Arm® CoreLink™ MMU-600 System
Memory Management Unit

Revision: r1p0

Technical Reference Manual

arm

Copyright © 2016—2018 Arm Limited or its affiliates. All rights reserved.
100310_0100_00_en

Arm® CoreLink™ MMU-600 System Memory Management Unit

Arm® CoreLink™ MMU-600 System Memory Management Unit

Technical Reference Manual
Copyright © 2016-2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 16 December 2016 Confidential First release for rOp0
0000-01 19 May 2017 Confidential Second release for rOp0
0001-00 23 August 2017 Confidential First release for rOp1
0001-01 10 November 2017 Non-Confidential Second release for rOp1
0002-00 15 December 2017 Non-Confidential First release for rOp2
0100-00 20 March 2018 Non-Confidential First release for r1p0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by

estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other

rights.
This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at

any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the

Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http.//www.arm.com/company/policies/

trademarks.

Copyright © 2016-2018 Arm Limited (or its affiliates). All rights reserved.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2
reserved.
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Arm® CoreLink™ MMU-600 System Memory Management Unit

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349

Additional Notices

Some material in this document is based on IEEE 754-2008 IEEE Standard for Binary Floating-Point Arithmetic. The IEEE
disclaims any responsibility or liability resulting from the placement and use in the described manner.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.
Web Address

http://'www.arm.com

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3
reserved.
Non-Confidential

http://www.arm.com

Contents

Arm® CoreLink™ MMU-600 System Memory
Management Unit Technical Reference Manual

Preface
ADBDOUL RIS DOOK ...t et 7
L T=T0 o Lo - G PER 10
Chapter 1 Introduction
1.1 ADOUL the MIMU-BO0 ..ot e 1-12
1.2 COMPLIANCE ..ottt e e e e e enaeae s 1-13
1.3 FFBALUIES ... et 1-14
1.4 INEEITACES ..o e 1-16
1.5 CoNnfiguIable OPLIONScooiiiiiieeeee et 1-17
1.6 Product documentation and design fIOWccoceeemiiiiiiiiiiiciieee e 1-18
1.7 ProQUCT FVISIONS ... et 1-20
Chapter 2 Functional description
2.1 ADBOUL ThE TUNCLIONS ... 2-22
2.2 INEEITACES ..o ettt e e 2-28
2.3 (0 01T 1o TR URP 2-36
2.4 Constraints and limitations OFf USEueeeeiiiieeeeeeee e 2-54
Chapter 3 Programmers model
3.1 About the programmers MOAE!oooi e e 3-62
3.2 SMMU architeCtural reQISIEISuueieii i e 3-64
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 4
reserved.

Non-Confidential

3.3 MMU-600 MEMOIY MAP ..ot ettt 3-69
3.4 REGISIET SUMIMAIY ...t e 3-71
3.5 TCU Component and Peripheral ID REQIStEIScccovveeeeeeeeieeeieaeeeeiieaeeeasree 3-74
3.6 TCU PMU Component and Peripheral ID ReQiSterscccoooees voeeieeiieeaae. 3-75
3.7 TCU microarchitectural reQiStersccccoueeeiiiiiiiiieict e 3-76
3.8 TCU RAS FEGUSTEIS ..ot ettt 3-84
3.9 TBU Component and Peripheral ID ReQiStersc.cccvvueeeeees ceeeeciieeeeeeeeiieaaa 3-89
3.10 TBU PMU Component and Peripheral ID ReQIStersccccouiieoiieeeeaaiiiieaeeeae 3-90
3.11 TBU microarchitectural regiSterscooiiciiriiiiiiies e 3-91
3.12 TBU RAS FEQISTEIS ...ttt ettt 3-93
Appendix A Signal descriptions
A1 Clock and reSet SIGNAIScooeeeeeeeeeeeee e Appx-A-98
A2 TCU QTW/DVM interface Signalscccoeeoiiiiieeesiieiiiie e Appx-A-99
A3 TCU programming interface Signalscccoccoeiivis seviienciie e Appx-A-102
A4 TCU SYSCO interface Signalsc.oeeeeeecereieeeeiis e Appx-A-103
A5 TCU PMU snapshot interface Signalsccccccoueeecoesiesieeesie e Appx-A-104
A.6 TCU LPI_PD interface Signalscccccoiiiiooiiies e Appx-A-105
A7 TCU LPI_CG interface Signalsccccouuiuiimciiiia s Appx-A-106
A.8 TCU DTl interface Signalscc.eeueeeeecieieeeeeeiieeeee e Appx-A-107
A.9 TCU interrupt SIGNAISoooeeeeeeeeeee et e Appx-A-108
A.10 TCU tie-Off SIQNAISccoeieiieeeeee s e Appx-A-109
A. 11 TCU and TBU test and debug Signalsccccoceiviiees ieesiiiiiieeeee Appx-A-110
A.12 TBU TBS interface Signalsc..oeueeeeeuueiieeiiiiis eeeeeeeesiiea e Appx-A-111
A.13 TBU TBM interface SiQNalsccueiieeeeieeeiee s Appx-A-115
A.14 TBU PMU snapshot interface Signalsccccccoooieooeiieaiiiiiieeee Appx-A-119
A.15 TBU LPI_PD interface Signalscccccooemiiiiiiniiies o Appx-A-120
A. 16 TBU LPI_CG interface Signalscccceeeeeecueeeeeeeis eeeeeeeieee e Appx-A-121
A.17 TBU DTIinterface Signalscccooueeeeieeeesieeae e Appx-A-122
A.18 TBU interrupt SIGNAISeeeeeiiei et e Appx-A-123
A 19 TBU ie-Off SIGNAISoeoiiiieeee e et Appx-A-124
A.20 DTl interconnect SWitch SIQNalsccccouieeiveiiues cieeeeeeiiiieeee e Appx-A-126
A.21 DTl interconnect Sizer SIQNAIScccueeeiiiiciiiiee e Appx-A-128
A.22 DTl interconnect register slice Signalscccccoomiiocr ciiiieiiiiieeeee Appx-A-130
Appendix B Software initialization examples
B.1 Initializing the SMMUc.cooooveeieeieeeseeeet et Appx-B-133
B.2 Enabling the SMMUooeeieeeeeeee e et Appx-B-138
Appendix C Revisions
C.1 REVISIONS .ottt ettt et e e e e e e e e e e e e e e e s e s e nnnrnneen Appx-C-140
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 5
reserved.

Non-Confidential

Preface

This preface introduces the Arm® CoreLink™ MMU-600 System Memory Management Unit Technical
Reference Manual.

It contains the following:

* About this book on page 7.
» Feedback on page 10.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

Preface
About this book

About this book
This book is for the Arm® CoreLink™ MMU-600 System Memory Management Unit.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, rl.

pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience
This book is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the MMU-600.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an overview of the MMU-600.

Chapter 2 Functional description
This chapter describes the functionality of the MMU-600.

Chapter 3 Programmers model
This chapter describes the MMU-600 programmers model.

Appendix A Signal descriptions
This appendix describes the MMU-600 external signals.

Appendix B Software initialization examples
This appendix provides examples of how software can initialize and enable the MMU-600.

Appendix C Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 7

reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Preface
About this book

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC p15, ©, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

LG

High impedance to stable bus
Figure 1 Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
» HIGH for active-HIGH signals.
* LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights

[ee]

reserved.
Non-Confidential

Additional reading

Preface
About this book

Arm publications
This book contains information that is specific to this product. See the following documents for
other relevant information:

Arm® System Memory Management Unit Architecture Specification, SMMU architecture
version 3.0 and version 3.1 (ARM IHI 0070).

Arm® Architecture Reference Manual, ARMvS, for ARMvS-A architecture profile (ARM
DDI 0487).

Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification (100225).
Arm® AMBA® APB Protocol Specification (ARM IHI 0024).

Arm® CoreSight™ Architecture Specification (ARM THI 0029).

Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AX15, ACE and ACES
(ARM IHI 0022).

Arm® AMBA® 4 AXI4-Stream Protocol Specification (ARM IHI 0051).

AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces
(ARM IHI 0068).

Arm® CoreLink™ LPD-500 Low Power Distributor Technical Reference Manual (100361).
Arm® Server Base System Architecture (DEN-0029).

The following confidential books are only available to licensees:

Arm® CoreLink™ MMU-600 System Memory Management Unit Configuration and
Integration Manual (100311).
Arm® CoreLink™ ADB-400 AMBA® Domain Bridge User Guide (ARM DUI 0615).

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 9
reserved.
Non-Confidential

Preface
Feedback

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

* The title Arm CoreLink MMU-600 System Memory Management Unit Technical Reference Manual.
* The number 100310 0100 00 _en.

+ If applicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 10
reserved.
Non-Confidential

mailto:errata@arm.com

Chapter 1

Introduction

Thi

s chapter provides an overview of the MMU-600.

It contains the following sections:

1.1 About the MMU-600 on page 1-12.

1.2 Compliance on page 1-13.

1.3 Features on page 1-14.

1.4 Interfaces on page 1-16.

1.5 Configurable options on page 1-17.

1.6 Product documentation and design flow on page 1-18.
1.7 Product revisions on page 1-20.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

1 Introduction
1.1 About the MMU-600

1.1 About the MMU-600

The MMU-600 is a System-level Memory Management Unit (SMMU) that translates an input address to
an output address. This translation is based on address mapping and memory attribute information that is
available in the MMU-600 internal registers and translation tables.

The MMU-600 implements the Arm SMMU architecture version 3.1, SMMUv3.1, as defined by the
Arm® System Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and
version 3.1.

An address translation from an input address to an output address is described as a stage of address
translation. The MMU-600 can perform:

» Stage 1 translations that translate an input virtual address (VA) to an output physical address (PA) or
intermediate physical address (IPA).

+ Stage 2 translations that translate an input IPA to an output PA.

+ Combined stage 1 and stage 2 translations that translate an input VA to an IPA, and then translate that
IPA to an output PA. The MMU-600 performs translation table walks for each stage of the translation.

In addition to translating an input address to an output address, a stage of address translation also defines
the memory attributes of the output address. With a two-stage translation, the stage 2 translation can
modify the attributes that the stage 1 translation defines. A stage of address translation can be disabled or
bypassed, and the MMU-600 can define memory attributes for disabled and bypassed stages of
translation.

The MMU-600 uses inputs from the requesting master to identify a context. Configuration tables in
memory tell the MMU-600 how to translate each context, such as which translation tables to use.

The MMU-600 can cache the result of a translation table lookup in a Translation Lookaside Buffer
(TLB). It can also cache configuration tables in a configuration cache.

The MMU-600 contains the following key components:

» Translation Buffer Units (TBUs) that use a TLB to cache translation tables.
* A Translation Control Unit (TCU) that controls and manages address translations.

» Distributed Translation Interface (DTI) interconnect components that connect multiple TBUs to the
TCU.

Related information
2.1 About the functions on page 2-22

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-12
reserved.
Non-Confidential

1 Introduction
1.2 Compliance

1.2 Compliance
The MMU-600 complies with, or implements, the specifications that this section describes. This
Technical Reference Manual (TRM) complements architecture reference manuals, architecture
specifications, protocol specifications, and relevant external standards. It does not duplicate information
from these sources.

1.21 Arm architecture
The MMU-600 implements parts of the ARMvVS Virtual Memory System Architecture (VMSA), as
defined by the Arm® Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile. The
SMMUV3 architecture describes the parts of VMSA that apply to the MMU-600.

1.2.2 SMMU architecture
The MMU-600 implements the SMMUV3.1 architecture, as defined by the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1.
Related information
2.4.1 SMMUv3 support on page 2-54

1.2.3 AMBA DTI protocol
The MMU-600 implements the Distributed Translation Interface (DTI) protocol, as defined by the 4rm®
AMBA® Distributed Translation Interface (DTI) Protocol Specification.
The DTI interfaces use an AXI4-Stream interface, as defined by the Arm® AMBA® 4 AXI4-Stream
Protocol Specification.
Related information
2.3.1 DTI overview on page 2-36

1.2.4 AMBA ACE5-Lite and AMBA® AXI5 protocol
The MMU-600 complies with the AMBA ACES5-Lite protocol. A variant of the TBU also supports the
ACES protocol when used for protection only.
See the Arm® AMBA® AXI and ACE Protocol Specification, AXI13, AXI4, AXI5, ACE and ACE5 for more
information.
Related information
2.4.2 AMBA support on page 2-57

1.2.5 AMBA APB protocol
The MMU-600 complies with the AMBA APB4 protocol, as defined by the 4rm® AMBA® APB Protocol
Specification.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-13

reserved.
Non-Confidential

1 Introduction
1.3 Features

1.3 Features

The MMU-600 provides the following features:

Compliance with the SMMUV3.1 architecture:

— Support for Stage 1 translation, Stage 2 translation, and Stage 1 followed by stage 2 translation.

— Support for ARMv8 AArch32 and AArch64 translation table formats.

— Support for 4KB, 16KB and 64KB granule sizes in AArch64 format.

— Support for Page Request Interface (PR1), as defined by SMMUv3. PRI is an optional PCle ATS
extension that enables support for unpinned memory in PCle.

— Masters can be stalled while a processor handles translation faults, enabling software support for
demand paging.

— Configuration tables in memory can support millions of active translation contexts.

— Queues in memory perform MMU-600 management, no requirement to stall a processor when it
accesses the MMU-600.

— Support for PCI Express (PCle) integration, including Address Translation Services (ATS) and
Process Address Space IDs (PASIDs).

— Support for Generic Interrupt Controller (GIC) integration, with Message Signaled Interrupts
(MSIs) supported for common interrupt types.

— A Performance Monitoring Unit (PMU) in each TBU and TCU that enables MMU-600
performance to be investigated.

— Reliability, Serviceability and Availability (RAS) features for cache corruption detection and
correction.

Support for AMBA interfaces, including:

— ACE5-Lite TBU transaction interfaces that support cache stash transactions, deallocating
transactions, and cache maintenance.

— Option to disable cache maintenance operations on a TBU, a sideband channel protection feature.

— An architected AXI5 extension that communicates per-transaction translation stream information.

— An ACES5-Lite + Distributed Virtual Memory (DVM) TCU table walk interface that enables
ARMVS.2 processors to perform shared TLB invalidate operations without accessing the
MMU-600 directly.

— An ACES5 Low Power extension that enables the TCU to subscribe to DVM TLB invalidate
requests on powerup and powerdown without reprogramming the DTI interconnect.

— AMBA DTI communication between the TCU and TBUs, enabling masters to request translations
and implement TBU functionality internally.

— Support for the AMBA Low-Power Interface (LPT) Q-Channel so that standard controllers can
control power and clock gating.

— AXIS5 WAKEUP signaling on all interfaces, including DTI and APB interfaces.

— Access protection for ACE interfaces. ACE protection aligns with the restrictions that ACES
defines for ACE usage of the Untranslated Transactions extension.

Support for flexible integration:

— A configurable number of TBUs can be placed close to the masters being translated.

— Communication between TBU and TCU over AXI4-Stream, supported using the supplied DTI
interconnect components, or any other AXI4-Stream interconnect.

— DTI interconnect components support hierarchical topologies, and control of the tradeoff between
number of wires and DTI bandwidth.

Support for high-performance translation:

— Scalable configurable micro TLB and Main TLB (MTLB) in the TBU can reduce the number of
translation requests to the TCU.

— TBU direct indexing and MTLB partitioning enable the use of MTLB entries to be managed
outside the TBU, improving real-time translation performance.

— Optimization to store all architecturally defined page and block sizes, including contiguous page
and block entries, as a single entry in the TBU and TCU TLBs.

— Per-TBU prioritization in the TCU enables high-priority transaction streams to be translated
before low-priority streams.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-14
reserved.
Non-Confidential

1 Introduction
1.3 Features

— TCU prefetch of translation tables, which can be enabled on a per-context basis, improving
translation performance for real-time masters that access memory linearly.

— Hit-Under-Miss (HUM) support in the TBU enables transactions with different AXI IDs to be
propagated out of order, when a translation is available.

— TBU detection of multiple transactions that require the same translation so that only one TBU
request to the TCU is required.

— TCU detection of multiple translations that require the same table in memory so that only one
TCU memory request is required.

— Multi-level, multi-stage walk caches in the TCU reduce translation cost by performing only part
of the table walk process on a miss.

— A configurable number of concurrent translations in the TBU and TCU promotes high translation
throughput.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-15
reserved.
Non-Confidential

1.4

Interfaces
Both the TCU and TBU support the following common interfaces:

 DTL

* Tie-offs.

e Interrupts.

* PMU snapshot.

* Test and debug.

* LPI clock gating.
* LPI powerdown.

The TCU also supports the following interfaces:

* Programming.
* System coherency.
* Queue and Table Walk (QTW)/DVM.

The TBU also supports the following interfaces:

* Transaction slave (TBS).
* Transaction master (TBM).

Related information
2.2 Interfaces on page 2-28

1 Introduction
1.4 Interfaces

100310_0100_00_en

reserved.

Non-Confidential

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

1 Introduction
1.5 Configurable options

1.5 Configurable options
The MMU-600 is highly configurable and provides configuration options for each of the main blocks.
For the TCU, you can configure:

» The size of each of the caches.

* The data width of the QTW/DVM interface.

* The number of translations that can be performed at the same time.

* The number of translation requests that can be accepted from all DTI masters.

For the TBU, you can configure:

* Write data buffer depth.

» The size of each of the caches.

* The number of transactions that can be translated at the same time.

* The number of outstanding read and write transactions that the TBM interface supports.

* The width of data, ID, user, StreamID, and SubstreamID signals on the TBS and TBM interfaces.

Note

Depths are specified as a discrete number of entries.

You can also configure the DTI interconnect components to meet your system requirements.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-17
reserved.
Non-Confidential

1 Introduction
1.6 Product documentation and design flow

1.6 Product documentation and design flow

This section describes the MMU-600 documentation in relation to the design flow.

1.6.1 Documentation
The MMU-600 documentation is as follows:

Technical Reference Manual

The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the MMU-600. It is required at all stages of the design flow. The
choices that are made in the design flow can mean that some behaviors that are described in the
TRM are not relevant. If you are programming the MMU-600, then contact:
* The implementer to determine:

— The build configuration of the implementation.

— What integration, if any, was performed before implementing the MMU-600.
* The integrator to determine the pin configuration of the device that you are using.

Configuration and Integration Manual
The Configuration and Integration Manual (CIM) describes:
* The available build configuration options and related issues in selecting them.
* How to integrate the MMU-600 into a SoC. This section includes describing the pins that the
integrator must tie off to configure the macrocells for the required integration.
* The processes to sign off the configuration, integration, and implementation of the design.

The Arm product deliverables include reference scripts and information about using them to
implement your design. Reference methodology flows that Arm supplies are example reference
implementations. Contact your EDA vendor for EDA tool support.

The CIM is a confidential book that is only available to licensees.

1.6.2 Design flow

The MMU-600 is delivered as synthesizable RTL. Before it can be used in a product, it must go through
the following processes:

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This process
might include integrating RAMs into the design.

Integration
The integrator connects the implemented design into a SoC. Integration includes connecting the
design to a memory system and peripherals.

Programming
The system programmer develops the software to configure and initialize the MMU-600, and
tests the required application software.

Each process is separate, and can include implementation and integration choices that affect the behavior
and features of the MMU-600.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the following:
* Area.
* Maximum frequency.
* Features of the resulting macrocell.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-18
reserved.
Non-Confidential

1 Introduction
1.6 Product documentation and design flow

Configuration inputs
The integrator configures some features of the MMU-600 by tying inputs to specific values.
These configurations affect the start-up behavior before any software configuration is made.
Software configuration

The programmer configures the MMU-600 by programming particular values into registers.
This configuration affects the behavior of the MMU-600.

Related information
1.2 Compliance on page 1-13
1.5 Configurable options on page 1-17

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-19
reserved.
Non-Confidential

1 Introduction
1.7 Product revisions

1.7 Product revisions

This section describes the differences in functionality between product revisions:

r0p0 First release.

rO0p0-rOp1 The following changes apply to this release:
* Modified bits in TCU_CTRL.
* Modified bits in TBU_CTRL.

rOp1-rOp2 This release has no functional changes.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 1-20
reserved.

Non-Confidential

Chapter 2
Functional description

This chapter describes the functionality of the MMU-600.

It contains the following sections:

» 2.1 About the functions on page 2-22.

» 2.2 Interfaces on page 2-28.

* 2.3 Operation on page 2-36.

» 2.4 Constraints and limitations of use on page 2-54.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-21
reserved.
Non-Confidential

21

Fully coherent
masters

Slaves { Memory system Peripheral Peripheral

2 Functional description
2.1 About the functions

About the functions

The major functional blocks of the MMU-600 are the TCU, TBU, and DTTI interconnect.
The following figure shows an example system that uses the MMU-600.

masters master ATS

1/0 coherent{ Other PCle master with

GPU CoreLink
MMU-600

———

I I
Processor J Processor

DTI-TBU DTI-ATS DTI-TBU

DTI interconnect

DTI

CorelLink Cache Coherent Interconnect

Figure 2-1 Example system with the MMU-600
The MMU-600 contains the following key components:

Translation Buffer Unit (TBU)
The TBU contains Translation Lookaside Buffers (TLBs) that cache translation tables. The
MMU-600 implements at least one TBU for each connected master, and these TBUs are local to
the corresponding master.

Translation Control Unit (TCU)
The TCU controls and manages the address translations. The MMU-600 implements a single
TCU. In MMU-600-based systems, the AMBA DTI protocol defines the standard for
communicating with the TCU.

DTI interconnect
The DTI interconnect connects multiple TBUs to the TCU.

When an MMU-600 TBU receives a transaction on the TBS interface, it looks for a matching translation
in its TLBs. If it has a matching translation, it uses it to translate the transaction and outputs the
transaction on the TBM interface. If it does not have a matching translation, it requests a new translation
from the TCU using the DTI interface.

When the TCU receives a DTI translation request, it uses the QTW interface to perform:

» Configuration table walks, which return configuration information for the translation context.
» Translation table walks, which return translation information specific to the transaction address.

The TCU contains caches that reduce the number of configuration and translation table walks that are to
be performed. Sometimes no walks are required.

When the TBU receives the translation from the TCU, it stores it in its TLBs. If the translation was
successful, the TBU uses it to translate the transaction, otherwise it terminates it.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-22

reserved.
Non-Confidential

2 Functional description
2.1 About the functions

A processor controls the TCU by:

* Writing commands to a Command queue in memory.
* Receiving events from an Event queue in memory.
» Writing to its configuration registers using the programming interface.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about translation and how software communicates with the
TCU.

This section contains the following subsections:

» 2.1.1 Translation Control Unit on page 2-23.
» 2.1.2 Translation Buffer Unit on page 2-25.
» 2.1.3 DTI interconnect on page 2-26.

211 Translation Control Unit

A typical SMMUv3-based system includes a single Translation Control Unit TCU. The TCU is usually
the largest block in the system, and performs several roles.

The TCU:

» Manages the memory queues.

+ Performs translation table walks.

» Performs configuration table walks.

+ Implements backup caching structures.

+ Implements the SMMU programmers model.

The following figure shows the TCU.

MMU-600 TCU

=T
request buffer cache
RAM-based logic Walk caches and TLB
DTI
interface

S2L0 || S2L1 || S2L2 || S2L3
N—
manager
Clock and power -
Queue manager
[lelalife]
Register file 5

‘ACE-Lite +DVM

DTI over AXI4-Stream

Q-Channel

QTW/DVM

interface

Figure 2-2 MMU-600 TCU
The TCU consists of:

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-23
reserved.
Non-Confidential

2 Functional description
2.1 About the functions

Walk caches
The TCU includes separate four-way set-associative walk caches to store results of translation
table walks. During MMU-600 configuration, the cache line entries are split to create separate
walk caches that are reserved for:
» Stage 1 level 0 table entries.
+ Stage 1 level 1 table and block entries.
» Stage 1 level 2 table and block entries.
» Stage 1 level 3 table entries.
» Stage 2 level 0 table entries.
» Stage 2 level 1 table and block entries.
» Stage 2 level 2 table and block entries.
» Stage 2 level 3 table entries.

To enable and disable the walk cache for a particular stage and level of translation, use the
TCU_CTRL register. If an error occurs for a cache line entry, the TCU_ERRSTATUS register
identifies the affected entry.

The walk cache is useful in cases where a translation request results in a miss in other TCU
caches. A subsequent hit in the walk cache requires only a single memory access to complete
the translation table walk and fetch the required descriptor.

Configuration cache
The configuration caches are 4-way set-associative cache structures that store configuration
information. Each entry stores the Context Descriptor (CD) and Stream Table Entry (STE)
contents for a translation context.
Note

The configuration cache does not cache the contents of intermediate configuration tables.

Translation manager
The translation manager manages translation requests that are in progress. All translation table
walks and configuration table walks are hazard-checked to reduce the possibility of multiple
transactions requesting duplicate walks.

Translation request buffer
The translation request buffer stores translation requests from TBUs when all translation
manager slots are full. The translation request buffer supports more slots than the translation
manager. When correctly configured, this buffer has enough space to store all translation
requests that TBUs can issue simultaneously. This buffer therefore prevents the DTI interface
from becoming blocked.

PMU
The PMU counts TCU performance-related events.

Clock and power control
The TCU has its own clock and power control, provided by the Q-Channel.

Queue manager
The queue manager manages all SMMUv3 Command queues and Event queues that are stored
in memory.

QTW/DVM interface
The Queue and Table Walk (QTW)/Distributed Virtual Memory (DVM) interface is an ACE-Lite
+DVM master interface.

Register file
The register file implements the SMMUvV3 programmers model, as defined by the Arm® System
Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and
version 3.1.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-24
reserved.
Non-Confidential

2 Functional description
2.1 About the functions

DTI interface
The slave DTI interface uses the DTI protocol, typically over AXI4-Stream, to enable the TCU
to communicate with a master component. For the MMU-600, the master component is either a
TBU or a PCle master.

Related information

2.2 Interfaces on page 2-28

2.3.8 TCU transaction handling on page 2-49

2.3.9 TCU prefetch on page 2-49

3.2 SMMU architectural registers on page 3-64

21.2 Translation Buffer Unit

A typical SMMUv3-based system includes multiple Translation Buffer Units (TBUs). Each TBU is
located close to the component that it provides address translation for.

A TBU intercepts transactions and provides the required translation from a Translation Lookaside Buffer
(TLB) if possible. If a TLB does not contain the required translation, the TBU requests translations from
the TCU and then caches the translation in one of the TLBs.

The following figure shows the TBU.

| AcE Lite

MMU-600 TBU

Slave interface

Write data buffer Micro TLB

PMU
Main TLB DTI »
G | DTI over AXI4-Stream

Clock and power
Q-Channel control

Translation

Transaction manager

tracker

Master interface

lACE-Lite

Figure 2-3 MMU-600 TBU
The TBU consists of:

Master and slave interfaces
These interfaces manage the TBS and TBM interfaces.

Micro TLB
The TBU compares incoming transactions with translations that are cached in the micro TLB
before looking in the Main TLB (MTLB). The micro TLB is a fully associative TLB that
provides configuration cache and TLB functionality. You can use a tie-off signal to configure the
cache replacement policy as either round-robin or Pseudo Least Recently Used (PLRU).

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-25
reserved.
Non-Confidential

213

DT

2 Functional description
2.1 About the functions

Main TLB
Each TBU includes an optional Main TLB (MTLB) that caches translation table walk entries
from:
» Stage 1 translations.
+ Stage 2 translations.
+ Stage 1 combined with stage 2 translations.

