
Arm® Cortex®-M1 DesignStart™ FPGA-
Xilinx edition

Revision: r0p1

User Guide

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.
100211_0001_00_en

Arm® Cortex®-M1 DesignStart™ FPGA-Xilinx edition
User Guide
Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 27 September 2018 Non-Confidential First release for r0p0.

0001-00 18 January 2019 Non-Confidential First release for r0p1.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018, 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 Arm® Cortex®-M1 DesignStart™ FPGA-Xilinx edition

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Cortex®-M1 DesignStart™ FPGA-Xilinx edition

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com

Contents
Arm® Cortex®-M1 DesignStart™ FPGA-Xilinx edition
User Guide

Preface
About this book 7
Feedback .. 9

Chapter 1 Introduction
1.1 Cortex®-M1 DesignStart™ FPGA-Xilinx edition package 1-11
1.2 Directory structure 1-12

Chapter 2 Installing the Cortex®-M1 DesignStart™ example design
2.1 Installing board files 2-15
2.2 Setting local drive for Windows 2-17
2.3 Installing Arm IP repository .. 2-18
2.4 Installing Arm software repository 2-19
2.5 Installing shell models 2-21
2.6 Downloading QSPI memory models .. 2-22
2.7 Configuring simulation in Vivado 2-24

Chapter 3 Cortex®-M1 processor IP configuration
3.1 Configuration tab 3-26
3.2 Debug tab .. 3-28
3.3 Instruction Memory tab .. 3-30
3.4 Data Memory tab 3-32

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.5 Cortex®-M1 processor signals 3-35

Chapter 4 Working with the Cortex®-M1 DesignStart™ example design
4.1 Editing the A7 example design .. 4-38
4.2 Debug .. 4-39
4.3 Memory map .. 4-40
4.4 QSPI multiplexing for the V2C-DAPLink board 4-43
4.5 Interrupt mapping 4-44
4.6 Constraints 4-45
4.7 Loading the pre-built bitstream .. 4-46
4.8 Loading the flash file .. 4-47
4.9 Bit file regeneration .. 4-49
4.10 Simulation .. 4-50

Chapter 5 V2C-DAPLink board
5.1 V2C-DAPLink adaptor board features 5-52
5.2 V2C-DAPLink configuration 5-54
5.3 Flash download requirements 5-55
5.4 V2C-DAPLink board layout .. 5-56
5.5 Conditions to enable the DAP interface 5-58
5.6 DAP drivers 5-59
5.7 Programming the V2C-DAPLink QSPI using drag and drop 5-60
5.8 Using the μVision debugger to communicate through V2C-DAPLink 5-62
5.9 Using the μVision debugger to download projects through the flash programming

utility 5-64
5.10 Recovering the DAP connection .. 5-67

Chapter 6 Example software design
6.1 Example software design for Arty A7 6-70
6.2 Example software design directory structure 6-71
6.3 Example design reference files 6-72
6.4 Generating the Arty A7 board support package 6-73
6.5 Building the example software design 6-78
6.6 Software update flow 6-79

Appendix A Revisions
A.1 Revisions Appx-A-82

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® Cortex®‑M1 DesignStart™ FPGA-Xilinx edition User Guide.

It contains the following:
• About this book on page 7.
• Feedback on page 9.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book describes how to use the Cortex®‑M1 DesignStart™ FPGA-Xilinx edition to design your
system using the Cortex‑M1 processor. This book also describes an example design for the Digilent Arty
Artix 7 (A7) development board.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

The intended audience is system designers, system integrators, and verification engineers who want to
implement the processor in a Field-Programmable Gate Array (FPGA) using the Xilinx Vivado tools.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
The Cortex‑M1 DesignStart™ FPGA-Xilinx edition package provides an easy way to use the
Cortex‑M1 processor in the Xilinx Vivado design environment. The Cortex‑M1 processor is
intended for deeply embedded applications that require a small processor to be integrated into an
FPGA. The processor implements the Armv6‑M architecture and is closely related to the
Cortex‑M0 and Cortex‑M0+ processors that are intended for ASIC implementation.

Chapter 2 Installing the Cortex®-M1 DesignStart™ example design
This chapter describes the Cortex‑M1 DesignStart example design installation process.

Chapter 3 Cortex®-M1 processor IP configuration
After installing the Arm IP Integrator (IPI) repository, you can find the Cortex‑M1 processor
package in the Vivado IP catalog.

Chapter 4 Working with the Cortex®-M1 DesignStart™ example design
This chapter describes how to work with an example design targeting a low-cost evaluation board,
Digilent Arty Artix 7 (A7). This example design is provided to demonstrate the integration and
software development using the Cortex‑M1 processor. The example is based on the Digilent Arty
A7-35T board, and uses some of the standard Xilinx peripherals to connect to some of the
features on the board. The example is intended to show typical usage, rather than a completely
minimal Cortex‑M1 processor design.

Chapter 5 V2C-DAPLink board
The optional V2C-DAPLink adaptor board provides a debug flow that is familiar to anyone who
is used to working with Cortex‑M microcontrollers. It allows Arty FPGA boards to be used with
mbed OS 2 Classic. This chapter describes the optional V2C-DAPLink adaptor board and how it
is used.

Chapter 6 Example software design
This chapter describes an example software design, and describes how to build and debug it.

Appendix A Revisions
This appendix describes the technical changes between released issues of this document.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

 Preface
 About this book

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

 ADD Rd, SP, #<imm>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• Cortex®‑M1 Technical Reference Manual (DDI0413).
• Arm® CoreSight™ SoC-400 Technical Reference Manual (DDI 0480).
• PrimeCell® Infrastructure AMBA®2 AHB to AMBA®3 AXI Bridges (BP136) Technical

Overview (DTO0008).

The following confidential book is only available to licensees:

Cortex®‑M1 Integration Manual (D110167).

Other publications
• IEEE Std 1149.1-2001, Test Access Port and Boundary-Scan Architecture (JTAG).
• ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic.

 Preface
 About this book

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Cortex‑M1 DesignStart FPGA-Xilinx edition User Guide.
• The number 100211_0001_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

The Cortex‑M1 DesignStart™ FPGA-Xilinx edition package provides an easy way to use the Cortex‑M1
processor in the Xilinx Vivado design environment. The Cortex‑M1 processor is intended for deeply
embedded applications that require a small processor to be integrated into an FPGA. The processor
implements the Armv6‑M architecture and is closely related to the Cortex‑M0 and Cortex‑M0+
processors that are intended for ASIC implementation.

This chapter describes the Cortex‑M1 DesignStart FPGA-Xilinx edition features and directory structure.

It contains the following sections:
• 1.1 Cortex®‑M1 DesignStart™ FPGA-Xilinx edition package on page 1-11.
• 1.2 Directory structure on page 1-12.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

1-10

Non-Confidential

1.1 Cortex®-M1 DesignStart™ FPGA-Xilinx edition package
An example system design is provided to target a low-cost development platform, with example
integration tests.

The Cortex‑M1 DesignStart FPGA-Xilinx edition package includes:

• A Cortex‑M1 processor that has:
— 1, 8, 16, or 32 interrupts.
— Configurable endianness, only little-endian is supported in the example system.
— Configurable OS extensions.
— Configurable embedded debug support.
— Configurable multiplier (small or fast).
— Instruction Tightly Coupled Memory (ITCM), up to 1MB.
— Data Tightly Coupled Memory (DTCM), up to 1MB.
— ITCM Alias support
— Serial Wire (SW), JTAG, or combined SWJ-DP debug port.

• Integrated AHB to AXI bridge, which allows the packaged Cortex‑M1 processor to connect directly
to standard Vivado components. .

• Optional V2C-DAPLink board support, which:
— Provides Cortex‑M debug flow.
— V2C-DAPLink USB to the Serial Wire Debug (SWD) interface.
— V2C-DAPLink USB UART endpoint.
— Local Quad Serial Peripheral Interface (QSPI), flash for code download (8MB) independent of

FPGA image.
— User accessible microSD card support.
— Pass-through connections for shield adapter boards.

• Example designs for Arty Artix 7 (A7) 35T and Arty Spartan 7 (S7) 50T development boards.
— Integrates the processor with standard Xilinx peripherals.
— Example software tests.

• Cortex Microcontroller Software Interface Standard (CMSIS) compatible Board Support Package
(BSP) generation that is done through Xilinx Vivado Software Development Kit (SDK).

• Support for simulation and FPGA implementation. The encrypted design can be:
— Simulated in the Xilinx Vivado and Mentor QuestaSim simulators.
— Implemented for FPGA in Xilinx Vivado.

 Note

The Cortex‑M1 DesignStart FPGA-Xilinx edition package:
• Can be used with any suitable Xilinx FPGA, but the example system design only supports two

specific development boards. If you are using your own hardware and software, you only require
version 2018.2 or later of the Xilinx Vivado tool.

• Targets Windows development environment and uses Arm Keil Microcontroller Development Kit
(MDK) for software development.

To use the example system designs, you require:
• A Digilent Arty A7 development board.
• The board files provided by Digilent for this board.
• Xilinx Vivado.
• Arm Keil MDK.

1 Introduction
1.1 Cortex®-M1 DesignStart™ FPGA-Xilinx edition package

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.2 Directory structure
The expected directory structure after you download and unpack the Arm IP deliverables is:

<installation_directory>
 |_/docs
 |_hardware/
 | |_m1_for_arty_a7/
 | | |_block_diagram/
 | | |_constraints/
 | | |_m1_for_arty_a7/
 | | |_testbench/
 | |_m1_for_arty_s7/
 | | |_block_diagram/
 | | |_constraints/
 | | |_m1_for_arty_s7/
 | | |_testbench/
 |_software/
 | |_m1_for_arty_a7/
 | | |_Build_Keil/
 | |_flash_downloader/
 | |_m1_for_arty_s7/
 | |_Build_Keil/
 |_vivado/
 |_Arm_ipi_repository/
 | |_CM1DbgAXI/
 | |_DAPLink_to_Arty_shield/
 |_Arm_sw_repository/
 |_Cortex

 Important

The deliverable supports building the Cortex‑M1 example design on both the Digilent Arty Artix 7 (A7)
board with Artix FPGA and Spartan 7 (S7) with Spartan FPGA. Throughout this document, the A7 is
used as the example. However, the same files and methods apply to the S7 project. To use the S7 project,
replace any reference to m1_for_arty_a7 with m1_for_arty_s7.

The following table describes the directory structure.

Table 1-1 Directory structure

File Description

/docs Contains this document and example design diagram.

hardware/m1_for_arty_a7/block_diagram/ Example block diagram.

hardware/m1_for_arty_a7/constraints/ Constraint files.

hardware/m1_for_arty_a7/m1_for_arty_a7/ Vivado project root.

hardware/m1_for_arty_a7/testbench/ Simulation testbench.

software/m1_for_arty_a7/ Example software application.

software/m1_for_arty_a7/Build_Keil/ Compilation directory for example code, which compiles under MDK
and uses Xilinx drivers.

software/flash_downloader/ Flash downloader.

vivado/Arm_ipi_repository/CM1DbgAXI/ Cortex‑M1 processor debug and AXI interface.

vivado/Arm_ipi_repository/
DAPLink_to_Arty_shield/

Interface block to the Arty adaptor board.

vivado/Arm_sw_repository/ Cortex‑M1 processor software files for Board Support Package (BSP)
and example application development.

1 Introduction
1.2 Directory structure

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

Before you can use the deliverables, you must configure your Vivado installation to:
• Reference the Arm IP.
• Install the Digilent board files, if you want to use the provided example design.

