Arm[®] CoreLink[™] CMN-600 Coherent Mesh Network

Revision: r1p3

Technical Reference Manual

Arm® CoreLink™ CMN-600 Coherent Mesh Network

Technical Reference Manual

Copyright © 2016–2018 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Issue	Date	Confidentiality	Change
0000-00	12 February 2016	Non-Confidential	First release of r0p0
0000-01	21 October 2016	Non-Confidential	Second release of r0p0
0101-00	31 March 2017	Non-Confidential	First DEV release of r1p1
0100-00	23 June 2017	Non-Confidential	First EAC release of r1p0
0101-00	31 August 2017	Non-Confidential	First EAC release of r1p1
0102-00	18 November 2017	Non-Confidential	First EAC release of r1p2
0103-00	08 February 2018	Non-Confidential	First EAC release of r1p3

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or TM are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2016–2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Contents

Arm® CoreLink™ CMN-600 Coherent Mesh Network Technical Reference Manual

	Pret	race		
		About this book		
		Feedback	11	
Chapter 1	Introduction			
	1.1	About CMN-600	1-13	
	1.2	Compliance	1-15	
	1.3	Features	1-16	
	1.4	Interfaces	1-19	
	1.5	Configurable options		
	1.6	Test features	1-28	
	1.7	Product documentation and design flow		
	1.8	Product revisions	1-31	
Chapter 2	Fun	ctional Description		
	2.1	About the functions	2-34	
	2.2	System configurations	2-40	
	2.3	CML system configurations	2-43	
	2.4	Node ID mapping	2-46	
	2.5	Discovery	2-48	
	2.6	Addressing capabilities	2-59	
	2.7	Atomics	2-60	

	2.8	Exclusive accesses	2-61		
	2.9	Processor events	2-63		
	2.10	Quality of Service	2-64		
	2.11	Barriers	2-71		
	2.12	DVM messages	2-72		
	2.13	PCIe integration	2-73		
	2.14	Error handling	2-75		
	2.15	System Address Map	2-91		
	2.16	RN SAM	2-92		
	2.17	CXRA SAM	2-97		
	2.18	HN-F SAM	2-98		
	2.19	RN and HN-F SAM programming	2-104		
	2.20	HN-I SAM	2-112		
	2.21	Cross chip routing and ID mapping	2-122		
	2.22	Clocking	2-128		
	2.23	Reset	2-134		
	2.24	Power and clock management	2-135		
	2.25	RN entry to and exit from Snoop and DVM domains	2-147		
	2.26	Link layer	2-150		
	2.27	CML Symmetric Multi-Processor (SMP) Support	2-152		
Chapter 3	Prog	grammers Model			
	3.1	About the programmers model	3-154		
	3.2	Register summary	3-156		
	3.3	Register descriptions	3-173		
	3.4	CMN-600 programming	3-791		
	3.5	CML programming	3-792		
	3.6	Support for RN-Fs compliant with CHI Issue A specification	3-799		
Chapter 4	SLC Memory System				
	4.1	About the SLC memory system	4-802		
	4.2	Configurable options	4-804		
	4.3	Basic operation	4-805		
	4.4	Cache maintenance operations	4-806		
	4.5	Cacheable and Non-cacheable exclusives	4-807		
	4.6	TrustZone technology support	4-808		
	4.7	Snoop connectivity and control	4-809		
	4.8	QoS features	4-810		
	4.9	Data Source Handling	4-812		
	4.10	Software configurable memory region locking	4-813		
	4.11	Software-configurable On-Chip Memory			
	4.12	CMO propagation from HN-F to SN-F/SBSX			
	4.13	Error reporting and software-configured error injection	4-817		
Chapter 5		ug trace and PMU			
	5.1	DT system overview			
	5.2	DT programming	5-832		
	5.3	DT usage examples			
	5.4	PMU system overview			
	5.5	PMU feature description	5-838		

	5.6	PMU system programming	5-839
	5.7	Secure debug support	5-841
Chapter 6	Perf	ormance Optimization and Monitoring	
	6.1	Performance optimization guidelines	6-843
	6.2	About the Performance Monitoring Unit	6-844
	6.3	HN-F performance events	6-848
	6.4	RN-I performance events	6-852
	6.5	SBSX performance events	6-856
	6.6	HN-I performance events	6-859
	6.7	DN performance events	6-863
	6.8	XP PMU event summary	6-864
	6.9	Occupancy and lifetime measurement using PMU events	6-865
	6.10	DEVEVENT in CMN-600	6-866
Appendix A	Sign	al Descriptions	
	A.1	About the signal descriptions	Appx-A-868
	A.2	Clock and reset signals	Appx-A-869
	A.3	Clock management signals	Appx-A-870
	A.4	Power management signals	Appx-A-871
	A.5	Interrupt and event signals	Appx-A-872
	A.6	Configuration input signals	Appx-A-873
	A.7	Device population signals	Appx-A-874
	A.8	CHI interface signals	Appx-A-875
	A.9	ACE-Lite and AXI Interface signals	Appx-A-881
	A.10	CXLA interface signals	Appx-A-890
	A.11	Debug, trace, and PMU interface signals	Appx-A-898
	A.12	DFT and MBIST interface signals	Appx-A-900
	A.13	RN SAM configuration interface signals	Appx-A-901
	A.14	Processor event interface signals	Appx-A-902
Appendix B	CXS	Specification	
	B.1	CCIX interfaces	Аррх-В-905
	B.2	Signal descriptions	Аррх-В-909
	B.3	Packet control fields	Аррх-В-912
	B.4	Packet size constraints	Appx-B-915
	B.5	Packet position constraints	Appx-B-916
	B.6	CCIX Packet Details	Appx-B-917
	B.7	Packet examples	Аррх-В-918
	B.8	CXS flow control	Аррх-В-920
	B.9	CXS interface activation and deactivation	Аррх-В-922
	B.10	CXS packet continuous delivery guarantees	Appx-B-930
	B.11	CXS Error signaling	Appx-B-931
Appendix C	Revi	sions	
	C.1	Revisions	Appx-C-934

Preface

This preface introduces the Arm^{\otimes} $CoreLink^{\bowtie}$ CMN-600 Coherent Mesh Network Technical Reference Manual.

It contains the following:

- About this book on page 8.
- Feedback on page 11.

About this book

This book is for the Arm[®] CoreLink[™] CMN-600 Coherent Mesh Network product.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2, where:

- rm Identifies the major revision of the product, for example, r1.
- pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is written for system designers, system integrators, and programmers who are designing or programming a *System-on-Chip* (SoC) that uses Coherent Mesh Network CMN-600.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter describes the CMN-600 product.

Chapter 2 Functional Description

This chapter describes the functionality of the CMN-600 product.

Chapter 3 Programmers Model

This chapter describes the programmers model.

Chapter 4 SLC Memory System

This chapter describes the SLC memory system.

Chapter 5 Debug trace and PMU

This chapter describes the *Debug Trace* (DT) and *Performance Monitoring Unit* (PMU) features.

Chapter 6 Performance Optimization and Monitoring

This chapter describes performance optimization techniques for use by system integrators, and the *Performance Monitoring Unit* (PMU).

Appendix A Signal Descriptions

This section describes the CMN-600 I/O signals.

Appendix B CXS Specification

This appendix describes the Coherent Multichip Link product.

Appendix C Revisions

This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic

Introduces special terminology, denotes cross-references, and citations.

bold

Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

monospace

Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

<u>mono</u>space

Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

monospace italic

Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the Arm° Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

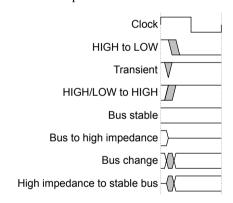


Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- · LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This book contains information that is specific to this product. See the following documents for other relevant information.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- Arm® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).
- Arm®AMBA® Low Power Interface Specification, Q-Channel and P-Channel Interfaces (ARM IHI 0068).
- Arm® Architecture Reference Manual ARMv7-A and ARMv7-R Edition (ARM DDI 0406).
- Arm® Architecture Reference Manual ARMv8, for ARMv8-A architecture profile (ARM DDI 0487).
- Arm® Architecture Specification for ARMv8.4 architecture profile (ARM ECM 0126602).

The following confidential books are only available to licensees:

- Arm® CoreLink™ CMN-600 Coherent Mesh Network Configuration and Integration Manual(ARM 100613).
- Arm® CoreLink™ CMN-600 User Guide (ARM 100557).

Other publications

• JEDEC Standard Manufacturer's Identification Code, JEP106, http://www.jedec.org.

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title Arm CoreLink CMN-600 Coherent Mesh Network Technical Reference Manual.
- The number 100180_0103_00_en.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
Note
Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.

Chapter 1 Introduction

This chapter describes the CMN-600 product.

It contains the following sections:

- 1.1 About CMN-600 on page 1-13.
- 1.2 Compliance on page 1-15.
- 1.3 Features on page 1-16.
- 1.4 Interfaces on page 1-19.
- 1.5 Configurable options on page 1-20.
- 1.6 Test features on page 1-28.
- 1.7 Product documentation and design flow on page 1-29.
- 1.8 Product revisions on page 1-31.

1.1 About CMN-600

The CMN-600 product is a scalable configurable coherent interconnect that is designed to meet the *Power, Performance, and Area* (PPA) requirements for coherent mesh network systems that are used in high-end networking and enterprise compute applications.

The CMN-600 product provides the following key features:

- Scalable mesh interconnect:
 - From one to 32 processor compute clusters.
- Configurable with Socrates™ System Builder IP Tooling platform which is an environment for the configuration and integration of Arm and other IP-XACT enabled IP:
 - Custom interconnect size and device placement.
 - Optional System Level Cache (SLC).
- Supports AMBA 5 CHI Issue B, including the following new features:
 - Far atomic operations.
 - Cache-stashing to improve data locality.
 - Direct data transfer to reduce latency.
- System alignment:
 - Quality of Service (QoS).
 - Reliability, Availability, and Serviceability (RAS).
 - Debug and Trace (DT).
- IP compatibility:
 - Dynamic Memory Controller (DMC).
 - Generic Interrupt Controller (GIC).
 - Memory Management Unit (MMU).
 - CMN-600 is compatible with Armv8.0 and Armv8.2-A processors.
- Optional Coherent Multichip Link (CML) feature:
 - Supports up to four SoCs in a coherent system.
 - Compliant with CCIX standard.

A system that is built using the CMN-600 product can contain the following protocol nodes/devices:

RN-F (Fully coherent Requesting Node)

A fully coherent master device that supports either CHI Issue A or CHI Issue B protocols. One CMN-600 instance supports:

- All CHI.A RN-Fs, or
- All CHI.B RN-Fs (however, not both types together).

RN-I (I/O coherent Requesting Node) bridge

An I/O-coherent master device. This is a CHI bridge device acting as an RN-I proxy for one or more AXI/ACE-Lite master devices that are connected to it.

RN-D (I/O coherent Requesting Node with DVM support) bridge

An I/O coherent master device that supports accepting DVM messages on the snoop channel.

HN-F (Fully coherent Home Node)

A device that acts as a home node for a coherent region of memory, accepting coherent requests from RN-Fs and RN-Is, and generating snoops to all applicable RN-Fs in the system as required to support the coherency protocol.

HN-I (I/O Home Node)

A device that acts as a home-node for the slave I/O subsystem, responsible for ensuring proper ordering of requests targeting the slave I/O subsystem. HN-I supports AMBA AXI or ACE-Lite.

HN-D(HN-I+DVMNode)

A device that includes HN-I, DVM Node (DN), Configuration Node (CFG), Global
Configuration Slave, and the <i>Power/Clock Control Block</i> (PCCB).
Note
Only one HN-D is allowed per CMN-600 instance.

SN-F (CHI Slave Node)

A device which solely is a recipient of CHI commands, limited to fulfilling simple read, write, and CMO requests targeting normal memory.

SBSX bridge

A CHI bridge device that converts simple CHI read, write, and CMO commands to an ACE-Lite slave memory device.

CXG bridge

A CXG device bridges between CHI and CXS (CCIX port) and contains:

- 1. CCIX Request Agent (CXRA) proxy and CCIX Home Agent (CXHA) proxy functionality.
- 2. CXS Link Agent (CXLA) functionality which is external to the CMN-600 hierarchy.

1.2 Compliance

The CMN-600 product is based on the AMBA 5 CHI Issue B architecture specification.

This TRM complements architecture reference manuals, architecture specifications, protocol specifications, and relevant external standards. It does not duplicate information from these sources.

AMBA 5 CHI architecture

The CMN-600 product implements the following architecture capabilities:

- Fully compliant with CHI interconnect architecture.
- Non-blocking coherence protocol.
- Packet-based communication.
- The following four types of channels:
 - Request (REQ).
 - Response (RSP).
 - Snoop (SNP).
 - Data (DAT).
- Credited end-to-end protocol-layer flow-control with a retry-once mechanism for flexible bandwidth and resource allocation.
- Integrated end-to-end Quality-of-Service (QoS) capabilities.

See the *Arm*[®] *AMBA*[®] *5 CHI Architecture Specification* for more information.

CCIX architecture

The CML CCIX implementation is compliant with CCIX PRL Rev1.0 ver 0.9 dated October 20, 2017, with the following limitations:

- Outbound PER message generation is not supported.
- Piggy-backed Misc message credits not supported on inbound PER messages or Uncredited Misc Generic messages.
- Reserved extensions are not supported on inbound messages.
- ExtType0 is not supported on inbound Misc messages.

CCIX transport spec

The CCIX transport spec is compliant with: Release 2 Draft, Date of Issue: 20 March 2017.

1.3 Features

The CMN-600 product provides the following key features:

- Highly scalable mesh network topology configurable up to an 8 × 8 mesh.
- Custom mesh size and device placement.
- Supports a programmable System Address Map (SAM).
- Supports up to 32 RN-F interfaces for CHI-based compute clusters, accelerators, graphic processing units, or other cache coherent masters.
- Supports up to eight memory controllers (on-chip memory or DDR).
- Supports up to 32 RN-Is with up to three ACE5-Lite ports each (96 total):

Additional devices are supported by using more levels of interconnect hierarchy, such as the CoreLink NIC-450 Network Interconnect.

- Data channel: a pair of 256-bit data channels, one for each direction.
- DVM message transport between masters.
- QoS regulation for shaping traffic profiles.
- A Performance Monitoring Unit (PMU) to count performance-related events.
- High-performance distributed SLC and SF up to 32 HN-Fs with cache sizes of 0-128MB total:
 - The HN-F includes an integrated *Point-of-Serialization* (PoS) and *Point-of-Coherency* (PoC) and its SLC (also referred to as Agile System Cache) can be used both for compute and I/O caching.
 - *Snoop Filter* (SF) up to 256MB of tag RAM for increased coherency scalability consisting of up to 32 partitions (one per HN-F).
- Up to eight HN-Is, each with an ACE-Lite master port.
- Supports *Device Credited Slices* (DCSs) used for register slices at device interfaces, allowing flexibility in device placement.
- Supports *Mesh Credited Slices* (MCSs) used for X-Y register slices, allowing flexibility in mesh floorplanning.
- On-Chip Memory (OCM) allows for the creation of CMN-600 systems without physical DDR memory.
- RAS features including transport parity, optional data path parity, SECDED ECC, and data poisoning signaling.
- Supports up to two CCIX ports, supporting one, two, or three CCIX links for chip-to-chip coherent communication. Each CCIX port has a CXS interface that transports CCIX TLP.

This section contains the following subsections:

- 1.3.1 CML Properties, Support, and Requirements on page 1-16.
- 1.3.2 CCIX and CXS property support on page 1-17.

1.3.1 CML Properties, Support, and Requirements

This section provides CCIX, CXS, and CHI information for CML support.

CXS Support

Refer to the tables found in 1.3.2 CCIX and CXS property support on page 1-17 for details.

CCIX Support

Refer to this section and the tables found in 1.3.2 CCIX and CXS property support on page 1-17 for details.

CHI Support

The following table contains CHI support for CML settings.

Table 1-1 CHI support for CML

CHI Feature	CML Support		Comments	
	Local	Remote		
Coherency	Yes	Yes	-	
Ordering	Yes	Yes	-	
Atomics	Yes	Yes	-	
Exclusive Accesses	Yes	SMP Mode Only	Remote Support: Only RN-F Exclusives are supported and can only target HN-F.	
Cache Stashing	Yes	No	-	
DVM Operations	Yes	SMP Mode Only	-	
Error Handling			-	
-Response Error	Yes	Yes	-	
-Data Check	Yes	No	Optional for CMN-600, not supported for CMN-600 with CML configurations.	
-Poison	Yes	Yes	Mandatory for CMN-600.	
QoS			-	
- Request	Yes	Yes	-	
- Snoop	Yes	No	-	
Data Return from Shared Clean	Yes	No	-	
Direct Cache Transfer (DCT)	Yes	No	Local support includes local RN-F sending data directly to CCIX gateway block.	
Direct Memory Transfer (DMT)	Yes	No	Local support includes local SN-F sending data directly to CCIX gateway block.	
I/O Deallocation Transactions	Yes	Yes	-	
CleanSharedPersist CMO	Yes	Yes	-	
Prefetch Target	Yes	No	-	
Trace Tag	Yes	SMP Mode Only	-	
System Coherency Interface (SYSCOREQ/ACK)	Yes	Yes (using s/w bits)	-	
Partial Cache State	Yes	No	-	
Streaming and Optimized Streaming of Ordered WriteUniques	Yes	No	-	

CML Requirement

Each CML Port requires a minimum of four request and four data credits to be granted per CCIX link. These credits are used by certain traffic types, like QoS-15, to make forward progress in a loaded system.

1.3.2 CCIX and CXS property support

This section provides CCIX and CXS information for CML support.

The following table contains CXS property settings.

Table 1-2 CXS property support

CXS property	Support
TX/RX CXSDATAFLITWIDTH	256
TX/RX CXSMAXPKTPERFLIT	2
TX CXSCONTINUOUSDATA	True
RX CXSCONTINUOUSDATA	False
TX/RX CXSERRORFULLPKT	True
TX/RX CXSDATACHECK	None
TX/RX CXSREPLICATION	None

CCIX features not supported

- Memory expansion. HN-Fs and their associated SN-Fs must be on the same chip.
- Snoop chaining outbound.
- CCIX snoop multicast (inbound and outbound).
- Snoop broadcast outbound.

The following table contains CCIX property settings for CML.

Table 1-3 CCIX property settings for CML

Property	Permitted values	Support
NoCompAck	True, False	False
PartialCacheStates	True, False	False
CacheLineSize	64B, 128B	64B
AddrWidth	48b, 52b, 56b, 60b, 64b	48b
PktHeader	Compatible, Optimized	Both
MaxPacketSize	128B, 256B, 512B	All
NoMessagePack	True, False	Both (True is the Default)

1.4 Interfaces

The following figure shows the interfaces of the CMN-600 product.

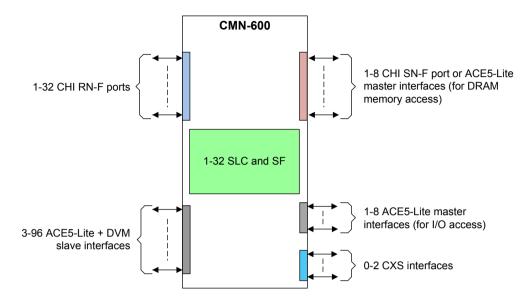


Figure 1-1 CMN-600 interfaces

1.5 Configurable options

The basic structure of CMN-600 is a configurable rectangular grid comprised of network routers referred to as *Crosspoints* (XPs) and CHI-compliant devices. Each XP connects horizontally and vertically to other XPs, creating a two-dimensional mesh structure. Each XP has up to two ports to which CHI-compliant devices can be connected.

CMN-600 provides several configurable parameters that can be configured to meet various system requirements. Use Socrates IP Tooling to initially auto-populate the device(s) throughout the mesh. Then refine the mesh design and/or device placement keeping in mind these guidelines:

CMN-600 is configured in three steps:

- 1. System component selection. In this step, system components are determined, including:
 - The number and type of processors.
 - I/O interfaces.
 - Number of HN-Fs.
 - Amount of SLC.
 - Memory interfaces.
- 2. Mesh sizing and top-level configuration. This step includes specifying the following:
 - The number of rows and columns.
 - Global configuration parameters.
- 3. Device placement and configuration. This step involves:
 - Placement of devices and credited repeater slices between XPs based on floorplan needs.
 - Configuration of devices.

This section contains the following subsections:

- 1.5.1 System component selection on page 1-20.
- 1.5.2 Mesh sizing and top-level configuration on page 1-21.
- 1.5.3 Device placement and configuration on page 1-24.

1.5.1 System component selection

This section describes the selection of system components comprising a CMN-600 system.

Requesting masters (RNs)

Requesting masters reside outside of the mesh and connect to CMN-600 ports.

Requesting masters with coherent caches (processors, GPUs, or processing elements with internal caches) are referred to as RN-F devices. They connect directly to the CMN-600 interconnect mesh using a CHI RN-F port.

I/O requesting masters without coherent caches (I/O masters, processing elements without internal caches, or with internal caches that are not hardware coherent) connect to RN-I bridge devices located within CMN-600 using ACE-Lite ports. The RN-I bridge device is located between the ACE-Lite interface and the internal CHI interface. Each RN-I bridge device has three ACE-Lite interfaces.

While an I/O requesting master can connect directly to a CMN-600 ACE-Lite port, multiple masters may share a single ACE-Lite port using external AMBA interconnect components. Consider traffic bandwidth requirements and physical floorplan trade-offs to determine whether I/O masters share 1-3 ACE-Lite ports or an RN-I.

Home nodes (HNs)

In CHI, each byte of memory is assigned to a single home node which is responsible for handling all memory transactions associated with that byte.

There are two types of home node devices within the CMN-600 system: HN-F and HN-I.

HN-F device instances are the home nodes for all coherent memory. HN-F also supports non-coherent memory accesses. Memory that is mapped to an HN-F targets DRAM. Each HN-F can contain an SF and an SLC slice. The amount of SLC should determine the number of HN-Fs.

The total amount of SLC needed divided by the number of HN-F instances determines the recommended SLC size for each HN-F instance. Generally, each HN-F partition has the same SLC size.

Not	re ———	
The amount of	SLC and number of HN-Fs are	configured separately.

For best performance, the total SF size should be twice the total exclusive cache size for all RN-Fs. For example, for a 32MB RN-F total cache size, the recommended SF size would be 64MB.

HN-I device instances are the home nodes for all memory targeted at an ACE-Lite slave device or subsystem. HN-I does not support coherent memory. However, cacheable transactions can be sent to HN-I. Each HN-I instance contains a single ACE-Lite master port to send bus transactions to one or more slaves through an AMBA interconnect. The number of HN-I instances needed should be determined by the total ACE-Lite master bandwidth and slave peripherals' physical placement.

Noto	
Note -	

HN-I instances with additional functionality are referred to by different names. For example, an HN-I that has a debug trace controller is called an HN-T. An HN-I that has a debug trace controller, DVM node and configuration slave is called an HN-D. The CMN-600 interconnect can have zero or more HN-I and HN-T instances. However, it must have exactly one HN-D instance.

CML interfaces

The CMN-600 interconnect supports up to two CXS (CCIX port) interfaces. A CXG device bridges between CHI and CXS, and contains CCIX *Request Agent* (RA) proxy and *Home Agent* (HA) proxy functionality. The CXG device also contains CXS *Link Agent* (LA) functionality, which is external to the CMN-600 hierarchy.

Memory interfaces

The CMN-600 interconnect supports two types of memory interface ports:

- 1. CHI SN port: Used to connect a native CHI.B memory controller such as the CoreLink DMC-620 Dynamic Memory Controller.
- 2. AXI port: Used to connect an AXI memory controller via an SBSX bridge. See *Table 1-4 Device types* on page 1-22 for details.

1.5.2 Mesh sizing and top-level configuration

The size of the CMN-600 mesh primarily depends on the number of connected devices.

The minimum number of XPs is determined by the number of devices divided by two (rounded up). Additionally, the product of the X and Y mesh dimensions must be greater than or equal to the required number of XPs. For example, if seven XPs are needed, a 2×4 or 4×2 mesh would be acceptable.

The following table lists the device types that CMN-600 supports.

Table 1-4 Device types

Device	Name	Description	
RN-I	Request Node I/O	A non-caching request node, bridging I/O master requests from 1-3 AXI or ACE-Lite interfaces	
RN-D	DVM Request Node	An RN-I node that can accept DVM messages on the snoop channel	
RNF_CHIA	Request Node Full with built-in SAM. CHI Issue A compliant.	CHI Issue A compliant processor, cluster, GPU or other request node with a coherent cache and a built-in SAM	
RNF_CHIA_ ESAM	Request Node Full without a built-in SAM. CHI Issue A compliant.	CHI Issue A compliant processor, cluster, GPU or other request node with a coherent cache but without a built-in SAM	
RNF_CHIB	Request Node Full with built-in SAM. CHI Issue B compliant.	CHI Issue B compliant processor, cluster, GPU or other request node with a coherent cache and a built-in SAM	
RNF_CHIB_ ESAM	Request Node Full without a built-in SAM. CHI Issue B compliant.	CHI Issue B compliant processor, cluster, GPU or other request node with a coherent cache but without a built-in SAM	
HN-F	Home Node Full	A fully coherent home node, typically configured with SLC and/or SF	
HN-I	Home Node I/O	A non-coherent home node, bridging I/O slave requests to an ACE Lite interface	
HN-T	Home Node I/O with debug trace control	An HN-I with a built-in debug trace controller	
HN-D	DVM Home Node	An HN-I with a built-in debug trace controller, <i>DVM Node</i> (DN), <i>Configuration Node</i> (CFG), Global Configuration Slave, and the <i>Power/Clock Control Block</i> (PCCB)	
SN-F	Slave Node	A memory controller consisting of a native CHI Issue B SN interface	
SBSX	CHI to AXI bridge	A CHI to AXI bridge that allows an AXI memory controller to be connected to CMN-600	
CXG	CHI to CXS (CCIX port) bridge	A CHI to CXS (CCIX port) bridge that enables CML Note It comprises two entities: an internal CXRH device, including RA and HA functionality inside the CMN-600 hierarchy, and an external CXLA device.	

The following table shows configurable options for mesh size, component counts, and top-level configuration (including associated parameters).

Table 1-5 Top-level configurable options

Feature	Parameter	Description	Values (Default)	Comments	
Mesh dimensions	Mesh X dimension	Number of mesh columns	1-8	Mesh configurations not	
	Mesh Y dimension	Number of mesh rows	1-8	supported: 1 × 1 1 × 2 2 × 1	
	MCSX count	Number of credited slices on a XP-XP mesh link in X dimension	0-4	This count is per link and can be different for each link.	
	MCSY count	Number of credited slices on a XP-XP mesh link in Y dimension	0-4		
	DCS count	Number of credited slices on a device-XP link	0-4		
Global parameter	PA_WIDTH	System Physical Address width	34, 44, 48 (48)	PA width of 48 is not supported in CMN-600 system with RNF_CHIA or RNF_CHIA_ESAM devices.	
	REQ_ADDR_WIDTH	Width of Address field in REQ flit	44, 48 (48)	Address width of 48 is not supported in CMN-600 system with RNF_CHIA or RNF_CHIA_ESAM devices. REQ_ADDR_WIDTH must be set equal to or greater than PA_WIDTH.	
	REQ_RSVDC_WIDTH	Width of RSVDC field in REQ flit	4, 8 (8)	-	
	DATACHECK_EN	Datacheck enable	0, 1 (False)	Datacheck refers to data byte parity checking. Must be False for CML configurations.	
	FLIT_PAR_EN	Flit parity enable	0, 1 (True)	-	
	NUM_REMOTE_RNF	Number of RN-Fs for CML configurations on all remote chips combined	0-32 (0)	-	
	RNSAM_NUM_ADD_HASHED_TGT	Number of additional hashed target IDs supported by the RN SAM, beyond the local HN-F count	0, 2, 4, 8, 16 (0)	-	
Processor resources	Number of RN-Fs	The number of RN-Fs in the system. RN-Fs can be one of the following four types: RNF_CHIA RNF_CHIA_ESAM RNF_CHIB RNF_CHIB_ESAM	1-32	All RN-Fs must be of the same type.	

Table 1-5 Top-level configurable options (continued)

Feature	Parameter	Description	Values (Default)	Comments	
I/O resources	Number of RN-Is	The number of RN-I instances in the system	0-32	At least one RN-I or RN-D must be present. The total count of RN-Is and RN-Ds must not exceed 32.	
	Number of RN-Ds	The number of RN-D instances in the system	0-32		
	Number of HN-Is The number of HN-I instances in the system. This count includes the HN-D which is always present.	-			
Debug resources	Number of DTCs	The total number of Debug Trace Controller domains.	1-4	The number of DTCs must not exceed the number of HN-Is.	
System cache	Number of HN-Fs	The total number of HN-F instances in the system. The number of HN-Fs referred to by a given cache group (hashed entry in the SAM) must be a power of two.	1-32	Refer to Chapter 4 SLC Memory System on page 4-801 for more details.	
Memory resources	Number of SN-Fs	The number of SN-Fs (CHI interfaces)	0-8	At least one SN-F or SBSX must be present. The total count of SN-Fs and SBSXs must not exceed 8.	
	Number of SBSXs	The number of SBSX instances (AXI interfaces)	0-8		

1.5.3 Device placement and configuration

When the devices are enumerated and the mesh dimensions are determined, the placement of each device, or node, in the mesh must be specified.

While there are no constraints on a device's mesh location, optimal device placement is driven by floorplanning and performance constraints, and is outside the scope of this document.

Individual CMN-600 devices can be configured using the options shown in the following table.

Table 1-6 CHI device configurable options

Feature	Parameter	Description	Values (Default)	Comments
RN-F port, SN-F port	DEV_POISON_EN	Data poison enable (RN-F port only)	0, 1 (1)	Must be set to 0 for RNF_CHIA or RNF_CHIA_ESAM device
	DEV_DATACHECK_EN	Datacheck enable (RN-F port only) Note DEV_DATACHECK_EN must be set to 0 when global parameter DATACHECK_EN is 0.	0, 1 (0)	End-to-end data byte parity enable. Must be set to 0 for RNF_CHIA or RNF_CHIA_ESAM device.
	RXBUF_NUM_ENTRIES	Number of receive flit buffers inside CMN-600 on this port. To achieve full bandwidth operation, this number must equal the CHI credit return latency (in cycles) for flit transfers from RN-F or SN-F to the interconnect. Note The credit return latency is 1 cycle in the interconnect. This must be added to the credit latency in the RN-F or SN-F to arrive at the total credit return latency.	2-4 (3)	The minimum value of 2 corresponds to a credit return latency of 1 cycle in the interconnect and 1 cycle in the RN-F or SN-F.
RN-I, RN-D	AXDATA_WIDTH	Data width on ACE-Lite/AXI interface	128, 256	-
	NUM_WR_REQ	Number of Write Request Tracker entries	4, 16, 24, 32 (32)	-
	NUM_RD_REQ	Number of Read Request Tracker entries	4, 32, 64, 96, 128 (32)	-
	NUM_RD_BUF	Number of read data buffers	4, 16, 24, 32, 64, 96, 128 (24)	-
	AXDATAPOISON_EN	Data poison enable on ACE-Lite/AXI interface	0, 1 (1)	-

Table 1-6 CHI device configurable options (continued)

Feature	Parameter	Description	Values (Default)	Comments
HN-F	SLC_SIZE	Size of system cache	0KB, 128KB, 256KB, 512KB, 1MB, 2MB, 3MB, 4MB (2MB)	-
	SF_SIZE	Size of SF tag RAM	512KB, 1MB, 2MB, 4MB, 8MB (4MB)	-
	SLC_TAG_RAM_LATENCY	Latency of system cache tag RAM	1-3 cycles (2)	Valid Tag:Data RAM
	SLC_DATA_RAM_LATENCY	Latency of system cache data RAM	2-3 cycles (2)	latency combinations: • 1:2
	NUM_ENTRIES_POCQ	Number of entries in the POCQ tracker	32, 64 (32)	• 2:2 • 3:3
HN-I, HN-D	NUM_AXI_REQS	Number of Request Tracker entries	8, 32, 64 (32)	-
	AXDATA_WIDTH	Data width on ACE-Lite/AXI interface	128, 256 (128)	-
	AXDATAPOISON_EN	Data poison enable on ACE-Lite/AXI interface	0, 1 (0)	-
	DVM_V8_1_EN	Enable Armv8.1-A DVMs (HN-D only)	0, 1 (1)	-
SBSX	AXDATA_WIDTH	Data width on ACE-Lite/AXI interface	128, 256 (128)	-
	AXDATAPOISON_EN	Data poison enable on ACE-Lite/AXI interface	0, 1 (1)	-
	NUM_DART	Number of Tracker entries	64, 128 (64)	-
	NUM_WR_BUF	Number of write buffers	8, 16 (8)	-
CXG	CXDB_LCRD_MAX_COUNT	Number of flit credits at CXLA interface	3-15 (4)	-

MCS

The CMN-600 mesh is designed to operate with a single cycle of latency between XPs. However, depending on the fabrication process and the distance between XPs, a single-cycle XP-XP connection may limit frequency. In this case, one or more register slices can be added to lengthen the XP-XP links. Register slices add link transfer latency, but the frequency gained can justify the trade-off.

To add an extra cycle between two XPs, a *Mesh Credited Slice* (MCS) is specified. One to four MCSs can be added to any link between XPs.

An MCS placed between adjacent XPs in the same row is called an MCSX. Similarly, one placed between adjacent XPs in the same column is called an MCSY.

DCS

A credited slice placed between a device and an XP is called a *Device Credited Slice* (DCS). One to four DCSs can be added to any link between a device and an XP.

The following figure shows an example configuration including an MCSX, MCSY, and DCS.



Figure 1-2 Example MSCX, MSCY, and DCS configuration

1.6 Test features

The CMN-600 product includes several test features.

See the Arm^{\otimes} $CoreLink^{\text{TM}}$ CMN-600 Coherent Mesh Network Configuration and Integration Manual for information about the test features.

1.7 Product documentation and design flow

This section describes the CMN-600 books and how they relate to the design flow.

Documentation

The CMN-600 documentation is as follows:

Technical Reference Manual

The *Technical Reference Manual* (TRM) describes the functionality and the effects of functional options on the behavior of CMN-600. It is required at all stages of the design flow. The choices you make in the design flow can mean that some behavior described in the TRM is not relevant. If you are programming the CMN-600 product, contact:

- The implementer to determine:
 - The build configuration of the implementation.
 - What integration, if any, was performed before implementing the CMN-600 product.
- The integrator to determine the pin configuration of the device that you are using.

Configuration and Integration Manual

The Configuration and Integration Manual (CIM) describes how to integrate the CMN-600 product into an SoC. It includes a description of the pins that the integrator must tie off to configure the macrocell for the required integration. Some of the integration affected by the configuration options used when implementing the CMN-600 product include:

- The available build configuration options and related issues in selecting them.
- How to configure the Register Transfer Level (RTL) with the build configuration options.
- How to integrate RAM arrays.
- How to run test patterns.
- The processes to sign off the configured design.

The Arm product deliverables include reference scripts and information about using them to implement your design. Reference methodology flows supplied by Arm are example reference implementations. Contact your EDA vendor for EDA tool support.

User Guide

The <i>User Guide</i> describes now to use Socrates System Builder to configure and integrate a
custom mesh interconnect. Configurables include size and device placement and an optional
System Level Cache (SLC).
Note
The User Guide is part of the Socrates System Builder for IP tooling product download
bundle.

Design flow

CMN-600 is delivered as synthesizable RTL. Before it can be used in a product, it must go through the following processes:

Implementation

The implementer configures and synthesizes the RTL to produce a hard macrocell. This process includes integrating RAMs into the design.

Integration

The integrator connects the implemented design into an SoC. This process includes connecting a memory system and peripherals.

Programming

This is the last process. The system programmer develops the software required to configure and initialize the CMN-600 product, and tests the required application software.

Each process:

- Can be performed by a different party.
- Can include implementation and integration choices that affect the behavior and features of the CMN-600 product.

The operation of the final device depends on:

Build configuration

The implementer chooses the options that affect how the RTL source files are pre-processed. These options usually include or exclude logic that affects one or more of the area, maximum frequency, and features of the resulting macrocell.

Configuration inputs

The integrator configures some features of the CMN-600 product by tying inputs to specific values. These configurations affect the start-up behavior before any software configuration is made. They can also limit the options available to the software.

Software configuration

The programmer configures the CMN-600 product by programming particular values into registers. These configurables affect the behavior of the CMN-600 product.

Note
This manual refers to implementation-defined features that are applicable to build configuration options
Reference to a feature that is included means that the appropriate build and pin configuration options ar selected. Reference to an enabled feature means one that has also been configured by software.

1.8 Product revisions

This section describes the differences in functionality between successive product revisions of the CMN-600 product.

r0p0

First release.

r1p1 (LAC)

First release: includes CML (Alpha product status) content.

r1p0 (EAC)

First release: includes CML (Beta product status) content.

r1p1 (EAC)

First release: includes CML (Beta product status) content.

r1p2 (EAC)

First release: includes CML (LAC product status) content.

r1p3 (EAC)

First release: includes CML (EAC product status) content.

Chapter 2 **Functional Description**

This chapter describes the functionality of the CMN-600 product.

It contains the following sections:

- 2.1 About the functions on page 2-34.
- 2.2 System configurations on page 2-40.
- 2.3 CML system configurations on page 2-43.
- 2.4 Node ID mapping on page 2-46.
- *2.5 Discovery* on page 2-48.
- 2.6 Addressing capabilities on page 2-59.
- *2.7 Atomics* on page 2-60.
- 2.8 Exclusive accesses on page 2-61.
- 2.9 Processor events on page 2-63.
- 2.10 Quality of Service on page 2-64.
- 2.11 Barriers on page 2-71.
- 2.12 DVM messages on page 2-72.
- 2.13 PCIe integration on page 2-73.
- 2.14 Error handling on page 2-75.
- 2.15 System Address Map on page 2-91.
- 2.16 RN SAM on page 2-92.
- 2.17 CXRA SAM on page 2-97.
- 2.18 HN-F SAM on page 2-98.
- 2.19 RN and HN-F SAM programming on page 2-104.
- 2.20 HN-I SAM on page 2-112.
- 2.21 Cross chip routing and ID mapping on page 2-122.
- 2.22 Clocking on page 2-128.
- 2.23 Reset on page 2-134.

- 2.24 Power and clock management on page 2-135.
- 2.25 RN entry to and exit from Snoop and DVM domains on page 2-147.
- 2.26 Link layer on page 2-150.
- 2.27 CML Symmetric Multi-Processor (SMP) Support on page 2-152.

2.1 About the functions

CMN-600 allows creation of a complete SoC system that includes more devices than those described in this section.

This section contains the following subsections:

- 2.1.1 Crosspoint on page 2-34.
- 2.1.2 Request node I/O bridge on page 2-36.
- 2.1.3 Fully coherent home node on page 2-36.
- 2.1.4 Home node I/O bridge on page 2-37.
- 2.1.5 SBSX on page 2-37.
- *2.1.6 CXG* on page 2-37.
- 2.1.7 Configuration node on page 2-37.
- 2.1.8 Power/Clock Control Block on page 2-38.
- 2.1.9 System Address Map overview on page 2-38.
- 2.1.10 Debug and Trace Controller on page 2-38.
- 2.1.11 QoS regulator on page 2-38.
- 2.1.12 Credited slices on page 2-39.

2.1.1 Crosspoint

The *crosspoint* (XP) is a switch, or router logic module. It is the fundamental component building block of the CMN-600 transport mechanism.

The CMN-600 mesh interconnect is built using a set of XP modules arranged in a two-dimensional rectangular mesh topology. Each XP can connect to up to four neighboring XPs using mesh ports, shown as dotted lines in the following figure. Each XP also has two device ports for connecting devices: P0 and P1.

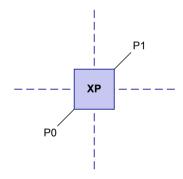


Figure 2-1 Crosspoint

Each XP supports these four CHI channels for transporting flits across the mesh from a source device to a destination or target device:

- Request (REO).
- Response (RSP).
- Snoop (SNP).
- Data (DAT).

The maximum size CMN-600 mesh is built using 64 XPs arranged in an 8×8 grid. Each XP in the grid is referenced using an (X,Y) coordinate system. (0,0) represents the bottom-left corner, and a maximum coordinate of (7,7) represents the upper right corner. The following figure shows the maximum 8×8 mesh configuration, and some (X,Y) coordinate values.

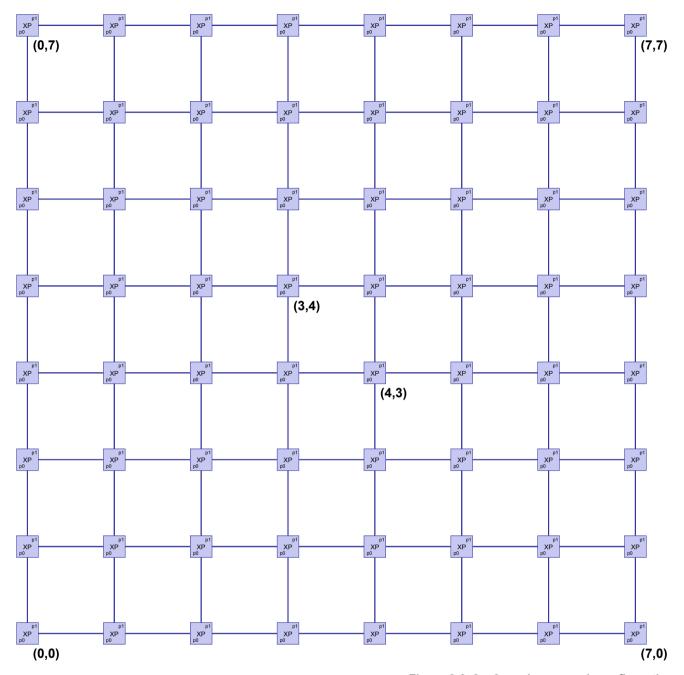


Figure 2-2 8 × 8 maximum mesh configuration

The following figure shows an example 6×6 mesh configuration, with devices attached to XP ports.

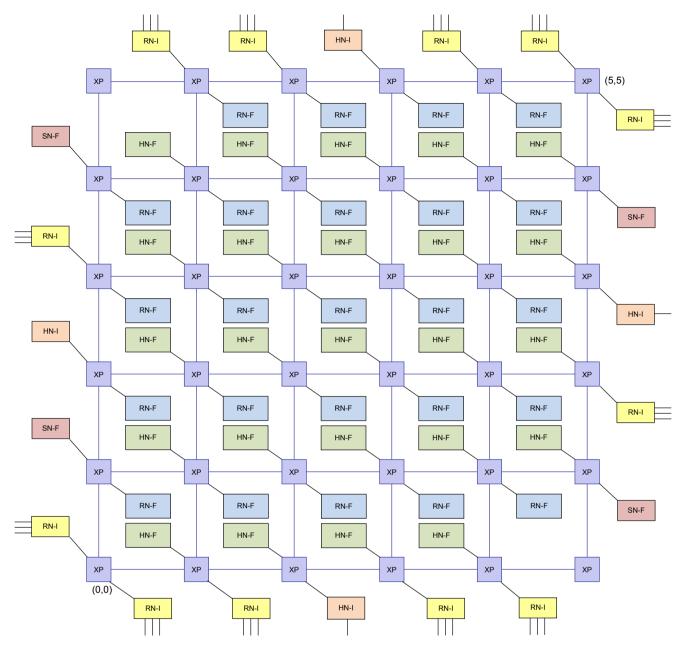


Figure 2-3 Example 6 × 6 mesh configuration

2.1.2 Request node I/O bridge

The *I/O-coherent Request Node* (RN-I) bridge connects I/O-coherent AMBA masters to the rest of the CMN-600 system.

An RN-I bridge includes up to three ACE-Lite/ACE-Lite+DVM slave ports.

The RN-I bridge can act as a proxy only for masters that do not contain hardware-coherent caches, because there is no capability to issue snoop transactions to them.

2.1.3 Fully coherent home node

The Fully coherent Home Node (HN-F) is responsible for managing part of the address space.

The HN-F consists of the following:

System Level Cache

The system level cache is a last-level cache. The system level cache-allocation policy is exclusive for data lines, except where sharing patterns are detected and pseudo-

inclusive for code lines, as indicated by the RN-Fs. All code lines can be allocated into

the system level cache on the initial request.

Combined PoS/PoC

The combined *Point-of-Serialization/Point-of-Coherency* (PoS/PoC) is responsible for the ordering of all memory requests sent to the HN-F. This includes serialization of multiple outstanding requests and actions to the same line, and request ordering as required by the RN-F.

Snoop filter

The snoop filter reduces snoop traffic in the system by tracking cache lines that are present in the RN-Fs, generally favoring directed snoops over snoop broadcasts when possible. This substantially reduces the snoop response traffic that might otherwise be required.

Each HN-F in the system is configured to manage a specific portion of the overall address space.

The entire DRAM space is managed through the combination of all HN-Fs in the system.

The HN-F is architecturally defined to manage only well-behaved memory. Well-behaved memory refers to memory without any possible side effects. The HN-F includes microarchitectural optimizations to exploit this architectural guarantee.

2.1.4 Home node I/O bridge

The I/O Home Node (HN-I) is a home node for all CHI transactions targeting AMBA slave devices.

The HN-I acts as a proxy for all the RNs of CMN-600, converting CHI transactions to ACE5-Lite transactions. The HN-I includes support for the correct ordering of Arm device types.

The HN-I does not support caching of any data read from or written to the downstream ACE5-Lite I/O slave subsystem. This means that any cacheable request sent to the HN-I does not result in any snoops being sent to RN-Fs in the system, but is instead converted to the appropriate ACE5-Lite read or write command and sent to the downstream ACE5-Lite subsystem. If an RN-F does cache data read from or written to the downstream ACE5-Lite I/O slave subsystem, coherency is not maintained, and any subsequent access to that data reads from or writes to the ACE5-Lite I/O slave subsystem directly, ignoring the cached data.

2.1.5 SBSX

The AMBA 5 CHI to ACE5-Lite bridge (SBSX) enables an ACE5-Lite slave device such as a CoreLink DMC-400 Dynamic Memory Controller, to be used in a CMN-600 system.

2.1.6 CXG

A CXG device bridges between CHI and CXS.

A CXG device bridges between CHI and CXS (CCIX port) and contains:

- 1. CCIX Request Agent (CXRA) proxy and CCIX Home Agent (CXHA) proxy functionality.
- 2. CXS Link Agent (CXLA) functionality which is external to the CMN-600 hierarchy.

2.1.7 Configuration node

The *Configuration node* (CFG), co-located with the HN-D node, is responsible for handling configuration accesses, error reporting and signaling, interrupt generation, and centralized debug and performance monitoring (PMU) support features.

The CFG includes the following dedicated ports:

- Ports to collect error signals from CHI components within CMN-600.
- A configuration bus which connects to all the nodes to handle internal configuration register reads and writes.

The CFG does not have a dedicated CHI port. It shares a device port with the HN-D node in the mesh.

2.1.8 Power/Clock Control Block

The *Power/Clock Control Block* (PCCB), co-located with the HN-D node, provides separate communication channels. These channels pass information about the power and clock management between the SoC and the network.

The PCCB acts as an aggregator to convey information between the SoC and the other CMN-600 components, in the following manner:

- The PCCB receives transaction activity indicators from other relevant CMN-600 components and conveys that information to the external power and clock control units.
- When the PCCB receives a power or clock control management request from the external power or clock control units, it conveys that request to the relevant CMN-600 components, where applicable.
- The PCCB waits for the appropriate responses from the relevant CMN-600 components, and conveys an aggregated response to the external power and clock control units.

The PCCB does not have a dedicated CHI port. It shares a device port with the HN-D node in the mesh.

2.1.9 System Address Map overview

All CHI commands must include a fully resolved network address. the address must include a source and target ID. Target IDs are achieved by passing a request address through a *System Address Map* (SAM), which effectively maps a memory or I/O address to the target device.

The SAM functionality is required for each requesting device.

The SAM consists of two logical units:

- An RN SAM for each RN to map addresses to HN-F, HN-I, and HN-D target IDs.
- An HN-F SAM in the HN-F, that maps addresses to *Memory Controller* (MC) target IDs.

CMN-600 has software-configurable SAM blocks which allow a single implementation of CMN-600 to support programmable mappings of addresses to HNs and SNs.

The RN SAM supports generating an MC target ID. This target ID can be used to issue PrefetchTgt operations from the RN directly to the MC.

2.1.10 Debug and Trace Controller

The *Debug and Trace Controller* (DTC) controls distributed *Debug and Trace Monitors* (DTM) and generates time stamped trace via ATB interface.

The DTC generates event or PMU-based interrupt. The main functions are:

- Receive packets from DTM and pack into ATB format trace.
- Time stamp trace with SoC timer input.
- Generate alignment sync for the ATB trace output.
- Handle ATB flush request.
- Handle debug and secure debug external request.
- Provide a consistent view of distributed and central PMU counters.
- Handle PMU snapshot request.
- Generate interrupt INTREOPMU assertion on overflow of PMU counters.

2.1.11 QoS regulator

CMN-600 supports end-to-end *Quality-of-Service* (QoS) which guarantees using QoS mechanisms distributed throughout the system.

The QoS provision uses the QoS field in each RN request packet to influence arbitration priority at every QoS decision point. The QoS field is then propagated through all secondary packets issued by a request packet. RNs must either self-modulate their QoS priority depending on how well their respective QoS requirements are being met, or make use of the integrated QoS regulators at ingress points to CMN-600.

It is possible to include non-QoS-aware devices in the system, but still have these devices meet the QoS modulation requirement of the QoS architecture. To enable this, CMN-600 includes inline regulators that perform the QoS functionality without the requesting device requiring any awareness of QoS. A *QoS Regulator* (QR) provides an interstitial layer between an RN and the interconnect. The QR monitors how the bandwidth and latency requirements of the RN are met, and does in-line replacement of the RN-provided QoS field, adjusting upwards to gain additional priority in the system, and downwards to reduce priority.

2.1.12 Credited slices

Optional credited slices can be placed between XPs or at any given XP or device interface to assist in timing closure in a CMN-600 system.

Credited slices enable synchronous but higher latency communication at any point in the system.

Refer to 1.5 Configurable options on page 1-20 for more information on credited slices.

2.2 System configurations

This section provides CMN-600 system configuration examples.

Small configuration

The following figure shows a 1×3 mesh for a small system configuration containing single instances of RN-F, HN-F, RN-D, SN-F, and HN-D.

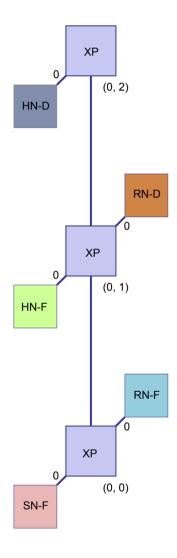


Figure 2-4 1 × 3 mesh example

Medium configuration

The following figure shows a 4×2 mesh for a medium system configuration with single and multiple instances.

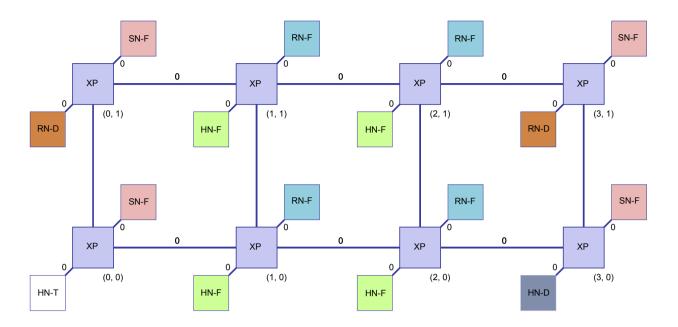


Figure 2-5 4 × 2 mesh example

Large configuration

The following figure shows a 3×5 mesh for a medium system configuration with multiple instances.

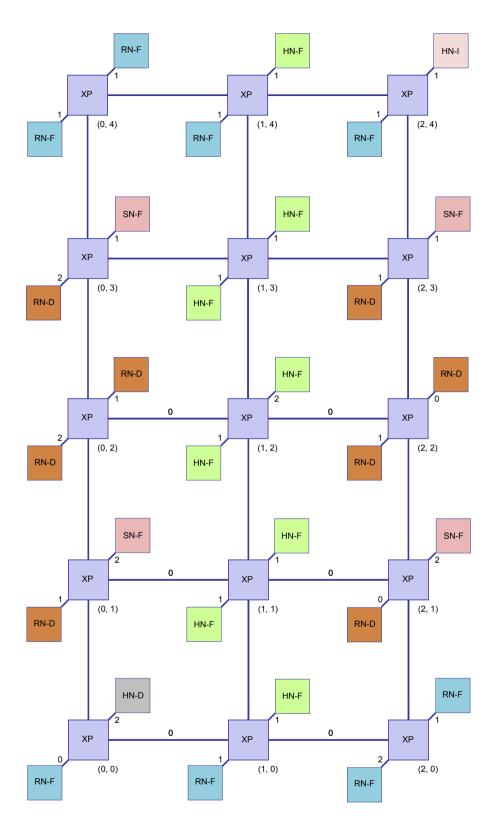


Figure 2-6 3 × 5 mesh example

2.3 CML system configurations

This section provides CML system configuration examples.

Single CML configuration

The following figure shows a 4×2 mesh with a single CXG instance.

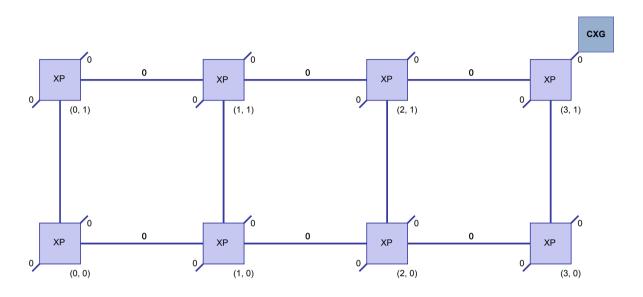


Figure 2-7 4 × 2 single CML mesh example

Double CML configuration

The following figure shows a 4×2 mesh with two CXG instances.

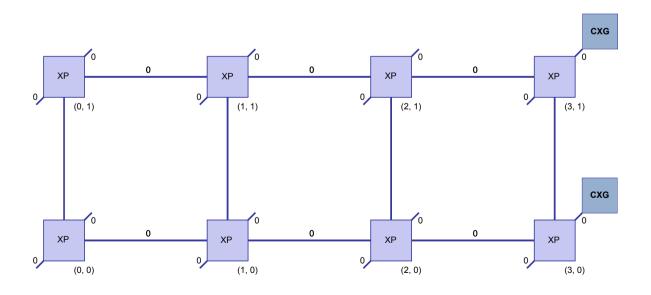


Figure 2-8 4 × 2 double CML mesh example

CXG components

A CXG device bridges between CHI and CXS, and contains CCIX *Request Agent* (RA) proxy and *Home Agent* (HA) proxy functionality. The CXG device also contains CXS *Link Agent* (LA) functionality, which is external to the CMN-600 hierarchy. A simple CXG block diagram is shown in the following figure.

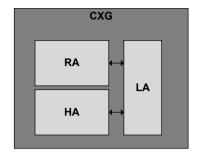
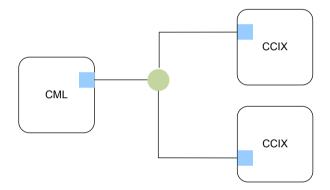


Figure 2-9 CXG block diagram with RA, HA, and LA

CCIX topologies

The following figure shows three simplified CCIX topology examples.



