
ARM® CoreLink™ GIC-600 Generic
Interrupt Controller

Revision: r0p2

Technical Reference Manual

Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved.
ARM 100336_0002_01_en

ARM® CoreLink™ GIC-600 Generic Interrupt Controller
Technical Reference Manual
Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 29 July 2016 Confidential First release for r0p0

0000-01 26 October 2016 Confidential Second release for r0p0

0001-00 31 March 2017 Confidential First release for r0p1

0002-00 07 June 2017 Confidential First release for r0p2

0002-01 15 June 2017 Non-Confidential Second release for r0p2

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2016, 2017, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

 ARM® CoreLink™ GIC-600 Generic Interrupt Controller

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 ARM® CoreLink™ GIC-600 Generic Interrupt Controller

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
ARM® CoreLink™ GIC-600 Generic Interrupt
Controller Technical Reference Manual

Preface
About this book 7
Feedback .. 10

Chapter 1 Introduction
1.1 About the GIC-600 1-12
1.2 Components 1-13
1.3 Compliance .. 1-17
1.4 Features 1-18
1.5 Test features .. 1-19
1.6 Product documentation .. 1-20
1.7 Product revisions 1-21

Chapter 2 Components and configuration
2.1 Distributor 2-23
2.2 Redistributor 2-29
2.3 ITS 2-32
2.4 MSI-64 Encapsulator 2-37
2.5 SPI Collator 2-40
2.6 Wake Request 2-42
2.7 Interconnect 2-43
2.8 Top-level interfaces .. 2-44

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4
Non-Confidential

2.9 Top-level configuration 2-46

Chapter 3 Single-chip operation
3.1 Interrupt types .. 3-48
3.2 Single chip operation 3-50

Chapter 4 Programmers model
4.1 The GIC-600 registers 4-84
4.2 Distributor registers (GICD/GICDA) summary 4-86
4.3 Distributor registers (GICA) for message-based SPIs summary 4-97
4.4 Redistributor registers for control and physical LPIs summary 4-98
4.5 Redistributor registers for SGIs and PPIs summary .. 4-107
4.6 ITS control register summary 4-113
4.7 ITS translation register summary 4-122
4.8 GICT register summary 4-123
4.9 GICP register summary 4-138

Appendix A Signal descriptions
A.1 Common control signals Appx-A-153
A.2 Power control signals Appx-A-155
A.3 Interrupt signals Appx-A-156
A.4 CPU interface signals Appx-A-157
A.5 ACE interface signals Appx-A-158
A.6 Miscellaneous signals .. Appx-A-163
A.7 Interblock signals Appx-A-164
A.8 Interdomain signals .. Appx-A-166

Appendix B Implementation-defined features
B.1 Implementation-defined features reference Appx-B-168

Appendix C Revisions
C.1 Revisions Appx-C-171

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the ARM® CoreLink™ GIC-600 Generic Interrupt Controller Technical Reference
Manual.

It contains the following:
• About this book on page 7.
• Feedback on page 10.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 6
Non-Confidential

 About this book
This book is for the ARM® CoreLink™ GIC-600 Generic Interrupt Controller.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the GIC-600.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the GIC-600 and its features.

Chapter 2 Components and configuration
Read this for a description of the major components of the GIC-600.

Chapter 3 Single-chip operation
Read this for an operational description of the GIC-600 that is configured in a single-chip system.

Chapter 4 Programmers model
Read this for a description of the memory map and registers, and for information about
programming the device.

Appendix A Signal descriptions
Read this for a description of the input and output signals.

Appendix B Implementation-defined features
Read this for a description of the IMPLEMENTATION-DEFINED features.

Appendix C Revisions
Read this for a description of changes between released issues of this book.

Glossary

The ARM® Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 About this book

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 7
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name denotes an active-LOW signal.

 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter http://infocenter.arm.com, for access to ARM documentation.

 Preface
 About this book

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 8
Non-Confidential

http://infocenter.arm.com

ARM publications
This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARM® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).
• ARM® AMBA® 4 AXI4-Stream Protocol Specification (ARM IHI 0051).
• AMBA® Low Power Interface Specification, ARM® Q-Channel and P-Channel Interfaces

(ARM IHI 0068).
• ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0

and version 4.0 (ARM IHI 0069).
• ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture profile

(ARM DDI 0487).
• ARM® GICv3 and GICv4 Software Overview (ARM DAI 0492).

The following confidential books are only available to licensees:
• ARM® CoreLink™ GIC-600 Generic Interrupt Controller Configuration and Integration

Manual (ARM 100337).
• ARM® Reliability, Availability, and Serviceability (RAS) Architecture Extension

(ARM PRD03-PRDC-010953).
• ARM® CoreLink™ ADB-400 AMBA® Domain Bridge User Guide (ARM DUI 0615).

 Preface
 About this book

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 9
Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title ARM CoreLink GIC-600 Generic Interrupt Controller Technical Reference Manual.
• The number ARM 100336_0002_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 10
Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

Read this for an introduction to the GIC-600 and its features.

It contains the following sections:
• 1.1 About the GIC-600 on page 1-12.
• 1.2 Components on page 1-13.
• 1.3 Compliance on page 1-17.
• 1.4 Features on page 1-18.
• 1.5 Test features on page 1-19.
• 1.6 Product documentation on page 1-20.
• 1.7 Product revisions on page 1-21.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

1.1 About the GIC-600
The GIC-600 is a generic interrupt controller that handles interrupts from peripherals to the cores and
between cores. The GIC-600 supports a distributed microarchitecture containing several individual
blocks that are used to provide a flexible GIC implementation.

The GIC-600 supports the GICv3 architecture, see ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

The microarchitecture scales from a single core to coherent, unified, and consistent, multichip
environments containing up to 16 chips of up to 512 cores each.

 Note

This manual defines a chip as a SoC that is integrated with the GIC-600. A single-chip system has one
SoC. A multichip system can have several SoCs that are connected externally, or a SoC comprising
several SoCs connected inside a single physical package. In all cases, each SoC is integrated with the
GIC-600.

All the GIC-600 blocks communicate through fully credited AXI4-Stream interface channels. Channels
can be routed over dedicated AXI4-Stream buses, or over any available free-flowing transport layer in
the system. A channel is described as free-flowing if all transactions on that channel complete without a
non-transient dependency on any other transaction.

The GIC-600 includes build scripts that can create appropriate levels of hierarchy for any particular
configuration. In small configurations, the distribution can be hidden and internally optimized.

 Note

The microarchitecture for product versions r0p0, r0p1, and r0p2 is limited to a maximum of 16 cores on
a single chip.

1 Introduction
1.1 About the GIC-600

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-12
Non-Confidential

1.2 Components
The GIC-600 comprises several significant blocks that work in combination to create a single
architecturally compliant GICv3 implementation within the system. The GIC-600 top level can have one
of several optional structures.

The GIC-600 consists of the following blocks:

Distributor
The Distributor is the hub of all the GIC communications and contains the functionality for all
Shared Peripheral Interrupts (SPIs) and Locality-specific Peripheral Interrupts (LPIs). It is
responsible for the entire GIC programmers model, except for the GITS_TRANSLATER
register, which is hosted in the Interrupt Translation Service (ITS) block.

 Note

The LPI functionality for all cores on a chip is combined into a single cache in the Distributor.

See 2.1 Distributor on page 2-23.

Redistributor
The Redistributor maintains the Private Peripheral Interrupts (PPIs) and Software Generated
Interrupts (SGIs) for a particular core set. A Redistributor can scale from 1-128 cores and is best
placed next to the processors that it is servicing to reduce wiring to the cores.

A Redistributor is also referred to as a PPI block.

The GICv3 architecture specifies a Redistributor address space containing two pages per core.
The SGI page functionality is contained in the GIC-600 Redistributor. However, the command
and control page for all cores is contained in the Distributor.

The GIC-600 supports powering down the Redistributors and the associated cores.

See 2.2 Redistributor on page 2-29.

Interrupt Translation Service
The ITS translates message-based interrupts, Message-Signaled Interrupts (MSI/MSIx), from
PCI Express (PCIe) or other sources. The ITS also manages LPIs during core power
management.

The GIC-600 supports up to 16 ITS blocks per chip.

See 2.3 ITS on page 2-32.

For more information about the ITS, see ARM® GICv3 and GICv4 Software Overview.

MSI-64 Encapsulator
The MSI-64 Encapsulator is a small block that combines the DeviceID (DID), required by
writes to the GITS_TRANSLATER register, into a single memory access.

See 2.4 MSI-64 Encapsulator on page 2-37.

SPI Collator
The GIC-600 supports up to 960 SPIs that are spread across the system. The SPI Collator
enables SPIs to be converted into messages remotely from the Distributor. This enables
hierarchical clock-gating of the Distributor and the use of other more aggressive low-power
states.

See 2.5 SPI Collator on page 2-40.

1 Introduction
1.2 Components

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-13
Non-Confidential

Wake Request
The Wake Request contains all the architecturally defined wake_request signals for each core
on the chip. It is a separate block that can be positioned remotely from the Distributor, such as
next to a system control processor if necessary.

See 2.6 Wake Request on page 2-42.

GIC Interconnect
The GIC Interconnect is a set of components that can be used for routing the AXI4-Stream
interfaces between the different blocks.

See 2.7 Interconnect on page 2-43.

Top level
The top level has no specific interfaces but combines the interfaces of other blocks within the
domain to reduce the number of domain bridges. The GIC-600 build scripts enable you to build
the GIC from a single combined block or a set of individual blocks that are interconnected using
your own transport layer.

See 2.8 Top-level interfaces on page 2-44.

These blocks can be combined in different ways:

• In systems where there is an available free-flowing transport layer in place, existing buses can be
used to route the GIC traffic.

• The GIC-600 includes a narrow, 16-bit, AXI4-Stream interconnect that can be used for routing
internal traffic.

The following figure shows a GIC-600 with a free-flowing interconnect in an example system.

Distributor

PCIe Root
Complex

System Memory Management Unit
(SMMU)

ITS

Free-flowing interconnect

Core cluster

Redistributor

SPI
Collator

SPIs

Programming
interface

DMC

Core cluster

Redistributor

GIC-600
components

Key

Free-flowing channel

Wake
Request

Figure 1-1 GIC-600 with free-flowing interconnect in an example system

1 Introduction
1.2 Components

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-14
Non-Confidential

 Note

A free-flowing channel is clear to transmit a transaction that arrives at its destination without any non-
transient dependencies on other transactions.

The following figure shows a GIC-600 with interconnect in an example system.

Distributor

PCIe Root
Complex

SMMU

ITS

GIC interconnect

Core cluster Core cluster

Redistributor
SPI

Collator

SPIs

Programming
interface

DMC

GIC-600
components

Key

Redistributor

Free-flowing channel

The following figure shows a monolithic GIC-600 with interconnect in an example system.

Figure 1-2 GIC-600 with interconnect in an example system

1 Introduction
1.2 Components

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-15
Non-Confidential

Distributor

PCIe Root
Complex

SMMU

GIC interconnect

Core cluster Core cluster

Redistributor
SPI

Collator

SPIs

Programming
and ITS

interfaces

DMC

GIC-600
components

Key

Redistributor

Free-flowing channel

ITS

Figure 1-3 Monolithic GIC-600 with interconnect in an example system

 Note

If the GIC supports LPIs, there must be free-flowing access to main memory. This requirement is
irrespective of the interconnect that is used for routing the AXI4-Stream interfaces. For more
information, see Chapter 3, Key integration points of the ARM® CoreLink™ GIC-600 Generic Interrupt
Controller Configuration and Integration Manual.

The GIC-600 supports cores that implement only the ARMv8 architecture, and later versions, and the
GIC CPU interface with the standard GIC AXI4-Stream protocol interface. The GIC-600 implements
version 3.0 of the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0, to enable support for:
• ARMv8 cores and later versions.
• Physical interrupt signals.
• SGIs.
• Interrupts that are generated by writing to the ACE-Lite slave port, and are known as message-based

interrupts.
• Multiple distributed ITS that provides ID translation and core migration for message-based interrupts.

1 Introduction
1.2 Components

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-16
Non-Confidential

1.3 Compliance
The GIC-600 interfaces are compliant with ARM specifications and protocols.

The GIC-600 is compliant with:

• The AMBA AXI4-Stream protocol. See ARM® AMBA® AXI and ACE Protocol Specification.
• Version 3.0 of the ARM GIC architecture specification. See ARM® Generic Interrupt Controller

Architecture Specification, GIC architecture version 3.0 and version 4.0.

The GIC Stream protocol is based on the following specifications:
• The AMBA AXI4-Stream protocol. See ARM® AMBA® 4 AXI4-Stream Protocol Specification.
• The GIC Stream Protocol Interface. See ARM® Generic Interrupt Controller Architecture

Specification, GIC architecture version 3.0 and version 4.0.

Related information
ARM® AMBA® AXI and ACE Protocol Specification.
ARM® Generic Interrupt Controller Architecture Specification, version 3.0 and version 4.0.

1 Introduction
1.3 Compliance

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-17
Non-Confidential

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022-/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0069-/index.html

1.4 Features
The GIC-600 provides interrupt services and masking, registers and programming, interrupt Exception
level grouping, security, performance monitoring, and error correction.

Interrupt services and masking:

• Support for the following interrupt types:
— Up to 56000 LPIs. A peripheral generates these interrupts by writing to a memory-mapped

register in the GIC-600. See 2.1.6 Distributor configuration on page 2-27.
— Up to 960 SPIs in groups of 32. See 2.1.6 Distributor configuration on page 2-27.
— Up to 16 PPIs that are independent for each core and can be programmed to support either edge-

triggered or level-sensitive interrupts. See 2.2.6 Redistributor configuration on page 2-31.
— Up to 16 SGIs that are generated either by using software to write to the GICD_SGIR register,

which controls the generation of SGIs, or through the GIC CPU interface of a core.
• Up to 16 ITS modules that provide device isolation and ID translation for message-based interrupts

and enable virtual machines to program devices directly.
• Interrupt masking and prioritization with 32 priority levels, five bits per interrupt.

Registers and programming:

• Flexible affinity routing, using the Multiprocessor Identification Register (MPIDR) addresses,
including support for all four affinity levels.

• Single ACE-Lite slave port on each chip for programming of all GIC Distributor (GICD) registers,
GIC Interrupt Translation Service (GITS) registers, and GIC Redistributor (GICR) registers. Each
ITS has an optional ACE-Lite slave port for programming the GITS_TRANSLATER register.

 Note

For more information about Exception levels, see the ARM® Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile.

Security:

• A global Disable Security (DS) bit. This bit enables support for systems with and without security.
• The following interrupt groups allow interrupts to target different Exception levels:

— Group 0.
— Non-secure Group 1.
— Secure Group 1.

See 3.2.7 Security on page 3-56 for more information about security and groupings.

Performance monitoring. Performance Monitoring Unit (PMU) counters with snapshot functionality.

Error correction:
• ARMv8.2 Reliability Accessibility Serviceability (RAS) architecture-compliant error reporting for:

— Software access errors.
— ITS command errors.
— ECC errors.

1 Introduction
1.4 Features

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-18
Non-Confidential

1.5 Test features
The GIC-600 provides Design for Test (DFT) signals for test mode.

Related references
A.1 Common control signals on page Appx-A-153.

1 Introduction
1.5 Test features

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-19
Non-Confidential

1.6 Product documentation
Documentation that is provided with this product includes a Technical Reference Manual (TRM) and a
Configuration and Integration Manual (CIM), together with architecture and protocol information.

For relevant protocol and architectural information that relates to this product, see Additional reading
on page 8.

The GIC-600 documentation is as follows:

Technical Reference Manual
The TRM describes the functionality and the effects of functional options on the behavior of the
GIC-600. It is required at all stages of the design flow. The choices that are made in the design
flow can mean that some behaviors that the TRM describes are not relevant. If you are
programming the GIC-600, contact:
• The implementer to determine:

— The build configuration of the implementation.
— What integration, if any, was performed before implementing the GIC-600.

• The integrator to determine the signal configuration of the device that you use.

The TRM complements architecture and protocol specifications and relevant external standards.
It does not duplicate information from these sources.

Configuration and Integration Manual
The CIM describes:
• The available build configuration options.
• How to configure the Register Transfer Level (RTL) with the build configuration options.
• How to integrate the GIC-600 into a SoC.
• How to implement the GIC-600 into your design.
• The processes to validate the configured design.

The ARM product deliverables include reference scripts and information about using them to
implement your design.

The CIM is a confidential book that is only available to licensees.

1 Introduction
1.6 Product documentation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-20
Non-Confidential

1.7 Product revisions
This section describes the differences in functionality between product revisions:

r0p0 First release.
r0p0-r0p1 Functional changes are:

• Bug fixes.

r0p1-r0p2 Functional changes are:
• Bug fixes.

1 Introduction
1.7 Product revisions

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 1-21
Non-Confidential

Chapter 2
Components and configuration

Read this for a description of the major components of the GIC-600.

It contains the following sections:
• 2.1 Distributor on page 2-23.
• 2.2 Redistributor on page 2-29.
• 2.3 ITS on page 2-32.
• 2.4 MSI-64 Encapsulator on page 2-37.
• 2.5 SPI Collator on page 2-40.
• 2.6 Wake Request on page 2-42.
• 2.7 Interconnect on page 2-43.
• 2.8 Top-level interfaces on page 2-44.
• 2.9 Top-level configuration on page 2-46.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

2.1 Distributor
The Distributor is the main communication point between all GIC-600 blocks. It performs SPI and LPI
caching, and all communications with other blocks and chips.

The following figure shows the Distributor and its interfaces.

GIC-600
Distributor

SPI
Collator

ACE-Lite
slave

ACE-Lite
master

AXI4-Stream
ITS

AXI4-Stream
Redistributor

Wake
Request

Q-Channel

SPIs

SPI_r

Power controller

Figure 2-1 GIC-600 Distributor

The Distributor is the main hub of the GIC and it implements most of the GICv3 architecture including:
• Programming, forwarding, and prioritization of SPIs, see 3.1.3 SPIs on page 3-48.
• Caching and forwarding of LPIs, see 3.1.4 LPIs on page 3-49.
• SGI routing and forwarding.
• Register programming of all registers apart from GITS_TRANSLATER.
• Power control of cores and Redistributor blocks.

This section contains the following subsections:
• 2.1.1 Distributor AXI4-Stream interfaces on page 2-24.
• 2.1.2 Distributor ACE-Lite slave interface on page 2-24.
• 2.1.3 Distributor ACE-Lite master interface on page 2-25.
• 2.1.4 Distributor Q-Channels on page 2-26.
• 2.1.5 Distributor miscellaneous signals on page 2-26.
• 2.1.6 Distributor configuration on page 2-27.

2 Components and configuration
2.1 Distributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

2.1.1 Distributor AXI4-Stream interfaces

The GIC-600 uses AXI4-Stream interfaces to communicate between blocks.

These interfaces are fully credited, therefore they never exert anything other than transient backpressure
on their ic<xy>dtready signals. This enables packets to be routed over any available free-flowing
interconnect.

 Note

• ic<xy> can be cd, pd, id, dp, di.
• Packets must not be reordered between endpoints, for example, between the Distributor and a single

Redistributor block, irrespective of the interconnect that is used. Packets must never be interleaved.

For information about AXI4-Stream signals, see the ARM® AMBA® 4 AXI4-Stream Protocol
Specification.

The following table lists the AXI4-Stream input interfaces.

Table 2-1 AXI4-Stream input interface descriptions

Bus Destination Width ic<xy>dtdest

ICID ITS to Distributor 16-bit or 64-bit ITS number

ICPD Redistributor to Distributor 16-bit, 32-bit, or 64-bit Redistributor number

ICCD SPI Collator to Distributor 16-bit 0

The following table lists the AXI4-Stream output interfaces.

Table 2-2 AXI4-Stream output interface descriptions

Bus Destination Width ic<xy>dtid

ICDI Distributor to ITS 16-bit or 64-bit ITS number

ICDP Distributor to Redistributor 16-bit, 32-bit, or 64-bit Redistributor number

ICDC Distributor to SPI Collator 16-bit 0

ICDW Distributor to Wake Request block 16-bit -

Each bus has an associated ic<xy>twakeup signal that requests wakeup through the qactive signals
when the Distributor, or destination block, is hierarchically clock-gated through the Q-Channel. The
ic<xy>twakeup input signal must be driven from a cleanly registered version of the ic<xy>dtvalid
signal to prevent spurious wakeups caused by signal glitches.

To ease integration, an arbitrary set of these stream interfaces can be combined into a single port. In this
case, an ic<xy>dtdest value for the inputs and an ic<xy>dtid for the outputs is assigned with a number
that increments in the same order as the rows shown in the interface description tables.

2.1.2 Distributor ACE-Lite slave interface

The ACE-Lite slave port on the GIC-600 Distributor provides access to the entire register map except for
the GITS_TRANSLATER registers. The interface supports either 64-bit, 128-bit, or 256-bit data widths.

The GIC-600 only accepts single beat accesses of the sizes for each register that are shown in the
Programmers model, see Chapter 4 Programmers model on page 4-83. All other accesses are rejected
and given either an OK or SLVERR response that is based on the GICT_ERR0CTLR.UE bit.

2 Components and configuration
2.1 Distributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

When the GIC-600 is a monolithic configuration, the Distributor and ITS both share an ACE-Lite slave
port, and the DeviceID for the ITS translation is taken from awuser_s[DEVICE_ID_WIDTH+2:3]. See
2.3 ITS on page 2-32, for more information about the ITS.

 Note

The a<x>user_s[2:0] signals are not used and must be tied to 0.

Table 2-3 Acceptance capabilities

Attribute Capability

Combined acceptance capability 3

Read acceptance capability 2

Read data reorder depth 1

Write acceptance capability 2

The GIC-600 uses a<x>cache_s, a<x>domain_s, and a<x>bar_s signals to detect cache maintenance
operations and barrier transactions that are responded to in a protocol-compliant manner but are
otherwise ignored. The GIC-600 also ignores other cachability, shareability, and protection settings
except Security, a<x>prot_s[1].

If you are connecting to an AXI3 or AXI4 port, signals a<x>domain>_s, a<x>bar_s and, for AXI3,
a<x>len[7:4] must all be tied to 0.

The GIC-600 has a separate awakeup_s signal to force the GIC to wakeup when it is hierarchically
clock-gated through the Q-Channel. The awakeup_s signal must be connected to a cleanly registered
version of (awvalid_s | arvalid_s) to ensure that the GIC does not request to be woken up due to
incoming signal glitches.

The GIC-600 address map can have several pages. The number of pages depends on your configuration.
See 4.1.1 Register map pages on page 4-84.

You must set up the system address map so that each core accesses the GICD page on its local chip at the
same address. All other pages must be globally accessible, although access of pages on a remote chip by
a core is expected to be rare.

In most configurations, the GIC-600 ignores address bits above ceiling (log2(page_count)) + 15. For
example, a configuration that uses 11 pages ignores address bits above 19, and any address bits of the
form 0xXXXXX00000 is accepted to access the GICD page of the memory map. However, in monolithic
configurations, where the Distributor and ITS share the ACE-Lite slave port, there are two address tie-
offs that specify the full page address of the GICD and GITS_TRANSLATER pages. The page address
comprises address bits[x:16]. For example, if the GICD page is at 32-bit address 0xFFFF0000, the tie-off
is 16-bit 0xFFFF. See 2.1.5 Distributor miscellaneous signals on page 2-26 for information about the
Distributor miscellaneous signals.

Related references
4.1.1 Register map pages on page 4-84.

2.1.3 Distributor ACE-Lite master interface

The GICD uses the ACE-Lite master interface to access LPI Property and Pending tables. If LPIs are not
supported, then this interface is not present.

The interface can be configured to be 64-bit, 128-bit, or 256-bit wide.

The following table shows the master port issuing capabilities.

2 Components and configuration
2.1 Distributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

Table 2-4 Issuing capabilities

Attribute Capability

Read Write Combined

256-bit aligned read and writes to any Pending table 3 3 3

8-bit read and writes to any Pending table 1 1 1

256-bit aligned reads to the Property table 1 0 1

8-bit reads to the Property table 4 0 4

Each transaction uses a unique transaction ID, and properties come from either the GICR_PROPBASER
or GICR_PENDBASER registers according to the destination. There is one copy of the attribute fields
for all GICR_PROPBASER registers and another for all GICR_PENDBASER registers, so software
must program these registers to a consistent value in all Redistributors.

The ACE-Lite master port cannot issue barriers or Cache Maintenance Operations CMOs. However, it
can issue shareable, ReadOnce and WriteUnique, transactions if programmed to do so.

See 3.2.11 Memory access and attributes on page 3-60 for more information.

The a<x>user_m signal outputs the GICR_TYPER.ProcessorNumber of the core that is associated with
each transaction, but it can be ignored and it is not necessary to route it anywhere else.

 Note

See 2.8 Top-level interfaces on page 2-44 for changes that occur if this port is shared with an ITS ACE-
lite master port.

2.1.4 Distributor Q-Channels

There is a single Q-Channel for clock gating the GIC-600 Distributor. The Q-Channel interface denies
access if the Distributor block is busy processing interrupts.

The Distributor also has a separate Q-Channel that enables power control for each configured ITS. The
Q-Channel reads GITS_CTLR.Quiescent to check whether the ITS is fully disabled. If the Quiescent bit
is set, the Q-Channel qacceptn_its signal is asserted, and the GIC guarantees that the bus to the relevant
ITS is idle in both directions and that the ITS can be powered down.

 Note

The qreqn* signals are synchronized internally, and can be driven asynchronously. See A.2 Power
control signals on page Appx-A-155.

2.1.5 Distributor miscellaneous signals

The Distributor generates or processes several signals, such as tie-offs, interrupts, and handshakes.

The following table shows the Distributor miscellaneous signals.

2 Components and configuration
2.1 Distributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-26
Non-Confidential

Table 2-5 Distributor miscellaneous signals

Signal Direction Description

chip_id Input Tie off this signal to identify the chip in the system. Only present if there is more than one chip in the
system.

fault_int Output These fault handling and error reporting interrupts are defined in ARM® Reliability, Availability, and
Serviceability (RAS) Architecture Extension. The GIC-600 can deliver these interrupts internally but
the outputs are provided for any other device such as a system control processor that does not receive
normal interrupts from the GIC.

See 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64.

err_int Output

pmu_int Output The PMU counter overflow interrupt. This interrupt can be routed internally but is provided as an
external output to trigger an external agent to service the GIC, for example, to read out the PMU
counter snapshot registers.

See 3.2.14 Performance Monitoring Unit on page 3-63.

sample_req, Input This 4-phase handshake provides a hardware mechanism to snapshot the PMU counters and has the
same effect as writing to the GICP_CAPR register.

sample_ack Output

gict_allow_ns, Input From reset, these tie-off signals control whether Non-secure software can access the GICT RAS, and
the GICP PMU, pages. Secure software can override the values at any time.

gicp_allow_ns Input

gicd_page_offset Input This tie-off signal is used to set the page address bits[x:16] of the GICD page. Only present in
monolithic configurations.

2.1.6 Distributor configuration

You can configure several options that relate to the operation of the Distributor block.

Table 2-6 Configurable options for the Distributor

Feature Range of options

Affinity0 width 0-8

Affinity1 width 0-8

Affinity2 width 0-8

Affinity3 width 0-8

LPI support True, False

LPI cache size (entries / 2) 8, 16, 32, 64, 128, 256, 512.

LPI Lock support True, False

Number of ITS 0-16

Number of Redistributors on chip 1-512

Number of message-based SPIs permitted in
system

32-960, in blocks of 32

2 Components and configuration
2.1 Distributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-27
Non-Confidential

Table 2-6 Configurable options for the Distributor (continued)

Feature Range of options

Number of SPI wires on chip for wire-based SPIs 0-960

Security support Options include:
• Security support programmable. Resets to support security.
• Security support always present.
• Security support not present.

 Note

See Security model in ARM® GICv3 and GICv4 Software Overview for information
about the implications of setting Security support to not present.

See ARM® CoreLink™ GIC-600 Generic Interrupt Controller Configuration and Integration Manual for
more information.

Related information
ARM® GICv3 and GICv4 Software Overview.

2 Components and configuration
2.1 Distributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-28
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

2.2 Redistributor
The Redistributor is responsible for PPIs and SGIs that are associated with its related cluster or group of
cores. A Redistributor is also referred to as a PPI block.

The following figure shows the Redistributor block.

Redistributor

Distributor

AXI4-Stream interface

PPIs

Cluster of
cores

GIC Stream protocol interface

Cluster of
cores

Cluster of
cores

Q-Channel

cpu_active

ppi_id[15:0]

PPI_r

Figure 2-2 GIC-600 Redistributor

The Redistributor performs the following functions:

• Maintaining the SGI and PPI programming.
• Monitoring, and if necessary, synchronizing the PPI wires.
• Prioritizing SGIs, PPIs, and any other interrupts that are sent from the Distributor, and forwarding

them to the core.
• Maintaining the GIC Stream protocol and communicating with the cluster.

There can be multiple Redistributors in a configuration and they can be sized to match your system. For
example, if you have two clusters of eight cores, then you can have one Redistributor positioned next to
each cluster. You can use a Redistributor for each cluster to reduce the PPI wiring and enable the
Redistributor to be powered down with the cores for extra power savings. Alternatively, for a small
system, combining all cores into one Redistributor block might be the best solution.

 Note

The Redistributor (GICR) registers are programmed through the Distributor ACE-Lite slave port. The
Distributor also contains the architectural LPI functionality.

This section contains the following subsections:
• 2.2.1 Redistributor AXI4-Stream interface on page 2-30.
• 2.2.2 Redistributor GIC Stream protocol interface on page 2-30.
• 2.2.3 Redistributor Q-Channel on page 2-30.
• 2.2.4 Redistributor PPI signals on page 2-30.

2 Components and configuration
2.2 Redistributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-29
Non-Confidential

• 2.2.5 Redistributor miscellaneous input signals on page 2-31.
• 2.2.6 Redistributor configuration on page 2-31.

2.2.1 Redistributor AXI4-Stream interface

Each Redistributor has an upstream and downstream AXI4-Stream port for communicating with the
Distributor. This interface is either 16-bit or 64-bit wide and uses a fully credited protocol.

2.2.2 Redistributor GIC Stream protocol interface

The GIC Stream protocol interface has a pair of 16-bit wide AXI4-Stream interfaces, one upstream
interface, and one downstream interface. The GIC-600 uses these interfaces to send interrupts to the core
and receive notifications when the core activates interrupts.

The GIC Stream protocol interface, also referred to as the GIC Stream interface, uses the GIC Stream
protocol to pass interrupts and responses to the CPU interface inside each core.

Table 2-7 GIC Stream protocol interface signals

Signal name Description

iri Prefix which identifies the names of the downstream interface signals. These signals are sent by the GIC Stream
master. On this interface, the Redistributor is the master and the CPU interface is the slave.

icc Prefix which identifies the names of the upstream interface signals. These signals are sent by the GIC Stream slave.
On this interface, the CPU interface is the master and the Redistributor is the slave.

iritdest The GIC Stream master interface uses this signal to direct packets to one core within the cluster.

iccdtid The GIC Stream slave interface uses this signal to determine which core within the cluster sent a packet.

Both the iritdest and iccdtid can support up to 16 cores that use packed binary encoding, as opposed to
one-hot encoding. They can also be divided down using an AXI4-Stream crossbar to support clusters of
an arbitrary number of cores from 1-16.

The necessary crossbar is generated as part of the render process.

2.2.3 Redistributor Q-Channel

The Redistributor has a single Q-Channel input that is used to ensure that the Redistributor can be clock-
gated hierarchically, and safely.

If the Redistributor is busy, actively processing interrupts or sending messages up or downstream, the
Q-Channel denies a quiescence request, qreqn, by asserting the qdeny signal. For more information, see
the AMBA® Low Power Interface Specification, ARM® Q-Channel and P-Channel Interfaces.

 Note

The qreqn input is synchronized to the Redistributor.

The qactive signal is connected to the PPI wires directly, and must be considered as an asynchronous
output.

Related references
A.2 Power control signals on page Appx-A-155.

2.2.4 Redistributor PPI signals

GIC-600 supports 8, 12, or 16 PPIs, and return wires, for each core. The number of PPIs and return wires
must be the same for all cores sharing a Redistributor.

Level-sensitive PPI signals are active-LOW by default, as with previous ARM GIC implementations.
However, individual PPI signals can be inverted and synchronized using parameters
GIC600_<config_name>_PPI<ppi_id>_<cpu_number>_<ppi_number>_<INV/SYNC>.

2 Components and configuration
2.2 Redistributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-30
Non-Confidential

Every wire has a corresponding wire from after the synchronizer or capture flop. These can be used to
create pulse extenders for edge-triggered interrupts that cross clock domains.

 Note

If you plan to use edge-triggered PPIs and the Q-Channel to clock gate the Redistributor hierarchically,
you must use pulse extenders to ensure that interrupts are not missed while the clock is restarted.

2.2.5 Redistributor miscellaneous input signals

The Redistributor receives signals that identify the status of each core. It also has a tie-off signal that
provides the Redistributor with a unique identifier.

Table 2-8 Redistributor miscellaneous input signals

Signal Direction Description

cpu_active Input This signal indicates if the core is active and not in a low-power state such as retention. The GIC can
decide to target only active cores for 1 of N SPIs. See 3.2.14 Performance Monitoring Unit on page 3-63.

ppi_id[15:0] Input This tie-off signal provides the Redistributor with a unique identifier that is used primarily to ensure that
the GIC is correctly integrated into the system.

Related concepts
3.2.5 Power management on page 3-53.

2.2.6 Redistributor configuration

You can configure several options that relate to the operation of the Redistributor block.

Table 2-9 Configurable options for the Redistributor

Feature Range of options

Number of cores downstream 1-16

PPIs per core 8, 12, 16

ECC supporta True, False

Bus data width 16 or 32

GIC Stream bus structure Flexible buses and domains

See the ARM® CoreLink™ GIC-600 Generic Interrupt Controller Configuration and Integration Manual
for more information.

Related information
ARM® GICv3 and GICv4 Software Overview.

a See 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64 for more information.

2 Components and configuration
2.2 Redistributor

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-31
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

2.3 ITS
The ITS provides a software mechanism for translating message-based interrupts into LPIs. The ITS is
supported optionally in configurations that support LPIs.

A peripheral generates an LPI by writing to the GITS_TRANSLATER in the ITS. The write provides the
ITS with the following information:
• EventID (VID). A value written to GITS_TRANSLATER. The EventID identifies which interrupt the

peripheral is sending. Each interrupt source is identified by an Interrupt Identifier (INTID). The
EventID might be the same as the INTID, or it might be translated by the ITS into the INTID.

• DeviceID (DID). The DeviceID is a unique identifier that identifies the peripheral.

The following figure shows the ITS block.

Bypass switch

ACE-Lite slave interface

ACE-Lite master interface AXI4-Stream
Bi-directional interface

ITS base address

noram

DIDCache CollectionCache DIDVIDCache

ITS

Bypass switch Q-Channel

ACE-Lite slave interface

ACE-Lite master interface

noram

DIDCache CollectionCache DIDVIDCache

ITS

Figure 2-3 ITS block

The ITS is an implementation of the GICv3 Interrupt Translation Service as described in the ARM®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.
The ITS translates MSI requests to the required LPI and target. It also has a set of commands for
managing LPIs for core power management.

A main use of the ITS is the translation of MSI/MSIx messages from a PCIe Root Complex (RC). To
complete the translation, the ITS must be supplied with a DeviceID that is derived from the PCIe
RequestorID. To reduce the distance that the DeviceID is transferred and to enable better
compartmentalization between RCs, the ITS is best placed next to the RC. To ease integration, the ITS
has an optional bypass switch as shown in the ITS block diagram. If the bypass switch is not configured,
the ACE_Lite slave and master ports connect to the ITS directly. See 2.3.1 ITS ACE-Lite slave interface
on page 2-33 and 2.3.2 ITS ACE-Lite master interface on page 2-34.

See 3.2.9 Interrupt translation service (ITS) on page 3-57 for more information.

The following figure provides an example of the ITS integration process.

2 Components and configuration
2.3 ITS

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-32
Non-Confidential

PCIe Root Complex

SMMU

ITS

Interconnect

Figure 2-4 ITS integration

An ITS can be placed anywhere in the system so that it is seen by devices that want to send MSIs.
However, the system is responsible for ensuring that the DeviceID reaching each ITS is not spoofed by
rogue software using either a<x>user signals or MSI-64. See 2.4 MSI-64 Encapsulator on page 2-37.

If the ITS is placed downstream of an ACE interconnect, care must be taken to avoid system deadlock.
See Chapter 3, Key integration points of the ARM® CoreLink™ GIC-600 Generic Interrupt Controller
Configuration and Integration Manual.

See 3.2.9 Interrupt translation service (ITS) on page 3-57 for more information about each inner block.

This section contains the following subsections:
• 2.3.1 ITS ACE-Lite slave interface on page 2-33.
• 2.3.2 ITS ACE-Lite master interface on page 2-34.
• 2.3.3 ITS AXI4-Stream interface on page 2-35.
• 2.3.4 ITS Q-Channel on page 2-35.
• 2.3.5 ITS miscellaneous signals on page 2-36.
• 2.3.6 ITS configuration on page 2-36.

2.3.1 ITS ACE-Lite slave interface

The ITS AMBA AXI4 ACE-Lite slave interface has a configurable width of 64 bits, 128 bits, or 256 bits.
The slave, master, and address data widths must match.

