data TCM.

 Note

• Arm recommends that the DTCM memory region is marked as XN in the MPU region settings to
prevent instruction accesses to this address range.

• Arm recommends that the same double-word is not accessed at the same time by both the CPU and
the AXI slave TCM port.

If an access corresponds to a TCM address, the access is treated as a cache hit and no other access is
performed on the AXI buses.

There is an option to permit a single wait state on the instruction TCM. The data TCM does not
accommodate wait states.

You can configure the instruction and data TCM size and the optional instruction TCM wait state during
integration. See the Arm® Cortex®‑R8 MPCore Processor Integration Manual for more information. The
permissible TCM sizes are:

• 0KB.
• 4KB.
• 8KB.
• 16KB.
• 32KB.
• 64KB.
• 128KB.
• 256KB.
• 512KB.
• 1024KB.

Both TCMs can be preloaded using the AXI TCM slave port. This slave port provides access to the
TCMs only.

From the view of a programmer:

• MPU regions targeting the TCM are private to the core and Non-Shareable regions from a
multiprocessing aspect. They are not part of the L1 data cache coherent domain.

• The size of the TCM interfaces is visible to software in the DTCM and ITCM Region Registers. If
the TCM size does not match a power of 2 value, the TCM size must be the next power of 2 value
above the physical memory size. If some accesses in the MPU region are not physically connected to
the TCM, you can choose how to drive read data for the address range uncovered by the physical
TCM, for example, alias or drive as 0.

If the processor is driven with VINITHI[x]=1 and INITRAMx=1 then the size of the ITCM is limited to
a maximum size of 64KB.

The base address for each the TCM is configured using the relevant TCM Region register. The TCM
base address must be aligned to the size of the TCM. The address ranges for the ITCM and DTCM
should not overlap however if the address range for the ITCM and DTCM do overlap and both TCM
instances are enabled then the DTCM will take precedence over the ITCM.

Both instruction and data TCM can be ECC protected.
 Note

Write accesses to the instruction TCM are possible for debug purposes, but with limited throughput.

8 Determinism Support
8.6 Instruction and data TCM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-161

Non-Confidential

Related concepts
2.5.5 AXI TCM slave port on page 2-45
7.2.3 ECC on RAMs on page 7-132
Related reference
4.3.13 DTCM Region Register on page 4-88
4.3.14 ITCM Region Register on page 4-89

8 Determinism Support
8.6 Instruction and data TCM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

8-162

Non-Confidential

Chapter 9
Multiprocessing

This chapter describes the multiprocessing features of the Cortex‑R8 processor, including the SCU.

It contains the following sections:
• 9.1 About multiprocessing and the SCU on page 9-164.
• 9.2 Multiprocessing programmers view on page 9-166.
• 9.3 SCU registers on page 9-167.
• 9.4 Interrupt controller on page 9-189.
• 9.5 Private timer and watchdog on page 9-201.
• 9.6 Global timer on page 9-207.
• 9.7 Accelerator Coherency Port on page 9-211.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-163

Non-Confidential

9.1 About multiprocessing and the SCU
The SCU connects Cortex‑R8 processor cores to the memory system through the AXI3 interfaces.

The SCU functions are to:

• Maintain data cache coherency between the cores.
• Initiate L2 AXI3 memory accesses.
• Arbitrate between the cores requesting L2 accesses.
• Manage ACP accesses, with data cache coherency for the cores.

 Note

The Cortex‑R8 processor SCU does not support hardware management of instruction cache coherency.

The SCU has an optional Accelerator Coherency Port (ACP) that is used to connect a noncached master
such as a DMA to the Cortex‑R8 processor, as shown in the following figure.

Core 0

L1
ICache

L1
DCache

Core 1
 (optional)

L1
ICache

L1
DCache

SCU

ACP bridge

I

D

I

D

Cortex-R8 processor

Interconnect
DMA2

DMA1

AXI master port 0

AXI master port 1
(optional)

AXI low-latency
peripheral port

AXI ACP

Figure 9-1 SCU and ACP in a two-core configuration

The SCU has two slave ports per core, one port connected to the instruction bus and one port connected
to the data bus of each core.

The ACP is intended to be used for coherent data transfers. However, the ACP can also be used in a
noncoherent mode, where any transfer with the level 2 memory can be done directly, without having to
deal with data coherency.

The data coherency efficiency, either using the ACP or between individual cores, is enhanced by using
the replicated tag RAMs of each L1 data cache tag RAM of each core in the SCU. Any transfer through
the SCU is looked up in the replicated tag RAM to determine whether data is present in the L1 data
cache of either core without having to access that cache.

You can choose to have one or two AXI master ports. The SCU also provides memory-mapped address
filtering to enable you to route specific transfers on AXI master port 1 with QoS guarantees.

9 Multiprocessing
9.1 About multiprocessing and the SCU

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-164

Non-Confidential

If address filtering is not enabled, transfers for odd-numbered cores, and instructions such as SWP,
LDREX/STREX, are routed through AXI master port 1, and transfers for even-numbered cores are
routed through AXI master port 0.

The SCU also contains:
• An AXI memory-mapped low-latency peripheral port.
• Memory-mapped control registers.
• An interrupt controller.
• Private timers and watchdog.
• Global timers.

You can configure the event monitor for each core to gather statistics on the operation of the SCU.

Related concepts
2.5.2 AXI master port 1 on page 2-42
8.5 System configurability and QoS on page 8-159
2.5.3 AXI low-latency peripheral port on page 2-43
9.6 Global timer on page 9-207
Related reference
9.7.1 Coherent and noncoherent mode on page 9-211
9.3 SCU registers on page 9-167
9.4 Interrupt controller on page 9-189
9.5 Private timer and watchdog on page 9-201
10.1 Performance Monitoring Unit on page 10-215

9 Multiprocessing
9.1 About multiprocessing and the SCU

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-165

Non-Confidential

9.2 Multiprocessing programmers view
To enable data cache coherency in the cores, set the SMP bit, bit[6] in the Auxiliary Control Register (the
reset value is zero), and set the SCU enable bit, bit[0] in the SCU Control Register (the reset value is
zero). The SCU enable bit must be set HIGH before any of the cores set their SMP bit HIGH.

The L1 data cache coherency between the cores is done in the inner Write-Back, Write-Allocate
Shareable memory regions. The coherency between the ACP traffic and the L1 data cache of the cores is
triggered when AxUSERSC[0] = 1 and AxCACHESC[1] = 1.

Related reference
4.3.10 Auxiliary Control Register on page 4-80
9.3.1 SCU Control Register on page 9-169
9.7.1 Coherent and noncoherent mode on page 9-211

9 Multiprocessing
9.2 Multiprocessing programmers view

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-166

Non-Confidential

9.3 SCU registers
All SCU registers are memory-mapped and have a common base address. Addresses are relative to the
base address of the region for the SCU memory map, PERIPHBASE[31:13].

To access the SCU registers, PERIPHBASE[31:13] must be located in the address range that
PFILTERSTART[11:0] and PFILTEREND[11:0] define. The value of PERIPHBASE[31:13] can be
retrieved by a core using the Configuration Base Address Register (CBAR) so that software can
determine the location of the SCU registers.

The Peripheral End Address filtering must be greater than or equal to the Peripheral Start Address. The
memory space in MB used for the address filtering is defined as follows:

The following table shows the peripheral accesses relative to the Peripheral Address setting.

Table 9-1 Peripheral accesses

Access SCU registers AXI low-latency peripheral
port traffic

Accessible by any
core

Accessible through
the ACP

Accessible by any core or
through the ACP

Peripheral End Address less than
Peripheral Start Address

No No Not enabled

Peripheral End Address equal to
Peripheral Start Address

Yes No Enabled

Peripheral End Address greater than
Peripheral Start Address

Yes No Enabled

The following table shows the SCU registers. All SCU registers are byte accessible and are reset by
nSCURESET.

Table 9-2 SCU registers summary

Offset from
PERIPHBASE[31:13]

Name Reset value Page

0x00 SCU Control Register IMPLEMENTATION DEFINED 9.3.1 SCU Control Register
on page 9-169

0x04 SCU Configuration Register IMPLEMENTATION DEFINED 9.3.2 SCU Configuration Register
on page 9-171

0x08 SCU CPU Power Status
Register

- 9.3.3 SCU CPU Power Status Register
on page 9-173

0x0C SCU Invalidate All Registers 0x0 9.3.4 SCU Invalidate All Register
on page 9-175

0x40 Master Filtering Start Address
Register

Defined by
MFILTERSTART input

9.3.5 Master Filtering Start Address
Register on page 9-176

0x44 Master Filtering End Address
Register

Defined by MFILTEREND
input

9.3.6 Master Filtering End Address
Register on page 9-177

0x48 Peripherals Filtering Start
Address Register

Defined by
PFILTERSTART input

9.3.7 LLP Filtering Start Address
Register on page 9-177

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-167

Non-Confidential

Table 9-2 SCU registers summary (continued)

Offset from
PERIPHBASE[31:13]

Name Reset value Page

0x4C Peripherals Filtering End
Address Register

Defined by PFILTEREND
input

9.3.8 LLP Filtering End Address
Register on page 9-178

0x50 SCU Access Control Register 0b11 9.3.9 SCU Access Control Register
on page 9-179

0x60 SCU Error Bank First Entry
Registerau

- 9.3.10 SCU Error Bank First Entry
Register on page 9-180

0x64 SCU Error Bank Second
Entry Registerau

- 9.3.11 SCU Error Bank Second Entry
Register on page 9-181

0x70 SCU Debug Tag RAM
Operation Register

- SCU Debug Tag RAM Operation
Register on page 9-182

0x74 SCU Debug Tag RAM Data
Value Register

- SCU Debug Tag RAM Data Value
Register on page 9-183

0x78 SCU Debug Tag RAM ECC
Chunk Registerau

- SCU Debug Tag RAM ECC Chunk
Register on page 9-184

0x7C ECC Fatal Error Registerau 0x0 9.3.14 FPP Filtering Start Address
Registers 0-3 on page 9-186

0x80 FPP Filtering Start Address
Register for core 0

Defined by
FPFILTERSTART0

9.3.14 FPP Filtering Start Address
Registers 0-3 on page 9-186

0x84 FPP Filtering End Address
Register for core 0

Defined by
FPFILTEREND0

9.3.15 FPP Filtering End Address
Registers 0-3 on page 9-187

0x88 FPP Filtering Start Address
Register for core 1

Defined by
FPFILTERSTART1

9.3.14 FPP Filtering Start Address
Registers 0-3 on page 9-186

0x8C FPP Filtering End Address
Register for core 1

Defined by
FPFILTEREND1

9.3.15 FPP Filtering End Address
Registers 0-3 on page 9-187

0x90 FPP Filtering Start Address
Register for core 2

Defined by
FPFILTERSTART2

9.3.14 FPP Filtering Start Address
Registers 0-3 on page 9-186

0x94 FPP Filtering End Address
Register for core 2

Defined by
FPFILTEREND2

9.3.15 FPP Filtering End Address
Registers 0-3 on page 9-187

0x98 FPP Filtering Start Address
Register for core 3

Defined by
FPFILTERSTART3

9.3.14 FPP Filtering Start Address
Registers 0-3 on page 9-186

0x9C FPP Filtering End Address
Register for core 3

Defined by
FPFILTEREND3

9.3.15 FPP Filtering End Address
Registers 0-3 on page 9-187

This section contains the following subsections:
• 9.3.1 SCU Control Register on page 9-169.
• 9.3.2 SCU Configuration Register on page 9-171.
• 9.3.3 SCU CPU Power Status Register on page 9-173.
• 9.3.4 SCU Invalidate All Register on page 9-175.
• 9.3.5 Master Filtering Start Address Register on page 9-176.
• 9.3.6 Master Filtering End Address Register on page 9-177.
• 9.3.7 LLP Filtering Start Address Register on page 9-177.
• 9.3.8 LLP Filtering End Address Register on page 9-178.

au This register is present only when ECC is implemented.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-168

Non-Confidential

• 9.3.9 SCU Access Control Register on page 9-179.
• 9.3.10 SCU Error Bank First Entry Register on page 9-180.
• 9.3.11 SCU Error Bank Second Entry Register on page 9-181.
• 9.3.12 SCU Debug tag RAM access on page 9-182.
• 9.3.13 ECC Fatal Error Register on page 9-185.
• 9.3.14 FPP Filtering Start Address Registers 0-3 on page 9-186.
• 9.3.15 FPP Filtering End Address Registers 0-3 on page 9-187.

9.3.1 SCU Control Register

The SCU Control Register enables speculative linefills to L2 with the L2C-310 Cache Controller.

The SCU Control Register also enables:
• IC standby mode.
• SCU standby mode.
• SCU tag RAM ECC support.
• Address filtering.
• Bus ECC and parity control.
• Access control on master ports.
• Cache coherency features.

The following figure shows the SCU Control Register bit assignments.

31 1 0

SBZ

SCU enable
Address filtering enable

23

SCU RAMs ECC enable

SCU standby enable
SBZ

SCU speculative linefill enable

IC standby enable

4567111213141516

SBZ

ECC check enable on ACP
ECC check enable on MP

ECC check enable on M1
ECC check enable on M0

21 20 19 18 17

ECC check enable on AXI TCM
ECC check enable on core 3 FPP

ECC check enable on core 2 FPP
ECC check enable on core 1 FPP

ECC check enable on core 0 FPP

Figure 9-2 SCU Control Register bit assignments

The following table shows the SCU Control Register bit assignments.

Table 9-3 SCU Control Register bit assignments

Bits Name Description

[31:21] - Reserved. SBZ.

[20] ECC check enable on AXI
TCM slave port

When set, enables ECC check on the AXI TCM slave port.

[19] ECC check enable on core 3
FPP

When set, enables ECC check on the AXI fast peripheral port for core 3.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-169

Non-Confidential

Table 9-3 SCU Control Register bit assignments (continued)

Bits Name Description

[18] ECC check enable on core 2
FPP

When set, enables ECC check on the AXI fast peripheral port for core 2.

[17] ECC check enable on core 1
FPP

When set, enables ECC check on the AXI fast peripheral port for core 1.

[16] ECC check enable on core 0
FPP

When set, enables ECC check on the AXI fast peripheral port for core 0.

[15] ECC check enable on ACP When set, enables ECC check on the Accelerator Coherency Port (ACP).

[14] ECC check enable on MP When set, enables ECC check on the AXI master peripheral port.

[13] ECC check enable on M1 When set, enables ECC check on AXI master port 1.

[12] ECC check enable on M0 When set, enables ECC check on AXI master port 0.

[11:7] - Reserved. SBZ.

[6] IC standby enable When set, this stops the interrupt controller clock when no interrupts are pending, and no core
is performing a read/write request.

[5] SCU standby enable When set, the clock in the SCU is turned off when all cores are in WFI mode or in powerdown,
there is no pending request on the ACP, if implemented, and there is no remaining activity in
the SCU.

When the clock in the SCU is off, ARREADYSC, AWREADYSC, and WREADYSC on the
ACP are forced LOW. The clock is turned on when any core leaves WFI mode, or if there is a
new request on the ACP.

[4] - Reserved. SBZ.

[3] SCU speculative linefill
enable

When set, coherent linefill requests are sent speculatively to the L2C-310 Cache Controller in
parallel with the tag lookup.

If the tag lookup misses, the confirmed linefill is sent to the L2C-310 Cache Controller and
receives RDATA earlier because the speculative request already initiated the data request. This
feature works only if there is an L2C-310 Cache Controller in the design. When filtering is
enabled, only port 0 can receive speculative linefills.

[2] SCU RAMs ECC enable Enables ECC:

0b1 ECC on.

0b0 ECC off. This is the default setting.

This bit is always zero if support for ECC is not implemented.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-170

Non-Confidential

Table 9-3 SCU Control Register bit assignments (continued)

Bits Name Description

[1] Address filtering enable This is a read-only bit that indicates address filtering:

0b1 Address filtering on.

0b0 Address filtering off.

This value is the value of MFILTEREN sampled when nSCURESET is deasserted.

This bit is always zero if the SCU is implemented in the single master port configuration. See
2.5.2 AXI master port 1 on page 2-42.

[0] SCU enable Enables SCU:

0b1 SCU enabled.

0b0 SCU disabled. This is the default setting.

9.3.2 SCU Configuration Register

The SCU Configuration Register reads tag RAM sizes for the cores that are present, determines the cores
that are taking part in coherency, and reads the number of cores present.

Usage constraints
This register is read-only.

Configurations
Available in all configurations.

Attributes

Offset from PERIPHBASE[31:13]: 0x04

Reset value: IMPLEMENTATION DEFINED

The following figure shows the SCU Configuration Register bit assignments.

SBZ

31 16 15 8 7 4 1 0

Cores in coherency mode

SBZ

Number of cores

312 11

Cache size for core 1
Cache size for core 0

24 23 20 19

Cache size for core 3
Cache size for core 2

2

M

Figure 9-3 SCU Configuration Register bit assignments

The following table shows the SCU Configuration Register bit assignments.

Table 9-4 SCU Configuration Register bit assignments

Bits Name Description

[31] M This read-only bit indicates the inclusion of the AXI master port 1:

0b0 AXI master port 1 not present.

0b1 AXI master port 1 present.

[30:24] - Reserved. SBZ.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-171

Non-Confidential

Table 9-4 SCU Configuration Register bit assignments (continued)

Bits Name Description

[23:20] Cache size for core 3 The encoding is as follows:

0b0101 64KB cache.

0b0100 32KB cache.

0b0011 16KB cache.

0b0010 8KB cache.

0b0001 4KB cache.

0b0000 0KB cache.

All other values are Reserved.

[19:16] Cache size for core 2 The encoding is as follows:

0b0101 64KB cache.

0b0100 32KB cache.

0b0011 16KB cache.

0b0010 8KB cache.

0b0001 4KB cache.

0b0000 0KB cache.

All other values are Reserved.

[15:12] Cache size for core 1 The encoding is as follows:

0b0101 64KB cache.

0b0100 32KB cache.

0b0011 16KB cache.

0b0010 8KB cache.

0b0001 4KB cache.

0b0000 0KB cache.

All other values are Reserved.

[11:8] Cache size for core 0 The encoding is as follows:

0b0101 64KB cache.

0b0100 32KB cache.

0b0011 16KB cache.

0b0010 8KB cache.

0b0001 4KB cache.

0b0000 0KB cache.

All other values are Reserved.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-172

Non-Confidential

Table 9-4 SCU Configuration Register bit assignments (continued)

Bits Name Description

[7:4] Cores in coherency
mode

Shows the cores that are in Symmetric Multiprocessing (SMP) or Asymmetric Multiprocessing
(AMP) mode:

0b1 This core is in SMP mode taking part in coherency.

0b0 This core is in AMP mode not taking part in coherency or not
present.

[7]
Core 3.

[6]
Core 2.

[5]
Core 1.

[4]
Core 0.

[3:2] - Reserved. SBZ.

[1:0] Number of cores Number of cores present in the Cortex‑R8 processor:

0b11 Four cores, core 0, core 1, core 2 and core 3.

0b10 Three cores, core 0, core 1 and core 2.

0b01 Two cores, core 0 and core 1.

0b00 One core, core 0.

Related reference
9.3 SCU registers on page 9-167

9.3.3 SCU CPU Power Status Register

The SCU CPU Power Status Register specifies the state of the Cortex‑R8 processor cores with reference
to power modes.

Usage constraints

Writes to this register are enabled when the access bit for the core is set in the SCU Access
Control Register. See 9.3.9 SCU Access Control Register on page 9-179.

Dormant mode and powered-off mode are controlled by an external power controller. SCU CPU
Status Register bits indicate to the external power controller the power domains that can be
powered down.

Before entering any other power mode than Normal, the core must set its status field to signal to
the power controller the mode it is about to enter. The core power down routine must then
execute a DSB instruction and then a WFI entry instruction. When in WFI state, the
PWRCTLOx bus is enabled and signals to the power controller what it must do with power
domains. See also 2.4.1 Individual core power management on page 2-36.

The SCU CPU Power Status Register bits can also be read by a core exiting low-power mode to
determine its state before executing its reset setup.

Configurations
Available in all configurations.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-173

Non-Confidential

Attributes

Offset from PERIPHBASE[31:13]: 0x08

Reset value: -

The following figure shows the SCU CPU Power Status Register bit assignments.

7 2 1 0

SBZ

Core 1 status Core 0 status

31 810 9242526 23 161718

SBZ

15

SBZ

Core 3 status Core 2 status

SBZ

Figure 9-4 SCU CPU Power Status Register bit assignments

The following table shows the SCU CPU Power Status Register bit assignments.

Table 9-5 SCU CPU Power Status Register bit assignments

Bits Name Description

[31:26] - Reserved. SBZ.

[25:24] Core 3 status Power status of core 3:

0b0X
Core must be powered on.

0b10
Core can enter dormant mode.

0b11
Core can enter powered-off mode.

[23:18] - Reserved. SBZ.

[17:16] Core 2 status Power status of core 2:

0b0X
Core must be powered on.

0b10
Core can enter dormant mode.

0b11
Core can enter powered-off mode.

[15:10] - Reserved. SBZ.

[9:8] Core 1 status Power status of core 1:

0b0X
Core must be powered on.

0b10
Core can enter dormant mode.

0b11
Core can enter powered-off mode.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-174

Non-Confidential

Table 9-5 SCU CPU Power Status Register bit assignments (continued)

Bits Name Description

[7:2] - Reserved. SBZ.

[1:0] Core 0 status Power status of core 0:

0b0X
Core must be powered on.

0b10
Core can enter dormant mode.

0b11
Core can enter powered-off mode.

Related concepts
2.4.1 Individual core power management on page 2-36
Related reference
9.3.9 SCU Access Control Register on page 9-179
9.3 SCU registers on page 9-167

9.3.4 SCU Invalidate All Register

The SCU Invalidate All Register invalidates the SCU tag RAMs on a per core, and per way basis.

Usage constraints
• This register invalidates all lines in the selected ways.
• Writes to this register are enabled when the access bit for the core is set in the SCU Access

Control Register. See 9.3.9 SCU Access Control Register on page 9-179.

Configurations
Available in all configurations.

Attributes

Offset from PERIPHBASE[31:13]: 0x0C

Reset value: 0x0

The following figure shows the SCU Invalidate All Register bit assignments.

8 7 4 0

SBZ

3

Core 0
ways

Core 1
ways

31 11121516

Core 3
ways

Core 2
ways

Figure 9-5 SCU Invalidate All Register bit assignments

The following table shows the SCU Invalidate All Register bit assignments.

Table 9-6 SCU Invalidate All Register bit assignments

Bits Name Description

[31:16] Reserved. SBZ.

[15:12] Core 3 ways Specifies the ways that must be invalidated for core 3. Writing to these bits has no effect if the Cortex‑R8
processor has fewer than four cores.

[11:8] Core 2 ways Specifies the ways that must be invalidated for core 2. Writing to these bits has no effect if the Cortex‑R8
processor has fewer than three cores.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-175

Non-Confidential

Table 9-6 SCU Invalidate All Register bit assignments (continued)

Bits Name Description

[7:4] Core 1 ways Specifies the ways that must be invalidated for core 1. Writing to these bits has no effect if the Cortex‑R8
processor has fewer than two cores.

[3:0] Core 0 ways Specifies the ways that must be invalidated for core 0.

Related reference
9.3.9 SCU Access Control Register on page 9-179
9.3 SCU registers on page 9-167

9.3.5 Master Filtering Start Address Register

The Master Filtering Start Address Register provides the start address for use with master port 1 in a
two-master port configuration.

Usage constraints
This register is read-only.

Configurations
Available in all two-master port configurations. When only one master port is present, these
registers are not implemented. Writes have no effect and reads return a value 0x0 for all filtering
registers.

Attributes

Offset from PERIPHBASE[31:13]: 0x40

Reset value: Defined by MFILTERSTART input.

The following figure shows the Master Filtering Start Address Register bit assignments.

0

Filtering start address

31

SBZ

1920

Figure 9-6 Master Filtering Start Address Register bit assignments

The following table shows the Master Filtering Start Address Register bit assignments.

Table 9-7 Master Filtering Start Address Register bit assignments

Bits Name Description

[31:20] Filtering start
address

Start address for use with master port 1 in a two-master port configuration when address filtering is
enabled.

This value is the value of MFILTERSTART sampled on exit from reset. The value on the input gives the
upper address bits with 1MB granularity.

[19:0] Reserved. SBZ.

See 2.5.2 AXI master port 1 on page 2-42.

Related concepts
2.5.2 AXI master port 1 on page 2-42
Related reference
9.3 SCU registers on page 9-167

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-176

Non-Confidential

9.3.6 Master Filtering End Address Register

The Master Filtering End Address Register provides the end address for use with master port 1 in a two-
master port configuration.

Usage constraints
This register has an inclusive address as its end address. This means that the topmost megabyte
of address space of memory can be included in the filtering address range.

Configurations
Available in all two-master port configurations. When only one master port is present writes
have no effect and reads return a value 0x0 for all filtering registers.

Attributes

Offset from PERIPHBASE[31:13]: 0x44

Reset value: Defined by MFILTEREND input.

The following figure shows the Master Filtering End Address Register bit assignments.

0

Filtering end address

31

SBZ

1920

Figure 9-7 Master Filtering End Address Register bit assignments

The following table shows the Master Filtering End Address Register bit assignments.

Table 9-8 Master Filtering End Address Register bit assignments

Bits Name Description

[31:20] Filtering end
address

End address for use with master port 1 in a two-master port configuration, when address filtering is
enabled.

The default value is the value of MFILTEREND sampled on exit from reset. The value on the input
gives the upper address bits with 1MB granularity.

[19:0] Reserved. SBZ.

See A.5 Configuration signals on page Appx-A-362. See also 2.5.2 AXI master port 1 on page 2-42.

Related concepts
2.5.2 AXI master port 1 on page 2-42
Related reference
9.3 SCU registers on page 9-167
A.5 Configuration signals on page Appx-A-362

9.3.7 LLP Filtering Start Address Register

The LLP Filtering Start Address Register provides the filtering start address for the AXI low-latency
peripheral port.

Usage constraints
This register is read-only. For the peripheral port region to operate, the filtering start address
must be lower than the filtering end address.

Configurations
Available in all configurations.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-177

Non-Confidential

Attributes

Offset from PERIPHBASE[31:13]: 0x48

Reset value: Defined by PFILTERSTART input.

The following figure shows the LLP Filtering Start Address Register bit assignments.

0

Filtering start address

31

SBZ

1920

Figure 9-8 LLP Filtering Start Address Register bit assignments

The following table shows the LLP Filtering Start Address Register bit assignments.

Table 9-9 LLP Filtering Start Address Register bit assignments

Bits Name Description

[31:20] Filtering start
address

Filtering start address for the peripheral port.

The default value is the value of PFILTERSTART sampled on exit from reset. The value on the input
gives the upper address bits with 1MB granularity.

[19:0] Reserved. SBZ.

See 2.5.3 AXI low-latency peripheral port on page 2-43.

Related concepts
2.5.3 AXI low-latency peripheral port on page 2-43
Related reference
9.3 SCU registers on page 9-167

9.3.8 LLP Filtering End Address Register

The LLP Filtering End Address Register provides the filtering end address for the AXI low-latency
peripheral port.

Usage constraints
This register is read-only. It has an inclusive address as its end address. This means that the
topmost megabyte of address space of memory can be included in the filtering address range.
For the peripheral port region to operate, the filtering start address must be lower than the
filtering end address.

Configurations
Available in all configurations.

Attributes

Offset from PERIPHBASE[31:13]: 0x4C

Reset value: Defined by PFILTEREND input.

The following figure shows the LLP Filtering End Address Register bit assignments.

0

Filtering end address

31

SBZ

1920

Figure 9-9 LLP Filtering End Address Register bit assignments

The following table shows the LLP Filtering End Address Register bit assignments.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-178

Non-Confidential

Table 9-10 LLP Filtering End Address Register bit assignments

Bits Name Description

[31:20] Filtering end
address

Filtering end address for the peripheral port.

The default value is the value of PFILTEREND sampled on exit from reset. The value on the input
gives the upper address bits with 1MB granularity.

[19:0] Reserved. SBZ.

See A.5 Configuration signals on page Appx-A-362. See also 2.5.3 AXI low-latency peripheral port
on page 2-43.

Related concepts
2.5.3 AXI low-latency peripheral port on page 2-43
Related reference
9.3 SCU registers on page 9-167
A.5 Configuration signals on page Appx-A-362

9.3.9 SCU Access Control Register

The SCU Access Control Register controls access to SCU registers on a per core basis.

The SCU Access Control Register controls access to the following registers:

• SCU Control Register.
• SCU CPU Power Status Register.
• SCU Invalidate All Register.
• SCU Error Bank First Entry Register.
• SCU Error Bank Second Entry Register.

The following figure shows the SCU Access Control Register bit assignments.

31 2 1 0

Core 1 SCU register access
Core 0 SCU register access

4 3

Core 3 SCU register access
Core 2 SCU register access

SBZ

Figure 9-10 SCU Access Control Register bit assignments

The following table shows the SCU Access Control Register bit assignments.

Table 9-11 SCU Access Control Register bit assignments

Bits Name Description

[31:4] Reserved. SBZ.

[3] Core 3 SCU register access 0b1 Core 3 can access the SCU registers. This is the default.

0b0 Core 3 cannot access the SCU registers.

[2] Core 2 SCU register access 0b1 Core 2 can access the SCU registers. This is the default.

0b0 Core 2 cannot access the SCU registers.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-179

Non-Confidential

Table 9-11 SCU Access Control Register bit assignments (continued)

Bits Name Description

[1] Core 1 SCU register access 0b1 Core 1 can access the SCU registers. This is the default.

0b0 Core 1 cannot access the SCU registers.

[0] Core 0 SCU register access 0b1 Core 0 can access the SCU registers. This is the default.

0b0 Core 0 cannot access the SCU registers.

Related reference
9.3.1 SCU Control Register on page 9-169
9.3.3 SCU CPU Power Status Register on page 9-173
9.3.4 SCU Invalidate All Register on page 9-175
9.3.10 SCU Error Bank First Entry Register on page 9-180
9.3.11 SCU Error Bank Second Entry Register on page 9-181

9.3.10 SCU Error Bank First Entry Register

The SCU Error Bank First Entry Register shows the first SCU error bank entry.

Usage constraints
There are no usage constraints.

Configurations
Available only in configurations where ECC is implemented.

Attributes

Offset from PERIPHBASE[31:13]: 0x60

Reset value: -

The following figure shows the SCU Error Bank First Entry Register bit assignments.

31 0

SBZ

12

Status

1516232428 27 20 19

Ways for core0
Ways for core1

Ways for core2
Ways for core3

Figure 9-11 SCU Error Bank First Entry Register bit assignments

The following table shows the SCU Error Bank First Entry Register bit assignments.

Table 9-12 SCU Error Bank First Entry Register bit assignments

Bits Name Function

[31:28] Ways for core3 Ways for core 3

[27:24] Ways for core2 Ways for core 2.

[23:20] Ways for core1 Ways for core 1.

[19:16] Ways for core0 Ways for core 0.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-180

Non-Confidential

Table 9-12 SCU Error Bank First Entry Register bit assignments (continued)

Bits Name Function

[15:2] - Reserved. SBZ.

[1:0] Status Error status. The values are:

0b00 No error.

0b01 Error seen by SCU tag RAM, but not handled by core.

0b10 Error seen by both SCU and core.

0b11 Error is confirmed by software.

Related reference
9.3 SCU registers on page 9-167

9.3.11 SCU Error Bank Second Entry Register

The SCU Error Bank Second Entry Register shows the second SCU error bank entry.

Usage constraints
There are no usage constraints.

Configurations
Available only in configurations where ECC is implemented.

Attributes

Offset from PERIPHBASE[31:13]: 0x64

Reset value: -

The following figure shows the SCU Error Bank Second Entry Register bit assignments.

SBZ

31 5 0

Ways SBZ Index

1314 12

Status

41516

Figure 9-12 SCU Error Bank Second Entry Register bit assignments

The following table shows the SCU Error Bank Second Entry Register bit assignments.

Table 9-13 SCU Error Bank Second Entry Register bit assignments

Bits Name Function

[31:16] Ways Ways in the SCU tag RAM, four bits per core.

[15:14] - Reserved. SBZ.

[13:5] Index Index in the SCU tag RAM.

[4:2] - Reserved. SBZ.

[1:0] Status Error status. The values are:

0b00 No error.

0b01 Error seen by SCU tag RAM, but not handled by core.

0b10 Error seen by both SCU and core.

0b11 Error is confirmed by software.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-181

Non-Confidential

Related reference
9.3 SCU registers on page 9-167

9.3.12 SCU Debug tag RAM access

You can access a specific faulty location in a tag RAM or inject fake errors to check the ECC mechanism
in the SCU.

Three SCU registers are provided:

• SCU Debug Tag RAM Operation Register to select the type of operation and the selected tag RAM.
• SCU Debug Tag RAM Data Value Register to select a specific tag value.
• SCU Debug Tag RAM ECC Chunk Register to select the ECC chunk associated with the tag value.

To read a given SCU tag RAM location:

1. Write the SCU Debug Tag RAM Operation Register.
2. Read the SCU Debug Tag RAM Data Value Register or the SCU Debug Tag RAM ECC Chunk

Register.
To write a given SCU tag RAM location:
1. Write the SCU Debug Tag RAM Data Value Register or the SCU Debug Tag RAM ECC Chunk

Register.
2. Write the SCU Debug Tag RAM Operation Register.

SCU Debug Tag RAM Operation Register

The SCU Debug Tag RAM Operation Register gives the address and action for SCU tag RAM direct
access.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Offset from PERIPHBASE[31:13]: 0x70

Reset value: -

The following figure shows the SCU Debug Tag RAM Operation Register bit assignments.

31 30 29 25 24 23 14 13 5 4 1 0

SBZSBZ SBZ SCU tag RAM set target

SCU tag RAM way target

SCU tag RAM core target Read or write operation

26

Figure 9-13 SCU Debug Tag RAM Operation Register bit assignments

The following table shows the SCU Debug Tag RAM Operation Register bit assignments.

Table 9-14 SCU Debug Tag RAM Operation Register bit assignments

Bits Name Function

[31:30] SCU tag RAM way target Indicates the number of the RAM way.

[29:26] - Reserved. SBZ.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-182

Non-Confidential

Table 9-14 SCU Debug Tag RAM Operation Register bit assignments (continued)

Bits Name Function

[25:24] SCU tag RAM core target Indicates the core target:

0b00 Core 0.

0b01 Core 1.

0b10 Core 2.

0b11 Core 3.

[23:14] - Reserved. SBZ.

[13:5] SCU tag RAM set target Index to read or write the SCU tag RAM.

[4:1] - Reserved. SBZ.

[0] Read or write operation Specifies whether it is a read or write operation:

0b0 Read.

0b1 Write.

Related reference
9.3 SCU registers on page 9-167

SCU Debug Tag RAM Data Value Register

The SCU Debug Tag RAM Data Value Register gives the data value for SCU tag RAM direct access.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Offset from PERIPHBASE[31:13]: 0x74

Reset value: -

The following figure shows the SCU Debug Tag RAM Data Value Register bit assignments.

SBZ

31 23 22 21 17 0

Value
(maximum) SBZ

Valid

16

Figure 9-14 SCU Debug Tag RAM Data Value Register bit assignments

The following table shows the SCU Debug Tag RAM Data Value Register bit assignments.

Table 9-15 SCU Debug Tag RAM Data Value Register bit assignments

Bits Name Function

[31:23] - Reserved. SBZ.

[22] Valid Valid bit.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-183

Non-Confidential

Table 9-15 SCU Debug Tag RAM Data Value Register bit assignments (continued)

Bits Name Function

[21:17] Value Tag value:

[21]
4KB.

[21:20]
8KB.

[21:19]
16KB.

[21:18]
32KB.

[21:17]
64KB.

Unused bits are Reserved.

[16:0] - Reserved. SBZ.

Related reference
9.3 SCU registers on page 9-167

SCU Debug Tag RAM ECC Chunk Register

The SCU Debug Tag RAM ECC Chunk Register shows the ECC chunk value.

Usage constraints
There are no usage constraints.

Configurations
Available only in configurations where ECC is implemented.

Attributes

Offset from PERIPHBASE[31:13]: 0x78

Reset value: -

The following figure shows the SCU Debug Tag RAM ECC Chunk Register bit assignments.

SBZ

31 0

Chunk

7 6

Figure 9-15 SCU Debug Tag RAM ECC Chunk Register bit assignments

The following table shows the SCU Debug Tag RAM ECC Chunk Register bit assignments.

Table 9-16 SCU Debug Tag RAM ECC Chunk Register bit assignments

Bits Name Function

[31:7] - Reserved. SBZ.

[6:0] Chunk ECC chunk value.

Related reference
9.3 SCU registers on page 9-167

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-184

Non-Confidential

Related reference
SCU Debug Tag RAM Operation Register on page 9-182
SCU Debug Tag RAM Data Value Register on page 9-183
SCU Debug Tag RAM ECC Chunk Register on page 9-184

9.3.13 ECC Fatal Error Register

The ECC Fatal Error Register provides a double-bit ECC fatal error signal that indicates data written out
of the processor might be corrupted. The system can use this signal to disable writes to external memory.

Usage constraints
Writes to this register are enabled when the access bit for the core is set in the SCU Access
Control Register, see 9.3.9 SCU Access Control Register on page 9-179.

Configurations
Available only in configurations where ECC is implemented.

Attributes

Offset from PERIPHBASE[31:13]: 0x7C

Reset value: 0x0

The following figure shows the ECC Fatal Error Register bit assignments.

31 4 1 0

SBZSBZ

ECC fatal error detected for core 1

9 8 7 3 2

ECC fatal error detected for core 0

ECC fatal error detected for core 2

ECC fatal error detected for core 3

ECC fatal error detected

Figure 9-16 ECC Fatal Error Register bit assignments

Table 9-17 ECC Fatal Error Register bit assignments

Bits Name Function

[31:9] - Reserved. SBZ.

[8] ECC fatal error detected Set only when any core has an ECC fatal error.

Reset by software.

This bit is exported externally by FATALERRDET.

[7:4] - Reserved. SBZ.

[3] ECC fatal error detected for core 3 Set only when core 3 has an ECC fatal error.

Reset by software.

[2] ECC fatal error detected for core 2 Set only when core 2 has an ECC fatal error.

Reset by software.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-185

Non-Confidential

Table 9-17 ECC Fatal Error Register bit assignments (continued)

Bits Name Function

[1] ECC fatal error detected for core 1 Set only when core 1 has an ECC fatal error.

Reset by software.

[0] ECC fatal error detected for core 0 Set only when core 0 has an ECC fatal error.

Reset by software.

Related reference
9.3.9 SCU Access Control Register on page 9-179
9.3 SCU registers on page 9-167

9.3.14 FPP Filtering Start Address Registers 0-3

The FPP Filtering Start Address Registers provide the filtering start address of the FPP that corresponds
to the core.

Usage constraints
These registers are read-only. The filtering start address must be lower than the filtering end
address of the FPP that corresponds to the core.

Configurations
Available when the FPP of the corresponding core is implemented.

Attributes
Offset from PERIPHBASE[31:13]:
• Core 0: 0x80
• Core 1: 0x88
• Core 2: 0x90
• Core 3: 0x98

Reset value: Defined by FPFILTERSTARTx.

The following figure shows the FPP Filtering Start Address Registers 0-3 bit assignments.

0

Filtering start address

31

SBZ

1920

Figure 9-17 FPP Filtering Start Address Registers 0-3

The following table shows the FPP Filtering Start Address Registers 0-3 bit assignments.

Table 9-18 FPP Filtering Start Address Registers 0-3 bit assignments

Bits Name Function

[31:20] Filtering start
address

Filtering start address for core 0-3.

The default value is the value of FPFILTERSTARTx, where x corresponds to either core 0, 1, 2 or 3,
sampled when the core exits reset. The value on the input gives the upper address bits with 1MB
granularity.

[19:0] - Reserved. SBZ.

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-186

Non-Confidential

 Note

The filtering start address is applied independently of the AXI request type and its attributes.

Related reference
9.3 SCU registers on page 9-167

9.3.15 FPP Filtering End Address Registers 0-3

The FPP Filtering End Address Registers provide the filtering end address of the FPP that corresponds to
the core.

Usage constraints
These registers are read-only. The filtering end address must be higher than the filtering start
address of the FPP that corresponds to the core. These registers have an inclusive address as
their end address. This means that the topmost megabyte of memory address space can be
included in the filtering address range.

Configurations
Available when the FPP of the corresponding core is implemented.

Attributes
Offset from PERIPHBASE[31:13]:
• Core 0: 0x84
• Core 1: 0x8C
• Core 2: 0x94
• Core 3: 0x9C

Reset value: Defined by FPFILTERENDx.

The following figure shows the FPP Filtering End Address Registers 0-3 bit assignments.

0

Filtering end address

31

SBZ

1920

Figure 9-18 FPP Filtering End Address Registers 0-3

The following table shows the FPP Filtering End Address Registers 0-3 bit assignments.

Table 9-19 FPP Filtering End Address Registers 0-3 bit assignments

Bits Name Function

[31:20] Filtering end
address

Filtering end address for core 0-3.

The default value is the value of FPFILTERENDx, where x corresponds to either core 0, 1, 2 or 3,
sampled when the core exits reset. The value on the input gives the upper address bits with 1MB
granularity.

[19:0] - Reserved. SBZ.

 Note

The filtering end address is applied independently of the AXI request type and its attributes.

Related reference
9.3 SCU registers on page 9-167
Related reference
9.3.7 LLP Filtering Start Address Register on page 9-177

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-187

Non-Confidential

9.3.8 LLP Filtering End Address Register on page 9-178
9.3.1 SCU Control Register on page 9-169
9.3.2 SCU Configuration Register on page 9-171
9.3.3 SCU CPU Power Status Register on page 9-173
9.3.4 SCU Invalidate All Register on page 9-175
9.3.5 Master Filtering Start Address Register on page 9-176
9.3.6 Master Filtering End Address Register on page 9-177
9.3.9 SCU Access Control Register on page 9-179
9.3.10 SCU Error Bank First Entry Register on page 9-180
9.3.11 SCU Error Bank Second Entry Register on page 9-181
SCU Debug Tag RAM Operation Register on page 9-182
SCU Debug Tag RAM Data Value Register on page 9-183
SCU Debug Tag RAM ECC Chunk Register on page 9-184
9.3.14 FPP Filtering Start Address Registers 0-3 on page 9-186
9.3.15 FPP Filtering End Address Registers 0-3 on page 9-187

9 Multiprocessing
9.3 SCU registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-188

Non-Confidential

9.4 Interrupt controller
The interrupt controller is a single functional unit that is located in a Cortex‑R8 processor design. There
is one interrupt interface per core in the design. This implementation of the interrupt controller does not
support the Security Extensions.

Interrupts controlled by the interrupt controller are only signaled as IRQ exceptions. Only the legacy
nFIQ inputs can signal an FIQ exception.

The interrupt controller is memory-mapped. The Cortex‑R8 processor cores access it by using a private
interface through the SCU.

The interrupt controller is compliant with the Arm Generic Interrupt Controller (GIC) v1.0 architecture.
The information in this TRM describes the implementation-defined features of the interrupt controller,
and does not reproduce information already in the Arm® Generic Interrupt Controller Architecture
Specification.

This section contains the following subsections:
• 9.4.1 Interrupt controller clock frequency on page 9-189.
• 9.4.2 Interrupt distributor interrupt sources on page 9-189.
• 9.4.3 Priority formats on page 9-190.
• 9.4.4 Distributor register descriptions on page 9-190.
• 9.4.5 Interrupt interface register descriptions on page 9-198.

9.4.1 Interrupt controller clock frequency

The interrupt controller runs on PERIPHCLK. The clock period is configured, during integration, as an
integer division of the Cortex‑R8 processor clock (CLK) period.

This division, N, must be greater than or equal to two. As a consequence, the minimum pulse width of
signals driving external interrupt lines is N CLK cycles.

The timers and watchdogs use the same clock as the interrupt controller.

Related concepts
2.3 Clocking, resets, and initialization on page 2-29

9.4.2 Interrupt distributor interrupt sources

The interrupt distributor centralizes all interrupt sources before dispatching the highest priority ones to
each Cortex‑R8 processor core.

The Cortex‑R8 processor supports only the 1-N service model for SPIs.

All interrupt sources are identified by a unique ID. All interrupt sources have their own configurable
priority and list of targeted Cortex‑R8 processor cores. If two interrupts have the same programmed
priority level, then the interrupt with the lower ID value will take priority over the interrupt with the
higher ID. This is a list of cores that the interrupt is sent to when triggered by the interrupt distributor.

Interrupt sources are of the following types:

Software Generated Interrupts (SGI)
Each core has private interrupts, ID0-ID15, that can only be triggered by software. These
interrupts are aliased so that there is no requirement for a requesting core to determine its own
core ID when it deals with SGIs. The priority of an SGI depends on the value set by the
receiving core in the banked SGI priority registers, not the priority set by the sending core.

Global timer, PPI[0]
The global timer uses ID27.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-189

Non-Confidential

A legacy nFIQ input, PPI[1]

In the Cortex‑R8 processor, the nFIQ input is connected both to the corresponding core, where
it causes an FIQ exception, and to the interrupt controller. If the interrupt controller is enabled,
then nFIQ is mapped to PPI[1], and can also cause an IRQ exception.

The nFIQ input can be used to generate either FIQ exceptions or IRQ exceptions. You must
configure the interrupt controller to ensure that it does not generate both IRQ and FIQ
exceptions. To use the nFIQ input to generate FIQ exceptions, you must either disable interrupt
ID28 in the interrupt controller or disable the interrupt controller itself.

To use the nFIQ input to generate IRQ exceptions, you enable interrupt ID28 in the interrupt
controller and you should mask FIQ exceptions by setting bit[6] of the CPSR, the F bit, so that
IRQ exceptions are used.

Private timer, PPI[2]
Each core has its own private timers that can generate interrupts, using ID29.

Watchdog timers, PPI[3]
Each core has its own watchdog timers that can generate interrupts, using ID30.

A legacy nIRQ input, PPI[4]

In legacy IRQ mode the legacy nIRQ input, on a per-core basis, bypasses the interrupt
distributor logic and directly drives interrupt requests into the core.

When a core uses the interrupt controller, rather than the legacy input in the legacy mode, by
enabling its own core interface, the legacy nIRQ input is treated like other interrupt lines and
uses ID31.

Shared Peripheral Interrupts (SPI)
SPIs are triggered by events generated on associated interrupt input lines. The interrupt
controller can support up to 480 interrupt input lines. The interrupt input lines can be configured
to be edge sensitive (rising edge) or level sensitive (HIGH level). SPIs start at ID32. The IRQS
bus generates SPIs.

 Note

The Cortex‑R8 processor does not provide internal synchronization for the interrupt signals, nIRQ,
nFIQ, and IRQS.

Related concepts
9.6 Global timer on page 9-207
Related reference
9.5 Private timer and watchdog on page 9-201

9.4.3 Priority formats

The processor implements a four-bit version of the Arm Interrupt Controller Architecture Specification.

See the Arm® Generic Interrupt Controller Architecture Specification.

9.4.4 Distributor register descriptions

Summary of the distributor register.

Registers not described in the distributor register summary table are RAZ/WI. The information in the
table does not reproduce information about registers already described in the Arm® Generic Interrupt
Controller Architecture Specification.

The ICDIPR and ICDIPTR registers are byte accessible and word accessible. All other registers in the
table are word accessible. Any other access is UNPREDICTABLE.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-190

Non-Confidential

Distributor register summary table

The offset of this page from PERIPHBASE[31:13] is 0x1000-0x1FFF.

Table 9-20 Distributor register summary

Base Name Type Reset Width Description

0x000 ICDDCR RW 0x00000000 32 Distributor Control Register on page 9-191

0x004 ICDICTR RO Configuration dependent 32 Interrupt Controller Type Register
on page 9-192

0x008 ICDIIDR RO 0x0400043B 32 Distributor Implementer Identification
Register on page 9-194

0x00C-0x09C - - - - Reserved

0x100-0x13C ICDISERn RW 0x00000000av 32 Interrupt Set-Enable Registers

0x180-0x1BC ICDICERn RW 0x00000000aw 32 Interrupt Clear-Enable Registers

0x200-0x23C ICDISPRn RW 0x00000000 32 Interrupt Set-Pending Registers

0x280-0x2BC ICDICPRn RW 0x00000000 32 Interrupt Clear-Pending Registers

0x300-0x33C ICDABRn RO 0x00000000 32 Active Bit registers

0x380-0x3FC - - - - Reserved

0x400-0x4FC ICDIPRn RW 0x00000000 32 Interrupt Priority Registersax

0x7FC - - - - Reserved

0x800-0x9FC ICDIPTRn RWaw 0x0000000 32 Interrupt Core Targets Registers

0xBFC - - - - Reserved

0xC00-0xC7C ICDICFRn RW Implementation dependent 32 Interrupt Configuration Registers

0xD00 PPI Status - 0x00000000 32 PPI Status Register on page 9-195

0xD04-0xD3C SPI Status RO 0x00000000 32 SPI Status Registers on page 9-196

0xD80-0xEFC - - - - Reserved

0xF00 ICDSGIR WO - 32 Software Generated Interrupt Register

0xF04-0xFCC - - - - Reserved

0xFD0-0xFEC Peripheral Identification
[4:0]

RO Configuration dependent 8 Identification registers on page 9-198

0xFF0-0xFFC Component
Identification [3:0]

RO - 8

Distributor Control Register

The ICDDCR controls whether the distributor responds to external stimulus changes that occur on SPI
and PPI signals.