2-socket system with single CCIX port connection

2-socket system with Port Aggregation

3-socket system with external PCle switch

Figure 2-10 CCIX topologies

2.4 Node ID mapping

CMN-600 node ID mapping to devices is based on their physical positions on the mesh.

The physical position of a device connected to an XP is determined by the XP's X and Y coordinates and the XP port (0 or 1) it is connected to. The device node ID is mapped to: (X, Y, Port, 2'b00).

- 1. The bit widths of the X and Y parameters are dependent on the configured size of the mesh.
- 2. The naming convention for I/O signals uses decimal values of the node ID. For example, RXREQFLIT_NIDxxx uses xxx values in decimal.

The node ID size depends on the X and Y dimensions of the CMN-600 mesh. The larger of the X and Y dimensions determines the size as shown in the following table.

Table 2-1 Example CMN-600 system with node IDs

Mesh X dimension	Mesh Y dimension	Node ID size
X_dim <= 4	Y_dim <= 4	7 bits
4 < X_dim <= 8	im <= 8 Y_dim <= 8	
X_dim <= 8	4 < Y_dim <= 8	

The following tables contain the different node ID formats.

Table 2-2 7-bit node ID format

NodelD[6:5]	NodelD[4:3]	NodeID[2]	NodeID[1:0]	
2-bit X position	2-bit Y position	Port	2'b00	

Table 2-3 9-bit node ID format

NodelD[8:6]	NodelD[5:3]	NodeID[2]	NodeID[1:0]
3-bit X position	3-bit Y position	Port	2'b00

An example CMN-600 system with 7-bit node IDs in (X, Y, Port, 2'b00) format is provided in the following figure.

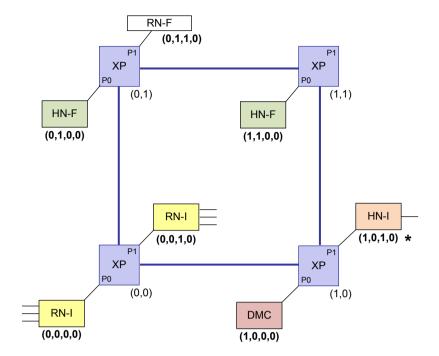


Figure 2-11 Example system with 7-bit node IDs

_____ Note _____

The 7-bit node ID format is (X, Y, Port, DevID). For the HN-I connected to XP(1,0), the node ID reads as (1, 0, 1, 0). This is equivalent to (2'b01, 2'b00, 1'b1, 2'b00) or 0x24.

2.5 Discovery

Discovery is a software algorithm used to discover the configuration of CMN-600.

Software uses the discovery mechanism to identify the location (CHI NodeID) and logical ID corresponding to all the node types: DVM, Global CFG, DTC, HN-F, HN-I, RN-D, RN SAM, RN-I, SBSX, and XP. For CML, logical node types also include CXRA, CXHA, and CXLA.

The discovery process also provides information whether the discovered node in question is external or internal to CMN-600.

The following figure shows a sample configuration. At the end of the discovery process, software should have enough information to know the location of the global configuration registers, the configuration registers for each XP, the HN-F, and the RN SAM corresponding to the RN-F.

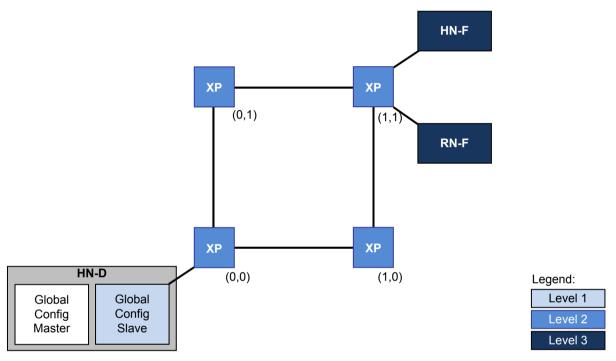


Figure 2-12 2x2 Register Tree Example

This section contains the following subsections:

- 2.5.1 Configuration address space organization on page 2-48.
- 2.5.2 Configuration register node structure on page 2-51.
- 2.5.3 Child pointers on page 2-53.
- 2.5.4 Discovery tree structure on page 2-57.

2.5.1 Configuration address space organization

This section contains configuration address space organization information. It describes two system addresses, PERIPHBASE and ROOTNODEBASE, that are required for this process.

PERIPHBASE

All CMN-600 configuration registers are mapped to an address range, starting at PERIPHBASE address aligned to 64MB with a maximum size of 64MB for a system with the X and Y dimensions of four or less. PERIPHBASE address should be aligned to 256MB and the register address range is maximum 256 MB if one of the mash dimensions is more than four.

ROOTNODEBASE

The address to the Root Node where the discovery process can start. The configuration registers at ROOTNODEBASE contain global information and configuration, as well as the first level of discovery information for components in the system.

Discovery determines specific addresses for individual system blocks that have implementation-defined register spaces as illustrated in the following figure.

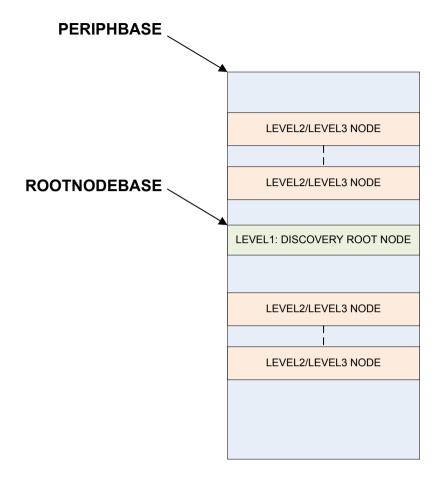


Figure 2-13 PERIPHBASE and ROOTNODEBASE addresses

Register organization consists of:

- CMN-600 supports 4-byte and 8-byte software accessible registers.
- Software using 32-bit and 64-bit register reads.

All registers are organized into several register-blocks as nodes. A node:

- Is a register block with the size of 16KB.
- Is associated with a logical block in the design.
- Has implementation-specific information and configuration for that block.

A node can be:

- Pure hierarchy: No device info. Just children.
- Leaf: No children. Just device info.
- General: Device info, plus children.

A node can have pointers to one or more child nodes. If a node has zero child nodes, it is a leaf and has only device information such as configuration data. If a node has more than one child, the node provides:

- The number of children.
- A pointer to each child.

Root Node Base

The following figure shows an example ROOTNODEBASE structure.

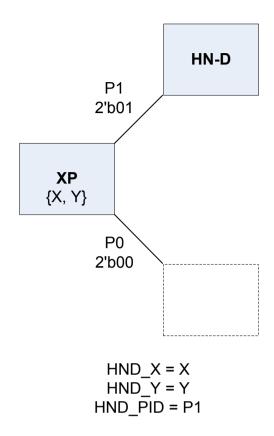


Figure 2-14 Example ROOTNODEBASE pointer

The ROOTNODEBASE structure is defined by three items as shown in the following figure.

ROOT_NODE_BASE:

PERIPHBASE	ROOT NODE POINTER	REGISTER OFFSET

Figure 2-15 ROOTNODEBASE structure

The Register Offset is 14'b0.

The Root Node Pointer uses 12 or 14 bits. If any mash dimension is more than 4, NodeID has 14 bits, otherwise NodeID has 12 bits.

The node ID format is selected based on the largest of the X or Y mesh dimensions, as shown in the following table.

Table 2-4 Node ID mapping

Mesh width in X dimension	Mesh width in Y dimension	Number of bits used to encode X, Y
X <= 4	Y <= 4	2 bits for X, 2 bits for Y
4 < X <= 8	Y <= 8	3 bits for X, 3 bits for Y
X <= 8	4 < Y <= 8	3 bits for X, 3 bits for Y

Refer to 2.4 Node ID mapping on page 2-46 for more information regarding ROOT NODE POINTER structure for various mesh dimensions.

2.5.2 Configuration register node structure

Read-only registers that are organized into several register blocks are referred to as nodes.

Nodes are aligned on 8-byte boundary (16KB-aligned). There are two required registers:

- 1. Node info: Identifies product or node-type, and CHI node ID.
- 2. Child info: Provides child count and offset for the first register containing child node pointers.

Node info and child info are at fixed offsets for ALL nodes.

Optional registers for child pointers use eight bytes per register. A basic node structure is provided in the following figure.

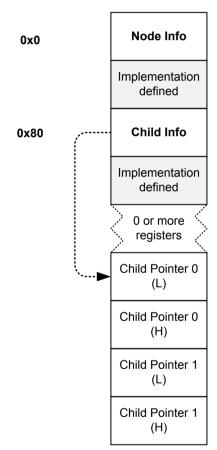


Figure 2-16 Basic node structure with fixed offsets

The node structure detail for child_count indicates the number of children. This value must be zero for a leaf node (no children). This value is the lower 16 bits of child_info and is an unsigned integer. The <code>child_count</code> field in **Child Info** register provides number of functional units connected to current unit on next level of discovery process.

The node structure detail for child_ptr_offset is the offset in bytes for child pointers. This value must be zero for a leaf node (no children). This value is the upper 16 bits of child_info and is an unsigned integer. The child_ptr_offset field in Child Info register provides offset from Node Info register address in bytes for Child Pointer 0 register.

The **Child Info** register with zero value indicates that there is no other units, related to the current one on next level of discovery process.

The following figure provides the node structure detail.

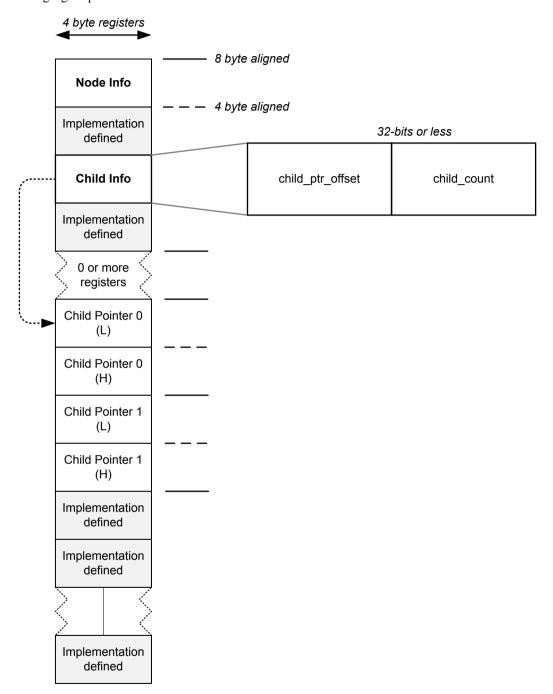


Figure 2-17 Node structure detail

The following table contains Node Info register Node Type values.

Table 2-5 Node Info register Node_Type values

POR_NODE_INFO_NODE_TYPE	Value
Invalid	16'h0000
DVM	16'h0001

Table 2-5 Node Info register Node_Type values (continued)

POR_NODE_INFO_NODE_TYPE	Value
CFG	16'h0002
DTC	16'h0003
HN-I	16'h0004
HN-F	16'h0005
XP	16'h0006
SBSX	16'h0007
RN-I	16'h000A
RN-D	16'h000D
RN-SAM	16'h000F

The following table contains CML Node Info register Node Type values.

Table 2-6 CML Node Info register Node_Type values

CML POR_NODE_INFO_NODE_TYPE	Value
CXRA	16'h0100
СХНА	16'h0101
CXLA	16'h0102

2.5.3 Child pointers

There is one child pointer register per child node.

The address of the register containing the first child pointer is computed as:

Base node address (of the current 16KB block) + the child_ptr_offset value (from the **child_info** register).

Each subsequent child pointer register is eight bytes higher. See the figure *Figure 2-17 Node structure detail* on page 2-52 for more information.

For example:

- Base node address = 0×4000
- Child ptr offset in child info register = 0x100
- Address of first child pointer register (child pointer 0) = Base node address + child_ptr_offset = 0x4100
- Address to child pointer $1 = \text{Address of child pointer } 0 + 0 \times 8 = 0 \times 4100 + 0 \times 8 = 0 \times 4108$

Child pointers are 32 bits or less and are contained in the low register. The high register is zero. Child pointer contents include:

- The child node address offset from PERIPHBASE (bits 0-27) which is an unsigned integer (positive offset).
- Three reserved bits (bits 28-30).
- An External Child Node indicator (bit 31).

For example:

• Address to 16KB block of the child node = PERIPHBASE + child pointer register [27:0]

The child node address offset relative to PERIPHBASE includes Node Pointer and Register offset, in addition to the other bits, are provided in the following table.

Table 2-7 Child Pointer register

External Child Node	Reserved	Child node address offset relative to PERIPHBASE		
31	30:28	27:14	13:0	
1 = External, 0 = Internal	Not used	NODE POINTER [13:0]	REGISTER OFFSET[13:0]	

The External Child Node (bit 31) behaves as follows:

- 1'b1: Indicates that this CHILD POINTER is pointing to a Config Node external to CMN-600.
- 1'bo: Indicates that this CHILD POINTER is pointing to a Config Node internal to CMN-600.

For CMN-600, external child nodes are only used for RN SAM and CXLA Config Node. The software performing the discovery must use the NODE POINTER information (X, Y, port ID (P0 or P1) and Device ID NODE POINTER[5:0]) to determine which processor or cluster corresponds to that child node, and ensure it is powered ON before accessing it.

The NODE POINTER (bits 27:14) is processed as follows:

• If External Child Node is set to 1, then software can use the information in the NODE POINTER to extract the X dimension, Y dimension, port ID and device ID corresponding to that Child Node.

The REGISTER OFFSET (bits 13:0) are always 0.

Depending on the size of the mesh (X and Y dimensions), CMN-600 supports two different widths for encoding the X and Y dimension. The number of bits needed is selected based on the larger of the X and Y values.

Table 2-8 Mesh size and encoding bits

Mesh width in X dimension	Mesh width in Y dimension	Number of bits used to encode X, Y	
X <= 4	Y <= 4	2 bits for X, 2 bits for Y	
4 < X <= 8	Y <= 8	3 bits for X, 3 bits for Y	
X <= 8	4 < Y <= 8	3 bits for X, 3 bits for Y	

For mesh widths using 2 bits for X,Y encoding, the details are provided in the following table.

Table 2-9 Mesh widths using 2 encoding bits

NODE POINTER: XID_WIDTH and YID_WIDTH = 2					
13:10 9 8 7 6 5:0					
4'b0	XID[1]	XID[0]	YID[1]	YID[0]	DeviceID

Mapping between Node Ptr and CMN-600 NodeID for that processor or cluster:

- NodeID[1:0] = DeviceID[3:2]
- NodeID[2] = DeviceID[0]
- NodeID[4:3] = NODE POINTER[7:6]
- NodeID[6:5] =NODE POINTER[9:8]

For mesh widths using 3 bits for X,Y encoding, the details are provided in the following table.

Table 2-10 Mesh widths using 3 encoding bits

NODE POINTER: XID_WIDTH and YID_WIDTH = 3							
13:12 11 10 9 8 7 6 5:0						5:0	
2'b0	XID[2]	XID[1]	XID[0]	YID[2]	YID[1]	YID[0]	DeviceID

Mapping between NODE POINTER and CMN-600 NodeID for that processor or cluster:

- NodeID[1:0] = DeviceID[3:2]
- NodeID[2] = DeviceID[0]
- NodeID[5:3] = NODE POINTER[8:6]
- NodeID[8:6] = NODE POINTER[11:9]

A sample child pointer design is provided in the following figure.

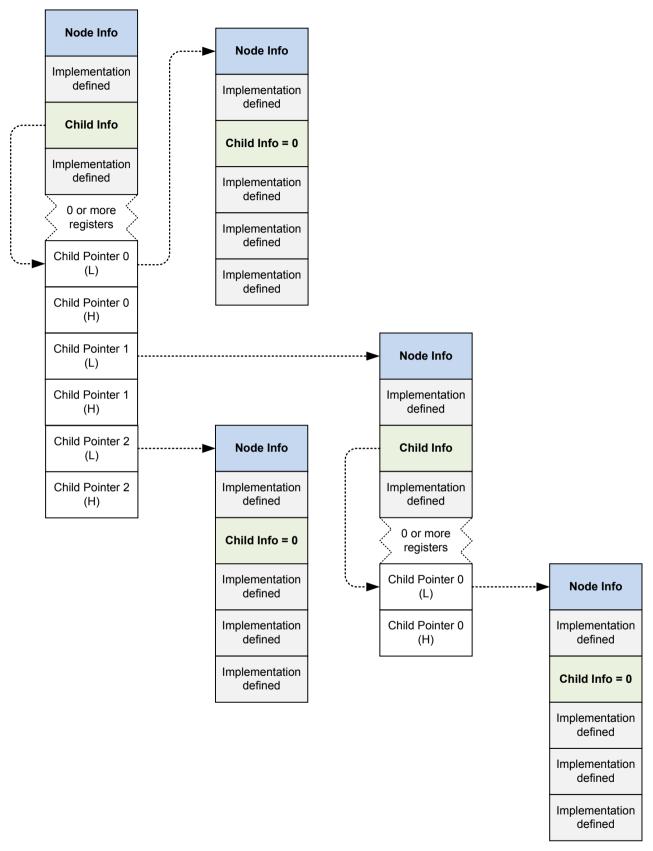


Figure 2-18 Child pointers

2.5.4 Discovery tree structure

This section describes the discovery tree structure used in CMN-600.

The discovery tree structure consists of three levels:

- 1. Level 1: Root Node: The HN-D containing the Global Configuration Slave
- 2. Level 2: XP layer
- 3. Level 3: Leaf layer with one or two devices

The one-time discovery process creates a lookup table containing addresses for all CMN-600 configured devices. A 2×2 mesh configuration example with highlighted discovery tree levels is shown in the following figure.

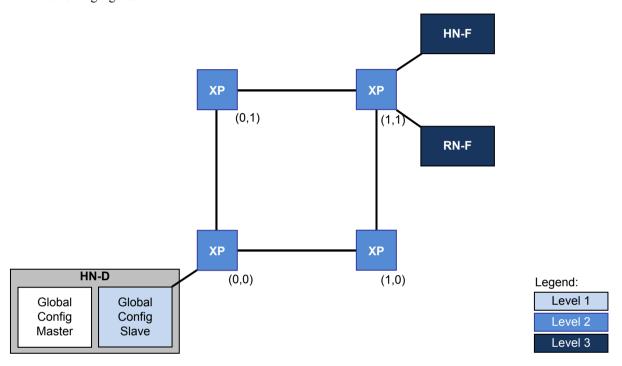


Figure 2-19 2x2 Discovery Tree Example

The discovery tree structure for this 2×2 mesh configuration is shown in the following figure.

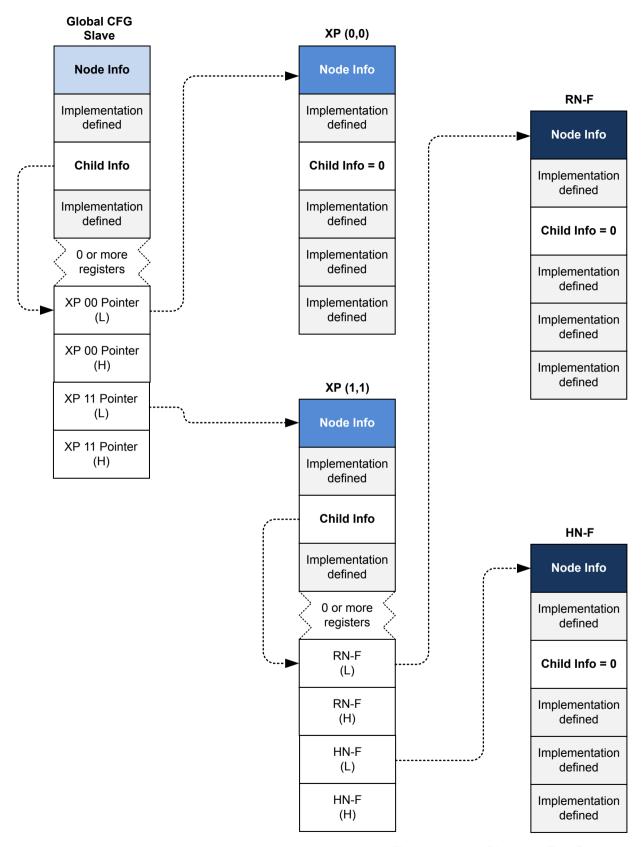


Figure 2-20 2x2 Discovery Tree Structure

2.6 Addressing capabilities

CMN-600 supports a 34-bit, 44-bit, or 48-bit physical address width. This defines the physical address space for which read and write transactions are supported in the interconnect. This is configured using Socrates System Builder and results in the PA_WIDTH global parameter in the CMN-600 RTL.

CHI interfaces in CMN-600 support 44-bit and 48-bit address field widths for flits on the REQ channel. This is also configured using Socrates System Builder and results in the REQ_ADDR_WIDTH global parameter in the CMN-600 RTL.

The address field width for flits on the SNP channel is derived automatically based on the REQ ADDR WIDTH global parameter.

The legal combinations of physical address widths and flit address widths are shown in the following table.

Table 2-11 Legal combinations of physical address and flit address widths

Physical address width	REQ flit address width	SNP flit address width (derived)
34b	44b	41b
34b	48b	45b
44b	44b	41b
44b	48b	45b
48b	48b	45b

2.7 Atomics

Atomics are not supported at the RN-I interfaces.

This section contains the following subsections:

- 2.7.1 HN-F on page 2-60.
- 2.7.2 SN on page 2-60.
- 2.7.3 HN-I on page 2-60.

2.7.1 HN-F

The HN-F completes all CHI atomic requests that it receives, both for cacheable and non-cacheable transactions.

For cacheable transactions, the HN-F completes any appropriate coherent actions and if necessary obtain the targeted cache line from memory. The HN-F then completes the required atomic operation and issues the appropriate response with or without data.

For non-cacheable transactions, the HN-F does not send an atomic request to the SN. As the final PoS/PoC for all memory traffic, the HN-F is able to issue a read to the SN, atomically update the copy of the data in the HN-F, and then write back the result to the SN. This means the SN never receives CHI atomic requests, as the HN-F completely handles the requests.

2.7.2 SN

The SN node (CHI memory controller or SBSX bridge) does not process atomic requests.

2.7.3 HN-I

The HN-I does not complete atomic transactions.

Upon receiving an atomic request, the HN-I generates an appropriate error response to the originating master.

2.8 Exclusive accesses

CMN-600 supports exclusive accesses to both Shareable and Non-shareable locations as described in the CHI architecture specification.

This section contains the following subsections:

- 2.8.1 HN-F on page 2-61.
- 2.8.2 HN-I on page 2-61.
- 2.8.3 CML Exclusive Support on page 2-61.

2.8.1 HN-F

The HN-F supports exclusive access on ReadNoSnp, WriteNoSnp, ReadShared, ReadClean, ReadNotSharedDirty, and CleanUnique transactions to any address that maps to the HN-F.

The RN-F generates ReadNoSnp and WriteNoSnp Exclusives for memory locations that are marked Non-cacheable or Device. ReadShared, ReadClean, and CleanUnique exclusives are used for shareable and coherent memory locations. Each HN-F partition includes 64 exclusive monitors for tracking of these transaction types, with each monitor capable of acting as both a PoC monitor and System monitor, as defined by the AMBA 5 CHI protocol.

Only 64 unique logical threads, designated by a unique combination of SrcID and LPID, can concurrently access the HN-F exclusive monitors.

2.8.2 HN-I

HN-Is support exclusive access on ReadNoSnp and WriteNoSnp transactions to any address that maps to an HN-I.

Each HN-I partition includes 32 exclusive monitors as defined in the AMBA 5 CHI protocol for tracking of these transaction types. Only 32 unique logical threads, either processor or device threads, designated by a unique combination of SrcID and LPID, can concurrently access the HN-I system exclusive monitors.

All exclusives targeting the HN-I are terminated at the HN-I and are not propagated downstream, regardless of the value of the HN-I PoS Control Register and Auxiliary Control Register.

2.8.3 CML Exclusive Support

In the SMP Mode, CMN-600 CML will support remote exclusive accesses from RN-Fs.

Constraints include:

– Note –––

- 1. Remote exclusive accesses from an RN-I or RN-D is not supported.
- 2. Remote exclusive accesses targeting with an HN-I or HN-D is not supported.

Support for remote exclusive accesses in CCIX Gateway (CXG) blocks include these constraints:

- 1. CXRA in local CXG block will pass Excl and LPID fields of incoming CHIB request on CCIX request message USER (Ext) field.
- 2. CXHA in the remote CCIX gateway (CXG) block will extract these bits from CCIX request message USER (Ext) field and send them on respective CHIB Excl and LPID fields. CXHA will set the source type as RN-F based on its RAID to LDID register.

3.	Exclusive OK	(EXOK)	response is	sent as 2'b01	on CCIX	RespErr field.
----	--------------	--------	-------------	---------------	---------	----------------

11000				
2'b01 is a reserved encoding in	RespErr field and this	s field is sent as an	CCIX extension (E	xt6).

HN-F handling of exclusives:

• For exclusive access from remote RN-Fs, the HN-F uses the existing monitors and will monitor the LDID and LPID of the incoming request.

2.9 Processor events

CMN-600 supports communicating processor events to all processors in the system.

Refer to the processor event interface signals described in *A.14 Processor event interface signals* on page Appx-A-902.

When a processor generates an output event triggered by an SEV instruction, it is broadcast to all processors in the system. Similarly, anytime an exclusive monitor within HN-F or HN-I is cleared, an output event is broadcast to all processors in the system.

The logical operator OR is used to combine the EVENT signals, then the result is broadcast to the processors.

2.10 Quality of Service

CMN-600 includes end-to-end QoS capabilities which support latency and bandwidth requirements for different types of devices.

The OoS device classes are:

Devices with bounded latency requirements

These are primarily real-time or isochronous devices that require some or all of their transactions be complete within a specific time period to meet overall system requirements. These devices are typically highly latency-tolerant within the bounds of their maximum latency requirement. Examples of this class of device include networking I/O devices and display devices.

Latency-sensitive devices

These are devices whose performance is highly impacted by the response latency incurred by their transactions. Processors are traditionally highly latency-sensitive devices, although a processor can also be a bandwidth-sensitive device depending on its workload.

Bandwidth-sensitive devices

These are devices that have a minimum bandwidth requirement to meet system requirements. An example of this class of device is a video codec engine, which requires a minimum bandwidth to sustain real-time video encode and decode throughput.

Bandwidth-hungry devices

These are devices that have significant bandwidth requirements and can use as much system bandwidth as is made available, to the limits of the system. These devices determine the overall scalability limits of a system, with the devices and system scaling until all available bandwidth is consumed.

Note			
A device may be classified into	one or more of these classes,	depending on its v	workload requirements

Support for these different types of devices and their resulting traffic is included in the AMBA 5 CHI protocol and in the entirety of CMN-600 microarchitecture. Each component in CMN-600 contributes to the overall QoS microarchitecture.

This section contains the following subsections:

- 2.10.1 Architectural OoS support on page 2-64.
- 2.10.2 Microarchitectural OoS support on page 2-64.
- 2.10.3 QoS configuration on page 2-69.

2.10.1 Architectural QoS support

The AMBA 5 CHI protocol includes a 4-bit QoS Priority Value (QPV) with all message flits.

The QPV of the originating message must propagate for all messages in a transaction. The QPV is defined as higher values being higher priority and lower values being lower priority. All CMN-600 components use the QPV to provide prioritized arbitration and to prevent head-of-line-blocking based on the QPV.

2.10.2 Microarchitectural QoS support

The QPV of RN requests must be modulated depending on how well or poorly their respective QoS requirements are met.

QoS regulators

Although the QoS-modulation capability can be integrated into the RN, CMN-600 enables system designers to include non-QoS-aware devices in the CMN-600 system, but still have these devices meet the QoS-modulation requirements of the CMN-600 QoS microarchitecture.

CMN-600 includes inline QoS regulators that perform QoS modulation without requiring any QoS-awareness by the requesting device. A QoS regulator introduces an interstitial layer between an RN and the interconnect that monitors whether the bandwidth and latency requirements of the RN are being met. It also performs in-line replacement of the RN-provided QPV field as required, adjusting upwards to increase priority or downwards to reduce priority in the system.

The QoS regulators are present at all entry points into CMN-600:

- For AMBA 5 CHI ports, the regulator is present in the XP.
- For ACE-Lite/AXI4 slave interfaces, the regulator is present at the ACE-Lite/AXI4 side of the protocol bridge.

CMN-600 QoS regulators have three operating modes, controlled through memory-mapped configuration registers:

- 1. Pass-through.
- 2. Programmed QoS value.
- 3. Regulation.

QoS regulator operation

The values of the base QPV, **AxQOS** for ACE-Lite/AXI interfaces or RXREQFLIT.QOS for AMBA 5 CHI ports are inputs to the QoS subblock.

When latency regulation or period regulation is enabled, these values are replaced by the values generated by the regulators. For an RN-F, a single QoS regulator monitors CHI transactions that return data to the RN-F such as reads, atomics and snoop stash responses. The regulated QPV is applied to all CHI requests from that RN-F. For an RN-I or RN-D, separate QoS regulators exist for AR and AW channels.

The QoS regulators can operate in either latency regulation mode or period regulation mode. The registers to configure the QoS regulators exist in each RN-I, RN-D, and XP.

Latency regulation mode

When configured for latency regulation, the QoS regulator increases the QPV whenever actual transaction latency is higher than the target, and decreases the QPV when it is lower:

- For every cycle that the latency of a transaction is more than the target latency, the QPV is increased by a fractional amount, determined by the scale factor K_i.
- For every cycle that the latency of a transaction is less than the target latency, the QPV is decreased by the same fractional amount, determined by the scale factor K_i.

The OoS Latency Target register specifies the target transaction latency in cycles.

The QoS Latency Scale register specifies the scale factor K_i . It is coded in powers of two, so that a programmed value of $0x0 = 2^{-3}$ and a programmed value of $0x7 = 2^{-10}$.

The QoS regulator can be programmed to operate in latency regulation mode by programming the following bits in the QoS Control register:

- Set the gos override en bit to 1.
- Set the lat_en bit to 1.
- Set the reg mode bit to 0.
- Set the pqv mode bit to 0.

Period regulation mode for bandwidth regulation

When configured for period regulation, the QoS regulator increases the QPV whenever the period between transactions is larger than the target, and decreases the QPV when it is lower:

- For every cycle that the period between transactions (as measured at dispatch time) is more than the target period, the QPV is increased by a fractional amount, the scale factor K_i.
- For every cycle that the period between transactions is less than the target period, the QPV is decreased by the same fractional amount, the scale factor K_i.

The QoS Latency Target register specifies the target period in cycles.

The QoS Latency Scale register specifies the scale factor K_i . It is coded in powers of two, so that a programmed value of $0x0 = 2^{-3}$ and a programmed value of $0x7 = 2^{-10}$.

The QoS regulator can be programmed to operate in period regulation mode by programming the following bits in the QoS Control register:

- Set the gos override en bit to 1.
- Set the lat en bit to 1.
- Set the reg mode bit to 1.

There are two modes of period regulation:

- In normal mode, the QPV neither increases nor decreases when there are zero outstanding transactions.
- In quiesce high mode, the QPV increases by a fractional amount, determined by the scale factor K_i, in every cycle where there are zero outstanding transactions.

The mode of period regulation can be selected by programming the pqv_mode bit in the QoS Control register.

RN-I/RN-D bridge QoS support

In addition to the QoS regulators, the RN-I/RN-D bridge provides QoS-aware arbitration mechanisms.

To simplify arbitration logic, all transactions are split into two QoS Priority Classes (QPCs), high and low. QoS-15 transactions make up the high class. All other transactions are considered to be in the low class.

Port multiplexer arbitration

An RN-I/RN-D bridge includes three ACE-Lite/ACE-Lite+DVM ports. The RN-I/RN-D bridge selects between these ports for allocation into its transaction tracker, which makes the allocated transaction a candidate for issuing to a home node. The port multiplexer is arbitrated using the following strategy:

- High OPC first, then the low OPC.
- Round-robin arbitration among the AMBA ports within a QPC.

Tracker allocation

When transactions are allocated into the tracker, they are scheduled for issuance to a home node based on QPC, following the same strategy as port mux arbitration.

- High QPC first, then the low QPC.
- Round-robin arbitration in a QPC among the issuable transactions.

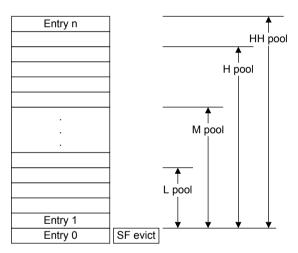
HN-F QoS support

The HN-F is a key shared system resource used for system caching and for communication with the memory controller for external memory access.

The HN-F includes the following QoS support mechanisms:

QoS decoding in HN-F

The HN-F interprets the 4-bit QPV at a coarser granularity, as the following table shows.


Table 2-12 QoS classes in HN-F

QoS value range	QoS Class	Class mnemonic	Priority
15	HighHigh	НН	Highest
14-12	High	Н	High
11-8	Med	M	Medium
7-0	Low	L	Low

QoS class and POCQ resource availability

The HN-F includes a 32-entry or 64-entry structure, the *Point-of-Coherency Queue* (POCQ), from which all transaction ordering and scheduling is performed. The POCQ buffers are shared resources for all QoS classes, with one entry being reserved for internal use. The higher the QoS class, the higher the occupancy availability. As the following figure shows, the POCQ is partitioned so that higher priority requests are able to use a larger percentage of the POCQ buffering, ensuring bandwidth and latency requirements of higher priority transactions are met.

The number of entries available for use by each QoS class is defined in the HN-F QoS Reservation register, and is software-programmable.

POCQ logical view

Figure 2-21 POCQ availability and QoS classes

The QoS pools are:

hh_pool Available for HH class.

h_pool Available for H class and HH class.

m_pool Available for M class, H class, and HH class.

l pool Available for all classes.

seq SF evictions only.

POCQ allocation policies

Allocation into POCQ entries can follow either of two paths:

- Immediate allocation on receipt of the initial request by the HN-F
- Allocation of a retried request after a protocol-layer retry of the initial request

The first case is the expected common case and is always the case in a reasonably uncongested system. If the POCQ has an available buffer corresponding to the QoS class of an arriving request, that request allocates in the POCQ.

However, in case of a congested system in which a POCQ entry corresponding to the QoS class of an arriving request is not available at the time of arrival, the AMBA 5 CHI protocol requires that the arriving request receive a protocol-layer retry. The transaction flow in this case is as follows:

- 1. A request arrives at a congested HN-F.
- 2. The HN-F does not have an available POCQ buffer corresponding to the QoS class of the new transaction.
- 3. The HN-F increments a credit counter for the specific QoS class of the specific RN and sends a RetryAck response to the RN.
- 4. On receiving a RetryAck response, the RN subsequently waits for a follow-on PCreditGrant response.
- 5. S. When a POCQ entry becomes available, the HN-F reserves that buffer for the highest-priority RN with a non-zero credit-counter and sends a PCreditGrant response to the selected RN.
- 6. On receiving a PCreditGrant, the RN re-issues the transaction, which is guaranteed to be allocated into the HN-F.

This mechanism serves as prioritized arbitration based on QoS values for requests sent to the HN-F.

POCQ scheduler policies

When transactions are allocated into the POCQ, they are scheduled for issuance based on the QPV as follows, in descending order of priority:

- Starved transactions. These are lower-priority transactions that have made no forward progress for a number of cycles specified in the respective fields in the RN Starvation Register.
- Highest OoS class.
- Round-robin arbitration within a QoS class among the issuable transactions.

HN-I/SBSX QoS support

The HN-I bridge provides QoS-aware arbitration mechanisms for static grants and AMBA requests.

To simplify arbitration logic, all transactions are split into two QPCs, high and low. QoS-15 transactions make up the high class. All other transactions are considered to be in the low class.

	Note —				
SBSX QoS	support is	identical	to that	of the	HN-I.

Dynamic credit tracker allocation

Requests allocate into the tracker until it is full, after which requests are then retried and the HN-I increments a credit counter for the affected RNs in an internal retry bank.

When a tracker entry is cleared, the HN-I checks the retry bank for any retried transactions. If any are present, the newly available tracker entry is reserved and a static credit grant is sent to an RN chosen using the following algorithm:

- Choose an RN marked as high QPC first, then the low QPC.
- Use round-robin arbitration within a OPC.

Scheduling to AMBA interface

When transactions are allocated into the tracker, they are scheduled for issue on the AMBA interface based on QPC following a similar strategy to static credit allocation:

- Choose high QPC first, then the low QPC.
- Use round-robin arbitration within a QPC.

Write data buffers are also allocated based on QPC class. For write requests that are ready to issue:

- Choose high QPC first, then the low QPC.
- Use round-robin arbitration within a QPC.

2.10.3 QoS configuration

This example configuration demonstrates the QoS mechanisms and their contribution to the overall QoS solution.

It is the responsibility of the SoC designer and system programmer to configure CMN-600 to meet the specific requirements of the system and expected workloads.

System operating conditions

The example QoS configuration assumes the following:

- Four processor clusters:
 - Bimodal operation. A processor cluster is latency-sensitive when bandwidth per cluster is ≤ 2GB/s, and bandwidth-hungry, and therefore latency-tolerant, when bandwidth per cluster is > 2GB/s.
 - 16 outstanding combined reads and writes.
 - 10GB/s maximum bandwidth per cluster.
 - 25GB/s maximum aggregate bandwidth across all processor clusters.
- Four peripheral devices with bounded latency requirements:
 - Each device is the sole device connected to ACE-Lite interface 0 on four different RN-I bridges.
 - 1 microsecond maximum latency requirement.
 - 4GB/s maximum bandwidth per device.
 - 210GB/s maximum aggregate bandwidth across all devices.
- 14 peripheral bandwidth-hungry devices:
 - Connected to all remaining RN-I ACE-Lite interfaces.
 - 12GB/s read or write bandwidth per device, with a combined maximum of 24GB/s.
 - 60GB/s maximum aggregate bandwidth across all devices.
- All devices can be concurrently active.
- 80GB/s maximum aggregate bandwidth across all devices.

HN-F OoS classes

Refer to *Table 2-12 QoS classes in HN-F* on page 2-67 for the QoS ranges and class values in HN-F.

QoS regulator settings

To meet the bandwidth/latency requirements of the system configuration described, CMN-600 QoS regulators can be configured with the settings as described in the following table.

Table 2-13 QoS regulation settings

Device	Regulation type	Regulation parameter	QoS range	QoS scale
Processor	Latency	60ns max latency	11-13	8-9
Real-time peripheral	Override (constant value)	Constant	15	n/a
High-bandwidth peripheral	Override (constant value)	Constant	8	n/a

The latency specification for real-time peripherals must be sufficiently far below the maximum real-time constraint to allow the control loop in the QoS regulator to adjust based on achieved latency, without violating the maximum latency requirement.

To meet the bandwidth and latency requirements of the system configuration described, HN-F QoS reservation values can be configured (based on 32-entry POCQ with one entry for SF back invalidations) as summarized in the following table.

Table 2-14 QoS class and reservation value settings

QoS class	QoS reservation value
Highhigh	31
High	30
Medium	15
Low	5

These settings enable the following system functionality:

- Real-time devices are QPV-15, ensuring their transactions meet their bounded latency requirements.
- The processor QPV is higher than the bandwidth-hungry devices, second only to the real-time devices, and therefore generally achieves minimum latency, except in the event of high-bandwidth real-time traffic.
- Real-time devices have all of the HN-F POCQ buffering available to them, to prevent bandwidth limitations from impacting achieved latency.
- Real-time devices always have buffering available to them throughout the entirety of CMN-600 preventing head-of-line-blocking from lower-priority or higher-latency transactions.

2.11 Barriers

Barriers are deprecated in CHI.B. All masters (fully coherent and I/O coherent) must handle barriers at the source.

When memory barrier ordering or completion guarantees are required, masters must wait for the responses from all required previous transactions that are issued into the interconnect. No barrier requests can be issued into the interconnect.

All requesting devices that are attached to an interconnect must have a configuration option or strap that prevents issuing of any barriers. If a barrier is issued into the interconnect, the results are unpredictable.

_____ Note _____
The DVM_SYNC command, the DVM synchronization that might be initiated by an Arm DSB instruction, is sent to the DVM block and executes appropriately.

For more information about barriers, see the *Arm*[®] *AMBA*[®] *5 CHI Architecture Specification* and the *Arm*[®] *AMBA*[®] *AXI and ACE Protocol Specification*.

2.12 DVM messages

If an RN-F supports *Distributed Virtual Memory* (DVM) messages, it can send DVM requests and receive DVM snoops. If an RN-I includes a *System Memory Management Unit* (SMMU) and is connected to an RN-D, it can receive DVM snoops.

A DVM message from an RN-F is sent to the HN-D. Upon receiving the DVM message, the HN-D:

- Forwards the DVM message as a snoop to the participating RNs. To do this, the HN-D uses a static list to replace the DVM Domain Control register used with legacy products.
- Collects the individual snoop responses.
- Sends a single response back to the RN-F that originated the DVM message transaction.

The SYSCO REQ/ACK mechanism provides proxy snoop responses in scenarios when the RN is powered down. Refer to 2.25 RN entry to and exit from Snoop and DVM domains on page 2-147 for more SYSCO REQ/ACK information.

An RN-F can issue only one outstanding DVMOp (Sync).

For more information about DVM messages, see the Arm® AMBA® 5 CHI Architecture Specification.

2.13 PCle integration

CMN-600 supports integration of a PCIe Root Complex (RC) or EndPoint (EP).

This section contains the following subsections:

- 2.13.1 CMN-600 PCIe master and slave restrictions and requirements on page 2-73.
- 2.13.2 CMN-600 System requirements on page 2-73.
- 2.13.3 RN-I and HN-I programming sequence on page 2-73.

2.13.1 CMN-600 PCle master and slave restrictions and requirements

This section describes PCIe master and slave restrictions and requirements.

The restrictions and requirements are:

- Peer-to-peer PCIe traffic, that is, one PCIe EP talking to another PCIe EP, must not pass through the CMN-600. Requests from the PCIe master can only target memory through the HN-F, CMN-600 configuration space, or an I/O slave device downstream of the HN-I. These requests must not target any PCIe slave downstream of the HN-I.
- The PCIe master must not create same-**AWID** dependency between *Non-Posted Write* (NPR-Wr) and *Posted Write* (P-Wr) transactions sent on the RN-I AXI/ACE-Lite slave port.
- The flow control requirements are:

CMN-600 to PCIe slave

The PCIe slave must be able to sink at least one NPR-Wr from the CMN-600, sent on the HN-I AXI/ACE-Lite master port. This requirement guarantees that the HN-I AW channel remains unblocked, which enables P-Wrs from PCIe master targeting the I/O slave device to make progress, as required by the PCIe ordering rules.

PCIe master to CMN-600

If a *System Memory Management Unit* (SMMU) is in the path between the PCIe master interface and the RN-I slave interface, there are two possible options:

- Non-Posted Reads (NPR-Rds) from the PCIe master must not target the HN-I.
- Use a separate master interface port in the SMMU for page table walks (TCU in MMU-500 and beyond) and connect this port to a different RN-I which does not send any requests to the HN-I. None of the masters connected to this RN-I can talk to the HN-I

Note	
This option is only available with the MMU-500 Memory Management Unit and beyon	ıd.

2.13.2 CMN-600 System requirements

This section describes system requirements.

The system requirements are as follows:

- All non-PCIe I/O slave devices must complete all writes without creating any dependency on a transaction in the PCIe subsystem.
- All non-PCIe I/O masters connected to the same RN-I as a PCIe master, if any, must not send any transactions which target or apply to I/O slave devices downstream of the HN-I.
- If an SMMU is placed in the path between the PCIe master interface and the RN-I slave interface, table-walk requests from the SMMU can only be sent to memory through the HN-F.

2.13.3 RN-I and HN-I programming sequence

The RN-I and HN-I must be programmed as described in this section to ensure proper PCIe functionality.

The following programming must be completed before any non-configuration access to the HN-I or RN-I

RN-I programming

1. If there is a PCIe RC attached to an RN-I, set **por_rni_cfg_ctl.pcie_mstr_present** to indicate that one or more PCIe masters are present upstream.

HN-I programming

- Entire PCIe configuration space of an RC is required to be mapped to a single HN-I address region. HN-I has a SAM that can be configured for up to three address regions. Address space not configured into these three regions is considered the default address region. To achieve this, program the HN-I SAM Address Region registers
 (por_hni_sam_addrregion{0,1,2,3}_cfg) such that the PCIe configuration space falls under one of the four address regions. Please refer to 2.20 HN-I SAM on page 2-112 for more details on HN-I SAM programming.
- 2. For Address Region X in which PCIe configuration space is mapped above, set one of the following bits using **por hni sam addrregionX cfg**.
 - If PCIe configuration space is marked as Arm memory type of Device-nGnRnE, set ser_devne_wr. If this bit is set, HN-I serializes all Device-nGnRnE writes to Address Region X, and does not send any other write requests with the same AWID as an outstanding Device-nGnRnE write.
 - If PCIe configuration space cannot be marked as Arm memory type of Device-nGnRnE, set **ser_all_wr**. If this bit is set, HN-I serializes all writes targeting Address Region X.
- 3. For Address Region Y in which PCIe EP memory space (posted traffic) is programmed, clear **por_hni_sam_addrregionY_cfg.pos_early_wr_comp_en**. If this bit is cleared, HN-I does not give early write completions for any write requests targeting Address Region Y.

does not give early write completions for any write requests targeting Address Region Y.
Note
X or Y can be any of the four address regions (0, 1, 2, or 3).

2.14 Error handling

The CMN-600 RAS features are implemented as set of of distributed logging and reporting registers and a central interrupt handling unit. The distributed logging and reporting registers are associated with devices that can detect errors: XP, HN-I, HN-F, SBSX, and CXHA. The central interrupt handling logic is located in the HN-D.

Each device that can detect errors logs the error in local registers and sends error information to the central interrupt handling logic in the HN-D. The HN-D contains four error groups, a secure and non-secure group for error and fault type errors. Each is represented in an *ERRor Group Status Register* (ERRGSR).

- por cfgm errgrs0 por cfgm errgrs4 error group, secure
- por_cfgm_errgrs5 por_cfgm_errgrs9 fault group, secure
- por_cfgm_errgrs0_NS por_cfgm_errgrs4_NS error group, non secure
- por cfgm errgrs5 NS por cfgm errgrs9 NS fault group, non secure

The following figure shows the four error groups, and the four respective interrupt request signals, with XP connections highlighted. The HN-I, HN-F, SBSX, and CXHA use the same input/output structure.

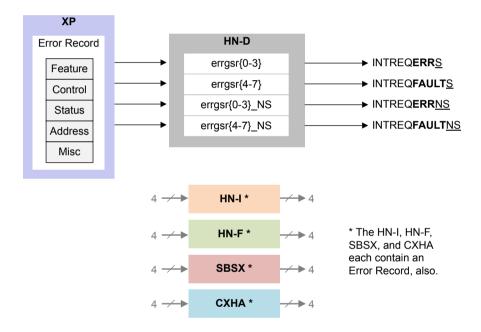


Figure 2-22 Error top-level diagram

Each **errgsr** register is partitioned by device type, with a 64-bit vector representing each device instance's logical ID, as shown in the following figure.

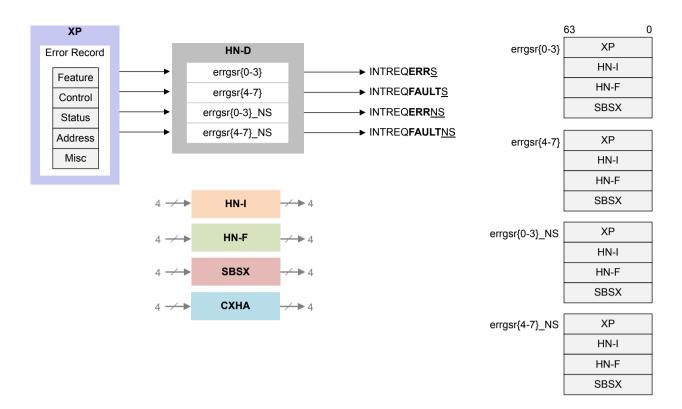


Figure 2-23 256-bit error handling structure

Each device that can detect errors has five Error Record registers that contain the error type, along with other information such as the address and opcode. Error types include *Corrected Error* (CE), *Deferred Error* (DE), and *Uncorrected Error* (UE).

Refer to 2.14.1 Error types on page 2-78 for more information on error types.

See also 3.3 Register descriptions on page 3-173 for register details.

Error interrupt handler flow example

The following sequence of events and figure describe the process for determining the error source and type of an HN-I generating an interrupt request:

- 1. The HN-D generates an interrupt for one of the five error group types.
- 2. The error group indicates the error source device type, which can be:
 - XP
 - HN-I (used in this example).
 - HN-F.
 - SBSX.
 - CXHA.
- 3. The bit location within the error group indicates the logical ID of that device type. In this case, it reveals an HN-I error, the HN-I Error Record Status block for this example.
- 4. The Status block of the Error Record for the specific XP, HN-I, HN-F, SBSX, or CXHA reveals the type of error.
- 5. The Address and Misc blocks of the Error Record provide further details regarding error root cause, in this case a Corrected Error.
- 6. The Valid bit is also asserted.
- 7. To clear the asserted interrupt on the pin, the valid bit of the error status has to be cleared.

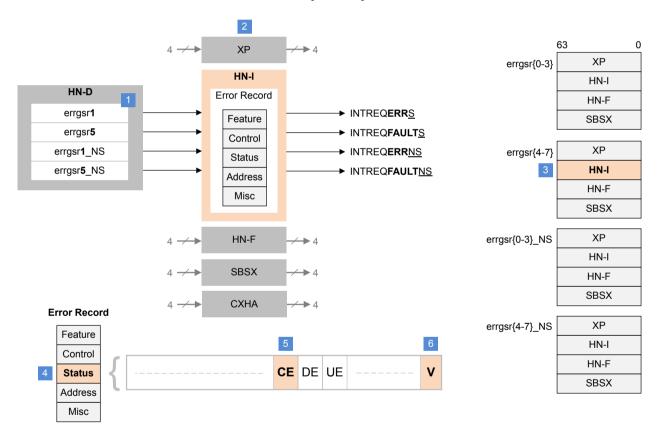


Figure 2-24 Error interrupt handler flow example

This section contains the following subsections:

- 2.14.1 Error types on page 2-78.
- 2.14.2 Error detection and deferred error values on page 2-79.
- 2.14.3 Error detection, signaling, and reporting on page 2-80.
- 2.14.4 Error handling requirements on page 2-85.
- 2.14.5 HN-F error handling on page 2-85.
- 2.14.6 HN-I error handling on page 2-85.
- 2.14.7 SBSX error handling on page 2-88.
- 2.14.8 RN-I error handling on page 2-88.

- 2.14.9 XP error handling on page 2-88.
- 2.14.10 CXHA error handling on page 2-89.

2.14.1 Error types

CMN-600 supports several error types.

The supported errors are:

- Corrected Error (CE).
- Deferred Error (DE).
- *Uncorrected Error* (UE).

Note	
CEs, DEs, and UEs can occur	simultaneously

There may be cases when an error occurs and sets the status register, however, the interrupt reporting is not enabled. For other cases where the interrupt asserts, the interrupt request is generated immediately when enabled. Otherwise, any interrupt is cleared if interrupt reporting is disabled and the error remains logged with UE, DE, and CE.

Note
 Note —

If both **errctlr.UI** (uncorrected interrupt) and **errctlr.FI** (fault interrupt) are set and an uncorrected error occurs, both fault and error interrupts are delivered from CMN-600.

Correctable errors

These errors can be corrected using *Error Correction Code* (ECC) or other methods. They include:

- A single-bit ECC error.
- An error that is recovered by replaying the transaction in the pipeline.

The system handles these errors as follows:

- 1. Detects the error and increments **errmisc.CEC** counter. Sets **errstatus.AV** and **errstatus.MV**. Logs the attributes in the **erraddr** and **errmisc** registers.
- 2. If CEC counter overflowed, the system updates **errstatus.V** and **errstatus.CE**. Sets **errmisc.CECOF**.
- 3. Masks signaling of the error to the RAS control block using errctlr.CFI.
- 4. If there are multiple CEC overflows, then the system sets **errstatus.OF**.

Deferred errors

These are UEs detected in one node of CMN-600, but the data is not used within the same node, and poison bits are set for the data. The errors can be either fatal or non-fatal errors as described in this section. These errors are not correctable, but the system can operate for a period of time without being corrupted. These errors can be contained and the system might be able to recover using software means. They include:

- A data double bit ECC error in the SLC Data RAM.
- Datacheck error detected in SLC.

The system handles these errors as follows:

- 1. Logs the error information in the applicable errstatus, erraddr, and errmisc registers.
- 2. Sets errstatus.V and errstatus.DE.
- 3. Masks signaling of the error to the RAS control block using errctlr.FI and errctlr.UI.
- 4. If there are multiple DEs, then the system sets **errstatus.OF**.

Uncorrectable fatal errors

These are errors in the control logic at a node. Continuing operation might corrupt the system beyond recovery. They include:

- A double-bit ECC error in SLC tag.
- Flit parity error.
- Non-Data Error (NDE) in a response packet.

The system handles these errors as follows:

- 1. Logs the error information in the applicable **errstatus**, **erraddr**, and **errmisc** registers.
- 2. Sets errstatus.V and errstatus.UE.
- 3. Masks signaling of the error to the RAS control block using errctlr.UI.
- 4. If there are multiple UEs, then the system sets **errstatus.OF**.

A component may not respond to further messages after an error is signaled. In this case, for the error handling routine to be successful, the component must still respond to configuration access requests from the configuration bus.

CMN-600 follows the Arm *Reliability, Availability, and Serviceability* (RAS) Specification for mapping of the different error types to the interrupt. The following table summarizes the mapping of various error types.

Table 2-15 Mapping of various error types

Interrupt types vs error types	UE	DE	CE
Fault handling interrupt	Yes (if errctlr.FI =1)	Yes (if errctlr.FI =1)	Yes (if errctlr.CFI=1)
Error recovery interrupt	Yes (if errctlr.UI=1)	No	No

2.14.2 Error detection and deferred error values

For XP, the default values of *Error Detection* (ED) and DE depend on build time parameters.

Only the HN-F has CE counters implemented in the **errmisc** register. The default values of **UI**, **FI**, and **CFI** are 2'b10, which enables control for the interrupt generation. The following table contains various values of ED and DE for XP.

Table 2-16 Default values of ED and DE for XP

POR_FLIT_PAR_EN	POR_DATACHECK_EN	MXP_DEV_DATACHECK_EN		ED	DE
		P0	P1		
0	0	0	0	2'b00	2'b00
0	1	0	0	2'b01	2'b01
		0	1	2'b01	2'b01
		1	0	2'b01	2'b01
		1	1	2'b00	2'b00
1	0	0	0	2'b01	2'b00
1	1	0	0	2'b01	2'b01
		0	1	2'b01	2'b01
		1	0	2'b01	2'b01
		1	1	2'b01	2'b00

For SBSX, the default values of ED and DE are 2'b01 if SBSX_AXDATAPOISON_EN_PARAM is not set. If the parameter is set, the default values are 2'b00.

For HN-I and HN-F, the default values of ED and DE are always 2'b01.

All fields are required, even though only HN-F has CE counters implemented in errmisc.