The ITS ACE-Lite slave port contains only the GITS_TRANSLATER register. See the ARM® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 for more
information.

2 Components and configuration
2.3 ITS

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-33
Non-Confidential

If the bypass switch configuration option is selected, the port accepts all ACE-Lite traffic, and filters
accesses to the ITS based on an address match set by the ITS base address tie-off its_page_offset
[ADDR_WIDTH:16]. Without the bypass switch, the upper bits of the address, 16 and above, are
ignored, and the system address decoders must ensure that only relevant ITS writes arrive at the ITS.

The ACE-Lite slave interface ignores all a<x>snoop, a<x>cache, a<x>domain, and a<x>prot
information other than to filter CMOs and Barriers to ensure that it replies in a protocol-compliant
manner.

To generate an LPI, the ITS requires the DeviceID of the issuing master. For PCIe, the DeviceID is
derived from the RequestorID.

The GIC-600 supports two different methods for deriving the DeviceID:

• When using the MSI-64 config parameter, the write to GITS_TRANSLATER is converted to 64-bit
accesses at an unmapped system address and the DeviceID is transferred in the upper 32 bits of the
access. In this case, only burst length 1, 64-bit ACE-Lite writes are accepted.

• When not using MSI-64, the DeviceID is transported on the AWUSER bus with the address (AW)
phase of the register access. In this case, burst length 1, 32-bit or 16-bit writes are accepted.

The DeviceID must be transferred using a method that cannot be spoofed by malicious software.

 Note

These two modes must not be mixed on a single ITS.

The following table shows the attribute configurations.

Table 2-10 Attribute configurations

Attribute With bypass switch Without bypass switch

Combined acceptance capability 256 3

Read acceptance capability 128 1

Read data reorder depth 128 1

Write acceptance capability 128 2

If the bypass switch is configured, the switch ensures that responses are received from all outstanding
writes before routing an MSI to the ITS. This ensures that PCIe ordering requirements are met.

 Note

If the bypass switch is configured, the slave and master ports must both have the same data width and the
same address width.

If the Distributor and ITS both share the ACE-Lite slave port, some of these properties are changed. See
2.8 Top-level interfaces on page 2-44 for more information.

The ITS ACE-Lite slave interface has an associated awakeup signal. To ensure that incoming traffic
wakes the ITS correctly when it is clock gated hierarchically through the Q-Channel, awakeup must be
driven from a registered version of awvalid and arvalid. To prevent spurious wake events, ensure that
the awakeup signal is registered cleanly.

2.3.2 ITS ACE-Lite master interface

The ITS AMBA AXI4 ACE-Lite master interface has a configurable width of 64 bits, 128 bits, or 256
bits. If the bypass switch is not included, the ID width is 4 bits. If the bypass switch is included, the ID
width is one more than the ID width of the corresponding input channel. The slave, master, and address
data widths must match.

2 Components and configuration
2.3 ITS

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-34
Non-Confidential

The ACE-Lite master port issues accesses to the ITS private tables and Command queue. If the bypass
switch is configured, the port also forwards transactions from the slave interface. The ACE-Lite bus can
issue I/O coherent transactions, therefore you can place these tables in shared memory if required.

 Note

• When heavily loaded, the ITS creates a necessary dependency between writes on its slave port and
reads on its master port. You must ensure that any writes that back up to the slave port do not prevent
the free-flow of both reads and writes to the memory.

• In an ACE system, you must ensure that the write channel from any core cache that could be snooped
is not blocked by accesses to the ITS slave port. If the write channel is blocked, and the snoop is
prevented from completing its task, a potential deadlock can result.

ARM strongly recommends that if you place the ITS downstream of an ACE interconnect, then you must
not place tables in shareable memory.

If the bypass switch is included, apart from transactions that are forwarded from the slave port, the ITS
can issue the following transaction types:

• 256-bit aligned read to the Command queue.
• 64-bit aligned read and write to the Device table.
• 32-bit aligned read and write to the Interrupt Translation Table (ITT).
• 16-bit aligned read and write to the Collection table.

ITS issued transactions output the DeviceID on the a<x>user_ signals. The DeviceID is used for
information and does not have to be routed anywhere if it is not required. If the bypass switch is
included, ITS issued transactions are identified by a value of 0 on the top bit of the a<x>id.

 Note

The ITS supports only one outstanding transaction per ID. This gives a maximum of one outstanding
write and five outstanding reads, excluding any transactions from the slave port. If this port is combined
with the Distributor ACE-Lite master port, some of these properties are changed. See 2.8 Top-level
interfaces on page 2-44 for more information.

Related information
ARM® GICv3 and GICv4 Software Overview.

2.3.3 ITS AXI4-Stream interface

The ITS AXI4-Stream interface is a bi-directional AXI4-Stream interface of either 16-bit or 64-bit width
for communication between the ITS and the GIC Distributor components on the same chip.

ARM expects a typical distributed system to be 16 bits wide. When a pre-existing wide interconnect is
used, the 64-bit option allows messages to be efficiently packed.

The interface is fully credited so all messages can be accepted without dependency on any other ports.

2.3.4 ITS Q-Channel

The ITS has a Q-Channel interface which controls requests from an external clock gating source.

If the ITS is busy, the Q-Channel interface asserts the qdeny signal to deny an external request to gate its
clock. When an external request occurs, the interface requests a wakeup by asserting qactive.

 Note

Software-initiated RAM scrub requests, set by GITS_FCTLR.SIP, also cause the interface to reject
requests.

The qreqn input is synchronized to the ITS. See A.2 Power control signals on page Appx-A-155.

2 Components and configuration
2.3 ITS

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-35
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

Related references
A.2 Power control signals on page Appx-A-155.

2.3.5 ITS miscellaneous signals

The ITS generates or processes several signals, such as an ID tie-off, and the ITS page offset.

Table 2-11 ITS miscellaneous signals

Signal Direction Description

its_page_offset
[ADDR_WIDTH-16:0]

Input Modifies the address map to ensure only writes to the correct location trigger MSI requests.
Only present when the bypass switch is configured.

Specifies the 64K page address that includes the GITS_TRANSLATER register address, and
is matched against axaddr[ADDR_WIDTH-16:1].

its_id Input This is an ID tie-off. It must be tied to the ic<x>dtdest value used to read the ITS on the
AXI4-Stream interface. This ID value feeds into the GITS_CFGID register and is used to
check that the GIC system is correctly interconnected. If top-level stitching is used, which
creates a hierarchical level from the other components, this signal is not visible.

its_transr_page_offset Input This tie-off signal is used to set the page address of the GITS_TRANSLATER register. Only
present in monolithic configurations.

2.3.6 ITS configuration

You can configure several options that relate to the operation of the ITS block.

Table 2-12 Configurable options for the ITS

Feature Range of options

DeviceIDb 1-16

EventID sizeb 1-32

Bypass_ports 1 or 0

ACE-Lite data width 64, 128, or 256

MSI-64 support True or False

ACE-Lite read ID width 1-32

ACE-Lite write ID width 1-32

ECC supportc True or False

DID cache size 2, 4, 8, 16, 32, 64, or 128

DID and VID cache size 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, or 2048

Collection cache size 2, 4, 8, 16, 32, 64, 128, 256, or 512

Domaind Any legal domain identifier

Related information
ARM® GICv3 and GICv4 Software Overview.

b See 2.3 ITS on page 2-32 for more information.
c See 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64 for more information.
d See 2.8 Top-level interfaces on page 2-44.

2 Components and configuration
2.3 ITS

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-36
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

2.4 MSI-64 Encapsulator
The MSI-64 Encapsulator reduces system wiring by combining the DeviceID onto the Data bus for
writes to the GITS_TRANSLATER register.

The following figure shows an overview of the MSI-64 Encapsulator process.

MSI-64 Encapsulator

ACE-Lite slave awdeviceid

ACE-Lite master

msi_translator_page

msi_translator_page

msi64_translator_page

Detection

Retargeting

msi64_translator_page
Register slices

Figure 2-5 MSI-64 Encapsulator

The MSI-64 Encapsulator detects translations that are targeted at the target page address of the
GITS_TRANSLATER register, set by the msi_translator_page tie-off. It then converts accesses to 64-
bit writes with the awdeviceid in the upper 32 bits of the data and retargets them to the
msi64_translator_page. This avoids having to use wires to transfer a DeviceID to the
GITS_TRANSLATER register for translation.

See 3.2.12 MSI-64 on page 3-62 for more information.

This section contains the following subsections:
• 2.4.1 MSI-64 ACE-Lite interfaces on page 2-37.
• 2.4.2 MSI-64 miscellaneous signals on page 2-38.
• 2.4.3 MSI-64 Encapsulator configuration on page 2-38.

2.4.1 MSI-64 ACE-Lite interfaces

The MSI-64 Encapsulator has an ACE-Lite slave interface and an ACE-Lite master interface.

MSI-64 ACE-Lite slave interface with awdeviceid
This interface is a full ACE-Lite slave port with an extra awdeviceid input signal, which is
valid, and must remain stable with awvalid.

MSI-64 ACE-Lite master interface
This interface is a full ACE-Lite master port.

The following table shows the transaction acceptance capabilities of both slave and master ports.

2 Components and configuration
2.4 MSI-64 Encapsulator

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-37
Non-Confidential

Table 2-13 Transaction acceptance

Transaction type Maximum number of transactions allowed

Read 128

Write 128

Combined 256

Any leading wdata is registered and held until the awaddr signal arrives. These signals are described in
A.5 ACE interface signals on page Appx-A-158.

 Note

• The MSI-64 Encapsulator requires a data bus that has a width of 64 bits or greater.
• The ACE-Lite master port never issues more than two addresses before signal wlast is asserted.

2.4.2 MSI-64 miscellaneous signals

The MSI-64 receives target address signals for the GITS_TRANSLATER registers, and an ACE-Lite
sideband signal.

Table 2-14 MSI-64 miscellaneous signals

Signal Direction Description

msi_translator_page Input The target page address of the GITS_TRANSLATER register. The MSI-64 Encapsulator does
not support a msi_transalator_page value of 0.

msi64_translator_page Input The target address of the 64-bit GITS_TRANSLATER register.

awdeviceid Input The ACE-Lite AW sideband signal that reports the DeviceID for writes to
GITS_TRANSLATER. The value is ignored for non-MSI writes.

2.4.3 MSI-64 Encapsulator configuration

The MSI-64 Encapsulator does not have any configurable options at design time. However, if this block
is generated in your RTL design, it has several parameter options that you can configure.

The MSI-64 Encapsulator is generated as part of any GIC configuration that includes an MSI-64 enabled
ITS.

The following table shows the parameter options for the MSI-64 Encapsulator that you can configure at
build time.

Table 2-15 Configurable options for the MSI-64 Encapsulator

RTL parameter Function Range of options

DATA_WIDTH Specifies the width of data signals rdata and wdata 64, 128, 256

ADDR_WIDTH Specifies the width of address signals araddr and awaddr 17-48

AWUSER_WIDTH Specifies the width of signal awuser 1-128

ARUSER_WIDTH Specifies the width of signal aruser 1-128

RUSER_WIDTH Specifies the width of signal ruser 1-128

WUSER_WIDTH Specifies the width of signal wuser 1-128

BUSER_WIDTH Specifies the width of signal buser 1-128

DEVICEID_WIDTH Specifies the width of the DeviceID. 1-20

2 Components and configuration
2.4 MSI-64 Encapsulator

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-38
Non-Confidential

Table 2-15 Configurable options for the MSI-64 Encapsulator (continued)

RTL parameter Function Range of options

WID_WIDTH Specifies the width of signal wid 1-32

RID_WIDTH Specifies the width of signal rid 1-32

FWD_REG_TYPE Register slice type on forward AW, AR, and W channels. 0 = None

1 = Reverse

2 = Forward

3 = Full

REV_REG_TYPE Register slice type on reverse AW, AR, and W channels. 0 = None

1 = Reverse

2 = Forward

3 = Full

REV_REG_TYPE Register slice type on B and R channels 0 = None

1 = Reverse

2 = Forward

3 = Full

The signal width options have the format <AXI_signal>[RTL parameter - 1:0], for example,
awuser[AWUSER_WIDTH - 1:0].

2 Components and configuration
2.4 MSI-64 Encapsulator

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-39
Non-Confidential

2.5 SPI Collator
The SPI Collator converts SPI wires into messages to be sent to the Distributor.

The following figure shows the SPI Collator block.

SPI Collator AXI4-Stream

spis

spi_r

Q-Channel

Figure 2-6 SPI Collator

Individual SPIs can be synchronized into the SPI Collator, or the SPI Collator can be placed in the same
domain as the interrupt sources and the messages that are synchronized into the Distributor.

Placing the SPI Collator in an always On domain that is remote from the GIC Distributor enables more
aggressive power saving because the GIC Distributor can be clock gated hierarchically.

spi_r wires are SPI outputs after synchronization and edge detection. They can be used for cross-domain
pulse detection.

This section contains the following subsections:
• 2.5.1 SPI Collator AXI4-Stream interface on page 2-40.
• 2.5.2 SPI Collator wires on page 2-40.
• 2.5.3 SPI Collator Q-Channel on page 2-40.
• 2.5.4 SPI collator configuration on page 2-41.

2.5.1 SPI Collator AXI4-Stream interface

The AXI4-Stream interface enables communication between the SPI Collator and the Distributor.

The AXI4-Stream ports apply only transient backpressure to the AXI4-Stream interface.

2.5.2 SPI Collator wires

The SPI Collator wires can be extended to create other functions.

By default, the asserted level of a SPI is active-HIGH, as with previous ARM GIC implementations.
However, each SPI can be either inverted or synchronized, or both, using the parameters
gic600_<config_name>_SPI_INV[n] and gic600_<config_name>_SPI_SYNC[n], where:
• SPI_INV[n] == 1 = inverter enabled.
• SPI_SYNC[n] == 1 = synchronizer enabled.
• [n] = SPI_ID - 32.

Each SPI Collator wire has corresponding wires after the synchronizer or capture flop that can be used to
create pulse extenders for edge-triggered interrupts that cross clock domains.

2.5.3 SPI Collator Q-Channel

The SPI Collator has a Q-Channel interface that controls requests from an external clock gating source.

2 Components and configuration
2.5 SPI Collator

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-40
Non-Confidential

When signal qactive_col is LOW, it indicates that all SPIs to the SPI Collator are in their normal state of
either 0 (edge-triggered, or active HIGH), or 1 (edge-triggered, or active LOW), and therefore all
messages are sent to the Distributor.

If qactive_col is HIGH, the SPI Collator rejects any attempt to enter a low-power mode.

If qreqn_col is LOW and is accepted, the SPI Collator enters low-power mode and the AXI4-Stream
channels to the Distributor are flushed out to ensure that there are no messages in progress, enabling the
Distributor to be powered down.

 Note

In low-power mode, it is only safe to stop the Collator clock if all edge-triggered interrupts into the SPI
Collator are pulse extended to ensure that edges are not missed.

2.5.4 SPI collator configuration

You can configure several options that relate to the operation of the SPI Collator block.

Table 2-16 Configurable options for the SPI Collator

Feature Description

NUM_SPIS The number of wires.

SPI_BASE The ID of the first group of 32 SPIs.

SPI_INV A wide vector of one bit for each SPI indicating the interrupt must be inverted.

SPI_SYNC A wide vector of one bit for each SPI indicating the interrupt must be synchronized.

Related information
ARM® GICv3 and GICv4 Software Overview.

2 Components and configuration
2.5 SPI Collator

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-41
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

2.6 Wake Request
The Wake Request block converts AXI4-Stream wake requests into one wake_request wire for each
core. Each wake_request connects to the power controller.

The following figure shows the Wake Request block.

Wake Request
AXI4-Stream

wake_request
wake_request
wake_request
wake_request
wake_request

Figure 2-7 Wake Request

The level of the asserted wake_request signal drops only when the core is woken by clearing
GICR_WAKER.ProcessorSleep, or when the Distributor leaves reset.

This section contains the following subsections:
• 2.6.1 Wake Request AXI4-Stream interface on page 2-42.
• 2.6.2 Wake Request miscellaneous signals on page 2-42.
• 2.6.3 Wake Request configuration on page 2-42.

2.6.1 Wake Request AXI4-Stream interface

The AXI4-Stream interface enables the Wake Request block to communicate with the Distributor.

The AXI4-Stream interface is fully credited.

2.6.2 Wake Request miscellaneous signals

The Wake Request block generates the wake_request[<num_cpus - 1:0>] signal.

Table 2-17 Wake Request miscellaneous signals

Signal Description

wake_request[<num_cpus - 1:0>] This output signal indicates to the power controller that an interrupt is targeting this core and that
the core must be woken. When asserted, the wake_request is sticky unless the Distributor is put
into the gated state.

2.6.3 Wake Request configuration

The configuration of the Wake Request block is based on the number of cores in the system. There are no
options to configure.

Related information
ARM® GICv3 and GICv4 Software Overview.

2 Components and configuration
2.6 Wake Request

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-42
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

2.7 Interconnect
The GIC-600 uses AXI4-Stream interfaces for communication between some blocks.

These blocks are:

• Distributor to and from ITS.
• Distributor to and from Redistributors.
• Distributor to Distributor for cross-chip communications.
• Distributor to and from the SPI Collator.
• Distributor to and from the Wake Request block.

All these interfaces use fully credited schemes where all messages are guaranteed to be accepted without
dependency on any other port.

Apart from the cross-chip communications, GIC-600 provides an AXI4-Stream interconnect for
transporting messages. However, messages can be sent over an existing interconnect provided the
interconnect is free-flowing.

The key requirements of the interconnect are as follows:
• The Distributor must appear at the same address on each chip. This is to maintain the view of a single

Distributor across the system.
• Free-flowing access from the ITS and Distributor to memory.
• All AXI4-Stream messages must be free-flowing.
• Accesses to GITS_TRANSLATER at the ITS must occur at the correct offsets, that is, the subsequent

64K page to the related ITS control registers.

This section contains the following subsection:
• 2.7.1 Interconnect configuration on page 2-43.

2.7.1 Interconnect configuration

The internal interconnect is configured automatically in accordance with the number of cores and ITS
blocks in the system. The configuration produces a balanced tree structure with minimum clock domain
crossings.

2 Components and configuration
2.7 Interconnect

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-43
Non-Confidential

2.8 Top-level interfaces
The top level adds no specific interfaces, but combines the interfaces of other blocks within the domain
to reduce the number of domain bridges.

The following figure shows the top-level options.

2 Components and configuration
2.8 Top-level interfaces

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-44
Non-Confidential

ITS ITS ITS

AMBA
Domain

Bridge (ADB)
ADB

Distributor

Redistributor

ADBADB

Redistributor

Interconnect

GIC Stream interfaces

ACE-Lite slave interface

Domain level
Redistributor level
Top levelInterconnect

Interconnect

Interconnect

Redistributor Redistributor

Interconnect

GIC Stream interfaces GIC Stream interface

ACE-Lite master interface
AXI4-Stream

AXI4-Stream

ACE-Lite interfaceACE-Lite interfaceACE-Lite interface

Figure 2-8 GIC top-level structure options

2 Components and configuration
2.8 Top-level interfaces

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-45
Non-Confidential

2.9 Top-level configuration
The GIC-600 is a distributed system that supports a range of top-level options that are based on the
system structure.

Table 2-18 Top-level configurable options

Feature Range of options

Number of chips 1-16

Affinity level that is used for chip
selection

2, 3

LPI support True, False

Number of ITS on chip 0-16
 Note

If there are no ITS blocks in the whole multichip system, then the GIC-600 can optionally
support the register-based setting of LPIs. See GICR_SETLPIR register in the ARM®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and
version 4.0.

Number of clusters per chip 1-512

Number of cores per chip 1-512

2 Components and configuration
2.9 Top-level configuration

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 2-46
Non-Confidential

Chapter 3
Single-chip operation

Read this for an operational description of the GIC-600 that is configured in a single-chip system.

It contains the following sections:
• 3.1 Interrupt types on page 3-48.
• 3.2 Single chip operation on page 3-50.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-47
Non-Confidential

3.1 Interrupt types
The GIC-600 manages SPIs, SGIs, PPIs, and LPIs.

This section contains the following subsections:
• 3.1.1 SGIs on page 3-48.
• 3.1.2 PPIs on page 3-48.
• 3.1.3 SPIs on page 3-48.
• 3.1.4 LPIs on page 3-49.
• 3.1.5 Choosing between LPIs and SPIs on page 3-49.

3.1.1 SGIs

SGIs are inter-processor interrupts, that is, interrupts generated from one core and sent to other cores.

Each core in the system processes an SGI independently of the other cores. The priority of an SGI, and
other settings, are also independent for each core.

SGIs are generated by writing to system registers in the CPU interface of the core that generates the
interrupt. SGI signals are edge triggered.

Up to 16 SGIs can be recorded for each target core, where each SGI has a different INTID in the range
ID0-ID15.

3.1.2 PPIs

PPIs are typically used for peripherals that are tightly coupled to a particular core.

Interrupts that are connected to the PPI inputs associated with one core, are only sent to that core. Each
core processes a PPI independently of other cores. The settings of a PPI are also independent for each
core.

Each PPI has an INTID that identifies its source. A PPI is unique to one core. However, the PPIs to other
cores can have the same INTID. Up to 16 PPIs can be recorded for each target core, where each PPI has
a different INTID in the range ID16-ID31.

PPI signals are active-LOW level-sensitive by default. However, you can set a PPI signal to be either
level-sensitive or edge-triggered using GICR_ICFGR1, see ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0. You can also set a level-
sensitive PPI signal to be active HIGH, see 2.2.4 Redistributor PPI signals on page 2-30 for more
information. The GIC-600 provides an option, through a parameter, to include one or both a synchronizer
and inverter on each PPI interrupt wire.

3.1.3 SPIs

SPIs are typically used for peripherals that are not tightly coupled to a specific core.

You can program each SPI to target either a particular core or any core. Activating a SPI on one core
activates the SPI for all cores. That is, the GIC-600 allows at most one core to activate a SPI. The
settings for each SPI are also shared between all cores.

SPIs are generated either by wire inputs or by writes to the ACE-Lite slave programming interface. The
GIC-600 can support up to 960 SPIs corresponding to the external spi signal on the SPI Collator. The
number of SPIs available depends on the implemented configuration. The permitted values are 32-960, in
steps of 32. The first SPI has an ID number of 32.

You can configure whether each SPI is triggered on a rising edge or is active-HIGH level-sensitive. The
GIC-600 provides an option, through a parameter, to include one or both a synchronizer and inverter on
each SPI interrupt wire.

3 Single-chip operation
3.1 Interrupt types

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-48
Non-Confidential

The GIC-600 uses the SPI Collator to convert wire-based interrupts into messages to reduce system
wiring, and to allow more aggressive clock gating of the GIC to reduce power consumption. See 2.5 SPI
Collator on page 2-40 for more information.

SPIs are programmed through the GICD register space.

You can add a pending state to a valid SPI using GICD_SETSPI_NSR or GICD_SETSPI_SR, see ARM®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

3.1.4 LPIs

LPIs are always message-based, and can be from a peripheral, or from a PCIe root complex.

An LPI targets only one core. LPIs are generated when the peripheral writes to the ITS. The ITS contains
the registers to control the generation and maintenance of LPIs. The ITS provides INTID translation,
allowing peripherals to be owned directly by a virtual machine if an SMMU is also present for those
peripherals.

 Note

• The ITS enables interrupts to be translated to the ID space of the hypervisor instead of directly to a
virtual machine.

• Instead of using an ITS, registers can be used to configure the GIC-600 to generate and control LPIs.
For more information, see GICR_SETLPIR register in the ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0.

3.1.5 Choosing between LPIs and SPIs

Message-based interrupts can be either LPIs or SPIs.

The decision to use an LPI or SPI for an interrupt can be made by software, and depends on whether
there are spare SPIs and if the GIC-600 has ITS support. This can be achieved by either making the
peripheral write to a different GIC-600 address, or by changing the address translation for the interrupt
write in the SMMU. Changing only the SMMU is possible because the registers for Non-secure
message-based interrupts, GICD_SETSPI_NSR and GITS_TRANSLATER, or GICD_SETLPIR for
configurations without LPI support, are at the same address offset in different pages.

The following factors can help you to decide which interrupt type is most appropriate:
• Only the ITS provides INTID translation, therefore LPIs are preferable for peripherals that are owned

by a virtual machine. This is because the hypervisor can let the virtual machine program the
peripheral directly, and the ITS convert the IDs of interrupts used by the virtual machine to unique
physical IDs.

• LPIs are always Group 1 Non-secure, so message-based interrupts that target Secure software must
use SPIs.

• Only SPIs are able to target all cores, which means that the GIC-600 attempts to automatically
balance the interrupt load to cores that are active but not handling other interrupts.

• The GIC-600 can provide a greater number of LPIs than SPIs.
• You might decide not to include LPI support in a small system where the features of the ITS are not

required and there are few message-based interrupts.
• SPIs usually have a better worst-case interrupt latency than LPIs. This is because SPIs have all their

settings stored internally to the GIC-600, whereas LPIs that are not cached require external memory
accesses. The cache hit rate is expected to be higher for the LPIs that occur more frequently.
Therefore, ARM recommends that SPIs are used for any latency-sensitive interrupts that are expected
to occur infrequently.

Related information
ARM® GICv3 and GICv4 Software Overview.

3 Single-chip operation
3.1 Interrupt types

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-49
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

3.2 Single chip operation
This section describes the operation of a single chip GIC-600.

This section contains the following subsections:
• 3.2.1 Interrupt groups on page 3-50.
• 3.2.2 Interrupt signals (PPIs and SPIs) on page 3-50.
• 3.2.3 Affinity routing and assignment on page 3-51.
• 3.2.4 1 of N SPI interrupt selection on page 3-52.
• 3.2.5 Power management on page 3-53.
• 3.2.6 Getting started on page 3-56.
• 3.2.7 Security on page 3-56.
• 3.2.8 Backwards compatibility on page 3-57.
• 3.2.9 Interrupt translation service (ITS) on page 3-57.
• 3.2.10 LPI caching on page 3-60.
• 3.2.11 Memory access and attributes on page 3-60.
• 3.2.12 MSI-64 on page 3-62.
• 3.2.13 RAM on page 3-62.
• 3.2.14 Performance Monitoring Unit on page 3-63.
• 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64.

3.2.1 Interrupt groups

The GIC-600 configures the interrupts that it receives into one of three groups. Each group determines
the security status of an interrupt and how it is routed.

• GICD_IGROUPRn.
• GICD_IGRPMODRn.
• GICR_IGROUPR0.
• GICR_IGRPMODR0.

These registers control whether each interrupt is configured as:

• Group 0.
• Group 1 Secure.
• Group 1 Non-secure.

Each interrupt is programmed to belong to an interrupt group. Each interrupt group:
• Determines the security state for interrupts in that group, depending on the Exception level of the

core.
• Has separate enable bits that control whether interrupts in that group can be forwarded to the core.
• Has an impact on later routing decisions in the core interfaces.

When the GIC-600 is set to security disabled, the meaning and number of interrupt groups are affected.

You can specify GIC-600 security by setting the configuration parameter ds_value to either 0, 1 or P,
where 0 = Security enabled (fixed), 1 = Security disabled (fixed), P = Security is programmable by
software during the boot sequence using GICD_CTLR.DS.

See the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and
version 4.0 for more information.

Related information
ARM® GICv3 and GICv4 Software Overview.

3.2.2 Interrupt signals (PPIs and SPIs)

The GIC-600 supports two types of physical interrupt signal.

The two types of physical interrupt signal are:

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-50
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

Level-sensitive
The interrupt is pending while the interrupt input is asserted. As with previous ARM GICs, PPIs
are active-LOW, whereas SPIs are active-HIGH by default. However, you can change these
default settings, see 3.1 Interrupt types on page 3-48 for more information.

Edge-triggered
A rising-edge on the interrupt input causes the interrupt to become pending. The pending bit is
cleared later when the interrupt is activated by the CPU interface.

To set the correct settings for the system, you must program the GICD_ICFGRn and GICR_ICFGR1
registers.

The GIC-600 provides optional synchronizers on every interrupt wire input and also return signals, to
enable pulse extenders when sending edge-triggered interrupts across domain boundaries, see 2.5.2 SPI
Collator wires on page 2-40.

Related information
ARM® GICv3 and GICv4 Software Overview.

3.2.3 Affinity routing and assignment

The GIC-600 uses affinity routing, a hierarchical scheme, to identify connected cores and for routing
interrupts to specific cores.

The ARM architecture defines a register in a core that identifies the logical address of the core in the
system. This register, which is known as the Multiprocessor Identification Register (MPIDR), has a
hierarchical format. Each level of the hierarchy is known as an affinity level, with the highest affinity
level specified first:

• For 32-bit ARMv8 processors, the MPIDR defines three levels of affinity, with an implicit affinity
level 3 value of 0.

• For 64-bit ARMv8 processors, the MPIDR defines four levels of affinity.

 Note

The GIC-600 regards each hardware thread of a processor that supports multiple hardware threads as a
single independent core.

The affinity of a core is represented by four 8-bit fields using dot-decimal notation,
<Aff3>.<Aff2>.<Aff1>.<Aff0>, where Affn is a value for affinity level n. An example of an
identification for a specific core would be 0.255.0.15.

The affinity scheme matches the format of the MPIDR_EL1 register in ARMv8-A. System designers
must ensure that the ID reported by the core of the MPIDR_EL1 register matches how the core is
connected to the interrupt controller.

The following figure shows the affinity hierarchical structure.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-51
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

Distributor

150

Core
interface

0.x.x.x

0.0.0.x

0.255.x.x

0.255.0.x …..

…..150150

Core
interface

Core
interface

Core
interface

Core
interface

Core
interface

…..

0.0.255.x …..

Aff Level 3

Aff Level 2

…..…..

Aff Level 1

0.0.x.x

Aff Level 0
Redistributor

0.255.0.150.255.0.00.0.255.150.0.255.00.0.0.0 0.0.0.15

…..

Figure 3-1 Affinity routing

There can be up to 256 nodes at level 3, with each node able to host 256 child level 2 nodes. Similarly
each level 2 node can host 256 level 1 nodes. However, level 1 nodes can only host 16 child level 0
nodes.

At affinity level 0, there is a Redistributor. Each Redistributor connects to a single core interface. The
Redistributor is used to configure SGIs, PPIs, and LPIs.

The GIC-600 allows fully flexible allocation of MPIDR. However, it has two built-in default assignments
that are based on the aff0_thread configuration parameter, see ARM® CoreLink™ GIC-600 Generic
Interrupt Controller Configuration and Integration Manual.
• When aff0_thread == 1, the four fields are mapped to 0.<cluster>.<core>.<thread>.
• When aff0_thread == 0, the four fields are mapped to 0.0.<cluster>.<core>.

For more information about affinity routing, see the ARM® GICv3 and GICv4 Software Overview.

3.2.4 1 of N SPI interrupt selection

The GIC-600 supports 1 of N selection of SPI interrupts.

When the relevant GICD_IROUTERn.Interrupt_Routing_Mode == 1, the GIC selects the appropriate
core for a SPI.

When GICD_IROUTERn.Interrupt_Routing_Mode == 0, the SPI is routed to the core specified by the
remaining fields of GICD_IROUTERn.

The selections that the GIC-600 makes can be controlled or influenced by several 1 of N features:

cpu_active
A cpu_active signal is an input to a Redistributor that corresponds to a particular core. It
indicates to the GIC that a core is in a transparent low-power state, such as retention, and that it
must be selected as a target for a SPI if there are no other options possible.
A cpu_active signal is typically generated by a power controller, or by power control logic. If
this signal is not available in the system, the input must be tied to 1.

 Note

The cpu_active provides an indication only, it cannot stop selection of the core or stop the GIC sending
messages to the core.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-52
Non-Confidential

GICR_CTLR.DPGxx (Disabled Processor Group)
Setting a DPG bit prevents 1 of N interrupts of a particular group being sent to that core. Any
interrupts that have not reached a core at the time of the change are recalled and reprioritized by
the GIC. For details of the DPG bits, see GICR_CTLR, Redistributor Control Register in the
ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and
version 4.0.

Processor and GICD Group enables and GICR_WAKER.ProcessorSleep
A 1 of N interrupt is not sent to a core if the interrupt group is either enabled by the processor
and GICD_CTLR group, or it is asleep as indicated by GICR_WAKER.ProcessorSleep.

Interrupt class
This is a new IMPLEMENTATION-DEFINED feature introduced with the GIC-600. Each core can be
assigned to either class 0 or class 1 by writing to the relevant GICR_CLASS register. A SPI,
programmed as 1 of N, by GICD_IROUTERn.Interrupt_Routing_Mode, can be programmed to
target either class 0, class 1, or both classes by the GICD_ICLARn register. By default, all 1 of
N SPIs can go to both classes, therefore the interrupt class feature is disabled by default. The
system can use this partitioning for any purpose, for example in a big.LITTLE™ system, all the
big cores can be in class 1 and little cores in class 0, allowing 1 of N SPIs to be partitioned
according to the amount of processing they require.

GICD_CTLR.E1NWF
The GICD_CTLR register E1NWF bit controls whether the GIC-600 wakes a core if there are
no other possible targets for a 1 of N SPI.
The GIC tries to wake the minimum of cores possible and only wakes a core if there is no other
possible target awake that is able to accept the 1 of N interrupt. To do this, the GIC reads the
DPG bits to determine if any core is awake that can accept the interrupt. If a suitable core is not
awake, the GIC then wakes a core.
ARM strongly recommends that if you use GICD_CTLR.E1NWF, you must also set the DPGx
bits of register GICR_CTLR to specify whether a core is likely to accept a particular interrupt
group in a timely manner. The GIC does not continue to wake cores until one is found. The
GIC-600 uses two passes to try to find the best place for a 1 of N interrupt, by using a
round_robin arbiter between:
• Any core that has cpu_active set, is fully enabled for the interrupt, and has no other pending

interrupts.
• Any core that is fully enabled for the interrupt and has no interrupts of a higher priority than

the 1 of N interrupt.

If neither option is available to the 1 of N, the interrupt is assigned to any legal target and
regularly re-evaluated to ensure that it is not excluded from other SPIs of the same priority.

3.2.5 Power management

The GIC-600 can be powered down by the system power controller, and supports the cores that it
services that are also being powered down by the power controller. The GICR_WAKER and the
IMPLEMENTATION-DEFINED GICR_PWRR registers provide bits to control functions that are associated with
power management.

Redistributor power management

At Reset, the Redistributors are considered to be powered down. To power up the Redistributors,
software must use the GICR_PWRR register.

 Note

This is true for all GIC-600 configurations.

The GICR_PWRR register can control Redistributor power management either by operating through the
core, or through the Redistributor.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-53
Non-Confidential

If operating through the core, each core must program its GICR_PWRR.RDPD = 0 and
GICR_PWRR.RDAG = 0 to ensure that the Redistributor powers up. Alternatively, a single core can
power up the Redistributor for all cores connected to the same Redistributor by writing
GICR_PWRR.RDPD = 0 and GICR_PWRR.RDAG = 1.

You can use GICR_PWRR.RDG to identify which core shares a Redistributor.

Processor core power management

The GIC architecture defines the programming sequence to safely power down a core that is connected
to the GIC-600.

The powerdown programming sequence uses the GICR_WAKER.ProcessorSleep bit. When all cores
within a cluster are powered down using the architectural sequence, you can power gate the GIC Stream
interface for that cluster.

Before a core is powered down, you must set the GICR_WAKER.ProcessorSleep bit to 1. The core must
then poll the GICR_WAKER.ChildrenAsleep bit to ensure that there are no outstanding transactions on
the GIC Stream interface of the core.

To ensure that there are no interrupts during the powerdown of the core, in a typical powerdown
sequence you must:

1. Mask interrupts on the core.
2. Clear the CPU interface enables.
3. Set the interrupt bypass disable on the CPU interface.

 Note

The core powerdown sequence that you use must match the core powerdown sequence that is described
in the Technical Reference Manual for your processor.

When a core is powered down and the GICR_WAKER.ProcessorSleep bit is set to 1, if the GIC-600
receives an interrupt that targets only that core, it attempts to wake the core by asserting the
wake_request signal that corresponds to that core. The wake_request signal is asserted by the Wake
Request block and must be connected to the system power controller.

See Other core signals on page 3-56 for more information about the wake_request signals.

You must not set the GICR_WAKER.ProcessorSleep bit to 1 unless the core enters a power state where
the GIC-600 uses the power controller to wake the core instead of the GIC Stream interface. For
example, with Cortex®-A53 and Cortex-A57, if the core enters a low-power state that is based on the
Wait For Interrupt (WFI) or Wait For Event (WFE) instructions, such as retention, you must not set the
GICR_WAKER.ProcessorSleep bit to 1.

Software is not required to reprogram the GIC-600 for the core to enter these low-power states.

These interrupts can cause the core to leave the low-power state, entered by executing a WFI or WFE
instruction, as defined in the ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile. The system integrator can use the cpu_active signal to ensure that interrupts that can target
multiple cores are much less likely to target cores in certain low-power states. In such a system, software
has more control of the conditions under which cores leave low-power states.

 Note

Interrupts that target only one core are unaffected by cpu_active and are always sent to that core.
Moreover, if the GICR_WAKER.ProcessorSleep bit for that core is set, the wake_request signal is
asserted for that core. See Other core signals on page 3-56 for more information about the cpu_active
signals.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-54
Non-Confidential

See the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and
version 4.0 for information about power management, and about wakeup signals and their relation to the
core outputs.