The MTLB is a configurable four-way set associative cache structure that uses a random cache
replacement policy.

If multiple translation sizes are in use, a single transaction might require multiple lookups.
Lookups are pipelined to permit a sustained rate of one lookup per cycle.

TBU direct indexing enables the MMU-600 to manage MTLB entries externally to the TBU.
This improves the predictability of TBU performance, for bus masters that have real-time
performance requirements.

Translation manager
The translation manager manages translation requests that are in progress. Each transaction
occupies a translation slot until it is propagated downstream through the master interface. All
transactions are hazard-checked to reduce the possibility of duplicate translation requests being
sent to the TCU.
There is no restriction on the ordering of transactions with different AXI IDs. Transactions with
different AXI IDs can be propagated downstream out-of-order.
All transactions with a given AXI ID value must remain ordered. The translation manager
propagates such transactions when the translation is ready, provided no other transaction with
the same AXI ID is already waiting.
See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACES
for more information about AXI transaction identifiers.

Write data buffer

The optional write data buffer enables write transactions with different AXI IDs to progress
through the TBU out-of-order. It reorders the data to match the downstream transaction order.

PMU
The PMU counts TBU performance-related events.

Clock and power control
The TBU has its own clock and power control, provided by the Q-Channel.

DTI interface
The master DTI interface uses the DTI protocol, typically over AXI4-Stream, to enable the TBU
to communicate with a slave component. For the MMU-600, the slave component is the TCU.
Although you can implement DTI over different transport protocols, the MMU-600 interfaces
use AXI4-Stream.

Transaction tracker
The transaction trackers manage outstanding read and write transactions, permitting invalidation
and synchronization to take place without stalling the AXI interfaces.

Related information

2.3.4 TBU direct indexing and MTLB partitioning on page 2-46

3.2 SMMU architectural registers on page 3-64

interconnect

The TBU and TCUs use a DTI interface to communicate. The DTI interconnect enables the DTI
interface to use the AXI4-Stream transport protocol.

The DTI interconnect can connect any components that conform to the AXI4-Stream protocol, as defined
by the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-26

reserved.
Non-Confidential

2 Functional description
2.1 About the functions

The DTI interconnect contains internal components that are hierarchically composable, that is, they can
be connected in different ways to suit your system requirements. For example, within an MMU-600
system, you can use the switch component to combine the DTI interfaces of multiple TBUs into a single
DTTI interface. You can then connect the combined DTTI interface to another DTI interconnect that is
closer to the TCU. The DTI interconnect includes switch, sizer, and register slice components.

Switch

Sizer

The switch connects multiple DTI masters, such as TBUs, to a DTI slave such as a TCU. The

switch implements the following parallel networks:

* For TBU to TCU traffic, a network that connects multiple AXI4-Stream slave interfaces to a
single AXI4-Stream master interface.

* For TCU to TBU traffic, a network that connects a single AXI4-Stream slave interface to
multiple AXI4-Stream master interfaces.

Note

The switch does not store any data, and therefore does not require a Q-Channel clock-gating
interface.

The sizer connects channels that have different data widths, enabling different tradeoffs of
bandwidth to area. The sizer supports conversion between any of the supported AXI4-Stream
data widths:

+ 1 byte.

* 4 bytes.
* 10 bytes.
* 20 bytes.

The sizer includes a Q-Channel interface to provide clock-gating control.

Register slice

Use the register slice to improve timing. The register slice includes a Q-Channel interface to
provide clock-gating control.

The MMU-600 DTI interconnect components do not include a component to connect different
clock and power domains. You can connect DTI interfaces in different clock and power domains
by using the Bidirectional AXI4-Stream (BAS) configuration of the ADB-400 AMBA Domain
Bridge.

Related information

2.3 Operation on page 2-36

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-27
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

2.2 Interfaces
The MMU-600 includes interfaces for each of the TCU, TBU, and DTI interconnect components.

The DTI interconnect consists of switch, sizer, and register slice components that can be connected
separately, and therefore have their own interfaces.

The PMU snapshot interface is common to both TCU and TBU.

This section contains the following subsections:

o 2.2.1 TCU interfaces on page 2-28.

o 2.2.2 TBU interfaces on page 2-30.

o 2.2.3 DTI interconnect interfaces on page 2-32.

2.21 TCU interfaces
The MMU-600 contains various TCU interfaces.
The following figure shows the TCU interfaces.

Clock and reset =——p»|
LPI_PD =———Q-Channe|———p MMU-600 TCU
LPI_CG =———Q-Channel=———

DTI

A

A
Coherency
connection ACE-Lite+DVM APB4
signaling
v
SYSCO QTW/DVM PROG

Figure 2-4 TCU interfaces

TCU Queue and Table Walk/Distributed Virtual Memory interface

The Queue and Table Walk/Distributed Virtual Memory (QTW/DVM) interface is an ACE-LitetDVM
master interface.

The QTW/DVM interface issues the following transaction types:
* ReadNoSnoop.

* WriteNoSnoop.

* ReadOnce.

* WriteUnique.

* DVM Complete.

The QTW/DVM interface uses the write address transaction ID signal awid_qtw, and the read address
transaction ID signal, arid_qtw. The value of awid_qtw is always 0, and the value of arid_qtw depends
on the transaction type. The following table shows the possible values of arid_qtw.

Table 2-1 Possible arid_qgtw values

Transaction type | arid_qtw[n:1] arid_qtw[0]

Ju—

Translation table walk | Indicates the slot that is requesting the translation table walk

Command queue read | All bits = 0. 0
DVM Complete All bits = 1. 0
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-28
reserved.

Non-Confidential

2 Functional description
2.2 Interfaces

To support 16-bit Virtual Machine IDentifiers (VMIDs), the interface provides DVMvS.1 support.
The interface does not issue cache maintenance operations or exclusive accesses.

Related information

2.3.7 Distributed Virtual Memory (DVM) messages on page 2-48
2.3.10 Error responses on page 2-50

AXIS5 support on page 2-59

A.2 TCU QTW/DVM interface signals on page Appx-A-99

TCU PROG interface

The PROG interface is an AMBA APB4 slave interface. It enables software to program the MMU-600
internal registers and read the Performance Monitoring Unit (PMU) registers and the debug registers.

This interface runs synchronously with the other TCU interfaces.
The applicable address width for this interface depends on the value of TCUCFG_NUM_TBU:

* When TCUCFG_NUM_TBU = 14, the address width is 21 bits.
* When TCUCFG_NUM_TBU = 62, the address width is 23 bits.

Transactions are Read-As-Zero, Writes Ignored (RAZ/W1) when any of the following apply:

* An unimplemented register is accessed.
* PSTRBJ3:0] is not @b1111 for write transfers.
+ PPROT([1] is not set to 0 for Secure register accesses.

See the Arm® AMBA® APB Protocol Specification for more information.
Related information

A.3 TCU programming interface signals on page Appx-A-102

TCU LPIL_PD interface

This Q-Channel slave interface manages LPI powerdown for the TCU.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information.

Related information

A.6 TCU LPI PD interface signals on page Appx-A-105

TCU LPIL_CG interface

This Q-Channel slave interface enables LPI clock-gating for the TCU.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information.

Related information
A.7 TCU LPI_CG interface signals on page Appx-A-106

TCU DTI interface

The DTI interface manages communication between the TBUs and the TCU, using the DTI protocol.
The DTI protocol can be conveyed over different transport layer mediums, including AXI4-Stream.

The TCU includes a slave DTT interface and each TBU includes a master DTT interface. To permit
bidirectional communication, each DTI interface includes one AXI4-Stream master interface and one
AXI4-Stream slave interface.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification and the Arm®
AMBA® 4 AXI4-Stream Protocol Specification for more information.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-29
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

Related information

2.3.1 DTI overview on page 2-36

A.8 TCU DTI interface signals on page Appx-A-107

TCU interrupt interfaces

This interface provides global, per-context, and performance interrupts.
Related information

A.9 TCU interrupt signals on page Appx-A-108

TCU SYSCO interface

The MMU-600 provides a hardware system coherency interface. This interface permits the TCU to
remove itself from a coherency domain in response to an LPI request.

The SYSCO interface uses the syscoreq and syscoack handshake signals to enter or exit a coherency
domain.

If the sup_btm signal is tied LOW:

* syscoreq is always driven LOW and syscoack is ignored.
* The TCU SYSCO interface is not used and can be left unconnected.

Related information
A.4 TCU SYSCO interface signals on page Appx-A-103

TCU tie-off signals
The TCU tie-off signals enable you to initialize various operating parameters on exit from reset state.
At reset, the value of each tie-off signal controls the respective bits in the SMMU_IDRO Register.

Related information
A.10 TCU tie-off signals on page Appx-A-109

222 TBU interfaces
The following figure shows the TBU interfaces.
TBS

ACE-Lite

Clock and reset =——p»
LPI_PD =———————Q-Channe|=——Jp> MMU-600 TBU DTI
LP|_CG =—————Q-Channe|=——p>

\ 4

ACE-Lite

TBM
Figure 2-5 TBU interfaces

TBU TBS interface

The transaction slave (TBS) interface is an ACES5-Lite interface on which the TBU receives incoming
untranslated memory accesses.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-30
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

When the ACE TBU configuration is used, this interface is defined as an ACE interface rather than
ACE-Lite.

This interface supports a 64-bit address width.

The interface implements optional signals to support the following AXI5 extensions:

* Untranslated Transactions.

* Cache Stash Transactions.

* DeAllocation_Transactions.
* Wakeup Signals.

The TBS interface supports ACE Exclusive accesses.

If a transaction is terminated in the TBU, the transaction tracker returns the transaction with the
user-defined AXI RUSER and BUSER bits set to 0.

Related information
2.3.10 Error responses on page 2-50
A.12 TBU TBS interface signals on page Appx-A-111

TBU TBM interface

The TBM transaction master interface is an ACES5-Lite interface on which the TBU sends outgoing
translated memory accesses.

When the ACE TBU configuration is used, this interface is defined as an ACE interface rather than
ACE-Lite.

The AXI ID of a transaction on this interface is the same as the AXI ID of the corresponding transaction
on the TBS interface.

This interface supports a 48-bit address width, and TBUCFG_DATA_WIDTH defines the data width.

This interface can issue read and write transactions until the outstanding transaction limit is reached. The
MMU-600 provides parameters that permit you to configure:

* The outstanding read transactions limit.
* The outstanding write transactions limit.
» The total outstanding read and write transactions limit.

The interface implements optional signals to support the following AXI5 extensions:

* Untranslated Transactions.

* Cache_ Stash Transactions.

* DeAllocation Transactions.
* Wakeup Signals.

When receiving an SLVERR or DECERR response to a downstream transaction, the TBM interface
propagates the same response to the TBS interface.

The TBM interface supports ACE Exclusive accesses.

Related information

2.3.10 Error responses on page 2-50

2.4.2 AMBA support on page 2-57

A.13 TBU TBM interface signals on page Appx-A-115

TBU LPI_PD interface
This Q-Channel slave interface manages LPI powerdown for the TBU.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-31
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

Related information

A.15 TBU LPI PD interface signals on page Appx-A-120

TBU LPI_CG interface

This Q-Channel slave interface enables LPI clock-gating for the TBU.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information.

Related information
A.16 TBU LPI CG interface signals on page Appx-A-121
TBU DTl interface

The TBU DTI interface enables master devices with their own TLB and prefetch capability to request
translations from the MMU-600. This interface uses the DTI-TBU protocol for communication between
the TBU and the TCU.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4-Stream master interface and one
AXI4-Stream slave interface.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification and the Arm®
AMBA® 4 AXI4-Stream Protocol Specification for more information.

Related information
2.3.1 DTI overview on page 2-36
A.17 TBU DTI interface signals on page Appx-A-122
TBU interrupt interfaces
This interface provides global, per-context, and performance interrupts.
Related information
A.18 TBU interrupt signals on page Appx-A-123
TBU tie-off signals
The TBU tie-off signals enable you to initialize various operating parameters on exit from reset state.
At reset, the value of each tie-off signal controls the respective bits in the SMMU_IDRO Register.
Related information
A.19 TBU tie-off signals on page Appx-A-124
223 DTI interconnect interfaces

The DTI interconnect includes interfaces for each of the switch, sizer, and register slice components.

DTI interconnect switch interfaces
The DTI interconnect switch component includes dedicated interfaces.

The following figure shows the DTI interconnect switch interfaces.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-32
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

DN_S0 UP_S0 DN.S1 UP.S1 +=-- DN_SnUP_Sn

DTl interconnect switch

UP_M DN_M

Figure 2-6 DTI interconnect switch interfaces

The following table provides more information about the switch interfaces.

Table 2-2 DTI interconnect switch interfaces

Interface | Interface type | Protocol Description

DN _Sn Slave AXI4-Stream | Slave downstream interface. One DN_Sn interface is present for each slave interface.
UP_Sn Master Slave upstream interface. One UP_Sn interface is present for each slave interface.
DN M Master Master downstream interface.

UP M Slave Master upstream interface.

Note

The interconnect switch does not store any data, and therefore does not require a Q-Channel clock-gating

interface.

DTI interconnect sizer interfaces

The DTI interconnect sizer component includes dedicated interfaces.

The following figure shows the DTI interconnect sizer interfaces.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-33
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

LPI_CG DN_S UP_S
DTI interconnect sizer

UP_M DN_M

Figure 2-7 DTI interconnect sizer interfaces

The following table provides more information about the sizer interfaces.

Table 2-3 DTI interconnect sizer interfaces

Interface | Interface type | Protocol Description

LPI CG |Slave Q-Channel | Clock-gating interface.

DN S Slave AXI4-Stream | Slave downstream interface.
UP_S Master Slave upstream interface.

DN M Master Master downstream interface.
UP_ M Slave Master upstream interface.

DTI interconnect register slice interfaces

The DTI interconnect register slice component includes dedicated interfaces.

The following figure shows the DTI interconnect register slice interfaces.

LPI_CG DN_S UP_S

DTI interconnect register slice

UP_M DN_M

Figure 2-8 DTI interconnect register slice interfaces

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-34
reserved.
Non-Confidential

2 Functional description
2.2 Interfaces

The following table provides more information about the register slice interfaces.

Table 2-4 DTI interconnect register slice interfaces

Interface | Interface type | Protocol Description

LPI CG |Slave Q-Channel Clock-gating interface.

DN S AXI4-Stream | Slave downstream interface.
UP_S Master Slave upstream interface.

DN M Master downstream interface.
UP M Slave Master upstream interface.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

2-35

2 Functional description
2.3 Operation

23 Operation

This section provides information about the operation of the MMU-600 features.

This section contains the following subsections:

o 2.3.1 DTI overview on page 2-36.

o 2.3.2 Performance Monitoring Unit on page 2-37.

» 2.3.3 ACE protection support on page 2-43.

* 2.3.4 TBU direct indexing and MTLB partitioning on page 2-46.

o 2.3.5 Reliability, Availability, and Serviceability on page 2-47.

* 2.3.6 Quality of Service on page 2-48.

o 2.3.7 Distributed Virtual Memory (DVM) messages on page 2-48.

o 2.3.8 TCU transaction handling on page 2-49.

o 2.3.9 TCU prefetch on page 2-49.

e 2.3.10 Error responses on page 2-50.

o 2.3.11 Conversion between ACE-Lite and ARMVS attributes on page 2-50.
* 2.3.12 AXI USER bits defined by the MMU-600 TBU on page 2-52.

2.31 DTI overview

In an MMU-600-based system, the AMBA DTI protocol defines the standard for communicating with a
TCU.

The AMBA DTI protocol includes both:

* DTI-TBU protocol, for communication between a TBU and a TCU.
* DTI-ATS protocol, for communication between a PCle Root Complex and a TCU.

The DTI protocol is a point-to-point protocol. Each channel consists of a link, a DT master, and a DTI
slave. The DTI masters in the respective protocols are:

* The TBU, in the DTI-TBU protocol.
* The PCIe Root Complex, in the DTI-ATS protocol.

The DTI slave in both DTI-TBU and DTI-ATS is the TCU.

DTI masters and slaves communicate using defined DTI messages. The DTI protocol defines the
following message groups:

* Connection and disconnection.

* Translation request.

+ Invalidation and synchronization.
» Page request.

* Register access.

The DTI_TBU_CONDIS REQ message initiates a TBU connection or disconnection handshake. The
TBU uses this message to connect to the TCU. During connection, the TBU can specify the number of
requested translation tokens.

The TBU uses the TOK_ TRANS REQ field to request translation tokens. The max_tok_trans signal
defines the number of translation tokens that the TBU requests.

The TBU uses the TOK _INV_GNT field to grant invalidation tokens. The TBU grants only one
invalidation token, and the TCU is only capable of issuing one invalidate message at a time.

A DTI master uses a DTI TBU CONDIS REQ or a DTI ATS CONDIS REQ message to initiate a
connection handshake. If the master provides a TID value that is greater than the maximum supported
TID that TCUCFG_NUM_TBU defines, the slave sends a Connect Deny message.

A translation request to the TCU where StreamID > 224 results in a fault and an SMMUv3
C_BAD_STREAMID event. If the TBU receives an invalidation request where StreamID > 224, any

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-36
reserved.
Non-Confidential

2 Functional description
2.3 Operation

comparisons with a StreamID value fail. No TLB entries are invalidated, but other effects that do not
consider the supplied StreamID occur as normal.

Note

+ The TBU never generates translation requests with StreamID > 224,

* The TCU never generates invalidation requests with StreamID >

224,

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more

information.
2.3.2 Performance Monitoring Unit
The MMU-600 includes a PMU for the TCU and a PMU for each TBU. The PMU events and counters
indicate the runtime performance of the MMU-600.
The MMU-600 includes logic to gather various statistics on the operation of the MMU during runtime,
using events and counters. These events, which the SMMUV3 architecture defines, provide useful
information about the behavior of the MMU. You can use this information when debugging or profiling
traffic.
SMMUv3 architectural performance events
Both the TCU and the TBU implement performance events that the SMMUv3 Performance Monitor
extension defines.
The SMMU_PMCG_SMRO register can filter some events so that only events with a particular StreamID
are counted. This event filtering includes:
» Speculative transactions and translations.
» Transactions and translations that result in a terminated transaction or a translation fault.
The following table shows the architecturally defined MMU-600 TCU performance events.
Table 2-5 SMMUv3 performance events for the TCU
Event Event ID | SMMU_PMCG_SMRO0 Description
filterable
Clock cycle. ox0 No Counts clock cycles.
Cycles where the clock is gated after a clock Q-
Channel handshake are not counted.
Transaction. ox1 Yes Counts translation requests that originate from a DTI-
TBU or DTI-ATS master.
TLB miss caused by incoming ox2 Yes Counts translation requests where the translation
transaction or translation request. walks new translation table entries.
Configuration cache miss caused | 0x3 Yes Counts translation requests where the translation
by transaction or translation walks new configuration table entries.
request.
Translation table walk access. ox4 Yes Counts translation table walk accesses.
Configuration structure access. 0x5 Yes Counts configuration table walk accesses.
PCle ATS Translation Request ox6 Yes Counts translation requests that originate from a DTI-

received.

ATS master.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

2-37

2 Functional description
2.3 Operation

The following table shows the architecturally defined MMU-600 TBU performance events.

Table 2-6 SMMUv3 performance events for the TBU

Event Event ID | SMMU_PMCG_SMR0 Description
filterable

Clock cycle. ox0 No Counts clock cycles.

Cycles where the clock is gated after a clock Q-Channel

handshake are not counted.
Transaction. ox1 Yes Counts transactions that are issued on the TBM interface.
TLB miss caused by ox2 Yes Counts non-speculative translation requests that are
incoming transaction or issued to the TCU.
translation request.
PCle ATS Translation ox7 Yes Counts ATS-translated transactions that are issued on the
Request received. TBM interface.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information.

MMU-600 TCU events

The MMU-600 PMU can be configured to monitor a range of iMPLEMENTATION DEFINED TCU performance
events.

The SMMU_PMCG_SMRO register can filter some TCU performance events so that only events with a
particular StreamID are counted. This event filtering includes:

» Speculative transactions and translations.
« Transactions and translations that result in a terminated transaction or a translation fault.

The following table shows the TCU performance events.

Table 2-7 MMU-600 TCU performance events

Event Event ID | SMMU_PMCG_SMR0 Description
filterable
S1LOWC lookup 0x80 Yes Counts translation requests that access the SILOWC walk cache.
S1LOWC miss ox81 Yes Counts translation requests that access the SILOWC walk cache and
do not result in a hit.
S1L1WC lookup ox82 Yes Counts translation requests that access the SIL1WC walk cache.
S1L1WC miss ox83 Yes Counts translation requests that access the SIL1WC walk cache and
do not result in a hit.
S1L2WC lookup ox84 Yes Counts translation requests that access the SIL2ZWC walk cache.
S1L2WC miss ox85 Yes Counts translation requests that access the SIL2WC walk cache and
do not result in a hit.
S1L3WC lookup 0x86 Yes Counts translation requests that access the SIL3WC walk cache.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-38

reserved.
Non-Confidential

2 Functional description
2.3 Operation

Table 2-7 MMU-600 TCU performance events (continued)

Event Event ID | SMMU_PMCG_SMRO0 Description
filterable
S1L3WC miss ox87 Yes Counts translation requests that access the SIL3WC walk cache and

do not result in a hit.

S2LOWC lookup ox88 Yes Counts translation requests that access the S2LOWC walk cache.

S2LOWC miss ox89 Yes Counts translation requests that access the S2LOWC walk cache and
do not result in a hit.

S2L1WC lookup Ox8A Yes Counts translation requests that access the S2L1WC walk cache.

S2L1WC miss ox8B Yes Counts translation requests that access the S2L1WC walk cache and
do not result in a hit.

S2L2WC lookup ox8C Yes Counts translation requests that access the S2L2WC walk cache.

S2L2WC miss ox8D Yes Counts translation requests that access the S2L2WC walk cache and
do not result in a hit.

S2L3WC lookup Ox8E Yes Counts translation requests that access the S2L3WC walk cache.

S2L3WC miss Ox8F Yes Counts translation requests that access the S2L3WC walk cache and
do not result in a hit.

WC read 0x90 Yes Counts reads from the walk cache RAMs, excluding reads that are
caused by invalidation requests.

Note
A single walk cache lookup might result in multiple RAM reads. This

behavior permits contiguous entries to be located.

Buffered translation | @x91 Yes Counts translations written to the translation request buffer because
all translation slots are full.

CC lookup 0x92 Yes Counts lookups into the configuration cache.

CC read ox93 Yes Counts reads from the configuration cache RAMs, excluding reads
that are caused by invalidation requests.

Note
A single cache lookup might result in multiple RAM reads. This

behavior permits contiguous entries to be located.

CC miss ox94 Yes Counts lookups into the configuration cache that result in a miss.
Speculative OxAQ Yes Counts translation requests that are marked as speculative.
translation

S1LOWC error oxCo No RAS corrected error in S1LO walk cache.

This Secure event is visible only when the SMMU PMCG_SCR.SO
bit is set to 1.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-39
reserved.
Non-Confidential

2 Functional description

2.3 Operation

Table 2-7 MMU-600 TCU performance events (continued)

Event

Event ID

SMMU_PMCG_SMRO
filterable

Description

S1L1WC error

oxC1

No

RAS corrected error in S1L1 walk cache.

bitis setto 1.

This Secure event is visible only when the SMMU PMCG _SCR.SO

S1L2WC error

oxC2

RAS corrected error in S1L2 walk cache.

bitis setto 1.

This Secure event is visible only when the SMMU PMCG_SCR.SO

S1L3WC error

oxC3

RAS corrected error in S1L.3 walk cache.

bit is set to 1.

This Secure event is visible only when the SMMU PMCG_SCR.SO

S2LOWC error

oxC4

RAS corrected error in S2L0 walk cache.

bit is set to 1.

This Secure event is visible only when the SMMU PMCG_SCR.SO

S2L1WC error

oxC5

RAS corrected error in S2L1 walk cache.

bit is set to 1.

This Secure event is visible only when the SMMU PMCG_SCR.SO

S2L2WC error

OxC6

RAS corrected error in S2L2 walk cache.

bit is set to 1.

This Secure event is visible only when the SMMU_PMCG_SCR.SO

S2L3WC error

oxC7

RAS corrected error in S21.3 walk cache.

bit is set to 1.

This Secure event is visible only when the SMMU PMCG_SCR.SO

Configuration cache
error

oxC8

RAS corrected error in configuration cache.

bit is set to 1.

This Secure event is visible only when the SMMU PMCG_SCR.SO

Note

A single DTI translation request might correspond to multiple translation request events in either of the
following circumstances:

A translation results in a stall fault event and is restarted.
If a translation results in a stall fault event because of the Event queue being full, the translation is
retried when an Event queue slot becomes available.

MMU-600 TBU events

The MMU-600 PMU can be configured to monitor a range of iIMPLEMENTATION DEFINED TBU performance
events.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.

Non-Confidential

2-40

2 Functional description
2.3 Operation

The SMMU_PMCG_SMRO register can filter the TBU performance events so that only events with a
particular StreamID are counted. This event filtering includes:

Speculative transactions and translations.
Transactions and translations that result in a terminated transaction or a translation fault.

The following table shows the TBU performance events.

Table 2-8 MMU-600 TBU performance events

Event

Event ID

SMMU_PMCG_SMRO
filterable

Description

Main TLB lookup | @x80 Yes Counts Main TLB lookups.

Main TLB miss ox81 Yes Counts translation requests that miss in the Main TLB.

Main TLB read ox82 Yes Counts once per access to the Main TLB RAMs, excluding reads that
invalidation requests cause.

Note

A transaction might access the Main TLB multiple times to look for
different page sizes.

Micro TLB lookup | ©x83 Yes Counts micro TLB lookups.

Micro TLB miss ox84 Yes Counts translation requests that miss in the micro TLB.

Slots full ox85 No Counts once per cycle when all slots are occupied and not ready to
issue transactions downstream.
This Secure event is visible only when the SMMU PMCG_SCR.SO
bitis set to 1.

Out of translation 0x86 No Counts once per cycle when a translation request cannot be issued

tokens because all translation tokens are in use.
This Secure event is visible only when the SMMU_PMCG_SCR.SO
bitis set to 1.

Write data buffer ox87 No Counts once per cycle when a transaction is blocked because the write

full data buffer is full.
This Secure event is visible only when the SMMU PMCG_SCR.SO
bit is set to 1.

Translation request | @x88 Yes Counts translation requests, including both speculative and non-
speculative requests.

Write data uses ox89 Yes Counts transactions with write data that is stored in the write data

write data buffer buffer.

Write data bypasses | Ox8A Yes Counts transactions with write data that bypasses the write data buffer.

yp yp

write data buffer

Makelnvalid ox8B Yes Counts when either:

downgrade * A Makelnvalid transaction on the TBS interface is output as

Cleanlnvalid on the TBM interface.
¢ A ReadOnceMakelnvalid transaction on the TBS interface is
output as ReadOnceCleanInvalid on the TBM interface.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

2-41
reserved.

Non-Confidential

2 Functional description
2.3 Operation

Table 2-8 MMU-600 TBU performance events (continued)

Event

Event ID | SMMU_PMCG_SMRO0 Description
filterable

Stash fail

Ox8C Yes Counts when either.