The default values of UI, FI, and CFI must be 2'b10, indicating that the interrupt generation is controllable.

2.14.3 Error detection, signaling, and reporting

Each CMN-600 component that is connected to a configuration bus can be included in the local error reporting mechanism.

Error handling protocol is as follows:

Error overflow

The overflow is set when different types of errors are detected. It is also asserted when multiple errors of equal priority are detected.

- 1'b1: More than one error has been detected.
- 1'b0: Only one error of the most significant type described by **errstatus.{UE, CE, DE}** has been detected.

This bit is read/write-one-to-clear.
Note
Errstatus.OF is only for the highest priority error. For example, if another DE follows the first
DE, errstatus.OF is set. When the next UE happens, errstatus.OF is cleared because at the
time, UE is the highest priority error in the system, and it is the first occurrence of UE.

The following table shows the **errstatus.OF** value after errors occur at t0, t1, and t2.

Table 2-17 Errstatus.OF value after errors

Error at			Status	of OF aft	er error
t0	t1	t2	t0	t1	t2
CE	CE	CE	0	1	1
CE	CE	DE	0	1	0
CE	CE	UE	0	1	0
CE	DE	CE	0	0	0
CE	DE	DE	0	0	1
CE	DE	UE	0	0	0
CE	UE	CE	0	0	0
CE	UE	DE	0	0	0
CE	UE	UE	0	0	1
DE	CE	CE	0	0	0
DE	CE	DE	0	0	1
DE	CE	UE	0	0	0
DE	DE	CE	0	1	1
DE	DE	DE	0	1	1
DE	DE	UE	0	1	0
DE	UE	CE	0	0	0
DE	UE	DE	0	0	0
DE	UE	UE	0	0	1
UE	CE	CE	0	0	0
UE	CE	DE	0	0	0
UE	CE	UE	0	0	1
UE	DE	CE	0	0	0
UE	DE	DE	0	0	0
UE	DE	UE	0	0	1
UE	UE	CE	0	1	1

Table 2-17 Errstatus.OF value after errors (continued)

Error at			Status	of OF aft	er error
t0	t1	t2	t0	t1	t2
UE	UE	DE	0	1	1
UE	UE	UE	0	1	1

Errmisc fields

Errmisc is the secondary error syndrome register. The fields of this register differ for ECC, parity, and other errors. The following tables summarize all the valid fields for each unit.

Table 2-18 Errmisc register bits

Bit	Component				
	XP	HN-I	HN-F	SBSX	CXHA (CML only)
63	-	-	CECOF	-	-
62			SETMATCH		
61			-		
60			ERRSET[12:0]		
59					
58	TGTID[10:0]				
57					
56		LPID[4:0]			
55					ERRSET[7:0]
54					
53					
52					
51		-			
50					
49		ORDER[1:0]			
48					
47	-	-	CEC[15:0]		-
46					
45					
44					
43					
42					
41					
40					
39					
38					
37					
36					
35					
34					
33					
32					

Table 2-18 Errmisc register bits (continued)

Bit	Component				
	XP	HN-I	HN-F	SBSX	CXHA (CML only)
31	-	-	-	-	-
30		SIZE[2:0]		SIZE[2:0]	
29					
28					
27		MEMATTR[3:0]		MEMATTR[3:0]	
26					
25					
24					
23		-		-	
22					
21	OPCODE[5:0]	OPCODE[5:0]			
20					
19					
18					
17			OPTYPE[1:0]		
16				ОРТҮРЕ	
15	-	-	-	-	
14	SRCID[10:0]	SRCID[10:0]	SRCID[10:0]	SRCID[10:0]	
13					
12					
11	•				
10 9					CDCD A ID[5.0]
8					SRCRAID[5:0]
7					
6					
5					
4					
3	-	ERRSRC[3:0]	ERRSRC[3:0]	-	-
2	ERRSRC[2:0]	LARORC[J.U]	LINIONC[3.0]		_
1	210010[2.0]				ERRSRC[1:0]
0					2.4.01.0[1.0]
Ľ					

Error log clearing

In addition to the error syndrome registers, each component has a write-only error syndrome clear register. Write the applicable mask bits to clear the **first_err_vld** and **mult_err** bits of the Error Syndrome 0 register.

2.14.4 Error handling requirements

This section describes the specific error handling behaviors of CMN-600.

Error reporting rules

CMN-600 uses specific error reporting rules.

The rules regarding error reporting in CMN-600 are:

- Any error originating in CMN-600 is reported.
- Any error originating outside CMN-600 but corrupting CMN-600 is reported.
- The HN-I can report an error in a response packet from outside CMN-600 if it does not propagate the response any further.
- All non-posted write errors are propagated where possible.

2.14.5 HN-F error handling

Errors are reported at the HN-F for various reasons.

Request Errors at HN-F

The HN-F detects:

- ECC errors in SF Tag, SLC Tag and Data RAMs.
- Datacheck and poison errors on DAT flits.
- Non-Data Errors (NDEs) on responses.

ECC errors in SF Tag, SLC Tag, and Data RAMs

HN-F detects single-bit and double-bit ECC errors in the SF Tag, SLC Tag, and Data RAMs. It can correct single-bit ECC errors. Such errors are logged and reported as CEs.

Double-bit ECC errors detected in the SLC Data RAM are logged and reported as DEs. Such errors are propagated to the consumer of the data in the form of data poison.

Double-bit ECC errors detected in SF Tag RAM are logged and reported as DEs. But such errors are not propagated to the requestor. The SF Tag RAM in the HN-F is disabled following the first occurrence of the double-bit ECC error.

Double-bit ECC errors detected in the SLC Tag RAM are fatal. They are logged and reported as UEs. Such errors are propagated to the requestor as NDEs in the responses.

Datacheck and poison errors on DAT flits

If data is allocated by the HN-F, the HN-F detects datacheck errors and poison error on the data flits. In such cases, HN-F logs and reports the datacheck error as a DE. If HN-F allocated the data in SLC Data RAM, it converts the datacheck error into data poison for all subsequent requests to this cacheline.

If **por_hnf_aux_ctl.hnf_poison_intr_en** = 1, then the poison errors originating from HN-F are logged and reported as UEs.

NDEs on responses

HN-F may receive NDEs from other data and response sources such as RN-F, RN-I, and SN-F. If the cache line was allocated in SLC Data RAM, it is logged and reported as a UE. If the cache line is not allocated in HN-F SLC, it propagates the errors to the requestor as an NDE.

2.14.6 HN-I error handling

Errors are reported at the HN-I for various reasons.

Request errors at HN-I

The HN-I detects errors on receiving following requests and sends an NDE response to the requesting RN. It logs request information in the error logging registers, **por_hni_erraddr(_NS)** and **por_hni_errmisc(_NS)**. They are marked as DEs in the error status register, **por_hni_errstatus(_NS)**:

- 1. Coherent Read.
- 2. CleanUnique/MakeUnique.
- 3. Coherent/CopyBack Write.
- 4. Atomic.
- 5. Illegal Configuration Read/Write.

The configuration bit, **por_hni_cfg_ctl.reqerr_cohreq_en**, can enable or disable the sending of NDE responses and logging of error information for following request types. By default, this bit is enabled. It can only be programmed during boot time to any one of the following:

- 1. Coherent Read.
- 2. CleanUnique/MakeUnique.
- 3. Coherent/CopyBack Write.

The following table lists all the requests a HN-I detects as errors and the support of reqerr_cohreq_en.

Request type	Reqerr_cohreq_en controls sending of NDE and log error
Coherent Read	Yes
CleanUnique/MakeUnique	Yes
Coherent/CopyBack Write	Yes
Atomics	No
Illegal Configuration Read/Write	No

Table 2-19 HN-I request errors and support for configuration bit

- Coherent reads are downgraded to ReadNoSnp and sent downstream (AXI/ACE-Lite slave).
- Coherent/Copyback writes are downgraded to WriteNoSnp and sent downstream (AXI/ACE-Lite slave).
- Illegal Configuration Read is sent as ReadNoSnp to downstream (AXI/ACE-Lite slave).
- CleanUnique, MakeUnique, Atomics, and Illegal Configuration Writes are handled within HN-I.
- StashOnceShared, StashOnceUnique, and PrefetchTgt are completed within HN-I without any errors.

Data Errors at HN-I

The HN-I only detects errors on write data if it does not detect an error on that request.

To summarize:

- For AXI/ACE-Lite write requests with no request error, on receiving Poison error on data, HN-I detects the error and logs request information in por_hni_erraddr(_NS) and por_hni_errmisc(_NS) if downstream does not support poison. They are marked as UEs in the error status register, por_hni_errstatus(_NS).
- For configuration write requests with no request error, on receiving write data with Partial
 ByteEnable error, Datacheck error, or Poison, HN-I detects and sends an NDE response to the
 requesting RN. It logs the SrcID and TxnID of the request and drops the write. They are marked as
 DEs in the error status register, por_hni_errstatus(_NS).

StashOnceShared, StashOnceUnique and PrefetchTgt are completed within HN-I without any errors.

Response Errors at HN-I

The HN-I only detects errors on write response if it does not detect an error on that request.

To summarize:

- For AXI/ACE-Lite write requests with early completions from HN-I and no request error, on receiving *Slave Error* (SLVERR), or *Decode Error* (DECERR) on downstream write response (BRESP), HN-I detects the error. It logs request information in por_hni_erraddr(_NS) and por_hni_errmisc(_NS). They are marked as UEs in the error status register, por hni errstatus(_NS).
- For AXI/ACE-Lite write requests with downstream completions and no request error, SLVERR, or DECERR on downstream write response (BRESP) are passed on to the requesting RN as CHI DEs or NDEs.
- For AXI/ACE-Lite read requests, SLVERR and Poison (if supported by downstream) are both
 converted to Poison within the CMN-600 system, independent of error on request. DECERR on
 downstream read responses are passed on to the requesting RN.

HN-I summary on sending NDE and DE

The HN-I sends NDE scenarios for certain situations.

The HN-I sends NDE in the following cases:

 Req 	uest	error.
-------------------------	------	--------

- Coherent Read (if **reqerr_cohreq_en** is set to 1).
- CleanUnique/MakeUnique (if regerr cohreg en is set to 1).
- Coherent/CopyBack Write (if require cohreguen is set to 1).
- Atomic.
- Illegal Configuration Read/Write.

Refer to 3.1.5 Requirements of configuration register reads and writes on page 3-155 for legal format of configuration read/write request.

- Write Data Error for configuration write request.
 - Partial ByteEnable error.
 - Datacheck error.
 - Poison.
- AXI/ACE-Lite Response Error.
 - DECERR on downstream write response (BRESP) for writes with downstream completions.
 - DECERR on downstream read response (RRESP).

The HN-I sends DE in the following cases:

- AXI/ACE-Lite Response Error.
 - SLVERR on downstream write response (BRESP) for writes with downstream completions.

HN-I summary on logging errors

The HN-I logs an error as deferred or uncorrected in certain conditions.

The HN-I logs an error as deferred in the following cases:

- · Request error.
 - Coherent Read (if **reqerr_cohreq_en** is set to 1).
 - CleanUnique/MakeUnique (if reqerr cohreq en is set to 1).
 - Coherent/CopyBack Write (if require cohrequen is set to 1).
 - Atomic.
 - Illegal Configuration Read/Write.

Refer to 3.1.5 Requirements of configuration register reads and writes on page 3-155 for legal format of configuration read/write request.

- Write Data Error for configuration write request.
 - Partial ByteEnable error.
 - Datacheck error.
 - Poison.

The HN-I logs an error as uncorrected in the following cases:

- Write Data Error for AXI/ACE-Lite write requests.
 - Poison error on data if downstream doesn't support poison.
- AXI/ACE-Lite Write Response Error.
 - SLVERR or DECERR on downstream write response (BRESP) for writes that were sent early completions.

CML configuration with HN-I

In CML configuration, HNI must be configured to report NDE response on Coherent Requests.

This is accomplished by setting bit[0] (reqerr_cohreq_en) of por_hni_cfg_ctl register. This action is required in CML mode so NDE error responses are not missed on CCIX because of early completion responses from the CXG block.

2.14.7 SBSX error handling

Errors are reported at the SBSX for various reasons.

Error cases

- 1. If the AXI memory controller downstream of SBSX does not support POISON (indicated by **por_sbsx_unit_info.axdata_poison_en** = 0), and if CHI Write Data has Poison set, then SBSX detects and logs this error.
- 2. If **por_sbsx_cfg_ctl.sbsx_rpt_err_on_poison_rd** = 1, and if SBSX receives Poison on read data from downstream, then SBSX detects and logs this error.

2.14.8 RN-I error handling

RN-I does not report any errors.

Coherent transactions received at RN-I from AXI/ACE-Lite master which are targeted for HN-I are downgraded to non-coherent transactions. For example, **ReadOnce** is downgraded to **ReadNoSnp** and **WriteUnique** is downgraded to **WriteNoSnp**.

2.14.9 XP error handling

Errors are reported at the XP for various reasons.

The following errors are detected in the XP:

- Flit parity error.
- Datacheck error (DAT channel only).

Flit parity error

Flit parity is generated on a flit upload from a device port to a mesh port, for both internal and external devices. Flit parity check is done on a flit download from a mesh port to a device port.

Flit parity is neither generated nor checked when a flit is bypassed or looped back across the device ports on the same XP.

Data check error

Datacheck is enabled in the XP using the DATACHECK EN parameter.

Datacheck (Data Byte Parity) bits are generated corresponding to each byte of data on a DAT flit upload from a device port when the corresponding device does not support Datacheck (indicated by DEV DATACHECK EN = 0).

Datacheck is accomplished on a flit download to a device which does not support Datacheck.

Datacheck bits are generated and checked when a DAT flit is bypassed or looped back across the device ports on the same XP when the corresponding devices involved do not support DataCheck.

Error reporting and logging

Flit parity and Datacheck errors are reported to the *RAS Control Block* (RCB). The following table contains flit fields logged in the XP configuration register.

Error Source Errstatus Errmisc UE ERRSRC SRCID OPCODE **TGTID** DE CE MV V Data Parity P0 Reg channel 0 1 0 1 3'h000 v Data Parity P1 Req channel 0 1 0 1 3'b001 1 1 Data Parity P0 Rsp channel 0 0 3'b010 1 Data Parity P1 Reg channel 0 1 0 3'b011 v Data Parity P0 Snp channel 0 1 0 1 3'b100 0 1 0 Data Parity P1 Snp channel 0 1 0 3'b101 ν v Data Parity P0 Dat channel 0 0 1 1 3'b110 v Data Parity P1 Dat channel 0 1 0 1 3'b111 v v v FLIT Parity P0 Reg channel 0 1 1 1 3'b000 v FLIT Parity P1 Reg channel 0 1 1 1 3'b001 v v v FLIT Parity P0 Rsp channel 0 1 1 1 3'b010 FLIT Parity P1 Reg channel 0 1 1 1 3'b011 FLIT Parity P0 Snp channel 1 0 0 1 1 3'b100 v 0 FLIT Parity P1 Snp channel 0 1 1 1 3'b101 1 FLIT Parity P0 Dat channel 0 1 1 3'b110 v v v FLIT Parity P1 Dat channel 0 1 1 1 3'b111

Table 2-20 XP configuration register flit fields

If the device supports Poison (indicated by DEV_POISON_EN = 1), the Datacheck error is factored in the **POISON** field of the DAT flit. Else, it is factored in as DataError in the **RESPERR** field.

2.14.10 CXHA error handling

Errors are reported at the CXHA for various reasons.

CXHA uses RAMs as buffers for storing the Read and Write data. The contents of the RAM are protected using byte parity. CXHA reports errors if there is an error detected when the contents of the Data RAMs are read. These detected errors are of two types:

- Parity error on Byte-Enable (BE) fields of the Write Data RAM.
- Parity error on Data and Poison fields of the Read and Write Data RAM.

Parity error on Byte-Enable fields of the Write Data RAM

The Write Data buffer RAM stores BE. Parity errors detected on BE are treated as UEs. Upon detecting an error, CXHA does the following:

• Logs the error as UE.

Parity error on Data and Poison fields of the Read and Write Data RAM

The Read and Write data buffer RAMs contain the Data and Poison fields. Errors detected on these fields are treated as DEs. If an error is detected on Data fields, then the CXHA does the following:

- Logs the error as DE.
- Poisons the data (per CHI.B specification) by setting the corresponding poison bit of the data.

If an error is detected on Poison fields, then the CXHA does the following:

- Logs the error as DE.
- All Poison bits are set to 1'b1.

2.15 System Address Map

Every master connected to CMN-600 has the same view of memory.

The entire addressable space can be partitioned into subregions, and each partition must be designated as:

I/O space, orDDR space.

	Note ———	
Unmapped	addresses are routed to the HN-D.	

Requests to the I/O space are serviced by HN-I, HN-D, and HN-T. Requests to DDR space are serviced by HN-F, SN-F, and SBSX.

Each HN-F covers a mutually exclusive portion of the system address space.

- Each HN-F can contain a System Level Cache (SLC).
- HN-Fs can be combined into System Cache Groups (SCG).
- Each HN-F in an SCG must have the same SLC partition size.
- The target HN-F within an SCG is determined by an address hash function.

All CHI transactions require a target ID to route packets from source to destination. For addressable requests, the target ID is determined by a *System Address Map* (SAM). A SAM is located in each node that can generate a CHI addressable request. These SAMs include:

- RN SAM: Present in all RNs. Generates a target ID for requests to HN-F, HN-I, HN-D, HN-T, SBSX, and SN-F.
- CXRA SAM: Present in all CCIX request agent nodes. Generates a target ID for requests to CCIX home agent nodes.
- HN-F SAM: Present in all HN-Fs. Generates a target ID for requests to SN-F and SBSX.
- HN-I SAM: Present in all HN-Is. Maps the incoming CHI request's address to an I/O subregion for ordering purposes.

2.16 RN SAM

Transactions from an RN must pass through an RN SAM in order to generate a CHI target ID.

RN-Is and CXHA have an RN SAM that is internal to CMN-600. CHI.B RN-Fs can use an RN SAM external or internal to CMN-600. This is a configuration option. Instantiating a SAM internal to CMN-600 for CHI.A RN-Fs is also a configuration option. If this option is not selected, an external SAM must be created and integrated for the CHI.A RN-F, and must be configurable without relying on the use of the CMN-600 programmable register space. Such an external RN SAM for CHI.A masters is not provided by Arm.

This section contains the following subsections:

- 2.16.1 Target IDs on page 2-92.
- 2.16.2 Memory region requirements on page 2-93.
- 2.16.3 System Cache Groups on page 2-94.
- 2.16.4 PrefetchTgt RN SAM on page 2-96.

2.16.1 Target IDs

This section describes how the target ID is determined.

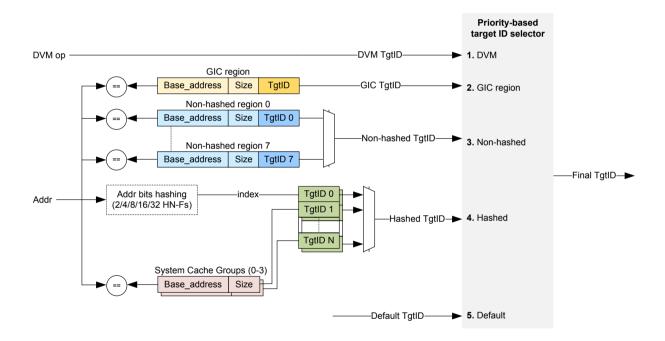


Figure 2-25 CMN-600 RN SAM target ID selection policy

Default target ID

Until the RN SAM has been fully programmed, all addressable transactions use the default target ID. RN SAMs that are internal to CMN-600 define the HN-D node ID as their default target ID. RN SAMs that are external to CMN-600 must be configured with a default target ID, likely via a strap input. Once the RN has been programmed, the default target ID is only selected for addressable requests that do not fall within one of the programmed address regions.

Hashed and non-hashed regions

A given memory partition can be:

- Distributed (hashed) across many target devices, or
- Assigned to an individual device (non-hashed).

A hashed region can overlap with a non-hashed region. Whether a given region is configured as hashed or non-hashed affects the target ID selection policy for that address range. The SCG region registers support up to four hashed regions. The non-hashed region registers support up to eight non-hashed regions.

The I/O space (HN-I, HN-D, and HN-T) is intended to be the target of non-hashed regions. The DRAM space (HN-F), however, can be the target of either non-hashed or hashed regions. It is also possible to classify a region that only targets one HN-F as hashed. Additional configuration scenarios include:

- Using an SCG region register for an HN-I, HN-D, and HN-T target. This may be useful if all the non-hashed region registers have already been used. The region can optionally be classified as a non-hashed region (except for SCG region 0).
- Using a non-hashed region register for an HN-F target. This may be useful if all the SCG region registers have already been used. For target ID selection purposes, this HN-F is classified as a non-hashed region.

GIC target ID

RN SAMs also support a Global Interrupt Controller (GIC) memory region which can be used to select GIC-related addresses to a specific target ID. The GIC region can overlap with hashed and non-hashed regions.

RN SAM target ID selection policy

RN SAMs support priority-based target ID selection. The order of priority is when selecting a target ID is:

- 1. GIC memory region (highest priority).
- 2. Non-hashed memory region.
- 3. Hashed memory region.
- 4. Default memory region (lowest priority).

DVM target ID

DVM transactions are assigned the DVM target ID. RN SAMs that are internal to CMN-600 define the HN-D's node ID as the DVM target ID. RN SAMs that are external to CMN-600 must be configured with a DVM target ID, likely via a strap input.

2.16.2 Memory region requirements

This section describes the RN SAM memory region requirements.

Each of the programmed region sizes must be a power of two and the partition must be size-aligned. The region size can range from 64MB–256TB. For example, a 1GB partition must start at a 1GB-aligned boundary.

It is possible to support complex memory maps where DRAM region sizes are not a power of two or are not size-aligned. For example, the figure below shows a memory map where the entire address is assigned to a hashed region. Then, non-hashed regions can be individually programmed, given their higher target ID selection priority. Accesses to addresses in a hashed region that are not actually backed by physical memory must be prevented by software. Refer to the *Principles of Arm Memory Maps White Paper* for more information.

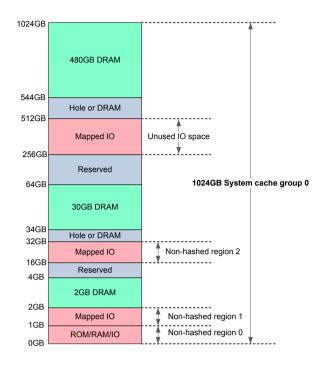


Figure 2-26 Example memory map

2.16.3 System Cache Groups

This section provides System Cache Group configuration information.

A System Cache Group (SCG) is a group of HN-Fs that share a contiguous address region. However, the addresses covered by each HN-F in an SCG are mutually exclusive. An HN-F belonging to an SCG is selected as the target based on a hash function.

An SGC supports hashing over 1, 2, 4, 8, 16, or 32 HN-Fs, using bits [MSB:6] of the physical address of the request. If CMN-600 has been configured to implement fewer than 48 physical address bits, the unused upper bits are assumed to be zero. The hash algorithm calculates a pointer in the HN-F ID table in the RN SAM. The hash function is explicitly given below. All the numbers on the right-hand side of the equations below are bit positions within the physical address (e.g. 17 corresponds to physical address bit [17]). In the equations, ^ represents XOR.

- 2 HN-Fs
 - Number of bits in select: 1
 - select $[0] = (6^7^8 \dots ^47)$
- 4 HN-Fs
 - Number of bits in select: 2
 - select $[0] = (6^8^10^4...^46)$
 - select $[1] = (7^9^11^4...^47)$
- 8 HN-Fs
 - Number of bits in select: 3
 - select $[0] = (6^9^12^4...^45)$
 - select $[1] = (7^10^13^...^46)$
 - select $[2] = (8^11^14^...^47)$
- 16 HN-Fs
 - Number of bits in select: 4
 - select $[0] = (6^10^14^\dots^46)$
 - select $[1] = (7^11^15^...^47)$

- select $[2] = (8^12^16^\dots^44)$
- select $[3] = (9^13^17^\dots^45)$
- 32 HN-Fs
 - Number of bits in select: 5
 - select $[0] = (6^11^16^...^46)$
 - select [1] = $(7^12^17^...^47)$
 - select $[2] = (8^13^18^...^43)$
 - select $[3] = (9^14^19^\dots^44)$
 - select [4] = $(10^15^20^\dots^45)$

System Cache Group (SCG) configuration

Up to four SCGs are supported, depending on the number of HN-Fs in each SCG. The following table shows the restrictions on SCG selection when there are 16 or 32 HN-Fs in a given SCG.

Table 2-21 Permitted allocation of HN-Fs into SCGs

SysCacheGroup HN-F/SN-F counts	1 HN-F	2 HN-F	4 HN-F	8 HN-F	16 HN-F	32 HN-F
SysCacheGroup 0	Y	Y	Y	Y	Y	Y
SysCacheGroup 2	Y	Y	Y	Y	Y	N
SysCacheGroup 1	Y	Y	Y	Y	N	N
SysCacheGroup 3	Y	Y	Y	Y	N	N

The following table shows how hashed target IDs are programmed in each SCG. For example, if SCG0 has 32 HN-Fs, then it uses all the available node ID registers and other SCGs cannot be used. However, if SCG0 is only using 16 HN-Fs, then SCG2 and SCG3 can still be used with eight each HN-F target IDs. This table is also applicable to the SN-F target ID registers if PrefetchTgt is supported in the RN SAM.

Table 2-22 Target ID programming

SCG target ID Regs (32 hashed targets)	Number of HN-Fs per SCG						
	32	16	8	4, 2, 1			
scg_nodeid_reg0	SCG0_NIDs	SCG0_NIDs	SCG0_NIDs	SCG0_NIDs			
scg_nodeid_reg1				-			
scg_nodeid_reg2			SCG1_NIDs	SCG1_NIDs			
scg_nodeid_reg3				-			
scg_nodeid_reg4		SCG2_NIDs	SCG2_NIDs	SCG2_NIDs			
scg_nodeid_reg5				-			
scg_nodeid_reg6			SCG3_NIDs	SCG3_NIDs			
scg_nodeid_reg7				-			

The following table contains an example mapping of 25 HN-Fs to three SCGs.

Table 2-23 25 HN-Fs to three SCGs programming example

SCG number	Number of HN-Fs	Node ID
SCG0	16	NID0-15
SCG2	8	NID16-23
SCG3	1	NID24

The following table contains an example programming for the 25 HN-Fs.

Table 2-24 Example programming for the 25 HN-Fs

SCG target ID registers	Number of HN-Fs per SCG					
	32	16	8	1		
scg0_nodeid_reg0	-	SCG0	-	-		
scg0_nodeid_reg1		NID0-15				
scg1_nodeid_reg0						
scg1_nodeid_reg1						
scg2_nodeid_reg0		-	SCG2			
scg2_nodeid_reg1			NID16-23			
scg3_nodeid_reg0			-	SCG3 NID24		
scg3_nodeid_reg1				-		

2.16.4 PrefetchTgt RN SAM

The RN SAM supports CHI.B PrefetchTgt operations.

These operations are sent from RN-F directly to SN-F, bypassing the HN-F. To support such requests, the RN SAM integrates the functionality of HN-F SAM to determine the appropriate SN-F target ID for a given address. RN-Fs that integrate the PrefetchTgt RN SAM only use the SN-F target ID for PrefetchTgt requests. The PrefetchTgt RN SAM programming must match the HN-F SAM with respect to SN-F target IDs.

The registers used for programming the PrefetchTgt RN SAM are:

- · por rnsam sys cache grp sn attr
- por rnsam sys cache grp sn nodeid reg{0-7}
- por_rnsam_sys_cache_grp_sn_sam_cfg{0-1}

2.17 CXRA SAM

All CCIX Requesting Agents (CXRA) in CMN-600 require a CCIX RA SAM to determine the target CCIX Home Agent ID (HAID). This HAID is used as the target ID to route the CCIX Request.

The Requesting Agent System Address Map (RA SAM) uses configuration registers to specify address regions and corresponding HAIDs. Each address region is configured by programming the base address and corresponding size of the address region (or programming the address limit). Each valid address region is marked using a valid bit. The incoming address is compared against programmed valid address regions to generate a specific HAID.

The following figure shows a CCIX RA SAM block diagram.

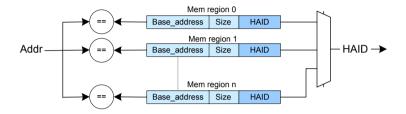


Figure 2-27 RA SAM block diagram

Address region requirements

Each of the programmed address region size must be a power of two and must be naturally aligned to its size. For example, a 1GB partition must start at 1GB boundary. That is, 0GB-1GB or 1GB-2GB and so forth, but it cannot start from 1.5GB or 2.5GB.

Refer to 2.21 Cross chip routing and ID mapping on page 2-122 for details on how CCIX messages are routed based on the CXRA SAM programming.

2.18 HN-F SAM

Transactions from an HN-F to an SN must pass through an HN-F SAM to generate a CHI target ID. The following figure shows how the target ID is determined.

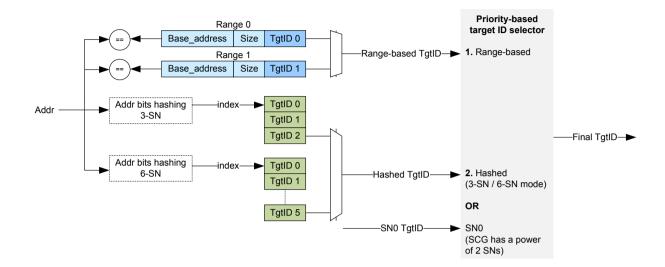


Figure 2-28 CMN-600 HN-F SAM block diagram

Range-based mapping is an address-based target ID generation policy. Up to two address regions can be created, each targeting a single HN. This mode is useful where a partition of memory from the global DRAM is mapped explicitly to an individual SN (for example, an on-chip SRAM).

The HN-F SAM supports two address striping modes for SN target ID selection, which can only be used when three or six SNs are targeted by the SCG:

- 3-SN mode: Addresses from a given HN-F are striped across the three SNs.
- 6-SN mode: Addresses from a given HN-F are striped across the six SNs.

Addresses within the SCG's address range are striped at a 256B granularity between the selected SNs. The stripe function uses address bits [16:8], and an additional two (3-SN) or three (6-SN) user-defined address bits.

Direct SN mapping is used if the SCG targets 1, 2, 4, or 8 SNs. In this case, the SN0 target ID is used. Distributing accesses across the SNs targeted by the SCG is achieved by programming each HN-F's SN0 field to the SN node ID it targets. For example, if an SCG with eight HN-Fs targets eight SNs, each HN-F's SN0 field would be programmed with a different SN node ID. If that same SCG with eight HN-Fs targeted four SNs instead, every two HN-F nodes would have the same SN0 field value.

HN SAMs support priority-based target ID selection. The order of priority is when selecting a target ID is:

- 1. Range-based mapping (highest priority).
- 2. Striped target ID (3-SN or 6-SN mode), or SN0 (SCG has a power of 2 SNs).

This section contains the following subsections:

- 2.18.1 3 SN-F and 6 SN-F memory striping on page 2-98.
- 2.18.2 SN contiguous address spaces on page 2-102.

2.18.1 3 SN-F and 6 SN-F memory striping

CMN-600 supports both 3 SN-F and 6 SN-F memory striping.

3 SN-F memory striping

The traffic is distributed evenly among the three SNs using a function based on physical address (PA[16:8]) and two higher bits in the physical address referred to **top_address_bit1** and **top_address_bit0**. The top address bits are selected such that three of the four combinations of the top address bits appear evenly in the selected address space, and the fourth combination never appears (in some situations, a top bit may be the inverse of the selected PA bit).

For each physical address, one of the three SNs is selected using the following formula:

```
SN = { ADDR[10:8] + ADDR[13:11] + ADDR[16:14] + ((top_addr_bit1<<1) | top_addr_bit0) } % 3
```

General SN distribution behavior example

For a simple case with a 3GB flat address space starting at address oxo, top_address_bit1 is PA[31], and top_address_bit0 is PA[30]. With increasing physical address, the function steps between SNs at a 256-byte granularity. As the physical address iterates from 0-128KB, with top_address_bit1 = top_address_bit0 = 0, the first three terms distribute the traffic relatively evenly among the SNs. Of the 512 blocks (256B each) in the first 128KB, the distribution is:

- SN[0] => 170 blocks 33.2%
- SN[1] => 171 blocks 33.4%
- $SN[2] \Rightarrow 171 \text{ blocks } 33.4\%$

This pattern repeats over each 128KB until 1GB, where **top_address_bit0** toggles. With **top address bit1** = 0 and **top address bit0** = 1, the pattern is shifted. For each 128KB:

- $SN[0] \Rightarrow 171 \text{ blocks } 33.4\%$
- SN[1] => 170 blocks 33.2%
- $SN[2] \Rightarrow 171 \text{ blocks } 33.4\%$

At 2GB, when top address bit 1 = 1 and top address bit 0 = 0, the pattern shifts again:

- $SN[0] \Rightarrow 171 \text{ blocks } 33.4\%$
- SN[1] => 171 blocks 33.4%
- $SN[2] \Rightarrow 170 \text{ blocks } 33.2\%$

Over the full 3GB, exactly the same number of lines are distributed to each SN.

The HN-F uses the hn_cfg_three_sn_en bit in its por_hnf_sam_control register to enable routing to three SNs. In the por_hnf_sam_control register, the hn_cfg_sam_top_address_bit0 and hn_cfg_sam_top_address_bit1 fields must be configured at boot time. These two address bits are decoded, and used in combination with a hashing function to determine the target SN-F.

6 SN-F memory striping

Similar to 3-SN hashing, 6-SN extends the function to equally distribute the addresses between six SNs. For each physical address, one of the six SNs is selected using the following formula:

```
SN = \{ ADDR[10:8] + ADDR[13:11] + ADDR[16:14] + ((top_addr_bit2<<2) | (top_addr_bit1<<1) | top_addr_bit0) \} % 6
```

HN-F SAM uses the hn_cfg_six_sn_en bit in its por_hnf_sam_control register to enable striping across all six SN-Fs. In 6 SN-F hashed mode, HN-F SAM also uses hn_cfg_sam_top_address_bit2 field in the por_hnf_sam_control register along with hn_cfg_sam_top_address_bit1 and hn_cfg_sam_top_address_bit0 to hash the incoming address.

3 SN-F and 6 SN-F configurations

The valid top address bits for Arm PDD Memory Map are shown in the below table. Refer to the *Principles of Arm Memory Maps White Paper* for more information. This ensures equal distribution of requests across all SN-Fs and prevents memory aliasing. The SAM also provides an

inv_top_address_bit configuration bit, which can be used in combination with top address bits as shown
in the following table:

Table 2-25 3-SN top address bits [bit 1, bit 0]

Combination 1	Combination 2	Combination 3	Combination 4
(inv_top_address_bit set to 1'b0)	(inv_top_address_bit set to 1'b0)	(inv_top_address_bit set to 1'b1)	(inv_top_address_bit set to 1'b1)
[0, 0]	[1, 1]	[0, 0]	[0, 0]
[0, 1]	[0, 1]	[1, 0]	[0, 1]
[1, 0]	[1, 0]	[1, 1]	[1, 1]

_____ Note _____

The inv_top_address_bit, when set to 1'b1, forces the SAM to invert the top most significant top address bit (0 to 1, or 1 to 0). For 3-SN, top_address_bit1 is inverted. For 6-SN, top_address_bit2 is inverted.

The following table shows the valid combinations for the address bits for 6-SN with PDD memory map.

Table 2-26 6-SN top address bits [bit 2, bit 1, bit 0]

Combination 1	Combination 2	Combination 3		
(inv_top_address_bit set to 1'b0)	(inv_top_address_bit set to 1'b0)	(inv_top_address_bit set to 1'b1)		
[0, 0, 0]	[0, 1, 0]	[0, 0, 0]		
[0, 0, 1]	[0, 1, 1]	[0, 0, 1]		
[0, 1, 0]	[1, 0, 0]	[0, 1, 0]		
[0, 1, 1]	[1, 0, 1]	[0, 1, 1]		
[1, 0, 0]	[1, 1, 0]	[1, 1, 0]		
[1, 0, 1]	[1, 1, 1]	[1, 1, 1]		

Example for PDD memory map

Assume a system supports three SN-Fs with 32GB of DRAM at each SN-F port and all three SN-Fs are used for SCG 0. Since the DRAM space is non-contiguous in this memory map (2GB + 30GB + 480GB), the base addresses for each DRAM partition are:

- 1. a. 000 8000 0000 to 000 FFFF FFFF (2GB)
 - b. 008 8000 0000 to 00F FFFF FFFF (30GB)
- 2. 088 0000 0000 to 08F FFFF FFFF (32GB)
- 3. 090_0000_0000 to 097_FFFF_FFF (32GB)

The first two regions together comprise a 32GB region, while the remaining two regions are 32GB each. The following table breaks down the address bits for the above regions.

Table 2-27 Address region example bit settings: 3-SN example

Region	39	38	37	36	35	34	33	32	31
1	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	X	X	X	1

Table 2-27 Address region example bit settings: 3-SN example (continued)

Region	39	38	37	36	35	34	33	32	31
2	1	0	0	0	1	X	x	x	х
3	1	0	0	1	0	X	x	x	x

From the address bit breakdown, the selected top address bits must make sure both regions marked as Region 1 have the same values to ensure no aliasing in memory. For this memory map and DRAM size, there are no address bits that directly give us Combination 1 or Combination 2 as shown in *Table 2-25 3-SN top address bits [bit 1, bit 0]* on page 2-100. However, if bits [39, 36] are used along with **inv_top_address_bit** = 1, then Combination 3 is possible. This ensures that the memory requests are equally distributed across the 3 SN-Fs without memory aliasing.

The following figure shows the Arm proposed memory map.

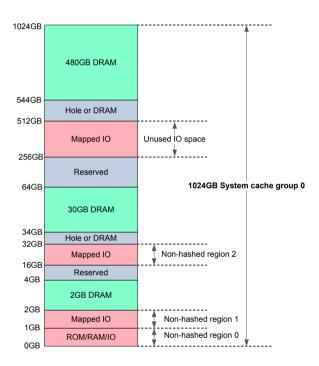


Figure 2-29 Example memory map programming

The following tables provide example address bits that are known to provide equal distribution of memory across all SN-Fs in 3 SN-F and 6 SN-F hashed modes.

Table 2-28 3-SN DRAM size settings

3-SN DRAM size at each SN-F port	Top address bits [bit 1, bit 0]	Inv_top_address_bit value
1GB (Total 3GB)	[35, 30]	1'b0
2GB (Total 6GB)	[35, 31]	1'b0
4GB (Total 12GB)	[33, 32]	1'b0
8GB (Total 24GB)	[34, 33]	1'b0
16GB (Total 48GB)	[39, 34]	1'b0
32GB (Total 96GB)	[39, 36]	1'b1

Table 2-28 3-SN DRAM size settings (continued)

3-SN DRAM size at each SN-F port	Top address bits [bit 1, bit 0]	Inv_top_address_bit value
64GB (Total 192GB)	[37, 36]	1'b0
128GB (Total 384GB)	[38, 37]	1'b0

Table 2-29 6-SN DRAM size settings

6-SN DRAM size at each SN-F port	Top address bits [bit 2, bit 1, bit 0]	Inv_top_address_bit value
1GB (Total 6GB)	[35, 31, 28]	1'b0
2GB (Total 12GB)	[33, 32, 28]	1'b0
4GB (Total 24GB)	[34, 33, 28]	1'b0
8GB (Total 48GB)	[39, 34, 33]	1'b0
16GB (Total 96GB)	[39, 36, 28]	1'b1
32GB (Total 192GB)	[37, 36, 28]	1'b0
64GB (Total 384GB)	[38, 37, 28]	1'b0

2.18.2 SN contiguous address spaces

This section describes which physical address bits must be connected to an SN-F for various configurations.

If all HN-Fs send their cache misses to a single SN-F, that SN-F sees the full address space. However, it is common for a system to have two or more SN-Fs, with each HN-F sending its cache misses to a single SN-F. In this scenario, each SN-F receives only part of the address space. SN-F typically removes one or more address bits in order to retain a contiguous address map. The full physical address is presented to each SN-F for every request. This is necessary so that any SN-F based memory protection logic can function. However, the actual mapping to RAM locations can be done with the modified address. The address modification depends on multiple factors:

- Number of HN-Fs in the cache group.
- Number of SN-Fs in the cache group.
- · Which HN-Fs share SN-Fs.

2ⁿ-SN address striping

The following table provides HN-F and SN-F combinations supported within a cache group, along with the address bits that should be removed.

Table 2-30 HN-F and SN-F combinations supported within a cache group

Number of HN-Fs	Number of SN-Fs	Bits to strip from full PA
2	1	None
	2	[6]
4	1	None
	2	[7]
	4	[7, 6]

Table 2-30 HN-F and SN-F combinations supported within a cache group (continued)

Number of HN-Fs	Number of SN-Fs	Bits to strip from full PA
8	1	None
	2	[8]
	4	[8, 7]
	8	[8, 7, 6]
16	1	None
	2	[9]
	4	[9, 8]
	8	[9, 8, 7]
	16	[9, 8, 7, 6]
32	1	None
	2	[10]
	4	[10, 9]
	8	[10, 9, 8]
	16	[10, 9, 8, 7]
	32	[10, 9, 8, 7, 6]

The method used to calculate the bits stripped is as follows:

- The highest bit removed is the least significant address bit used in the XOR function for the most significant bit of the HN-F select hash function.
 - 32 HN-Fs: PA[10]
 - 16 HN-Fs: PA[9]
 - 8 HN-Fs: PA[8]
 - 4 HN-Fs: PA[7]
 - 2 HN-Fs: PA[6]
- The number of bits stripped is log₂(number of SN-Fs), sequentially below the highest bit.

This approach to bit stripping assumes that HN-Fs that share SN-Fs are sequential in the RN SAM cache group HN-F table. For example, if there are eight HN-Fs and two SN-Fs, the bottom four HN-Fs in the RN SAM table would share an SN-F, and the top four HN-Fs would share an SN-F.

3-SN and 6-SN address striping

As 3-SN and 6-SN address hashing implements modulo function, based on the top address bits used, the SN-F must remove these bits to achieve a contiguous memory map in the DRAM.

- 3-SN mode: The SN-F must remove top_address_bit1 and top_address_bit0.
- 6-SN mode: The SN-F must remove top_address_bit2, top_address_bit1, and top_address_bit0.

2.19 RN and HN-F SAM programming

This section describes the various encodings and operating modes of registers in the RN and HN-F SAM.

This section contains the following subsections:

- 2.19.1 SAM programming sequence on page 2-104.
- 2.19.2 Region size configuration on page 2-105.
- 2.19.3 Example memory map programming on page 2-107.
- 2.19.4 Support for CCIX Port Aggregation on page 2-109.

2.19.1 SAM programming sequence

This section describes the SAM programming sequence.

1. Memory map definition

- Define hashed memory regions (targeting HN-Fs).
 - Partition the hashed memory regions into SCGs, if applicable.
- Define non-hashed memory regions (likely targeting HN-I or HN-D).
- Define non-hashed regions with HN-I or HN-D mapping.

Note	

HN-F may also be used in non-hashed mode if one HN-F is the target.

- Define GIC memory region, if present.
- Define HN-F SAM memory regions, if applicable.
- Define HN-F to SN-F mapping in direct, 3-SN, or 6-SN modes.

2. Check for memory map rules

- Ensure there are no overlapping non-hashed memory regions.
- Ensure there are no overlapping hashed memory regions.
- Check that the memory regions are size aligned.

3. Programming sequence

- For each HN-F SAM:
 - For each SN-F ID, program the appropriate properties based on the features supported in the por hnf sam sn properties register.
 - The attributes for each SN-F contain the interface width (128b/256b), CMO and PCMO support.
 - If the HN-F is directly mapped to an SN-F:
 - Program the SN0 target ID and corresponding attributes.
 - Else, if the HN-F is in 3-SN or 6-SN mode:
 - Program all SN-F target IDs and the attributes for each SN-F.
 - Program the mode of operation as 3-SN or 6-SN.
 - Program the top address bits.
 - If the HN-F has memory-region-based SN-F partitioning:
 - Program the memory region registers, including the target ID associated with each region.
- For each RN-F RN SAM (or RN-F ESAM within CMN-600):
 - For each SCG:
 - Program the SCG memory region registers.
 - Program the SCG HN-F count registers.
 - Program the SCG HN-F target ID registers.
 - If PrefetchTgt ops are enabled, then:

- Program the SN-F target ID registers for SCG.
- Program the SN-F target ID selection mode for SCG.
- If 3-SN or 6-SN modes are used, program the top address bits.
- Program the non-hashed memory region registers.
- Program the non-hashed target ID registers.
- Program the **rnsam status** register to disable the default target ID mode.
- For each RN-I RN SAM and RN-D RN SAM:
 - For each SCG:
 - Program the SCG memory region registers.
 - Program the SCG HN-F count registers.
 - Program the SCG HN-F target ID registers.
 - Program the non-hashed memory region registers.
 - Program the non-hashed target ID registers.
 - Program the **rnsam status** register to disable the default target ID mode.

2.19.2 Region size configuration

This section describes the supported region sizes and their encodings in various programmable registers.

RN SAM and HN-F SAM support memory partition sizes from 64MB to maximum addressable space (2⁴⁸) for hashed and non-hashed memory partitions. The GIC memory region supports 64KB, 128KB, 256KB and 512KB region sizes. Each partition must be individually programmed in the SAM registers using the following size encodings.

Table 2-31 RN SAM and HN-F SAM configuration register memory partitions

regionX_size [5 bits]	Memory partition size (hashed and non-hashed regions)	GIC memory partition size
5, p00000	64MB	64KB
5,p00001	128MB	128KB
5,p00010	256MB	256KB
5, pool1	512MB	512KB

Table 2-31 RN SAM and HN-F SAM configuration register memory partitions (continued)

regionX_size [5 bits]	Memory partition size (hashed and non-hashed regions)	GIC memory partition size	
5'b00100	1GB	N/A	
5'b00101	2GB		
5'b00110	4GB		
5'b00111	8GB		
5'b01000	16GB		
5'b01001	32GB		
5'b01010	64GB		
5'b01011	128GB		
5'b01100	256GB		
5'b01101	512GB		
5'b01110	1TB		
5'b01111	2TB		
5'b10000	4TB		
5'b10001	8TB	1	
5'b10010	16TB	1	
5'b10011	32TB		
5'b10100	64TB		
5'b10101	128TB		
5'b10110	256TB		

The RN SAM also outputs the target type of the device along with the target ID for the RN to use in various optimizations. The target type encodings are listed in the following table.

Table 2-32 Target type encodings

Target type [2 bits]	Device type
2'b00	HN-F
2'b01	HN-I
2'b10	CXRA
2'b11	Reserved

The following table contains RA SAM configuration register memory partition sizes and encodings.

Table 2-33 RA SAM configuration register memory partition sizes and encodings

regionX_size	Memory partition size
6'b000000	64KB
6'b000001	128KB
6'b000010	256KB
6'b000011	512KB

Table 2-33 RA SAM configuration register memory partition sizes and encodings (continued)

regionX_size	Memory partition size
6'b000100	1MB
6'b000101	2MB
6'b000110	4MB
6'b000111	8MB
6'b001000	16MB
6'b001001	32MB
6'b001010	64MB
6'b001011	128MB
6'b001100	256MB
6'b001101	512MB
6'b001110	1GB
6'b001111	2GB
6'b010000	4GB
6'b010001	8GB
6'b010010	16GB
6'b010011	32GB
6'b010100	64GB
6'b010101	128GB
6'b010110	256GB
6'b010111	512GB
6'b011000	1TB
6'b011001	2TB
6'b011010	4TB
6'b011011	8TB
6'b011100	16TB
6'b011101	32TB
6'b011110	64TB
6'b011111	128TB
6'b100000	256TB

2.19.3 Example memory map programming

This section describes an example memory map and how to program it in the RN SAM and HN-F SAM.

The following figure shows an example memory map with 1024GB addressable size. It is based on the Arm 40-bit proposed address map. It has three separate DRAM regions (from 2-4GB, 34-64GB and 544-1024GB) and four I/O regions, which must be mapped to specific targets. It is assumed that the I/O region 256-512GB is unused and no requests are sent to this address.

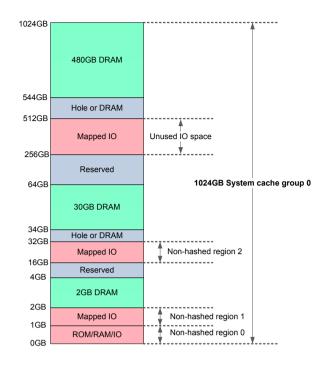


Figure 2-30 CMN-600 example memory map

Assuming we have eight HN-Fs in the system and all HN-Fs are being used for one SCG (group 0), use the following steps to program the RN SAM.

- Since the DRAM regions are non-contiguous and we are assigning the entire DRAM space to one system cache group, it is ideal to map the full 1024GB memory map to the system cache group.
- Each of the non-hashed regions can then be carved out of the full 1024GB memory map as shown in the above figure and assigned to individual non-hashed targets.
- Once the RN SAM programming is done, we need to turn ON the region-based target ID selection by disabling the default mode of the RN SAM.

The following table shows the RN SAM registers and the corresponding programmed values.

Table 2-34 RN SAM registers and programmed values

Register name	Field name	Value	Description
sys_cache_grp_region_reg0	region0_base_address	0x0_0000	Base address [47:26]
	region0_size	5'b01110	1024GB size
	region0_target_type	2'b00	HN-F target type
	region0_valid	1'b1	Region 0 is valid
sys_cache_grp0_nodeid_reg0	nodeid_0	<hnf0_node_id></hnf0_node_id>	Physical node IDs of the HN-Fs in the system from HN-F 0
	nodeid_1	<hnfl_node_id></hnfl_node_id>	to HN-F 7
	nodeid_2	<hnf2_node_id></hnf2_node_id>	
	nodeid_3	<hnf3_node_id></hnf3_node_id>	
sys_cache_grp0_nodeid_reg1	nodeid_4	<hnf4_node_id></hnf4_node_id>	
	nodeid_5	<hnf5_node_id></hnf5_node_id>	
	nodeid_6	<hnf6_node_id></hnf6_node_id>	
	nodeid_7	<hnf7_node_id></hnf7_node_id>	

Table 2-34 RN SAM registers and programmed values (continued)

Register name	Field name	Value	Description
sys_cache_group_hnf_count	scg0_num_hnf	0x08	Total of eight HN-Fs in this system cache group
non_hash_mem_region_reg0	region0_base_address	0x0_0000	1GB from [47:26] 0x0_0000_0000
	region0_size	5'b00100	1GB size
	region0_target_type	2'b01	HN-I target type
	region0_valid	1'b1	Region 0 is valid
	region1_base_address	0x0_0010	1GB region from 0x0_4000_0000
	region1_size	5'b00001	1GB size
	region1_target_type	2'b01	HN-I target type
	region1_valid	1'b1	Region 1 is valid
non_hash_mem_region_reg1	region2_base_address	0x0_0100	16GB region from 0x4_0000_0000
	region2_size	5'b01000	16GB size
	region2_target_type	2'b01	HN-I target type
	region2_valid	1'b1	Region 2 is valid
non_hash_tgt_nodeid0	nodeid_0	<hni0_node_id></hni0_node_id>	Node ID of HN-I 0 corresponding to non-hashed region 0
	nodeid_1	<hni1_node_id></hni1_node_id>	Node ID of HN-I 1 corresponding to non-hashed region 1
	nodeid_2	<hni2_node_id></hni2_node_id>	Node ID of HN-I 2 corresponding to non-hashed region 2
rnsam_status	nstall_req	1'b1	Unstall any operations that are dependent on SAM programming.
	default_target	1'b0	Disable default mode and use the programmed ranges for new incoming addresses.

Similarly to RN SAM, HN-F SAM must also be programmed so that it can select the correct SN-F target ID. All HN-F SAMs within SCG 0 must have the same programming as shown in the following table, including the attributes of each SN-F.

Table 2-35 HN-F programming information

Register name	Field name	Value	Description
por_hnf_sam_control	hn_cfg_sn0_nodeid	<sn0_node_id></sn0_node_id>	Node ID of SN-F 0
	hn_cfg_sn1_nodeid	<sn1_node_id></sn1_node_id>	Node ID of SN-F 1
	hn_cfg_sn2_nodeid		Node ID of SN-F 2
	hn_cfg_three_sn_en	1'b1	Enable 3-SN
	hn_cfg_sam_top_address_bit0	39	Bit 39 of address
	hn_cfg_sam_top_address_bit1	36	Bit 36 of address
	hn_cfg_sam_inv_top_address_bit	1'b1	Invert top address bit

2.19.4 Support for CCIX Port Aggregation

RN SAM supports CCIX Port Aggregation (CPA).

Requests from an RN to a remote chip can be striped across multiple CCIX gateway blocks based on address bits. The following figure shows this functionality.

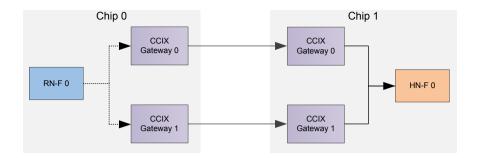


Figure 2-31 RN SAM CCIX Port Aggregation

This striping is achieved by hashing physical address bits [47:6]. In a two-chip system, the RN SAM CCIX hashing supports up to two gateway blocks. RN SAM also has an address mask for CPA which can be used to remove certain bits from the hashing. For example, if the user wants the address striping to be at 512B granularity, the address mask bits [47:6] can be set to 42'3FFFFFFFF8. With this mask setup, the logical operator AND is used on all incoming addresses before hashing the address bits. Please refer to the RN SAM registers for details on programming.

HN-F support for CCIX Port Aggregation

HN-F also supports CPA for snoop requests going to a remote chip. HN-F uses the same hashing as RN SAM so that a given address always goes to the same CCIX gateway block. HN-F uses the RN-F's ID to determine if CPA is enabled. Please refer to the logical to physical ID conversion registers in HN-F to enable CPA for each RN-F's ID.

Guidelines for enabling CPA in RN SAM and HN-F

Certain rules apply when enabling the CPA in RN SAM and HN-F:

- The CPA is only applicable to non-hashed memory ranges.
- Each non-hashed memory range can be explicitly enabled to use CPA or use a single non-hashed target ID.
- RN SAM and HN-F SAM support one CPA group.
- Each CPA group supports up to two-gateway hashing.
- The HN-F, when participating as a CPA target for traffic from a remote RN-F, must not receive non-CPA traffic from the same remote RN-F (i.e. an RN-F cannot send CPA and non-CPA traffic to the same remote HN-F).

CPA programming sequence

Both RN-SAM and HN-F SAM must be programming to enable CPA. CMN-600 supports one CCIX port aggregation group with up to two CCIX gateway nodes in this group.

RN SAM CPA programming sequence:

- 1. Each non-hashed_memory region in the RN SAM has a corresponding Port Aggregation enable bit in cml_port_aggr_mode_ctrl_reg. If a non-hashed memory region belonging to a remote chip is required to use CPA, then the corresponding enable bit (region<n> pag en) must be set to 1'b1.
- 2. CPA hashes address bits [47:6] to distribute the traffic between the CCIX gateways. If certain bits are not to be used in the hashing, the **cml_port_aggr_grp0_add_mask** register must be programmed accordingly. Write 1'bo to the corresponding address bit in the mask.
- 3. The number of CCIX ports (CCIX gateways) must be programmed in cml_port_aggr_grp0_reg.num_cxg_pag0. The CCIX gateway's CHI node ID must be programmed in the same register's pag0_tgtid field. If two CCIX gateways are being used, then both node IDs must be programmed in this register. This programming is used by all regions that have CPA enabled.
- 4. Repeat the above steps for all RN SAMs in the chip.