 Note

If you have already downloaded other versions of the Cortex‑M1 DesignStart FPGA-Xilinx edition, then
these have a similar directory structure. Arm recommends that you merge the directory structure between
the installs to simplify their use. At a minimum, Arm recommends that you merge the directories under /
vivado so that Vivado only needs to be assigned one directory location to read Arm hardware and
software repositories.

1 Introduction
1.2 Directory structure

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

Chapter 2
Installing the Cortex®-M1 DesignStart™ example
design

This chapter describes the Cortex‑M1 DesignStart example design installation process.

 Attention

If you only use the provided example design for software development, then you can skip
2.6 Downloading QSPI memory models on page 2-22 and 2.7 Configuring simulation in Vivado
on page 2-24. You can use the steps described in 4.8 Loading the flash file on page 4-47 to load the
FPGA image.

It contains the following sections:
• 2.1 Installing board files on page 2-15.
• 2.2 Setting local drive for Windows on page 2-17.
• 2.3 Installing Arm IP repository on page 2-18.
• 2.4 Installing Arm software repository on page 2-19.
• 2.5 Installing shell models on page 2-21.
• 2.6 Downloading QSPI memory models on page 2-22.
• 2.7 Configuring simulation in Vivado on page 2-24.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-14

Non-Confidential

2.1 Installing board files
The Digilent Arty Artix 7 (A7) board uses a board file to enable easy connectivity from the Xilinx IP
Integrator (IPI) tool to the board pins. To use the board file in the tool, you must copy the board file into
the Vivado installation.

 Caution

If you have opened the example design before the board files were installed, then Vivado has already
modified the project to only target the device and not the board. In this scenario, when the example
design block diagram is opened, Vivado reports errors because it does not have the board I/O
connections. To resolve this, you must copy the Xilinx project file (m1_for_arty_a7.xpr) again from
the archive.

Procedure
• The board file download and installation instructions are found at https://reference.digilentinc.com/

learn/software/tutorials/vivado-board-files/start . As a minimum you must install the /arty directory.
• To use the board files in a shared environment, you can add a reference to the location as part of your

design. For example, if you uncompress the Digilent files to <install_dir>/vivado/Digilent, you
can use the following command in the Tcl console.

set_param board.repoPaths ../../vivado/Digilent_board_files/vivado-boards-master/new/
board_files/arty/

• Alternatively, the Vivado project has the parameter board.repoPaths ready within it. Open the
Vivado project, <install_dir>/hardware/m1_for_arty_a7/m1_for_arty_a7/
m1_for_arty_a7.xpr, and uncomment the following line:

<!-- Option Name="BoardPartRepoPaths" Val="$PPRDIR/../../../vivado/Digilent_board_files/
vivado-boards-master/new/board_files"/ -->

When the design is opened in Vivado and if the board files are not correctly installed, the following error
message is displayed.

2 Installing the Cortex®-M1 DesignStart™ example design
2.1 Installing board files

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-15

Non-Confidential

https://reference.digilentinc.com/learn/software/tutorials/vivado-board-files/start
https://reference.digilentinc.com/learn/software/tutorials/vivado-board-files/start

Figure 2-1 Error message

Next Steps

You must now proceed to 2.2 Setting local drive for Windows on page 2-17 .

2 Installing the Cortex®-M1 DesignStart™ example design
2.1 Installing board files

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-16

Non-Confidential

2.2 Setting local drive for Windows
Some Vivado projects can have issues with long path names to instances deep within the hierarchy
because of Windows limitations on path length. This can become apparent when running simulations and
other processes.

To resolve this, when running in Windows, Arm recommends that you assign a drive letter to the root of
the current design. Using this method, all subsequent paths are relative to this drive letter. To map a local
drive letter to the current path:

Prerequisites

You must complete the steps in 2.1 Installing board files on page 2-15.

Procedure
1. Open Vivado.
2. Open the Tcl console window.
3. The current directory location can be checked using the Unix command pwd.
4. Navigate to your <installation_directory> folder. This is the folder where the Cortex‑M1

package was installed.
5. To map the <installation_directory> folder to the drive V:, type the following command in the

prompt:

exec subst V: .

 Attention

In the exec subst V: . command, you must add a space between V: and . characters.

The package <installation_directory> folder maps to drive V: and the rest of this book assumes that
this folder maps to drive V:. If you map to a different drive, you must use the different drive in the
instructions as appropriate. If the drive mapping is successful, you should have the directories V:/
hardware, V:/software, V:/vivado, and V:/docs.

Next Steps

You must now proceed to 2.3 Installing Arm IP repository on page 2-18.

2 Installing the Cortex®-M1 DesignStart™ example design
2.2 Setting local drive for Windows

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-17

Non-Confidential

2.3 Installing Arm IP repository
After downloading and unpacking the deliverable, the Arm IP Integrator (IPI) repository must be added
to the list of Vivado IP repositories. This makes the processor available in any new designs.

To add Arm IPI repository to the list of Vivado IP repositories:

Prerequisites

You must complete the steps in:
• 2.1 Installing board files on page 2-15.
• 2.2 Setting local drive for Windows on page 2-17.

Procedure
1. Open Vivado.
2. From Tools → Settings, select IP Defaults.
3. In the list of Default IP repository search paths, add the path to the /Arm_ipi_repository.

Vivado only reads the IPI repository during design creation. If the repository is updated, or an
existing design must use the Cortex‑M1 processor, then you must refresh the project repository. To do
this, navigate to Tools → Settings → IP → Repository → Refresh all.

Next Steps

You must now proceed to 2.4 Installing Arm software repository on page 2-19.

2 Installing the Cortex®-M1 DesignStart™ example design
2.3 Installing Arm IP repository

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential

2.4 Installing Arm software repository
The Arm software repository must also be added to the list of available Vivado repositories.

To add the Arm software repository to the list of Vivado software repositories:

Prerequisites

You must complete the steps in:
• 2.1 Installing board files on page 2-15.
• 2.2 Setting local drive for Windows on page 2-17.
• 2.3 Installing Arm IP repository on page 2-18.

Procedure
1. Open Vivado.
2. From File, select Launch SDK.
3. Set the default Exported location to V:/software and the default Workspace to V:/software/

m1_for_arty_a7/sdk_workspace.

Figure 2-2 Launch SDK
4. Vivado issues a warning regarding the exported hardware file being out of date. This is because you

have not built the project. Select Yes to proceed.

2 Installing the Cortex®-M1 DesignStart™ example design
2.4 Installing Arm software repository

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential

Figure 2-3 Exported hardware system out-of-date
5. Once the SDK opens, select Xilinx → Repositories and add the path to the V:vivado/

Arm_sw_repository/ to the Global Repositories.

Next Steps

To use the Cortex‑M1 software on existing designs, you might be required to rescan the Software
Development Kit (SDK) repositories. In the SDK, select Xilinx → Repositories → Rescan Repositories.

You must now proceed to 2.6 Downloading QSPI memory models on page 2-22.

2 Installing the Cortex®-M1 DesignStart™ example design
2.4 Installing Arm software repository

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

2.5 Installing shell models
If you do not want to perform simulation with Quad Serial Port Interface (QSPI) memory models or any
simulation at all, the Cortex‑M1 DesignStart FPGA-Xilinx edition package has support to allow you to
not have to download the QSPI files from the vendor websites, while allowing you to not have the
warnings associated with opening the project when these files have not been downloaded. To achieve
this, the package contains empty shell files which can be extracted to the correct locations. These empty
shell files do not have any functionality. However, when these empty shell files are extracted, and when
you open the project, the warnings do not occur. Additionally, these shell files compile correctly under
simulation, so you do not get a simulation warning when you include them. If you require correct
simulation of the QSPI devices that the example design uses, you must download the correct files from
the respective vendor websites. For more information, see 2.6 Downloading QSPI memory models
on page 2-22.

Prerequisites

You must complete the steps in 2.2 Setting local drive for Windows on page 2-17.

Procedure
1. Navigate to v:/hardware/m1_for_arty_a7/testbench.
2. Extract the testbench_shell_files.zip to the current directory (not to a further directory). This

results in the following file structure.

V:/m1_for_arty_a7
|_hardware
 |_sfdp.vmf
 |_testbench
 |_Micron_N25Q128A13E
 |_ |_code
 |_ |_N25Qxxx.v
 |_S25fl128s
 |_model
 |_s25fl128s.v

After you extract the shell memory models, if you require installing the correct QSPI memory models
from the respective vendor websites, then before installing these files, you must delete the file structure
shown in this section, including the three files, and all associated directories.

If you require correct simulation of QSPI devices that the example design uses, you must download the
correct files from the respective vendor websites. For this you must proceed to 2.6 Downloading QSPI
memory models on page 2-22.

2 Installing the Cortex®-M1 DesignStart™ example design
2.5 Installing shell models

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.6 Downloading QSPI memory models
If you want to simulate the example design, then the testbench can also simulate the Quad Serial Port
Interface (QSPI) devices that are fitted to the Arty Artix 7 (A7) baseboard (a Micron device) and the
V2C-DAPLink board (a Cypress device).

Prerequisites

 Note

• It is only necessary to download the QSPI memory models if you want to simulate the example
design when you are operating on the Arty A7 board, and optionally, with the V2C-DAPLink board
fitted. If you do not want to simulate the design, you can ignore this section.

• If you do not want to perform simulation with Quad Serial Port Interface (QSPI) memory models or
any simulation at all, empty shell files can be extracted to the correct locations to support this feature.
For more information, see 2.5 Installing shell models on page 2-21.

 Caution

If you do not download the QSPI memory models, then you get warnings every time you open the
Vivado project. The following figure shows these warnings. If you do not intend to simulate the QSPI
models, then these warnings can be ignored. If you want to remove these warnings, then you can install
the shell files following the instructions in 2.5 Installing shell models on page 2-21.

Figure 2-4 Critical warning messages

You must complete the steps in:
• 2.1 Installing board files on page 2-15.
• 2.2 Setting local drive for Windows on page 2-17.

2 Installing the Cortex®-M1 DesignStart™ example design
2.6 Downloading QSPI memory models

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

• 2.3 Installing Arm IP repository on page 2-18.
• 2.4 Installing Arm software repository on page 2-19.

Procedure
• To simulate the QSPI devices that are fitted, you must download the appropriate models from Micron

and Cypress websites.
• When the QSPI memory models are correctly installed, you can enable using the Verilog define at the

top of V:/testbench/tb_m1_for_arty.v.

If the V2C-DAPLink board is fitted and QSPI device models included, then code execution is from the
QSPI device on the V2C-DAPLink board.

Next Steps

You must first refer to the information in either of the following depending on the QSPI model that you
choose to install:
• 2.6.1 Micron QSPI model on page 2-23.
• 2.6.2 Cypress QSPI model on page 2-23.

After you have downloaded and installed the required QSPI model, you must proceed to 2.7 Configuring
simulation in Vivado on page 2-24.

2.6.1 Micron QSPI model

The Micron device used on the Digilent Arty Artix 7 (A7) base board is N25Q128A13E.

A Verilog simulation model for this device is available in the Micron website.

The archive file that you must download is N25Q128A13E_3V_MicronXIP_VG12.tar. When the archive is
downloaded, it must be expanded to a directory named /Micron_N25Q128A13E. This directory must be
located under the V:/hardware/m1_for_arty_a7/testbench directory. To enable the correct
configuration of the QSPI memory, the /Micron_N25Q128A13E/sim/sfdp.vmf file must be copied to the
V:/hardware/m1_for_arty_a7/testbench directory.