* A WriteUniquePtIStash or WriteUniqueFullStash transaction on
TBS is output as a WriteNoSnoop or WriteUnique transaction on
the TBM interface.

* A StashOnceShared or StashOnceUnique transaction on the TBS
interface has a valid translation, but is terminated in the TBU.

Note

A StashOnceShared or StashOnceUnique transaction that is terminated
because of a StreamDisable or GlobalDisable translation response does
not cause this event to count.

Main TLB error

0xCo No RAS corrected error in Main TLB.

This Secure event is visible only when the SMMU PMCG_SCR.SO
bit is set to 1.

SMMUv3 PMU register architectural options

The SMMUV3 architecture defines the Performance Monitor Counter Group (PMCG) configuration
register, SMMU PMCG CFGR. An MMU-600 implementation assumes fixed values for
SMMU_PMCG CFGR, and these values define behavioral aspects of the implementation.

The following table shows the SMMU PMCG_CFGR register options that the MMU-600 TCU and
TBU use.

Table 2-9 MMU-600 SMMU_PMCG_CFGR register architectural options

Field Default value | Description for default value

SID FILTER TYPE |1 A single StreamlID filter applies to all PMCG counters.

CAPTURE 1 Capture of counter values into SVRn registers is supported.

MSI 0 The counter group does not support Message Signaled Interrupts (MSIs).
RELOC _CTRS 1 The PMCG registers are relocated to page 1 of the PMU address map.
SIZE ox31 The counter group implements 32-bit counters.

NCTR ox3 The counter group includes 4 counters.

Related information
3.3 MMU-600 memory map on page 3-69

PMU snapshot interface

The Performance Monitoring Unit (PMU) snapshot interface is included on the TCU and on each TBU.
You can use this asynchronous interface to initiate a PMU snapshot. A simultaneous snapshot of each
counter register is created and copied to the respective SMMU PMCG_SVRn register.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-42

reserved.
Non-Confidential

2 Functional description
2.3 Operation

The PMU snapshot sequence is a 4-phase handshake. Both pmusnapshot_req and pmusnapshot_ack
are LOW after reset. A snapshot occurs on the rising edge of pmusnapshot_req, and is equivalent to
writing the value 1 to SMMU PMCG CAPR.CAPTURE.

The pmusnapshot_req signal is sampled using synchronizing registers. A register drives
pmusnapshot_ack so that the connected component can sample the signal asynchronously.
Related information

2.3.5 Reliability, Availability, and Serviceability on page 2-47

A.5 TCU PMU snapshot interface signals on page Appx-A-104

A.14 TBU PMU snapshot interface signals on page Appx-A-119

233 ACE protection support

ACE protection support provides a TBU configuration that protects devices that implement a fully
coherent ACE interface. The configuration aligns with the restrictions that ACES5 defines for ACE usage
of the Untranslated_Transactions extension.

A fully coherent master receives snoop transactions from the interconnect. Such snoop transactions travel
in the opposite direction from regular transactions, and backward address translation is not possible.
ACE protection configuration in the TBU however provides a protection check for such masters, by
requiring that the input address and output address are the same.

ACE protection supports at least 255 outstanding snoop transactions on the snoop address channel before
back-pressure is applied to the channel.

The following table shows the transactions that belong to each of the main ACE transaction groups.

Table 2-10 ACE transaction groups

Group Reads Writes
Non-shareable and 1/O coherent transactions | ReadNoSnoop WriteNoSnoop
ReadOnce WriteUnique
WriteLineUnique

Non-shareable WriteBack
Non-shareable WriteClean

Non-shareable WriteEvict

Fully coherent transactions ReadClean Shareable WriteBack

ReadNotSharedDirty | Shareable WriteClean

ReadShared Shareable WriteEvict
ReadUnique Evict

CleanUnique

MakeUnique

ACE protection places restrictions on an upstream master. These restrictions ensure that transactions
from one transaction group cannot manipulate data that is read into a cache by transactions from the
other transaction group. The groups of transactions can therefore behave in different ways:

* Non-shareable and IO-coherent transactions are translated using the normal rules of SMMU
translation. The only exception is that changes in shareability are not permitted, because this would
enable WriteNoSnoop transactions to be changed into WriteUnique transactions. Such a change could
violate the deadlock avoidance rules regarding outstanding WriteBack or WriteClean transactions.

* Fully coherent transactions are only supported for translations that are suitable for ACE protection.
This behavior prevents transactions from being modified or access permissions being limited during

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-43
reserved.
Non-Confidential

2 Functional description
2.3 Operation

translation. Writes and snoops are only permitted for lines already read, so the protection check is
only required for reads.

A TBU that is configured for ACE protection only supports stage 2 translation, and there cannot
therefore be any RAZ/WI translation results. Therefore, anything other than translations that are

supported in ACE protection can result in a transaction fault.

ACE protection does not support PCle Address Translation Services (ATS). When an ACE TBU
configuration is used, any transaction where armmuatst = 1 or awmmuatst = 1 is terminated with an
SLVERR response.

Effect of ACE protection on transaction behavior

The scope of how ACE transactions are supported varies depending on whether ACE protection support
is enabled.

The following table shows which transactions are supported in different circumstances, where the stated
behavior is described after the table.

Table 2-11 ACE protection support for transactions

Transaction

Behavior for ACE-Lite TBU configurations

Behavior for ACE TBU configurations

ReadNoSnoop
WriteNoSnoop
ReadOnce
WriteUnique

WriteLineUnique

Translate

Translate-NoSH

ReadClean
ReadNotSharedDirty
ReadShared
ReadUnique
CleanUnique
MakeUnique

Illegal

Prot-RWX-only

Non-shareable WriteBack
Non-shareable WriteClean

Non-shareable WriteEvict

Illegal

Abort

Shareable WriteBack
Shareable WriteClean
Shareable WriteEvict

Evict

Ilegal

Pass-through

CleanShared
CleanSharedPersist
Cleanlnvalid

Makelnvalid

Behavior depends on cmo_disable setting:

0 Translate.
1 Abort.

Abort

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-44

reserved.
Non-Confidential

2 Functional description
2.3 Operation

Table 2-11 ACE protection support for transactions (continued)

Transaction

Behavior for ACE-Lite TBU configurations Behavior for ACE TBU configurations

ReadOnceCleanInvalid
ReadOnceMakelnvalid
WriteUniquePtlStash
WriteUniqueFullStash
StashOnceShared
StashOnceUnique

StashTranslation

Translate Tllegal

DVM Complete

Illegal Pass-through

DVM Message

Illegal Abort

The behaviors that the table describes have the following meanings:

Translate

Abort

Illegal

The transaction is translated as normal.

The transaction is terminated with an SLVERR response.

The transaction is defined as an AMBA protocol error on this type of interface.

Pass-through

The transaction propagates through the TBU without attribute checks or modification. The
table-based hardware attributes and STE implementation defined auxiliary attributes AXUSER
fields are 0.

Translate-NoSH

The transaction is translated, but terminated with an SLVERR response when any of the

following apply:

+ Stage | translation is enabled.

* The STE.MTCEFQG field is set to not use the incoming memory type.

+ The STE.SHCFG field is set to not use the incoming shareability attribute or STE MTCFG

» For translations where stage 2 translation is enabled, the SH field of the stage 2 translation
table entry is not Non-shareable.

Prot-RWX-only

The transaction is translated, but terminated with an SLVERR response when any of the

following apply:

* Any of STE.NSCFG, STE.PRIVCFG, STE.INSTCFG, or STE.MTCFG are set to not use the
incoming attribute, when those fields are not otherwise ignored.

+ For translations where Stage 2 translation is enabled, the MemAttr field of the Stage 2
translation table entry is not Inner and Outer Write-Back Cacheable.

+ For translations where Stage 2 translation is enabled, the output address of the Stage 2
translation table entry is not the same as the input address.

+ For translations where Stage 2 translation is enabled, the XN field of the Stage 2 translation
table entry is not @bee.

+ For translations where Stage 2 translation is enabled, the S2AP field of the Stage 2
translation table entry is not @b11.

* For Secure translations where Stage 2 translation is enabled, SMMU _S CRO.SIF=I.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-45
reserved.
Non-Confidential

2 Functional description
2.3 Operation

For transactions where the ACE protection behavior is Prot-RWX-only or Pass-through, the shareability
and attributes are not modified. For these transactions:

* The master and slave attribute normalization rules are not used.

* The AxXDOMAIN, AxCACHE, and AxLOCK values that are output from the TBM interface are the
same as the values that are input to the TBS interface.

* On the TBM interface, the outer cacheable bit in AXUSER is 1 if AXCACHE is a cacheable type,
that is, if AXCACHE[3:2] != 0@bee, and 0 otherwise.

Stalling faults
Ensure that stalling faults are not enabled for ACE TBUs that might enter fully coherent mode.

Stalling faults stall WriteNoSnoop and WriteUnique transactions, possibly leading to stalled Write-Back
transactions, stalled snoop responses, and system deadlocks. The TBU does not know about stalling
faults and therefore cannot prevent such circumstances. When a Stream Table Entry (STE) is used for a
fully coherent master, the SMMUvV3 driver must therefore:

e Setthe STE.SISTALLD bit.
¢ Clear the STE.S2S bit.

Removing permission to access a translation table

When a translation table entry is modified and therefore invalidated, it is important to ensure that a
master cannot read any modified cache lines into its coherent cache.

You can prevent a master from reading invalid cache lines by removing permission to access the affected
translation table as follows:

Procedure
1. Change the Stage 2 translation tables to remove permission to access.

2. Invalidate the translation tables in the SMMU. After invalidating a translation table in the SMMU, a
master cannot read the affected cache lines. However, those that the master holds in cache might still
be invalid anyway.

3. Issue Clean and Invalidate to Point of Coherency (PoC) operations to the affected cache lines. This
removes the cache lines from the GPU coherent cache.

4. Zero the data in the translation table.

5. Issue Clean to PoC operations to the affected cache lines. This step is necessary to ensure that the
zeroed data is visible to non-coherent masters.

6. Change the translation tables to provide access to the new user of the table.
Related information

AXI5 support on page 2-59

Upstream ACE master restrictions on page 2-60

Avoiding deadlock when using fully coherent ACE masters on page 2-60

234 TBU direct indexing and MTLB partitioning

TBU direct indexing can help your system to meet real-time translation requirements by enabling the
MMU-600 to manage Main TLB (MTLB) entries externally to the TBU.

Direct indexing enables real-time translation requirements to be met, as follows:

+ Prefetched entries can be guaranteed not to be overwritten by different streams.
* The MTLB can be partitioned into different sets of entries that are used by different streams.

If you configure your system to not use direct indexing, you can select MTLB partitioning. MTLB
partitioning has similar behavior, but only the most significant TLB index bits are provided, and the other
bits are generated internally.

Direct indexing is enabled for a TBU when TBUCFG_DIRECT_IDX = 1.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-46
reserved.
Non-Confidential

2 Functional description
2.3 Operation

When TBUCFG_DIRECT_IDX = 1, or when an MTLB is partitioned, aruser_m and awuser_m have more
bits than the corresponding signals on the TBS interface. The following table shows the aruser_m and

awuser_m extended bits.

Note
The table lists the extended bits in the order MSB first.

Table 2-12 Extended aruser_m and awuser_m bits for MTLB partitioning

Field name

Width

Description

mtlbidx

When direct indexing is enabled, the width of this field is log2(TBUCFG_MTLB_DEPTH) - 2.

When direct indexing is not enabled, the width of this field is 0.

MTLB index.

mtlbway

When direct indexing is enabled, the width of this field is 2.

When direct indexing is not enabled, the width of this field is 0.

MTLB way.

mtlbpart

log2(TBUCFG_MTLB_PARTS)

MTLB partition.

TBUCFG_AWUSER_WIDTH for awuser_m.

TBUCFG_ARUSER_WIDTH for aruser_m.

Regular AXUSER signals.

If an MTLB is partitioned:

* The MTLB size is multiplied by TBUCFG_MTLB_PARTS.
* The mtlbpart field defines the log2(TBUCFG_MTLB_PARTS) most significant index bits.

When direct indexing is enabled for a TBU:

* Lookups and updates to the MTLB use the mtlbidx field.

* Updates to the MTLB use the way that mtlbway specifies.
* Lookups to the MTLB operate on all ways simultaneously.

To maintain system performance, Arm recommends that DVM invalidation is disabled on TBUs on
which direct indexing is enabled. Disable DVM invalidation by setting the appropriate
TCU_NODE CTRLn.DIS DVM bit.

2.3.5 Reliability, Availability, and Serviceability

Reliability, Serviceability, and Availability (RAS) features enable cache corruption to be detected and
corrected, optionally generating interrupts into the system. All MMU-600 RAM-based caches support
RAS error detection and correction.

The RAS Extension registers permit software to monitor the following caches for errors:

* TBU Main TLB (MTLB).
* TCU configuration cache.
e TCU translation table walk cache.

Within a coherent system, these caches are always clean, and there is no requirement to correct data on
these caches. Any incorrect data is discarded and refetched. From an RAS standpoint, discarding and
refetching counts as a corrected error.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information.

Related information
3.8.1 TCU _ERRFR on page 3-84
3.8.2 TCU ERRCTLR on page 3-84

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-47

reserved.
Non-Confidential

2 Functional description
2.3 Operation

3.8.3 TCU ERRSTATUS on page 3-85
3.12.1 TBU ERRFR on page 3-93
3.12.2 TBU ERRCTLR on page 3-93
3.12.3 TBU ERRSTATUS on page 3-94

2.3.6 Quality of Service

You can program the TCU with a priority level for each TBU. The priority level is applied to every
translation from that TBU.

The TCU uses this priority level to:

« Arbitrate between translations that are waiting in the translation request buffer when translation
manager slots become available.

* Arbitrate between translation manager slots when they access the caches and perform configuration
table walks and translation table walks.

* Determine the AXI AxQOS value for translation table walks and configuration table walks that the
TCU issues on the QTW/DVM interface.

The arbiters contain starvation avoidance mechanisms to prevent transactions from being stalled
indefinitely.

The TBU does not implement any prioritization between transactions. Arm recommends that bus masters
with different QoS requirements use separate TBUs for translation.

Related information
3.7.2 TCU_QOS on page 3-77
3.7.6 TCU NODE CTRLn on page 3-81

2.3.7 Distributed Virtual Memory (DVM) messages

The QTW/DVM interface supports DVM messages. The MMU-600 supports DVMvS. 1.

The interface supports DVM transactions of message types TLB Invalidate and Synchronization. The
interface accepts all other DVM transaction message types, and sends a snoop response, but otherwise
ignores such transactions.

Tie the sup_btm input signal HIGH when Broadcast TLB Maintenance is supported.

You can use SMMU_CR2 and SMMU_S CR2 to control how the QTW/DVM interface responds to
TLB Invalidate operations:

« IfSMMU CR2.PTM = 1, the interface ignores Non-secure TLB Invalidate operations.
« IfSMMU S CR2.PTM = 1, the interface ignores Secure TLB Invalidate operations.

Note

Although TLB Invalidate operations have no effect on the QTW/DVM interface when PTM = 1, the
interface still returns the appropriate response.

The QTW/DVM interface might receive DVM Sync transactions without receiving a DVM TLB
Invalidate transaction, or when the PTM bits have masked a TLB Invalidate. If no DVM TLB Invalidate
operations have occurred since the most recent DVM Sync transaction, subsequent DVM Sync
transactions result in an immediate DVM Complete transaction. This behavior ensures that the TCU does
not affect system DVM performance unless TLB Invalidate operations are performed.

The DTI interface allocates the access permissions and shareability of DVM Complete transactions as
follows:

* ARPROT = 0beoo, indicating Unprivileged, Secure, Data access.

*« ARDOMAIN = 0be1, indicating Inner Shareable.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-48
reserved.
Non-Confidential

2 Functional description
2.3 Operation

For a DVM Operation or DVM Sync request on the AC channel, the snoop response signal
CRRESP[4:0] is always set to 6be00ee.

2.3.8

TCU transaction handling

The transaction width, burst length, and transfer size that the TCU supports depend on the transaction

type.

The following table shows the TCU support for read transactions.

Table 2-13 TCU support for read transactions

Transaction type Transaction width, bits ARID[n:1] ARID[0]
Stage 1 Stream table lookup 64 TCUCFG_PTW_SLOTS 1
Stream table lookup 256 TCUCFG_PTW_SLOTS 1
Translation table lookup 64 TCUCFG_PTW_SLOTS 1
Command queue read 128 AllO 0
DVM Complete - All'l 0
DVM Complete transactions are always one beat of full data width.
Command queue reads and DVM complete transactions are independent of translation slots. Therefore,
the maximum number of read transactions that the TCU can issue at any time is TCUCFG_PTW_SLOTS + 2.
The following table shows the TCU support for write transactions.
Table 2-14 TCU support for write transactions
Event queue write 256 0
PRI queue write 128 0
Message Signaled Interrupt (MSI) 32 0
Only one write transaction can be outstanding at a time.
All read and write transactions are aligned to the transaction size.
2.3.9 TCU prefetch

TCU prefetch enables the TCU to prefetch translations on a per-context basis, improving translation
performance for real-time masters that access memory linearly. Software can request a TCU prefetch of
the next translation table to be accessed, when it is required.

Prefetched translations are placed in the TCU walk caches. When the TBU requires the prefetched
translation, it is passed from the TCU to the TBU.

Bits [121:120] of the STE are IMPLEMENTATION DEFINED in SMMUV3, and have the following meanings for

the MMU-600:

oboe Prefetch disabled.
obo1l Reserved.

oble Prefetch forwards.
ob11 Prefetch backwards.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.

Non-Confidential

2-49

2 Functional description
2.3 Operation

Error responses

AMBA defines external AXI slave error, SLVERR, and external AXI decode error, DECERR. The
MMU-600 error response behavior depends on the interface.

The TCU QTW/DVM interface treats SLVERR and DECERR identically, as an abort.
When terminating a transaction, the TBS interface generates a SLVERR response.

If the TBU TBM interface receives a SLVERR or DECERR response to a downstream transaction, it
propagates the same abort type to the TBS interface.

Conversion between ACE-Lite and ARMv8 attributes

The SMMUV3 architecture defines attributes in terms of the ARMvS architecture. The MMU-600
components are therefore required to perform conversion between ACE-Lite and ARMvS attributes.
The TBU must convert:

* ACE-Lite attributes to ARMVS attributes when it receives transactions on the Transaction Slave
(TBS) interface.

+ ARMVS attributes to ACE-Lite attributes when it outputs transactions on the Transaction Master
(TBM) interface.

The TCU must convert ARMvS attributes to ACE-Lite attributes when it outputs transactions on the
QTW/DVM interface.

Slave interface memory type attribute handling

The memory attributes that apply to the TBS interface are contained in the AXCACHE and
AxDOMALIN signals.

The following table shows the ACE-Lite to ARMvS attribute conversions that the TBU TBS interface

performs.
Table 2-15 MMU-600 ACE-Lite to ARMv8 memory attribute conversions
AXCACHE attribute AxDOMAIN attribute | ARMv8 memory attribute ARMv8 shareability
Device Non-bufferable System Device-nGnRnE Outer Shareable
Device Bufferable System Device-nGnRE Outer Shareable
Normal Non-cacheable Bufferable Any Normal Inner Non-cacheable Outer Outer Shareable

Normal Non-cacheable Non-bufferable
Write-Through No Allocate
Write-Through Read-allocate
Write-Through Write-Allocate
Write-Through Read and Write-Allocate

Non-cacheable

Write-Back No Allocate

Write-Back Read-Allocate

Write-Back Write-Allocate

Write-Back Read Allocate Write-Allocate

Non-shareable
Inner Shareable

Outer Shareable

Normal Inner Write-Back Outer
Write-Back

Non-shareable
Non-shareable

Outer Shareable

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

2-50

Note

WriteBack transactions are always treated as non-transient.
The ARMvS8-A Read-Allocate and Write-Allocate hints are the same as the hints that the AXCACHE

Write-Back type provides.

2 Functional description
2.3 Operation

The TBU TBS interface converts instruction writes into data writes. That is, it treats AWPROT]|2] as

0.

Master interface memory type attribute handling

The memory attributes that apply to the TBM and the QTW/DVM interfaces are contained in the
AxCACHE and AxXDOMALIN signals.

In addition, the TBU TBM interface can use the AXLOCK signal to indicate an Exclusive access. The

QTW/DVM interface does not use the AXLOCK signal.

On the TBU TBM interface, a bit on AXUSER indicates whether the memory type before the conversion
is Outer Cacheable.

The following table shows the ARMv8 to ACE-Lite attribute conversions that the master interfaces

perform.

Table 2-16 MMU-600 ARMv8 to ACE-Lite memory attribute conversions

ARMv8 memory AxCACHE attribute | AXDOMAIN attribute | AXLOCK attribute AXUSER Outer
attribute Cacheable
Device-nGnRnE Device Non-bufferable. | System. As Transaction Slave 0
(TBS) AXxLOCK value
Device-GRE Device Bufferable. System. As TBS AXxLOCK value |0
Device-nGRE
Device-nGnRE
Normal Inner Non- Normal Non-cacheable | System. As TBS AXLOCK value |0

cacheable Outer Non-
cacheable

Normal Inner Write-
Through Outer Non-
cacheable

Normal Inner Write-
Back Outer Non-
cacheable

Bufferable.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

2-51

2 Functional description
2.3 Operation

Table 2-16 MMU-600 ARMv8 to ACE-Lite memory attribute conversions (continued)

ARMv8 memory
attribute

AxCACHE attribute

AxDOMAIN attribute

AxLOCK attribute

AxXUSER Outer
Cacheable

Normal Inner Non-
cacheable Outer Write-
Through

Normal Inner Write-
Through Outer Write-
Through

Normal Inner Write-
Back Outer Write-
Through

Normal Inner Non-
cacheable Outer Write-
Back

Normal Inner Write-
Through Outer Write-
Back

Normal Non-cacheable
Bufferable.

System.

As TBS AXxLOCK value

1

Normal Inner Write-
Back Outer Write-Back

Write-Back No Allocate

Write-Back
Read-Allocate.

Write-Back
Write-Allocate.

Write-Back Read and
Write-Allocate.

If AXBURST ==
FIXED, Non-shareable.

If AxBURST != FIXED,
the attribute reflects the
ARMUVS shareability:

¢ Non-shareable.

e Inner Shareable.

¢ Outer Shareable.

2.3.12

AXI USER bits defined by the MMU-600 TBU

The TBU TBM interface AXUSER signals, aruser_m and awuser_m, have 13 bits more than the
corresponding signals on the TBS interface. These extra bits are output in higher-order bits of aruser_m
and awuser_m.

The following table shows the MMU-600-defined aruser_m and awuser_m bits, where w represents the
AXI USER bus width that TBUCFG_AXUSER_WIDTH defines.

Table 2-17 MMU-600 defined aruser_m and awuser_m bits

Bit position | Value

[w+12] Outer Cacheable.

[w+11:n+8] | The Stream Table Entry (STE) defines the attributes.
[w+7:n+4] The IMPLEMENTATION DEFINED stage 2 hardware attributes.
[w+3:n] The IMPLEMENTATION DEFINED stage 1 hardware attributes.

Bits [119:116] of the STE are IMPLEMENTATION DEFINED in SMMUv3. When the TCU sends a DTI
translation response message to a TBU, it outputs these bits in the

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

2-52

2 Functional description
2.3 Operation

DTI TBU TRANS RESP.CTXTATTR field. The MMU-600 TBU outputs these bits as STE-defined
attributes.

The TCU DTI TBU TRANS RESP response also includes SIHWATTR[3:0] and S2ZHWATTR][3:0]
fields. These fields provide the IMPLEMENTATION DEFINED hardware attributes for each stage of translation.
The TBU reports these fields using awuser m and aruser_m.

The SIHWATTR and S2ZHWATTR fields are calculated as follows:

SIHWATTR
SIHWATTR[n] is equal to bit[n+59] of the stage 1 translation table final-level descriptor when
both of the following conditions apply:
* SMMUv3 permits the bit to have an IMPLEMENTATION DEFINED hardware use.
+ SMMUv3 does not permit bit[n+59] of the stage 2 translation table final-level descriptor to
have an IMPLEMENTATION DEFINED hardware use.

Otherwise, STHWATTR[n] = 0.

S2HWATTR
S2HWATTR][n] is equal to bit[n+59] of the stage 2 translation table final-level descriptor when

SMMUV3 permits that bit to have an IMPLEMENTATION DEFINED hardware use. Otherwise,
S2HWATTR[n] = 0.

Arm recommends that systems always use the value of SIHWATTR[n] | S2HWATTR[n], that is:

* The value of the corresponding stage 2 final-level descriptor bit, if it is enabled for hardware use and
stage 2 translation is enabled.

* The value of the corresponding stage 1 final-level descriptor bit, if it is enabled for hardware use and
stage 1 translation is enabled.

e Otherwise, 0.

Related information
Master interface memory type attribute handling on page 2-51

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-53
reserved.
Non-Confidential

2 Functional description
2.4 Constraints and limitations of use

2.4 Constraints and limitations of use
Certain usage constraints and limitations apply to the MMU-600.

Unless otherwise specified:

* An IMPLEMENTATION DEFINED field in a structure that the MMU-600 generates is 0.
* An IMPLEMENTATION DEFINED field in a structure that the MMU-600 reads is ignored.

This section contains the following subsections:
o 2.4.1 SMMUv3 support on page 2-54.
o 2.4.2 AMBA support on page 2-57.

241 SMMUv3 support
The MMU-600 does not implement, or require, certain SMMUv3 functionality.

The SMMUV3 architectural registers include a set of ID registers that indicate the SMMUV3 features that
the MMU-600 implements. The following table shows the SMMUV3 ID register values that the
MMU-600 uses.

Note

The values in this table are not configurable except for values that are specified in bold.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-54
reserved.
Non-Confidential

2 Functional description
2.4 Constraints and limitations of use

Table 2-18 MMU-600 SMMUv3 ID register architectural options

Register Field Value Description for value
SMMU _IDRO S2P 1 Stage 2 translations are supported.
S1P 1 Stage 1 translations are supported.
TTF obl1 Both AArch32 Long-descriptor and AArch64
translation tables are supported.
COHACC sup_cohacc Coherent access to translations, structure, and queues is
supported.
BTM sup_btm Broadcast TLB maintenance is supported.
HTTU[1:0] oboo Updates of the Dirty state and Access flag are not
supported.
DORMHINT 0 Dormant hint is not supported.
HYP 1 Hypervisor stage 1 context is supported.
ATS 1 PCle Root Complex ATS is supported.
NS1ATS 1 Stage 1-only ATS is not supported.
ASID16 1 16-bit ASID is supported.
MSI 1 Message Signaled Interrupts (MSIs) are supported.
SEV sup_sev SMMU and system support for the generation of
events.
ATOS 0 Address translation operations are not supported.
PRI 1 PCle Page Request Interface (PRI) is supported.
VMW 1 VMID wildcard-matching is supported for TLB
invalidation.
VMID16 1 16-bit VMIDs are supported.
CD2L 1 2-level Context Descriptor (CD) tables are supported.
VATOS 0 Virtual ATOS page interface is not supported.
TTENDIAN oboo Mixed-endian translation walks are supported.
STALL MODEL {0, SMMU_S CRO.NSSTALLD} | Stall model and Terminate model are both supported,
unless the Secure world disables Non-secure stalling.
TERM_MODEL 0 Terminated transactions can terminate with either
RAZ/WI behavior or abort.
ST LEVEL obo1l 2-level Stream tables are supported.
SMMU _IDR1 SIDSIZE 0b11000 24-bit stream IDs are supported.
SSIDSIZE 0b10100 20-bit substream IDs are supported.
PRIQS obloe11 219 PRI queue entries are supported.
EVENTQS @blee1l 219 Event queue entries are supported.
CMDQS obl10011 219 Command queue entries are supported.
ATTR PERMS OVR |1 Incoming permission attributes can be overridden.
ATTR_TYPES OVR |1 Incoming memory attributes can be overridden.
REL 0 Base addresses are not fixed.
QUEUES_PRESET |0 The queue base addresses are not fixed.
TABLES PRESET |0 The table base addresses are not fixed.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

2-55

2 Functional description

2.4 Constraints and limitations of use

Table 2-18 MMU-600 SMMUv3 ID register architectural options (continued)

Register Field Value Description for value
SMMU IDR2 BA VATOS 0 No VATOS page is present.
SMMU _IDR3 HAD 1 Hierarchical Attribute Disable is supported.