To determine if CPA is enabled, RN SAM uses the address ranges and HN-F SAM uses the RN-F's logical ID. As explained in 2.21 Cross chip routing and ID mapping on page 2-122, HN-F contains the Logical ID (LDID) to physical node ID conversion table as shown in #unique_120. This table, along with the CHI node ID and valid fields, also contains remote and cpa_en bits. By using these two additional bits, HN-F can determine if the RN-F is enabled to use CPA, and sends the snoops through appropriate ports by hashing the address bits.

HN-F SAM CPA programming sequence:

- 1. For each valid LDID in the system, the **nodeid_ra<ldid>**, **remote_ra<ldid>**, and **cpa_en_ra<ldid>** fields must be programmed in the **por_hnf_rn_phys_id<n>** registers. If the RN-F is a remote requestor, the **remote** bit must be set to 1'b1. If CPA is enabled for a remote RN-F, the **cpa_en** bit must be set to 1'b1. Local RN-F LDIDs must have the **remote** and **cpa_en** bits set to 1'b0.
- 2. CPA hashes address bits [47:6] to distribute the traffic between the CCIX gateways. If certain bits are not to be used in the hashing, the **por_hnf_cml_port_aggr_grp0_add_mask** register must be programmed accordingly. Write 1'b0 to the corresponding address bit in the mask.
- 3. The number of CCIX ports (CCIX gateways) must be programmed in por_hnf_cml_port_aggr_grp0_reg.num_cxg_pag0. The CCIX gateway's CHI node ID must be programmed in the same register's pag0_tgtid field. If two CCIX gateways are being used, then both node IDs must be programmed in this register. This programming is used by all remote RN-Fs that have CPA enabled.
- 4. Repeat the above steps for all HN-F SAMs in the chip.

In a two-chip system with CPA enabled, Chip 0's RN SAM CPA mask and Chip 1's HN-F SAM CPA mask must be programmed to match. Similarly, Chip 1's RN SAM CPA mask must match Chip 0's HN-F SAM CPA mask.

2.20 HN-I SAM

HN-I SAM maps the incoming address to a target endpoint that is connected downstream behind HN-I. This process simplifies endpoint mapping and corresponding ordering to downstream endpoint address space.
Note
The endpoint here refers to either a peripheral with memory-mapped I/O space, such as UART or GPIO, or a physical memory, such as SRAM or FLASH.
HN-I SAM provides the capability to program and configure up to three non-overlapping address region within its endpoint address space: Address Region 1, Address Region 2 and Address Region 3. The default address region, Default Region or Address Region 0, encompasses all HN-I address space that is not configured using the Address Region {1, 2, 3} configuration registers.
Note
This section uses the terms Default Region and Address Region 0 interchangeably.
Each address region can be programmed to be either peripheral memory or physical memory. By default each address region is mapped to peripheral memory unless explicit programmed to be physical memory Address regions mapped as peripheral memory follows device memory ordering guarantees while those mapped as physical memory follows normal memory ordering guarantees. The attributes of incoming transactions to HN-I do not change these ordering guarantees.
Note
If the address region is mapped to peripheral memory, it can be further divided into smaller address spaces known as order regions. An order region is configured per address region. An order region in HN I address space is an address granularity within which the peripheral memory ordering is maintained.

The minimum address granularity for an address region or order region is 4KB. This size is equivalent to the minimum slave address space granularity in AXI/ACE-Lite. Therefore, the base address in the Address Region {1, 2, 3} registers only includes bits [REQ_ADDR_WIDTH-1:12].

To summarize, HN-I SAM provides the capability to program and configure:

- Address regions: one to three.
- Order regions: one configurable size per address region.

In summary:

- Address Regions 1, 2, and 3 cannot overlap.
- All endpoint address space that does not fall under Address Regions 1, 2, or 3 is considered Default Region.
- The order region size within any address region can be configured to 6'b111111 to enforce strict ordering for that specific address region.
- If address region is programmed as physical memory, order region programming function output doesn't matter, as the entire address region follows normal memory ordering guarantees.

Configuration requirements

- 1. HN-I SAM can only be programmed during boot process.
- 2. A given HN-I SAM region register must not be enabled if the new requests, that can potentially fall into the newly configured address region and/or order region require ordering with respect to the existing outstanding requests.

Configuration registers

The Address Region 0 register (por_hni_sam_addrregion0_cfg) is always valid; no valid bit is defined for this register unlike the Address Region {1, 2, 3} registers. By default, without any prior SAM programming, the entire address space of a given HN-I is mapped to the Default Region and all transactions to this region are kept in order. The default order region size in Address Region 0 is 6'b111111, which covers the entire HN-I address space. This is the same as configuring the order region size to:

 \geq =6'b100100 (for REQ_ADDR_WIDTH = 48), or

>=6'b100000 (for REQ ADDR WIDTH = 44)

The following table shows the register bit assignments for por hni sam addrregion0 cfg.

Table 2-36 por_hni_sam_addrregion0_cfg bit assignments

Bit field	Width	Default	Field name	Description
5:0	6	6'b111111	order_reg_size	<n>; used to calculate Order Region 0 size within Address Region 0 ($2^n \times 4KB$).</n>
				Example: For n=0x08, order region size is $2^8 \times 4KB=1MB$.
58:58	1	1'b0	physical_mem_en	Used to map this address region to physical memory.
59:59	1	1'b0	ser_all_wr	Used to serialize all writes within Address Region 0.
60:60	1	1'b0	ser_devne_wr	Used to serialize Device-nGnRnE writes within Address Region 0.
61:61	1	1'b1	pos_early_rdack_en	Enables sending early read receipts from HN-I in Address Region 0; used to improve ordered read performance.
62:62	1	1'b1	pos_early_wr_comp_en	Enables Early Write Acknowledgment in Address Region 0; used to improve write performance.

The following table shows the register bit assignments for the Address Region $\{1, 2, 3\}$ configuration registers (**por hni sam addregionX cfg** where $X=\{1, 2, 3\}$).

Table 2-37 por_hni_sam_addrregionX_cfg bit assignments

Bit field	Width	Default	Field name	Description
5:0	6	6'b0	order_reg_size	<n>; used to calculate Order Region X size within Address Region X ($2^n \times 4KB$).</n>
				Example: For n=0x08, order region size is $2^8 \times 4KB=1MB$.
15:10	6	6'b0	addr_region_size	<n>; used to calculate Address Region X size (2ⁿ × 4KB).</n>
				CONSTRAINT: Resultant size must be less than or equal to 2^(address width).
				Example: For n=0x10, address region size is $2^{16} \times 4KB=256MB$.
55:20	36	36'b0	base_addr	Address Region X base address [REQ_ADDR_WIDTH-1:12].
				CONSTRAINT: Must be aligned to Address Region X size.
				Example: For an address region size of 256MB, base address can be 0x0,
				0x0000_1000_0000, 0x0000_2000_0000, 0x0000_3000_0000, 0x0000_4000_0000, etc.
58:58	1	1'b0	physical mem en	Used to map this address region to physical memory.
30.30	1	1 00	physical_mem_en	Osca to map and address region to physical memory.
59:59	1	1'b0	ser_all_wr	Used to serialize all writes within Address Region X.

Table 2-37 por_hni_sam_addrregionX_cfg bit assignments (continued)

Bit field	Width	Default	Field name	Description
60:60	1	1'b0	ser_devne_wr	Used to serialize Device-nGnRnE writes within Address Region X.
61:61	1	1'b1	pos_early_rdack_en	Enable sending early read receipts from HN-I in Address Region 0, used to improve ordered read performance.
62:62	1	1'b1	pos_early_wr_comp_en	Enables Early Write Acknowledgment in Address Region X; used to improve write performance.
63:63	1	1'b0	valid	Address Region X fields are programmed and valid.

This section contains the following subsection:

• 2.20.1 Sample system configuration on page 2-114.

2.20.1 Sample system configuration

This section describes a sample system configuration for HN-I SAM with Address Region 1, Address Region 2, and Address Region 3, as well as order regions within Address Region {0, 1, 2, 3}.

The following figure shows the high-level configuration of the address space and the base addresses of each address region.

HN-I address space	Base address
Address Region 0 (Default Region)	
Address Region 3	0x0000_0020_0000
Address Region 0 (Default Region)	0x0000_0004_0000
Address Region 2	0x0000_0002_0000
Address Region 0 (Default Region)	0x0000_0000_4000
Address Region 1	0x0000_0000_2000
Address Region 0 (Default Region)	0x0000_0000_0000

Figure 2-32 HN-I address space example

Configurable parameters

In this example, the following configurable parameters are used:

Address Region 0

The following figure shows the sample configuration for Address Region 0.

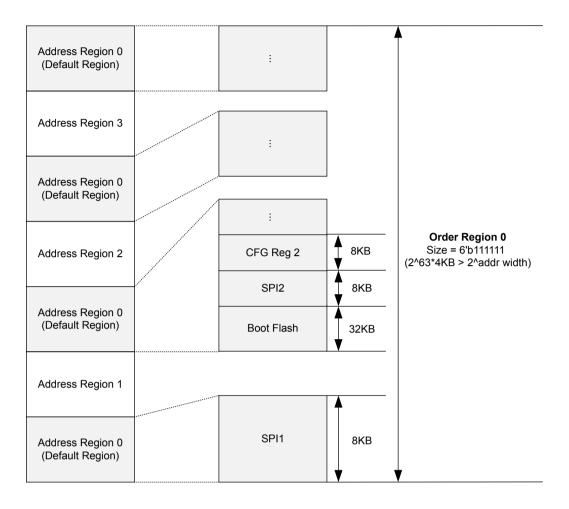


Figure 2-33 Address Region 0 sample configuration

Address Region 0 encompasses any I/O space that does not map to Address Region {1, 2, 3}. The size of the maximum peripheral address space in Address Region 0 is 32KB (Boot Flash). Requests targeting this Boot Flash must be kept in order. By configuring Order Region 0's size to 32KB, requests with addresses that are within the range 0x0000_0000 to 0x0000_0000_8000 are ordered. However, since Boot Flash is not aligned to the 32KB boundary (0x0000_0000_4000 to 0x0000_0000_c000), requests may be out of order and create an issue. In order to ensure all requests to Boot Flash are ordered, Order Region 0's size must be configured to at least 64KB. In this configuration, requests to SPI1, SPI2, and CFG Reg 2 are also ordered with respect to requests to Boot Flash, potentially impacting performance. Instead, Address Region 0 can have a SAM with Boot Flash aligned to the 32KB boundary and Order Region 0's size can be configured to 32KB.

Address Region 1

The following figure shows the sample configuration for Address Region 1.

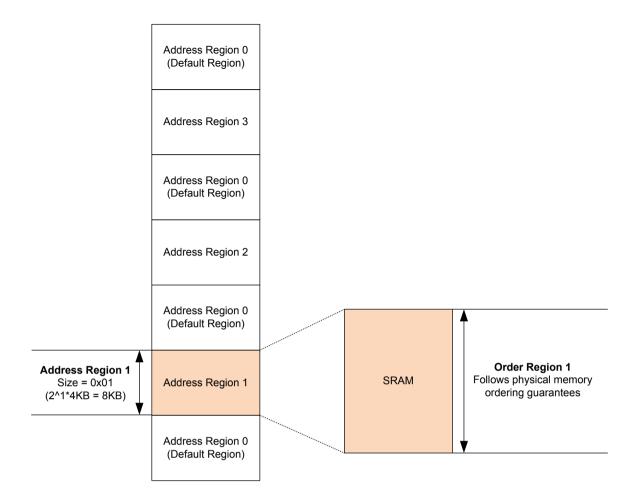


Figure 2-34 Address Region 1 sample configuration

Address Region 1 starts at base address 0x0000_0000_2000 and is 8KB in size. This region is mapped as physical memory as there is SRAM behind this region. The entire Address Region 1 is considered as one order region. Therefore, ordering is maintained between all requests to overlapping cacheline region (64B).

Address Region 2

The following figure shows the sample configuration for Address Region 2.

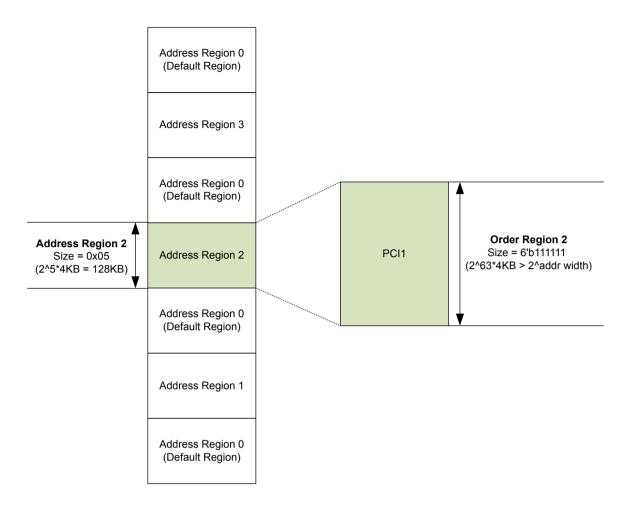


Figure 2-35 Address Region 2 sample configuration

Address Region 2 starts at base address $0 \times 0000_0002_0000$ and is 128KB in size. Order Region 2's size $(2^{63} \times 4 \text{KB})$ is configured to the maximum value (6'b111111), so Address Region 2 is considered as one order region. PCI1 occupies the entire order region, so all PCI1 requests are ordered.

Address Region 3

The following figure shows the sample configuration for Address Region 3.

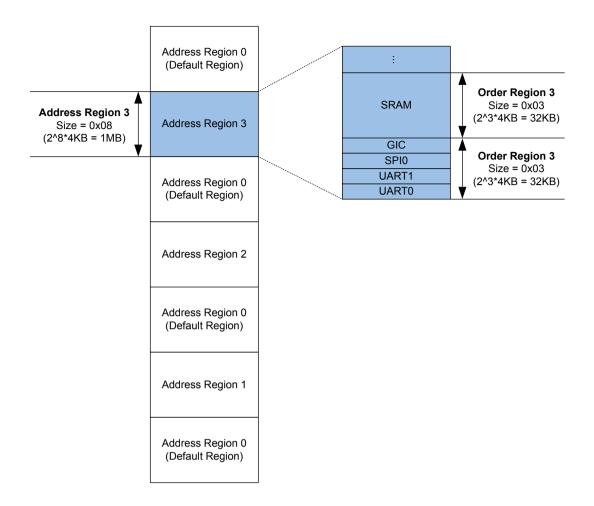


Figure 2-36 Address Region 3 sample configuration

Address Region 3 starts at base address <code>0x0000_0020_0000</code> and is 1MB in size. Order Region 3's size (32KB) is less than Address Region 3's size (1MB), resulting in a total of 32 order regions. GIC, SPI0, UART1, and UART0 map to one order region, so all requests to these peripherals are ordered. SRAM also maps to one order region, so all requests to SRAM are ordered. Since SRAM maps to a separate order region from GIC, SPI0, UART1, and UART0, requests to SRAM and requests to GIC, SPI0, UART1, and UART0 are not ordered.

For the above example, HN-I SAM configuration registers (**por_hni_sam_addrregionX_cfg** where $X=\{0, 1, 2, 3\}$) are programmed as follows:

Table 2-38 Address Region 0 configuration

Bit field	Width	Field name	Configured value
5:0	6	order_reg_size	6'h4
58:58	1	physical_mem_en	1'b0
59:59	1	ser_all_wr	1'b0
60:60	1	ser_devne_wr	1'b0
61:61	1	pos_early_rdack_en	1'b1
62:62	1	pos_early_wr_comp_en	1'b1

Table 2-39 Address Region 1 configuration

Bit field	Width	Field name	Configured value
5:0	6	order_reg_size	6'h1
15:10	6	addr_region_size	6'h1
55:20	36	base_addr	36'h0000_0000_2
58:58	1	physical_mem_en	1'b1
59:59	1	ser_all_wr	1'b0
60:60	1	ser_devne_wr	1'b0
61:61	1	pos_early_rdack_en	1'b1
62:62	1	pos_early_wr_comp_en	1'b1
63:63	1	valid	1'b1

Table 2-40 Address Region 2 configuration

Bit field	Width	Field name	Configured value
5:0	6	order_reg_size	6'b111111
15:10	6	addr_region_size	6'h5
55:20	36	base_addr	36'h0000_0002_0
58:58	1	physical_mem_en	1'b0
59:59	1	ser_all_wr	1'b0
60:60	1	ser_devne_wr	1'b0
61:61	1	pos_early_rdack_en	1'b1
62:62	1	pos_early_wr_comp_en	1'b1
63:63	1	valid	1'b1

Table 2-41 Address Region 3 configuration

Bit field	Width	Field name	Configured value
5:0	6	order_reg_size	6'h3
15:10	6	addr_region_size	6'h8
55:20	36	base_addr	36'h0000_0020_0
58:58	1	physical_mem_en	1'b0
59:59	1	ser_all_wr	1'b0
60:60	1	ser_devne_wr	1'b0
61:61	1	pos_early_rdack_en	1'b1
62:62	1	pos_early_wr_comp_en	1'b1
63:63	1	valid	1'b1

—— Note ———

The following attributes are kept as default value:

- ser_all_wr
- ser_devne_wr
- pos_early_wr_comp_en
- pos_early_rdack_en

2.21 Cross chip routing and ID mapping

IDs are generated and used to route protocol messages across multiple chips.

Cross chip routing and ID mapping

This section covers ID generation and methods used to route CCIX protocol messages across multiple chips. RA SAM-related acronyms include:

- CCIX Request Agent ID (RAID).
- CCIX Home Agent ID (HAID).
- Logical Device ID (LDID).

LDIDs are uniquely assigned within a device type. For example, RN-Fs in the system could be assigned LDIDs 0-n, while RN-Is could be assigned LDIDs 0-m, and RN-Ds could be assigned LDIDs 0-k.

The following rules apply:

- RAID usage:
 - Is confined to CCIX gateway devices only.
 - All non-CCIX CMN-600 components use and operate on sequentially assigned LDIDs. CXG devices bidirectionally map each CCIX RAID to an LDID.
- RN-F LDID assignment:
 - Local RN-Fs are assigned LDIDs from 0-n, sequentially.
 - Remote RN-Fs must be assigned LDIDs n+1 and above by the discovery software.

A basic block diagram is shown in the following figure.

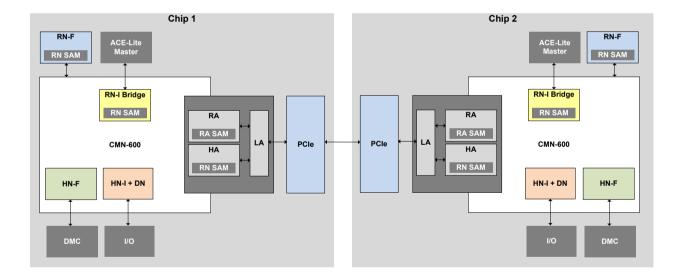


Figure 2-37 RA SAM block diagram

Request from an RN-F to a remote HN-F

The following figure shows all IDs generated and used to route a request from a local RN-F on Chip 1 to a remote HN-F on Chip 2.

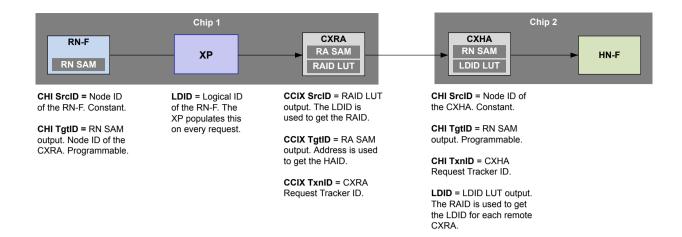


Figure 2-38 RN-F to remote HN-F IDs

The flow for this process is as follows:

- The RN-F looks up the programmable RN SAM to populate the CHI target ID on a request.
- The XP populates the RN-F LDID on this request.
- RN-Is and RN-Ds are internal to CMN-600 and get their logical ID assigned during CMN-600 generation. The RN-I or RN-D sends this LDID on every request.
- The CXRA contains programmable lookup tables, RAID LUTs, for each class of local RN (RN-F, RN-I, and RN-D). CCIX discovery software discovers all local RN-Fs, RN-Ds, and RN-Is, and programs their corresponding RAIDs in these LUTs. The LDID of the incoming request is used to look up these RAID LUTs and determine the CCIX RAID. CXRA also has CCIX RA SAM. This CCIX RA SAM is used to generate the HAID. This HAID is used as the target ID to route the CCIX request message.
- The LDID's for local RN-F's must not be changed. The build-time LDID assignments are discovered by reading any one of the HN-F **por_hnf_rn_physid** registers. A few cycles after reset, these registers are prepopulated with the LDIDs for local RN-Fs within that chip.

The following figure shows the programmable registers during CCIX Discovery.

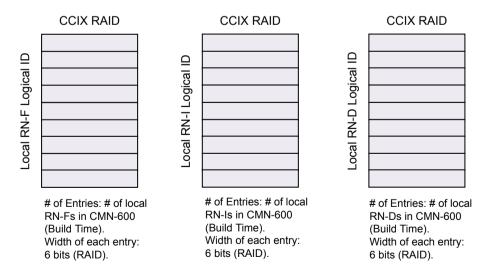
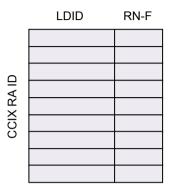



Figure 2-39 Programmable registers during CCIX Discovery

The CXHA contains a programmable register to program the local LDID for each remote CCIX RAID that can communicate with local CHI HNs on a given chip or socket. Each entry in the programmable

register also contains an RN-F bit to identify whether the remote CXRA is a caching agent (RN-F) or not. HN-Fs on the local chip use this LDID to track a line in its SF. Therefore unique LDID assignment is required for each remote requesting caching agent. These should not overlap with LDIDs assigned to local RN-Fs. It is assumed that these IDs are assigned after CCIX Discovery is complete. For example, all the CXRAs are discovered and assigned an RAID.

The following figure shows the programmable register for RAID to LDID during CCIX Discovery.

of Entries: 64 (Max number of RAs in CCIX). Width of each entry: 6 bits (Max number of remote caching agents).

Figure 2-40 RAID to LDID during CCIX Discovery

With the LDID passed to HN-F in all CHI REQ flits, HN-F uses this LDID as the true logical ID for SF tracking purposes. HN-F uses a logical ID vector in the SF, with its size based on the total number of RN-Fs in the entire system (local and remote RN-Fs). The size is assigned when CMN-600 is generated. This value controls the SF efficiency, so it is ideal to set the value based on the total number of caching agents that can be there in the entire system. If the exact number is not known, the value must be set to support the maximum number of caching agents that the entire system can have. CCIX supports a maximum of 64 CXRAs in the entire system.

The following figure shows all IDs that are generated and used to route a response from a remote HN-F on Chip 2 to an RN-F on Chip 1.

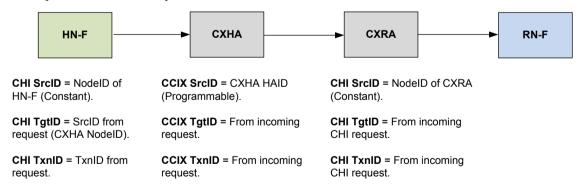


Figure 2-41 Remote HN-F to RN-F IDs

The following figure shows the flow of a snoop from an HN-F to a remote RN-F.

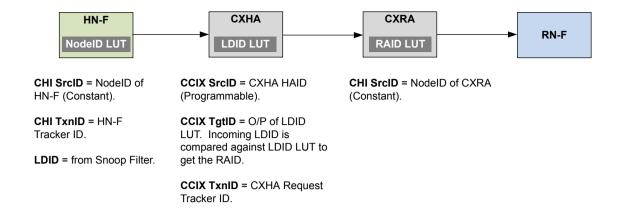


Figure 2-42 Snoop from HN-F to remote RN-F

The HN-F contains the following programmable LUT to program the CXHA node ID of each remote caching agent. HN-F uses the unique LDID from the snoop vector to look up the physical CHI node ID of the CXHA where the snoops need to be sent. The following table shows an example programming where logical IDs 0-7 are assigned to the local RN-Fs and logical IDs 8-15 are assigned to the remote RN-Fs. Software assigns these IDs during the Discovery process.

Table 2-42 Example program

Logical ID as index	HN-F programmable register	
	CHI node ID	ID valid
0	Local RN-F 0	1
1	Local RN-F 1	1
2	Local RN-F 2	1
7	Local RN-F 7	1
8	CXHA	1
9	СХНА	1
15	CXHA	1
16	Not programmed	0
	Not programmed	0
n	Not programmed	0

The CXHA uses the LDID from incoming CHI snoop to perform a content match against the entries of programmable CCIX RAID to local LDID LUT. This results in the CCIX RAID sending a CCIX snoop, as the following figure shows.

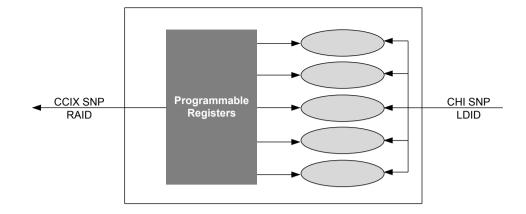


Figure 2-43 CHI SNP LDID to CCIX SNP RAID flow

The following figure shows the number of entries at build time.

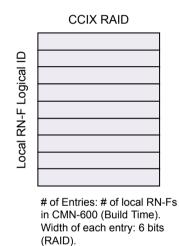


Figure 2-44 Number of entries at build time

The following figure shows the detailed flow of a CHI SNP LDID to CCIX SNP RAID conversion.

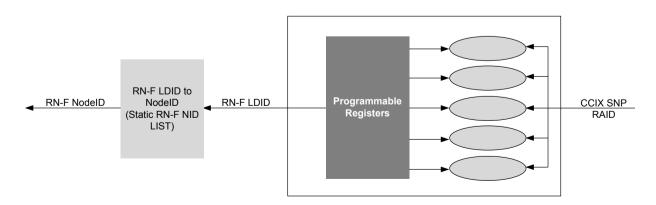


Figure 2-45 CHI SNP LDID to CCIX SNP RAID detailed flow

The following figure shows all IDs that are generated and used to route a snoop response from a remote RN-F on Chip 1 to an HN-F on Chip 2.

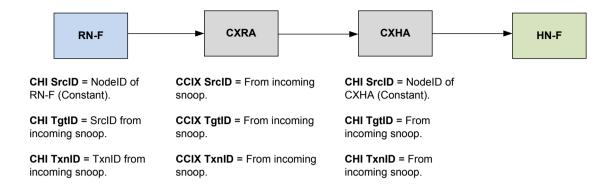


Figure 2-46 Remote RN-F to HN-F with all IDs generated

2.22 Clocking

The following sections describe the CMN-600 clocking microarchitecture:

This section contains the following subsections:

- 2.22.1 Clock domains on page 2-128.
- 2.22.2 CML clock inputs on page 2-128.
- 2.22.3 Clock hierarchy on page 2-130.
- 2.22.4 Global clock on page 2-131.
- 2.22.5 Clock enable inputs on page 2-131.
- 2.22.6 Timing closure with credited slices on page 2-132.

2.22.1 Clock domains

CMN-600 operates in a single clock domain as shown in the following figure.

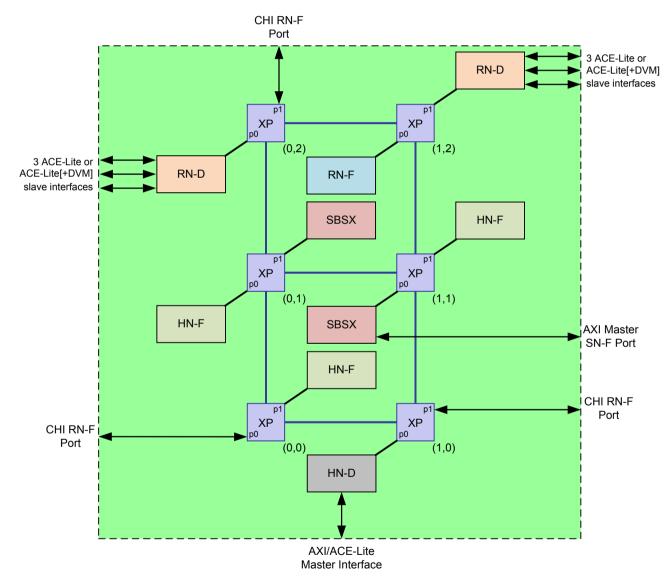


Figure 2-47 CMN-600 clock domain - fully synchronous

2.22.2 CML clock inputs

There are two additional clock inputs for the CML configuration: CLK_CGL and CLK_CXS.

CLK_CGL is a copy of the CMN clock input GCLK0. A separate clock input is provided to allow gating of the CGL clock domain independent of the GCLK0 domain. CLK_CXS clocks the CXS interface logic, and may be synchronous or asynchronous to GCLK0. CLK_CXS can be driven with CLK CGL for synchronous configurations, as the following figure shows.

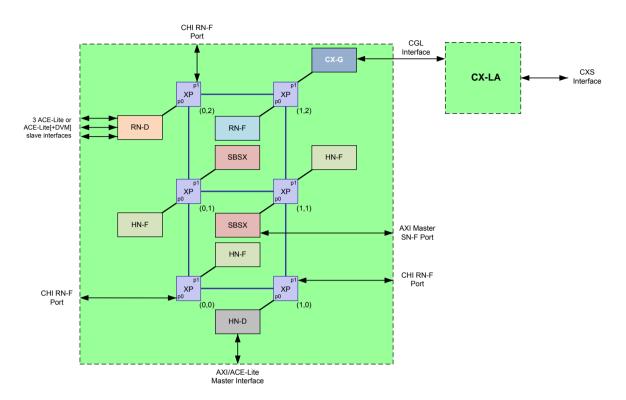


Figure 2-48 CMN-600 clock domains with synchronous CXS domain

The CXLA block contains an asynchronous domain bridge for configurations where the CLK_CXS domain is asynchronous to the CLK_CGL domain, as the following figure shows.

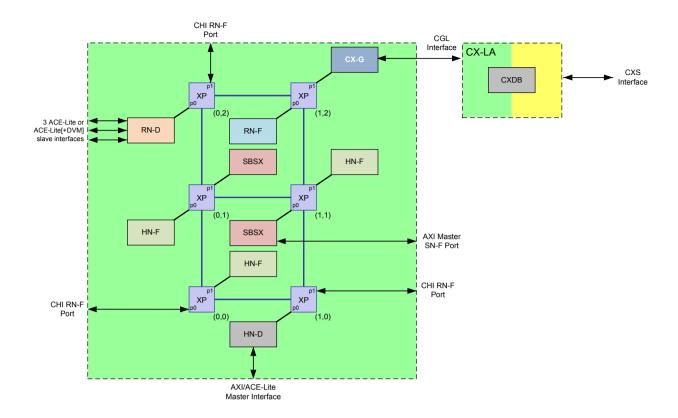


Figure 2-49 CMN-600 clock domains with asynchronous CXS domain

2.22.3 Clock hierarchy

The clocking delivery and clock gating architecture is hierarchical.

Within the clock gating hierarchy, three levels of clocks are defined:

Global	This is the clock input to the CMN-600 system. The global clock the SoC provides is likely
clock	to be controlled by an additional level of clock gating or clock control outside of the
	system. Although this is not a system requirement, CMN-600 includes support for external
	alask asstral

Regional
Regional clocks are created as an output of regional clock gaters that include a coarse enable for coarse-grained clock gating under idle or mostly idle conditions. This enables a higher level of power reduction than is possible using local clock gating, because the clock network between the regional and local gaters can be shut down using the regional gaters. The regional clock gaters are instantiated in and controlled by the CMN-600 RTL. The exact set of regional clocks is internal to CMN-600 and is not described in this book.

Local Local clocks are created as an output of the local clock gaters that are controlled by fineclocks grained enables that the CMN-600 RTL creates. Local clocks are used to directly clock sequential elements in the CMN-600. The exact set of local clocks is internal to CMN-600 and is not described in this book.

The following figure shows the clocking hierarchy.

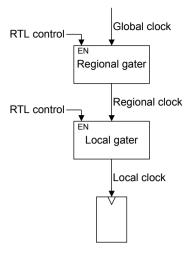


Figure 2-50 Clocking hierarchy

2.22.4 Global clock

The CMN-600 global clock input is indicated in the following table.

Table 2-43 Global clock input

Signal Name	Description
GCLK0	Primary CMN-600 clock input.
CLK_CGL	CML clock input.
CLK_CXS	CML clock input.

2.22.5 Clock enable inputs

CMN-600 includes several clock enable inputs.

The clock enable input signals are:

ACLKEN_S
This input is present on each AMBA slave interface.

ACLKEN_M
This input is present on each AMBA master interface.

ATCLKEN
This input is present on each debug and trace ATB interface.

All clock enables, shown here as *CLKEN*, have identical functionality, enabling the respective interfaces with which they are included to run at integer fractions of GCLK0, that is, slower than GCLK0, ranging from 1:1 to 4:1. ATCLKEN is limited to 2:1 to 4:1 integer fractions. This enables synchronous communication with slower SoC logic.

CLKEN asserts one GCLK0 cycle before the rising edge of SoC-CLK. SoC control logic can change the ratio of GCLK0 frequency to the SoC clock, SoC-CLK, frequency dynamically using *CLKEN*.

The following figure shows a timing example of *CLKEN* that changes the ratio of the frequency at which the relevant interface operates respective to GCLK0 from 3:1 to 1:1.

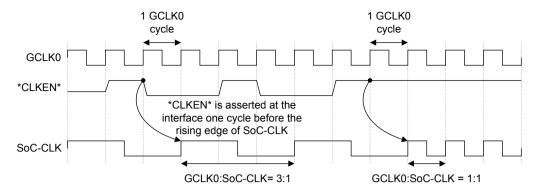


Figure 2-51 *CLKEN* with GCLK0:SoC-CLK ratio changing from 3:1 to 1:1

2.22.6 Timing closure with credited slices

The network provides credited slices to assist during timing closure.

CMN-600 includes the following optional credited slices:

- Device Credited Slice (DCS), at boundaries between a device and XP.
- Mesh Credited Slice (MCS), at boundaries between XPs.

The slices are simple repeater-flop structures applied across the entire communication boundary. Any device-XP boundary can contain up to four back-to-back DCSs. The following figure shows an example CMN-600 configuration with MCS and DCS instances.

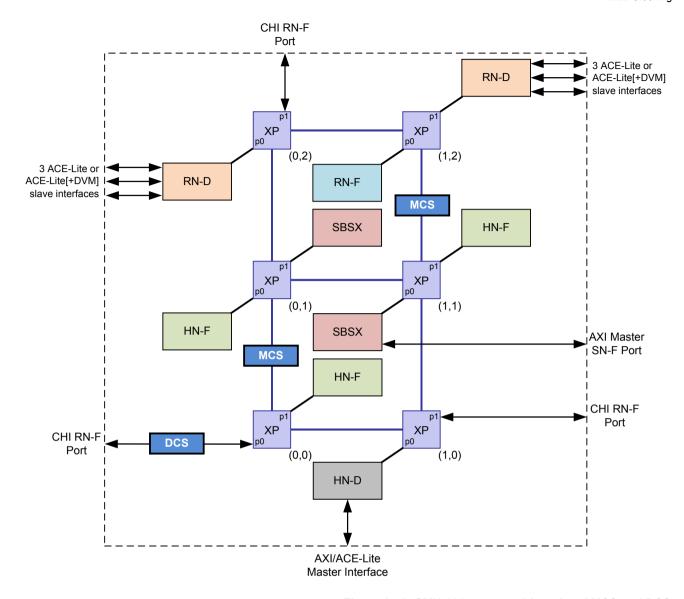


Figure 2-52 CMN-600 system with optional MCS and DCS

2.23 Reset

CMN-600 has a single global reset input signal, nSRESET.

nSRESET is an active-LOW signal that can be asynchronously or synchronously asserted and deasserted.

When asserted, **nSRESET** must remain asserted for 72 clock cycles. Likewise, when deasserted, **nSRESET** must remain deasserted for 72 clock cycles. This ensures that all internal CMN-600 components enter and exit their reset states correctly.

All CMN-600 clock inputs must be active during the required 72-cycle, or larger, period of **nSRESET** assertion, and must remain active for at least 72 cycles following deassertion of **nSRESET**.

This section contains the following subsection:

• 2.23.1 CML reset on page 2-134.

2.23.1 CML reset

There are two additional reset inputs for the CML configuration: nRESET CGL and nRESET CXS.

Both nRESET_CGL and nRESET_CXS are active-LOW signals that can be asynchronously or synchronously asserted and deasserted.

When asserted, nRESET_CGL and nRESET_CXS must remain asserted for 20 CLK_CGL and CLK_CXS clock cycles respectively. Likewise, when deasserted, nRESET_CGL and nRESET_CXS must remain deasserted for 20 CLK_CGL and CLK_CXS clock cycles respectively. This ensures that all CML components enter and exit their reset states correctly.

Both CLK_CGL and CLK_CXS must be active during the required 20-cycle, or larger, period of nRESET_CGL and nRESET_CXS assertion respectively and must remain active for at least 20 cycles following deassertions.

Refer to 2.22.2 CML clock inputs on page 2-128 for more relationship information between the CXS and CGL domains.

Note		
There is no sequencing requirement between the CMN-600 nSRESET and CML domains must exit reset before CXLA functionality is required.	d the CML resets. However, th	ıe
CIVIL domains must exit reset before CALA functionality is required.		

2.24 Power and clock management

CMN-600 includes several power management and clock management capabilities, that are either externally controllable or are assisted by the *System-on-Chip* (SoC).

The power management and clock management capabilities are:

- High-level clock gating that indicates inactivity in the system, enabling an external clock controller to disable global clock inputs during periods of inactivity. This significantly reduces dynamic power consumption.
- A number of distinct predefined power states, including states in which all, half, or none of the *SLC* (SLC) tag/data RAMs can be powered up, powered down, or in retention:
 - A state in which only the HN-F SF is active.
 - A state in which neither the SLC RAMs, nor SF RAMs, are active.

These power states reduce static and dynamic power consumption.

- Support for static retention in HN-F in which the SoC places SLC and SF RAMs in a retention state. This reduces static power consumption.
- Support for in-pipeline low-latency data RAM retention control, in which a programmable idle counter can be used to put the SLC RAMs in retention.

This section contains the following subsections:

- 2.24.1 High-level clock gating (HCG) on page 2-135.
- 2.24.2 Power domains on page 2-137.
- 2.24.3 Power domain control on page 2-138.
- 2.24.4 P-Channel on device reset on page 2-139.
- 2.24.5 CXS power domain on page 2-139.
- 2.24.6 HNF memory retention on page 2-140.
- 2.24.7 HN-F power domains on page 2-140.
- 2.24.8 HN-F RAM PCSM Interface on page 2-144.
- 2.24.9 SLC data RAM retention control on page 2-144.
- 2.24.10 HN-F power domain completion interrupt on page 2-145.

2.24.1 High-level clock gating (HCG)

High-level Clock Gating (HCG) is a mechanism supported by the PCCB that notifies the SoC when the CMN-600 is inactive. HCG enables an external SoC clock control unit, the External Clock Controller (ExtCC), to stop the CMN-600 GCLK0 clock inputs.

CMN-600 includes a Q-Channel interface that enables CMN-600 and the SoC to communicate to achieve HCG functionality through the PCCB. See the *AMBA® Low Power Interface Specification, Arm® O-Channel and P-Channel Interfaces* for more information.

External clock controller

This section describes the external clock controller.

The following figure shows an example of how the ExtCC controls the clock gating flow. This example clock gating sequence begins and ends with the Q-Channel in either of the following states:

- Quiescent state (Q_STOPPED), where QREQn and QACCEPTn are asserted.
- Active state (Q RUN), where **QREQn** and **QACCEPTn** are deasserted.

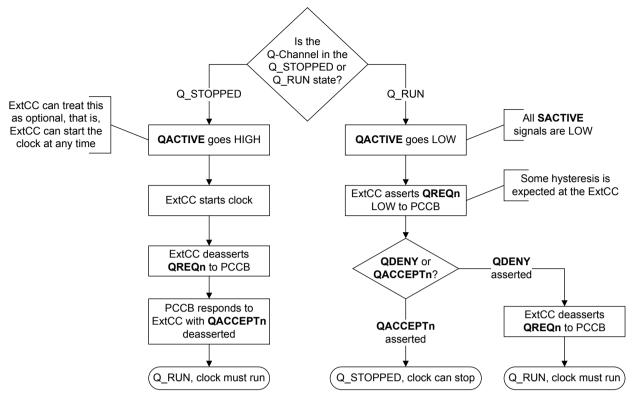


Figure 2-53 Clock gating control using ExtCC

The requirements of the ExtCC are as follows:

- It must supply a clock to CMN-600 when the Q-Channel is in any state other than Q STOPPED.
- The ExtCC can either choose to gate the clock to CMN-600 when the Q-Channel is in the Q_STOPPED state, or it can choose to run the clock at any time.
- ExtCC is responsible for bringing the Q-Channel to Q_RUN state after reset deassertion.
- Although this manual does not describe the exact behavior of the ExtCC and its usage of **QREQn** in response to **QACTIVE** deassertion, the design of the ExtCC is likely to include a control loop with some hysteresis so that HCG is enabled when the system is inactive for long periods, but is not enabled for very short periods of inactivity. If the clocks are stopped in response to short periods of inactivity, performance of CMN-600 can be negatively affected.
- It is the responsibility of the SoC designer to fully control the clock management Q-Channel. If there
 is a requirement for a control or configuration bit to completely enable or disable HCG functionality,
 that register or bit must exist outside of CMN-600. More specifically, CMN-600 has no internal
 means of disabling HCG.

CML clock management

CMN-600 CML configurations add two additional clock domains and corresponding Q-Channel interfaces for each CXG instance and corresponding CXS interface:

- CLK_CGL Q-Channel: Manages the CGL link and CGL domain logic in the CXG and CXLA devices.
- CLK CXS Q-Channel: Manages the CXS link interface and CXS clock domain logic in the CXLA.

The following table shows the possible clock states for the CMN-600 and CML device clocks, where N denotes multiple CXS interfaces:

Table 2-44 CMN-600 and CML device clock states

GCLK0	CLK_CGL[N]	CLK_CXS[N]	Description
RUN	RUN	RUN	CMN-600 and CXS[N] interface active
RUN	RUN	STOP	CXS[N] domain gated
RUN	STOP	RUN	CGL[N] inactive, transitory state
RUN	STOP	STOP	CXS[N] interface fully gated
STOP	STOP	RUN	CXS[N] active, others inactive, transitory state
STOP	STOP	STOP	CMN-600 fully gated, all CXS[N] interfaces inactive

2.24.2 Power domains

The power domains in CMN-600 are split between the Logic and RAMs within the HN-F partitions.

The power domains are:

LOGIC power domain

All logic except HN-F SLC tag and data RAMs and HN-F SF RAMs.

HN-F SLC RAM0 power domain

SLC tag/data RAMs way[7:0] within HN-F partitions, the RAMs in each HN-F partition can be independently controlled.

HN-F SLC RAM1 power domain

SLC tag/data RAMs way[15:8] within HN-F partitions, the RAMs in each HN-F partition can be independently controlled. The RAM1 domain for 3MB SLC size configurations includes way[11:8].

HN-F SF power domain

SF RAMs within HN-F partitions, the RAMs in each HN-F partition can be independently controlled.

An example of the power domains is shown in the following figure.

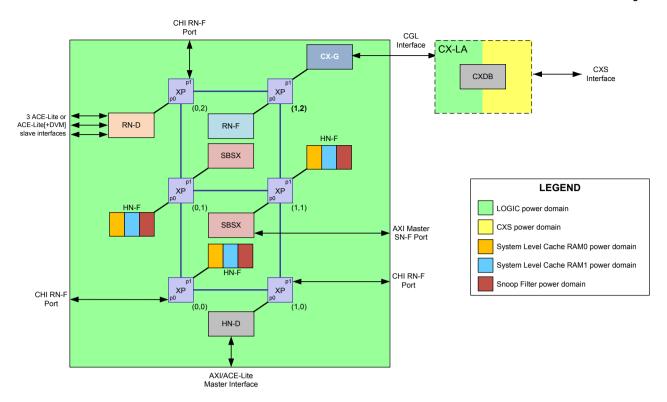


Figure 2-54 CMN-600 power domains

2.24.3 Power domain control

The CMN-600 Logic P-Channel controls all of the non-RAM and non-CXS power domains.

In addition to controlling the Logic domain, it allows synchronization between the HN-F software-controlled power domains and the Logic domain through a CONFIG state as shown in the following figure.

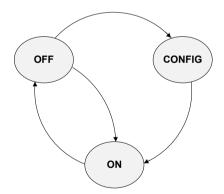


Figure 2-55 Logic domain states

There are two paths for transitioning from the OFF to ON state:

- 1. Power-on-reset: The Logic PSTATE OFF to ON transition also initiates NOSFSLC->FAM transition for all HN-F partitions.
- 2. Exit from HN-F Static Retention state: The Logic PSTATE transitions from OFF to CONFIG, indicating that CMN-600 is exiting a Memory Retention state, and does not initiate any HN-F partition power transitions.

The following table contains the power modes of components within the domain and the associated PSTATE values.

Table 2-45 Power mode configurations and PSTATE values

Power mode	PSTATE	CMN-600 Logic	HN-F
Off	00000	Off	Off/Mem_Ret
Config	11000	On	Any
On	01000	On	Any

See 2.24.7 HN-F power domains on page 2-140 for an introduction to HN-F states.

See A.4 Power management signals on page Appx-A-871 for P-Channel signal list information.

CXS Power Gating

CML systems contain an additional power domain: the CXS power domain. CXS logic is controlled by a combination of the CXS Power Q-Channel, and the CXS Q channel controlling the clocks. Power must be provided unless both the CXS Power Q-Channel and the CXS Q channel are in the OFF State.

2.24.4 P-Channel on device reset

This section shows how to initialize the power state of a power domain.

Certain device power states might power down the control logic. When powering this control logic back on, the power controller must indicate the state that the device must power up. The device detects the required state by sampling **PSTATE** when **nSRESET** deasserts. The **PSTATE** inputs must be asserted before the deassertion of reset and remain after the deassertion of **nSRESET**, to allow reset propagation within CMN-600. The power controller must ensure that the reset sequence is complete before transitioning **PSTATE**, otherwise the device might sample an undetermined value. The following figure shows the state initialization on reset.

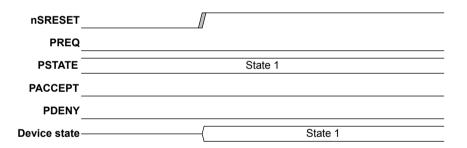


Figure 2-56 Reset state initialization

See 2.24.7 HN-F power domains on page 2-140 for an introduction to HN-F states.

2.24.5 CXS power domain

The CMN-600 CXS Power Q-Channel controls the CXS power domain.	
Note	
The CXS power domain can be shut off if the CXS interface is inactive.	

The following table shows the possible CMN-600 LOGIC and CXS power states, where N denotes multiple CXS interfaces:

Table 2-46 CMN-600 LOGIC and CXS power states

LOGIC state	CXS[N] state	Description
ON	ON	CMN-600 and CXS[N] interface active.
ON	OFF	CXS[N] interface inactive.
OFF	ON	CXS[N] domain active, transitory state.
OFF	OFF	Shutdown, all CXS[N] interfaces inactive.

2.24.6 HNF memory retention

When isolating the CMN-600 outputs, handshake protocols on certain interfaces must not be violated.

Use these following guidelines to enter the HN-F memory retention.

Process for entering HN-F memory retention:

- Program the HN-Fs to enter the desired power state.
- Quiesce the interconnect, and wait for QACTIVE to drop.
- Place CMN-600 in LOGIC OFF state through the Logic P-Channel.
- Isolate the CMN-600 outputs. This may be not bee needed if the logic on the other side of the interface is being powered-down and/or reset.
- Turn off power to CMN-600.

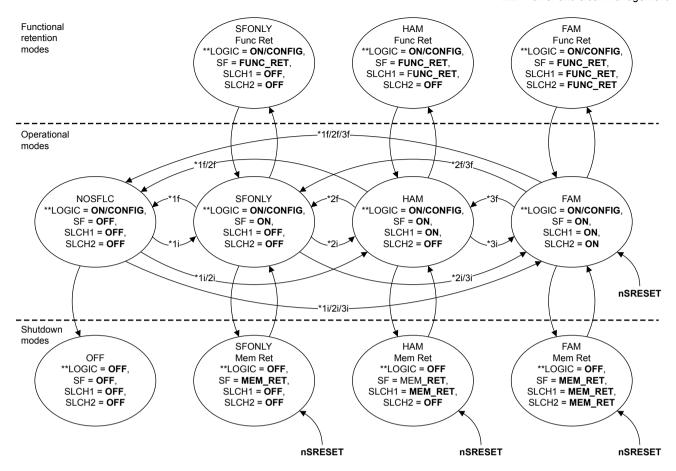
Process for leaving HN-F memory retention:

- Apply power to CMN-600.
- Assert reset.
- Enable clocks.
- Disable isolation of the CMN-600 outputs.
- Deassert reset.
- Place CMN-600 in LOGIC CONFIG state through the logic P-Channel.
- Reprogram the HN-F PWPR to the retention mode the HN-F was in prior to turning off power.
- Reprogram the HN-F PWPR to ON.
- Reprogram the CMN-600 configuration registers, including the RNSAM and any other registers written during cold boot.
- Place CMN-600 in LOGIC_ON state through the P-Channel.
- Resume traffic/normal operation.

2.24.7 HN-F power domains

This section lists the valid power states and shows the power state transition diagram.

The following table shows the valid HN-F power states and their requirements.


Table 2-47 HN-F power states

State	Description	Control logic	SF power state	SLC way[7:0] power state	SLC way[15:8] power state
FAM	Full run mode	On	On	On	On
HAM	Run mode with SLCH2 (SLC upper ways) disabled	On	On	On	Off
SF	Run mode with SLCH1 and SLCH2 disabled	On	On	Off	Off

Table 2-47 HN-F power states (continued)

State	Description	Control logic	SF power state	SLC way[7:0] power state	SLC way[15:8] power state
NOSFSLC	Run mode with SLCH1, SLCH2, and SF disabled	On	Off	Off	Off
FAM Func ret	Run mode with SLCH1, SLCH2, and SF in dynamic retention	On	Retention	Retention	Retention
HAM Func ret	Run mode with SLCH1 and SF in retention, and SLCH2 in power-down	On	Retention	Retention	Off
SF Func ret	Run mode with SF in retention, and SLCH1 and SLCH2 in power-down	On	Retention	Off	Off
FAM Mem ret	Shutdown with SLCH1, SLCH2, and SF in retention	Off	Retention	Retention	Retention
HAM Mem ret	Shutdown with SLCH1 and SF in retention, and SLCH2 in power-down	Off	Retention	Retention	Off
SF Mem ret	Shutdown with SF in retention, and SLCH1 and SLCH2 in power-down	Off	Retention	Off	Off
OFF	Shutdown	Off	Off	Off	Off

The following figure shows the valid power states and transitions for a CMN-600 system.

Note: **BOLD** text shows the required power state.

- * Automatic initialization and flushing actions:
 - 1i: Initialize snoop filter RAMs.
 - 2i: Initialize lower ways of tag RAMs.
 - 3i: Initialize upper ways of tag RAMs.
 - 1f: Flush (force back-invalidations as necessary and invalidate) snoop filter RAMs.
 - 2f: Flush (clean/invalidate) lower ways of tag/data RAMs.
 - 3f: Flush (clean/invalidate) upper ways of tag/data RAMs.

Figure 2-57 Power state transitions

The HNF has three classes of power states:

- 1. Operational states, where logic is on and enabled RAMs are operating as normal.
- 2. Functional Retention states, where logic is on, and enabled RAMs are in retention.
- 3. Memory Retention states, where logic is off and enabled RAMs are in retention.

Within these power states, the HN-Fs in an SCG operate in four modes::

FAM Full-Associativity Mode (FAM), where the SF and the entire SLC is enabled.

HAM Half-Associativity Mode (HAM), where the SF is enabled but the upper half of the SLC ways are disabled and powered off.

SFONLY Snoop-Filter-Only Mode (SFONLY), where the SF is enabled but all of the SLC is powered off

NOSFSLC No-SLC Mode (NOSFSLC), where the SF and SLC are disabled and powered off.

These HN-F power states are transitioned via configuration register writes that must target all HN-Fs in the SCG region. In addition, there is a NOSFSLC->FAM transition that can be initiated by the Logic domain P-Channel interface.

^{**} All designations refer to P-state values required to enter the respective state.

The por_hnf_ppu_pwpr.policy and por_hnf_ppu_pwpr.op_mode register fields are written to transition the HN-F partitions to a desired power state. The por_hnf_ppu_pwsr.pow_status and por_hnf_ppu_pwsr.op_mode_status config register fields are updated when the power state transition is complete. This transition can take many thousands of clock cycles if the SLC and/or SF is flushed as part of the transition. In addition, the INTREQPPU interrupt output can be used to indicate the completion of the HN-F power state transitions.

From FAM, HAM, or SFONLY, the HN-F can enter a dynamic retention mode via config register writes, where:

- The logic power is on.
- The voltage to the RAMs is on, but is reduced to a level that is sufficient for bit-cell retention but insufficient for normal operation.
- The array pipeline is blocked, and a handshake occurs to allow array access when exiting the retention state.

These dynamic power transitions are executed autonomously within each HN-F partition. Each HN-F has a programmable idle cycle counter, and initiates a P-Channel handshake with the corresponding RAMs to enter the dynamic retention state. Then the pipeline blocks transactions that target the HN-F RAMs. A coherent transaction triggers an exit from the dynamic retention state, and initiate another P-Channel handshake and takes the RAMs out of dynamic retention mode.

From these states, the SLC can also enter a memory retention mode, where:

- The logic power is turned off.
- The voltage to the RAMs is on, but is reduced to a level that is sufficient for bit-cell retention but insufficient for normal operation.
- Reset deassertion is essential when exiting retention after logic power off.

The CMN-600 logic domain power state is controlled by a P-Channel interface. This P-Channel interface also interacts with the HN-F power control logic via an internal bus. The HN-F power control logic waits for a command on the deassertion of nSRESET, depending on the overall power state transition that is required. For the power-on-reset HN-F FAM transition case, the PCCB block initiates the HN-F NOSFSLC->FAM command. For exit from static retention cases, the SCP initiates configuration register writes to the HN-F to indicate the HN-F power state.

The difference between the dynamic and static retention modes is that dynamic retention is entered because of a dynamic activity or inactivity indicator from the HN-F to the SoC. This is an output of the HN-F that is used to determine periods of inactivity long enough to warrant entering retention mode, but not long enough or not the type of inactivity to make the SoC place the SLC and SF in static retention. In addition to the static retention modes, the control logic can be powered down from the NOSFSLC state, at which point CMN-600 is fully off.

All activity that is required to enable safe transition between the respective power states is performed automatically by the HN-Fs in response to input P-Channel P-state transitions. No additional activity is required of the SoC logic to enable transitions between power states. For example, the HN-F performs clean and invalidation of half of the ways of the SLC and clean and invalidation of all ways of the SLC, as required by the respective power state transitions.