Other power management

The GIC-600 can be powered up and powered down using IMPLEMENTATION-DEFINED protocols.

When powering down the GIC-600, software must preserve the state of the GIC-600, except for any LPI
pending interrupts that are preserved in pending tables, as defined in the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

You can preserve the LPI pending bits by using the IMPLEMENTATION-DEFINED powerdown sequence, which
ensures that the memory pointed to by each GICR_PENDBASER contains the updated pending
information for the LPIs. This powerdown sequence:

1. Completes the powerdown sequence for all cores.
2. Sets GICR_WAKER.Sleep to 1.
3. Polls GICR_WAKER until GICR_WAKER.Quiescent is set.

 Note

• GICR_WAKER.Sleep can only be set to 1 when:
— All Redistributors have GICR_WAKER.ProcessorSleep == 1.
— All Redistributors have GICR_WAKER.ChildrenAsleep == 1.

• GICR_WAKER.ProcessorSleep can only be set to 0 when:
— GICR_WAKER.Sleep == 0.
— GICR_WAKER.Quiescent == 0.

• Software must not clear GICR_WAKER.Sleep until GICR_WAKER.Quiescent is set because the
Write is ignored.

• There is only one GICR_WAKER.Sleep and one GICR_WAKER.Quiescent bit that can be read
and written through the GICR_WAKER register of any Redistributor.

This sequence ensures that all LPIs that are acknowledged by a write response to the write
GITS_TRANSLATER are saved to the Pending tables. Any interrupt that arrives when the Sleep bit is
set to 1 is ignored, and the ACE-Lite transaction completes in accordance with the ACE protocol.

ARM recommends that you disable any interrupt sources before setting GICR_WAKER.Sleep. However,
if you require wake-on-interrupt behavior, the Write to GITS_TRANSLATER must be gated upstream at
a location that enables software to reprogram and enable the GIC-600 without deadlock.

When the GICR_WAKER.Quiescent bit is set, it is safe to power down the GIC-600. However, you must
provide custom mechanisms to wake the GIC-600 if any interrupts arrive that must not be ignored.

When the GIC-600 next powers up, you can program the GICR_PENDBASER registers to point to the
same memory to reload the LPI pending status. If there is no requirement to reload the pending LPIs,
ARM recommends that you speed up the initialization of the GIC-600 as follows:
1. Zero the Pending table.
2. Set the GICR_PENDBASER.PTZ bit to 1.

 Note

GICR_PENDBASER registers can only be modified before the GICR_CTLR.Enable_LPIs bit is set, or
when bits GICR_WAKER.Sleep and GICR_WAKER.Quiescent are both set.

Related references
4.4.3 Power Management Control Register, GICR_WAKER on page 4-102.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-55
Non-Confidential

Other core signals

The signals wake_request and cpu_active can be used to control how a core is selected to receive
interrupts.

Before a core is powered-down, it must set the GICR_WAKER.ProcessorSleep bit to 1 to disable
sending packets over the GIC Stream interface, and wait until the GICR_WAKER.ChildrenAsleep bit is
set to 1. After that is completed, an interrupt that is targeted at that core causes the wake_request signal
for that core to be asserted. ARM recommends that you connect this signal to the power controller to
cause that core to power up.

When the core wakes, it must set the GICR_WAKER.ProcessorSleep bit to 0 to resume communications
over the GIC Stream interface and to enable its group enables so that the interrupt is delivered to the
core.

The GIC-600 uses the cpu_active signal to decide which cores are preferred for SPIs that target multiple
cores. The signal does not affect the operation of any other type of interrupt, and has no effect if
GICR_WAKER.ProcessorSleep is set to 1 for those cores.

SPIs that target multiple cores are never sent to cores that have GICR_WAKER.ProcessorSleep set to 1.
ARM recommends that you deassert cpu_active when a core is in a certain software-transparent sleep
state that is entered during a WFI or WFE instruction, such as retention. When cpu_active deasserts, the
core is less likely to handle SPIs that target multiple cores, and the amount of time that a core spends in
these sleep states can increase. If you use this method when cpu_active is deasserted, software must not
rely on SPIs that target multiple cores to make a core leave WFI or WFE. Instead, software must use
another mechanism to ensure this, such as an SGI, or a SPI targeted at only the core in question.

Related information
ARM® GICv3 and GICv4 Software Overview.

3.2.6 Getting started

There are some basic tasks that you must complete before you can start to use the GIC-600.

The Redistributor(s) must be powered on using the GICR_PWRR register to enable the Redistributor(s)
to be accessed, see Redistributor power management on page 3-53 for more information.

When the GIC-600 is powered up, it must be programmed as described in the ARM® GICv3 and GICv4
Software Overview.

3.2.7 Security

The GIC-600 supports the ARM TrustZone technology. Each INTID must be assigned a group and
security setting.

The GIC-600 supports the three interrupt groups that are shown in the following table.

Table 3-1 Security and groupings

Interrupt type Example use

Secure Group 0 Interrupts for EL3 (Secure firmware)

Secure Group 1 Interrupts for Secure EL1 (Trusted OS)

Non-secure Group 1 Interrupts for the Non-secure state (OS and the Hypervisor, or one of both)

The following table shows the interrupt signals that are used for each interrupt group, security state, and
Exception level.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-56
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

Table 3-2 Interrupt signals, security states and Exception levels

Core Exception level and Security state Group 0 Group 1

Secure Non-secure

Secure EL0, EL1 FIQ IRQ FIQ

Non-secure EL0, EL1, EL2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

Setting the Disable Security (DS) bit to 1 in the GICD_CTLR register removes the security support of
the GIC-600. It can be set by Secure software during the boot sequence or configured to be always set
when you configure the design using the parameter ds_value. When the system has no concept of
security, you must set GICD_CTLR.DS to allow access to important registers.

If you set GICD_CTLR.DS to 1, only a single security state is supported, in which a system core can be
configured as either Secure or Non-secure. In a single security state, register access, and the behavior and
number of interrupt groups supported are affected. For more information, see Interrupt grouping, and
Interrupt grouping and security in the ARM® Generic Interrupt Controller Architecture Specification,
GIC architecture version 3.0 and version 4.0.

 Note

ARM recommends that you only set GICD_CTLR.DS if either your system does not support security, or
the only software you run does not use security. See Security model in GICv3 and GICv4 Software
Overview for more information about the implications of setting GICD_CTLR.DS to 1.

If you run software without security awareness on a system that supports security, the Secure boot code
can set DS before switching to a Non-secure Exception level to run the software. This enables you to
program the GIC-600 from any Exception level and use two interrupt groups, Group 0 and Group 1, so
that interrupts can target both the FIQ and IRQ handlers on a core.

Group 0 is always Secure in systems with security. If you decide to write security-unaware software
using Group 0, it might not be portable to systems with a concept of security. Security-unaware software
is most portable when written using Group 1.

If a system has a concept of security but one or more cores do not, then you must not set DS. Instead
each core is only able to enable the interrupt groups corresponding to the security states that it supports.

In security aware systems, secure software can prevent the DS bit from being written by writing to
Disable Security Lock bit (GICD_SAC.DSL). Once set, the DSL bit is cleared only by a hardware reset.

If you know that your system is always security aware, then ARM recommends configuring the GIC-600
without DS support.

3.2.8 Backwards compatibility

The GIC-600 does not support legacy operation, that is, when GICD_CTLR.ARE_S or GICD_CTLR.NS
== 0.

3.2.9 Interrupt translation service (ITS)

The GIC-600 supports up to 32 ITS blocks in the system with a limit of 16 per chip. Each ITS is
responsible for translating message-based interrupts from peripherals into LPIs.

Each ITS is compliant with the GICv3 architecture and is responsible for mapping translation requests
with an EventID and DeviceID through to the physical INTID (pINTID) and Collection, a group of
interrupts, and finally to the target core. The following figure shows the ITS process.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-57
Non-Confidential

Interrupt Translation
Table (ITT)
 base, size

Device table

ITT base, size

device

ITT

pINTID, collection

base

ID
size

Collection table

Target, address

collection

Figure 3-2 ITS process

To reduce memory traffic and keep interrupt latency to a minimum, GIC-600 has three two-way set
associative caches in each ITS:
• DeviceID to ITT base address.
• DeviceID and EventID to collection.
• Collection to target core.

In small configurations, these caches might be too small to be worth the overhead of implementing them
as SRAM. If Error Correcting Code (ECC) protection is not required for a cache implemented as an
array of flops, and to reduce RAM area, you can remove ECC from each RAM individually, see Setting
configuration options section in the ARM® CoreLink™ GIC-600 Generic Interrupt Controller
Configuration and Integration Manual.

It is common for the DeviceID to be a non-contiguous number that is derived from the PCIe
RequestorID. To ensure that this does not result in a sparse DeviceID table and wasted memory, the
GIC-600 supports indirect Device tables (GITS_BASERn.Indirect = 1) where the first-level table points
at subtables that can be allocated at runtime. See the ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 for more details.

The GIC-600 uses memory-backed collections only, which means that before the ITS is enabled by
writing to GITS_CTLR.Enabled, memory must be allocated for the Device table, the Collection table,
and the ITS Command queue. Inline with the architecture, these tables must be pre-cleared to 0 by
software, apart from pointers to cleared level-two Device tables, unless the tables were previously
populated by the GIC-600.

The GIC-600 ITS supports all GICv3 commands as described in the ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0.

GITS_TYPER.PTA is 0 for all configurations, which means that all references to processor cores in ITS
commands are implemented through the GICR_TYPER.ProcessorNumber field.

Command and translation errors are reported through the RAS registers. See 3.2.15 Reliability,
Accessibility, and Serviceability on page 3-64.

For details on how to program and use the ITS, see the ARM® GICv3 and GICv4 Software Overview.

ITS cache control, locking, and test

The GIC-600 can lock certain interrupts to the ITS and LPI caches, or to one of either.

If an LPI or translation is missed in a cache, several memory reads can be required to obtain the data
necessary from memory. This can result in a range of latency that might not be acceptable for some LPIs.

The GIC-600 can lock certain interrupts to the ITS and, or LPI caches, with the following guarantees:

• Interrupts that are locked in ITS caches always hit and never need any translation.
• Interrupts that are locked in the LPI cache always hit.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-58
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

Interrupts that are locked in the ITS cache and also locked in the LPI cache, create a virtual channel that
ensures those interrupts are never held behind any memory accesses, unless those interrupts are
invalidated.

The ITS caches are automatically managed and invalidated as necessary when the GITS_BASERn
registers are updated. Therefore, software intervention is not required. However, to aid debug and
integration testing, you can force invalidation of the appropriate cache by setting the relevant bit in the
GITS_FCTLR register.

A forced invalidation of the Event cache abandons all locked entries.

The GITS_OPR and GITS_OPSR registers control cache locking, which is DEVICE_ID, EVENT_ID,
and the correct GITS_OPR.LOCK_TYPE (ITS = 2, LPI = 6). The GIC attempts to perform the lock, and
reports in GITS_OPSR. If the lock succeeds, GITS_OPSR.REQUEST_COMPLETE == 1 and
GITS_OPSR.REQUEST_PASS == 1.

Each cache set is two-way set associative. Only one entry can be locked in each cache set. Any attempt
to lock a cache set both ways, or a cache set that does not support locking, report as failed in
GITS_OPSR. You can also use the GITS_OPSR register to unlock entries that are locked.

The GITS_OPSR register has two test features:
• Trial: Tests the mapping by writing a DeviceID and EventID to GITS_OPR with

GITS_OPR.LOCK_TYPE = 1 (TRIAL). This causes the ITS to translate the supplied DeviceID and,
or EventID pair, and report the generated target and physical ID (PID) in GITS_OPSR. It also reports
if the translation fails, GITS_OPSR.REQUEST_PASS == 0, or if it hit a locked entry,
GITS_OPSR.ENTRY_LOCKED. The interrupt is not set to pending.

• Track: Can be used to detect the arrival of a certain EventID and, or DeviceID pair, which is reported
by setting GITS_OPSR.REQUEST_COMPLETE.

While any GITS_OPR operation is in progress, the GITS_OPSR.REQUEST_IN_PROGRESS bit is set
and no further updates are accepted by GITS_OPR until the previous operation completes. To ensure that
the operation is accepted, ARM recommends that the GITS_OPR value is read after writing. You can
abort Track operation by writing GITS_OPR.LOCK_TYPE == Track_abort, however, you must allow all
other requests to complete.

ITS commands and errors

Each ITS detects a wide range of command errors and translation errors, and reports them in ARMv8.2
RAS architecture-compliant error records.

The ITS record error syndromes comprise four groups that each have separate enables in the
GITS_FCTLR register. See Error record classification on page 3-64 for information about all the
detected syndromes.

Table 3-3 ITS record error syndrome groups

Group Control

ACE-Lite slave Write translation errors. Only when the ITS has a separate ACE-Lite
slave port.

GITS_FCTLR.AEE (Access Error Enable)

Translation errors on incoming writes to GITS_TRANSLATOR. GITS_FCTLR.UEE (Unmapped Error
Enable)

Errors during commands. GITS_FCTLR.CEE (Command Error
Enable)

Other errors, such as, memory system, or memory allocation errors. None

ITS commands must be written by software before they are executed.

The ITS Command queue operates a stall mechanism on any error, irrespective of the
GITS_FCTLR.CEE value. To execute commands, software writes to a Command queue in memory and

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-59
Non-Confidential

then updates the GITS_CWRITER.Offset to indicate that there are commands to run. See 3.2.6 Getting
started on page 3-56 for more information. Normally, the GITS_CREADR.Offset increments until it
matches the GITS_CWRITER.Offset, wrapping as necessary, to indicate that the Command queue has
completed.

If an error occurs, GITS_CREADR.Stalled is set, which indicates that processing has stopped and
software intervention is required. If GITS_FCTLR.CEE is set, at least one error is reported in the
relevant error record to aid software debug. You can correct the command identified by GITS_CREADR
and resume the Command queue by writing to GITS_CWRITER.Retry. If the command is no longer
required, you must rewrite it as a SYNC command before you resume.

To determine when Command queue execution has completed, you can use either one of two methods:
• Polling GITS_CREADR.Offset until it matches GITS_CWRITER.Offset.
• Putting an INT command in the queue and waiting for that interrupt to arrive.

For the second method, ARM recommends that you enable GITS_FCTLR.CEE and that you configure
the fault_handling, or error_recovery interrupt to be delivered to a core that can resolve Command queue
issues. See 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64 for more information.

3.2.10 LPI caching

If LPI support is configured, the GIC-600 supports a single LPI cache per chip.

The LPI cache is two-way set associative based on the lowest bits of the LPI INTID, and stores LPI
properties from the LPI Property table. The relevant set is checked for valid properties as each LPI
arrives in the system.

The cache is fully associative for pending LPIs, which means that the LPI system fills almost all lines in
the cache before sending anything to the Pending tables. The GIC-600 is not optimized for collating LPIs
that have the same INTID. However the system is designed to reorder and sort the cache over time. In
some circumstances, this can cause duplicated interrupts to not be collated efficiently. However, the
reduced use of the Pending table, results in better latency bounds under load.

This method of caching means that priorities are associated with an incoming LPI and remain with it
until it is serviced. Changes in the LPI Property table are not accepted by the GIC until the relevant INV
and SYNC commands are executed through an ITS, GICR_INVLPIR or GICR_INVALLR.

The GIC-600 considers priority and enable when choosing data to retain in the cache. However, pending
interrupts always take priority over interrupts that are not pending, so there is no guarantee that the
highest priority interrupt data always remains stored in the cache.

To ensure the lowest possible latency for a small subset of LPIs, the GIC offers a cache-locking option in
the LPI cache. If the same interrupt is locked in both the ITS and LPI caches, when accepted by the ITS,
the interrupt follows a virtual channel through the GIC. This guarantees that the interrupt reaches all
necessary caches before it reaches the core, and is not blocked by memory accesses from other interrupts.

 Note

A locked interrupt must remain the highest priority and fully enabled to guarantee that it is delivered to
the core before any other interrupt.

The type of cache lock is set by the GITS_OPR register, see 4.6.4 Operations Register, GITS_OPR
on page 4-118.

Related references
2.1.6 Distributor configuration on page 2-27.

3.2.11 Memory access and attributes

The LPI and ITS transactions are located in memory tables whose locations are defined in registers that
specify their base address, size, and access attributes.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-60
Non-Confidential

The a<x>cache and a<x>domain mappings for memory transactions generated by the GIC are shown in
the following table.

Table 3-4 Memory access registers

Access type Register Mapping control bite

LPI Property table GICR_PROPBASER GICD_FCTLR.DCC

LPI Pending table GICR_PENDBASER

ITS Device table GITS_BASER0

ITS Translation table GITS_BASER0

ITS Collection table GITS_BASER1

ITS Command queue GITS_CBASER

The main cacheability value is derived from the *BASER*.OuterCache field, unless it is zero, in which
case the cacheability value is a value that is shown in the following table.

Table 3-5 Cacheability values

Main cacheability value
(*BASER*.OuterCache field)

Other cacheability value
(*BASER*.InnerCache
field)

ARCACHE AWCACHE ARCACHE
(DCC = 1)

AWCACHE
(DCC = 1)

0b000, Device-nGnRnE - 0b0010 0b0010 0b0010 0b0010

0b001, Normal Non-cacheable Match 0b0011 0b0011 0b0011 0b0011

0b001, Normal Non-cacheable No match 0b0011 0b0011 0b0011 0b0011

0b010, Normal cacheable RA Write-
Through

Match 0b0011 0b0011 0b1110 0b0110

0b010, Normal cacheable RA Write-
Through

No match 0b0011 0b0011 0b1110 0b0110

0b011, Normal cacheable RA Write-
Back

Match 0b1111 0b0111 0b1111 0b0111

0b011, Normal cacheable RA Write-
Back

No match 0b0011 0b0011 0b1111 0b0111

0b100, Normal cacheable WA Write-
Through

Match 0b0011 0b0011 0b1010 0b1110

0b100, Normal cacheable WA Write-
Through

No match 0b0011 0b0011 0b1010 0b1110

0b101, Normal cacheable WA Write-
Back

Match 0b1011 0b1111 0b1011 0b1111

0b101, Normal cacheable WA Write-
Back

No match 0b0011 0b0011 0b1011 0b1111

0b110, Normal cacheable WA RA
Write-Through

Match 0b0011 0b0011 0b1110 0b1110

0b110, Normal cacheable WA RA
Write-Through

No match 0b0011 0b0011 0b1110 0b1110

e The mappings are designed for the ARMv8 and ARMv8.2 generation of cores. However, setting this bit converts the GIC-600 to full featured mapping.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-61
Non-Confidential

Table 3-5 Cacheability values (continued)

Main cacheability value
(*BASER*.OuterCache field)

Other cacheability value
(*BASER*.InnerCache
field)

ARCACHE AWCACHE ARCACHE
(DCC = 1)

AWCACHE
(DCC = 1)

0b111, Normal cacheable WA RA
Write-Back

Match 0b1111 0b1111 0b1111 0b1111

0b111, Normal cacheable WA RA
Write-Back

No match 0b0011 0b0011 0b1111 0b1111

Signal a<x>domain is driven according to the *BASER*.Shareability field unless the resultant
cacheability is Device, or Non-cacheable, in which case it becomes 0b11, system Shareable in
accordance with the ARM® AMBA® AXI and ACE Protocol Specification.

3.2.12 MSI-64

The MSI-64 Encapsulator can be used to combine the DeviceID into single memory access writes to the
GITS_TRANSLATER register in the ITS.

The ITS translates DeviceID/EventID pairs into LPI physical INTIDs.

A normal MSI/MSI64 write contains the EventID in the lower 16 bits or 32 bits of data. However, the
DeviceID must be transported using a different method. The DeviceID is often derived directly from a
PCIe RequestorID or System Memory Management Unit (SMMU) StreamID.

The GIC-600 ITS supports two mechanisms:

awuser_its[_<num>]_s
The DeviceID arrives on sideband user signals. The system integrator must ensure that rogue
software cannot directly or indirectly, perform an access to the GITS_TRANSLATER register
with a DeviceID that matches a real device.

MSI-64
When configured to support MSI-64, the ITS expects the DeviceID to be in the upper 32 bits of
a 64-bit write to the GITS_TRANSLATER register.
To prevent rogue software accessing the GITS_TRANSLATER register and spoofing any
device, ARM recommends that the GITS_TRANSLATER registers are moved to an arbitrary
page that is protected by the Hypervisor.
The GIC-600 uses two methods to support this:
• The MSI-64 Encapsulator modifies the page address of accesses to the architectural

GITS_TRANSLATER address, set by the msi_translator_page tie-off, to the system-
defined page set by msi64_translator_page.

• When the ITS shares an ACE-Lite slave port, a separate page address tie-off
gits_translater_page, allows the GITS_TRANSLATER register page to be moved to
anywhere in the address map to match the msi64_translator_page value that is independent
of the GICD address map reset.

 Note

The msi64_translator_page must not be on top of any other GIC register page.

To ensure that this method of mapping is hidden from software, all accesses to the
msi64_translator_page must pass through an Encapsulator, or similar embedded
functionality. See 2.4 MSI-64 Encapsulator on page 2-37 for more information about the
MSI-64 Encapsulator.

3.2.13 RAM

The GIC-600 uses multiple RAMs to store a range of states for all types of interrupt.

In typical operation, the RAMs are transparent to software.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-62
Non-Confidential

A RAM is protected from errors using an ECC with Single Error Correction and Double Error Detection
(SECDED). If single or double errors are detected, they are reported in the software visible error records,
see 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64 for more information.

3.2.14 Performance Monitoring Unit

The GIC-600 contains a PMU for counting key GIC events from both the Distributor and any configured
ITS blocks on the same chip.

 Note

Redistributor events are not tracked by the PMU. The delivery of PPI and SGI interrupts can be counted
by recording calls to the core interrupt service routine.

The PMU has five counters with snapshot capability and overflow interrupt.

Secure software must enable Non-secure access to the GICP, PMU register space, and ensure that Secure
and Non-secure interrupts are counted together. This can be done by programming the
GICD_SAC.GICPNS bit, or by integrating the GIC with the gicp_allow_ns tie-off set HIGH.

 Note

If GICD_CTLR.DS == 1, the GICP register space is accessible to all software.

Count configuration

Each PMU counter can be programmed individually to count a range of events.

To configure a counter:
1. Program the counter GICP_EVCNTRn to a known value. This could be 0 to count events, or a higher

number to trigger an overflow after a known number of events.
2. Program the associated GICP_EVTYPERn to count the required event.
3. Program the required filter type for the event by programming GICP_FRn.
4. Enable the counter by programming the corresponding bit in GICP_CNTENSET0.
5. Repeat the previous steps for all counters that are required.
6. Enable the global count enable in GICP_CR.E.

 Note

PMU registers, other than enables, do not have resets and must be programmed before use.

Count filtering
Overflow interrupt

The overflow interrupt can be enabled on a per counter basis by enabling the relevant bit of
GICP_INTENSET0, where bit0 enables GICP_EVCNTR0, bit1 enables GICP_EVCNTR1, and
so on. Similarly, the overflow interrupt enable can be disabled by corresponding Writes to
GICP_INTENCLR0.
When enabled, the interrupt activates at any of these events:
• A write to a GICP_OVSSET0 for any counter.
• An overflow on any enabled counter.

The GICP_OVSSET0 and GICP_OVSCLR0 can be used for save and restore operations and for
testing the correct integration of the pmu_int interrupt.

The pmu_int can be used to trigger external logic, for example, to trigger a Read of the
captured data.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-63
Non-Confidential

Snapshot
Each PMU counter GICP_EVCNTRn has a corresponding GICP_SVNn snapshot register. On a
snapshot event, all five counters are copied to their backup registers so that all consistent data is
copied out over a longer period.
The snapshot events are:
• A handshake on the four phase sample_req/sample_ack external handshake.
• A write of 1 to the GICP_CAPR register CAPTURE field.
• An overflow of an enabled counter when GICP_EVTYPERn.OVFCAP is set.

 Note

There is only one set of snapshot registers, therefore data is replaced in multiple capture events.

3.2.15 Reliability, Accessibility, and Serviceability

RAM is protected with SECDED and ECC, and can be checked by software to determine valid entries.
RAM and software errors are reported in records and can be assigned to fault handling or error recovery
interrupts.

Non-secure access

You can control whether Non-secure software has access to the register space by using
GICD_SAC.GICTNS. Its reset value is set by the gict_allow_ns tie-off signal.

In the case of an error, and if the GICD_CTLR.DS == 0, all SPIs, PPIs, and SGIs, resort to a secure
group. Therefore, interrupt programming is not revealed to the Non-secure side. See Software error
record 0 on page 3-66 to ITS software error records 13+ on page 3-75 for more information.

Scrub

The GIC-600 holds many states including all associated interrupt types in RAM that is protected by the
scrub system.

RAM is protected with SECDED, and ECC. However, the contents of some RAM is expected to be static
over long periods of time. There is a potential for errors to accumulate if a particular address is not
accessed after a period. To prevent this, software can trigger a low_priority scrub through
GITS_FCTLR.SIP, GICR_FCTLR.SIP, and GICD_FCTLR.SIP. This process triggers a check and if
necessary, a Write-Back, of all valid RAM entries.

Error record classification

The GIC reports errors in ARMv8.2 RAS architecture-compliant error records.

There are four classes of error records:
• Correctable ECC errors.
• Uncorrectable ECC errors.
• ITS command errors.
• Software access errors.

The error records have a separate reset so that they can be read after a main GIC reset to determine any
problems.

ECC error reporting and recovery

When an ECC error is detected, the GIC-600 attempts to contain the error and ensure it cannot propagate
further.

You can program the GIC-600 to trigger a SPI as a fault_handling interrupt. The following table shows
the ECC error reporting of components by RAM.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-64
Non-Confidential

Table 3-6 ECC error reporting

RAM Action

ITS caches All ITS caches are memory that is backed. The contents are reloaded from memory. However, if entries are locked in
the cache, the lock is lost. Locked entries are the highest priority for reporting in the error record.

SPI All information about the SPI is reported and the interrupt is returned to its reset values. The SPIs that are in the error
state can also be determined by reading the GICD_IERRRn register. This SPI is not reused until it is reprogrammed
and re-enabled.

LPI All information from the RAM entry is reported. Software can determine the set of interrupts that might have errors,
based on the reported ID, to check priority, and to target information.
If a Double Error Detect (DED) error occurs on a locked entry, the lock is lost.

 Note

Repeated double errors in the LPI cache cause an overflow of the error record, which means subsequent information
is lost. ARM recommends that a high priority SPI is used to trigger a core to clear the error record as fast as possible.

Redistributor
RAM

In the Redistributor, only group and priority are maintained in the RAM. If an error occurs, this information becomes
UNKNOWN for four interrupts. Pending and Active states are maintained but the enable is cleared so that the interrupt
is not forwarded.
You can determine the interrupts that are in error by reading the GICR_IERRV register.

 Note

Because the group is UNKNOWN, it is assumed to be Secure, and therefore interrupt deactivates can be ignored.
Software must consider this as part of the recovery sequence.

It is also possible for a GenerateSGI packet to become corrupted. In this case, the GenerateSGI is reported as bad,
and software can read the remaining data to determine how to recover.

For more information about Pending and Active PPI states, see ARM® GICv3 and GICv4 Software Overview.

SGI The SGI RAM holds group and Non-Secure Access Control (NSACR) information for all cores. It is used to enable
wakeup of the Redistributor as required. If an error occurs in the RAM, then all SGIs for that core are considered to
be Secure. This prevents Non-secure masters from raising Secure interrupts incorrectly.

Error recovery and fault handling interrupts

You can assign a recorded correctable ECC error to the fault_handling interrupt by setting
GICT_ERR<n>CTLR.CFI.

All correctable ECC errors have error counters, therefore, the interrupt only fires when the counter in the
associated GICT_ERR<c>MISC0 register overflows. You can preset the counter in
GICT_ERR<c>MISC0 bits 32-40 to any value by Writing to GICT_ERR<c>MISC0. For example, to
fire an interrupt on any correctable error, Write 0xFF, or to fire an interrupt on every second correctable
error, Write 0xFE.

You can assign a recorded uncorrectable ECC error either to the fault_handling interrupt, fault_int, by
setting GICT_ERR<n>CTLR.FI, or to the error recovery interrupt, err_int, by setting
GICT_ERR<n>CTLR.UI. The interrupt fires on every uncorrectable interrupt occurrence irrespective of
the counter value.

You can route interrupts fault_int and err_int out as interrupt wires for situations where error recovery
is handled by a core that does not receive interrupts directly from the GIC, such as a central system
control processor. Alternatively, you can drive each interrupt internally by programming the associated
GICT_ERRIRQCR<x> register.

Each GICT_ERRIRQCR<n> register contains an ID field that must be programmed to 0 if internal
routing is not required, or if internal routing is required, to a legally supported SPI ID. If the programmed

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-65
Non-Confidential

ID is below 32, out of range, or for multichip configurations, not owned on chip, the register updates to 0
and no internal delivery occurs.

The interrupt active bit is stored in RAM. This allows the Interrupt Service Routine (ISR) to cope with
instances where there is a DED error on the SPI programming and the current active status is ignored, or
in rare circumstances, the interrupt might be delivered while the ISR is active.

ARM recommends that if the err_int and fault_int are internally routed, the target interrupts must not
have SPI Collator wires, or if they are present, are tied off. This prevents software checking for the same
ID at multiple destinations.

The err_int and fault_int do not have direct test enable registers. You can test connectivity using error
record 0 and triggering an error, such as an illegal AXI access to a non-existent register.

Error handling records

The GIC-600 has several ARMv8.2 RAS architecture-compliant error records. The range of error
handling records that are available depends on the configuration of the GIC-600.

The GIC-600 error handling records are listed in the following table.

Table 3-7 Error handling records

Record Description

0 Uncorrected software error in the Distributor.

1 Corrected SPI RAM error.

2 Uncorrected SPI RAM error.

3 Corrected SGI RAM error.

4 Uncorrected SGI RAM error.

5 Corrected Target (TGT) cache error. Not used if there are less than 16 cores.

6 Corrected TGT cache error. Not used if there are less than 16 cores.

7 Corrected PPI RAM error.

8 Uncorrected PPI RAM error.

9 Corrected LPI RAM error. Not present if there is no LPI support.

10 Uncorrected LPI RAM error. Not present if there is no LPI support.

11 Corrected error from ITS RAM. Not present if an ITS is not present.

12 Uncorrected error from ITS RAM. Not present if an ITS is not present.

13+ Uncorrected software error in ITS. One record per ITS on the chip. Not present if an ITS is not present.

The details, events, and recovery sequences of each record are described in Software error record 0
on page 3-66 to ITS software error records 13+ on page 3-75.

Software error record 0

Software error record 0 records software errors that are uncorrectable.

Record 0 contains software programming errors from a wide range of sources within the GIC-600. In
general, these errors are contained. For uncorrected errors, the information that is provided gives enough
information to enable recovery without significant loss of functionality.

ARM recommends that record 0 is connected to a high priority interrupt. This prevents the record from
overflowing if it receives more errors than it is able to process with the possible loss of information

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-66
Non-Confidential

required for recovery. See Error recovery and fault handling interrupts on page 3-65 for more
information.

The following table describes the syndromes that are recorded in record 0, the reported information, and
recovery instructions.

Table 3-8 Record 0 software errors

IERR SERR GICT_ERR<n>MISC0.Data Recovery, Prevention

0x00, SYN_ACE_BAD

Illegal ACE-Lite Slave Access.

0xE AccessRnW, bit[12]

AccessSparse, bit[11]

AccessSize, bits[10:8]

AccessLength, bits[7:0]

Repeat illegal access, with appropriate
size and properties.

Full access address is given in
GICT_ERR0ADDR.

0x01, SYN_PPI_PWRDWN

Attempt to access a powered down Redistributor.

0xF Redistributor, bits[24:16]

Core, bits[8:0]

Ensure that the Redistributor is powered
up before accessing. See 4.4.5 Power
Register, GICR_PWRR on page 4-104.

Attempt was made by the core reported
in MISC0.

0x02, SYN_PPI_PWRCHANGE

Attempt to power down Redistributor rejected.

0xF Redistributor, bits[24:16]

Core, bits[8:0]

Ensure that the core accessing the
register, or all cores with the same
GICR_PWRR.RDG if
GICR_PWWR.RDAG is set, has
completed the
GICR_WAKER.ProcessorSleep
handshake.

0x03, SYN_GICR_ARE

Attempt to access GICR or GICD registers in
mode that cannot work.

0xF Core, bits[8:0] Repeat the access to the specified core
accessing the correct register space. That
is, if ARE_S and ARE_NS == 1 then
PPI and SGI registers must be accessed
through the GICRx instead of GICD
register space.

0x04, SYN_PROPBASE_ACC

Attempt to reprogram PROPBASE registers to a
value that is not accepted because another value
is already in use.

0xF Core, bits[8:0] GICR_PROPBASER is shared between
all cores on a chip. Once any
GICR_CTLR.Enable_LPIs bit is set, the
value is locked and cannot be updated
unless a complete GICR_WAKER.Sleep
handshake is complete.

See A.2 Power control signals
on page Appx-A-155.

0x05, SYN_PENDBASE_ACC

Attempt to reprogram PENDBASE registers to a
value that is not accepted because another value
is already in use.

0xF Core, bits[8:0] Once any GICR_CTLR.Enable_LPIs bit
is set, the Shareability, InnerCache, and
OuterCache fields are locked for the
whole chip. They can only be changed
by completing the GICR_WAKER.Sleep
handshake.

See A.2 Power control signals
on page Appx-A-155. Otherwise, repeat
the register access using the current
global values.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-67
Non-Confidential

Table 3-8 Record 0 software errors (continued)

IERR SERR GICT_ERR<n>MISC0.Data Recovery, Prevention

0x06, SYN_LPI_CLR

Attempt to reprogram ENABLE_LPI when not
enabled and not asleep.

0xF Core, bits[8:0] ARM recommends that you do not clear
the Enable_LPIs bit. Instead, interrupts
must be unmapped using an ITS. If you
must clear, then you must flush the LPI
cache using the GICR_WAKER.Sleep
handshake.

See A.2 Power control signals
on page Appx-A-155.

0x07, SYN_WAKER_CHANGE

Attempt to change GICR_WAKER abandoned
due to handshake rules.

0xF Core, bits[8:0] GICR_WAKER.ProcessorSleep and
GICR_WAKER.ChildrenAsleep form a
four-phase handshake. The attempt to
change state must be repeated when the
previous transition has completed.

0x08, SYN_SLEEP_FAIL

Attempt to put GIC to sleep failed as cores are
not fully asleep

0xF Core, bits[8:0] All cores must be asleep, using the
GICR_WAKER.ProcessorSleep
handshake, before you flush the LPI
cache using GICR_WAKER.Sleep.

0x09, SYN_PGE_ON_QUIESCE

Core put to sleep before its Group enables were
cleared.

0xF Core, bits[8:0] The core must disable its group enables
before it toggles the
GICR_WAKER.ProcessorSleep
handshake, otherwise, the GIC clears its
record of the group enables, causing a
mismatch between the GIC and the core.

0x0A, SYN_GICD_CTLR

Attempt to update GICD_CTLR was prevented
due to Register Write Pending (RWP) or Group
enable restrictions.

0xF Data, bits[7:0] Software must wait for
GICD_CTLR.RWP to be 0 before
repeating the GICD_CTLR Write. The
data represents the target value.

0x10, SYN_SGI_NO_TGT

SGI sent with no valid destinations.

0xE Core, bits[8:0] If the SGI is required, software must
repeat the SGI from the reported core
with a valid target list.

If this level of RAS functionality is
required, the software must track
generated SGIs externally.

0x11, SYN_SGI_CORRUPTED

SGI was corrupted and has not taken effect.

0x6 Core, bits[8:0] An SGI is corrupted due to a RAM error
in the PPI RAM. The RAM error details
are reported separately in record 8. The
GIC ignores the SGI generated from the
recorded core. If you want software to
recover from this, it must use an external
record of the generated SGI.

0x12, SYN_GICR_CORRUPTED

Data was read from GICR register space that has
encountered an uncorrectable error.

0x6 GITS_ERR0ADDR is
populated

Software has tried to read corrupted data
stored in SGI RAM or PPI RAM. Check
records 4 and 8, and perform a recovery
sequence for those interrupts.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-68
Non-Confidential

Table 3-8 Record 0 software errors (continued)

IERR SERR GICT_ERR<n>MISC0.Data Recovery, Prevention

0x13, SYN_GICD_CORRUPTED

Data was read from GICD register space that has
encountered an uncorrectable error.

0x6 GICT_ERR0ADDR is
populated

Software has tried to read corrupted data
stored in SPI RAM.

Check record 2 and perform a recovery
sequence for those interrupts.

0x14, SYN_ITS_OFF

Data was read from an ITS that was powered
down.

0xF GITS_ERR0ADDR is
populated

Ensure that the qreqn_its<x> power
control Q-Channel is in the RUN state
before accessing the relevant ITS.

0x19, SYN_SPI_OOR

Access to a non-implemented SPI using (SET|
CLR)SPI.

0xE ID, bits[9:0] Reprogram the issuing device to send a
supported SPI ID.

0x1A, SYN_SPI_NO_DEST_TGT

A SPI has no legal target destinations.

0xF ID, bits[9:0] Before enabling the specified SPI,
reprogram the SPI to target an existing
core.

0x1B, SYN_SPI_NO_DEST_1OFN

A 1 of N SPI cannot be delivered due to bad
DPG/GICR_CLASS programming.