PBHA 1 Page-Based Hardware Attributes are supported.

XNX 1 ELO/EL1 execute control distinction at stage 2 is
supported for both AArch64 and AArch32 stage 2
translation tables.

PPS 1 If the request has a Process Address Space ID (PASID),
the PASID is included in PRI queue overflow auto-
generated responses. The STE.PPAR field is not
checked and is treated as 1.

SMMU IDR4 | IMPDEF 0 No IMPLEMENTATION DEFINED features apply.
SMMU_IDR5 OAS sup_oas The size of the physical address that is output from the
SMMU.

GRAN4K 1 4KB translation granule is supported.

GRANI16K 1 16KB translation granule is supported.

GRAN64K 1 64KB translation granule is supported.

VAX oboe Virtual addresses of 48 bits per CD.TTBx are
supported.

STALL MAX TCUCFG_XLATE_SLOTS Maximum number of outstanding stalled transactions
that the SMMU supports.

SMMU_IIDR Implementer 0x43B Arm implementation.
Revision MAX(0x2, ecorevnum) Minor revision is p2.
Note
ecorevnum is not configurable.

Variant 0 Product variant, or major revision is r0.

ProductID 0x483 Arm ID.

SMMU_AIDR | ArchMinorRev obooo1l Architecture minor revision is SMMUV3.1.

ArchMajorRev 0bo0o0o Architecture major revision is SMMUV3.

SMMU_S IDRO | MSI 1 Secure MSIs are supported.
STALL MODEL oboo Stall model and Terminate model are both supported.
SMMU S IDR1 | S SIDSIZE 0b11000 24-bit Secure stream IDs are supported.

SECURE_IMPL 1 Security implemented.

SMMU S IDR3 | SAMS 1 Secure Address Translation Services (ATS)

maintenance is not implemented.

In an MMU-600-based system, the SFM_ERR global error cannot occur, because Service Failure Mode
(SFM) is not required.

The MMU-600 accepts but does not act on the following SMMUv3 Prefetch commands:

CMD_PREFETCH_CONFIG
Prefetch configuration. This command prefetches the required configuration for a StreamID.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

2-56

2 Functional description
2.4 Constraints and limitations of use

CMD_PREFETCH_ADDR
Prefetch address. This command prefetches configuration and TLB entries for an address range.

The MMU-600 does not generate any of the following SMMUV3 events, because they are not required:

F_UUT
Unsupported Upstream Transaction.

F_TLB_CONFLICT
TLB conflict.

F_CFG_CONFLICT
Configuration cache conflict.

E_PAGE_REQUEST
Speculative page request hint.

IMPDEF_EVENTn
IMPLEMENTATION DEFINED event allocation.

Note

F TLB_CONFLICT and F_CFG_CONFLICT are not required because the MMU-600 caches include
logic to ensure that only one entry can match at a time. If multiple cache entries match a transaction or
translation request, only one entry is used and the others are ignored.

The MMU-600 never merges events. The STE.MEV field is ignored.

The TBU ignores the STE.ALLOCCEFG field that the TCU communicates to the TBU in the
ALLOCCEFG field of the DTI TBU TRANS RESP message.

The TCU sup_oas[2:0] signal must not be set to @b110. If this value is used, the TCU treats it as 0b101,
that is, 48 bits. The TBU supports a 48-bit PA size. The MMU-600 TBU and TCU cannot be used with
other components that implement DTI and are configured for a 52-bit PA size.

Related information

3.2 SMMU architectural registers on page 3-64

24.2 AMBA support

Certain behavior applies to how the MMU-600 implements its ACE-Lite interfaces.

TBU support for ACE-Lite transactions

The MMU-600 TBU supports many ACE-Lite transaction types, and handles these transactions in
certain ways. Typically, when propagating downstream transactions on the TBU TBM interface, the
MMU-600 uses the same transaction type that the upstream master presents to the TBU TBS interface.

If the shareability domain of a downstream WriteLineUnique transaction is not Inner Shareable or Outer
Shareable, the MMU-600 outputs the transaction as WriteNoSnoop. That is, AWSNOOP = 0boeee. The
AWDOMALIN signal indicates the shareability domain of write transactions.

Transactions that can result in a translation fault

In an MMU-600 system, some transactions can result in a translation fault, and certain behavior is
associated with such transactions.

The MMU-600 treats the following transactions as ordinary reads when calculating translation faults:

¢ CleanShared.
¢ Cleanlnvalid.
¢ Makelnvalid.
¢ CleanSharedPersist.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-57
reserved.
Non-Confidential

2 Functional description
2.4 Constraints and limitations of use

¢ ReadOnceMakelnvalid.
¢ ReadOnceCleanInvalid.

Therefore, these transactions might require either read permission or execute permission at the
appropriate privilege level.

The MMU-600 treats the following transactions as ordinary writes when calculating translation faults:

* WriteUniquePtlStash.
* WriteUniqueFullStash.

Therefore, these transactions require write permission at the appropriate privilege level.

CleanShared, CleanInvalid, Makelnvalid, and CleanSharedPersist transactions do not have a memory
type. The input transaction and output transaction memory type and allocation hints are ignored and
replaced by Normal, Inner Write-Back, Outer Write-Back, Read Allocate, Write Allocate. This behavior
means that the ARDOMAIN output on the TBM interface is never System Shareable for these
transactions, because they are never Non-cacheable or Device.

The MMU-600 treats transactions that pass the translation fault check as follows:

Makelnvalid transactions
The MMU-600 converts Makelnvalid transactions to CleanInvalid transactions, unless the
translation also grants write permission and Destructive Read Enable (DRE) permission.

ReadOnceMakelnvalid and ReadOnceCleanInvalid transactions
The MMU-600 outputs ReadOnceMakelnvalid transactions as ReadOnceCleanInvalid
transactions, unless the translation also granted write permission and DRE permission.
If the final transaction attributes on the TBU TBM interface are not Inner Shareable Write-Back
or Outer Shareable Write-Back, the MMU-600 converts ReadOnceMakelnvalid and
ReadOnceCleanlnvalid transactions into ordinary reads.

WriteUniquePtIStash and WriteUniqueFullStash transactions
If they pass the translation fault check, the MMU-600 converts WriteUniquePtIStash and
WriteUniqueFullStash transactions to ordinary write transactions if either:
* The translation did not grant Directed Cache Prefetch (DCP) permission.
* The final transaction attributes on the TBU TBM interface are not Inner Shareable or Outer
Shareable Write-Back.

If such a conversion occurs, AWSTASH? is driven as 0.

Transactions that cannot result in a translation fault

In an MMU-600 system, certain transactions cannot result in a translation fault, and certain behavior is
associated with such transactions.

The following transactions never result in a translation fault:

e StashOnceShared.
+ StashOnceUnique.
e StashTranslation.

If any of these transactions require a translation request to the TCU, the MMU-600 issues a speculative

translation request on the DTI interconnect. StashOnceShared and StashOnceUnique transactions are

terminated in the TBU, with a BRESP value of OKAY, when any of the following cases apply:

* The translation did not grant Directed Cache Prefetch (DCP) permission.

» The final transaction attributes on the TBM interface are not Inner Shareable or Outer Shareable
Write-Back.

* The translation did not grant any of read, write, or execute permission at the appropriate privilege
level.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-58

reserved.
Non-Confidential

2 Functional description
2.4 Constraints and limitations of use

Note

Only one of these permissions is required for the stash transaction to be permitted.

Note

A BRESP value of OKAY indicates transaction success. The MMU-600 always generates this value
when a StashOnceShared or a StashOnceUnique transaction is terminated in the TBU. This behavior
applies even when a StreamDisable or GlobalDisable translation response causes the transaction to be
terminated.

The MMU-600 never propagates StashTranslation transactions downstream, and uses StashTranslation
only to prefetch TLB contents. The MMU-600 always terminates StashTranslation transactions with a
BRESP value of OKAY, even if no translation could be stored in the TLB.

The TBU ignores AWPROT][0] and AWPROT]2] for StashTranslation transactions, because they do not
affect speculative translation requests.

AXI5 support

The AXIS protocol includes extensions that are not included in previous AXI versions. The Arm™ AMBA®
AXI and ACE Protocol Specification, AXI3, AX14, AXI5, ACE and ACES defines these extensions.

The following table shows whether individual TCU and TBU interfaces support the AXI5 extensions.

Table 2-19 TCU and TBU interface support for AXI5 extensions

AXI5 extension QTW/DVM | TBU TBS | TBU TBM
DVM v8.1 Yes - -
Wakeup_Signals Yes Yes Yes

Atomic_Transactions - - -

Coherency Connection_Signals | Yes - -

Cache Stash_Transactions - Yes Yes
DeAllocation_Transactions - Yes Yes
Untranslated Transactions - Yes Yes
Poison - - -
Check Type - - -
QoS_Accept - - -

Trace_Signals - - -

Loopback_Signals - - -

NSAccess_Identifiers - - -

Persist CMO - Yes Yes

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-59
reserved.
Non-Confidential

2 Functional description
2.4 Constraints and limitations of use

Upstream ACE master restrictions

The ACES protocol places requirements on upstream ACE masters that support the
Untranslated Transactions extension.

For the ACE TBU configuration to be used with an upstream master that implements ACES, the

following requirements apply:

* Snoop transactions return an invalid cache state response unless they correspond to a Shareable cache
line that has previously been modified with a successful ReadClean, ReadNotSharedDirty,
ReadShared, ReadUnique, CleanUnique, or MakeUnique transaction. In particular:

— Data that a ReadNoSnoop or ReadOnce transaction returns is either not cached, or cached in such
a way that snoops of that cache line return an invalid cache state response.

— If cache lines are allocated silently due to non-shared writes, then snoops to those lines also return
an invalid cache state response.

» Shareable Write-Back, WriteClean, WriteEvict and Evict transactions always correspond to a
Shareable cache line that has previously been modified with a successful ReadClean,
ReadNotSharedDirty, ReadShared, ReadUnique, CleanUnique, or MakeUnique transaction. In
particular, data that a ReadNoSnoop or ReadOnce transaction returns is either not cached, or written
back with a WriteNoSnoop, WriteUnique, or WriteLineUnique transaction.

In addition, cache maintenance operations are not supported for upstream ACE masters.

Avoiding deadlock when using fully coherent ACE masters

You can take certain steps to prevent deadlock in systems where an ACE TBU configuration is used with
a fully coherent ACE master.

The ACE protocol requires that certain write transactions, including WriteNoSnoop, must progress to
any address without requiring any pending snoop transactions to progress. If a TBU is used with a fully
coherent ACE master, WriteNoSnoop transactions might require the TCU to issue translation table
walks. If these table walks depend on snoop transactions, then this ACE protocol requirement is not met.
You can ensure that this requirement is met by ensuring that TCU transactions do not pass through a
coherent interconnect.

Alternatively, you might be able to use a coherent interconnect such as the Arm CoreLink CCI-500 or

CCI-550. Both of these interconnects ensure that interfaces that never issue snoop transactions are never

blocked by snoop transactions. You can use CCI-500 or CCI-550 provided:

» All the TCU transactions are configured to use Device or Non-cacheable memory types, so that the
TCU transactions never result in snoop transactions being performed.

* The TCU does not share an interconnect interface with any masters that can cause snoop transactions,
so that the TCU transactions cannot be blocked by snoop transactions.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 2-60
reserved.
Non-Confidential

Chapter 3
Programmers model

This chapter describes the MMU-600 programmers model.

It contains the following sections:

» 3.1 About the programmers model on page 3-62.

* 3.2 SMMU architectural registers on page 3-64.

* 3.3 MMU-600 memory map on page 3-69.

* 3.4 Register summary on page 3-71.

* 3.5 TCU Component and Peripheral ID Registers on page 3-74.

* 3.6 TCU PMU Component and Peripheral ID Registers on page 3-75.
* 3.7 TCU microarchitectural registers on page 3-76.

* 3.8 TCU RAS registers on page 3-84.

* 3.9 TBU Component and Peripheral ID Registers on page 3-89.

* 3.10 TBU PMU Component and Peripheral ID Registers on page 3-90.
» 3.11 TBU microarchitectural registers on page 3-91.

* 3.12 TBU RAS registers on page 3-93.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-61
reserved.
Non-Confidential

3 Programmers model
3.1 About the programmers model

31 About the programmers model
This section provides general information about the MMU-600 register properties.
The following information applies to the MMU-600 registers:

* The base address is not fixed, and can be different for any particular system implementation. The
offset of each register from the base address is fixed.

* Do not attempt to access reserved or unused address locations. Attempting to access these locations
can result in UNPREDICTABLE behavior.

* Unless otherwise stated in the accompanying text:
— Do not modify undefined register bits.
— Ignore undefined register bits on reads.
— All register bits are reset to 0 by a system or powerup reset.

» Access type is described as follows:

RW Read and write.
RO Read only.
WO Write only.
RAZ Read as zero.
WI Writes ignored.

* Bit positions that are described as reserved are:
— In an RW register, RAZ/WI.
— In an RO register, RAZ.
— Ina WO register, WI.

The MMU-600 registers are accessed using the PROG APB4 slave interface on the TCU, and cannot be
accessed directly through any other slave interfaces.

Some registers are 64 bits, but the PROG APB4 interface is 32 bits. Because software accesses 64-bit
registers 32 bits at a time, such accesses are not guaranteed to be 64-bit atomic. This behavior does not
cause problems for software, because the SMMUV3 architecture does not require 64-bit atomic access to
any registers.

The programmers model contains separate TBU and TCU regions for internal control, RAS, and
identification registers. Accesses to unmapped or reserved registers are RAZ/WI. Non-secure accesses to
Secure registers are RAZ/WI. The MMU-600 implements the identification register scheme that the
SMMUV3 architecture defines.

The MMU-600 implements all the Performance Monitor Counter Group (PMCG) registers that the
SMMUV3 architecture defines, except for:

« SMMU _PMCG_IRQ_CFGO.
« SMMU _PMCG_IRQ CFGl.
« SMMU _PMCG_IRQ CFG2.
« SMMU PMCG_IRQ STATUS.

The MMU-600 does not implement the following SMMUV3 architectural registers, and accesses to these
locations are RAZ/WI:

« SMMU_IDRA4.

+ SMMU _STATUSR.

« SMMU _AGBPA.

+ SMMU_GATOS *.

« SMMU_S_IDR4.

+ SMMU S AGBPA.

+ SMMU S GATOS *.

+ SMMU VATOS *.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-62
reserved.
Non-Confidential

3 Programmers model
3.1 About the programmers model

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about the SMMU architectural registers.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-63
reserved.
Non-Confidential

3.2

SMMU architectural registers

3 Programmers model
3.2 SMMU architectural registers

The MMU-600 implements many of the SMMU architectural registers, as defined by the Arm® System
Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1.

The following table lists the SMMUv3 architectural registers that the MMU-600 implements.

Note

All writable register fields reset to 0 unless the SMMU architecture specifies otherwise.

Table 3-1 SMMUv3 architectural registers

Register

Name

Description

SMMU_S IDRO - SMMU_S_IDR3

SMMU Secure feature Identification
Registers

Provides information about the Secure features that
the SMMU implementation supports.

SMMU_S_CRO

Secure global Control Register 0

Provides global configuration of the Secure SMMU.

SMMU_S_CROACK

Secure global Control Register 0

Provides acknowledgement of completion of updates

update Acknowledge to SMMU_S CRO.
SMMU_S _CR1 Secure global Control Registers Provides the controls for Secure table and queue
SMMU_S_CR2 access attributes.
SMMU S INIT Secure Initialization control register | Provides a control to invalidate all Secure SMMU

caching on system initialization.

SMMU_S_GBPA

Secure Global Bypass Attribute
register

Controls the global bypass attributes that are used for
transactions from Secure streams when the MMU is
disabled.

SMMU_S IRQ CTRL

Secure Interrupt Control register

Contains enables for SMMU interrupts.

SMMU_S_IRQ CTRLACK

Secure Interrupt Control register
update Acknowledge

Provides acknowledgement of the completion of
updates to SMMU_S IRQ CTRL.

SMMU_S_GERROR

Secure Global Error status register

Provides information on Secure global programming
interface errors.

SMMU_S_GERRORN

Secure Global Error
Acknowledgement register

Contains the acknowledgement fields for
SMMU S GERROR errors.

SMMU_S_GERROR_IRQ CFGO -
SMMU_S_GERROR_IRQ CFG2

Secure Global Error IRQ
Configuration register

Contains the Secure MSI address configuration for
the GERROR IRQ.

SMMU_S STRTAB BASE

Secure Stream Table Base address
register

Contains the base address and attributes for the
Secure Stream table.

SMMU_S_STRTAB BASE_CFG

Secure Stream Table Base
Configuration register

Contains configuration fields for the Secure Stream
table.

SMMU_S CMDQ_BASE

Secure Command queue Base
address register

Contains the base address and attributes for the
Secure Command queue.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-64

3 Programmers model
3.2 SMMU architectural registers

Table 3-1 SMMUv3 architectural registers (continued)

Register

Name

Description

SMMU_S_CMDQ_PROD

Secure Command queue Producer
index register

Contains the Secure Command queue index for writes
by the producer.

SMMU_S_CMDQ _CONS

Secure Command queue Consumer
index register

Contains the Secure Command queue index for reads
by the consumer.

SMMU_S_EVENTQ BASE

Secure Event queue Base address
register

Contains the base address and attributes for the
Secure Event queue.

SMMU_S_EVENTQ PROD

Secure Event queue Producer index
register

Contains the Secure Event queue index for writes by
the producer.

SMMU_S_EVENTQ CONS

Secure Event queue Consumer
index register

Contains the Secure Event queue index for reads by
the consumer.

SMMU_S EVENTQ IRQ CFGO -
SMMU_S EVENTQ IRQ CFG2

Secure Event queue IRQ
Configuration registers

Contains the MSI address configuration for the
Secure Event queue IRQ.

SMMU IDRO - SMMU IDR3

SMMU feature Identification

Provides information about the features that the

SMMU_IDRS Registers SMMU implementation supports.
SMMU IIDR Implementation Identification Provides implementer, part, and revision information
Register for the SMMU implementation.
SMMU_AIDR Architecture Identification Register | Identifies the SMMU architecture version to which
the implementation conforms.
SMMU_CRO Non-secure global Control Register | Provides the controls for the global configuration of

0

the Non-secure SMMU.

SMMU_CROACK

Non-secure global Control Register
0 update Acknowledge register

Provides acknowledgement of completion of updates
to SMMU_CRO.

SMMU_CR1 Non-secure global Control Register | Provides the controls for Non-secure table and queue
1 access attributes.

SMMU_CR2 Non-secure global Control Register | Provides the controls for the configuration of the
2 global Non-secure features.

SMMU_GBPA Non-secure Global Bypass Attribute | Controls the global bypass attributes that are used for

register

transactions from Non-secure streams when the
MMU is disabled.

SMMU_IRQ CTRL

Non-secure Interrupt Control
register

Provides IRQ enable flags for edge-triggered wired
outputs, if implemented, and MSI writes, if
implemented.

SMMU_IRQ CTRLACK

Non-secure Interrupt Control
register update Acknowledge
register

Provides acknowledgement of the completion of
updates to SMMU IRQ_CTRL.

SMMU_GERROR

Non-secure Global Error status
register

Provides information about Non-secure global
programming interface errors.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-65

3 Programmers model
3.2 SMMU architectural registers

Table 3-1 SMMUv3 architectural registers (continued)

Register

Name

Description

SMMU_GERRORN

Non-secure Global Error
acknowledgement register

Contains the acknowledgement fields for
SMMU_GERROR errors.

SMMU_GERROR_IRQ CFGO

Non-secure Global Error IRQ
Configuration register 0

Contains the MSI address configuration for the
GERROR IRQ.

SMMU_GERROR_IRQ CFG1

Non-secure Global Error IRQ
Configuration register 1

Contains the MSI payload configuration for the
GERROR IRQ.

SMMU_GERROR _IRQ _CFG2

Non-secure Global Error IRQ
Configuration register 2

Contains the MSI attribute configuration for the
GERROR IRQ.

SMMU_STRTAB BASE

Non-secure Stream Table Base
address register

Contains the base address and attributes for the Non-
secure Stream table.

SMMU_STRTAB BASE CFG

Non-secure Stream Table
Configuration register

Contains configuration fields for the Non-secure
Stream table.

SMMU_CMDQ BASE

Non-secure Command queue Base
address register

Contains the base address and attributes for the
Non-secure Command queue.

SMMU_CMDQ_PROD

Non-secure Command queue
Producer index register

Contains the Non-secure Command queue index for
writes by the producer.

SMMU_CMDQ_CONS

Non-secure Command queue
Consumer index register

Contains the Non-secure Command queue index for
reads by the consumer.

SMMU_EVENTQ BASE

Non-secure Event queue Base
address register

Contains the base address and attributes for the
Non-secure Event queue.

SMMU_EVENTQ PROD

Non-secure Event queue Producer
index register

Contains the Non-secure Event queue index for writes
by the producer.

SMMU_EVENTQ CONS

Non-secure Event queue Consumer
index register

Contains the Non-secure Event queue index for reads
by the consumer.

SMMU_EVENTQ IRQ_CFGO

Non-secure Event queue IRQ
Configuration register 0

Contains the MSI address configuration for the Event
queue IRQ.

SMMU_EVENTQ IRQ CFGI1

Non-secure Event queue IRQ
Configuration register 1

Contains the MSI payload configuration for the Event
queue IRQ.

SMMU_EVENTQ IRQ CFG2

Non-secure Event queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the Event
queue IRQ.

SMMU_PRIQ BASE

Non-secure PRI queue Base address
register

Contains the base address and attributes for the
Non-secure PRI queue.

SMMU_PRIQ PROD

Non-secure PRI queue Producer
index register

Contains the Non-secure PRI queue index for writes
by the producer.

SMMU_PRIQ CONS

Non-secure PRI queue Consumer
index register

Contains the Non-secure PRI queue index for reads
by the consumer.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-66

3 Programmers model
3.2 SMMU architectural registers

Table 3-1 SMMUv3 architectural registers (continued)

Register

Name

Description

SMMU_PRIQ IRQ CFGO

Non-secure PRI queue IRQ
Configuration register 0

Contains the MSI address configuration for the PRI
queue IRQ.

SMMU_PRIQ IRQ CFGI

Non-secure PRI queue IRQ
Configuration register 1

Contains the MSI payload configuration for the PRI
queue IRQ.

SMMU_PRIQ IRQ CFG2

Non-secure PRI queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the PRI
queue IRQ.

The MMU-600 implements an SMMUV3 Performance Monitor Counter Group (PMCG) in the TCU and
in each TBU. The following table lists the registers that the MMU-600 implements in each PMCG.

Table 3-2 SMMUv3 PMCG registers

Register Name Description

SMMU_PMCG_EVCNTRO - SMMU PMCG Event Counter | Contains the values of the event counters.

SMMU PMCG EVCNTR3 registers

SMMU PMCG_EVTYPERO - SMMU PMCG Event Type Configures the events that the corresponding counter

SMMU_PMCG_EVTYPER3

configuration registers

counts.

SMMU_PMCG_SVRO -
SMMU _PMCG_SVR3

SMMU PMCG Shadow Value
Registers

Contains the shadow value of the corresponding event
counter.

SMMU_PMCG_SMRO

SMMU PMCG Stream Match
filter Register

Configures the stream match filter for the
corresponding event counter.

SMMU_PMCG_CNTENSETO

SMMU PMCG Counter Enable
Set register

Provides the set mechanism for the counter enables.

SMMU_PMCG_CNTENCLRO

SMMU PMCG Counter Enable
Clear register

Provides the clear mechanism for the counter enables.

SMMU_PMCG_INTENSETO

SMMU PMCG Interrupt
contribution Enable Set register

Provides the set mechanism for the counter interrupt
contribution enables.

SMMU PMCG INTENCLRO

SMMU PMCG Interrupt
contribution Enable Clear
register

Provides the clear mechanism for the counter interrupt
enables.

SMMU_PMCG_OVSCLRO

SMMU PMCG Overflow Status
Clear register

Provides the clear mechanism for the overflow status
bits and provides read access to the overflow status bit
values.

SMMU_PMCG_OVSSETO0

SMMU PMCG Overflow Status
Set register

Provides the set mechanism for the overflow status bits
and provides read access to the overflow status bit
values.

SMMU_PMCG_CAPR

SMMU PMCG Counter shadow
value Capture Register

Controls the counter shadow value capture mechanism.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-67

reserved.
Non-Confidential

3 Programmers model
3.2 SMMU architectural registers

Table 3-2 SMMUv3 PMCG registers (continued)

Register

Name

Description

SMMU_PMCG_SCR

SMMU PMCG Secure Control
Register

Secure Control Register.

SMMU PMCG CFGR

SMMU PMCG Configuration
information Register

Provides information about the PMCG
implementation.

SMMU_PMCG _CR

SMMU PMCG Control Register

Contains the Performance Monitor control flags.

SMMU_PMCG_CEIDO -
SMMU_PMCG_CEID1

SMMU PMCG Common Event
ID registers

Contains the lower and upper 64 bits of the Common
Event identification bitmap.

SMMU_PMCG IRQ CTRL SMMU PMCG IRQ enable Contains the Performance Monitors IRQ enable.
register

SMMU_PMCG_IRQ CTRLACK SMMU PMCG IRQ enable Provides acknowledgement of the completion of
Acknowledge register updates to SMMU_PMCG_IRQ_CTRL.

SMMU_PMCG_AIDR SMMU PMCG Architecture Provides the Performance Monitor Architecture

Identification Register

Identification.

SMMU_PMCG_ID REGS

ID registers

IMPLEMENTATION DEFINED.

SMMU PMCG_PMAUTHSTATUS

PMU Authentication Status
register

Performance Monitor authentication status.

SMMU_PMCG_PMDEVARCH

PMU Device Architecture
register

Performance Monitor architecture identifier.

SMMU _PMCG_PMDEVTYPE

PMU Device Type register

Performance Monitor device type.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-68

3.3 MMU-600 m

3 Programmers model
3.3 MMU-600 memory map

emory map

The MMU-600 memory map contains all registers.

The following table shows the MMU-600 memory map with the maximum number of implemented

TBUs.

Table 3-3 MMU-600 memory map

Address range Description

0x000000 - 0x83FFFC | TCU registers.