If you are using the Micron model, ensure to add the include directory for it to the design. This is done in
the Tcl console using the following command:

set_property INCLUDE_DIRS [get_property DIRECTORY [current_project]]/../testbench/
Micron_N25Q128A13E [get_filesets sim_1]

2.6.2 Cypress QSPI model

The Cypress (Spansion) QSPI device used on the V2C-DAPLink board is S25fl128S.

A Verilog simulation model for this device is available at the Cypress website.

The archive file that you must download is s25fl128s.zip. This archive is a self-installing executable.
Run the executable, and extract the files to the V:/hardware/m1_for_arty_a7/testbench directory.
This copies the model files to a folder called /S25fl128s in this location.

2 Installing the Cortex®-M1 DesignStart™ example design
2.6 Downloading QSPI memory models

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

2.7 Configuring simulation in Vivado
To configure simulations in Vivado, you must have either the Vivado or a third-party simulator installed.
The paths to the simulator must be configured in Vivado.

To configure the paths to the simulator in Vivado, navigate to Tools → Settings → Tool Settings → 3rd
Party simulators.

Prerequisites

• 2.1 Installing board files on page 2-15.
• 2.2 Setting local drive for Windows on page 2-17.
• 2.3 Installing Arm IP repository on page 2-18.
• 2.4 Installing Arm software repository on page 2-19.
• 2.6 Downloading QSPI memory models on page 2-22.

2 Installing the Cortex®-M1 DesignStart™ example design
2.7 Configuring simulation in Vivado

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

Chapter 3
Cortex®-M1 processor IP configuration

After installing the Arm IP Integrator (IPI) repository, you can find the Cortex‑M1 processor package in
the Vivado IP catalog.

This package is a version of Cortex‑M1 r1p0 processor with debug and the BP136 AHB to AXI bridge
r0p1 pre-integrated.

See the Cortex®‑M1 Technical Reference Manual for a detailed description of the processor.

This chapter describes the four Cortex‑M1 processor IP configuration tabs, each with details on
individual configuration categories.

 Note

• For more information about the Cortex‑M1 processor configuration options, see, the Configurable
options section in the Cortex®‑M1 Technical Reference Manual.

• For more information on the BP136 AHB to AXI bridge, see the PrimeCell® Infrastructure AMBA®2
AHB to AMBA®3 AXI Bridges (BP136) Technical Overview. This document is superseded, indicating
that the documentation is no longer maintained, but the current content is still relevant.

It contains the following sections:
• 3.1 Configuration tab on page 3-26.
• 3.2 Debug tab on page 3-28.
• 3.3 Instruction Memory tab on page 3-30.
• 3.4 Data Memory tab on page 3-32.
• 3.5 Cortex®‑M1 processor signals on page 3-35.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-25

Non-Confidential

3.1 Configuration tab
The following figure shows the configuration tab.

Figure 3-1 Configuration tab

Number of interrupts
This indicates the number of interrupt sources the Cortex‑M1 processor supports. The number of
interrupts port is automatically set to match the size of the vector that is connected to the IRQ
input.

 Note

The valid values for the number of interrupts are 1, 8, 16, and 32. If the vector connected to the
IRQ pin has a width that is different from any of the valid values, the IRQ port is set to the next
highest valid value. When editing the IPI block diagram to modify the width of the IRQ port,
you must first update the vector that is connected to the IRQ pin to the new desired width. Run
Validate Design on the block diagram and the IRQ port is updated to match the width of the
input vector.

3 Cortex®-M1 processor IP configuration
3.1 Configuration tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-26

Non-Confidential

OS Extensions
Enable OS extensions if the Cortex‑M1 processor is defined to include the Nested Vectored
Interrupt Controller (NVIC) and Core OS extensions such as SVC and SysTick.

Small Multiplier
Enable Small Multiplier if the Cortex‑M1 processor is to use a small but slower multiplier for
fabrics that do not have dedicated multiplier resources.

Big Endian
Enable Big Endian if the Cortex‑M1 processor is defined to have BE8 big-endian byte ordering.

 Note

The example design provided only supports little-endian, but you can choose the Big Endian option if
you are using the Cortex‑M1 processor in any other system.

3 Cortex®-M1 processor IP configuration
3.1 Configuration tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-27

Non-Confidential

3.2 Debug tab
The following figure shows the Debug tab.

Figure 3-2 Debug tab

On this tab you can select the following:

Debug port select
You can select either JTAG, Serial Wire (SW), JTAG and SW, or No Debug.

 Note

Any debug port that is implemented on the processor needs to be connected to a debug probe using I/O
pins. This is generally a separate interface to the FPGA JTAG port.

If the optional V2C-DAPLink board is fitted, the example design connects Serial Wire Debug (SWD) to
this board.

3 Cortex®-M1 processor IP configuration
3.2 Debug tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-28

Non-Confidential

Small Debug
If small debug is enabled the processor debug logic has reduced functionality, but with the
benefit of reduced resource usage.
The differences are:
• The full debug configuration has four breakpoint comparators and two watchpoint

comparators.
• The small debug configuration has two breakpoint comparators and one watchpoint

comparator.

No debug
When No Debug is selected the debug port is removed from the processor core. This allows a
resource-optimized build to be created of the core. Also, when No Debug is selected, consider
the following:
• The Small Debug option is disabled.
• All debug pins are removed from the processor instance (JTAG, SW, and debug resets).
• The ability to drag-and-drop new code using the V2C-DAPLink board is no longer

supported. For more information, see 5.7 Programming the V2C-DAPLink QSPI using drag
and drop on page 5-60. However, if the V2C-DAPLink J2 jumper (Cfg) is fitted, existing
code is still run from the V2C-DAPLink QSPI device.

• The ability to debug the processor core is removed. For more information, see 5.8 Using the
μVision debugger to communicate through V2C-DAPLink on page 5-62.

• The ability to download software projects through the V2C-DAPLink board is no longer
supported.

3 Cortex®-M1 processor IP configuration
3.2 Debug tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-29

Non-Confidential

3.3 Instruction Memory tab
The following figure shows the Instruction Memory tab.

Figure 3-3 Instruction Memory tab

On this tab you can select the following:

ITCM Size
The range is 8KB to 1MB. Select the optimal size for your code base.

 Note

• Currently the flow to update a bitstream with new Instruction Tightly Coupled Memory
(ITCM) data only supports memory sizes in the range 16KB to 128KB. If you require sizes
outside that range, contact Arm for support. For more information on this flow, see Software
Update flow on page 6-79.

3 Cortex®-M1 processor IP configuration
3.3 Instruction Memory tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-30

Non-Confidential

Initialize ITCM
If you require the instruction memory to be initialized when the design is built:
1. Select Initialize ITCM.
2. Specify the filename, see the example design as a reference.

 Note

• The filename must not have quote marks around it.
• The filename must be added to the design and marked as a memory initialization file.
• Vivado reads the memory file during synthesis. It is not possible to update the memory

file and to run just implementation or generate bitstream. To incorporate software updates
into an existing bit file, see Software Update flow on page 6-79.

ITCM aliasing is controlled at reset by the state of the CFGITCMEN[1:0] signal. For more information
on CFGITCMEN[1:0], see the The upper and lower aliases can be enabled independently, that is, either
one alias, both aliases, or none of the aliases. For more information about processor memory regions, see
the Cortex®‑M1 Technical Reference Manual.

To boot the processor from ITCM, you must:
1. Enable ITCM lower alias.
2. Initialize the ITCM.

If the processor does not boot from ITCM, you must provide memory at address 0x00000000 on the
external AXI interface which contains the initial stack pointer and vector table.

Instruction fetch latency is lower from ITCM than from the AXI interface. If you boot from AXI
memory, you can copy code to ITCM at the upper alias and then execute from there to get better
performance.

3 Cortex®-M1 processor IP configuration
3.3 Instruction Memory tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-31

Non-Confidential

3.4 Data Memory tab
The following figure shows the data memory tab.

Figure 3-4 Data Memory tab

DTCM size
The range is 2KB to 1MB. Select the optimal size for your code base. You can also choose not
to include a DTCM (0KB).
When selecting the smaller DTCM sizes, you must ensure that your software project is correctly
configured to match the DTCM size that is available. It is possible to configure a software
project with a larger data memory allocation that that available in the hardware because the
DTCM is often uninitialized. This leads to runtime failures.

3 Cortex®-M1 processor IP configuration
3.4 Data Memory tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-32

Non-Confidential

Initialize DTCM
If you require the data memory to be initialized when the design is built:
1. Select Initialize DTCM checkbox.
2. Specify the filename, see the example design as a reference.

 Note

• The filename must not have quote marks around it.
• The filename must be added to the design and marked as a memory initialization file.
• Vivado reads the memory file during synthesis. It is not possible to update the memory

file and to run just implementation or generate bitstream. To incorporate software updates
into an existing bit file, see 6.6 Software update flow on page 6-79.

No DTCM option
With the No DTCM configuration, software must be compiled to divide the ITCM memory between
instruction and data. The following figure shows an example Keil project configuration. This
configuration is for a 16KB ITCM (0x4000 address range). The first 12KB (0x3000) is allocated to
instruction memory (IROM), and the top 4KB (0x1000) is allocated to data memory (IRAM). The data
memory area starts at 0x3000 which is the top part of the instruction memory, and within the memory
region of the ITCM. By default, if the DTCM is included, then data memory (IRAM) must start at
0x20000000. For more information on the memory map, see 4.3 Memory map on page 4-40.

Figure 3-5 Example Keil configuration

3 Cortex®-M1 processor IP configuration
3.4 Data Memory tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

 Caution

The No DTCM configuration prevents programming the V2C-DAPLink QSPI using drag and drop, as
described in 5.7 Programming the V2C-DAPLink QSPI using drag and drop on page 5-60 and also
using the μVision debugger to download projects through the flash programming utility, as described in
5.9 Using the μVision debugger to download projects through the flash programming utility
on page 5-64. The reason for this is because the V2C-DAPLink firmware requires the DTCM memory
area for the software download process.

3 Cortex®-M1 processor IP configuration
3.4 Data Memory tab

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

3.5 Cortex®-M1 processor signals
For details of the Cortex‑M1 signals, see the Signal descriptions appendix in the Cortex®‑M1 Technical
Reference Manual.

The external AHB-Lite interface is not exported, and the AXI interface replaces it. For more information,
see the AHB master bus to AXI bridge signal connections figure in the PrimeCell® Infrastructure
AMBA®2 AHB to AMBA®3 AXI Bridges (BP136) Technical Overview

The AHB-AP interface is not exported, it is replaced by the Serial Wire (SW) or JTAG interface pins that
are described in the Arm® CoreSight™ SoC-400 Technical Reference Manual.

 Note

The PrimeCell® Infrastructure AMBA®2 AHB to AMBA®3 AXI Bridges (BP136) Technical Overview
document is a superseded, indicating that the documentation is no longer maintained, but the current
content is still relevant.

3 Cortex®-M1 processor IP configuration
3.5 Cortex®-M1 processor signals

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

Chapter 4
Working with the Cortex®-M1 DesignStart™ example
design

This chapter describes how to work with an example design targeting a low-cost evaluation board,
Digilent Arty Artix 7 (A7). This example design is provided to demonstrate the integration and software
development using the Cortex‑M1 processor. The example is based on the Digilent Arty A7-35T board,
and uses some of the standard Xilinx peripherals to connect to some of the features on the board. The
example is intended to show typical usage, rather than a completely minimal Cortex‑M1 processor
design.