0xF ID, bits[9:0] Ensure that there is at least one valid
target for the specified 1 of N interrupt,
that is, ensure that at least one core has
acceptable DPG and CLASSR settings to
enable delivery.

0x1C, SYN_COL_OOR

A collator message is received for a non-
implemented SPI, or is larger than the number of
owned SPIs in a multichip configuration.

0xF ID, bits[9:0] In a multichip configuration, ensure that
there are enough owned SPIs to support
all SPI wires that are used. Any
unsupported interrupts must be disabled
at the source.

0x1D, SYN_DEACT_IN

A Deactivate to a non-existent SPI, or with
incorrect groups set. Deactivates to LPI and non-
existent PPI are not reported.

0xE None A Deactivate occurred to a non-existent
SPI, or that SPI group prevented the
Deactivate occurring. Software must
check the active states of SPIs.

0x1E, SYN_SPI_CHIP_OFFLINE

An attempt was made to send a SPI to an offline
chip.

0xF ID, bits[9:0] Software must disable or retarget
interrupts that are targeted at offline
cores.

0x20, SYN_PUP_REJ

A multichip power update was rejected.

0xF None Software must wait for a previous chip
power transition to complete before
attempting to start another one.

0x28, SYN_ITS_REG_SET_OOR

An attempt was made to set an OOR interrupt.
Only valid when GICR LPI injection registers
are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software must reprogram the source
device to only create legal LPI IDs.

0x29, SYN_ITS_REG_CLR _OOR

An attempt was made to clear an OOR interrupt.
Only valid when GICR LPI injection registers
are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software must not attempt to clear non-
existent LPIs.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-69
Non-Confidential

Table 3-8 Record 0 software errors (continued)

IERR SERR GICT_ERR<n>MISC0.Data Recovery, Prevention

0x2A, SYN_ITS_REG_INV_OOR

An attempt was made to invalidate an OOR
interrupt. Only valid when GICR LPI injection
registers are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software must not attempt to clear non-
existent LPIs.

0x2B, SYN_ITS_REG_SET_ENB

An attempt was made to set an interrupt when
LPIs are not enabled. Only valid when GICR
LPI injection registers are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software must follow architectural steps
to enable LPIs on the specified core
before enabling the core to send
interrupts.

0x2C, SYN_ITS_REG_CLR _ENB

An attempt was made to clear an interrupt when
LPIs are not enabled. Only valid when GICR
LPI injection registers are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software must not try to clear LPIs on a
core that does not have LPIs enabled
using GICR_CTLR.Enable_LPIs.

0x2D, SYN_ITS_REG_INV_ENB

An attempt was made to invalidate an interrupt
when LPIs are not enabled. Only valid when
GICR LPI injection registers are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software must not try to invalidate LPIs
on a core that does not have LPIs
enabled using
GICR_CTLR.Enable_LPIs.

0x40, SYN_LPI_PROP_READ_FAIL

An attempt was made to read properties for a
single interrupt, where an error response was
received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software must reprogram the LPI
Property table for the specified ID with
error-free data and then issue an INV
command through the ITS. If an
overflow occurred, an INVALL command
must be issued to all cores.

0x41, SYN_PT_PROP_READ_FAIL

An attempt was made to read properties for a
block of interrupts, where an error response was
received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software must reprogram the LPI
Property table for the specified ID with
error-free data and then issue an INV
command through the ITS. If an
overflow occurred, an INVALL command
must be issued to all cores.

0x42, SYN_PT_COARSE_MAP_READ_FAIL

An attempt was made to read the coarse map for
a target, where an error response was received
with the data.

0x12 Target, bits[31:16] No recovery is necessary because the
GIC assumes that the coarse map is full.
After a period, software tries to
determine the reason for the error.

0x43,
SYN_PT_COARSE_MAP_WRITE_FAIL

An attempt was made to write the coarse map for
a target, with an error received with the Write
response.

0x12 Target, bits[31:16] The GIC attempts to continue, however
this error indicates issues with the
memory system, and operation might be
UNPREDICTABLE.

0x44, SYN_PT_TABLE_READ_FAIL

An attempt was made to read a block of
interrupts from a Pending table, where an error
response was received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software must determine the reason for
the pending error Read fail. The GIC
uses the data supplied, however, it is
possible for the LPI interrupt to be lost
around the specified LPI.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-70
Non-Confidential

Table 3-8 Record 0 software errors (continued)

IERR SERR GICT_ERR<n>MISC0.Data Recovery, Prevention

0x45, SYN_PT_TABLE_WRITE_FAIL

An attempt was made to write back a block of
interrupts from a Pending table, with an error
received with the write response.

0x12 Target, bits[31:16]

ID, bits[15:0]

The GIC tries to continue, however, this
error indicates issues with the memory
system, and operation might be
UNPREDICTABLE.

0x46, SYN_PT_SUB_TABLE_READ_FAIL

An attempt was made to read a sub-block of
interrupts from a Pending table, where an error
response was received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software must determine the reason for
the pending error read fail. The GIC uses
the data supplied, however, it is possible
for the LPI interrupt to be lost around the
specified LPI.

0x47, SYN_PT_TABLE_WRITE_FAIL_BYTE

An attempt was made to write back a sub-block
of interrupts from a Pending table, with an error
received with the write response.

0x12 Target, bits[31:16]

ID, bits[15:0]

The GIC tries to continue, however, this
error indicates issues with the memory
system, and operation might be
UNPREDICTABLE.

SPI RAM error records 1-2

SPI RAM error record 1 records RAM ECC errors that are correctable. SPI RAM error record 2 records
RAM ECC errors that are uncorrectable. Each error generates a SPI interrupt.

SPI RAM error records 1-2 are present if SPI RAM ECC is configured.

The GIC-600 has two SPI RAM, SPI0 and SPI1 that contain the programming for SPIs. SPI0 contains
SPIs that have even-numbered IDs, and SPI1 contains SPIs that have odd-numbered IDs.

If a correctable error is detected in SPI RAM, it is corrected and the error is reported in error record 1.
See Error recovery and fault handling interrupts on page 3-65 for information about the error counters
and interrupt generation options.

Correctable errors do not require software to take any action within the GIC. However, the GIC can
choose to track error locations in case a RAM row or column can be repaired, if the RAM has repair
capability.

The GICT_ERR1MISC0 reports data for SPI error records 1-2 shown in the following table.

Table 3-9 SPI RAM error reported data

Record GICT_ERR1MISC0.Data

1 = Correctable Bit location, bits[log2(SPI)+]

2 = Uncorrectable ID, bits[log2(SPI) - 1:0]

The RAM address can be determined from the ID >> 1. ID[0] specifies the SPI RAM number.

If a SPI has an uncorrectable error, GICD_IERRRn identifies the SPI. While in this error state, the
interrupt reverts to a disabled, secure group 0, edge-triggered SPI, and Non-secure access is controlled by
GICD_FCTLR.NSACR. This enables secure software to control whether Non-secure accesses can set the
interrupt to pending while in the errored state.

For uncorrectable errors, software is required to perform the following recovery sequence:
1. Read the error record to determine if an uncorrectable error has occurred.
2. Clear the error record to enable future errors to be tracked.
3. Read all GICD_IERRRn registers to identify SPIs that have errors. The GICR_IERRRn registers

must be read from the secure side.f

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-71
Non-Confidential

4. If required, read out any of the current programmed states. This includes programmed data that is
corrupted and generates an error, unless GICT_ERR0CTRL.UE is disabled. ARM recommends that
intended programming is stored in memory so that this step is not required.

5. Write to GICD_ICENABLERn to disable all interrupts that have errors.
6. Write 1 to GICD_IERRRn to clear all interrupts that have errors and revert _GROUP, _GRPMOD,

_ICFG and _NSACR to their default values.
7. Reprogram the interrupt to the intended settings.
8. If the interrupt is reprogrammed to be level-sensitive, write to GICD_ICPENDRn to ensure that any

level-sensitive pending bits are cleared.
9. If the interrupt is edge-triggered, ARM recommends that software checks the device, if possible, in

case an edge is lost.
10. Ensure that the active bit is set correctly depending on whether it is being processed. Clear the active

bit using GICD_ICACTIVE to ensure that the interrupt is delivered when it is set to pending in the
future. However, if the interrupt is being processed in a core, the interrupt might be delivered again
before it is deactivated.

11. Re-enable the reprogrammed interrupts by writing to GICD_ISENABLER.
12. Recheck the error record to ensure that no more errors are reported, if necessary, repeat step 2.

SGI RAM error records 3-4

SGI RAM error record 3 records RAM ECC errors that are correctable. SGI RAM error record 4 records
RAM ECC errors that are uncorrectable. Each error generates an SGI interrupt.

SGI RAM error records 3-4 are present if SGI RAM ECC is configured.

The Distributor records a subset of the SGI programming, and stores this information in the SGI RAM,
to ensure that it can make the correct routing decisions for SGIs.

If a correctable error is detected in SGI RAM, the error is corrected and the error is reported in error
record 3. See Error recovery and fault handling interrupts on page 3-65 for information about the error
counters and interrupt generation options.

Correctable errors do not require software to take an action within the GIC. However, the GIC can
choose to track error locations in case it can repair a RAM row or column.

The GICT_ERR<n>MISC0 reports data for SGI error records 3-4 shown in the following table.

Table 3-10 SGI RAM error reported data

Record GICT_ERR<n>MISC0.Data

3 = Correctable Bit location, log2(width)

Address, bits[ceiling(core / 16) × 16+]

4 = Uncorrectable Address, bits[ceiling(core / 16) × 16 - 1:0]

The RAM stores information for the same SGI for up to 16 cores on a single row.

GICR_SGIDR contains default values for GRP, GRPMOD, and NSACR for each SGI.

When SGI programming that is in error, is taken from GICR_SGIDR, the corrupted SGI number is given
by address × 16 on cores (address - (address × 16)) to (address - (address × 16)) + 15.

For uncorrectable errors that occur in either the PPI or SGI RAM, software is required to perform the
following recovery sequence:
1. Read the error record to determine if an uncorrectable error has occurred.
2. Clear the error record to enable future errors to be tracked.
3. Read all GICR_IERRV registers to identify SGIs and PPIs that have errors. The GICR_IERRV

registers must be read from the secure side.

f If the error record reports only one error, the block that contains the error can be determined using the ID in the GICT_ERR2MISC register, by calculating the block
number as 1 + (ID / 32). However, in the case of an overflow, all GICD_IERRRn registers must be checked.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-72
Non-Confidential

4. If required, read out any of the current programmed states.g This includes programmed data that is
corrupted and generates an error, unless GICT_ERR0CTRL.UE is disabled. ARM recommends that
intended programming is stored in memory so that this step is not required.

5. Write to GICR_ICENABLERn, to disable all interrupts that have errors.
6. Write 1 to the interrupts that have errors in the relevant GICR_IERRV register to clear the interrupts

that have errors and revert _GROUP, _GRPMOD, and _NSACR to their default values. The values of
PPIs are not changed.

7. Reprogram the interrupt to the intended settings.
8. Re-enable the reprogrammed interrupts by writing to the relevant GICR_ISENABLER0.
9. Recheck the error record to ensure that no more errors are reported, if necessary, repeat step 2.

PPI RAM error records 7-8

PPI RAM error record 7 records RAM ECC errors that are correctable. PPI RAM error record 8 records
RAM ECC errors that are uncorrectable. Each error generates a PPI interrupt.

PPI RAM error records 7-8 are present if PPI RAM ECC is configured.

Error records 7-8 record the errors from PPI RAM that contain GRP, GRPMOD, and priority information
for PPIs and SGIs. PPI RAM also contains a buffer that stores generated SGIs when backpressure occurs.

The GICT_ERR<n>MISC0 reports data for PPI error records 7-8 shown in the following table.

Table 3-11 PPI RAM error reported data

Record MISC0

7 = Correctable PPI block, bits[18+]

Bit location, bits[17:12]

Offset, bits[11:8]

SGI/Int, bit[7]

Core, bits[6:0]

8 = Uncorrectable PPI block, bits[12:+]

Offset, bits[11:8]

SGI/Int, bit[7]

Core, bits[6:0]

LPI RAM error records 9-10

LPI RAM error record 9 records RAM ECC errors that are correctable. LPI RAM error record 10 records
RAM ECC errors that are uncorrectable. Each error generates an LPI interrupt.

LPI RAM error records 9-10 are present if LPI RAM ECC is configured.

Error records 9-10 record errors from the main LPI cache.

The GICT_ERR<n>MISC0 reports data for LPI error records 9-10 shown in the following table.

g The GICR_NSACR is overwritten when an error occurs, therefore, the pre-error value cannot be read back at this stage.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-73
Non-Confidential

Table 3-12 LPI RAM error reported data

Record MISC0

9 = Correctable Bit location, bits[15+]

Lock, bit[14]

Pendingh, bits[13:12]

Channeli, bits[11:10]

Address, bits[9:0]

10 = Uncorrectable Lockj, bit[14]

Pending, bits[13:12]

Channel, bits[11:10]

Address, bits[9:0]

When an uncorrectable error occurs, the data shown in the table is stored and the GICT_ERR10MISC1
register is updated to contain the RAM contents of the corrupted line. The line in RAM is dropped, and
any pending interrupts that it might contain are lost.

If required, software can use the data in the GICT_ERR10MISC1 register to check several interrupt
sources, such as the corrupted INTID. This ID is never more than two bits away from the recorded ID.

ITS RAM error records 11-12

ITS RAM error record 11 records ITS RAM ECC errors that are correctable. ITS RAM error record 12
records ITS RAM ECC errors that are uncorrectable.

ITS RAM error records 11-12 are present if an ITS is configured.

Error records 11-12 record the errors from ITS RAM.

All ITS tables are memory backed allowing uncorrectable errors to be read from RAM again without
software intervention. These records are used for tracking RAM errors and for possible RAM
maintenance.

The GICT_ERR<n>MISC0 reports data for ITS RAM error records 11-12 shown in the following table.

Table 3-13 ITS RAM error reported data

Record MISC0

11 = Correctable Bit location, bit[8]

Address, bit[12]

RAM, bit[2]

ITS, log2(ITS)

12 = Uncorrectable Address, bit[12]

RAM, bit[3]

ITS, log2(ITS)

GICT_ERR<n>MISC0 gives information relating to the corrupted ITS, RAM, and RAM address. The bit
location of a correctable error is also given. The RAM encoding is shown in the following table.

h Pending bits[13:12] indicate if there were pending interrupts in the cache at the time of the corruption.
i Channel bits[11:10] indicate the banked LPI cache and are always 0 for r0p0.
j The Lock bit indicates if the error occurred on a locked line in the LPI cache, for more information, see 3.2.10 LPI caching on page 3-60.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-74
Non-Confidential

Table 3-14 RAM encoding

RAM Record 11 Record 12

0 None None

1 Device cache Device cache

2 Collection cache Collection cache

3 Event cache Event cache

4 - Reserved

5 - Reserved

6 - Reserved

7 - Event cache, locked

ITS software error records 13+

ITS software error record 13+ records uncorrectable software errors in an ITS.

The ITS software error records 13+ record software errors from each configured ITS.

The ITS software records capture software events so that the operation of software can be tracked.

The ITS software records capture software errors that are only uncorrectable contained errors that require
software to correct the command and to restart.

The GICT_ERR<n>STATUS.IERR field indicates if an error is either related to the architecture (0) or is
IMPLEMENTATION DEFINED (1). In both cases, the full 24-bit syndrome is reported in GICT_ERR<n>MISC0.
Extra data is reported in GICT_ERR<n>MISC1.

The data captured for each ITS software syndrome is shown in the following table.

Table 3-15 Captured data for each ITS software syndrome

Error mnemonic Encoding IERR Stall Mask Description

MOVALL_TGT_OOR 0x010E20 1 0 - MOVALL from a core that does not exist.

Command is ignored.

MOVALL_DST_TGT_OOR 0x010E21 1 0 - MOVALL to a core that does not exist.

LPIs on MOVALL source are dropped.

MOVALL_DST_CHIP_OFFLINE_OOR 0x010E22 1 0 - MOVALL to a chip that is offline.

LPIs on MOVALL source are dropped.

MOVALL_ENABLE_LPI_OFF 0x010E23 1 0 - MOVALL from a core where GICR_CTLR.Enable_LPIs
is 0.

Command is ignored.

MOVALL_DST_ENABLE_LPI_OFF 0x010E24 1 0 - MOVALL from a core where GICR_CTLR.Enable_LPIs
is 0.

LPIs on MOVALL source are dropped.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-75
Non-Confidential

Table 3-15 Captured data for each ITS software syndrome (continued)

Error mnemonic Encoding IERR Stall Mask Description

INT_PHYSICALID_OOR 0x010326 1 0 - INT received with a physical ID that is beyond the
range specified in GICR_PROPBASER.IDbits.

Software must correct mappings.

Interrupt is dropped.

ID is reported in GICT_ERR<n>MISC1.

INT_TGT_OOR 0x010320 1 0 - INT received for a core that does not exist.

Software must correct mappings.

Interrupt is dropped and TGT is reported in
GICT_ERR<n>MISC1.

INT_CHIP_OFFLINE_OOR 0x010322 1 0 - INT received for a chip that is offline.

Software must either correct mappings or take chip
online.

Interrupt is dropped and TGT is reported in
GICT_ERR<n>MISC1.

INT_LPI_OFF 0x010323 1 0 - INT received for TGT with GICR_CTLR.Enable_LPIs
disabled.

Software must either enable LPI or correct mappings.

TGT is reported in GICT_ERR<n>MISC1.

LOCK_PHYSICALID_OOR 0x010F26 1 0 - An attempt was made to lock a cache entry for a
physical ID that is not supported.

Fail is reported in GITS_OPR.k

LOCK_TGT_OOR 0x010F20 1 0 - An attempt was made to lock a cache entry for a core
that does not exist.

Fail is reported in GITS_OPR.k

LOCK_LPI_OFF 0x010F23 1 0 - An attempt was made to lock a cache entry for a core
with GICR_CTLR.Enable_LPIs set to 0.

Fail is reported in GITS_OPR.k

MAPD_DEVICE_OOR 0x010801 0 1 CEE A MAPD command has tried to map a device with a
DeviceID that is outside the range supported, or that is
beyond the memory allocated.

MAPD_ITTSIZE_OOR 0x010802 0 1 CEE A command has tried to allocate an ITT table that is
larger than the supported EventID size.

MAPC_COLLECTION_OOR 0x010903 0 1 CEE A MAPC command has tried to map a CollectionID that
is not supported.l

k See ITS cache control, locking, and test on page 3-58.
l See 4.6.2 Interrupt Controller Type Register, GITS_TYPER on page 4-115.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-76
Non-Confidential

Table 3-15 Captured data for each ITS software syndrome (continued)

Error mnemonic Encoding IERR Stall Mask Description

MAPC_TGT_OOR 0x010920 1 1/0 CEE A MAPC command has tried to map to a core that does
not exist.

If the core is within the maximum range supported by
the ITS, the command stalls.

If the command is detected in the destination
Distributor, the command is ignored and the core is
reported in GICT_ERR<n>MISC1.

 Note

If the value in GICT_ERR<n>MISC1 is 0, the location
of the detected error is in the ITS.

CEE applies to errors detected in the ITS only.

MAPC_LPI_OFF 0x010923 1 0 - A MAPC command has tried to map a collection to a
core that does not have LPIs enabled.

Software must correct the mapping, or it must first
enable LPIs using GICR_CTLR.Enable_LPIs.

The core is reported in GICT_ERR<n>MISC1.

MAPC_CHIP_OFFLINE_OOR 0x010922 1 0 - A MAPC command has targeted a core in an offline
chip.

Software must correct the mapping or take the target
chip online.

MAPI_DEVICE_OOR 0x010B01 0 1 CEE A MAPI has tried to map a DeviceID that is not
supported.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

MAPI_COLLECTION_OOR 0x010B03 0 1 CEE A MAPI has tried to map to a collection that is not
supported.

See GITS_BASER1 in m and for information about the
range that is supported, l.

MAPI_ID_OOR 0x010B05 0 1 CEE A MAPI has tried to map to an EventID size that is not
supported.

The size that is supported is reported in GITS_TYPER,
but might be reduced depending on the MAPD command
for the specified DeviceID.

MAPI_UNMAPPED_DEVICE 0x010B04 0 1 CEE A MAPI has tried to map an interrupt to a device that is
not mapped.

MAPVI_DEVICE_OOR 0x010A01 0 1 CEE A MAPVI has tried to map a device supported by the
ITS that is out-of-range.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

m ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-77
Non-Confidential

Table 3-15 Captured data for each ITS software syndrome (continued)

Error mnemonic Encoding IERR Stall Mask Description

MAPVI_COLLECTION_OOR 0x010A03 0 1 CEE A MAPVI has tried to map to a collection that is outside
the range supported by the ITS.

See GITS_BASER1 in m, and for information about the
range that is supported, l.

MAPVI_UNMAPPED_DEVICE 0x010A04 0 1 CEE A MAPVI has tried to map an interrupt to a device that
is not mapped.

MAPVI_ID_OOR 0x010A05 0 1 CEE A MAPVI has tried to use an EventID that is outside the
size supported by the corresponding MAPD command.

MAPVI_PHYSICALID_OOR 0x010A06 0 1 CEE A MAPVI is received that has a physical ID outside the
range supported.

The supported range is >16-<8096 bits.

MOVI_DEVICE_OOR 0x010101 0 1 CEE A MAPVI has tried to map a device that is outside the
range supported by the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

MOVI_COLLECTION_OOR 0x010103 0 1 CEE A MOVI has tried to use a collection that is outside the
range supported by the ITS.

See GITS_BASER1 in m, and for information about the
range that is supported, l.

MOVI_UNMAPPED_DEVICE 0x010104 0 1 CEE A MOVI has tried to move an interrupt from a device
that is not mapped.

MOVI_ID_OOR 0x010105 0 1 CEE A MOVI has tried to use an EventID that is outside the
size supported by the corresponding MAPD command.

MOVI_UNMAPPED_INTERRUPT 0x010107 0 1 CEE A MOVI command has tried to operate on an interrupt
that is not mapped.

MOVI_UNMAPPED_COLLECTION 0x010109 0 1 CEE A MOVI command has tried to operate on a collection
that is not mapped.

DISCARD_DEVICE_OOR 0x010F01 0 1 CEE A DISCARD has tried to use a device that is outside the
range supported by the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

DISCARD_UNMAPPED_DEVICE 0x010F04 0 1 CEE A DISCARD has tried to drop an interrupt from a device
that is not mapped.

DISCARD_ID_OOR 0x010F05 0 1 CEE A DISCARD command has tried to use an EventID that
is outside the size supported by the corresponding
MAPD command.

DISCARD_UNMAPPED_INTERRUPT 0x010F07 0 1 CEE A MOVI command has tried to operate on an interrupt
that is not mapped.

DISCARD_ITE_INVALID 0x010F10 0 1 CEE A MOVI command has tried to operate on an EventID
that is not supported by the corresponding MAPD
command.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-78
Non-Confidential

Table 3-15 Captured data for each ITS software syndrome (continued)

Error mnemonic Encoding IERR Stall Mask Description

INV_DEVICE_OOR 0x010C01 0 1 CEE An INV has tried to use a device that is outside the
range supported by the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

INV_UNMAPPED_DEVICE 0x010C04 0 1 CEE An INV has tried to invalidate an interrupt from a
device that is not mapped.

INV_ID_OOR 0x010C05 0 1 CEE An INV has tried to use an EventID that is outside the
size supported by the corresponding MAPD command.

INV_UNMAPPED_INTERRUPT 0x010C07 0 1 CEE An INV has tried to invalidate an interrupt that is not
mapped.

INV_ITE_INVALID 0x010C10 0 1 CEE An INV has tried to invalidate an interrupt with an
EventID that is invalid.

INV_PHYSICALID_OOR 0x010C26 1 1 CEE An INV has tried to invalidate an interrupt with a
physical ID that is larger than that supported by the
target.

See GICR_PROPBASER.IDbits in m.

INV_TGT_OOR 0x010C20 1 1 CEE An INV has tried to invalidate an interrupt that is
mapped to an invalid target.

INV_LPI_OFF 0x010C23 1 1 CEE An INV has tried to invalidate an interrupt that is
mapped to a target that does not have LPIs enabled.

See GICR_CTLR.Enable_LPIs in m.

INV_CHIP_OFFLINE_OOR 0x010C22 1 1 CEE An INV has tried to invalidate an interrupt that is
mapped to a chip that is offline.

INVALL_COLLECTION_OOR 0x010D03 0 1 CEE An INVALL has tried to invalidate an OOR collection.l

INVALL_UNMAPPED_COLLECTION 0x010D09 0 1 CEE An INVALL has tried to invalidate a collection that is
not mapped.

INVALL_TGT_OOR 0x010D20 1 1 CEE An INVALL has been sent to an illegal target.

INVALL_LPI_OFF 0x010D23 1 1 CEE An INVALL has been sent to a target that has LPIs
turned off.

INVALL_CHIP_OFFLINE_OOR 0x010D22 1 1 CEE An INVALL has tried to invalidate an interrupt from a
device that is not mapped.

INT_DEVICE_OOR 0x010301 0 1 UEE An incoming translation has attempted to use a device
that is outside the range supported by the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

INT_UNMAPPED_DEVICE 0x010304 0 1 UEE An incoming translation has tried to invalidate an
interrupt from a device that is not mapped.

INT_ID_OOR 0x010305 0 1 UEE An INT has tried to use an EventID that is outside the
size supported by the corresponding MAPD command.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-79
Non-Confidential

Table 3-15 Captured data for each ITS software syndrome (continued)

Error mnemonic Encoding IERR Stall Mask Description

INT_UNMAPPED_INTERRUPT 0x010307 0 1 UEE An INT command has tried to raise an interrupt that is
not mapped.

INT_ITE_INVALID 0x010310 0 1 UEE An INT command has tried to raise an interrupt with an
EventID that is not supported by the corresponding
MAPD command.

CLEAR_DEVICE_OOR 0x010501 0 1 CEE A CLEAR has attempted to use a device that is outside
the range supported by the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

CLEAR_UNMAPPED_DEVICE 0x010504 0 1 CEE A CLEAR has tried to drop an interrupt from a device
that is not mapped.

CLEAR_ID_OOR 0x010505 0 1 CEE A CLEAR has tried to drop an interrupt from an
EventID that is not supported by the corresponding
MAPD command.

CLEAR_UNMAPPED_INTERRUPT 0x010507 0 1 CEE A CLEAR has attempted to drop an interrupt that is not
mapped.

CLEAR_ITE_INVALID 0x010510 0 1 CEE A CLEAR has tried to drop an interrupt from an
EventID that is not supported by the corresponding
MAPD command.

CLEAR_PHYSICALID_OOR 0x010526 1 1 CEE A CLEAR has tried to drop an interrupt, which has a
physical ID that is not supported by the target.

CLEAR_TGT_OOR 0x010520 1 1 CEE A CLEAR has been sent to an illegal target.

CLEAR_LPI_OFF 0x010523 1 1 CEE A CLEAR has been sent to a target that does not have
LPIs enabled.

CLEAR_CHIP_OFFLINE_OOR 0x010522 1 1 CEE A CLEAR has been sent to a target on a chip that is
offline.

OPR_ DEVICE_OOR 0x010A01 1 - - Software has tried an operation through GITS_OPR
using a device that is outside the range supported by
the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

OPR_ UNMAPPED_COLLECTION 0x010A03 1 - - Software has tried an operation through GITS_OPR
using a collection that is outside the range supported by
the ITS.

See GITS_BASER0 in m, and for information about the
range that is supported, l.

OPR_ ID_OOR 0x010A05 1 - - Software has tried to lock an interrupt using an
EventID that is larger than that supported by the
specified device.

The GITS_OPSR reports a fail.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-80
Non-Confidential

Table 3-15 Captured data for each ITS software syndrome (continued)

Error mnemonic Encoding IERR Stall Mask Description

OPR_ UNMAPPED_DEVICE 0x010A04 1 - - Software has tried to lock an interrupt from a device
that is not mapped through GITS_OPR.

The GITS_OPR reports a fail.

OPR_ UNMAPPED_INTERRUPT 0x010A07 1 - - Software has tried to lock an interrupt that is not
mapped through GITS_OPR.

The GITS_OPSR reports a fail.

OPR_ SET_LOCKED 0x010A10 1 - - Software has tried to lock an interrupt into the LPI
cache but the set already contains a locked interrupt.

The GITS_OPSR reports a fail.

INVALID_ML_DEV_TABLE_ENTRY 0x010B04 1 1 CEE Software is using a two-level Device table and the first-
level table entry has not completed.

Software must allocate and clear a new second-level
table, update the first-level entry, and repeat the
command.

ACE_LITE_ACCESS_FAILURE 0x010B01 1 - - An access issued by the ITS received an SLVERR or
DECODE error.

The address is given in GICT_ERR<n>MISC1. This
error can occur from multiple sources.

Software must determine whether the Command queue
is stalled by checking GITS_OPR. If the Command
queue has stalled, the command might not have
occurred.

ACE_LITE_TRANS_FAILURE 0x010B03 1 - AEE An unknown source in the system has written to the
slave port with an access that is not a legal
GITS_TRANSLATER access.

The full address of the access is given in
GICT_ERR<n>MISC1.

If the address matches GITS_TRANSLATER, either
the size, length, strobes, or access type is wrong.

 Note

Read accesses are not tracked.

ACE_LITE_ADDR_OOR 0x010B05 1 - - ITS programming has tried to create an access to the
address specified in GICT_ERR<n>MISC1 that is
larger than the address space supported.

INVALID_COMMAND 0x010F00 1 - CEE An Invalid command has been detected in the
Command queue.

Software must correct this and then resume.

Clearing error records

After reading a GICT_ERR<n>_STATUS register, software must clear the valid register bits so that any
new errors are recorded.

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-81
Non-Confidential

During this period, a new error might overwrite the syndrome for the error read previously. If the register
is Read or Write, the previous error is lost.

To prevent this, most bits use a modified version of write-1-to-clear:
• Writes to the bits of ERR<n>STATUS.UE (uncorrectable error records) or ERR<n>STATUS.CE

(correctable error records) are ignored if ERR<n>STATUS.OF is set and is not being cleared.
• Writes to other fields in the ERR<n>STATUS register are ignored if either bits ERR<n>STATUS.UE

or ERR<n>STATUS.CE are set and are not being cleared.

Similarly, ERR<n>MISC<x> cannot be Written, except the counter fields, if the corresponding
ERR<n>STATUS.MV bit is set, and ERR<n>ADDR cannot be Written if ERR<n>STATUS.AV is set.

Recommended recovery sequences are described for each error record in Software error record 0
on page 3-66 to ITS software error records 13+ on page 3-75.

Bus errors

ACE-Lite bus error syndromes such as bad transactions, and corrupted RAM data reads can be made to
enable SLVERR.

The GICT_ERR0CTLR.UE bit can be used to enable ACE-Lite bus error, External AXI Slave Error
(SLVERR) for the syndromes shown in the following table.

Table 3-16 Bus error syndromes

Syndrome Description Direction

SYN_ACE_BAD ACE-Lite transactions are either bad or unrecognized Read and Write

SYN_GICR_CORRUPTED Data read from SPI RAM is corrupted Read only

SYN_GICD_CORRUPTED Data read from SGI or PPI RAM is corrupted Read only

SYN_ITS_OFF Access to ITS attempted when powered down Read and Write

3 Single-chip operation
3.2 Single chip operation

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 3-82
Non-Confidential

Chapter 4
Programmers model

Read this for a description of the memory map and registers, and for information about programming the
device.

It contains the following sections:
• 4.1 The GIC-600 registers on page 4-84.
• 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.
• 4.3 Distributor registers (GICA) for message-based SPIs summary on page 4-97.
• 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.
• 4.5 Redistributor registers for SGIs and PPIs summary on page 4-107.
• 4.6 ITS control register summary on page 4-113.
• 4.7 ITS translation register summary on page 4-122.
• 4.8 GICT register summary on page 4-123.
• 4.9 GICP register summary on page 4-138.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-83
Non-Confidential

4.1 The GIC-600 registers
All the GIC-600 registers have names constructed of mnemonics that indicate the logical block that the
register belongs to and the register function.

The following information applies to the GIC-600 registers:
• The GIC-600 implements only memory-mapped registers.
• The GIC-600 has a single base address, except for the GITS_TRANSLATER register. The base

address is not fixed and can be different for each particular system implementation.
• The offset of each register from the base address is fixed.
• Accesses to reserved or unused address locations might result in a bus error that is based on

GICT_ERR0CTLR.UE.
• Unless otherwise stated in the accompanying text:

— Do not modify reserved register bits.
— Ignore reserved register bits on reads.
— A system reset or a powerup reset resets all register bits to zero.

• The GIC-600 ACE-Lite slave port can be 64 bits, 128 bits, or 256 bits wide, depending on the
configuration. The ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 defines the permitted sizes of access.

 Note

The GIC-600 guarantees single-copy atomicity for doubleword accesses.

• The GIC-600 supports data only in little-endian format.
• The access types for the GIC-600 are as follows:

RO Read only.
RW Read and write.
WO Write only, reads return as UNKNOWN.

This section contains the following subsections:
• 4.1.1 Register map pages on page 4-84.
• 4.1.2 Discovery on page 4-85.
• 4.1.3 GIC-600 register access and banking on page 4-85.

4.1.1 Register map pages

The register map is separated into several pages.

The register map pages are defined in the following table.

Table 4-1 Register map pages

Offset[x:16] Page Description

0 GICD GICD main page

1 GICA GICD message-based interrupts alias

2 GICT GIC trace and debug page

3 GICP GIC PMU

4 + (ITSnum x 2) GITSn ITS address page

5 + (ITSnum x 2) GITSn translate ITS translation page

4 + (2 x ITSnum) + (RDnum x 2) GICR (LPI) GICR LPI registers

5 + (2 x ITSnum) + (RDnum x 2) GICR (SGI) GICR SPI + SGI registers

4 + (2 x ITSnum) + (RDnum x 2) GICDA Alias to GICD (page after last GICR page)

4 Programmers model
4.1 The GIC-600 registers

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-84
Non-Confidential

Related information
ARM® Generic Interrupt Controller Architecture Specification, version 3.0 and version 4.0.

4.1.2 Discovery

ARM recommends that the operating system is provided with pointers to the start of the Distributor,
every ITS, and the first Redistributor page on each chip.

To verify that the pages are of GIC registers, these pointers can be checked against the discovery
registers, which start at offset 0xFFD0 for each GIC page. These registers allow discovery of the
architecture version and, for GIC-600, whether the page contains the Distributor, ITS, or Redistributor
registers. When this information is known, additional information can be obtained from registers specific
to each page.

For Redistributors, ARM recommends that you examine GICR_TYPER to determine:

• Whether the implementation has two or four pages per Redistributor that are based on the features
implemented. It can be inferred that GIC-600 has only two pages for each Redistributor because the
feature bits in that register indicate that it does not support virtual LPIs.

• Whether it is the last Redistributor in the series of pages.
• Which core the Redistributor is for, based on affinity values.

This information allows you to iteratively search through all Redistributors in a discovery process.

The GITS_TYPER register in the GIC-600 indicates that you must program the ITS with unique
ProcessorNumbers, instead of physical target addresses. The GICR_TYPER contains the unique
ProcessorNumber that you must use to reference a Redistributor when programming the ITS.

 Note

In a multichip configuration, the ProcessorNumber upper bits are derived from the chip_id tie-off.
Therefore, make sure that the chip_id value is defined before the registers are read.

Related information
ARM® GICv3 and GICv4 Software Overview.

4.1.3 GIC-600 register access and banking

The GIC-600 uses an access and banking scheme for its registers.

 Note

For information about the register access and banking scheme, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

The key characteristics of the scheme are:
• Some registers, such as the Distributor Control Register, GICD_CTLR, and the Redistributor Control

Register, GICR_CTLR, are banked by security that provides separate Secure and Non-secure copies
of the registers. A Secure access to the address accesses the Secure copy of the register. A Non-secure
access to the address accesses the Non-secure copy.

• Some registers, such as the Interrupt Group Registers, GICD_IGROUPRn, are only accessible using
Secure accesses.

• Non-secure accesses to registers, or parts of a register, which are only accessible to Secure accesses
are Read-As-Zero and Writes Ignored (RAZ/WI).

Related information
ARM® Generic Interrupt Controller Architecture Specification, version 3.0 and version 4.0.

4 Programmers model
4.1 The GIC-600 registers

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-85
Non-Confidential

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0069-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0069-/index.html

4.2 Distributor registers (GICD/GICDA) summary
The GIC-600 Distributor functions are controlled through the Distributor registers identified with the
prefix GICD. The Distributor Alias registers are identified with the prefix GICDA.

The following table lists the Distributor registers in base offset order and provides a reference to the
register description that is described in either this book or the ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0.

Address offsets are relative to the Distributor base address defined by the system memory map.

Offsets that are not shown are Reserved and RAZ/WI.