Note
CMN-600 cannot make any power transitions while the control logic is powered off. For example, for a
transition from FAM static retention to OFF, a transition through the FAM and NOSFSLC while the
LOGIC power domain in ON must occur to allow the SLC and SF to be flushed.

This table provides the PSTATE encodings for the HN-F and Power Domains including RAM configurations for the different operation modes.

Table 2-48 Power modes, operational modes, and RAM configurations

Operational Mode	Power Mode	PSTATE	Bank 0 RAM	Bank 1 RAM	SF RAM
FAM	ON	11_1000	ON	ON	ON
	FUNC_RET	11_0111	RET	RET	RET
	MEM_RET	11_0010	RET	RET	RET
НАМ	ON	10_1000	ON	OFF	ON
	FUNC_RET	10_0111	RET	OFF	RET
	MEM_RET	10_0010	RET	OFF	RET
SFONLY	ON	01_1000	OFF	OFF	ON
	FUNC_RET	01_0111	OFF	OFF	RET
	MEM_RET	01_0010	OFF	OFF	RET
NOSFSLC	MEM_OFF	00_0110	OFF	OFF	OFF
	OFF	00_0000	OFF	OFF	OFF

2.24.8 HN-F RAM PCSM Interface

Each HN-F RAM interface contains a PCSM (Power Control State Machine).

Each PCSM P-Channel interface that can be used to convert power state transitions into technology-specific controls, and the overall HN-F partition power state transition, is dependent on all P-Channel transactions to complete.

The following table lists the valid PSTATEs for this interface. There is no P-Channel PDENY on this interface.

Table 2-49 PSTATE Encodings

PSTATE	Value
On	1000
Func_Ret	0111
Mem_Ret	0010
Off	0000

2.24.9 SLC data RAM retention control

This section describes how to use the 13_reten_hx signal when the RAM is in retention mode.

The HN-F SLC data RAM quadwords have an input, 13_reten_hx, that can be used for dynamic retention control. This signal asserts four cycles before the data RAMs are accessed, either read or write, and is held for the duration of the access, accounting for RAM latency. This enables the RAMs to be put in a retention mode, provided the 4-cycle wakeup is sufficient to exit retention mode and allow a read or write.

The following figure shows the <code>l3_reten_hx</code> signal behavior for a single SLC data RAM read. It asserts four cycles before the RAM read enable, and is held for the duration of the RAM read, three cycles after the RAM read enable in this case, showing the behavior of 3-cycle data RAMs.

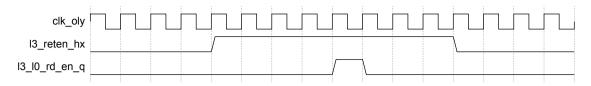


Figure 2-58 I3_reten_hx timing for single SLC data RAM read

2.24.10 HN-F power domain completion interrupt

Each HN-F sends a power state transition completion message to the PCCB.

Completion messages to the PCCB, which are combined into a global status register (por_ppu_int_status) and masked por_ppu_int_mask register, generate interrupt INTREQPPU used to interrupt the SoC power controller, indicates the HN-F power domain transition is complete.

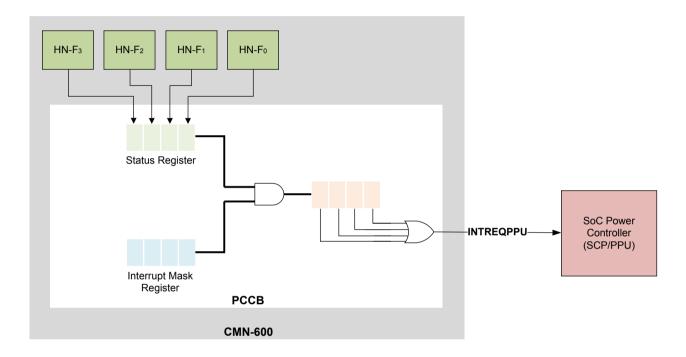


Figure 2-59 Power domain completion diagram

For example, if the status register contains a value of 1001 and the interrupt mask register value of 1010, this result is an interrupt based only on the status of HN-F1 and HN-F3. The interrupt mask register masks the status of HN-F0 and HN-F2 and ignores them when determining whether an interrupt occurs. In this instance, the logical AND of SR[3] and IMR[3] is logical 1, therefore **INTREQPPU** is logical 1 and causes an interrupt as shown in the following figure.

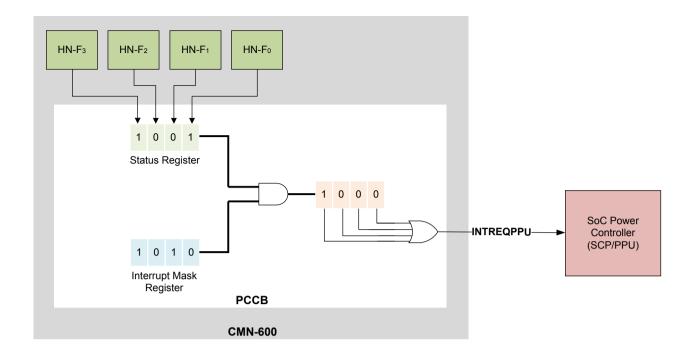


Figure 2-60 Power domain completion example

INTREQPPU can be cleared by writing 1'b1 to the bits of the **por_ppu_int_status** register corresponding to the HN-Fs that completed the power transitions.

2.25 RN entry to and exit from Snoop and DVM domains

CMN-600 includes a feature that allows RNs to be included or excluded from the system coherency domain. This is also known as the Snoop domain or DVM domain. This feature ensures correct operations of Snoops and DVMs when:

- An RN is taken out of reset.
- An RN is powered down and then later powered up.

RN-Fs behave as follows:

- If an RN-F is included in the system coherency domain, it must respond to Snoop and DVM requests from CMN-600.
- If an RN-F is excluded from the system coherency domain, it does not receive Snoop or DVM requests from CMN-600.

RN-Ds behave as follows:

- If an RN-D is included in the system coherency domain, it must respond to DVM requests from CMN-600
- If an RN-D is excluded from the system coherency domain, it does not receive DVM requests from CMN-600.

This section contains the following subsections:

- 2.25.1 Hardware interface on page 2-147.
- 2.25.2 Software interface on page 2-148.

2.25.1 Hardware interface

This section describes the hardware interface for RN inclusion into and exclusion from system coherency domain.

CMN-600 provides two signals for RN system coherency entry and exit:

- SYSCOREO input (to CMN-600).
- SYSCOACK output (from CMN-600).

These two signals implement a four-phase handshake between the RN and CMN-600 with the four states as specified in the following table.

Table 2-50 RN system coherency states

SYSCOREQ	SYSCOACK	State
0	0	DISABLED
1	0	CONNECT
1	1	ENABLED
0	1	DISCONNECT

Coming out of Reset, the RN is in the DISABLED system coherency state.

CONNECT

To enter system coherency, RN must assert **SYSCOREQ** and transition to CONNECT state. The RN must be ready to receive and respond to Snoop and DVM requests in this state.

ENABLED

Subsequently, CMN-600 asserts **SYSCOACK** and transitions to CONNECT state. The RN is now included in the system coherency domain. The RN can receive and must respond to Snoop and DVM requests in this state.

DISCONNECT

When the RN is ready to exit system coherency, it must deassert **SYSCOREQ** and transition to DISCONNECT state. The RN continues to receive and must respond to Snoop and DVM requests in this state.

DISABLED

When all outstanding Snoop and DVM responses have been received, CMN-600 deasserts **SYSCOACK** and transitions to DISABLED state. In this state, no snoop or DVM transactions are sent to the RN which can now be powered down.

The following rules must be obeyed to adhere to the four-phase handshake protocol.

- When SYSCOREQ is asserted, it must remain asserted until SYSCOACK is asserted.
- When SYSCOREQ is deasserted, it must remain deasserted until SYSCOACK is deasserted.

2.25.2 Software interface

This section describes the software interface for RN inclusion into and exclusion from system coherency domain.

CMN-600 provides two Configuration Registers (CRs) for system coherency entry and exit:

- RN-F:
 - por mxp p{1,0} syscoreq ctl
 - por_mxp_p{1,0}_syscoack_status
- RN-D:
 - por rnd syscoreg ctl
 - por rnd syscoack status

Reading and writing to these CRs provides a software alternative to the four-phase hardware handshake.

Note

The CRs may contain multiple bits where each bit corresponds to a different RN. The discussion below pertains to the Read and Write of the CR bit that corresponds to a given RN. When configuring the system coherency entry/exit for a given RN, software must adopt a Read-Modify-Write strategy to ensure that CR bits corresponding to other RNs are not modified when writing into the syscoreq_ctl CR.

Coming out of Reset, both CRs are cleared, indicating DISABLED state.

CONNECT

To initiate an RN entry into the system coherency domain, software must first poll both CRs and ensure that the CR bits corresponding to that RN are set to zeros. When the RN is ready to receive and respond to Snoop and DVM requests, software must write a 1 into the corresponding bit in the syscoreq_ctl CR in order to transition the RN to CONNECT state.

ENABLED

Subsequently, CMN-600 indicates a transition to CONNECT state by setting the corresponding CR bit in the syscoack_status register to one. The RN is now inside the system coherency domain. Software can poll the syscoack_status register to determine this state transition.

DISCONNECT

To initiate an RN exit from the system coherency domain, software must first poll both CRs. After ensuring that the CR bits corresponding to that RN are set, software must clear the corresponding syscoreq_ctl bit to transition the RN to DISCONNECT state. The RN continues to receive and must respond to Snoop and DVM requests in this state.

DISABLED

When all outstanding Snoop and DVM responses have been received, CMN-600 clears the corresponding **syscoack_status** bit indicating the transition to DISABLED state. In this state, no snoop or DVM transactions are sent to the RN. Software must poll the **syscoack_status** register to ensure that this state transition has occurred before initiating RN power down.

:	Note
	11010

The following rules must be obeyed to adhere to the four-phase handshake protocol.

- The hardware interface is intended as the primary interface. The software interface is provided as an alternative for legacy RN devices and systems that do not support the hardware interface.
- Either hardware or software interface must be used, but not both. Coming out of Reset, the hardware interface is enabled by default. The first write into the **syscoreq_ctl** register disables hardware interface and enables software interface. A Reset is needed to re-enable hardware interface.
- When software interface is employed, SYSCOREQ signal must remain deasserted.
- When hardware interface is employed, software must not write to the syscoreq ctl CR.

2.26 Link layer

CMN-600 provides link initialization, flow-control, and link deactivation functionality at the RN-F and SN-F device interfaces.

This functionality comprises the following mechanisms:

- A link initialization mechanism by which the receiving device communicates link layer credits, on each CHI channel that is present, to a transmitting device.
- A flow-control mechanism by which the transmitting device uses link layer credits to send CHI flits –
 one credit per flit. In turn, the receiving device sends these credits back to the transmitting device,
 one at a time, when it is done processing each flit to allow for subsequent flit transfers.

note
The latency (in clock cycles) measured from the time a transmitting device uses a link layer credit to
send a flit to the receiving device and the earliest time when it can receive that credit back from the

• A link deactivation mechanism by which the transmitting device sends all unused link layer credits on each CHI channel back to the receiving device by sending corresponding link flits.

On flit upload channels, RN-F or SN-F is the transmitting device and CMN-600 is the receiving device. On flit download channels, CMN-600 is the transmitting device and RN-F or SN-F is the receiving device.

See the Arm® AMBA® 5 CHI Architecture Specification for a description of the functional requirements of the CHI link layer.

This section contains the following subsection:

• 2.26.1 Flit buffer sizing requirements on page 2-150.

2.26.1 Flit buffer sizing requirements

This section describes CMN-600 flit buffer sizing requirements.

Flit buffer sizing at a receiving device is based on the following two factors:

receiving device and send a subsequent flit is called credit roundtrip latency.

- 1. To realize full link bandwidth a transmitting device must be able to send flits continuously in a pipelined fashion without stalling due to insufficient link layer credits from the receiving device. The *credit roundtrip latency* between the transmitting device and receiving device is a measure of the minimum number of link layer credits needed to prevent pipeline stalls.
- 2. At any given time, a receiving device must be capable of accepting and processing as many flits as the number of link layer credits it has outstanding at the transmitting device. Hence the number of link layer credits sent by a receiving device must not exceed its flit buffering and processing capabilities.

Based on the above two factors, flit buffer sizing and corresponding link layer crediting must reflect the *credit roundtrip latency* to achieve optimal flit transfer bandwidth between transmitting and receiving devices.

This section describes the flit buffer sizing and corresponding link layer crediting requirements to achieve optimal transfer bandwidth for flit uploads and downloads at RN-F or SN-F interfaces.

Flit uploads from RN-F or SN-F

For flit uploads, the number of flit buffers in CMN-600 is specified using the RXBUF_NUM_ENTRIES parameter.

Refer to *1.5 Configurable options* on page 1-20 for more information regarding the RXBUF NUM ENTRIES parameter.

For optimal flit transfer bandwidth, this parameter must be set equal to the *upload credit roundtrip latency* (UpCrdLat<ch>) which is computed using the following equation:

UpCrdLat < ch > = UpCrdLatInt < ch > + UpCrdLatExt < ch >, where

- 1. <ch> is the CHI channel and is one of REQ, RSP, SNP or DAT
- 2. *UpCrdLatInt*<*ch*> is the upload credit latency *inside* CMN-600. This latency is measured (in clock cycles) from the time RX<*ch*>FLITV input is asserted by the RN-F/SN-F for a flit uploaded to CMN-600 to the earliest time when RX<*ch*>LCRDV output is asserted by CMN-600 to the RN-F/SN-F after the flit is processed and the credit sent back. At the RN-F/SN-F interfaces, *UpCrdLatInt*<*ch*> = 1 on all CHI channels.

UpCrdLatExt<*ch*> is the upload credit latency *outside* CMN-600. This latency is measured (in clock cycles) from the time RX<*ch*>LCRDV output is asserted by CMN-600 when the credit is sent back to the RN-F or SN-F to the earliest time when RX<*ch*>FLITV input is asserted by the RN-F/SN-F when the credit is used to send a subsequent flit.

Flit downloads with RN-F or SN-F

For optimal flit downloads, the RN-F or SN-F must size its input buffers to reflect the *download credit* roundtrip latency (DnCrdLat<ch>).

The download credit roundtrip latency (DnCrdLat<ch>) is computed using the following equation:

DnCrdLat < ch > = DnCrdLatInt < ch > + DnCrdLatExt < ch >, where

- 1. <ch> is the CHI channel and is one of REO, RSP, SNP or DAT.
- 2. *DnCrdLatInt*<*ch*> is the download credit latency *inside* CMN-600. This latency is measured (in clock cycles) from the time RX<*ch*>LCRDV input is asserted by the RN-F or SN-F to CMN-600 to the earliest time when RX<*ch*>FLITV output is asserted by CMN-600 to the RN-F or SN-F for a flit using that credit. At the RN-F or SN-F interfaces, *DnCrdLatInt*<*ch*> = 2 on all CHI channels.

DnCrdLatExt<*ch*> is the download credit latency *outside* CMN-600. This latency is measured (in clock cycles) from the time RX<*ch*>FLITV output is asserted by CMN-600 for a flit downloaded to the RN-F or SN-F to the earliest time when RX<*ch*>LCRDV input is asserted when the corresponding credit is returned by the RN-F or SN-F to CMN-600.

2.27 CML Symmetric Multi-Processor (SMP) Support

SMP allows for a shared, common OS and memory to operate on multiple chips.

CML supports SMP systems if the systems were built using CMN-600-generated CMLs. An SMP mode option will be provided and when set will enable DVM, GIC-D, Exclusives, CPU-Event communication across CCIX links using micro-architected mechanism.

Microarchitecture support for propagating Trace Tag across CCIX links (called Remote Trace Tag) is also enabled in SMP mode only. Propagation of Remote Trace Tag is achieved by the sender CXG only on the outgoing CCIX request, and by the receiving CXG only from the incoming CCIX request. This ensures all subsequent CCIX messages that are part of the same transaction use the same CCIX TxnID. Similarly, propagation of remote Trace Tag is completed by the sender CXG only on the outgoing CCIX Snoop, and the receiving CXG only from the incoming CCIX snoop.

Chapter 3 **Programmers Model**

This chapter describes the programmers model.

It contains the following sections:

- 3.1 About the programmers model on page 3-154.
- 3.2 Register summary on page 3-156.
- 3.3 Register descriptions on page 3-173.
- *3.4 CMN-600 programming* on page 3-791.
- 3.5 CML programming on page 3-792.
- 3.6 Support for RN-Fs compliant with CHI Issue A specification on page 3-799.

3.1 About the programmers model

A CMN-600 interconnect consists of a number of components, such as XP, RN-I, or DTC, that are accessed through memory mapped registers for configuration, topology, and status information.

The memory mapped registers are organized in a series of 16KB regions. They are accessed via CHI read and write commands.

A full description of a CMN-600 interconnect consists of a list of components, the compile time configuration options for each component, and the connectivity between the components. Software can determine the full configuration of the CMN-600 interconnect through a sequence of accesses to the configuration register space.

This section contains the following subsections:

- 3.1.1 Node configuration register address mapping on page 3-154.
- 3.1.2 Global configuration register region on page 3-154.
- 3.1.3 XP configuration register region on page 3-154.
- 3.1.4 Component configuration register region on page 3-155.
- 3.1.5 Requirements of configuration register reads and writes on page 3-155.

3.1.1 Node configuration register address mapping

All CMN-600 configuration registers are mapped to an address range starting at PERIPHBASE with a maximum size of 64MB for a system with the maximum X and Y dimensions of 8 or less.

The reset value of PERIPHBASE is controlled by the CFGM_PERIPHBASE input signal.

All configuration, information, and status registers in a CMN-600 interconnect are grouped into 16KB regions each associated with a CMN-600 component instance. The base address of each region can be determined at compile time, or determined at run time through a software discovery mechanism.

Software discovery consists of three steps: (Refer to 2.5.4 Discovery tree structure on page 2-57 for more information.)

- Read information in the 16KB region at ROOTNODEBASE to determine the number of XPs in CMN-600 and the offset from PERIPHBASE for each XP's 16KB region.
- 2. Read information in the 16KB region associated with each XP to determine the components associated with that XP, topology information for those components, and the offset from PERIPHBASE for each component 16KB region.
- 3. Read information in the 16KB region associated with the component to determine the type of block and the configuration details of the component.

With this sequence, software can build a list of all components in the system and the addresses of their respective 16KB configuration regions.

3.1.2 Global configuration register region

The 16KB block at ROOTNODEBASE contains global information and configuration for CMN-600, as well as the first level of discovery information for components in the system.

Each XP Base Address register above contains the offset from PERIPHBASE for a 16KB region that contains the information about one XP and discovery information for components associated with that XP.

Refer to 3.3.1 Configuration master register descriptions on page 3-174 for additional register information.

3.1.3 XP configuration register region

Each XP has a 16KB configuration register region with information about that XP and all associated components.

Refer to 3.3.6 XP register descriptions on page 3-399 for more information.

3.1.4 Component configuration register region

Each non-XP component has a 16KB configuration register region. This region has programmable information, status, and configuration options for that component.

The contents are listed in the following table, including the number of 8-byte registers which fit in the space.

Table 3-1 Configuration register region values

Register sections	Relative offset	Absolute offset	Description			
Discovery Register Section						
NODE INFO (node type, node ID)	0x0	0x0	Up to 16 registers			
CHILD INFO (number of children, offset of the first child pointer register = 0x100)	0×80	0x80	Up to 16 registers			
CHILD POINTER registers	0x100	0×100	Up to 256 registers			
UNIT REGISTER section	0x900	Un	it-specific registers			
UNIT INFO	0x0	0x900	Up to 16 registers			
UNIT SECURITY	0x80	0x980	Up to 16 registers			
UNIT CTRL	0x100	0xa00	Up to 16 registers			
UNIT QoS	0x180	0xa80	Up to 32 registers			
UNIT DEBUG	0x280	0xb80	Up to 16 registers			
UNIT OTHER	0x300	0xc00	Up to 128 registers			
UNIT POWER	0x700	0x1000	4KB-aligned space – 512 registers			
UNIT PMU	0x1700	0x2000	4KB-aligned space – 512 registers			
UNIT RAS (secure RAS registers)	0x2700	0x3000	4KB-aligned space – 512 registers			
UNIT RAS (non-secure RAS registers)	0x2800	0x3100	4KB-aligned space – 512 registers			

3.1.5 Requirements of configuration register reads and writes

Reads and writes to the CMN-600 configuration registers must meet certain requirements.

If the following requirements are not met then this can result in unpredictable behavior.

- All accesses must be of device type, either:
 - Device, Strongly Ordered.
 - nGnRE, nGnRnE.
- All accesses must have a data size of 32 bits or 64 bits.
- All accesses must be natively aligned, that is:
 - 32-bit accesses must be aligned to a 32-bit boundary.
 - 64-bit accesses must be aligned to a 64-bit boundary.
- For configuration register writes, all bits, 32 or 64, must be written, that is, all byte lanes must be valid:
 - WRSTB must indicate that all bytes lanes are valid if the write transaction is from an AMBA AXI/ACE-Lite interface.
 - BE must indicate that all byte lanes are valid if the write transaction is sent from an AMBA 5 CHI interface.
- Secure registers can only be accessed by a Secure access, that is, NS = 060. Non-secure registers can be accessed by either a Secure or Non-secure access.

Refer to 2.14 Error handling on page 2-75 for more information on error signal handling.

3.2 Register summary

This section contains summary tables for all registers in CMN-600.

This section contains the following subsections:

- 3.2.1 Configuration master register summary on page 3-156.
- 3.2.2 DN register summary on page 3-157.
- *3.2.3 Debug and trace register summary* on page 3-158.
- 3.2.4 HN-F register summary on page 3-159.
- 3.2.5 HN-I register summary on page 3-161.
- 3.2.6 XP register summary on page 3-162.
- 3.2.7 RN-D register summary on page 3-165.
- 3.2.8 RN-I register summary on page 3-165.
- 3.2.9 RN SAM register summary on page 3-166.
- 3.2.10 SBSX register summary on page 3-168.
- 3.2.11 CXHA register summary on page 3-168.
- 3.2.12 CXRA register summary on page 3-169.
- 3.2.13 CXLA register summary on page 3-171.

3.2.1 Configuration master register summary

This section lists the configuration master registers used in CMN-600.

The following table shows the *configuration master* registers in offset order from the base memory address.

Table 3-2 CFGM register summary

Offset	Name	Туре	Description
0x0	por_cfgm_node_info	RO	por_cfgm_node_info on page 3-174
0x8	por_cfgm_periph_id_0_periph_id_1	RO	por_cfgm_periph_id_0_periph_id_1 on page 3-174
0×10	por_cfgm_periph_id_2_periph_id_3	RO	por_cfgm_periph_id_2_periph_id_3 on page 3-175
0x18	por_cfgm_periph_id_4_periph_id_5	RO	por_cfgm_periph_id_4_periph_id_5 on page 3-176
0x20	por_cfgm_periph_id_6_periph_id_7	RO	por_cfgm_periph_id_6_periph_id_7 on page 3-177
0x28	por_cfgm_component_id_0_component_id_1	RO	por_cfgm_component_id_0_component_id_1 on page 3-178
0x30	por_cfgm_component_id_2_component_id_3	RO	por_cfgm_component_id_2_component_id_3 on page 3-179
0x80	por_cfgm_child_info	RO	por_cfgm_child_info on page 3-180
0x980	por_cfgm_secure_access	RW	por_cfgm_secure_access on page 3-181
0x3000	por_cfgm_errgsr0	RO	por_cfgm_errgsr0 on page 3-182
0x3008	por_cfgm_errgsr1	RO	por_cfgm_errgsr1 on page 3-183
0x3010	por_cfgm_errgsr2	RO	por_cfgm_errgsr2 on page 3-184
0x3018	por_cfgm_errgsr3	RO	por_cfgm_errgsr3 on page 3-185
0x3020	por_cfgm_errgsr4	RO	por_cfgm_errgsr4 on page 3-185
0x3080	por_cfgm_errgsr5	RO	por_cfgm_errgsr5 on page 3-186
0x3088	por_cfgm_errgsr6	RO	por_cfgm_errgsr6 on page 3-187
0x3090	por_cfgm_errgsr7	RO	por_cfgm_errgsr7 on page 3-188
0x3098	por_cfgm_errgsr8	RO	por_cfgm_errgsr8 on page 3-189

Table 3-2 CFGM register summary (continued)

Offset	Name	Туре	Description
0x30A0	por_cfgm_errgsr9	RO	por_cfgm_errgsr9 on page 3-190
0x3100	por_cfgm_errgsr0_NS	RO	por_cfgm_errgsr0_NS on page 3-190
0x3108	por_cfgm_errgsr1_NS	RO	por_cfgm_errgsr1_NS on page 3-191
0x3110	por_cfgm_errgsr2_NS	RO	por_cfgm_errgsr2_NS on page 3-192
0x3118	por_cfgm_errgsr3_NS	RO	por_cfgm_errgsr3_NS on page 3-193
0x3120	por_cfgm_errgsr4_NS	RO	por_cfgm_errgsr4_NS on page 3-194
0x3180	por_cfgm_errgsr5_NS	RO	por_cfgm_errgsr5_NS on page 3-195
0x3188	por_cfgm_errgsr6_NS	RO	por_cfgm_errgsr6_NS on page 3-195
0x3190	por_cfgm_errgsr7_NS	RO	por_cfgm_errgsr7_NS on page 3-196
0x3198	por_cfgm_errgsr8_NS	RO	por_cfgm_errgsr8_NS on page 3-197
0x31A0	por_cfgm_errgsr9_NS	RO	por_cfgm_errgsr9_NS on page 3-198
0x3FA8	por_cfgm_errdevaff	RO	por_cfgm_errdevaff on page 3-199
0x3FB8	por_cfgm_errdevarch	RO	por_cfgm_errdevarch on page 3-200
0x3FC8	por_cfgm_erridr	RO	por_cfgm_erridr on page 3-201
0x3FD0	por_cfgm_errpidr45	RO	por_cfgm_errpidr45 on page 3-201
0x3FD8	por_cfgm_errpidr67	RO	por_cfgm_errpidr67 on page 3-202
0x3FE0	por_cfgm_errpidr01	RO	por_cfgm_errpidr01 on page 3-203
0x3FE8	por_cfgm_errpidr23	RO	por_cfgm_errpidr23 on page 3-204
0x3FF0	por_cfgm_errcidr01	RO	por_cfgm_errcidr01 on page 3-205
0x3FF8	por_cfgm_errcidr23	RO	por_cfgm_errcidr23 on page 3-206
0x900	por_info_global	RO	por_info_global on page 3-207
0×1000	por_ppu_int_enable	RW	por_ppu_int_enable on page 3-209
0x1008	por_ppu_int_status	W1C	por_ppu_int_status on page 3-209
0x1010	por_ppu_qactive_hyst	RW	por_ppu_qactive_hyst on page 3-210
0×100	por_cfgm_child_pointer_0	RO	por_cfgm_child_pointer_0 on page 3-211

3.2.2 DN register summary

This section lists the DN registers used in CMN-600.

The following table shows the *DN* registers in offset order from the base memory address.

Table 3-3 DN register summary

Offset	Name	Туре	Description
0x0	por_dn_node_info	RO	por_dn_node_info on page 3-213
0x80	por_dn_child_info	RO	por_dn_child_info on page 3-213
0x900	por_dn_build_info	RO	por_dn_build_info on page 3-214
0x980	por_dn_secure_register_groups_override	RW	por_dn_secure_register_groups_override on page 3-215

Table 3-3 DN register summary (continued)

Offset	Name	Туре	Description
0xA00	por_dn_aux_ctl	RW	por_dn_aux_ctl on page 3-216
0x2000	por_dn_pmu_event_sel	RW	por_dn_pmu_event_sel on page 3-217

3.2.3 Debug and trace register summary

This section lists the debug and trace registers used in CMN-600.

The following table shows the *debug and trace* registers in offset order from the base memory address.

Table 3-4 DT register summary

Offset	Name	Туре	Description
0x0	por_dt_node_info	RO	por_dt_node_info on page 3-219
0x80	por_dt_child_info	RO	por_dt_child_info on page 3-219
0x980	por_dt_secure_access	RW	por_dt_secure_access on page 3-220
0xA00	por_dt_dtc_ctl	RW	por_dt_dtc_ctl on page 3-221
0xA10	por_dt_trigger_status	RO	por_dt_trigger_status on page 3-222
0xA20	por_dt_trigger_status_clr	WO	por_dt_trigger_status_clr on page 3-223
0xA30	por_dt_trace_control	RW	por_dt_trace_control on page 3-224
0xA48	por_dt_traceid	RW	por_dt_traceid on page 3-225
0x2000	por_dt_pmevcntAB	RW	por_dt_pmevcntAB on page 3-226
0x2010	por_dt_pmevcntCD	RW	por_dt_pmevcntCD on page 3-227
0x2020	por_dt_pmevcntEF	RW	por_dt_pmevcntEF on page 3-228
0x2030	por_dt_pmevcntGH	RW	por_dt_pmevcntGH on page 3-229
0x2040	por_dt_pmccntr	RW	por_dt_pmccntr on page 3-230
0x2050	por_dt_pmevcntsrAB	RW	por_dt_pmevcntsrAB on page 3-230
0x2060	por_dt_pmevcntsrCD	RW	por_dt_pmevcntsrCD on page 3-231
0x2070	por_dt_pmevcntsrEF	RW	por_dt_pmevcntsrEF on page 3-232
0x2080	por_dt_pmevcntsrGH	RW	por_dt_pmevcntsrGH on page 3-233
0x2090	por_dt_pmccntrsr	RW	por_dt_pmccntrsr on page 3-234
0x2100	por_dt_pmcr	RW	por_dt_pmcr on page 3-235
0x2118	por_dt_pmovsr	RO	por_dt_pmovsr on page 3-236
0x2120	por_dt_pmovsr_clr	WO	por_dt_pmovsr_clr on page 3-237
0x2128	por_dt_pmssr	RO	por_dt_pmssr on page 3-238
0x2130	por_dt_pmsrr	WO	por_dt_pmsrr on page 3-239
0x2DA0	por_dt_claim	RW	por_dt_claim on page 3-239
0x2DA8	por_dt_devaff	RO	por_dt_devaff on page 3-240
0x2DB0	por_dt_lsr	RO	por_dt_lsr on page 3-241
0x2DB8	por_dt_authstatus_devarch	RO	por_dt_authstatus_devarch on page 3-242

Table 3-4 DT register summary (continued)

Offset	Name	Туре	Description
0x2DC0	por_dt_devid	RO	por_dt_devid on page 3-243
0x2DC8	por_dt_devtype	RO	por_dt_devtype on page 3-244
0x2DD0	por_dt_pidr45	RO	por_dt_pidr45 on page 3-245
0x2DD8	por_dt_pidr67	RO	por_dt_pidr67 on page 3-246
0x2DE0	por_dt_pidr01	RO	por_dt_pidr01 on page 3-246
0x2DE8	por_dt_pidr23	RO	por_dt_pidr23 on page 3-247
0x2DF0	por_dt_cidr01	RO	por_dt_cidr01 on page 3-248
0x2DF8	por_dt_cidr23	RO	por_dt_cidr23 on page 3-249

3.2.4 HN-F register summary

This section lists the HN-F registers used in CMN-600.

The following table shows the *HN-F* registers in offset order from the base memory address.

Table 3-5 HN-F register summary

Offset	Name	Туре	Description
0x0	por_hnf_node_info	RO	por_hnf_node_info on page 3-251
0x80	por_hnf_child_info	RO	por_hnf_child_info on page 3-251
0x980	por_hnf_secure_register_groups_override	RW	por_hnf_secure_register_groups_override on page 3-252
0x900	por_hnf_unit_info	RO	por_hnf_unit_info on page 3-253
0×A00	por_hnf_cfg_ctl	RW	por_hnf_cfg_ctl on page 3-255
0xA08	por_hnf_aux_ctl	RW	por_hnf_aux_ctl on page 3-257
0×1000	por_hnf_ppu_pwpr	RW	por_hnf_ppu_pwpr on page 3-260
0x1008	por_hnf_ppu_pwsr	RO	por_hnf_ppu_pwsr on page 3-261
0x1014	por_hnf_ppu_misr	RO	por_hnf_ppu_misr on page 3-262
0x1FB0	por_hnf_ppu_idr0	RO	por_hnf_ppu_idr0 on page 3-262
0x1FB4	por_hnf_ppu_idr1	RO	por_hnf_ppu_idr1 on page 3-264
0x1FC8	por_hnf_ppu_iidr	RO	por_hnf_ppu_iidr on page 3-265
0x1FCC	por_hnf_ppu_aidr	RO	por_hnf_ppu_aidr on page 3-265
0x1100	por_hnf_ppu_dyn_ret_threshold	RW	por_hnf_ppu_dyn_ret_threshold on page 3-266
0xA80	por_hnf_qos_band	RO	por_hnf_qos_band on page 3-267
0xA88	por_hnf_qos_reservation	RW	por_hnf_qos_reservation on page 3-268
0xA90	por_hnf_rn_starvation	RW	por_hnf_rn_starvation on page 3-269
0x3000	por_hnf_errfr	RO	por_hnf_errfr on page 3-271
0x3008	por_hnf_errctlr	RW	por_hnf_errctlr on page 3-272
0x3010	por_hnf_errstatus	W1C	por_hnf_errstatus on page 3-273
0x3018	por_hnf_erraddr	RW	por_hnf_erraddr on page 3-275

Table 3-5 HN-F register summary (continued)

Offset	Name	Туре	Description
0x3020	por_hnf_errmisc	RW	por_hnf_errmisc on page 3-276
0x3030	por_hnf_err_inj	RW	por_hnf_err_inj on page 3-278
0x3038	por_hnf_byte_par_err_inj	WO	por_hnf_byte_par_err_inj on page 3-279
0x3100	por_hnf_errfr_NS	RO	por_hnf_errfr_NS on page 3-280
0x3108	por_hnf_errctlr_NS	RW	por_hnf_errctlr_NS on page 3-281
0x3110	por_hnf_errstatus_NS	W1C	por_hnf_errstatus_NS on page 3-282
0x3118	por_hnf_erraddr_NS	RW	por_hnf_erraddr_NS on page 3-284
0x3120	por_hnf_errmisc_NS	RW	por_hnf_errmisc_NS on page 3-285
0xC00	por_hnf_slc_lock_ways	RW	por_hnf_slc_lock_ways on page 3-287
0xC08	por_hnf_slc_lock_base0	RW	por_hnf_slc_lock_base0 on page 3-288
0xC10	por_hnf_slc_lock_base1	RW	por_hnf_slc_lock_base1 on page 3-289
0xC18	por_hnf_slc_lock_base2	RW	por_hnf_slc_lock_base2 on page 3-290
0xC20	por_hnf_slc_lock_base3	RW	por_hnf_slc_lock_base3 on page 3-291
0xC30	por_hnf_rni_region_vec	RW	por_hnf_rni_region_vec on page 3-292
0xC38	por_hnf_rnf_region_vec	RW	por_hnf_rnf_region_vec on page 3-293
0xC40	por_hnf_rnd_region_vec	RW	por_hnf_rnd_region_vec on page 3-294
0xD00	por_hnf_sam_control	RW	por_hnf_sam_control on page 3-295
0xD08	por_hnf_sam_memregion0	RW	por_hnf_sam_memregion0 on page 3-296
0xD10	por_hnf_sam_memregion1	RW	por_hnf_sam_memregion1 on page 3-298
0xD18	por_hnf_sam_sn_properties	RW	por_hnf_sam_sn_properties on page 3-299
0xD20	por_hnf_sam_6sn_nodeid	RW	por_hnf_sam_6sn_nodeid on page 3-302
0xD28	por_hnf_rn_phys_id0	RW	por_hnf_rn_phys_id0 on page 3-303
0xD30	por_hnf_rn_phys_id1	RW	por_hnf_rn_phys_id1 on page 3-304
0xD38	por_hnf_rn_phys_id2	RW	por_hnf_rn_phys_id2 on page 3-306
0xD40	por_hnf_rn_phys_id3	RW	por_hnf_rn_phys_id3 on page 3-308
0xD48	por_hnf_rn_phys_id4	RW	por_hnf_rn_phys_id4 on page 3-309
0xD50	por_hnf_rn_phys_id5	RW	por_hnf_rn_phys_id5 on page 3-311
0xD58	por_hnf_rn_phys_id6	RW	por_hnf_rn_phys_id6 on page 3-313
0xD60	por_hnf_rn_phys_id7	RW	por_hnf_rn_phys_id7 on page 3-315
0xD68	por_hnf_rn_phys_id8	RW	por_hnf_rn_phys_id8 on page 3-316
0xD70	por_hnf_rn_phys_id9	RW	por_hnf_rn_phys_id9 on page 3-318
0xD78	por_hnf_rn_phys_id10	RW	por_hnf_rn_phys_id10 on page 3-320
0×D80	por_hnf_rn_phys_id11	RW	por_hnf_rn_phys_id11 on page 3-322
0xD88	por_hnf_rn_phys_id12	RW	por_hnf_rn_phys_id12 on page 3-323
0xD90	por_hnf_rn_phys_id13	RW	por_hnf_rn_phys_id13 on page 3-325

Table 3-5 HN-F register summary (continued)

Offset	Name	Туре	Description
0xD98	por_hnf_rn_phys_id14	RW	por_hnf_rn_phys_id14 on page 3-327
0xDA0	por_hnf_rn_phys_id15	RW	por_hnf_rn_phys_id15 on page 3-329
0xDA8	por_hnf_rn_phys_id16	RW	por_hnf_rn_phys_id16 on page 3-330
0xDB0	por_hnf_rn_phys_id17	RW	por_hnf_rn_phys_id17 on page 3-332
0xDB8	por_hnf_rn_phys_id18	RW	por_hnf_rn_phys_id18 on page 3-334
0xDC0	por_hnf_rn_phys_id19	RW	por_hnf_rn_phys_id19 on page 3-336
0xDC8	por_hnf_rn_phys_id20	RW	por_hnf_rn_phys_id20 on page 3-337
0xDD0	por_hnf_rn_phys_id21	RW	por_hnf_rn_phys_id21 on page 3-339
0xDD8	por_hnf_rn_phys_id22	RW	por_hnf_rn_phys_id22 on page 3-341
0xDE0	por_hnf_rn_phys_id23	RW	por_hnf_rn_phys_id23 on page 3-343
0xDE8	por_hnf_rn_phys_id24	RW	por_hnf_rn_phys_id24 on page 3-344
0xDF0	por_hnf_rn_phys_id25	RW	por_hnf_rn_phys_id25 on page 3-346
0xDF8	por_hnf_rn_phys_id26	RW	por_hnf_rn_phys_id26 on page 3-348
0xE00	por_hnf_rn_phys_id27	RW	por_hnf_rn_phys_id27 on page 3-350
0xE08	por_hnf_rn_phys_id28	RW	por_hnf_rn_phys_id28 on page 3-351
0xE10	por_hnf_rn_phys_id29	RW	por_hnf_rn_phys_id29 on page 3-353
0xE18	por_hnf_rn_phys_id30	RW	por_hnf_rn_phys_id30 on page 3-355
0xE20	por_hnf_rn_phys_id31	RW	por_hnf_rn_phys_id31 on page 3-357
0xF00	por_hnf_sf_cxg_blocked_ways	RW	por_hnf_sf_cxg_blocked_ways on page 3-358
0xF10	por_hnf_cml_port_aggr_grp0_add_mask	RW	por_hnf_cml_port_aggr_grp0_add_mask on page 3-359
0xF28	por_hnf_cml_port_aggr_grp0_reg	RW	por_hnf_cml_port_aggr_grp0_reg on page 3-360
0xB80	por_hnf_cfg_slcsf_dbgrd	WO	por_hnf_cfg_slcsf_dbgrd on page 3-362
0xB88	por_hnf_slc_cache_access_slc_tag	RO	por_hnf_slc_cache_access_slc_tag on page 3-363
0xB90	por_hnf_slc_cache_access_slc_data	RO	por_hnf_slc_cache_access_slc_data on page 3-364
0xB98	por_hnf_slc_cache_access_sf_tag	RO	por_hnf_slc_cache_access_sf_tag on page 3-365
0x2000	por_hnf_pmu_event_sel	RW	por_hnf_pmu_event_sel on page 3-366

3.2.5 HN-I register summary

This section lists the HN-I registers used in CMN-600.

HN-I register summary

The following table shows the *HN-I* registers in offset order from the base memory address.

Table 3-6 HN-I register summary

Offset	Name	Туре	Description
0x0	por_hni_node_info	RO	por_hni_node_info on page 3-370
0x80	por_hni_child_info	RO	por_hni_child_info on page 3-370
0x980	por_hni_secure_register_groups_override	RW	por_hni_secure_register_groups_override on page 3-371
0x900	por_hni_unit_info	RO	por_hni_unit_info on page 3-372
0xC00	por_hni_sam_addrregion0_cfg	RW	por_hni_sam_addrregion0_cfg on page 3-374
0xC08	por_hni_sam_addrregion1_cfg	RW	por_hni_sam_addrregion1_cfg on page 3-375
0xC10	por_hni_sam_addrregion2_cfg	RW	por_hni_sam_addrregion2_cfg on page 3-376
0xC18	por_hni_sam_addrregion3_cfg	RW	por_hni_sam_addrregion3_cfg on page 3-378
0×A00	por_hni_cfg_ctl	RW	por_hni_cfg_ctl on page 3-380
0xA08	por_hni_aux_ctl	RW	por_hni_aux_ctl on page 3-381
0x3000	por_hni_errfr	RO	por_hni_errfr on page 3-382
0x3008	por_hni_errctlr	RW	por_hni_errctlr on page 3-383
0x3010	por_hni_errstatus	W1C	por_hni_errstatus on page 3-384
0x3018	por_hni_erraddr	RW	por_hni_erraddr on page 3-386
0x3020	por_hni_errmisc	RW	por_hni_errmisc on page 3-387
0x3100	por_hni_errfr_NS	RO	por_hni_errfr_NS on page 3-389
0x3108	por_hni_errctlr_NS	RW	por_hni_errctlr_NS on page 3-390
0x3110	por_hni_errstatus_NS	W1C	por_hni_errstatus_NS on page 3-391
0x3118	por_hni_erraddr_NS	RW	por_hni_erraddr_NS on page 3-393
0x3120	por_hni_errmisc_NS	RW	por_hni_errmisc_NS on page 3-394
0x2000	por_hni_pmu_event_sel	RW	por_hni_pmu_event_sel on page 3-396

3.2.6 XP register summary

This section lists the XP registers used in CMN-600.

The following table shows the XP registers in offset order from the base memory address.

Table 3-7 XP register summary

Offset	Name	Туре	Description
0x0	por_mxp_node_info	RO	por_mxp_node_info on page 3-399
0x8	por_mxp_device_port_connect_info_p0	RO	por_mxp_device_port_connect_info_p0 on page 3-400
0x10	por_mxp_device_port_connect_info_p1	RO	por_mxp_device_port_connect_info_p1 on page 3-401
0x18	por_mxp_mesh_port_connect_info_east	RO	por_mxp_mesh_port_connect_info_east on page 3-403
0x20	por_mxp_mesh_port_connect_info_north	RO	por_mxp_mesh_port_connect_info_north on page 3-404
0x80	por_mxp_child_info	RO	por_mxp_child_info on page 3-405
0×100	por_mxp_child_pointer_0	RO	por_mxp_child_pointer_0 on page 3-406
0×108	por_mxp_child_pointer_1	RO	por_mxp_child_pointer_1 on page 3-407

Table 3-7 XP register summary (continued)

Offset	Name	Туре	Description
0x110	por_mxp_child_pointer_2	RO	por_mxp_child_pointer_2 on page 3-408
0x118	por_mxp_child_pointer_3	RO	por_mxp_child_pointer_3 on page 3-409
0x120	por_mxp_child_pointer_4	RO	por_mxp_child_pointer_4 on page 3-410
0x128	por_mxp_child_pointer_5	RO	por_mxp_child_pointer_5 on page 3-411
0x130	por_mxp_child_pointer_6	RO	por_mxp_child_pointer_6 on page 3-412
0x138	por_mxp_child_pointer_7	RO	por_mxp_child_pointer_7 on page 3-413
0x140	por_mxp_child_pointer_8	RO	por_mxp_child_pointer_8 on page 3-414
0x148	por_mxp_child_pointer_9	RO	por_mxp_child_pointer_9 on page 3-415
0x150	por_mxp_child_pointer_10	RO	por_mxp_child_pointer_10 on page 3-416
0x158	por_mxp_child_pointer_11	RO	por_mxp_child_pointer_11 on page 3-417
0x160	por_mxp_child_pointer_12	RO	por_mxp_child_pointer_12 on page 3-418
0x168	por_mxp_child_pointer_13	RO	por_mxp_child_pointer_13 on page 3-419
0x170	por_mxp_child_pointer_14	RO	por_mxp_child_pointer_14 on page 3-420
0x178	por_mxp_child_pointer_15	RO	por_mxp_child_pointer_15 on page 3-421
0x900	por_mxp_p0_info	RO	por_mxp_p0_info on page 3-422
0x908	por_mxp_p1_info	RO	por_mxp_p1_info on page 3-423
0x980	por_mxp_secure_register_groups_override	RW	por_mxp_secure_register_groups_override on page 3-425
0×A00	por_mxp_aux_ctl	RW	por_mxp_aux_ctl on page 3-425
0xA80	por_mxp_p0_qos_control	RW	por_mxp_p0_qos_control on page 3-426
0xA88	por_mxp_p0_qos_lat_tgt	RW	por_mxp_p0_qos_lat_tgt on page 3-428
0xA90	por_mxp_p0_qos_lat_scale	RW	por_mxp_p0_qos_lat_scale on page 3-429
0xA98	por_mxp_p0_qos_lat_range	RW	por_mxp_p0_qos_lat_range on page 3-430
0xAA0	por_mxp_p1_qos_control	RW	por_mxp_p1_qos_control on page 3-431
0xAA8	por_mxp_p1_qos_lat_tgt	RW	por_mxp_p1_qos_lat_tgt on page 3-432
0xAB0	por_mxp_p1_qos_lat_scale	RW	por_mxp_p1_qos_lat_scale on page 3-433
0xAB8	por_mxp_p1_qos_lat_range	RW	por_mxp_p1_qos_lat_range on page 3-434
0x2000	por_mxp_pmu_event_sel	RW	por_mxp_pmu_event_sel on page 3-435
0x3000	por_mxp_errfr	RO	por_mxp_errfr on page 3-437
0x3008	por_mxp_errctlr	RW	por_mxp_errctlr on page 3-438
0x3010	por_mxp_errstatus	W1C	por_mxp_errstatus on page 3-439
0x3028	por_mxp_errmisc	RW	por_mxp_errmisc on page 3-441
0x3030	por_mxp_p0_byte_par_err_inj	WO	por_mxp_p0_byte_par_err_inj on page 3-443
0x3038	por_mxp_p1_byte_par_err_inj	WO	por_mxp_p1_byte_par_err_inj on page 3-444
0x3100	por_mxp_errfr_NS	RO	por_mxp_errfr_NS on page 3-445
0x3108	por_mxp_errctlr_NS	RW	por_mxp_errctlr_NS on page 3-446

Table 3-7 XP register summary (continued)

Offset	Name	Туре	Description
0x3110	por_mxp_errstatus_NS	W1C	por_mxp_errstatus_NS on page 3-447
0x3128	por_mxp_errmisc_NS	RW	por_mxp_errmisc_NS on page 3-449
0x1000	por_mxp_p0_syscoreq_ctl	RW	por_mxp_p0_syscoreq_ctl on page 3-450
0x1008	por_mxp_p1_syscoreq_ctl	RW	por_mxp_p1_syscoreq_ctl on page 3-452
0x1010	por_mxp_p0_syscoack_status	RO	por_mxp_p0_syscoack_status on page 3-453
0x1018	por_mxp_p1_syscoack_status	RO	por_mxp_p1_syscoack_status on page 3-454
0x2100	por_dtm_control	RW	por_dtm_control on page 3-455
0x2118	por_dtm_fifo_entry_ready	W1C	por_dtm_fifo_entry_ready on page 3-456
0x2120	por_dtm_fifo_entry0_0	RO	por_dtm_fifo_entry0_0 on page 3-457
0x2128	por_dtm_fifo_entry0_1	RO	por_dtm_fifo_entry0_1 on page 3-458
0x2130	por_dtm_fifo_entry0_2	RO	por_dtm_fifo_entry0_2 on page 3-459
0x2138	por_dtm_fifo_entry1_0	RO	por_dtm_fifo_entry1_0 on page 3-460
0x2140	por_dtm_fifo_entry1_1	RO	por_dtm_fifo_entry1_1 on page 3-460
0x2148	por_dtm_fifo_entry1_2	RO	por_dtm_fifo_entry1_2 on page 3-461
0x2150	por_dtm_fifo_entry2_0	RO	por_dtm_fifo_entry2_0 on page 3-462
0x2158	por_dtm_fifo_entry2_1	RO	por_dtm_fifo_entry2_1 on page 3-463
0x2160	por_dtm_fifo_entry2_2	RO	por_dtm_fifo_entry2_2 on page 3-464
0x2168	por_dtm_fifo_entry3_0	RO	por_dtm_fifo_entry3_0 on page 3-465
0x2170	por_dtm_fifo_entry3_1	RO	por_dtm_fifo_entry3_1 on page 3-465
0x2178	por_dtm_fifo_entry3_2	RO	por_dtm_fifo_entry3_2 on page 3-466
0x21A0	por_dtm_wp0_config	RW	por_dtm_wp0_config on page 3-467
0x21A8	por_dtm_wp0_val	RW	por_dtm_wp0_val on page 3-469
0x21B0	por_dtm_wp0_mask	RW	por_dtm_wp0_mask on page 3-470
0x21B8	por_dtm_wp1_config	RW	por_dtm_wp1_config on page 3-471
0x21C0	por_dtm_wp1_val	RW	por_dtm_wp1_val on page 3-472
0x21C8	por_dtm_wp1_mask	RW	por_dtm_wp1_mask on page 3-473
0x21D0	por_dtm_wp2_config	RW	por_dtm_wp2_config on page 3-474
0x21D8	por_dtm_wp2_val	RW	por_dtm_wp2_val on page 3-476
0x21E0	por_dtm_wp2_mask	RW	por_dtm_wp2_mask on page 3-477
0x21E8	por_dtm_wp3_config	RW	por_dtm_wp3_config on page 3-478
0x21F0	por_dtm_wp3_val	RW	por_dtm_wp3_val on page 3-479
0x21F8	por_dtm_wp3_mask	RW	por_dtm_wp3_mask on page 3-480
0x2200	por_dtm_pmsicr	RW	por_dtm_pmsicr on page 3-481
0x2208	por_dtm_pmsirr	RW	por_dtm_pmsirr on page 3-482
0x2210	por_dtm_pmu_config	RW	por_dtm_pmu_config on page 3-483

Table 3-7 XP register summary (continued)

Offset	Name	Туре	Description
0x2220	por_dtm_pmevcnt	RW	por_dtm_pmevcnt on page 3-487
0x2240	por_dtm_pmevcntsr	RW	por_dtm_pmevcntsr on page 3-488

3.2.7 RN-D register summary

This section lists the RN-D registers used in CMN-600.

The following table shows the RN-D registers in offset order from the base memory address.

Table 3-8 RN-D register summary

Offset	Name	Туре	Description
0x0	por_rnd_node_info	RO	por_rnd_node_info on page 3-490
0x80	por_rnd_child_info	RO	por_rnd_child_info on page 3-490
0x980	por_rnd_secure_register_groups_override	RW	por_rnd_secure_register_groups_override on page 3-491
0x900	por_rnd_unit_info	RO	por_rnd_unit_info on page 3-492
0xA00	por_rnd_cfg_ctl	RW	por_rnd_cfg_ctl on page 3-494
0xA08	por_rnd_aux_ctl	RW	por_rnd_aux_ctl on page 3-496
0xA10	por_rnd_s0_port_control	RW	por_rnd_s0_port_control on page 3-497
0xA18	por_rnd_s1_port_control	RW	por_rnd_s1_port_control on page 3-498
0xA20	por_rnd_s2_port_control	RW	por_rnd_s2_port_control on page 3-499
0xA80	por_rnd_s0_qos_control	RW	por_rnd_s0_qos_control on page 3-500
0xA88	por_rnd_s0_qos_lat_tgt	RW	por_rnd_s0_qos_lat_tgt on page 3-502
0xA90	por_rnd_s0_qos_lat_scale	RW	por_rnd_s0_qos_lat_scale on page 3-503
0xA98	por_rnd_s0_qos_lat_range	RW	por_rnd_s0_qos_lat_range on page 3-504
0xAA0	por_rnd_s1_qos_control	RW	por_rnd_s1_qos_control on page 3-505
0xAA8	por_rnd_s1_qos_lat_tgt	RW	por_rnd_s1_qos_lat_tgt on page 3-507
0xAB0	por_rnd_s1_qos_lat_scale	RW	por_rnd_s1_qos_lat_scale on page 3-508
0xAB8	por_rnd_s1_qos_lat_range	RW	por_rnd_s1_qos_lat_range on page 3-510
0xAC0	por_rnd_s2_qos_control	RW	por_rnd_s2_qos_control on page 3-511
0xAC8	por_rnd_s2_qos_lat_tgt	RW	por_rnd_s2_qos_lat_tgt on page 3-513
0xAD0	por_rnd_s2_qos_lat_scale	RW	por_rnd_s2_qos_lat_scale on page 3-514
0xAD8	por_rnd_s2_qos_lat_range	RW	por_rnd_s2_qos_lat_range on page 3-515
0x2000	por_rnd_pmu_event_sel	RW	por_rnd_pmu_event_sel on page 3-516
0×1000	por_rnd_syscoreq_ctl	RW	por_rnd_syscoreq_ctl on page 3-518
0x1008	por_rnd_syscoack_status	RO	por_rnd_syscoack_status on page 3-519

3.2.8 RN-I register summary

This section lists the RN-I registers used in CMN-600.

RN-I register summary

The following table shows the RN-I registers in offset order from the base memory address.

Table 3-9 RN-I register summary

Offset	Name	Туре	Description
0x0	por_rni_node_info	RO	por_rni_node_info on page 3-521
0x80	por_rni_child_info	RO	por_rni_child_info on page 3-521
0x980	por_rni_secure_register_groups_override	RW	por_rni_secure_register_groups_override on page 3-522
0x900	por_rni_unit_info	RO	por_rni_unit_info on page 3-523
0×A00	por_rni_cfg_ctl	RW	por_rni_cfg_ctl on page 3-525
0xA08	por_rni_aux_ctl	RW	por_rni_aux_ctl on page 3-527
0xA10	por_rni_s0_port_control	RW	por_rni_s0_port_control on page 3-528
0xA18	por_rni_s1_port_control	RW	por_rni_s1_port_control on page 3-529
0xA20	por_rni_s2_port_control	RW	por_rni_s2_port_control on page 3-530
0xA80	por_rni_s0_qos_control	RW	por_rni_s0_qos_control on page 3-531
0xA88	por_rni_s0_qos_lat_tgt	RW	por_rni_s0_qos_lat_tgt on page 3-533
0xA90	por_rni_s0_qos_lat_scale	RW	por_rni_s0_qos_lat_scale on page 3-534
0xA98	por_rni_s0_qos_lat_range	RW	por_rni_s0_qos_lat_range on page 3-535
0xAA0	por_rni_s1_qos_control	RW	por_rni_s1_qos_control on page 3-536
0xAA8	por_rni_s1_qos_lat_tgt	RW	por_rni_s1_qos_lat_tgt on page 3-538
0xAB0	por_rni_s1_qos_lat_scale	RW	por_rni_s1_qos_lat_scale on page 3-539
0xAB8	por_rni_s1_qos_lat_range	RW	por_rni_s1_qos_lat_range on page 3-541
0xAC0	por_rni_s2_qos_control	RW	por_rni_s2_qos_control on page 3-542
0xAC8	por_rni_s2_qos_lat_tgt	RW	por_rni_s2_qos_lat_tgt on page 3-544
0xAD0	por_rni_s2_qos_lat_scale	RW	por_rni_s2_qos_lat_scale on page 3-545
0xAD8	por_rni_s2_qos_lat_range	RW	por_rni_s2_qos_lat_range on page 3-546
0x2000	por_rni_pmu_event_sel	RW	por_rni_pmu_event_sel on page 3-547

3.2.9 RN SAM register summary

This section lists the RN SAM registers used in CMN-600.