Usage constraints
There are no usage constraints.

av The reset value for the registers that contain the SGI and PPI interrupts is IMPLEMENTATION DEFINED.
aw Not configurable. Reset to 1.
ax Only the top four bits of each 8-bit field of the register are in use.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-191

Non-Confidential

Configurations
Available in all configurations.

Attributes

Base: 0x000

Name: ICDDCR

Type: RW

Reset: 0x00000000

Width: 32

The following figure shows the ICDDCR bit assignments.

31 1 0

Enable

SBZ

Figure 9-19 ICDDCR bit assignments

The following table shows the ICDDCR bit assignments.

Table 9-21 ICDDCR bit assignments

Bits Name Function

[31:1] - Reserved. SBZ.

[0] Enable The encoding is:

0b0 Disables all interrupt control bits in the distributor from changing state because
of any external stimulus change that occurs on the corresponding SPI or PPI
signals.

0b1 Enables the distributor to update register locations for interrupts.

Related reference
Distributor register summary table on page 9-191

Interrupt Controller Type Register

The ICDICTR provides information about the configuration of the interrupt controller.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Base: 0x004

Name: ICDICTR

Type: RO

Reset: Configurationdependent

Width: 32

The following figure shows the ICDICTR bit assignments.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-192

Non-Confidential

31 0

SBZ

IT lines number

11

SBZ

10 9 8 7 5 4

Core number
RAZ/WI

Figure 9-20 ICDICTR bit assignments

The following table shows the ICDICTR bit assignments.

Table 9-22 ICDICTR bit assignments

Bits Name Function

[31:11] Reserved. SBZ.

[10] - Reserved. RAZ/WI.

[9:8] - Reserved. SBZ.

[7:5] Core number The encoding is:

0b000 The configuration contains one core.

0b001 The configuration contains two cores.

0b010 The configuration contains three cores.

0b011 The configuration contains four cores.

All other values are unused.

[4:0] IT lines
number

The encoding is:

0b00000 The distributor provides 32 interruptsay, no external interrupt lines.

0b00001 The distributor provides 64 interrupts, 32 external interrupt lines.

0b00010 The distributor provides 96 interrupts, 64 external interrupt lines.

0b00011 The distributor provides 128 interrupts, 96 external interrupt lines.

0b00100 The distributor provides 160 interrupts, 128 external interrupt lines.

0b00101 The distributor provides 192 interrupts, 160 external interrupt lines.

0b00110 The distributor provides 224 interrupts, 192 external interrupt lines.

0b00111 The distributor provides 256 interrupts, 224 external interrupt lines.

0b01000 The distributor provides 288 interrupts, 256 external interrupt lines.

0b01001 The distributor provides 320 interrupts, 288 external interrupt lines.

0b01010 The distributor provides 352 interrupts, 320 external interrupt lines.

0b01011 The distributor provides 384 interrupts, 352 external interrupt lines.

0b01100 The distributor provides 416 interrupts, 384 external interrupt lines.

0b01101 The distributor provides 448 interrupts, 416 external interrupt lines.

0b01110 The distributor provides 480 interrupts, 448 external interrupt lines.

0b01111 The distributor provides 512 interrupts, 480 external interrupt lines.

All other values are unused.

Related reference
Distributor register summary table on page 9-191

ay The distributor always uses interrupts of IDs 0-31 to control any SGIs and PPIs that the interrupt controller might contain.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-193

Non-Confidential

Interrupt Core Targets Registers

For systems that support only one core, all ICDIPTRn registers read as zero, and writes are ignored.

 Note

If the Processor Target field is set to 0b0 for a specific SPI, this interrupt cannot be set pending through
the hardware pins or a write to the Set-Pending Register.

Interrupt Configuration Registers

Implementation-defined features of the ICDICFR. Each bit-pair describes the interrupt configuration for
an interrupt.

The options for each pair depend on the interrupt type as follows:

SGI
The bits are read-only and a bit-pair always reads as 0b10.

PPI

The bits are read-only:

PPI[1] and [4]:0b01

Interrupt is active-LOW level sensitive.

PPI[0]:0b01
Interrupt is active-HIGH level sensitive.

PPI[2] and [3]:0b11
Interrupt is rising-edge sensitive.

SPI

The LSB of a bit-pair is read-only and is always 0b1. You can program the MSB of the bit-pair
to alter the triggering sensitivity as follows:

0b01

Interrupt is active-HIGH level sensitive.

0b11
Interrupt is rising-edge sensitive.

There are 31 LSPIs, interrupts 32-62.

Distributor Implementer Identification Register

The ICDIIDR provides information about the implementer and the revision of the controller.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Base: 0x008

Name: ICDIIDR

Type: RO

Reset: 0x0400043B

Width: 32

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-194

Non-Confidential

The following figure shows the ICDIIDR bit assignments.

31 24 23 12 11 0

Implementation version Revision number Implementer

Figure 9-21 ICDIIDR bit assignments

The following table shows the ICDIIDR bit assignments.

Table 9-23 ICDIIDR bit assignments

Bits Values Name Description

[31:24] 0x04 Implementation version Gives implementation version number

[23:12] 0x00 Revision number Returns the revision number of the controller

[11:0] 0x43B Implementer Implementer number

Related reference
Distributor register summary table on page 9-191

PPI Status Register

The PPI Status Register enables a core to access the status of the inputs on the distributor.

Usage constraints
A core can only read the status of its own PPI and therefore cannot read the status of PPI for
other cores.

Configurations
Available in all configurations.

Attributes

Base: 0xD00

Name: PPI Status

Type: -

Reset: 0x00000000

Width: 32

The following figure shows the PPI Status Register bit assignments.

SBZ

31 16 15 14 13 12 11 10 0

SBZ

PPI[1] status
PPI[2] status
PPI[3] status
PPI[4] status

PPI[0] status

Figure 9-22 PPI Status Register bit assignments

The following table shows the PPI Status Register bit assignments.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-195

Non-Confidential

Table 9-24 PPI Status Register bit assignments

Bits Name Function

[31:16] - Reserved. SBZ.

[15:11] ppi_status Returns the status of the PPI[4:0] inputs on the distributor:

PPI[4]
nIRQ.

PPI[3]
Private watchdog.

PPI[2]
Private timer.

PPI[1]
nFIQ.

PPI[0]
Global timer.

PPI[1] and PPI[4] are active LOW.

PPI[0], PPI[2], and PPI[3] are active HIGH.
 Note

These bits return the actual status of the PPI[4:0] signals. The ICDISPRn and ICDICPRn registers can also
provide the PPI[4:0] status but because you can write to these registers then they might not contain the actual
status of the PPI[4:0] signals.

[10:0] - Reserved. SBZ.

Related reference
Distributor register summary table on page 9-191

SPI Status Registers

The SPI Status Register enable a core to access the status of IRQS[m:0] inputs on the distributor, where
m is an increment of 32.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Base: 0xD04-0xD3C

Name: SPI Status

Type: RO

Reset: 0x00000000

Width: 32

The following figure shows the SPI Status Register bit assignments.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-196

Non-Confidential

spi[N] status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.

.

.

spi[N+1] status
spi[N+2] status

spi[N+31] status

Figure 9-23 SPI Status Register bit assignments

The following table shows the SPI Status Register bit assignments.

Table 9-25 SPI Status Register bit assignments

Bits Name Description

[31:0] spi_status Returns the status of the IRQS[m:0] inputs on the distributor:

Bit[X] = 0b0
IRQS[X] is LOW.

Bit[X] = 0b1
IRQS[X] is HIGH.

 Note

The IRQS that X refers to depends on its bit position and the base address offset of the SPI Status Register as in
the following figure shows.

These bits return the actual status of the IRQS signals. The ICDISPRn and ICDICPRn Registers can also provide
the IRQS status but because you can write to these registers then they might not contain the actual status of the
IRQS signals.

The following figure shows the address map that the distributor provides for the SPIs.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
spi_status for SPI[31:0]

031 12

spi_status for SPI[63:32]

95

spi_status for SPI[95:64]

646566

spi_status for SPI[223:192]

.

.

192

.

.

0xD08

0xD0C

0xD1C

223

3263 3334

0xD04

Figure 9-24 SPI Status Register address map

In in this figure the values for the SPIs are read-only. This register contains the values for the SPIs for the
corresponding core interface. The distributor provides up to seven registers. If you configure the interrupt

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-197

Non-Confidential

controller to use fewer than 480 SPIs, then it reduces the number of registers accordingly. For locations
where interrupts are not implemented, the distributor:
• Ignores writes to the corresponding bits.
• Returns 0x0 when it reads from these bits.

Related reference
Distributor register summary table on page 9-191

Identification registers

The Identification Registers are read-only registers that consist of the Peripheral Identification Registers
and the Component Identification Registers. The Peripheral Identification Registers provide standard
information required by all CoreSight components. Only bits[7:0] of each register are used.

The Component Identification Registers identify the Cortex‑R8 processor as a CoreSight component.
Only bits[7:0] of each register are used, the remaining bits Read-As-Zero. The values in these registers
are fixed.

The following table shows the offset value, register number, and description that are associated with each
Peripheral Identification Register.

Table 9-26 Peripheral Identification Registers

Offset Register number Value Description

0xFD0 1012 0x04 Peripheral Identification Register 4

0xFD4 1013 - Reserved

0xFD8 1014 - Reserved

0xFDC 1015 - Reserved

0xFE0 1016 0x18 Peripheral Identification Register 0

0xFE4 1017 0xBC Peripheral Identification Register 1

0xFE8 1018 0x0B Peripheral Identification Register 2

0xFEC 1019 0x00 Peripheral Identification Register 3

The following table shows the offset value, register number, and value that are associated with each
Component Identification Register.

Table 9-27 Component Identification Registers

APB offset Register number Value Description

0xFF0 1020 0x0D Component Identification Register 0

0xFF4 1021 0x90 Component Identification Register 1

0xFF8 1022 0x05 Component Identification Register 2

0xFFC 1023 0xB1 Component Identification Register 3

Related concepts
2.5.8 Private memory region on page 2-48

9.4.5 Interrupt interface register descriptions

Descriptions of the registers that each Cortex‑R8 core interface provides.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-198

Non-Confidential

Core interface register summary table

Summary of the core interface registers. These registers are word accessible. Any other access is
UNPREDICTABLE.

This table does not reproduce information about registers already described in the Arm® Generic
Interrupt Controller Architecture Specification.

Table 9-28 Core interface register summary

Base Name Type Reset Width Description

0x000 ICCICR RW 0x00000000 32 CPU Interface Control Register

0x004 ICCPMR RW 0x00000000 32 Interrupt Priority Mask Registeraz

0x008 ICCBPR RW 0x3 32 Binary Point Register

0x00C ICCIAR RO 0x000003FF 32 Interrupt Acknowledge Register

0x010 ICCEOIR WO - 32 End Of Interrupt Register

0x014 ICCRPR RO 0x000000FF 32 Running Priority Register

0x018 ICCHPIR RO 0x000003FF 32 Highest Pending Interrupt Register

0x0FC ICCIIDR RO 0x3901243B 32 CPU Interface Implementer Identification Register on page 9-199

CPU Interface Implementer Identification Register

The ICCIIDR Register provides information about the implementer and the revision of the controller.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Base: 0x0FC

Name: ICCIIDR

Type: RO

Reset: 0x3901243B

Width: 32

The following figure shows the ICCIIDR bit assignments.

31 0

Revision
number Implementer

20 11

Part number

19 121516

Architecture
number

Figure 9-25 ICCIIDR bit assignments

The following table shows the ICCIIDR bit assignments

az Only the top four bits of each 8-bit field of the register are in use.

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-199

Non-Confidential

Table 9-29 ICCIIDR bit assignments

Bits Values Name Description

[31:20] 0x390 Part number Identifies the peripheral.

[19:16] 0x1 Architecture version Identifies the architecture version.

[15:12] 0x0 Revision number Returns the revision number of the interrupt controller. The implementer defines the format
of this field.

[11:0] 0x43B Implementer Returns the JEP 106 code of the company that implemented the Cortex‑R8 processor
interface RTL. It uses the following construct:

[11:8]
JEP 106 continuation code of the implementer.

[7]
0.

[6:0]
JEP 106 code [6:0] of the implementer.

Related reference
Core interface register summary table on page 9-199
Related concepts
2.5.8 Private memory region on page 2-48

9 Multiprocessing
9.4 Interrupt controller

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-200

Non-Confidential

9.5 Private timer and watchdog
The private timer and watchdog blocks have a 32-bit counter that generates an interrupt when it reaches
zero, and an eight-bit prescaler value to qualify the clock period.

Other features of the private timer and watchdog blocks include:
• Configurable single-shot or auto-reload modes.
• Configurable starting values for the counter.
• The clock for these blocks is PERIPHCLK.

The watchdog can be configured as a timer, by configuring the CLK, PERIPHCLK, and
PERIPHCLKEN signals.

9.5.1 Calculating timer intervals

The timer interval equation can be used to calculate the period between two events generated by a timer
or watchdog.

9.5.2 Private timer and watchdog registers

Addresses are relative to the base address of the timer and watchdog region defined by the private
memory map.

All timer and watchdog registers are word-accessible only. Any other access is UNPREDICTABLE

Use nPERIPHRESET to reset these registers, except for the Watchdog Reset Status Register.

nWDRESET resets the Watchdog Reset Status Register.

The following table shows the timer and watchdog registers. All registers not described in the table are
Reserved.

Table 9-30 Timer and watchdog registers

Offset Type Reset Value Description

0x00 RW 0x00000000 Private Timer Load Register on page 9-202

0x04 RW 0x00000000 Private Timer Counter Register on page 9-202

0x08 RW 0x00000000 Private Timer Control Register on page 9-202

0x0C RW 0x00000000 Private Timer Interrupt Status Register on page 9-203

0x20 RW 0x00000000 Watchdog Load Register on page 9-203

0x24 RW 0x00000000 Watchdog Counter Register on page 9-203

0x28 RW 0x00000000 Watchdog Control Register on page 9-204

0x2C RW 0x00000000 Watchdog Interrupt Status Register on page 9-205

0x30 RW 0x00000000 Watchdog Reset Status Register on page 9-206

0x34 WO - Watchdog Disable Register on page 9-206

 Note

The private timers stop counting when the associated core is in debug state.

9 Multiprocessing
9.5 Private timer and watchdog

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-201

Non-Confidential

Private Timer Load Register

The Timer Load Register contains the value copied to the Timer Counter Register when it decrements
down to zero with auto-reload mode enabled. Writing to the Timer Load Register means that you also
write to the Timer Counter Register.

Private Timer Counter Register

The Timer Counter Register is a decrementing counter. The Timer Counter Register decrements if the
timer is enabled using the timer enable bit in the Timer Control Register. If a Cortex‑R8 processor core
timer is in debug state, the counter only decrements when the core returns to non-debug state.

When the Timer Counter Register reaches zero and auto-reload mode is enabled, it reloads the value in
the Timer Load Register and then decrements from that value. If auto-reload mode is not enabled, the
Timer Counter Register decrements down to zero and stops.

When the Timer Counter Register reaches zero, the timer interrupt status event flag is set and the
interrupt ID 29 is set as pending in the Interrupt Distributor, if interrupt generation is enabled in the
Timer Control Register.

Writing to the Timer Counter Register or Timer Load Register forces the Timer Counter Register to
decrement from the newly written value.

Private Timer Control Register

Private Timer Control Register bit assignments.

UNK/SBZP

31 16 15 8 7 3 2 1 0

UNK/SBZP Prescaler

IRQ enable Auto-reload
Timer enable

Figure 9-26 Private Timer Control Register bit assignments

The following table shows the Private Timer Control Register bit assignments.

Table 9-31 Private Timer Control Register bit assignments

Bits Name Function

[31:16] - Reserved. UNK/SBZP.

[15:8] Prescaler The prescaler modifies the clock period for the decrementing event for the Counter Register. See
9.5.1 Calculating timer intervals on page 9-201 for the equation.

[7:3] - Reserved. UNK/SBZP.

[2] IRQ enable If set, the interrupt ID 29 is set as pending in the Interrupt Distributor when the event flag is set in the Timer
Status Register.

9 Multiprocessing
9.5 Private timer and watchdog

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-202

Non-Confidential

Table 9-31 Private Timer Control Register bit assignments (continued)

Bits Name Function

[1] Auto-reload Auto-reload enable:

0b0 Single-shot mode. Counter decrements down to zero, sets the event flag
and stops.

0b1 Auto-reload mode. Each time the Counter Register reaches zero, it is
reloaded with the value contained in the Timer Load Register.

[0] Timer enable Timer enable:

0b0 Timer is disabled and the counter does not decrement. All registers can still
be read and written.

0b1 Timer is enabled and the counter decrements normally.

The timer is incremented every prescaler value plus 1. For example, if the prescaler has a value of five,
the global timer is incremented every six clock cycles. PERIPHCLK is the reference clock for this.

Private Timer Interrupt Status Register

Private Timer Interrupt Status Register bit assignments.

This is a banked register for all Cortex‑R8 processor cores present.

The event flag is a sticky bit that is automatically set when the Counter Register reaches zero. If the timer
interrupt is enabled, Interrupt ID 29 is set as pending in the Interrupt Distributor after the event flag is
set. The event flag is cleared by writing a 1 to bit[0].

31 0

UNK/SBZP

Event flag

1

Figure 9-27 Private Timer Interrupt Status Register bit assignments

Watchdog Load Register

The Watchdog Load Register contains the value copied to the Watchdog Counter Register when it
decrements down to zero with auto-reload mode enabled, in Timer mode. Writing to the Watchdog Load
Register means that you also write to the Watchdog Counter Register.

Watchdog Counter Register

The Watchdog Counter Register is a decrementing counter. It decrements if the Watchdog is enabled
using the Watchdog enable bit in the Watchdog Control Register. If the Cortex‑R8 processor core
associated with the Watchdog is in debug state, the counter does not decrement until the core returns to
non-debug state.

When the Watchdog Counter Register reaches zero and auto-reload mode is enabled, and in timer mode,
it reloads the value in the Watchdog Load Register and then decrements from that value. If auto-reload
mode is not enabled or the watchdog is not in timer mode, the Watchdog Counter Register decrements
down to zero and stops.

When in watchdog mode the only way to update the Watchdog Counter Register is to write to the
Watchdog Load Register. When in timer mode the Watchdog Counter Register is write accessible.

The behavior of the watchdog when the Watchdog Counter Register reaches zero depends on its current
mode:

9 Multiprocessing
9.5 Private timer and watchdog

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-203

Non-Confidential

Timer mode
When the Watchdog Counter Register reaches zero, the watchdog interrupt status event flag is
set. If interrupt generation is enabled in the Watchdog Control Register, interrupt ID 30 is set as
pending in the Interrupt Distributor.

Watchdog mode
If a software failure prevents the Watchdog Counter Register from being refreshed:
• The Watchdog Counter Register reaches zero.
• The Watchdog reset status flag is set.
• The associated WDRESETREQ reset request output is asserted. WDRESETREQ is valid

for one PERIPHCLK cycle.

The external reset source is then responsible for resetting all or part of the Cortex‑R8 processor
design.

Watchdog Control Register

Watchdog Control Register bit assignments.

Reserved

31 16 15 8 7 4 3 2 1 0

Reserved Prescaler

Watchdog mode
IT enable Auto-reload

Watchdog enable

Figure 9-28 Watchdog Control Register bit assignments

The following table shows the Watchdog Control Register bit assignments.

Table 9-32 Watchdog Control Register bit assignments

Bits Name Function

[31:16] - Reserved.

[15:8] Prescaler The prescaler modifies the clock period for the decrementing event for the Counter Register. See
9.5.1 Calculating timer intervals on page 9-201.

[7:4] - Reserved.

[3] Watchdog mode Watchdog mode enable:

0b0 Timer mode. This is the default. Writing a zero to this bit has no effect.
You must use the Watchdog Disable Register to put the watchdog into
timer mode. See Watchdog Disable Register on page 9-206.

0b1 Watchdog mode.

[2] IT Enable If set, the interrupt ID 30 is set as pending in the Interrupt Distributor when the event flag is set in the
watchdog Status Register.

In watchdog mode this bit is ignored.

9 Multiprocessing
9.5 Private timer and watchdog

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-204

Non-Confidential

Table 9-32 Watchdog Control Register bit assignments (continued)

Bits Name Function

[1] Auto-reload Auto-reload enable:

0b0 Single-shot mode. Counter decrements down to zero, sets the event flag
and stops.

0b1 Auto-reload mode. Each time the Counter Register reaches zero, it is
reloaded with the value contained in the Load Register and then
continues decrementing.

[0] Watchdog Enable Global watchdog enable:

0b0 Watchdog is disabled and the counter does not decrement. All registers
can still be read or written.

0b1 Watchdog is enabled and the counter decrements normally.

Watchdog Interrupt Status Register

Watchdog Interrupt Status Register bit assignments.

31 0

Reserved

Event flag

1

Figure 9-29 Watchdog Interrupt Status Register bit assignments

The event flag is a sticky bit that is automatically set when the Counter Register reaches zero in timer
mode. If the watchdog interrupt is enabled, Interrupt ID 30 is set as pending in the Interrupt Distributor
after the event flag is set. The event flag is cleared when written with a value of 1. Trying to write a zero
to the event flag or a one when it is not set has no effect.

9 Multiprocessing
9.5 Private timer and watchdog

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-205

Non-Confidential

Watchdog Reset Status Register

Watchdog Reset Status Register bit assignments.

31 0

Reserved

Reset flag

1

Figure 9-30 Watchdog Reset Status Register bit assignments

In watchdog mode, the reset flag is a sticky bit that is automatically set when the Counter Register
reaches zero and a reset request is sent accordingly.

For lock-step or split/lock in lock-step mode, the reset must not be applied immediately to the entire
Cortex‑R8 processor. This is because after reset the sticky flag is set in one core but not the others and
this leads to the assertion of COMPFAULT. Therefore, if one core has its watchdog flag set, the other
core or cores must reach the same state, that is, also having their watchdog flag set.

The reset flag is cleared when written with a value of one. Trying to write a zero to the reset flag or a one
when it is not set has no effect. This flag is not reset by normal Cortex‑R8 processor resets but has its
own reset line, nWDRESET. Do not assert nWDRESET when the Cortex‑R8 processor reset assertion
is the result of a watchdog reset request with WDRESETREQ. This distinction enables software to
differentiate between a normal boot sequence, reset flag is zero, and one caused by a previous watchdog
time-out, reset flag set to one.

Watchdog Disable Register

Use the Watchdog Disable Register to switch from watchdog to timer mode. The software must write
0x12345678 then 0x87654321 successively to the Watchdog Disable Register so that the watchdog mode
bit in the Watchdog Control Register is set to zero.

If one of the values written to the Watchdog Disable Register is incorrect or if any other write occurs in
between the two word writes, the watchdog remains in its current state. To reactivate the Watchdog, the
software must write 1 to the watchdog mode bit of the Watchdog Control Register.

Related reference
Watchdog Control Register on page 9-204
Related concepts
2.5.8 Private memory region on page 2-48
Private Timer Load Register on page 9-202
Private Timer Counter Register on page 9-202
Watchdog Load Register on page 9-203
Related reference
A.3 Reset signals on page Appx-A-360
Private Timer Control Register on page 9-202
Private Timer Interrupt Status Register on page 9-203
Watchdog Counter Register on page 9-203
Watchdog Control Register on page 9-204
Watchdog Interrupt Status Register on page 9-205
Watchdog Reset Status Register on page 9-206
Watchdog Disable Register on page 9-206
Related concepts
2.3 Clocking, resets, and initialization on page 2-29

9 Multiprocessing
9.5 Private timer and watchdog

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-206

Non-Confidential

9.6 Global timer
The global timer is a 64-bit incrementing counter with an auto-incrementing feature. It continues
incrementing after sending interrupts.

The global timer is memory-mapped in the private memory region, and is accessible to all Cortex‑R8
processor cores in the Cortex‑R8 processor design. Each core has a private 64-bit comparator that is used
to assert a private interrupt when the global timer has reached the comparator value. All the Cortex‑R8
processor cores in a design use the banked ID, ID27, for this interrupt. ID27 is sent to the interrupt
controller as a Private Peripheral Interrupt.

Each core can only access its own comparator registers. It cannot access the comparator of another core.

The interrupt from a comparator only goes to the associated core. A core cannot see the interrupt from
the comparator of another core.

The global timer is clocked by PERIPHCLK.
 Note

The global timer does not stop counting when any of the cores are in debug state.

9.6.1 Global timer registers

Summary of the global timer registers. The offset is relative to PERIPH_BASE_ADDR + 0x0200. Use
nPERIPHRESET to reset these registers.

Table 9-33 Global timer registers

Offset Type Reset value Description

0x00 RW 0x00000000 Global Timer Counter Registers on page 9-207

0x04 RW 0x00000000

0x08 RW 0x00000000 Global Timer Control Register on page 9-208

0x0C RW 0x00000000 Global Timer Interrupt Status Register on page 9-209

0x10 RW 0x00000000 Comparator Value Registers on page 9-209

0x14 RW 0x00000000

0x18 RW 0x00000000 Auto-increment Register on page 9-209

Global Timer Counter Registers

There are two timer counter registers. They are the lower 32-bit timer counter at offset 0x00 and the
upper 32-bit timer counter at offset 0x04.

You must access these registers with 32-bit accesses. You cannot use STRD/LDRD. Any other access is
UNPREDICTABLE.

To modify the register, proceed as follows:

1. Clear the timer enable bit in the Global Timer Control Register.
2. Write the lower 32-bit timer counter register.
3. Write the upper 32-bit timer counter register.
4. Set the timer enable bit.

9 Multiprocessing
9.6 Global timer

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-207

Non-Confidential

To get the value from the Global Timer Counter register, proceed as follows:
1. Read the upper 32-bit timer counter register.
2. Read the lower 32-bit timer counter register.
3. Read the upper 32-bit timer counter register again. If the value is different to the 32-bit upper value

read previously, go back to step 2. Otherwise the 64-bit timer counter value is correct.

Global Timer Control Register

Global Timer Control Register bit assignments.

Reserved

31 16 15 8 7 3 2 1 0

Reserved Prescaler

IRQ enable Comp enable
Timer enable

4

Auto-increment

Figure 9-31 Global Timer Control Register bit assignments

The following table shows the Global Timer Control Register bit assignments.

Table 9-34 Global Timer Control Register bit assignments

Bits Name Function

[31:16] - Reserved.

[15:8] Prescaler The prescaler modifies the clock period for the decrementing event for the Counter Register. See
9.5.1 Calculating timer intervals on page 9-201 for the equation.

[7:4] - Reserved.

[3] Auto-incrementba This bit is banked per Cortex‑R8 processor core:

0b0 Single shot mode. Sets the event flag when the counter is greater than or
equal to the comparator value.

 Note

It is the responsibility of software to update the comparator value to
generate another event based on a higher comparator value.

0b1 Auto-increment mode. Each time the counter reaches the comparator
value, the comparator register is incremented with the auto-increment
register, so that more events can be set periodically without any
software updates.

[2] IRQ enable This bit is banked per Cortex‑R8 processor core.

If set, the interrupt ID 27 is set as pending in the Interrupt Distributor when the event flag is set in the
Timer Status Register.

ba When the Auto-increment and Comp enable bits are set, an IRQ is generated every auto-increment register value.

9 Multiprocessing
9.6 Global timer

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-208

Non-Confidential

Table 9-34 Global Timer Control Register bit assignments (continued)

Bits Name Function

[1] Comp enableba This bit is banked per Cortex‑R8 processor core.

If set, it allows the comparison between the 64-bit Timer Counter and the related 64-bit Comparator
Register.

[0] Timer enable Timer enable:

0b0 Timer is disabled and the counter does not increment. All registers can
still be read and written.

0b1 Timer is enabled and the counter increments normally.

Global Timer Interrupt Status Register

This is a banked register for all Cortex‑R8 processor cores present.

The event flag is a sticky bit that is automatically set when the Counter Register is greater than or equal
to the Comparator Register value. If the timer interrupt is enabled, Interrupt ID 27 is set as pending in the
Interrupt Distributor after the event flag is set. The event flag is cleared when written with the value 1.

 Note

If the Counter Register is greater than or equal to the Comparator Register value when the event flag is
cleared, then the event flag is set again after it is cleared. It is the responsibility of software to update the
Comparator Register value to a value greater than the current counter value before clearing the event
flag.

The following figure shows the Global Timer Interrupt Status Register bit assignments.

31 0

UNK/SBZP

Event flag

1

Figure 9-32 Global Timer Interrupt Status Register bit assignments

Comparator Value Registers

There are two 32-bit registers, the lower 32-bit comparator value register at offset 0x10 and the upper 32-
bit comparator value register at offset 0x14.

You must access these registers with 32-bit accesses. You cannot use STRD/LDRD. There is a Comparator
Value Register for each Cortex‑R8 processor core.

To ensure that updates to this register do not set the Interrupt Status Register, proceed as follows:
1. Clear the Comp enable bit in the Timer Control Register.
2. Write the lower 32-bit Comparator Value Register.
3. Write the upper 32-bit Comparator Value Register.
4. Set the Comp enable bit and, if necessary, the IRQ enable bit.

Auto-increment Register

This 32-bit register gives the increment value of the Comparator Register when the Auto-increment bit is
set in the Timer Control Register. Each Cortex‑R8 processor core present has its own Auto-increment
Register.

9 Multiprocessing
9.6 Global timer

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-209

Non-Confidential

If the Comp enable and Auto-increment bits are set when the global counter reaches the Comparator
Register value, the comparator is incremented by the auto-increment value, so that a new event can be set
periodically.

The global timer is not affected, and continues incrementing.

Related concepts
2.5.8 Private memory region on page 2-48
Related reference
9.4.4 Distributor register descriptions on page 9-190

9 Multiprocessing
9.6 Global timer

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-210

Non-Confidential

9.7 Accelerator Coherency Port
The Accelerator Coherency Port (ACP) reduces software cache maintenance operations when sharing
memory regions with other masters, and allows other masters to allocate data into the L2 cache.

This section contains the following subsections:
• 9.7.1 Coherent and noncoherent mode on page 9-211.
• 9.7.2 Read accesses in coherent mode on page 9-211.
• 9.7.3 Write accesses in coherent mode on page 9-211.
• 9.7.4 AXI protocol configurability, xIDSC, and AxUSERSC on page 9-211.
• 9.7.5 AXI protocol restrictions on page 9-212.
• 9.7.6 ACP bridge on page 9-212.

9.7.1 Coherent and noncoherent mode

The coherency between the ACP traffic and the L1 data cache of the cores is triggered when
AxUSERSC[0] = 1 and AxCACHESC[1] = 1.

• AxUSERSC[0] is the shared bit.
• AxCACHESC[1] = 1 indicates it is an NC, WT, WB, or a WBWA memory region.
• AxCACHESC[1] = 0 indicates it is a SO, or DV memory region. Using the AxCACHESC[1] bit

prevents SO and DV memory regions from taking part in the coherency mechanism, that is, SCU
lookups, on the ACP.

The x in the signal name represents either R for read or W for write.

9.7.2 Read accesses in coherent mode

Behavior of read accesses from the ACP in coherent mode.

• If data is present in the L1 data cache of a core, the data is returned from the L1 data cache of the core
that has the data.

• If data is not present in the L1 data cache of a core, the data is returned from the L2 memory.

9.7.3 Write accesses in coherent mode

Behavior of write accesses from the ACP in coherent mode.

• If data is present in the L1 data cache of a core, and:
— If the cache line is clean, the line is invalidated, and the write is done on the L2 memory.
— If the cache line is dirty, the line is cleaned and invalidated, and the write is done on the L2

memory.
• If data is not present in the L1 data cache of a core, the data is written to the L2 memory.

9.7.4 AXI protocol configurability, xIDSC, and AxUSERSC

The xIDSC bus width value is configurable and must be greater than or equal to 4.

The following table shows the AWUSERSC[5:0] encoding for the ACP.

9 Multiprocessing
9.7 Accelerator Coherency Port

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-211

Non-Confidential

Table 9-35 AWUSERSC encoding for ACP

AWUSERSC value Information propagated on AXI
master port 0, AXI master port 1,
and AXI low-latency peripheral
port

Usage

[0] Yes See 9.7.1 Coherent and noncoherent mode on page 9-211.

[4:1] Yes Ignored by the SCU.

[5] No SBZ if byte line strobes are sparse. This is the default.

SBO if all byte line strobes are set according to the AXI access
rules.

The following table shows the ARUSERSC[4:0] encoding for the ACP.

Table 9-36 ARUSERSC encoding for ACP

ARUSERSC value Information propagated on AXI master port 0, AXI
master port 1, and AXI low-latency peripheral
port

Usage

[0] Yes See 9.7.1 Coherent and noncoherent mode
on page 9-211

[4:1] Yes Ignored by the SCU

Related reference
9.7.1 Coherent and noncoherent mode on page 9-211

9.7.5 AXI protocol restrictions

The ACP is AXI compliant, but not does support the full protocol.

The following AXI protocol restrictions apply:
• The APROT[1] input is ignored and the APROT[1] output is always LOW on the AXI master buses

and the AXI peripheral bus.
• Only swap-like accesses are accepted, that is, a locked read followed by a nonlocked write.

AWLOCKSC is not forwarded from the ACP to any master ports on AWLOCKM0[1] or
AWLOCKM1[1]. These ports are always LOW.

• The ACP does not support exclusive accesses, and there is no exclusive monitor. If either master
attempts an exclusive read, the ACP returns an OKAY response instead of an EXOKAY response.
The master can treat this as an error condition, indicating that the exclusive access is not supported.
Arm recommends that the master does not perform the write portion of this exclusive operation.

9.7.6 ACP bridge

The ACP contains an optional ACP bridge. This bridge has an optional ECC support and has an impact
on the performance.

With the ACP bridge:

• The ACP is ECC protected if ECC is present on the bus.
• All types of AXI transfer are supported.
• There are no special timing recommendations between the AXI address channel and the AXI data

channel.

9 Multiprocessing
9.7 Accelerator Coherency Port

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-212

Non-Confidential

Without the ACP bridge:
• The ACP is not ECC protected.
• Only the following accesses are supported:

— For 32 bytes, AxLENSC = 0x3, AxSIZESC = 0x3, AxBURSTSC = 0b01 (incr), and
AxADDRSC[4:0] = 0b00000.

— For 32 bytes, AxLENSC = 0x3, AxSIZESC = 0x3, AxBURSTSC = 0b10 (wrap), and
AxADDRSC[2:0] = 0b000.

— For 16 bytes, AxLENSC[3:0] = 0x1, AxSIZESC[1:0] = 0x3, AxBURSTSC[1:0] = 0b01 (incr),
and AxADDRSC[3:0] = 0b0000.

— For 8 bytes: AxLENSC = 0x0, AxSIZESC = 0x3, AxBURSTSC = any, and AxADDRSC = any.

The x in the signal name represents either R for read or W for write.

All other access types generate a slave error.
• A write access can be accepted every four cycles.
• The addresses must be sent at least six cycles before the data to optimize performance on the ACP

transfers.

Related concepts
7.4.2 ECC on external AXI bus on page 7-137

9 Multiprocessing
9.7 Accelerator Coherency Port

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

9-213

Non-Confidential

Chapter 10
Monitoring, Trace, and Debug

This chapter describes the monitoring, trace, and debug features of the Cortex‑R8 processor.

It contains the following sections:
• 10.1 Performance Monitoring Unit on page 10-215.
• 10.2 Memory Reconstruction Port on page 10-222.
• 10.3 Embedded Trace Macrocell on page 10-223.
• 10.4 Debug on page 10-224.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-214

Non-Confidential

10.1 Performance Monitoring Unit
The Cortex‑R8 processor PMU provides eight counters to gather statistics on the operation of the core
and memory system. Each counter can count any of the 64 events available in each core.

This section contains the following subsections:
• 10.1.1 PMU register mappings on page 10-215.
• 10.1.2 PMU management registers on page 10-216.
• 10.1.3 Performance monitoring events on page 10-219.

10.1.1 PMU register mappings

The PMU counters, and their associated control registers, are accessible from the internal CP15 interface
and from the Debug APB interface.

The following table shows the mappings of the PMU registers.

Table 10-1 Performance monitoring instructions and Debug APB mapping

Debug APB interface mapping CP15 instruction Access Reset Name

0x000 0, c9, c13, 2 RW - PMXEVCNTR0

0x004 0, c9, c13, 2 RW - PMXEVCNTR1

0x008 0, c9, c13, 2 RW - PMXEVCNTR2

0x00C 0, c9, c13, 2 RW - PMXEVCNTR3

0x010 0, c9, c13, 2 RW - PMXEVCNTR4

0x014 0, c9, c13, 2 RW - PMXEVCNTR5

0x018 0, c9, c13, 2 RW - PMXEVCNTR6

0x01C 0, c9, c13, 2 RW - PMXEVCNTR7

0x07C 0, c9, c13, 0 RW - PMCCNTR

0x400 0, c9, c13, 1 RW - PMXEVTYPER0

0x404 0, c9, c13, 1 RW - PMXEVTYPER1

0x408 0, c9, c13, 1 RW - PMXEVTYPER2

0x40C 0, c9, c13, 1 RW - PMXEVTYPER3

0x410 0, c9, c13, 1 RW - PMXEVTYPER4

0x414 0, c9, c13, 1 RW - PMXEVTYPER5

0x418 0, c9, c13, 1 RW - PMXEVTYPER6

0x41C 0, c9, c13, 1 RW - PMXEVTYPER7

0xC00 0, c9, c12, 1 RW - PMCNTENSET

0xC20 0, c9, c12, 2 RW - PMCNTENCLR

0xC40 0, c9, c14, 1 RW - PMINTENSET

0xC60 0, c9, c14, 2 RW - PMINTENCLR

0xC80 0, c9, c12, 3 RW - PMOVSR

0xCA0 0, c9, c12, 4 WO - PMSWINC

0xE04 0, c9, c12, 0 RW 0x41184000 PMCR

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-215

Non-Confidential

Table 10-1 Performance monitoring instructions and Debug APB mapping (continued)

Debug APB interface mapping CP15 instruction Access Reset Name

0xE08 0, c9, c14, 0 RWbb 0x00000000 PMUSERENR

- 0, c9, c12, 5 RW - PMSELR

10.1.2 PMU management registers

The PMU management registers define the standardized set of registers that is implemented by all
CoreSight components.

The following table shows the contents of the PMU management registers for the Cortex‑R8 processor
debug unit.

Table 10-2 PMU management registers

Offset Register number Access Mnemonic Description

0xD00-0xDFC 832-895 RO - Processor ID Registers on page 10-216

0xE00-0xEF0 854-956 - - RAZ

0xF04-0xF9C 961-999 RAZ - Reserved for Management Register expansion

0xFA0 1000 RW CLAIMSET -

0xFA4 1001 RW CLAIMCLR -

0xFA8-0xFBC 1002-1003 - - RAZ

0xFB0 1004 WO LOCKACCESS -

0xFB4 1005 RO LOCKSTATUS -

0xFB8 1006 RO AUTHSTATUS -

0xFBC-0xFC4 1007-1009 - - RAZ

0xFC8 1010 RO DEVID Device Identifier

0xFCC 1011 RO DEVTYPE -

0xFD0-0xFFC 1012-1023 R - CoreSight™ Identification Registers on page 10-217

Processor ID Registers

The Processor ID Registers are read-only registers that return the same values as the corresponding CP15
ID Code Register and Feature ID Register.

The following table shows the offset value, register number, mnemonic, and description that are
associated with each Processor ID Register.

Table 10-3 Processor Identifier Registers

Offset (hex) Register number Mnemonic Access Register value Description

0xD00 832 MIDR RO 0x410FC183 Main ID Register

0xD04 833 CTR RO 0x8333C003 Cache Type Register

0xD08 834 TCMTR RO 0x80010001bc 0x00000000bd TCM Type Register

bb Read only in user mode.
bc If TCMs are present.
bd If TCMs are not present.

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-216

Non-Confidential

Table 10-3 Processor Identifier Registers (continued)

Offset (hex) Register number Mnemonic Access Register value Description

0xD0C 835 MIDR alias RO 0x410FC183 TLB Type Register

0xD10 836 MPUIR RO 12 MPU regions
0x00000c00

16 MPU regions
0x00001000

20 MPU regions
0x00001400

24 MPU regions
0x00001800

MPU Type Register

0xD14 837 MPIDR RO 0x80000n0mbe Multiprocessor Affinity Register

0xD18 838 REVIDR UNK 0x00000000 Revision ID Register

0xD1C 839 MIDR alias RO 0x410FC183 Alias of Main ID Register

0xD20 840 ID_PFR0 RO 0x00000131 Processor Feature Register 0

0xD24 841 ID_PFR1 RO 0x00000001 Processor Feature Register 1

0xD28 842 ID_DFR0 RO 0x00010404 Debug Feature Register 0

0xD2C 843 ID_AFR0 RAZ - Auxiliary Feature Register 0

0xD30 844 ID_MMFR0 RO 0x00110130 Memory Model Feature Register 0

0xD34 845 ID_MMFR1 RO 0x00000000 Memory Model Feature Register 1

0xD38 846 ID_MMFR2 RO 0x01200000 Memory Model Feature Register 2

0xD3C 847 ID_MMFR3 RO 0x00002111 Memory Model Feature Register 3

0xD40 848 ID_ISAR0 RO 0x02101111 Instruction Set Attribute Register 0

0xD44 849 ID_ISAR1 RO 0x13112111 Instruction Set Attribute Register 1

0xD48 850 ID_ISAR2 RO 0x21232141 Instruction Set Attribute Register 2

0xD4C 851 ID_ISAR3 RO 0x01112131 Instruction Set Attribute Register 3

0xD50 852 ID_ISAR4 RO 0x00010142 Instruction Set Attribute Register 4

0xD54 853 ID_ISAR5 RAZ - Instruction Set Attribute Register 5

CoreSight™ Identification Registers

The Identification Registers are read-only registers that consist of the Peripheral Identification Registers
and the Component Identification Registers. The Peripheral Identification Registers provide standard
information required by all CoreSight components. Only bits[7:0] of each register are used.

The Component Identification Registers identify the Cortex‑R8 processor as a CoreSight component.
Only bits[7:0] of each register are used, the remaining bits Read-As-Zero. The values in these registers
are fixed.

The following table shows the offset value, register number, value, and description that are associated
with each Peripheral Identification Register.

be n = CLUSTERID input m = core number (0x0 for core 0, 0x1 for core 1, 0x10 for core 2, 0x11 for core 3).

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-217

Non-Confidential

Table 10-4 Peripheral Identification Registers

Offset (hex) Register number Value Description

0xFD0 0x3F4 0x04 Peripheral Identification Register 4

0xFD4 0x3F5 - Reserved

0xFD8 0x3F6 - Reserved

0xFDC 0x3F7 - Reserved

0xFE0 0x3F8 0xB9 Peripheral Identification Register 0

0xFE4 0x3F9 0xB9 Peripheral Identification Register 1

0xFE8 0x3FA 0xrBbf Peripheral Identification Register 2

0xFEC 0x3FB 0x00 Peripheral Identification Register 3

The following table shows the offset value, register number, and value that are associated with each
Component Identification Register.

Table 10-5 Component Identification Registers

Offset (hex) Register number Value Description

0xFF0 0x3FC 0x0D Component Identification Register 0

0xFF4 0x3FD 0x90 Component Identification Register 1

0xFF8 0x3FE 0x05 Component Identification Register 2

0xFFC 0x3FF 0xB1 Component Identification Register 3

PMU APB interface

PMU register names and corresponding addresses on the APB interface.

Table 10-6 PMU register names and APB addresses

PMU register name Debug APB address

PMU event counter 0 0x000

PMU event counter 1 0x004

PMU event counter 2 0x008

PMU event counter 3 0x00C

PMU event counter 4 0x010

PMU event counter 5 0x014

PMU event counter 6 0x018

PMU event counter 7 0x01C

PMU cycle counter 0x07C

PMU event type 0 0x400

PMU event type 1 0x404

PMU event type 2 0x408

bf r represents the variant. For r0p1, this is 0.

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-218

Non-Confidential

Table 10-6 PMU register names and APB addresses (continued)

PMU register name Debug APB address

PMU event type 3 0x40C

PMU event type 4 0x410

PMU event type 5 0x414

PMU event type 6 0x418

PMU event type 7 0x41C

PMU count enable set 0xC00

PMU count enable clear 0xC20

PMU interrupt enable set 0xC40

PMU interrupt enable clear 0xC60

PMU overflow flag status 0xC80

PMU software increment 0xCA0

PMU control 0xE04

PMU user enable 0xE08

10.1.3 Performance monitoring events

The Cortex‑R8 processor implements the Armv7‑A and Armv7‑R architectural events. The PMU
provides an additional set of Cortex‑R8 processor core-specific events.

The ETM accepts 64 events:

• Four events from the CTI.
• Four events are spare pins tied off at the ETM input level.
• 56 events from the Cortex‑R8 processor, and visible externally through the PMUEVENTx bus,

where n is 0, 1, 2 or 3.

The ETM can export two signals that are connected to the processor PMU. These signals are
ETMEXTOUT[1] and ETMEXTOUT[2] events. See Chapter 11 Embedded Trace Macrocell
on page 11-238 for more information about the ETMEXTOUT signals from the ETM.

The following table shows the Cortex‑R8 processor events, with their associated event number, and
position in the PMUEVENT bus.

Table 10-7 Cortex-R8 processor events

Event Description Position in PMUEVENT bus

Common events

0x00 Software increment [0]

0x01 Instruction cache miss [1]

0x03 Data cache miss [2]

0x04 Data cache access [3]

0x06 Data read [4]

0x07 Data write [5]

0x08 Instruction architecturally executed [11:6]

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-219

Non-Confidential

Table 10-7 Cortex-R8 processor events (continued)

Event Description Position in PMUEVENT bus

0x09 Exception taken [12]

0x0A Exception returns [13]

0x0B Write context ID [14]

0x0C Software change of PC [15]

0x0D Immediate branch [16]

0x0E Procedure return, other than exception return [17]

0x0F Unaligned [18]

0x10 Branch mispredicted or not predicted [19]

0x11 Cycle count Not applicable

0x12 Predictable branches [20]

0x14 Instruction cache access [21]

ETM events

0x40 ETMEXTOUT[1] Not applicable

0x41 ETMEXTOUT[2] Not applicable

Determinism events

0x50 Number of cycles IRQs are interrupted [22]

0x51 Number of cycles FIQs are interrupted [23]

ECC events

0x60 Detected ECC errors on any RAM Not exported

0x61 Parity error on PRED [24]

0x62 Parity error on BTAC [25]

0x63 Detected ECC errors on ITCM [26]

0x64 Detected ECC errors on DTCM [27]

0x65 Detected ECC errors on instruction cache [28]

0x66 Detected ECC errors on data cache [29]

0x67 Correctable ECC errors on any bus Not exported

0x68 Correctable ECC errors on slave bus, data write channel [30]

0x69 Correctable ECC errors on peripheral master bus, data read channel [31]

0x6A Correctable ECC errors on master 0 bus, data read channel [32]

0x6B Correctable ECC errors on master 1 bus, data read channel [33]

0x6C Detected ECC errors on SCU RAM [34]

0x6D Correctable ECC errors on AXI TCM port [48]

0x6E Correctable ECC errors on local AXI fast peripheral port [49]

Software events

0x80 STREX passed [35]

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-220

Non-Confidential

Table 10-7 Cortex-R8 processor events (continued)

Event Description Position in PMUEVENT bus

0x81 STREX failed [36]

0x82 Literal pool in TCM region [37]

Microarchitecture events

0x90 DMB stall [38]

0x91 ITCM access [39]

0x92 DTCM access [40]

0x93 Data eviction [41]

0x94 SCU coherency operation (CCB request) [42]

0x95 Instruction cache dependent stall [43]

0x96bg Data cache dependent stallbh [44]

0x97bg Non-Cacheable no peripheral dependent stallbi [45]

0x98bg Non-Cacheable peripheral dependent stallbj [46]

0x99bg Data cache high priority dependent stallbk [47]

0x9A Accesses to AXI fast peripheral port (reads and writes) [50]

Reserved

- Reserved, tied LOW [55:51]

 Note

You can choose whether these events are enabled or not, and exported or not, using the PMCR Register.
See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition. For a fault-tolerant
system, ECC events must be exported for more visibility. To achieve this, there are some specific ECC
notification signals. See Chapter 7 Fault Detection on page 7-128 for more information.