Table 4-2 Distributor registers (GICD/GICDA) summary

Offset Name Type Width Reset Description

0x0000 GICD_CTLR RW 32 0x00000000n Distributor Control Register

0x0004 GICD_TYPER RO 32 Configuration dependent 4.2.1 Interrupt Controller Type Register,
GICD_TYPER on page 4-88

0x0008 GICD_IIDR RO 32 Configuration dependent 4.2.2 Distributor Implementer Identification
Register, GICD_IIDR on page 4-89

0x000C-0x001C - - - - Reserved

0x0020 GICD_FCTLR RW 32 0x00000000 4.2.3 Function Control Register,
GICD_FCTLR on page 4-90

0x0024 GICD_SAC RW 32 0x00000000o 4.2.4 Secure Access Control Register,
GICD_SAC on page 4-92

0x0028-0x003C - - - - Reserved

0x0040 GICD_SETSPI_NSR WO 32 - Non-secure SPI Set Register

0x0044 - - - - Reserved

0x0048 GICD_CLRSPI_NSR WO 32 - Non-secure SPI Clear Register

0x004C - - - - Reserved

0x0050 GICD_SETSPI_SRp WO 32 - Secure SPI Set Registerq

0x0054 - - - - Reserved

0x0058 GICD_CLRSPI_SRp WO 32 - Secure SPI Clear Registerq

0x005C-0x007C - - - - Reserved

0x0080-0x00FC GICD_IGROUPRn RW 32 0x00000000 Interrupt Group Registersq

0x0184-0x01F8 - - - - Reserved

0x0200-0x027C GICD_ISPENDRnr RW 32 0x00000000 Interrupt Set-Pending Registers

0x0280-0x02FC GICD_ICPENDRnr RW 32 0x00000000 Interrupt Clear-Pending Registers

0x0300-0x037C GICD_ISACTIVERnr RW 32 0x00000000 Interrupt Set-Active Registers

0x0380-0x03FC GICD_ICACTIVERnr RW 32 0x00000000 Interrupt Clear-Active Registers

n The reset value is 0x00000040 if the GIC is configured to support a single security state only.
o The reset values of GICD_SAC.GICTNS and GICD_SAC.GICPNS are controlled by the gicp_allow_ns and gict_allow_ns tie-off signals respectively.
p The existence of this register depends on the configuration of the GIC-600. If Security support is not included, then this register does not exist.
q This register is only accessible from a Secure access.
r The first one of these registers does not exist.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-86
Non-Confidential

Table 4-2 Distributor registers (GICD/GICDA) summary (continued)

Offset Name Type Width Reset Description

0x0400-0x07F8 GICD_IPRIORITYRns RW 32 0x00000000 Interrupt Priority Registers

0x0800-0x0BF8 GICD_ITARGETSRnt RW 32 0x00000000 Interrupt Processor Targets Registers

0x0D00-0x0D7C GICD_IGRPMODRnu RW 32 0x00000000 Interrupt Group Modifier Registers

0x0E00-0x0EFC GICD_NSACRnp RW 32 0x00000000 Non-secure Access Control Registers

0x0F20-0x0F2C GICD_SPENDSGIRnv RW 32 0x00000000 SGI Set-Pending Registers

0x0F30-0x5FFC - - - - Reserved

0x6000-0x7FD8 GICD_IROUTERn RW 64 0x0000000080000000 Interrupt Routing Registers
See ARM® GICv3 and GICv4 Software
Overview.

 Note

The reset value of all GICD_IROUTERn
registers is determined by
Interrupt_Routing_Mode == 1.

0x7FDC-0xBFFC - - - - Reserved

0xC088-0xDFFC - - - - Reserved

0xE000-0xE0FC GICD_ICLARn RW 32 0x00000000 4.2.5 Interrupt Class Registers,
GICD_ICLARn on page 4-92

0xE100-0xE17C GICD_IERRRn RW 32 0x00000000 4.2.6 Interrupt Error Registers,
GICD_IERRRn on page 4-93

0xE180-0xEFFC - - - - Reserved

0xF000 GICD_CFGID RO 64 Configuration dependent 4.2.7 Configuration ID Register,
GICD_CFGID on page 4-94

0xF008-0xFFCC - - - - Reserved

0xFFD0 GICD_PIDR4 RO 32 0x00000044 Peripheral ID 4 Register

0xFFD4 GICD_PIDR5 RO 32 0x00000000 Peripheral ID 5 Register

0xFFD8 GICD_PIDR6 RO 32 0x00000000 Peripheral ID 6 Register

0xFFDC GICD_PIDR7 RO 32 0x00000000 Peripheral ID 7 Register

0xFFE0 GICD_PIDR0 RO 32 0x00000092 Peripheral ID 0 Register

0xFFE4 GICD_PIDR1 RO 32 0x000000B4 Peripheral ID 1 Register

0xFFF8 GICD_PIDR2 RO 32 0x0000003B 4.2.8 Peripheral ID2 register, GICD_PIDR2
on page 4-95

0xFFEC GICD_PIDR3 RO 32 0x00000000 Peripheral ID 3 Register

0xFFF0 GICD_CIDR0 RO 32 0x0000000D Component ID 0 Register

0xFFF4 GICD_CIDR1 RO 32 0x000000F0 Component ID 1 Register

s The first eight of these registers do not exist.
t When ARE is set, this register is replaced by GICD_IROUTERn.
u When ARE = 0, these bits are RES0.
v When ARE is set, this register is replaced by GICR_ISPENDR0.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-87
Non-Confidential

Table 4-2 Distributor registers (GICD/GICDA) summary (continued)

Offset Name Type Width Reset Description

0xFFF8 GICD_CIDR2 RO 32 0x00000005 Component ID 2 Register

0xFFFC GICD_CIDR3 RO 32 0x000000B1 Component ID 3 Register

This section contains the following subsections:
• 4.2.1 Interrupt Controller Type Register, GICD_TYPER on page 4-88.
• 4.2.2 Distributor Implementer Identification Register, GICD_IIDR on page 4-89.
• 4.2.3 Function Control Register, GICD_FCTLR on page 4-90.
• 4.2.4 Secure Access Control Register, GICD_SAC on page 4-92.
• 4.2.5 Interrupt Class Registers, GICD_ICLARn on page 4-92.
• 4.2.6 Interrupt Error Registers, GICD_IERRRn on page 4-93.
• 4.2.7 Configuration ID Register, GICD_CFGID on page 4-94.
• 4.2.8 Peripheral ID2 register, GICD_PIDR2 on page 4-95.

4.2.1 Interrupt Controller Type Register, GICD_TYPER

This register returns information about the configuration of the GIC-600. You can use this register to
determine the number of security states, the number of INTIDs, and the number of processor cores that
the GIC supports.

The GICD_TYPER characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

31 26 25 24 23 19 18 17 16 15 11 10 9 8 7 5 4 0

IDbitsReserved

CPUNumber
ITLinesNumber

SecurityExtn
MBIS

A3V
DVIS
LPIS

No1N

Reserved

Reserved

Figure 4-1 GICD_TYPER bit assignments

The following table shows the bit assignments.

Table 4-3 GICD_TYPER bit assignments

Bits Name Function

[31:26] - Reserved, returns 0b000000.

[25] No1N 1 of N SPI:

0 = The GIC-600 supports 1 of N SPI interrupts.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-88
Non-Confidential

Table 4-3 GICD_TYPER bit assignments (continued)

Bits Name Function

[24] A3V Affinity level 3 values.

Depending on the configuration, returns either:

0 = The GIC-600 Distributor only supports zero values of Affinity level 3.

1 = The GIC-600 Distributor supports nonzero values of Affinity level 3.

[23:19] IDbits Interrupt identifier bits:

0b01111 = The GIC-600 supports 16 interrupt identifier bits.

[18] DVIS Direct Virtual LPI injection support:

0 = The GIC-600 does not support Direct Virtual LPI injection.

See ARM® GICv3 and GICv4 Software Overview.

[17] LPIS Locked SPI support:

0 = Locked SPIs are not supported.

[16] MBIS Message-based interrupt support:

1 = The GIC-600 supports message-based interrupts.

[15:11] - Reserved, returns 0b00000.

[10] SecurityExtn Security state support.

Depending on the configuration, returns either:

0 = The GIC-600 supports only a single Security state.

1 = The GIC-600 supports two Security states.

When GICD_CTLR.DS == 1, this field is RAZ.

[9:8] - Reserved, returns 0b00.

[7:5] CPUNumber Number of cores in system minus one.

Returns the number of cores in the system, saturated to eight, minus one. The permitted values for this field
are 0-8. If GICD_CTLR.ARE_S or GICD_CTLR.ARE_NS = 0, modes are not supported and this field
reads as 0.

[4:0] ITLinesNumber Number of SPIs divided by 32.

Returns the number of SPIs divided by 32. The permitted values for this field are 0-30 (992 SPIs
maximum).

4.2.2 Distributor Implementer Identification Register, GICD_IIDR

This register provides information about the implementer and revision of the Distributor.

The GICD_IIDR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-89
Non-Confidential

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-2 GICD_IIDR bit assignments

The following table shows the bit assignments.

Table 4-4 GICD_IID bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x02 = GIC-600.

[23:20] - Reserved, RAZ.

[19:16] Variant Indicates the major revision or variant of the product for the rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product for the rmpn identifier:

0x1 = p0.

0x3 = p1.

0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = ARM.

4.2.3 Function Control Register, GICD_FCTLR

This register controls the scrubbing of all RAMs in the local Distributor. The register is not distributed
and only acts on the local chip.

The GICD_FCTLR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

31 18 17 16 15 4 3 1 0

CGOReserved

NSACR

Reserved
SIP

1319 14

Reserved

SLPIA

202122

Reserved
DCC

Figure 4-3 GICD_FCTLR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-90
Non-Confidential

Table 4-5 GICD_FCTLR bit assignments

Bits Name Function

[31:22] - Reserved, returns 0b000000.

[21] DCC Disable Cache Conversion (DCC).

Disable cache conversion on memory accesses.

[20:19] - Reserved, returns 0b000000.

[18] SLPIA Strict LPI Allocation (SLPIA).

Controls whether LPI reverts to a fixed index behavior.

This bit can only be written when in full sleep (quiescent).

RES0.

Resets to 0b0.

[17:16] NSACR Non-secure Access Control. Values are as described in the GICD_NSACR register. This is the value that is used if
a SPI has an error.

Secure access only.

Resets to 0b00.

[15:14] - Reserved, returns 0b00.

[13:4] CGO One bit per clock gate:

1 = Leave clock running.

0 = Use full clock gating.

Clock gate bit assignments are specified in Table 4-6 CGO field bit assignments on page 4-91.

[3:1] - Reserved, returns 0b000.

[0] SIP Scrub in progress:

1 = Scrub in progress.

0 = No scrub in progress.

This bit is read and written by software. When a scrub is complete, the GIC clears the bit to 0.

Table 4-6 CGO field bit assignments

Value Clock gate

0x0 CPU communications block

0x1 SPI registers and search

0x2 ACE-Lite slave interface

0x3 ACE-Lite master interface

0x4 LPI cache and search

0x5 SGI and GICR registers

0x6 Trace & debug

0x7 Pending table search and control

0x8 ITS communications block

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-91
Non-Confidential

4.2.4 Secure Access Control Register, GICD_SAC

This register allows Secure software to control Non-secure access to GIC-600 Secure features by other
software.

The GICD_SAC characteristics are:

Usage constraints
Only accessible by Secure accesses.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

31 3 2 1 0

Reserved

GICPNS
GICTNS
DSL

Figure 4-4 GICD_SAC bit assignments

The following table shows the bit assignments.

Table 4-7 GICD_SAC bit assignments

Bits Name Function

[31:3] - Reserved, returns zero.

[2] GICPNS 1 = Allow Non-secure access to the GICP registers. This enables Non-secure access to Secure PMU data.

0 = Secure access only.

The gicp_allow_ns tie-off signal controls the reset value on a per-chip basis.

[1] GICTNS 1 = Allow Non-secure access to the GICT registers. This enables Non-secure access to Secure trace data.

0 = Secure access only.

The gict_allow_ns tie-off signal controls the reset value on a per-chip basis.

[0] DSL Disable Security Lock. WriteOnce (WO):

1 = WO bit to lock GICD_CTLR.DS to be WO at its current value.

0 = No effect.

When set to 1, this value is only returned by reset.

4.2.5 Interrupt Class Registers, GICD_ICLARn

These registers control whether a 1 of N SPI can target a core that is assigned to class 0 or class 1 group.
Each register controls 16 SPIs and the GIC-600 has 60 registers, GICD_ICLAR2-GICD_ICLAR61.

The GICD_ICLARn characteristics are:

Usage constraints
The Distributor provides up to 60 registers to support 960 SPIs. If you configure the GIC-600 to
use fewer than 960 SPIs, then it reduces the number of registers accordingly. For locations
where interrupts are not implemented, the register is RAZ/WI.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-92
Non-Confidential

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Class0
Class1

Class0
Class1
Class0
Class1
Class0
Class1

Class0
Class1
Class0
Class1
Class0
Class1
Class0
Class1

Class1
Class0
Class1
Class0
Class1
Class0
Class1
Class0
Class1
Class0
Class1
Class0
Class1
Class0
Class1
Class0

Class0
Class1
Class0
Class1
Class0
Class1

Figure 4-5 GICD_ICLARn bit assignments

The following table shows the bit assignments.

Table 4-8 GICD_ICLARn bit assignments

Bits Name Function

[31,29,27,25,23,21,19,17,15,13,11,9,7,5,3,1] Class1 Controls whether the 1 of N SPI can target a core that is assigned to class 1:

0 = The SPI can target a core that is assigned to class 1 group.

1 = The SPI cannot target a core that is assigned to class 1 group.
 Note

The SPI that a bit refers to depends on its bit position and the base address
offset of the GICD_ICLARn.

[30,28,26,24,22,20,18,16,14,12,10,8,6,4,2,0] Class0 Controls whether the 1 of N SPI can target a core that is assigned to class 0:

0 = The SPI can target a core that is assigned to class 0 group.

1 = The SPI cannot target a core that is assigned to class 0 group.
 Note

The SPI that a bit refers to depends on its bit position and the base address
offset of the GICD_ICLARn.

4.2.6 Interrupt Error Registers, GICD_IERRRn

These registers indicate the error status of a SPI. Each register monitors 32 SPIs and the GIC-600 has 30
registers, GICD_IERRR1-GICD_IERRR30.

The GICD_IERRRn characteristics are:

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-93
Non-Confidential

Usage constraints
The Distributor provides up to 30 registers to support 960 SPIs. If you configure the GIC-600 to
use fewer than 960 SPIs, it reduces the number of registers accordingly. For locations where
interrupts are not implemented, the register is RAZ/WI.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

31 0

Status

Figure 4-6 GICD_IERRRn bit assignments

The following table shows the bit assignments.

Table 4-9 GICD_IERRRn bit assignments

Bits Name Function

[31:0] Status Indicates whether a SPI is in an error state:

0 = The SPI is not in an error state and programming is valid.

1 = The SPI is in an error state and programming is not valid.
 Note

The SPI that a bit refers to depends on its bit position and the base address offset of the GICD_IERRRn.

4.2.7 Configuration ID Register, GICD_CFGID

This register contains information that enables test software to determine if the GIC-600 system is
compatible. There is one register per configured chip. The offset determines the chip number.

The GICD_CFGID characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-94
Non-Confidential

31 21 20 15 14 13 12 11 8 7 4 3 1 0

SNUMSPISReserved

Reserved
SO

LPIS
DLPI
AFSL

63 47 44 43 40 39 36 35 32

AFF0Reserved AFF1AFF2AFF3

Reserved

48

Figure 4-7 GICD_CFGID bit assignments

The following table shows the bit assignments.

Table 4-10 GICD_CFGID bit assignments

Bits Name Function

[63:48] - Reserved, returns zero

[47:44] AFF3 Returns the Affinity3 bits

[43:40] AFF2 Returns the Affinity2 bits

[39:36] AFF1 Returns the Affinity1 bits

[35:32] AFF0 Returns the Affinity0 bits

[31:21] - Reserved, returns zero

[20:15] SPIS SPI Groups

[14] AFSL Chip affinity selection level

[13] DLPI Direct LPI registers supported

[12] LPIS LPI supported

[11:8] - Reserved, returns zero

[7:4] SNUM Chip number

[3:1] - Reserved, returns zero

[0] SO Chip offline

4.2.8 Peripheral ID2 register, GICD_PIDR2

This register defines the GIC architecture version with which the GIC-600 complies.

The GICD_PIDR2 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.2 Distributor registers (GICD/GICDA) summary on page 4-86.

The following figure shows the bit assignments.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-95
Non-Confidential

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Figure 4-8 GICD_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-11 GICD_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-600 complies:
• 0x03 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICD_PIDR1.

4 Programmers model
4.2 Distributor registers (GICD/GICDA) summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-96
Non-Confidential

4.3 Distributor registers (GICA) for message-based SPIs summary
The functions for the GIC-600 message-based SPIs are controlled through the Distributor registers
identified with the prefix GICA.

The following table lists the message-based SPI registers. All registers are 32 bits wide.

Table 4-12 Distributor registers (GICA) for message-based SPIs summary

Offset Name Type Reset Descriptionw

0x0000-0x003C - - - Reserved

0x0040 GICA_SETSPI_NSR WO - Aliased Non-secure SPI Set Register

0x0044 - - - Reserved

0x0048 GICA_CLRSPI_NSR WO - Aliased Non-secure SPI Clear Register

0x004C - - - Reserved

0x0050 GICA_SETSPI_SRx WO - Aliased Secure SPI Set Registery

0x0054 - - - Reserved

0x0058 GICA_CLRSPI_SRx WO - Aliased Secure SPI Clear Registery

0x005C-0xFFFC - - - Reserved

w For the description of the registers that are not specific to the GIC-600, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0.

x The existence of this register depends on the configuration of the GIC-600. If Security support is not included, this register does not exist.
y This register is only accessible from a Secure access.

4 Programmers model
4.3 Distributor registers (GICA) for message-based SPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-97
Non-Confidential

4.4 Redistributor registers for control and physical LPIs summary
The functions for the GIC-600 physical LPIs are controlled through the Redistributor registers identified
with the prefix GICR. In GICv3, these registers start from the base address.

For more information about LPIs, see ARM® GICv3 and GICv4 Software Overview.

For the description of the registers that are not specific to the GIC-600, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

Table 4-13 Redistributor registers for control and physical LPIs summary

Offset Name Type Width Reset Description

0x0000 GICR_CTLR RW 32 0x00000000 Redistributor Control Register

0x0004 GICR_IIDR RO 32 0x0001043B 4.4.1 Redistributor Implementation
Identification Register, GICR_IIDR
on page 4-99

0x0008 GICR_TYPER RO 64 Configuration dependent 4.4.2 Interrupt Controller Type Register,
GICR_TYPER on page 4-100

0x0010 - - - - Reserved

0x0014 GICR_WAKER RW 32 0x00000003 4.4.3 Power Management Control Register,
GICR_WAKER on page 4-102

0x0018-0x001C - - - - Reserved

0x0020 GICR_FCTLR RW 32 0x00000000 4.4.4 Function Control Register,
GICR_FCTLR on page 4-103

0x0024 GICR_PWRR RW 32 0x00000000 4.4.5 Power Register, GICR_PWRR
on page 4-104

0x0028 GICR_CLASS RW 32 0x00000000 4.4.6 Class Register, GICR_CLASS
on page 4-105

0x002C-0x003C - - - - Reserved

0x0040 GICR_SETLPIR WO 64 - 64-bit accesses only. Data contains the
physical ID. Not present if any ITS is in the
system.

0x0048 GICR_CLRLPIR WO 64 - 64-bit accesses only. Data contains the
physical ID. Not present if any ITS is in the
system.

0x0050-0x006C - - - - Reserved

0x0070 GICR_PROPBASERz RW 64 0x0000000000000000 Redistributor Properties Base Address
Register

0x0078 GICR_PENDBASERzaa RW 64 0x0000000000000000 Redistributor LPI Pending Table Base
Address Registerab

0x00A0 GICR_INVLPIR WO 64 - 64-bit accesses only. Data contains the
physical ID. Not present if any ITS is in the
system.

z The existence of this register depends on the configuration of the GIC-600. If ITS and LPI support is not included, this register does not exist.
aa ARM recommends that if possible, you set the GICR_PENDBASER Pending Table Zero bit to one. This reduces the power and time that is taken during

initialization.
ab This register is only accessible from a Secure access.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-98
Non-Confidential

Table 4-13 Redistributor registers for control and physical LPIs summary (continued)

Offset Name Type Width Reset Description

0x00A8-0x00AC - - - - Reserved

0x00B0 GICR_INVALLR WO 64 - 64-bit accesses only. Not present if any ITS is
in the system.

0x00B8-0x00BC - - - - Reserved

0x00C0 GICR_SYNCR RO 32 0x00000000 64-bit accesses only. Not present if any ITS is
in the system.

0x00C8-0xFFFC - - - - Reserved

0xFFD0 GICR_PIDR4 RO 32 0x00000044 Peripheral ID 4 Register

0xFFD4 GICR_PIDR5 RO 32 0x00000000 Peripheral ID 5 Register

0xFFD8 GICR_PIDR6 RO 32 0x00000000 Peripheral ID 6 Register

0xFFDC GICR_PIDR7 RO 32 0x00000000 Peripheral ID 7 Register

0xFFE0 GICR_PIDR0 RO 32 0x00000093 Peripheral ID 0 Register

0xFFE4 GICR_PIDR1 RO 32 0x000000B4 Peripheral ID 1 Register

0xFFE8 GICR_PIDR2 RO 32 0x0000003B 4.4.7 Peripheral ID2 Register, GICR_PIDR2
on page 4-106

0xFFEC GICR_PIDR3 RO 32 0x00000000 Peripheral ID 3 Register

0xFFF0 GICR_CIDR0 RO 32 0x0000000D Peripheral ID 0 Register

0xFFF4 GICR_CIDR1 RO 32 0x000000F0 Peripheral ID 1 Register

0xFFF8 GICR_CIDR2 RO 32 0x00000005 Peripheral ID 2 Register

0xFFFC GICR_CIDR3 RO 32 0x000000B1 Peripheral ID 3 Register

This section contains the following subsections:
• 4.4.1 Redistributor Implementation Identification Register, GICR_IIDR on page 4-99.
• 4.4.2 Interrupt Controller Type Register, GICR_TYPER on page 4-100.
• 4.4.3 Power Management Control Register, GICR_WAKER on page 4-102.
• 4.4.4 Function Control Register, GICR_FCTLR on page 4-103.
• 4.4.5 Power Register, GICR_PWRR on page 4-104.
• 4.4.6 Class Register, GICR_CLASS on page 4-105.
• 4.4.7 Peripheral ID2 Register, GICR_PIDR2 on page 4-106.

4.4.1 Redistributor Implementation Identification Register, GICR_IIDR

This register provides information about the implementer and revision of the Redistributor.

The GICR_IIDR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-99
Non-Confidential

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-9 GICR_IIDR bit assignments

The following table shows the bit assignments.

Table 4-14 GICR_IIDR bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x02 = GIC-600.

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision or variant of the product for the rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product for the rmpn identifier:

0x1 = p0.

0x3 = p1.

0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = ARM.

4.4.2 Interrupt Controller Type Register, GICR_TYPER

This register returns information about the configuration of the GIC-600.

The GICR_TYPER characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-100
Non-Confidential

31 26 25 24 23 8 7 6 5 4 3 2 1 0

ProcessorNumberReserved

AffinityValue

Reserved
VLPIS
PLPIS

DirectLPI
Last

CommonLPIAff
Reserved
DPGS

63 32

Figure 4-10 GICR_TYPER bit assignments

The following table shows the bit assignments.

Table 4-15 GICR_TYPER bit assignments

Bits Name Function

[63:32] AffinityValue Affinity level value for this Redistributor:

AF3, bits[63:56], Affinity level 3 value.

AF2, bits[55:48], the Affinity level 2 value.

AF1, bits[47:40], the Affinity level 1 value.

AF0, bits[39:32], the Affinity level 0 value.

[31:26] - Reserved, returns 0b000000.

[25:24] CommonLPIAff Returns:

00 = Single core configuration.

01 = If chip set by AF3.

10 = If chip set by AF2.

11 = Reserved.

[23:8] ProcessorNumber Returns the core number and chip number that uniquely identifies this core in the system.

[7:6] - Reserved, returns 0b00.

[5] DPGS Disable Processor Group Selections:

1 = The GIC-600 supports DPG. See ARM® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0.

[4] Last Last Redistributor:

0 = This Redistributor is not the last Redistributor on the chip.

1 = This Redistributor is the last Redistributor on the chip.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-101
Non-Confidential

Table 4-15 GICR_TYPER bit assignments (continued)

Bits Name Function

[3] DirectLPI Direct injection of LPIs:

0 = The GIC-600 does not support LPIs.

1 = The GIC-600 supports LPIs and there is no ITS in the system.

[2] - Reserved, returns 0.

[1] VLPIS Virtual LPI support:

0 = The GIC-600 does not support Virtual LPIs.

See ARM® GICv3 and GICv4 Software Overview.

[0] PLPIS Physical LPI support:

0 = The GIC-600 does not support LPIs.

1 = The GIC-600 supports LPIs.

4.4.3 Power Management Control Register, GICR_WAKER

This register controls whether the GIC-600 can be powered down.

The GICR_WAKER characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

31 30 3 2 1 0

ChildrenAsleepQuiescent

Reserved

ProcessorSleep
Sleep

Figure 4-11 GICR_WAKER bit assignments

The following table shows the bit assignments.

Table 4-16 GICR_WAKER bit assignments

Bits Name Function

[31] Quiescent Indicates that the GIC-600 is idle and can be powered down if necessary.

[30:3] - Reserved, RAZ.

[2] ChildrenAsleep Indicates that the bus between the CPU interface and this Redistributor is quiescent.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-102
Non-Confidential

Table 4-16 GICR_WAKER bit assignments (continued)

Bits Name Function

[1] ProcessorSleep Indicates:

0 = This Redistributor never asserts wake_request.

1 = This Redistributor must assert a wake_request if there is a pending interrupt targeted at the connected
core. See Processor core power management on page 3-54.

[0] Sleep Indicates the sleep state:

0 = Normal operation.

1 = The GIC-600 ensures that all the caches are consistent with external memory and that it is safe to power
down. See Other power management on page 3-55.

Related references
Other power management on page 3-55.

4.4.4 Function Control Register, GICR_FCTLR

This register controls the scrubbing of all RAMs in the associated Redistributor.

The GICR_FCTLR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

31 30 4 3 1 0

CGOReserved

QD
Reserved
SIP

67

Figure 4-12 GICR_FCTLR bit assignments

The following table shows the bit assignments.

Table 4-17 GICR_FCTLR bit assignments

Bits Name Function

[31] QD Q-Channel deny:

0 = Allow Q-Channel accesses.

1 = Deny Q-Channel accesses.

[30:7] - Reserved, RAZ/WI.

[6:4] CGO One bit per clock gate:

0 = Use full clock gating.

1 = Leave clock running.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-103
Non-Confidential

Table 4-17 GICR_FCTLR bit assignments (continued)

Bits Name Function

[3:1] - Reserved, RAZ/WI.

[0] SIP Scrub in progress:

0 = No scrub in progress.

1 = Scrub in progress.

This bit is read and written by software. When a scrub is complete, the GIC clears the bit to 0.

4.4.5 Power Register, GICR_PWRR

This register controls the powerup sequence of the Redistributors. Software must write to this register
during the powerup sequence.

The GICR_PWRR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

31 24 23 15 8 7 4 3 2 1 0

ReservedRDGORDGReserved

RDGPD
RDAG
RDPD

RDGPO

16

Figure 4-13 GICR_PWRR bit assignments

The following table shows the bit assignments.

Table 4-18 GICR_PWRR bit assignments

Bits Name Function

[31:24] - Reserved, RAZ.

[23:16] RDG RDGroup. This read-only field indicates the number of the current Redistributor. Must be packed from 0.

[15:8] RDGO RDGroupOffset. This read-only field indicates the offset of the current core that is connected to the current
Redistributor. Must be packed from 0 but does not necessarily map to a single cluster because the AXI4-Stream bus
can be subdivided.

[7:4] - Reserved, RAZ.

[3] RDGPO RDGroupPoweredOff. This read-only bit indicates:

0 = Redistributor is powered up and can be accessed.

1 = It is safe to power down the Redistributor.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-104
Non-Confidential

Table 4-18 GICR_PWRR bit assignments (continued)

Bits Name Function

[2] RDGPD RDGroupPowerDown. This read-only bit indicates the intentional power state of the Redistributor:

0 = Intend to power up.

1 = Intend to power down.

The Redistributor has reached its intentional power state when RDGPD = RDGPO.

[1] RDAG RDApplyGroup. This write-only bit applies the RDPD value to all Redistributors in the group.

If the RDPD value cannot be applied to all cores in the group, then the GIC ignores this request.

[0] RDPD RDPowerDown:

0 = Redistributor is powered up and can be accessed.

1 = The core permits the Redistributor to be powered down.

Writes to 1 ignored if GICR_WAKER.ProcessorSleep ! = 1.

Writes ignored if RDGPD ! = RDGPO and changing to not match RDGPD.

If all other cores in the Redistributor group have RDPD == 1, then setting this bit to 1 also sets RDGPD = 1.

4.4.6 Class Register, GICR_CLASS

This register controls the assignment of interrupts to either class 0 or class 1.

The GICR_CLASS characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

31 1 0

Reserved

Class

Figure 4-14 GICR_CLASS bit assignments

The following table shows the bit assignments.

Table 4-19 GICR_CLASS bit assignments

Bits Name Function

[31:1] - Reserved, RAZ/WI.

[0] Class Interrupt class:

0 = Class 0.

1 = Class 1.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-105
Non-Confidential

4.4.7 Peripheral ID2 Register, GICR_PIDR2

This register defines the GIC architecture version with which the GIC-600 complies.

The GICR_PIDR2 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See 4.4 Redistributor registers for control and physical LPIs summary on page 4-98.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Figure 4-15 GICR_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-20 GICR_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-600 complies:
• 0x03 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICR_PIDR1.

Related information
ARM® GICv3 and GICv4 Software Overview.

4 Programmers model
4.4 Redistributor registers for control and physical LPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-106
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

4.5 Redistributor registers for SGIs and PPIs summary
The functions for the GIC-600 SGIs and PPIs are controlled through the Redistributor registers identified
with the prefix GICR.

For a description of the registers that are not specific to the GIC-600, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

Table 4-21 Redistributor registers for SGIs and PPIs summary

Offset Name Type Width Reset Description

0x0000-0x007C - - - - Reserved

0x0080 GICR_IGROUPR0 RW 32 0x00000000 Interrupt Group Register

0x0084-0x0FFC - - - - Reserved

0x0100 GICR_ISENABLER0 RW 32 0x00000000 Interrupt Set-Enable Register

0x0104-0x017C - - - - Reserved

0x0180 GICR_ICENABLER0 RW 32 0x00000000 Interrupt Clear-Enable Register

0x0184-0x01FC - - - - Reserved

0x0200 GICR_ISPENDR0 RW 32 0x00000000 Interrupt Set-Pending Register

0x0204-0x027C - - - - Reserved

0x0280 GICR_ICPENDR0 RW 32 0x00000000 Peripheral Clear Pending Register

0x0284-0x02FC - - - - Reserved

0x0300 GICR_ISACTIVER0 RW 32 0x00000000 Interrupt Set-Active Register

0x0304-0x037C - - - - Reserved

0x0380 GICR_ICACTIVER0 RW 32 0x00000000 Interrupt Clear-Active Register

0x0384-0x03FC - - - - Reserved

0x0400-0x041C GICR_IPRIORITYRn RW 32 0x00000000 Interrupt Priority Registers

0x0420-0x0BFC - - - - Reserved

0x0C00-0x0C04 GICR_ICFGRn RO 32 0xAAAAAAAAac Peripheral ID 3 Registers

0x0C08-0x0CFC - - - - Reserved

0x0D00 GICR_IGRPMODR0 RW 32 0x00000000 Interrupt Group Modifier Register

0x0D04-0x0DFC - - - - Reserved

0x0E00 GICR_NSACR RW 32 0x00000000 Non-secure Access Control Register

0x0E04-0xBFFC - - - - Reserved

0xC000 GICR_MISCSTATUSR RO 32 0x00000000 4.5.1 Miscellaneous Status Register,
GICR_MISCSTATUSR on page 4-108

0xC004 - - - - Reserved

0xC008 GICR_IERRVR RO 32 0x00000000 4.5.2 Interrupt Error Valid Register, GICR_IERRV
on page 4-109

0xC00C - - - - Reserved

ac When GIC-600 is configured to have GICD_CTLR.ARE_S or GICD_CTLR.ARE_NS as programmable, if ARE is 0 for the security state of the SGI, this register is
Reserved and RAZ/WI.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-107
Non-Confidential

Table 4-21 Redistributor registers for SGIs and PPIs summary (continued)

Offset Name Type Width Reset Description

0xC010-0xC014 GICR_SGIDR RW 64 - 4.5.3 SGI Default Register, GICR_SGIDR
on page 4-110

0xC018-0xEFFC - - - - Reserved

0xF000 GICR_CFGID0 RO 32 - 4.5.4 Configuration ID0 Register, GICR_CFGID0
on page 4-110

0xF004 GICR_CFGID1 RO 32 - 4.5.5 Configuration ID1 Register, GICR_CFGID1
on page 4-111

This section contains the following subsections:
• 4.5.1 Miscellaneous Status Register, GICR_MISCSTATUSR on page 4-108.
• 4.5.2 Interrupt Error Valid Register, GICR_IERRV on page 4-109.
• 4.5.3 SGI Default Register, GICR_SGIDR on page 4-110.
• 4.5.4 Configuration ID0 Register, GICR_CFGID0 on page 4-110.
• 4.5.5 Configuration ID1 Register, GICR_CFGID1 on page 4-111.

4.5.1 Miscellaneous Status Register, GICR_MISCSTATUSR

Use this register to test the integration of the cpu_active input signals and to debug the CPU interface
enables as seen by the GIC-600.

The GICR_MISCSTATUSR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.5 Redistributor registers for SGIs and PPIs summary on page 4-107.

The following figure shows the bit assignments.

31 30 3 2 1 0

Reserved

wake_request
cpu_active

AccessType

4

Reserved

5

EnableGrp0
EnableGrp1NSecure
EnableGrp1Secure

29

Figure 4-16 GICR_MISCSTATUSR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-108
Non-Confidential

Table 4-22 GICR_MISCSTATUSR bit assignments

Bits Name Function

[31] cpu_active Returns the status of the cpu_active signal for the core corresponding to the Redistributor whose
register is being read:

0 = cpu_active input signal not active.

1 = cpu_active input signal active.

This bit is UNDEFINED when ProcessorSleep or ChildrenAsleep is set for a core, because the core is
presumed to be powered down.

[30] wake_request 0 = wake_request not active.

1 = wake_request asserted.

[29:5] - Reserved.

[4] AccessType 0 = Secure access.

1 = Non-secure access.

[3] - Reserved.

[2]ad EnableGrp1Secure In systems with two Security states enabled, when GICD_CTLR.DS == 0, then:
• For Secure reads, returns the Group 1 Secure CPU interface enable.
• For Non-secure reads, returns zero.

In systems with only a single Security state enabled, when GICD_CTLR.DS == 1, then this bit returns
zero.

[1]ad EnableGrp1NSecure In systems with two Security states enabled, when GICD_CTLR.DS == 0, then:
• For Secure reads, this bit returns the Group 1 Non-secure CPU interface enable.
• For Non-secure reads, when GICD_CTLR.ARE_NS == 1, this bit returns the Group 1 Non-secure

CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS == 0, this bit returns zero.

In systems with only a single Security state enabled, when GICD_CTLR.DS == 1, this bit returns the
Group 1 CPU interface enable.

[0]ad EnableGrp0 In systems with two Security states enabled, when GICD_CTLR.DS == 0, then:
• For Secure reads, this bit returns the Group 0 CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS == 0, this bit returns the Group 1 Non-secure

CPU interface enable.
• For Non-secure reads when GICD_CTLR.ARE_NS == 1, this bit returns zero.

In systems with only a single Security state enabled, when GICD_CTLR.DS == 1, this bit returns the
Group 0 CPU interface enable.

4.5.2 Interrupt Error Valid Register, GICR_IERRV

This register indicates if the SGI or PPI data has been corrupted in SRAM.

The GICR_IERRV characteristics are:

Usage constraints
There are no usage constraints.

ad These bits are a copy of the CPU interface group enables for the core corresponding to this Redistributor. These copies are UNDEFINED when ProcessorSleep or
ChildrenSleep is set for a core, because the core is presumed to be powered down. Upstream Write packets maintain these copies that can de-synchronize after an
incorrect powerdown sequence. This register enables you to debug this scenario. For more information, see the ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-109
Non-Confidential

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.5 Redistributor registers for SGIs and PPIs summary on page 4-107.

The following table shows the bit assignments.

Table 4-23 GICR_IERRV bit assignments

Bits Name Function

[0] + n valid<n>

n = 0-31

0 = No error on interrupt n.

1 = There is an error on interrupt n so the interrupt is not delivered.

4.5.3 SGI Default Register, GICR_SGIDR

This register controls the default value of SGI settings, for use in the case of a DEDERR.

The GICR_SGIDR characteristics are:

Usage constraints
Only accessible by Secure accesses.

Configurations
Available in all GIC-600 configurations. If SGI ECC is not enabled, then this register is RES0.

Attributes
See the 4.5 Redistributor registers for SGIs and PPIs summary on page 4-107.

The following table shows the bit assignments.

Table 4-24 GICR_SGIDR bit assignments

Bits Name Function

[3] + 4n:

[63, 59, 55, 51, 47, 43, 39, 35, 31, 27, 23, 19, 15, 11, 7, 3]

- Reserved, RAZ.

[2] + 4n:

[62, 58, 54, 50, 46, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2]

GRPMOD As GRPMOD register.