The board provides the Digilent Pmod™ peripheral module headers for peripherals, and shield expansion
headers to support additional expansion. You can use the optional Arm V2C-DAPLink board with these
headers to use Cortex‑M1 for easy debug and software development. If you do not use the V2C-
DAPLink board, you can still connect a Serial Wire Debug (SWD) probe (Arm Keil® ULINK™ or
similar) to J4 (nSRST on I/O[39], SWDIO on I/O[40], and SWCLK on I/O[41]).

Some features of the example design detect the presence of the V2C-DAPLink board, and adapt
accordingly. The V2C-DAPLink board includes pass-through headers for an additional shield board to be
connected on top.

The block diagram of the design is available in /docs/m1_for_arty_a7_example_design.pdf.

The example design has the following functions:

• UART to output to either the Arty onboard USB connector, or the V2C-DAPLink board, when fitted.
• GPIO_0 connected to the four DIP switches, SW[3:0], and the four green LEDs LD[7:4].
• GPIO_1 connected to the four push button switches, BTN[3:0], and the four multicolor LEDs.
• QSPI_0 connected to the Arty on-board Quad Serial Port Interface (QSPI) flash memory.
• BRAM ctrl 0 connected to 64KB of internal FPGA BRAM.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-36

Non-Confidential

The following peripherals are connected to the V2C-DAPLink adaptor board using J4.

• QSPI 1 connected to the adaptor board QSPI flash memory.
• SPI 0 connected to the adaptor board SD card memory.

A number of pre-built files are provided with the example design. For more information, see
6.3 Example design reference files on page 6-72.

 Note

The example design files are modified by the Vivado tool when you open the design, so it might be
useful to copy the /hardware directory before working with it. For more information on the directory
structure, see 1.2 Directory structure on page 1-12.

It contains the following sections:
• 4.1 Editing the A7 example design on page 4-38.
• 4.2 Debug on page 4-39.
• 4.3 Memory map on page 4-40.
• 4.4 QSPI multiplexing for the V2C-DAPLink board on page 4-43.
• 4.5 Interrupt mapping on page 4-44.
• 4.6 Constraints on page 4-45.
• 4.7 Loading the pre-built bitstream on page 4-46.
• 4.8 Loading the flash file on page 4-47.
• 4.9 Bit file regeneration on page 4-49.
• 4.10 Simulation on page 4-50.

4 Working with the Cortex®-M1 DesignStart™ example design

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-37

Non-Confidential

4.1 Editing the A7 example design
When loading the Arty Artix 7 (A7) example design for the first time, if warning messages are issued
about either missing IP blocks (Cortex‑M1 processor) or board files (Digilent board files), then the
design must be closed and the instructions for installation of the IP repository and Digilent board files
must be followed. For more information on these installations, see Chapter 2 Installing the Cortex®‑M1
DesignStart™ example design on page 2-14. In this scenario, it is possible that Vivado has modified the
design file. Therefore, after correct installation of the IP repository and board files is complete, the
original design must be installed from the archive.

Procedure
1. Open Vivado.
2. Select Open Project on the splash screen, and select /hardware/m1_for_arty_a7/m1_for_arty_a7/

m1_for_arty_a7.xpr.
3. In the sources tab, navigate down the hierarchy to the m1_for_arty_a7_i instance, marked with a

block diagram symbol. Double-clicking this opens the block diagram that is shown in /docs/
m1_for_arty_a7_example_design.pdf.

4. The design can now be navigated to understand the connectivity and configuration. Double-clicking
on any of the IP blocks brings up the configuration for that block.

 Note

If you want to change the memory map, this is done in the address editor. However, you must not
modify the addresses of the V2C-DAPLink interface peripherals. Additionally, the example hardware
memory map matches the pre-compiled software memory map. Therefore, if other peripheral
addresses are modified, the equivalent changes must be made in the software.

4 Working with the Cortex®-M1 DesignStart™ example design
4.1 Editing the A7 example design

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-38

Non-Confidential

4.2 Debug
The example design uses Serial Wire Debug (SWD). There is no dedicated Arm debug connector on the
Arty Artix 7 (A7) board, therefore, SWD is only connected to the expansion connector. When the V2C-
DAPLink adaptor board is fitted, the SWD ports are connected directly to this board and are accessible
through the USB connector as part of the V2C-DAPLink interface.

To use JTAG debug, you must use a suitable debug probe, and route the JTAG connections to the
expansion headers.

4 Working with the Cortex®-M1 DesignStart™ example design
4.2 Debug

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-39

Non-Confidential

4.3 Memory map
The following figure shows the memory map of the example Cortex‑M1 DesignStart FPGA-Xilinx
edition system.

RAM

0xE000_0000

0xE000_1000

Code
0x1FFF_FFFF

SRAM
0x2000_0000

0x3FFF_FFFF

Reserved

0xFFFF_FFFF

0xE000_2000

0xE000_3000

0xE000_E000

0x0000_0000

0x1FFF_FFFF

PPB

0xE00F_FFFF

0xE00F_F000

0x2000_0000

0x2010_0000

0x3FFF_FFFF

External device

Peripheral

0x9FFF_FFFF
0xA000_0000

0x5FFF_FFFF

0x6000_0000

0xE000_EFFF

0x000F_FFFF
0x1000_0000

0x100F_FFFF
0x1010_0000

0x4000_0000

0x4000_FFFF

0x4001_FFFF
0x4001_0000

0x4002_0000
0x4002_FFFF

0x4003_FFFF

0x4003_0000

0x4010_FFFF
0x4010_0000

0x4011_FFFF
0x4011_0000

0x4012_FFFF
0x4012_0000

0x4013_FFFF
0x4013_0000 AXI block RAM

0x6000_1FFF

0x6000_0000

0x0000_0000

0x4000_0000

ITCM (Lower Alias)/QSPI

External

ITCM (Upper Alias)

DTCM

External

0xDFFF_FFFF
0xE000_0000

0xE010_0000
0xE00F_FFFF

QSPI XIP

GPIO 0

QSPI

SPI

UART

GPIO1

GPIO2

QSPI

Reserved

SCS

Reserved

BPU

DWT

Reserved

ROM table

0x200F_FFFF

0xE000_0FFF

0xE00F_EFFF

0xE00E_F000

0xE000_1FFF

0xE000_2FFF

0xE000_DFFF

Figure 4-1 Example system memory map

The following table shows the example Cortex‑M1 DesignStart FPGA-Xilinx edition memory map.

4 Working with the Cortex®-M1 DesignStart™ example design
4.3 Memory map

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-40

Non-Confidential

Table 4-1 Example system memory map

Type Start End Peripheral Instance name Size Comment

Code 0x00000000 0x000FFFFF Instruction
Tightly Coupled
Memory
(ITCM) (lower)

Integrated in the
Cortex‑M1 processor.

Configurable Boot region when
CFGITCMEN[0] is 1.
This indicates that there is
no V2C-DAPLink board.

0x00000000 0x000FFFFF Quad Serial
Peripheral
Interface
(QSPI)

daplink_if_0/axi-
_xip_quad_0

1MB Boot region when
CFGITCMEN[0] is 0.
This indicates that there is a
V2C-DAPLink board. a

0x10000000 0x100FFFFF ITCM (upper) Integrated in the
Cortex‑M1 processor.

1MB Upper ITCM alias,
CFGITCMEN[1] is
always HIGH in the
example design.

0x10100000 0x1FFFFFFF External - - -

SRAM 0x20000000 0x200FFFFF Data Tightly
Coupled
Memory
(DTCM)

Integrated in the
Cortex‑M1 processor.

Configurable eXecute-never (XN) region

0x20100000 0x3FFFFFFF External - - -

Peripheral 0x40000000 0x4000FFFF QSPI eXecute In
Place (XIP)

daplink_if_0/axi-
_xip_quad_0

64KB Provides code execution
from QSPI on the V2C-
DAPLink board.a

0x40010000 0x4001FFFF GPIO 0 daplink_if_0/
axi_gpio_0

64KB Control for QSPI peripheral
multiplexer. Bit [0] selects
between the two QSPI
peripherals.a

0x40020000 0x4002FFFF QSPI daplink_if_0/
quad_spi_0

64KB Provides programming
control from QSPI on the
V2C-DAPLink board.a

0x40030000 0x4003FFFF SPI daplink_if_0/axi-
_single_spi_0

64KB Single SPI on a dedicated
connector.

0x40040000 0x400FFFFF Unused - - Unused peripheral region

0x40100000 0x4010FFFF UART axi_uartlite_0 64KB Baseboard UART or V2C-
DAPLink USB, when
fitted.

0x40110000 0x4011FFFF GPIO 1 axi_gpio_0 64KB -

0x40120000 0x4012FFFF GPIO 2 axi_gpio_1 64KB -

0x40130000 0x4013FFFF QSPI axi_quad_spi_0 64KB Provides read/write access
to QSPI on V2C-DAPLink
board. a

0x40140000 0x5FFFFFFF Unused - - Unused peripheral region.

a The V2C-DAPLink firmware uses this region. Therefore, you must not modify it to retain compatibility with the V2C-DAPLink board.

4 Working with the Cortex®-M1 DesignStart™ example design
4.3 Memory map

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-41

Non-Confidential

Table 4-1 Example system memory map (continued)

Type Start End Peripheral Instance name Size Comment

RAM 0x60000000 0x60001FFF BlockRam axi_bram_ctrl_0 8KB Additional area of RAM.
This also supports code
execution. a

0x60002000 0x9FFFFFFF Unused - - Unused RAM region.

External
device

0xA0000000 0xDFFFFFFF Unused - - Unused external device
region.

System 0xE0000000 0xE0000FFF Reserved - - -

0xE0001000 0xE0001FFF Data
Watchpoint and
Trace (DWT)

Integrated in the
Cortex‑M1 processor.

4KB -

0xE0002000 0xE0002FFF Breakpoint Unit
(BPU)

Integrated in the
Cortex‑M1 processor.

4KB

0xE0003000 0xE000DFFF Reserved - - -

0xE000E000 0xE000EFFF System Control
Space (SCS)

Integrated in the
Cortex‑M1 processor.

4KB Nested Vectored Interrupt
Controller (NVIC), Debug,
and system control
registers.

0xE00EF000 0xE00FEFFF Reserved - - -

0xE00FF000 0xE00FFFFF ROM table Integrated in the
Cortex‑M1 processor.
Modification is not
supported when using the
Cortex‑M1 DesignStart
FPGA-Xilinx edition.

4KB -

Reserved 0xE0100000 0xFFFFFFFF - - - -

All the AXI peripherals that are detailed in the example design are mapped to either of the following:
• Peripheral region (0x40000000 to 0x5FFFFFFF).
• SRAM region (0x60000000 to 0x9FFFFFFF) in the case of the block RAM controller.

If the V2C-DAPLink board is not fitted, then the ITCM RAM, implemented in FPGA memory, is
mapped to both 0x00000000 and 0x10000000. Code that is preloaded into the ITCM RAM is executed
from address 0x00000000 from boot-up.

If the V2C-DAPLink board is fitted, then the ITCM RAM is only mapped to 0x10000000. For code
execution, the V2C-DAPLink board contains a QSPI AXI peripheral configured to eXecute In Place
(XIP) mode. This peripheral is named qspi_xip and is mapped to address 0x00000000. Code is executed
from this XIP QSPI device on boot-up.

The DTCM is always mapped starting at 0x20000000. In contrast to other Cortex‑M processors, which
do not have a TCM, the DTCM is XN.