0x040000 - 0x05FFFC | TBUO registers.
0x060000 - Ox07FFFC | TBU1 registers
0x080000 - Ox09FFFC | TBU2 registers.

0x7C0000 - 0x7DFFFC | TBU60 registers.
0x7E0000 - 0x7FFFFC | TBUGI registers.

Note

All TBU and TCU register addresses in this manual are described relative to the beginning of the
respective address range for the component.

The following table shows the MMU-600 TCU memory map.

Table 3-4 MMU-600 TCU memory map

Address

Description

0x00000 - OxXOFFFC

TCU registers, page 0, including:

* SMMUVS3 registers, page 0.

* TCU Performance Monitor Counter Group (PMCG) registers, page 0, starting at offset 9x02000.
* TCU IMPLEMENTATION DEFINED registers.

0x10000 - OX1FFFC

TCU registers, page 1.

This address range contains the SMMUV3 registers, page 1.

0x20000 - Ox2FFFC

TCU registers, page 2.
This address range contains the TCU PMCG registers, page 1, starting at offset 9x22000.

0x30000 - Ox3FFFC

Reserved.

The following table shows the MMU-600 TBU memory map.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-69
reserved.
Non-Confidential

3 Programmers model
3.3 MMU-600 memory map

Table 3-5 MMU-600 TBU memory map

Address

Description

0x00000 - Ox0OFFFC

TBU registers, page 0, including:
+ TBU PMCG registers, page 0, starting at offset 9x02000.
» TBU IMPLEMENTATION DEFINED registers.

0x10000 - Ox1FFFC

TBU registers, page 1.

This address range contains the TBU PMCG registers, page 1, starting at offset ©x12000.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-70

3 Programmers model
3.4 Register summary

3.4 Register summary

The register summary lists all MMU-600 registers and some key characteristics.

TBU identification register summary

The following table shows the TBU identification registers in offset order from the base memory
address.

Table 3-6 TBU identification register summary

Offset | Name Type | Description

0x00FDO | SMMU PIDR4 | RO | 3.9 TBU Component and Peripheral ID Registers on page 3-89.

0x00FD4 | SMMU PIDRS [RO

0x00FD8 | SMMU_PIDR6 | RO

0x00FDC | SMMU_PIDR7 | RO

0x00FEQ | SMMU_PIDRO | RO

0x00FE4 | SMMU_PIDR1 | RO

Ox00FE8 | SMMU PIDR2 [RO

0x00FEC | SMMU_PIDR3 | RO

0x00FF@ | SMMU_CIDRO | RO

0x00FF4 | SMMU CIDR1 [RO

0x00FF8 | SMMU_CIDR2 | RO

0x00FFC | SMMU CIDR3 [RO

TBU RAS register summary

The following table shows the TBU Reliability, Availability, and Serviceability (RAS) registers in offset
order from the base memory address.

Table 3-7 TBU RAS register summary

Offset | Name Type | Description

0x08E80 | TBU_ERRFR RO |3.12.1 TBU ERRFR on page 3-93.

0x08E88 | TBU_ERRCTLR [RW |3./2.2 TBU_ERRCTLR on page 3-93.

0x08E90 | TBU_ERRSTATUS [RW | 3.12.3 TBU ERRSTATUS on page 3-94 .

0x08ECO | TBU ERRGEN RW |3.12.4 TBU ERRGEN on page 3-95.

TBU microarchitectural register summary

The following table shows the TBU microarchitectural registers in offset order from the base memory

address.
Table 3-8 TBU microarchitectural register summary
Offset | Name Type | Description
0x08E0Q | TBU CTRL |[RW | 3./1.1 TBU CTRL on page 3-91.
0x08E18 | TBU SCR |RW |3./1.2 TBU SCR on page 3-91.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-71

reserved.
Non-Confidential

TCU identification register summary

3 Programmers model
3.4 Register summary

The following table shows the TCU identification registers in offset order from the base memory

address.

Table 3-9 TCU identification register summary

Offset

Name

Type | Description

Ox00FDO

SMMU_PIDR4

Ox00FD4

SMMU_PIDRS5

RO

Ox00FD8

SMMU_PIDR6

RO

Ox00FDC

SMMU_PIDR7

RO

OXO0FEQ

SMMU_PIDRO

RO

OXOOFE4

SMMU_PIDR1

RO

OXOOFES8

SMMU_PIDR2

RO

OXOOFEC

SMMU_PIDR3

RO

Ox00FF0O

SMMU_CIDRO

RO

OX00FF4

SMMU_CIDRI1

RO

OX0OFF8

SMMU_CIDR2

RO

Ox00FFC

SMMU_CIDR3

RO

RO |3.5 TCU Component and Peripheral ID Registers on page 3-74.

TCU and TBU PMU identification register summary

The TCU and the TBU use the same PMU identification registers. The following table shows the TCU

and TBU PMU identification registers in offset order from the base memory address.

Table 3-10 TCU and TBU PMU identification register summary

Offset |Name Type | Description

0x02FB8 | SMMU_PMCG_PMAUTHSTATUS |RO |36 7CU PMU Component and Peripheral ID Registers on page 3-75.
0x02FDO | SMMU_PMCG_PIDR4 RO | 3.710 TBU PMU Component and Peripheral ID Registers on page 3-90.
0x02FD4 | SMMU _PMCG_PIDRS RO

0x02FD8 | SMMU_PMCG_PIDR6 RO

0x02FDC | SMMU_PMCG_PIDR7 RO

0x02FEQ | SMMU_PMCG_PIDRO RO

0x02FE4 | SMMU_PMCG_PIDR1 RO

Ox02FE8 | SMMU PMCG PIDR2 RO

0x02FEC | SMMU_PMCG_PIDR3 RO

0x02FF0 | SMMU PMCG_CIDRO RO

0x02FF4 | SMMU_PMCG_CIDR1 RO

Ox02FF8 | SMMU_PMCG_CIDR2 RO

@x0@2FFC | SMMU PMCG _CIDR3 RO

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-72

TCU RAS register summary

3 Programmers model
3.4 Register summary

The following table shows the TCU RAS registers in offset order from the base memory address.

Table 3-11 TCU RAS register summary

Offset | Name Type | Description

@Xx0@8E80 | TCU ERRFR RO |3.8.1 TCU ERRFR on page 3-84.
0x08E88 | TCU_ERRCTLR RW |3.8.2 TCU ERRCTLR on page 3-84.
0x08E90 | TCU_ERRSTATUS |RW | 3.8.3 TCU ERRSTATUS on page 3-85.
Ox08ECO | TCU_ERRGEN RW |3.8.4 TCU ERRGEN on page 3-87.

TCU microarchitectural register summary

The following table shows the TCU microarchitectural registers in offset order from the base memory

address.
Table 3-12 TCU microarchitectural register summary
Offset Name Type | Description
Ox0O8E00 TCU_CTRL RW | 3.7.1 TCU CTRL on page 3-76.
Ox08EQ4 TCU _QOS RW |3.7.2TCU_QOS on page 3-77.
Ox0O8EQS8 TCU_CFG RO |3.7.3 TCU _CFG on page 3-79.
Ox08E10 TCU_STATUS RO | 3.7.4 TCU STATUS on page 3-79.
@X0O8E18 TCU_SCR RW |3.7.5 TCU SCR on page 3-80.
0x09000 - 0x093FC | TCU_NODE CTRLn RW |3.7.6 TCU NODE CTRLn on page 3-81.
0x09400 - 0x097FC | TCU NODE_STATUSn |RO | 3.7.7 TCU NODE STATUSn on page 3-82.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-73

reserved.
Non-Confidential

3 Programmers model
3.5 TCU Component and Peripheral ID Registers

3.5 TCU Component and Peripheral ID Registers
The component and peripheral identity registers comply with the format that the Arm CoreLink and
CoreSight components use, and recommended in the SMMUv3 architecture. They provide key
information about the MMU-600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.
These registers are all read-only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32-bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64-bit ID register.
Table 3-13 TCU Component and Peripheral ID registers bit assignments
Register Offset | Bits | Value Function
SMMU PIDR4 | 0x00FD@ | [7:4] | 0x0 4KB region count.
[3:0] | ox4 JEP106 continuation code for Arm.
SMMU _PIDRS | ©9x00FD4 | [7:0] | 0x00 Reserved.
SMMU_PIDR6 | 0x00FD8 | [7:0] | 0x00 Reserved.
SMMU _PIDR7 | @x8@FDC | [7:0] | @x00 Reserved.
SMMU_PIDRO | @x@0FE® | [7:0] | 0x83 Part number[7:0].
SMMU_PIDRI1 | 0x00FE4 | [7:4] | ©xB JEP106 ID code[3:0] for Arm.
[3:0]| ox4 Part number[11:8].
SMMU _PIDR2 | Ox00FE8 | [7:4] | 0x1 MMU-600 major revision.
The value 0x1 indicates major product revision r1.
[3] |ex1 The component uses a manufacturer identity code that JEDEC allocates,
according to the JEP106 specification.
[2:0] | @x3 JEP106 ID code[6:4] for Arm.
SMMU _PIDR3 | @xQ0FEC | [7:4] | MAX[0x0, ecorevnum] | MMU-600 minor revision.
The value ©x0 indicates minor product revision p0.
[3:0] | @x0 CMOD. This field is not used.
SMMU_CIDRO | 0x@0FF@ | [7:0] | @x@D Preamble.
SMMU_CIDRI | @x8@FF4 | [7:0] | @xF@
SMMU_CIDR2 | 0x00FF8 | [7:0] | @x05
SMMU_CIDR3 | @x@8FFC | [7:0] | @xB1

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

3-74
reserved.
Non-Confidential

3 Programmers model
3.6 TCU PMU Component and Peripheral ID Registers

3.6 TCU PMU Component and Peripheral ID Registers

The component and peripheral identity registers comply with the format that Arm CoreLink and
CoreSight components use, and recommended in the SMMUv3 architecture. They provide key
information about the MMU-600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.

These registers are all read-only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32-bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64-bit ID register.

Table 3-14 TCU PMU Component and Peripheral ID registers bit assignments

Register Offset | Bits | Value Function
SMMU PMCG PMAUTHSTATUS | ©x02FB8 | [7:0] | 0x00 No authentication interface is implemented.
SMMU PMCG_PIDR4 Ox02FD0 | [7:4] | 0x0 4KB region count.
[3:0] | ox4 JEP106 continuation code for Arm.
SMMU_PMCG_PIDR5 Ox02FD4 | [7:0] | Ox00 Reserved.
SMMU_PMCG_PIDR6 0x02FD8 | [7:0] | 0x00 Reserved.
SMMU PMCG_PIDR7 0x02FDC | [7:0] | 0x00 Reserved.
SMMU PMCG_PIDRO Ox02FEQ | [7:0] | ©x83 Part number[7:0].
SMMU_PMCG PIDRI1 OX02FE4 | [7:4] | 0xB JEP106 ID code[3:0] for Arm.
[3:0] | 6x4 Part number[11:8].
SMMU_PMCG_PIDR2 OX02FE8 | [7:4] | ©x1 MMU-600 revision.

The value 0x1 indicates major product revision rl.

[3] [ex1 The component uses a manufacturer identity code
that JEDEC allocates, according to the JEP106
specification.

[2:0] | ©x3 JEP106 ID code[6:4] for Arm.

SMMU_PMCG_PIDR3 OXO2FEC | [7:4] | MAX[0x0, ecorevnum] | MMU-600 minor revision.

The value 0x0 indicates minor product revision p0.

[3:0] | ©x0@ CMOD. This field is not used.
SMMU_PMCG_CIDRO Ox02FF0 | [7:0] | ©x0D Preamble.
SMMU_PMCG_CIDRI1 Ox02FF4 | [7:0] | 0x90
SMMU PMCG CIDR2 Ox02FF8 | [7:0] | ©x05
SMMU_PMCG_CIDR3 Ox02FFC | [7:0] | ©xB1
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-75
reserved.

Non-Confidential

3 Programmers model
3.7 TCU microarchitectural registers

3.7 TCU microarchitectural registers
You can set the TCU microarchitectural registers at boot time to optimize TCU behavior for your system.

Arm recommends the default settings for most systems.

This section contains the following subsections:

e 3.7.1 TCU _CTRL on page 3-76.

* 3.7.2TCU QOS on page 3-77.

e 3.7.3TCU _CFG on page 3-79.

* 3.7.4 TCU STATUS on page 3-79.

e 3.7.5 TCU SCR on page 3-80.

e 3.7.6 TCU NODE CTRLn on page 3-81.

* 3.7.7TCU NODE STATUSn on page 3-82.
3.71 TCU_CTRL

The TCU Control register disables TCU features. You can disable individual walk caches to improve
performance in some systems if the hit rate of the individual walk cache is very low. Do not modify the
AUX bits unless directed to do so by Arm.

The TCU_CTRL characteristics are:
Usage constraints
When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU CRO.SMMUEN = 0 and
SMMU S CRO.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations

This register exists in all TCU configurations.
Attributes

Offset OX08E00

Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

31 1615141312110 9 8 7 0

AUX[31:16] AUX[7:0]

wcs2L3_DIs-
WCS2L2_DIS
WCS2L1_DIS

WCS2L0_DIS
WCS1L3_DIS
WCS1L2_DIS
WCS1L1_DIS
WCS1LO0_DIS

Figure 3-1 TCU_CTRL register bit assignments

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-76
reserved.
Non-Confidential

The following table shows the bit assignments.

3 Programmers model
3.7 TCU microarchitectural registers

Table 3-15 TCU_CTRL register bit assignments

Bits |Name Function
[31:16] | AUX[31:16] |Leave each of these bits as 0.
[15] WCS2L3_DIS | walk cache disable.
0 Stage 2 level 3 walk cache is enabled.
1 Stage 2 level 3 walk cache is disabled.
[14] WCS2L2_DIS | walk cache disable.
0 Stage 2 level 2 walk cache is enabled.
1 Stage 2 level 2 walk cache is disabled.
[13] WCS2L1_DIS | walk cache disable.
0 Stage 2 level 1 walk cache is enabled.
1 Stage 2 level 1 walk cache is disabled.
[12] WCS2L0_DIS | walk cache disable.
0 Stage 2 level 0 walk cache is enabled.
1 Stage 2 level 0 walk cache is disabled.
[11] WCSIL3_DIS | walk cache disable.
0 Stage 1 level 3 walk cache is enabled.
1 Stage 1 level 3 walk cache is disabled.
[10] WCSIL2_DIS | walk cache disable.
0 Stage 1 level 2 walk cache is enabled.
1 Stage 1 level 2 walk cache is disabled.
[9] WCSILI_DIS | walk cache disable.
0 Stage 1 level 1 walk cache is enabled.
1 Stage 1 level 1 walk cache is disabled.
(8] WCSILO_DIS | walk cache disable.
0 Stage 1 level 0 walk cache is enabled.
1 Stage 1 level 0 walk cache is disabled.
[7:0] AUX][7:0] Leave each of these bits as 0.
3.7.2 TCU_QOS

The TCU Quality of Service (QoS) register specifies AxQOS values for each transaction type that is
issued on the QTW/DVM interface. The MMU-600 does not use this value internally, but a downstream
interconnect can use the value to control how it prioritizes transactions.

The AxQOS value that is associated with each transaction does not take account of other transactions
that are blocked behind it. For example, although higher priority translations are normally progressed

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-77

reserved.
Non-Confidential

3 Programmers model
3.7 TCU microarchitectural registers

before lower priority translations, a low priority translation table walk might prevent the TCU from
issuing a translation table walk with a higher priority.

The TCU_QOS characteristics are:

Usage constraints

When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU CRO.SMMUEN = 0 and
SMMU S CRO.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations

This register exists in all TCU configurations.

Attributes

Offset OXx08E04
Type RW

Reset 0x00000000
Width 32

The following figure shows the bit assignments.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved

QOS_DVMSYNC -
QOS_MSI ‘
QOS_QUEUE
QOS_PTW3
QOS_PTW2

QOS_PTW1
QOS_PTWO

Figure 3-2 TCU_QOS register bit assignments

The following table shows the bit assignments.

Table 3-16 TCU_QOS register bit assignments

Bits |Name Function

[31:28] - Reserved.

[27:24] | QOS_DVMSYNC | The AxQOS value that is used for DVM Sync Completion messages.

[23:20] | QOS_MSI The AxQOS value that is used for MSIs.

[19:16] | QOS_QUEUE The AxQOS value that is used for queue accesses.

[15:12] | QOS_PTW3 The AxQOS value that is used for translation table walks for translations where
TCU NODE CTRLn.PRIORITY = 3 for the requesting node.

[11:8] | QOS_PTW2 The AxQOS value that is used for translation table walks for translations where

TCU_NODE_CTRLn.PRIORITY =2 for the requesting node.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-78
reserved.
Non-Confidential

3 Programmers model
3.7 TCU microarchitectural registers

Table 3-16 TCU_QOS register bit assignments (continued)

Bits Name Function

[7:4] QOS _PTW1 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY =1 for the requesting node.

[3:0] QOS_PTWO The AxQOS value that is used for translation table walks for translations where
TCU NODE CTRLn.PRIORITY = 0 for the requesting node.

3.7.3 TCU_CFG
This is the TCU Configuration Information register.
Its characteristics are:
Usage constraints
When TCU SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ.
Configurations

This register exists in all TCU configurations.

Attributes
Offset ©x08E08
Type RO
Reset See register bit assignments.
Width 32

The following figure shows the bit assignments.

31 16 15 4 3 0

Reserved XLATE_SLOTS Reserved

Figure 3-3 TCU_CFG register bit assignments

The following table shows the bit assignments.

Table 3-17 TCU_CFG register bit assignments

Bits Name Function

[31:16] |- Reserved.

[15:4] | XLATE_SLOTS | The number of translation slots that are available for sharing between all nodes.

The reset value of this field is TCUCFG_XLATE_SLOTS.

[3:0] - Reserved.

3.74 TCU_STATUS
This is the TCU Status Information register.
Its characteristics are:
Usage constraints

When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-79
reserved.
Non-Confidential

3 Programmers model
3.7 TCU microarchitectural registers

Configurations

This register exists in all TCU configurations.
Attributes

Offset Ox08E10

Type RO

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 16 15

3 0

Reserved GNT_XLATE_SLOTS

Reserved

Figure 3-4 TCU_STATUS register bit assignments

The following table shows the bit assignments.

Table 3-18 TCU_STATUS register bit assignments

Bits

Name

Function

[31:16]

Reserved.

[15:4]

GNT_XLATE SLOTS

this value for debugging purposes.

This is the number of translation slots that are currently allocated to connected nodes. You can use

Reserved.

TCU_SCR

The TCU Secure Control register controls whether Non-secure software is permitted to access each TCU

register group.
The TCU_SCR characteristics are:
Usage constraints

Non-secure accesses to this register are RAZ/WI.

This register does not control Secure access to the MMU-600 PMU registers. To control Secure

PMU register access, use the SMMU_PMCG_SCR register.
Configurations

This register exists in all TCU configurations.
Attributes

Offset OxO8E18

Type RW

Reset See register bit assignments.

Width 32

The following figure shows the bit assignments.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-80

3 Programmers model
3.7 TCU microarchitectural registers

31 43210

NS_INIT -
Reserved
NS_RAS

NS_UARCH

Reserved

Figure 3-5 TCU_SCR register bit assignments

The following table shows the bit assignments.

Table 3-19 TCU_UARCH_TCU_SCR register bit assignments

Bits

Name

Function

[31:4]

Reserved

NS_INIT

Non-secure register access to SMMU_S INIT. When this bit is set to 0, Non-secure accesses to the
SMMU_S_INIT register are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

Reserved

NS_RAS

Non-secure register access is permitted for RAS registers. When this bit is set to 0, Non-secure accesses to
register addresses OxO8E80—OxO8ECO are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

NS_UARCH

Non-secure register access is permitted for MMU-600 registers. When this bit is set to 0, Non-secure accesses
to register addresses OxO8EQO—OXO8E7C and 0x09000-0x093FC are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

If your implementation might use Secure translation, Arm recommends setting this bit to 0.

3.7.6

TCU_NODE_CTRLn

Each TCU Node Control register controls how the TCU communicates with a single node. A node is a
DTI master that is typically either a TBU or a PCle Root Complex that implements ATS.

The TCU _NODE_CTRL# characteristics are:

Usage constraints

The DIS_ DMYV bit can be used for TBU nodes, but is ignored for ATS nodes.
When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_ CR0O.SMMUEN = 0 and
SMMU_S CRO.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations

The value of the TCUCFG_NUM_TBU configuration parameter defines n, that is, the number of
TCU NODE CTRL registers that are implemented. Each register has an address width of 4
bytes, therefore the offset of a register # is:

0x09000 + (4 X n)

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-81
reserved.
Non-Confidential

3 Programmers model
3.7 TCU microarchitectural registers

Attributes

Offset 0x09000-0x093FC
Type RW

Reset 0x00000000
Width 32

The following figure shows the bit assignments.

31 543210

DIS_DVM —!
Reserved
PRI_LEVEL

Figure 3-6 TCU_NODE_CTRL register bit assignments

Reserved

The following table shows the bit assignments.

Table 3-20 TCU_NODE_CTRL register bit assignments

Bits | Name

Function

[31:5] |-

Reserved.

[4] |DIS DVM

Disable DVM. When this bit is set to 1, the corresponding node does not participate in DVM invalidation. Set
this bit to 1 to improve performance if the node is slow to respond to invalidations issued over DTI.

Note

This bit is ignored for connected DTI-ATS masters, because they never participate in DVM invalidation.

[3:2] |-

Reserved.

[1:0] |PRI_LEVEL

Priority level. This field indicates the priority level of the corresponding node. Translation requests from a node
with a higher priority level are normally progressed before requests from a node with a lower priority level.

3.7.7 TCU_NODE_STATUSn

Each TCU Node Status register provides the status of a DTI master. A node is a DTI master that is
typically either a TBU or a PCle Root Complex that implements ATS.

The TCU_NODE_STATUSn# characteristics are:

Usage constraints

This register indicates the status of the corresponding node only when the node is connected.

When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ.

Configurations

The value of the TCUCFG_NUM_TBU configuration parameter defines the number of
TCU NODE CTRL registers that are implemented. Each register has an address width of 4
bytes, therefore the offset of a register # is:

0x09400 + (4 x n)

Attributes

Offset 0x09400-0x097FC

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-82
reserved.
Non-Confidential

3 Programmers model
3.7 TCU microarchitectural registers

Type RO
Reset 0Xx00000000
Width 32

The following figure shows the bit assignments.

31 210

Reserved

ATS -
CONNECTED
Figure 3-7 TCU_NODE_STATUS register bit assignments

The following table shows the bit assignments.

Table 3-21 TCU_NODE_STATUS register bit assignments

Bits | Name Function
[31:2] |- Reserved.
(1] ATS ATS implemented.

© When this bit is set to 0, the corresponding node is a TBU that is connected to the TCU using the
DTI-TBU protocol.

1 When this bit is set to 1, the corresponding node is a PCle Root Complex that supports ATS, and is
connected to the TCU using the DTI-ATS protocol.

[0] CONNECTED | DT link is connected.

@ When this bit is set to 0, the DTI link for the corresponding node is not connected.
1 When this bit is set to 1, the DTI link for the corresponding node is connected.

If a DTI link is not connected, accesses to TBU registers are RAZ/WI. However, the state might change
between reading this register and attempting to access the TBU.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-83
reserved.
Non-Confidential

3 Programmers model
3.8 TCU RAS registers

3.8 TCU RAS registers
The MMU-600 includes TCU registers that are related to Reliability, Availability, and Serviceability
(RAS).

This section contains the following subsections:
e 3.8.1 TCU ERRFR on page 3-84.

* 3.82TCU ERRCTLR on page 3-84.

* 3.83TCU ERRSTATUS on page 3-85.

e 3.84 TCU ERRGEN on page 3-87.

3.8.1 TCU_ERRFR
This is the TCU Error Feature register. Use this register to discover how the TCU handles errors.
The TCU_ERRFR characteristics are:
Usage constraints

This register is read-only. When TCU SCR.NS RAS = 0, Non-secure accesses to this register
are RAZ.

Configurations

This register exists in all TCU configurations.
Attributes

Offset OXO8E80

Type RO
Reset 0x00000082
Width 32

The following figure shows the bit assignments.

31 8 76 5 210

Reserved Fl Reserved | ED

Figure 3-8 TCU_ERRFR register bit assignments

The following table shows the bit assignments.

Table 3-22 TCU_ERREFR register bit assignments

Bits | Name | Function

[31:8]] - Reserved
[7:6] |FI The value 0b10 indicates that the fault handling interrupt is controllable.
[5:2] |- Reserved

[1:0] |ED The value @b01 indicates that TCU error detection is always enabled.

3.8.2 TCU_ERRCTLR
This is the TCU Error Control register. Use this register to enable fault handling interrupts.
The TCU_ERRCTLR characteristics are:

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-84
reserved.
Non-Confidential

3 Programmers model
3.8 TCU RAS registers

Usage constraints

When TCU_SCR.NS_RAS = 0, Non-secure accesses to this register are RAZ/WI.
Configurations

This register exists in all MMU-600 configurations.
Attributes

Offset OxO8ES88

Type RW

Reset 0x00000000

Width 32

The following figure shows the bit assignments.

31 4 3 2 0

Reserved

F1-
Reserved

Figure 3-9 TCU_ERRCTLR register bit assignments

The following table shows the bit assignments.

Table 3-23 TCU_ERRCTLR register bit assignments

Bits | Name | Function

[31:4] Reserved

[3] FI Enable fault handling interrupts:

0 Aninterrupt is generated on ras_irpt when a fault occurs.

1 No interrupt is generated when a fault occurs.

[2:0] |- Reserved

3.8.3 TCU_ERRSTATUS

This is the TCU Error Record Primary Syndrome register. Use this register to find out whether different
types of error have occurred on the TCU.

The TCU_ERRSTATUS characteristics are:
Usage constraints
When TCU_SCR.NS_RAS = 0, Non-secure accesses to this register are RAZ/WI.

To prevent race conditions, under certain circumstances, writes to some bits in this register are
ignored. Typically, these writes are ignored when software has not yet observed a new error.

Configurations
This register exists in all TCU configurations.

Attributes
Offset OX08E90

Type RW

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-85
reserved.
Non-Confidential

3 Programmers model
3.8 TCU RAS registers

Reset 0Xx00000000
Width 32

The following figure shows the bit assignments.

313029 28 27 26 25 24 23 16 15 8 7 0
\ CE Reserved IERR SERR
L Reserved
OF
Reserved
Reserved

Figure 3-10 TCU_ERRSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-24 TCU_ERRSTATUS register bit assignments

Bits Name | Function

[31] - Reserved

(30] \4 Register valid. This bit is set to 1 to indicate that at least one RAS error was recorded.
Clear this bit by writing a 1 to it. If CE is not @b@0 and is not being cleared, the write is ignored. A write of 0 is
ignored.

[29:28] | - Reserved

(27] OF Overflow. This bit is set to 1 to indicate that multiple correctable errors were recorded. That is, at least one
correctable error was recorded when CE != 0boo.
Clear this bit by writing a 1 to it. A write of 0 is ignored.

[26] - Reserved

[25:24] | CE Correctable Error. This field is set to ©b10 to indicate that a corrected error occurred. Clear this field by writing
0b11 to it. If OF is set to 1 and is not being cleared, the write is ignored. A write of any value other than @b11 is
ignored.