[1] + 4n:

[61, 57, 53, 49, 45, 41, 37, 33, 29, 25, 21, 17, 13, 9, 5, 1]

GRP As GRP register.

[0] + 4n:

[60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0]

nsacr 1 = Allow Non-secure access to interrupt <n>.

4.5.4 Configuration ID0 Register, GICR_CFGID0

This register returns information about the configuration of the Redistributors.

The GICR_CFGID0 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.5 Redistributor registers for SGIs and PPIs summary on page 4-107.

The following figure shows the bit assignments.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-110
Non-Confidential

31 28 27 24 23 20 19 16 15 8 0

PPINumberAf0WidthAf1WidthAf2WidthAf3Width

912 11 10

Reserved
ECCSupport
TGT0ListWidth

Figure 4-17 GICR_CFGID0 bit assignments

The following table shows the bit assignments.

Table 4-25 GICR_CFGID0 bit assignments

Bits Name Function

[31:28] Af3Width Affinity 3 width.

[27:24] Af2Width Affinity 2 width.

[23:20] Af1Width Affinity 1 width.

[19:16] Af0Width Affinity 0 width.

[15:12] TGT0ListWidth The Target0 list width - 1.

[11] ECCSupport 1 = ECC is supported.

[10:9] - Reserved, RAZ.

[8:0] PPINumber RedistributorID.

The ppi_id[15:0] tie-off signal sets the value of the ID. Each Redistributor must have a unique ID.

Related references
A.6 Miscellaneous signals on page Appx-A-163.

4.5.5 Configuration ID1 Register, GICR_CFGID1

This register returns information about the configuration of the Redistributors.

The GICR_CFGID1 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.5 Redistributor registers for SGIs and PPIs summary on page 4-107.

The following figure shows the bit assignments.

31 16 15 4 3 0

NumCPUsVersion

PPIs_per_Processor

19 112023242728

UserValue Reserved

13 12

DirectUpstream
Reserved

Reserved

Figure 4-18 GICR_CFGID1 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-111
Non-Confidential

Table 4-26 GICR_CFGID1 bit assignments

Bits Name Function

[31:28] Version Identifies the major and minor revisions, and product quality status of the GIC-600:

0x1 = version 0 (r0p0).

0x3 = version 1 (r0p1).

0x4 = version 2 (r0p2).

[27:24] UserValue Modification value that you can set.

[23:20] - Reserved, RAZ.

[19:16] PPIs_per_Processor The number of Redistributors that each core supports - 1.

[15:13] - Reserved.

[12] DirectUpstream Indicates a direct upstream connection.

[11:4] NumCPUs The number of cores that are integrated in this Redistributor.

[3:0] - Reserved, RAZ.

4 Programmers model
4.5 Redistributor registers for SGIs and PPIs summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-112
Non-Confidential

4.6 ITS control register summary
The GIC-600 Interrupt Translation Service functions are controlled through registers identified with the
prefix GITS.

For a description of the registers that are not specific to the GIC-600, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

 Note

This page does not exist in GIC-600 configurations that do not support LPIs or that do not have an ITS.

Table 4-27 ITS control register summary

Offset Name Type Width Reset Description

0x0000 GITS_CTLR RW 32 0x80000000 ITS Control Register

0x0004 GITS_IIDR RO 32 0x0001043B 4.6.1 ITS Implementer Identification Register,
GITS_IIDR on page 4-114

0x0008 GITS_TYPER RO 64 Configuration dependent 4.6.2 Interrupt Controller Type Register,
GITS_TYPER on page 4-115

0x0010-0x001C - - 32 - Reserved

0x0020 GITS_FCTLR RW 32 0x00000000 4.6.3 Function Control Register, GITS_FCTLR
on page 4-116

0x0024 - - - - Reserved

0x0028 GITS_OPR RW 64 0x0000000000000000 4.6.4 Operations Register, GITS_OPR
on page 4-118

0x0030-0x0034 GITS_OPSR RO 64 0x0000000000000000 4.6.5 Operation Status Register, GITS_OPSR
on page 4-119

0x0038-0x007C - - - - Reserved

0x0080-0x0084 GITS_CBASER RW 64 0x0000000000000000 Command Queue Control Register

See ARM® GICv3 and GICv4 Software Overview

0x0088-0x008C GITS_CWRITER RW 64 0x0000000000000000 Command Queue Write Pointer Register

0x0090-0x0094 GITS_CREADR RO 64 0x0000000000000000 Command Queue Read Pointer Register

0x0098-0x00FC - - - - Reserved

0x0100-0x0104 GITS_BASER0 RW 64 0x0107000000000000 ITS Translation Table Descriptor Register0

0x0108-0x010C GITS_BASER1 RW 64 0x0000000000000000 ITS Translation Table Descriptor Register1

0x0108-0xEFFC - - - - Reserved

0xF000 GITS_CFGID RO 32 0x00000000 4.6.6 Configuration ID Register, GITS_CFGID
on page 4-120

0xF004-0xFFCC - - - - Reserved

0xFFD0 GITS_PIDR4 RO 32 0x00000044 Peripheral ID 4 Register

0xFFD4 GITS_PIDR5 RO 32 0x00000000 Peripheral ID 5 Register

0xFFD8 GITS_PIDR6 RO 32 0x00000000 Peripheral ID 6 Register

0xFFDC GITS_PIDR7 RO 32 0x00000000 Peripheral ID 7 Register

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-113
Non-Confidential

Table 4-27 ITS control register summary (continued)

Offset Name Type Width Reset Description

0xFFE0 GITS_PIDR0 RO 32 0x00000094 Peripheral ID 0 Register

0xFFE4 GITS_PIDR1 RO 32 0x000000B4 Peripheral ID 1 Register

0xFFE8 GITS_PIDR2 RO 32 0x0000003B 4.6.7 Peripheral ID2 Register, GITS_PIDR2
on page 4-121

0xFFEC GITS_PIDR3 RO 32 0x00000000 Peripheral ID 3 Register

0xFFF0 GITS_CIDR0 RO 32 0x0000000D Component ID 0 Register

0xFFF4 GITS_CIDR1 RO 32 0x000000F0 Component ID 1 Register

0xFFF8 GITS_CIDR2 RO 32 0x00000005 Component ID 2 Register

0xFFFC GITS_CIDR3 RO 32 0x000000B1 Component ID 3 Register

This section contains the following subsections:
• 4.6.1 ITS Implementer Identification Register, GITS_IIDR on page 4-114.
• 4.6.2 Interrupt Controller Type Register, GITS_TYPER on page 4-115.
• 4.6.3 Function Control Register, GITS_FCTLR on page 4-116.
• 4.6.4 Operations Register, GITS_OPR on page 4-118.
• 4.6.5 Operation Status Register, GITS_OPSR on page 4-119.
• 4.6.6 Configuration ID Register, GITS_CFGID on page 4-120.
• 4.6.7 Peripheral ID2 Register, GITS_PIDR2 on page 4-121.

4.6.1 ITS Implementer Identification Register, GITS_IIDR

This register provides information about the implementer and revision of the ITS.

The GITS_IIDR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Figure 4-19 GITS_IIDR bit assignments

The following table shows the bit assignments.

Table 4-28 GITS_IIDR bit assignments

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x02 = GIC-600.

[23:20] - Reserved, RAZ.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-114
Non-Confidential

Table 4-28 GITS_IIDR bit assignments (continued)

Bits Name Function

[19:16] Variant Indicates the major revision or variant of the product for the rmpn identifier:

0x0 = r0.

[15:12] Revision Indicates the minor revision of the product for the rmpn identifier:

0x1 = p0.

0x3 = p1.

0x4 = p2.

[11:0] Implementer Identifies the implementer:

0x43B = ARM.

4.6.2 Interrupt Controller Type Register, GITS_TYPER

This register returns information about the configuration of the GIC-600.

The GITS_TYPER characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

31 24 23 20 19 18 17 13 12 8 7 4 3 2 1 0

IDBitsDevBitsReservedHCC

CIDBits

CCT
Virtual
Physical

Reserved
ITTEntrySize

CIL

PTA
SEIS

63 36 35 32

Reserved

37

Figure 4-20 GITS_TYPER bit assignments

The following table shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-115
Non-Confidential

Table 4-29 GITS_TYPER bit assignments

Bits Name Function

[63:37] - Reserved, RAZ.

[36] CIL CollectionID limit:

1 = The GIC-600 supports CIL.

[35:32] CIDBits The number of CollectionID bits, minus one.

Set by the col_width configuration parameter.

[31:24] HCC Hardware collection count:

0 = All memory backed.

[23:20] - Reserved, returns 0.

[19] PTA Physical target addresses:

0 = The GIC-600 does not support physical target addresses.

[18] SEIS System error interrupts:

0 = The GIC-600 does not support locally generated System Error interrupts.

[17:13] Devbits The number of device identifier bits implemented, minus one.

Set by the did_width configuration parameter.

[12:8] IDBits The number of interrupt identifier bits implemented, minus one.

Set by the vid_width configuration parameter.

[7:4] ITT Entry size The number of bytes per entry, minus one:

0x3 = The GIC-600 supports a 4-byte ITT entry size.

[3] - Reserved.

[2] CCT Cumulative collection tables:

0 = Total number of supported collections is determined by the number of collections that are held in
memory only.

[1] Virtual Virtual LPIs:

0 = The GIC-600 does not support Virtual LPIs.

See ARM® GICv3 and GICv4 Software Overview.

[0] Physical Physical LPIs:

1 = The GIC-600 supports physical LPIs.

4.6.3 Function Control Register, GITS_FCTLR

This register controls the scrubbing of all RAMs in the local GITS. The register is not distributed and
only acts on the local chip.

The GITS_FCTLR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-116
Non-Confidential

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

31 4 3 2 1 0

CGO

7830 29

Reserved

19 18 17 16 15 9

Reserved

IDC
ICC

AEE
CEE
UEE
LTE
SIP

IEC
PWE
DCC

10

QD

Figure 4-21 GITS_FCTLR bit assignments

The following table shows the bit assignments.

Table 4-30 GITS_FCTLR bit assignments

Bits Name Function

[31] DCC Disable Cache Conversion:

0 = Use SMMU attribute for AMBA mapping.

1 = Use Direct attribute for AMBA mapping.

[30] PWE Powerdown While Enabled:

0 = Requests GITS_CTLR.Quiescent to indicate ITS is quiescent and can be powered down.

1 = Do not request GITS_CTLR.Quiescent to indicate ITS is quiescent.

[29:19] - Reserved, RAZ/WI.

[18] IEC Invalidate Event Cache:

1 = Invalidate event cache enabled.

0 = Invalidate event cache disabled.

[17] IDC Invalidate Device Cache:

1 = Invalidate Device cache enabled.

0 = Invalidate Device cache disabled.

[16] ICC Invalidate Collection cache:

1 = Invalidate Collection cache enabled.

0 = Invalidate Collection cache disabled.

[15:8] - Reserved, RAZ/WI.

[9] QD Q Deny:

1 = Always deny Q-Channel requests.

0 = Do not deny Q-Channel requests.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-117
Non-Confidential

Table 4-30 GITS_FCTLR bit assignments (continued)

Bits Name Function

[8] AEE Access Error Enable:

1 = Enable reporting of slave access errors.

0 = Do not enable reporting of slave access errors.

[7:4] CGO One bit per clock gate:

0 = Use full clock gating.

1 = Leave clock running.

[3] CEE Command error enable:

0 = Command errors are disabled.

1 = Command errors are enabled.

[2] UEE Unmapped error enable:

0 = Unmapped interrupt errors are disabled.

1 = Unmapped interrupt errors are enabled.

[1] LTE Latency tracking enable:

0 = Latency tracking of interrupts is disabled.

1 = Latency tracking of interrupts is enabled.

[0] SIP Scrub in progress:

0 = No scrub in progress.

1 = Scrub in progress.

This bit is read and written by software. When a scrub is complete, the GIC clears the bit to 0.

4.6.4 Operations Register, GITS_OPR

This register controls cache lock.

The GITS_OPR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations. However, for single-chip configurations this register is
RAZ/WI.

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-118
Non-Confidential

31 16 15 0

EVENT_IDReserved

63 32

DEVICE_IDReserved

5160 5259

LOCK_TYPE

Figure 4-22 GITS_OPR bit assignments

The following table shows the bit assignments.

Table 4-31 GITS_OPR bit assignments

Bits Name Function

[63:60] LOCK_TYPE Lock type supported:

0 = Track.

1 = Trial.

2 = ITS lock.

3 = ITS unlock.

4 = Track abort.

6 = LPI lock.

7 = LPI unlock.

8 = ITS unlock all.

[59:52] - Reserved.

[51:32] DEVICE_ID 0-maximum DeviceID supported.

[31:16] - Reserved.

[15:0] EVENT_ID 8192-maximum EventID supported.

4.6.5 Operation Status Register, GITS_OPSR

This register indicates cache lock status.

The GITS_OPSR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-119
Non-Confidential

63 48 32

TARGETReserved

REQUEST_COMPLETE

ENTRY_LOCKED
Reserved

4445474962 61 60

31 16 15 0

PIDReserved

REQUEST_PASS
REQUEST_IN_PROGRESS

Figure 4-23 GITS_OPSR bit assignments

The following table shows the bit assignments.

Table 4-32 GITS_OPSR bit assignments

Bits Name Function

[63] REQUEST_COMPLETE Request to GITS_OPR completed.

[62] REQUEST_PASS Request to GITS_OPR completed without error.

[61] REQUEST_IN_PROGRESS Translation in progress.

[60:49] - Reserved.

[48] ENTRY_LOCKED Locked entry in cache corresponds to request.

[47:45] - Reserved.

[44:32] TARGET Target of interrupt requested.

[31:16] - Reserved.

[15:0] PID Physical ID of interrupt requested.

4.6.6 Configuration ID Register, GITS_CFGID

This register returns the ID number of the ITS block.

The GITS_CFGID characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

31 4 3 0

Reserved

ITSNumber

Figure 4-24 GITS_CFGID bit assignments

The following table shows the bit assignments.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-120
Non-Confidential

Table 4-33 GITS_CFGID bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] ITSNumber Returns the ITS block ID. The its_id[7:0] tie-off signal controls the ID value. Each ITS block must have a
unique ID.

Related references
A.6 Miscellaneous signals on page Appx-A-163.

4.6.7 Peripheral ID2 Register, GITS_PIDR2

This register defines the GIC architecture version with which the GIC-600 complies.

The GITS_PIDR2 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.6 ITS control register summary on page 4-113.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Figure 4-25 GITS_PIDR2 bit assignments

The following table shows the bit assignments.

Table 4-34 GITS_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-600 complies:
• 0x03 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GITS_PIDR1.

Related information
ARM® GICv3 and GICv4 Software Overview.

4 Programmers model
4.6 ITS control register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-121
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0492-/index.html

4.7 ITS translation register summary
Interrupts to be translated by the GIC-600 Interrupt Translation Service are identified by EventIDs that
are written to the ITS translation register GITS_TRANSLATER.

For a description of the registers that are not specific to the GIC-600, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

 Note

This page does not exist in GIC-600 configurations that do not support LPIs or that do not have an ITS.

Table 4-35 ITS translation register summary

Offset Name Type Reset Description

0x0000-0x003C - - - Reserved

0x0040 GITS_TRANSLATER WO 0x0001043B ITS Translation Register

0x0044-0xFFFC - - - Reserved

4 Programmers model
4.7 ITS translation register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-122
Non-Confidential

4.8 GICT register summary
The GIC-600 trace and debug functions are controlled through registers identified with the prefix GICT.

 Note

The GICD_SAC.GICTNS bit controls whether Non-secure software can access the GICT registers.

Table 4-36 GICT register summary

Offset Name Type Width Reset Description

0x0000+n×64 GICT_ERR<n>FR RO 64 64 4.8.1 Error Record Feature Register, GICT_ERR<n>FR
on page 4-125

0x0008+n×64 GICT_ERR<n>CTLR RW 64 64 4.8.2 Error Record Control Register,
GICT_ERR<n>CTLR on page 4-126

0x0010+n×64 GICT_ERR<n>STATUS RW 64 64 4.8.3 Error Record Primary Status Register,
GICT_ERR<n>STATUS on page 4-127

0x0018+n×64 GICT_ERR<n>ADDR RW 64 64 4.8.4 Error Record Address Register,
GICT_ERR<n>ADDR on page 4-128

0x0020+n×64 GICT_ERR<n>MISC0 RW 64 64 4.8.5 Error Record Miscellaneous Register 0,
GICT_ERR<n>MISC0 on page 4-129

0x0028+n×64 GICT_ERR<n>MISC1 RW 64 64 4.8.6 Error Record Miscellaneous Register 1,
GICT_ERR<n>MISC1 on page 4-135

0xE000 GICT_ERRGSR RO 64 64 Group Status Register

0xE008-0xE7FC - - - - Reserved, RAZ/WI

0xE808-0xFFB8 - - - - Reserved, RAZ/WI

0xFFBC GICT_ERRDEVARCH RO 32 32 Device Architecture register

0xFFC0-0xFFC4 - - - - Reserved, RAZ/WI

0xFFC8 GICT_ERRIDR RO 32 32 4.8.7 Error Record ID Register, GICT_ERRIDR
on page 4-136

0xFFCC - - - - Reserved, RAZ/WI

0xFFD0 GICT_PIDR4 RO 32 0x00000044 Peripheral ID 4 Register

0xFFD4 GICT_PIDR5 RO 32 0x00000000 Peripheral ID 5 Register

0xFFD8 GICT_PIDR6 RO 32 0x00000000 Peripheral ID 6 Register

0xFFDC GICT_PIDR7 RO 32 0x00000000 Peripheral ID 7 Register

0xFFE0 GICT_PIDR0 RO 32 0x00000095 Peripheral ID 0 Register

0xFFE4 GICT_PIDR1 RO 32 0x000000B4 Peripheral ID 1 Register

0xFFE8 GICT_PIDR2 RO 32 0x0000003B 4.8.8 Peripheral ID2 Register, GICT_PIDR2
on page 4-137

0xFFEC GICT_PIDR3 RO 32 0x00000000 Peripheral ID 3 Register

0xFFF0 GICT_CIDR0 RO 32 0x0000000D Component ID 0 Register

0xFFF4 GICT_CIDR1 RO 32 0x000000F0 Component ID 1 Register

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-123
Non-Confidential

Table 4-36 GICT register summary (continued)

Offset Name Type Width Reset Description

0xFFF8 GICT_CIDR2 RO 32 0x00000005 Component ID 2 Register

0xFFFC GICT_CIDR3 RO 32 0x000000B1 Component ID 3 Register

The following table lists the error records for the various error conditions.

Table 4-37 Error records

Record Description Type Syndrome Syndrome data
(GICT_ERR<n>MISC0.Data)

0 Software error in GICD
programming

UEOae 14, Illegal Access Address, security, size, and direction

1 Correctable SPI RAM
errors

CEaf 7, Data value from
associative memory

Counter, SPI number, bit

2 Uncorrectable SPI RAM
errors

UERag 7, Data value from
associative memory

Counter, SPI number

3 Correctable SGI RAM
errors

CEaf 7, Control value from
associative memory

Counter, core number, bit

4 Uncorrectable SGI RAM
errors

UERag 7, Control value from
associative memory

Counter, core number

5 Correctable TGT cache
errors

CEaf 7, Control value from
associative memory

Counter, core number, bit, and slot

6 Correctable TGT cache
errors

UERag 7, Control value from
associative memory

Counter, core number, slot

7 Correctable PPI RAM
errors

CEaf 7, Control value from
associative memory

Counter, core number, lowest PPI number, 0 for
SGI, bit

8 Uncorrectable PPI RAM
errors

UERag 7, Control value from
associative memory

Counter, core number, lowest PPI number, 0 for
SGI

9 Correctable LPI RAM
errors

CEaf 7, Control value from
associative memory

Counter, RAM, address, bit

10 Uncorrectable LPI RAM
errors

UERag 7, Control value from
associative memory

Counter, RAM, address, bit

11 Correctable error from ITS
RAM

CEaf 6, Data value from
associative memory

Counter, ITS, RAM, row, bit

12 Uncorrectable error from
ITS RAM

UEOae 6, Data value from
associative memory

Counter, ITS, RAM, row

13 + ITSnum Software error in ITS UERag 14, Illegal Access As supplied by ITS 24-bit syndrome.

This section contains the following subsections:
• 4.8.1 Error Record Feature Register, GICT_ERR<n>FR on page 4-125.
• 4.8.2 Error Record Control Register, GICT_ERR<n>CTLR on page 4-126.
• 4.8.3 Error Record Primary Status Register, GICT_ERR<n>STATUS on page 4-127.

ae Restartable error and contained.
af Correctable error.
ag Recoverable error.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-124
Non-Confidential

• 4.8.4 Error Record Address Register, GICT_ERR<n>ADDR on page 4-128.
• 4.8.5 Error Record Miscellaneous Register 0, GICT_ERR<n>MISC0 on page 4-129.
• 4.8.6 Error Record Miscellaneous Register 1, GICT_ERR<n>MISC1 on page 4-135.
• 4.8.7 Error Record ID Register, GICT_ERRIDR on page 4-136.
• 4.8.8 Peripheral ID2 Register, GICT_PIDR2 on page 4-137.

4.8.1 Error Record Feature Register, GICT_ERR<n>FR

This register returns information about the ARMv8.2 RAS features that the GIC-600 implements.

The GICT_ERR<n>FR characteristics are:

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the contents of this register.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following figure shows the bit assignments.

31 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

EDDEUIFIUECFICECReserved

RP

Figure 4-26 GICT_ERR<n>FR bit assignments

The following table shows the bit assignments.

Table 4-38 GICT_ERR<n>FR bit assignments

Bits Name Function

[31:16] - Reserved, RAZ.

[15] RP Repeat corrected error count:

0 = The GIC-600 does not implement a repeat corrected error counter.

[14:12] CEC Corrected error count:

0b000 = The GIC-600 does not implement a standard Corrected error counter in GICT_ERR<n>MISC0.

[11:10] CFI Corrected errors fault interrupt. Depending on the configuration, returns either:

0b00 = The GIC-600 does not provide a fault handling interrupt for corrected errors.

0b10 = The GIC-600 provides a controllable fault handling interrupt for corrected errors.

[9:8] UE Uncorrected error. Depending on the configuration, returns either:

0b00 = The GIC-600 does not provide an in-band uncorrected error reporting.

0b10 = The GIC-600 provides a controllable in-band uncorrected error reporting.

[7:6] FI Fault handling interrupt for uncorrected errors. Depending on the configuration, returns either:

0b00 = The GIC-600 does not provide a fault handling interrupt.

0b10 = The GIC-600 provides a controllable fault handling interrupt.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-125
Non-Confidential

Table 4-38 GICT_ERR<n>FR bit assignments (continued)

Bits Name Function

[5:4] UI Error recovery interrupt for uncorrected errors. Depending on the configuration, returns either:

0b00 = The GIC-600 does not provide an error recovery interrupt for uncorrected errors.

0b10 = The GIC-600 provides a controllable error recovery interrupt for uncorrected errors.

[3:2] DE Deferring of errors support:

0b00 = The GIC-600 does not support the deferring of errors.

[1:0] ED Uncorrected error reporting:

0b01 = Uncorrected error reporting is always enabled.

4.8.2 Error Record Control Register, GICT_ERR<n>CTLR

This register controls how interrupts are handled.

The GICT_ERR<n>CTLR characteristics are:

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this
register.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following figure shows the bit assignments.

31 16 15 14 9 8 7 5 4 3 2 1 0

ReservedReserved

FI
UI
Reserved

UE
Reserved

RP
CFI

63 32

Reserved

Figure 4-27 GICT_ERR<n>CTLR bit assignments

The following table shows the bit assignments.

Table 4-39 GICT_ERR<n>CTLR bit assignments

Bits Name Function

[63:16] - Reserved, RAZ.

[15] RP 0 = An error response to a transaction is reported.

[14:9] - Reserved, RAZ.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-126
Non-Confidential

Table 4-39 GICT_ERR<n>CTLR bit assignments (continued)

Bits Name Function

[8] CFI Controls whether a corrected error generates a fault handling interrupt:

0 = The GIC-600 does not assert a fault handling interrupt for corrected errors.

1 = The GIC-600 asserts a fault handling interrupt when a corrected error occurs.

[7:5] - Reserved, RAZ.

[4] UE Uncorrected error.

RAZ/WI for all records except GICT error record (0) else:

1 = Send external abort with transaction.

2 = Do not send external abort with transaction.

[3] FI Fault handling interrupt.

SBZ on Correctable Error (CE) records else:

0 = Fault handling interrupt is not generated on any error.

1 = Fault handling interrupt is generated on all uncorrectable errors.

[2] UI Error recovery interrupt for uncorrected error.

SBZ on CE records else:

0 = Error recovery interrupt is not generated on any error.

1 = Error recovery interrupt is generated on all uncorrectable errors.

[1:0] - Reserved, RAZ.

4.8.3 Error Record Primary Status Register, GICT_ERR<n>STATUS

This register indicates information of recorded errors.

The GICT_ERR<n>STATUS characteristics are:

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this
register.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following figure shows the bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 8 7 0

SERRIERRReservedUETCEV

OF
MV
Reserved

ER
UE
AV

Figure 4-28 GICT_ERR<n>STATUS bit assignments

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-127
Non-Confidential

The following table shows the bit assignments.

Table 4-40 GICT_ERR<n>STATUS bit assignments

Bits Name Function

[31] AV Indicates if the address is valid:

0 = GICT_ERR<n>ADDR is not valid.

1 = GICT_ERR<n>ADDR contains an address that is associated with the highest priority error that this record
stores. Only present in record 0.

[30] V Indicates if this register is valid:

0 = GICT_ERR<n>STATUS is not valid.

1 = GICT_ERR<n>STATUS is valid. One or more errors are recorded.

[29] UE Uncorrectable error bit.

SBZ in Correctable Error (CE) records.

[28] ER Indicates that at least one error has been reported over ACE-Lite.

Set for record 0 only, and only for accesses to corrupted data, and bad incoming access.

[27] OF Record has overflowed.

[26] MV Indicates if the GICT miscellaneous registers are valid:

0 = GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 are not valid.

1 = GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 are valid.

[25:24] CE Only in Correctable Error (CE) records:

0b00 = No CE recorded.

0b10 = At least one CE recorded.

[23:22] - Reserved, RAZ/WI.

[21:20] UET RES0 unless UE == 1, in which case:

0b10 = UEO.

0b11 = UER.

[19:16] - Reserved, RAZ/WI.

[15:8] IERR IMPLEMENTATION-DEFINED error code:

This field is RO if one value is specified.

Returns the summary table information.

[7:0] SERR Architecturally-defined primary error code:

This field is RO if one value is specified.

Returns the summary table information.

4.8.4 Error Record Address Register, GICT_ERR<n>ADDR

This register contains the address and security status of the write. This register is only present for GICT
software record 0.

The GICT_ERR<n>ADDR characteristics are:

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-128
Non-Confidential

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this
register.

Ignores writes if ERR<n>STATUS.AV == 1.

All bits are RAZ/WI if GICT_ERR<n>STATUS.IERR = 0, 12, or 13.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following figure shows the bit assignments.

0

PADDR

Reserved

NS

32

31

63 62 4748

PADDR

Figure 4-29 GICT_ERR<n>ADDR bit assignments

The following table shows the bit assignments.

Table 4-41 GICT_ERR<n>ADDR bit assignments

Bits Name Function

[63] NS Non-secure attribute:

0 = The address is Secure.

1 = The address is Non-secure.

[62:48] - Reserved, RAZ/WI.

[47:0] PADDR The error address.

4.8.5 Error Record Miscellaneous Register 0, GICT_ERR<n>MISC0

This register contains the Corrected error counter and information that assists with identifying the RAM
in which the error was detected.

The GICT_ERR<n>MISC0 characteristics are:

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this
register. If GICT_ERR<n>STATUS.MV == 1, then the GICT_ERR<n>MISC0 ignores writes to
the Data field.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following figure shows the bit assignments.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-129
Non-Confidential

31 0

Data

Overflow

63 40 3241 39

CountReserved

42

RE

Figure 4-30 GICT_ERR<n>MISC0 bit assignments

The following table shows the bit assignments.

Table 4-42 GICT_ERR<n>MISC0 bit assignments

Bits Name Function

[63:42] - Reserved, RAZ.

[41] RE Rounding Error.

The Rounding Error counter is under-reporting.

[40] Overflow Sticky overflow bit:

0 = Counter has not overflowed.

1 = Counter has overflowed.

If the corrected fault handling interrupt is enabled, then the GIC-600 generates a fault handling interrupt.

[39:32] Count Corrected error count.

Error counter is not 0 or is more than 134. Incremented for each corrected error that does not match the recorded
syndrome.

[31:0] Data Information associated with the error. See the following table.

The following table shows the Data field encoding for each error record and syndrome.

Table 4-43 Data field encoding

Record GICT_ERR<n>STATUS.IERR
(syndrome)

GICT_ERR<n>STATUS.SERR Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x00, SYN_ACE_BAD

Illegal ACE-Lite Slave Access.

0xE AccessRnW, bit[12]

AccessSparse, bit[11]

AccessSize, bits[10:8]

AccessLength, bits[7:0]

Software Error
(0)

0x01, SYN_PPI_PWRDWN

Attempt to access a powered down
Redistributor.

0xF Redistributor, bits[24:16]

Core, bits[8:0]

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-130
Non-Confidential

Table 4-43 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR
(syndrome)

GICT_ERR<n>STATUS.SERR Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x02, SYN_PPI_PWRCHANGE

Attempt to power down Redistributor rejected.

0xF Redistributor, bits[24:16]

Core, bits[8:0]

Software Error
(0)

0x03, SYN_GICR_ARE

Attempt to access GICR or GICD registers in
mode that cannot work.

0xF Core, bits[8:0]

Software Error
(0)

0x04, sdsd_ACC

Attempt to reprogram PROPBASE registers to
a value that is not accepted because another
value is already in use.

0xF Core, bits[8:0]

Software Error
(0)

0x05, SYN_PENDBASE_ACC

Attempt to reprogram PENDBASE registers to
a value that is not accepted because another
value is already in use.

0xF Core, bits[8:0]

Software Error
(0)

0x06, SYN_LPI_CLR

Attempt to reprogram ENABLE_LPI when not
already enabled and not asleep.

0xF Core, bits[8:0]

Software Error
(0)

0x07, SYN_WAKER_CHANGE

Attempt to change GICR_WAKER abandoned
due to handshake rules.

0xF Core, bits[8:0]

Software Error
(0)

0x08, SYN_SLEEP_FAIL

Attempt to put GIC to sleep failed because
cores are not fully asleep.

0xF Core, bits[8:0]

Software Error
(0)

0x09, SYN_PGE_ON_QUIESCE

Core put to sleep before its Group enables
were cleared.

0xF Core, bits[8:0]

Software Error
(0)

0x0A, SYN_GICD_CTLR

Attempt to update GICD_CTLR was prevented
due to RWP or Group enable restrictions.

0xF Data, bits[7:0]

Software Error
(0)

0x10, SYN_SGI_NO_TGT

SGI sent with no valid destinations.

0xE Core, bits[8:0]

Software Error
(0)

0x11, SYN_SGI_CORRUPTED

SGI was corrupted and has not taken effect.

0x6 Core, bits[8:0]

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-131
Non-Confidential

Table 4-43 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR
(syndrome)

GICT_ERR<n>STATUS.SERR Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x12, SYN_GICR_CORRUPTED

Data was read from the GICR register space
that has encountered an uncorrectable error.

0x6 GITS_ERR0ADDR is
populated.

Software Error
(0)

0x13, SYN_GICD_CORRUPTED

Data was read from the GICD register space
that has encountered an uncorrectable error.

0x6 GITS_ERR0ADDR is
populated.

Software Error
(0)

0x14, SYN_ITS_OFF

Data was read from an ITS that was powered
down.

0xF GITS_ERR0ADDR is
populated.

Software Error
(0)

0x19, SYN_SPI_OOR

Access to a non-implemented SPI using (SET|
CLR)SPI.

0xE ID, bits[9:0]

Software Error
(0)

0x1A, SYN_SPI_NO_DEST_TGT

A SPI has no legal target destinations.

0xF ID, bits[9:0]

Software Error
(0)

0x1B, SYN_SPI_NO_DEST_1OFN

A 1 of N SPI cannot be delivered due to bad
DPG/GICR_CLASS programming.

0xF ID, bits[9:0]

Software Error
(0)

0x1C, SYN_COL_OOR

A collator message is received for a non-
implemented SPI, or is larger than the number
of owned SPIs in a multichip configuration.

0xF ID, bits[9:0]

Software Error
(0)

0x1D, SYN_DEACT_IN

A Deactivate to a non-existent SPI, or with
incorrect groups set. Deactivates to LPI and
non-existent PPI are not reported.

0xE None

Software Error
(0)

0x1E, SYN_SPI_CHIP_OFFLINE

An attempt was made to send a SPI to an
offline chip.

0xF ID, bits[9:0]

Software Error
(0)

0x20, SYN_PUP_REJ

A multichip power update was rejected.

0xF None

Software Error
(0)

0x28, SYN_ITS_REG_SET_OOR

An attempt was made to set an Out Of Range
(OOR) interrupt. Only valid when GICR LPI
injection registers are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-132
Non-Confidential

Table 4-43 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR
(syndrome)

GICT_ERR<n>STATUS.SERR Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x29, SYN_ITS_REG_CLR _OOR

An attempt was made to clear an OOR
interrupt. Only valid when GICR LPI injection
registers are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software Error
(0)

0x2A, SYN_ITS_REG_INV_OOR

An attempt was made to invalidate an OOR
interrupt. Only valid when GICR LPI injection
registers are supported.

0xE Core, bits[24:16]

Data, bits[15:0]

Software Error
(0)

0x2B, SYN_ITS_REG_SET_ENB

An attempt was made to set an interrupt when
LPIs are not enabled. Only valid when GICR
LPI injection registers are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software Error
(0)

0x2C, SYN_ITS_REG_CLR _ENB

An attempt was made to clear an interrupt
when LPIs are not enabled. Only valid when
GICR LPI injection registers are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software Error
(0)

0x2D, SYN_ITS_REG_INV_ENB

An attempt was made to invalidate an interrupt
when LPIs are not enabled. Only valid when
GICR LPI injection registers are supported.

0xF Core, bits[24:16]

Data, bits[15:0]

Software Error
(0)

0x40, SYN_LPI_PROP_READ_FAIL

An attempt was made to read properties for a
single interrupt where an error response was
received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software Error
(0)

0x41, SYN_PT_PROP_READ_FAIL

An attempt was made to read properties for a
block of interrupts where an error response
was received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software Error
(0)

0x42,
SYN_PT_COARSE_MAP_READ_FAIL

An attempt was made to read the coarse map
for a target where an error response was
received with the data.

0x12 Target, bits[31:16]

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-133
Non-Confidential

Table 4-43 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR
(syndrome)

GICT_ERR<n>STATUS.SERR Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Software Error
(0)

0x43,
SYN_PT_COARSE_MAP_WRITE_FAIL

An attempt was made to write the coarse map
for a target with an error received with the
write response.

0x12 Target, bits[31:16]

Software Error
(0)

0x44, SYN_PT_TABLE_READ_FAIL

An attempt was made to read a block of
interrupts from a Pending table where an error
response was received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software Error
(0)

0x45, SYN_PT_TABLE_WRITE_FAIL

An attempt was made to write back a block of
interrupts from a Pending table with an error
received with the write response.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software Error
(0)

0x46, SYN_PT_SUB_TABLE_READ_FAIL

An attempt was made to read a sub-block of
interrupts from a Pending table where an error
response was received with the data.

0x12 Target, bits[31:16]

ID, bits[15:0]

Software Error
(0)

0x47,
SYN_PT_TABLE_WRITE_FAIL_BYTE

An attempt was made to write back a sub-
block of interrupts from a Pending table with
an error received with the write response.

0x12 Target, bits[31:16]

ID, bits[15:0]

Correctable
SPI RAM
errors (1)

0x00 0x7 Bit location, log2(width)

ID, [log2(SPI) - 1:0]

Uncorrectable
SPI RAM
errors (2)

0x00 0x7 ID, log2(SPI) - 1:0]

Correctable
SGI RAM
errors (3)

0x00 0x7 Bit location, log2(width)

Address, ceiling(core / 16) × 16

Uncorrectable
SGI RAM
errors (4)

0x00 0x7 Address -
 ceiling(core / 16) × 16

Correctable
PPI RAM
errors (7)

0x00 0x7 Bit location – log2(width)

Address, ceiling(core / 16) × 16

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-134
Non-Confidential

Table 4-43 Data field encoding (continued)

Record GICT_ERR<n>STATUS.IERR
(syndrome)

GICT_ERR<n>STATUS.SERR Value and description of
GICT_ERR<n>MISC0.Data
(Other bits RES0)

Always packed from 0
(lowest = 0)

Uncorrectable
PPI RAM
errors (8)

0x00 0x7 Address, ceiling(core / 16) × 16

Correctable
LPI RAM
errors (9)

0x00 0x7 Bit location, bit[15+]

Lock, bit[14]

Pending, bits[13:12]

Channel, bits[11:10]

Address, bits[9:0]

Uncorrectable
LPI RAM
errors (10)

0x00 0x7 Lock, bit[14]

Pending, bits[13:12]

Channel, bits[11:10]

Address, bits[9:0]

The corresponding data is
stored in
GICT_ERR<n>MISC1.