The following table shows the RN SAM registers in offset order from the base memory address.

Table 3-10 RN SAM register summary

Offset	Name	Туре	Description
0x0	por_rnsam_node_info	RO	por_rnsam_node_info on page 3-550
0x80	por_rnsam_child_info	RO	por_rnsam_child_info on page 3-551
0x980	por_rnsam_secure_register_groups_override	RW	por_rnsam_secure_register_groups_override on page 3-551
0x900	por_rnsam_unit_info	RO	por_rnsam_unit_info on page 3-552

Table 3-10 RN SAM register summary (continued)

Offset	Name	Туре	Description
0xC00	rnsam_status	RW	rnsam_status on page 3-553
0xC08	non_hash_mem_region_reg0	RW	non_hash_mem_region_reg0 on page 3-554
0xC10	non_hash_mem_region_reg1	RW	non_hash_mem_region_reg1 on page 3-556
0xC18	non_hash_mem_region_reg2	RW	non_hash_mem_region_reg2 on page 3-558
0xC20	non_hash_mem_region_reg3	RW	non_hash_mem_region_reg3 on page 3-560
0xC30	non_hash_tgt_nodeid0	RW	non_hash_tgt_nodeid0 on page 3-562
0xC38	non_hash_tgt_nodeid1	RW	non_hash_tgt_nodeid1 on page 3-563
0xC48	sys_cache_grp_region0	RW	sys_cache_grp_region0 on page 3-565
0xC50	sys_cache_grp_region1	RW	sys_cache_grp_region1 on page 3-567
0xC58	sys_cache_grp_hn_nodeid_reg0	RW	sys_cache_grp_hn_nodeid_reg0 on page 3-569
0xC60	sys_cache_grp_hn_nodeid_reg1	RW	sys_cache_grp_hn_nodeid_reg1 on page 3-570
0xC68	sys_cache_grp_hn_nodeid_reg2	RW	sys_cache_grp_hn_nodeid_reg2 on page 3-571
0xC70	sys_cache_grp_hn_nodeid_reg3	RW	sys_cache_grp_hn_nodeid_reg3 on page 3-572
0xC78	sys_cache_grp_hn_nodeid_reg4	RW	sys_cache_grp_hn_nodeid_reg4 on page 3-573
0xC80	sys_cache_grp_hn_nodeid_reg5	RW	sys_cache_grp_hn_nodeid_reg5 on page 3-575
0xC88	sys_cache_grp_hn_nodeid_reg6	RW	sys_cache_grp_hn_nodeid_reg6 on page 3-576
0xC90	sys_cache_grp_hn_nodeid_reg7	RW	sys_cache_grp_hn_nodeid_reg7 on page 3-577
0xC98	sys_cache_grp_nonhash_nodeid	RW	sys_cache_grp_nonhash_nodeid on page 3-578
0×D00	sys_cache_group_hn_count	RW	sys_cache_group_hn_count on page 3-579
0xD08	sys_cache_grp_sn_nodeid_reg0	RW	sys_cache_grp_sn_nodeid_reg0 on page 3-580
0xD10	sys_cache_grp_sn_nodeid_reg1	RW	sys_cache_grp_sn_nodeid_reg1 on page 3-582
0xD18	sys_cache_grp_sn_nodeid_reg2	RW	sys_cache_grp_sn_nodeid_reg2 on page 3-583
0xD20	sys_cache_grp_sn_nodeid_reg3	RW	sys_cache_grp_sn_nodeid_reg3 on page 3-584
0xD28	sys_cache_grp_sn_nodeid_reg4	RW	sys_cache_grp_sn_nodeid_reg4 on page 3-585
0xD30	sys_cache_grp_sn_nodeid_reg5	RW	sys_cache_grp_sn_nodeid_reg5 on page 3-586
0xD38	sys_cache_grp_sn_nodeid_reg6	RW	sys_cache_grp_sn_nodeid_reg6 on page 3-588
0xD40	sys_cache_grp_sn_nodeid_reg7	RW	sys_cache_grp_sn_nodeid_reg7 on page 3-589
0xD48	sys_cache_grp_sn_sam_cfg0	RW	sys_cache_grp_sn_sam_cfg0 on page 3-590
0xD50	sys_cache_grp_sn_sam_cfg1	RW	sys_cache_grp_sn_sam_cfg1 on page 3-591
0xD58	gic_mem_region_reg	RW	gic_mem_region_reg on page 3-593
0xD60	sys_cache_grp_sn_attr	RW	sys_cache_grp_sn_attr on page 3-594
0×E00	cml_port_aggr_mode_ctrl_reg	RW	cml_port_aggr_mode_ctrl_reg on page 3-596
0xE08	cml_port_aggr_grp0_add_mask	RW	cml_port_aggr_grp0_add_mask on page 3-598
0xE40	cml_port_aggr_grp0_reg	RW	cml_port_aggr_grp0_reg on page 3-599

3.2.10 SBSX register summary

This section lists the SBSX registers used in CMN-600.

The following table shows the SBSX registers in offset order from the base memory address.

Table 3-11 SBSX register summary

Offset	Name	Туре	Description
0x0	por_sbsx_node_info	RO	por_sbsx_node_info on page 3-601
0x80	por_sbsx_child_info	RO	por_sbsx_child_info on page 3-601
0x900	por_sbsx_unit_info	RO	por_sbsx_unit_info on page 3-602
0xA08	por_sbsx_aux_ctl	RW	por_sbsx_aux_ctl on page 3-603
0x3000	por_sbsx_errfr	RO	por_sbsx_errfr on page 3-604
0x3008	por_sbsx_errctlr	RW	por_sbsx_errctlr on page 3-605
0x3010	por_sbsx_errstatus	W1C	por_sbsx_errstatus on page 3-607
0x3018	por_sbsx_erraddr	RW	por_sbsx_erraddr on page 3-608
0x3020	por_sbsx_errmisc	RW	por_sbsx_errmisc on page 3-609
0x3100	por_sbsx_errfr_NS	RO	por_sbsx_errfr_NS on page 3-611
0x3108	por_sbsx_errctlr_NS	RW	por_sbsx_errctlr_NS on page 3-612
0x3110	por_sbsx_errstatus_NS	W1C	por_sbsx_errstatus_NS on page 3-613
0x3118	por_sbsx_erraddr_NS	RW	por_sbsx_erraddr_NS on page 3-615
0x3120	por_sbsx_errmisc_NS	RW	por_sbsx_errmisc_NS on page 3-616
0x2000	por_sbsx_pmu_event_sel	RW	por_sbsx_pmu_event_sel on page 3-617

3.2.11 CXHA register summary

This section lists the CXHA registers used in CMN-600.

The following table shows the CXHA registers in offset order from the base memory address.

Table 3-12 CXHA register summary

Offset	Name	Туре	Description
0x0	por_cxg_ha_node_info	RO	por_cxg_ha_node_info on page 3-620
0x8	por_cxg_ha_id	RW	por_cxg_ha_id on page 3-620
0x80	por_cxg_ha_child_info	RO	por_cxg_ha_child_info on page 3-621
0xA08	por_cxg_ha_aux_ctl	RW	por_cxg_ha_aux_ctl on page 3-622
0x980	por_cxg_ha_secure_register_groups_override	RW	por_cxg_ha_secure_register_groups_override on page 3-623
0x900	por_cxg_ha_unit_info	RO	por_cxg_ha_unit_info on page 3-624
0xC00	por_exg_ha_rnf_raid_to_ldid_reg0	RW	por_cxg_ha_rnf_raid_to_ldid_reg0 on page 3-625
0xC08	por_cxg_ha_rnf_raid_to_ldid_reg1	RW	por_cxg_ha_rnf_raid_to_ldid_reg1 on page 3-627
0xC10	por_cxg_ha_rnf_raid_to_ldid_reg2	RW	por_cxg_ha_rnf_raid_to_ldid_reg2 on page 3-629
0xC18	por_cxg_ha_rnf_raid_to_ldid_reg3	RW	por_cxg_ha_rnf_raid_to_ldid_reg3 on page 3-631
0xC20	por_cxg_ha_rnf_raid_to_ldid_reg4		por_cxg_ha_rnf_raid_to_ldid_reg4 on page 3-633

Table 3-12 CXHA register summary (continued)

Offset	Name	Туре	Description
0xC28	por_cxg_ha_rnf_raid_to_ldid_reg5	RW	por_cxg_ha_rnf_raid_to_ldid_reg5 on page 3-635
0xC30	por_cxg_ha_rnf_raid_to_ldid_reg6	RW	por_cxg_ha_rnf_raid_to_ldid_reg6 on page 3-637
0xC38	por_cxg_ha_rnf_raid_to_ldid_reg7	RW	por_cxg_ha_rnf_raid_to_ldid_reg7 on page 3-639
0xC40	por_cxg_ha_agentid_to_linkid_reg0	RW	por_cxg_ha_agentid_to_linkid_reg0 on page 3-641
0xC48	por_cxg_ha_agentid_to_linkid_reg1	RW	por_cxg_ha_agentid_to_linkid_reg1 on page 3-643
0xC50	por_cxg_ha_agentid_to_linkid_reg2	RW	por_cxg_ha_agentid_to_linkid_reg2 on page 3-644
0xC58	por_cxg_ha_agentid_to_linkid_reg3	RW	por_cxg_ha_agentid_to_linkid_reg3 on page 3-646
0xC60	por_cxg_ha_agentid_to_linkid_reg4	RW	por_cxg_ha_agentid_to_linkid_reg4 on page 3-647
0xC68	por_cxg_ha_agentid_to_linkid_reg5	RW	por_cxg_ha_agentid_to_linkid_reg5 on page 3-649
0xC70	por_cxg_ha_agentid_to_linkid_reg6	RW	por_cxg_ha_agentid_to_linkid_reg6 on page 3-650
0xC78	por_cxg_ha_agentid_to_linkid_reg7	RW	por_cxg_ha_agentid_to_linkid_reg7 on page 3-652
0×D00	por_cxg_ha_agentid_to_linkid_val	RW	por_cxg_ha_agentid_to_linkid_val on page 3-653
0xD08	por_cxg_ha_rnf_raid_to_ldid_val	RW	por_cxg_ha_rnf_raid_to_ldid_val on page 3-654
0x2000	por_cxg_ha_pmu_event_sel	RW	por_cxg_ha_pmu_event_sel on page 3-655
0x1000	por_exg_ha_exprtel_link0_etl	RW	por_cxg_ha_cxprtcl_link0_ctl on page 3-657
0x1008	por_exg_ha_exprtel_link0_status	RO	por_cxg_ha_cxprtcl_link0_status on page 3-659
0x1010	por_exg_ha_exprtel_link1_etl	RW	por_cxg_ha_cxprtcl_link1_ctl on page 3-660
0x1018	por_exg_ha_exprtel_link1_status	RO	por_cxg_ha_cxprtcl_link1_status on page 3-662
0x1020	por_exg_ha_exprtel_link2_etl	RW	por_cxg_ha_cxprtcl_link2_ctl on page 3-664
0x1028	por_exg_ha_exprtel_link2_status	RO	por_cxg_ha_cxprtcl_link2_status on page 3-665
0x3000	por_cxg_ha_errfr	RO	por_cxg_ha_errfr on page 3-667
0x3008	por_cxg_ha_errctlr	RW	por_cxg_ha_errctlr on page 3-668
0x3010	por_exg_ha_errstatus	W1C	por_cxg_ha_errstatus on page 3-669
0x3018	por_cxg_ha_erraddr	RW	por_cxg_ha_erraddr on page 3-671
0x3020	por_cxg_ha_errmisc	RW	por_cxg_ha_errmisc on page 3-672
0x3100	por_cxg_ha_errfr_NS	RO	por_cxg_ha_errfr_NS on page 3-673
0x3108	por_cxg_ha_errctlr_NS	RW	por_cxg_ha_errctlr_NS on page 3-675
0x3110	por_cxg_ha_errstatus_NS	W1C	por_cxg_ha_errstatus_NS on page 3-676
0x3118	por_cxg_ha_erraddr_NS	RW	por_cxg_ha_erraddr_NS on page 3-678
0x3120	por_cxg_ha_errmisc_NS	RW	por_cxg_ha_errmisc_NS on page 3-679

3.2.12 CXRA register summary

This section lists the CXRA registers used in CMN-600.

The following table shows the CXRA registers in offset order from the base memory address.

Table 3-13 CXRA register summary

Offset	Name	Туре	Description
0x0	por_cxg_ra_node_info	RO	por_cxg_ra_node_info on page 3-681
0x80	por_cxg_ra_child_info	RO	por_cxg_ra_child_info on page 3-681
0x980	por_cxg_ra_secure_register_groups_override	RW	por_cxg_ra_secure_register_groups_override on page 3-682
0x900	por_exg_ra_unit_info	RO	por_cxg_ra_unit_info on page 3-683
0xA00	por_cxg_ra_cfg_ctl	RW	por_cxg_ra_cfg_ctl on page 3-685
0xA08	por_cxg_ra_aux_ctl	RW	por_cxg_ra_aux_ctl on page 3-686
0xDA8	por_cxg_ra_sam_addr_region_reg0	RW	por_cxg_ra_sam_addr_region_reg0 on page 3-687
0xDB0	por_cxg_ra_sam_addr_region_reg1	RW	por_cxg_ra_sam_addr_region_reg1 on page 3-689
0xDB8	por_cxg_ra_sam_addr_region_reg2	RW	por_cxg_ra_sam_addr_region_reg2 on page 3-690
0xDC0	por_cxg_ra_sam_addr_region_reg3	RW	por_cxg_ra_sam_addr_region_reg3 on page 3-691
0xDC8	por_cxg_ra_sam_addr_region_reg4	RW	por_cxg_ra_sam_addr_region_reg4 on page 3-692
0xDD0	por_cxg_ra_sam_addr_region_reg5	RW	por_cxg_ra_sam_addr_region_reg5 on page 3-693
0xDD8	por_cxg_ra_sam_addr_region_reg6	RW	por_cxg_ra_sam_addr_region_reg6 on page 3-694
0xDE0	por_cxg_ra_sam_addr_region_reg7	RW	por_cxg_ra_sam_addr_region_reg7 on page 3-695
0xE00	por_cxg_ra_sam_mem_region0_limit_reg	RW	por_cxg_ra_sam_mem_region0_limit_reg on page 3-697
0xE08	por_cxg_ra_sam_mem_region1_limit_reg	RW	por_cxg_ra_sam_mem_region1_limit_reg on page 3-697
0xE10	por_cxg_ra_sam_mem_region2_limit_reg	RW	por_cxg_ra_sam_mem_region2_limit_reg on page 3-698
0xE18	por_cxg_ra_sam_mem_region3_limit_reg	RW	por_cxg_ra_sam_mem_region3_limit_reg on page 3-699
0xE20	por_cxg_ra_sam_mem_region4_limit_reg	RW	por_cxg_ra_sam_mem_region4_limit_reg on page 3-700
0xE28	por_cxg_ra_sam_mem_region5_limit_reg	RW	por_cxg_ra_sam_mem_region5_limit_reg on page 3-701
0xE30	por_cxg_ra_sam_mem_region6_limit_reg	RW	por_cxg_ra_sam_mem_region6_limit_reg on page 3-702
0xE38	por_cxg_ra_sam_mem_region7_limit_reg	RW	por_cxg_ra_sam_mem_region7_limit_reg on page 3-703
0xE60	por_cxg_ra_agentid_to_linkid_reg0	RW	por_cxg_ra_agentid_to_linkid_reg0 on page 3-704
0xE68	por_cxg_ra_agentid_to_linkid_reg1	RW	por_cxg_ra_agentid_to_linkid_reg1 on page 3-706
0xE70	por_cxg_ra_agentid_to_linkid_reg2	RW	por_cxg_ra_agentid_to_linkid_reg2 on page 3-707
0xE78	por_cxg_ra_agentid_to_linkid_reg3	RW	por_cxg_ra_agentid_to_linkid_reg3 on page 3-709
0xE80	por_cxg_ra_agentid_to_linkid_reg4	RW	por_cxg_ra_agentid_to_linkid_reg4 on page 3-710
0xE88	por_cxg_ra_agentid_to_linkid_reg5	RW	por_cxg_ra_agentid_to_linkid_reg5 on page 3-712
0xE90	por_cxg_ra_agentid_to_linkid_reg6	RW	por_cxg_ra_agentid_to_linkid_reg6 on page 3-713
0xE98	por_cxg_ra_agentid_to_linkid_reg7	RW	por_cxg_ra_agentid_to_linkid_reg7 on page 3-715
0xEA0	por_cxg_ra_rnf_ldid_to_raid_reg0	RW	por_cxg_ra_rnf_ldid_to_raid_reg0 on page 3-716
0xEA8	por_cxg_ra_rnf_ldid_to_raid_reg1	RW	por_cxg_ra_rnf_ldid_to_raid_reg1 on page 3-718
0xEB0	por_cxg_ra_rnf_ldid_to_raid_reg2	RW	por_cxg_ra_rnf_ldid_to_raid_reg2 on page 3-719
0xEB8	por_cxg_ra_rnf_ldid_to_raid_reg3	RW	por_cxg_ra_rnf_ldid_to_raid_reg3 on page 3-721
0xEC0	por_cxg_ra_rnf_ldid_to_raid_reg4	RW	por_cxg_ra_rnf_ldid_to_raid_reg4 on page 3-722

Table 3-13 CXRA register summary (continued)

Offset	Name	Туре	Description
0xEC8	por_cxg_ra_rnf_ldid_to_raid_reg5	RW	por_cxg_ra_rnf_ldid_to_raid_reg5 on page 3-724
0xED0	por_cxg_ra_rnf_ldid_to_raid_reg6	RW	por_cxg_ra_rnf_ldid_to_raid_reg6 on page 3-725
0xED8	por_cxg_ra_rnf_ldid_to_raid_reg7	RW	por_cxg_ra_rnf_ldid_to_raid_reg7 on page 3-727
0xEE0	por_cxg_ra_rni_ldid_to_raid_reg0	RW	por_cxg_ra_rni_ldid_to_raid_reg0 on page 3-728
0xEE8	por_cxg_ra_rni_ldid_to_raid_reg1	RW	por_cxg_ra_rni_ldid_to_raid_reg1 on page 3-730
0xEF0	por_cxg_ra_rni_ldid_to_raid_reg2	RW	por_cxg_ra_rni_ldid_to_raid_reg2 on page 3-731
0xEF8	por_cxg_ra_rni_ldid_to_raid_reg3	RW	por_cxg_ra_rni_ldid_to_raid_reg3 on page 3-733
0xF00	por_cxg_ra_rnd_ldid_to_raid_reg0	RW	por_cxg_ra_rnd_ldid_to_raid_reg0 on page 3-734
0xF08	por_cxg_ra_rnd_ldid_to_raid_reg1	RW	por_cxg_ra_rnd_ldid_to_raid_reg1 on page 3-736
0xF10	por_cxg_ra_rnd_ldid_to_raid_reg2	RW	por_cxg_ra_rnd_ldid_to_raid_reg2 on page 3-737
0xF18	por_cxg_ra_rnd_ldid_to_raid_reg3	RW	por_cxg_ra_rnd_ldid_to_raid_reg3 on page 3-739
0xF20	por_cxg_ra_agentid_to_linkid_val	RW	por_cxg_ra_agentid_to_linkid_val on page 3-740
0xF28	por_cxg_ra_rnf_ldid_to_raid_val	RW	por_cxg_ra_rnf_ldid_to_raid_val on page 3-741
0xF30	por_cxg_ra_rni_ldid_to_raid_val	RW	por_cxg_ra_rni_ldid_to_raid_val on page 3-742
0xF38	por_cxg_ra_rnd_ldid_to_raid_val	RW	por_cxg_ra_rnd_ldid_to_raid_val on page 3-743
0x2000	por_cxg_ra_pmu_event_sel	RW	por_cxg_ra_pmu_event_sel on page 3-744
0×1000	por_cxg_ra_cxprtcl_link0_ctl	RW	por_cxg_ra_cxprtcl_link0_ctl on page 3-746
0×1008	por_cxg_ra_cxprtcl_link0_status	RO	por_cxg_ra_cxprtcl_link0_status on page 3-748
0×1010	por_cxg_ra_cxprtcl_link1_ctl	RW	por_cxg_ra_cxprtcl_link1_ctl on page 3-749
0x1018	por_cxg_ra_cxprtcl_link1_status	RO	por_cxg_ra_cxprtcl_link1_status on page 3-751
0x1020	por_cxg_ra_cxprtcl_link2_ctl	RW	por_cxg_ra_cxprtcl_link2_ctl on page 3-752
0x1028	por_exg_ra_exprtcl_link2_status	RO	por_cxg_ra_cxprtcl_link2_status on page 3-754

3.2.13 CXLA register summary

This section lists the CXLA registers used in CMN-600.

The following table shows the CXLA registers in offset order from the base memory address

Table 3-14 CXLA register summary

Offset	Name	Туре	Description	
0x0	por_cxla_node_info	RO	por_cxla_node_info on page 3-756	
0x80	por_cxla_child_info	RO	por_cxla_child_info on page 3-756	
0x980	por_cxla_secure_register_groups_override	RW	por_cxla_secure_register_groups_override on page 3-757	
0x900	por_cxla_unit_info	RO	por_cxla_unit_info on page 3-758	
0xA08	por_cxla_aux_ctl	RW	por_cxla_aux_ctl on page 3-759	
0xC00	por_cxla_ccix_prop_capabilities	RO	por_cxla_ccix_prop_capabilities on page 3-763	
0xC08	por_cxla_ccix_prop_configured	RW	por_cxla_ccix_prop_configured on page 3-765	

Table 3-14 CXLA register summary (continued)

Offset	Name	Туре	Description	
0xC10	por_cxla_tx_cxs_attr_capabilities	RO	por_cxla_tx_cxs_attr_capabilities on page 3-767	
0xC18	por_cxla_rx_cxs_attr_capabilities	RO	por_cxla_rx_cxs_attr_capabilities on page 3-768	
0xC30	por_cxla_agentid_to_linkid_reg0	RW	por_cxla_agentid_to_linkid_reg0 on page 3-770	
0xC38	por_cxla_agentid_to_linkid_reg1	RW	por_cxla_agentid_to_linkid_reg1 on page 3-771	
0xC40	por_cxla_agentid_to_linkid_reg2	RW	por_cxla_agentid_to_linkid_reg2 on page 3-773	
0xC48	por_cxla_agentid_to_linkid_reg3	RW	por_cxla_agentid_to_linkid_reg3 on page 3-775	
0xC50	por_cxla_agentid_to_linkid_reg4	RW	por_cxla_agentid_to_linkid_reg4 on page 3-776	
0xC58	por_cxla_agentid_to_linkid_reg5	RW	por_cxla_agentid_to_linkid_reg5 on page 3-778	
0xC60	por_cxla_agentid_to_linkid_reg6	RW	por_cxla_agentid_to_linkid_reg6 on page 3-779	
0xC68	por_cxla_agentid_to_linkid_reg7	RW	por_cxla_agentid_to_linkid_reg7 on page 3-781	
0xC70	por_cxla_agentid_to_linkid_val	RW	por_cxla_agentid_to_linkid_val on page 3-782	
0xC78	por_cxla_linkid_to_pcie_bus_num	RW	por_cxla_linkid_to_pcie_bus_num on page 3-783	
0x2000	por_cxla_pmu_event_sel	RW	por_cxla_pmu_event_sel on page 3-784	
0x2210	por_cxla_pmu_config	RW	por_cxla_pmu_config on page 3-786	
0x2220	por_cxla_pmevcnt	RW	por_cxla_pmevcnt on page 3-788	
0x2240	por_cxla_pmevcntsr	RW	por_cxla_pmevcntsr on page 3-789	

3.3 Register descriptions

This section contains register descriptions.

This section contains the following subsections:

- *3.3.1 Configuration master register descriptions* on page 3-174.
- 3.3.2 DN register descriptions on page 3-213.
- *3.3.3 Debug and trace register descriptions* on page 3-219.
- 3.3.4 HN-F register descriptions on page 3-251.
- 3.3.5 HN-I register descriptions on page 3-370.
- 3.3.6 XP register descriptions on page 3-399.
- 3.3.7 RN-D register descriptions on page 3-490.
- 3.3.8 RN-I register descriptions on page 3-521.
- 3.3.9 RN SAM register descriptions on page 3-550.
- 3.3.10 SBSX register descriptions on page 3-601.
- 3.3.11 CXHA configuration registers on page 3-620.
- 3.3.12 CXRA configuration registers on page 3-681.
- 3.3.13 CXLA configuration registers on page 3-756.

3.3.1 Configuration master register descriptions

This section lists the configuration registers.

por_cfgm_node_info

Provides component identification information.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

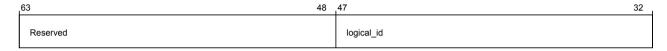


Figure 3-1 por_cfgm_por_cfgm_node_info (high)

The following table shows the por cfgm node info higher register bit assignments.

Table 3-15 por_cfgm_por_cfgm_node_info (high)

Bits	Bits Field name Description		Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

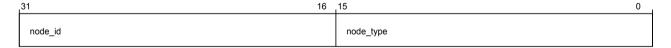


Figure 3-2 por_cfgm_por_cfgm_node_info (low)

The following table shows the por_cfgm_node_info lower register bit assignments.

Table 3-16 por_cfgm_por_cfgm_node_info (low)

Bits	<u> </u>		Туре	Reset
31:16			RO	Configuration dependent
15:0			RO	16'h0002

por_cfgm_periph_id_0_periph_id_1

Functions as the peripheral ID 0 and peripheral ID 1 register.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h8

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-3 por_cfgm_por_cfgm_periph_id_0_periph_id_1 (high)

The following table shows the por cfgm periph id 0 periph id 1 higher register bit assignments.

Table 3-17 por_cfgm_por_cfgm_periph_id_0_periph_id_1 (high)

Bits Field name		Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	periph_id_1	Peripheral ID 1	RO	8'b10110100

The following image shows the lower register bit assignments.

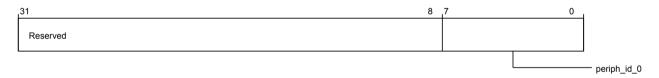


Figure 3-4 por_cfgm_por_cfgm_periph_id_0_periph_id_1 (low)

The following table shows the por_cfgm_periph_id_0 periph_id_1 lower register bit assignments.

Table 3-18 por_cfgm_por_cfgm_periph_id_0_periph_id_1 (low)

Bits Field name Description		Туре	Reset	
31:8	Reserved	Reserved	RO	-
7:0	periph_id_0	Peripheral ID 0	RO	Configuration dependent

por_cfgm_periph_id_2_periph_id_3

Functions as the peripheral ID 2 and peripheral ID 3 register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h10

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-5 por_cfgm_por_cfgm_periph_id_2_periph_id_3 (high)

The following table shows the por_cfgm_periph_id_2_periph_id_3 higher register bit assignments.

Table 3-19 por_cfgm_por_cfgm_periph_id_2_periph_id_3 (high)

Bits Field name		Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	periph_id_3	Peripheral ID 3	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-6 por_cfgm_por_cfgm_periph_id_2_periph_id_3 (low)

The following table shows the por_cfgm_periph_id_2 periph_id_3 lower register bit assignments.

Table 3-20 por_cfgm_por_cfgm_periph_id_2_periph_id_3 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	periph_id_2	Peripheral ID 2	RO	Configuration dependent
		Bits [7:4]: Indicates revision		
		4'h0: r1p0		
		4'h1: r1p1		
		4'h2: r1p2		
		4'h3: r1p3		
		Bit [3]: JEDEC JEP106 identity code; set to 1'b1		
		Bits [2:0]: JEP106 identity code [6:4]; set to 3'b011		

por_cfgm_periph_id_4_periph_id_5

Functions as the peripheral ID 4 and peripheral ID 5 register.

Its characteristics are:

Type RO

Register width (Bits) 64

Address offset 14'h18

Register reset 64'b011000100

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

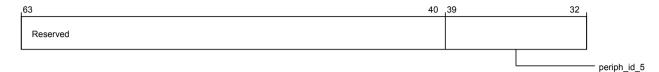


Figure 3-7 por_cfgm_por_cfgm_periph_id_4_periph_id_5 (high)

The following table shows the por cfgm periph id 4 periph id 5 higher register bit assignments.

Table 3-21 por_cfgm_por_cfgm_periph_id_4_periph_id_5 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	periph_id_5	Peripheral ID 5	RO	8'b0

The following image shows the lower register bit assignments.

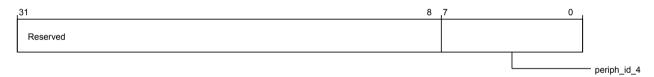


Figure 3-8 por_cfgm_por_cfgm_periph_id_4_periph_id_5 (low)

The following table shows the por_cfgm_periph_id_4_periph_id_5 lower register bit assignments.

Table 3-22 por_cfgm_por_cfgm_periph_id_4_periph_id_5 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	periph_id_4	Peripheral ID 4	RO	8'b11000100

por_cfgm_periph_id_6_periph_id_7

Functions as the peripheral ID 6 and peripheral ID 7 register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h20
Register reset 64'b0

Usage constraints There are no usage constraints.

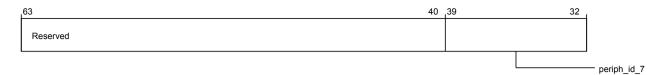


Figure 3-9 por_cfgm_por_cfgm_periph_id_6_periph_id_7 (high)

The following table shows the por cfgm periph id 6 periph id 7 higher register bit assignments.

Table 3-23 por_cfgm_por_cfgm_periph_id_6_periph_id_7 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	periph_id_7	Peripheral ID 7	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-10 por_cfgm_por_cfgm_periph_id_6_periph_id_7 (low)

The following table shows the por_cfgm_periph_id_6_periph_id_7 lower register bit assignments.

Table 3-24 por_cfgm_por_cfgm_periph_id_6_periph_id_7 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	periph_id_6	Peripheral ID 6	RO	8'b0

por cfgm component id 0 component id 1

Functions as the component ID 0 and component ID 1 register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h28

Register reset 64'b1111000000001101

Usage constraints There are no usage constraints.

Figure 3-11 por_cfgm_por_cfgm_component_id_0_component_id_1 (high)

The following table shows the por_cfgm_component_id_0_component_id_1 higher register bit assignments.

Table 3-25 por_cfgm_por_cfgm_component_id_0_component_id_1 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	component_id_1	Component ID 1	RO	8'b11110000

The following image shows the lower register bit assignments.

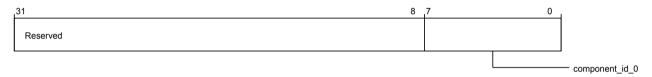


Figure 3-12 por cfgm por cfgm component id 0 component id 1 (low)

The following table shows the por_cfgm_component_id_0_component_id_1 lower register bit assignments.

Table 3-26 por_cfgm_por_cfgm_component_id_0_component_id_1 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	component_id_0	Component ID 0	RO	8'b00001101

por_cfgm_component_id_2_component_id_3

Functions as the component ID 2 and component ID 3 register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h30

Register reset 64'b1011000100000101

Usage constraints There are no usage constraints.

Figure 3-13 por_cfgm_por_cfgm_component_id_2_component_id_3 (high)

The following table shows the por_cfgm_component_id_2_component_id_3 higher register bit assignments.

Table 3-27 por_cfgm_por_cfgm_component_id_2_component_id_3 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	component_id_3	Component ID 3	RO	8'b10110001

The following image shows the lower register bit assignments.



Figure 3-14 por cfgm por cfgm component id 2 component id 3 (low)

The following table shows the por_cfgm_component_id_2_component_id_3 lower register bit assignments.

Table 3-28 por_cfgm_por_cfgm_component_id_2_component_id_3 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	component_id_2	Component ID 2	RO	8'b00000101

por_cfgm_child_info

Provides component child identification information.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h80

Register reset Configuration dependent

Usage constraints There are no usage constraints.

Figure 3-15 por_cfgm_por_cfgm_child_info (high)

The following table shows the por cfgm child info higher register bit assignments.

Table 3-29 por_cfgm_por_cfgm_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

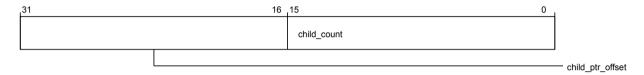


Figure 3-16 por_cfgm_por_cfgm_child_info (low)

The following table shows the por cfgm child info lower register bit assignments.

Table 3-30 por_cfgm_por_cfgm_child_info (low)

Bits	Field name	Description	Туре	Reset
31:1	6 child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h100
15:0	child_count	Number of child nodes; used in discovery process	RO	Configuration dependent

por_cfgm_secure_access

Functions as the secure access control register. This register must be set up at boot time. Before initiating a write to this register, software must ensure that no other configuration accesses are in flight. Once this write is initiated, no other configuration accesses are initiated until complete.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h980Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Figure 3-17 por_cfgm_por_cfgm_secure_access (high)

The following table shows the por_cfgm_secure_access higher register bit assignments.

Table 3-31 por_cfgm_por_cfgm_secure_access (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.



Figure 3-18 por_cfgm_por_cfgm_secure_access (low)

The following table shows the por cfgm secure access lower register bit assignments.

Table 3-32 por_cfgm_por_cfgm_secure_access (low)

Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1:0	configure_secure_access	Secure access mode	RW	2'b0
		2'b00: Default operation		
		2'b01: Allows non-secure access to secure registers		
		2'b10: Allows secure access only to any configuration register regardless of its security status		
		2'b11: Undefined behavior		

por_cfgm_errgsr0

Provides the XP <n> secure error status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3000
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.


Figure 3-19 por_cfgm_por_cfgm_errgsr0 (high)

The following table shows the por_cfgm_errgsr0 higher register bit assignments.

Table 3-33 por_cfgm_por_cfgm_errgsr0 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status0	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-20 por_cfgm_por_cfgm_errgsr0 (low)

The following table shows the por cfgm errgsr0 lower register bit assignments.

Table 3-34 por_cfgm_por_cfgm_errgsr0 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status0	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

por_cfgm_errgsr1

Provides the HN-I <n> secure error status.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3008 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

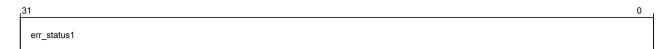


Figure 3-21 por_cfgm_por_cfgm_errgsr1 (high)

The following table shows the por_cfgm_errgsr1 higher register bit assignments.

Table 3-35 por_cfgm_por_cfgm_errgsr1 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status1	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

Figure 3-22 por_cfgm_por_cfgm_errgsr1 (low)

The following table shows the por cfgm errgsr1 lower register bit assignments.

Table 3-36 por_cfgm_por_cfgm_errgsr1 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status1	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

por_cfgm_errgsr2

Provides the HN-F <n> secure error status.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3010 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-23 por_cfgm_por_cfgm_errgsr2 (high)

The following table shows the por cfgm errgsr2 higher register bit assignments.

Table 3-37 por_cfgm_por_cfgm_errgsr2 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status2	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-24 por_cfgm_por_cfgm_errgsr2 (low)

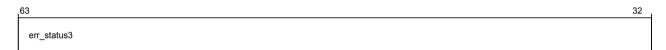
The following table shows the por_cfgm_errgsr2 lower register bit assignments.

Table 3-38 por_cfgm_por_cfgm_errgsr2 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status2	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

por_cfgm_errgsr3

Provides the SBSX <n> secure error status.


Its characteristics are:

Register reset

RO **Type** Register width (Bits) 64 Address offset 14'h3018

64'b0 **Usage constraints** Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-25 por_cfgm_por_cfgm_errgsr3 (high)

The following table shows the por cfgm errgsr3 higher register bit assignments.

Table 3-39 por_cfgm_por_cfgm_errgsr3 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status3	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-26 por_cfgm_por_cfgm_errgsr3 (low)

The following table shows the por_cfgm_errgsr3 lower register bit assignments.

Table 3-40 por_cfgm_por_cfgm_errgsr3 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status3	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

por_cfgm_errgsr4

Provides the CXG <n> secure error status.

Its characteristics are:

RO **Type**

Register width (Bits) 64

Address offset 14'h3020 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-27 por_cfgm_por_cfgm_errgsr4 (high)

The following table shows the por cfgm errgsr4 higher register bit assignments.

Table 3-41 por_cfgm_por_cfgm_errgsr4 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status4	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

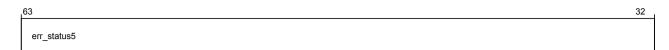
Figure 3-28 por_cfgm_por_cfgm_errgsr4 (low)

The following table shows the por_cfgm_errgsr4 lower register bit assignments.

Table 3-42 por_cfgm_por_cfgm_errgsr4 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status4	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

por_cfgm_errgsr5


Provides the XP <n> secure fault status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h308

Address offset 14'h3080 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Figure 3-29 por_cfgm_por_cfgm_errgsr5 (high)

The following table shows the por cfgm errgsr5 higher register bit assignments.

Table 3-43 por_cfgm_por_cfgm_errgsr5 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status5	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-30 por_cfgm_por_cfgm_errgsr5 (low)

The following table shows the por_cfgm_errgsr5 lower register bit assignments.

Table 3-44 por_cfgm_por_cfgm_errgsr5 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status5	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

por_cfgm_errgsr6

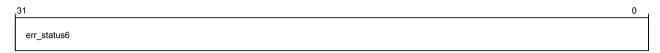
Provides the HN-I <n> secure fault status.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h3088Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.


Figure 3-31 por_cfgm_por_cfgm_errgsr6 (high)

The following table shows the por_cfgm_errgsr6 higher register bit assignments.

Table 3-45 por_cfgm_por_cfgm_errgsr6 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status6	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-32 por_cfgm_por_cfgm_errgsr6 (low)

The following table shows the por cfgm errgsr6 lower register bit assignments.

Table 3-46 por_cfgm_por_cfgm_errgsr6 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status6	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

por_cfgm_errgsr7

Provides the HN-F <n> secure fault status.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3090 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

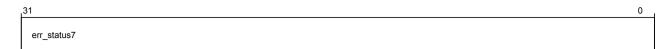


Figure 3-33 por_cfgm_por_cfgm_errgsr7 (high)

The following table shows the por_cfgm_errgsr7 higher register bit assignments.

Table 3-47 por_cfgm_por_cfgm_errgsr7 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status7	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

Figure 3-34 por_cfgm_por_cfgm_errgsr7 (low)

The following table shows the por cfgm errgsr7 lower register bit assignments.

Table 3-48 por_cfgm_por_cfgm_errgsr7 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status7	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

por_cfgm_errgsr8

Provides the SBSX <n> secure fault status.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3098 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-35 por_cfgm_por_cfgm_errgsr8 (high)

The following table shows the por cfgm errgsr8 higher register bit assignments.

Table 3-49 por_cfgm_por_cfgm_errgsr8 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status8	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-36 por_cfgm_por_cfgm_errgsr8 (low)

The following table shows the por_cfgm_errgsr8 lower register bit assignments.

Table 3-50 por_cfgm_por_cfgm_errgsr8 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status8	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

por_cfgm_errgsr9

Provides the CXG <n> secure error status.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h30A0 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-37 por_cfgm_por_cfgm_errgsr9 (high)

The following table shows the por_cfgm_errgsr9 higher register bit assignments.

Table 3-51 por_cfgm_por_cfgm_errgsr9 (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status9	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-38 por_cfgm_por_cfgm_errgsr9 (low)

The following table shows the por_cfgm_errgsr9 lower register bit assignments.

Table 3-52 por_cfgm_por_cfgm_errgsr9 (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status9	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

por cfgm errgsr0 NS

Provides the XP <n> non-secure error status.

Its characteristics are:

Type RO

Register width (Bits) 64

Address offset 14'h3100 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-39 por_cfgm_por_cfgm_errgsr0_ns (high)

The following table shows the por cfgm errgsr0 NS higher register bit assignments.

Table 3-53 por_cfgm_por_cfgm_errgsr0_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status0_ns	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-40 por_cfgm_por_cfgm_errgsr0_ns (low)

The following table shows the por_cfgm_errgsr0_NS lower register bit assignments.

Table 3-54 por_cfgm_por_cfgm_errgsr0_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status0_ns	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

por_cfgm_errgsr1_NS

Provides the HN-I <n> non-secure error status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3108
Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-41 por_cfgm_por_cfgm_errgsr1_ns (high)

The following table shows the por cfgm errgsr1 NS higher register bit assignments.

Table 3-55 por_cfgm_por_cfgm_errgsr1_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status1_ns	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-42 por_cfgm_por_cfgm_errgsr1_ns (low)

The following table shows the por_cfgm_errgsr1_NS lower register bit assignments.

Table 3-56 por_cfgm_por_cfgm_errgsr1_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status1_ns	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

por_cfgm_errgsr2_NS

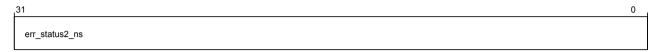
Provides the HN-F <n> non-secure error status.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h3110Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-43 por_cfgm_por_cfgm_errgsr2_ns (high)

The following table shows the por_cfgm_errgsr2_NS higher register bit assignments.

Table 3-57 por_cfgm_por_cfgm_errgsr2_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status2_ns	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-44 por_cfgm_por_cfgm_errgsr2_ns (low)

The following table shows the por_cfgm_errgsr2_NS lower register bit assignments.

Table 3-58 por_cfgm_por_cfgm_errgsr2_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status2_ns	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

por_cfgm_errgsr3_NS

Provides the SBSX <n> non-secure error status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3118

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-45 por_cfgm_por_cfgm_errgsr3_ns (high)

The following table shows the por_cfgm_errgsr3_NS higher register bit assignments.

Table 3-59 por_cfgm_por_cfgm_errgsr3_ns (high)

Bits	Field name	Description	Туре	Reset
63:3	err_status3_ns	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

Figure 3-46 por_cfgm_por_cfgm_errgsr3_ns (low)

The following table shows the por cfgm errgsr3 NS lower register bit assignments.

Table 3-60 por_cfgm_por_cfgm_errgsr3_ns (low)

Bit	Field name	Description	Туре	Reset
31:0	err_status3_ns	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

por_cfgm_errgsr4_NS

Provides the CXG <n> secure error status.

Its characteristics are:

Type RO
Register width (Bits) 64

Address offset 14'h3120 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-47 por_cfgm_por_cfgm_errgsr4_ns (high)

The following table shows the por cfgm errgsr4 NS higher register bit assignments.

Table 3-61 por_cfgm_por_cfgm_errgsr4_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status4_ns	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-48 por_cfgm_por_cfgm_errgsr4_ns (low)

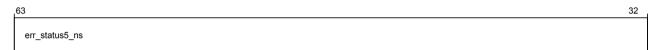
The following table shows the por_cfgm_errgsr4_NS lower register bit assignments.

Table 3-62 por_cfgm_por_cfgm_errgsr4_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status4_ns	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

por_cfgm_errgsr5_NS

Provides the XP <n> non-secure fault status.


Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3180 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-49 por_cfgm_por_cfgm_errgsr5_ns (high)

The following table shows the por cfgm errgsr5 NS higher register bit assignments.

Table 3-63 por_cfgm_por_cfgm_errgsr5_ns (high)

В	its	Field name	Description	Туре	Reset
63	3:32	err_status5_ns	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-50 por_cfgm_por_cfgm_errgsr5_ns (low)

The following table shows the por_cfgm_errgsr5_NS lower register bit assignments.

Table 3-64 por_cfgm_por_cfgm_errgsr5_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	err_status5_ns	Read-only copy of por_mxp_err <n>status</n>	RO	64'h0

por cfgm errgsr6 NS

Provides the HN-I <n> non-secure fault status.

Its characteristics are:

Type RO

Register width (Bits) 64

Address offset 14'h3188 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-51 por_cfgm_por_cfgm_errgsr6_ns (high)

The following table shows the por cfgm errgsr6 NS higher register bit assignments.

Table 3-65 por_cfgm_por_cfgm_errgsr6_ns (high)

Bits	Field name	Description		Reset
63:32	err_status6_ns	ns Read-only copy of por_hni_err <n>status 1</n>		64'h0

The following image shows the lower register bit assignments.

Figure 3-52 por_cfgm_por_cfgm_errgsr6_ns (low)

The following table shows the por_cfgm_errgsr6_NS lower register bit assignments.

Table 3-66 por_cfgm_por_cfgm_errgsr6_ns (low)

Bits	Field name	Description		Reset
31:0	err_status6_ns	Read-only copy of por_hni_err <n>status</n>	RO	64'h0

por_cfgm_errgsr7_NS

Provides the HN-F <n> non-secure fault status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3190

Address offset 14'h319 Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-53 por_cfgm_por_cfgm_errgsr7_ns (high)

The following table shows the por cfgm errgsr7 NS higher register bit assignments.

Table 3-67 por_cfgm_por_cfgm_errgsr7_ns (high)

Bits	Field name	Description s Read-only copy of por_hnf_err <n>status</n>		Reset
63:32	err_status7_ns			64'h0

The following image shows the lower register bit assignments.

Figure 3-54 por_cfgm_por_cfgm_errgsr7_ns (low)

The following table shows the por_cfgm_errgsr7_NS lower register bit assignments.

Table 3-68 por_cfgm_por_cfgm_errgsr7_ns (low)

Bits	Field name			Reset
31:0	err_status7_ns	Read-only copy of por_hnf_err <n>status</n>	RO	64'h0

por_cfgm_errgsr8_NS

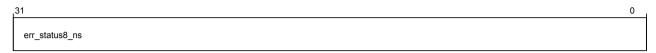
Provides the SBSX <n> non-secure fault status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3198
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-55 por_cfgm_por_cfgm_errgsr8_ns (high)

The following table shows the por_cfgm_errgsr8_NS higher register bit assignments.

Table 3-69 por_cfgm_por_cfgm_errgsr8_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	err_status8_ns	Read-only copy of por_sbsx_err <n>status</n>	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-56 por_cfgm_por_cfgm_errgsr8_ns (low)

The following table shows the por_cfgm_errgsr8_NS lower register bit assignments.

Table 3-70 por_cfgm_por_cfgm_errgsr8_ns (low)

Bits	Field name	name Description		Reset
31:0	1:0 err_status8_ns Read-only copy of por_sbsx_err <n>stat</n>		RO	64'h0

por_cfgm_errgsr9_NS

Provides the CXG <n> secure error status.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h31A0 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-57 por_cfgm_por_cfgm_errgsr9_ns (high)

The following table shows the por_cfgm_errgsr9_NS higher register bit assignments.

Table 3-71 por_cfgm_por_cfgm_errgsr9_ns (high)

Bits	Field name	Description		Reset
63:32	err_status9_ns	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

Figure 3-58 por_cfgm_por_cfgm_errgsr9_ns (low)

The following table shows the por cfgm errgsr9 NS lower register bit assignments.

Table 3-72 por_cfgm_por_cfgm_errgsr9_ns (low)

Bits	Field name	ield name Description		Reset
31:0	err_status9_ns	Read-only copy of por_cxg_err <n>status</n>	RO	64'h0

por_cfgm_errdevaff

Functions as the device affinity register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3FA8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-59 por_cfgm_por_cfgm_errdevaff (high)

The following table shows the por cfgm errdevaff higher register bit assignments.

Table 3-73 por_cfgm_por_cfgm_errdevaff (high)

Bits	Field name	Description	Туре	Reset
63:32	devaff	Device affinity register	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-60 por_cfgm_por_cfgm_errdevaff (low)

The following table shows the por_cfgm_errdevaff lower register bit assignments.

Table 3-74 por_cfgm_por_cfgm_errdevaff (low)

Bits	Field name	Description	Туре	Reset
31:0	devaff	Device affinity register	RO	64'b0

por_cfgm_errdevarch

Functions as the device architecture register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3FB8

Register reset 64'b00010111011100000000000101000

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

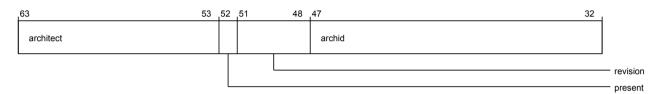


Figure 3-61 por_cfgm_por_cfgm_errdevarch (high)

The following table shows the por_cfgm_errdevarch higher register bit assignments.

Table 3-75 por_cfgm_por_cfgm_errdevarch (high)

Bits	Field name	Description	Туре	Reset
63:53	architect	Architect	RO	11'h23B
52	present	Present	RO	1'b1
51:48	revision	Architecture revision	RO	4'b0
47:32	archid	Architecture ID	RO	16'h0A00

The following image shows the lower register bit assignments.

Figure 3-62 por_cfgm_por_cfgm_errdevarch (low)

The following table shows the por_cfgm_errdevarch lower register bit assignments.

Table 3-76 por_cfgm_por_cfgm_errdevarch (low)

Bits	Field name	Description	Туре	Reset
31:0	Reserved	Reserved	RO	-

por_cfgm_erridr

Contains the number of error records.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3FC8

Register reset Configuration dependent **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-63 por_cfgm_por_cfgm_erridr (high)

The following table shows the por_cfgm_erridr higher register bit assignments.

Table 3-77 por_cfgm_por_cfgm_erridr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-64 por_cfgm_por_cfgm_erridr (low)

The following table shows the por cfgm erridr lower register bit assignments.

Table 3-78 por_cfgm_por_cfgm_erridr (low)

Bits	Field name	Description	Туре	Reset
31:16	Reserved	Reserved	RO	-
15:0	recnum	Number of error records; equal to 2*(number of logical devices)	RO	Configuration dependent

por_cfgm_errpidr45

Functions as the identification register for peripheral ID 4 and peripheral ID 5.


Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3FD0 Register reset 64'b000000100

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-65 por_cfgm_por_cfgm_errpidr45 (high)

The following table shows the por cfgm errpidr45 higher register bit assignments.

Table 3-79 por_cfgm_por_cfgm_errpidr45 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr5	Peripheral ID 5	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-66 por_cfgm_por_cfgm_errpidr45 (low)

The following table shows the por cfgm errpidr45 lower register bit assignments.

Table 3-80 por_cfgm_por_cfgm_errpidr45 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr4	Peripheral ID 4	RO	8'h4

por_cfgm_errpidr67

Functions as the identification register for peripheral ID 6 and peripheral ID 7.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3FD8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-67 por_cfgm_por_cfgm_errpidr67 (high)

The following table shows the por cfgm errpidr67 higher register bit assignments.

Table 3-81 por_cfgm_por_cfgm_errpidr67 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr7	Peripheral ID 7	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-68 por_cfgm_por_cfgm_errpidr67 (low)

The following table shows the por_cfgm_errpidr67 lower register bit assignments.

Table 3-82 por_cfgm_por_cfgm_errpidr67 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr6	Peripheral ID 6	RO	8'b0

por_cfgm_errpidr01

Functions as the identification register for peripheral ID 0 and peripheral ID 1.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3FE0

Register reset 64'b0101110000011100

Usage constraints There are no usage constraints.

₆ 3	40	39	32
Reserved		pidr1	

Figure 3-69 por_cfgm_por_cfgm_errpidr01 (high)

The following table shows the por cfgm errpidr01 higher register bit assignments.

Table 3-83 por_cfgm_por_cfgm_errpidr01 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr1	Peripheral ID 1	RO	8'hb4

The following image shows the lower register bit assignments.

Figure 3-70 por_cfgm_por_cfgm_errpidr01 (low)

The following table shows the por_cfgm_errpidr01 lower register bit assignments.

Table 3-84 por_cfgm_por_cfgm_errpidr01 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr0	Peripheral ID 0	RO	8'h34

por_cfgm_errpidr23

Functions as the identification register for peripheral ID 2 and peripheral ID 3.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3FE8

Register reset 64'b000000111

Usage constraints There are no usage constraints.

_L 63	40	₁ 39	32
Reserved		pidr3	

Figure 3-71 por_cfgm_por_cfgm_errpidr23 (high)

The following table shows the por cfgm errpidr23 higher register bit assignments.

Table 3-85 por_cfgm_por_cfgm_errpidr23 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr3	Peripheral ID 3	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-72 por_cfgm_por_cfgm_errpidr23 (low)

The following table shows the por_cfgm_errpidr23 lower register bit assignments.

Table 3-86 por_cfgm_por_cfgm_errpidr23 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr2	Peripheral ID 2	RO	8'h7

por_cfgm_errcidr01

Functions as the identification register for component ID 0 and component ID 1.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3FF0

Register reset 64'b1111111100001101

Usage constraints There are no usage constraints.

63	40	_39	32
Reserved		cidr1	

Figure 3-73 por_cfgm_por_cfgm_errcidr01 (high)

The following table shows the por cfgm errcidr01 higher register bit assignments.

Table 3-87 por_cfgm_por_cfgm_errcidr01 (high)

Bits	Field name Description		Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	cidr1	Component ID 1	RO	8'hff

The following image shows the lower register bit assignments.

Figure 3-74 por_cfgm_por_cfgm_errcidr01 (low)

The following table shows the por_cfgm_errcidr01 lower register bit assignments.

Table 3-88 por_cfgm_por_cfgm_errcidr01 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	cidr0	Component ID 0	RO	8'hd

por_cfgm_errcidr23

Functions as the identification register for component ID 2 and component ID 3.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3FF8

Register reset 64'b0001011100000101

Usage constraints There are no usage constraints.

₆ 3	40	39 32
Reserved		cidr3

Figure 3-75 por_cfgm_por_cfgm_errcidr23 (high)

The following table shows the por cfgm errcidr23 higher register bit assignments.

Table 3-89 por_cfgm_por_cfgm_errcidr23 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	cidr3	Component ID 3	RO	8'hb1

The following image shows the lower register bit assignments.

Figure 3-76 por_cfgm_por_cfgm_errcidr23 (low)

The following table shows the por_cfgm_errcidr23 lower register bit assignments.

Table 3-90 por_cfgm_por_cfgm_errcidr23 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	cidr2	Component ID 2	RO	8'h5

por_info_global

Contains user-specified values of build-time global configuration parameters.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

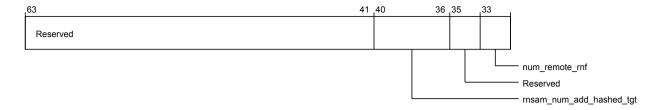


Figure 3-77 por_cfgm_por_info_global (high)

The following table shows the por_info_global higher register bit assignments.