Related reference
A.9 Performance monitoring signals on page Appx-A-382
Chapter 11 Embedded Trace Macrocell on page 11-238
Chapter 7 Fault Detection on page 7-128

bg This counter is mostly used when QoS is enabled. The core issue stage is stalled and it contains at least one instruction that it cannot dispatch.
bh The counter counts stalls on AXI M0 with low-priority cacheable traffic.
bi The counter counts stalls on AXI M0 or M1 with low-priority NC/SO/Dev.
bj The counts stall on AXI MP with high-priority SO/DEV.
bk The counts stall on AXI M1 with high-priority when a local SRAM is in use.

10 Monitoring, Trace, and Debug
10.1 Performance Monitoring Unit

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-221

Non-Confidential

10.2 Memory Reconstruction Port
The MRP is an optional feature for the Cortex‑R8 processor. All write accesses, regardless of memory
attributes, such as Strongly Ordered, Device, Non-Cacheable, and cacheable, are exported from the core
through this port so that an image of the memory can be reconstructed. This port is intended for memory
reconstruction only.

The MRP can be enabled using the Auxiliary Control Register.

The MRP has the following restrictions:

• Exclusive write accesses are reported on this interface only if they are successful. Failed exclusive
write accesses never appear on this interface because they are never executed.

• Because TCM accesses are not mapped externally, they are not reported on this interface.
• When SWP accesses are atomic, the write access part of the SWP is exported on the interface when

completed.
• One interface is provided per core in a multiprocessor configuration. The implementer is responsible

for synchronizing the different paths, if required, to be able to reconstruct an image of the memory.
• Write accesses are not in program order, apart from any architectural constraints on the memory

attributes. If you require the accesses to be visible in order on the MRP:
— Use Device or Strongly-Ordered memory attributes.
— Execute a Data Synchronization Barrier (DSB).

See A.16 Memory reconstruction port signals on page Appx-A-404 for a complete list of the MRP
interface signals.

The ready signal of the SoC slave is used to drive the ready signal of the store buffer towards the LSU.
As a result, asserting this signal LOW directly impacts the performance of the core, and writes are kept
in the LSU until the SoC can execute the incoming writes. You can use a FIFO to provide limited and
reasonable back-pressure on the ready signal.

 Note

There is no response channel on the MRP. Any possible dec/slave error is reported by the normal AXI
channel.

Related reference
4.3.10 Auxiliary Control Register on page 4-80
A.16 Memory reconstruction port signals on page Appx-A-404

10 Monitoring, Trace, and Debug
10.2 Memory Reconstruction Port

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-222

Non-Confidential

10.3 Embedded Trace Macrocell
The optional ETM is compliant with the ETMv4 architecture. It provides full address and data trace, and
enables real-time code tracing of the Cortex‑R8 processor in an embedded system.

A single core Cortex‑R8 processor has a single ETM. In a multiprocessor configuration, each core can
either share a single ETM, or each core can have its own ETM.

The ETM is enabled through the APB debug interface. You can disable the ETM, and power it off for
power saving.

See Chapter 11 Embedded Trace Macrocell on page 11-238 for more information.

Related reference
Chapter 11 Embedded Trace Macrocell on page 11-238

10 Monitoring, Trace, and Debug
10.3 Embedded Trace Macrocell

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-223

Non-Confidential

10.4 Debug
The Cortex‑R8 processor implements the Armv7 debug architecture and the set of debug events.

Refer to the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for the debug
architecture and debug events.

 Note

When the low-latency interrupt mode is enabled, Arm recommends that you set DBGDSCR.INTdis
register bit, to disable interrupts before allowing the processor to enter debug state.

This section contains the following subsections:
• 10.4.1 Debug events on page 10-224.
• 10.4.2 Debug registers on page 10-224.
• 10.4.3 External debug interface on page 10-233.
• 10.4.4 Trigger inputs and outputs on page 10-236.

10.4.1 Debug events

Depending on the programming of the debug control registers, debug events can generate debug
exceptions, that is, software Monitor debug, and make the processor enter debug state, that is, hardware
halting debug.

The Cortex‑R8 processor can handle the following debug events:

Breakpoints
There are six breakpoints, two with Context ID comparison capability, BRP4 and BRP5.

Watchpoints

There are four watchpoints. A watchpoint event is always synchronous. It has the same behavior
as a synchronous Data Abort.

If a synchronous abort occurs on a watchpointed access, the synchronous abort takes priority
over the watchpoint.

If the abort is asynchronous and cannot be associated with the access, the exception that is taken
is UNPREDICTABLE.

Cache maintenance operations do not generate watchpoint events.

Other debug events
The Cortex‑R8 processor implements:
• Vector catch.
• BKPT instruction.
• External debug request.
• Halt request.

 Note

The Cortex‑R8 processor does not implement the OS catch debug event.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for more
information.

10.4.2 Debug registers

Technical reference information for the debug registers.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-224

Non-Confidential

Register interfaces

The Cortex‑R8 processor implements Baseline CP14, Extended CP14, and memory-mapped interfaces.

You can access the debug registers as follows:
• Through the cp14 interface. The debug registers are mapped to coprocessor instructions.
• Through the APB using the relevant offset.

Debug register mapping table

Mapping for the debug registers.

All other registers are described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition.

Table 10-8 Debug register mapping

Register
number

APB offset APB
access

CP14 address CP14
access

Register name Description

0 0x000 RO 0, c0, c0, 0 RO DBGDIDRbl -bm

128 No access No access 0, c1, c0, 0 RO DBGDRARa -

256 No access No access 0, c2, c0, 0 RO DBGDSARa -

1 No access No access 0, c0, c1, 0 RO DBGDSCRintab -

5 No access No access 0, c0, c5, 0 RO DBGDTRRXinta -

No access No access WO DBGDTRTXinta -

6 0x018 RW 0, c0, c6, 0 RW DBGWFAR Use of DBGWFAR is
deprecated in the
Armv7 architecture,
because watchpoints
are synchronous

7 0x01C RW 0, c0, c7, 0 RW DBGVCR -

8 - - - - Reserved -

9 No access No access 0, c0, c9, 0 RAZ/WI DBGECR Not implemented

10 No access No access 0, c0, c10, 0 RAZ/WI DBGDSCCR Not implemented

11 No access No access 0, c0, c11, 0 RAZ/WI DBGDSMCR Not implemented

12-31 - - - - Reserved -

32 0x080 RW 0, c0, c0, 2 RW DBGDTRRXext -

33 0x084 WO 0, c0, c1, 2 WO DBGITR -

33 0x084 RO 0, c0, c1, 2 RO DBGPCSR -

34 0x088 RW 0, c0, c2, 2 RW DBGDSCRext -

35 0x08C RW 0, c0, c3, 2 RW DBGDTRTXext -

36 0x090 WO 0, c0, c4, 2 WO DBGDRCR -

37-63 - - - - Reserved -

64-69 0x100-0x114 RW 0, c0, c0-c5, 4 RW DBGBVRn Breakpoint Value
Registers

bl Baseline CP14 interface. This register also has an external view through the memory-mapped interface and the CP14 interface.
bm Accessible in user mode if bit[12] of the DBGSCR is clear. Also accessible in privileged modes.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-225

Non-Confidential

Table 10-8 Debug register mapping (continued)

Register
number

APB offset APB
access

CP14 address CP14
access

Register name Description

70-79 - - - - Reserved -

80-85 0x140-0x154 RW 0, c0, c0-c5, 5 RW DBGBCRn Breakpoint Control
Registers

86-95 - - - - Reserved -

96-99 0x180-0x18C RW 0, c0, c0-c3, 6 RW DBGWVRn Watchpoint Value
Registers

100-111 - - - - Reserved -

112-115 0x1C0-0x1CC RW 0, c0, c0-c3, 7 RW DBGWCRn Watchpoint Control
Registers

116-191 - - - - Reserved -

192 0x300 RAZ/WI 0, c1, c0, 4 RAZ/WI DBGOSLAR Not implemented

193 0x304 RAZ/WI 0, c1, c1, 4 RAZ/WI DBGOSLSR Not implemented

194 0x308 RAZ/WI 0, c1, c2, 4 RAZ/WI DBGOSSRR Not implemented

195 - - - - Reserved -

196 0x310 RW 0, c1, c4, 4 RW DBGPRCR -

197 0x314 RO 0, c1, c5, 4 RO DBGPRSR -

198-511 - - - - Reserved -

512-575 0x800-0x8FC - - - - PMU registersbn

576-831 - - - - Reserved -

832-895 0xD00-0xDFC - - - - Processor ID Registers
on page 10-216

896-927 - - Reserved -

928-959 0xE80-0xEFC RAZ/WI No access No access - -

960 0xF00 RAZ/WI 0, c7, c0, 4 RAZ/WI DBGITCTRL Integration Mode
Control Register

961-999 0xF04-0xF9C - - - - -

1000 0xFA0 RW 0, c7, c8, 6 RW DBGCLAIMSET Claim Tag Set Register

1001 0xFA4 RW 0, c7, c9, 6 RW DBGCLAIMCLR Claim Tag Clear
Register

1002-1003 - - - - Reserved -

1004 0xFB0 WO No access No access DBGLAR Lock Access Register

1005 0xFB4 RO No access No access DBGLSR Lock Status Register

1006 0xFB8 RO 0, c7, c14, 6 RO DBGAUTHSTATUS Authentication Status
Register

1007-1008 - - - - Reserved -

bn PMU registers are part of the CP15 interface. Reads from the extended CP14 interface return zero. See 4.2 Register summary on page 4-59. See also
10.1 Performance Monitoring Unit on page 10-215.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-226

Non-Confidential

Table 10-8 Debug register mapping (continued)

Register
number

APB offset APB
access

CP14 address CP14
access

Register name Description

1009 0xFC4 RO No access No access DBGDEVID1 -

1010 0xFC8 RO No access No access DBGDEVID0 -

1011 0xFCC RO No access No access DBGDEVTYPE Device Type Register

1012-1016 0xFD0-0xFEC RO No access No access PERIPHERALID CoreSight
Identification Registers
on page 10-232

1017-1019 - - - - Reserved -

1020-1023 0xFF0-0xFFC RO No access No access COMPONENTID CoreSight
Identification Registers
on page 10-232

Debug register descriptions

Register features that are specific to the Cortex‑R8 processor.

See the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R edition for information about
other register features not described in this section.

Debug ID Register, DBGDIDR

The DBGDIDR specifies the version of the Debug architecture that is implemented, and some features of
the debug implementation.

Usage constraints

There are no usage constraints.

Accessible when the processor is powered down.

For more information about the debug implementation, see Debug Device ID Register 1
on page 10-229 and Debug Device ID Register 0 on page 10-230.

Configurations
Available in all configurations.

Attributes
See the register summary in Debug register mapping table on page 10-225.

The following figure shows the DBGDIDR bit assignments.

Revision

31 28 27 24 23 20 19 16 15 14 13 12 11 8 7 4 3 0

WRPs BRPs CTX_CMPs Version Reserved Variant

DEVID_imp
PCSR_imp
SE_imp

nSUHD_imp

Figure 10-1 DBGDIDR bit assignments

The following table shows the DBGDIDR bit assignments.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-227

Non-Confidential

Table 10-9 DBGDIDR bit assignments

Bits Name Function

[31:28] WRPs Indicates the number of Watchpoint Register Pairs (WRPs) implemented:

0x3 The processor implements 4 WRPs.

[27:24] BRPs Indicates the number of Breakpoint Register Pairs (BRPs) implemented:

0x5 The processor implements 6 BRPs.

[23:20] CTX_CMPs Indicates the number of BRPs that can be used for Context matching:

0x1 The processor implements 2 breakpoints with Context matching.

[19:16] Version Indicates the Debug architecture version:

0x3 The processor implements Armv7 Debug architecture.

[15] DEVID_imp Indicates if the Debug Device ID Register (DBGDEVID) is implemented:

1 DBGDEVID is implemented.

[14] nSUHD_imp Indicates if the Secure User Halting Debug is implemented:

0 Secure User halting debug is implemented.

[13] PCSR_imp Indicates if the Program Counter Sampling Register (DBGPCSR) implemented as register 33:

1 DBGPCSR is implemented as register 33.

[12] SE_imp Security Extensions implemented bit:

0 Security Extensions are not implemented.

[11:8] - Reserved.

[7:4] Variant Indicates the variant number of the processor. This number is incremented on functional changes. The value
matches bits [23:20] of the CP15 Main ID Register. For more information, see 4.3.1 Main ID Register
on page 4-70.

[3:0] Revision Indicates the revision number of the processor. This number is incremented on bug fixes. The value matches
bits [3:0] of the CP15 Main ID Register. For more information, see 4.3.1 Main ID Register on page 4-70.

Related reference
Debug Device ID Register 1 on page 10-229
Debug Device ID Register 0 on page 10-230
Debug register mapping table on page 10-225
4.3.1 Main ID Register on page 4-70

Debug Status and Control Register, DBGDSCR

Bit exceptions for DBGDSCR.

DBGDSCR behaves as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition, except for the following bits:

PipeAdv, bit[25]
This bit is set each time a branch is resolved in the core.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-228

Non-Confidential

HALTED, bit[0]
This bit is the only bit of the register that is not reset on debug logic reset. It is reset to 0b0 on a
core logic reset. Its behavior is as described in the Arm® Architecture Reference Manual
Arm®v7‑A and Arm®v7‑R edition.

Debug Run Control Register, DBGDRCR

Bit exceptions for DBGDRCR.

DBGDRCR behaves as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition, except for the following bits:

Cancel BIU Requests, bit[4]
Not implemented, RAZ/WI.

Bits[3:0]
Implemented as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition.

Device Powerdown and Reset Control Register, DBGPRCR

Bit exceptions for DBGPRCR.

DBGPRCR behaves as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition, except for the following bits:

Bits[2:1]
Not implemented, RAZ/WI.

DBGnoPWRDWN, bit[0]
Implemented as described in the Arm® Architecture Reference ManualARMv7-A and Arm®v7‑R
edition (RW).

Device Powerdown and Reset Status Register, DBGPRSR

Bit exceptions for DBGPRSR.

DBGPRSR behaves as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition, except for the following bits:

Sticky Reset Status, bit[3]
Implemented as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition.

Reset Status, bit[2]
Implemented as described in the Arm® Architecture Reference Manual Arm®v7‑A and Arm®v7‑R
edition.

Sticky Powerdown Status, bit[1]
Not implemented, RAZ/WI.

Power-up Status, bit[0]
Implemented, RAO.

Debug Device ID Register 1

The DBGDEVID1 adds to the information given by the DBGDIDR, by describing other features of the
debug implementation.

Usage constraints

There are no usage constraints.

Accessible when the processor is powered down.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-229

Non-Confidential

Attributes
See the register summary in Debug register mapping table on page 10-225.

The following figure shows the DBGDEVID1 bit assignments.

Reserved

31 3 0

PCSROffset

4

Figure 10-2 DBGDEVID1 bit assignments

The following table shows the DBGDEVID1 bit assignments.

Table 10-10 DBGDEVID1 bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] PCSROffset Defines the offset applied to DBGPCSR samples:

0b0001 DBGPCSR samples have no offset applied.

Related reference
Debug register mapping table on page 10-225

Debug Device ID Register 0

The DBGDEVID0 extends the DBGDIDR by describing other features of the debug implementation.

Usage constraints

Use in conjunction with DBGDIDR to find the features of the debug implementation. See the
Debug ID Register for the DBGDIDR bit assignments.

Accessible when the processor is powered down.

Configurations
Available in all configurations.

Attributes
See the register summary in Debug register mapping table on page 10-225.

Figure 9-20 shows the DBGDEVID0 bit assignments.

CIDMask

31 4 3 0

PCsample

28 27 24 23 20 19 16 15 12 11 8 7

AuxRegs DoubleLock VirtExtns

VectorCatch
BPAddrMask

WPAddrMask

Figure 10-3 DBGDEVID0 bit assignments

Table 9-19 shows the DBGDEVID0 bit assignments.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-230

Non-Confidential

Table 10-11 DBGDEVID0 bit assignments

Bits Name Function

[31:28] CIDMask This field indicates the level of support for the Context ID matching breakpoint masking capability.

0b0000 Context ID masking not implemented.

[27:24] AuxRegs Specifies support for the Debug External Auxiliary Control Register.

0b0000 The processor does not support the Debug External Auxiliary Control
Register.

[23:20] DoubleLock Specifies support for the Debug OS Double Lock Register:

0b0000 The Debug OS Double-lock Register is not supported.

[19:16] VirExtns Specifies the implementation of the Virtualization Extensions to the Debug architecture:

0b0000 Virtualization Extensions to the Debug architecture are not implemented.

[15:12] VectorCatch Defines the form of the vector catch event implemented:

0b0000 The processor implements address matching form of vector catch.

[11:8] BPAddrMask Indicates the level of support for the Immediate Virtual Address (IVA) matching breakpoint masking
capability:

0b1111 Breakpoint address masking not implemented. DBGBCRn[28:24] are
UNK/SBZP.

[7:4] WPAddrMask Indicates the level of support for the DVA matching watchpoint masking capability:

0b0001 Watchpoint address mask implemented.

[3:0] PCSample Indicates the level of support for Program Counter sampling using debug registers 40 and 41:

0b0000 Program Counter Sampling Register (DBGPCSR) is not implemented as
register 40, and Context ID Sampling Register (DBGCIDSR) is not
implemented.

Related reference
Debug register mapping table on page 10-225
Debug ID Register, DBGDIDR on page 10-227

Breakpoint and Watchpoint Registers, DBGBVRn, DBGBCRn, DBGWVRn, and
DBGWCRn

Breakpoint and Watchpoint Registers features that are specific to the Cortex‑R8 processor.

The Breakpoint and Watchpoint Registers behave as described in the Arm® Architecture Reference
Manual Arm®v7‑A and Arm®v7‑R edition, except for the following:
• Only BRP4 and BRP5 support context ID comparison.
• BVR0[1:0], BVR1[1:0], BVR2[1:0], and BVR3[1:0] are SBZP on writes and RAZ on reads because

these registers do not support context ID comparisons.
• The context ID value for a BVR to match with is given by the contents of the CP15 Context ID

Register.

Effects of resets on debug registers

nDBGRESET is the debug logic reset signal. This signal must be asserted during a power up reset
sequence.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-231

Non-Confidential

On a debug reset:
• The debug state is unchanged. That is, DBGSCR.HALTED is unchanged.
• The processor removes the pending halting debug events DBGDRCR.HaltReq.

Debug management registers

The management registers define the standardized set of registers that is implemented by all CoreSight
components.

The following table shows the contents of the debug management registers for the Cortex‑R8 processor
debug unit. On the Cortex‑R8 processor, the debug management registers are memory-mapped.

Table 10-12 Debug management registers

APB offset Register number Access Mnemonic Description

0xD00-0xDFC 832-895 RO - Processor ID Registers on page 10-232

0xE00-0xEF0 854-956 RAZ/WI - Not implemented

0xF00 960 RAZ/WI ITCTRL -

0xF04-0xF9C 961-999 RAZ/WI - Not implemented

0xFA0 1000 RW CLAIMSET -

0xFA4 1001 RW CLAIMCLR -

0xFA8-0xFBC 1002-1003 RAZ/WI - Not implemented

0xFB0 1004 WO LOCKACCESS -

0xFB4 RO LOCKSTATUS -

0xFB8 RO AUTHSTATUS -

0xFBC-0xFC4 1007-1009 RAZ/WI - Not implemented

0xFC8 1010 RO DEVID -

0xFCC 1011 RO DEVTYPE -

0xFD0-0xFFC 1012-1023 RO - CoreSight Identification Registers on page 10-232

Processor ID Registers

The Processor ID Registers are read-only registers that return the same values as the corresponding CP15
ID Code Register and Feature ID Register.

The Processor Identifier Registers table shows the APB offset value, register number, mnemonic, and
description that are associated with each Processor ID Register.

Related reference
Processor ID Registers on page 10-216

CoreSight Identification Registers

The Identification Registers are read-only registers that consist of the Peripheral Identification Registers
and the Component Identification Registers. The Peripheral Identification Registers provide standard
information required by all CoreSight components. Only bits[7:0] of each register are used.

The Component Identification Registers identify the Cortex‑R8 processor as a CoreSight component.
Only bits[7:0] of each register are used, the remaining bits Read-As-Zero. The values in these registers
are fixed.

The following table shows the APB offset value, register number, and description that are associated with
each Peripheral Identification Register.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-232

Non-Confidential

Table 10-13 Peripheral Identification Registers for core debug

APB offset Register number Value Description

0xFD0 1012 0x04 Peripheral Identification Register 4

0xFD4 1013 - Reserved

0xFD8 1014 - Reserved

0xFDC 1015 - Reserved

0xFE0 1016 0x18 Peripheral Identification Register 0

0xFE4 1017 0xBC Peripheral Identification Register 1

0xFE8 1018 0x0B Peripheral Identification Register 2

0xFEC 1019 0x00 Peripheral Identification Register 3

The following table shows the APB offset value, register number, and value that are associated with each
Component Identification Register.

Table 10-14 Component Identification Registers

APB offset Register number Value Description

0xFF0 1020 0x0D Component Identification Register 0

0xFF4 1021 0x90 Component Identification Register 1

0xFF8 1022 0x05 Component Identification Register 2

0xFFC 1023 0xB1 Component Identification Register 3

10.4.3 External debug interface

External debug interface signals.

The following figure shows the external debug interface signals.

Cortex-R8
processor

DBGEN[CN:0]
NIDEN[CN:0]

COMMTX[CN:0]
COMMRX[CN:0]

DBGCPUDONE[CN:0]

DBGNOPWRDWN[CN:0]

DBGACK[CN:0]
EDBGRQ[CN:0]

PSELDBG
PADDRDBG[16:2]

PRDATADBG[31:0]

PENABLEDBG
PREADYDBG
PSLVERRDBG
PWRITEDBG

DBGROMADDR[31:12]
DBGROMADDRV
DBGSELFADDR[31:17]
DBGSELFADDRV
DBGSWENABLE[CN:0]

PWDATADBG[31:0]

nDBGRESET[CN:0]

PADDRDBG31

Figure 10-4 External debug interface signals

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-233

Non-Confidential

Authentication signals

Table showing the valid combinations of authentication signals along with their associated debug
permissions.

Table 10-15 Authentication signal restrictions

DBGEN NIDEN Invasive debug permitted Non-invasive debug permitted

0 0 No No

0 1 No Yes

1 0 Yes Yes

1 1 Yes Yes

Debug APB interface

The system can access memory-mapped debug registers through the Cortex‑R8 processor APB slave
port. This APB slave interface supports 32-bit wide data, stalls, and slave-generated aborts.

The following table shows the mapping of PADDRDBG[16:2].

Table 10-16 PADDRDBG[16:2] mapping

Address map Reset domain Component

0x00000-0x00FFF Integration ROM Table.

0x01000-0x0FFFF - Reserved.

0x10000-0x10FFF CPU0 Core 0 debug. See Debug register mapping table on page 10-225 for debug resource memory
mapping.

0x11000-0x11FFF CPU0 Core 0 PMU. See 10.1 Performance Monitoring Unit on page 10-215 for PMU resource
mapping.

0x12000-0x12FFF CPU1 Core 1 Debug. See Debug register mapping table on page 10-225 for debug resource memory
mapping.

0x13000-0x13FFF CPU1 Core 1 PMU. See 10.1 Performance Monitoring Unit on page 10-215 for PMU resource
mapping.

0x14000-0x14FFF CPU2 Core 2 Debug. See Debug register mapping table on page 10-225 for debug resource memory
mapping.

0x15000-0x15FFF CPU2 Core 2 PMU. See 10.1 Performance Monitoring Unit on page 10-215 for PMU resource
mapping.

0x16000-0x16FFF CPU3 Core 3 Debug. See Debug register mapping table on page 10-225 for debug resource memory
mapping.

0x17000-0x17FFF CPU3 Core 3 PMU. See 10.1 Performance Monitoring Unit on page 10-215 for PMU resource
mapping.

0x18000-0x18FFF Integration Core 0 CTI.

0x19000-0x19FFF Integration Core 1 CTI.

0x1A000-0x1AFFF Integration Core 2 CTI.

0x1B000-0x1BFFF Integration Core 3 CTI.

0x20000-0x1BFFF - Reserved.

0x1C000-0x1CFFF Integration Core 0 ETM.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-234

Non-Confidential

Table 10-16 PADDRDBG[16:2] mapping (continued)

Address map Reset domain Component

0x1D000-0x1DFFF Integration Core 1 ETM.

0x1E000-0x1EFFF Integration Core 2 ETM.

0x1F000-0x1FFFF Integration Core 3 ETM.

The PADDRDBG31 signal indicates the source of the access to the core.

External debug request interface

The external debug request interface signals assert various debug states and indicate debug events.

EDBGRQ

This signal generates a halting debug event by requesting the core to enter debug state. When this occurs,
the DSCR[5:2] method of debug entry bits are set to 0b0100. When EDBGRQ is asserted, it must be
held until DBGACK is asserted. Failure to do so causes UNPREDICTABLE behavior of the core.

DBGACK

The core asserts DBGACK to indicate that the system has entered debug state. It serves as a handshake
for the EDBGRQ signal. The DBGACK signal is also driven HIGH when the debugger sets the
DSCR[10] DbgAck bit to 1.

DBGCPUDONE

DBGCPUDONE is asserted when the core has completed a Data Synchronization Barrier (DSB) as part
of the entry procedure to debug state.

If the debugger writes 1 to the DBGDSCR.DBGack bit when the DBGDSCR.HALTED bit equals 1,
the processor asserts DBGCPUDONE after it has completed all non-debug state memory accesses. The
system uses DBGCPUDONE as an indicator that all memory accesses issued by the core are a result of
operations performed by a debugger.

The following figure shows the Cortex‑R8 processor connections specific to debug request and restart
and the CoreSight inputs and outputs.

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-235

Non-Confidential

D Q
dbgtriggerreq

dbgtriggerack

Processor CLK

ctitrigin[0]

ctitriginack[0]

edbgrq
ctitrigout[0]

ctitrigoutack[0]

dbgrestarted
ctitrigoutack[7]

dbgrestart ctitrigout[7]

Core 0 CTI0

dbgack

0

1
dbgrestartack

D Q

dbgrestartreq

D Q

Figure 10-5 Debug request restart-specific connections

COMMRX and COMMTX

The COMMRX and COMMTX output signals enable interrupt-driven communications over the DTR.
By connecting these signals to an interrupt controller, software using the Debug Communications
Channel can be interrupted whenever there is new data on the channel or when the channel is clear for
transmission:

• COMMRX is asserted when the CP14 DTR has data for the core to read, and is deasserted when the
core reads the data. Its value is equal to the DBGDSCR[30] DTRRX full flag.

• COMMTX is asserted when the CP14 DTR is ready for write data, and is deasserted when the core
writes the data. Its value is equal to the inverse of the DBGDSCR[29] DTRTX full flag.

DBGROMADDR and DBGSELFADDR

Cortex‑R8 cores have a memory-mapped debug interface, and can access the debug and PMU registers
by executing load and store instructions going through the AXI3 bus.

• DBGROMADDR gives the base address for the ROM table that locates the physical addresses of the
debug components.

• DBGSELFADDR gives the offset from the ROM table to the physical addresses of the registers in
the core itself.

Related reference
A.14 External debug signals on page Appx-A-397

10.4.4 Trigger inputs and outputs

Trigger inputs and outputs that are available to the CTI.

The following table shows the CTI inputs.

Table 10-17 Trigger inputs

CTI input Name Description

0 DBGTRIGGER, pulsed Pulsed on entry to debug state

1 PMUIRQ PMU generated interrupt

2 ETMEXTOUT[0] ETM external output

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-236

Non-Confidential

Table 10-17 Trigger inputs (continued)

CTI input Name Description

3 ETMEXTOUT[1] ETM external output

4 ETMEXTOUT[2] ETM external output

5 ETMEXTOUT[3] ETM external output

6 COMMTX Debug communication transmit channel is empty

7 COMMRX Debug communication receive channel is full

The following table shows the CTI outputs.

Table 10-18 Trigger outputs

CTI output Name Description

0 EDBGRQ Causes the core to enter debug state

1 ETMEXTIN[0] ETM external input - ETM event

2 ETMEXTIN[1] ETM external input - ETM event

3 ETMEXTIN[2] ETM external input - ETM event

4 ETMEXTIN[3] ETM external input - ETM event

5 - -

6 nCTIIRQ CTI interrupt

10 Monitoring, Trace, and Debug
10.4 Debug

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

10-237

Non-Confidential

Chapter 11
Embedded Trace Macrocell

This chapter describes the Embedded Trace Macrocell for the Cortex‑R8 processor.

It contains the following sections:
• 11.1 About the ETM on page 11-239.
• 11.2 Functional description on page 11-244.
• 11.3 Interfaces on page 11-246.
• 11.4 Clocking and resets on page 11-248.
• 11.5 Operation on page 11-249.
• 11.6 Controlling ETM programming on page 11-253.
• 11.7 ETM registers on page 11-254.
• 11.8 Register descriptions on page 11-266.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-238

Non-Confidential

11.1 About the ETM
The ETM provides real-time instruction trace and data trace for the Cortex‑R8 processor. The Cortex‑R8
processor ETM generates information that trace software tools use to reconstruct the execution of all or
part of a program.

For full reconstruction of program execution, the Cortex‑R8 processor ETM is able to trace:
• All instructions, including condition code pass/fail.
• Load/store address and data values.
• Values of context-ID.
• Target addresses of taken direct and indirect branch operations.
• Exceptions.
• Changes in core instruction set state.
• Entry to and return from Debug state when Halting Debug-mode is enabled.
• Cycle counts relating to instruction execution.

The Cortex‑R8 processor ETM contains logic, known as resources, that enable you to control tracing by
specifying the exact set of triggering and filtering conditions required for a particular application.
Resources include address comparators and data value comparators, counters, and a sequencer.

The Cortex‑R8 processor ETM is a CoreSight component. For more information about CoreSight, see
the Arm® Embedded Trace Macrocell Architecture Specification ETMv4.

This section contains the following subsections:
• 11.1.1 The CoreSight™ debug environment on page 11-239.
• 11.1.2 Features on page 11-240.
• 11.1.3 Interfaces on page 11-242.
• 11.1.4 Configurable options on page 11-242.
• 11.1.5 Test features on page 11-242.

11.1.1 The CoreSight™ debug environment

The Cortex‑R8 processor ETM is designed for use with CoreSight, an extensible, system-wide debug and
trace architecture from Arm.

See the Arm® CoreSight™ SoC-400 User Guide for more information about how to use the Cortex‑R8
processor ETM in a full CoreSight system.

A software debugger provides the user interface to the Cortex‑R8 processor ETM. You can use this
interface to:

• Configure Cortex‑R8 processor ETM facilities such as filtering.
• Configure optional trace features such as cycle accurate tracing.
• Configure the other CoreSight components such as the Trace Port Interface Unit (TPIU).
• Access the core debug and performance monitor units.

A CoreSight system can provide memory-mapped access from the core to its own debug and trace
components.

The Cortex‑R8 processor ETM outputs its trace stream to the AMBA 3 Advanced Trace Bus (ATB)
interfaces. The CoreSight infrastructure provides the following options:

• Export the trace information through a trace port. An external Trace Port Analyzer (TPA) captures the
trace information as the figure that follows shows.

• Write the trace information directly to an on-chip Embedded Trace Buffer (ETB) or to system
memory. You can read out the trace at low speed using a JTAG or Serial Wire interface when the
trace capture is complete as the figure shows.

The debugger extracts the executed image from memory and the captured trace information from the
TPA or ETB and decompresses the image to provide full disassembly, with symbols, of the code that was
executed. The trace information generated by the Cortex‑R8 processor ETM gives the debugger the

11 Embedded Trace Macrocell
11.1 About the ETM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-239

Non-Confidential

capability to link this data back to the original high-level source code, to provide a visualization of how
the code was executed on the Cortex‑R8 processor.

The figure shows how the Cortex‑R8 processor ETM fits into a CoreSight debug environment to provide
full trace capabilities in a single core system. In this example, the external debug software configures the
trace and debug components through the Debug Access Port (DAP). The ROM table contains a unique
identification code for the SoC and the base addresses of the components connected to the debug APB.
The trace stream from the Cortex‑R8 processor ETM is replicated to provide on-chip storage using the
CoreSight ETB or output off-chip using the TPIU. Cross-triggering operates through the Cross Trigger
Interface (CTI) and Cross Trigger Matrix (CTM) components.

System-on-Chip

Memory

APB
bridge

Debug Access
Port (DAP)

ROM
table

Cortex-R8
Core 0

Cross-Trigger Interface
(CTI)

Cross-Trigger Interface
(CTI)

On-chip
buffer (ETB)

Trace Port
Interface Unit

(TPIU)

ETM
Replicator

ATB

ATB

Debug interface
unit

PC-based
debugging tool

Trace port
analyzer

JTAG or Serial Wire

AXI Cross-Trigger Matrix (CTM)

Debug APB

ATB
AXI APB

Figure 11-1 ETM system diagram for a single core Cortex-R8 processor

 Note

In the figure, the arrows on the thick lines show the transaction direction on buses, from master to slave
port. Each bus contains individual signals that go from master to slave and other signals that go from
slave to master.

For a Cortex‑R8 processor implementation with several cores, the following options are available:
• One ETM, statically shared between each core.
• One ETM dedicated to each core.

11.1.2 Features

The Cortex‑R8 processor ETM supports tracing of 32-bit Arm instructions, and 16-bit and 32-bit Thumb
instructions.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for information about:

• The trace protocol.
• The features of ETMv4.
• Controlling tracing using triggering and filtering resources.
• ETM sharing.

11 Embedded Trace Macrocell
11.1 About the ETM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-240

Non-Confidential

The following table shows the features of the Cortex‑R8 processor ETM that are implementation-
defined, in terms of either:
• The number of times the feature is implemented.
• The size of the feature.

Table 11-1 Cortex-R8 processor ETM features with implementation-defined number of instances or size

Feature Cortex-R8 processor
ETM value

Notes

Address comparators 4 pairs See bits[3:0] of the 11.8.34 ID Register 4 on page 11-304 

Data value comparators 2 See bits[7:4] of the 11.8.34 ID Register 4 on page 11-304  

Context ID comparators 1 See bits[27:24] of the 11.8.34 ID Register 4 on page 11-304 

Single-Shot comparator
resource

2, one for instruction, one
for data

See bits[2:0] of the 11.8.38 Single-Shot Comparator Status Registers
0-1 on page 11-308

Counters 2 See bits[30:28] of the 11.8.35 ID Register 5 on page 11-305 

Cycle count size 12 See bits[28:25] of the 11.8.32 ID Register 2 on page 11-301

Sequencer 1 One four-state sequencer. See bits[27:25] of the 11.8.35 ID Register 5
on page 11-305. 

Core comparator inputs Not implemented See bits[15:12] of the 11.8.34 ID Register 4 on page 11-304 

External inputs 64 See bits[8:0] of the 11.8.35 ID Register 5 on page 11-305 

External outputs 4 See bits[3:0] of the 11.8.7 Event Control 1 Register on page 11-274 

External input selectors 4 See bits[11:9] of the 11.8.35 ID Register 5 on page 11-305 

Resource selector pairs 8 See bits[19:16] of the 11.8.34 ID Register 4 on page 11-304 

Instruction trace port size 32-bit -

Data trace port size 64-bit -

Instruction FIFObo 128 byte with 32-bit output Uses ATB

Data FIFO 256 byte with 64-bit output Uses ATB

Claim tag bits 4 See bits[3:0] of the 11.8.50 Claim Tag Set Register on page 11-320

The following table shows the optional features of the ETM architecture that the Cortex‑R8 processor
ETM implements.

Table 11-2 Cortex-R8 processor ETM implementation of optional features

Feature Implemented? Notes

Configurable FIFO No -

Trace Start/Stop block Yes 11.8.16 ViewInst Start/Stop Control Register on page 11-283

Trace all branches option Yes See bit[5] of the 11.8.30 ID Register 0 on page 11-298

Trace of conditional instructions Yes See bits[13:12] and bit[6] of the 11.8.30 ID Register 0 on page 11-298,
using the full CPSR value

Cycle counting in instruction trace Yes See bit[7] of the 11.8.30 ID Register 0 on page 11-298

Data trace supported  Yes See bits[4:3] of the 11.8.30 ID Register 0 on page 11-298

bo Instruction trace can be configured to take priority over data trace. See bit[10] of the TRCSTALLCTLR.

11 Embedded Trace Macrocell
11.1 About the ETM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-241

Non-Confidential

Table 11-2 Cortex-R8 processor ETM implementation of optional features (continued)

Feature Implemented? Notes

Data address comparison Yes See bit[8] of the 11.8.34 ID Register 4 on page 11-304

OS Lock mechanism Yes 11.8.39 OS Lock Access Register on page 11-310

Secure non-invasive debug No The Cortex‑R8 processor does not implement the Security Extensions

Context ID tracing Yes See bits[9:5] of the 11.8.32 ID Register 2 on page 11-301

Trace output Yes ATB

Timestamp size (48/64) System configurable See bits[28:24] of the 11.8.30 ID Register 0 on page 11-298

Memory mapped access to ETM
registers

Yes -

System instruction access to ETM
registers

No -

VMID comparator support No See bits[31:28] of the 11.8.34 ID Register 4 on page 11-304

ATB trigger support Yes See bit[22] of the 11.8.35 ID Register 5 on page 11-305

Related reference
11.8.34 ID Register 4 on page 11-304
11.8.38 Single-Shot Comparator Status Registers 0-1 on page 11-308
11.8.35 ID Register 5 on page 11-305
11.8.32 ID Register 2 on page 11-301
11.8.7 Event Control 1 Register on page 11-274
11.8.50 Claim Tag Set Register on page 11-320
11.8.16 ViewInst Start/Stop Control Register on page 11-283
11.8.30 ID Register 0 on page 11-298
11.8.39 OS Lock Access Register on page 11-310
Appendix A Signal Descriptions on page Appx-A-356

11.1.3 Interfaces

The Cortex‑R8 processor ETM has main interfaces for processor trace, ATB, Debug APB, and test.

Related reference
11.3 Interfaces on page 11-246

11.1.4 Configurable options

The Cortex‑R8 processor ETM provides NUMPROC, SYSSTALL, and TSSIZE configuration input
signals.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for more information.

11.1.5 Test features

The Cortex‑R8 processor ETM provides the DFTSE input for testing the implemented device.

See the Arm® Cortex®‑R8 MPCore Processor Integration Manual.

Integration test registers are provided for testing the Cortex‑R8 processor ETM integration in a SoC and
performing CoreSight topology detection.

11 Embedded Trace Macrocell
11.1 About the ETM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-242

Non-Confidential

Related reference
11.8.61 Integration Test Registers on page 11-332

11 Embedded Trace Macrocell
11.1 About the ETM

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-243

Non-Confidential

11.2 Functional description
Functional description of the Cortex‑R8 processor ETM.

The following figure shows the main functional blocks of the Cortex‑R8 processor ETM.

Processor
trace

interface

Cortex-R8
processor

ETM interface

Debug Advanced
Peripheral Bus (APB)

Advanced Trace
Bus (ATB)

Resources
and filtering

logic

APB
interface

Registers

Trigger, TraceEnable,
View Data

ATB interface

Data
FIFO

Data trace
generator

Instruction
FIFO

Instruction
trace

generator

ATB interface Advanced Trace
Bus (ATB)

Figure 11-2 Cortex-R8 processor ETM block diagram

11.2.1 Processor interface

The processor interface block connects to the Cortex‑R8 processor ETM interface. It tracks the execution
and speculation information from the core, decodes the control signals and passes on the information to
the internal interfaces.

11.2.2 Instruction trace generator

The instruction trace generator block generates the trace packets that are a compressed form of the
execution information provided by the Cortex‑R8 processor trace generation. The trace packets are then
passed to the FIFO.

11.2.3 Data trace generator

The data trace generator block generates trace packets that are a compressed form of the external data
transfer provided by the Cortex‑R8 processor trace generation. The trace packets are then passed to the
FIFO.

11.2.4 FIFO

The FIFO block buffers bursts of trace packets. Separate FIFOs are provided for instruction and data
trace streams.

11.2.5 Resources and filtering logic

The resources and filtering logic blocks contain various comparators and state machines that are
programmed by trace software to trigger and filter the trace information. They start and stop trace
generation, depending on the conditions that have been set.

11 Embedded Trace Macrocell
11.2 Functional description

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-244

Non-Confidential

11.2.6 ATB interface

The ATB interface block reads up to four or eight bytes of packet information from the FIFO and sends
them over the ATB interface.

11.2.7 APB interface

The APB interface block implements the interface to the APB, that provides access to the programmable
registers. It provides address decoding and pipelining of the address and data to and from the APB.

11.2.8 Global timestamping

The Cortex‑R8 processor ETM supports connection to a global timestamp source. This provides a 48-bit
or 64-bit timestamp which can be used for coarse-grained profiling, and correlation of trace sources. Arm
recommends that the timestamp counter is no slower than 10% of the Cortex‑R8 processor clock.

 Note

Decompression of data trace relies on the presence of a global timestamp count.

11 Embedded Trace Macrocell
11.2 Functional description

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-245

Non-Confidential

11.3 Interfaces
A Cortex‑R8 processor ETM has two ATB interfaces, an APB interface, a processor trace interface, and a
test interface. There are also a number of other miscellaneous interface signals that configure ETM,
trace, and debug options.

ATB

Two ATB interfaces, one 32 bits, and one 64 bits wide, used for trace output from the macrocell.
These interfaces have handshaking signals that indicate when trace data is valid and when the
receiving component is ready to accept data. There are also signals to request and acknowledge
a flush of the trace information and to indicate when a trigger condition has occurred.

See the Arm® AMBA® 4 ATB Protocol Specification ATBv1.0 and ATBv1.1 for more information
about these interfaces.

APB

An APB interface that provides access to the programmable registers in the ETM and connects
to the system Debug APB. This interface is used to configure the ETM for a trace session.

See the Arm® AMBA® 4 ATB Protocol Specification ATBv1.0 and ATBv1.1 for more information
about this interface.

Processor trace

The Cortex‑R8 processor passes its execution information to the ETM over the processor trace
interface. This interface provides both instruction and data execution history and contains
address, data, and control information. The information carried on the control bus includes:

• The number of instructions executed in the same cycle.
• Changes in program flow.
• The current core instruction state.
• The addresses of memory locations accessed by load and store instructions.
• The data values transferred by load and store instructions.
• The type, direction, and size of a transfer.
• Condition code information.
• Exception information.
• Current context ID.

There is also a context ID bus that indicates the current context ID value of the core.

This interface also includes:
• The ETMEVENT bus.
• Wait for interrupt state information signals.
• A signal from the ETM to power up the interface.

Miscellaneous
The ETM has other interface signals that:
• Configure the ETM.
• Input and output external resource information that controls triggering and filtering of the

trace stream.
• Control which core is enabled, as the trace source, on the processor trace interface of the

ETM.
• Enable invasive and non-invasive debug.

Test

This interface contains the scan enable signal used in production testing of the ETM.

This section contains the following subsection:
• 11.3.1 Core PMU connectivity on page 11-247.

11 Embedded Trace Macrocell
11.3 Interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-246

Non-Confidential

11.3.1 Core PMU connectivity

Connections of the ETMEVENT inputs for each core. These come from the CTI, the Cortex‑R8
processor core Performance Monitoring Unit (PMU), and ECC monitoring logic, if present.

Table 11-3 ETMEVENT connections

Bits Description

[63:62] Not used

[61] ECC fatal error has occurred in the core RAM

60 ECC fatal error has occurred on one of the Cortex‑R8 processor buses: M0, M1, MP, ACP, AXI TCM or FPP0-3, if present

[59:4] Core performance monitor events

[3:0] CTITRIGOUT

 Note

When a single ETM is shared between several cores, the PMU event pins are driven from the relevant
core, but the CTI connections for the ETM are always to CTI0, regardless of which core is being traced.

The ETM output resources, ETMEXTOUT, are connected to the CTI and also as inputs to the core
PMU, as the following table shows.

Table 11-4 ETM EXTOUT connections to CTI and core PMU

ETM output CTI input PMU input

ETMEXTOUT[0] CTITRIGIN[2] -

ETMEXTOUT[1] CTITRIGIN[3] PMUEXTIN[0]

ETMEXTOUT[2] CTITRIGIN[4] PMUEXTIN[1]

ETMEXTOUT[3] CTITRIGIN[5] -

Related reference
Chapter 10 Monitoring, Trace, and Debug on page 10-214
Related reference
11.3.1 Core PMU connectivity on page 11-247
11.1.4 Configurable options on page 11-242

11 Embedded Trace Macrocell
11.3 Interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-247

Non-Confidential

11.4 Clocking and resets
Reference information for the Cortex‑R8 processor ETM clocks and resets.

11.4.1 Cortex®-R8 processor ETM clock

The Cortex‑R8 processor ETM has one clock, CLK. This clock is synchronous to the CLK input of the
Cortex‑R8 processor.

11.4.2 Cortex®-R8 processor ETM low-power control

The ETM can be configured to remain active even if the Cortex‑R8 processor enters a low-power state.
See bit[23] of the ID Register 5.

Related reference
11.8.35 ID Register 5 on page 11-305

11.4.3 Cortex®-R8 processor ETM reset

The Cortex‑R8 processor ETM has a single reset, nRESET, and must only be reset by a debug reset
event.

 Note

The programming state must be reconfigured after a reset.

11.4.4 Access permissions and power domains

To determine the access permissions as described in the ETM Architecture v4, the ETM implements a
single power domain. The ETM (debug) power domain is typically separate from the Cortex‑R8
processor core power domain.

11 Embedded Trace Macrocell
11.4 Clocking and resets

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-248

Non-Confidential

11.5 Operation
Description of the implementation-defined features of the Cortex‑R8 processor ETM macrocell.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for more information about
the operation of the Cortex‑R8 processor ETM.

This section contains the following subsections:
• 11.5.1 Implementation-defined registers on page 11-249.
• 11.5.2 Precise TraceEnable events on page 11-249.
• 11.5.3 Parallel instruction execution on page 11-249.
• 11.5.4 Context ID tracing on page 11-249.
• 11.5.5 Trace and comparator features on page 11-249.
• 11.5.6 Data address range filtering on page 11-250.
• 11.5.7 Interaction with the PMU on page 11-250.
• 11.5.8 Packet formats on page 11-250.
• 11.5.9 Resource selection on page 11-251.
• 11.5.10 Trace flush behavior on page 11-251.
• 11.5.11 Low-power state behavior on page 11-252.
• 11.5.12 Cycle counter on page 11-252.
• 11.5.13 Micro-architectural exceptions on page 11-252.
• 11.5.14 Synchronization on page 11-252.

11.5.1 Implementation-defined registers

There are two groups of ETM registers. Registers that are completely defined by the Arm ETMv4
architecture specification, and registers that are at least partly implementation-defined.

Related reference
11.7 ETM registers on page 11-254

11.5.2 Precise TraceEnable events

The Arm ETMv4 architecture specification states that ViewInst and ViewData are imprecise under
certain conditions, with some implementation-defined exceptions. The only condition which ensures that
ViewInst and ViewData are precise is that the enabling event condition is TRUE.

11.5.3 Parallel instruction execution

The Cortex‑R8 processor supports parallel instruction execution. This means that the macrocell is
capable of tracing two instructions per cycle.

Although the ViewInst is evaluated for each instruction as required, the macrocell does not trace one
instruction without the other. In other words, if one instruction is specified to be traced, the instruction it
is paired with is always traced as well. If ViewData is active, any data associated with the paired
instruction is also traced. If ViewData selects only one transfer of a multiple load or store, both transfers
which are issued by the core as a 64-bit transfer are traced.

11.5.4 Context ID tracing

The Cortex‑R8 processor ETM detects updates to the Context ID register and, when the context change
sequence is completed with an ISB or exception, traces the appropriate number of bytes as a context ID
packet as part of the instruction trace stream. Coprocessor register transfers never generate data trace.

11.5.5 Trace and comparator features

In ETM Architecture v4, it is IMPLEMENTATION DEFINED whether an ETM supports several trace and
comparator features.

11 Embedded Trace Macrocell
11.5 Operation

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-249

Non-Confidential

Trace features

The Cortex‑R8 processor ETM implements all the ETMv4 trace features.

This means it supports:
• Data value and data address tracing.
• Data suppression.
• Cycle-accurate tracing.
• Timestamping.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for descriptions of these
features.

Comparator features

The Cortex‑R8 processor ETM implements data address comparison.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for a description of data
address comparison.

11.5.6 Data address range filtering

When data address range filtering is used to include both loads and stores, or no data address include
ranges are selected, an address range is set to exclude loads or stores, but not both. When a SWP matches
for both the include and exclude ranges, both the load and store transfers are traced.