[23:16] | - Reserved

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-86

reserved.
Non-Confidential

3 Programmers model
3.8 TCU RAS registers

Table 3-24 TCU_ERRSTATUS register bit assignments (continued)

Bits

Name

Function

[15:8]

IERR

IMPLEMENTATION DEFINED error code. When SERR is not set to 0, this field indicates the source of the error, as
follows:

0x00 Stage 1, level 0 walk cache.

ox01 Stage 1, level 1 walk cache.

0x02 Stage 1, level 2 walk cache.

ox0e3 Stage 1, level 3 walk cache.

ox04 Stage 2, level 0 walk cache.

ox05 Stage 2, level 1 walk cache.

0x06 Stage 2, level 2 walk cache.

oxe7 Stage 2, level 3 walk cache.

0x08 Configuration cache.

Writes to this field are ignored.

[7:0]

SERR

Error code. This read-only field provides information about the earliest unacknowledged correctable error, as
follows:

0x00 No error. This code occurs when CE = 0b00.
oxe7 Tag corrupted. This code can occur when CE != 0bee.
ox08 Data corrupted. This code can occur when CE != 0bee.

3.84

TCU_ERRGEN

This is the TCU Error Generation Register. Use this register to generate tag parity errors, for example
when testing error-handling software.

The TCU_ERRGEN characteristics are:
Usage constraints
When TCU _SCR.NS_RAS =0, Non-secure accesses to this register are RAZ/WI.
Configurations
This register exists in all TCU configurations.
Attributes
Offset Ox08ECO
Type RW
Reset 0Xx00000000
Width 64

The following figure shows the bit assignments.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

3-87

3 Programmers model
3.8 TCU RAS registers

63 43210

Tcc-
DCC
TWC

DWC

Reserved

Figure 3-11 TCU_ERRGEN register bit assignments

The following table shows the bit assignments.

Table 3-25 TCU_ERRGEN register bit assignments

Bits | Name | Function
[63:4] | - Reserved.
[3] TCC Configuration cache tag parity error.
0 No tag parity error is written to the configuration cache.
1 Entries that are written to the configuration cache include a tag parity error. A fault occurs when the entry is used.
[2] DCC | Configuration cache data parity error.
0 No data parity error is written to the configuration cache.
1 Entries that are written to the configuration cache include a data parity error. A fault occurs when the entry is
used.
Note
Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TCC bit at the same time.
[1] TWC | Walk cache tag parity error.
0 No tag parity error is written to the walk cache.
1 Entries that are written to the walk cache include a tag parity error. A fault occurs when the entry is used.
[0] DWC | Walk cache data parity error.
0 No data parity error is written to the walk cache.
1 Entries that are written to the walk cache include a data parity error. A fault occurs when the entry is used.
Note
Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TWC bit at the same time.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-88

reserved.
Non-Confidential

3 Programmers model
3.9 TBU Component and Peripheral ID Registers

3.9 TBU Component and Peripheral ID Registers
The component and peripheral identity registers comply with the format that Arm CoreLink and
CoreSight components use, and that the SMMUV3 architecture recommends. They provide key
information about the MMU-600 hardware, including the product and associated revision number. They
also identify Arm as the designer of the SMMU.
These registers are all read-only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32-bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64-bit ID register.
Table 3-26 TBU Component and Peripheral ID registers bit assignments
Register Offset | Bits | Value Function
SMMU PIDR4 | 0x00FD@ | [7:4] | 0x0 4KB region count.
[3:0] | ox4 JEP106 continuation code for Arm.
SMMU _PIDRS | ©9x00FD4 | [7:0] | 0x00 Reserved.
SMMU_PIDR6 | 0x00FD8 | [7:0] | 0x00 Reserved.
SMMU _PIDR7 | @x8@FDC | [7:0] | @x00 Reserved.
SMMU_PIDRO | @x00FEQ | [7:0] | ©x84 Part number[7:0].
SMMU_PIDRI1 | 0x00FE4 | [7:4] | ©xB JEP106 ID code[3:0] for Arm.
[3:0]| ox4 Part number[11:8].
SMMU _PIDR2 | Ox00FE8 | [7:4] | 0x1 MMU-600 major revision.
The value 0x1 indicates major product revision r1.
[3] |ex1 The component uses a manufacturer identity code that JEDEC allocates,
according to the JEP106 specification.
[2:0] | @x3 JEP106 ID code[6:4] for Arm.
SMMU _PIDR3 | @xQ0FEC | [7:4] | MAX[0x0, ecorevnum] | MMU-600 minor revision.
The value ©x0 indicates minor product revision p0.
[3:0] | @x0 CMOD. This field is not used.
SMMU_CIDRO | 0x@0FF@ | [7:0] | @x@D Preamble.
SMMU_CIDRI | @x8@FF4 | [7:0] | @xF@
SMMU_CIDR2 | 0x00FF8 | [7:0] | @x05
SMMU_CIDR3 | @x@8FFC | [7:0] | @xB1

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

3-89
reserved.
Non-Confidential

3 Programmers model
3.10 TBU PMU Component and Peripheral ID Registers

3.10 TBU PMU Component and Peripheral ID Registers

The component and peripheral identity registers comply with the format used by Arm CoreLink and
CoreSight components and recommended in the SMMUV3 architecture. They provide key information
about the MMU-600 hardware, including the product and associated revision number. They also identify
Arm as the designer of the SMMU.

These registers are all read-only. Each field defines a single byte in the least significant 8 bits, and the
most significant 24 bits are reserved. The least significant 8 bits of the four Component ID registers form
a single 32-bit conceptual ID register. In a similar way, the defined fields of the eight Peripheral ID
registers form a conceptual 64-bit ID register.

Table 3-27 TBU PMU Component and Peripheral ID registers bit assignments

Register Offset | Bits | Value Function
SMMU PMCG PMAUTHSTATUS | ©x02FB8 | [7:0] | 0x00 No authentication interface is implemented.
SMMU PMCG_PIDR4 Ox02FD0 | [7:4] | 0x0 4KB region count.
[3:0] | ox4 JEP106 continuation code for Arm.
SMMU_PMCG_PIDR5 Ox02FD4 | [7:0] | Ox00 Reserved.
SMMU_PMCG_PIDR6 0x02FD8 | [7:0] | 0x00 Reserved.
SMMU PMCG_PIDR7 0x02FDC | [7:0] | 0x00 Reserved.
SMMU PMCG_PIDRO Ox02FEQ | [7:0] | ©x83 Part number[7:0].
SMMU_PMCG PIDRI1 OX02FE4 | [7:4] | 0xB JEP106 ID code[3:0] for Arm.
[3:0] | 6x4 Part number[11:8].
SMMU_PMCG_PIDR2 OX02FES8 | [7:4] | Ox1 MMU-600 major revision.

The value 0x1 indicates major product revision rl.

[3] [ex1 The component uses a manufacturer identity code
that JEDEC allocates, according to the JEP106
specification.

[2:0] | ©x3 JEP106 ID code[6:4] for Arm.

SMMU_PMCG_PIDR3 OXO2FEC | [7:4] | MAX[0x0, ecorevnum] | MMU-600 minor revision.

The value 0x0 indicates minor product revision p0.

[3:0] | ©x0@ CMOD. This field is not used.
SMMU_PMCG_CIDRO Ox02FF0 | [7:0] | ©x0D Preamble.
SMMU_PMCG_CIDRI1 Ox02FF4 | [7:0] | 0x90
SMMU PMCG CIDR2 Ox02FF8 | [7:0] | ©x05
SMMU_PMCG_CIDR3 Ox02FFC | [7:0] | ©xB1
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-90
reserved.

Non-Confidential

3 Programmers model
3.11 TBU microarchitectural registers

3.1 TBU microarchitectural registers
You can set the TBU microarchitectural registers at boot time to optimize TBU behavior for your system.

Arm recommends the default settings for most systems.

This section contains the following subsections:
e 3.11.1 TBU CTRL on page 3-91.
e 3.11.2 TBU SCR on page 3-91.

3.11.1 TBU_CTRL

This register disables TBU features. Do not modify the bits in this register unless directed to do so by
Arm.

Its characteristics are:
Usage constraints

There are no usage constraints.
Configurations

This register exists in all TBU configurations.
Attributes

Offset OXx08E00

Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

31 16 15 0

Reserved AUX[15:0]

Figure 3-12 TBU_CTRL register bit assignments

The following table shows the bit assignments.

Table 3-28 TBU_CTRL register bit assignments

Bits Name Function

[31:16] |- Reserved.

[15:0] | AUX[15:0] | Leave each of these bits as 0.

3.11.2 TBU_SCR

The TBU Secure Control register controls whether Non-secure software is permitted to access the TBU
registers.

Its characteristics are:
Usage constraints

This register is accessible only by Secure software. Non-secure accesses to this register are
RAZ/WI.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-91
reserved.
Non-Confidential

Configurations

3 Programmers model
3.11 TBU microarchitectural registers

This register exists in all TBU configurations.

Attributes
Offset

Type
Reset

Width

Ox08E18
RW
0x00000000
32

The following figure shows the bit assignments.

31

Reserved

NS_RAS
NS_UARCH

l

Figure 3-13 TBU_SCR register bit assignments

The following table shows the bit assignments.

Table 3-29 TBU_SCR register bit assignments

Bits | Name Function
[31:2] |- Reserved.
(1] NS_RAS Non-secure register access to RAS registers.

0@ When this bit is set to 0, Non-secure accesses to register addresses Ox08E80-0x08ECO are RAZ/WI.

1 When this bit is set to 1, Non-secure access to RAS registers is permitted.

[0] |NS UARCH

Non-secure register access to TBU CTRL.

© When this bit is set to 0, Non-secure accesses to TBU_CTRL are RAZ/WI.
1 When this bit is set to 1, Non-secure accesses to TBU_CTRL are permitted.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

3-92

3 Programmers model
3.12 TBU RAS registers

3.12 TBU RAS registers
The MMU-600 includes TBU registers that are related to Reliability, Availability, and Serviceability
(RAS).

This section contains the following subsections:

* 3.12.1 TBU ERRFR on page 3-93.

e 3.12.2 TBU ERRCTLR on page 3-93.

e 3.12.3 TBU ERRSTATUS on page 3-94.
e 3.12.4 TBU ERRGEN on page 3-95.

3.121 TBU_ERRFR
This is the TBU Error Feature register. Use this register to discover how the TBU handles errors.
The TBU ERRFR characteristics are:
Usage constraints

This register is read-only. When TBU SCR.NS RAS = 0, Non-secure accesses to this register
are RAZ.

Configurations

This register exists in all TBU configurations.
Attributes

Offset OXO8E80

Type RO
Reset 0x00000081
Width 32

The following figure shows the bit assignments.

31 8 76 5 210

Reserved Fl Reserved | ED

Figure 3-14 TBU_ERREFR register bit assignments

The following table shows the bit assignments.

Table 3-30 TBU_ERRFR register bit assignments

Bits | Name | Function

[31:8]] - Reserved
[7:6] |FI The value 0b10 indicates that the fault handling interrupt is controllable.
[5:2] |- Reserved

[1:0] |ED The value @b01 indicates that TBU error detection is always enabled.

3.12.2 TBU_ERRCTLR
This is the TBU Error Control register. Use this register to enable fault handling interrupts.
The TBU ERRCTLR characteristics are:

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-93
reserved.
Non-Confidential

3 Programmers model
3.12 TBU RAS registers

Usage constraints
When TBU_SCR.NS_RAS = 0, Non-secure accesses to this register are RAZ/WI.
Configurations

This register exists in all MMU-600 configurations. An instance of this register exists for each
implemented TBU.

Attributes
Offset OxO8E88
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

31 4 3 2 0

Reserved

F1-
Reserved

Figure 3-15 TBU_ERRCTLR register bit assignments

The following table shows the bit assignments.

Table 3-31 TBU_ERRCTLR register bit assignments

Bits | Name | Function

[31:4] Reserved

[3] FI Set this bit to 1 to enable fault handling interrupts for the TBU.

[2:0] |- Reserved
3123 TBU_ERRSTATUS
This is the TBU Error Record Primary Syndrome register. Use this register to find out whether different
types of error have occurred on the TBU.
The TBU ERRSTATUS characteristics are:
Usage constraints
When TBU_SCR.NS_RAS = 0, Non-secure accesses to this register are RAZ/WI. To prevent
race conditions, under certain circumstances, writes to some bits in this register are ignored.
Typically, these writes are ignored when a new error has not yet been observed by software.
Configurations
This register exists in all MMU-600 configurations. An instance of this register exists for each
implemented TBU.
Attributes
Offset Ox08E90
Type RW
Reset 0x00000000
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-94

reserved.
Non-Confidential

3 Programmers model
3.12 TBU RAS registers

Width 32

The following figure shows the bit assignments.

313029 28 27 26 25 24 23 8 7 0
\ CE Reserved SERR
L Reserved
OF
Reserved
Reserved

Figure 3-16 TBU_ERRSTATUS register bit assignments

The following table shows the bit assignments.

Table 3-32 TBU_ERRSTATUS register bit assignments

Bits | Name | Function
[31] - Reserved
[30] v Register valid. This bit is set to 1 to indicate that at least one RAS error was recorded.
Clear this bit by writing a 1 to it. If CE is not @b@0 and is not being cleared, the write is ignored. A write of 0 is
ignored.
[29:28] | - Reserved
(27] OF Overflow. This bit is set to 1 to indicate that multiple correctable errors were recorded. That is, at least one
correctable error was recorded when CE != 0b00.
Clear this bit by writing a 1 to it. A write of 0 is ignored.
[26] - Reserved
[25:24] | CE Correctable Error. This field is set to @b10 to indicate that a corrected error occurred. Clear this field by writing
0b11 to it. If OF is set to 1 and is not being cleared, the write is ignored. A write of any value other than @b11 is
ignored.
[23:8] |- Reserved
[7:0] SERR | Error code. This field provides information about the earliest unacknowledged correctable error, as follows:
0x00 No error. This code occurs when CE = 0b00.
oxe7 Main TLB tag is corrupted. This code can occur when CE !=0b00.
ox08 Main TLB data is corrupted. This code can occur when CE != 0b0@.
Writes to this field are ignored.
3.124 TBU_ERRGEN
This is the TBU Error Generation register. Use this register to generate tag parity errors. You might want
to generate errors in certain cases, such as when testing error-handling software.
The TBU_ERRGEN characteristics are:
Usage constraints
When TBU _SCR.NS_RAS =0, Non-secure accesses to this register are RAZ/WI.
Configurations
This register exists in all TBU configurations.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-95

reserved.
Non-Confidential

3 Programmers model
3.12 TBU RAS registers

Attributes
Offset OxO8ECO

Type RW
Reset 0x00000000
Width 64

The following figure shows the bit assignments.

63 210

Reserved

TMTLB-
DMTLB
Figure 3-17 TBU_ERRGEN register bit assignments

The following table shows the bit assignments.

Table 3-33 TBU_ERRGEN register bit assignments

Bits

Name

Function

[63:2]

Reserved.

TMTLB

Main TLB tag parity error.

0 No tag parity error is written to the Main TLB.

1 Entries that are written to the Main TLB include a tag parity error. A fault occurs when the entry is used.

DMTLB

Main TLB data parity error.

0 No data parity error is written to the Main TLB.

1 Entries that are written to the Main TLB include a data parity error. A fault occurs when the entry is used.

Note

Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not
set this bit and the TMTLB bit at the same time.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights 3-96

reserved.
Non-Confidential

Appendix A
Signal descriptions

This appendix describes the MMU-600 external signals.

It contains the following sections:

A.1 Clock and reset signals on page Appx-A-98.

A.2 TCU QTW/DVM interface signals on page Appx-A-99.

A.3 TCU programming interface signals on page Appx-A-102.
A.4 TCU SYSCO interface signals on page Appx-A-103.

A.5 TCU PMU snapshot interface signals on page Appx-A-104.
A.6 TCU LPI PD interface signals on page Appx-A-105.

A.7 TCU LPI CG interface signals on page Appx-A-106.

A.8 TCU DTI interface signals on page Appx-A-107.

A.9 TCU interrupt signals on page Appx-A-108.

A.10 TCU tie-off signals on page Appx-A-109.

A.11 TCU and TBU test and debug signals on page Appx-A-110.
A.12 TBU TBS interface signals on page Appx-A-111.

A.13 TBU TBM interface signals on page Appx-A-115.

A.14 TBU PMU snapshot interface signals on page Appx-A-119.
A.15 TBU LPI _PD interface signals on page Appx-A-120.

A.16 TBU LPI_CG interface signals on page Appx-A-121.

A.17 TBU DTI interface signals on page Appx-A-122.

A.18 TBU interrupt signals on page Appx-A-123.

A.19 TBU tie-off signals on page Appx-A-124.

A.20 DTI interconnect switch signals on page Appx-A-126.

A.21 DTI interconnect sizer signals on page Appx-A-128.

A.22 DTI interconnect register slice signals on page Appx-A-130.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

Appx-A-97

A1 Clock and reset signals

The MMU-600 uses a single set of standard clock and reset signals.

The following table shows the clock and reset signals.

A Signal descriptions
A.1 Clock and reset signals

Table A-1 Clock and reset signals

Signal | Direction | Description

aclk Input Global clock.

aresetn | Input Global reset.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-98

reserved.
Non-Confidential

A Signal descriptions
A.2 TCU QTW/DVM interface signals

A.2 TCU QTW/DVM interface signals

The TCU QTW/DVM interface signals are based on the AMBA ACES-Lite signals. See the Arm®
AMBA® AXI and ACE Protocol Specification, AXI3, AX14, AXI5, ACE and ACE5 for more information
about these signals.

The following table shows the TCU QTW/DVM interface signals.

Table A-2 TCU QTW/DVM interface signals

Signal Direction | Description
acaddr_qtw Input Snoop address.
acprot_qtw Input Snoop protection type.

acready_qtw | Output Snoop address ready.

acsnoop_qtw Input Snoop transaction type.
acvalid_qtw Input Snoop address valid.
arid_qtw Output Read address ID.

araddr_qtw Output Read address.

arburst_qtw Output Burst type.

arcache_qtw Output Memory type.

ardomain_qtw | Output Shareability domain.

arlen_qtw Output Burst length.

arlock_qtw Output Lock type.

arprot_qtw Output Protection type.

arqos_qtw Output QoS identifier.
arready_qtw | Input Read address ready.
arregion_qtw | Output Region identifier.
arsize_qtw Output Burst size.
arsnoop_qtw Output Transaction type.

arvalid_qtw Output Read address valid.

awid_qtw Output Write address ID.

awaddr_qtw Output Write address.

awburst_qtw | Output Burst type.

awcache _qtw | Output Memory type.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-99
reserved.
Non-Confidential

A Signal descriptions
A.2 TCU QTW/DVM interface signals

Table A-2 TCU QTW/DVM interface signals (continued)

Signal Direction | Description
awdomain_qtw | Output Shareability domain.
awlen_qtw Output Burst length.

awlock_qtw Output Lock type.

awprot_qtw Output Protection type.

awqos_qtw Output QoS identifier.

awready_qtw | Input Write address ready.
awregion_qtw | Output Region identifier.
awsize_qtw Output Burst size.

awsnoop_qtw | Output Transaction type.

awvalid_qtw Output Write address valid.

crready_qtw Input Snoop response ready.
crresp_qtw Output Snoop response.
crvalid_qtw Output Snoop response valid.
rid_qtw Input Read data ID.
rdata_qtw Input Read data.

rlast_qtw Input Read last.

rready_qtw Output Read ready.

rresp_qtw Input Read response.
rvalid_qtw Input Read valid.
wdata_qtw Output Write data.
wlast_qtw Output Write last.
wready_qtw Input Write ready.
wstrb_qtw Output Write strobe.

wvalid_qtw Output Write valid.

bid_qtw Input Response ID.

bready_qtw Output Response ready.

bresp_qtw Input Write response.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-100
reserved.

Non-Confidential

A Signal descriptions
A.2 TCU QTW/DVM interface signals

Table A-2 TCU QTW/DVM interface signals (continued)

Signal Direction | Description
bvalid_qtw Input Write response valid.
awakeup_qtw | Output Wakeup.
acwakeup_qtw | Input Snoop wakeup.
acvmidext_qtw | Input Snoop Extended Virtual Machine IDentifier (VMID).
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-101
reserved.

Non-Confidential

A Signal descriptions
A.3 TCU programming interface signals

A3 TCU programming interface signals

The TCU programming interface signals are based on the AMBA APB4 signals. See the 4rm® AMBA®
APB Protocol Specification for more information about these signals.

The following table shows the TCU programming interface signals.

Table A-3 TCU programming interface signals

Signal Direction | Description

paddr_prog Input Peripheral address.

psel_prog Input Peripheral select.

penable_prog | Input Enable for transfer.

pwrite_prog Input Write transaction indicator.

pprot_prog Input Protection type.

pwdata prog | Input Write data.

pstrb_prog Input Write data strobe.

pslverr_prog | Output Error response.

prdata_prog | Output Read data.

pready_prog | Output Transfer ready.

pwakeup prog | Input Interface wakeup.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-102

reserved.
Non-Confidential

A4 TCU SYSCO interface signals
The following table shows the TCU SYSCO interface signals.

A Signal descriptions
A.4 TCU SYSCO interface signals

Table A-4 TCU SYSCO interface signals

Signal | Direction

Description

syscoreq | Output

System coherency request.

This output transitions:

HIGH To indicate that the master is requesting to enter the coherency domain.

LOW To indicate that the master is requesting to exit the coherency domain.

syscoack | Input

System coherency acknowledge.

This input transitions to the same level as syscoreq when the request to enter or exit the coherency domain is

complete.

See the Arm® AMBA® AXI and ACE Protocol Specification, AXI13, AXI4, AXI5, ACE and ACE5 for more
information about these signals.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

Appx-A-103

A Signal descriptions
A.5 TCU PMU snapshot interface signals

A5 TCU PMU snapshot interface signals
The following table shows the TCU PMU snapshot interface signals.

Table A-5 TCU PMU snapshot interface signals

Signal Direction | Description

pmusnapshot_req | Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.

pmusnapshot_ack | Output PMU snapshot acknowledge. The TCU uses this signal to acknowledge that the PMU snapshot has
occurred.

This signal is LOW after reset.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-104
reserved.
Non-Confidential

A Signal descriptions
A.6 TCU LPI_PD interface signals

A.6 TCU LPI_PD interface signals
The following table shows the TCU LPI_PD interface signals.

Table A-6 TCU LPI_PD interface signals

Signal Direction | Description
qactive_pd | Output Component active.
qreqn_pd Input Quiescence request.

qacceptn_pd | Output Quiescence accept.

qdeny_pd Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information about these signals.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-105
reserved.
Non-Confidential

A Signal descriptions
A.7 TCU LPI_CG interface signals

A7 TCU LPI_CG interface signals
The following table shows the TCU LPI_CG interface signals.

Table A-7 TCU LPI_CG interface signals

Signal Direction | Description
qactive_cg | Output Component active.
qreqn_cg Input Quiescence request.
qacceptn_cg | Output Quiescence accept.
qdeny_cg Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information about these signals.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-106
reserved.
Non-Confidential

A.8 TCU DTI interface signals

The following table shows the TCU DTI interface signals.

A Signal descriptions
A.8 TCU DTl interface signals

Table A-8 TCU DTl interface signals

Signal

Direction

Description

tvalid_dti_dn

Master to slave.

Flow control signal.

tready_dti_dn

Slave to master.

Flow control signal.

tdata_dti_dn

Master to slave.

Message data signal.

tid_dti_dn

Master to slave.

Identifies the master that initiated the message.

tlast_dti_dn

Master to slave.

Indicates the last cycle of a message.

tkeep_dti_dn

Master to slave.

This signal indicates valid bytes.

tvalid_dti_up

Slave to master.

Flow control signal.

tready_dti_up

Master to slave.

Flow control signal.

tdata_dti_up

Slave to master.

Message data signal.

tdest_dti_up

Slave to master.

Identifies the master that is receiving the message.

tlast dti_up

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_up

Slave to master.

Indicates valid bytes.

twakeup_dti_up

Slave to master.

Wakeup signal.

twakeup_dti_dn

Master to slave.

Wakeup signal.

See the Arm® AMBA® 4 AXI4-Stream Protocol Specification for more information about the DTI signals.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more

information about DTI protocol messages.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-107

A.9

A Signal descriptions
A.9 TCU interrupt signals

TCU interrupt signals

The TCU interrupt signals are edge-triggered. The interrupt controller must detect the rising edge of

these signals.

The TCU can also output the Secure and Non-secure Event queue, SYNC complete commands, and
global interrupts as Message Signaled Interrupts (MSIs) on the QTW/DVM interface. If the system
supports capturing MSIs from the TCU, there is no requirement to connect the corresponding interrupt
signals in this interface.

The following table shows the TCU interrupt signals.

Table A-9 TCU interrupt interface signals

Signal

Direction

Description

event_q_irpt s

Output

Event queue, Secure interrupt. Asserts a Secure interrupt to indicate that the Event queue is not
empty or has overflowed.

event_q_irpt_ns | Output Event queue, Non-secure interrupt. Asserts a Non-secure interrupt to indicate that the Event queue is
not empty or has overflowed.
cmd_sync_irpt_ns | Output SYNC complete, Non-secure interrupt. Asserts a Non-secure interrupt to indicate that the CMD_SYNC
command is complete.
cmd_sync_irpt_s | Output SYNC complete, Secure interrupt. Asserts a Secure interrupt to indicate that the CMD_SYNC
command is complete.
global_irpt_ns Output Asserts a global Non-secure interrupt.
global_irpt_s Output Asserts a global Secure interrupt.
ras_irpt Output Asserts a Reliability, Availability, and Serviceability (RAS) interrupt.
Note
The MMU-600 cannot output RAS interrupts as MSIs. This output must be connected to an interrupt
controller.
pmu_irpt Output Asserts a PMU interrupt.
Note
The MMU-600 cannot output PMU interrupts as MSIs. This output must be connected to an
interrupt controller.
evento Output Event output for connection to processors. This signal is asserted for one cycle to indicate an event
that enables processors to wake up from WFE low-power state.
pri_q_irpt_ns Output Asserts a Page Request Interface (PRI) queue interrupt.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

Appx-A-108

A Signal descriptions
A.10 TCU tie-off signals

A.10 TCU tie-off signals

The TCU tie-off signals are sampled between exiting reset and the LPI_PD interface first entering the
Q RUN state. Ensure that the value of these signals does not change when the LPI_PD interface is in the
Q STOPPED or Q EXIT state for the first time after exiting reset.

The following table shows the TCU tie-off signals.

Table A-10 TCU tie-off signals

Signal Direction | Description

sup_cohacc Input This signal indicates whether the QTW interface is I/O-coherent. Tie HIGH when the TCU is
connected to a coherent interconnect.

sup_btm Input This signal indicates whether the Broadcast TLB Maintenance is supported. Tie HIGH when the TCU
is connected to an interconnect that supports DVM.

sup_sev Input This signal indicates whether the Send Event mechanism is supported. Tie HIGH when evento is
connected.

sup_oas[2:0] Input Output address size supported.
The encodings for this input are:
obooe 32 bits.
oboo1 36 bits.
obole 40 bits.
obe11l 42 bits.
ob1oe 44 bits.
oblo1l 48 bits.
You must not use other encodings, including ©b110 that SMMU¥V3.1 defines to indicate 52-bit
addresses. They are treated as ©b101.

sec_override Input When HIGH, certain registers are accessible to Non-secure accesses from reset, as the TCU_SCR
register settings describe.

ecorevnum|3:0] | Input Tie this signal to 0 unless directed otherwise by Arm.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 for more information about the SMMUV3 ID signals.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-109
reserved.
Non-Confidential

A Signal descriptions
A.11 TCU and TBU test and debug signals

A1 TCU and TBU test and debug signals
The test and debug signals are common to the TCU and TBU.