Table 3-91 por_cfgm_por_info_global (high)

Bits	Field name	Description	Туре	Reset
63:41	Reserved	Reserved	RO	-
40:36	rnsam_num_add_hashed_tgt	Number of additional hashed target IDs supported by the RN SAM, beyond the local HN-F count	RO	Configuration dependent
35:34	Reserved	Reserved	RO	-
33:32	num_remote_rnf	Number of remote RN-F devices in the system when the CML feature is enabled	RO	Configuration dependent

The following image shows the lower register bit assignments.

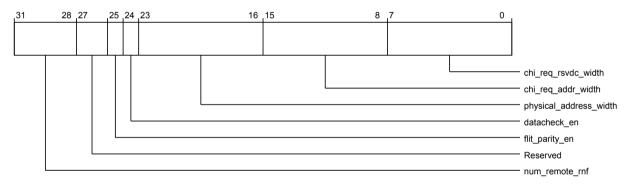


Figure 3-78 por_cfgm_por_info_global (low)

The following table shows the por_info_global lower register bit assignments.

Table 3-92 por_cfgm_por_info_global (low)

Bits	Field name	Description	Туре	Reset
31:28	num_remote_rnf	Number of remote RN-F devices in the system when the CML feature is enabled	RO	Configuration dependent
27:26	Reserved	Reserved	RO	-
25	flit_parity_en	Indicates whether parity checking is enabled in the transport layer on all flits sent on the interconnect	RO	Configuration dependent
24	datacheck_en	Indicates whether datacheck feature is enabled for CHI DAT flit	RO	Configuration dependent
23:16	physical_address_width	Physical address width	RO	Configuration dependent

Table 3-92 por_cfgm_por_info_global (low) (continued)

Bits	Field name	Description	Туре	Reset
15:8	chi_req_addr_width	REQ address width	RO	Configuration dependent
7:0	chi_req_rsvdc_width	RSVDC field width in CHI REQ flit	RO	Configuration dependent

por_ppu_int_enable

Configures the HN-F PPU event interrupt. Contains the interrupt mask.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h1000
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-79 por_cfgm_por_ppu_int_enable (high)

The following table shows the por_ppu_int_enable higher register bit assignments.

Table 3-93 por_cfgm_por_ppu_int_enable (high)

Bits	Field name	Description	Туре	Reset
63:32	hnf_ppu_enable	Interrupt mask	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-80 por_cfgm_por_ppu_int_enable (low)

The following table shows the por_ppu_int_enable lower register bit assignments.

Table 3-94 por_cfgm_por_ppu_int_enable (low)

Bits	Field name	Description	Туре	Reset
31:0	hnf_ppu_enable	Interrupt mask	RW	64'b0

por_ppu_int_status

Provides HN-F PPU event interrupt status.

Its characteristics are:

Type W1C Register width (Bits) 64

Address offset 14'h1008 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-81 por_cfgm_por_ppu_int_status (high)

The following table shows the por_ppu_int_status higher register bit assignments.

Table 3-95 por_cfgm_por_ppu_int_status (high)

Bits	Field name	Description	Туре	Reset
63:32	hnf_ppu_status	Interrupt status	W1C	64'b0

The following image shows the lower register bit assignments.

Figure 3-82 por_cfgm_por_ppu_int_status (low)

The following table shows the por_ppu_int_status lower register bit assignments.

Table 3-96 por_cfgm_por_ppu_int_status (low)

Bits	Field name	Description	Туре	Reset
31:0	hnf_ppu_status	Interrupt status	W1C	64'b0

por_ppu_qactive_hyst

Configures number of hysteresis clock cycles to retain QACTIVE assertion.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h1010

Usage constraints Only accessible by secure accesses.

Figure 3-83 por_cfgm_por_ppu_qactive_hyst (high)

The following table shows the por ppu quetive hyst higher register bit assignments.

Table 3-97 por_cfgm_por_ppu_qactive_hyst (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

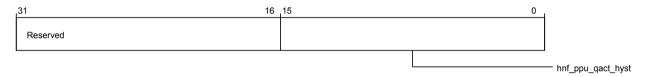


Figure 3-84 por_cfgm_por_ppu_qactive_hyst (low)

The following table shows the por ppu qactive hyst lower register bit assignments.

Table 3-98 por_cfgm_por_ppu_qactive_hyst (low)

Bits	ts Field name Description		Туре	Reset
31:16	Reserved	Reserved	RO	-
15:0	hnf_ppu_qact_hyst	QACTIVE hysteresis	RW	16'h10

por_cfgm_child_pointer_0

Contains base address of child configuration node. NOTE: There are as many child pointer registers in the Global Config Unit as the number of XPs on the chip. Each successive child pointer register is at the next 8-byte address boundary. Each successive child pointer register is named with the suffix corresponding to the register number (por cfgm child pointer <number>).

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h100
Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-85 por_cfgm_por_cfgm_child_pointer_0 (high)

The following table shows the por cfgm child pointer 0 higher register bit assignments.

Table 3-99 por_cfgm_por_cfgm_child_pointer_0 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-86 por_cfgm_por_cfgm_child_pointer_0 (low)

The following table shows the por_cfgm_child_pointer_0 lower register bit assignments.

Table 3-100 por_cfgm_por_cfgm_child_pointer_0 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address	Bit 31: External or internal child node	RO	32'b0
		1'b1: Indicates child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

3.3.2 DN register descriptions

This section lists the DN registers.

por_dn_node_info

Provides component identification information.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

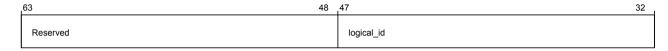


Figure 3-87 por_dn_por_dn_node_info (high)

The following table shows the por dn node info higher register bit assignments.

Table 3-101 por_dn_por_dn_node_info (high)

Bits Field name		eld name Description Type		Reset	
63:48	Reserved	Reserved	RO	-	
47:32	logical_id	Component logical ID	RO	Configuration dependent	

The following image shows the lower register bit assignments.

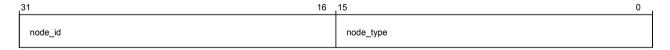


Figure 3-88 por_dn_por_dn_node_info (low)

The following table shows the por_dn_node_info lower register bit assignments.

Table 3-102 por_dn_por_dn_node_info (low)

Bits Field name		Description	Туре	Reset
31:16	node_id	Component CHI node ID	RO	Configuration dependent
15:0 node_type		CMN-600 node type identifier	RO	16'h0001

por_dn_child_info

Provides component child identification information.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h80
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-89 por_dn_por_dn_child_info (high)

The following table shows the por dn child info higher register bit assignments.

Table 3-103 por dn por dn child info (high)

Bits Field name		Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

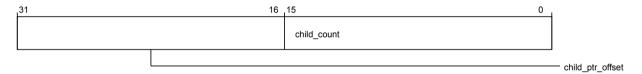


Figure 3-90 por_dn_por_dn_child_info (low)

The following table shows the por dn child info lower register bit assignments.

Table 3-104 por_dn_por_dn_child_info (low)

Bi	ts	Field name Description T		Туре	Reset
31	:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15	:0	child_count	Number of child nodes; used in discovery process	RO	16'h0

por_dn_build_info

Contains the configuration parameter values. Indicates the specific DN configuration.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register reset Configuration dependent

Usage constraints There are no usage constraints.

Figure 3-91 por_dn_por_dn_build_info (high)

The following table shows the por_dn_build_info higher register bit assignments.

Table 3-105 por_dn_por_dn_build_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

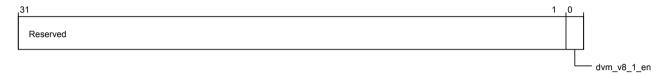


Figure 3-92 por_dn_por_dn_build_info (low)

The following table shows the por dn build info lower register bit assignments.

Table 3-106 por_dn_por_dn_build_info (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0		Determines whether all nodes receiving DVM snoops support DVM v8.1 operations; must be set to 0 if not supported by all nodes, therefore allowing the node to perform demotion before sending out the DVM snoop	RO	Configuration dependent

por_dn_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.



Figure 3-93 por_dn_por_dn_secure_register_groups_override (high)

The following table shows the por dn secure register groups override higher register bit assignments.

Table 3-107 por_dn_por_dn_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-94 por_dn_por_dn_secure_register_groups_override (low)

The following table shows the por dn secure register groups override lower register bit assignments.

Table 3-108 por_dn_por_dn_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	vmf	Allows non-secure access to secure VMF registers	RW	1'b0

por_dn_aux_ctl

Functions as the auxiliary control register for DN.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA00

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-95 por_dn_por_dn_aux_ctl (high)

The following table shows the por dn aux ctl higher register bit assignments.

Table 3-109 por_dn_por_dn_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

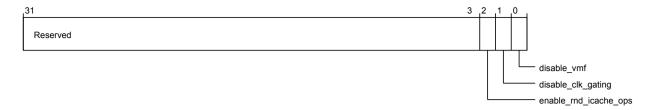


Figure 3-96 por_dn_por_dn_aux_ctl (low)

The following table shows the por_dn_aux_ctl lower register bit assignments.

Table 3-110 por_dn_por_dn_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	enable_rnd_icache_ops	Filters out BPI and VICI/PICI snoops to RN-Ds when set	RW	Configuration dependent
1	disable_clk_gating	Disables autonomous clock gating when set	RW	1'b0
0	disable_vmf	This bit is currently not supported; software must not program this bit	RW	Configuration dependent

por_dn_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2000 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.



Figure 3-97 por_dn_por_dn_pmu_event_sel (high)

The following table shows the por dn pmu event sel higher register bit assignments.

Table 3-111 por_dn_por_dn_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:36	Reserved	Reserved	RO	-
35:32	pmu_occup1_id	PMU occupancy event selector ID	RW	4'b0
		4'b0000: All		
		4'b0001: DVM ops		
		4'b0010: DVM syncs		

The following image shows the lower register bit assignments.

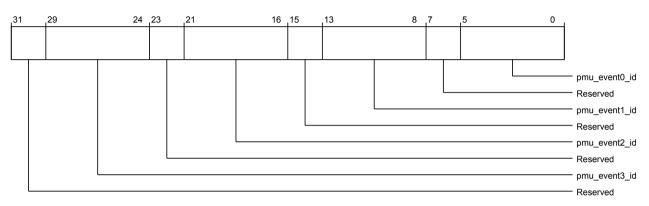


Figure 3-98 por_dn_por_dn_pmu_event_sel (low)

The following table shows the por_dn_pmu_event_sel lower register bit assignments.

Table 3-112 por_dn_por_dn_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	pmu_event3_id	PMU Event 3 ID; see pmu_event0_id for encodings	RW	5'b0
23:22	Reserved	Reserved	RO	-
21:16	pmu_event2_id	PMU Event 2 ID; see pmu_event0_id for encodings	RW	5'b0
15:14	Reserved	Reserved	RO	-
13:8	pmu_event1_id	PMU Event 1 ID; see pmu_event0_id for encodings	RW	5'b0
7:6	Reserved	Reserved	RO	-
5:0	pmu_event0_id	PMU Event 0 ID	RW	5'b0
		6'h00: No event		
		6'h01: Number of DVM op requests		
		6'h02: Number of DVM sync requests		
		6'h03: Number of DVM op requests that were filtered using VMID filtering		
		6'h04: Number of retried REQ		
		6'h05: DVM tracker occupancy counter		

3.3.3 Debug and trace register descriptions

This section lists the debug and trace registers.

por_dt_node_info

Provides component identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

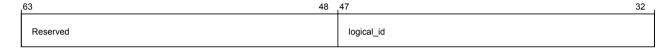


Figure 3-99 por_dt_por_dt_node_info (high)

The following table shows the por dt node info higher register bit assignments.

Table 3-113 por_dt_por_dt_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

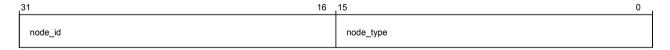


Figure 3-100 por_dt_por_dt_node_info (low)

The following table shows the por_dt_node_info lower register bit assignments.

Table 3-114 por_dt_por_dt_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component CHI node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h3

por_dt_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-101 por_dt_por_dt_child_info (high)

The following table shows the por dt child info higher register bit assignments.

Table 3-115 por_dt_por_dt_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.



Figure 3-102 por_dt_por_dt_child_info (low)

The following table shows the por_dt_child_info lower register bit assignments.

Table 3-116 por_dt_por_dt_child_info (low)

Bits	Field name	Description	Туре	Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0000
15:0	child_count	Number of child nodes; used in discovery process	RO	16'b0

por_dt_secure_access

Functions as the secure access control register.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

63 32
Reserved

Figure 3-103 por_dt_por_dt_secure_access (high)

The following table shows the por_dt_secure_access higher register bit assignments.

Table 3-117 por_dt_por_dt_secure_access (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

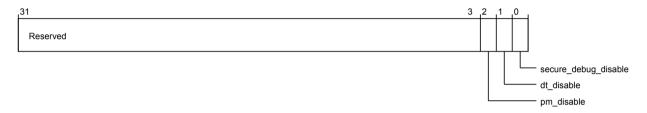


Figure 3-104 por_dt_por_dt_secure_access (low)

The following table shows the por_dt_secure_access lower register bit assignments.

Table 3-118 por_dt_por_dt_secure_access (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	pm_disable	PMU disable	RW	1'b0
		1'b0: PMU function is not affected		
		1'b1: PMU function is disabled		
1	dt_disable	Debug disable	RW	1'b0
		1'b0: DT function is not affected		
		1'b1: DT function is disabled		
0	secure_debug_disable	Secure debug disable	RW	1'b0
		1'b0: Secure events are monitored by the PMU		
		1'b1: Secure events are only monitored by the PMU if SPNIDEN is set to 1		

por_dt_dtc_ctl

Functions as the debug trace control register.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA00

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

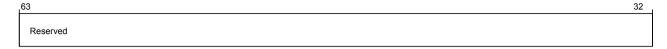


Figure 3-105 por_dt_por_dt_dtc_ctl (high)

The following table shows the por dt dtc ctl higher register bit assignments.

Table 3-119 por_dt_por_dt_dtc_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

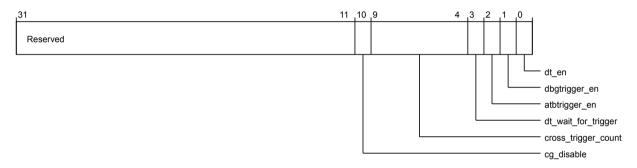


Figure 3-106 por_dt_por_dt_dtc_ctl (low)

The following table shows the por_dt_dtc_ctl lower register bit assignments.

Table 3-120 por_dt_por_dt_dtc_ctl (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10	cg_disable	Disables DT architectural clock gates	RW	1'b0
9:4	cross_trigger_count	Number of cross triggers received before trace enable	RW	6'b0
		NOTE: Only applicable if dt_wait_for_trigger is set to 1.		
3	dt_wait_for_trigger	Enables waiting for cross trigger before trace enable	RW	1'b0
2	atbtrigger_en	ATB trigger enable	RW	1'b0
1	dbgtrigger_en	DBGWATCHTRIG enable	RW	1'b0
0	dt_en	Enables debug, trace, and PMU features	RW	1'b0

por_dt_trigger_status

Provides the trigger status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'hA10
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-107 por_dt_por_dt_trigger_status (high)

The following table shows the por dt trigger status higher register bit assignments.

Table 3-121 por_dt_por_dt_trigger_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

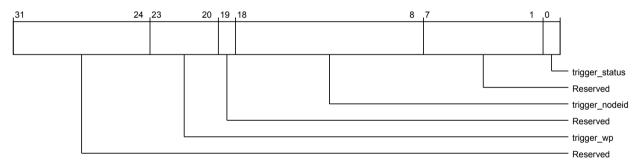


Figure 3-108 por_dt_por_dt_trigger_status (low)

The following table shows the por dt trigger status lower register bit assignments.

Table 3-122 por_dt_por_dt_trigger_status (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	trigger_wp	DBGWATCHTRIGREQ assertion and/or ATB trigger are caused by watchpoint	RO	1'h0
19	Reserved	Reserved	RO	-
18:8	trigger_nodeid	DBGWATCHTRIGREQ assertion and/or ATB trigger are caused by node ID	RO	11'h0
7:1	Reserved	Reserved	RO	-
0	trigger_status	Indicates DBGWATCHTRIGREQ assertion and/or ATB trigger	RO	1'h0

por_dt_trigger_status_clr

Clears the trigger status.

Its characteristics are:

Type WO
Register width (Bits) 64
Address offset 14'hA20
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-109 por_dt_por_dt_trigger_status_clr (high)

The following table shows the por dt trigger status clr higher register bit assignments.

Table 3-123 por_dt_por_dt_trigger_status_clr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

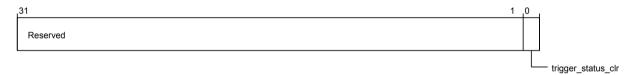


Figure 3-110 por_dt_por_dt_trigger_status_clr (low)

The following table shows the por_dt_trigger_status_clr lower register bit assignments.

Table 3-124 por_dt_por_dt_trigger_status_clr (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	trigger_status_clr	Write a 1 to clear por_dt_trigger_status.trigger_status	WO	1'b0

por_dt_trace_control

Functions as the trace control register.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA30
Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-111 por_dt_por_dt_trace_control (high)

The following table shows the por_dt_trace_control higher register bit assignments.

Table 3-125 por_dt_por_dt_trace_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

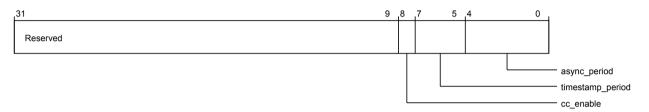


Figure 3-112 por_dt_por_dt_trace_control (low)

The following table shows the por_dt_trace_control lower register bit assignments.

Table 3-126 por_dt_por_dt_trace_control (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	cc_enable	Cycle count enable	RW	1'b0
7:5	timestamp_period	Time stamp packet insertion period	RW	3'b0
		3'b000: Time stamp disabled		
		3'b011: Time stamp every 8K clock cycles		
		3'b100: Time stamp every 16K clock cycles		
		b101: Time stamp every 32K clock cycles		
		3'b110: Time stamp every 64K clock cycles		
4:0	async_period	Alignment sync packet insertion period	RW	5'b0
		5'h00: Alignment sync disabled		
		5'h08: Alignment sync inserted after 256B of trace		
		'h09: Alignment sync inserted after 512B of trace		
		5'h14: Alignment sync inserted after 1048576B of trace		
		NOTE: All other values are reserved.		

por_dt_traceid

Contains the ATB ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA48
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-113 por_dt_por_dt_traceid (high)

The following table shows the por dt traceid higher register bit assignments.

Table 3-127 por_dt_por_dt_traceid (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

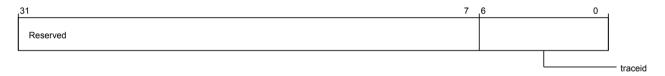


Figure 3-114 por_dt_por_dt_traceid (low)

The following table shows the por dt traceid lower register bit assignments.

Table 3-128 por_dt_por_dt_traceid (low)

Bits	Field name	Description	Туре	Reset
31:7	Reserved	Reserved	RO	-
6:0	traceid	ATB ID	RW	7'h0

por_dt_pmevcntAB

Contains the PMU event counters A and B.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2000

Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-115 por_dt_por_dt_pmevcntab (high)

The following table shows the por dt pmeventAB higher register bit assignments.

Table 3-129 por_dt_por_dt_pmevcntab (high)

Bits	Field name	Description	Туре	Reset
63:32	pmevcntB	PMU counter B	RW	32'h0000

The following image shows the lower register bit assignments.

Figure 3-116 por_dt_por_dt_pmevcntab (low)

The following table shows the por_dt_pmevcntAB lower register bit assignments.

Table 3-130 por_dt_por_dt_pmevcntab (low)

Bits	Field name	Description	Туре	Reset
31:0	pmevcntA	PMU counter A	RW	32'h0000

por_dt_pmevcntCD

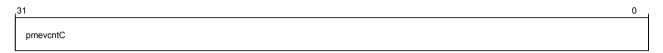
Contains the PMU event counters C and D.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2010
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-117 por_dt_por_dt_pmevcntcd (high)

The following table shows the por_dt_pmevcntCD higher register bit assignments.

Table 3-131 por_dt_por_dt_pmevcntcd (high)

Bits	Field name	Description	Туре	Reset
63:32	pmevcntD	PMU counter D	RW	32'h0000

The following image shows the lower register bit assignments.

Figure 3-118 por_dt_por_dt_pmevcntcd (low)

The following table shows the por dt pmevcntCD lower register bit assignments.

Table 3-132 por_dt_por_dt_pmevcntcd (low)

Bits	Field name	Description	Туре	Reset
31:0	pmevcntC	PMU counter C	RW	32'h0000

por_dt_pmevcntEF

Contains the PMU event counters E and F.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2020 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

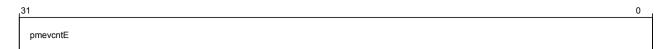


Figure 3-119 por_dt_por_dt_pmevcntef (high)

The following table shows the por_dt_pmevcntEF higher register bit assignments.

Table 3-133 por_dt_por_dt_pmevcntef (high)

Bits	Field name	Description	Туре	Reset
63:32	pmeventF	PMU counter F	RW	32'h0000

Figure 3-120 por_dt_por_dt_pmevcntef (low)

The following table shows the por dt pmevcntEF lower register bit assignments.

Table 3-134 por_dt_por_dt_pmevcntef (low)

Bits	Field name	Description	Туре	Reset
31:0	pmevcntE	PMU counter E	RW	32'h0000

por_dt_pmevcntGH

Contains the PMU event counters G and H.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2030 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-121 por_dt_por_dt_pmevcntgh (high)

The following table shows the por_dt_pmevcntGH higher register bit assignments.

Table 3-135 por_dt_por_dt_pmevcntgh (high)

Bits	Field name	Description	Туре	Reset
63:32	pmevcntH	PMU counter H	RW	32'h0000

The following image shows the lower register bit assignments.

Figure 3-122 por_dt_por_dt_pmevcntgh (low)

The following table shows the por_dt_pmevcntGH lower register bit assignments.

Table 3-136 por_dt_por_dt_pmevcntgh (low)

Bits	Field name	Description	Туре	Reset
31:0	pmevcntG	PMU counter G	RW	32'h0000

por_dt_pmccntr

Contains the PMU cycle counter.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2040 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-123 por_dt_por_dt_pmccntr (high)

The following table shows the por dt pmccntr higher register bit assignments.

Table 3-137 por dt por dt pmccntr (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pmccntr	PMU cycle counter	RW	40'h0

The following image shows the lower register bit assignments.

Figure 3-124 por_dt_por_dt_pmccntr (low)

The following table shows the por dt pmccntr lower register bit assignments.

Table 3-138 por_dt_por_dt_pmccntr (low)

Bits	Field name	Description	Туре	Reset
31:0	pmccntr	PMU cycle counter	RW	40'h0

por_dt_pmevcntsrAB

Contains the PMU event counter shadow registers A and B.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2050 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-125 por_dt_por_dt_pmevcntsrab (high)

The following table shows the por_dt_pmevcntsrAB higher register bit assignments.

Table 3-139 por_dt_por_dt_pmevcntsrab (high)

Bits	Field name	Description	Туре	Reset
63:32	pmeventsrB	PMU counter B shadow register	RW	32'h0000

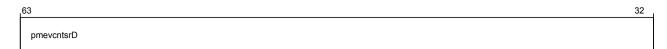
The following image shows the lower register bit assignments.

Figure 3-126 por_dt_por_dt_pmevcntsrab (low)

The following table shows the por_dt_pmevcntsrAB lower register bit assignments.

Table 3-140 por_dt_por_dt_pmevcntsrab (low)

Bits	Field name	Description	Туре	Reset
31:0	pmevcntsrA	PMU counter A shadow register	RW	32'h0000


por_dt_pmevcntsrCD

Contains the PMU event counter shadow registers C and D.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2060
Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-127 por_dt_por_dt_pmevcntsrcd (high)

The following table shows the por dt pmevcntsrCD higher register bit assignments.

Table 3-141 por_dt_por_dt_pmevcntsrcd (high)

Bits	Field name	Description	Туре	Reset
63:32	pmevcntsrD	PMU counter D shadow register	RW	32'h0000

The following image shows the lower register bit assignments.

Figure 3-128 por_dt_por_dt_pmevcntsrcd (low)

The following table shows the por_dt_pmevcntsrCD lower register bit assignments.

Table 3-142 por_dt_por_dt_pmevcntsrcd (low)

Bits	Field name	Description	Туре	Reset
31:0	pmeventsrC	PMU counter C shadow register	RW	32'h0000

por_dt_pmevcntsrEF

Contains the PMU event counter shadow registers E and F.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2070
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-129 por_dt_por_dt_pmevcntsref (high)

The following table shows the por_dt_pmevcntsrEF higher register bit assignments.

Table 3-143 por_dt_por_dt_pmevcntsref (high)

Bits	Field name	Description	Туре	Reset
63:32	pmeventsrF	PMU counter F shadow register	RW	32'h0000

The following image shows the lower register bit assignments.

Figure 3-130 por_dt_por_dt_pmevcntsref (low)

The following table shows the por_dt_pmevcntsrEF lower register bit assignments.

Table 3-144 por_dt_por_dt_pmevcntsref (low)

Bits	Field name	Description	Туре	Reset
31:0	pmeventsrE	PMU counter E shadow register	RW	32'h0000

por_dt_pmevcntsrGH

Contains the PMU event counter shadow registers G and H.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2080 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-131 por_dt_por_dt_pmevcntsrgh (high)

The following table shows the por_dt_pmevcntsrGH higher register bit assignments.

Table 3-145 por_dt_por_dt_pmevcntsrgh (high)

Bits	Field name	Description	Туре	Reset
63:32	pmeventsrH	PMU counter H shadow register	RW	32'h0000

Figure 3-132 por_dt_por_dt_pmevcntsrgh (low)

The following table shows the por dt pmevcntsrGH lower register bit assignments.

Table 3-146 por_dt_por_dt_pmevcntsrgh (low)

ŀ	Bits Field name Description		Туре	Reset
	31:0	pmeventsrG	PMU counter G shadow register	RW

por_dt_pmccntrsr

Contains the PMU cycle counter shadow register.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2090 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-133 por_dt_por_dt_pmccntrsr (high)

The following table shows the por dt pmcentrsr higher register bit assignments.

Table 3-147 por_dt_por_dt_pmccntrsr (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pmcentrsr	PMU cycle counter shadow register	RW	40'h0

The following image shows the lower register bit assignments.

Figure 3-134 por_dt_por_dt_pmccntrsr (low)

The following table shows the por dt pmccntrsr lower register bit assignments.

Table 3-148 por_dt_por_dt_pmccntrsr (low)

Bits	Field name	Description	Туре	Reset
31:0	pmccntrsr	PMU cycle counter shadow register	RW	40'h0

por_dt_pmcr

Functions as the PMU control register.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h2100

Register reset 64'b0 **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-135 por_dt_por_dt_pmcr (high)

The following table shows the por_dt_pmcr higher register bit assignments.

Table 3-149 por_dt_por_dt_pmcr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-136 por_dt_por_dt_pmcr (low)

The following table shows the por_dt_pmcr lower register bit assignments.

Table 3-150 por_dt_por_dt_pmcr (low)

Bits	Field name	Description	Туре	Reset
31:7	Reserved	Reserved	RO	-
6	ovfl_intr_en	Enables INTREQPMU assertion on PMU counter overflow	RW	1'h0

Table 3-150 por_dt_por_dt_pmcr (low) (continued)

Bits	Field name	Description	Туре	Reset
5	cntr_rst	Enables clearing of live counters upon assertion of por_dt_pmsrr.ss_req or PMUSNAPSHOTREQ	RW	1'h0
4:1	entefg	Groups adjacent 32-bit registers into a 64-bit register	RW	4'h0
0	pmu_en	Enables PMU features	RW	1'b0

por_dt_pmovsr

Provides the PMU overflow status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h2118

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-137 por_dt_por_dt_pmovsr (high)

The following table shows the por_dt_pmovsr higher register bit assignments.

Table 3-151 por_dt_por_dt_pmovsr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

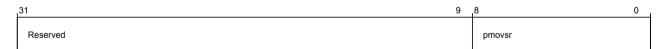


Figure 3-138 por_dt_por_dt_pmovsr (low)

The following table shows the por dt pmovsr lower register bit assignments.

Table 3-152 por_dt_por_dt_pmovsr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8:0	pmovsr	PMU overflow status	RO	9'h0
		Bit 8: Indicates overflow from cycle counter		
		Bits [7:0]: Indicates overflow from counters 7 to 0		

por_dt_pmovsr_clr

Clears the PMU overflow status.

Its characteristics are:

Type WO
Register width (Bits) 64
Address offset 14'h2120
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-139 por_dt_por_dt_pmovsr_clr (high)

The following table shows the por_dt_pmovsr_clr higher register bit assignments.

Table 3-153 por_dt_por_dt_pmovsr_clr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-140 por_dt_por_dt_pmovsr_clr (low)

The following table shows the por_dt_pmovsr_clr lower register bit assignments.

Table 3-154 por_dt_por_dt_pmovsr_clr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8:0	pmovsr_clr	Write a 1 to clear the corresponding bit in por_dt_pmovsr.pmovsr	WO	9'b0

por_dt_pmssr

Provides the PMU snapshot status.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'b2

Address offset 14'h2128 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-141 por_dt_por_dt_pmssr (high)

The following table shows the por_dt_pmssr higher register bit assignments.

Table 3-155 por_dt_por_dt_pmssr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

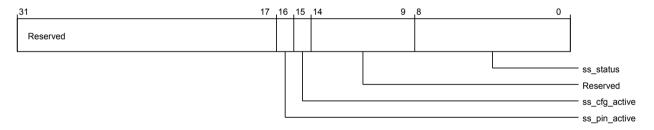


Figure 3-142 por_dt_por_dt_pmssr (low)

The following table shows the por dt pmssr lower register bit assignments.

Table 3-156 por_dt_por_dt_pmssr (low)

Bits	Field name	Description	Туре	Reset
31:17	Reserved	Reserved	RO	-
16	ss_pin_active	Activates PMU snapshot from PMUSNAPSHOTREQ	RO	1'b0
15	ss_cfg_active	PMU snapshot activated from configuration write	RO	1'b0
14:9	Reserved	Reserved	RO	-
8:0	ss_status	PMU snapshot status	RO	9'b0
		Bit 8: Indicates snapshot status for cycle counter		
		Bits [7:0]: Indicates snapshot status for counters 7 to 0		

por_dt_pmsrr

Sends PMU snapshot requests.

Its characteristics are:

Type WO Register width (Bits) 64

Address offset 14'h2130 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-143 por_dt_por_dt_pmsrr (high)

The following table shows the por_dt_pmsrr higher register bit assignments.

Table 3-157 por_dt_por_dt_pmsrr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-144 por_dt_por_dt_pmsrr (low)

The following table shows the por dt pmsrr lower register bit assignments.

Table 3-158 por_dt_por_dt_pmsrr (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	ss_req	Write a 1 to request PMU snapshot	WO	1'b0

por_dt_claim

Functions as the claim tag set register.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2DA0 Register reset 64'b0 **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-145 por_dt_por_dt_claim (high)

The following table shows the por_dt_claim higher register bit assignments.

Table 3-159 por_dt_por_dt_claim (high)

Bits	Field name	Description	Туре	Reset
63:32	-	Upper half of the claim tag value; enables individual bits to be cleared (write) and returns the current claim tag value (read)	RW	32'b0

The following image shows the lower register bit assignments.

Figure 3-146 por_dt_por_dt_claim (low)

The following table shows the por dt claim lower register bit assignments.

Table 3-160 por_dt_por_dt_claim (low)

Bits	Field name	Description	Туре	Reset
31:0		Lower half of the claim tag value; allows individual bits to be set (write) and returns the number of bits that can be set (read)	RW	32'b0

por_dt_devaff

Functions as the device affinity register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2DA8 Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-147 por_dt_por_dt_devaff (high)

The following table shows the por dt devaff higher register bit assignments.

Table 3-161 por_dt_por_dt_devaff (high)

Bits	Field name	Description	Туре	Reset
63:32	devaff	Device affinity register	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-148 por_dt_por_dt_devaff (low)

The following table shows the por_dt_devaff lower register bit assignments.

Table 3-162 por_dt_por_dt_devaff (low)

Bits	Field name	Description	Туре	Reset
31:0	devaff	Device affinity register	RO	64'b0

por_dt_lsr

Functions as the lock status register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h2DB0

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-149 por_dt_por_dt_lsr (high)

The following table shows the por_dt_lsr higher register bit assignments.

Table 3-163 por_dt_por_dt_lsr (high)

Bits	Field name	Description	Туре	Reset
63:35	Reserved	Reserved	RO	-
34:32	Isrvalue	Lock status value	RO	3'b0

31 0
Reserved

Figure 3-150 por_dt_por_dt_lsr (low)

The following table shows the por dt lsr lower register bit assignments.

Table 3-164 por_dt_por_dt_lsr (low)

Bits	Field name	Description	Туре	Reset
31:0	Reserved	Reserved	RO	-

por_dt_authstatus_devarch

Functions as the authentication status register and the device architecture register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset14'h2DB8Register reset64'b01001010

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

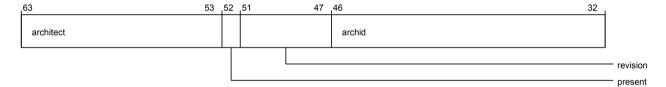


Figure 3-151 por_dt_por_dt_authstatus_devarch (high)

The following table shows the por_dt_authstatus_devarch higher register bit assignments.

Table 3-165 por_dt_por_dt_authstatus_devarch (high)

Bits	Field name	Description	Туре	Reset
63:53	architect	Architect	RO	11'b0
52	present	Present	RO	1'b1
51:47	revision	Architecture revision	RO	6'b0
46:32	archid	Architecture ID	RO	16'b0

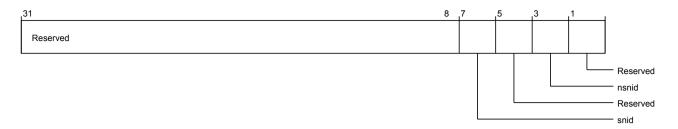


Figure 3-152 por_dt_por_dt_authstatus_devarch (low)

The following table shows the por dt authstatus devarch lower register bit assignments.

Table 3-166 por_dt_por_dt_authstatus_devarch (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:6	snid	Secure non-invasive debug	RO	2'b10
5:4	Reserved	Reserved	RO	-
3:2	nsnid	Non-secure non-invasive debug	RO	2'b10
1:0	Reserved	Reserved	RO	-

por_dt_devid

Functions as the device configuration register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2DC0 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-153 por_dt_por_dt_devid (high)

The following table shows the por_dt_devid higher register bit assignments.

Table 3-167 por_dt_por_dt_devid (high)

Bits	Field name	Description	Туре	Reset
63:32	dt_devid	Device ID	RO	64'b0

Figure 3-154 por_dt_por_dt_devid (low)

The following table shows the por dt devid lower register bit assignments.

Table 3-168 por_dt_por_dt_devid (low)

Bits	Field name	Description	Туре	Reset
31:0	dt_devid	Device ID	RO	64'b0

por_dt_devtype

Functions as the device type identifier register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2DC8
Register reset 64'b01000011

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

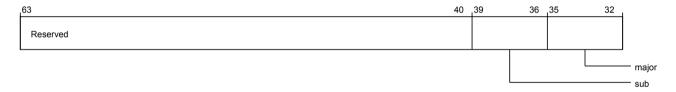


Figure 3-155 por_dt_por_dt_devtype (high)

The following table shows the por dt devtype higher register bit assignments.

Table 3-169 por_dt_por_dt_devtype (high)

Bits	Field name Description		Туре	Reset	
63:40	Reserved	Reserved	RO	-	
39:36	sub	Sub type	RO	4'h4	
35:32	major	Major type	RO	4'h3	

Figure 3-156 por_dt_por_dt_devtype (low)

The following table shows the por dt devtype lower register bit assignments.

Table 3-170 por_dt_por_dt_devtype (low)

Bits	Field name	Description	Туре	Reset
31:0	Reserved	Reserved	RO	-

por_dt_pidr45

Functions as the identification register for peripheral ID 4 and peripheral ID 5.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset14'h2DD0Register reset64'b000000100

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-157 por_dt_por_dt_pidr45 (high)

The following table shows the por_dt_pidr45 higher register bit assignments.

Table 3-171 por_dt_por_dt_pidr45 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr5	Peripheral ID 5	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-158 por_dt_por_dt_pidr45 (low)

The following table shows the por dt pidr45 lower register bit assignments.

Table 3-172 por_dt_por_dt_pidr45 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr4	Peripheral ID 4	RO	8'h4

por_dt_pidr67

Functions as the identification register for peripheral ID 6 and peripheral ID 7.


Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2DD8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-159 por_dt_por_dt_pidr67 (high)

The following table shows the por_dt_pidr67 higher register bit assignments.

Table 3-173 por_dt_por_dt_pidr67 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr7	Peripheral ID 7	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-160 por_dt_por_dt_pidr67 (low)

The following table shows the por dt pidr67 lower register bit assignments.

Table 3-174 por_dt_por_dt_pidr67 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr6	Peripheral ID 6	RO	8'b0

por_dt_pidr01

Functions as the identification register for peripheral ID 0 and peripheral ID 1.

Its characteristics are:

Type RO

Register width (Bits) 64

Address offset 14'h2DE0

Register reset 64'b0101110000011100

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-161 por_dt_por_dt_pidr01 (high)

The following table shows the por_dt_pidr01 higher register bit assignments.

Table 3-175 por_dt_por_dt_pidr01 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr1	Peripheral ID 1	RO	8'hb4

The following image shows the lower register bit assignments.

Figure 3-162 por_dt_por_dt_pidr01 (low)

The following table shows the por_dt_pidr01 lower register bit assignments.

Table 3-176 por_dt_por_dt_pidr01 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	pidr0	Peripheral ID 0	RO	8'h34

por_dt_pidr23

Functions as the identification register for peripheral ID 2 and peripheral ID 3.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset14'h2DE8Register reset64'b000000111

Usage constraints There are no usage constraints.

63	40	,39	32
Reserved		pidr3	

Figure 3-163 por_dt_por_dt_pidr23 (high)

The following table shows the por dt pidr23 higher register bit assignments.

Table 3-177 por_dt_por_dt_pidr23 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	pidr3	Peripheral ID 3	RO	8'b0

The following image shows the lower register bit assignments.

Figure 3-164 por_dt_por_dt_pidr23 (low)

The following table shows the por_dt_pidr23 lower register bit assignments.

Table 3-178 por_dt_por_dt_pidr23 (low)

Bits	Field name	Description	escription Type	
31:8	Reserved	Reserved	RO	-
7:0	pidr2	Peripheral ID 2	RO	8'h7

por_dt_cidr01

Functions as the identification register for component ID 0 and component ID 1.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2DF0

Register reset 64'b1001111100001101

Usage constraints There are no usage constraints.

63	40	_39	32
Reserved		cidr1	

Figure 3-165 por_dt_por_dt_cidr01 (high)

The following table shows the por_dt_cidr01 higher register bit assignments.

Table 3-179 por_dt_por_dt_cidr01 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	cidr1	Component ID 1	RO	8'h9f

The following image shows the lower register bit assignments.

Figure 3-166 por_dt_por_dt_cidr01 (low)

The following table shows the por_dt_cidr01 lower register bit assignments.

Table 3-180 por_dt_por_dt_cidr01 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	cidr0	Component ID 0	RO	8'hd

por_dt_cidr23

Functions as the identification register for component ID 2 and component ID 3.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h2DF8

Register reset 64'b0001011100000101

Usage constraints There are no usage constraints.

L	63	40	__ 39	32
	Reserved		cidr3	

Figure 3-167 por_dt_por_dt_cidr23 (high)

The following table shows the por_dt_cidr23 higher register bit assignments.

Table 3-181 por_dt_por_dt_cidr23 (high)

Bits	Field name	Description	Туре	Reset
63:40	Reserved	Reserved	RO	-
39:32	cidr3	Component ID 3	RO	8'hb1

The following image shows the lower register bit assignments.

Figure 3-168 por_dt_por_dt_cidr23 (low)

The following table shows the por_dt_cidr23 lower register bit assignments.

Table 3-182 por_dt_por_dt_cidr23 (low)

Bits	Field name	Description	Туре	Reset
31:8	Reserved	Reserved	RO	-
7:0	cidr2	Component ID 2	RO	8'h5

3.3.4 HN-F register descriptions

Lists the HN-F registers.

por_hnf_node_info

Provides component identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

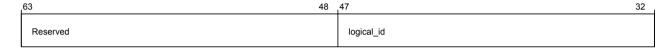


Figure 3-169 por_hnf_por_hnf_node_info (high)

The following table shows the por hnf node info higher register bit assignments.

Table 3-183 por_hnf_por_hnf_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

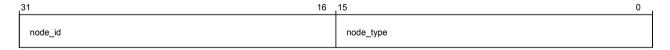


Figure 3-170 por_hnf_por_hnf_node_info (low)

The following table shows the por_hnf_node_info lower register bit assignments.

Table 3-184 por_hnf_por_hnf_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h0005

por_hnf_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-171 por_hnf_por_hnf_child_info (high)

The following table shows the por hnf child info higher register bit assignments.

Table 3-185 por hnf por hnf child info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

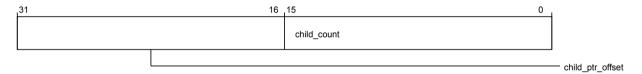


Figure 3-172 por_hnf_por_hnf_child_info (low)

The following table shows the por hnf child info lower register bit assignments.

Table 3-186 por hnf por hnf child info (low)

Bits	Field name Description		Туре	Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15:0	child_count	Number of child nodes; used in discovery process	RO	16'b0

por_hnf_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-173 por_hnf_por_hnf_secure_register_groups_override (high)

The following table shows the por_hnf_secure_register_groups_override higher register bit assignments.

Table 3-187 por_hnf_por_hnf_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-174 por_hnf_por_hnf_secure_register_groups_override (low)

The following table shows the por_hnf_secure_register_groups_override lower register bit assignments.

Table 3-188 por_hnf_por_hnf_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:6	Reserved	Reserved	RO	-
5	slcsf_dbgrd	Allows non-secure access to secure SLC/SF debug read registers	RW	1'b0
4	sam_control	Allows non-secure access to secure HN-F SAM control registers	RW	1'b0
3	slc_lock_ways	Allows non-secure access to secure cache way locking registers	RW	1'b0
2	ppu	Allows non-secure access to secure power policy registers	RW	1'b0
1	cfg_ctl	Allows non-secure access to secure configuration control register (por_hnf_cfg_ctl)	RW	1'b0
0	qos	Allows non-secure access to secure QoS registers	RW	1'b0

por_hnf_unit_info

Provides component identification information for HN-F.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

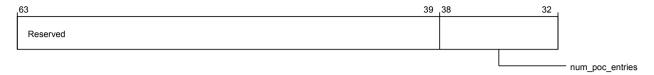


Figure 3-175 por_hnf_por_hnf_unit_info (high)

The following table shows the por_hnf_unit_info higher register bit assignments.

Table 3-189 por_hnf_por_hnf_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:39	Reserved	Reserved	RO	-
38:32	num_poc_entries	Number of POCQ entries	RO	Configuration dependent

The following image shows the lower register bit assignments.

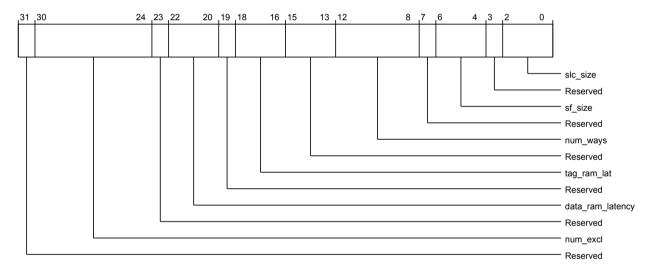


Figure 3-176 por_hnf_por_hnf_unit_info (low)

The following table shows the por_hnf_unit_info lower register bit assignments.

Table 3-190 por_hnf_por_hnf_unit_info (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:24	num_excl	Number of exclusive monitors	RO	-
23	Reserved	Reserved	RO	-
22:20	data_ram_latency	SLC data RAM latency (in cycles)	RO	-
19	Reserved	Reserved	RO	-
18:16	tag_ram_lat	SLC tag RAM latency (in cycles)	RO	-

Table 3-190 por_hnf_por_hnf_unit_info (low) (continued)

Bits	Field name	Description	Туре	Reset
15:13	Reserved	Reserved	RO	-
12:8	num_ways	Number of cache ways in the SLC	RO	-
7	Reserved	Reserved	RO	-
6:4	sf_size	SF size	RO	-
3	Reserved	Reserved	RO	-
2:0	slc_size	SLC size	RO	-
		3'b000: No SLC		
		3'b001: 128KB		
		3'b010: 256KB		
		3'b011: 512KB		
		3'b100: 1MB		
		3'b101: 2MB		
		3'b110: 3MB		
		3'b111: 4MB		

por_hnf_cfg_ctl

Functions as the configuration control register for HN-F.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA00
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

over ride

por_hnf_secure_register_groups_override.cfg_ctl

The following image shows the higher register bit assignments.

Figure 3-177 por_hnf_por_hnf_cfg_ctl (high)

The following table shows the por_hnf_cfg_ctl higher register bit assignments.

Table 3-191 por_hnf_por_hnf_cfg_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

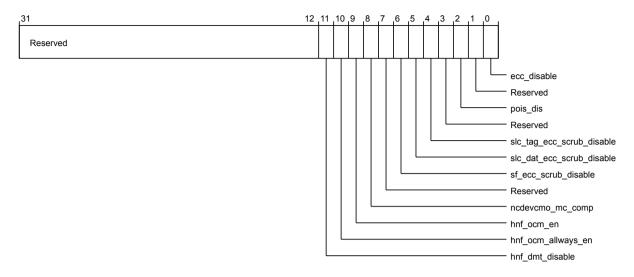


Figure 3-178 por_hnf_por_hnf_cfg_ctl (low)

The following table shows the por_hnf_cfg_ctl lower register bit assignments.

Table 3-192 por_hnf_por_hnf_cfg_ctl (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11	hnf_dmt_disable	Disables DMT when set	RW	1'b0
10	hnf_ocm_allways_en	Enables all SLC ways with OCM	RW	1'b0
9	hnf_ocm_en	Enables region locking with OCM support	RW	1'b0
8	ncdevcmo_mc_comp	Disables HN-F completion when set	RW	1'b0
		NOTE: When set, HN-F sends completion for the following transactions received after completion from SN:		
		1. Non-cacheable WriteNoSnp		
		2. Device WriteNoSnp		
		3. CMO (cache maintenance operations)		
		CONSTRAINT: When this bit is set, por_rni_cfg_ctl.dis_ncwr_stream and por_rnd_cfg_ctl.dis_ncwr_stream must also be set.		
7	Reserved	Reserved	RO	-
6	sf_ecc_scrub_disable	Disables SF tag single-bit ECC error scrubbing when set	RW	1'b0
5	slc_dat_ecc_scrub_disable	Disables SLC data single-bit ECC error scrubbing when set	RW	1'b0
4	slc_tag_ecc_scrub_disable	Disables SLC tag single-bit ECC error scrubbing when set	RW	1'b0
3	Reserved	Reserved	RO	-
2	pois_dis	Disables parity error data poison when set	RW	1'b0
1	Reserved	Reserved	RO	-
0	ecc_disable	Disables SLC and SF ECC generation/detection when set	RW	1'b0

por_hnf_aux_ctl

Functions as the auxiliary control register for HN-F.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

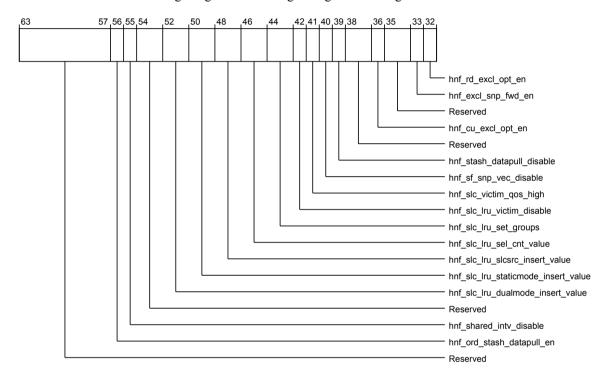


Figure 3-179 por_hnf_por_hnf_aux_ctl (high)

The following table shows the por hnf aux ctl higher register bit assignments.

Table 3-193 por_hnf_por_hnf_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:57	Reserved	Reserved	RO	-
56	hnf_ord_stash_datapull_en	Enables stash datapull for ordered write stash requests	RW	Configuration dependent
55	hnf_shared_intv_disable	Disables snoop requests to CHIB RN-F with shared copy	RW	Configuration dependent
54:53	Reserved	Reserved	RO	-
52:51	hnf_slc_lru_dualmode_insert_value	Insertion value for Dual mode eLRU NOTE: Default is 2'b11.	RW	2'b11

Table 3-193 por_hnf_por_hnf_aux_ctl (high) (continued)

Bits	Field name	Description	Туре	Reset
50:49	hnf_slc_lru_staticmode_insert_value	Insertion value for Static mode eLRU	RW	2'b10
		NOTE: Default is 2'b10.		
48:47	hnf_slc_lru_slcsrc_insert_value	Insertion value if SLC source bit is set	RW	2'b00
		NOTE: Default is 2'b00.		
46:45	hnf_slc_lru_sel_cnt_value	Selection counter value for eLRU to determine which group policy is more effective	RW	2'b10
		2'b00: Sel counter is like an 8-bit range; upper limit is 255; middle point is 128		
		2'b01: Sel counter is like a 9-bit range; upper limit is 511; middle point is 256		
		2'b10: Sel counter is like a 10-bit range; upper limit is 1023; middle point is 512		
		2'b11: Sel counter is like an 11-bit range; upper limit is 2047; middle point is 1024		
		NOTE: Default is 10-bit with counter reset to a value of 512.		
44:43	hnf_slc_lru_set_groups	Number of sets in monitor group for enhance LRU	RW	2'b01
		2'b00: 16		
		2'b01: 32		
		2'b10: 64		
		2'b11: 128		
		NOTE: Default is 32 sets per monitor group. If cache size is small (128KB or less), there would be only one set per group.		
42	hnf_slc_lru_victim_disable	Disable enhanced LRU based victim selection for SLC	RW	1'b1
		1'b0: SLC victim selection is based on eLRU.		
		1'b1: SLC victim selection is based on LFSR.		
		NOTE: Victim selection for SF is always LFSR-based.		
41	hnf_slc_victim_qos_high	SLC victim QoS behavior for SN write request	RW	1'b0
		1'b0: Each victim inherits the QoS value of the request which caused it		
		1'b1: All victims use high QoS class (14)		
40	hnf_sf_snp_vec_disable	Disables SF snoop vector when set	RW	1'b0
39	hnf_stash_datapull_disable	Disables HN-F stash data pull support when set	RW	1'b0
38:37	Reserved	Reserved	RO	-
36	hnf_cu_excl_opt_en	CleanUnique exclusive optimization enable	RW	1'b0
35:34	Reserved	Reserved	RO	-

Table 3-193 por_hnf_por_hnf_aux_ctl (high) (continued)

Bits	Field name	Description	Туре	Reset
33	hnf_excl_snp_fwd_en	Snoop forwarding with exclusives enable	RW	1'b0
32	hnf_rd_excl_opt_en	ReadNotSharedDirty exclusive optimization enable	RW	1'b0

The following image shows the lower register bit assignments.

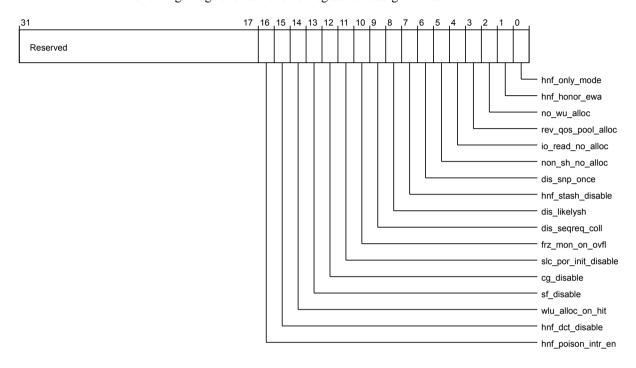


Figure 3-180 por_hnf_por_hnf_aux_ctl (low)

The following table shows the por hnf aux ctl lower register bit assignments.

Table 3-194 por_hnf_por_hnf_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:17	Reserved	Reserved	RO	-
16	hnf_poison_intr_en	Enables reporting an interrupt by HN-F when poison is detected at SLC	RW	Configuration dependent
15	hnf_dct_disable	Disables DCT when set	RW	Configuration dependent
14	wlu_alloc_on_hit	Forces WLU requests to allocate if the line hit in SLC	RW	1'b0
13	sf_disable	Disables SF	RW	1'b0
12	cg_disable	Disables HN-F architectural clock gates	RW	1'b0
11	slc_por_init_disable	Disables SLC and SF initialization on Reset	RW	1'b0
10	frz_mon_on_ovfl	Freezes the exclusive monitors	RW	1'b0
9	dis_seqreq_coll		RW	1'b0
8	dis_likelysh	Disables Likely Shared based allocations	RW	1'b0
7	hnf_stash_disable	Disables HN-F stash support	RW	Configuration dependent

Table 3-194 por_hnf_por_hnf_aux_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
6	dis_snp_once	When set, disables SnpOnce and converts to SnpShared	RW	Configuration dependent
5	non_sh_no_alloc	Disables SLC allocation for non-shareable cacheable transactions when set	RW	1'b0
4	io_read_no_alloc	When set, disables ReadOnce and ReadNoSnp allocation in SLC from RN-Is	RW	1'b0
3	rev_qos_pool_alloc	Reverses QoS pool allocation algorithm	RW	1'b0
2	no_wu_alloc	Disables WriteUnique/WriteLineUnique allocations in SLC when set	RW	1'b0
1	hnf_honor_ewa	When set, postpones completion for writes where EWA=0 in the request until HN-F receives completion from MC or SBSX	RW	1'b1
0	hnf_only_mode	Enables HN-F only mode; disables SLC and SF when set	RW	1'b0

por_hnf_ppu_pwpr

Functions as the power policy register for HN-F.

Its characteristics are:

Type RW
Register width (Bits) 32
Address offset 14'h1000

Register reset 32'b0
Usage constraints Only accessible by secure accesses.

Secure group por hnf secure register groups override.ppu

override

The following image shows the lower register bit assignments.

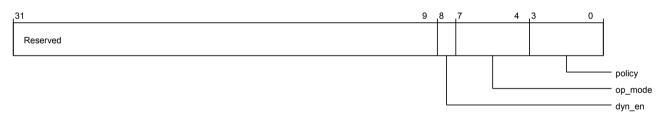


Figure 3-181 por_hnf_por_hnf_ppu_pwpr

The following table shows the por_hnf_ppu_pwpr register bit assignments.

Table 3-195 por_hnf_por_hnf_ppu_pwpr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	dyn_en	Dynamic transition enable	RW	1'b0

Table 3-195 por_hnf_por_hnf_ppu_pwpr (low) (continued)

Bits	Field name	Description	Туре	Reset
7:4	op_mode	HN-F operational power mode	RW	4'b0
		4'b0011: FAM		
		4'b0010: HAM		
		4'b0001: SFONLY		
		4'b0000: NOSFSLC		
3:0	policy	HN-F power mode policy	RW	4'b0
		4'b1000: ON		
		4'b0111: FUNC_RET		
		4'b0010: MEM_RET		
		4'b0000: OFF		

por_hnf_ppu_pwsr

Provides power status information for HN-F.