11.5.7 Interaction with the PMU

The Cortex‑R8 processor core includes a Performance Monitoring Unit (PMU) that enables events, such
as cache misses and instructions executed, to be counted over a period. The macrocell can still use these
events by means of the extended external input facility. Each bit in the ETMEVENT[63:0] input is
mapped to the corresponding extended external input.

Bits[3:0] of ETMEVENT are reserved for cross trigger connections. PMU event signals use bits[59:4],
ECC signals use bits[61:60] if implemented, and the remainder are free for system- specific use if
implemented. Any four of the external inputs can be selected for further use in the resource logic.

PMU event number 8, Executed instruction count, is presented by the core as a 6-bit vector which the
ETM is not able to count. These are OR-gated together for connection to the ETM and the ETM is not
able to count instruction execution directly.

The Cortex‑R8 processor core PMU can count two of the ETM external outputs as additional events.
These events are not provided back to the macrocell as extended external inputs.

These facilities enable additional filtering of the system events using ETM resources, such as instruction
address ranges or the start/stop resource, before they are passed back to the PMU for counting. To do
this:
• Configure the ETM external input selectors to the system events you want to count.
• Configure the required ETM filtering resource as appropriate.
• Configure the ETM external outputs and the required ETM filtering resource.
• Select the ETM external outputs as the events to be counted in the Cortex‑R8 processor core PMU.

Related reference
Chapter 10 Monitoring, Trace, and Debug on page 10-214

11.5.8 Packet formats

See the Arm ETMv4 architecture specification for descriptions of the trace packet formats generated by
the Cortex‑R8 processor ETM.

11 Embedded Trace Macrocell
11.5 Operation

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-250

Non-Confidential

11.5.9 Resource selection

The Cortex‑R8 processor ETM uses event selectors to control trace events (triggers and markers in the
trace stream), timestamp events, ViewInst event, ViewData events, Counter controls, and sequencer state
transitions.

Each event selector is configured to be sensitive to a resource selector pair, and one resource selector pair
can be used to control more than one event selector.

The ETM provides one fixed resource selector pair, with static values of 0 and 1, and seven configurable
selector pairs. A resource selector pair provides a bit field OR selector for resources in two different
groups, with each group and a configurable boolean combination provided.

The following table shows the resources which can be selected.

Table 11-5 Resource selection

Group Select Resource

0b0000 0-3 External input selector 0-3

0b0010 0-1 Counter at zero 0-1

4-7 Sequencer states 0-3

0b0011 0-1 Single-Shot comparator 0-1

0b0100 0-7 Single address comparator 0-7

0b0101 0-3 Address range comparator 0-3

0b0110 0 Context ID comparator 0

As an example, the following figure shows the steps necessary to use a single address comparator to
generate a trigger event and an ATB trigger. This example uses the first single resource selector which
can be user-configured.

TRCACVR0
<0xnnn>

TRCACATR0
<0x00>

Simple instruction
address comparator

TRCRSCTL2
<0x40001>

Resource selector
sensitive to SAC0

Event selector sensitive
to single Resource 2

TRCEVENTCTL0R
<0x02>

TRCEVENTCTL1R
<0x801>

Event0 generates event
element and ATB trigger

Figure 11-3 Trigger event resource selection

11.5.10 Trace flush behavior

Events which have been observed by the ETM can be confirmed to have reached the trace bus output
with the use of the ATB flush protocol. Both ATB ports must be flushed if all trace is required. The ETM
internally flushes instruction and data trace together whenever either flush request is seen but does not
guarantee that the trace data has drained from the ETM. When the Cortex‑R8 processor enters a low-
power state, this also causes all trace to be output from the ETM.

If the Cortex‑R8 processor enters a low-power state while an ATB flush request is in progress, the flush
is acknowledged only after all instructions presented to the ETM have been traced.

11 Embedded Trace Macrocell
11.5 Operation

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-251

Non-Confidential

11.5.11 Low-power state behavior

When the Cortex‑R8 processor enters a low-power state, the ETM resources become inactive after a
delay which allows the last instruction executed to trigger a comparator, update the counter or sequencer,
and then cause an event packet to be inserted in the trace stream. This event packet is presented on the
trace bus before the ETM itself enters a low-power state. If an event packet is generated for a different
reason, it is not guaranteed to be output before the ETM enters a low-power state, but is traced when the
Cortex‑R8 processor leaves the low-power state, if the ETM logic is not reset before this can occur.

This low-power behavior can be disabled, in which case the ETM resources remain active.

11.5.12 Cycle counter

The cycle counter is a 12-bit counter. It does not count when non-invasive debug is disabled, or when the
Cortex‑R8 processor is in a low-power state.

11.5.13 Micro-architectural exceptions

These exception encodings are intended to permit trace decompression rather than to trace the underlying
cause of instruction replay.

The ETM indicates exceptions for the following micro-architectural behaviors using the following
encodings:

0b10000
Execution replay resulting from incorrect decode prediction.

0b10001
Execution replay resulting from ECC error detection.

11.5.14 Synchronization

All sources of synchronization are combined before being used to generate synchronization in both trace
streams, if data trace is active.

Periodic synchronization of the data trace stream is aligned with synchronization in the instruction
stream. If the ETM is configured to trace only events in the data stream, it is also necessary to configure
the instruction trace stream to contain sufficient elements to permit the required data trace stream
synchronization.

11 Embedded Trace Macrocell
11.5 Operation

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-252

Non-Confidential

11.6 Controlling ETM programming
When programming the ETM registers, you must enable all the changes at the same time. For example, if
the counter is reprogrammed, it might start to count based on incorrect events, before the trigger
condition has been correctly set up.

You program and read the ETM registers using the Debug APB interface. This provides a direct method
of programming the Cortex‑R8 processor ETM.

You must use the ETM main enable in the TRCPRGCTLR to disable all trace operations during
programming. in the following figure shows the procedure to follow.

Start

Set main enable bit in
TRCPRGCTLR to 0b0

Read TRCSTATR

Is TRCSTATR Idle
0b1?

Program all trace
registers required

Set main enable bit in
TRCPRGCTLR to 0b1

Is TRCSTATR Idle
0b0?

End

No

Yes

No

Yes

Figure 11-4 Programming Cortex-R8 processor ETM registers

The Cortex‑R8 processor does not have to be in the debug state while you program the ETM registers.

Related reference
11.8.1 Programming Control Register on page 11-267

11 Embedded Trace Macrocell
11.6 Controlling ETM programming

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-253

Non-Confidential

11.7 ETM registers
Cortex‑R8 processor ETM register summary, and a list of the macrocell registers organized by functional
group.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for registers that are not
described here.

This section contains the following subsections:
• 11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254.
• 11.7.2 Functional grouping of registers on page 11-258.

11.7.1 Cortex®-R8 processor ETM register summary

Summary of the ETM registers. The registers are listed in numerical order. Registers not listed here are
not implemented.

 Note

• Reading a non-implemented register address returns zero. Writing to a non-implemented register
address has no effect.

• The Reset value column shows the value of the register immediately after an ETM reset. For read-
only registers, every read of the register returns this value.

• Access type is described as follows:

RW
Read and write.

RO
Read only.

WO
Write only.

All ETM registers are 32 bits wide.

Table 11-6 Cortex-R8 processor ETM register summary

Register
number

Base offset Name Type Reset value Description

1 0x004 TRCPRGCTLR RW 0x00000000 11.8.1 Programming Control Register on page 11-267

2 0x008 TRCPROCSELR RW 0x00000000 11.8.2 Processor Select Control Register
on page 11-268

3 0x00C TRCSTATR RO - 11.8.3 Status Register on page 11-268

4 0x010 TRCCONFIGR RW - 11.8.4 Trace Configuration Register on page 11-269

6 0x018 TRCAUXCTLR RW 0x00000000 11.8.5 Auxiliary Control Register on page 11-271

8 0x020 TRCEVENTCTL0R RW - 11.8.6 Event Control 0 Register on page 11-272

9 0x024 TRCEVENTCTL1R RW - 11.8.7 Event Control 1 Register on page 11-274

11 0x02C TRCSTALLCTLR RW - 11.8.8 Stall Control Register on page 11-275

12 0x030 TRCTSCTLR RW - 11.8.9 Global Timestamp Control Register
on page 11-276

13 0x034 TRCSYNCPR RW - 11.8.10 Synchronization Period Register
on page 11-277

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-254

Non-Confidential

Table 11-6 Cortex-R8 processor ETM register summary (continued)

Register
number

Base offset Name Type Reset value Description

14 0x038 TRCCCCTLR RW - 11.8.11 Cycle Count Control Register on page 11-278

15 0x03C TRCBBCTLR RW - 11.8.12 Branch Broadcast Control Register
on page 11-279

16 0x040 TRCTRACEIDR RW - 11.8.13 Trace ID Register on page 11-280

32 0x080 TRCVICTLR RW - 11.8.14 ViewInst Main Control Register
on page 11-281

33 0x084 TRCVIIECTLR RW - 11.8.15 ViewInst Include/Exclude Control Register
on page 11-282

34 0x088 TRCVISSCTLR RW - 11.8.16 ViewInst Start/Stop Control Register
on page 11-283

40 0x0A0 TRCVDCTLR RW - 11.8.17 ViewData Main Control Register
on page 11-284

41 0x0A4 TRCVDSACCTLR RW - 11.8.18 ViewData Include/Exclude Single Address
Comparator Register on page 11-285

42 0x0A8 TRCVDARCCTLR RW - 11.8.19 ViewData Include/Exclude Address Range
Comparator Register on page 11-286

64-66 0x100-0x108 TRCSEQEVRn RW - 11.8.20 Sequencer State Transition Control Registers
0-2 on page 11-287

70 0x118 TRCSEQRSTEVR RW - 11.8.21 Sequencer Reset Control Register
on page 11-288

71 0x11C TRCSEQSTR RW - 11.8.22 Sequencer State Register on page 11-289

72 0x120 TRCEXTINSELR RW - 11.8.23 External Input Select Register on page 11-290

80-81 0x140-0x144 TRCCNTRLDVRn RW - 11.8.24 Counter Reload Value Registers 0-1
on page 11-291

84 0x150 TRCCNTCTLR0 RW - 11.8.25 Counter Control Register 0 on page 11-292

85 0x154 TRCCNTCTLR1 RW - 11.8.26 Counter Control Register 1 on page 11-293

88-89 0x160-0x164 TRCCNTVRn RW - 11.8.27 Counter Value Registers 0-1 on page 11-294

96 0x180 TRCIDR8 RO 0x00000040 11.8.28 ID Register 8-13 on page 11-295

97 0x184 TRCIDR9 RO 0x00000040

98 0x188 TRCIDR10 RO 0x00000040

99 0x18C TRCIDR11 RO 0x00000011

100 0x190 TRCIDR12 RO 0x00000020

101 0x194 TRCIDR13 RO 0x00000000

112 0x1C0 TRCIMSPEC0 RW 0x00000000 11.8.29 Implementation Specific Register 0
on page 11-297

120 0x1E0 TRCIDR0 RO 0xXX001EFF 11.8.30 ID Register 0 on page 11-298

121 0x1E4 TRCIDR1 RO 0x4100F400 11.8.31 ID Register 1 on page 11-300

122 0x1E8 TRCIDR2 RO 0x00420084 11.8.32 ID Register 2 on page 11-301

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-255

Non-Confidential

Table 11-6 Cortex-R8 processor ETM register summary (continued)

Register
number

Base offset Name Type Reset value Description

123 0x1EC TRCIDR3 RO 0xXX090004 11.8.33 ID Register 3 on page 11-302

124 0x1F0 TRCIDR4 RO 0x01270124 11.8.34 ID Register 4 on page 11-304

125 0x1F4 TRCIDR5 RO 0x28C70840 11.8.35 ID Register 5 on page 11-305

130-140 0x208-0x240 TRCRSCTLRn RW - 11.8.36 Resource Selection Registers 2-16
on page 11-306

160-161 0x280-0x284 TRCSSCCRn RW - 11.8.37 Single-Shot Comparator Control Registers 0-1
on page 11-307

168-169 0x2A0-0x2A4 TRCSSCSRn RW - 11.8.38 Single-Shot Comparator Status Registers 0-1
on page 11-308

192 0x300 TRCOSLAR WO - 11.8.39 OS Lock Access Register on page 11-310

193 0x304 TRCOSLSR RO - 11.8.40 OS Lock Status Register on page 11-311

196 0x310 TRCPDCR RW 0x00000000 11.8.41 Power Down Control Register on page 11-312

197 0x314 TRCPDSR RO 0x00000023 11.8.42 Power Down Status Register on page 11-312

256-271 0x400-0x43C TRCACVRn RW - 11.8.43 Address Comparator Value Registers 0-7
on page 11-313

288-303 0x480-0x4BC TRCACATRn RW - 11.8.44 Address Comparator Access Type Registers
0-7 on page 11-314

320-321 0x500-0x504 TRCDVCVRn RW - 11.8.45 Data Value Comparator Value Registers 0-1
on page 11-316

352-359 0x580-0x59C TRCDVCMRn RW - 11.8.46 Data Value Comparator Mask Registers 0-1
on page 11-317

384 0x600 TRCCIDCVR0 RW - 11.8.48 Context ID Comparator Value Register 0
on page 11-318

416 0x680 TRCCIDCCTLR0 RW - 11.8.47 Context ID Comparator Control Register 0
on page 11-318

951 0xEDC TRCITMISCOUTR RW - Integration Miscellaneous Outputs Register
on page 11-334

952 0xEE0 TRCITMISCINR RO - Integration Miscellaneous Inputs Register
on page 11-335

953 0xEE4 TRCITATBIDR RW - Integration ATB Identification Register on page 11-336

954 0xEE8 TRCIRDDATAR RW - Integration Data ATB Data Register on page 11-337

955 0xEEC TRCITIDATAR RW - Integration Instruction ATB Data Register
on page 11-338

956 0xEF0 TRCITDATBINR RO - Integration Data ATB In Register on page 11-339

957 0xEF4 TRCITIATBINR RO - Integration Instruction ATB In Register
on page 11-340

958 0xEF8 TRCITDATBOUTR RW - Integration Data ATB Out Register on page 11-341

959 0xEFC TRCITIATBOUTR RW - Integration Instruction ATB Out Register
on page 11-342

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-256

Non-Confidential

Table 11-6 Cortex-R8 processor ETM register summary (continued)

Register
number

Base offset Name Type Reset value Description

960 0xF00 TRCITCTRL RW 0x00000000 11.8.49 Integration Mode Control Register
on page 11-319

1000 0xFA0 TRCCLAIMSET RW 0x00000000 11.8.50 Claim Tag Set Register on page 11-320

1001 0xFA4 TRCCLAIMCLR RW 0x00000000 11.8.51 Claim Tag Clear Register on page 11-321

1002 0xFA8 TRCDEVAFF0 RO - 11.8.52 Device Affinity Register on page 11-321

1004 0xFB0 TRCLAR WO - 11.8.53 Software Lock Access Register on page 11-322

1005 0xFB4 TRCLSR RO - 11.8.54 Software Lock Status Register on page 11-323

1006 0xFB8 TRCAUTHSTATUS RO - 11.8.55 Authentication Status Register on page 11-324

1007 0xFBC TRCDEVARCH RO 0x47704A17 11.8.56 Device Architecture Register on page 11-325

1010 0xFC8 TRCDEVID RO 0x00000000 11.8.57 Device ID Register on page 11-326

1011 0xFCC TRCDEVTYPE RO 0x00000013 11.8.58 Device Type Register on page 11-327

1012-1019 0xFD0-0xFEC TRCPIDRn RO - 11.8.59 Peripheral Identification Registers
on page 11-328

1020-1023 0xFF0-0xFFC TRCCIDRn RO - 11.8.60 Component Identification Registers
on page 11-331

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-257

Non-Confidential

11.7.2 Functional grouping of registers

Summary of the macrocell registers arranged by functional group. These functional groups include all the
registers.

The functional group register tables include additional information about each register, including:
• The register access type. This is read-only, write-only, or read and write.
• The base offset address of the register. The base address of a register is always four times its register

number.
• Additional information about the implementation of the register, where appropriate.

General control and ID registers

The general control and ID registers in numerical order.

Table 11-7 General control and ID registers

Register number Name Base offset Description

1 TRCPRGCTLR 0x004 11.8.1 Programming Control Register on page 11-267

2 TRCPROCSELR 0x008 11.8.2 Processor Select Control Register on page 11-268

3 TRCSTATR 0x00C 11.8.3 Status Register on page 11-268

4 TRCCONFIGR 0x010 11.8.4 Trace Configuration Register on page 11-269

6 TRCAUXCTLR 0x018 11.8.5 Auxiliary Control Register on page 11-271

8 TRCEVENTCTL0R 0x020 11.8.6 Event Control 0 Register on page 11-272

9 TRCEVENTCTL1R 0x024 11.8.7 Event Control 1 Register on page 11-274

11 TRCSTALLCTLR 0x02C 11.8.8 Stall Control Register on page 11-275

12 TRCTSCTLR 0x030 11.8.9 Global Timestamp Control Register on page 11-276

13 TRCSYNCPR 0x034 11.8.10 Synchronization Period Register on page 11-277

14 TRCCCCTLR 0x038 11.8.11 Cycle Count Control Register on page 11-278

15 TRCBBCTLR 0x03C 11.8.12 Branch Broadcast Control Register on page 11-279

16 TRCTRACEIDR 0x040 11.8.13 Trace ID Register on page 11-280

Trace filtering control registers

The trace filtering control registers in numerical order.

Table 11-8 Trace filtering control registers

Register number Name Base offset Description

32 TRCVICTLR 0x080 11.8.14 ViewInst Main Control Register on page 11-281

33 TRCVIIECTLR 0x084 11.8.15 ViewInst Include/Exclude Control Register on page 11-282

34 TRCVISSCTLR 0x088 11.8.16 ViewInst Start/Stop Control Register on page 11-283

40 TRCVDCTLR 0x0A0 11.8.17 ViewData Main Control Register on page 11-284

41 TRCVDSACCTLR 0x0A4 11.8.18 ViewData Include/Exclude Single Address Comparator Register
on page 11-285

42 TRCVDARCCTLR 0x0A8 11.8.19 ViewData Include/Exclude Address Range Comparator Register
on page 11-286

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-258

Non-Confidential

Derived resource registers

The derived resource registers in numerical order.

These registers control:
• The two counters, and associated events.
• The sequencer, and associated state change events.
• Trigger events.
• EXTOUT (External Output) events.
• Extended External Input selection.

Table 11-9 Derived resource registers

Register number Name Base offset Description

64-66 TRCSEQVRn 0x100-0x108 11.8.20 Sequencer State Transition Control Registers 0-2 on page 11-287

70 TRCSEQRSTEVR 0x118 11.8.21 Sequencer Reset Control Register on page 11-288

71 TRCSEQSTR 0x11C 11.8.22 Sequencer State Register on page 11-289

72 TRCEXTINSELR 0x120 11.8.23 External Input Select Register on page 11-290

80-81 TRCCNTRLDVRn 0x140-0x144 11.8.24 Counter Reload Value Registers 0-1 on page 11-291

84 TRCCNTCTLR0 0x150 11.8.25 Counter Control Register 0 on page 11-292

85 TRCCNTCTLR1 0x154 11.8.26 Counter Control Register 1 on page 11-293

88-89 TRCCNTVRn 0x160-0x164 11.8.27 Counter Value Registers 0-1 on page 11-294

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-259

Non-Confidential

Implementation-specific and identification registers

The implementation-specific and identification registers in numerical order.

Table 11-10 Implementation-specific and identification registers

Register number Name Base offset Description

96 TRCIDR8 0x180 11.8.28 ID Register 8-13 on page 11-295

97 TRCIDR9 0x184

98 TRCIDR10 0x188

99 TRCIDR11 0x18C

100 TRCIDR12 0x190

101 TRCIDR13 0x194

112 TRCIMSPEC0 0x1C0 11.8.29 Implementation Specific Register 0 on page 11-297

120 TRCIDR0 0x1E0 11.8.30 ID Register 0 on page 11-298

121 TRCIDR1 0x1E4 11.8.31 ID Register 1 on page 11-300

122 TRCIDR2 0x1E8 11.8.32 ID Register 2 on page 11-301

123 TRCIDR3 0x1EC 11.8.33 ID Register 3 on page 11-302

124 TRCIDR4 0x1F0 11.8.34 ID Register 4 on page 11-304

125 TRCIDR5 0x1F4 11.8.35 ID Register 5 on page 11-305

Resource selection registers

The resource selection registers in numerical order.

Table 11-11 Resource selection registers

Register number Name Base offset Description

130-140 TRCRSCTLRn 0x208-0x240 11.8.36 Resource Selection Registers 2-16 on page 11-306

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-260

Non-Confidential

Single-shot comparator registers

The Single-shot comparator registers in numerical order.

Table 11-12 Single-shot comparator registers

Register number Name Base offset Description

160-161 TRCSSCCRn 0x280-0x284 11.8.37 Single-Shot Comparator Control Registers 0-1 on page 11-307

168-169 TRCSSCSRn 0x2A0-0x2A4 11.8.38 Single-Shot Comparator Status Registers 0-1 on page 11-308

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-261

Non-Confidential

OS lock and power control registers

The OS lock and power control registers in numerical order.

Table 11-13 OS lock and power control registers

Register number Name Base offset Description

192 TRCOSLAR 0x300 11.8.39 OS Lock Access Register on page 11-310

193 TRCOSLSR 0x304 11.8.40 OS Lock Status Register on page 11-311

196 TRCPDCR 0x310 11.8.41 Power Down Control Register on page 11-312

197 TRCPDSR 0x314 11.8.42 Power Down Status Register on page 11-312

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-262

Non-Confidential

Comparator registers

The comparator registers in numerical order.

Table 11-14 Comparator registers

Register number Name Base offset Description

256-271 TRCACVRn 0x400-0x43C 11.8.43 Address Comparator Value Registers 0-7 on page 11-313

288-303 TRCACATRn 0x480-0x4BC 11.8.44 Address Comparator Access Type Registers 0-7 on page 11-314

320-321 TRCDVCVRn 0x500-0x504 11.8.45 Data Value Comparator Value Registers 0-1 on page 11-316

352-359 TRCDVCMRn 0x580-0x59C 11.8.46 Data Value Comparator Mask Registers 0-1 on page 11-317

384 TRCCIDCVR0 0x600 11.8.48 Context ID Comparator Value Register 0 on page 11-318

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-263

Non-Confidential

Integration test registers

The Integration test registers in numerical order.

Table 11-15 Integration test registers

Register
number

Name Base offset Description

951 Integration Miscellaneous Outputs
Register

0xEDC Integration Miscellaneous Outputs Register on page 11-334

952 Integration Miscellaneous Inputs
Register

0xEE0 Integration Miscellaneous Inputs Register on page 11-335

953 Integration ATB Identification
Register

0xEE4 Integration ATB Identification Register on page 11-336

954 Integration Data ATB Data Register 0xEE8 Integration Data ATB Data Register on page 11-337

955 Integration Instruction ATB Data
Register

0xEEC Integration Instruction ATB Data Register on page 11-338

956 Integration Data ATB In Register 0xEF0 Integration Data ATB In Register on page 11-339

957 Integration Instruction ATB In
Register

0xEF4 Integration Instruction ATB In Register on page 11-340

958 Integration Data ATB Out Register 0xEF8 Integration Data ATB Out Register on page 11-341

959 Integration Instruction ATB Out
Register

0xEFC Integration Instruction ATB Out Register on page 11-342

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-264

Non-Confidential

CoreSight™ management registers

The CoreSight management registers in numerical order.

Table 11-16 CoreSight management registers

Register number Name Base offset Description

960 TRCITCTRL 0xF00 11.8.49 Integration Mode Control Register on page 11-319

1000 TRCCLAIMSET 0xFA0 11.8.50 Claim Tag Set Register on page 11-320

1001 TRCCLAIMCLR 0xFA4 11.8.51 Claim Tag Clear Register on page 11-321

1002 TRCDEVAFF0 0xFA8 11.8.52 Device Affinity Register on page 11-321

1004 TRCLAR 0xFB0 11.8.53 Software Lock Access Register on page 11-322

1005 TRCLSR 0xFB4 11.8.54 Software Lock Status Register on page 11-323

1006 TRCAUTHSTATUS 0xFB8 11.8.55 Authentication Status Register on page 11-324

1007 TRCDEVARCH 0xFBC 11.8.56 Device Architecture Register on page 11-325

1010 TRCDEVID 0xFC8 11.8.57 Device ID Register on page 11-326

1011 TRCDEVTYPE 0xFCC 11.8.58 Device Type Register on page 11-327

1012-1019 TRCPIDRn 0xFD0-0xFEC 11.8.59 Peripheral Identification Registers on page 11-328

1020-1023 TRCCIDRn 0xFF0-0xFFC 11.8.60 Component Identification Registers on page 11-331

11 Embedded Trace Macrocell
11.7 ETM registers

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-265

Non-Confidential

11.8 Register descriptions
Reference information for each of the Cortex‑R8 processor ETM registers.

This section contains the following subsections:
• 11.8.1 Programming Control Register on page 11-267.
• 11.8.2 Processor Select Control Register on page 11-268.
• 11.8.3 Status Register on page 11-268.
• 11.8.4 Trace Configuration Register on page 11-269.
• 11.8.5 Auxiliary Control Register on page 11-271.
• 11.8.6 Event Control 0 Register on page 11-272.
• 11.8.7 Event Control 1 Register on page 11-274.
• 11.8.8 Stall Control Register on page 11-275.
• 11.8.9 Global Timestamp Control Register on page 11-276.
• 11.8.10 Synchronization Period Register on page 11-277.
• 11.8.11 Cycle Count Control Register on page 11-278.
• 11.8.12 Branch Broadcast Control Register on page 11-279.
• 11.8.13 Trace ID Register on page 11-280.
• 11.8.14 ViewInst Main Control Register on page 11-281.
• 11.8.15 ViewInst Include/Exclude Control Register on page 11-282.
• 11.8.16 ViewInst Start/Stop Control Register on page 11-283.
• 11.8.17 ViewData Main Control Register on page 11-284.
• 11.8.18 ViewData Include/Exclude Single Address Comparator Register on page 11-285.
• 11.8.19 ViewData Include/Exclude Address Range Comparator Register on page 11-286.
• 11.8.20 Sequencer State Transition Control Registers 0-2 on page 11-287.
• 11.8.21 Sequencer Reset Control Register on page 11-288.
• 11.8.22 Sequencer State Register on page 11-289.
• 11.8.23 External Input Select Register on page 11-290.
• 11.8.24 Counter Reload Value Registers 0-1 on page 11-291.
• 11.8.25 Counter Control Register 0 on page 11-292.
• 11.8.26 Counter Control Register 1 on page 11-293.
• 11.8.27 Counter Value Registers 0-1 on page 11-294.
• 11.8.28 ID Register 8-13 on page 11-295.
• 11.8.29 Implementation Specific Register 0 on page 11-297.
• 11.8.30 ID Register 0 on page 11-298.
• 11.8.31 ID Register 1 on page 11-300.
• 11.8.32 ID Register 2 on page 11-301.
• 11.8.33 ID Register 3 on page 11-302.
• 11.8.34 ID Register 4 on page 11-304.
• 11.8.35 ID Register 5 on page 11-305.
• 11.8.36 Resource Selection Registers 2-16 on page 11-306.
• 11.8.37 Single-Shot Comparator Control Registers 0-1 on page 11-307.
• 11.8.38 Single-Shot Comparator Status Registers 0-1 on page 11-308.
• 11.8.39 OS Lock Access Register on page 11-310.
• 11.8.40 OS Lock Status Register on page 11-311.
• 11.8.41 Power Down Control Register on page 11-312.
• 11.8.42 Power Down Status Register on page 11-312.
• 11.8.43 Address Comparator Value Registers 0-7 on page 11-313.
• 11.8.44 Address Comparator Access Type Registers 0-7 on page 11-314.
• 11.8.45 Data Value Comparator Value Registers 0-1 on page 11-316.
• 11.8.46 Data Value Comparator Mask Registers 0-1 on page 11-317.
• 11.8.47 Context ID Comparator Control Register 0 on page 11-318.
• 11.8.48 Context ID Comparator Value Register 0 on page 11-318.
• 11.8.49 Integration Mode Control Register on page 11-319.
• 11.8.50 Claim Tag Set Register on page 11-320.
• 11.8.51 Claim Tag Clear Register on page 11-321.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-266

Non-Confidential

• 11.8.52 Device Affinity Register on page 11-321.
• 11.8.53 Software Lock Access Register on page 11-322.
• 11.8.54 Software Lock Status Register on page 11-323.
• 11.8.55 Authentication Status Register on page 11-324.
• 11.8.56 Device Architecture Register on page 11-325.
• 11.8.57 Device ID Register on page 11-326.
• 11.8.58 Device Type Register on page 11-327.
• 11.8.59 Peripheral Identification Registers on page 11-328.
• 11.8.60 Component Identification Registers on page 11-331.
• 11.8.61 Integration Test Registers on page 11-332.

11.8.1 Programming Control Register

The TRCPRGCTLR enables the Cortex‑R8 processor ETM.

Usage constraints
See 11.6 Controlling ETM programming on page 11-253.

Configurations
Available in all configurations.

Attributes

Register number: 1

Base offset 0x004

Name: TRCPRGCTLR

Type: RW

Reset: 0x00000000

The following figure shows the TRCPRGCTLR bit assignments.

31 1 0

EN

RAZ/WI

Figure 11-5 TRCPRGCTLR bit assignments

The following table shows the TRCPRGCTLR bit assignments.

Table 11-17 TRCPRGCTLR bit assignments

Bits Name Function

[31:1] - Reserved. RAZ/WI.

[0] EN Trace program enable:

0b0 The external pin ETMIFENx is LOW, and clocks are only enabled when
necessary to process APB accesses, or drain any already generated trace. Writes
to most registers are ignored. This is the reset value.

0b1 The external pin ETMIFENx is HIGH, and clocks are enabled except for when
the CPUACTIVE input is deasserted and all trace has been drained.

Related reference
11.6 Controlling ETM programming on page 11-253
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-267

Non-Confidential

11.8.2 Processor Select Control Register

The TRCPROCSELR controls a multiplexer to select trace information from the connected Cortex‑R8
processor cores.

Usage constraints
See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4.

Configurations
Available in all configurations.

Attributes

Register number: 2

Base offset 0x008

Name: TRCPROCSELR

Type: RW

Reset: 0x00000000

The following figure shows the TRCPROCSELR bit assignments.

31 3 0

RAZ/WI

2

PROCSEL

Figure 11-6 TRCPROCSELR bit assignments

The following table shows the TRCPROCSELR bit assignments.

Table 11-18 TRCPROCSELR bit assignments

Bits Name Function

[31:3] - Reserved. RAZ/WI

[2:0] PROCSEL Drives the PROCSEL[2:0] pin

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.3 Status Register

The TRCSTATR indicates the Cortex‑R8 processor ETM status.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-268

Non-Confidential

Attributes

Register number: 3

Base offset 0x00C

Name: TRCSTATR

Type: RO

Reset: -

The following figure shows the TRCSTATR bit assignments.

31 1 0

IDLE

RAZ/WI

2

PMSTABLE

Figure 11-7 TRCSTATR bit assignments

The following table shows the TRCSTATR bit assignments.

Table 11-19 TRCSTATR bit assignments

Bits Name Function

[31:2] - Reserved. RAZ/WI.

[1] PMSTABLE Indicates whether the Cortex‑R8 processor ETM registers are stable and can be read:

0b0 The programmers model is not stable.

0b1 The programmers model is stable.

[0] IDLE Idle status:

0b0 The Cortex‑R8 processor ETM is not idle.

0b1 The Cortex‑R8 processor ETM is idle.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.4 Trace Configuration Register

The TRCCONFIGR sets the basic tracing options for the trace unit.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 4

Base offset 0x010

Name: TRCCONFIGR

Type: RW

Reset: -

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-269

Non-Confidential

The following figure shows the TRCCONFIGR bit assignments.

1

31 18 17 16 15 13 12 11 10 8 7 6 5 4 3 2 1 0

RAZ/WI

DV
DA

RAZ/WI

RS
TS

COND

RAZ/WI
CID

RAZ/WI
CCI
BB

RAO

INSTP0

Figure 11-8 TRCCONFIGR bit assignments

The following table shows the TRCCONFIGR bit assignments.

Table 11-20 TRCCONFIGR bit assignments

Bits Name Function

[31:18] - Reserved. RAZ/WI.

[17] DV Data value tracing:

0b0 Data value tracing disabled.

0b1 Data value tracing enabled.

[16] DA Data address tracing:

0b0 Data address tracing disabled.

0b1 Data address tracing enabled.

[15:13] - Reserved. RAZ/WI.

[12] RS Return stack enable:

0b0 Return stack disabled.

0b1 Return stack enabled.

[11] TS Global timestamp tracing:

0b0 Global timestamp tracing disabled.

0b1 Global timestamp tracing enabled.

For more global timestamping options, see 11.8.9 Global Timestamp Control Register on page 11-276.

[10:8] COND Conditional instruction tracing:

0b000 Conditional instruction tracing disabled.

0b001 Conditional load instructions are traced.

0b010 Conditional store instructions are traced.

0b011 Conditional load and store instructions are traced.

0b111 All conditional instructions are traced.

All other values are Reserved.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-270

Non-Confidential

Table 11-20 TRCCONFIGR bit assignments (continued)

Bits Name Function

[7] - Reserved. RAZ/WI.

[6] CID Context ID tracing:

0b0 Context ID tracing disabled.

0b1 Context ID tracing enabled.

[5] - Reserved. RAZ/WI.

[4] CCI Cycle counting in instruction trace:

0b0 Cycle counting in instruction trace disabled.

0b1 Cycle counting in instruction trace.

For more cycle counting options, see 11.8.11 Cycle Count Control Register on page 11-278.

[3] BB Branch broadcast mode:

0b0 Branch broadcast mode disabled.

0b1 Branch broadcast mode trace.

For more branch broadcast mode options, see 11.8.12 Branch Broadcast Control Register on page 11-279.

[2:1] INSTP0 Determines the instructions which are P0 instructions:

0b00 Only branches are P0 instructions.

0b01 Load instructions and branches are P0 instructions.

0b10 Store instructions and branches are P0 instructions.

0b11 Load and store instructions and branches are P0 instructions.

[0] - Reserved. RAO.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258
11.8.9 Global Timestamp Control Register on page 11-276
11.8.11 Cycle Count Control Register on page 11-278
11.8.12 Branch Broadcast Control Register on page 11-279

11.8.5 Auxiliary Control Register

The TRCAUXCTLR provides additional controls for the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-271

Non-Confidential

Attributes

Register number: 6

Base offset 0x018

Name: TRCAUXCTLR

Type: RW

Reset: 0x00000000

The following figure shows the TRCAUXCTLR bit assignments.

31 1 0

QFLUSH

RAZ/WI

2

SYNCOF

Figure 11-9 TRCAUXCTLR bit assignments

The following table shows the TRCAUXCTLR bit assignments.

Table 11-21 TRCAUXCTLR bit assignments

Bits Name Function

[31:2] - Reserved. RAZ/WI.

[1] QFLUSH Always respond immediately to TRCITDATBOUTR.AFREADY. No interaction with FIFO draining, even in WFI
state.

[0] SYNCOF Force an overflow if synchronization is not completed when second synchronization is due.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.6 Event Control 0 Register

The TRCEVENTCTL0R controls the tracing of events in the trace stream. The events also drive the
external outputs from the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 8

Base offset 0x020

Name: TRCEVENTCTL0R

Type: RW

Reset: -

The following figure shows the TRCEVENTCTL0R bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-272

Non-Confidential

31 16 15 14 12 11 8 7 4 3 0

TYPE3

RAZ/WI SEL1

30 28 27 24 23 22 20 19

SEL3 SEL2

TYPE2

RAZ/WI RAZ/WI

TYPE0TYPE1

SEL0RAZ/WI

6

Figure 11-10 TRCEVENTCTL0R bit assignments

The following table shows the TRCEVENTCTL0R bit assignments.

Table 11-22 TRCEVENTCTL0R bit assignments

Bits Name Function

[31] TYPE3 Selects the resource type for event 3:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[30:28] - Reserved. RAZ/WI.

[27:24] SEL3 Selects the resource number, based on the value of TYPE3:

When TYPE3 is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE3 is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

[23] TYPE2 Selects the resource type for event 2:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[22:20] - Reserved. RAZ/WI.

[19:16] SEL2 Selects the resource number, based on the value of TYPE2:

When TYPE2 is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE2 is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

[15] TYPE1 Selects the resource type for event 1:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[14:12] - Reserved. RAZ/WI.

[11:8] SEL1 Selects the resource number, based on the value of TYPE1:

When TYPE1 is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE1 is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

[7] TYPE0 Selects the resource type for event 0:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-273

Non-Confidential

Table 11-22 TRCEVENTCTL0R bit assignments (continued)

Bits Name Function

[6:4] - Reserved. RAZ/WI.

[3:0] SEL0 Selects the resource number, based on the value of TYPE0:

When TYPE0 is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE0 is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.7 Event Control 1 Register

The TRCEVENTCTL1R controls how the events selected by TRCEVENTCTL0R behave.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 9

Base offset 0x024

Name: TRCEVENTCTL1R

Type: RW

Reset: -

The following figure shows the TRCEVENTCTL1R bit assignments.

31 12 11 4 3 0

RAZ/WI

DATAEN
ATB

ENRAZ/WI

51013

LPOVERRIDE

Figure 11-11 TRCEVENTCTL1R bit assignments

The following table shows the TRCEVENTCTL1R bit assignments.

Table 11-23 TRCEVENTCTL1R bit assignments

Bits Name Function

[31:13] - Reserved. RAZ/WI.

[12] LPOVERRIDE Low-power state behavior override:

0b0 Low-power state behavior unaffected.

0b1 Low-power state behavior overridden. The resources and Event trace
generation are unaffected by entry to a low-power state.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-274

Non-Confidential

Table 11-23 TRCEVENTCTL1R bit assignments (continued)

Bits Name Function

[11] ATB ATB trigger enable:

0b0 ATB trigger disabled.

0b1 ATB trigger enabled.

[10:5] - Reserved. RAZ/WI.

[4] DATAEN Enables generation of an event element in the data trace stream when the selected event occurs:

0b0 Event does not cause an event element.

0b1 Event causes an event element.

[3:0] EN One bit per event, to enable generation of an event element in the instruction trace stream when the selected
event occurs:

0b0 Event does not cause an event element.

0b1 Event causes an event element.

Related reference
11.8.6 Event Control 0 Register on page 11-272
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.8 Stall Control Register

The TRCSTALLCTLR enables the Cortex‑R8 processor ETM to stall the Cortex‑R8 processor if the
Cortex‑R8 processor ETM FIFO overflows.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 11

Base offset 0x02C

Name: TRCSTALLCTLR

Type: RW

Reset: -

The following figure shows the TRCSTALLCTLR bit assignments.

31 12 11 8 7 4 3 0

RAZ/WI

10 9

DATADISCARD
INSTPRIORITY

DSTALL

13 2 1

ISTALL
LEVEL

RAZ/WI

RAZ/WI

Figure 11-12 TRCSTALLCTLR bit assignments

The following table shows the TRCSTALLCTLR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-275

Non-Confidential

Table 11-24 TRCSTALLCTLR bit assignments

Bits Name Function

[31:13] - Reserved. RAZ/WI.

[12:11] DATADISCARD Sets the priority of data trace components, enabling the Cortex‑R8 processor ETM to discard some data if
the data trace buffer space is less than LEVEL:

0b00 Discard no data.

0b01 Discard loaded data transfers.

0b10 Discard stored data transfers.

0b11 Discard both loaded and stored data transfers.

[10] INSTPRIORITY Prioritize instruction trace if instruction trace buffer space is less than LEVEL:

0b0 Do not prioritize instruction trace.

0b1 Prioritize instruction trace.

[9] DSTALL Stall Cortex‑R8 processor based on data trace buffer space:

0b0 Do not stall processor.

0b1 Stall processor if data trace buffer space is less than LEVEL.

[8] ISTALL Stall Cortex‑R8 processor based on instruction trace buffer space:

0b0 Do not stall processor.

0b1 Stall processor if instruction trace buffer space is less than LEVEL.

[7:4] - Reserved. RAZ/WI.

[3:2] LEVEL Threshold at which stalling becomes active. This provides four levels. This level can be varied to optimize
the level of invasion caused by stalling, balanced against the risk of a FIFO overflow:

0b00 Lowest level, where zero invasion occurs.

0b11 Highest level, where the most invasion occurs to reduce the risk of
overflow.

[1:0] - Reserved. RAZ/WI.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.9 Global Timestamp Control Register

The TRCTSCTLR controls the insertion of global timestamps into the trace streams. A timestamp is
always inserted into the instruction trace stream, and also in the data trace stream if any data tracing is
enabled.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-276

Non-Confidential

Attributes

Register number: 12

Base offset 0x030

Name: TRCTSCTLR

Type: RW

Reset: -

The following figure shows the TRCTSCTLR bit assignments.

31 8 7 4 3 0

RAZ/WI

TYPE

SELRAZ/WI

6

Figure 11-13 TRCTSCTLR bit assignments

The following table shows the TRCTSCTLR bit assignments.

Table 11-25 TRCTSCTLR bit assignments

Bits Name Function

[31:8] - Reserved. RAZ/WI.

[7] TYPE Selects the resource type:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI

[3:0] SEL Selects the resource number, based on the value of TYPE:

When TYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.10 Synchronization Period Register

The TRCSYNCPR specifies the period of synchronization of the trace streams. TRCSYNCPR defines
several bytes of trace between requests for synchronization. This value is always a power of two.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-277

Non-Confidential

Attributes

Register number: 13

Base offset 0x034

Name: TRCSYNCPR

Type: RW

Reset: -

The following figure shows the TRCSYNCPR bit assignments.

31 5 0

RAZ/WI

4

PERIOD

Figure 11-14 TRCSYNCPR bit assignments

The following table shows the TRCSYNCPR bit assignments.

Table 11-26 TRCSYNCPR bit assignments

Bits Name Function

[31:5] - Reserved. RAZ/WI.

[4:0] PERIOD Defines the number of bytes of trace between synchronization requests as a total of the number of bytes generated
by both the instruction and data streams. The number of bytes is 2N where N is the value of this field:
• A value of zero disables these periodic synchronization requests, but does not disable other synchronization

requests.
• The minimum value that can be programmed, other than zero, is 8, providing a minimum synchronization

period of 256 bytes.
• The maximum value is 20, providing a maximum synchronization period of 220 bytes.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.11 Cycle Count Control Register

The TRCCCCTLR sets the threshold value for cycle counting.

Usage constraints
Writing a value of all zeroes is UNPREDICTABLE when instruction trace cycle counting is enabled.

Configurations
Available in all configurations.

Attributes

Register number: 14

Base offset 0x038

Name: TRCCCCTLR

Type: RW

Reset: -

The following figure shows the TRCCCCTLR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-278

Non-Confidential

31 12 0

RAZ/WI

11

THRESHOLD

Figure 11-15 TRCCCCTLR bit assignments

The following table shows the TRCCCCTLR bit assignments.

Table 11-27 TRCCCCTLR bit assignments

Bits Name Function

[31:12] - Reserved. RAZ/WI

[11:0] THRESHOLD Instruction trace cycle count threshold

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.12 Branch Broadcast Control Register

The TRCBBCTLR controls how branch broadcasting behaves, and enables branch broadcasting to be
enabled for certain memory regions.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 15

Base offset 0x03C

Name: TRCBBCTLR

Type: RW

Reset: -

The following figure shows the TRCBBCTLR bit assignments.

31 8 7 4 3 0

RAZ/WI

MODE

RANGERAZ/WI

9

Figure 11-16 TRCBBCTLR bit assignments

The following table shows the TRCBBCTLR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-279

Non-Confidential

Table 11-28 TRCBBCTLR bit assignments

Bits Name Function

[31:9] - Reserved. RAZ/WI.

[8] MODE Selects mode:

0b0 Exclude mode. The Address Range Comparators defined by the RANGE field
indicate address ranges where branch broadcasting is not enabled. Selecting no
ranges results in branch broadcasting being enabled over the whole memory
map.

0b1 Include mode. The Address Range Comparators defined by the RANGE field
indicate address ranges where branch broadcasting is enabled. Setting RANGE
to all zeroes is UNPREDICTABLE when in Include mode.

[7:4] - Reserved. RAZ/WI.

[3:0] RANGE Selects Address Range Comparators to control where branch broadcasting is enabled. One bit is provided for each
implemented Address Range Comparator.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
General control and ID registers on page 11-258

11.8.13 Trace ID Register

The TRCTRACEIDR sets the trace ID on the trace bus. Controls two trace IDs, one for instruction trace
and one for data trace.

Usage constraints
In a CoreSight system, writing of reserved trace ID values, 0x00 and 0x70-0x7F, is
UNPREDICTABLE.

Configurations
Available in all configurations.

Attributes

Register number: 16

Base offset 0x040

Name: TRCTRACEIDR

Type: RW

Reset: -

The following figure shows the TRCTRACEIDR bit assignments.

31 7 0

RAZ/WI

6

TRACEID

Figure 11-17 TRCTRACEIDR bit assignments

The following table shows the TRCTRACEIDR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-280

Non-Confidential

Table 11-29 TRCTRACEIDR bit assignments

Bits Name Function

[31:7] - Reserved. RAZ/WI.

[6:0] TRACEID Trace ID value.When only instruction tracing is enabled, this provides the trace ID.

When data tracing is enabled, this field must be written with bit[0] set to 0b0. The instruction and data trace
streams use adjacent trace ID values:
• The instruction trace stream uses the trace ID {[6:1],0}.
• The data value trace stream uses the trace ID {[6:1],1}.

When data tracing is not enabled, bit[0] can be set to any value.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.14 ViewInst Main Control Register

The TRCVICTLR controls instruction trace filtering.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 32

Base offset 0x080

Name: TRCVICTLR

Type: RW

Reset: -

The following figure shows the TRCVICTLR bit assignments.

31 12 11 8 7 4 3 0

RAZ/WI

20 19

TRCERR

SEL

RAZ/WI

610 9

RAZ/WI

TRCRESET
SSSTATUS

TYPE

RAZ/WI

15161718

EXLEVEL_S3
RAZ/WI

EXLEVEL_S0

Figure 11-18 TRCVICTLR bit assignments

The following table shows the TRCVICTLR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-281

Non-Confidential

Table 11-30 TRCVICTLR bit assignments

Bits Value Function

[31:20] - Reserved. RAZ/WI.

[19] EXLEVEL_S3 Disables tracing in the specified exception level in Secure state for exception level 3:

0b0 Enable ViewInst in this exception level.

0b1 Disable ViewInst in this exception level.

[18:17] - Reserved. RAZ/WI

[16] EXLEVEL_S0 Disables tracing in the specified exception level in Secure state for exception level 0:

0b0 Enable ViewInst in this exception level.

0b1 Disable ViewInst in this exception level.

[15:12] - Reserved. RAZ/WI.

[11] TRCERR Selects whether a system error exception must always be traced:

0b0 System error exception is traced only if the instruction or exception
immediately before the system error exception is traced.

0b1 System error exception is always traced regardless of the value of
ViewInst.

[10] TRCRESET Selects whether a reset exception must always be traced:

0b0 Reset exception is traced only if the instruction or exception immediately
before the reset exception is traced.

0b1 Reset exception is always traced regardless of the value of ViewInst.

[9] SSSTATUS Indicates the current status of the start/stop logic:

0b0 Start/stop logic is in the stopped state.

0b1 Start/stop logic is in the started state.

[8] - Reserved. RAZ/WI.

[7] TYPE Selects the resource type:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI.

[3:0] SEL Selects the resource number, based on the value of TYPE:

When TYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.15 ViewInst Include/Exclude Control Register

The TRCVIIECTLR defines the address range comparators that control the ViewInst Include/Exclude
control.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-282

Non-Confidential

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 33

Base offset 0x084

Name: TRCVIIECTLR

Type: RW

Reset: -

The following figure shows the TRCVIIECTLR bit assignments.

RAZ/WI

31 20 19 16 15 4 3 0

EXCLUDE RAZ/WI INCLUDE

Figure 11-19 TRCVIIECTLR bit assignments

The following table shows the TRCVIIECTLR bit assignments.

Table 11-31 TRCVIIECTLR bit assignments

Bits Name Function

[31:20] - Reserved. RAZ/WI.

[19:16] EXCLUDE Defines the address range comparators for ViewInst exclude control. One bit is provided for each implemented
Address Range Comparator.

[15:4] - Reserved. RAZ/WI.

[3:0] INCLUDE Defines the address range comparators for ViewInst include control.

Selecting no include comparators indicates that all instructions must be included. The exclude control indicates
which ranges must be excluded.