4 Working with the Cortex®-M1 DesignStart™ example design
4.3 Memory map

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-42

Non-Confidential

4.4 QSPI multiplexing for the V2C-DAPLink board
The Quad Serial Port Interface (QSPI) device, that is fitted to the V2C-DAPLink board, has two Xilinx
QSPI AXI controllers. A single GPIO signal from a GPIO peripheral can select one of the two
controllers to use. One of the controllers is configured in eXecute In Place (XIP) mode, the other
controller is configured in normal mode, which is required to write to the memory device.

For more information on the peripherals and their memory map, see Table 5-1 Interface type
on page 5-55

 Caution

If software is intended to be run from the V2C-DAPLink board, then the software must not switch the
GPIO signal across to the controller in normal mode. If this happened, then the processor can no longer
read the code and the processor enters LOCKUP state.

4 Working with the Cortex®-M1 DesignStart™ example design
4.4 QSPI multiplexing for the V2C-DAPLink board

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-43

Non-Confidential

4.5 Interrupt mapping
The following table shows the interrupts that the example system uses.

Table 4-2 Example system interrupts

Number Name Description

0 UART0_IRQn UART 0 interrupt

1 GPIO0_IRQn GPIO 0 interrupt

2 GPIO1_IRQn GPIO 1 interrupt

3 QSPI0_IRQn Quad Serial Port Interface (QSPI) 0, (Arty board) interrupt

4 DAP_QSPI0_IRQn V2C-DAPLink board QSPI 0 interrupt

5 DAP_SPI0_IRQn V2C-DAPLink board SPI 0 interrupt

6 DAP_QSPI_XIP_IRQn V2C-DAPLink board QSPI eXecute In Place (XIP) interrupt

If you use CMSIS for your software flow, these interrupts are enumerated in the ARTY_CM1.h and
startup_ARTY_CM1.s files.

 Note

Additionally, IRQ[31] is connected to DAPLINK_fitted_n. This is used as a level-detect non-interrupt
signal to determine if the V2C-DAPLink is fitted.

4 Working with the Cortex®-M1 DesignStart™ example design
4.5 Interrupt mapping

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-44

Non-Confidential

4.6 Constraints
Two constraint files for the example design are included in the /hardware/m1_for_arty_a7/
constraints folder.

The constraints include internal timing constraints for the Cortex‑M1 processor, particularly
asynchronous clock domain crossing paths. These constraints must be included in any design that uses
the Cortex‑M1 processor. The majority of the I/O connections are made using the board file connections,
which automatically populate the I/O pad and I/O voltage standard. The exception is the shield
connector, which goes to the V2C-DAPLink adaptor board. This uses a tristate port due to the mix of
signal direction. Since this does not map directly onto the board file, the I/O pad and I/O standards for
the shield connector are defined in the synthesis constraint file.

4 Working with the Cortex®-M1 DesignStart™ example design
4.6 Constraints

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-45

Non-Confidential

4.7 Loading the pre-built bitstream
The design is provided with a prebuilt bit file in V:/hardware/m1_for_arty_a7/m1_for_arty_a7/
m1_for_arty_a7_reference.bit. This bit file allows you to program the Arty Artix 7 (A7) board with
the example design, which can be used to demonstrate correct connection, programming, and operation
of the Arty A7 board. This file loads the volatile memory in FPGA RAM. Therefore, the FPGA
programming is only valid while the board is powered on. Additionally, if Prog is pressed, then the flash
program image is loaded into the FPGA, overwriting any existing FPGA image.

 Caution

If you have not programmed the flash, then the Digilent example design is the image in the flash, and
this is loaded into the FPGA. In this instance, the board is not running a Cortex‑M processor.

In these instructions, V: is used to refer to the package install directory.

The bitstream includes a software image that is preloaded into Instruction Tightly Coupled Memory
(ITCM).

To load the pre-built bitstream:

Procedure
1. Open Vivado.
2. On the splash screen, from Flow → Open Hardware manager, select V:/hardware/

m1_for_arty_a7/m1_for_arty_a7/m1_for_arty_a7.xpr.
3. Connect the Arty board using the micro-USB connection, not the V2C-DAPLink connector.
4. Connect a terminal application (for example, TeraTerm) to the USB UART port. This is automatically

created when Arty A7 board is connected.
5. Set the terminal to: Baud rate 115,200 8 bits One stop No parity .
6. Open the hardware manager, and select Open Target.
7. Right click on the Digilent A7 board's xc7A35t device.
8. Select Program Device and locate the m1_for_arty_a7_reference.bit bitstream file.
9. Wait while the bitstream is downloaded.
10. If Reset is pressed on the Arty A7 board, the following message appears on the splash screen and

displayed on the terminal.

Arm Cortex-M1 Revision 0 Variant 1
Example design for Digilent A7 board
V2C-DAPLink board not detected
Use DIP switches and push buttons to control LEDS
Version 1.1

Bram readback correct
Base SPI readback correct

11. Test the operation of the LEDs using the DIP switches and the push buttons.

If PROG is pressed on the Arty A7 board, then the built-in Digilent reference design is loaded. This
displays a different splash screen on the terminal, using the same UART board rates. This reference
design has different functions for the DIP and push button switches. To return to the Arm reference
design, you must reprogram the board using the instructions in this section. To make the Arm reference
design persistent, follow the steps in 4.8 Loading the flash file on page 4-47 to load the design in flash.

4 Working with the Cortex®-M1 DesignStart™ example design
4.7 Loading the pre-built bitstream

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-46

Non-Confidential

4.8 Loading the flash file
A flash file is provided that you can use to program the Arty board with the example design and a simple
test program. This flash file can be used to demonstrate correct connection, programming, and operation
of the Arty Artix 7 (A7) board. The non-volatile flash image is used to load the FPGA on board powerup,
and also when Prog is pressed.

 Note

The board is provided with a Digilent example design. Programming the flash overwrites this design.

In these instructions, V: is used to refer to the package install directory.

The flash file includes a software image that is preloaded into Instruction Tightly Coupled Memory
(ITCM).

To load the pre-built flash file:

Procedure
1. Open Vivado.
2. On the splash screen, select Open Project, and select V:/hardware/m1_for_arty_a7/

m1_for_arty_a7/m1_for_arty_a7.xpr.
3. Connect the Arty board using the micro-USB connection, not the V2C-DAPLink connector.
4. Connect a terminal application (for example, TeraTerm) to the USB UART port. This is automatically

created when Arty A7 board is connected.
5. Set the terminal to: Baud rate 115,200 8 bits One stop No parity .
6. Open the Hardware manager, and select Open Target. Select Auto Connect.
7. Right-click on the Digilent A7 board's xc7A35t, and select Add configuration memory device.
8. Select mt25ql128-spi-x1_x2_x4. Select OK. The following figure shows the resultant hardware tab

in Vivado.

Figure 4-2 Arty A7 board hardware tab in Vivado
9. In the Do you want to program the configuration device now prompt, click OK.
10. Select V:/hardware/m1_for_arty_a7/m1_for_arty_a7/m1_for_arty_a7_reference.mcs for the

configuration file.

4 Working with the Cortex®-M1 DesignStart™ example design
4.8 Loading the flash file

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-47

Non-Confidential

11. Click OK to program the flash.

When the flash is programed, press Prog to load the FPGA with the example design.
 Note

The Arty Spartan-7 (S7) board has a different flash device to the Arty A7 board. For the Arty S7, select
device

s25fl128sxxxxxx0-spi-x1_x2_x4.

Figure 4-3 Arty S7 board hardware tab in Vivado

4 Working with the Cortex®-M1 DesignStart™ example design
4.8 Loading the flash file

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-48

Non-Confidential

4.9 Bit file regeneration
You can regenerate the bit file using Run Implementation and Generate Bitstream. Any new bitstream is
located in the Vivado numbered implementation directory, for example, m1_for_arty_a7/
m1_for_arty_a7.runs/impl_1/.

4 Working with the Cortex®-M1 DesignStart™ example design
4.9 Bit file regeneration

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-49

Non-Confidential

4.10 Simulation
A testbench is provided which instantiates the example design. The testbench allows for simulation with
both the V2C-DAPLink board fitted and not fitted. This is controlled with a Verilog define in /
testbench/tb_m1_for_arty.v. Additionally, the testbench allows simulation of the V2C-DAPLink
peripherals that are present, but with the V2C-DAPLink fitted link removed. This configuration allows
faster simulation because the code is executed from the Instruction Tightly Coupled Memory (ITCM)
instead of the V2C-DAPLink Quad Serial Port Interface (QSPI) flash device model. The testbench
stimulates the pushbutton and DIP switches fitted to the host board. It also has a behavioral UART
receiver to display the output of the UART onto the simulation console.

To run simulations from Vivado, the Vivado simulator or a third-party simulator has to be installed.

This is selected under Tools → Settings → Simulation → Target Simulator.

The Cortex‑M1 IP encryption supports the in-built Vivado simulator and the Questa Advanced simulator.
If you already have the Questa Advanced simulator installed in the path, then no other settings are
required. However, if the Questa Advanced simulator is not on your path, then the path can be set within
Vivado.

This is selected under Tools → Settings → 3rd Party Simulators.

4.10.1 Testbench conditionals

The testbench conditional compilation options are controlled by defines at the top of
tb_m1_for_arty_a7.v.

Table 4-3 Conditional compilation options

Option name Description

`INCLUDE_QSPI_MODEL Set this option if the Quad Serial Port Interface (QSPI) Verilog models have been installed.

`INCLUDE_DAPLINK Set this option to enable inclusion of the V2C-DAPLink peripherals. Supports lower external stimulus,
longer resets, and drivers for Serial Wire Debug (SWD).

`DAPLINK_LINK_NF If `INCLUDE_DAPLINK option is set, code is normally executed from the V2C-DAPLink QSPI model, and
UART output directed to the V2C-DAPLink UART ports. If `DAPLINK_LINK_NF is also set, then code is
executed from Instruction Tightly Coupled Memory (ITCM) and UART outputs are directed to the base
board UART ports.

4.10.2 Executing code from QSPI

The Quad Serial Port Interface (QSPI) on the V2C-DAPLink is configured as an eXecute-In-Place (XIP)
controller. Within the testbench, the V2C-DAPLink QSPI device model, S25fl128S, is preloaded with
code from the qspi-a7.hex file. If `INCLUDE_DAPLINK is defined, and `DAPLINK_LINK_NF is not
defined, then code is executed from the QSPI model.

 Note

Code execution from the QSPI model is approximately ten times slower than the execution from the
Instruction Tightly Coupled Memory (ITCM) RAM. This is because of the access of the QSPI and the
subsequent data transfer through the AXI interconnect.

4.10.3 Wave files

By default, when Vivado activates the simulator window, it only shows the top-level signals. For
QuestaSim, two preconfigured wave files are included, wave_daplink.do and wave_no_daplink.do.
For the Vivado default simulator, wave_daplink.wcfg is provided.

4 Working with the Cortex®-M1 DesignStart™ example design
4.10 Simulation

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

4-50

Non-Confidential

Chapter 5
V2C-DAPLink board

The optional V2C-DAPLink adaptor board provides a debug flow that is familiar to anyone who is used
to working with Cortex‑M microcontrollers. It allows Arty FPGA boards to be used with mbed OS 2
Classic. This chapter describes the optional V2C-DAPLink adaptor board and how it is used.