Correctable
error from ITS
RAM (11)

0x00 0x6 Bit location, bit[8]

Address, bit[12]

RAM, bit[2]

ITS, log2(ITS)

Uncorrectable
error from ITS
RAM (12)

0x00 0x6 Address, bit[12]

RAM, bit[3]

ITS, log2(ITS)

Software error
in ITS (13+)

0x00, Architectural

0x01, NonArchitectural

0xE ITS 24-bit syndrome

4.8.6 Error Record Miscellaneous Register 1, GICT_ERR<n>MISC1

This register contains the data value of an uncorrectable error in the LPI RAM, or ITS software
information for one of 13, or more, error records. The GIC-600 only supports a single MISC1 register, so
n = 10, and therefore this register is identified as GICT_ERR10MISC1.

The GICT_ERR10MISC1 characteristics are:

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this
register.

If GICT_ERR10STATUS.MV == 1, then GICT_ERR10MISC1 ignores writes.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-135
Non-Confidential

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

31 x + 1 0

INFOReserved

63 32

Reserved

x

Figure 4-31 GICT_ERR10MISC1 bit assignments

The following table shows the bit assignments.

Table 4-44 GICT_ERR10MISC1 bit assignments

Bits Name Function

[63:x + 1] - Reserved, RAZ.

[x:0] INFO Value represents either data that is written to the LPI RAM when an uncorrectable error is detected, or ITS
software information for one of 13, or more, error records. The value x depends on the width of the LPI RAM,
which is set during configuration of the GIC-600.

4.8.7 Error Record ID Register, GICT_ERRIDR

This register returns information about the configuration of the GIC-600 GICT such as whether an LPI or
ITS is available.

The GICT_ERRIDR characteristics are:

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can read this register.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following table shows the bit assignments.

Table 4-45 GICT_ERRIDR bit assignments

Bits Name Function

[31:16] - Reserved, RAZ.

[15:0] NUM Identifies the device configuration:

10 = No LPI available.

12 = LPI available but no ITS.

14 = LPI available and 1 × ITS.

15 = LPI available and 2 × ITS.

16 = LPI available and 3 × ITS.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-136
Non-Confidential

4.8.8 Peripheral ID2 Register, GICT_PIDR2

This register defines the GIC architecture version with which the GIC-600 complies.

The GICT_PIDR2 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.8 GICT register summary on page 4-123.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Figure 4-32 GICT_PIDR2_bit assignments

The following table shows the bit assignments.

Table 4-46 GICT_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-600 complies:
• 0x03 = GICv3.

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICT_PIDR1.

4 Programmers model
4.8 GICT register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-137
Non-Confidential

4.9 GICP register summary
The GIC-600 Performance Monitoring Unit functions are controlled through registers identified with the
prefix GICP.

Table 4-47 GICP register summary

Offset Name Type Width Reset Description

0x000 + (n × 4) GICP_EVCNTRn RW 32 UNKNOWN 4.9.1 Event Counter Registers, GICP_EVCNTRn
on page 4-139

0x400 + (n × 4) GICP_EVTYPERn ah RW 32 UNKNOWN 4.9.2 Event Type Configuration Registers, GICP_EVTYPERn
on page 4-139

0x600 + (n × 4) GICP_SVRn ah RO 32 UNKNOWN 4.9.3 Shadow Value Registers, GICP_SVRn on page 4-143

0xA00 + (n × 4) GICP_FRn ah RW 32 UNKNOWN 4.9.4 Filter Registers, GICP_FRn on page 4-143

0xC00 GICP_CNTENSET0 RW 64 0 4.9.5 Counter Enable Set Register, GICP_CNTENSET0
on page 4-144

0xC20 GICP_CNTENCLR0 RW 64 0 4.9.6 Counter Enable Clear Register 0, GICP_CNTENCLR0
on page 4-145

0xC40 GICP_INTENSET0 RW 64 0 4.9.7 Interrupt Contribution Enable Set Register 0,
GICP_INTENSET0 on page 4-145

0xC60 GICP_INTENCLR0 RW 64 0 4.9.8 Interrupt Contribution Enable Clear Register 0,
GICP_INTENCLR0 on page 4-146

0xC80 GICP_OVSCLR0 RW 64 0 4.9.9 Overflow Status Clear Register 0, GICP_OVSCLR0
on page 4-147

0xCC0 GICP_OVSSET0 RW 64 0 4.9.10 Overflow Status Set Register 0, GICP_OVSSET0
on page 4-147

0xD88 GICP_CAPR WO 32 - 4.9.11 Counter Shadow Value Capture Register,
GICP_CAPR on page 4-148

0xE00 GICP_CFGR RO 32 0x00401F04 4.9.12 Configuration Information Register, GICP_CFGR
on page 4-149

0xE04 GICP_CR RW 32 0 4.9.13 Control Register, GICP_CR on page 4-149

0xFCC GICP_PMDEVTYPE RO 32 0x00000056 -

0xFD0 GICP_PIDR4 RO 32 0x00000044 Peripheral ID 4 Register

0xFD4 GICP_PIDR5 RO 32 0x00000000 Peripheral ID 5 Register

0xFD8 GICP_PIDR6 RO 32 0x00000000 Peripheral ID 6 Register

0xFDC GICP_PIDR7 RO 32 0x00000000 Peripheral ID 7 Register

0xFE0 GICP_PIDR0 RO 32 0x00000096 Peripheral ID 0 Register

0xFE4 GICP_PIDR1 RO 32 0x000000B4 Peripheral ID 1 Register

0xFE8 GICP_PIDR2 RO 32 0x0000003B 4.9.14 Peripheral ID2 Register, GICP_PIDR2 on page 4-150

0xFEC GICP_PIDR3 RO 32 0x00000000 Peripheral ID 3 Register

0xFF0 GICP_CIDR0 RO 32 0x0000000D Component ID 0 Register

ah n = 0-4.ah

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-138
Non-Confidential

Table 4-47 GICP register summary (continued)

Offset Name Type Width Reset Description

0xFF4 GICP_CIDR1 RO 32 0x00000090 Component ID 1 Register

0xFF8 GICP_CIDR2 RO 32 0x00000005 Component ID 2 Register

0xFFC GICP_CIDR3 RO 32 0x000000B1 Component ID 3 Register

This section contains the following subsections:
• 4.9.1 Event Counter Registers, GICP_EVCNTRn on page 4-139.
• 4.9.2 Event Type Configuration Registers, GICP_EVTYPERn on page 4-139.
• 4.9.3 Shadow Value Registers, GICP_SVRn on page 4-143.
• 4.9.4 Filter Registers, GICP_FRn on page 4-143.
• 4.9.5 Counter Enable Set Register, GICP_CNTENSET0 on page 4-144.
• 4.9.6 Counter Enable Clear Register 0, GICP_CNTENCLR0 on page 4-145.
• 4.9.7 Interrupt Contribution Enable Set Register 0, GICP_INTENSET0 on page 4-145.
• 4.9.8 Interrupt Contribution Enable Clear Register 0, GICP_INTENCLR0 on page 4-146.
• 4.9.9 Overflow Status Clear Register 0, GICP_OVSCLR0 on page 4-147.
• 4.9.10 Overflow Status Set Register 0, GICP_OVSSET0 on page 4-147.
• 4.9.11 Counter Shadow Value Capture Register, GICP_CAPR on page 4-148.
• 4.9.12 Configuration Information Register, GICP_CFGR on page 4-149.
• 4.9.13 Control Register, GICP_CR on page 4-149.
• 4.9.14 Peripheral ID2 Register, GICP_PIDR2 on page 4-150.

4.9.1 Event Counter Registers, GICP_EVCNTRn

These registers contain the values of event counter n. The GIC-600 supports five counters, n = 0-4.

The GICP_EVCNTRn characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 0

COUNT

Figure 4-33 GICP_EVCNTRn bit assignments

The following table shows the bit assignments.

Table 4-48 GICP_EVCNTRn bit assignments

Bits Name Function

[31:0] COUNT Counter value.

If the counter is enabled, the counter value increments when an event matching GICP_EVTYPERn.EVENT occurs.

4.9.2 Event Type Configuration Registers, GICP_EVTYPERn

These registers configure which events are counted by the event counter n. The GIC-600 supports five
counters, n = 0-4.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-139
Non-Confidential

The GICP_EVTYPERn characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 30 0

EVENTEVENT_TYPE

OVFCAP

78yy+1xx+1

Reserved

Reserved

Figure 4-34 GICP_EVTYPERn bit assignments

The following table shows the bit assignments.

Table 4-49 GICP_EVTYPERn bit assignments

Bits Name Function

[31] OVFCAP When set to 1, an overflow of counter n triggers a capture if GICP_CAPR.CAPTURE is set.

[30:x + 1] - Reserved.

[x:y + 1] EVENT_TYPE Event tracking type:

0b00 = Count events.

0b01 = AccumulateEvent.

0b10 = MaximumEvent.

0b11 = Reserved.

[y:8] - Reserved.

[7:0] EVENT Event identifier.

All events reset to an UNKNOWN value.

Registers corresponding to unimplemented counters are RES0.

See the following table.

The following table shows the events that the GIC can count.

Table 4-50 EVENT field encoding

Event Description EventID Filter

CLK Clock cycle. 0x0 None

CLK_NG Clock cycle that prevents Q-Channel clock gating. 0x1 None

- Reserved. 0x2-0x3 -

DN_MSG Downstream message to core excluding PPIs. 0x4 Target

DN_SET Set to core SPIs and LPIs. 0x5 Target/ID range

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-140
Non-Confidential

Table 4-50 EVENT field encoding (continued)

Event Description EventID Filter

DN_SET1OFN Set to core, which is a 1 of N interrupts. 0x6 Target/ID range

- Reserved. 0x7 -

UP_MSG Upstream message from core. 0x8 Target

UP_ACT Upstream Activate. 0x9 Target/ID range

UP_REL Upstream Release. 0xA Target/ID range

UP_ACTREL Upstream Activate or Release. 0xB Target/ID range

UP_SET_COMP A Set followed by Activate. This counts the set and then decrements
on Release.

0xC Target/ID range

UP_DEACT Upstream Deactivate. SPIs only. 0xD Target/ID range

SGI_BRD Broadcast SGI messages. Target = source. 0x10 Target/ID range

SGI_TAR Targeted SGI messages. Target = source. 0x11 Target/ID range

SGI_ALL All SGI messages. Target = source. 0x12 Target/ID range

SGI_ACC Accepted SGI. Target = source. 0x13 Target/ID range

SGI_BRD_CC_IN Broadcast SGI message from cross-chip. 0x14 ID range

SGI_TAR_CC_IN Targeted SGI Message from cross-chip. 0x15 ID range

SGI_TAR_CC_OUT Targeted SGI sent cross-chip. 0x16 Chip/ID range

ITS_NLL_LPI Incoming LPI. 0x20 Target/ID range/ITS

ITS_LL_LPI Incoming low latency LPI. 0x21 Target/ID range/ITS

ITS_LPI Incoming LPI (or low latency). 0x22 Target/ID range/ITS

ITS_LPI_CMD Incoming LPI command. 0x23 Target/ID range/ITS

ITS_DID_MISS Number of DeviceID cache misses. 0x24 Target/ID range/ITS

ITS_VID_MISS Number of EventID cache misses. 0x25 Target/ID range/ITS

ITS_COL_MISS Number of Collection cache misses. 0x26 Target/ID range/ITS

ITS_LAT Latency of the ITS transaction. 0x27 Target/ID range/ITS

ITS_MPFA Number of free slots during translation. 0x28 Target/ID range/ITS

LPI_CC_OUT LPI sent cross-chip. 0x29 ID range/Chip

LPI_CMD_CC_OUT LPI command sent cross-chip. 0x2A ID range/Chip

LPI_CC_IN LPI coming in from cross-chip. 0x2B Target/ID range/Chip

LPI_CMD_CC_IN LPI command coming in from cross-chip. 0x2C Target/ID range/Chip

LPI_OWN_STORED LPI stored in own location. 0x30 -

LPI_OOL_STORED LPI stored out of location. 0x31 -

LPI_HIT_EN LPI property read cache hit enabled. Uses the filter from counter 0
only.

0x32 Target/ID range

LPI_HIT_DIS LPI property read cache hit disabled. Uses the filter from counter 0
only.

0x33 Target/ID range

LPI_HIT LPI property read cache hit. Uses the filter from counter 0 only. 0x34 Target/ID range

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-141
Non-Confidential

Table 4-50 EVENT field encoding (continued)

Event Description EventID Filter

LPI_MATCH LPI coalesced. Uses the filter from counter 0 only. 0x35 Target/ID range

LPI_FAS Number of slots free on new LPI. 0x36 None

LPI_PROP_EN Enabled LPI property fetch. Uses the filter from counter 0. 0x37 Target/ID range

LPI_PROP_DIS Disabled LPI property fetch. Uses the filter from counter 0. 0x38 Target/ID range

LPI_PROP LPI property fetch. Uses the filter from counter 0. 0x39 Target/ID range

LPI_COMP_INC_MERGE Indicates that an LPI has completed.

Uses the filter from counter 0.

0x3A Target/ID range

SPI_COL_MSG New message from SPI Collator. 0x50 ID range

SPI_ENABLED SPI enabled (new SPI or register access if pending). 0x51 ID range

SPI_DISABLED SPI disabled (new SPI that is disabled or register access if pending). 0x52 ID range

SPI_PENDING_SET New SPI pending valid. 0x53 ID range

SPI_PENDING_CLR SPI pending bit cleared. 0x54 ID range

SPI_MATCH Collated edge-based SPI. Excludes collation in the collator. 0x55 ID range

SPI_COMP Indicates completion of a SPI either by an accepted set, or being
disabled.

0x56 ID range

SPI_CC_IN SPI from remote chip. 0x57 ID range

SPI_CC_OUT SPI sent to remote chip. 0x58 ID range

SPI_CC_DEACT SPI deactivate message sent. 0x5A ID range

PT_IN_EN Enabled interrupt written to Pending table. 0x60 Target/ID range

PT_IN_DIS Disabled interrupt written to Pending table. 0x61 Target/ID range

PT_PRI Priority of interrupt written to Pending table. 0x62 Target/ID range

PT_IN Interrupt written to Pending table. 0x63 Target/ID range

PT_MATCH Interrupt already set in Pending table. 0x64 Target/ID range

PT_OUT_EN Enabled interrupt taken out of Pending table (also covered
PT_MATCH when enabled).

0x65 Target/ID range

PT_OUT_DIS Disabled interrupt taken out of Pending table (also covered
PT_MATCH when disabled).

0x66 Target/ID range

PT_OUT Disabled interrupt taken out of Pending table (also covered
PT_MATCH).

0x67 Target/ID range

PT_BLOCK_SENT_CC Pending table block that is sent as part of MOVALL. 0x68 None

SPI_CC_LATENCY SPIs outstanding. 0x70 Chip

SPI_CC_LAT_WAIT SPIs waiting to be sent. 0x71 Chip

LPI_CC_LATENCY LPIs outstanding. 0x72 Chip

LPI_CC_LAT_WAIT LPI waiting to be sent. 0x73 Chip

SGI_CC_LATENCY SGIs outstanding. 0x74 Chip

SGI_LAT_WAIT SGIs waiting to be sent. 0x75 Chip

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-142
Non-Confidential

Table 4-50 EVENT field encoding (continued)

Event Description EventID Filter

ACC Accumulate Counter(n - 2) - Counter(n - 1) every cycle. Prevents clock
gating.

0x80 None

OFLOW Overflow of Counter n - 1. 0x81 None

4.9.3 Shadow Value Registers, GICP_SVRn

These registers contain the shadow value of event counter n. The GIC-600 supports five counters, n =
0-4.

The GICP_SVRn characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 0

COUNT

Figure 4-35 GICP_SVRn bit assignments

The following table shows the bit assignments.

Table 4-51 GICP_SVRn bit assignments

Bits Name Function

[31:0] COUNT Captured counter value.

This field holds the captured counter values of the corresponding entry in GICP_EVCNTRn.

4.9.4 Filter Registers, GICP_FRn

These registers configure the filtering of event counter n. The GIC-600 supports five counters, n = 0-4.

The GICP_FRn characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-143
Non-Confidential

31 30 29 16 15 0

FilterReserved

FilterType
FilterEncoding

28

Figure 4-36 GICP_FRn bit assignments

The following table shows the bit assignments.

Table 4-52 GICP_FRn bit assignments

Bits Name Function

[31:30] FilterType Filter type:

0b00 = Filter on core.

0b01 = Filter on INTID.

0b10 = Filter on chip or ITS.

0b11 = Reserved, no effect.

[29] FilterEncoding 0 = Filter on range.

1 = Filter on an exact match.

[28:16] - Reserved.

[15:0] Filter If the corresponding GICP_EVTYPERn.EVENT indicates an event that cannot be filtered, then the value in
this register is ignored.

When the corresponding FilterEncoding == 1, counter n counts events that are only associated with an exact
match of the FilterType.

When FilterEncoding == 0, this field is encoded so that the least-significant bit0 indicates the uppermost of a
contiguous span of least-significant FilterType bits that are ignored for the purposes of matching.

4.9.5 Counter Enable Set Register, GICP_CNTENSET0

These registers contain the enables for each event counter. The GIC-600 supports five event counters.

The GICP_CNTENSET0 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 5 4 0

CNTENReserved

Figure 4-37 GICP_CNTENSET0 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-144
Non-Confidential

Table 4-53 GICP_CNTENSET0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ

[4:0] CNTEN Counter enable.

The CNTEN[n] bit is the enable for counter n. This field resets to an UNKNOWN value.

Writing 1 to a bit location sets the enable for the associated counter.

Writing 0 to a bit location has no effect. To disable a counter, use the GICP_CNTENCLR0 register.

Reads return the state of the counter enables.

Counter n is enabled when CNTEN[n] == 1 and GICP_CR.E == 1.

4.9.6 Counter Enable Clear Register 0, GICP_CNTENCLR0

This register contains the disables for each event counter. The GIC-600 supports five event counters.

The GICP_CNTENCLR0 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 5 4 0

CNTENReserved

Figure 4-38 GICP_CNTENCLR0 bit assignments

The following table shows the bit assignments.

Table 4-54 GICP_CNTENCLR0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ

[4:0] CNTEN Counter disable. The CNTEN[n] bit is the disable for counter n. This field resets to an UNKNOWN value.

Writing 1 to a bit location clears the enable for the associated counter.

Writing 0 to a bit location has no effect. To enable a counter, use the GICP_CNTENSET0 register.

Reads return the state of the counter enables.

Counter n is disabled when CNTEN[n] == 0 or GICP_CR.E == 1.

4.9.7 Interrupt Contribution Enable Set Register 0, GICP_INTENSET0

This register contains the set mechanism for the counter interrupt contribution enables. The GIC-600
supports five counters, n = 0-4.

The GICP_INTENSET0 characteristics are:

Usage constraints
There are no usage constraints.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-145
Non-Confidential

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 5 4 0

INTENReserved

Figure 4-39 GICP_INTENSET0 bit assignments

The following table shows the bit assignments.

Table 4-55 GICP_INTENSET0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ

[4:0] INTEN Interrupt enable. The INTEN[n] bit is the interrupt enable for counter n. This field resets to an UNKNOWN value.

Writing 1 to a bit location sets the interrupt enable for the associated counter.

Writing 0 to a bit location has no effect. To disable a counter interrupt enable, use the GICP_INTENCLR0 register.

Reads return the state of the interrupt enables.

The interrupt enable for counter n is enabled when INTEN[n] == 1 and GICP_CR.E == 1.

Overflow of counter n sets GICP_OVSSET0.OVS[n] to 1 and that triggers the PMU interrupt if INTEN[n] == 1.

4.9.8 Interrupt Contribution Enable Clear Register 0, GICP_INTENCLR0

This register contains the clear mechanism for the counter interrupt contribution enables. The GIC-600
supports five counters, n = 0-4.

The GICP_INTENCLR0 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 5 4 0

INTENReserved

Figure 4-40 GICP_INTENCLR0 bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-146
Non-Confidential

Table 4-56 GICP_INTENCLR0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ.

[4:0] INTEN Interrupt enable. The INTEN[n] bit is the interrupt disable for counter n. This field resets to an UNKNOWN value.

Writing 1 to a bit location clears the interrupt enable for the associated counter.

Writing 0 to a bit location has no effect. To enable a counter interrupt enable, use the GICP_INTENSET0 register.

Reads return the state of the interrupt enables.

4.9.9 Overflow Status Clear Register 0, GICP_OVSCLR0

This register provides the clear mechanism for the counter overflow status bits and provides read access
to the counter overflow status bit values. The GIC-600 supports five counters, n = 0-4.

The GICP_OVSCLR0 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 5 4 0

OVSReserved

Figure 4-41 GICP_OVSCLR0 bit assignments

The following table shows the bit assignments.

Table 4-57 GICP_OVSCLR0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ.

[4:0] OVS Overflow status. The OVS[n] bit is the overflow clear for counter n. This field resets to zero.

Writing 1 to a bit location clears the overflow status for the associated counter.

Writing 0 to a bit location has no effect. To set a counter overflow status, use the GICP_OVSSET0 register.

Reads return the state of the overflow status bits.

Overflow of counter n, that is a transition past the maximum unsigned value of the counter that causes the value to
wrap and become zero, and sets the corresponding OVS bit. In addition, this event can trigger the PMU interrupt and
cause a capture of the PMU counter values, see 4.9.2 Event Type Configuration Registers, GICP_EVTYPERn
on page 4-139.

4.9.10 Overflow Status Set Register 0, GICP_OVSSET0

This register provides the set mechanism for the counter overflow status bits and provides read access to
the counter overflow status bit values. The GIC-600 supports five counters, n = 0-4.

The GICP_OVSSET0 characteristics are:

Usage constraints
There are no usage constraints.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-147
Non-Confidential

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 5 4 0

OVSReserved

Figure 4-42 GICP_OVSSET0 bit assignments

The following table shows the bit assignments.

Table 4-58 GICP_OVSSET0 bit assignments

Bits Name Function

[31:5] - Reserved, RAZ.

[4:0] OVS Overflow status. The OVS[n] bit is the overflow set for counter n. This field resets to zero.

Writing 1 to a bit location sets the overflow status for the associated counter.

Writing 0 to a bit location has no effect. To clear a counter overflow status, use the GICP_OVSCLR0 register.

Reads return the state of the overflow status bits.

When the agent controlling the GIC-600 sets an OVS bit, it is similar to an OVS bit being set because of a counter
overflow. However, it is IMPLEMENTATION DEFINED whether the overflow triggers the PMU interrupt or performs a
capture of the PMU counter values.

Setting the OVS bit triggers the overflow interrupt if it is enabled.

4.9.11 Counter Shadow Value Capture Register, GICP_CAPR

This register controls the counter shadow value capture mechanism.

The GICP_CAPR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 1 0

Reserved

CAPTURE

Figure 4-43 GICP_CAPR bit assignments

The following table shows the bit assignments.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-148
Non-Confidential

Table 4-59 GICP_CAPR bit assignments

Bits Name Function

[31:1] - Reserved.

[0] CAPTURE When GICP_CFGR.CAPTURE == 1, a write of 1 to this bit triggers a capture of all values within the PMU into
their respective shadow registers.

When GICP_CFGR.CAPTURE == 0, this bit is zero.

Related references
A.6 Miscellaneous signals on page Appx-A-163.

4.9.12 Configuration Information Register, GICP_CFGR

This register returns information about the PMU implementation.

The GICP_CFGR characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 23 22 21 14 13 8 7 6 5 0

NCTRSIZEReservedReserved

CAPTURE
Reserved

Figure 4-44 GICP_CFGR bit assignments

The following table shows the bit assignments.

Table 4-60 GICP_CFGR bit assignments

Bits Name Function

[31:23] - Reserved, RAZ.

[22] CAPTURE Set to 1, to indicate that the GIC supports capture.

[21:14] - Reserved, RAZ.

[13:8] SIZE Set to 31, to indicate that the GIC supports 32-bit counters.

[7:6] - Reserved, RAZ.

[5:0] NCTR Set to 4, to indicate that the GIC provides five counters.

4.9.13 Control Register, GICP_CR

This register controls whether all counters are enabled or disabled.

The GICP_CR characteristics are:

Usage constraints
There are no usage constraints.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-149
Non-Confidential

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

31 1 0

EReserved

Figure 4-45 GICP_CR bit assignments

The following table shows the bit assignments.

Table 4-61 GICP_CR bit assignments

Bits Name Function

[31:1] - Reserved.

[0] E Global counter enable:

0 = No events are counted and values in the GICP_EVCNTRn registers do not change.

1 = The counters are enabled.

This bit takes precedence over the GICP_CNTENSET0.CNTEN bits.

4.9.14 Peripheral ID2 Register, GICP_PIDR2

This register defines the GIC architecture version with which the GIC-600 complies.

The GICP_PIDR2 characteristics are:

Usage constraints
There are no usage constraints.

Configurations
Available in all GIC-600 configurations.

Attributes
See the 4.9 GICP register summary on page 4-138.

The following figure shows the bit assignments.

ArchRevReserved

31 8 7 4 3 0

JEDEC
DES_1

2

Figure 4-46 GICP_PIDR2_bit assignments

The following table shows the bit assignments.

Table 4-62 GICP_PIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] ArchRev Identifies the version of the GIC architecture with which the GIC-600 complies:
• 0x03 = GICv3.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-150
Non-Confidential

Table 4-62 GICP_PIDR2 bit assignments (continued)

Bits Name Function

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used.

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to GICP_PIDR1.

4 Programmers model
4.9 GICP register summary

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. 4-151
Non-Confidential

Appendix A
Signal descriptions

Read this for a description of the input and output signals.

It contains the following sections:
• A.1 Common control signals on page Appx-A-153.
• A.2 Power control signals on page Appx-A-155.
• A.3 Interrupt signals on page Appx-A-156.
• A.4 CPU interface signals on page Appx-A-157.
• A.5 ACE interface signals on page Appx-A-158.
• A.6 Miscellaneous signals on page Appx-A-163.
• A.7 Interblock signals on page Appx-A-164.
• A.8 Interdomain signals on page Appx-A-166.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-152
Non-Confidential

A.1 Common control signals
The following table shows the GIC-600 common control signal set.

Table A-1 Common control signals

Signal name Type Source or
destination

Description

[<domain>]clk Input Clock source Clock input.

[<domain>]reset_n Input Reset source Active-LOW reset. Minimum of one cycle.

dbg_[<domain>]reset_n Input Reset source Active-LOW reset for the PMU and error records.

Only present for domain containing the Distributor.

Test signals

dftrstdisable Input DFT control logic Reset disable. Disables the external reset input for test
mode. When this signal is HIGH, it forces the internal
active-LOW reset HIGH, bypassing the reset synchronizer.

dftse Input Scan enable. Disables clock gates for test mode.

dftcgen Input Clock gate enable. When this signal is HIGH, it forces all
the clock gates on so that all internal clocks always run.

dftramhold Input RAM hold. When this signal is HIGH, it forces all the
RAM chip selects LOW, preventing accesses to the RAMs.

MBIST controller signals

[<domain>_]mbistack Output MBIST controller MBIST mode ready.

GIC-600 acknowledges that it is ready for MBIST testing.

[<domain>_]mbistreq Input MBIST mode request.

Request to GIC-600 to enable MBIST testing. This signal
must be tied LOW during functional operation.

[<domain>_]nmbistreset Input Resets MBIST logic.

Resets functional logic to enable MBIST operation by an
Active-LOW signal. This signal must be tied HIGH during
functional operation.

A Signal descriptions
A.1 Common control signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-153
Non-Confidential

Table A-1 Common control signals (continued)

Signal name Type Source or
destination

Description

[<domain>_]mbistaddr[variable:0] ai Input MBIST controller Logical address.

The width is based on the RAM with the largest number of
words. You must drive the most significant bits to zero
when accessing RAMs with fewer address bits.

[<domain>_]mbistindata[variable:0] ai Input Data in.

Write data. Width that is based on the RAM with the largest
number of data bits.

[<domain>_]mbistoutdata[variable:0] ai Output Data out.

Read data. Width that is based on the RAM with the largest
number of data bits.

[<domain>_]mbistwriteen Input Write control (mbistwriteen) and read control
(mbistreaden). No access occurs if both enables are off. It
is illegal to activate both enables simultaneously.[<domain>_]mbistreaden Input

[<domain>_]mbistarray[variable:0] ai Input Array selector.

This controls which RAM array is accessed. For the single
RAM configuration, this port is unused.

This signal is not present on a block containing only one
RAM.

[<domain>_]mbistcfg Input MBIST ALL enable.

When enabled, allows simultaneous access to all RAM
arrays for maximum array power consumption.

This signal is not present on a block containing only one
RAM.

ai The variable is configuration-dependent.

A Signal descriptions
A.1 Common control signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-154
Non-Confidential

A.2 Power control signals
The following table shows the GIC-600 power control signals.

Table A-2 Power control signals

Signal name Type Source or
destination

Description

cpu_active[_<ppi_block>]
[_<bus>][<num_cpus - 1:0>]

Input Power controller Indicates if the core is active and not in a low-power state such as
retention. This is used for lowering the priority of selection for 1 of N
SPIs. There is one bit per core on the ICC bus.

wake_request[<num_cpus -
 1:0>]

Output Power controller Wake request signal to power controller indicating that an interrupt is
targeting this core and it must be woken. When asserted the
wake_request is sticky unless the Distributor is put into the gated state.

qreqn_col Input Low-power
interface

Low-power interface to flush out the path between the SPI Collator and
the Distributor to aid in power down.
When asserted, messages are not sent to the Distributor until low-power
state is exited.

 Note

It is only safe to stop the Collator clock if all interrupts are level sensitive,
or if edge-triggered, pulse extended into the SPI Collator.

qacceptn_col Output

qdeny_col Output

qactive_col Output

qreqn_its[<its>] Input Low-power
interfaceaj

Required to flush out the path between the ITS and the Distributor.

There is one Q-Channel for each ITS.

All Distributor ITS Q-Channels are combined as a single set of vectored
signals, qreqn_its[num_ITS - 1:0].

qacceptn_its[<its>] Output

qdeny_its[<its>] Output

qactive_its[<its>] Output

[<domain_>]clkqreqn Input Clock controller Low-power interface for clock gating of everything in the domain.

[<domain_>]clkqreqn is synchronized into the GIC-600.

This bus must be treated asynchronously.

[<domain_>]clkqacceptn Output

[<domain_>]clkqdeny Output

[<domain_>]clkqactive Output

[<domain_>]pwrqreqn Input Power controller ADB power interface within the domain.

See the ARM® CoreLink™ ADB-400 AMBA® Domain Bridge User Guide.[<domain_>]pwrqacceptn Output

[<domain_>]pwrqdeny Output

[<domain_>]pwrqactive Output

aj These signals are not present in monolithic configurations where the Distributor and ITS share ACE-Lite ports.

A Signal descriptions
A.2 Power control signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-155
Non-Confidential

A.3 Interrupt signals
The following table shows the GIC-600 interrupt signal set.

Table A-3 Interrupt signals

Signal name Type Source or
destination

Description

ppi<n><[_<ppi_block>]
[_<bus>][_<num_cpus - 1:0>]

Input Interrupt source PPI input wires for interrupt <n>. One bit per core.

n is 16-31 if the number of PPIs per core is 16.

n is 20-31 if the number of PPIs per core is 12.

n is 22-27, 29, 30 if number of PPIs per core is 8.

ppi<n>_r_[_<ppi_block>]
[_<bus>]

Output Interrupt source PPI output after synchronization and edge detection. You can use it for
cross-domain pulse detection.

spi[variable:0] Input Interrupt source This is the number of SPI wires that are supported by the GIC.
 Note

This is not the same as the number of SPIs supported because they
could be message-based only or be on another chip.

spi_r[variable:0] Output Interrupt source SPI output after synchronization and edge detection. Can be used for
cross-domain pulse detection.

Related concepts
2.2.4 Redistributor PPI signals on page 2-30.
2.5 SPI Collator on page 2-40.

A Signal descriptions
A.3 Interrupt signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-156
Non-Confidential

A.4 CPU interface signals
The following table shows the GIC-600 CPU interface signal set.

Table A-4 CPU interface signals

Signal name Type Source or
destination

Description

iccttready[_<ppi_num>]
[_<bus>]

Output Core block GIC Stream-compliant bus for communication from the core block to the
Redistributor. It is fully credited and can be sent over any free-flowing
interconnect.

See the Redistributor to downstream CPU interface table in the GIC
Stream Redistributor to downstream CPU interface Appendix of the ARM®

Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0.

IDs iccttid values of <num_cpus - 1:0> are used. Issuing other values is
UNPREDICTABLE.

iccttvalid[_<ppi_num>]
[_<bus>]

Input

icctdata[_<ppi_num>]
[_<bus>][15:0]

Input

iccttid[_<ppi_num>]
[_<bus>] [variable:0] ak

Input

iccttlast[_<ppi_num>]
[_<bus>]

Input

iccttwakeup[_<ppi_num>]
[_<bus>]

Input Registered wake signal to indicate that a message is arriving or is about to
arrive on the icc bus. Signals iccttvalid and iccttready control data
transfer.

iritready[_<ppi_num>]
[_<bus>]

Input Core block GIC Stream-compliant bus for communication from the Redistributor to
the core block. It is fully credited and can be sent over any free-flowing
interconnect.

See the Redistributor to downstream CPU interface table in the GIC
Stream Redistributor to downstream CPU interface Appendix of the ARM®

Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0.

IDs iritdest values of <num_cpus - 1:0> are used.

iritvalid[_<ppi_num>]
[_<bus>]

Output

iritdata[_<ppi_num>]
[_<bus>][15:0]

Output

iritdest [_<ppi_num>]
[_<bus>][variable:0] ak

Output

iritlast[_<ppi_num>]
[_<bus>]

Output

iritwakeup[_<ppi_num>]
[_<bus>]

Output Registered wake signal to indicate that a message is arriving or is about to
arrive on the iri bus. Signals iritvalid and iritready control data transfer.

ak The variable is configuration-dependent.

A Signal descriptions
A.4 CPU interface signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-157
Non-Confidential

A.5 ACE interface signals
The following table shows the GIC-600 ACE signal set.

Table A-5 ACE interface signals

Signal name Type Description

Write address channel signals → Slave

There are multiple versions of this bus. Buses that have _its[_<num>] are dedicated ITS slave ports for GITS_TRANSLATER only.
There is always one port that has no _its suffix that is used for all registers except GITS_TRANSLATER. This port is used for all
registers in monolithic configurations.

awuser_[its[_<num>]]_s[did_width:0] al Input Optional user-defined signal in the write address channel.
Supported only in AXI4.

Indicates the DeviceID of writes to GITS_TRANSLATER if
MSI_64 is not configured.

awaddr_[its[_<num>]]_s[variable:0] al Input The write address gives the address of the first transfer in a
write burst transaction.

awid_[its[_<num>]]_s[variable:0] al Input This signal is the identification tag for the write address group
of signals.

awlen_[its[_<num>]]_s[7:0] Input The burst length gives the exact number of transfers in a burst.
This information determines the number of data transfers
associated with the address.

awsize_[its[_<num>]]_s[2:0] Input This signal indicates the size of each transfer in the burst.

awburst_[its[_<num>]]_s[1:0] Input The burst type and the size information, determine how the
address for each transfer within the burst is calculated.

awprot_[its[_<num>]]_s[2:0] Input This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an
instruction access.

awvalid_[its[_<num>]]_s Input This signal indicates that the channel is signaling valid write
address and control information.

awready_[its[_<num>]]_s Output This signal indicates that the slave is ready to accept an address
and associated control signals.

awcache_[its[_<num>]]_s[3:0] Input This signal indicates how transactions are required to progress
through a system.

awdomain_[its[_<num>]]_s[1:0] Input This signal indicates the shareability domain of a write
transaction.

awsnoop_[its[_<num>]]_s[2:0] Input This signal indicates the transaction type for Shareable write
transactions.

awbar_[its[_<num>]]_s[1:0] Input This signal indicates a write barrier transaction.

Write data channel signals → Slave

wstrb_[its[_<num>]]_s[variable:0] al Input This signal indicates which byte lanes hold valid data. There is
one write strobe bit for every eight bits of the write data bus.

wdata_[its[_<num>]]_s[variable:0] al Input Write data.

wvalid_[its[_<num>]]_s Input This signal indicates that valid write data and strobes are
available.

A Signal descriptions
A.5 ACE interface signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-158
Non-Confidential

Table A-5 ACE interface signals (continued)

Signal name Type Description

wready_[its[_<num>]]_s Output This signal indicates that the slave can accept the write data.

wlast_[its[_<num>]]_s Input This signal indicates the last transfer in a write burst.

Write response channel signals → Slave

bid_[its[_<num>]]_s[variable:0] al Output This signal is the ID tag of the write response.

bvalid_[its[_<num>]]_s Output This signal indicates that the channel is signaling a valid write
response.

bready_[its[_<num>]]_s Input This signal indicates that the master can accept a write response.

bresp_[its[_<num>]]_s[1:0] Output This signal indicates the status of the write transaction.