One bit is provided for each implemented Address Range Comparator.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.16 ViewInst Start/Stop Control Register

The TRCVISSCTLR defines the single address comparators that control the ViewInst Start/Stop logic.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-283

Non-Confidential

Attributes

Register number: 34

Base offset 0x088

Name: TRCVISSCTLR

Type: RW

Reset: -

The following figure shows the TRCVISSCTLR bit assignments.

RAZ/WI

31 24 23 16 15 8 7 0

STOP RAZ/WI START

Figure 11-20 TRCVISSCTLR bit assignments

The following table shows the TRCVISSCTLR bit assignments.

Table 11-32 TRCVISSCTLR bit assignments

Bits Name Function

[31:24] - Reserved. RAZ/WI.

[23:16] STOP Defines the single address comparators to stop trace with the ViewInst Start/Stop control.

One bit is provided for each implemented single address comparator.

[15:8] - Reserved. RAZ/WI.

[7:0] START Defines the single address comparators to start trace with the ViewInst Start/Stop control.

One bit is provided for each implemented single address comparator.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.17 ViewData Main Control Register

The TRCVDCTLR controls data trace filtering.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 40

Base offset 0x0A0

Name: TRCVDCTLR

Type: RW

Reset: -

The following figure shows the TRCVDCTLR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-284

Non-Confidential

RAZ/WI

31 11 10 9 8 7 6 4 3 0

RAZ/WI SEL

PCREL
SPREL

TYPE

Figure 11-21 TRCVDCTLR bit assignments

The following table shows the TRCVDCTLR bit assignments.

Table 11-33 TRCVDCTLR bit assignments

Bits Name Function

[31:11] - Reserved. RAZ/WI.

[10] PCREL Controls tracing of data for transfers that are relative to the Program Counter (PC):

0b0 Tracing of PC-relative transfers is unaffected.

0b1 Do not trace either the address or value portions of PC-relative transfers.

[9:8] SPREL Controls tracing of data for transfers that are relative to the Stack Pointer (SP):

0b00 Tracing of SP-relative transfers is unaffected.

0b01 Reserved.

0b10 Do not trace the address portion of SP-relative transfers. A P1 data address
element is generated if data value tracing is enabled.

0b11 Do not trace either the address or value portions of SP-relative transfers.

[7] TYPE Selects the resource type:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI.

[3:0] SEL Selects the resource number, based on the value of TYPE:

When TYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.18 ViewData Include/Exclude Single Address Comparator Register

The TRCVDSACCTLR defines the single address comparators that control the ViewData Include/
Exclude control.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-285

Non-Confidential

Attributes

Register number: 41

Base offset 0x0A4

Name: TRCVDSACCTLR

Type: RW

Reset: -

The following figure shows the TRCVDSACCTLR bit assignments.

RAZ/WI

31 25 24 16 15 0

EXCLUDE RAZ/WI INCLUDE

78

Figure 11-22 TRCVDSACCTLR bit assignments

The following table shows the TRCVDSACCTLR bit assignments.

Table 11-34 TRCVDSACCTLR bit assignments

Bits Name Function

[31:25] - Reserved. RAZ/WI.

[24:16] EXCLUDE Defines the single address comparators for ViewData exclude control. One bit is provided for each implemented
address comparator.

[15:8] - Reserved. RAZ/WI.

[7:0] INCLUDE Defines the single address comparators for ViewData include control.

One bit is provided for each implemented address comparator.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.19 ViewData Include/Exclude Address Range Comparator Register

The TRCVDARCCTLR defines the address range comparators that control the ViewData Include/
Exclude control.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 42

Base offset 0x0A8

Name: TRCVDARCCTLR

Type: RW

Reset: -

The following figure shows the TRCVDARCCTLR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-286

Non-Confidential

RAZ/WI

31 20 19 16 15 4 3 0

EXCLUDE RAZ/WI INCLUDE

Figure 11-23 TRCVDARCCTLR bit assignments

The following table shows the TRCVDARCCTLR bit assignments.

Table 11-35 TRCVDARCCTLR bit assignments

Bits Name Function

[31:20] - Reserved. RAZ/WI.

[19:16] EXCLUDE Defines the address range comparators for ViewData exclude control.One bit is provided for each implemented
address range comparator.

[15:4] - Reserved. RAZ/WI.

[3:0] INCLUDE Defines the address range comparators for ViewData include control.

One bit is provided for each implemented address range comparator.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Trace filtering control registers on page 11-258

11.8.20 Sequencer State Transition Control Registers 0-2

The TRCSEQEVRn define the sequencer transitions that progress to the next state or backwards to the
previous state. The Cortex‑R8 processor ETM implements a sequencer state machine with up to four
states.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 64-66

Base offset 0x100-0x108

Name: TRCSEQEVRn

Type: RW

Reset: -

The following figure shows the TRCSEQEVRn bit assignments.

31 0

RAZ/WI

16

B SEL F SEL

15 8 7111214

RAZ/WI

4 36

RAZ/WI

B TYPE F TYPE

Figure 11-24 TRCSEQEVRn bit assignments

The following table shows the TRCSEQEVRn bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-287

Non-Confidential

Table 11-36 TRCSEQEVRn bit assignments

Bits Name Function

[31:16] - Reserved. RAZ/WI.

[15] B TYPE Selects the resource type to move backwards to this state from the next state:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[14:12] - Reserved. RAZ/WI.

[11:8] B SEL Selects the resource number, based on the value of B TYPE:

When B TYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When B TYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

[7] F TYPE Selects the resource type to move forwards from this state to the next state:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI.

[3:0] F SEL Selects the resource number, based on the value of F TYPE:

When F TYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When F TYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.21 Sequencer Reset Control Register

The TRCSEQRSTEVR resets the sequencer to state 0.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 70

Base offset 0x118

Name: TRCSEQRSTEVR

Type: RW

Reset: -

The following figure shows the TRCSEQRSTEVR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-288

Non-Confidential

31 0

RAZ/WI RESETSEL

8 7 4 36

RAZ/WI

RESETTYPE

Figure 11-25 TRCSEQRSTEVR bit assignments

The following table shows the TRCSEQRSTEVR bit assignments.

Table 11-37 TRCSEQRSTEVR bit assignments

Bits Name Function

[31:8] - Reserved. RAZ/WI.

[7] RESETTYPE Selects the resource type to move back to state 0:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI.

[3:0] RESETSEL Selects the resource number, based on the value of RESETTYPE:

When RESETTYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When RESETTYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.22 Sequencer State Register

The TRCSEQSTR holds the value of the current state of the sequencer.

Usage constraints
• Can only be written when the Cortex‑R8 processor ETM is disabled.
• Must be programmed with an initial value when programming the sequencer.

Configurations
Available in all configurations.

Attributes

Register number: 71

Base offset 0x11C

Name: TRCSEQSTR

Type: RW

Reset: -

The following figure shows the TRCSEQSTR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-289

Non-Confidential

31 1 0

RAZ/WI

2

STATE

Figure 11-26 TRCSEQSTR bit assignments

The following table shows the TRCSEQSTR bit assignments.

Table 11-38 TRCSEQSTR bit assignments

Bits Name Function

[31:2] - Reserved. RAZ/WI

[1:0] STATE Current sequencer state:

0b00 State 0

0b01 State 1

0b10 State 2

0b11 State 3

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.23 External Input Select Register

The TRCEXTINSELR controls the selectors that choose an external input as a resource in the Cortex‑R8
processor ETM.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 72

Base offset 0x120

Name: TRCEXTINSELR

Type: RW

Reset: -

The following figure shows the TRCEXTINSELR bit assignments.

31 30 29 24 23 22 21 16 15 14 13 8 7 6 5 0

SEL3 SEL2 SEL1 SEL0

RAZ/WI RAZ/WI RAZ/WI RAZ/WI

Figure 11-27 TRCEXTINSELR bit assignments

The following table shows the TRCEXTINSELR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-290

Non-Confidential

Table 11-39 TRCEXTINSELR bit assignments

Bits Name Function

[31:30] - Reserved. RAZ/WI

[29:24] SEL3 Selects an event from the external input bus for External Input Resource 3

[23:22] - Reserved. RAZ/WI

[21:16] SEL2 Selects an event from the external input bus for External Input Resource 2

[15:14] - Reserved. RAZ/WI

[13:8] SEL1 Selects an event from the external input bus for External Input Resource 1

[7:6] - Reserved. RAZ/WI

[5:0] SEL0 Selects an event from the external input bus for External Input Resource 0

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.24 Counter Reload Value Registers 0-1

The TRCCNTRLDVRn define the reload value for the counter.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 80-81

Base offset 0x140-0x144

Name: TRCCNTRLDVRn

Type: RW

Reset: -

The following figure shows the TRCCNTRLDVRn bit assignments.

31 16 15 0

RAZ/WI VALUE

Figure 11-28 TRCCNTRLDVRn bit assignments

The following table shows the TRCCNTRLDVRn bit assignments.

Table 11-40 TRCCNTRLDVRn bit assignments

Bits Value Function

[31:16] - Reserved. RAZ/WI.

[15:0] VALUE Defines the reload value for the counter. This value is loaded into the counter each time the reload event occurs.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-291

Non-Confidential

Derived resource registers on page 11-259

11.8.25 Counter Control Register 0

The TRCCNTCTLR0 controls the counter.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 84

Base offset 0x150

Name: TRCCNTCTLR0

Type: RW

Reset: -

The following figure shows the TRCCNTCTLR0 bit assignments.

RAZ/WI

31 16 15 14 12 11 8 7 6 4 3 0

RAZ/WI RLDSEL RAZ/WI CNTSEL

RLDSELF CNTTYPE

17

RLDTYPE

Figure 11-29 TRCCNTCTLR0 bit assignments

The following table shows the TRCCNTCTLR0 bit assignments.

Table 11-41 TRCCNTCTLR0 bit assignments

Bits Name Function

[31:17] - Reserved. RAZ/WI.

[16] RLDSELF Defines whether the counter reloads when it reaches zero:

0b0 The counter does not reload when it reaches zero. The counter only reloads
based on RLDTYPE and RLDSEL.

0b1 The counter reloads when it reaches zero and the resource selected by
CNTTYPE and CNTSEL is also active. The counter also reloads based on
RLDTYPE and RLDSEL.

[15] RLDTYPE Selects the resource type for the reload:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[14:12] - Reserved. RAZ/WI.

[11:8] RLDSEL Selects the resource number, based on the value of RLDTYPE:

When RLDTYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When RLDTYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-292

Non-Confidential

Table 11-41 TRCCNTCTLR0 bit assignments (continued)

Bits Name Function

[7] CNTTYPE Selects the resource type for the counter:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI.

[3:0] CNTSEL Selects the resource number, based on the value of CNTTYPE:

When CNTTYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When CNTTYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.26 Counter Control Register 1

The TRCCNTCTLR1 controls the counter.

Usage constraints
Can only be written when the Cortex‑R8 processor ETM is disabled.

Configurations
Available in all configurations.

Attributes

Register number: 85

Base offset 0x154

Name: TRCCNTCTLR1

Type: RW

Reset: -

The following figure shows the TRCCNTCTLR1 bit assignments.

RAZ/WI

31 16 15 14 12 11 8 7 6 4 3 0

RAZ/WI RLDSEL RAZ/WI CNTSEL

RLDSELF
CNTTYPE

17

RLDTYPE

18

CNTCHAIN

Figure 11-30 TRCCNTCTLR1 bit assignments

The following table shows the TRCCNTCTLR1 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-293

Non-Confidential

Table 11-42 TRCCNTCTLR1 bit assignments

Bits Name Function

[31:18] - Reserved. RAZ/WI.

[17] CNTCHAIN Defines whether counter1 decrements when counter0 reloads. This enables two counters to be used in
combination to provide a larger counter:

0b0 Counter0 operates independently of counter1. The counter only decrements
based on CNTTYPE and CNTSEL.

0b1 Counter1 decrements when counter0 reloads. The counter also decrements
when the resource selected by CNTTYPE and CNTSEL is active.

[16] RLDSELF Defines whether the counter reloads when it reaches zero:

0b0 The counter does not reload when it reaches zero. The counter only reloads
based on RLDTYPE and RLDSEL.

0b1 The counter reloads when it is zero and the resource selected by
CNTTYPE and CNTSEL is also active. The counter also reloads based on
RLDTYPE and RLDSEL.

[15] RLDTYPE Selects the resource type for the reload:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[14:12] - Reserved. RAZ/WI.

[11:8] RLDSEL Selects the resource number, based on the value of RLDTYPE:

When RLDTYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When RLDTYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

[7] CNTTYPE Selects the resource type for the counter:

0b0 Single selected resource.

0b1 Boolean combined resource pair.

[6:4] - Reserved. RAZ/WI.

[3:0] CNTSEL Selects the resource number, based on the value of CNTTYPE:

When CNTTYPE is 0b0, selects a single selected resource from 0-15 defined by bits[3:0].

When CNTTYPE is 0b1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.27 Counter Value Registers 0-1

The TRCCNTVRn contain the current counter value.

Usage constraints
• Can only be written when the Cortex‑R8 processor ETM is disabled.
• Must be programmed with an initial value when programming the counter.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-294

Non-Confidential

Attributes

Register number: 88-89

Base offset 0x160-0x164

Name: TRCCNTVRn

Type: RW

Reset: -

The following figure shows the TRCCNTVRn bit assignments.

31 16 15 0

RAZ/WI VALUE

Figure 11-31 TRCCNTVRn bit assignments

The following table shows the TRCCNTVRn bit assignments.

Table 11-43 TRCCNTVRn bit assignments

Bits Value Function

[31:16] - Reserved. RAZ/WI

[15:0] VALUE Contains the current counter value

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Derived resource registers on page 11-259

11.8.28 ID Register 8-13

The TRCIDR8-13 indicate information about the trace stream that is required to analyze the trace.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 96

Base offset 0x180

Name: TRCIDR8

Type: RO

Reset: 0x00000040

The following figure shows the TRCIDR8 bit assignments.

MAXSPEC

31 0

Figure 11-32 TRCIDR8 bit assignments

The following table shows the TRCIDR8 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-295

Non-Confidential

Table 11-44 TRCIDR8 bit assignments

Bits Name Function

[31:0] MAXSPEC Indicates the maximum speculation depth of the instruction trace stream. This is the maximum number of P0
elements that have not been committed in the trace stream at any one time.

This field reads as 0x00000040 (64).

The following figure shows the TRCIDR9 bit assignments.

NUMP0KEY

31 0

Figure 11-33 TRCIDR9 bit assignments

The following table shows the TRCIDR9 bit assignments.

Table 11-45 TRCIDR9 bit assignments

Bits Name Function

[31:0] NUMP0KEY Indicates the number of P0 right-hand keys that are used.

This field reads as 0x00000040 (64).

The following figure shows the TRCIDR10 bit assignments.

NUMP1KEY

31 0

Figure 11-34 TRCIDR10 bit assignments

The following table shows the TRCIDR10 bit assignments.

Table 11-46 TRCIDR10 bit assignments

Bits Name Function

[31:0] NUMP1KEY Indicates the total number of P1 right-hand keys, including normal and special keys.

This field reads as 0x00000040 (64 keys).

The following figure shows the TRCIDR11 bit assignments.

NUMP1SPC

31 0

Figure 11-35 TRCIDR11 bit assignments

The following table shows the TRCIDR11 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-296

Non-Confidential

Table 11-47 TRCIDR11 bit assignments

Bits Name Function

[31:0] NUMP1SPC Indicates the number of special P1 right-hand keys.

This field reads as 0x00000011 (17 keys).

The following figure shows the TRCIDR12 bit assignments.

NUMCONDKEY

31 0

Figure 11-36 TRCIDR12 bit assignments

The following table shows the TRCIDR12 bit assignments.

Table 11-48 TRCIDR12 bit assignments

Bits Name Function

[31:0] NUMCONDKEY Indicates the total number of conditional instruction right-hand keys, including normal and special keys.

This field reads as 0x00000020 (32).

The following figure shows the TRCIDR13 bit assignments.

NUMCONDSPC

31 0

Figure 11-37 TRCIDR13 bit assignments

The following table shows the TRCIDR13 bit assignments.

Table 11-49 TRCIDR13 bit assignments

Bits Name Function

[31:0] NUMCONDSPC This indicates the number of special conditional instruction right-hand keys.

There are no special conditional keys, so this field reads as 0x0.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.29 Implementation Specific Register 0

The TRCIMSPEC0 shows the presence of any implementation-specific features, and enables any
features that are provided.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-297

Non-Confidential

Attributes

Register number: 112

Base offset 0x1C0

Name: TRCIMSPEC0

Type: RW

Reset: 0x00000000

The following figure shows the TRCIMSPEC0 bit assignments.

31 0

RAZ/WI

4

SUPPORT

3

Figure 11-38 TRCIMSPEC0 bit assignments

The following table shows the TRCIMSPEC0 bit assignments.

Table 11-50 TRCIMSPEC0 bit assignments

Bits Name Function

[31:4] - Reserved. RAZ/WI.

[3:0] SUPPORT Set to 0x0. No implementation-specific extensions are supported.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.30 ID Register 0

The TRCIDR0 indicates the tracing capabilities of the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 120

Base offset 0x1E0

Name: TRCIDR0

Type: RO

Reset: 0xXX001EFF

The following figure shows the TRCIDR0 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-298

Non-Confidential

31 29 28 24 23 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSSIZE

CONDTYPE

RETSTACK

TRCCCI
TRCCOND

TRCBB
TRCDATA

INSTP0

RAZ/WI

NUMEVENT

RAZ/WI

RAO/WI

15161730

RAZ/WI
COMMOPT

QSUPP
QFILT

Figure 11-39 TRCIDR0 bit assignments

The following table shows the TRCIDR0 bit assignments.

Table 11-51 TRCIDR0 bit assignments

Bits Name Function

[31:30] - Reserved. RAZ/WI.

[29] COMMOPT Indicates the meaning of the commit field in some packets:

0b0 Commit mode 0.

[28:24] TSSIZE Global timestamp size. Driven from external TSSIZE pin:

0b00110 Maximum of 48-bit global timestamp implemented. TSSIZE is LOW.

0b01000 Maximum of 64-bit global timestamp implemented. TSSIZE is HIGH.

Other values are Reserved.

[23:17] - Reserved. RAZ/WI.

[16:15] QSUPP Indicates Q element support:

0b00 Q elements not supported.

[14] QFILT Indicates Q element filtering support:

0b0 Q element filtering not supported.

[13:12] CONDTYPE Indicates how conditional results are traced:

0b01 Full CPSR traced.

[11:10] NUMEVENT Number of events supported in the trace, minus 1:

0b11
Four events supported.

[9] RETSTACK Return stack support:

0b1
Return stack implemented.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-299

Non-Confidential

Table 11-51 TRCIDR0 bit assignments (continued)

Bits Name Function

[8] - Reserved. RAZ/WI.

[7] TRCCCI Support for cycle counting in the instruction trace:

0b1 Cycle counting in the instruction trace is implemented.

[6] TRCCOND Support for conditional instruction tracing:

0b1 Conditional instruction tracing is implemented.

[5] TRCBB Support for branch broadcast tracing:

0b1 Branch broadcast tracing is implemented.

[4:3] TRCDATA Support for tracing of data:

0b11 Tracing of data addresses and data values is implemented.

[2:1] INSTP0 Support for tracing of load and store instructions as P0 elements:

0b11 Tracing of load and store instructions as P0 elements is implemented.

[0] - Reserved. RAO/WI.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.31 ID Register 1

The TRCIDR1 indicates the basic architecture of the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 121

Base offset 0x1E4

Name: TRCIDR1

Type: RO

Reset: 0x4100F400

The following figure shows the TRCIDR1 bit assignments.

DESIGNER

31 24 23 16 15 12 11 8 7 4 3 0

RAZ/WI RAO/WI REVISION

TRCARCHMAJ
TRCARCHMIN

Figure 11-40 TRCIDR1 bit assignments

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-300

Non-Confidential

The following table shows the TRCIDR1 bit assignments.

Table 11-52 TRCIDR1 bit assignments

Bits Name Function

[31:24] DESIGNER Indicates the designer of the trace unit:

0x41 ASCII code for A, indicating Arm.

[23:16] - Reserved. RAZ/WI.

[15:12] - Reserved. RAO/WI.

[11:8] TRCARCHMAJ Major trace unit architecture version number:

0b0100 ETMv4.

[7:4] TRCARCHMIN Minor trace unit architecture version number:

0b0000 Minor revision 0.

[3:0] REVISION Implementation revision number:

0b0000 Implementation revision 0.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.32 ID Register 2

The TRCIDR2 indicates the maximum sizes of certain aspects of items in the trace.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 122

Base offset 0x1E8

Name: TRCIDR2

Type: RO

Reset: 0x00420084

The following figure shows the TRCIDR2 bit assignments.

CCSIZERAZ/WI

31 25 24 20 19 15 14 10 9 5 4 0

DVSIZE DASIZE VMIDSIZE CIDSIZE IASIZE

29 28

Figure 11-41 TRCIDR2 bit assignments

The following table shows the TRCIDR2 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-301

Non-Confidential

Table 11-53 TRCIDR2 bit assignments

Bits Name Function

[31:29] - Reserved. RAZ/WI.

[28:25] CCSIZE Indicates the size of the cycle counter in bits minus 12:

0b0000 Cycle count is 12 bits.

[24:20] DVSIZE Data value size in bytes:

0b00100 Maximum of 32-bit data value size.

[19:15] DASIZE Data address size in bytes:

0b00100 Maximum of 32-bit address size.

[14:10] VMIDSIZE Virtual Machine ID size:

0b00000 Virtual Machine ID tracing not implemented.

[9:5] CIDSIZE Context ID size in bytes:

0b00100 Maximum of 32-bit Context ID size.

[4:0] IASIZE Instruction address size in bytes:

0b00100 Maximum of 32-bit address size.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.33 ID Register 3

The TRCIDR3 indicates certain aspects of the Cortex‑R8 processor ETM configuration.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 123

Base offset 0x1EC

Name: TRCIDR3

Type: RO

Reset: 0xXX090004

The following figure shows the TRCIDR3 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-302

Non-Confidential

31 28 27 26 25 24 23 20 19 16 15 12 11 0

RAZ/WI CCITMIN

SYSSTALL
STALLCTL SYNCPR

EXLEVEL_S
EXLEVEL_NS
TRCERR

NOOVERFLOW
NUMPROC

30

Figure 11-42 TRCIDR3 bit assignments

The following table shows the TRCIDR3 bit assignments.

Table 11-54 TRCIDR3 bit assignments

Bits Name Function

[31] NOOVERFLOW Indicates whether TRCSTALLCTLR.NOOVERFLOW is implemented:

0b0 NOOVERFLOW is not implemented.

[30:28] NUMPROC Number of cores available for tracing minus 1, indicating 1-8 cores. This describes the largest valid value
which can be written to TRCPROCSELR.

[27] SYSSTALL System support for stall control of the Cortex‑R8 processor. This is driven from the ETM SYSSTALL
input pin, reflecting the system implementation:

0b0 System does not support stall control of the processor.

0b1 System supports stall control of the processor.

This field is used with STALLCTL. Only when both SYSSTALL and STALLCTL are 0b1 does the
system support stalling of the processor.

[26] STALLCTL Stall control support:

0b1 TRCSTALLCTLR is implemented.

This field is used with SYSSTALL.

[25] SYNCPR Synchronization period support:

0b0 TRCSYNCPR is read/write.

[24] TRCERR Indicates whether TRCVICTLR.TRCERR is implemented:

0b1 TRCERR is implemented.

[23:20] EXLEVEL_NS Exception levels implemented in Non-secure state. One bit for each exception level 0-3.

0b0000 No Non-secure exception levels are implemented.

[19:16] EXLEVEL_S Exception levels implemented in Secure state. One bit for each exception level 0-3.

0b1001 Secure exception levels EL0 and EL3 are implemented.

[15:12] - Reserved. RAZ/WI.

[11:0] CCITMIN Instruction trace cycle counting minimum threshold:

0x4 Minimum threshold is 4.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-303

Non-Confidential

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.34 ID Register 4

The TRCIDR4 indicates the resources available in the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 124

Base offset 0x1F0

Name: TRCIDR4

Type: RO

Reset: 0x01270124

The following figure shows the TRCIDR4 bit assignments.

NUMVMIDC

31 28 27 24 23 20 19 16 15 12 11 9 8 7 4 3 0

NUMCIDC NUMSSCC NUMPC RAZ/WI NUMDVC

NUMRSPAIR SUPPDAC NUMACPAIRS

Figure 11-43 TRCIDR4 bit assignments

The following table shows the TRCIDR4 bit assignments.

Table 11-55 TRCIDR4 bit assignments

Bits Name Function

[31:28] NUMVMIDC Number of Virtual Machine ID (VMID) comparators implemented:

0b0000 VMID comparators are not implemented.

[27:24] NUMCIDC Number of Context ID comparators implemented:

0b0001 One context ID comparator is implemented.

[23:20] NUMSSCC Number of Single-Shot comparator controls implemented:

0b0010 Two single-shot comparator controls are implemented.

[19:16] NUMRSPAIR Number of resource selection pairs implemented:

0b0111 Eight resource selection pairs are implemented. The first is not counted.

[15:12] NUMPC Number of Cortex‑R8 core comparator inputs implemented:

0b0000 Core comparator inputs are not implemented.

[11:9] - Reserved. RAZ/WI.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-304

Non-Confidential

Table 11-55 TRCIDR4 bit assignments (continued)

Bits Name Function

[8] SUPPDAC Data address comparisons implemented:

0b1 Data address comparisons are supported.

[7:4] NUMDVC Number of data value comparators implemented:

0b0010 Two data value comparators are implemented.

[3:0] NUMACPAIRS Number of address comparator pairs implemented:

0b0100 Four address comparator pairs are implemented.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.35 ID Register 5

The TRCIDR5 indicates the resources available in the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 125

Base offset 0x1F4

Name: TRCIDR5

Type: RO

Reset: 0x28C70840

The following figure shows the TRCIDR5 bit assignments.

31 30 28 27 25 24 23 22 21 16 15 12 11 9 8 0

TRACEIDSIZE RAZ/WI NUMEXTIN

NUMEXTINSELREDFUNCNTR
NUMCNTR

NUMSEQSTATE
ATBTRIG

RAZ/WI
LPOVERRIDE

Figure 11-44 TRCIDR5 bit assignments

The following table shows the TRCIDR5 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-305

Non-Confidential

Table 11-56 TRCIDR5 bit assignments

Bits Name Function

[31] REDFUNCNTR Reduced Function Counter implemented:

0b0 Reduced Function Counter not implemented

[30:28] NUMCNTR Number of counters implemented:

0b010 Two counters implemented

[27:25] NUMSEQSTATE Number of sequencer states implemented:

0b100 Four sequencer states implemented

[24] - Reserved. RAZ/WI

[23] LPOVERRIDE Low-power state override support:

0b1 Low-power state override support implemented

[22] ATBTRIG ATB trigger support:

0b1 ATB trigger support implemented

[21:16] TRACEIDSIZE Number of bits of trace ID:

0x07 Seven-bit trace ID implemented

[15:12] - Reserved. RAZ/WI.

[11:9] NUMEXTINSEL Number of external input selectors implemented:

0b100 Four external input selectors implemented

[8:0] NUMEXTIN Number of external inputs implemented:

0x40 64 external inputs implemented

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Implementation-specific and identification registers on page 11-260

11.8.36 Resource Selection Registers 2-16

The TRCRSCTLRn control the trace resources.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 130-140

Base offset 0x208-0x240

Name: TRCRSCTLRn

Type: RW

Reset: -

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-306

Non-Confidential

The following figure shows the TRCRSCTLRn bit assignments.

RAZ/WI

31 22 21 20 19 18 16 15 8 7 0

GROUP RAZ/WI SELECT

PAIRINV
INV

RAZ/WI

Figure 11-45 TRCRSCTLRn bit assignments

The following table shows the TRCRSCTLRn bit assignments.

Table 11-57 TRCRSCTLRn bit assignments

Bits Name Function

[31:22] - Reserved. RAZ/WI.

[21] PAIRINV Inverts the result of a combined pair of resources.

This bit is only implemented on the lower register for a pair of resource selectors.

[20] INV Inverts the selected resources:

0b0 Resource is not inverted.

0b1 Resource is inverted.

[19] - Reserved. RAZ/WI.

[18:16] GROUP Selects a group of resources.

[15:8] - Reserved. RAZ/WI.

[7:0] SELECT Selects one or more resources from the desired group. One bit is provided per resource from the group.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Resource selection registers on page 11-260

11.8.37 Single-Shot Comparator Control Registers 0-1

The TRCSSCCRn control the single-shot comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 160-161

Base offset 0x280-0x284

Name: TRCSSCCRn

Type: RW

Reset: -

The following figure shows the TRCSSCCRn bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-307

Non-Confidential

RAZ/WIRAZ/WI

31 20 19 16 15 8 7 0

ARC RAZ/WI SAC

24 2325

RST

Figure 11-46 TRCSSCCRn bit assignments

The following table shows the TRCSSCCRn bit assignments.

Table 11-58 TRCSSCCRn bit assignments

Bits Name Function

[31:25] - Reserved. RAZ/WI.

[24] RST Enables the single-shot comparator resource to be reset when it occurs, to enable another comparator match to be
detected:

0b1 Reset enabled. Multiple matches can occur.

[23:20] - Reserved. RAZ/WI.

[19:16] ARC Selects one or more address range comparators for single-shot control.

One bit is provided for each implemented address range comparator.

[15:8] - Reserved. RAZ/WI.

[7:0] SAC Selects one or more single address comparators for single-shot control.

One bit is provided for each implemented single address comparator.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Single-shot comparator registers on page 11-261

11.8.38 Single-Shot Comparator Status Registers 0-1

The TRCSSCSRn indicate the status of the single-shot comparators. TRCSSCSR0 is sensitive to
instruction addresses. TRCSSCSR1 is sensitive to data addresses and values.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 168-169

Base offset 0x2A0-0x2A4

Name: TRCSSCSRn

Type: RW

Reset: -

The following figure shows the TRCSSCSRn bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-308

Non-Confidential

31 30 3 2 1 0

RAZ/WI

STATUS DV
DA

INST

Figure 11-47 TRCSSCSRn bit assignments

The following table shows the TRCSSCSR0 bit assignments.

Table 11-59 TRCSSCSR0 bit assignments

Bits Name Function

[31] STATUS Single-shot status. This indicates whether any of the selected comparators have matched:

0b0 Match has not occurred.

0b1 Match has occurred at least once.

When programming the Cortex‑R8 processor ETM, if TRCSSCCRn.RST is 0b0, the STATUS bit must be explicitly
written to 0b0 to enable this single-shot comparator control.

[30:3] - Reserved. RAZ/WI.

[2] DV Data value comparator support:

0b0 Single-shot data value comparisons not supported.

[1] DA Data address comparator support:

0b0 Single-shot data address comparisons not supported.

[0] INST Instruction address comparator support:

0b1 Single-shot instruction address comparisons supported.

The following table shows the TRCSSCSR1 bit assignments.

Table 11-60 TRCSSCSR1 bit assignments

Bits Name Function

[31] STATUS Single-shot status. This indicates whether any of the selected comparators have matched:

0b0 Match has not occurred.

0b1 Match has occurred at least once.

When programming the Cortex‑R8 processor ETM, this bit must be explicitly written to 0b0 to enable this single-
shot comparator control.

[30:3] - Reserved. RAZ/WI.

[2] DV Data value comparator support:

0b1 Single-shot data value comparisons supported.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-309

Non-Confidential

Table 11-60 TRCSSCSR1 bit assignments (continued)

Bits Name Function

[1] DA Data address comparator support:

0b1 Single-shot data address comparisons supported.

[0] INST Instruction address comparator support:

0b0 Single-shot instruction address comparisons not supported.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Single-shot comparator registers on page 11-261

11.8.39 OS Lock Access Register

The TRCOSLAR sets and clears the OS Lock, to lock out external debugger accesses to the Cortex‑R8
processor ETM registers.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 192

Base offset 0x300

Name: TRCOSLAR

Type: WO

Reset: -

The following figure shows the TRCOSLAR bit assignments.

31 1 0

RAZ/WI

OSLK

Figure 11-48 TRCOSLAR bit assignments

The following table shows the TRCOSLAR bit assignments.

Table 11-61 TRCOSLAR bit assignments

Bits Name Function

[31:1] - Reserved. RAZ/WI.

[0] OSLK OS Lock key value:

0b0 Unlock the OS Lock.

0b1 Lock the OS Lock.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-310

Non-Confidential

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
OS lock and power control registers on page 11-262

11.8.40 OS Lock Status Register

The TRCOSLSR returns the status of the OS Lock.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 193

Base offset 0x304

Name: TRCOSLSR

Type: RO

Reset: -

The following figure shows the TRCOSLSR bit assignments.

31 1 0

RAZ/WI

OSLM[1]

3 24

nTT
OSLK

OSLM[0]

Figure 11-49 TRCOSLSR bit assignments

The following figure shows the TRCOSLSR bit assignments.

Table 11-62 TRCOSLSR bit assignments

Bits Name Function

[31:4] - Reserved. RAZ/WI.

[3] OSLM[1] OS Lock model[1]. This bit is combined with OSLM[0] to form a two-bit field that indicates the OS Lock model is
implemented. The value of this field is always 0b10, indicating that the OS Lock is implemented.

[2] nTT This bit is RAZ, which indicates that software must perform a 32-bit write to update the TRCOSLAR.

[1] OSLK OS Lock status bit:

0b0 OS Lock is unlocked.

0b1 OS Lock is locked.

[0] OSLM[0] OS Lock model[0]. This bit is combined with OSLM[1] to form a two-bit field that indicates the OS Lock model is
implemented. The value of this field is always 0b10, indicating that the OS Lock is implemented.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
OS lock and power control registers on page 11-262

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-311

Non-Confidential

11.8.41 Power Down Control Register

The TRCPDCR requests the system power controller to keep the Cortex‑R8 processor ETM powered up.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 196

Base offset 0x310

Name: TRCPDCR

Type: RW

Reset: 0x00000000

The following figure shows the TRCPDCR bit assignments.

RAZ/WIRAZ/WI

31 4 3 2 0

PU

Figure 11-50 TRCPDCR bit assignments

The following table shows the TRCPDCR bit assignments.

Table 11-63 TRCPDCR bit assignments

Bits Name Function

[31:4] - Reserved. RAZ/WI.

[3] PU Power up request, to request that power to the Cortex‑R8 processor ETM and access to the trace registers is
maintained:

0b0 Power not requested.

0b1 Power requested.

This bit is reset to 0b0 on a trace unit reset.

[2:0] - Reserved. RAZ/WI.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
OS lock and power control registers on page 11-262

11.8.42 Power Down Status Register

The TRCPDSR indicates the powerdown status of the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-312

Non-Confidential

Attributes

Register number: 197

Base offset 0x314

Name: TRCPDSR

Type: RO

Reset: 0x00000023

The following figure shows the TRCPDSR bit assignments.

RAZ/WI

31 6 5 4 2 1 0

RAZ/WI

OSLK
STICKYPD

POWER

Figure 11-51 TRCPDSR bit assignments

The following table shows the TRCPDSR bit assignments.

Table 11-64 TRCPDSR bit assignments

Bits Name Function

[31:6] - Reserved. RAZ/WI.

[5] OSLK OS lock status.

[4:2] - Reserved. RAZ/WI.

[1] STICKYPD Sticky powerdown state.

0b0 Trace register power has not been removed since the TRCPDSR was last
read.

0b1 Trace register power has been removed since the TRCPDSR was last read.

This bit is set to 0b1 when power to the Cortex‑R8 processor ETM registers is removed, to indicate that
programming state has been lost. It is cleared after a read of the TRCPDSR.

[0] POWER Indicates the Cortex‑R8 processor ETM is powered:

0b1 Cortex‑R8 processor ETM is powered. All registers are accessible.

If a system implementation allows the ETM to be powered off independently of the debug power domain, the
system must handle accesses to the ETM appropriately.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
OS lock and power control registers on page 11-262

11.8.43 Address Comparator Value Registers 0-7

The TRCACVRn indicates the address for the data address comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-313

Non-Confidential

Attributes

Register number: 256-271

Base offset 0x400-0x43C

Name: TRCACVRn

Type: RW

Reset: -

The following figure shows the TRCACVRn bit assignments.

ADDRESS

31 0

Figure 11-52 TRCACVRn bit assignments

The following table shows the TRCACVRn bit assignments.

Table 11-65 TRCACVRn bit assignments

Bits Name Function

[31:0] ADDRESS The address value to compare against

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Comparator registers on page 11-263

11.8.44 Address Comparator Access Type Registers 0-7

The TRCACATRn controls the access for the data address comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 288-303

Base offset 0x480-0x4BC

Name: TRCACATRn

Type: RW

Reset: 0x480-0x4BC

The following figure shows the TRCACATR0 bit assignments.

RAZ/WI

31 21 20 19 18 17 16 15 12 11 10 9 8 7 3 2 1 0

RAZ/WI RAZ/WI TYPE

DATARANGE
DATASIZE

DATAMATCH

EXLEVEL_S
RAZ/WI

EXLEVEL_S
CONTEXTTYPE

Figure 11-53 TRCACATR0 bit assignments

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-314

Non-Confidential

The following table shows the TRCACATR0 bit assignments.

Table 11-66 TRCACATR0 bit assignments

Bits Name Function

[31:21] - Reserved. RAZ/WI.

[20] DATARANGE Data value comparison range control, to select whether the data value comparison is made against the
single address comparator or the address range comparator:

0b0 Only the single address comparator matches.

0b1 Only the address range comparator matches.

[19:18] DATASIZE Data value comparison size control:

0b00 Byte size.

0b01 Halfword size.

0b10 Word size.

0b11 Doubleword size.

[17:16] DATAMATCH Data value comparison control:

0b01 Comparator matches only if the data value comparison matches.

0b11 Comparator matches only if the data value comparison does not match.

[15:12] - Reserved. RAZ/WI.

[11] EXLEVEL_S Indicates whether the comparator matches in exception level 3 in Secure state:

0b1 The comparator must not match in this exception level.

[10:9] - Reserved. RAZ/WI.

[8] EXLEVEL_S Indicates whether the comparator matches in exception level 0 in Secure state:

0b1 The comparator must not match in this exception level.

[7:3] - Reserved. RAZ/WI.

[2] CONTEXTTYPE Indicates whether the context comparator is used in the comparison:

0b0 Use no context comparators.

0b1 Use the Context ID comparator.

[1:0] TYPE The type of comparison:

0b00 Instruction address.

0b01 Data load address.

0b10 Data store address.

0b11 Data load or store address.

 Note

TRCACATR2 is functionally identical to TRCACATR0.

The figure shows the TRCACATR1 bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-315

Non-Confidential

RAZ/WI

31 12 11 10 9 8 7 3 2 1 0

RAZ/WI TYPE

EXLEVEL_S
RAZ/WI

EXLEVEL_S
CONTEXTTYPE

Figure 11-54 TRCACATR1 bit assignments

The table shows the TRCACATR1 bit assignments.

Table 11-67 TRCACATR1 bit assignments

Bits Name Function

[31:12] - Reserved. RAZ/WI.

[11] EXLEVEL_S Indicates whether the comparator matches in exception level 3 in Secure state:

0b1 The comparator must not match in this exception level.

[10:9] - Reserved. RAZ/WI.

[8] EXLEVEL_S Indicates whether the comparator matches in exception level 0 in Secure state:

0b1 The comparator must not match in this exception level.

[7:3] - Reserved. RAZ/WI.

[2] CONTEXTTYPE Indicates whether the context comparator is used in the comparison:

0b0 Use no context comparators.

0b1 Use the Context ID comparator.

[1:0] TYPE The type of comparison:

0b00 Instruction address.

0b01 Data load address.

0b10 Data store address.

0b11 Data load or store address.

 Note

TRCACATR3-7 are functionally identical to TRCACATR1.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Comparator registers on page 11-263

11.8.45 Data Value Comparator Value Registers 0-1

The TRCDVCVRn indicates the value for the data value comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-316

Non-Confidential

Attributes

Register number: 320-321

Base offset 0x500-0x504

Name: TRCDVCVRn

Type: RW

Reset: -

The following figure shows the TRCDVCVRn bit assignments.

VALUE

31 0

Figure 11-55 TRCDVCVRn bit assignments

The following table shows the TRCDVCVRn bit assignments.

Table 11-68 TRCDVCVRn bit assignments

Bits Name Function

[31:0] VALUE The data value to compare against

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Comparator registers on page 11-263

11.8.46 Data Value Comparator Mask Registers 0-1

The TRCDVCMRn control the mask value for the data value comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 352-359

Base offset 0x580-0x59C

Name: TRCDVCMRn

Type: RW

Reset: -

The following figure shows the TRCDVCMRn bit assignments.

MASK

31 0

Figure 11-56 TRCDVCMRn bit assignments

The following table shows the TRCDVCMRn bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-317

Non-Confidential

Table 11-69 TRCDVCMRn bit assignments

Bits Name Function

[31:0] MASK The mask value to apply to the data value comparison

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Comparator registers on page 11-263

11.8.47 Context ID Comparator Control Register 0

The TRCCIDCCTLR0 controls the mask value for the context ID comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 416

Base offset 0x680

Name: TRCCIDCCTLRn

Type: RW

Reset: -

The following figure shows the TRCCIDCCTLR0 bit assignments.

COMP0RAZ/WI

31 4 03

Figure 11-57 TRCCIDCCTLR0 bit assignments

The following table shows the TRCCIDCCTLR0 bit assignments.

Table 11-70 TRCCIDCCTLR0 bit assignments

Bits Name Function

[31:4] - Reserved. RAZ/WI

[3:0] COMP0 The mask value to apply to the Context ID comparator

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Comparator registers on page 11-263

11.8.48 Context ID Comparator Value Register 0

The TRCCIDCVR0 indicates the value for the context ID comparators.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-318

Non-Confidential

Attributes

Register number: 384

Base offset 0x600

Name: TRCCIDCVR0

Type: RW

Reset: -

The following figure shows the TRCCIDCVR0 bit assignments.

VALUE

31 0

Figure 11-58 TRCCIDCVR0 bit assignments

The following table shows the TRCCIDCVR0 bit assignments.

Table 11-71 TRCCIDCVR0 bit assignments

Bits Value Function

[31:0] VALUE The Context ID value to compare with the current Context ID

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Comparator registers on page 11-263

11.8.49 Integration Mode Control Register

The TRCITCTRL enables topology detection or integration testing by putting the Cortex‑R8 processor
ETM into integration mode.

Usage constraints
Arm recommends that you perform a debug reset after using integration mode.

Configurations
Available in all configurations.

Attributes

Register number: 960

Base offset 0xF00

Name: TRCITCTRL

Type: RW

Reset: 0x00000000

The following figure shows the TRCITCTRL bit assignments.

RAZ/WI

31 1 0

IME

Figure 11-59 TRCITCTRL bit assignments

The following table shows the TRCITCTRL bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-319

Non-Confidential

Table 11-72 TRCITCTRL bit assignments

Bits Name Function

[31:1] - Reserved. RAZ/WI.

[0] IME Integration mode enable:

0b0 Cortex‑R8 processor ETM is not in integration mode. This is the reset value.

0b1 Cortex‑R8 processor ETM is in integration mode.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.50 Claim Tag Set Register

The TRCCLAIMSET sets bits in the claim tag and determines the number of claim tag bits implemented.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1000

Base offset 0xFA0

Name: TRCCLAIMSET

Type: RW

Reset: 0x00000000

The following figure shows the TRCCLAIMSET bit assignments.

RAZ/WI

31 4 3 0

SET

Figure 11-60 TRCCLAIMSET bit assignments

The following table shows the TRCCLAIMSET bit assignments.

Table 11-73 TRCCLAIMSET bit assignments

Bits Name Function

[31:4] - Reserved. RAZ/WI.

[3:0] SET On reads, for each bit:

0b0 Claim tag bit is not implemented.

0b1 Claim tag bit is implemented.

On writes, for each bit:

0b0 Has no effect.

0b1 Sets the relevant bit of the claim tag.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-320

Non-Confidential

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.51 Claim Tag Clear Register

The TRCCLAIMCLR clears bits in the claim tag and determines the current value of the claim tag.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1001

Base offset 0xFA4

Name: TRCCLAIMCLR

Type: RW

Reset: 0x00000000

The following figure shows the TRCCLAIMCLR bit assignments.

RAZ/WI

31 4 3 0

CLR

Figure 11-61 TRCCLAIMCLR bit assignments

The following table shows the TRCCLAIMCLR bit assignments.

Table 11-74 TRCCLAIMCLR bit assignments

Bits Name Function

[31:4] - Reserved. RAZ/WI.

[3:0] CLR On reads, for each bit:

0b0 Claim tag bit is not set.

0b1 Claim tag bit is set.

On writes, for each bit:

0b0 Has no effect.

0b1 Clears the relevant bit of the claim tag.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.52 Device Affinity Register

The TRCDEVAFF0 enables the Cortex‑R8 processor ETM to determine which core in the Cortex‑R8
processor the component relates to.

Usage constraints
There are no usage constraints.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-321

Non-Confidential

Configurations
Available in all configurations.

Attributes

Register number: 1002

Base offset 0xFA8

Name: TRCDEVAFF0

Type: RO

Reset: -

The following figure shows the TRCDEVAFF0 bit assignments.

31 8 7 0

SBZ SBZ

12 11

Cluster ID

12

1

U bit

30 29

CPU ID

Figure 11-62 TRCDEVAFF0 bit assignments

The following table shows the TRCDEVAFF0 bit assignments.

Table 11-75 TRCDEVAFF0 bit assignments

Bits Name Function

[31] - Indicates the register uses the new multiprocessor format. This is always 0b1.

[30] U bit Multiprocessing Extensions:

0b0 Indicates the Cortex‑R8 processor is a multiprocessor configuration.

[29:12] - Reserved. SBZ.

[11:8] Cluster ID Value read in CLUSTERID configuration pins. It identifies a Cortex‑R8 processor cluster in a system that has
several Cortex‑R8 processor clusters present.

[7:2] - Reserved. SBZ.

[1:0] CPU ID Indicates the core number in the multiprocessor configuration:

0x00 Core 0.

0x01 Core 1.

0x10 Core 2.

0x11 Core 3.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.53 Software Lock Access Register

The TRCLAR controls access to registers using the memory-mapped interface.

When the software lock is set, write accesses using the memory-mapped interface to all Cortex‑R8
processor ETM registers are ignored except for write accesses to the TRCLAR.

When the software lock is set, read accesses of TRCPDSR do not change the TRCPDSR.STICKYPD bit.
Read accesses of all other registers are not affected.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-322

Non-Confidential

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1004

Base offset 0xFB0

Name: TRCLAR

Type: WO

Reset: -

The following figure shows the TRCLAR bit assignments.

31 0

KEY

Figure 11-63 TRCLAR bit assignments

The following table shows the TRCLAR bit assignments.

Table 11-76 TRCLAR bit assignments

Bits Name Function

[31:0] KEY Software lock key value:

0xC5ACCE55 Clear the software lock.

All other write values set the software lock.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.54 Software Lock Status Register

The TRCLSR determines if the software lock is implemented and indicates the current status of the
software lock.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1005

Base offset 0xFB4

Name: TRCLSR

Type: RO

Reset: -

The following figure shows the TRCLSR bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-323

Non-Confidential

RAZ/WI

31 1 0

SLK

2

SLI

3

nTT

Figure 11-64 TRCLSR bit assignments

The following table shows the TRCLSR bit assignments.

Table 11-77 TRCLSR bit assignments

Bits Name Function

[31:3] - Reserved. RAZ/WI.

[2] nTT Indicates size of TRCLAR:

0b0 TRCLAR is always 32 bits.

[1] SLK Software lock status:

0b0 Software lock is clear.

0b1 Software lock is set.

[0] SLI Indicates whether the software lock is implemented on this interface.

0b1 Software lock is implemented on this interface.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.55 Authentication Status Register

The TRCAUTHSTATUS indicates the current level of tracing permitted by the system.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1006

Base offset 0xFB8

Name: TRCAUTHSTATUS

Type: RO

Reset: -

The following figure shows the TRCAUTHSTATUS bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-324

Non-Confidential

SNID SID NSIDRAZ/WI

31 1 024 357 68

NSNID

Figure 11-65 TRCAUTHSTATUS bit assignments

The following table shows the TRCAUTHSTATUS bit assignments.

Table 11-78 TRCAUTHSTATUS bit assignments

Bits Name Function

[31:8] - Reserved. RAZ/WI.

[7:6] SNID Secure Non-Invasive Debug:

0b10 Secure Non-Invasive Debug implemented but disabled.

0b11 Secure Non-Invasive Debug implemented and enabled.

[5:4] SID Secure Invasive Debug:

0b10 Secure Invasive Debug implemented but disabled.

0b11 Secure Invasive Debug implemented and enabled.

[3:2] NSNID Non-secure Non-Invasive Debug:

0b00 Non-secure Non-Invasive Debug not implemented.