The following table shows the test and debug signals.

Table A-11 Test and debug signals

Signal Direction | Description
dftcgen Input Clock gate enable.
To enable architectural clock gates for the aclk clock, set this signal HIGH during scan shift.
dftrstdisable | Input Reset disable.
To disable reset, set this signal HIGH during scan shift.
dftramhold | Input Preserve RAM state.
To preserve the state of the RAMs and their connected registers, set this signal HIGH during scan shift.
mbistresetn | Input MBIST mode reset. This active-LOW signal is encoded as follows:
0 Reset MBIST functional logic.
1 Normal operation.
mbistreq Input MBIST test request. This signal is encoded as follows:
0 Normal operation.
1 Enable MBIST testing.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-110

reserved.
Non-Confidential

A Signal descriptions
A.12 TBU TBS interface signals

A.12 TBU TBS interface signals
The TBU TBS interface signals are based on the AMBA ACES5-Lite signals.
The following table shows the TBU TBS interface signals.
Table A-12 TBU TBS interface signals
Signal Direction | Description
aclk Input Clock input.
acaddr_s[47:0] Output Snoop address.
This signal is present for ACE TBU configurations only.
acprot_s[2:0] Output Snoop protection type.
This signal is present for ACE TBU configurations only.
acready_s Input Snoop address ready.
This signal is present for ACE TBU configurations only.
acsnoop_s[3:0] Output Snoop transaction type.
This signal is present for ACE TBU configurations only.
acvalid_s Output Snoop address valid.
This signal is present for ACE TBU configurations only.
acvmidext_s[3:0] Output Snoop address Virtual Machine IDentifier (VMID) Extension.
This signal is present for ACE TBU configurations only.
acwakeup_s Output Wakeup signal.
This signal is present for ACE TBU configurations only.
araddr_s Input Read address.
arburst_s Input Burst type.
arcache_s Input Memory type.
ardomain_s Input Shareability domain.
aresetn Input Active-LOW reset signal.
arid_s Input Read address ID.
arlen_s Input Burst length.
arlock_s Input Lock type.
arprot_s Input Protection type.
arqos_s Input Quality of Service (QoS).
arready_s Output Read address ready.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

Appx-A-111
reserved.
Non-Confidential

A Signal descriptions

A.12 TBU TBS interface signals

Table A-12 TBU TBS interface signals (continued)

Signal Direction | Description
arregion_s Input Region identifier.
arsize_s Input Burst size.
armmussid_s Input These signals indicate the StreamID, SubstreamID, and ATS translated status of
the originating transaction.
armmusid_s Input . . .
- These signals are defined by the AXIS Untranslated Transactions extension.
armmussidv_s Input
armmusecsid_s Input
armmuatst_s Input
arvalid_s Input Read address valid.
awaddr_s Input Write address.
awburst_s Input Burst type.
awcache_s Input Memory type.
awdomain_s Input Shareability domain.
awid_s Input Write address ID.
awlen_s Input Burst length.
awlock_s Input Lock type.
awprot_s Input Protection type.
awqos_s Input QoS.
awready_s Output Write address ready.
awregion_s Input Region identifier.
awsize_s Input Burst size.
awmmussid_s Input These signals indicate the StreamID, SubstreamID, and ATS translated status of
the originating transaction.
awmmusid_s . . .
- These signals are defined by the AXIS Untranslated Transactions extension.
awmmussidv_s
awmmusecsid_s
awmmuatst_s
awvalid_s Input Write address valid.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.

Non-Confidential

Appx-A-112

A Signal descriptions

A.12 TBU TBS interface signals

Table A-12 TBU TBS interface signals (continued)

Signal

Direction

Description

awunique_s

Input

Line is permitted to be held in a Unique state.

This signal is present for ACE TBU configurations only.

bid_s Output Response ID.
bready s Input Response ready.
bresp_s Output Write response.
bvalid_s Output Write response valid.
cddata_s[TBUCFG_DATA_WIDTH-1:0] | Output Snoop data.

This signal is present for ACE TBU configurations only.
cdlast_s Output Last data transfer of a snoop transaction.

This signal is present for ACE TBU configurations only.
cdready s Input Snoop data ready.

This signal is present for ACE TBU configurations only.
cdvalid_s Output Snoop data valid.

This signal is present for ACE TBU configurations only.
crready_s Input Snoop response ready.

This signal is present for ACE TBU configurations only.
crresp_s[4:0] Output Snoop response.

This signal is present for ACE TBU configurations only.
crvalid_s Output Snoop response valid.

This signal is present for ACE TBU configurations only.
rack s Input Read acknowledge.

This signal is present for ACE TBU configurations only.
rdata_s Output Read data.
rid_s Output Read ID.
rlast_s Output Read last.
rready_s Input Read ready.
rresp_s[3:2] Output Read response.

This signal is present for ACE TBU configurations only.
rvalid_s Output Read valid.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-113

A Signal descriptions

A.12 TBU TBS interface signals

Table A-12 TBU TBS interface signals (continued)

Signal Direction | Description
wack_s Input Write acknowledge.

This signal is present for ACE TBU configurations only.
wdata_s Input Write data.
wlast_s Input Write last.
wready_s Output Write ready.
wstrb_s Input Write strobes.
wvalid_s Input Write valid.
aruser_s Input Read address (AR) channel user signal.
awuser_s Input Write address (AW) channel user signal.
wuser_s Input Write data (W) channel user signal.
ruser_s Output Read data (R) channel user signal.
buser_s Output Write response (B) channel user signal.
awakeup_s Input Wakeup signal.
arsnoop_s Input Transaction type of read transaction.

This signal is not present for ACE TBU configurations.
awsnoop_s[3] Input Transaction type of write transaction.
awstashnid_s[10:0] Input These signals are defined by the AXI5 Cache Stash Transactions extension.
awstashniden_s Input If TBUCFG_STASH = 0, these signals are ignored.

These signals are not present for ACE TBU configurations.
awstashlpid_s[4:0] Input
awstashlpiden_s Input

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-114

A.13 TBU TBM interface signals

The TBU TBM interface signals are based on the AMBA ACES-Lite signals.

The following table shows the TBU TBM interface signals.

A Signal descriptions
A.13 TBU TBM interface signals

Table A-13 TBU TBM interface signals

Signal Direction | Description
aclk Input Clock input.
acaddr_m[47:0] Input Snoop address.
This signal is present for ACE TBU configurations only.
acprot_m|[2:0] Input Snoop protection type.
This signal is present for ACE TBU configurations only.
acready_m Output Snoop address ready.
This signal is present for ACE TBU configurations only.
acsnoop_m[3:0] Input Snoop transaction type.
This signal is present for ACE TBU configurations only.
acvalid_m Input Snoop address valid.
This signal is present for ACE TBU configurations only.
acvmidext_m[3:0] Input Snoop address Virtual Machine IDentifier (VMID) Extension.
This signal is present for ACE TBU configurations only.
acwakeup_m Input Wakeup signal.
This signal is present for ACE TBU configurations only.
araddr_m Output Read address.
arburst_m Output Burst type.
arcache_m Output Memory type.
ardomain_m Output Shareability domain.
aresetn Input Active-LOW reset signal.
arid_m Output Read address ID.
arlen_m Output Burst length.
arlock_m Output Lock type.
arprot_m Output Protection type.
arqos_m Output Quality of Service (QoS).
arready_m Input Read address ready.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-115

A Signal descriptions
A.13 TBU TBM interface signals

Table A-13 TBU TBM interface signals (continued)

Signal Direction | Description
arregion_m Output Region identifier.
arsize_m Output Burst size.
armmusid_m Output These signals indicate the StreamID of the originating transaction.
armmusecsid_m Output
arvalid_m Output Read address valid.
awaddr_m Output Write address.
awburst_m Output Burst type.
awcache_m Output Memory type.
awdomain_m Output Shareability domain.
awid_m Output Write address ID.
awlen_m Output Burst length.
awlock_m Output Lock type.
awprot_m Output Protection type.
awqos_m Output QosS.
awready_m Input Write address ready.
awregion_m Output Region identifier.
awsize_m Output Burst size.
awmmusid_m Output These signals indicate the StreamID of the originating transaction.
awmmusecsid m Output The .Generic Interrupt Cohnt.roller (GIC) uses these signals to determine the
- DevicelD of MSIs that originate from upstream masters.
awvalid_m Output Write address valid.
awunique_m Output Line is permitted to be held in a Unique state.
This signal is present for ACE TBU configurations only.
bid_m Input Response ID.
bready_m Output Response ready.
bresp_m Input Write response.
bvalid_m Input Write response valid.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-116

A Signal descriptions
A.13 TBU TBM interface signals

Table A-13 TBU TBM interface signals (continued)

Signal Direction | Description

rack_m Output Read acknowledge.

This signal is present for ACE TBU configurations only.

rdata_m Input Read data.
rid_m Input Read ID.
rlast_m Input Read last.
rready_m Output Read ready.
rresp_m|[3:2] Input Read response.

This signal is present for ACE TBU configurations only.

rvalid_m Input Read valid.

wack_m Output Write acknowledge.

This signal is present for ACE TBU configurations only.

wdata_m Output Write data.

wlast_m Output Write last.

wready_m Input Write ready.

wstrb_m Output Write strobes.

wvalid_m Output Write valid.

aruser_m Output Read address (AR) channel user signal.
awuser_m Output Write address (AW) channel user signal.
wuser_m Output Write data (W) channel user signal.
ruser_m Input Read data (R) channel user signal.
buser_m Input Write response (B) channel user signal.
awakeup_m Output Wakeup signal.

arsnoop_m Output Transaction type of read transaction.
awsnoop_m|3] Output Transaction type of write transaction.

This signal is not present for ACE TBU configurations.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-117
reserved.
Non-Confidential

A Signal descriptions

A.13 TBU TBM interface signals

Table A-13 TBU TBM interface signals (continued)

Signal

Direction

Description

awstashnid_m[10:0]

Output

awstashniden_m Output
awstashlpid_m|[4:0] Output
awstashlpiden_m Output

These signals are defined by the AXI5 Cache Stash Transactions extension.

If TBUCFG_STASH = 0, these signals are ignored.

These signals are not present for ACE TBU configurations.

cddata_m[TBUCFG_DATA_WIDTH-1:0] | Input

Snoop data.

This signal is present for ACE TBU configurations only.

cdlast_ m Input Last data transfer of a snoop transaction.

This signal is present for ACE TBU configurations only.
cdready_m Output Snoop data ready.

This signal is present for ACE TBU configurations only.
cdvalid_m Input Snoop data valid.

This signal is present for ACE TBU configurations only.
crready_m Output Snoop response ready.

This signal is present for ACE TBU configurations only.
crresp_m[4:0] Input Snoop response.

This signal is present for ACE TBU configurations only.
crvalid Input Snoop response valid.

This signal is present for ACE TBU configurations only.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-118

A Signal descriptions
A.14 TBU PMU snapshot interface signals

A14 TBU PMU snapshot interface signals
The following table shows the TBU PMU snapshot interface signals.

Table A-14 TBU PMU snapshot interface signals

Signal Direction | Description

pmusnapshot_req | Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.

pmusnapshot_ack | Output PMU snapshot acknowledge. The TBU uses this signal to acknowledge that the PMU snapshot has
occurred.

This signal is LOW after reset.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-119
reserved.
Non-Confidential

A Signal descriptions
A.15 TBU LPI_PD interface signals

A15 TBU LPI_PD interface signals
The following table shows the TBU LPI_PD interface signals.

Table A-15 TBU LPI_PD interface signals

Signal Direction | Description
qactive_pd | Output Component active.
qreqn_pd | Input Quiescence request.

qaccept_pd | Output Quiescence accept.

qdeny_pd | Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information about these signals.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-120
reserved.
Non-Confidential

A Signal descriptions
A.16 TBU LPI_CG interface signals

A.16 TBU LPI_CG interface signals
The following table shows the TBU LPI_CG interface signals.

Table A-16 TBU LPI_CG interface signals

Signal Direction | Description
qactive_cg | Output Component active.
qreqn_cg | Input Quiescence request.
qaccept_cg | Output Quiescence accept.
qdeny_cg | Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information about these signals.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-121
reserved.
Non-Confidential

A7 TBU DTI interface signals

The following table shows the TBU DTI interface signals.

A Signal descriptions
A.17 TBU DTl interface signals

Table A-17 TBU DTl interface signals

Signal

Direction

Description

tvalid_dti_dn

Master to slave.

Flow control signal.

tready_dti_dn

Slave to master.

Flow control signal.

tdata_dti_dn

Master to slave.

Message data signal.

tlast_dti_dn

Master to slave.

Indicates the last cycle of a message.

tkeep_dti_dn

Master to slave.

Indicates valid bytes.

tvalid_dti_up

Slave to master.

Flow control signal.

tready_dti_up

Master to slave.

Flow control signal.

tdata_dti_up

Slave to master.

Message data signal.

tlast_dti_up

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_up

Slave to master.

Indicates valid bytes.

twakeup_dti_up

Slave to master.

Wakeup signal.

twakeup_dti_dn

Master to slave.

Wakeup signal.

See the Arm® AMBA® 4 AXI4-Stream Protocol Specification for more information about the DTI signals.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information about DTI protocol messages.

100310_0100_00_en

reserved.
Non-Confidential

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

Appx-A-122

A.18 TBU interrupt signals

A Signal descriptions
A.18 TBU interrupt signals

The TBU interrupt signals are edge-triggered. The interrupt controller must detect the rising edge of

these signals.

The MMU-600 TBU cannot output these interrupts as Message Signaled Interrupts (MSIs). These

signals must be connected to an interrupt controller.

The following table shows the TBU interrupt signals.

Table A-18 TBU interrupt signals

Signal Direction | Description

ras_irpt | Output RAS interrupt.

pmu_irpt | Output PMU interrupt.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-123

reserved.
Non-Confidential

A.19 TBU tie-off signals

A Signal descriptions
A.19 TBU tie-off signals

The TBU tie-off signals are sampled between exiting reset and the LPI_PD interface first entering the
Q RUN state. Ensure that the value of these signals does not change when the LPI_PD interface is in the
Q STOPPED or Q EXIT state for the first time after exiting reset.

The following table shows the TBU tie-off signals.

Table A-19 TBU tie-off signals

Signal

Direction

Description

ns_sid_high[23:TBUCFG_SID_WIDTH]

Input

Provides the high-order StreamID bits for all transactions with a
Non-secure StreamID that pass through the TBU.

s_sid_high[23:TBUCFG_SID_WIDTH]

Input

Provides the high-order StreamID bits for all transactions with a
Secure StreamID that pass through the TBU.

max_tok_trans[log2(TBUCFG_XLATE_SLOTS)-1:0]

Input

Indicates the number of DTI translation tokens to request when
connecting to the TCU, minus 1.

pcie_mode

Input

You must tie this signal HIGH when the TBU is connected to a
PCle interface.

When this signal is HIGH, the TBU behaves as if the PCle 'No

Snoop' property is applied to transactions downstream of the

SMMU, as long as the PCle interface outputs transactions with the

following AXI memory types:

* Normal Non-Cacheable Bufferable, when 'No Snoop' is set for
the transaction.

» Write-Back, when 'No Snoop' is not set for the transaction.

This TBU behavior is a requirement of the Arm Server Base System
Architecture.

If this signal is HIGH, the attributes of TBS interface transactions
are always combined with the translation attributes, even if stage 1
translation is enabled. That is, the transaction attributes are always
calculated as if the DTI TBU_TRANS RESP.STRW field is EL1-
S2, regardless of the actual STRW value.

If this signal is HIGH, the input attribute and shareability override
information in the ATTR OVR field of the

DTI TBU TRANS RESP message is ignored. For SMMUv3,
PCle masters do not support this feature.

sec_override

Input

When HIGH, certain registers are accessible to Non-secure
accesses from reset, as the TCU_SCR register settings describe.

ecorevnum|[3:0]

Input

Tie this signal to 0 unless directed otherwise by Arm.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-124
reserved.
Non-Confidential

A Signal descriptions
A.19 TBU tie-off signals

Table A-19 TBU tie-off signals (continued)

Signal

Direction

Description

utlb_roundrobin

Input

Defines the Micro TLB entry replacement policy.

When LOW, the Micro TLB uses a Pseudo Least Recently Used
(PLRU) replacement policy. This policy typically provides the best
average performance. However, when multiple translations are
prefetched using a StashTranslation transaction, they might evict
each other.

When HIGH, the Micro TLB uses a round-robin replacement
policy. With this policy, you can prefetch multiple translations
using a StashTranslation transaction without evictions occurring, as
long as the Micro TLB size is not exceeded.

Tie this signal HIGH if a real-time upstream master prefetches
translations and you want to avoid transactions evicting each other.
Otherwise, tie this signal LOW.

cmo_disable Input Tie this signal HIGH to disable cache maintenance operations.
When this signal is HIGH, the following transactions are always
aborted with an SLVERR response:
e Cleanlnvalid.
* CleanShared.
* CleanSharedPersist.
* Makelnvalid.
Cache maintenance operations can sometimes break the
requirements of limited sideband channel communication, such as
when a master component accesses protected content. You can
disable cache maintenance operations in such cases.
Cache maintenance operations are always disabled for ACE
interfaces. This signal is therefore not present when the connected
interface is configured as an ACE interface.

Note
For ACE TBU configurations, this signal is not present, and is
treated as 1.
Related information
3.7.5 TCU SCR on page 3-80
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-A-125

reserved.
Non-Confidential

A.20

A Signal descriptions

A.20 DTl interconnect switch signals

DTI interconnect switch signals

The DTI interconnect switch provides signals for each of its interfaces.

The switch provides one DN_S# slave downstream interface per slave interface. The following table

shows the DN_Sn signals.

Table A-20 DTI interconnect switch DN_Sn interface signals

Signal

Direction

Description

tvalid_dti_dn_sn

Slave to master.

Flow control signal.

tready_dti_dn_sn

Master to slave.

Flow control signal.

tdata_dti_dn_sn

Slave to master.

Message data signal.

tid_dti_dn_sn

Slave to master.

Indicates the master that initiated the message.

tlast_dti_dn_sn

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_dn_sn

Slave to master.

Indicates valid bytes.

twakeup_dti_up_sn

Slave to master.

Wakeup signal.

The switch provides one UP_Sn slave upstream interface per slave interface. The following table shows
the UP_Sr signals.

Table A-21 DTI interconnect switch UP_Sn interface signals

Signal

Direction

Description

tvalid_dti_up_sn

Master to slave.

Flow control signal.

tready_dti_up_sn

Slave to master.

Flow control signal.

tdata_dti_up_sn

Master to slave.

Message data signal.

tdest_dti_up_sn

Master to slave.

Indicates the master that initiated the message.

tlast_dti_up_sn

Master to slave.

Indicates the last cycle of a message.

tkeep_dti_up_s»

Master to slave.

Indicates valid bytes.

twakeup_dti_up_sn

Master to slave.

Wakeup signal.

The switch provides a DN_M master downstream interface. The following table shows the DN M

Table A-22 DTI interconnect switch DN_M interface signals

Signal

Direction

Description

tvalid_dti_dn_m

Slave to master.

Flow control signal.

tready_dti_dn_m

Master to slave.

Flow control signal.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-126

A Signal descriptions
A.20 DTl interconnect switch signals

Table A-22 DTI interconnect switch DN_M interface signals (continued)

Signal

Direction

Description

tdata_dti_dn_m

Slave to master.

Message data signal.

tid dti dn_m

Slave to master.

Indicates the master that initiated the message.

tlast_dti_dn_m

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_dn_m

Slave to master.

Indicates valid bytes.

twakeup_dti_dn_m

Slave to master.

Wakeup signal.

The switch provides an UP_M master upstream interface. The following table shows the UP_M signals.

Table A-23 DTI interconnect switch UP_M interface signals

Signal

Direction

Description

tvalid_dti_up_m

Master to slave.

Flow control signal.

tready_dti_up_m

Slave to master.

Flow control signal.

tdata_dti_up_m

Master to slave.

Message data signal.

tdest_dti_up_m

Master to slave.

Indicates the master that initiated the message.

tlast_dti_up_m

Master to slave.

Indicates the last cycle of a message.

tkeep_dti up m

Master to slave.

Indicates valid bytes.

twakeup_dti_up_m

Slave to master.

Wakeup signal.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-127

A.21 DTI interconnect sizer signals

A Signal descriptions
A.21 DTl interconnect sizer signals

The DTI interconnect sizer provides signals for each of its interfaces.

The sizer provides an LPI_CG clock gating interface. The following table shows the LPI_CG signals.

Table A-24 DTI interconnect sizer LPI_CG interface signals

Signal Direction | Description
qaccept_cg | Output. Quiescence accept.
qactive_cg | Output. Component active.

qdeny_cg | Output. Quiescence deny.

qreqn_cg | Input. Quiescence request.

The sizer provides a DN_S slave downstream interface. The following table shows the DN S signals.

Table A-25 DTI interconnect sizer DN_S interface signals

Signal

Direction

Description

tvalid_dti_dn_s

Slave to master.

Flow control signal.

tready_dti_dn_s

Master to slave.

Flow control signal.

tdata_dti_dn_s

Slave to master.

Message data signal.

tid_dti_dn_s

Slave to master.

Indicates the master that initiated the message.

tlast_dti_dn_s

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_dn_s

Slave to master.

Indicates valid bytes.

twakeup_dti_dn_s

Slave to master.

Wakeup signal.

The sizer provides an UP_S slave upstream interface. The following table shows the UP_S signals.

Table A-26 DTI interconnect sizer UP_S interface signals

Signal

Direction

Description

tvalid_dti_up_s

Master to slave.

Flow control signal.

tready_dti_up_s

Slave to master.

Flow control signal.

tdata_dti_up_s

Master to slave.

Message data signal.

tdest_dti_up_s

Master to slave.

Indicates the master that initiated the message.

tlast_dti_up_s

Master to slave.

Indicates the last cycle of a message.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-128

A Signal descriptions
A.21 DTl interconnect sizer signals

Table A-26 DTI interconnect sizer UP_S interface signals (continued)

Signal

Direction

Description

tkeep_dti_up_s

Master to slave.

Indicates valid bytes.

twakeup_dti_up s

Master to slave.

Wakeup signal.

The sizer provides a DN_M master downstream interface. The following table shows the DN_M signals.

Table A-27 DTI interconnect sizer DN_M interface signals

Signal

Direction

Description

tvalid_dti_dn_m

Slave to master.

Flow control signal.

tready_dti_dn_m

Master to slave.

Flow control signal.

tdata_dti_dn_m

Slave to master.

Message data signal.

tid_dti_dn_m

Slave to master.

Indicates the master that initiated the message.

tlast_dti_dn_m

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_dn_m

Slave to master.

Indicates valid bytes.

twakeup_dti_dn_m

Slave to master.

Wakeup signal.

The sizer provides an UP_M master upstream interface. The following table shows the UP_M signals.

Table A-28 DTI interconnect sizer UP_M interface signals

Signal

Direction

Description

tvalid_dti_up_m

Master to slave.

Flow control signal.

tready_dti_up_m

Slave to master.

Flow control signal.

tdata_dti_up_m

Master to slave.

Message data signal.

tdest_dti_up_m

Master to slave.

Indicates the master that initiated the message.

tlast_dti_ up_m

Master to slave.

Indicates the last cycle of a message.

tkeep_dti_up_m

Master to slave.

Indicates valid bytes.

twakeup_dti_up_m

Slave to master.

Wakeup signal.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-129

A.22

DTI interconnect register slice signals

A Signal descriptions
A.22 DTl interconnect register slice signals

The DTI interconnect register slice provides signals for each of its interfaces.

The register slice provides an LPI CG clock gating interface. The following table shows the LPI CG

signals.

Table A-29 DTI interconnect register slice LPI_CG interface signals

Signal Direction | Description
qaccept_cg | Output. Quiescence accept.
qactive_cg | Output. Component active.
qdeny_cg | Output. Quiescence deny.
qreqn_cg Input. Quiescence request.

The register slice provides a DN_S slave downstream interface. The following table shows the DN _S

signals.

Table A-30 DTI interconnect register slice DN_S interface signals

Signal

Direction

Description

tvalid_dti_dn_s

Slave to master.

Flow control signal.

tready_dti_dn_s

Master to slave.

Flow control signal.

tdata_dti_dn_s

Slave to master.

Message data signal.

tid_dti_dn_s

Slave to master.

Indicates the master that initiated the message.

tlast_dti_dn_s

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_dn_s

Slave to master.

Indicates valid bytes.

The register slice provides an UP_S slave upstream interface

signals.

. The following table shows the UP_S

Table A-31 DTI interconnect register slice UP_S interface signals

Signal

Direction

Description

tvalid_dti_up_s

Master to slave.

Flow control signal.

tready_dti_up_s

Slave to master.

Flow control signal.

tdata_dti_up_s

Master to slave.

Message data signal.

tdest_dti_up_s

Master to slave.

Indicates the master that initiated the message.

tlast_dti_up_s

Master to slave.

Indicates the last cycle of a message.

tkeep_dti_up_s

Master to slave.

Indicates valid bytes.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-130

A Signal descriptions
A.22 DTl interconnect register slice signals

The register slice provides a DN_M master downstream interface. The following table shows the DN M

signals.

Table A-32 DTI interconnect register slice DN_M interface signals

Signal

Direction

Description

tvalid_dti_dn_m

Slave to master.

Flow control signal.

tready_dti_dn_m

Master to slave.

Flow control signal.

tdata_dti_dn_m

Slave to master.

Message data signal.

tid_dti_dn_m

Slave to master.

Indicates the master that initiated the message.

tlast_dti_dn_m

Slave to master.

Indicates the last cycle of a message.

tkeep_dti_dn_m

Slave to master.

Indicates valid bytes.

The register slice provides an UP_M master upstream interface. The following table shows the UP_M

signals.

Table A-33 DTI interconnect register slice UP_M interface signals

Signal

Direction

Description

tvalid_dti_up_m

Master to slave.

Flow control signal.

tready_dti up m

Slave to master.

Flow control signal.

tdata_dti_up_m

Master to slave.

Message data signal.

tdest_dti_up_m

Master to slave.

Indicates the master that initiated the message.

tlast_dti_up_m

Master to slave.

Indicates the last cycle of a message.

tkeep_dti_up_m

Master to slave.

Indicates valid bytes.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-A-131

Appendix B
Software initialization examples

This appendix provides examples of how software can initialize and enable the MMU-600.

It contains the following sections:
e B.1 Initializing the SMMU on page Appx-B-133.
e B.2 Enabling the SMMU on page Appx-B-138.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-132
reserved.
Non-Confidential

B Software initialization examples
B.1 Initializing the SMMU

B.1 Initializing the SMMU

Software must initialize the MMU-600 before you can use it.

The MMU-600 supports Secure and Non-secure translation worlds. This section defines how to initialize
Non-secure translation. The procedures for initializing Secure translation are similar, and require you to
access the corresponding MMU-600 Secure registers.

Note

This section does not describe how to create translation tables. See the Arm® Architecture Reference
Manual, ARMVS, for ARMvS8-A architecture profile for more information.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about MMU-600 initialization.