It contains the following sections:
• 5.1 V2C-DAPLink adaptor board features on page 5-52.
• 5.2 V2C-DAPLink configuration on page 5-54.
• 5.3 Flash download requirements on page 5-55.
• 5.4 V2C-DAPLink board layout on page 5-56.
• 5.5 Conditions to enable the DAP interface on page 5-58.
• 5.6 DAP drivers on page 5-59.
• 5.7 Programming the V2C-DAPLink QSPI using drag and drop on page 5-60.
• 5.8 Using the μVision debugger to communicate through V2C-DAPLink on page 5-62.
• 5.9 Using the μVision debugger to download projects through the flash programming utility

on page 5-64.
• 5.10 Recovering the DAP connection on page 5-67.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-51

Non-Confidential

5.1 V2C-DAPLink adaptor board features
The board supports the following features:

• Allows Arty Artix 7 (A7) and Spartan-7 (S7) FPGA boards to be used with mbed OS 2 Classic.
• V2C-DAPLink Serial Wire Debug (SWD) over USB.
• UART over USB.
• Dedicated Quad Serial Port Interface (QSPI) flash for code image.
• Micro-SD card for application use (SPI mode only).
• Allows stacking of standard Shield expansion boards.
• DAPLink USB Composite Device:

— USB Mass Storage Device Class (MSC) for programming software images to block RAM and
QSPI.

— USB Communication Device Class (CDC) for UART debug with nSRST support.
— USB Human Interface Device (HID) for CMSIS-DAP software debug.

The following figure shows the V2C-DAPLink adaptor board, the Arty header breakout pins, and the
point where they are interfaced together (this is depicted in orange).

ETHI

DDR

USB
12V

PM
O

D
PM

O
D

PM
O

D
PM

O
D

sw

sw

sw

sw

PB

PB

PB

PB

PB

QSPI

USB
JTAG

PB

LED

LED

LED

LED

LED

LED

LED

LED

USB

CMSIS
DAP

QSPI

ARTY

ARTIX-7 35T
or

SPARTAN-7 50T

USER
uSD

8
I/O

8
I/O

Arm
V2C_DAPLink

JTAG

Figure 5-1 V2C-DAPLink adaptor board

A dedicated microcontroller on the V2C-DAPLink board provides the interface between a micro-USB
connector and the UART and Serial Wire Debug (SWD) interfaces. This is pre-loaded with firmware that
is configured to permit drag-and-drop software download onto the on-board QSPI. Using this
programming interface requires that the Xilinx QSPI controllers are implemented as shown in the
example design (at the same memory locations). The flash programming routine is loaded into target
RAM at address 0x10000000, which is the Instruction Tightly Coupled Memory (ITCM) upper alias. The

5 V2C-DAPLink board
5.1 V2C-DAPLink adaptor board features

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-52

Non-Confidential

V2C-DAPLink firmware is not intended to work with any processor except a single Cortex‑M1 instance
as demonstrated in the example design. For more information on the flash programming routine and
download requirements, see 5.3 Flash download requirements on page 5-55.

The V2C-DAPLink board has a reset switch for the Cortex‑M1 processor, CS_nSRST, this reset is also
driven from the V2C-DAPLink chip. CS_nSRST must be used to reset the processor nSYSRESET and
peripherals, but not the processor DBGRESETn or the Debug Access Port (DAP) resets.

5 V2C-DAPLink board
5.1 V2C-DAPLink adaptor board features

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-53

Non-Confidential

5.2 V2C-DAPLink configuration
The V2C-DAPLink board has a configuration jumper, J2. This is used to drive a detect signal to the
example design, and has the following effects when used with the example design.

Jumper open

The processor boots from the Instruction Tightly Coupled Memory (ITCM) lower alias. The ITCM
initialization is performed as part of FPGA programming on powerup. A debugger sees the ITCM at both
0x00000000 and 0x10000000. The QSPI on the V2C-DAPLink can be written or accessed using the
normal mode peripheral at 0x40020000. The UART connection to the V2C-DAPLink is unused in this
configuration.

Jumper closed

The processor boots from Quad Serial Peripheral Interface (QSPI) eXecute In Place (XIP). The upper
ITCM alias at 0x10000000 is still initialized at FPGA powerup, but is available for application use.
Breakpoints cannot be placed directly in the QSPI image. There is no built-in process to copy any code
from the QSPI XIP region into ITCM.

The UART connection to the V2C-DAPLink is connected to the example design UART in this
configuration.

 Note

For more information on the memory map, see 4.3 Memory map on page 4-40.

5 V2C-DAPLink board
5.2 V2C-DAPLink configuration

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-54

Non-Confidential

5.3 Flash download requirements
The DAPLink processor on the V2C-DAPLink is pre-programmed with a flash download routine. This is
used for drag-and-drop programming and debugger code download. To maintain compatibility with the
pre-programmed image, you must retain the following components in your system.

Table 5-1 Interface type

Base address Interface path in example design Description

0x00000000 Daplink_if_0/
axi_xip_quad_spi_0/AXI_FULL

Code execution from dedicated Quad
Serial Port Interface (QSPI) on V2C-
DAPLink memory interface.

0x40000000 Daplink_if_0/
axi_xip_quad_spi_0/AXI_LITE

Configuration interface that is used to set
QSPI clock polarity and clock phase for
eXecute-In-Place (XIP) execution.

0x40020000 daplink_if_0/axi_quad_spi_0 Normal mode QSPI controller used to read,
write, and verify code to the dedicated
QSPI on the V2C-DAPLink memory
interface.

0x40010000 Daplink_if_0/axi_gpio_0 Bit [0] is used to control muxing of the
QSPI interface.

0 QSPI XIP mode. QSPI is read-only
through the axi_xip_quad_spi_0. This
is the setting for executing code from
the V2C-DAPLink. This is default
option.

1 QSPI read, write, and verify through
the normal mode axi_quad_spi_0
controller.

 Note

There is another peripheral, axi_single_spi_0 on the V2C-DAPLink board. This is a normal mode SPI
controller that is used to write to the V2C-DAPLink SD card slot. In the example design, this has a base
address of 0x40030000. The address of this peripheral is not fixed, however, Arm recommends that you
do not change the address unless required.

 Caution

Bit [0] of axi_gpio_0 must be held LOW while V2C-DAPLink code is executing. If your code must be
run from V2C-DAPLink, then you must ensure that your code does not set this signal HIGH.

5 V2C-DAPLink board
5.3 Flash download requirements

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-55

Non-Confidential

5.4 V2C-DAPLink board layout
The V2C-DAPLink adaptor board layout is based on the Arduino Shield form factor.

The following figure shows the board layout.

IO33
IO32
IO31
IO30
IO29
IO28
IO27
IO26

micro SD

CMSIS
DAP

USB

CS
Debug

nSRST

ISP

P
W

R
C

O
M

D
A

P
QSPI

A0
A1
A2
A3
A4
A5

A6
A7
A8
A9
A10
A11

IO7
IO6
IO5
IO4
IO3
IO2
IO1
IO0

IO41
IO40
IO39
IO38
IO37
IO36
IO35
IO34

SCL
SDA

AREF
GND
IO13
IO12
IO11
IO10
IO9
IO8

RSVD
IOREF
RST
3V3
5V0
GNG
GND
VIN

V_P
V_N

XGND
XVREF

SS SCK MISO
GND MOSI N/C

Figure 5-2 V2C-DAPLink board layout

The optional V2C-DAPLink board features are supported on the inner row expansion pins. The shield
adaptor pins pass through to a shield board above the optional V2C-DAPLink board.

The following table shows the Shield I/O pin mapping.

Table 5-2 Shield I/O mapping

I/O pin Artix 7 bank SPARTAN-7 bank V2C-DAPLink signal

26 14 14 SD_nSS

27 14 14 SD_MISO

28 14 14 SD_MOSI

29 14 14 SD_SCLK

30 14 14 QSPI_Q0

31 14 14 QSPI_Q1

32 14 14 QSPI_Q2

33 14 14 QSPI_Q3

34 CONFIG 14 RSVD (V2C-DAPLink fitted)

35 14 14 QSPI_CLK

36 14 14 QSPI_nS

5 V2C-DAPLink board
5.4 V2C-DAPLink board layout

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-56

Non-Confidential

Table 5-2 Shield I/O mapping (continued)

I/O pin Artix 7 bank SPARTAN-7 bank V2C-DAPLink signal

37 14 CONFIG UART_RX

38 14 CONFIG UART_TX

39 14 CONFIG CS_nSRST

40 14 14 CS_DIO

41 14 14 CS_CLK

5 V2C-DAPLink board
5.4 V2C-DAPLink board layout

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-57

Non-Confidential

5.5 Conditions to enable the DAP interface
The V2C-DAPLink board provides a USB interface to the Cortex‑M1 design Serial Wire Debug (SWD)
connections.

For the V2C-DAPLink board to work, the implementation in the Arty Artix 7 (A7) board must contain a
Cortex‑M1 processor supporting SWD with the Quad Serial Port Interface (QSPI) flash interfaces
present. For more information on memory map configuration, see Chapter 4 Working with the
Cortex®‑M1 DesignStart™ example design on page 4-36.

The Cortex‑M1 processor is an integral part to program QSPI using the Debug Access Port (DAP). To
debug or program using the DAP, the processor must be in a valid state of execution. Corrupt software
can cause the system to lock. If this happens, you might need to perform a recovery procedure. For more
information, see 5.10 Recovering the DAP connection on page 5-67.

5 V2C-DAPLink board
5.5 Conditions to enable the DAP interface

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-58

Non-Confidential

5.6 DAP drivers
The Debug Access Port (DAP) device issues USB codes for many devices to the host PC.

• Mbed VFS USB drive (Microsoft drivers).
• USB Serial Device (Mbed or Microsoft drivers).
• DAP interface.

Useful references
• https://os.mbed.com/handbook/Windows-serial-configuration
• https://os.mbed.com/handbook/CMSIS-DAP.
• https://os.mbed.com/handbook/DAPLink.
• https://os.mbed.com/docs/v5.9/tools/daplink.html.

5 V2C-DAPLink board
5.6 DAP drivers

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-59

Non-Confidential

https://os.mbed.com/handbook/Windows-serial-configuration
https://os.mbed.com/handbook/CMSIS-DAP
https://os.mbed.com/handbook/DAPLink
https://os.mbed.com/docs/v5.9/tools/daplink.html

5.7 Programming the V2C-DAPLink QSPI using drag and drop
To program the V2C-DAPLink Quad Serial Port Interface (QSPI) using the drag and drop mechanism:

Procedure
1. Configure the Arty Artix 7 (A7) board with a valid Cortex‑M1 processor design. Program the Arty

A7 board with the reference MCS flash file. For more information on loading the flash file, see
4.8 Loading the flash file on page 4-47. This is required for step 6 in this procedure which causes a
suitable image to be loaded into the FPGA which supports V2C-DAPLink.

2. Connect the V2C-DAPLink board to the Arty A7 board headers.
3. You must ensure that the V2C-DAPLink jumper is connected to J2, Cfg.
4. You must power the Arty A7 board by connecting the USB to the host.
5. You must power the V2C-DAPLink board by connecting the USB to the host.

a. You can now connect a UART terminal program to both USB serial ports that the base Arty board
and V2C-DAPLink board create. Both UARTs have settings of Baud rate 115,200 8 bits One
stop No parity . With the J2 CFG jumper fitted, the terminal output from the FPGA is directed
to the V2C-DAPLink UART. With J2 removed, the output is directed to the Arty board UART.

6. Press PROG on the Arty A7 board to ensure that it has configured the FPGA.
7. Press nRST on the V2C-DAPLink board to perform a clean reboot of the software that is

programmed to the V2C-DAPLink QSPI device. The V2C-DAPLink might be programmed with a
Cortex‑M -compatible software image, however, this might not match the hardware design which you
are using.