[1:0] NSID Non-secure Invasive Debug:

0b00 Non-secure Invasive Debug not implemented.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.56 Device Architecture Register

The TRCDEVARCH identifies the Cortex‑R8 processor ETM as an ETMv4 component.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1007

Base offset 0xFBC

Name: TRCDEVARCH

Type: RO

Reset: 0x47704A17

The following figure shows the TRCDEVARCH bit assignments.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-325

Non-Confidential

ARCHITECT

31 21 20 19 16 15 0

REVISION ARCHID

PRESENT

Figure 11-66 TRCDEVARCH bit assignments

The following table shows the TRCDEVARCH bit assignments.

Table 11-79 TRCDEVARCH bit assignments

Bits Name Function

[31:21] ARCHITECT Defines the architect of the component:

0x43B Arm

[20] PRESENT Indicates the presence of this register:

0b1 Register is present

[19:16] REVISION Architecture revision:

0b0000 Architecture revision 0

[15:0] ARCHID Architecture ID:

0x4A13 ETMv4 component

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.57 Device ID Register

The TRCDEVID indicates the capabilities of the Cortex‑R8 processor ETM.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1010

Base offset 0xFC8

Name: TRCDEVID

Type: RO

Reset: 0x00000000

The following figure shows the TRCDEVID bit assignments.

DEVID

31 0

Figure 11-67 TRCDEVID bit assignments

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-326

Non-Confidential

The following table shows the TRCDEVID bit assignments.

Table 11-80 TRCDEVID bit assignments

Bits Name Function

[31:0] DEVID RAZ. There are no component-defined capabilities.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11.8.58 Device Type Register

The TRCDEVTYPE indicates the type of the component.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

Register number: 1011

Base offset 0xFCC

Name: TRCDEVTYPE

Type: RO

Reset: 0x00000013

The following figure shows the TRCDEVTYPE bit assignments.

SUB MAJORRAZ/WI

31 04 378

Figure 11-68 TRCDEVTYPE bit assignments

The following table shows the TRCDEVTYPE bit assignments.

Table 11-81 TRCDEVTYPE bit assignments

Bits Name Function

[31:8] - Reserved. RAZ/WI

[7:4] SUB The subtype of the component:

0b0001 Processor trace

[3:0] MAJOR The main type of the component:

0b0011 Trace source

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-327

Non-Confidential

11.8.59 Peripheral Identification Registers

The TRCPIDR0-7 provide the standard Peripheral ID required by all CoreSight components.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for more information.

Usage constraints
Only bits[7:0] of each register are used. This means that TRCPIDR0-7 define a single 64-bit
Peripheral ID, as the figure shows.

Configurations
Available in all configurations.

Attributes

Register number: 1012-1019

Base offset 0xFD0-0xFEC

Name: TRCPIDRn

Type: RO

Reset: -

The following figure shows the mapping between TRCPIDR0-7 and the single 64-bit Peripheral ID
value.

0

Conceptual 64-bit Peripheral ID

Actual Peripheral ID register fields
TRCPIDR0

7 07 07 07 07 07 07 07

TRCPIDR1TRCPIDR2TRCPIDR3TRCPIDR4TRCPIDR5TRCPIDR6TRCPIDR7

63 16 15 8 0724 2332 3140 3948 4756 55

Figure 11-69 Mapping between TRCPIDR0-7 and the Peripheral ID value

The following figure shows the Peripheral ID bit assignments in the single conceptual Peripheral ID
register.

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 0 00 0 0 0 0 0 1‡ 0 1 1 1 11 0 1 0 0 1 1 00 0 1 1 1 0

Conceptual 64-bit Peripheral ID

63 16 15 8

07

24 2332 3140 3948 4756 55

Reserved,
RAZ

TRCPIDR0TRCPIDR1TRCPIDR2TRCPIDR3TRCPIDR4TRCPIDR5TRCPIDR6TRCPIDR7

Part numberJEP 106
ID code

4KB
count

RevAnd

JEP 106
Continuation Code

Customer
modified

Revision

07

07070707070707

‡ See text for the value of the Revision field

Figure 11-70 Peripheral ID fields

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-328

Non-Confidential

The following table shows the values of the fields when reading this set of registers. The Arm®

Embedded Trace Macrocell Architecture Specification ETMv4 gives more information about many of
these fields.

Table 11-82 TCRPIDR0-7 bit assignments

Register Register
number

Register
offset

Bits Value Description

TRCPIDR7 0x3F7 0xFDC [31:8] - Unused, read UNDEFINED.

[7:0] 0x00 Reserved for future use, RAZ.

TRCPIDR6 0x3F6 0xFD8 [31:8] - Unused, read UNDEFINED.

[7:0] 0x00 Reserved for future use, RAZ.

TRCPIDR5 0x3F5 0xFD4 [31:8] - Unused, read UNDEFINED.

[7:0] 0x00 Reserved for future use, RAZ.

TRCPIDR4 0x3F4 0xFD0 [31:8] - Unused, read UNDEFINED.

[7:4] 0x0 n, where 2n is number of 4KB blocks used.

[3:0] 0x4 JEP 106 continuation code.

TRCPIDR3 0x3FB 0xFEC [31:8] - Unused, read UNDEFINED.

[7:4] 0x0 RevAnd (at top level). Manufacturer revision number.

[3:0] 0x0 Customer Modified.

0x0 indicates from Arm.

TRCPIDR2 0x3FA 0xFE8 [31:8] - Unused, read UNDEFINED.

[7:4] bp Revision Number of Peripheral. This value is the same as the
Implementation revision field of the TRCIDR, see 11.8.31 ID
Register 1 on page 11-300.

[3] 0b1 Always 1. Indicates that a JEDEC assigned value is used.

[2:0] 0b011 JEP 106 identity code [6:4].

TRCPIDR1 0x3F9 0xFE4 [31:8] - Unused, read UNDEFINED.

[7:4] 0b1011 JEP 106 identity code [3:0].

[3:0] 0x9 Part Number[11:8].

Upper Binary Coded Decimal (BCD) value of Device Number.

TRCPIDR0 0x3F8 0xFE0 [31:8] - Unused, read UNDEFINED.

[7:0] 0x37 Part Number [7:0].

Middle and Lower BCD value of Device Number.

 Note

In the TCRPIDR0-7 bit assignments table, the 11.8.59 Peripheral Identification Registers on page 11-328
are listed in order of register name, from most significant (TRCPIDR7) to least significant (TRCPIDR0).
This does not match the order of the register offsets. Similarly, in the TRCCIDR0-3 bit assignments table

bp See the Description column for details.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-329

Non-Confidential

the 11.8.60 Component Identification Registers on page 11-331 are listed in order of register name, from
most significant (TRCCIDR3) to least significant (TRCCIDR0).

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265
11.8.31 ID Register 1 on page 11-300
11.8.59 Peripheral Identification Registers on page 11-328
11.8.60 Component Identification Registers on page 11-331

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-330

Non-Confidential

11.8.60 Component Identification Registers

The TRCCIDR0-3 identify the ETM as a CoreSight component.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification ETMv4.

Usage constraints
Only bits[7:0] of each register are used. This means that TRCCIDR0-3 define a single 32-bit
Component ID, as the figure shows.

Configurations
Available in all configurations.

Attributes

Register number: 1020-1023

Base offset xFF0-0xFFC

Name: TRCCIDRn

Type: RO

Reset: -

The following figure shows the mapping between TRCCIDR0-3 and the single 32-bit Component ID
value.

TRCCIDR3

Conceptual 32-bit component ID

Actual ComponentID register fields

7 0

TRCCIDR2 TRCCIDR1 TRCCIDR0

Component ID

7 0 7 0 7 0

31 2423 1615 8 7 0

Figure 11-71 Mapping between TRCCIDR0-3 and the Component ID value

The following table shows the Component ID bit assignments in the single conceptual Component ID
register.

Table 11-83 TRCCIDR0-3 bit assignments

Register Register number Register offset Bits Value Description

TRCCIDR3 0x3FF 0xFFC [31:8] - Unused, read UNDEFINED.

[7:0] 0xB1 Component identifier, bits[31:24].

TRCCIDR2 0x3FE 0xFF8 [31:8] - Unused, read UNDEFINED.

[7:0] 0x05 Component identifier, bits[23:16].

TRCCIDR1 0x3FD 0xFF4 [31:8] - Unused, read UNDEFINED.

[7:4] 0x9 Component class (component identifier, bits[15:12]).

[3:0] 0x0 Component identifier, bits[11:8].

TRCCIDR0 0x3FC 0xFF0 [31:8] - Unused, read UNDEFINED.

[7:0] 0x0D Component identifier, bits[7:0].

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
CoreSight™ management registers on page 11-265

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-331

Non-Confidential

11.8.61 Integration Test Registers

To access the Integration Test Registers registers, you must first set bit[0] of the Integration Mode
Control Register to 0b1.

• You can use the write-only Integration Test Registers to set the outputs of some of the ETM signals.
The following table shows the signals that can be controlled in this way.

• You can use the read-only Integration Test Registers to read the state of some of the ETM input
signals. The Input signals that the Integration Test Registers can read table shows the signals that can
be read in this way.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for details of TRCITCTRL.

Output signals that the Integration Test Registers can control

Details of the output signals that the Integration Test Registers can control.

Table 11-84 Output signals that the Integration Test Registers can control

Signal Register Bits Register description

AFREADYMDx TRCITDATBOUTR [1] See Integration Data ATB Out Register on page 11-341

AFREADYMIx TRCITIATBOUTR [1] See Integration Instruction ATB Out Register on page 11-342

ATBYTESMDx[2:0] TRCITDATBOUTR [10:8] See Integration Data ATB Out Register on page 11-341

ATBYTESMIx[1:0] TRCITIATBOUTR [9:8] See Integration Instruction ATB Out Register on page 11-342

ATDATAMDx[63, 55, 47, 39, 31, 23,
15, 7, 0]

TRCITDDATAR [8:0] See Integration Data ATB Data Register on page 11-337

ATDATAMIx[31, 23, 15, 7, 0] TRCITIDATAR [4:0] See Integration Instruction ATB Data Register on page 11-338

ATIDMDx[6:0] TRCITATBIDR [6:0] See Integration ATB Identification Register on page 11-336

ATIDMIx[6:0] TRCITATBIDR [6:0] See Integration ATB Identification Register on page 11-336

ATVALIDMDx TRCITDATBOUTR [0] See Integration Data ATB Out Register on page 11-341

ATVALIDMIx TRCITIATBOUTR [0] See Integration Instruction ATB Out Register on page 11-342

ETMACTIVEx TRCITMISCOUTR [5] See Integration Miscellaneous Outputs Register on page 11-334

ETMEXTOUT[3:0] TRCITMISCOUTR [11:8] See Integration Miscellaneous Outputs Register on page 11-334

Input signals that the Integration Test Registers can read

Table 11-85 Input signals that the Integration Test Registers can read

Signal Register Bits Register description

AFVALIDMDx TRCITDATBINR [1] See Integration Data ATB In Register on page 11-339

ATREADYMDx TRCITDATBINR [0] See Integration Data ATB In Register on page 11-339

AFVALIDMIx TRCITIATBINR [1] See Integration Instruction ATB In Register on page 11-340

ATREADYMIx TRCITIATBINR [0] See Integration Instruction ATB In Register on page 11-340

CPUACTIVE TRCITMISCINR [4] See Integration Miscellaneous Inputs Register on page 11-335

DBGACK TRCITMISCINR [5] See Integration Miscellaneous Inputs Register on page 11-335

ETMEVENT[3:0] TRCITMISCINR [3:0] See Integration Miscellaneous Inputs Register on page 11-335

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-332

Non-Confidential

Using the Integration Test Registers

You must not attempt to write to an Integration Test Register unless you have set bit[0] of TRCITCTRL
to 0b1.

When bit[0] of TRCITCTRL is set to 0b1:

• Values written to the write-only integration test registers map onto the specified outputs of the
macrocell. For example, writing 0x3 TRCITMISCOUTR[11:8] causes ETMEXTOUT[3:0] to take
the value 0x3.

• Values read from the read-only integration test registers correspond to the values of the specified
inputs of the macrocell. For example, if you read TRCITMISCINR[3:0] you obtain the value of
ETMEXTIN[3:0].

When bit[0] of TRCITCTRL is set to 0b0:
• Reading an Integration Test Register returns an UNPREDICTABLE value.
• The effect of attempting to write to an Integration Test Register, other than the read-only Integration

Test Registers, is UNPREDICTABLE.

The Arm® Cortex®‑R8 MPCore Processor Integration Manual gives a full description of the use of the
Integration Test Registers to check integration.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-333

Non-Confidential

Integration Miscellaneous Outputs Register

The TRCITMISCOUTR sets the state of the output pins for ETMEXTOUT[3:0] and ETMACTIVEx.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The value of the register sets the signals on the output pins when the register is written.

Configurations
Available in all configurations.

Attributes

Register number: 951

Base offset 0xEDC

Name: TRCITMISCOUTR

Type: RW

Reset: -

The following figure shows the TRCITMISCOUTR bit assignments.

31 8 7 4 0

EXTOUT

6 5

Reserved ACTIVE

Reserved Reserved

1112

Figure 11-72 TRCITMISCOUTR bit assignments

The following table shows the TRCITMISCOUTR bit assignments.

Table 11-86 TRCITMISCOUTR bit assignments

Bits Name Function

[31:12] - Reserved. Write as zero.

[11:8] EXTOUT Drives the ETMEXTOUT[3:0] output pinsbq.

[7:6] - Reserved. Write as zero.

[5] ACTIVE Drives the ETMACTIVEx output pinbq.

[4:0] - Reserved. Write as zero.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Output signals that the Integration Test Registers can control on page 11-332

bq When a bit is set to 0b0, the corresponding output pin is LOW. When a bit is set to 0b1, the corresponding output pin is HIGH. The TRCITMISCOUTR bit values
correspond to the physical state of the output pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-334

Non-Confidential

Integration Miscellaneous Inputs Register

The TRCITMISCINR reads the state of the input pins for the DBGACK, CPUACTIVE, and
ETMEVENT[3:0] signals.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The values of the register bits depend on the signals on the input pins when the register is

read.

Configurations
Available in all configurations.

Attributes

Register number: 952

Base offset 0xEE0

Name: TRCITMISCINR

Type: RO

Reset: -

The following figure shows the TRCITMISCINR bit assignments.

31 5 4 3 0

DBGACK

Reserved EXTIN

6

CPUACTIVE

Figure 11-73 TRCITMISCINR bit assignments

The following table shows the TRCITMISCINR bit assignments.

Table 11-87 TRCITMISCINR bit assignments

Bits Name Function

[31:6] - Reserved. Read UNDEFINED.

[5] DBGACK Returns the value of the DBGACK input pinbr.

[4] CPUACTIVE Returns the value of the CPUACTIVE input pinbr.

[3:0] EXTIN Returns the value of the ETMEVENT[3:0] input pinsbr.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Input signals that the Integration Test Registers can read on page 11-332

br When an input pin is LOW, the corresponding register bit is 0b0. When an input pin is HIGH, the corresponding register bit is 0b1. The TRCITMISCINR bit values
always correspond to the physical state of the input pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-335

Non-Confidential

Integration ATB Identification Register

The TRCITATBIDR sets the state for the ATIDMDx[6:0] and ATIDMIx[6:0] output pins.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The value of the register sets the signals on the output pins when the register is written.

Configurations
Available in all configurations.

Attributes

Register number: 953

Base offset 0xEE4

Name: TRCITATBIDR

Type: RW

Reset: -

The following figure shows the TRCITATBIDR bit assignments.

IDReserved

31 07 6

Figure 11-74 TRCITATBIDR bit assignments

The following table shows the TRCITATBIDR bit assignments.

Table 11-88 TRCITATBIDR bit assignments

Bits Name Function

[31:7] - Reserved. Read UNDEFINED.

[6:0] ID Drives the ATIDMDx[6:0] and ATIDMIx[6:0] output pinsbs.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Output signals that the Integration Test Registers can control on page 11-332

bs Bits[6:1] drive both ATIDMDx[6:1] and ATIDMIx[6:1]. Bit[0] drives ATIDMIx[0]. When a bit is set to 0b0, the corresponding output pin is LOW. When a bit is
set to 0b1, the corresponding output pin is HIGH. ATIDMDx[0] is always driven HIGH. The TRCITATBIDR bit values correspond to the physical state of the
output pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-336

Non-Confidential

Integration Data ATB Data Register

The TRCITDDATAR sets the state of the ATDATAMDx[63, 55, 47, 39, 31, 23, 15, 7, 0] output pins.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The value of the register sets the signals on the output pins when the register is written.

Configurations
Available in all configurations.

Attributes

Register number: 954

Base offset 0xEE8

Name: TRCIRDDATAR

Type: RW

Reset: -

The following figure shows the TRCITDDATAR bit assignments.

ATDATAMDReserved

31 09 8

Figure 11-75 TRCITDDATAR bit assignments

The following table shows the TRCITDDATAR bit assignments.

Table 11-89 TRCITDDATAR bit assignments

Bits Name Function

[31:9] - Reserved. Write as zero.

[8:0] ATDATAMD Drives the ATDATAMDx[63, 55, 47, 39, 31, 23, 15, 7, 0] output pinsbt.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Output signals that the Integration Test Registers can control on page 11-332

bt When a bit is set to 0b0, the corresponding output pin is LOW. When a bit is set to 0b1, the corresponding output pin is HIGH. The TRCITDDATAR bit values
correspond to the physical state of the output pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-337

Non-Confidential

Integration Instruction ATB Data Register

The TRCITIDATAR sets the state of the ATDATAMIx[31, 23, 15, 7, 0] output pins.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The value of the register sets the signals on the output pins when the register is written.

Configurations
Available in all configurations.

Attributes

Register number: 955

Base offset 0xEEC

Name: TRCITIDATAR

Type: RW

Reset: -

The following figure shows the TRCITIDATAR bit assignments.

ATDATAMIReserved

31 05 4

Figure 11-76 TRCITIDATAR bit assignments

The following table shows the TRCITIDATAR bit assignments.

Table 11-90 TRCITIDATAR bit assignments

Bits Name Function

[31:5] - Reserved. Write as zero.

[4:0] ATDATAMI Drives the ATDATAMIx[31, 23, 15, 7, 0] output pinsbu.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Output signals that the Integration Test Registers can control on page 11-332

bu When a bit is set to 0b0, the corresponding output pin is LOW. When a bit is set to 0b1, the corresponding output pin is HIGH. The TRCITIDATAR bit values
correspond to the physical state of the output pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-338

Non-Confidential

Integration Data ATB In Register

The TRCITDATBINR reads the state of the AFVALIDMDx input pin.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The values of the register bits depend on the signals on the input pins when the register is

read.

Configurations
Available in all configurations.

Attributes

Register number: 956

Base offset 0xEF0

Name: TRCITDATBINR

Type: RO

Reset: -

The following figure shows the TRCITDATBINR bit assignments.

31 0

AFVALIDM

Reserved

2 1

ATREADYM

Figure 11-77 TRCITDATBINR bit assignments

The following table shows the TRCITDATBINR bit assignments.

Table 11-91 TRCITDATBINR bit assignments

Bits Name Function

[31:2] - Reserved. Read UNDEFINED.

[1] AFVALIDM Returns the value of the AFVALIDMDx input pinbv.

[0] ATREADYM Returns the value of the ATREADYMDx input pinbv.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Input signals that the Integration Test Registers can read on page 11-332

bv When an input pin is LOW, the corresponding register bit is 0b0. When an input pin is HIGH, the corresponding register bit is 0b1. The TRCITDATBINR bit
values always correspond to the physical state of the input pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-339

Non-Confidential

Integration Instruction ATB In Register

The TRCITIATBINR reads the state of the AFVALIDMIx and ATREADYMIx input pins.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The values of the register bits depend on the signals on the input pins when the register is

read.

Configurations
Available in all configurations.

Attributes

Register number: 957

Base offset 0xEF4

Name: TRCITIATBINR

Type: RO

Reset: -

The following figure shows the TRCITIATBINR bit assignments.

31 0

AFVALIDM

Reserved

2 1

ATREADYM

Figure 11-78 TRCITIATBINR bit assignments

The following table shows the TRCITIATBINR bit assignments.

Table 11-92 TRCITIATBINR bit assignments

Bits Name Function

[31:2] - Reserved. Read UNDEFINED.

[1] AFVALIDM Returns the value of the AFVALIDMIx input pin.

[0] ATREADYM Returns the value of the ATREADYMIx input pinbw.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Input signals that the Integration Test Registers can read on page 11-332

bw When an input pin is LOW, the corresponding register bit is 0b0. When an input pin is HIGH, the corresponding register bit is 0b1. The TRCITIATBINR bit values
always correspond to the physical state of the input pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-340

Non-Confidential

Integration Data ATB Out Register

The TRCITDATBOUTR sets the state of the ATBYTESMDx[2:0], AFREADYMDx, and
ATVALIDMDx output pins.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The value of the register sets the signals on the output pins when the register is written.

Configurations
Available in all configurations.

Attributes

Register number: 958

Base offset 0xEF8

Name: TRCITDATBOUTR

Type: RW

Reset: -

The following figure shows the TRCITDATBOUTR bit assignments.

31 0

AFREADY

Reserved

2 1

ATVALID

8 711 10

BYTES Reserved

Figure 11-79 TRCITDATBOUTR bit assignments

The following table shows the TRCITDATBOUTR bit assignments.

Table 11-93 TRCITDATBOUTR bit assignments

Bits Name Function

[31:11] - Reserved. Read UNDEFINED.

[10:8] BYTES Drives the ATBYTESMDx[2:0] output pins.

[7:2] - Reserved. Read UNDEFINED.

[1] AFREADY Drives the AFREADYMDx output pinbx.

[0] ATVALID Drives the ATVALIDMDx output pinbx.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Output signals that the Integration Test Registers can control on page 11-332

bx When a bit is set to 0b0, the corresponding output pin is LOW. When a bit is set to 0b1, the corresponding output pin is HIGH. The TRCITDATBOUTR bit values
always correspond to the physical state of the output pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-341

Non-Confidential

Integration Instruction ATB Out Register

The TRCITIATBOUTR sets the state of the ATBYTESMIx[1:0], AFREADYMIx, and ATVALIDMIx
output pins.

Usage constraints
• Available when bit[0] of TRCITCTRL is set to 0b1.
• The value of the register sets the signals on the output pins when the register is written.

Configurations
Available in all configurations.

Attributes

Register number: 959

Base offset 0xEFC

Name: TRCITIATBOUTR

Type: RW

Reset: -

The following figure shows the TRCITIATBOUTR bit assignments.

31 0

AFREADY

Reserved

2 1

ATVALID

8 7910

BYTES

Reserved

Figure 11-80 TRCITIATBOUTR bit assignments

The following table shows the TRCITIATBOUTR bit assignments.

Table 11-94 TRCITIATBOUTR bit assignments

Bits Name Function

[31:10] - Reserved. Read UNDEFINED.

[9:8] BYTES Drives the ATBYTESMIx[1:0] output pins.

[7:2] - Reserved. Read UNDEFINED.

[1] AFREADY Drives the AFREADYMIx output pinby.

[0] ATVALID Drives the ATVALIDMIx output pinby.

Related reference
11.7.1 Cortex®‑R8 processor ETM register summary on page 11-254
Integration test registers on page 11-264
Output signals that the Integration Test Registers can control on page 11-332
Related reference
11.8.49 Integration Mode Control Register on page 11-319

by When a bit is set to 0b0, the corresponding output pin is LOW. When a bit is set to 0b1, the corresponding output pin is HIGH. The TRCITIATBOUTR bit values
always correspond to the physical state of the output pins.

11 Embedded Trace Macrocell
11.8 Register descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

11-342

Non-Confidential

Chapter 12
Level 2 Interface

This chapter describes the L2 memory interface.

It contains the following sections:
• 12.1 About the L2 interface on page 12-344.
• 12.2 Optimized accesses to the L2 memory interface on page 12-350.
• 12.3 Accessing RAMs using the AXI3 interface on page 12-351.
• 12.4 STRT instructions on page 12-352.
• 12.5 Event communication with an external agent using WFE/SEV on page 12-353.
• 12.6 Accelerator Coherency Port interface on page 12-354.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-343

Non-Confidential

12.1 About the L2 interface
The Cortex‑R8 processor L2 interface consists of one or two 64-bit wide AXI3 bus masters. AXI3 M0 is
always present. AXI3 M1 is optional and supports address filtering.

The following table shows the AXI3 master 0 and master 1 interface attributes.

Table 12-1 AXI3 master 0 and master 1 interface attributes

Attribute Format

Write issuing capability 29 + 12 * CNbz for an implementation with CN + 1 cores, including:
• 15 ACP writes.
• For each core:

— Eight Non-Cacheable writes.
— Four evictions.

• Two coherency operation evictions.

Read issuing capability 31 + 16 * CNbz for an implementation with CN + 1 cores, including:
• 15 ACP reads.
• For each core:

— Four data side linefill reads.
— Eight instruction side linefill reads.
— Four Non-Cacheable reads.

Combined issuing capability 60 + 28 * CNbz.

Write interleave capability 1.

 Note

The numbers given in the table are the theoretical maximums for the Cortex‑R8 processor. A typical
system is unlikely to reach these numbers. Arm recommends that you perform profiling to tailor your
system resources appropriately for optimum performance.

The AXI3 protocol and meaning of each AXI3 signal are not described in this document. For more
information see the Arm AMBA® AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite, ACE
and ACE-Lite.

This section contains the following subsections:
• 12.1.1 Supported AXI3 transfers on page 12-344.
• 12.1.2 AXI3 USER bits on page 12-345.

12.1.1 Supported AXI3 transfers

The Cortex‑R8 processor master ports can generate all possible AXI3 transactions from ACP traffic,
including transaction types that differ from the original ACP transaction. ACP transactions can trigger
Wrapping burst write transactions on the main AXI interface.

Transactions from the individual cores use only the following subset of possible AXI3 transactions:

• For cacheable transactions:
— WRAP4 64-bit for read transfers (linefills).
— INCR4 64-bit for write transfers (evictions).

• For Non-Cacheable transactions:
— WRAP4 64-bit for NC reads from instruction cache.
— INCR N (N:1-4) 64-bit read transfers.
— INCR 1 for 64-bit write transfers.

bz CN represents the number of configured cores minus one.

12 Level 2 Interface
12.1 About the L2 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-344

Non-Confidential

— INCR N (N:1-8) 32-bit read transfers.
— INCR N (N:1-2) for 32-bit write transfers.
— INCR 1 for 8-bit and 16-bit read/write transfers.
— INCR 1 for 8-bit, 16-bit, 32-bit, and 64-bit exclusive read/write transfers.
— INCR 1 for 8-bit and 32-bit read/write (locked) for swap.

The following points apply to AXI3 transactions:
• WRAP bursts are only read transfers, 64-bit, four transfers.
• INCR 1 can be any size for read or write.
• INCR bursts (more than one transfer) are only 32-bit or 64-bit.
• No transaction is marked as FIXED.
• Write transfers with all byte strobes LOW can occur.

12.1.2 AXI3 USER bits

AXI3 USER bits encodings.

Read address channel of AXI master 0, ARUSERM0[9:0]

Bit encodings for ARUSERM0[9:0]

Table 12-2 ARUSERM0[9:0] encodings

Bits Name Description

[9:7] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

[6] Speculative linefill hint Speculative linefill, used with L2C-310 Cache Controller

[5] Reserved 0b0

[4:1] Inner attributes 0b0000 Strongly Ordered
0b0001 Device
0b0011 Normal Memory Non-Cacheable
0b0110 Reservedca

0b0111 Write-Back no Write-Allocate
0b1111 Write-Back Write-Allocate

[0] Shareable bit 0b0 Non-Shareable
0b1 Shareable

Read address channel of AXI master 1, ARUSERM1[9:0]

Bit encodings for ARUSERM1[9:0].

ca If Write-Through is used in the MPU, it behaves as normal memory, Non-Cacheable, and its value is 0b0110.

12 Level 2 Interface
12.1 About the L2 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-345

Non-Confidential

Table 12-3 ARUSERM1[9:0] encodings

Bits Name Description

[9:7] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

[6] Speculative linefill hint Speculative linefill, used with L2C-310 Cache Controller

[5] Reserved 0b0

[4:1] Inner attributes 0b0000 Strongly Ordered
0b0001 Device
0b0011 Normal Memory Non-Cacheable
0b0110 Reservedcb

0b0111 Write-Back no Write-Allocate
0b1111 Write-Back Write-Allocate

[0] Shareable bit 0b0 Non-Shareable
0b1 Shareable

Read address bus of AXI low-latency peripheral, ARUSERMP[9:0]

Bit encodings for ARUSERMP[9:0].

Table 12-4 ARUSERMP[9:0] encodings

Bits Name Description

[9:7] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

[6:5] Reserved 0b00

[4:1] Inner attributes 0b0000 Strongly Ordered
0b0001 Device
0b0011 Normal Memory Non-Cacheable
0b0110 Reservedcc

0b0111 Write-Back no Write-Allocate
0b1111 Write-Back Write-Allocate

[0] Shareable bit 0b0 Non-Shareable
0b1 Shareable

Write address channel of AXI master 0, AWUSERM0[11:0]

Bit encodings for AWUSERM0[11:0].

cb If Write-Through is used in the MPU, it behaves as normal memory, Non-Cacheable, and its value is 0b0110.
cc If Write-Through is used in the MPU, it behaves as normal memory, Non-Cacheable, and its value is 0b0110.

12 Level 2 Interface
12.1 About the L2 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-346

Non-Confidential

Table 12-5 AWUSERM0[11:0] encodings

Bits Name Description

[11:9] Transaction type 0b000 Core 0 transaction.
0b010 Core 1 transaction.
0b100 Core 2 transaction.
0b110 Core 3 transaction.
0b001 ACP transaction.

[8] Early BRESP Enable bit Indicates that the L2 slave can send an early BRESP answer to the write request. See 12.2.1 Early
BRESP on page 12-350.

[7:5] Reserved RAZ.

[4:1] Inner attributes 0b0000 Strongly Ordered.
0b0001 Device.
0b0011 Normal Memory Non-Cacheable.
0b0110 Reserved.cd

0b0111 Write-Back no Write-Allocate.
0b1111 Write-Back Write-Allocate.

[0] Shareable bit 0b0 Non-Shareable.
0b1 Shareable.

Write address channel of AXI master 1, AWUSERM1[11:0]

Bit encodings for AWUSERM1[11:0].

Table 12-6 AWUSERM1[11:0] encodings

Bits Name Description

[11:9] Transaction type 0b000 Core 0 transaction.
0b010 Core 1 transaction.
0b100 Core 2 transaction.
0b110 Core 3 transaction.
0b001 ACP transaction.

[8] Early BRESP Enable bit Indicates that the L2 slave can send an early BRESP answer to the write request. See 12.2.1 Early
BRESP on page 12-350.

[7:5] Reserved RAZ.

[4:1] Inner attributes 0b0000 Strongly Ordered.
0b0001 Device.
0b0011 Normal Memory Non-Cacheable.
0b0110 Reserved.ce

0b0111 Write-Back no Write-Allocate.
0b1111 Write-Back Write-Allocate.

[0] Shareable bit 0b0 Non-Shareable.
0b1 Shareable.

cd If Write-Through is used in the MPU, it behaves as normal memory, Non-Cacheable, and its value is 0b0110.
ce If Write-Through is used in the MPU, it behaves as normal memory, Non-Cacheable, and its value is 0b0110.

12 Level 2 Interface
12.1 About the L2 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-347

Non-Confidential

Write address bus of AXI low-latency peripheral, AWUSERMP[11:0]

Bit encodings for AWUSERMP[11:0].

Table 12-7 AWUSERMP[11:0] encodings

Bits Name Description

[11:9] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

[8:5] Reserved RAZ

[4:1] Inner attributes 0b0000 Strongly Ordered
0b0001 Device
0b0011 Normal Memory Non-Cacheable
0b0110 Reservedcf

0b0111 Write-Back no Write-Allocate
0b1111 Write-Back Write-Allocate

[0] Shareable bit 0b0 Non-Shareable
0b1 Shareable

Write data channel of AXI master 0, WUSERM0[2:0]

Bit encodings for WUSERM0[2:0].

Table 12-8 WUSERM0[2:0] encodings

Bits Name Description

[2:0] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

Write data channel of AXI master 1, WUSERM1[2:0]

Bit encodings for WUSERM1[2:0].

Table 12-9 WUSERM1[2:0] encodings

Bits Name Description

[2:0] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

cf If Write-Through is used in the MPU, it behaves as normal memory, Non-Cacheable, and its value is 0b0110.

12 Level 2 Interface
12.1 About the L2 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-348

Non-Confidential

Write data bus of AXI low-latency peripheral, WUSERMP[2:0]

Bit encodings for WUSERMP[2:0].

Table 12-10 WUSERMP[2:0] encodings

Bits Name Description

[1:0] Transaction type 0b000 Core 0 transaction
0b010 Core 1 transaction
0b100 Core 2 transaction
0b110 Core 3 transaction
0b001 ACP transaction

12 Level 2 Interface
12.1 About the L2 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-349

Non-Confidential

12.2 Optimized accesses to the L2 memory interface
Optimized accesses to the L2 memory interface can generate non-AXI3 compliant requests on the AXI
master ports. These non-AXI compliant requests must be generated only when the slaves connected on
the AXI master ports can support them. The L2C-310 Cache Controller supports these types of requests.

12.2.1 Early BRESP

According to the AXI3 specification, BRESP answers on response channels must be returned to the
master only after the master sends the last data. Cortex‑R8 processor cores can also deal with BRESP
answers returned when the address is accepted by the slave, regardless of whether data is sent or not.

This enables the core to provide a higher bandwidth for writes if the slave can support the Early BRESP
feature. Cortex‑R8 processor cores set the AWUSER[8] bit to indicate to the slave that it can accept an
early BRESP answer for this access. This feature can optimize the performance of the core, but the Early
BRESP feature generates non-AXI3 compliant requests. When a slave receives a write request with
AWUSER[8] set, it can either give the BRESP answer after the last data is received, AXI3 compliant, or
in advance, non-AXI3 compliant. The L2C-310 Cache Controller supports this non-AXI3 compliant
feature.

This feature is enabled by default. The Cortex‑R8 processor core does not require any programming to
enable this feature.

 Note

To support this optimization, you must program the L2C-310 Cache Controller. See the Arm® CoreLink™

Level 2 Cache Controller L2C-310 Technical Reference Manual.

12.2.2 SCU speculative coherent requests

This optimization is available for Cortex‑R8 processors only, and only if the L2C-310 Cache Controller
is present in the design.

When this feature is enabled, coherent linefill requests are sent speculatively to the L2C-310 Cache
Controller in parallel with the SCU tag look-up. If the tag look-up misses, the confirmed linefill is sent to
the L2C-310 and gets RDATA earlier because the speculative request already initiated the data request.
When filtering is enabled, only port 0 can receive speculative linefills.

To support this optimization in the Cortex‑R8 processor:
1. Program the L2C-310 Cache Controller. See the Arm® CoreLink™ Level 2 Cache Controller L2C-310

Technical Reference Manual.
2. Set bit[3] of the SCU Control Register.

 Note

You cannot use this feature when bus ECC is implemented and the L2C-310 Cache Controller is
connected.

Related reference
9.3.1 SCU Control Register on page 9-169

12 Level 2 Interface
12.2 Optimized accesses to the L2 memory interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-350

Non-Confidential

12.3 Accessing RAMs using the AXI3 interface
The Cortex‑R8 processor has a single AXI TCM slave port. The port is 64 bits wide and conforms to the
AXI standard. Within the AXI standard, the slave port uses the AWUSERST and ARUSERST each as
two separate chip select input signals to enable access to the TCMs as shown in the following table.

Table 12-11 TCM accesses

AxUSERST[2:0] value TCM

0b000 Instruction TCM of core 0

0b001 Data TCM of core 0

0b010 Instruction TCM of core 1

0b011 Data TCM of core 1

0b100 Instruction TCM of core 2

0b101 Data TCM of core 2

0b110 Instruction TCM of core 3

0b111 Data TCM of core 3

The external AXI system must generate the chip select signals. The AXI TCM slave interface routes the
access to the required RAM.

The following table shows the MSB bit for the different TCM RAM sizes.

Table 12-12 MSB bit for the different TCM RAM sizes

TCM size ARADDRST[MSB]

4KB [11]

8KB [12]

16KB [13]

32KB [14]

64KB [15]

128KB [16]

256KB [17]

512KB [18]

1024KB [19]

ARADDRST[19:3] indicates the address of the doubleword in the TCM that you want to access. If you
are accessing a TCM that is smaller than the maximum 1024KB, then it is possible to address a
doubleword that is outside of the physical size of the TCM.

An access to the TCM RAMs is given an SLVERR error response if:
• It is outside the physical size of the targeted TCM RAM, that is, bits of ARADDRST[19:MSB+1]

are nonzero.
• There is no TCM present. The mapping of bus addresses to ARUSERST and ARADDRST is

determined when the processor is integrated. You must understand this mapping to use the AXI TCM
slave interface in your system.

12 Level 2 Interface
12.3 Accessing RAMs using the AXI3 interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-351

Non-Confidential

12.4 STRT instructions
Take particular care with Non-Cacheable write accesses when using the STRT instruction.

To put the correct information on the external bus, ensure one of the following:
• The access is to Strongly-Ordered memory.

This ensures that the STRT instruction does not merge in the store buffer.
• The access is to Device memory.

This ensures that the STRT instruction does not merge in the store buffer.
• A DSB instruction is issued before the STRT and after the STRT.

This prevents an STRT from merging into an existing slot at the same 64-bit address, or merging with
another write at the same 64-bit address.

The following table shows Cortex‑R8 processor modes and corresponding AxPROT values.

Table 12-13 Cortex-R8 processor mode and AxPROT values

Processor mode Type of access Value of AxPROT

User Cacheable read access User

Privileged Privileged

User Non-Cacheable read access User

Privileged Privileged

- Cacheable write access Always marked as Privileged

User Non-Cacheable write access User

Privileged Non-Cacheable write access Privileged, except when using STRT

12 Level 2 Interface
12.4 STRT instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-352

Non-Confidential

12.5 Event communication with an external agent using WFE/SEV
A peripheral connected on the coherency port or any other external agent can participate in the WFE/SEV
event communication of the Cortex‑R8 processor by using the EVENTI input.

When this input is asserted, it sends an event message to all the cores in the design. This is similar to
executing a SEV instruction on one core of the Cortex‑R8 processor. This enables the external agent to
signal to the cores that it has released a semaphore and that the cores can leave the power-saving mode.
The EVENTI input must remain HIGH at least one CLK clock cycle to be visible by the cores.

The external agent can see that at least one of the cores has executed an SEV instruction by checking the
EVENTO output. This output is set HIGH for one CLK clock cycle when any of the cores executes an
SEV instruction.

Related concepts
2.4 Power management on page 2-36

12 Level 2 Interface
12.5 Event communication with an external agent using WFE/SEV

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-353

Non-Confidential

12.6 Accelerator Coherency Port interface
The optional Accelerator Coherency Port (ACP) provides memory coherency between each core in the
Cortex‑R8 processor design and an external master.

The ACP is 64 bits wide, and conforms to the AMBA 3 AXI standard as described in the Arm® AMBA®

AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite, ACE and ACE-Lite.

12.6.1 ACP requests

The read and write requests performed on the ACP behave differently depending on whether the request
is coherent or not.

ACP requests behavior is as follows:

ACP coherent read requests

An ACP read request is coherent when ARUSERSC[0] = 0b1 and ARCACHESC[1] = 0b1,
and ARVALIDSC is asserted.

In this case, the SCU enforces coherency.

When the data is present in one of the Cortex‑R8 processor cores, the data is read directly from
the relevant core, and returned to the ACP port.

When the data is not present in any of the cores, the read request is issued on one of the AXI3
master ports, with all its AXI parameters, except for the locked attribute.

ACP noncoherent read requests

An ACP read request is noncoherent when ARUSERSC[0] = 0b0 or ARCACHESC[1] = 0b0,
and ARVALIDSC is asserted.

In this case, the SCU does not enforce coherency, and the read request is directly forwarded to
one of the available AXI3 master ports.

ACP coherent write requests

An ACP write request is coherent when AWUSERSC[0] = 0b1 and AWCACHESC[1] = 0b1,
and AWVALIDSC is asserted.

In this case, the SCU enforces coherency.

When the data is present in one of the Cortex‑R8 processor cores, the data is first cleaned and
invalidated from the relevant core.

When the data is not present in any of the cores, or when it has been cleaned and invalidated, the
write request is issued on one of the AXI3 master ports, along with all corresponding AXI3
parameters except for the locked attribute.

ACP noncoherent write requests

An ACP write request is noncoherent when AWUSERSC[0] = 0b0 or AWCACHESC[1] = 0b0,
and AWVALIDSC is asserted.

In this case, the SCU does not enforce coherency, and the write request is forwarded directly to
one of the available AXI3 master ports.

12.6.2 ACP limitations

The ACP is optimized for cache-line length transfers and supports a wide range of AMBA3 AXI3
requests, but it has some performance and functional limitations that must be considered.

ACP performance limitations

ACP accesses are optimized for transfers that match Cortex‑R8 processor coherent requests.

12 Level 2 Interface
12.6 Accelerator Coherency Port interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-354

Non-Confidential

• A wrapped burst of four doublewords (length = 3, size = 3), with a 64-bit aligned address, and all
byte strobes set.

• An incremental burst of four doublewords, with the first address corresponding to the start of a cache
line, and all byte strobes set.

For maximum performance, use ACP accesses that match this optimized format. ACP accesses that do
not match this format cannot benefit from the SCU optimizations, and have significantly lower
performance.

Related reference
9.7.6 ACP bridge on page 9-212

ACP functional limitations

ACP unsupported transfers.

The ACP is a full AMBA3 slave component, with the exception of the following transfers that are not
supported:
• Exclusive read and write transactions to coherent memory.
• Locked read and write transactions to coherent memory.
• Optimized coherent read and write transfers when byte strobes are not all set.

Because of this, it is not possible to use the LDREX/STREX mechanism through the ACP to gain
exclusive access to coherent memory regions that are marked with AxUSERSC[0] = 0b1 and
AxCACHESC[1] = 0b1.

However, the LDREX/STREX mechanism is fully supported through the ACP for noncoherent memory
regions, marked with AxUSERSC[0] = 0b0 or AxCACHESC[1] = 0b0.

64-bit accesses to the AXI low-latency peripheral port always abort. 32-bit wide normal memory Non-
Cacheable accesses from the ACP to the AXI low-latency peripheral port do not abort.

Related concepts
2.5.3 AXI low-latency peripheral port on page 2-43
Related reference
9.7.6 ACP bridge on page 9-212

12 Level 2 Interface
12.6 Accelerator Coherency Port interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

12-355

Non-Confidential

Appendix A
Signal Descriptions

This appendix describes the Cortex‑R8 processor signals. Signal name, direction, and source/destination
details are provided for each signal.

It contains the following sections:
• A.1 About the signal descriptions on page Appx-A-357.
• A.2 Clock and control signals on page Appx-A-358.
• A.3 Reset signals on page Appx-A-360.
• A.4 Interrupt controller signals on page Appx-A-361.
• A.5 Configuration signals on page Appx-A-362.
• A.6 Standby signals on page Appx-A-366.
• A.7 Power management signals on page Appx-A-367.
• A.8 AXI3 interfaces on page Appx-A-368.
• A.9 Performance monitoring signals on page Appx-A-382.
• A.10 Exception flag signals on page Appx-A-383.
• A.11 Error detection notification signals on page Appx-A-384.
• A.12 Test interface on page Appx-A-395.
• A.13 MBIST interface on page Appx-A-396.
• A.14 External debug signals on page Appx-A-397.
• A.15 ETM signals on page Appx-A-401.
• A.16 Memory reconstruction port signals on page Appx-A-404.
• A.17 Power gating interface signals on page Appx-A-405.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-356

Non-Confidential

A.1 About the signal descriptions
The tables in this appendix list the Cortex‑R8 processor signals, with their direction, either input or
output, and a high-level description.

Unless stated otherwise, the signals in this section have the following formats:
• <signal name>[<value>:0] where [<value>:0] is the signal bit range, for example

DBGROMADDR[31:12].
• <signal name>[CN:0], where CN represents the number of configured cores minus one, for example

DBGACK[CN:0], if the number of configured cores is 2, CN = 1.
• <signal name>x, where x represents the core ID number, 0, 1, 2 or 3, for example

FPFILTERSTARTx.
• <signal name>x[<value>:0] where x represents the core ID number, 0, 1, 2 or 3 and [<value>:0] is

the signal bit range, for example FPUFLAGSx[1:0].

There is no link between the number of cores in a design and the number of AXI master ports in a
design. A single core design can have one or two AXI master ports.

A Signal Descriptions
A.1 About the signal descriptions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-357

Non-Confidential

A.2 Clock and control signals
Details of the Cortex‑R8 processor clock and control signals.

Table A-1 Clock and clock control signals

Name Type Source/destination Description

CLK Input Clock controller Global clock.

CPUCLKOFF[CN:0]cg Input Reset controller Individual core clock control, active-LOW:

0b0 Clock is enabled.

0b1 Clock is stopped.

This includes the FPU if it is present.

DBGCLKOFF[CN:0]cg Input Individual core debug clock control, active-LOW:

0b0 Core debug clock is enabled.

0b1 Core debug clock is stopped.

DUALPERIPHCLKch Input Clock controller Clock for dual SCU.

DUALPERIPHCLKENch Input Reset controller Clock enable for dual SCU and peripheral interface signals.

DUALPERIPHCLKOFFcgch Input Individual core clock control for timer, watchdog, and interrupt
controller of dual SCU.

PERIPHCLK Input Clock controller Clock for the timer, watchdog, and interrupt controller.

PERIPHCLKEN Input Reset controller Clock enable for the timer, watchdog, and interrupt controller.

PERIPHCLKOFFcgch Input Individual core clock control for timer, watchdog, and interrupt
controller of SCU.

SCUCLKOFFcgch Input Clock control delay for dual SCU.

CTCLKOFFcg Input Used to control the CoreSight debug logic clock, that is, CTI0, CTI1,
CTI2, CTI3, CTM, and ROM table.

ETM0CLKOFFcg Input Controls the ETM0 clock, if ETM0 is present.

ETM1CLKOFFcg Input Controls the ETM1 clock, if ETM1 is present.

ETM2CLKOFFcg Input Controls the ETM2 clock, if ETM2 is present.

ETM3CLKOFFcg Input Controls the ETM3 clock, if ETM3 is present.

cg Deasserts the reset synchronously when leaving reset, but not used for clock enable.
ch Only present if lock-step or split/lock is implemented. The figure shows how these signals are used in a lock-step or split/lock implementation.

A Signal Descriptions
A.2 Clock and control signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-358

Non-Confidential

Peripheral timer,
watchdog, and

Interrupt Controller

GIC interface

GIC interface

SCU

PERIPHCLKEN

PERIPHCLK
PERIPHCLKOFF

Peripheral timer,
watchdog, and

Interrupt Controller

GIC interface

GIC interface

Dual SCU

DUALPERIPHCLKEN

DUALPERIPHCLK
DUALPERIPHCLKOFF

Figure A-1 Clocking in lock-step or split/lock implementation

Related concepts
2.3 Clocking, resets, and initialization on page 2-29

A Signal Descriptions
A.2 Clock and control signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-359

Non-Confidential

A.3 Reset signals
Details of the Cortex‑R8 processor reset signals.

Table A-2 Reset signals

Name Type Source/destination Description

nCPURESET[CN:0] Input Reset controller Individual core resets.

nCPUHALT[CN:0] Input Individual core input.

It can be asserted while the core is in reset to stop the core from fetching
and executing instructions after coming out of reset. While the core is
halted in this way, the TCMs can be preloaded with the appropriate data.

When it is deasserted, the core starts fetching instructions from the reset
vector address in the normal way.

nDBGRESET[CN:0] Input Core debug logic resets.

nPERIPHRESET Input Timer and interrupt controller reset.

nSCURESET Input SCU global reset.

nCTRESET Input Reset for CoreSight debug logic, that is, CTI0, CTI1, CTI2, CTI3, CTM,
and ROM table.

nETM0RESET Input Reset for ETM0, if present.

nETM1RESET Input Reset for ETM1, if present.

nETM2RESET Input Reset for ETM2, if present.

nETM3RESET Input Reset for ETM3, if present.

nWDRESET[CN:0] Input Core watchdog resets.

WDRESETREQ[CN:0] Output Core watchdog reset requests.

Related concepts
2.3.2 Resets on page 2-29

A Signal Descriptions
A.3 Reset signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-360

Non-Confidential

A.4 Interrupt controller signals
Details of the Cortex‑R8 processor interrupt controller signals.

Table A-3 Interrupt controller signals

Name Type Source/
destination

Description

IRQS[m:0] Input Interrupt sources Interrupt distributor interrupt lines.

m can be 31, 63,…, up to 479 in increments of 32. If there are no interrupt lines,
this input is removed.

nFIQ[CN:0] Input Individual core legacy FIQ request input lines. Active-LOW interrupt request:

0b0 Active interrupt.