This section contains the following subsections:

* B.1.1 Allocating the Command queue on page Appx-B-133.

* B.1.2 Allocating the Event queue on page Appx-B-133.

* B.1.3 Configuring the Stream table on page Appx-B-134.

* B.1.4 Initializing the Command queue on page Appx-B-134.

* B.1.5 Initializing the Event queue on page Appx-B-134.

* B.1.6 Invalidating TLBs and configuration caches on page Appx-B-135.
* B.1.7 Creating a basic Context Descriptor on page Appx-B-135.

* B.1.8 Creating a Stream Table Entry on page Appx-B-136.

B.1.1 Allocating the Command queue

The MMU-600 uses the Command queue to receive commands. Software must allocate memory for the
Command queue and configure the appropriate registers in the SMMU.

To allocate the Command queue, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Command queue.
2. Configure the Command queue size and base address by writing to the SMMU_CMDQ BASE
register.
Note

The queue size can affect how many bits of the SMMU CMDQ_ CONS and SMMU CMDQ PROD
indices are writeable. It is therefore important that you perform this step before writing to
SMMU_CMDQ_CONS and SMMU_CMDQ_PROD.

3. Set the queue read index in SMMU_CMDQ_CONS and the queue write index in
SMMU_CMDQ PROD to 0.

Note

Setting the queue read index and the queue write index to the same value indicates that the queue is
empty.

B.1.2 Allocating the Event queue

The MMU-600 uses the Event queue to signal events. Software must allocate memory for the Event
queue and configure the appropriate registers in the MMU.

To allocate the Event queue, ensure that your software performs the following steps:

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-133
reserved.
Non-Confidential

B Software initialization examples
B.1 Initializing the SMMU

Procedure

1.

Allocate memory for the Event queue.

2. Configure the Event queue size and base address by writing to the SMMU EVENTQ BASE register.

Note

The queue size can affect how many bits of the SMMU EVENTQ CONS and
SMMU_ EVENTQ PROD indices are writeable. It is therefore important that you perform this step
before writing to SMMU_ EVENTQ_CONS and SMMU_EVENTQ PROD.

Set the queue read index in SMMU_EVENTQ_CONS and the queue write index in
SMMU_EVENTQ PROD to 0.

Note

Setting the queue read index and the queue write index to the same value indicates that the queue is
empty.

B.1.3 Configuring the Stream table

The Stream table is a configuration structure in memory that uses a Context Descriptor (CD) to locate
translation data for a transaction. Software must allocate memory for the Stream table, configure the
table format, and populate the table with Stream Table Entries (STEs).

To configure the Stream table, ensure that your software performs the following steps:

Procedure

1.

Allocate memory for the Stream table.

2. Configure the format and size of the Stream table by writing to SMMU_ STRTAB BASE CFG.

3. Configure the base address for the Stream table by writing to SMMU_STRTAB BASE.

4. Prevent uninitialized memory being interpreted as a valid configuration by setting STE.V = 0 for
each STE to mark it as invalid.

5. Ensure that written data is observable to the SMMU by performing a Data Synchronization Barrier
(DSB) operation.
If SMMU _IDR0.COHACC = 0, the system does not support coherent access to memory for the TCU.
In such cases, additional steps might be required to ensure that the written data is observable to the
SMMU.

B.1.4 Initializing the Command queue

Software must initialize the Command queue by enabling it and checking that the enable operation is
complete.

To initialize the Command queue, ensure that your software performs the following steps:

Procedure

1.

Enable the Command queue by setting the SMMU_S CRO.CMDQEN bit to 1.

2. Check that the enable operation is complete by polling SMMU S CROACK until CMDQEN reads as

1.

B.1.5 Initializing the Event queue

Software must initialize the Event queue by enabling it and checking that the enable operation is
complete.

To initialize the Event queue, ensure that your software performs the following steps:

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-134
reserved.
Non-Confidential

B.1.6

B.1.7

B Software initialization examples
B.1 Initializing the SMMU
Procedure
1. Enable the Event queue by setting the SMMU S CRO.EVENTQEN bit to 1.

2. Check that the enable operation is complete by polling SMMU S CROACK until EVENTQEN reads
as L.

Invalidating TLBs and configuration caches

Before use, the MMU-600 TLBs and configuration cache structures must be invalidated by issuing
commands to the Command queue. Alternatively, Secure software can invalidate all TLBs and caches
with a single write.

To invalidate TLB entries, ensure that your software issues the appropriate command for the translation
context. To invalidate:

e TLB entries for Non-secure EL1 contexts, issue CMD_TLBI_NSNH_ALL.
» TLB entries for EL2 contexts, issue CMD_TLBI_EL2_ALL.

e TLB entries for EL3 contexts, issue CMD_TLBI_EL3_ALL.

* TLB entries for Secure EL1 contexts, issue CMD_TLBI_NH_ALL.

Note

Commands to invalidate Secure TLB entries can only be issued through the Secure Command queue. For
a system that implements two security states, Secure software must issue the appropriate command to the
Secure Command queue for the first TLB invalidation. If your system does not use Secure software, you
can permit Non-secure software to access SMMU _S_INIT by using either sec_override or the
TCU_SCR register.

To invalidate both the TCU configuration cache and the TBU combined configuration cache and TLB,
issue the CMD_CFGI_ALL command.

To force all previous commands to complete, issue CMD_SYNC.

To invalidate all configuration caches and TLB entries for all translation regimes and security states,

ensure that Secure software:

1. Sets SMMU_S INIT.INV_ALL to 1. The SMMU sets SMMU_S INIT.INV_ALL to 0 after the
invalidation completes.

2. Polls SMMU S INIT.INV_ALL to check it is set to 0 before continuing the SMMU configuration.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 for more information about issuing commands to the Command queue.

Creating a basic Context Descriptor

A Context Descriptor (CD) is a data structure in system memory. A CD defines how Stage 1 translation
is performed. The SubstreamID is used to select the CD.

To create a CD, ensure that your software performs the following steps:

1. Allocate 64 bytes of memory for the CD.
2. Configure the CD fields according to the information in the following table.

Table B-1 Configuring the CD

Field

Description

AA64

Translation table format:

0
1

AArch32.
AArch64.

EPDO

Enable translations for TTBO by setting EPDO to 0.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-135

reserved.
Non-Confidential

B Software initialization examples
B.1 Initializing the SMMU

Table B-1 Configuring the CD (continued)

Field | Description

TTBO | Base address of translation table 0.

TGO | Translation granule size for TTBO when CD.AA64 = 1.

IR0 | Cacheability attribute to use for translation table walks to TTBO:
ORO |00 Non-cacheable.

01 Write-Back Cacheable, Read-Allocate Write-Allocate.
10 Write-through Cacheable, Read-Allocate.

SHO | Shareability of translation table walks to TTBO:

00 Non-shareable.
01 Outer Shareable.
10 Inner Shareable.

EPD1 | If the StreamWorld supports split address spaces, enable table walks for TTB1.

ENDI | The endianness for the translation tables.

1PS The IPA size when CD.AA64 = 1.

ASET

Defines whether the ASID values are shared with the ASID values of an Arm processor.
Note
If you expect this context to receive broadcast TLB invalidation commands from a PE, set ASET to 0.

A% Valid CD. This field must be set to 1.

B.1.8 Creating a Stream Table Entry

Each Stream Table Entry (STE) configures how Stage 2 translation is performed, and how the Context
Descriptor (CD) table can be found. The StreamlID is used to select an STE.

To create an STE, ensure that your software performs the following steps:

1. Allocate 64 bytes of memory for the STE.
2. Set the STE.Config field as required for Stage 1 translation, Stage 2 translation, or translation bypass:
0boed No traffic can pass through the MMU. An abort is returned.

ob1e@ Stage 1 and Stage 2 bypass.

oble1l Stage 1 translation Stage 2 bypass.

ob110 Stage 1 bypass Stage 2 translation.

ob111 Stage 1 and Stage 2 translation.

3. If Stage 1 translation is enabled, you can set the following fields:

STE.S1CDMax Controls whether STE.S1ContextPtr points to a single CD or a CD table.

STE.S1Fmt If STE.S1CDMax > 0, configures the format of the CD table.

STE. S1ContextPtr Contains a pointer to either a CD or a CD table. If Stage 2 translation is
enabled, this pointer is an intermediate physical address (IPA), otherwise it is
an untranslated physical address PA.

4. If Stage 2 translation is enabled, you can set the following fields:
STE.S2TTB Points to the Stage 2 translation table base address.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-136
reserved.

Non-Confidential

B Software initialization examples
B.1 Initializing the SMMU

STE.S2PS Contains the PA size of the stage 2 PA range.
STE.S2AA64 Indicates whether the Stage 2 tables are AArch32 or AArch64 format.
STE.S3ENDI Set this field to the required endianness for the stage 2 translation tables.
STE.S2AFFD Disable Access Flag faults for Stage 2 translation.
STE.S2TG oboo: 4KB.
obe1: 64KB.
eble: 16KB.
STE.S2IR0 and 0boe: Non-cacheable.
STE.S20R0 obo1: Write-Back Cacheable, Read-Allocate Write-Allocate.
0b10: Write-through Cacheable, Read-Allocate.
STE.S2SHO 0boe: Non-shareable.

0bo1: Outer Shareable.
ob1o: Inner Shareable.

STE.S2VMID Contains the VMID associated with these translations.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-137
reserved.

Non-Confidential

B Software initialization examples
B.2 Enabling the SMMU

B.2 Enabling the SMMU
Software can enable the SMMU by writing to SMMU_CRO after the Stream table is populated.
To enable the SMMU:

Procedure

1. Ensure that all Stream table entries are populated in memory.

2. Setthe SMMU_CRO.SMMUEN bit to 1.

3. Check that the enable operation is complete by polling SMMU_CROACK until SMMUEN reads as 1.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-B-138
reserved.
Non-Confidential

Appendix C
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
* C.I Revisions on page Appx-C-140.

100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-C-139
reserved.
Non-Confidential

C Revisions
C.1 Revisions

C.1 Revisions
This appendix describes the technical changes between released issues of this book.
Table C-1 Issue 0000-00
Change Location | Affects
First release | - -
Table C-2 Differences between Issue 0000-00 and Issue 0000-01
Change Location Affects

Clarified feature list.

1.3 Features on page 1-14.

All revisions.

Added revised information about TCU,
TBU, and DTI interconnect.

2.1 About the functions on page 2-22.

All revisions.

Added various clarifications.

2.2 Interfaces on page 2-28.

All revisions.

Added various clarifications.

2.3.2 Performance Monitoring Unit on page 2-37.

All revisions.

Added new section.

SMMUv3 PMU register architectural options on page 2-42.

All revisions.

Added information about DTI.

2.3.1 DTI overview on page 2-36.

All revisions.

Added various clarifications.

2.3.6 Quality of Service on page 2-48.

All revisions.

Added new section.

2.3.11 Conversion between ACE-Lite and ARMVS attributes on page 2-50.

All revisions.

Added various clarifications.

2.4 Constraints and limitations of use on page 2-54.

All revisions.

Amended address ranges.

3.3 MMU-600 memory map on page 3-69.

All revisions.

New subsection TCU and TBU PMU
identification register summary.

3.4 Register summary on page 3-71.

All revisions.

Added new section.

3.6 TCU PMU Component and Peripheral ID Registers on page 3-75.

All revisions.

Modified bits[2:0].

3.7.1 TCU_CTRL on page 3-76.

All revisions.

Amended section.

3.7.7 TCU NODE STATUSn on page 3-82.

All revisions.

Added new sections.

3.8.4 TCU ERRGEN on page 3-87.

3.10 TBU PMU Component and Peripheral ID Registers on page 3-90.

3.12.4 TBU ERRGEN on page 3-95.

All revisions.

Amended sections.

A.9 TCU interrupt signals on page Appx-A-108.

A.12 TBU TBS interface signals on page Appx-A-111.
A.13 TBU TBM interface signals on page Appx-A-115.
A.18 TBU interrupt signals on page Appx-A-123.
A.19 TBU tie-off signals on page Appx-A-124.

All revisions.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-C-140

C Revisions
C.1 Revisions

Table C-2 Differences between Issue 0000-00 and Issue 0000-01 (continued)

Change Location

Affects

Added new sections.

A.20 DTI interconnect switch signals on page Appx-A-126.

A.21 DTI interconnect sizer signals on page Appx-A-128.

A.22 DTI interconnect register slice signals on page Appx-A-130.

B.1.7 Creating a basic Context Descriptor on page Appx-B-135.

B.1.8 Creating a Stream Table Entry on page Appx-B-136.

All revisions.

Table C-3 Differences between Issue 0000-01 and Issue 0001-00

Change

Location

Affects

Added new section.

1.2.5 AMBA APB protocol on page 1-13.

All revisions.

Modified description of Main TLB.

2.1.2 Translation Buffer Unit on page 2-25.

All revisions.

Added information about sup_btm signal.

2.3.7 Distributed Virtual Memory (DVM) messages
on page 2-48.

All revisions.

Added a note about the configurability of the ID register
values.

2.4.1 SMMUv3 support on page 2-54.

All revisions.

Modified description of SMMU_IIDR.Revision.

2.4.1 SMMUv3 support on page 2-54.

rOpl.

Clarified description of CleanShared, CleanInvalid,
Makelnvalid, and CleanSharedPersist transaction
handling.

Transactions that can result in a translation fault
on page 2-57.

All revisions.

Added SMMU_PMCG IRQ_STATUS to list of
unimplemented PMCQG registers.

3.1 About the programmers model on page 3-62.

All revisions.

Modified the value and description of 3.5 TCU Component and Peripheral ID Registers rOpl.
SMMU PIDR2[7:4] and SMMU_PIDR3[7:4]. on page 3-74.

3.6 TCU PMU Component and Peripheral ID Registers

on page 3-75.
Modified register description. 3.7.1 TCU_CTRL on page 3-76. rOpl.

Modified register bits [31:16] and [7:0].

Added information about calculating the offset of a
specific register.

3.7.6 TCU NODE CTRLn on page 3-81.
3.7.7 TCU NODE STATUSn on page 3-82.

All revisions.

Added a note to DCC and DWC bit descriptions about
conditions that apply when setting the bits.

3.8.4 TCU _ERRGEN on page 3-87.

All revisions.

Modified the value and description of 3.9 TBU Component and Peripheral ID Registers 10pl.
SMMU PIDR2[7:4] and SMMU_PIDR3[7:4]. on page 3-89.
3.10 TBU PMU Component and Peripheral ID Registers
on page 3-90.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-C-141

reserved.
Non-Confidential

C Revisions
C.1 Revisions

Table C-3 Differences between Issue 0000-01 and Issue 0001-00 (continued)

Change

Location

Affects

Modified register description.

Modified register bits.

3.11.1 TBU CTRL on page 3-91.

rOpl.

Added a note to DMTLB bit description about conditions | 3./2.4 TBU ERRGEN on page 3-95.

that apply when setting the bit.

All revisions.

Table C-4 Differences between Issue 0001-00 and Issue 0001-01

Change

Location

Affects

Clarified description of translation manager.

2.1.2 Translation Buffer Unit on page 2-25.

All revisions.

Clarified note about DTI translation requests.

2.3.2 Performance Monitoring Unit on page 2-37.

All revisions.

Clarified note about configurable values.

Added note to SMMU_IIDR table entry.

2.4.1 SMMUv3 support on page 2-54.

All revisions.

Added note to clarify reset values of architectural
registers.

Modified incorrect entries for SMMU_S GBPA in
SMMUV3 architectural registers table.

3.2 SMMU architectural registers on page 3-64.

All revisions.

Modified introductory description of TCU CTRL.

3.7.1 TCU_CTRL on page 3-76.

10pl.

Modified register name.

3.8.2 TCU_ERRCTLR on page 3-84.
3.12.2 TBU ERRCTLR on page 3-93.

rOpl.

Modified section title.
Removed dftclkenable signal.

Added mbistresetn and mbistreq signals.

A.11 TCU and TBU test and debug signals
on page Appx-A-110.

All revisions.

Table C-5 Differences between Issue 0001-01 and Issue 0002-00

Change

Location

Affects

Modified description of configuration inputs.

1.6.2 Design flow on page 1-18.

All revisions.

Modified AXI5 extensions list.

Removed two notes.

TBU TBS interface on page 2-30.
TBU TBM interface on page 2-31.

All revisions.

Removed information about sec_override.

Removed note.

2.3.2 Performance Monitoring Unit on page 2-37.

All revisions.

Clarified information about SMMU_PMCG_SMRO
event filtering.

SMMUv3 architectural performance events on page 2-37.

MMU-600 TCU events on page 2-38.
MMU-600 TBU events on page 2-40.

All revisions.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-C-142

C Revisions
C.1 Revisions

Table C-5 Differences between Issue 0001-01 and Issue 0002-00 (continued)

Change

Location

Affects

Changed Low_Power_Signals to Wakeup Signals
in the table.

AXI5 support on page 2-59.

All revisions.

Modified reset value of NS _INIT.

3.7.5 TCU_SCR on page 3-80.

All revisions.

Modified register names in table.

3.10 TBU PMU Component and Peripheral ID Registers
on page 3-90.

All revisions.

Modified the value of SMMU _PMCG_CIDRI.

3.10 TBU PMU Component and Peripheral ID Registers
on page 3-90.

All revisions.

Modified description of TCU tie-off signals.

A.10 TCU tie-off signals on page Appx-A-109

All revisions.

Modified description of TBU tie-off signals.

A.19 TBU tie-off signals on page Appx-A-124

All revisions.

Modified value and description of 3.5 TCU Component and Peripheral ID Registers on page 3-74. | 10p2.
SMMU_PIDR3[7:4].

3.9 TBU Component and Peripheral ID Registers on page 3-89.
Modified value and description of 3.6 TCU PMU Component and Peripheral ID Registers 10p2.

SMMU_PMCG_PIDR3[7:4].

on page 3-75.

3.10 TBU PMU Component and Peripheral ID Registers
on page 3-90.

Table C-6 Differences between Issue 0002-00 and Issue 0100-00

Change Location Affects
Clarified description of AMBA ACES compliance. 1.2.4 AMBA ACES5-Lite and AMBA® AXIS protocol r1p0.

on page 1-13.
Added new features. 1.3 Features on page 1-14. r1p0.
Added TBU direct indexing and MTLB partitioning 2.1.2 Translation Buffer Unit on page 2-25. rlp0.
information to Main TLB description.
Added information about ACE configuration. TBU TBS interface on page 2-30. rlp0.

TBU TBM interface on page 2-31.

Modified address width. TBU TBM interface on page 2-31. All revisions.
Added new event, CC miss. MMU-600 TCU events on page 2-38. rlp0.
Added new sections. 2.3.3 ACE protection support on page 2-43. r1p0.

Stalling faults on page 2-46.

on page 2-46.
2.3.9 TCU prefetch on page 2-49.

2.3.4 TBU direct indexing and MTLB partitioning

Added new section.

2.3.8 TCU transaction handling on page 2-49.

All revisions.

100310_0100_00_en

Copyright © 2016-2018 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

Appx-C-143

C Revisions
C.1 Revisions

Table C-6 Differences between Issue 0002-00 and Issue 0100-00 (continued)

Change

Location

Affects

Fixed incorrect references to aruser_s and awuser_s.
Sentence now correctly refers to aruser_m and awuser_m.

Other clarifications.

2.3.12 AXI USER bits defined by the MMU-600 TBU
on page 2-52.

All revisions.

Added information about SIHWATTR[3:0] and 2.3.12 AXI USER bits defined by the MMU-600 TBU rlp0.
S2HWATTR[3:0]. on page 2-52.
Added PRI field to SMMU_IDRO. 2.4.1 SMMUv3 support on page 2-54. r1p0.
Modified value of PRIQS field in SMMU_IDRI.
Added PPS field to SMMU_IDR3.
Removed statement that said PRIQ_ABT ERR global error
cannot occur.
Added new sections. Upstream ACE master restrictions on page 2-60. rlp0.
Avoiding deadlock when using fully coherent ACE
masters on page 2-60.
Modified value and description of SMMU_PIDR2[7:4] and 3.5 TCU Component and Peripheral ID Registers rlp0.
SMMU_PIDR3[7:4]. on page 3-74.
3.9 TBU Component and Peripheral ID Registers
on page 3-89.
Removed SMMU_PRIQ_* from list of non-implemented 3.1 About the programmers model on page 3-62. r1p0.
registers.
Added new registers: 3.2 SMMU architectural registers on page 3-64. rlp0.

« SMMU_PRIQ BASE.
« SMMU_PRIQ PROD.
« SMMU_PRIQ CONS.
« SMMU_PRIQ IRQ CFGO.
« SMMU_PRIQ IRQ CFGl.
« SMMU_PRIQ IRQ CFG2.

Added new registers:

« SMMU PMCG_PMAUTHSTATUS.
« SMMU PMCG _PMDEVARCH.

« SMMU PMCG _PMDEVTYPE.

3.2 SMMU architectural registers on page 3-64.

All revisions.

Modified value and description of 3.6 TCU PMU Component and Peripheral ID r1p0.
SMMU PMCG PIDR2[7:4] and Registers on page 3-75.
SMMU_PMCG PIDR3[7:4].
3.10 TBU PMU Component and Peripheral ID
Registers on page 3-90.
Added new signal pri_g_irpt_ns. A.9 TCU interrupt signals on page Appx-A-108. rlp0.
Added new signals for ACE TBU configurations. A.12 TBU TBS interface signals on page Appx-A-111. | r1p0.
A.13 TBU TBM interface signals on page Appx-A-115.
Added new signal cmo_disable. A.19 TBU tie-off signals on page Appx-A-124. r1p0.
100310_0100_00_en Copyright © 2016-2018 Arm Limited or its affiliates. All rights Appx-C-144

reserved.
Non-Confidential

	Arm® CoreLink™ MMU-600 System Memory Management Unit Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the MMU-600
	1.2 : Compliance
	1.2.1 : Arm architecture
	1.2.2 : SMMU architecture
	1.2.3 : AMBA DTI protocol
	1.2.4 : AMBA ACE5-Lite and AMBA® AXI5 protocol
	1.2.5 : AMBA APB protocol

	1.3 : Features
	1.4 : Interfaces
	1.5 : Configurable options
	1.6 : Product documentation and design flow
	1.6.1 : Documentation
	1.6.2 : Design flow

	1.7 : Product revisions

	2 : Functional description
	2.1 : About the functions
	2.1.1 : Translation Control Unit
	2.1.2 : Translation Buffer Unit
	2.1.3 : DTI interconnect

	2.2 : Interfaces
	2.2.1 : TCU interfaces
	TCU Queue and Table Walk/Distributed Virtual Memory interface
	TCU PROG interface
	TCU LPI_PD interface
	TCU LPI_CG interface
	TCU DTI interface
	TCU interrupt interfaces
	TCU SYSCO interface
	TCU tie-off signals

	2.2.2 : TBU interfaces
	TBU TBS interface
	TBU TBM interface
	TBU LPI_PD interface
	TBU LPI_CG interface
	TBU DTI interface
	TBU interrupt interfaces
	TBU tie-off signals

	2.2.3 : DTI interconnect interfaces
	DTI interconnect switch interfaces
	DTI interconnect sizer interfaces
	DTI interconnect register slice interfaces

	2.3 : Operation
	2.3.1 : DTI overview
	2.3.2 : Performance Monitoring Unit
	SMMUv3 architectural performance events
	MMU-600 TCU events
	MMU-600 TBU events
	SMMUv3 PMU register architectural options
	PMU snapshot interface

	2.3.3 : ACE protection support
	Effect of ACE protection on transaction behavior
	Stalling faults
	Removing permission to access a translation table

	2.3.4 : TBU direct indexing and MTLB partitioning
	2.3.5 : Reliability, Availability, and Serviceability
	2.3.6 : Quality of Service
	2.3.7 : Distributed Virtual Memory (DVM) messages
	2.3.8 : TCU transaction handling
	2.3.9 : TCU prefetch
	2.3.10 : Error responses
	2.3.11 : Conversion between ACE-Lite and ARMv8 attributes
	Slave interface memory type attribute handling
	Master interface memory type attribute handling

	2.3.12 : AXI USER bits defined by the MMU-600 TBU

	2.4 : Constraints and limitations of use
	2.4.1 : SMMUv3 support
	2.4.2 : AMBA support
	TBU support for ACE-Lite transactions
	Transactions that can result in a translation fault
	Transactions that cannot result in a translation fault
	AXI5 support
	Upstream ACE master restrictions
	Avoiding deadlock when using fully coherent ACE masters

	3 : Programmers model
	3.1 : About the programmers model
	3.2 : SMMU architectural registers
	3.3 : MMU-600 memory map
	3.4 : Register summary
	3.5 : TCU Component and Peripheral ID Registers
	3.6 : TCU PMU Component and Peripheral ID Registers
	3.7 : TCU microarchitectural registers
	3.7.1 : TCU_CTRL
	3.7.2 : TCU_QOS
	3.7.3 : TCU_CFG
	3.7.4 : TCU_STATUS
	3.7.5 : TCU_SCR
	3.7.6 : TCU_NODE_CTRLn
	3.7.7 : TCU_NODE_STATUSn

	3.8 : TCU RAS registers
	3.8.1 : TCU_ERRFR
	3.8.2 : TCU_ERRCTLR
	3.8.3 : TCU_ERRSTATUS
	3.8.4 : TCU_ERRGEN

	3.9 : TBU Component and Peripheral ID Registers
	3.10 : TBU PMU Component and Peripheral ID Registers
	3.11 : TBU microarchitectural registers
	3.11.1 : TBU_CTRL
	3.11.2 : TBU_SCR

	3.12 : TBU RAS registers
	3.12.1 : TBU_ERRFR
	3.12.2 : TBU_ERRCTLR
	3.12.3 : TBU_ERRSTATUS
	3.12.4 : TBU_ERRGEN

	A : Signal descriptions
	A.1 : Clock and reset signals
	A.2 : TCU QTW/DVM interface signals
	A.3 : TCU programming interface signals
	A.4 : TCU SYSCO interface signals
	A.5 : TCU PMU snapshot interface signals
	A.6 : TCU LPI_PD interface signals
	A.7 : TCU LPI_CG interface signals
	A.8 : TCU DTI interface signals
	A.9 : TCU interrupt signals
	A.10 : TCU tie-off signals
	A.11 : TCU and TBU test and debug signals
	A.12 : TBU TBS interface signals
	A.13 : TBU TBM interface signals
	A.14 : TBU PMU snapshot interface signals
	A.15 : TBU LPI_PD interface signals
	A.16 : TBU LPI_CG interface signals
	A.17 : TBU DTI interface signals
	A.18 : TBU interrupt signals
	A.19 : TBU tie-off signals
	A.20 : DTI interconnect switch signals
	A.21 : DTI interconnect sizer signals
	A.22 : DTI interconnect register slice signals

	B : Software initialization examples
	B.1 : Initializing the SMMU
	B.1.1 : Allocating the Command queue
	B.1.2 : Allocating the Event queue
	B.1.3 : Configuring the Stream table
	B.1.4 : Initializing the Command queue
	B.1.5 : Initializing the Event queue
	B.1.6 : Invalidating TLBs and configuration caches
	B.1.7 : Creating a basic Context Descriptor
	B.1.8 : Creating a Stream Table Entry

	B.2 : Enabling the SMMU

	C : Revisions
	C.1 : Revisions