8. The host displays a file window similar to the following figure:

Figure 5-3 File window
9. The V2C-DAPLink QSPI can be programed with the qspi_a7.bin file generated as part of the

software compilation flow. For more information, see 6.5.1 Software design post processing
on page 6-78. This .bin file is automatically produced when the software is compiled and it is
located in /software/m1_for_arty_a7/Build_keil/qspi_a7.bin.

10. Drag and drop qspi_a7.bin onto This PC\MBED V2C.

The drive for This PC\MBED V2C disappears, the V2C-DAPLink QSPI is programmed, and the drive
reappears. If there are any errors, they are reported in a text file, Fail.txt. After the drag and drop file

5 V2C-DAPLink board
5.7 Programming the V2C-DAPLink QSPI using drag and drop

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-60

Non-Confidential

transfer has completed, the new software runs when the processor is reset. For example, when the nRST
button on the V2C-DAPLink board is pressed.

 Caution

You cannot program the V2C-DAPLink QSPI device using drag and drop if either of the following
Cortex‑M1 configuration options have been selected:
• No Debug. See 3.2 Debug tab on page 3-28.
• No DTCM. See 3.4 Data Memory tab on page 3-32.

5 V2C-DAPLink board
5.7 Programming the V2C-DAPLink QSPI using drag and drop

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-61

Non-Confidential

5.8 Using the μVision debugger to communicate through V2C-DAPLink
To set up a μVision project to communicate through V2C-DAPLink:

Procedure
1. Load the project and then go to Options for Target <name of executable> (alt+F7).
2. Select the Debug tab.
3. On the right-hand side of the screen deselect Load Application at Startup.
4. Select Use:, and then select CMSIS-DAP Debugger from the drop-down menu.

Figure 5-4 Debug tab
5. Click Settings and select the subsequent Debug tab.

5 V2C-DAPLink board
5.8 Using the μVision debugger to communicate through V2C-DAPLink

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-62

Non-Confidential

Figure 5-5 Debug tab
6. Ensure that SWJ is ticked and select CMSIS-DAP from the drop-down menu. The IDCODE must read

a valid value and the device name must indicate ARM Core Sight SW-DP.
7. Click OK in the Cortex-M Target Driver Setup and Options for Target <name of executable> screens.
8. You can now connect the debugger to the target by clicking on the debug icon.

Figure 5-6 Debug icon

5 V2C-DAPLink board
5.8 Using the μVision debugger to communicate through V2C-DAPLink

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-63

Non-Confidential

5.9 Using the μVision debugger to download projects through the flash
programming utility

To set up a μVision project to download projects through the flash programming utility, you must have
the correct driver installed.

The file S25FL128S_V2C.FLM must first be copied to C:\Keil_v5\ARM\Flash, or wherever your Keil
installation is. This file can be found in the V:\software\flash_downloader directory.

Procedure
1. Load the project and then go to Options for Target <name of executable> (alt+F7)
2. Select the Debug tab.
3. Click on Settings and select the subsequent Flash Download tab

Figure 5-7 Flash Download tab
4. Click Add and select the driver file S25FL128S_V2C.

5 V2C-DAPLink board
5.9 Using the μVision debugger to download projects through the flash programming utility

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-64

Non-Confidential

Figure 5-8 Add Flash Programming Algorithm
5. Click Add and check that the Start and Size text boxes are filled with 0x10000000 and 0x1000

respectively.
6. Click OK.
7. Select the Utilities tab from the Options for Target <name of executable> window and select Use

Target Driver for Flash Programming and tick Use Debug Driver.
 Caution

You cannot use the μVision debugger to download projects through the flash programming utility if
either of the following Cortex‑M1 configuration options have been selected:
• No Debug. See 3.2 Debug tab on page 3-28.
• No DTCM. See 3.4 Data Memory tab on page 3-32.

5 V2C-DAPLink board
5.9 Using the μVision debugger to download projects through the flash programming utility

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-65

Non-Confidential

Figure 5-9 Utilities tab
8. Click OK.
9. Click on the download icon to download flash.

Figure 5-10 Download flash icon

5 V2C-DAPLink board
5.9 Using the μVision debugger to download projects through the flash programming utility

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-66

Non-Confidential

5.10 Recovering the DAP connection
If you program the Quad Serial Port Interface (QSPI) with software that causes the processor to lock up,
the QSPI might become unaccessible. To recover the Debug Access Port (DAP) connection, a valid
image must be programmed into the V2C-DAPLink QSPI or the device must be erased.

Procedure
1. Configure the Arty Artix 7 (A7) board with a valid Cortex‑M1 processor design.
2. Connect the V2C-DAPLink to the Arty boards headers.
3. Ensure the V2C-DAPLink jumper is removed from J2, Cfg.
4. Connect the USB to the host to power:

• The Arty board.
• The V2C-DAPLink board.

5. Press PROG on the Arty board to ensure it has configured the FPGA.
6. Connect to the DAP with the μVision debugger.
7. Load the project and then go to the Options for Target <name of executable> (alt-F7).
8. Select the Debug tab.
9. Click on Settings and go to the Flash Download tab.
10. Ensure Program and Verify are unticked.

Figure 5-11 Flash Download tab
11. Click OK in the Cortex-M Target Driver Setup and Options for Target <name of executable> screens.
12. Click the download icon to erase the device.

5 V2C-DAPLink board
5.10 Recovering the DAP connection

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-67

Non-Confidential

Figure 5-12 Download flash icon
13. Replace the J2, Cfg link on the V2C-DAPLink and press nRST.

5 V2C-DAPLink board
5.10 Recovering the DAP connection

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5-68

Non-Confidential

Chapter 6
Example software design

This chapter describes an example software design, and describes how to build and debug it.

Software for the Cortex‑M1 processor can be run either from the Instruction Tightly Coupled Memory
(ITCM), initialized as part of the FPGA image, or from an external AXI memory.

It contains the following sections:
• 6.1 Example software design for Arty A7 on page 6-70.
• 6.2 Example software design directory structure on page 6-71.
• 6.3 Example design reference files on page 6-72.
• 6.4 Generating the Arty A7 board support package on page 6-73.
• 6.5 Building the example software design on page 6-78.
• 6.6 Software update flow on page 6-79.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-69

Non-Confidential

6.1 Example software design for Arty A7
An example software design is provided which demonstrates the basic functionality of the processor and
some peripherals.

The example design software design is compiled using Arm µVision Microcontroller Development Kit
(MDK) 5.24 onwards. A project file for the example design is in V:/software/m1_for_arty_a7/
Build_Keil/m1_for_arty_a7.uvprojx. The example software design uses compiler options for the
Cortex‑M0 processor. This is the correct choice if your toolchain does not provide explicit support for
the Cortex‑M1 processor.

The software demonstrates:
• UART output to either the Arty onboard USB connector or the V2C-DAPLink board when fitted.
• GPIO_0, the LEDs mirror the state of the DIP switches. When each switch is turned on, the

appropriate LED is lit.
• GPIO_1, as each pushbutton is pressed, the appropriate LED rotates around eight possible colors

(seven lit states and a single off state).
• QSPI_0, read and write accesses are testing during powerup.
• BRAM ctrl 0, read and write memory accesses are tested during powerup.

The peripherals on the V2C-DAPLink board are not covered by the software tests.

The example software design relies on the Xilinx Board Support Package (BSP) for the example design.
You must generate the BSP before you build the software design.

6 Example software design
6.1 Example software design for Arty A7

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-70

Non-Confidential

6.2 Example software design directory structure
The software structure provided uses the Xilinx software framework for the AXI peripherals and
combines this with Arm CMSIS software for the Cortex‑M1 processor.

<installation_directory>
|_software/
 |_m1_for_arty_a7/
 |_Build_Keil/
 |_cmsis/
 |_gpio/
 |_main/
 |_spi/
 |_uart/
 |_sdk_workspace/

The following table describes the directory structure.

Table 6-1 Directory structure

File Description

software/m1_for_arty_a7/Build_Keil/ Build directory.

software/m1_for_arty_a7/cmsis/ Cortex‑M1 CMSIS included files and bootfiles.

software/m1_for_arty_a7/gpio/ User GPIO routines that reference Xilinx GPIO driver.

software/m1_for_arty_a7/main/ Top-level files.

software/m1_for_arty_a7/spi/ SPI routines that reference the SPI driver.

software/m1_for_arty_a7/uart/ User UART routines that reference Xilinx UART driver.

software/m1_for_arty_a7/sdk_workspace/ Location of Software Development Kit (SDK) build Board Support Package
(BSP) files.

6 Example software design
6.2 Example software design directory structure

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-71

Non-Confidential

6.3 Example design reference files
A number of reference design files are provided with the delivery.

The following table describes these example design reference files in hardware
\m1_for_arty_a7\m1_for_arty_a7.

Table 6-2 Example design reference files in hardware\m1_for_arty_a7\m1_for_arty_a7

File Description

bram_a7.elf Example design software binary for Cortex‑M processors with debug symbols in Elf_Dwarf
format.

bram_a7.hex Example design software hex file loaded into FPGA build of Cortex‑M Instruction Tightly
Coupled Memory (ITCM).

m1.mmi Example design memory map information. This is used to merge elf and bit files.

m1_for_arty_reference.bit Example design with software included to load into FPGA RAM.

m1_for_arty_reference.mcs Example design with software included to load into Arty board configuration flash.

The following table describes these example design reference files in software
\m1_for_arty_a7\Build_Keil.

Table 6-3 Example design reference files in software\m1_for_arty_a7\Build_Keil

File Description

bram_a7.elf Example design software binary for Cortex‑M processors with debug symbols in Elf_Dwarf format.

bram_a7.hex Example design software hex file loaded into FPGA build of Cortex‑M ITCM.

qspi_a7.bin Example design software binary in QSPI format. This can be loaded by drag-and-drop using V2C-DAPLink mass
storage.

qspi_a7.hex Example design software hex file in QSPI format.

6 Example software design
6.3 Example design reference files

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-72

Non-Confidential

6.4 Generating the Arty A7 board support package
Before compiling the example software design that you are provided, a Board Support Package (BSP) is
created using the Vivado Software Development Kit (SDK). The example software design includes files
and directories that the BSP creates.

To generate a Cortex‑M1 BSP for the Arty Artix 7 (A7) board:

Procedure
1. Open Vivado.
2. Open the design found in V:/hardware/m1_for_arty_a7/m1_for_arty_a7/m1_for_arty_a7.xpr.
3. If the original design has been modified, including changing the address map, then proceed and

follow steps 4 and 5. If the hardware design is unchanged, proceed to step 6.
4. Select Generate Block Diagram from the left-hand side pane and then select Generate. This directs

Vivado to generate the file required files for synthesis, implementation, and simulation for the block
diagram.

5. Select File → Export Hardware. Set the Exported location to V:/software. The dialog box that
opens prompts that an exported module for the file is already found. Click Yes to overwrite this file.

Figure 6-1 Export Hardware
6. Select File → Launch SDK. Set Exported location to V:/software and workspace to V:/software/

m1_for_arty_a7/sdk_workspace. Click OK to proceed.

6 Example software design
6.4 Generating the Arty A7 board support package

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-73

Non-Confidential

Figure 6-2 Launch SDK
7. Vivado SDK launches and automatically opens the hardware platform specification for the Arty A7

example design. The following image shows the memory map that is displayed. The memory map
displayed aligns with the map described in 4.3 Memory map on page 4-40.