0b1 Do not activate interrupt.

The core treats the nFIQ input as level sensitive. The nFIQ input must be asserted
until the core acknowledges the interrupt.

nFIQOUT[CN:0] Output Power controller Active-LOW FIQ outputs from the internal GIC to the appropriate core. These
indicate when interrupts are being forwarded to the core.

nIRQ[CN:0] Input Interrupt sources Individual core legacy IRQ request input lines. Active-LOW interrupt request:

0b0 Active interrupt.

0b1 Do not activate interrupt.

The core treats the nIRQ input as level sensitive. The nIRQ input must be asserted
until the core acknowledges the interrupt.

nIRQOUT[CN:0] Output Power controller Active-LOW IRQ outputs from the internal GIC to the appropriate core. These
indicate when interrupts are being forwarded to the core.

A Signal Descriptions
A.4 Interrupt controller signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-361

Non-Confidential

A.5 Configuration signals
Details of the Cortex‑R8 processor configuration signals.

A Signal Descriptions
A.5 Configuration signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-362

Non-Confidential

Table A-4 Configuration signals

Name Type Source/
destination

Description

AXIPARITYLEVELci Input System
configuration

Selects between odd and even parity for buses:

0b0 Even parity.

0b1 Odd parity.

CFGEND[CN:0] Input Individual core endianness configuration.

Forces the EE bit in the CP15 c1 Control Register (SCTLR) to 1 at reset so
that the core boots with big-endian data handling:

0b0 EE bit is LOW.

0b1 EE bit is HIGH.

This input is only sampled during reset of the core.

See 4.3.9 System Control Register on page 4-77.

CFGNMFI[CN:0] Input Configuration of FIs to be nonmaskable:

0b0 Clear the NMFI bit in the CP15 c1 Control Register.

0b1 Set the NMFI bit in the CP15 c1 Control Register.

This input is only sampled during reset of the core.

See 4.3.9 System Control Register on page 4-77.

CLUSTERID[3:0] Input Value read in Cluster ID field, bits[11:8], of the Multiprocessor Affinity
Register (MPIDR).

See 4.3.3 Multiprocessor Affinity Register on page 4-72.

INITRAMx Input Input present if TCM present for the corresponding core. It enables the core to
boot from the Instruction TCM. This input, when tied HIGH, enables the
instruction TCM on leaving reset.

See 4.3.14 ITCM Region Register on page 4-89.

MFILTEREN Input For configurations with two master ports.

It enables filtering of address ranges at reset for AXI Master port 1. This
signal is sampled on exit from reset and sets the default value of the
MFILTEREN bit in the SCU Control Register. See 9.3.1 SCU Control
Register on page 9-169.

0b0 Address filtering off.

0b1 Address filtering on.

See 9.3.1 SCU Control Register on page 9-169 and 2.5.2 AXI master port 1
on page 2-42.

MFILTEREND[11:0] Input For configurations with two master ports.

Specifies the end address for address filtering at reset on AXI master port 1.

See 9.3.1 SCU Control Register on page 9-169 and 2.5.2 AXI master port 1
on page 2-42.

ci Only present if bus ECC is selected. This is a build option.

A Signal Descriptions
A.5 Configuration signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-363

Non-Confidential

Table A-4 Configuration signals (continued)

Name Type Source/
destination

Description

MFILTERSTART[11:0] Input System
configuration

For configurations with two master ports.

Specifies the start address for address filtering at reset on AXI master port 1.

See 9.3.1 SCU Control Register on page 9-169 and 2.5.2 AXI master port 1
on page 2-42.

PERIPHBASE[31:13] Input Specifies the base address for timers, watchdogs, interrupt controller, and
SCU registers. Only accessible with memory-mapped accesses.

This value can be retrieved by a core using the Configuration Base Address
Register. See 4.3.20 Configuration Base Address Register on page 4-97.

 Note

This address must be in the range defined by PFILTERSTART[11:0] and
PFILTEREND[11:0].

PFILTEREND[11:0] Input For configurations with the AXI low-latency peripheral port.

Specifies the end address for address filtering at reset on the AXI low-latency
peripheral port.

See 2.5.3 AXI low-latency peripheral port on page 2-43.

PFILTERSTART[11:0] Input For configurations with the AXI low-latency peripheral port.

Specifies the start address for address filtering at reset on the AXI low-latency
peripheral port.

See 2.5.3 AXI low-latency peripheral port on page 2-43.

FPFILTERENDx[11:0] Input For cores configured with an AXI fast peripheral port.

Specifies the end address for address filtering at reset on the AXI fast
peripheral port.

See 2.5.4 AXI Fast Peripheral Port on page 2-44.

FPFILTERSTARTx[11:0] Input For cores configured with an AXI fast peripheral port.

Specifies the start address for address filtering at reset on the AXI fast
peripheral port.

See 2.5.4 AXI Fast Peripheral Port on page 2-44.

SMPnAMP[CN:0] Output System integrity
controller

Indicates AMP or SMP mode for each core:

0b0 Asymmetric.

0b1 Symmetric.

This output reflects the value of ACTLR.SMP.

See 4.3.10 Auxiliary Control Register on page 4-80.

A Signal Descriptions
A.5 Configuration signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-364

Non-Confidential

Table A-4 Configuration signals (continued)

Name Type Source/
destination

Description

TEINIT[CN:0] Input System
configuration

Individual core out-of-reset default exception handling state:

0b0 Arm.

0b1 Thumb.

This input is only sampled during core reset. It sets the initial value of
SCTLR.TE.

See 4.3.9 System Control Register on page 4-77.

VINITHI[CN:0] Input Individual core control of the location of the exception vectors at reset:

0b0 Exception vectors start at address 0x00000000.

0b1 Exception vectors start at address 0xFFFF0000.cj

This input is only sampled during core reset. It sets the initial value of
SCTLR.V.

See 4.3.9 System Control Register on page 4-77 and 4.3.14 ITCM Region
Register on page 4-89.

cj HIVECS == 1 is deprecated in PMSAv7.

A Signal Descriptions
A.5 Configuration signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-365

Non-Confidential

A.6 Standby signals
Cortex‑R8 processor standby signals.

A.6.1 Standby and Wait for event signals

Details of the Cortex‑R8 processor Standby and Wait for Event signals.

Table A-5 Standby and Wait for event signals

Name Type Source/destination Description

STANDBYWFI[CN:0] Output Wakeup controller Indicates if the corresponding core is in Standby WFI

STANDBYWFE[CN:0] Output Indicates if the corresponding core is in Standby WFE

A.6.2 Event signals

Details of the Cortex‑R8 processor Event signals.

Table A-6 Event signals

Name Type Source/destination Description

EVENTI Input External coherent agent Macrocell standby and wait for event signal, event input

EVENTO Output Macrocell standby and wait for event signal, event output

Related concepts
Standby modes on page 2-36
Related reference
9.3.1 SCU Control Register on page 9-169

A Signal Descriptions
A.6 Standby signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-366

Non-Confidential

A.7 Power management signals
Details of the Cortex‑R8 processor power management signals.

Table A-7 Power management signals

Name Type Source/
destination

Description

PWRCTLO0[1:0] Output Power controller Reset value for core 0 status field, bits[1:0] of SCU CPU Power Status Register.

PWRCTLO1[1:0]ck Output Reset value for core 1 status field, bits[9:8] of SCU CPU Power Status Register.

PWRCTLO2[1:0]ck Output Reset value for core 2 status field, bits[17:16] of SCU CPU Power Status Register.

PWRCTLO3[1:0]ck Output Reset value for core 3 status field, bits[25:24] of SCU CPU Power Status Register.

SCUIDLE Output L2C-310 or
power controller

In the case of the L2C-310, the SCUIDLE output can be connected to the
STOPCLK input of the L2C-310. Indicates the SCU is idle.

The SCU is idle when all cores are in WFI or in powerdown, and there is no
pending transaction in the SCU on any of the AXI ports, that is, ACP, AXI master
0, AXI master 1, or AXI low-latency peripheral port.

 Note

When using the ACP, even if there is no activity on the bus, the ACLKENSC
input must remain HIGH, or must toggle at least once through HIGH, after the
activity has stopped. If not, the SCUIDLE output cannot go HIGH.

Related concepts
2.4.2 Power domains on page 2-41
Related reference
9.3.3 SCU CPU Power Status Register on page 9-173

ck Only present if core 1-3 is present.

A Signal Descriptions
A.7 Power management signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-367

Non-Confidential

A.8 AXI3 interfaces
Details of the AXI3 signals, including the AXI master interface signals, AXI fast peripheral port signals,
and AXI low-latency peripheral port signals. The AXI3 interfaces are defined in the AMB3 specification.

This section contains the following subsections:
• A.8.1 AXI master interface signals on page Appx-A-368.
• A.8.2 AXI fast peripheral port signals on page Appx-A-372.
• A.8.3 AXI low-latency peripheral port signals on page Appx-A-374.
• A.8.4 AXI ACP slave port signals on page Appx-A-377.
• A.8.5 AXI TCM slave port signals on page Appx-A-379.

A.8.1 AXI master interface signals

Cortex‑R8 processor AXI master interface signals.

The x at the end of the signal name represents either 0 for AXI master port 0 or 1 for the optional AXI
master port 1.

AXI master interface clock enable signals

Details of the AXI master interface clock enable signals.

Table A-8 AXI master interface clock enable signals

Name Type Source/
destination

Description

INCLKENMx Input CLK Clock bus enable for the AXI bus that enables the AXI interface to operate at either:
• Integer ratios of the system clock.
• Half integer ratios of the system clock.

Inputs are sampled on rising edges of CLK only when INCLKENMx is HIGH.

OUTCLKENMx Input Clock bus enable for the AXI bus that enables the AXI interface to operate at either:
• Integer ratios of the system clock.
• Half integer ratios of the system clock.

Outputs are updated on rising edges of CLK only when OUTCLKENMx is HIGH.

AXI master interface read address signals

Details of the AXI master interface read address signals.

Table A-9 AXI master interface read address signals

Name Type Source/destination Description

ARADDRMx[31:0] Output AXI3 device Read address.

ARBURSTMx[1:0] Output Read address burst type:

0b01 INCR incrementing burst.

0b10 WRAP wrapping burst.

All other values are reserved.

ARCACHEMx[3:0] Output Read address cache type giving additional information about cacheable
characteristics.

ARIDMx[n]cl Output Read address ID.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-368

Non-Confidential

Table A-9 AXI master interface read address signals (continued)

Name Type Source/destination Description

ARLENMx[3:0] Output AXI3 device The number of data transfers that can occur within each burst. Cacheable
traffic generates transactions with four data transfers. For a description of
other traffic, see 12.1.1 Supported AXI3 transfers on page 12-344. Burst
transactions from the ACP can be 1-16 transfers long.

0b0000 1 data transfer.

0b0001 2 data transfers.

0b0010 3 data transfers.

0b0011 4 data transfers.

0b0100 5 data transfers.

0b0101 6 data transfers.

0b0110 7 data transfers.

0b0111 8 data transfers.

0b1000 9 data transfers.

0b1001 10 data transfers.

0b1010 11 data transfers.

0b1011 12 data transfers.

0b1100 13 data transfers.

0b1101 14 data transfers.

0b1110 15 data transfers.

0b1111 16 data transfers.

ARLOCKMx[1:0] Output Read address lock type:

0b00 Normal access.

0b01 Exclusive access.

0b10 Locked access.

ARPROTMx[2:0] Output Read address protection type

ARREADYMx Input Read address ready

ARSIZEMx[1:0] Output Read address burst size:

0b000 8-bit transfer.

0b001 16-bit transfer.

0b010 32-bit transfer.

0b011 64-bit transfer.

ARUSERMx[9:0] Output Read address transfer attributes. See 12.1.2 AXI3 USER bits on page 12-345.

ARVALIDMx Output Read address valid.

AXI master interface read data signals

Details of the AXI master interface read data signals.

cl You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-369

Non-Confidential

Table A-10 AXI master interface read data signals

Name Type Source/destination Description

RDATAMx[63:0] Input AXI3 device Read data.

RDATAERRCODEMx[7:0] Input ECC bits on data bus, when BUS_ECC build parameter is set.

RIDMx[n] Input Read data ID.

RLASTMx Input Read data last indication.

RREADYMx Output Read data ready.

RRESPMx[1:0] Input Read data response.

RVALIDMx Input Read data valid.

SRENDMx[3:0] Input Speculative read information from optional L2 Cache Controller. See
the Arm® CoreLink™ Level 2 Cache Controller L2C-310 Technical
Reference Manual for more information.

SRIDMx[n]cm Input ID for speculative reads returned by L2 Cache Controller.

AXI master interface write address signals

Details of the AXI master interface write address signals.

Table A-11 AXI master interface write address signals

Name Type Source/destination Description

AWADDRMx[31:0] Output AXI3 device Write address.

AWBURSTMx[1:0] Output Write address burst type:

0b01 INCR incrementing burst.

0b10 WRAP wrapping burst.

All other values are reserved.

AWCACHEMx[3:0] Output Write address cache type giving additional information about cacheable
characteristics.

AWIDMx[n]cn Output Write address channel ID.

cm You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

cn You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-370

Non-Confidential

Table A-11 AXI master interface write address signals (continued)

Name Type Source/destination Description

AWLENMx[3:0] Output AXI3 device The number of data transfers that can occur within each burst.

For a description of other processor-generated traffic, see 12.1.1 Supported
AXI3 transfers on page 12-344. Burst transactions from the ACP can be 1-16
transfers long.

0b000 1 data transfer.

0b001 2 data transfers.

0b010 3 data transfers.

0b011 4 data transfers.

0b100 5 data transfers.

0b101 6 data transfers.

0b110 7 data transfers.

0b111 8 data transfers.

0b1000 9 data transfers.

0b1001 10 data transfers.

0b1010 11 data transfers.

0b1011 12 data transfers.

0b1100 13 data transfers.

0b1101 14 data transfers.

0b1110 15 data transfers.

0b1111 16 data transfers.

AWLOCKMx[1:0] Output Write address lock type:

0b0 Normal access.

0b1 Exclusive access.

0b10 Locked access.

AWPROTMx[2:0] Output Write address protection type.

AWREADYMx Input Write address ready.

AWSIZEMx[1:0] Output Write address burst size:

0b00 8-bit transfer.

0b01 16-bit transfer.

0b10 32-bit transfer.

0b11 64-bit transfer.

AWUSERMx[11:0] Output Write address transfer attributes. See 12.1.2 AXI3 USER bits on page 12-345.

AWVALIDMx Output Write address valid.

AXI master interface write data signals

Details of the AXI master interface write data signals.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-371

Non-Confidential

Table A-12 AXI master interface write data signals

Name Type Source/destination Description

WDATAMx[63:0] Output AXI3 device Write data.

WIDMx[n]co Output Write data ID.

WLASTMx Output Write last indication.

WREADYMx Input Write ready.

WSTRBMx[7:0] Output Write byte-lane strobe.

WVALIDMx Output Write valid.

WUSERMx[2:0] Output Write data transfer attributes. See 12.1.2 AXI3 USER bits on page 12-345.

AXI master interface write response signals

Details of the AXI master interface write response signals.

Table A-13 AXI master interface write response signals

Name Type Source/destination Description

BIDMx[n]cp Input L2C-310 or other system AXI3 devices Write response ID

BREADYMx Output Write response ready

BRESPMx[1:0] Input Write response

BVALIDMx Input Write response valid

A.8.2 AXI fast peripheral port signals

The Cortex‑R8 processor AXI fast peripheral port signals.

AXI fast peripheral clock enable signals

Details of the AXI fast peripheral clock enable signals.

Table A-14 AXI fast peripheral clock enable signals

Name Type Source/destination Description

INCLKENMFPx Input CLK Clock enable

OUTCLKENMFPx Input Clock enable

AXI fast peripheral port read address signals

Details of the AXI fast peripheral port read address signals.

co You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

cp You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-372

Non-Confidential

Table A-15 AXI fast peripheral port read address signals

Name Type Source/destination Description

ARADDRMFPx[31:0] Output AXI3 fast peripheral port IO Read address

ARBURSTMFPx[1:0] Output Read address burst type

ARCACHEMFPx[3:0] Output Read address cache type

ARLENMFPx[3:0] Output Read address burst length

ARLOCKMFPx[1:0] Output Read address lock type

ARPROTMFPx[2:0] Output Read address protection type

ARREADYMFPx Input Read address ready

ARSIZEMFPx[1:0] Output Read address burst size

ARVALIDMFPx Output Read address valid

AXI fast peripheral port read data signals

Details of the AXI fast peripheral port read data signals.

Table A-16 AXI fast peripheral port read data signals

Name Type Source/destination Description

RVALIDMFPx Input AXI3 fast peripheral port IO Read data valid

RREADYMFPx Output Read data ready

RLASTMFPx Input Read data last

RDATAMFPx[31:0] Input Read data

RRESPMFPx[1:0] Input Read data response

AXI fast peripheral port write address signals

Details of the AXI fast peripheral port write address signals.

Table A-17 AXI fast peripheral port write address signals

Name Type Source/destination Description

AWVALIDMFPx Output AXI3 fast peripheral port IO Write address valid

AWREADYMFPx Input Write address ready

AWADDRMFPx[31:0] Output Write address

AWSIZEMFPx[1:0] Output Write address burst size

AWLENMFPx[3:0] Output Write address burst length

AWBURSTMFPx[1:0] Output Write address burst type

AWCACHEMFPx[3:0] Output Write address cache type

AWPROTMFPx[2:0] Output Write address protection type

AWLOCKMFPx[1:0] Output Write address lock type

AXI fast peripheral port write data signals

Details of the AXI fast peripheral port write data signals.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-373

Non-Confidential

Table A-18 AXI fast peripheral port write data signals

Name Type Source/destination Description

WVALIDMFPx Output AXI3 fast peripheral port IO Write data valid

WREADYMFPx Input Write data ready

WLASTMFPx Output Write data last

WSTRBMFPx[3:0] Output Write data strobes

WDATAMFPx[31:0] Output Write data

AXI fast peripheral port write response signals

Details of the AXI fast peripheral port write response signals.

Table A-19 AXI fast peripheral port write response signals

Name Type Source/destination Description

BVALIDMFPx Input AXI3 fast peripheral port IO Write response valid

BREADYMFPx Output Write response ready

BRESPMFPx[1:0] Input Write response

A.8.3 AXI low-latency peripheral port signals

Cortex‑R8 processor AXI low-latency peripheral port signals.

AXI low-latency peripheral clock enable signals

Details of the AXI low-latency peripheral port clock enable signals.

Table A-20 AXI low-latency peripheral clock enable signals

Name Type Source/destination Description

INCLKENMP Input CLK Clock enable

OUTCLKENMP Input Clock enable

AXI low-latency peripheral port read address signals

Details of the AXI low-latency peripheral port read address signals.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-374

Non-Confidential

Table A-21 AXI low-latency peripheral port read address signals

Name Type Source/destination Description

ARADDRMP[31:0] Output AXI3 low-latency peripheral port Read address

ARBURSTMP[1:0] Output Read address burst type

ARCACHEMP[3:0] Output Read address cache type

ARIDMP[n]cq Output Read address ID

ARLENMP[3:0] Output Read address burst length

ARLOCKMP[1:0] Output Read address lock type

ARPROTMP[2:0] Output Read address protection type

ARREADYMP Input Read address ready

ARSIZEMP[1:0] Output Read address burst size

ARUSERMP[9:0] Output Read address transfer attributes, see 12.1.2 AXI3 USER bits
on page 12-345

ARVALIDMP Output Read address valid

AXI low-latency peripheral port read data signals

Details of the AXI low-latency peripheral port read data signals.

Table A-22 AXI low-latency peripheral port read data signals

Name Type Source/destination Description

RVALIDMP Input AXI3 low-latency peripheral port Read data valid

RREADYMP Output Read data ready

RIDMP[n]cr Input Read data ID

RLASTMP Input Read data last

RDATAMP[31:0] Input Read data

RRESPMP[1:0] Input Read data response

AXI low-latency peripheral port write address signals

Details of the AXI low-latency peripheral port write address signals.

cq You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

cr You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-375

Non-Confidential

Table A-23 AXI low-latency peripheral port write address signals

Name Type Source/destination Description

AWVALIDMP Output AXI3 low-latency peripheral port Write address valid

AWREADYMP Input Write address ready

AWIDMP[n]cs Output Write address ID

AWADDRMP[31:0] Output Write address

AWSIZEMP[1:0] Output Write address burst size

AWLENMP[3:0] Output Write address burst length

AWBURSTMP[1:0] Output Write address burst type

AWCACHEMP[3:0] Output Write address cache type

AWPROTMP[2:0] Output Write address protection type

AWLOCKMP[1:0] Output Write address lock type

AWUSERMP[11:0] Output Write address transfer attributes, see 12.1.2 AXI3 USER bits
on page 12-345

AXI low-latency peripheral port write data signals

Details of the AXI low-latency peripheral port write data signals.

Table A-24 AXI low-latency peripheral port write data signals

Name Type Source/destination Description

WVALIDMP Output AXI3 low-latency peripheral port Write data valid

WREADYMP Input Write data ready

WIDMP[n]ct Output Write data ID

WLASTMP Output Write data last

WSTRBMP[3:0] Output Write data strobes

WDATAMP[31:0] Output Write data

WUSERMP[2:0] Output Write data transfer attributes, see 12.1.2 AXI3 USER bits
on page 12-345

AXI low-latency peripheral port write response signals

Details of the AXI low-latency peripheral port write response signals.

cs You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

ct You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-376

Non-Confidential

Table A-25 AXI low-latency peripheral port write response signals

Name Type Source/destination Description

BVALIDMP Input AXI3 low-latency peripheral port Write response valid

BREADYMP Output Write response ready

BIDMP[n]cu Input Write response ID

BRESPMP[1:0] Input Write response

A.8.4 AXI ACP slave port signals

Details of the AXI ACP slave port signals that are present on the Cortex‑R8 processor.

AXI ACP slave port clock enable signal

Signal name, type, and source or destination information for the AXI ACP slave port clock enable signal.

Table A-26 AXI ACP slave port clock enable signal

Name Type Source/destination Description

ACLKENSC Input Clock controller Clock bus enable for the AXI bus that enables the AXI interface to operate at integer
ratios of the system clock.

AXI ACP slave port read address signals

Signal type and source or destination information for the AXI ACP slave port read address signals.

Table A-27 Signal type and source or destination information for the XXX signals.

Name Type Source/destination Description

ARVALIDSC Input AXI3 device Address valid.

ARREADYSC Output Address ready.

ARIDSC[n] Input Address ID.

You can define the number of AXI ID bits on this port using the
AXISC_ID_BIT build parameter.

ARADDRSC[31:0] Input Address.

ARSIZESC[1:0] Input Burst size.

ARLENSC[3:0] Input Burst length.

ARBURSTSC[1:0] Input Burst type.

ARCACHESC[3:0] Input Cache type.

ARPROTSC[2:0] Input Protection type.

ARLOCKSC Input Lock type.

ARUSERSC[4:0] Input Transfer attributes.

AXI ACP slave port read data signals

Summary of the AXI ACP slave port read data signals.

cu You can define the number of AXI ID bits on this port using the AXISC_ID_BIT build parameter. If the ACP is implemented, [n] is [AXISC_ID_BIT:0], that is, the
number of ACP ID bits + 1. If the ACP is not implemented, [n] is [5:0].

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-377

Non-Confidential

Table A-28 AXI ACP slave port read data signals

Name Type Source/destination Description

RVALIDSC Output AXI3 device Read valid.

RREADYSC Input Read ready.

RIDSC[n] Output Read ID.

You can define the number of AXI ID bits on this port using the AXISC_ID_BIT
build parameter.

RLASTSC Output Read last.

RDATASC[63:0] Output Read data.

RRESPSC[1:0] Output Read response.

AXI ACP slave port write address signals

Signal name, type, and source or destination information for the AXI ACP slave port write address
signals.

Table A-29 AXI ACP slave port write address signals

Name Type Source/destination Description

AWVALIDSC Input AXI3 device Address valid.

AWREADYSC Output Address ready.

AWIDSC[n] Input Address ID.

You can define the number of AXI ID bits on this port using the
AXISC_ID_BIT build parameter.

AWADDRSC[31:0] Input Address.

AWSIZESC[1:0] Input Burst size.

AWLENSC[3:0] Input Burst length. The maximum burst transfer must correspond to an L1 cache
line, that is, 256 bits.

AWBURSTSC[1:0] Input Burst type.

AWCACHESC[3:0] Input Cache type.

AWPROTSC[2:0] Input Protection type.

AWLOCKSC Input Lock type.

AWUSERSC[5:0] Input Transfer attributes.

AXI ACP slave port write data signals

Signal name, type, and source or destination information for the AXI ACP slave port write data signals.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-378

Non-Confidential

Table A-30 AXI ACP slave port write data signals

Name Type Source/destination Description

WVALIDSC Input AXI3 device Write valid.

WREADYSC Output Write ready.

WIDSC[n] Input Write ID.

You can define the number of AXI ID bits on this port using the AXISC_ID_BIT
build parameter.

WLASTSC Input AXI3 device Write last.

WSTRBSC[7:0] Input Write strobes.

WDATASC[63:0] Input Write data.

AXI ACP slave port write response signals

Signal name, type, and source or destination information for the AXI ACP slave port write response
signals.

Table A-31 AXI ACP slave port write response signals

Name Type Source/destination Description

BVALIDSC Output AXI3 device Response valid.

BREADYSC Input Response ready.

BIDSC[n] Output Response ID.

You can define the number of AXI ID bits on this port using the AXISC_ID_BIT
build parameter.

BRESPSC[1:0] Output Write response.

A.8.5 AXI TCM slave port signals

Cortex‑R8 processor AXI TCM slave port signals.

AXI TCM slave port clock enable signal

Details of the AXI TCM slave port clock enable signal.

Table A-32 AXI TCM slave port clock enable signal

Name Type Source/destination Description

ACLKENST Input Clock controller Clock bus enable for the AXI bus that enables the AXI interface to operate at integer
ratios of the system clock

AXI TCM slave port read address signals

Details of the AXI TCM slave port read address signals.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-379

Non-Confidential

Table A-33 AXI TCM slave port read address signals

Name Type Source/destination Description

ARVALIDST Input AXI3 device Read address valid

ARREADYST Output Read address ready

ARIDST[n]cv Input Read address ID

ARADDRST[31:0] Input Read address

ARSIZEST[1:0] Input Read address burst size

ARLENST[3:0] Input Read address burst length

ARBURSTST[1:0] Input Read address burst type

ARUSERST[2:0] Input Read address transfer attributes

ARCACHEST[3:0] Input Read address cache type

ARLOCKST[1:0] Input Read address lock type

ARPROTST[2:0] Input Read address protection type

AXI TCM slave port read data signals

Details of the AXI TCM slave port read data signals.

Table A-34 AXI TCM slave port read data signals

Name Type Source/destination Description

RVALIDST Output AXI3 device Read data valid

RREADYST Input Read data ready

RIDST[n]cw Output Read data ID

RLASTST Output Read data last

RDATAST[63:0] Output Read data

RRESPST[1:0] Output Read data response

AXI TCM slave port write address signal

Details of the AXI TCM slave port write address signals.

cv You can define the number of AXI ID bits on this port using the AXIST_ID_BIT build parameter.
cw You can define the number of AXI ID bits on this port using the AXIST_ID_BIT build parameter.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-380

Non-Confidential

Table A-35 AXI TCM slave port write address signals

Name Type Source/destination Description

AWVALIDST Input AXI3 device Write address valid.

AWREADYST Output Write address ready.

AWIDST[n]cx Input Write address ID.

AWADDRST[31:0] Input Write address.

AWSIZEST[1:0] Input Write address burst size.

AWLENST[3:0] Input Write address burst length. The maximum burst transfer must correspond to an
L1 cache line, that is, 256 bits.

AWBURSTST[1:0] Input Write address burst type.

AWUSERST[2:0] Input Write address transfer attributes.

AWCACHEST[3:0] Input Write address cache type.

AWLOCKST[1:0] Input Write address lock type.

AWPROTST[2:0] Input Write address protection type.

AXI TCM slave port write data signals

Details of the AXI TCM slave port write data signals.

Table A-36 AXI TCM slave port write data signals

Name Type Source/destination Description

WVALIDST Input AXI3 device Write data valid

WREADYST Output Write data ready

WIDST[n]cy Input Write data ID

WLASTST Input Write data last

WSTRBST[7:0] Input Write data strobes

WDATAST[63:0] Input Write data

AXI TCM slave port write response signals

Details of the AXI TCM slave port write response signals.

Table A-37 AXI TCM slave port write response signals

Name Type Source/destination Description

BVALIDST Output AXI3 device Write response valid

BREADYST Input Write response ready

BIDST[n]cz Output Write response ID

BRESPST[1:0] Output Write response

cx You can define the number of AXI ID bits on this port using the AXIST_ID_BIT build parameter.
cy You can define the number of AXI ID bits on this port using the AXIST_ID_BIT build parameter.
cz You can define the number of AXI ID bits on this port using the AXIST_ID_BIT build parameter.

A Signal Descriptions
A.8 AXI3 interfaces

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-381

Non-Confidential

A.9 Performance monitoring signals
Details of the Cortex‑R8 processor performance monitoring signals.

Table A-38 Performance monitoring signals

Name Type Source/destination Description

PMUEVENTx[55:0] Output Performance Monitoring Unit
(PMU) or External Performance
Monitoring Unit

PMU event bus for the corresponding core.

PMUIRQ[CN:0] Output System Integrity Controller or
External Performance Monitoring
unit

Core interrupt request by system metrics.

PMUPRIV[CN:0] Output External Performance Monitoring
Unit

Gives the status of the core:

0b0 In user mode.

0b1 In privileged mode.

 Note

This signal does not provide input to the CoreSight trace delivery
infrastructure.

Related reference
10.1 Performance Monitoring Unit on page 10-215

A Signal Descriptions
A.9 Performance monitoring signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-382

Non-Confidential

A.10 Exception flag signals
Details of the Cortex‑R8 processor exception flag signals.

Table A-39 Exception flag signals

Name Type Source/destination Description

SCUEVABORT Output System integrity
controller

Indicates that an external abort has occurred during a coherency writeback. It is
a pulse signal that is asserted for one CLK clock cycle.

FPUFLAGSx[5:0] Output Floating-Point Unit output flags for the corresponding core. Only implemented
if the corresponding core includes an FPU:

Bit[5] gives the value of FPSCR[7].

Bits[4:0] give the value of FPSCR[4:0].

Related reference
Chapter 5 Floating Point Unit Programmers Model on page 5-99

A Signal Descriptions
A.10 Exception flag signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-383

Non-Confidential

A.11 Error detection notification signals
Cortex‑R8 processor error detection notification signals.

This section contains the following subsections:
• A.11.1 Error detection global notification signals on page Appx-A-384.
• A.11.2 RAM ECC error bank status signals on page Appx-A-384.
• A.11.3 Bus ECC error signals on AXI master ports on page Appx-A-384.
• A.11.4 Bus ECC error signals on AXI fast peripheral port on page Appx-A-386.
• A.11.5 Bus ECC error signals on AXI low-latency peripheral port on page Appx-A-388.
• A.11.6 Bus ECC error signals on AXI ACP slave port on page Appx-A-390.
• A.11.7 Bus ECC error signals on AXI TCM slave port on page Appx-A-392.
• A.11.8 Lock-step and split/lock signals on page Appx-A-394.

A.11.1 Error detection global notification signals

Details of the error detection global notification signals.

Table A-40 Error detection global notification signals

Name Type Source/destination Description

RAMERR Output Core 0-3 RAM arrays and SCU RAMs Any ECC error on any RAM

FATALRAMERR[CN:0] Output Fatal ECC error on any RAM

ITCMECCEN Input Defines reset value of ACTLR bit[10] for each core

FATALERRDET Output Fatal ECC error on any core

CORRBUSERR Output SCU Correctable ECC error on any bus

FATALBUSERR Output Fatal ECC error on any bus

A.11.2 RAM ECC error bank status signals

Details of the RAM ECC error bank status signals.

Table A-41 RAM ECC error bank status signals

Name Type Source/destination Description

DCEBEMPTY[CN:0] Output Specific RAM group ECC error bank empty for data cache

ICEBEMPTY[CN:0] Output ECC error bank empty for instruction cache

DTCMEBEMPTYx Output ECC error bank empty for data TCM for the corresponding core

ITCMEBEMPTYx Output ECC error bank empty for instruction TCM for the corresponding core

SCUEBEMPTY Output ECC error bank empty for SCU

A.11.3 Bus ECC error signals on AXI master ports

Details of the Bus ECC error signals on AXI master ports. These signals are only present if ECC is
implemented. The x at the end of the signal name represents either 0 for AXI master port 0 or 1 for the
optional AXI master port 1.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-384

Non-Confidential

Table A-42 Bus ECC error signals on AXI master ports

Name Type Source/destination Description

AXICORRERRMx Output AXI master port Correctable error on DR channel of AXI master port.

AXIFATALERRMx[4:0] Output Fatal error on AXI master port:

[4] fatal error on DR channel.

[3] fatal error on AR channel.

[2] fatal error on DB channel.

[1] fatal error on DW channel.

[0] fatal error on AW channel.

ARVALIDPTYMx Output Parity for address valid.

ARREADYPTYMx Input Parity for address ready.

ARADDRPTYMx[3:0] Output Parity for address.

ARCTLPTYMx[3:0] Output Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

ARUSERPTYMx Output Parity for transfer attributes.

RVALIDPTYMx Input Parity for read valid.

RREADYPTYMx Output Parity for read ready.

RCTLPTYMx[1:0] Input Parity signals:

[0] parity for read ID.

[1] parity for read response and read last.

RDATAERRCODEMx[7:0] Input ECC bits on data bus, when BUS_ECC build parameter is set.

AWVALIDPTYMx Output Parity for address valid.

AWREADYPTYMx Input Parity for address ready.

AWADDRPTYMx[3:0] Output Parity for address.

AWCTLPTYMx[3:0] Output Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

AWUSERPTYMx Output Parity for transfer attributes.

WVALIDPTYMx Output Parity for write valid.

WREADYPTYMx Input Parity for write ready.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-385

Non-Confidential

Table A-42 Bus ECC error signals on AXI master ports (continued)

Name Type Source/destination Description

WCTLPTYMx[2:0] Output AXI master port Parity signals:

[0] parity for write ID.

[1] parity for write strobes.

[2] parity for write last.

WUSERPTYMx Output Parity for transfer attributes.

WDATAERRCODEMx[7:0] Output ECC bits on data bus, when BUS_ECC build parameter is set.

BVALIDPTYMx Input Parity for response valid.

BREADYPTYMx Output Parity for response ready.

BCTLPTYMx[1:0] Input Parity signals:

[0] parity for response ID.

[1] parity for write response.

A.11.4 Bus ECC error signals on AXI fast peripheral port

Details of the bus ECC error signals on the AXI fast peripheral port. These signals are only present if
ECC is implemented.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-386

Non-Confidential

Table A-43 Bus ECC error signals on AXI fast peripheral port

Name Type Source/destination Description

AXICORRERRMFPx Output AXI fast peripheral port IO Correctable error on DR channel of AXI fast peripheral port.

AXIFATALERRMFPx[4:0] Output Fatal error on AXI fast peripheral port:

[4] fatal error on DR channel.

[3] fatal error on AR channel.

[2] fatal error on DB channel.

[1] fatal error on DW channel.

[0] fatal error on AW channel.

ARVALIDPTYMFPx Output Parity for address valid.

ARREADYPTYMFPx Input Parity for address ready.

ARADDRPTYMFPx[3:0] Output Parity for address.

ARCTLPTYMFPx[3:0] Output Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

RVALIDPTYMFPx Input Parity for read valid.

RREADYPTYMFPx Output Parity for read ready.

RCTLPTYMFPx[1:0] Input Parity signals:

[0] -

[1] parity for read response.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-387

Non-Confidential

Table A-43 Bus ECC error signals on AXI fast peripheral port (continued)

Name Type Source/destination Description

RDATAERRCODEMFPx[6:0] Input AXI fast peripheral port IO ECC bits on data bus, when BUS_ECC build parameter is set.

AWVALIDPTYMFPx Output Parity for address valid.

AWREADYPTYMFPx Input Parity for address ready.

AWADDRPTYMFPx[3:0] Output Parity for address.

AWCTLPTYMFPx[3:0] Output Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

WVALIDPTYMFPx Output Parity for write valid.

WREADYPTYMFPx Input Parity for write ready.

WCTLPTYMFPx[2:0] Output Parity signals:

[0] parity for write ID.

[1] parity for write strobes.

[2] parity for write last.

WDATAERRCODEMFPx[6:0] Output ECC bits on data bus, when BUS_ECC build parameter is set.

BVALIDPTYMFPx Input Parity for response valid.

BREADYPTYMFPx Output Parity for response ready.

BCTLPTYMFPx[1:0] Input Parity signals:

[0] parity for response ID.

[1] parity for write response.

A.11.5 Bus ECC error signals on AXI low-latency peripheral port

Details of the bus ECC error signals on the AXI low-latency peripheral port. These signals are only
present if ECC is implemented.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-388

Non-Confidential

Table A-44 Bus ECC error signals on AXI low-latency peripheral port

Name Type Source/destination Description

AXICORRERRMP Output AXI low-latency peripheral port Correctable error on DR channel of AXI low-latency
peripheral port.

AXIFATALERRMP[4:0] Output Fatal error on AXI low-latency peripheral port:

[4] fatal error on DR channel.

[3] fatal error on AR channel.

[2] fatal error on DB channel.

[1] fatal error on DW channel.

[0] fatal error on AW channel.

ARVALIDPTYMP Output Parity for address valid.

ARREADYPTYMP Input Parity for address ready.

ARADDRPTYMP[3:0] Output Parity for address.

ARCTLPTYMP[3:0] Output Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

ARUSERPTYMP Output Parity for transfer attributes.

RVALIDPTYMP Input Parity for read valid.

RREADYPTYMP Output Parity for read ready.

RCTLPTYMP[1:0] Input Parity signals:

[0] parity for read ID.

[1] parity for read response.

RDATAERRCODEMP[6:0] Input ECC bits on data bus, when BUS_ECC build parameter is
set.

AWVALIDPTYMP Output Parity for address valid.

AWREADYPTYMP Input Parity for address ready.

AWADDRPTYMP[3:0] Output Parity for address.

AWCTLPTYMP[3:0] Output Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

AWUSERPTYMP Output Parity for transfer attributes.

WVALIDPTYMP Output Parity for write valid.

WREADYPTYMP Input Parity for write ready.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-389

Non-Confidential

Table A-44 Bus ECC error signals on AXI low-latency peripheral port (continued)

Name Type Source/destination Description

WCTLPTYMP[2:0] Output AXI low-latency peripheral port Parity signals:

[0] parity for write ID.

[1] parity for write strobes.

[2] parity for write last.

WUSERPTYMP Output Parity for transfer attributes.

WDATAERRCODEMP[6:0] Output ECC bits on data bus, when BUS_ECC build parameter is
set.

BVALIDPTYMP Input Parity for response valid.

BREADYPTYMP Output Parity for response ready.

BCTLPTYMP[1:0] Input Parity signals:

[0] parity for response ID.

[1] parity for write response.

A.11.6 Bus ECC error signals on AXI ACP slave port

Details of the bus ECC error signals on the optional AXI ACP slave port. These signals are only present
if ECC is implemented.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-390

Non-Confidential

Table A-45 Bus ECC error signals on AXI ACP slave port

Name Type Source/destination Description

AXICORRERRSC Output AXI ACP Correctable error on DW channel of AXI ACP.

AXIFATALERRSC[4:0] Output Fatal error on AXI ACP:

[4] fatal error on DR channel.

[3] fatal error on AR channel.

[2] fatal error on DB channel.

[1] fatal error on DW channel.

[0] fatal error on AW channel.

ARVALIDPTYSC Input Parity for address valid.

ARREADYPTYSC Output Parity for address ready.

ARADDRPTYSC[3:0] Input Parity for address.

ARCTLPTYSC[3:0] Input Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

ARUSERPTYSC Input Parity for transfer attributes.

RVALIDPTYSC Output Parity for read valid.

RREADYPTYSC Input Parity for read ready.

RCTLPTYSC[1:0] Output Parity signals:

[0] parity for read ID.

[1] parity for read response.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-391

Non-Confidential

Table A-45 Bus ECC error signals on AXI ACP slave port (continued)

Name Type Source/destination Description

RDATAERRCODESC[7:0] Output AXI ACP ECC bits on data bus, when BUS_ECC build parameter is set.

AWVALIDPTYSC Input Parity for address valid.

AWREADYPTYSC Output Parity for address ready.

AWADDRPTYSC[3:0] Input Parity for address.

AWCTLPTYSC[3:0] Input Parity signals:

[0] parity for address ID.

[1] parity for burst length.

[2] parity for burst size, burst type, and lock type.

[3] parity for cache type and protection.

AWUSERPTYSC Input Parity for transfer attributes.

WVALIDPTYSC Input Parity for write valid.

WREADYPTYSC Output Parity for write ready.

WCTLPTYSC[2:0] Input Parity signals:

[0] parity for write ID.

[1] parity for write strobes.

[2] parity for write last.

WDATAERRCODESC[7:0] Input ECC bits on data bus, when BUS_ECC build parameter is set.

BVALIDPTYSC Output Parity for response valid.

BREADYPTYSC Input Parity for response ready.

BCTLPTYSC[1:0] Output Parity signals:

[0] parity for response ID.

[1] parity for write response.

A.11.7 Bus ECC error signals on AXI TCM slave port

Details of the bus ECC error signals on the AXI TCM slave port. These signals are only present if ECC
is implemented.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-392

Non-Confidential

Table A-46 Bus ECC error signals on AXI TCM slave port

Name Type Source/destination Description

AXICORRERRST Output AXI TCM slave port Correctable error on DW channel of AXI TCM slave port.

AXIFATALERRST[4:0] Output Fatal error on AXI TCM slave port:

[4] fatal error on DR channel.

[3] fatal error on AR channel.

[2] fatal error on DB channel.

[1] fatal error on DW channel.

[0] fatal error on AW channel.

ARVALIDPTYST Input Parity for read address valid.

ARREADYPTYST Output Parity for read address ready.

ARADDRPTYST[3:0] Input Parity for read address.

ARCTLPTYST[3:0] Input Parity signals:

[0] parity for read address ID.

[1] parity for read address burst length.

[2] parity for read address burst size, burst type, and lock type.

[3] parity for read address cache type and protection.

ARUSERPTYST Input Parity for transfer attributes.

RVALIDPTYST Output Parity for read valid.

RREADYPTYST Input Parity for read ready.

RCTLPTYST[1:0] Output Parity signals:

[0] parity for read response, read last.

[1] parity for read ID.

RDATAERRCODEST[7:0] Output ECC bits on data bus, when BUS_ECC build parameter is set.

AWVALIDPTYST Input Parity for write address valid.

AWREADYPTYST Output Parity for write address ready.

AWADDRPTYST[3:0] Input Parity for write address.

AWCTLPTYST[3:0] Input Parity signals:

[0] parity for write ID.

[1] parity for write burst length.

[2] parity for write burst size, burst type, and lock type.

[3] parity for write cache type and protection.

AWUSERPTYST Input Parity for transfer attributes.

WVALIDPTYST Input Parity for write valid.

WREADYPTYST Output Parity for write ready.

WCTLPTYST[2:0] Input Parity signals:

[0] parity for write ID.

[1] parity for write strobes.

[2] parity for write last.

WDATAERRCODEST[7:0] Input ECC bits on data bus, when BUS_ECC build parameter is set.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-393

Non-Confidential

Table A-46 Bus ECC error signals on AXI TCM slave port (continued)

Name Type Source/destination Description

BVALIDPTYST Output AXI TCM slave port Parity for write response valid.

BREADYPTYST Input Parity for write response ready.

BCTLPTYST[1:0] Output Parity signals:

[0] parity for write response ID.

[1] parity for write response.

A.11.8 Lock-step and split/lock signals

Details of the lock-step and split/lock signals.

Table A-47 Lock-step and split/lock signals

Name Type Source/destination Description

COMPENABLE Input System configuration Enables comparison logic that compares the outputs of the core, SCU, and AXI
TCM slave with those of their redundant copy.

See 1.6 Redundant processor core comparison on page 1-20.

COMPFAULT Output Indicates a fault in either the main or redundant logic.

See 1.6 Redundant processor core comparison on page 1-20.

SAFEMODE Input Selects split/lock mode or lock-step mode.

See 1.6.1 Split/lock on page 1-20.

A Signal Descriptions
A.11 Error detection notification signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-394

Non-Confidential

A.12 Test interface
Details of the test interface signals.

Table A-48 Test interface signals

Name Type Source/destination Description

DFTSE Input External test interface Scan shift enable

DFTRAMHOLD Input Holds RAM content during scan shift

DFTRAMCLKENABLE Input Forces RAM clock for DFT purposes even when cores are in WFI mode

DFTTESTMODE Input Disable/bypass logic for test purposes

A Signal Descriptions
A.12 Test interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-395

Non-Confidential

A.13 MBIST interface
The width of the MBIST interface signals varies depending on whether ECC is implemented or not. In
addition, DTCM can be run at speed and is accessed through the same port as L1 RAM. ITCM has its
own dedicated interface.

A.13.1 L1 and DTCM Cortex®-R8 processor MBIST interface width without ECC

Details of the L1 and DTCM signals for designs without ECC.

 Note

All MBIST signals except MBISTREQx are internal pins of PLOVER.v corresponding to
plover_mbist_intf<x>.v modules. The MBIST controller must connect directly to the
plover_mbist_intf<x>.v module.

Table A-49 L1 and DTCM Cortex-R8 processor MBIST interface width without ECC

Name Type Source/destination Description

MBISTREQ1 Input MBIST controller BIST mode request signal, one per core

A.13.2 L1 and DTCM Cortex®-R8 processor MBIST interface width with ECC

Details of the the L1 and DTCM signals for designs with ECC.

Table A-50 L1 and DTCM Cortex-R8 processor MBIST interface width with ECC

Name Type Source/destination Description

MBISTREQ1[1:0] Input MBIST controller BIST mode request signal, one per core

A.13.3 ITCM Cortex®-R8 processor MBIST interface width without ECC

Details of the ITCM signals for designs without ECC.

Table A-51 ITCM Cortex-R8 processor MBIST interface width without ECC

Name Type Source/destination Description

MBISTREQ2 Input MBIST controller BIST mode request signal

A.13.4 ITCM Cortex®-R8 processor MBIST interface width with ECC

Details of the ITCM signals for designs with ECC.

Table A-52 ITCM Cortex-R8 processor MBIST interface width with ECC

Name Type Source/destination Description

MBISTREQ2[1:0] Input MBIST controller BIST mode request signal

A Signal Descriptions
A.13 MBIST interface

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-396

Non-Confidential

A.14 External debug signals
Details of the Cortex‑R8 processor external debug signals.

This section contains the following subsections:
• A.14.1 Debug enable signals on page Appx-A-397.
• A.14.2 Debug signals on page Appx-A-397.
• A.14.3 Miscellaneous debug signals on page Appx-A-398.
• A.14.4 Debug APB interface signals on page Appx-A-399.

A.14.1 Debug enable signals

Details of the debug enable signals.

Table A-53 Debug enable signals

Name Type Source/destination Description

DBGEN[CN:0] Input External debug device Individual core invasive debug enable:

0b0 Not enabled.

0b1 Enabled.

NIDEN[CN:0] Input Individual core non-invasive debug enable:

0b0 Not enabled.

0b1 Enabled.

A.14.2 Debug signals

Details of the debug signals.

A Signal Descriptions
A.14 External debug signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-397

Non-Confidential

Table A-54 Debug signals

Name Type Source/
destination

Description

EDBGRQ[CN:0] Input External debug
device

Individual core external debug request:

0b0 No external debug request.

0b1 External debug request.

The core treats the EDBGRQ input as level sensitive. The EDBGRQ
input must be asserted until the core asserts DBGACK.

DBGACK[CN:0] Output Individual core debug acknowledge signal. Acknowledges that the
corresponding core has entered debug state after an external debug
request.

DBGCPUDONE[CN:0] Output Acknowledges that corresponding core has entered debug state and that
all previous non-debug state memory accesses are complete.

DBGNOPWRDWN[CN:0] Output Output reflecting the value of DBGPRCR[0]. See the Arm® Architecture
Reference Manual Arm®v7‑A and Arm®v7‑R edition.

DBGSWENABLE[CN:0] Input When LOW only the external debug agent can modify debug registers:

0b0 Not enabled.

0b1 Enabled. Access by the software through the
extended CP14 interface is permitted. External
CP14 and external debug accesses are permitted.

DBGROMADDR[31:12] Input External debug
device

CoreSight System configuration. Specifies bits[31:12] of the ROM table
physical address.