Read address channel signals → Slave

arcache_[its[_<num>]]_s[3:0] Input This signal indicates how transactions are required to progress
through a system.

arbar_[its[_<num>]]_s[1:0] Input This signal indicates a read barrier transaction.

arsnoop_[its[_<num>]]_s[3:0] Input This signal indicates the transaction type for Shareable read
transactions.

ardomain_[its[_<num>]]_s[1:0] Input This signal indicates the shareability domain of a read
transaction.

araddr_[its[_<num>]]_s[variable:0] al Input The read address gives the address of the first transfer in a read
burst transaction.

arid_[its[_<num>]]_s[variable:0] al Input This signal is the identification tag for the read address group of
signals.

arlen_[its[_<num>]]_s[7:0] Input This signal indicates the exact number of transfers in a burst.
This changes between AXI3 and AXI4.

arsize_[its[_<num>]]_s[2:0] Input This signal indicates the size of each transfer in the burst.

aruser_[its[_<num>]]_s[2:0] Input This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or
instruction access.

arburst_[its[_<num>]]_s[1:0] Input The burst type and the size information determine how the
address for each transfer within the burst is calculated.

arprot_[its[_<num>]]_s[2:0] Input This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an
instruction access.

arvalid_[its[_<num>]]_s Input This signal indicates that the channel is signaling valid read
address and control information.

arready_[its[_<num>]]_s Output This signal indicates that the slave is ready to accept an address
and associated control signals.

Read data channel signals → Slave

rid_[its[_<num>]]_s[variable:0] al Output This signal is the identification tag for the read data group of
signals generated by the slave.

rdata_[its[_<num>]]_s[variable:0] al Output Read data.

rresp_[its[_<num>]]_s[1:0] Output This signal indicates the status of the read transfer.

A Signal descriptions
A.5 ACE interface signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-159
Non-Confidential

Table A-5 ACE interface signals (continued)

Signal name Type Description

rlast_[its[_<num>]]_s Output This signal indicates the last transfer in a read burst.

rvalid_[its[_<num>]]_s Output This signal indicates that the channel is signaling the required
read data.

rready_[its[_<num>]]_s Input This signal indicates that the master can accept the read data
and response information.

Write address channel signals → Master. Only present if LPI support is configured.

Buses containing _its[_<num>] are used by the specific ITS for read/writes to the private tables and Command queue. Buses without
an _its suffix are used for accesses to the LPI Pending and Property tables. This port performs all accesses in monolithic
configurations.

awaddr_[its[_<num>]]_m[variable:0] al Output The write address gives the address of the first transfer in a
write burst transaction.

awid_[its[_<num>]]_m[variable:0] al Output This signal is the identification tag for the write address group
of signals.

awlen_[its[_<num>]]_m[7:0] Output The burst length gives the exact number of transfers in a burst.
This information determines the number of data transfers
associated with the address.

awsize_[its[_<num>]]_m[2:0] Output This signal indicates the size of each transfer in the burst.

awburst_[its[_<num>]]_m[1:0] Output The burst type and size information determine how the address
for each transfer within the burst is calculated.

awprot_[its[_<num>]]_m[2:0] Output This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an
instruction access.

awvalid_[its[_<num>]]_m Output This signal indicates that the channel is signaling valid write
address and control information.

awready_[its[_<num>]]_m Input This signal indicates that the channel is signaling valid write
address and control information.

awcache_[its[_<num>]]_m[3:0] Output This signal indicates how transactions are required to progress
through a system.

awdomain_[its[_<num>]]_m[1:0] Output This signal indicates the shareability domain of a write
transaction.

awsnoop_[its[_<num>]]_m[2:0] Output This signal indicates the transaction type for Shareable write
transactions.

awbar_[its[_<num>]]_m[1:0] Output This signal indicates a write barrier transaction.

awuser_m[variable:0] al Output Optional user-defined signal in the write address channel.

Write data channel signals → Master. Only present if LPI support is configured.

wstrb_[its[_<num>]]_m[variable:0] al Output This signal indicates which byte lanes hold valid data. There is
one write strobe bit for every eight bits of the write data bus.

wdata_[its[_<num>]]_m[variable:0] al Output Write data.

wvalid_[its[_<num>]]_m Output This signal indicates that valid write data and strobes are
available.

wready_[its[_<num>]]_m Input This signal indicates that the slave can accept the write data.

A Signal descriptions
A.5 ACE interface signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-160
Non-Confidential

Table A-5 ACE interface signals (continued)

Signal name Type Description

wlast_[its[_<num>]]_m Output This signal indicates the last transfer in a write burst.

Write response channel signals → Master. Only present if LPI support is configured.

bid_[its[_<num>]]_m[variable:0] al Input This signal is the ID tag of the write response.

bvalid_[its[_<num>]]_m Input This signal indicates that valid write data and strobes are
available.

bready_[its[_<num>]]_m Output This signal indicates that the channel is signaling a valid write
response.

bresp_[its[_<num>]]_m[1:0] Input This signal indicates the status of the write transaction.

Read address channel signals → Master. Only present if LPI support is configured.

araddr_[its[_<num>]]_m[variable:0] al Output The read address gives the address of the first transfer in a read
burst transaction.

arid_[its[_<num>]]_m[variable:0] al Output This signal is the identification tag for the read address group of
signals.

arlen_[its[_<num>]]_m[7:0] Output This signal indicates the exact number of transfers in a burst.
This changes between AXI3 and AXI4.

arsize_[its[_<num>]]_m[2:0] Output This signal indicates the size of each transfer in the burst.

arburst_[its[_<num>]]_m[1:0] Input The burst type and the size information determine how the
address for each transfer within the burst is calculated.

arprot_[its[_<num>]]_m[2:0] Output This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an
instruction access.

arvalid_[its[_<num>]]_m Output The signal indicates that the channel is signaling valid read
address and control information.

arready_[its[_<num>]]_m Input This signal indicates that the slave is ready to accept an address
and associated control signals.

arcache_[its[_<num>]]_m[3:0] Output This signal indicates how transactions are required to progress
through a system.

ardomain_[its[_<num>]]_m[1:0] Output This signal indicates the shareability domain of a read
transaction.

arsnoop_[its[_<num>]]_m[3:0] Output This signal indicates the transaction type for Shareable read
transactions.

arbar_[its[_<num>]]_m[1:0] Output This signal indicates a read barrier transaction.

aruser_[its[_<num>]]_m[variable:0] al Output Optional user-defined signal in the read address channel.
Supported only in AXI4.

Read data channel signals → Master. Only present if LPI support is configured.

rid_[its[_<num>]]_m[variable:0] al Input This signal is the identification tag for the read data group of
signals generated by the slave.

rada_[its[_<num>]]_m[variable:0] al Input Read data.

rresp_[its[_<num>]]_m[1:0] Input This signal indicates the status of the read transfer.

rlast_[its[_<num>]]_m Input This signal indicates the last transfer in a read burst.

A Signal descriptions
A.5 ACE interface signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-161
Non-Confidential

Table A-5 ACE interface signals (continued)

Signal name Type Description

rvalid_[its[_<num>]]_m Input This signal indicates that the channel is signaling the required
read data.

rready_[its[_<num>]]_m Output This signal indicates that the master can accept the read data
and response information.

al The variable is configuration-dependent.

A Signal descriptions
A.5 ACE interface signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-162
Non-Confidential

A.6 Miscellaneous signals
The following table shows the GIC-600 miscellaneous signals.

Table A-6 Miscellaneous signals

Signal name Type Source or destination Description

ppi_id[15:0] Input Interrupt source RedistributorID number that is used for system identification only. Software can
read the GICR_CFGID0 register to access the value of this signal.

its_id[7:0] Input ITS block ID number that is used for system identification only. Software can read the
GITS_CFGID register to access the value of this signal.

sample_req Input Debug controller Request to sample PMU. Equivalent to writing to the GICP_CAPR register.

sample_ack Output Debug controller sample_req accept.

fault_int Output System control processor Fault handling interrupt.

err_int Output System control processor Error handling interrupt.

pmu_int Output Debug controller PMU overflow length.

gict_allow_ns Input Tie-off Allow Non-secure access to error record registers.

gicp_allow_ns Input Tie-off Allow Non-secure access to PMU registers.

Related references
4.5.4 Configuration ID0 Register, GICR_CFGID0 on page 4-110.
4.6.6 Configuration ID Register, GITS_CFGID on page 4-120.
4.9.11 Counter Shadow Value Capture Register, GICP_CAPR on page 4-148.

A Signal descriptions
A.6 Miscellaneous signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-163
Non-Confidential

A.7 Interblock signals
The following table shows the GIC-600 interblock signals.

Table A-7 Interblock signals

Signal name Forward
or reverse

Source or
destination

Description

icdptready Reverse Redistributor →
Distributor

AXI4-Stream compliant bus for communication between the
Distributor and a Redistributor. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.

icdptvalid Forward Distributor →
Redistributor

icdptdata[variable]am Forward

icdptlast Forward

icdptwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icdp bus. Signals icdptvalid and icdptready control
data transfer.

icpdtready Reverse Distributor →
Redistributor

AXI4-Stream compliant bus for communication between the
Redistributor and the Distributor. It is fully credited and can be sent
over any free-flowing interconnect.

icpdtvalid Forward Redistributor →
Distributor

icpdtdata[variable:0] Forward

icpdtlast Forward

icpdtwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icpd bus. Signals icpdtvalid and icpdtready control
data transfer.

icditready Reverse ITS → Distributor AXI4-Stream compliant bus for communication from the Distributor to
the ITS. It is fully credited and can be sent over any free-flowing
interconnect.icditvalid Forward Distributor → ITS

icditdata[variable:0]am Forward

icditlast Forward

icditwakeup Forward Indicates that a message is arriving or is about to arrive on the icdi bus.
Signals icditvalid and icditready control data transfer.

icidtready Reverse Distributor → ITS AXI4-Stream compliant bus for communication from the ITS to the
Distributor. It is fully credited and can be sent over any free-flowing
interconnect.icidtvalid Forward ITS → Distributor

icidtdata[variable:0]am Forward

icidtkeep[variable:0] Forward

icidtlast Forward

icidtwakeup Forward Registered wake
signal

Indicates that a message is arriving or is about to arrive on the icid bus.
Signals icidtvalid and icidtready control data transfer.

am The variable is configuration-dependent.

A Signal descriptions
A.7 Interblock signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-164
Non-Confidential

Table A-7 Interblock signals (continued)

Signal name Forward
or reverse

Source or
destination

Description

icdwtready Reverse Wake Request →
Distributor

AXI4-Stream compliant bus for communication from the Distributor to
the Wake Request block.

It is fully credited and can be sent over any free-flowing interconnect.

This bus is not exposed when the top level is stitched.

icdwtvalid Forward Distributor → Wake
Request

icdwtdata[15:0] Forward

icdwtwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icdw bus. Signals icdwtvalid and icdwtready control
data transfer.

This signal is not exposed when the top level is stitched.

icdctready Reverse SPI Collator →
Distributor

AXI4-Stream compliant bus for communication between the
Distributor and the SPI Collator. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.

icdctvalid Forward Distributor → SPI
Collator

icdctdata[15:0] Forward

icdctlast Forward

icdctwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the icdc bus. Signals icdctvalid and icdctready control
data transfer.

iccdtready Reverse Distributor → SPI
Collator

AXI4-Stream compliant bus for communication between the SPI
Collator and the Distributor. It is fully credited and must never
backpressure. It can be sent over any free-flowing interconnect.

iccdtvalid Forward SPI Collator →
Distributor

iccdtdata[15:0] Forward

iccdtlast Forward

iccdtwakeup Forward Registered wake signal to indicate that a message is arriving or is about
to arrive on the iccd bus. Signals iccdtvalid and iccdtready control
data transfer.

A Signal descriptions
A.7 Interblock signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-165
Non-Confidential

A.8 Interdomain signals
Interdomain signals are routed between domains.

The following table shows the interdomain signals.

Table A-8 Interdomain signals

Signal name

wakeup_sm_*

wakeup_ms_*

async

If you instantiate domain levels, you must ensure that matching input and output pairs of interdomain
signals connect together directly, and are not separated by synchronizers.

A Signal descriptions
A.8 Interdomain signals

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-A-166
Non-Confidential

Appendix B
Implementation-defined features

Read this for a description of the IMPLEMENTATION-DEFINED features.

It contains the following section:
• B.1 Implementation-defined features reference on page Appx-B-168.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-B-167
Non-Confidential

B.1 Implementation-defined features reference
The GIC-600 implements features that are defined in the GICv3 Architecture. Many of these features are
configurable at build time.

The following table describes each feature with reference to the ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0.

Table B-1 Declared implementation-defined features

Implementation-
defined features

Architectural specification
reference

Description

Chapter Section

1 of N model Introduction Models for
handling interrupts

See 3.2.4 1 of N SPI interrupt selection on page 3-52.

Direct LPI support GIC partitioning The GIC logical
components

Direct LPI support is by configuration if there are no LPIs in
the system.

ITS to Redistributor
communications

GIC partitioning

Locality-specific
peripheral interrupts
and the ITS

The GIC logical
components

LPIs

This is done over a fully credited AXI4-Stream.

INTIDs Distributed and
routing of interrupts

INTIDs 16-bit width when supporting LPIs, otherwise the width is set
to support the number of SPIs and SGIs.

All error cases - Pseudocode
throughout the
document

All errors are reported through error records, see
3.2.15 Reliability, Accessibility, and Serviceability
on page 3-64.

Message-based SPIs Physical interrupt
handling and
prioritization

Shared peripheral
interrupts

Pending bits for level sensitive SPIs that are set by writes to
GICD_SETSPI_* or GICA_SETSPI_* are not affected by
writes to GICD_ICPENDR. Writes to GICD_CLRSPI_* or
GICA_CLRSPI_* have no effect on pending bits set by
GICD_ISPENDR.

Interrupt grouping Physical interrupt
handling and
prioritization

Interrupt grouping All implemented SPIs, SGIs, and PPIs have programmable
groups.

Interrupt enables Physical interrupt
handling and
prioritization

Enabling individual
interrupts

All SGIs have a programmable enable.

Interrupt prioritization Physical interrupt
handling and
prioritization

Interaction of
group and
individual interrupt
enables

Interrupts that are disabled through the GICC_CTLR register or
the ICC_CTLR_* registers are not considered in the selection
of the highest pending interrupt and do not block fully enabled
interrupts of a lower priority.

Interrupt
prioritization

GIC-600 supports 32 priority levels, 16 for LPIs that are always
Non-secure.

Effects of disabling
interrupts

Physical interrupt
handling and
prioritization

Effects of disabling
interrupts

Interrupts are set pending irrespective of the
GICD_CTLR.EnableGrp* settings.

B Implementation-defined features
B.1 Implementation-defined features reference

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-B-168
Non-Confidential

Table B-1 Declared implementation-defined features (continued)

Implementation-
defined features

Architectural specification
reference

Description

Chapter Section

Changing priority Physical interrupt
handling and
prioritization

Interrupt
prioritization.

Changing the
priority of enabled
PPIs, SGIs, and
SPIs.

Reprogramming an IPRIORITYRn register does not change the
priority of an active interrupt but causes a pending and not
active interrupt to be recalled from the CPU interface so that the
new value can be applied.

Direct LPI registers Locality-specific
peripheral interrupts
and the ITS

LPIs The GICR_SETLPIR, GICR_CLRLPIR, GICR_INVLPIR,
GICR_INVALLR, and GICR_SYNCR are supported in
configurations that support LPIs but have no ITS anywhere in
the system. If there is an ITS, these registers, and their
locations, are RAZ/WI.

LPI caching Locality-specific
peripheral interrupts
and the ITS

LPIs See 3.2.10 LPI caching on page 3-60 and 3.2.9 Interrupt
translation service (ITS) on page 3-57.

LPI configuration tables Locality-specific
peripheral interrupts
and the ITS

LPI configuration
tables

The GIC-600 has one GICR_PROPBASER register for all
cores on a chip and therefore points at a single table. Each chip
in a multichip configuration can point to a copy of the table in
local memory. See GICR_TYPER.CommonLPIAff in
4.2.1 Interrupt Controller Type Register, GICD_TYPER
on page 4-88 for more information.

When interrupts are sent between chips, they keep the
properties associated with them until the next invalidate. All
property fetches are always from the offset specified in the
GICR_PROPBASER of the issuing chip.

LPI Pending tables Locality-specific
peripheral interrupts
and the ITS

LPI Pending tables See LPI Pending tables in the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0.

B Implementation-defined features
B.1 Implementation-defined features reference

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-B-169
Non-Confidential

Appendix C
Revisions

Read this for a description of changes between released issues of this book.

It contains the following section:
• C.1 Revisions on page Appx-C-171.

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-C-170
Non-Confidential

C.1 Revisions
This appendix describes changes between released issues of this book.

Table C-1 Issue 0000-00

Change Location Affects

First release - -

Table C-2 Differences between issue 0000-00 and issue 0000-01

Change Location Affects

Added note 1.1 About the GIC-600 on page 1-12 r0p0

Added figure Figure 1-3 Monolithic GIC-600 with interconnect in an example system on page 1-16 r0p0

Added note Top level on page 1-14 r0p0

Updated section 1.4 Features on page 1-18 r0p0

Updated section 2.1.1 Distributor AXI4-Stream interfaces on page 2-24 r0p0

Updated section 2.1.2 Distributor ACE-Lite slave interface on page 2-24 r0p0

Updated section 2.1.3 Distributor ACE-Lite master interface on page 2-25 r0p0

Updated section 2.1.4 Distributor Q-Channels on page 2-26 r0p0

Updated table Table 2-6 Configurable options for the Distributor on page 2-27 r0p0

Updated section 2.2.2 Redistributor GIC Stream protocol interface on page 2-30 r0p0

Updated section 2.2.3 Redistributor Q-Channel on page 2-30 r0p0

Updated table Table 2-8 Redistributor miscellaneous input signals on page 2-31 r0p0

Updated section 2.3.1 ITS ACE-Lite slave interface on page 2-33 r0p0

Updated section 2.3.3 ITS AXI4-Stream interface on page 2-35 r0p0

Updated table Table 2-11 ITS miscellaneous signals on page 2-36 r0p0

Updated table Table 2-12 Configurable options for the ITS on page 2-36 r0p0

Updated section 2.4.1 MSI-64 ACE-Lite interfaces on page 2-37 r0p0

Updated table Table 2-14 MSI-64 miscellaneous signals on page 2-38 r0p0

Updated table Table 2-15 Configurable options for the MSI-64 Encapsulator on page 2-38 r0p0

Updated section 2.5.2 SPI Collator wires on page 2-40 r0p0

Updated section 2.6.2 Wake Request miscellaneous signals on page 2-42 r0p0

Updated section 2.6.3 Wake Request configuration on page 2-42 r0p0

Updated section 2.7.1 Interconnect configuration on page 2-43 r0p0

Changed note 3.1.4 LPIs on page 3-49 r0p0

Updated section 3.1.5 Choosing between LPIs and SPIs on page 3-49 r0p0

Updated section 3.2.2 Interrupt signals (PPIs and SPIs) on page 3-50 r0p0

Updated section 3.2.3 Affinity routing and assignment on page 3-51 r0p0

Added section 3.2.4 1 of N SPI interrupt selection on page 3-52 r0p0

C Revisions
C.1 Revisions

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-C-171
Non-Confidential

Table C-2 Differences between issue 0000-00 and issue 0000-01 (continued)

Change Location Affects

Updated section 3.2.8 Backwards compatibility on page 3-57 r0p0

Updated section 3.2.10 LPI caching on page 3-60 r0p0

Updated section 3.2.11 Memory access and attributes on page 3-60 r0p0

Updated section 3.2.12 MSI-64 on page 3-62 r0p0

Updated section 3.2.13 RAM on page 3-62 r0p0

Updated section 3.2.14 Performance Monitoring Unit on page 3-63 r0p0

Updated table Table 3-6 ECC error reporting on page 3-65 r0p0

Updated section 1.1 About the GIC-600 on page 1-12 r0p0

Added section 4.1.1 Register map pages on page 4-84 r0p0

Updated section 4.1.3 GIC-600 register access and banking on page 4-85 r0p0

Updated table Table 4-2 Distributor registers (GICD/GICDA) summary on page 4-86 r0p0

Updated table Table 4-3 GICD_TYPER bit assignments on page 4-88 r0p0

Updated table Table 4-5 GICD_FCTLR bit assignments on page 4-91 r0p0

Updated table Table 4-7 GICD_SAC bit assignments on page 4-92 r0p0

Updated table Table 4-12 Distributor registers (GICA) for message-based SPIs summary on page 4-97 r0p0

Updated table Table 4-13 Redistributor registers for control and physical LPIs summary on page 4-98 r0p0

Updated table Table 4-14 GICR_IIDR bit assignments on page 4-100 r0p0

Updated table Table 4-15 GICR_TYPER bit assignments on page 4-101 r0p0

Updated table Table 4-17 GICR_FCTLR bit assignments on page 4-103 r0p0

Updated table Table 4-18 GICR_PWRR bit assignments on page 4-104 r0p0

Updated table Table 4-22 GICR_MISCSTATUSR bit assignments on page 4-109 r0p0

Updated table Table 4-26 GICR_CFGID1 bit assignments on page 4-112 r0p0

Updated table Table 4-27 ITS control register summary on page 4-113 r0p0

Updated table Table 4-31 GITS_OPR bit assignments on page 4-119 r0p0

Updated table Table 4-36 GICT register summary on page 4-123 r0p0

Updated table Table 4-39 GICT_ERR<n>CTLR bit assignments on page 4-126 r0p0

Updated table Table 4-40 GICT_ERR<n>STATUS bit assignments on page 4-128 r0p0

Updated table Table 4-42 GICT_ERR<n>MISC0 bit assignments on page 4-130 r0p0

Updated table Table 4-43 Data field encoding on page 4-130 r0p0

Added section 4.8.8 Peripheral ID2 Register, GICT_PIDR2 on page 4-137 r0p0

Updated table Table 4-47 GICP register summary on page 4-138 r0p0

Updated table Table 4-49 GICP_EVTYPERn bit assignments on page 4-140 r0p0

Updated table Table 4-50 EVENT field encoding on page 4-140 r0p0

Updated table Table 4-53 GICP_CNTENSET0 bit assignments on page 4-145 r0p0

Updated table Table 4-54 GICP_CNTENCLR0 bit assignments on page 4-145 r0p0

C Revisions
C.1 Revisions

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-C-172
Non-Confidential

Table C-2 Differences between issue 0000-00 and issue 0000-01 (continued)

Change Location Affects

Updated table Table 4-55 GICP_INTENSET0 bit assignments on page 4-146 r0p0

Added section 4.9.14 Peripheral ID2 Register, GICP_PIDR2 on page 4-150 r0p0

Updated section A.2 Power control signals on page Appx-A-155 r0p0

Updated section A.3 Interrupt signals on page Appx-A-156 r0p0

Updated section A.4 CPU interface signals on page Appx-A-157 r0p0

Updated section A.7 Interblock signals on page Appx-A-164 r0p0

Updated section B.1 Implementation-defined features reference on page Appx-B-168 r0p0

Table C-3 Differences between issue 0000-01 and issue 0002-00

Change Location Affects

Updated section 1.1 About the GIC-600 on page 1-12 All releases

Updated section 1.2 Components on page 1-13 All releases

Updated Figure Figure 1-1 GIC-600 with free-flowing interconnect in an example system on page 1-14 All releases

Updated Figure Figure 1-2 GIC-600 with interconnect in an example system on page 1-15 All releases

Updated Figure Figure 1-3 Monolithic GIC-600 with interconnect in an example system on page 1-16 All releases

Updated section 1.3 Compliance on page 1-17 All releases

Updated section 1.4 Features on page 1-18 All releases

Updated Figure Figure 2-1 GIC-600 Distributor on page 2-23 All releases

Updated section 2.1.1 Distributor AXI4-Stream interfaces on page 2-24 All releases

Updated section 2.1.2 Distributor ACE-Lite slave interface on page 2-24 All releases

Updated section 2.1.3 Distributor ACE-Lite master interface on page 2-25 All releases

Updated section 2.1.4 Distributor Q-Channels on page 2-26 All releases

Updated table 2.1.5 Distributor miscellaneous signals on page 2-26 All releases

Updated table Table 2-6 Configurable options for the Distributor on page 2-27 All releases

Updated section 2.2 Redistributor on page 2-29 All releases

Updated section 2.2.2 Redistributor GIC Stream protocol interface on page 2-30 All releases

Added table Table 2-7 GIC Stream protocol interface signals on page 2-30 All releases

Updated section 2.2.4 Redistributor PPI signals on page 2-30 All releases

Updated section 2.2.5 Redistributor miscellaneous input signals on page 2-31 All releases

Updated section 2.3 ITS on page 2-32 All releases

Updated section 2.3.1 ITS ACE-Lite slave interface on page 2-33 All releases

Updated section 2.3.4 ITS Q-Channel on page 2-35 All releases

Updated table Table 2-11 ITS miscellaneous signals on page 2-36 All releases

Updated section 2.4 MSI-64 Encapsulator on page 2-37 All releases

Updated section 2.4.2 MSI-64 miscellaneous signals on page 2-38 All releases

C Revisions
C.1 Revisions

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-C-173
Non-Confidential

Table C-3 Differences between issue 0000-01 and issue 0002-00 (continued)

Change Location Affects

Updated section 2.4.3 MSI-64 Encapsulator configuration on page 2-38 All releases

Updated section 2.5 SPI Collator on page 2-40 All releases

Updated section 2.5.1 SPI Collator AXI4-Stream interface on page 2-40 All releases

Updated section 2.5.2 SPI Collator wires on page 2-40 All releases

Updated section 2.5.3 SPI Collator Q-Channel on page 2-40 All releases

Updated section 2.6 Wake Request on page 2-42 All releases

Updated section 2.6.3 Wake Request configuration on page 2-42 All releases

Updated section 2.8 Top-level interfaces on page 2-44 All releases

Updated Figure Figure 2-8 GIC top-level structure options on page 2-45 All releases

Renamed Chapter 3 Chapter 3 Single-chip operation on page 3-47 All releases

Updated section 3.1.1 SGIs on page 3-48 All releases

Updated section 3.1.2 PPIs on page 3-48 All releases

Updated section 3.1.3 SPIs on page 3-48 All releases

Updated section 3.1.4 LPIs on page 3-49 All releases

Updated section 3.2.1 Interrupt groups on page 3-50 All releases

Updated section 3.2.2 Interrupt signals (PPIs and SPIs) on page 3-50 All releases

Updated section 3.2.3 Affinity routing and assignment on page 3-51 All releases

Updated section 3.2.4 1 of N SPI interrupt selection on page 3-52 All releases

Updated section 3.2.5 Power management on page 3-53 All releases

Updated section 3.2.7 Security on page 3-56 All releases

Updated section 3.2.8 Backwards compatibility on page 3-57 All releases

Updated section 3.2.9 Interrupt translation service (ITS) on page 3-57 All releases

Updated section 3.2.11 Memory access and attributes on page 3-60 All releases

Updated headings in Table Table 3-5 Cacheability values on page 3-61 All releases

Updated section 3.2.12 MSI-64 on page 3-62 All releases

Updated section 3.2.13 RAM on page 3-62 All releases

Updated section 3.2.15 Reliability, Accessibility, and Serviceability on page 3-64 All releases

Updated section 4.1.2 Discovery on page 4-85 All releases

Updated section 4.2 Distributor registers (GICD/GICDA) summary on page 4-86 All releases

Updated section 4.2.5 Interrupt Class Registers, GICD_ICLARn on page 4-92 All releases

Updated table Table 4-24 GICR_SGIDR bit assignments on page 4-110 All releases

Updated table Table 4-25 GICR_CFGID0 bit assignments on page 4-111 All releases

Updated table Table 4-26 GICR_CFGID1 bit assignments on page 4-112 All releases

Updated table Table 4-30 GITS_FCTLR bit assignments on page 4-117 All releases

Updated section 4.6.5 Operation Status Register, GITS_OPSR on page 4-119 All releases

C Revisions
C.1 Revisions

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-C-174
Non-Confidential

Table C-3 Differences between issue 0000-01 and issue 0002-00 (continued)

Change Location Affects

Updated table Table 4-32 GITS_OPSR bit assignments on page 4-120 All releases

Updated section 4.7 ITS translation register summary on page 4-122 All releases

Updated table Table 4-40 GICT_ERR<n>STATUS bit assignments on page 4-128 All releases

Updated section 4.8.4 Error Record Address Register, GICT_ERR<n>ADDR on page 4-128 All releases

Updated section 4.8.5 Error Record Miscellaneous Register 0, GICT_ERR<n>MISC0 on page 4-129 All releases

Updated table Table 4-42 GICT_ERR<n>MISC0 bit assignments on page 4-130 All releases

Updated table Table 4-43 Data field encoding on page 4-130 All releases

Updated section 4.8.6 Error Record Miscellaneous Register 1, GICT_ERR<n>MISC1 on page 4-135 All releases

Updated table Table 4-44 GICT_ERR10MISC1 bit assignments on page 4-136 All releases

Updated section 4.9.2 Event Type Configuration Registers, GICP_EVTYPERn on page 4-139 All releases

Updated tables GICP_EVTYPERn bit assignments on page 4-140 and Table 4-50 EVENT field encoding
on page 4-140

All releases

Updated section A.2 Power control signals on page Appx-A-155 All releases

Updated section A.4 CPU interface signals on page Appx-A-157 All releases

Updated section A.5 ACE interface signals on page Appx-A-158 All releases

Updated section A.6 Miscellaneous signals on page Appx-A-163 All releases

Updated section A.7 Interblock signals on page Appx-A-164 All releases

Added section A.8 Interdomain signals on page Appx-A-166 All releases

Updated section B.1 Implementation-defined features reference on page Appx-B-168 All releases

Table C-4 Differences between issue 0002-00 and issue 0002-01

Change Location Affects

No technical changes - -

C Revisions
C.1 Revisions

ARM 100336_0002_01_en Copyright © 2016, 2017 ARM Limited or its affiliates. All rights reserved. Appx-C-175
Non-Confidential

	ARM® CoreLink™ GIC-600 Generic Interrupt Controller Technical Reference Manual
	Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the GIC-600
	1.2 : Components
	1.3 : Compliance
	1.4 : Features
	1.5 : Test features
	1.6 : Product documentation
	1.7 : Product revisions

	2 : Components and configuration
	2.1 : Distributor
	2.1.1 : Distributor AXI4-Stream interfaces
	2.1.2 : Distributor ACE-Lite slave interface
	2.1.3 : Distributor ACE-Lite master interface
	2.1.4 : Distributor Q-Channels
	2.1.5 : Distributor miscellaneous signals
	2.1.6 : Distributor configuration

	2.2 : Redistributor
	2.2.1 : Redistributor AXI4-Stream interface
	2.2.2 : Redistributor GIC Stream protocol interface
	2.2.3 : Redistributor Q-Channel
	2.2.4 : Redistributor PPI signals
	2.2.5 : Redistributor miscellaneous input signals
	2.2.6 : Redistributor configuration

	2.3 : ITS
	2.3.1 : ITS ACE-Lite slave interface
	2.3.2 : ITS ACE-Lite master interface
	2.3.3 : ITS AXI4-Stream interface
	2.3.4 : ITS Q-Channel
	2.3.5 : ITS miscellaneous signals
	2.3.6 : ITS configuration

	2.4 : MSI-64 Encapsulator
	2.4.1 : MSI-64 ACE-Lite interfaces
	2.4.2 : MSI-64 miscellaneous signals
	2.4.3 : MSI-64 Encapsulator configuration

	2.5 : SPI Collator
	2.5.1 : SPI Collator AXI4-Stream interface
	2.5.2 : SPI Collator wires
	2.5.3 : SPI Collator Q-Channel
	2.5.4 : SPI collator configuration

	2.6 : Wake Request
	2.6.1 : Wake Request AXI4-Stream interface
	2.6.2 : Wake Request miscellaneous signals
	2.6.3 : Wake Request configuration

	2.7 : Interconnect
	2.7.1 : Interconnect configuration

	2.8 : Top-level interfaces
	2.9 : Top-level configuration

	3 : Single-chip operation
	3.1 : Interrupt types
	3.1.1 : SGIs
	3.1.2 : PPIs
	3.1.3 : SPIs
	3.1.4 : LPIs
	3.1.5 : Choosing between LPIs and SPIs

	3.2 : Single chip operation
	3.2.1 : Interrupt groups
	3.2.2 : Interrupt signals (PPIs and SPIs)
	3.2.3 : Affinity routing and assignment
	3.2.4 : 1 of N SPI interrupt selection
	3.2.5 : Power management
	Redistributor power management
	Processor core power management
	Other power management
	Other core signals

	3.2.6 : Getting started
	3.2.7 : Security
	3.2.8 : Backwards compatibility
	3.2.9 : Interrupt translation service (ITS)
	ITS cache control, locking, and test
	ITS commands and errors

	3.2.10 : LPI caching
	3.2.11 : Memory access and attributes
	3.2.12 : MSI-64
	3.2.13 : RAM
	3.2.14 : Performance Monitoring Unit
	3.2.15 : Reliability, Accessibility, and Serviceability
	Non-secure access
	Scrub
	Error record classification
	ECC error reporting and recovery
	Error recovery and fault handling interrupts
	Error handling records
	Software error record 0
	SPI RAM error records 1-2
	SGI RAM error records 3-4
	PPI RAM error records 7-8
	LPI RAM error records 9-10
	ITS RAM error records 11-12
	ITS software error records 13+
	Clearing error records

	Bus errors

	4 : Programmers model
	4.1 : The GIC-600 registers
	4.1.1 : Register map pages
	4.1.2 : Discovery
	4.1.3 : GIC-600 register access and banking

	4.2 : Distributor registers (GICD/GICDA) summary
	4.2.1 : Interrupt Controller Type Register, GICD_TYPER
	4.2.2 : Distributor Implementer Identification Register, GICD_IIDR
	4.2.3 : Function Control Register, GICD_FCTLR
	4.2.4 : Secure Access Control Register, GICD_SAC
	4.2.5 : Interrupt Class Registers, GICD_ICLARn
	4.2.6 : Interrupt Error Registers, GICD_IERRRn
	4.2.7 : Configuration ID Register, GICD_CFGID
	4.2.8 : Peripheral ID2 register, GICD_PIDR2

	4.3 : Distributor registers (GICA) for message-based SPIs summary
	4.4 : Redistributor registers for control and physical LPIs summary
	4.4.1 : Redistributor Implementation Identification Register, GICR_IIDR
	4.4.2 : Interrupt Controller Type Register, GICR_TYPER
	4.4.3 : Power Management Control Register, GICR_WAKER
	4.4.4 : Function Control Register, GICR_FCTLR
	4.4.5 : Power Register, GICR_PWRR
	4.4.6 : Class Register, GICR_CLASS
	4.4.7 : Peripheral ID2 Register, GICR_PIDR2

	4.5 : Redistributor registers for SGIs and PPIs summary
	4.5.1 : Miscellaneous Status Register, GICR_MISCSTATUSR
	4.5.2 : Interrupt Error Valid Register, GICR_IERRV
	4.5.3 : SGI Default Register, GICR_SGIDR
	4.5.4 : Configuration ID0 Register, GICR_CFGID0
	4.5.5 : Configuration ID1 Register, GICR_CFGID1

	4.6 : ITS control register summary
	4.6.1 : ITS Implementer Identification Register, GITS_IIDR
	4.6.2 : Interrupt Controller Type Register, GITS_TYPER
	4.6.3 : Function Control Register, GITS_FCTLR
	4.6.4 : Operations Register, GITS_OPR
	4.6.5 : Operation Status Register, GITS_OPSR
	4.6.6 : Configuration ID Register, GITS_CFGID
	4.6.7 : Peripheral ID2 Register, GITS_PIDR2

	4.7 : ITS translation register summary
	4.8 : GICT register summary
	4.8.1 : Error Record Feature Register, GICT_ERR<n>FR
	4.8.2 : Error Record Control Register, GICT_ERR<n>CTLR
	4.8.3 : Error Record Primary Status Register, GICT_ERR<n>STATUS
	4.8.4 : Error Record Address Register, GICT_ERR<n>ADDR
	4.8.5 : Error Record Miscellaneous Register 0, GICT_ERR<n>MISC0
	4.8.6 : Error Record Miscellaneous Register 1, GICT_ERR<n>MISC1
	4.8.7 : Error Record ID Register, GICT_ERRIDR
	4.8.8 : Peripheral ID2 Register, GICT_PIDR2

	4.9 : GICP register summary
	4.9.1 : Event Counter Registers, GICP_EVCNTRn
	4.9.2 : Event Type Configuration Registers, GICP_EVTYPERn
	4.9.3 : Shadow Value Registers, GICP_SVRn
	4.9.4 : Filter Registers, GICP_FRn
	4.9.5 : Counter Enable Set Register, GICP_CNTENSET0
	4.9.6 : Counter Enable Clear Register 0, GICP_CNTENCLR0
	4.9.7 : Interrupt Contribution Enable Set Register 0, GICP_INTENSET0
	4.9.8 : Interrupt Contribution Enable Clear Register 0, GICP_INTENCLR0
	4.9.9 : Overflow Status Clear Register 0, GICP_OVSCLR0
	4.9.10 : Overflow Status Set Register 0, GICP_OVSSET0
	4.9.11 : Counter Shadow Value Capture Register, GICP_CAPR
	4.9.12 : Configuration Information Register, GICP_CFGR
	4.9.13 : Control Register, GICP_CR
	4.9.14 : Peripheral ID2 Register, GICP_PIDR2

	A : Signal descriptions
	A.1 : Common control signals
	A.2 : Power control signals
	A.3 : Interrupt signals
	A.4 : CPU interface signals
	A.5 : ACE interface signals
	A.6 : Miscellaneous signals
	A.7 : Interblock signals
	A.8 : Interdomain signals

	B : Implementation-defined features
	B.1 : Implementation-defined features reference

	C : Revisions
	C.1 : Revisions