6 Example software design
6.4 Generating the Arty A7 board support package

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-74

Non-Confidential

Figure 6-3 Memory map

a. Confirm that under Xilinx → Repositories, the global repository list includes V:/vivado/
Arm_sw_respository.

8. Select File → New → Board Support Package.
9. Set the design name to standalone_bsp_0.
10. Click Finish.

6 Example software design
6.4 Generating the Arty A7 board support package

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-75

Non-Confidential

Figure 6-4 New Board Support Package Project

a. On the Standalone tab, ensure that stdin and stdout are set to use axi_uartlite_0.
 Caution

The SDK does not read the stdin and stdout values unless they are changed. This is a known
issue, and therefore, you must set stdin and stdout to none, and then set them back to
axi_uartlite_0.

Figure 6-5 Board Support Package Settings - standalone tab
b. Click Finish. The SDK generates the required BSP files.

11. The following directory structure now exists as V:/software/m1_for_arty_a7/sdk_workspace/
standalone_bsp_0/CORTEX_M1_0/. The common Xilinx include files are in the /include directory.
The driver files for the selected peripherals and the standalone BSP core files are in the /libscr
directory.

6 Example software design
6.4 Generating the Arty A7 board support package

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-76

Non-Confidential

12. The xpseudo_asm_rcvt.h and xpseudo_asm_rcvt.c files must be manually copied from V:/
vivado/Arm_sw_respository/Cortex/bsp/standalone_v6_7/src/arm/cortexm1/armcc to V:/
software/m1_for_arty_a7/sdk_workspace/standalone_bsp_0/CORTEX_M1_0/include directory
because of differences between the Vivado SDK and Arm Keil Microcontroller Development Kit
(MDK).

The BSP is complete and is now ready fo use by the example software design for compilation.
 Note

The BSP header file, xparameters.h, is located in the V:\software\m1_for_arty_a7\sdk_workspace
\standalone_bsp_0\CORTEX_M1_0\include. This header file includes definitions for all memory
addresses and peripheral configurations. It is automatically generated from the hardware platform
specification. To enable tightly coupled hardware and software configurations Arm recommends that you
use the configuration definitions from this file.

 Caution

If the xparameters.h file does not contain entries for STDIN_BASEADDRESS or
STDOUT_BASEADDRESS, then the stdin and stdout locations are not correctly set. This results in
no UART output. The standalone_bsp_0 directory should be removed, and the BSP regenerated.

Next Steps

You must now proceed to 6.5 Building the example software design on page 6-78.

6 Example software design
6.4 Generating the Arty A7 board support package

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-77

Non-Confidential

6.5 Building the example software design
The example software design is built using the Arm Keil µVision Microcontroller Development Kit
(MDK) tool.

To build the example software design:

Prerequisites

• You must complete the steps in 6.4 Generating the Arty A7 board support package on page 6-73.
• The example design Keil project uses a post processing batch file, make_hex_a7.bat, which is

automatically run after compilation. This batch file creates the necessary software files in the desired
formats and copies the files to their respective locations. This batch file requires the executable
fromelf.exe to be in the users path. This executable is located in <Keil install path>/ARM/
ARMCC/bin. This location should be added to the users path before opening the Keil project.

Procedure
1. Open Arm Keil µVision MDK and navigate to Project -> Open Project.
2. Select V:/software/m1_for_arty_a7/Build_Keil/m1_for_arty_a7.uvprojx.
3. Ensure that the target is m1_for_arty_a7.
4. Navigate to Project -> Rebuild. This rebuilds all target files.

6.5.1 Software design post processing

The target file, m1_for_arty_a7.axf, is generated in /Build_Keil/objects.

There is a post-process batch file, make_hex_a7.bat that the design calls automatically when the target
is built. The batch file converts the .axf file to suitable .hex, .bin, and .elf files. The batch file
automatically copies the relevant output files to the appropriate hardware project directories.

Therefore, when the design is rebuilt in Arm Keil µVision Microcontroller Development Kit (MDK),
new .elf and .hex files are present in the filepath V:/hardware/m1_for_arty_a7/m1_for_arty_a7 .

 Note

For V2C-DAPLink drag and drop operation, qspi_a7.bin is created as part of the software design post
processing process. This file is present in the /Build_Keil directory. This file can be directly copied to
the V2C-DAPLink drive. The .hex file that the batch file generates is intended for use with the Vivado
tools, and it does not work for drag and drop programming.

 Caution

If the example design has no output to the UART, but the rest of design runs correctly on the board, that
is, the LEDs respond to the push button changes, the cause is the generation of the standalone BSP, in
particular, the setting of the stdin and stdout locations. For more information on changing the stdin
and stdout locations, see 6.4 Generating the Arty A7 board support package on page 6-73. You must
delete the current standalone_bsp_0 directory and regenerate.

6 Example software design
6.5 Building the example software design

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-78

Non-Confidential

6.6 Software update flow
To avoid rebuilding the FPGA each time the software is modified, you can update the BRAM memories
content in an existing bit file with the new software content.

This mechanism requires the following:
• A bit file of latest hardware design, containing the Cortex‑M1 processor data and instruction

memories inferred as RAM36 primitives.
• A Memory Map Information (MMI) file. The MMI file lists the mapping of the Cortex‑M1 buses to

the RAM36 primitives, and their location. The MMI file only changes when the hardware has been
rebuilt. It does not require regeneration for each software iteration.

• A Software .elf file output from the software compilation tool flow.
• A batch file to combine these three files and produce a new bit file.

6.6.1 Generating the MMI file

The Memory Map Information (MMI) file maps the bit lanes from the data and instruction buses in the
Cortex‑M1 processor to specific RAM36 primitives and their locations.

The MMI file is updated whenever the FPGA design is rebuilt and a new bit file generated.
 Note

It is not necessary to produce an MMI file each time the software is rebuilt. The MMI file reflects the
current hardware build within the FPGA, and as such it is paired with each bit file.

You must generate the MMI file manually following these steps:

Procedure
1. In Vivado, after a bit file is produced, open the implemented design.
2. Open the TCL console.
3. Navigate to V:/hardware/m1_for_arty_a7/m1_for_arty_a7.
4. To create the file m1.mmi in the current directory, at the prompt type source make_mmi_file.tcl.

6.6.2 Generating bit and flash files

In the V:/hardware/m1_for_arty_a7/m1_for_arty_a7 folder, there is a Windows batch file,
make_prog_bit.bat. The make_prog_bit.bat file combines the m1_for_arty_a7_wrapper.bit,
m1.mmi, and bram_a7.elf files into a bit file, m1_for_arty_a7.bit and a flash file
m1_for_arty_a7.mcs.

To create a new m1_for_arty_prog.bit bit file in the current directory:

Prerequisites

The make_prog_bit.bat batch file requires that:
• A m1_for_arty_a7_wrapper.bit bit file is in \m1_for_arty_a7_35.runs\impl_1\.
• An m1.mmi file is in the current directory.
• A bram_a7.elf file is in the current directory.

The Vivado executable must be in your path. To test this, open a command window or console, and type
the following:

vivado

Procedure
1. Open a command window in the V:/hardware/m1_for_arty_a7/m1_for_arty_a7 folder.
2. Check that the make_prog_bit.bat file is configured.

6 Example software design
6.6 Software update flow

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-79

Non-Confidential

3. At the prompt, execute the make_prog_bit.bat file.
4. Check the console messages to ensure that both m1_for_arty_a7.bit and m1_for_arty_a7.mcs

files have been generated.

6.6.3 Programming

To program the example software design:

Procedure
1. In Vivado, open the hardware manager and auto-connect to the Arty Artix 7 (A7) board.
2. Select Program Device. By default, Vivado selects the original bit file created

m1_for_arty_a7_wrapper.bit.
3. Navigate to V:/hardware/m1_for_arty_a7/m1_for_arty_a7.
4. Select the m1_for_arty_prog.bit file generated in 6.6.2 Generating bit and flash files on page 6-79.
5. Select Program. The bit file with the latest software updates is now programmed on the board.

6 Example software design
6.6 Software update flow

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6-80

Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this document.

It contains the following section:
• A.1 Revisions on page Appx-A-82.

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-81

Non-Confidential

A.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table A-1 Issue 0000_00

Change Location Affects

First release for r0p0 - None

Table A-2 Differences between Issue 0001_00 and Issue 0000_00

Change Location Affects

First release for r0p1 Document history table. First documentation release for
r0p1

Functionality for no simulation with QSPI
models and no simulation at all support added.

2.5 Installing shell models on page 2-21 First documentation release for
r0p1

The ability to select the number of interrupts
using the configuration tab has been removed.

3.1 Configuration tab on page 3-26 First documentation release for
r0p1

No DTCM option added, and the DTCM size
range changed.

3.4 Data Memory tab on page 3-32 First documentation release for
r0p1

No debug option added 3.2 Debug tab on page 3-28 First documentation release for
r0p1

Additional pre-requisite added. 6.5 Building the example software design
on page 6-78

First documentation release for
r0p1

A Revisions
A.1 Revisions

100211_0001_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-82

Non-Confidential

	Arm® Cortex®‑M1 DesignStart™ FPGA-Xilinx edition User Guide
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : Cortex®‑M1 DesignStart™ FPGA-Xilinx edition package
	1.2 : Directory structure

	2 : Installing the Cortex®‑M1 DesignStart™ example design
	2.1 : Installing board files
	2.2 : Setting local drive for Windows
	2.3 : Installing Arm IP repository
	2.4 : Installing Arm software repository
	2.5 : Installing shell models
	2.6 : Downloading QSPI memory models
	2.6.1 : Micron QSPI model
	2.6.2 : Cypress QSPI model

	2.7 : Configuring simulation in Vivado

	3 : Cortex®‑M1 processor IP configuration
	3.1 : Configuration tab
	3.2 : Debug tab
	3.3 : Instruction Memory tab
	3.4 : Data Memory tab
	3.5 : Cortex®‑M1 processor signals

	4 : Working with the Cortex®‑M1 DesignStart™ example design
	4.1 : Editing the A7 example design
	4.2 : Debug
	4.3 : Memory map
	4.4 : QSPI multiplexing for the V2C-DAPLink board
	4.5 : Interrupt mapping
	4.6 : Constraints
	4.7 : Loading the pre-built bitstream
	4.8 : Loading the flash file
	4.9 : Bit file regeneration
	4.10 : Simulation
	4.10.1 : Testbench conditionals
	4.10.2 : Executing code from QSPI
	4.10.3 : Wave files

	5 : V2C-DAPLink board
	5.1 : V2C-DAPLink adaptor board features
	5.2 : V2C-DAPLink configuration
	5.3 : Flash download requirements
	5.4 : V2C-DAPLink board layout
	5.5 : Conditions to enable the DAP interface
	5.6 : DAP drivers
	5.7 : Programming the V2C-DAPLink QSPI using drag and drop
	5.8 : Using the μVision debugger to communicate through V2C-DAPLink
	5.9 : Using the μVision debugger to download projects through the flash programming utility
	5.10 : Recovering the DAP connection

	6 : Example software design
	6.1 : Example software design for Arty A7
	6.2 : Example software design directory structure
	6.3 : Example design reference files
	6.4 : Generating the Arty A7 board support package
	6.5 : Building the example software design
	6.5.1 : Software design post processing

	6.6 : Software update flow
	6.6.1 : Generating the MMI file
	6.6.2 : Generating bit and flash files
	6.6.3 : Programming

	A : Revisions
	A.1 : Revisions