If the address cannot be determined, tie off this signal to zero.

DBGROMADDRV Input Valid signal for DBGROMADDR.

If the address cannot be determined, tie this signal LOW.

DBGSELFADDR[31:17] Input Specifies bits[31:17] of the two’s complement signed offset from the
ROM table physical address to the physical address where the debug
registers are memory-mapped.

If the offset cannot be determined, tie off this signal to zero.

DBGSELFADDRV Input Valid signal for DBGSELFADDR.

If the offset cannot be determined, tie this signal LOW.

A.14.3 Miscellaneous debug signals

Details of the miscellaneous debug signals.

A Signal Descriptions
A.14 External debug signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-398

Non-Confidential

Table A-55 Miscellaneous debug signals

Name Type Source/destination Description

COMMRX[CN:0] Output External debug device Individual core signal. Comms Channels Receive portion of Data Transfer
Register full flag:

0b0 Empty.

0b1 Full.

COMMTX[CN:0] Output Individual core signal. Comms Channels Transmit portion of Data Transfer
Register empty flag:

0b0 Full.

0b1 Empty.

A.14.4 Debug APB interface signals

Details of the Debug APB interface signals.

Table A-56 Debug APB interface signals

Name Type Source/destination Description

PENABLEDBG Input CoreSight APB devices APB clock enable. Indicates a second and subsequent cycle of a transfer.

PRDATADBG[31:0] Output APB read data bus.

PSELDBG Input Debug registers select:

0b0 Debug registers not selected.

0b1 Debug registers selected.

PSLVERRDBG Output APB slave error signal:

0b0 No transfer error.

0b1 Transfer error.

PWRITEDBG Input APB read/write signal.

A Signal Descriptions
A.14 External debug signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-399

Non-Confidential

Table A-56 Debug APB interface signals (continued)

Name Type Source/destination Description

PADDRDBG[16:2] Input CoreSight APB devices Programming address. Bits[16:12] have the following meaning:

0b00000 ROM table.

0b10000 Core 0 debug.

0b10001 Core 0 PMU.

0b10010 Core 1 debug, if core 1 is present, otherwise
reserved.

0b10011 Core 1 PMU, if core 1 is present, otherwise
reserved.

0b10100 Core 2 debug, if core 2 is present, otherwise
reserved.

0b10101 Core 2 PMU, if core 2 is present, otherwise
reserved.

0b10110 Core 3 debug, if core 3 is present, otherwise
reserved.

0b10111 Core 3 PMU, if core 3 is present, otherwise
reserved.

0b11000 CTI0.

0b11001 CTI1, if core 1 is present, otherwise reserved.

0b11010 CTI2, if core 2 is present, otherwise reserved.

0b11011 CTI3, if core 3 is present, otherwise reserved.

0b11100 ETM0.

0b11101 ETM1, if ETM1 is present, otherwise reserved.

0b11110 ETM2, if ETM2 is present, otherwise reserved.

0b11111 ETM3, if ETM3 is present, otherwise reserved.

PADDRDBG31 Input APB address bus bit[31]:

0b0 Not an external debugger access.

0b1 External debugger access.

PREADYDBG Output APB slave ready. An APB slave can assert PREADY to extend a transfer.

PWDATADBG[31:0] Input APB write data.

A Signal Descriptions
A.14 External debug signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-400

Non-Confidential

A.15 ETM signals
Details of the ETM processor trace interface signals from the Cortex‑R8 processor. The x at the end of
the signal name represents 0 for ETM0, 1 for ETM1, 2 for ETM2, or 3 for ETM3, if implemented.

This section contains the following subsections:
• A.15.1 Processor trace interface signals on page Appx-A-401.
• A.15.2 ETM APB signals on page Appx-A-401.
• A.15.3 ETM ATB signals for instruction trace on page Appx-A-402.
• A.15.4 ETM ATB signals for data trace on page Appx-A-402.
• A.15.5 ETM Miscellaneous signals on page Appx-A-402.
• A.15.6 CTI signals on page Appx-A-403.

A.15.1 Processor trace interface signals

Details of the processor trace interface signals.

Table A-57 Processor trace interface signals

Signal name Type Source/destination Description

ETMBUS[321:0] Input Processor Combined ETM interface channel

ETMIFVALID Input Core active, interface stable

ETMIFENx Output Power control for ETM processor trace interface

ETMBACK Output Configurable output to stall processor

DBGACK[CN:0] Input Core is in debug state

CPUACTIVE Input Core is not in WFI/WFE or other low-power state

A.15.2 ETM APB signals

Details of the ETM APB signals.

Table A-58 ETM APB signals

Signal name Type Source/destination Description

PADDRDBG[16:2] Input Debug APB interconnect Debug APB Address Bus.

PADDRDBG31 Input Originates as an output signal from the Debug Access Port (DAP):

0b0 Indicates an access from software.

0b1 Indicates an access from hardware (JTAG).

PENABLEDBG Input The Debug APB interface is enabled for a transfer.

PSELDBG Input Debug APB slave select signal.

PREADYDBG Output Extends Debug APB transfers.

PRDATADBG[31:0] Output Debug APB read data.

PWDATADBG[31:0] Input Debug APB write data.

PWRITEDBG Input Debug APB transfer direction: 0b0 = Read, 0b1 = Write.

PSLVERRDBG Output Debug APB error response.

A Signal Descriptions
A.15 ETM signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-401

Non-Confidential

A.15.3 ETM ATB signals for instruction trace

Details of the ETM ATB signals for instruction trace.

Table A-59 ETM ATB signals for instruction trace

Signal name Type Source/destination Description

AFREADYMIx Output CoreSight trace system ATB interface FIFO flush finished

AFVALIDMIx Input ATB interface FIFO flush request

ATBYTESMIx[1:0] Output Size of ATDATA

ATDATAMIx[31:0] Output ATB interface data

ATIDMIx[6:0] Output ATB interface trace source ID

ATREADYMIx Input ATDATA can be accepted

ATVALIDMIx Output ATB interface data valid

SYNCREQIx Input Synchronization request from instruction trace sink

A.15.4 ETM ATB signals for data trace

Details of the ETM ATB signals for data trace.

Table A-60 ETM ATB signals for data trace

Signal name Type Source/destination Description

AFREADYMDx Output CoreSight trace system ATB interface FIFO flush finished

AFVALIDMDx Input ATB interface FIFO flush request

ATBYTESMDx[2:0] Output Size of ATDATA

ATDATAMDx[63:0] Output ATB interface data

ATIDMDx[6:0] Output ATB interface trace source ID

ATREADYMDx Input ATDATA can be accepted

ATVALIDMDx Output ATB interface data valid

SYNCREQDx Input Synchronization request from data trace sink

A.15.5 ETM Miscellaneous signals

Details of the ETM miscellaneous signals.

A Signal Descriptions
A.15 ETM signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-402

Non-Confidential

Table A-61 ETM Miscellaneous signals

Signal name Type Source/destination Description

PROCSEL[2:0] Output Trace multiplexor, if
present

Where an ETM is shared between multiple processors, this signal controls
the multiplexor.

The value is driven from bits[2:0] of the 11.8.2 Processor Select Control
Register on page 11-268.

NUMPROC[2:0] Input Tie off Where an ETM is shared between multiple cores, this signal specifies the
number of cores the ETM can trace. It must be tied to the number of cores
sharing the ETM minus 1.

These signals determine the value of bits[30:28] in the 11.8.33 ID Register 3
on page 11-302.

NIDEN[CN:0] Input System Non-invasive debug enable.

When HIGH (0b1), indicates that non-invasive debug is enabled.

ETMACTIVEx Output Processor Trace is being output.

ETMEVENT[63:0] Input PMU and CTI External input resources.

ETMEXTOUT[3:0] Output CTI External outputs.

SYSSTALL Input Tie off System supports stalling of the core by the ETM.

ETMPWRUPREQx Output System power control Request to maintain power to ETM.

TSSIZE Input Tie off When HIGH (0b1), timestamp is 64 bits. When LOW (0b0), timestamp is
48 bits.

TSVALUE[63:0] Input CoreSight system Timestamp value.

CLUSTERID[3:0] Input System Value read in the Cluster ID field, bits[11:8], of the Cortex‑R8
Multiprocessor Affinity Register (MPIDR).

CPUID Input System Value read in the CPU ID field, bits[1:0], of the MPIDR in the connected
core.

A.15.6 CTI signals

Details of the CTI signals.

Table A-62 CTI signals

Signal name Type Source/destination Description

CTICHIN[3:0] Input Trace device Channel in

CTICHOUTACK[3:0] Input Channel out acknowledge

CTICHOUT[3:0] Output Channel out

CTICHINACK[3:0] Output Channel in acknowledge

CIHSBYPASS[3:0] Input Channel interface HS bypass

nCTIIRQ[CN:0] Output Active-LOW interrupt from CTI

A Signal Descriptions
A.15 ETM signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-403

Non-Confidential

A.16 Memory reconstruction port signals
Details of the Cortex‑R8 processor MRP signals. The x at the end of the signal name represents either
core 0, core 1, core 2 or core 3.

Table A-63 Memory reconstruction port signals

Name Type Source/destination Description

MRPREADYx Input Trace analysis engine Ready signal of any write access

MRPVALIDx Output Valid signal of any write access

MRPADDRx[31:0] Output Address of any write access

MRPDATAx[63:0] Output Data of any write access

MRPSTRBx[7:0] Output Strobe of any write access

A Signal Descriptions
A.16 Memory reconstruction port signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-404

Non-Confidential

A.17 Power gating interface signals
Details of the Cortex‑R8 processor power gating interface signals. The x at the end of the signal name
represents either core 0, core 1, core 2 or core 3.

Table A-64 Power gating interface signals

Name Type Source/destination Description

nPWRUPSCURAM Input Power controller SCU power up switch enable

nPWRUPACKSCURAM Output SCU power up switch acknowledge

nISOLATESCURAM Input SCU RAM clamp control

nPWRUPACKCPUx_TRICKLE Output Individual core power up acknowledge

nPWRUPACKCPUx_HAMMER Output Individual core power up acknowledge

nPWRUPCPUx_TRICKLE Input Individual core power up request

nPWRUPCPUx_HAMMER Input Individual core power up request

nPWRUPCPUDRAMx Input Individual core data RAM power up switch enable

nPWRUPACKCPUDRAMx Output Individual core data RAM power up switch acknowledge

nRETCPUDRAMx Input Individual core data RAM retention control

nPWRUPCPUIRAMx Input Individual core instruction RAM power up switch enable

nPWRUPACKCPUIRAMx Output Individual core instruction RAM power up switch acknowledge

nRETCPUIRAMx Input Individual core instruction RAM retention control

nPWRUPCPUDTCMx Input Individual core DTCM RAM power up request

nPWRUPACKCPUDTCMx Output Individual core DTCM RAM power up acknowledge

nRETCPUDTCMx Input Individual core DTCM RAM retention control

nISOLATEDTCMx Input Individual DTCM RAM clamp control

nPWRUPCPUITCMx Input Individual core ITCM RAM power up request

nPWRUPACKCPUITCMx Output Individual core ITCM RAM power up acknowledge

nRETCPUITCMx Input Individual core ITCM RAM retention control

nISOLATEITCMx Input Individual ITCM RAM clamp control

nPWRUPDBG_TRICKLE Input Debug power up request

nPWRUPDBG_HAMMER Input Debug power up request

A Signal Descriptions
A.17 Power gating interface signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-405

Non-Confidential

Table A-64 Power gating interface signals (continued)

Name Type Source/destination Description

nPWRUPACKDBG_TRICKLE Output Power controller Debug power up acknowledge

nPWRUPACKDBG_HAMMER Output Debug power up acknowledge

nISOLATEDBG Input Debug clamp control

nPWRUPETMx_TRICKLE Input Individual ETM power up request

nPWRUPETMx_HAMMER Input Individual ETM power up request

nPWRUPACKETMx_TRICKLE Output Individual ETM power up acknowledge

nPWRUPACKETMx_HAMMER Output Individual ETM power up acknowledge

nISOLATECPUx Input Individual core clamp control

nISOLATECPUDRAMx Input Individual core data RAM clamp control

nISOLATECPUIRAMx Input Individual core instruction RAM clamp control

nISOLATEETMx Input Individual ETM clamp control

A Signal Descriptions
A.17 Power gating interface signals

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-406

Non-Confidential

Appendix B
Cycle Timings and Interlock Behavior

This appendix describes the cycle timings of integer instructions on Cortex‑R8 processor cores.

It contains the following sections:
• B.1 About instruction cycle timing on page Appx-B-408.
• B.2 Data-processing instructions on page Appx-B-409.
• B.3 Load and store instructions on page Appx-B-410.
• B.4 Multiplication instructions on page Appx-B-414.
• B.5 Branch instructions on page Appx-B-415.
• B.6 Serializing instructions on page Appx-B-416.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-407

Non-Confidential

B.1 About instruction cycle timing
This appendix provides information to estimate how much execution time particular code sequences
require.

The complexity of the Cortex‑R8 processor makes it impossible to calculate precise timing information
manually. The timing of an instruction is often affected by other concurrent instructions, memory system
activity, and additional events outside the instruction flow. Describing all possible instruction
interactions, and all possible events that take place in the processor, is beyond the scope of this
document.

B Cycle Timings and Interlock Behavior
B.1 About instruction cycle timing

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-408

Non-Confidential

B.2 Data-processing instructions
Details of the execution unit cycle time for data-processing instructions.

The data-processing instructions cycle timings table shows the following cases:

no shift on source registers
For example, ADD r0, r1, r2

shift by immediate source register
For example, ADD r0, r1, r2 LSL #2

shift by register
For example, ADD r0, r1, r2 LSL r3

Table B-1 Data-processing instructions cycle timings

Instruction No shift Shift by

Constant Register

MOV 1 1 2

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, CMN, ORR, BIC, MVN, TST, TEQ, CMP 1 2 3

QADD, QSUB, QADD8, QADD16, QSUB8, QSUB16, SHADD8, SHADD16, SHSUB8, SHSUB16, UQADD8,
UQADD16, UQSUB8, UQSUB16, UHADD8, UHADD16, UHSUB8, UHSUB16, QASX, QSAX, SHASX,
SHSAX, UQASX, UQSAX, UHASX, UHSAX

2 - -

QDADD, QDSUB, SSAT, USAT 3 - -

PKHBT, PKHTB 1 2 -

SSAT16, USAT16, SADD8, SADD16, SSUB8, SSUB16,UADD8, UADD16, USUB8, USUB16, SASX,
SSAX, UASX, USAX

1 - -

SXTAB, SXTAB16, SXTAH, UXTAB, UXTAB16, UXTAH 3 - -

SXTB, STXB16, SXTH, UXTB, UTXB16, UXTH 2 - -

BFC, BFI, UBFX, SBFX 2 - -

CLZ, MOVT, MOVW, RBIT, REV, REV16, REVSH, MRS 1 - -

SDIV, UDIV 4-16 - -

MSR not modifying mode or control bits. See B.6 Serializing instructions on page Appx-B-416. 1 - -

B Cycle Timings and Interlock Behavior
B.2 Data-processing instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-409

Non-Confidential

B.3 Load and store instructions
Load and store instructions are classed as single load and store instructions such as LDR instructions,
load and store multiple instructions such as LDM instructions.

For load multiple and store multiple instructions, the number of registers in the register list usually
determines the number of cycles required to execute a load or store instruction.

The Cortex‑R8 processor has an optimized path from a load instruction to a subsequent data processing
instruction, saving one cycle on the load-use penalty.

This path is used when the following conditions are met:
• The data-processing instruction is an arithmetical, a logical or a saturation operation.
• The data-processing instruction does not require any shift.
• The load instruction does not require sign extension.
• The load instruction is not conditional.

This section contains the following subsections:
• B.3.1 Single load and store operation cycle timings on page Appx-B-410.
• B.3.2 Load multiple operations cycle timings on page Appx-B-411.
• B.3.3 Store multiple operations cycle timings on page Appx-B-412.

B.3.1 Single load and store operation cycle timings

Details of cycle timing for single load and store operations. The result latency is the latency of the first
loaded register.

Table B-2 Single load and store operation cycle timings

Instruction cycles AGU cycles Result latency

Fast forward cases Other cases

LDR, [reg]

LDR, [reg imm]

LDR, [reg reg]

LDR, [reg reg LSL #2]

LDR, [reg reg LSL #3]

1 2 3

LDR, [reg reg LSL reg]

LDR, [reg reg LSR reg]

LDR, [reg reg ASR reg]

LDR, [reg reg ROR reg]

LDR, [reg reg, RRX]

2 3 4

B Cycle Timings and Interlock Behavior
B.3 Load and store instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-410

Non-Confidential

Table B-2 Single load and store operation cycle timings (continued)

Instruction cycles AGU cycles Result latency

Fast forward cases Other cases

LDRB, [reg]

LDRB, [reg imm]

LDRB, [reg reg]

LDRB, [reg reg LSL #2]

LDRB, [reg reg LSL #3]

LDRH, [reg]

LDRH, [reg imm]

LDRH, [reg reg]

LDRH, [reg reg LSL #2]

LDRH, [reg reg LSL #3]

1 2 3

LDRB, [reg reg LSL reg]

LDRB, [reg reg ASR reg]

LDRB, [reg reg LSL reg]

LDRB, [reg reg ASR reg]

LDRH, [reg reg LSL reg]

LDRH, [reg reg ASR reg]

LDRH, [reg reg LSL reg]

LDRH, [reg reg ASR reg]

2 3 4

B.3.2 Load multiple operations cycle timings

The Cortex‑R8 processor can load or store two 32-bit registers in each cycle. However, to access 64 bits,
the address must be 64-bit aligned.

This scheduling is done in the Address Generation Unit (AGU). The number of cycles required by the
AGU to process the load multiple or store multiple operations depends on the length of the register list
and the 64-bit alignment of the address. The resulting latency is the latency of the first loaded register. in
the following table shows the cycle timings for load multiple operations.

Table B-3 Load multiple operations cycle timings

Instruction AGU cycles to process the instruction Resulting latency

Address aligned on a 64-bit boundary Fast forward case Other cases

Yes No

LDM, {1 register} 1 1 2 3

LDM, {2 registers}

LDRD

RFE

1 2 2 3

LDM, {3 registers} 2 2 2 3

B Cycle Timings and Interlock Behavior
B.3 Load and store instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-411

Non-Confidential

Table B-3 Load multiple operations cycle timings (continued)

Instruction AGU cycles to process the instruction Resulting latency

Address aligned on a 64-bit boundary Fast forward case Other cases

Yes No

LDM, {4 registers} 2 3 2 3

LDM, {5 registers} 3 3 2 3

LDM, {6 registers} 3 4 2 3

LDM, {7 registers} 4 4 2 3

LDM, {8 registers} 4 5 2 3

LDM, {9 registers} 5 5 2 3

LDM, {10 registers} 5 6 2 3

LDM, {11 registers} 6 6 2 3

LDM, {12 registers} 6 7 2 3

LDM, {13 registers} 7 7 2 3

LDM, {14 registers} 7 8 2 3

LDM, {15 registers} 8 8 2 3

LDM, {16 registers} 8 9 2 3

B.3.3 Store multiple operations cycle timings

Details of the cycle timings of store multiple operations.

Table B-4 Store multiple operations cycle timings

Instruction AGU cycles

Aligned on a 64-bit boundary

Yes No

STM, {1 register} 1 1

STM, {2 registers}

STRD

SRS

1 2

STM, {3 registers} 2 2

STM, {4 registers} 2 3

STM, {5 registers} 3 3

STM, {6 registers} 3 4

STM, {7 registers} 4 4

STM, {8 registers} 4 5

STM, {9 registers} 5 5

STM, {10 registers} 5 6

B Cycle Timings and Interlock Behavior
B.3 Load and store instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-412

Non-Confidential

Table B-4 Store multiple operations cycle timings (continued)

Instruction AGU cycles

Aligned on a 64-bit boundary

Yes No

STM, {11 registers} 6 6

STM, {12 registers} 6 7

STM, {13 registers} 7 7

STM, {14 registers} 7 8

STM, {15 registers} 8 8

STM, {16 registers} 8 9

B Cycle Timings and Interlock Behavior
B.3 Load and store instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-413

Non-Confidential

B.4 Multiplication instructions
Details of the cycle timings for multiplication instructions.

Table B-5 Multiplication instruction cycle timings

Instruction Cycles Result latency

MUL(S), MLA(S) 2 4

SMULL(S), UMULL(S), SMLAL(S), UMLAL(S) 3 4 for the first written register

5 for the second written register

SMULxy, SMLAxy, SMULWy, SMLAWy 1 3

SMLALxy 2 3 for the first written register

4 for the second written register

SMUAD, SMUADX, SMLAD, SMLADX, SMUSD, SMUSDX, SMLSD, SMLSDX 1 3

SMMUL, SMMULR, SMMLA, SMMLAR, SMMLS, SMMLSR 2 4

SMLALD, SMLALDX, SMLSLD, SMLDLDX 2 3 for the first written register

4 for the second written register

UMAAL 3 4 for the first written register

5 for the second written register

B Cycle Timings and Interlock Behavior
B.4 Multiplication instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-414

Non-Confidential

B.5 Branch instructions
Branch instructions timing characteristics.

• Branch instructions to immediate locations do not consume execution unit cycles.
• Data-processing instructions to the PC register are processed in the execution units as standard

instructions.
• Load instructions to the PC register are processed in the execution units as standard instructions.

Related concepts
8.3 Branch prediction on page 8-157
Related reference
B.2 Data-processing instructions on page Appx-B-409
B.3 Load and store instructions on page Appx-B-410

B Cycle Timings and Interlock Behavior
B.5 Branch instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-415

Non-Confidential

B.6 Serializing instructions
Out-of-order execution is not always possible. Some instructions are serializing. Serializing instructions
force the Cortex‑R8 processor to complete all modifications to flags and general-purpose registers by
previous instructions before the next instruction is executed.

The following exception entry instructions are serializing:

• SVC.
• SMC.
• BKPT.
• Instructions that take the Prefetch Abort handler.
• Instructions that take the Undefined Instruction exception handler.

The following instructions that modify mode or program control are serializing:

• MSR CPSR when they modify control or mode bits.
• Data-processing to PC with the S bit set (for example, MOVS pc, r14).
• LDM pc ^.
• CPS.
• SETEND.
• RFE.

The following instructions are serializing:

• All MCR to CP14 or CP15 except ISB and DMB.
• MRC p14 for debug registers.
• WFE, WFI, SEV.
• CLREX.
• DSB.

The following instruction, that modifies the SPSR, is serializing:
• MSR SPSR.

B Cycle Timings and Interlock Behavior
B.6 Serializing instructions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-416

Non-Confidential

Appendix C
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• C.1 Revisions on page Appx-C-418.

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-417

Non-Confidential

C.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table C-1 Issue 0000-01

Change Location Affects

First release for r0p1 - -

Table C-2 Differences between Issue 0000-01 and Issue 0001-02

Change Location Affects

Second release for r0p1 - -

Table C-3 Differences between Issue 0001-02 and Issue 0001-03

Change Location Affects

Tables added 2.5.3 AXI low-latency peripheral port on page 2-43

2.5.4 AXI Fast Peripheral Port on page 2-44

2.5.5 AXI TCM slave port on page 2-45

2.5.6 AXI slave Accelerator Coherency Port on page 2-48

r0p1

Note added 4.3.14 ITCM Region Register on page 4-89 r0p1

Bit details added. 9.3.2 SCU Configuration Register on page 9-171 r0p1

Footnotes updated A.8.1 AXI master interface signals on page Appx-A-368

A.8.3 AXI low-latency peripheral port signals on page Appx-A-374

r0p1

Bit values changed A.11.4 Bus ECC error signals on AXI fast peripheral port on page Appx-A-386 r0p1

Table C-4 Differences between Issue 0001-03 and Issue 0002-00

Change Location Affects

First release for r0p2 • Revisions history table
• This Revisions appendix
• MIDR reset value in 4.2 Register summary on page 4-59, 4.2.1 c0

registers on page 4-59, and 4.2.9 System identification, control, and
configuration register on page 4-64

r0p2

Added information on ITCM size limit 8.6 Instruction and data TCM on page 8-161 All versions

Added information on input
synchronization

2.3.3 Input synchronization on page 2-33 All versions

Clarified CTDOR bit assignments • Using the CTDOR on page 4-93
• 4.3.16 Cache and TCM Debug Operation Register on page 4-91

All versions

Clarified FIQ description • 9.4 Interrupt controller on page 9-189
• 9.4.2 Interrupt distributor interrupt sources on page 9-189

All versions

Clarified transfers for AXI 12.1.1 Supported AXI3 transfers on page 12-344 All versions

C Revisions
C.1 Revisions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-418

Non-Confidential

Table C-4 Differences between Issue 0001-03 and Issue 0002-00 (continued)

Change Location Affects

Separated power up and power down
sequences

Dormant mode on page 2-38 All versions

Fixed incorrect offsets and registers for
processor ID registers

Processor ID Registers on page 10-216 All versions

Added missing ACP signals A.8.4 AXI ACP slave port signals on page Appx-A-377 All versions

Fixed ICDIIDR reset value • Distributor Implementer Identification Register on page 9-194
• Distributor register summary table on page 9-191

All versions

Added powerdown sequence Powerdown sequence on page 2-40 All versions

Made various editorial improvements Throughout the document All versions

Table C-5 Differences between Issue 0002-00 and Issue 0003-01

Change Location Affects

First release for r0p3. - -

Updated 9.4.2 Interrupt distributor interrupt sources. 9.4.2 Interrupt distributor interrupt sources on page 9-189 r0p3

Updated DBGCPUDONE section. DBGCPUDONE on page 10-235 r0p3

Added Limitations of the core and AXI slave port interactions
paragraph.

2.5.5 AXI TCM slave port on page 2-45 r0p3

Updated Preloading TCMs with ECC in 2.3.4 Initialization Preloading TCMs with ECC on page 2-34 r0p3

Updated Asynchronous aborts in 6.2.1 Fault classes Asynchronous aborts on page 6-113 r0p3

C Revisions
C.1 Revisions

100400_0003_01_en Copyright © 2015–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-419

Non-Confidential

	Arm® Cortex®‑R8 MPCore Processor Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the Cortex®‑R8 processor
	1.2 : Compliance
	1.2.1 : Arm® architecture
	1.2.2 : Trace macrocell
	1.2.3 : Advanced Microcontroller Bus Architecture
	1.2.4 : Debug architecture
	1.2.5 : Generic Interrupt Controller architecture

	1.3 : Processor features
	1.4 : Processor interfaces
	1.4.1 : AXI interfaces
	1.4.2 : APB Debug interface
	1.4.3 : ETM/ATB interface
	1.4.4 : CTM interface
	1.4.5 : PMU interface
	1.4.6 : Test interface

	1.5 : Configurable options
	1.6 : Redundant processor core comparison
	1.6.1 : Split/lock

	1.7 : Test features
	1.8 : Product documentation and design flow
	1.8.1 : Documentation
	1.8.2 : Design flow

	1.9 : Product revisions

	2 : Functional Description
	2.1 : About the functions
	2.1.1 : Processor block diagram
	2.1.2 : Components of the Cortex®‑R8 processor
	L1 memory system
	Snoop Control Unit
	Interrupt controller
	Timers
	Debug and Trace
	Split/lock

	2.2 : Interfaces
	2.2.1 : AXI3 interface
	2.2.2 : Debug and PMU APB interface
	2.2.3 : ATB interface
	2.2.4 : DFT interface
	2.2.5 : MBIST controller interface

	2.3 : Clocking, resets, and initialization
	2.3.1 : Clocking
	CLK
	PERIPHCLK
	PERIPHCLKEN
	DUALPERIPHCLK and DUALPERIPHCLKEN

	2.3.2 : Resets
	Cortex®‑R8 processor power up reset
	Individual core power up reset
	Individual core software reset
	Cortex®‑R8 processor debug reset
	Individual core debug reset
	Individual core watchdog flag reset

	2.3.3 : Input synchronization
	2.3.4 : Initialization
	MPU
	FPU
	Caches
	TCM
	Preloading TCMs
	Preloading TCMs with ECC
	Using TCMs from reset

	2.4 : Power management
	2.4.1 : Individual core power management
	Run mode
	Standby modes
	Wait for Interrupt
	Wait for Event

	Standby mode with RAM retention
	Dynamic RAM retention
	Dormant mode
	Shutdown mode
	Communication to the power management controller
	Powerdown sequence

	2.4.2 : Power domains

	2.5 : Processor ports
	2.5.1 : AXI master port 0
	2.5.2 : AXI master port 1
	2.5.3 : AXI low-latency peripheral port
	2.5.4 : AXI Fast Peripheral Port
	Address filtering
	QoS

	2.5.5 : AXI TCM slave port
	Configurable AXI ID bits
	Supported AXI transfers

	2.5.6 : AXI slave Accelerator Coherency Port
	2.5.7 : Memory Reconstruction Port
	2.5.8 : Private memory region

	3 : Programmers Model
	3.1 : About the programmers model
	3.2 : The VFP extension
	3.3 : Multiprocessing extensions
	3.4 : Memory formats
	3.5 : Addresses in the processor

	4 : System Control
	4.1 : About system control
	4.2 : Register summary
	4.2.1 : c0 registers
	4.2.2 : c1 registers
	4.2.3 : c5 registers
	4.2.4 : c6 registers
	4.2.5 : c7 registers
	4.2.6 : c9 registers
	4.2.7 : c13 registers
	4.2.8 : c15 registers
	4.2.9 : System identification, control, and configuration register
	4.2.10 : Fault handling registers
	4.2.11 : MPU registers
	4.2.12 : Cache maintenance operations
	4.2.13 : Interface control and configuration registers
	4.2.14 : Performance monitor registers
	4.2.15 : Miscellaneous system control registers
	4.2.16 : Implementation-defined registers

	4.3 : Register descriptions
	4.3.1 : Main ID Register
	4.3.2 : MPU Type Register
	4.3.3 : Multiprocessor Affinity Register
	4.3.4 : Revision ID Register
	4.3.5 : Cache Size ID Register
	4.3.6 : Cache Level ID Register
	4.3.7 : Auxiliary ID Register
	4.3.8 : Cache Size Selection Register
	4.3.9 : System Control Register
	4.3.10 : Auxiliary Control Register
	4.3.11 : Coprocessor Access Control Register
	4.3.12 : MPU memory region programming registers
	MPU Region Base Address Registers
	MPU Region Size and Enable Registers
	MPU Region Access Control Registers
	MPU Memory Region Number Registers

	4.3.13 : DTCM Region Register
	4.3.14 : ITCM Region Register
	4.3.15 : Power Control Register
	4.3.16 : Cache and TCM Debug Operation Register
	Using the CTDOR

	4.3.17 : RAM Access Data Registers
	4.3.18 : RAM Access ECC Register
	4.3.19 : ECC Error Registers
	4.3.20 : Configuration Base Address Register

	5 : Floating Point Unit Programmers Model
	5.1 : About the FPU programmers model
	5.1.1 : FPU functionality

	5.2 : IEEE 754 standard compliance
	5.2.1 : Implementation of the IEEE 754 standard
	5.2.2 : Supported formats

	5.3 : Instruction throughput and latency
	5.4 : FPU register summary
	5.4.1 : Processor modes for accessing the FPU system registers
	5.4.2 : Accessing the FPU registers

	5.5 : FPU register descriptions
	5.5.1 : Floating-Point System ID Register
	5.5.2 : Floating-Point Status and Control Register
	5.5.3 : Floating-Point Exception Register

	6 : Level 1 Memory System
	6.1 : About the L1 memory system
	6.1.1 : Data cache policy

	6.2 : Fault handling
	6.2.1 : Fault classes
	MPU faults
	External faults
	Debug events
	Synchronous aborts
	Asynchronous aborts
	Asynchronous abort masking
	Memory barriers

	6.2.2 : Fault status information
	Abort exceptions
	Synchronous abort exceptions

	6.2.3 : Usage models
	Correctable errors
	Debugging cache and TCM access

	6.3 : About the TCMs
	6.4 : About the caches
	6.4.1 : Cache maintenance operations
	6.4.2 : Cache error detection and correction
	Error build options
	Address decoder faults
	Handling cache ECC errors
	Errors on instruction cache read
	Errors on evictions
	Errors on cache maintenance operations
	Invalidate all instruction cache
	Invalidate instruction cache by address
	Invalidate data cache by address
	Invalidate data cache by set/way
	Clean data cache by address
	Clean data cache by set/way
	Clean and invalidate data cache by address
	Clean and invalidate data cache by set/way

	6.4.3 : Data cache RAM organization
	Tag RAM
	Data RAM
	Data RAM sizes without ECC implemented
	Data RAM sizes with ECC implemented

	6.4.4 : Cache interaction with memory system
	Disabling or enabling instruction cache
	Disabling or enabling data cache
	Disabling or enabling error checking
	PLD instruction
	PLI instruction

	6.5 : Local exclusive monitor
	6.6 : Memory types and L1 memory system behavior
	6.7 : Error detection events

	7 : Fault Detection
	7.1 : About fault detection
	7.1.1 : RAM and logic protection
	7.1.2 : Analysis of errors

	7.2 : RAM protection
	7.2.1 : Protection method
	Detecting errors
	Correcting errors
	Handling permanent errors
	Reporting errors

	7.2.2 : RAM protection summary table
	7.2.3 : ECC on RAMs
	RAM targeted
	Basic scheme
	Auto-check mechanism
	MBIST for full RAM analysis

	7.2.4 : ECC codes
	7.2.5 : RAM configuration
	7.2.6 : Performance impact

	7.3 : Logic protection
	7.4 : External memory and bus protection
	7.4.1 : Reporting errors
	7.4.2 : ECC on external AXI bus

	7.5 : Programmers view
	7.5.1 : Processor registers
	7.5.2 : SCU registers used in ECC
	7.5.3 : Error detection notification signals

	7.6 : Lock-step
	7.7 : Static split/lock

	8 : Determinism Support
	8.1 : About determinism support
	8.2 : Memory Protection Unit
	8.2.1 : Regions
	Memory regions
	Region base address
	Region size
	Subregions
	Region attributes
	Region access permissions

	Overlapping regions
	Example of using regions that overlap
	Example of using subregions

	Background regions
	TCM regions

	8.2.2 : Memory types
	Using memory types

	8.2.3 : Region attributes
	Cacheable memory policies

	8.2.4 : MPU interaction with memory system
	8.2.5 : MPU faults
	Background fault
	Permission fault
	Alignment fault

	8.2.6 : MPU software-accessible registers

	8.3 : Branch prediction
	8.4 : Low-latency interrupt mode
	8.5 : System configurability and QoS
	8.6 : Instruction and data TCM

	9 : Multiprocessing
	9.1 : About multiprocessing and the SCU
	9.2 : Multiprocessing programmers view
	9.3 : SCU registers
	9.3.1 : SCU Control Register
	9.3.2 : SCU Configuration Register
	9.3.3 : SCU CPU Power Status Register
	9.3.4 : SCU Invalidate All Register
	9.3.5 : Master Filtering Start Address Register
	9.3.6 : Master Filtering End Address Register
	9.3.7 : LLP Filtering Start Address Register
	9.3.8 : LLP Filtering End Address Register
	9.3.9 : SCU Access Control Register
	9.3.10 : SCU Error Bank First Entry Register
	9.3.11 : SCU Error Bank Second Entry Register
	9.3.12 : SCU Debug tag RAM access
	SCU Debug Tag RAM Operation Register
	SCU Debug Tag RAM Data Value Register
	SCU Debug Tag RAM ECC Chunk Register

	9.3.13 : ECC Fatal Error Register
	9.3.14 : FPP Filtering Start Address Registers 0-3
	9.3.15 : FPP Filtering End Address Registers 0-3

	9.4 : Interrupt controller
	9.4.1 : Interrupt controller clock frequency
	9.4.2 : Interrupt distributor interrupt sources
	9.4.3 : Priority formats
	9.4.4 : Distributor register descriptions
	Distributor register summary table
	Distributor Control Register
	Interrupt Controller Type Register
	Interrupt Core Targets Registers
	Interrupt Configuration Registers
	Distributor Implementer Identification Register
	PPI Status Register
	SPI Status Registers
	Identification registers

	9.4.5 : Interrupt interface register descriptions
	Core interface register summary table
	CPU Interface Implementer Identification Register

	9.5 : Private timer and watchdog
	9.5.1 : Calculating timer intervals
	9.5.2 : Private timer and watchdog registers
	Private Timer Load Register
	Private Timer Counter Register
	Private Timer Control Register
	Private Timer Interrupt Status Register
	Watchdog Load Register
	Watchdog Counter Register
	Watchdog Control Register
	Watchdog Interrupt Status Register
	Watchdog Reset Status Register
	Watchdog Disable Register

	9.6 : Global timer
	9.6.1 : Global timer registers
	Global Timer Counter Registers
	Global Timer Control Register
	Global Timer Interrupt Status Register
	Comparator Value Registers
	Auto-increment Register

	9.7 : Accelerator Coherency Port
	9.7.1 : Coherent and noncoherent mode
	9.7.2 : Read accesses in coherent mode
	9.7.3 : Write accesses in coherent mode
	9.7.4 : AXI protocol configurability, xIDSC, and AxUSERSC
	9.7.5 : AXI protocol restrictions
	9.7.6 : ACP bridge

	10 : Monitoring, Trace, and Debug
	10.1 : Performance Monitoring Unit
	10.1.1 : PMU register mappings
	10.1.2 : PMU management registers
	Processor ID Registers
	CoreSight™ Identification Registers
	PMU APB interface

	10.1.3 : Performance monitoring events

	10.2 : Memory Reconstruction Port
	10.3 : Embedded Trace Macrocell
	10.4 : Debug
	10.4.1 : Debug events
	10.4.2 : Debug registers
	Register interfaces
	Debug register mapping table
	Debug register descriptions
	Debug ID Register, DBGDIDR
	Debug Status and Control Register, DBGDSCR
	Debug Run Control Register, DBGDRCR
	Device Powerdown and Reset Control Register, DBGPRCR
	Device Powerdown and Reset Status Register, DBGPRSR
	Debug Device ID Register 1
	Debug Device ID Register 0
	Breakpoint and Watchpoint Registers, DBGBVRn, DBGBCRn, DBGWVRn, and DBGWCRn

	Effects of resets on debug registers
	Debug management registers
	Processor ID Registers
	CoreSight Identification Registers

	10.4.3 : External debug interface
	Authentication signals
	Debug APB interface
	External debug request interface
	EDBGRQ
	DBGACK
	DBGCPUDONE
	COMMRX and COMMTX
	DBGROMADDR and DBGSELFADDR

	10.4.4 : Trigger inputs and outputs

	11 : Embedded Trace Macrocell
	11.1 : About the ETM
	11.1.1 : The CoreSight™ debug environment
	11.1.2 : Features
	11.1.3 : Interfaces
	11.1.4 : Configurable options
	11.1.5 : Test features

	11.2 : Functional description
	11.2.1 : Processor interface
	11.2.2 : Instruction trace generator
	11.2.3 : Data trace generator
	11.2.4 : FIFO
	11.2.5 : Resources and filtering logic
	11.2.6 : ATB interface
	11.2.7 : APB interface
	11.2.8 : Global timestamping

	11.3 : Interfaces
	11.3.1 : Core PMU connectivity

	11.4 : Clocking and resets
	11.4.1 : Cortex®‑R8 processor ETM clock
	11.4.2 : Cortex®‑R8 processor ETM low-power control
	11.4.3 : Cortex®‑R8 processor ETM reset
	11.4.4 : Access permissions and power domains

	11.5 : Operation
	11.5.1 : Implementation-defined registers
	11.5.2 : Precise TraceEnable events
	11.5.3 : Parallel instruction execution
	11.5.4 : Context ID tracing
	11.5.5 : Trace and comparator features
	Trace features
	Comparator features

	11.5.6 : Data address range filtering
	11.5.7 : Interaction with the PMU
	11.5.8 : Packet formats
	11.5.9 : Resource selection
	11.5.10 : Trace flush behavior
	11.5.11 : Low-power state behavior
	11.5.12 : Cycle counter
	11.5.13 : Micro-architectural exceptions
	11.5.14 : Synchronization

	11.6 : Controlling ETM programming
	11.7 : ETM registers
	11.7.1 : Cortex®‑R8 processor ETM register summary
	11.7.2 : Functional grouping of registers
	General control and ID registers
	Trace filtering control registers
	Derived resource registers
	Implementation-specific and identification registers
	Resource selection registers
	Single-shot comparator registers
	OS lock and power control registers
	Comparator registers
	Integration test registers
	CoreSight™ management registers

	11.8 : Register descriptions
	11.8.1 : Programming Control Register
	11.8.2 : Processor Select Control Register
	11.8.3 : Status Register
	11.8.4 : Trace Configuration Register
	11.8.5 : Auxiliary Control Register
	11.8.6 : Event Control 0 Register
	11.8.7 : Event Control 1 Register
	11.8.8 : Stall Control Register
	11.8.9 : Global Timestamp Control Register
	11.8.10 : Synchronization Period Register
	11.8.11 : Cycle Count Control Register
	11.8.12 : Branch Broadcast Control Register
	11.8.13 : Trace ID Register
	11.8.14 : ViewInst Main Control Register
	11.8.15 : ViewInst Include/Exclude Control Register
	11.8.16 : ViewInst Start/Stop Control Register
	11.8.17 : ViewData Main Control Register
	11.8.18 : ViewData Include/Exclude Single Address Comparator Register
	11.8.19 : ViewData Include/Exclude Address Range Comparator Register
	11.8.20 : Sequencer State Transition Control Registers 0-2
	11.8.21 : Sequencer Reset Control Register
	11.8.22 : Sequencer State Register
	11.8.23 : External Input Select Register
	11.8.24 : Counter Reload Value Registers 0-1
	11.8.25 : Counter Control Register 0
	11.8.26 : Counter Control Register 1
	11.8.27 : Counter Value Registers 0-1
	11.8.28 : ID Register 8-13
	11.8.29 : Implementation Specific Register 0
	11.8.30 : ID Register 0
	11.8.31 : ID Register 1
	11.8.32 : ID Register 2
	11.8.33 : ID Register 3
	11.8.34 : ID Register 4
	11.8.35 : ID Register 5
	11.8.36 : Resource Selection Registers 2-16
	11.8.37 : Single-Shot Comparator Control Registers 0-1
	11.8.38 : Single-Shot Comparator Status Registers 0-1
	11.8.39 : OS Lock Access Register
	11.8.40 : OS Lock Status Register
	11.8.41 : Power Down Control Register
	11.8.42 : Power Down Status Register
	11.8.43 : Address Comparator Value Registers 0-7
	11.8.44 : Address Comparator Access Type Registers 0-7
	11.8.45 : Data Value Comparator Value Registers 0-1
	11.8.46 : Data Value Comparator Mask Registers 0-1
	11.8.47 : Context ID Comparator Control Register 0
	11.8.48 : Context ID Comparator Value Register 0
	11.8.49 : Integration Mode Control Register
	11.8.50 : Claim Tag Set Register
	11.8.51 : Claim Tag Clear Register
	11.8.52 : Device Affinity Register
	11.8.53 : Software Lock Access Register
	11.8.54 : Software Lock Status Register
	11.8.55 : Authentication Status Register
	11.8.56 : Device Architecture Register
	11.8.57 : Device ID Register
	11.8.58 : Device Type Register
	11.8.59 : Peripheral Identification Registers
	11.8.60 : Component Identification Registers
	11.8.61 : Integration Test Registers
	Output signals that the Integration Test Registers can control
	Input signals that the Integration Test Registers can read
	Using the Integration Test Registers
	Integration Miscellaneous Outputs Register
	Integration Miscellaneous Inputs Register
	Integration ATB Identification Register
	Integration Data ATB Data Register
	Integration Instruction ATB Data Register
	Integration Data ATB In Register
	Integration Instruction ATB In Register
	Integration Data ATB Out Register
	Integration Instruction ATB Out Register

	12 : Level 2 Interface
	12.1 : About the L2 interface
	12.1.1 : Supported AXI3 transfers
	12.1.2 : AXI3 USER bits
	Read address channel of AXI master 0, ARUSERM0[9:0]
	Read address channel of AXI master 1, ARUSERM1[9:0]
	Read address bus of AXI low-latency peripheral, ARUSERMP[9:0]
	Write address channel of AXI master 0, AWUSERM0[11:0]
	Write address channel of AXI master 1, AWUSERM1[11:0]
	Write address bus of AXI low-latency peripheral, AWUSERMP[11:0]
	Write data channel of AXI master 0, WUSERM0[2:0]
	Write data channel of AXI master 1, WUSERM1[2:0]
	Write data bus of AXI low-latency peripheral, WUSERMP[2:0]

	12.2 : Optimized accesses to the L2 memory interface
	12.2.1 : Early BRESP
	12.2.2 : SCU speculative coherent requests

	12.3 : Accessing RAMs using the AXI3 interface
	12.4 : STRT instructions
	12.5 : Event communication with an external agent using WFE/SEV
	12.6 : Accelerator Coherency Port interface
	12.6.1 : ACP requests
	12.6.2 : ACP limitations
	ACP performance limitations
	ACP functional limitations

	A : Signal Descriptions
	A.1 : About the signal descriptions
	A.2 : Clock and control signals
	A.3 : Reset signals
	A.4 : Interrupt controller signals
	A.5 : Configuration signals
	A.6 : Standby signals
	A.6.1 : Standby and Wait for event signals
	A.6.2 : Event signals

	A.7 : Power management signals
	A.8 : AXI3 interfaces
	A.8.1 : AXI master interface signals
	AXI master interface clock enable signals
	AXI master interface read address signals
	AXI master interface read data signals
	AXI master interface write address signals
	AXI master interface write data signals
	AXI master interface write response signals

	A.8.2 : AXI fast peripheral port signals
	AXI fast peripheral clock enable signals
	AXI fast peripheral port read address signals
	AXI fast peripheral port read data signals
	AXI fast peripheral port write address signals
	AXI fast peripheral port write data signals
	AXI fast peripheral port write response signals

	A.8.3 : AXI low-latency peripheral port signals
	AXI low-latency peripheral clock enable signals
	AXI low-latency peripheral port read address signals
	AXI low-latency peripheral port read data signals
	AXI low-latency peripheral port write address signals
	AXI low-latency peripheral port write data signals
	AXI low-latency peripheral port write response signals

	A.8.4 : AXI ACP slave port signals
	AXI ACP slave port clock enable signal
	AXI ACP slave port read address signals
	AXI ACP slave port read data signals
	AXI ACP slave port write address signals
	AXI ACP slave port write data signals
	AXI ACP slave port write response signals

	A.8.5 : AXI TCM slave port signals
	AXI TCM slave port clock enable signal
	AXI TCM slave port read address signals
	AXI TCM slave port read data signals
	AXI TCM slave port write address signal
	AXI TCM slave port write data signals
	AXI TCM slave port write response signals

	A.9 : Performance monitoring signals
	A.10 : Exception flag signals
	A.11 : Error detection notification signals
	A.11.1 : Error detection global notification signals
	A.11.2 : RAM ECC error bank status signals
	A.11.3 : Bus ECC error signals on AXI master ports
	A.11.4 : Bus ECC error signals on AXI fast peripheral port
	A.11.5 : Bus ECC error signals on AXI low-latency peripheral port
	A.11.6 : Bus ECC error signals on AXI ACP slave port
	A.11.7 : Bus ECC error signals on AXI TCM slave port
	A.11.8 : Lock-step and split/lock signals

	A.12 : Test interface
	A.13 : MBIST interface
	A.13.1 : L1 and DTCM Cortex®‑R8 processor MBIST interface width without ECC
	A.13.2 : L1 and DTCM Cortex®‑R8 processor MBIST interface width with ECC
	A.13.3 : ITCM Cortex®‑R8 processor MBIST interface width without ECC
	A.13.4 : ITCM Cortex®‑R8 processor MBIST interface width with ECC

	A.14 : External debug signals
	A.14.1 : Debug enable signals
	A.14.2 : Debug signals
	A.14.3 : Miscellaneous debug signals
	A.14.4 : Debug APB interface signals

	A.15 : ETM signals
	A.15.1 : Processor trace interface signals
	A.15.2 : ETM APB signals
	A.15.3 : ETM ATB signals for instruction trace
	A.15.4 : ETM ATB signals for data trace
	A.15.5 : ETM Miscellaneous signals
	A.15.6 : CTI signals

	A.16 : Memory reconstruction port signals
	A.17 : Power gating interface signals

	B : Cycle Timings and Interlock Behavior
	B.1 : About instruction cycle timing
	B.2 : Data-processing instructions
	B.3 : Load and store instructions
	B.3.1 : Single load and store operation cycle timings
	B.3.2 : Load multiple operations cycle timings
	B.3.3 : Store multiple operations cycle timings

	B.4 : Multiplication instructions
	B.5 : Branch instructions
	B.6 : Serializing instructions

	C : Revisions
	C.1 : Revisions