Its characteristics are:

Type RO Register width (Bits) 32

Address offset 14'h1008 **Register reset** 32'b0

Usage constraints There are no usage constraints.

The following image shows the lower register bit assignments.

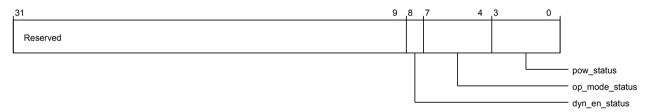


Figure 3-182 por_hnf_por_hnf_ppu_pwsr

The following table shows the por_hnf_ppu_pwsr register bit assignments.

Table 3-196 por_hnf_por_hnf_ppu_pwsr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	dyn_en_status	Dynamic transition status	RO	1'b0

Table 3-196 por_hnf_por_hnf_ppu_pwsr (low) (continued)

Bits	Field name	Description	Туре	Reset
7:4	op_mode_status	HN-F operational mode status	RO	4'b0
		4'b0011: FAM		
		4'b0010: HAM		
		4'b0001: SFONLY		
		4'b0000: NOSFSLC		
3:0	pow_status	HN-F power mode status	RO	4'b0
		4'b1000: ON		
		4'b0111: FUNC_RET		
		4'b0010: MEM_RET		
		4'b0000: OFF		

por_hnf_ppu_misr

Functions as the power miscellaneous input current status register for HN-F.

Its characteristics are:

Type RO Register width (Bits) 32

Address offset 14'h1014 Register reset 32'b0

Usage constraints There are no usage constraints.

The following image shows the lower register bit assignments.

Figure 3-183 por_hnf_por_hnf_ppu_misr

The following table shows the por hnf ppu misr register bit assignments.

Table 3-197 por_hnf_por_hnf_ppu_misr (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	pcsmaccept_status	HN-F RAM PCSMACCEPT status	RO	1'b0

por_hnf_ppu_idr0

Provides identification information for the HN-F PPU.

Its characteristics are:

Type RO

Register width (Bits) 32

Address offset 14'h1FB0

Register reset 32'b0010000000011010010101000 **Usage constraints** There are no usage constraints.

The following image shows the lower register bit assignments.

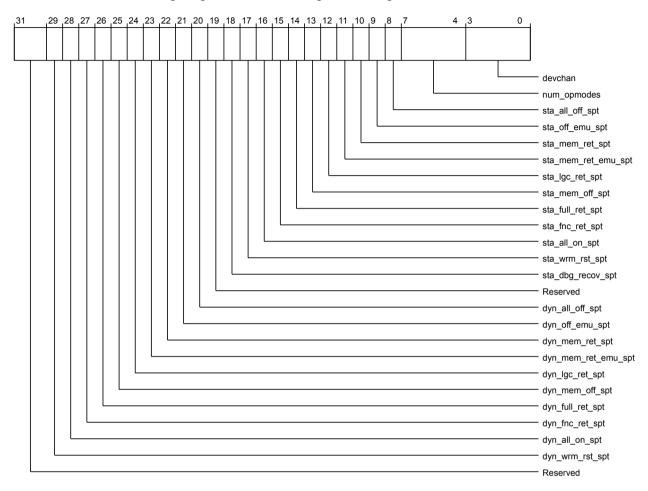


Figure 3-184 por_hnf_por_hnf_ppu_idr0

The following table shows the por_hnf_ppu_idr0 register bit assignments.

Table 3-198 por_hnf_por_hnf_ppu_idr0 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29	dyn_wrm_rst_spt	Dynamic warm_rst support	RO	1'b0
28	dyn_all_on_spt	Dynamic on support	RO	1'b0
27	dyn_fnc_ret_spt	Dynamic func_ret support	RO	1'b1
26	dyn_full_ret_spt	Dynamic full_ret support	RO	1'b0
25	dyn_mem_off_spt	Dynamic mem_off support	RO	1'b0
24	dyn_lgc_ret_spt	Dynamic logic_ret support	RO	1'b0
23	dyn_mem_ret_emu_spt	Dynamic mem_ret_emu support	RO	1'b0

Table 3-198 por_hnf_por_hnf_ppu_idr0 (low) (continued)

Bits	Field name	Description	Туре	Reset
22	dyn_mem_ret_spt	Dynamic mem_ret support	RO	1'b0
21	dyn_off_emu_spt	Dynamic off_emu support	RO	1'b0
20	dyn_all_off_spt	Dynamic off support	RO	1'b0
19	Reserved	Reserved	RO	-
18	sta_dbg_recov_spt	Static dbg_recov support	RO	1'b0
17	sta_wrm_rst_spt	Static warm_rst support	RO	1'b0
16	sta_all_on_spt	Static on support	RO	1'b1
15	sta_fnc_ret_spt	Static func_ret support	RO	1'b1
14	sta_full_ret_spt	Static full_ret support	RO	1'b0
13	sta_mem_off_spt	Static mem_off support	RO	1'b1
12	sta_lgc_ret_spt	Static logic_ret support	RO	1'b0
11	sta_mem_ret_emu_spt	Static mem_ret_emu support	RO	1'b0
10	sta_mem_ret_spt	Static mem_ret support	RO	1'b1
9	sta_off_emu_spt	Static off_emu support	RO	1'b0
8	sta_all_off_spt	Static off support	RO	1'b1
7:4	num_opmodes	Number of operational modes	RO	4'b0100
3:0	devchan	Number of device interface channels	RO	1'b0

por_hnf_ppu_idr1

Provides identification information for the HN-F PPU.

Its characteristics are:

Type RO Register width (Bits) 32

Address offset14'h1FB4Register reset32'b0

Usage constraints There are no usage constraints.

The following image shows the lower register bit assignments.



Figure 3-185 por_hnf_por_hnf_ppu_idr1

The following table shows the por_hnf_ppu_idr1 register bit assignments.

Table 3-199 por_hnf_por_hnf_ppu_idr1 (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	dyn_policy_min_irq_spt	Dynamic minimum policy interrupt support	RO	1'b0
2	off_lock_spt	Off and mem_ret lock support	RO	1'b0
1	sw_dev_del_config_spt	Software device delay control configuration support	RO	1'b0
0	pwr_mode_entry_del_spt	Power mode entry delay support	RO	1'b0

por_hnf_ppu_iidr

Functions as the power implementation identification register for HN-F.

Its characteristics are:

Type RO Register width (Bits) 32

Address offset 14'h1FC8

Register reset 32'b00001001110000000000000100111011

Usage constraints There are no usage constraints.

The following image shows the lower register bit assignments.

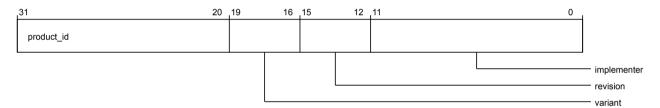


Figure 3-186 por_hnf_por_hnf_ppu_iidr

The following table shows the por_hnf_ppu_iidr register bit assignments.

Table 3-200 por_hnf_por_hnf_ppu_iidr (low)

Bits	Field name	Description	Туре	Reset
31:20	product_id	Implementation identifier	RO	12'h434
19:16	variant	Implementation variant	RO	4'h0
15:12	revision	Implementation revision	RO	4'h0
11:0	implementer	Arm implementation	RO	12'h43B

por_hnf_ppu_aidr

Functions as the power architecture identification register for HN-F.

Its characteristics are:

Type RO Register width (Bits) 32

Address offset 14'h1FCC Register reset 32'b00010001 **Usage constraints** There are no usage constraints.

The following image shows the lower register bit assignments.

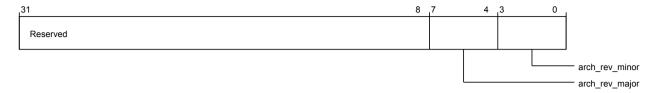


Figure 3-187 por_hnf_por_hnf_ppu_aidr

The following table shows the por_hnf_ppu_aidr register bit assignments.

Table 3-201 por_hnf_por_hnf_ppu_aidr (low)

Bits	Field name Description		Туре	Reset
31:8	Reserved	Reserved	RO	-
7:4	arch_rev_major	PPU architecture major revision	RO	4'h1
3:0	arch_rev_minor	PPU architecture minor revision	RO	4'h1

por_hnf_ppu_dyn_ret_threshold

Configures the dynamic retention threshold for SLC and SF RAM.

Its characteristics are:

Type RW
Register width (Bits) 64

Address offset14'h1100Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.ppu

, , ciriae

The following image shows the higher register bit assignments.

Figure 3-188 por_hnf_por_hnf_ppu_dyn_ret_threshold (high)

The following table shows the por_hnf_ppu_dyn_ret_threshold higher register bit assignments.

Table 3-202 por_hnf_por_hnf_ppu_dyn_ret_threshold (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

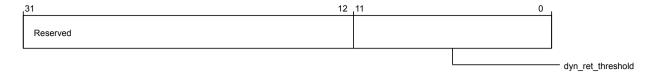


Figure 3-189 por_hnf_por_hnf_ppu_dyn_ret_threshold (low)

The following table shows the por hnf ppu dyn ret threshold lower register bit assignments.

Table 3-203 por_hnf_por_hnf_ppu_dyn_ret_threshold (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:0	dyn_ret_threshold	HN-F RAM idle cycle count threshold	RW	32'b0

por_hnf_qos_band

Provides QoS classifications based on the QoS value ranges.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'hA80

Register reset 64'b11111111111110110010111100001110000

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.qos

override

The following image shows the higher register bit assignments.

Figure 3-190 por_hnf_por_hnf_qos_band (high)

The following table shows the por hnf qos band higher register bit assignments.

Table 3-204 por_hnf_por_hnf_qos_band (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

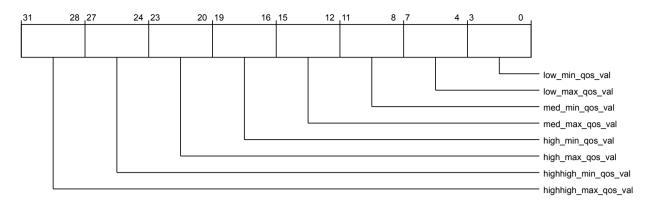


Figure 3-191 por_hnf_por_hnf_qos_band (low)

The following table shows the por_hnf_qos_band lower register bit assignments.

Table 3-205 por_hnf_por_hnf_qos_band (low)

Bits	Field name	Description	Туре	Reset
31:28	highhigh_max_qos_val	Maximum value for HighHigh QoS class	RO	4'hF
27:24	highhigh_min_qos_val	Minimum value for HighHigh QoS class		4'hF
23:20	high_max_qos_val	Maximum value for High QoS class	RO	4'hE
19:16	high_min_qos_val	Minimum value for High QoS class	RO	4'hC
15:12	med_max_qos_val	Maximum value for Medium QoS class	RO	4'hB
11:8	med_min_qos_val	Minimum value for Medium QoS class	RO	4'h8
7:4	low_max_qos_val	Maximum value for Low QoS class	RO	4'h7
3:0	low_min_qos_val	Minimum value for Low QoS class	RO	4'h0

por_hnf_qos_reservation

Controls POCQ maximum occupancy counts for each QoS class (HighHigh, High, Medium, and Low).

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA88

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_hnf_secure_register_groups_override.qos **override**

The following image shows the higher register bit assignments.

Figure 3-192 por_hnf_por_hnf_qos_reservation (high)

The following table shows the por_hnf_qos_reservation higher register bit assignments.

Table 3-206 por_hnf_por_hnf_qos_reservation (high)

Bits	Field name	Description	Туре	Reset
63:38	Reserved	Reserved	RO	-
37:32	seq_qos_max_cnt	Number of entries reserved for SF evictions in POCQ	RW	6'h1
		CONSTRAINT: Maximum number is 2 entries.		

The following image shows the lower register bit assignments.

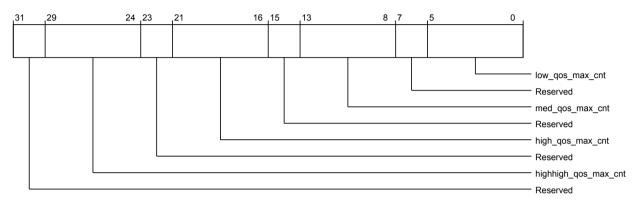


Figure 3-193 por_hnf_por_hnf_qos_reservation (low)

The following table shows the por hnf qos reservation lower register bit assignments.

Table 3-207 por_hnf_por_hnf_qos_reservation (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	highhigh_qos_max_cnt	Maximum number of HighHigh QoS class occupancy	RW	Configuration dependent
23:22	Reserved	Reserved	RO	-
21:16	high_qos_max_cnt	Maximum number of High QoS class occupancy	RW	Configuration dependent
15:14	Reserved	Reserved	RO	-
13:8	med_qos_max_cnt	Maximum number of Medium QoS class occupancy	RW	Configuration dependent
7:6	Reserved	Reserved	RO	-
5:0	low_qos_max_cnt	Maximum number of Low QoS class occupancy	RW	Configuration dependent

por_hnf_rn_starvation

Controls starvation counts for each QoS class. Determines static credit grantee selection.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA90

 Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por hnf secure register groups override.gos

The following image shows the higher register bit assignments.

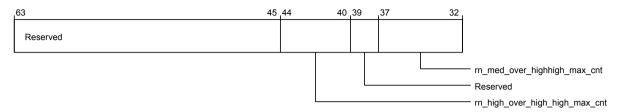


Figure 3-194 por_hnf_por_hnf_rn_starvation (high)

The following table shows the por hnf rn starvation higher register bit assignments.

Table 3-208 por_hnf_por_hnf_rn_starvation (high)

Bits	Field name	Description	Туре	Reset
63:45	Reserved	Reserved	RO	-
44:40	rn_high_over_high_high_max_cnt	Maximum number of consecutive instances where HighHigh QoS class wins priority over High QoS class	RW	5'h1F
39:38	Reserved	Reserved	RO	-
37:32	rn_med_over_highhigh_max_cnt	Maximum number of consecutive instances where HighHigh QoS class wins priority over Medium QoS class	RW	6'h3F

The following image shows the lower register bit assignments.

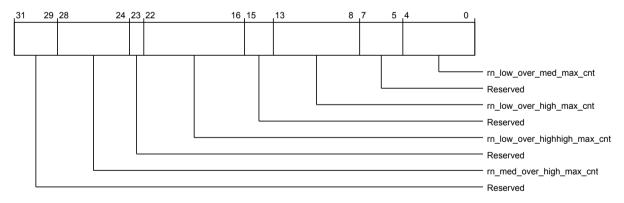


Figure 3-195 por_hnf_por_hnf_rn_starvation (low)

The following table shows the por hnf rn starvation lower register bit assignments.

Table 3-209 por_hnf_por_hnf_rn_starvation (low)

Bits	Field name	Description	Туре	Reset
31:29	Reserved	Reserved	RO	-
28:24	rn_med_over_high_max_cnt	Maximum number of consecutive instances where High QoS class wins priority over Medium QoS class	RW	5'h1F

Table 3-209 por_hnf_por_hnf_rn_starvation (low) (continued)

Bits	Field name	Description	Туре	Reset
23	Reserved	Reserved	RO	-
22:16 rn_low_over_highhigh_max_cnt Maximum number of consecutive instances where High priority over Low QoS class			RW	7'h3F
15:14	Reserved	Reserved	RO	-
13:8	rn_low_over_high_max_cnt	Maximum number of consecutive instances where High QoS class wins priority over Low QoS class	RW	6'h3F
7:5	Reserved	Reserved	RO	-
4:0	rn_low_over_med_max_cnt	Maximum number of consecutive instances where Medium QoS class wins priority over Low QoS class	RW	5'h1F

por_hnf_errfr

Functions as the error feature register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3000

Register reset 64'b1001010100101

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-196 por_hnf_por_hnf_errfr (high)

The following table shows the por hnf errfr higher register bit assignments.

Table 3-210 por_hnf_por_hnf_errfr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

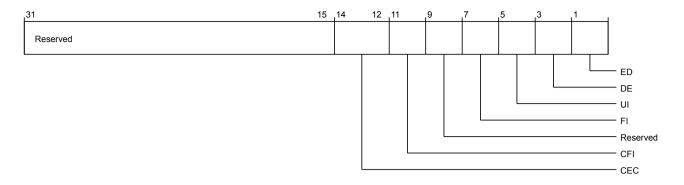


Figure 3-197 por_hnf_por_hnf_errfr (low)

The following table shows the por_hnf_errfr lower register bit assignments.

Table 3-211 por_hnf_por_hnf_errfr (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism	RO	3'b100
		3'b000: Does not implement standardized error counter model		
		3'b010: Implements 8-bit error counter in por_hnf_errmisc[39:32]		
		3'b100: Implements 16-bit error counter in por_hnf_errmisc[47:32]		
11:10	CFI	Corrected error interrupt	RO	2'b10
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors for data poison	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_hnf_errctlr

Functions as the error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3008
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-198 por_hnf_por_hnf_errctlr (high)

The following table shows the por hnf erretlr higher register bit assignments.

Table 3-212 por_hnf_por_hnf_errctlr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

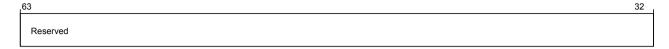
Figure 3-199 por_hnf_por_hnf_errctlr (low)

The following table shows the por hnf erretlr lower register bit assignments.

Table 3-213 por_hnf_por_hnf_errctlr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI Enables corrected error interrupt as specified in por_hnf_errfr.CFI		RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_hnf_errfr.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_hnf_errfr.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_hnf_errfr.DE	RW	1'b0
0	ED	Enables error detection as specified in por_hnf_errfr.ED	RW	1'b0

por_hnf_errstatus


Functions as the error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.

Its characteristics are:

Type W1C Register width (Bits) 64 Address offset 14'h3010 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-200 por_hnf_por_hnf_errstatus (high)

The following table shows the por_hnf_errstatus higher register bit assignments.

Table 3-214 por_hnf_por_hnf_errstatus (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

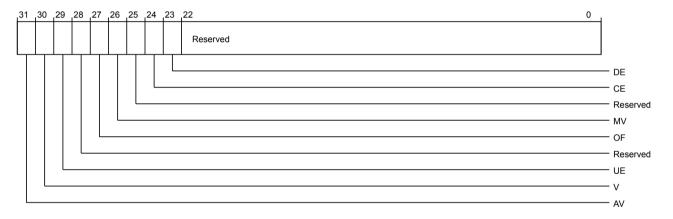


Figure 3-201 por_hnf_por_hnf_errstatus (low)

The following table shows the por_hnf_errstatus lower register bit assignments.

Table 3-215 por_hnf_por_hnf_errstatus (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid; por_hnf_erraddr contains a physical address for that recorded error		
		1'b0: Address is not valid		
30 V Register valid; writes to this bit are ignored if any of the UE, DE, or not cleared to 0 in the same write; write a 1 to clear		Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		

Table 3-215 por_hnf_por_hnf_errstatus (low) (continued)

Bits	Field name	Description	Туре	Reset
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear 1'b1: More than one error detected		W1C	1'b0
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_hnf_errmisc valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Miscellaneous registers are valid		
		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-
24	CE	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one transient corrected error recorded		
		1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error is not corrected and is deferred		
		1'b0: No errors deferred		
22:0	Reserved	Reserved	RO	-

por_hnf_erraddr

Contains the error record address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3018

Register reset 64'b0
Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

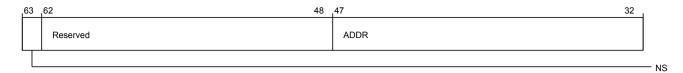


Figure 3-202 por_hnf_por_hnf_erraddr (high)

The following table shows the por hnf erraddr higher register bit assignments.

Table 3-216 por_hnf_por_hnf_erraddr (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_hnf_erraddr.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.

Figure 3-203 por_hnf_por_hnf_erraddr (low)

The following table shows the por_hnf_erraddr lower register bit assignments.

Table 3-217 por_hnf_por_hnf_erraddr (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_hnf_errmisc

Functions as the miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3020
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

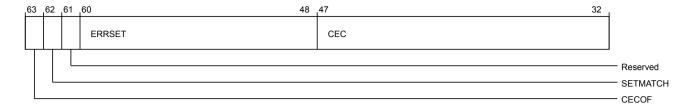


Figure 3-204 por_hnf_por_hnf_errmisc (high)

The following table shows the por hnf errmisc higher register bit assignments.

Table 3-218 por_hnf_por_hnf_errmisc (high)

Bits	Field name	Description	Туре	Reset
63	CECOF	Corrected error counter overflow	RW	1'b0
62	SETMATCH	Set address match	RW	1'b0
61	Reserved	Reserved	RO	-
60:48	ERRSET	SLC/SF set address for ECC error	RW	13'b0
47:32	CEC	Corrected ECC error count	RW	16'b0

The following image shows the lower register bit assignments.

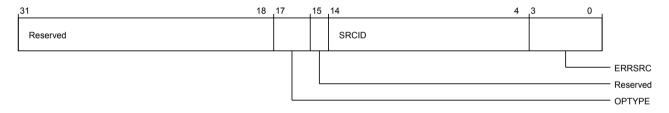


Figure 3-205 por_hnf_por_hnf_errmisc (low)

The following table shows the por_hnf_errmisc lower register bit assignments.

Table 3-219 por_hnf_por_hnf_errmisc (low)

Bits	Field name	Description	Туре	Reset
31:18	Reserved	Reserved	RO	-
17:16	ОРТҮРЕ	Error op type	RW	2'b00
		b00: Writes, CleanShared, Atomics and stash requests with invalid targets		
		b01: WriteBack, Evict, and Stash requests with valid target		
		'b10: CMO		
		2'b11: Other op types		
15	Reserved	Reserved	RO	-

Table 3-219 por_hnf_por_hnf_errmisc (low) (continued)

Bits	Field name	Description	Туре	Reset
14:4	SRCID	Error source ID	RW	11'b0
3:0	ERRSRC	Error source	RW	4'b0000
		4'b0001: Data single-bit ECC		
		b0010: Data double-bit ECC		
		4'b0011: Single-bit ECC overflow		
		'b0100: Tag single-bit ECC		
		4'b0101: Tag double-bit ECC		
		'b0111: SF tag single-bit ECC		
		4'b1000: SF tag double-bit ECC		
		4'b1010: Data parity error		
		4'b1011: Data parity and poison		
		4'b1100: NDE		

por_hnf_err_inj

Enables error injection and setup. When enabled for a given source ID and logic processor ID, HN-F returns a slave error and reports an error interrupt. This error interrupt emulates a SLC double-bit data ECC error. This feature enables software to test the error handler. The slave error is reported for cacheable read access for which SLC hit is the data source. No slave error or error interrupt is reported for cacheable read access in which SLC miss is the data source.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3030
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-206 por_hnf_por_hnf_err_inj (high)

The following table shows the por_hnf_err_inj higher register bit assignments.

Table 3-220 por_hnf_por_hnf_err_inj (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

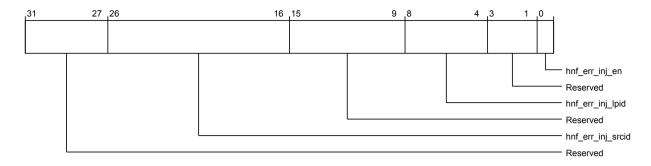


Figure 3-207 por_hnf_por_hnf_err_inj (low)

The following table shows the por hnf err inj lower register bit assignments.

Table 3-221 por_hnf_por_hnf_err_inj (low)

Bits	Field name	Description	Туре	Reset
31:27	Reserved	Reserved	RO	-
26:16	hnf_err_inj_srcid	N source ID for read access which results in a SLC miss; does not report slave error or ror to match error injection		11'h0
15:9	Reserved	Reserved	RO	-
8:4	hnf_err_inj_lpid	LPID used to match for error injection	RW	5'h0
3:1	Reserved	Reserved	RO	-
0	hnf_err_inj_en	Enables error injection and report	RW	1'b0

por_hnf_byte_par_err_inj

Functions as the byte parity error injection register for HN-F.

Its characteristics are:

Register reset

WO **Type** Register width (Bits) 64 14'h3038 Address offset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-208 por_hnf_por_hnf_byte_par_err_inj (high)

The following table shows the por_hnf_byte_par_err_inj higher register bit assignments.

Table 3-222 por_hnf_por_hnf_byte_par_err_inj (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

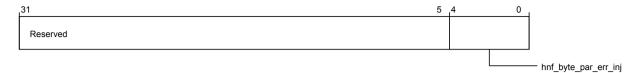


Figure 3-209 por_hnf_por_hnf_byte_par_err_inj (low)

The following table shows the por hnf byte par err inj lower register bit assignments.

Table 3-223 por_hnf_por_hnf_byte_par_err_inj (low)

Bits	Field name	Description	Туре	Reset
31:5	Reserved	Reserved	RO	-
4:0	hnf_byte_par_err_inj	_inj Specifies a byte lane; once this register is written, a byte parity error is injected in the specified byte lane on the next SLC hit; the error will be injected in all data flits on specified byte (0 to 31)		5'h0

por_hnf_errfr_NS

Functions as the non-secure error feature register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3100

Register reset 64'b1001010100101

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-210 por_hnf_por_hnf_errfr_ns (high)

The following table shows the por_hnf_errfr_NS higher register bit assignments.

Table 3-224 por_hnf_por_hnf_errfr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

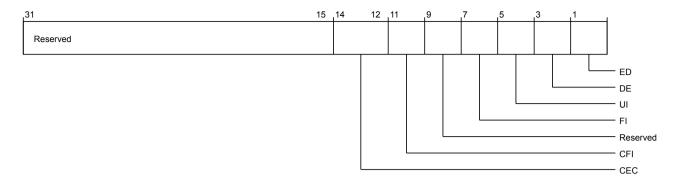


Figure 3-211 por_hnf_por_hnf_errfr_ns (low)

The following table shows the por_hnf_errfr_NS lower register bit assignments.

Table 3-225 por_hnf_por_hnf_errfr_ns (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism	RO	3'b100
		3'b000: Does not implement standardized error counter model		
		3'b010: Implements 8-bit error counter in por_hnf_errmisc_NS[39:32]		
		3'b100: Implements 16-bit error counter in por_hnf_errmisc_NS[47:32]		
11:10	CFI	Corrected error interrupt	RO	2'b10
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors for data poison	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_hnf_errctlr_NS

Functions as the non-secure error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3108
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-212 por_hnf_por_hnf_errctlr_ns (high)

The following table shows the por hnf erretlr NS higher register bit assignments.

Table 3-226 por_hnf_por_hnf_errctlr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	1

The following image shows the lower register bit assignments.



Figure 3-213 por_hnf_por_hnf_errctlr_ns (low)

The following table shows the por hnf errctlr NS lower register bit assignments.

Table 3-227 por_hnf_por_hnf_errctlr_ns (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_hnf_errfr_NS.CFI	RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_hnf_errfr_NS.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_hnf_errfr_NS.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_hnf_errfr_NS.DE	RW	1'b0
0	ED	Enables error detection as specified in por_hnf_errfr_NS.ED	RW	1'b0

por_hnf_errstatus_NS

Functions as the non-secure error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.

Its characteristics are:

Type W1C Register width (Bits) 64 **Address offset** 14'h3110 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-214 por_hnf_por_hnf_errstatus_ns (high)

The following table shows the por_hnf_errstatus_NS higher register bit assignments.

Table 3-228 por_hnf_por_hnf_errstatus_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

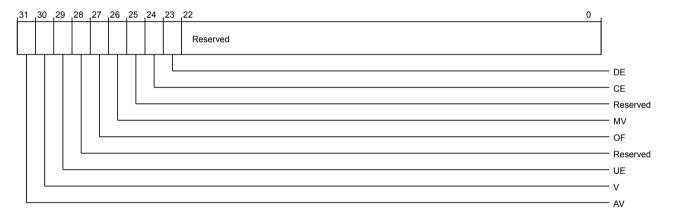


Figure 3-215 por_hnf_por_hnf_errstatus_ns (low)

The following table shows the por_hnf_errstatus_NS lower register bit assignments.

Table 3-229 por_hnf_por_hnf_errstatus_ns (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear 1'b1: Address is valid; por_hnf_erraddr_NS contains a physical address for that recorded error 1'b0: Address is not valid	W1C	1'b0
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error recorded; register is valid 1'b0: No errors recorded	W1C	1'b0

Table 3-229 por_hnf_por_hnf_errstatus_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error detected that is not corrected and is not deferred to a slave	W1C	1'b0
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_hnf_errmisc_NS valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Miscellaneous registers are valid		
		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-
24	CE	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one transient corrected error recorded		
		1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error is not corrected and is deferred		
		1'b0: No errors deferred		
22:0	Reserved	Reserved	RO	-

por_hnf_erraddr_NS

Contains the non-secure error record address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h3118Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

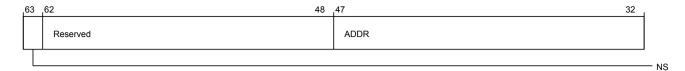


Figure 3-216 por_hnf_por_hnf_erraddr_ns (high)

The following table shows the por hnf erraddr NS higher register bit assignments.

Table 3-230 por_hnf_por_hnf_erraddr_ns (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_hnf_erraddr_NS.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.



Figure 3-217 por_hnf_por_hnf_erraddr_ns (low)

The following table shows the por_hnf_erraddr_NS lower register bit assignments.

Table 3-231 por_hnf_por_hnf_erraddr_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_hnf_errmisc_NS

Functions as the non-secure miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3120
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

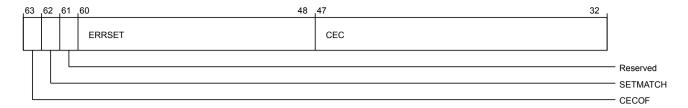


Figure 3-218 por_hnf_por_hnf_errmisc_ns (high)

The following table shows the por_hnf_errmisc_NS higher register bit assignments.

Table 3-232 por_hnf_por_hnf_errmisc_ns (high)

Bits	Field name	Description	Туре	Reset
63	CECOF	Corrected error counter overflow	RW	1'b0
62	SETMATCH	Set address match	RW	1'b0
61	Reserved	Reserved	RO	-
60:48	ERRSET	SLC/SF set address for ECC error	RW	13'b0
47:32	CEC	Corrected ECC error count	RW	16'b0

The following image shows the lower register bit assignments.

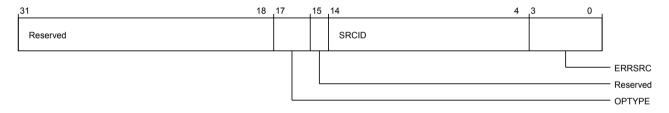


Figure 3-219 por_hnf_por_hnf_errmisc_ns (low)

The following table shows the por_hnf_errmisc_NS lower register bit assignments.

Table 3-233 por_hnf_por_hnf_errmisc_ns (low)

Bits	Field name	Description	Туре	Reset
31:18	Reserved	Reserved	RO	-
17:16	ОРТҮРЕ	Error op type	RW	2'b00
		2'b00: Writes, CleanShared, Atomics and stash requests with invalid targets		
		2'b01: WriteBack, Evict, and Stash requests with valid target		
		2'b10: CMO		
		2'b11: Other op types		
15	Reserved	Reserved	RO	-

Table 3-233 por_hnf_por_hnf_errmisc_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
14:4	SRCID	Error source ID	RW	11'b0
3:0	ERRSRC	Error source	RW	4'b0000
		4'b0001: Data single-bit ECC		
		4'b0010: Data double-bit ECC		
		4'b0011: Single-bit ECC overflow		
		4'b0100: Tag single-bit ECC		
		4'b0101: Tag double-bit ECC		
		4'b0111: SF tag single-bit ECC		
		4'b1000: SF tag double-bit ECC		
		4'b1010: Data parity error		
		4'b1011: Data parity and poison		
		4'b1100: NDE		

por_hnf_slc_lock_ways

Controls SLC way lock settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC00

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. The SLC must be flushed before writing to

this register. Non-configuration accesses to this HN-F cannot occur before this

configuration write and after the SLC flush.

Secure group override

por_hnf_secure_register_groups_override.slc_lock_ways

The following image shows the higher register bit assignments.

Figure 3-220 por_hnf_por_hnf_slc_lock_ways (high)

The following table shows the por_hnf_slc_lock_ways higher register bit assignments.

Table 3-234 por_hnf_por_hnf_slc_lock_ways (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

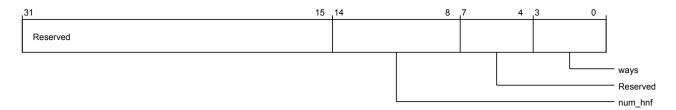


Figure 3-221 por_hnf_por_hnf_slc_lock_ways (low)

The following table shows the por_hnf_slc_lock_ways lower register bit assignments.

Table 3-235 por_hnf_por_hnf_slc_lock_ways (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:8	num_hnf	Number of HN-Fs in NUMA (non-uniform memory access) region	RW	Configuration dependent
7:4	Reserved	Reserved	RO	-
3:0	ways	Number of SLC ways locked (1, 2, 4, 8, 12)	RW	4'b0

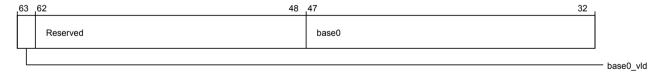
por_hnf_slc_lock_base0

Functions as the base register for lock region 0 [47:0].

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC08
Register reset 64'b0

Usage constraints Only accessible by secure accesses. The SLC must be flushed before writing to


this register. Non-configuration accesses to this HN-F cannot occur before this

configuration write and after the SLC flush.

Secure group override

por hnf_secure_register_groups_override.slc_lock_ways

The following image shows the higher register bit assignments.

Figure 3-222 por_hnf_por_hnf_slc_lock_base0 (high)

The following table shows the por hnf slc lock base0 higher register bit assignments.

Table 3-236 por_hnf_por_hnf_slc_lock_base0 (high)

Bits	Field name	Description	Туре	Reset
63	base0_vld	Lock region 0 base valid	RW	1'b0
62:48	Reserved	Reserved	RO	-
47:32	base0	Lock region 0 base address	RW	48'b0

Figure 3-223 por_hnf_por_hnf_slc_lock_base0 (low)

The following table shows the por hnf slc lock base0 lower register bit assignments.

Table 3-237 por hnf por hnf slc lock base0 (low)

Bits	Field name	Description	Туре	Reset
31:0	base0	Lock region 0 base address	RW	48'b0

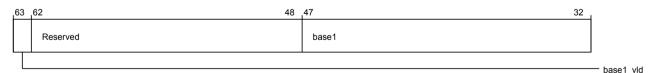
por_hnf_slc_lock_base1

Functions as the base register for lock region 1 [47:0].

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC10
Register reset 64'b0

Usage constraints Only accessible by secure accesses. The SLC must be flushed before writing to


this register. Non-configuration accesses to this HN-F cannot occur before this

configuration write and after the SLC flush.

Secure group override

por_hnf_secure_register_groups_override.slc_lock_ways

The following image shows the higher register bit assignments.

Figure 3-224 por_hnf_por_hnf_slc_lock_base1 (high)

The following table shows the por hnf slc lock base1 higher register bit assignments.

Table 3-238 por_hnf_por_hnf_slc_lock_base1 (high)

Bits	Field name	Description	Туре	Reset
63	base1_vld	Lock region 1 base valid	RW	1'b0
62:48	Reserved	Reserved	RO	-
47:32	base1	Lock region 1 base address	RW	48'b0

Figure 3-225 por_hnf_por_hnf_slc_lock_base1 (low)

The following table shows the por hnf slc lock basel lower register bit assignments.

Table 3-239 por_hnf_por_hnf_slc_lock_base1 (low)

Bits	Field name	Description	Туре	Reset
31:0	base1	Lock region 1 base address	RW	48'b0

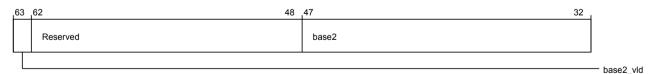
por_hnf_slc_lock_base2

Functions as the base register for lock region 2 [47:0].

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC18
Register reset 64'b0

Usage constraints Only accessible by secure accesses. The SLC must be flushed before writing to


this register. Non-configuration accesses to this HN-F cannot occur before this

configuration write and after the SLC flush.

Secure group override

 $por_hnf_secure_register_groups_override.slc_lock_ways$

The following image shows the higher register bit assignments.

Figure 3-226 por_hnf_por_hnf_slc_lock_base2 (high)

The following table shows the por hnf slc lock base2 higher register bit assignments.

Table 3-240 por_hnf_por_hnf_slc_lock_base2 (high)

Bits	Field name	Description	Туре	Reset	
63	base2_vld	Lock region 2 base valid	RW	1'b0	
62:48	Reserved	Reserved	RO	-	
47:32	base2	Lock region 2 base address	RW	48'b0	

Figure 3-227 por_hnf_por_hnf_slc_lock_base2 (low)

The following table shows the por hnf slc lock base2 lower register bit assignments.

Table 3-241 por_hnf_por_hnf_slc_lock_base2 (low)

Bits	Field name	Description	Туре	Reset
31:0	base2	Lock region 2 base address	RW	48'b0

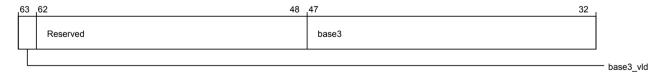
por_hnf_slc_lock_base3

Functions as the base register for lock region 3 [47:0].

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC20
Register reset 64'b0

Usage constraints Only accessible by secure accesses. The SLC must be flushed before writing to


this register. Non-configuration accesses to this HN-F cannot occur before this

configuration write and after the SLC flush.

Secure group override

por_hnf_secure_register_groups_override.slc_lock_ways

The following image shows the higher register bit assignments.

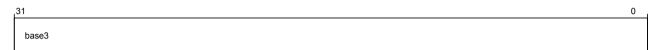


Figure 3-228 por_hnf_por_hnf_slc_lock_base3 (high)

The following table shows the por hnf slc lock base3 higher register bit assignments.

Table 3-242 por_hnf_por_hnf_slc_lock_base3 (high)

Bits	Field name	Description	Туре	Reset
63	base3_vld	Lock region 3 base valid	RW	1'b0
62:48	Reserved	Reserved	RO	-
47:32	base3	Lock region 3 base address	RW	48'b0

Figure 3-229 por_hnf_por_hnf_slc_lock_base3 (low)

The following table shows the por hnf slc lock base3 lower register bit assignments.

Table 3-243 por_hnf_por_hnf_slc_lock_base3 (low)

Bits	Field name	Description	Туре	Reset
31:0	base3	Lock region 3 base address	RW	48'b0

por_hnf_rni_region_vec

Functions as the control register for RN-I source SLC way allocation.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC30
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.slc_lock_ways

override

The following image shows the higher register bit assignments.

Figure 3-230 por_hnf_por_hnf_rni_region_vec (high)

The following table shows the por_hnf_rni_region_vec higher register bit assignments.

Table 3-244 por_hnf_por_hnf_rni_region_vec (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-231 por_hnf_por_hnf_rni_region_vec (low)

The following table shows the por hnf rni region vec lower register bit assignments.

Table 3-245 por_hnf_por_hnf_rni_region_vec (low)

E	3its	Field name	Description	Туре	Reset
3	31:0	rni_region_vec	Bit vector mask; identifies which logical IDs of the RN-Is to allocate to the locked region	RW	32'b0
			NOTE: Must be set to 32'b0 if range-based region locking or OCM is enabled.		

por_hnf_rnf_region_vec

Functions as the control register for RN-F source SLC way allocation.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC38Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.slc_lock_ways

override

The following image shows the higher register bit assignments.

Figure 3-232 por_hnf_por_hnf_rnf_region_vec (high)

The following table shows the por hnf rnf region vec higher register bit assignments.

Table 3-246 por_hnf_por_hnf_rnf_region_vec (high)

Bits	Field name	Description	Туре	Reset
63:32	rnf_region_vec	Bit vector mask; identifies which logical IDs of the RN-Fs to allocate to the locked region	RW	64'b0
		NOTE: Must be 64'b0 if range-based region locking or OCM is enabled.		

The following image shows the lower register bit assignments.

Figure 3-233 por_hnf_por_hnf_rnf_region_vec (low)

The following table shows the por hnf rnf region vec lower register bit assignments.

Table 3-247 por_hnf_por_hnf_rnf_region_vec (low)

Bits	Field name	Description	Туре	Reset
31:0	rnf_region_vec	Bit vector mask; identifies which logical IDs of the RN-Fs to allocate to the locked region	RW	64'b0
		NOTE: Must be 64'b0 if range-based region locking or OCM is enabled.		

por_hnf_rnd_region_vec

Functions as the control register for RN-D source SLC way allocation.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC40
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.slc_lock_ways

override

The following image shows the higher register bit assignments.

Figure 3-234 por_hnf_por_hnf_rnd_region_vec (high)

The following table shows the por_hnf_rnd_region_vec higher register bit assignments.

Table 3-248 por_hnf_por_hnf_rnd_region_vec (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-235 por_hnf_por_hnf_rnd_region_vec (low)

The following table shows the por_hnf_rnd_region_vec lower register bit assignments.

Table 3-249 por_hnf_por_hnf_rnd_region_vec (low)

E	Bits	Field name	Description	Туре	Reset
3	1:0	rnd_region_vec	Bit vector mask; identifies which logical IDs of the RN-Ds to allocate to the locked region	RW	32'b0
			NOTE: Must be set to 32'b0 if range-based region locking or OCM is enabled.		

por hnf sam control

Configures HN-F SAM. All top address bit fields must be between bits 47 and 28 of the address. top address bit2 > top address bit1 > top address bit0. Must be configured to match corresponding por rnsam sys cache grp sn sam cfgN register in the RN SAM.

Its characteristics are:

RW **Type** Register width (Bits) 64 Address offset 14'hD00 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por hnf secure register groups override.sam control

override

The following image shows the higher register bit assignments.

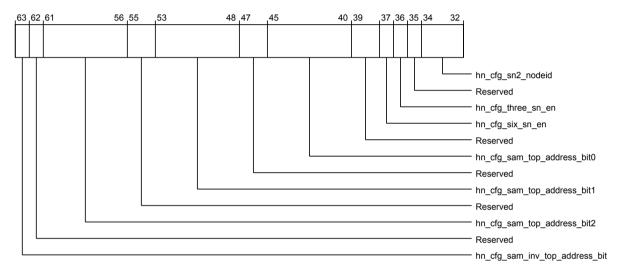


Figure 3-236 por_hnf_por_hnf_sam_control (high)

The following table shows the por hnf sam control higher register bit assignments.

Table 3-250 por_hnf_por_hnf_sam_control (high)

Bits	Field name	Description	Туре	Reset
63	hn_cfg_sam_inv_top_address_bit	Inverts the top address bit (hn_cfg_sam_top_address_bit1 if 3-SN, hn_cfg_sam_top_address_bit2 if 6-SN) NOTE: Can only be used when the address map does not have unique address bit combinations.	RW	1'h0
62	Reserved	Reserved	RO	-
61:56	hn_cfg_sam_top_address_bit2	Bit position of top_address_bit2; used for address hashing in 6-SN configuration	RW	6'h00
55:54	Reserved	Reserved	RO	-
53:48	hn_cfg_sam_top_address_bit1	Bit position of top_address_bit1; used for address hashing in 3-SN/6-SN configuration	RW	6'h00
47:46	Reserved	Reserved	RO	-

Table 3-250 por_hnf_por_hnf_sam_control (high) (continued)

Bits	Field name	Description	Туре	Reset
45:40	hn_cfg_sam_top_address_bit0	Bit position of top_address_bit0; used for address hashing in 3-SN/6-SN configuration	RW	6'h00
39:38	Reserved	Reserved	RO	-
37	hn_cfg_six_sn_en	Enables 6-SN configuration	RW	1'b0
36	hn_cfg_three_sn_en	Enables 3-SN configuration	RW	1'b0
35	Reserved	Reserved	RO	-
34:32	hn_cfg_sn2_nodeid	SN 2 node ID	RW	11'h0

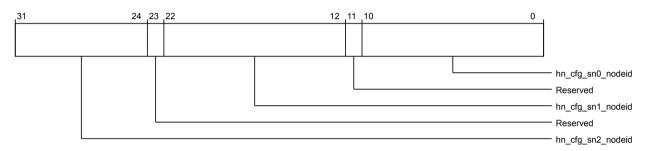


Figure 3-237 por_hnf_por_hnf_sam_control (low)

The following table shows the por hnf sam control lower register bit assignments.

Table 3-251 por_hnf_por_hnf_sam_control (low)

Bits	Field name	Description	Туре	Reset
31:24	hn_cfg_sn2_nodeid	SN 2 node ID	RW	11'h0
23	Reserved	Reserved	RO	-
22:12	hn_cfg_sn1_nodeid	SN 1 node ID	RW	11'h0
11	Reserved	Reserved	RO	-
10:0	hn_cfg_sn0_nodeid	SN 0 node ID	RW	11'h0

por_hnf_sam_memregion0

Configures range-based memory region 0 in HN-F SAM.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD08
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

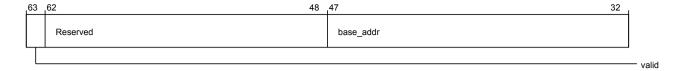


Figure 3-238 por_hnf_por_hnf_sam_memregion0 (high)

The following table shows the por hnf sam memregion0 higher register bit assignments.

Table 3-252 por_hnf_por_hnf_sam_memregion0 (high)

Bits	Field name	Description	Туре	Reset
63	valid	Memory region 0 valid	RW	1'h0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		
62:48	Reserved	Reserved	RO	-
47:32	base_addr	Base address of memory region 0	RW	22'h0
		CONSTRAINT: Must be an integer multiple of region size.		

The following image shows the lower register bit assignments.

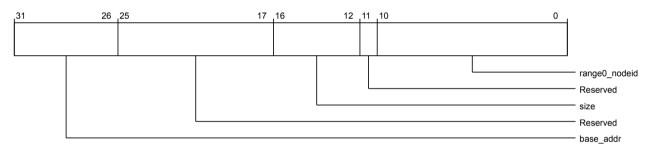


Figure 3-239 por_hnf_por_hnf_sam_memregion0 (low)

The following table shows the por_hnf_sam_memregion0 lower register bit assignments.

Table 3-253 por_hnf_por_hnf_sam_memregion0 (low)

Bits	Field name	Description	Туре	Reset
31:26	base_addr	Base address of memory region 0	RW	22'h0
		CONSTRAINT: Must be an integer multiple of region size.		
25:17	Reserved	Reserved	RO	-
16:12	size	Memory region 0 size	RW	5'h0
		CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2^address width).		
11	Reserved	Reserved	RO	-
10:0	range0_nodeid	Memory region 0 target node ID	RW	11'h0

por_hnf_sam_memregion1

Configures range-based memory region 1 in HN-F SAM.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD10Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

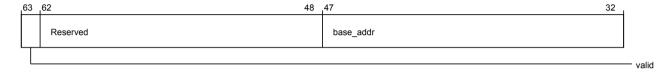


Figure 3-240 por_hnf_por_hnf_sam_memregion1 (high)

The following table shows the por_hnf_sam_memregion1 higher register bit assignments.

Table 3-254 por_hnf_por_hnf_sam_memregion1 (high)

Bits	Field name	Description	Туре	Reset
63	valid	Memory region 1 valid		1'h0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		
62:48	Reserved	Reserved	RO	-
47:32	base_addr	Base address of memory region 1	RW	22'h0
		CONSTRAINT: Must be an integer multiple of region size.		

The following image shows the lower register bit assignments.

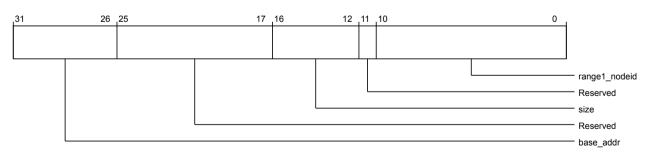


Figure 3-241 por_hnf_por_hnf_sam_memregion1 (low)

The following table shows the por_hnf_sam_memregion1 lower register bit assignments.

Table 3-255 por_hnf_por_hnf_sam_memregion1 (low)

Bits	Field name	Description	Туре	Reset
31:26	base_addr	Base address of memory region 1	RW	22'h0
		CONSTRAINT: Must be an integer multiple of region size.		
25:17	Reserved	Reserved	RO	-
16:12	size	Memory region 1 size	RW	5'h0
		CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2 ^{address} width).		
11	Reserved	Reserved	RO	-
10:0	range1_nodeid	Memory region 1 target node ID	RW	11'h0

por_hnf_sam_sn_properties

Configures properties for all six SN targets and two range-based SN targets.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD18
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

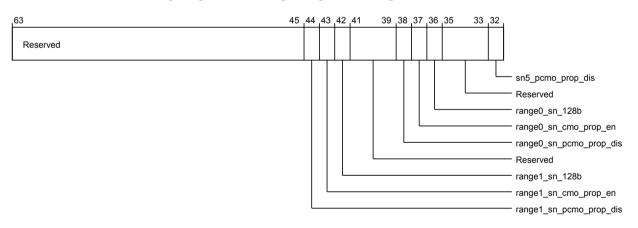


Figure 3-242 por_hnf_por_hnf_sam_sn_properties (high)

The following table shows the por_hnf_sam_sn_properties higher register bit assignments.

Table 3-256 por_hnf_por_hnf_sam_sn_properties (high)

Bits	Field name	Description	Туре	Reset
63:45	Reserved	Reserved	RO	-
44	range1_sn_pcmo_prop_dis	Disables PCMO (persistent CMO) propagation for range 1 SN when set	RW	1'b0

Table 3-256 por_hnf_por_hnf_sam_sn_properties (high) (continued)

Bits	Field name	Description	Туре	Reset
43	range1_sn_cmo_prop_en	Enables CMO propagation for range 1 SN	RW	1'b0
42	range1_sn_128b	Data width of range 1 SN	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
41:39	Reserved	Reserved	RO	-
38	range0_sn_pcmo_prop_dis	Disables PCMO (persistent CMO) propagation for range 0 SN when set	RW	1'b0
37	range0_sn_cmo_prop_en	Enables CMO propagation for range 0 SN	RW	1'b0
36	range0_sn_128b	Data width of range 0 SN	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
35:33	Reserved	Reserved	RO	-
32	sn5_pcmo_prop_dis	Disables PCMO propagation for SN 5 when set	RW	1'b0

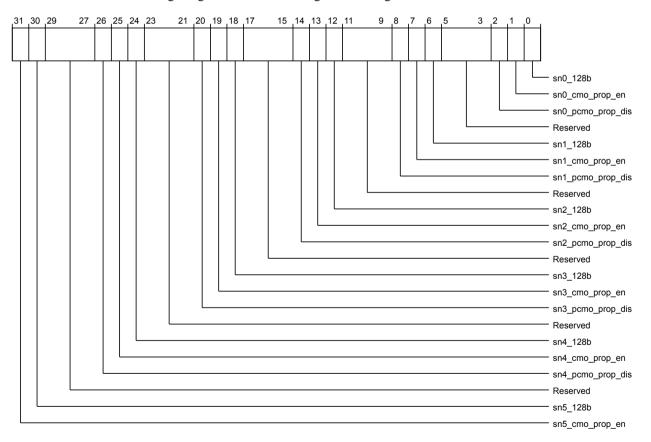


Figure 3-243 por_hnf_por_hnf_sam_sn_properties (low)

The following table shows the por_hnf_sam_sn_properties lower register bit assignments.

Table 3-257 por_hnf_por_hnf_sam_sn_properties (low)

Bits	Field name	Description	Туре	Reset
31	sn5_cmo_prop_en	Enables CMO propagation for SN 5 when set	RW	1'b0
30	sn5_128b	Data width of SN 5	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
29:27	Reserved	Reserved	RO	-
26	sn4_pcmo_prop_dis	Disables PCMO propagation for SN 4 when set	RW	1'b0
25	sn4_cmo_prop_en	Enables CMO propagation for SN 4 when set	RW	1'b0
24	sn4_128b	Data width of SN 4	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
23:21	Reserved	Reserved	RO	-
20	sn3_pcmo_prop_dis	Disables PCMO propagation for SN 3 when set	RW	1'b0
19	sn3_cmo_prop_en	Enables CMO propagation for SN 3 when set	RW	1'b0
18	sn3_128b	Data width of SN 3	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
17:15	Reserved	Reserved	RO	-
14	sn2_pcmo_prop_dis	Disables PCMO propagation for SN 2 when set	RW	1'b0
13	sn2_cmo_prop_en	Enables CMO propagation for SN 2 when set	RW	1'b0
12	sn2_128b	Data width of SN 2	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
11:9	Reserved	Reserved	RO	-
8	sn1_pcmo_prop_dis	Disables PCMO propagation for SN 1 when set	RW	1'b0
7	sn1_cmo_prop_en	Enables CMO propagation for SN 1 when set	RW	1'b0
6	sn1_128b	Data width of SN 1	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		
5:3	Reserved	Reserved	RO	-
2	sn0_pcmo_prop_dis	Disables PCMO propagation for SN 0 when set	RW	1'b0
1	sn0_cmo_prop_en	Enables CMO propagation for SN 0 when set	RW	1'b0
0	sn0_128b	Data width of SN 0	RW	1'b0
		1'b1: 128 bits		
		1'b0: 256 bits		

por_hnf_sam_6sn_nodeid

Configures node IDs for slave nodes 3 to 5 in 6-SN configuration mode.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD20Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

Figure 3-244 por_hnf_por_hnf_sam_6sn_nodeid (high)

The following table shows the por_hnf_sam_6sn_nodeid higher register bit assignments.

Table 3-258 por_hnf_por_hnf_sam_6sn_nodeid (high)

Bits	Field name	Description	Туре	Reset
63:35	Reserved	Reserved	RO	-
34:32	hn_cfg_sn5_nodeid	SN 5 node ID	RW	11'h0

The following image shows the lower register bit assignments.

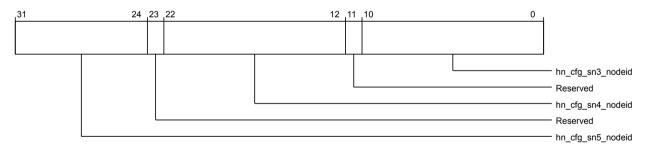


Figure 3-245 por_hnf_por_hnf_sam_6sn_nodeid (low)

The following table shows the por hnf sam 6sn nodeid lower register bit assignments.

Table 3-259 por_hnf_por_hnf_sam_6sn_nodeid (low)

Bits	Field name	Description	Туре	Reset
31:24	hn_cfg_sn5_nodeid	SN 5 node ID	RW	11'h0
23	Reserved	Reserved	RO	-
22:12	hn_cfg_sn4_nodeid	SN 4 node ID	RW	11'h0

Table 3-259 por_hnf_por_hnf_sam_6sn_nodeid (low) (continued)

Bits	Field name	Description	Туре	Reset
11	Reserved	Reserved	RO	-
10:0	hn_cfg_sn3_nodeid	SN 3 node ID	RW	11'h0

por_hnf_rn_phys_id0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD28
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

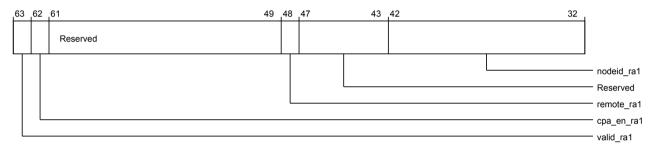


Figure 3-246 por_hnf_por_hnf_rn_phys_id0 (high)

The following table shows the por_hnf_rn_phys_id0 higher register bit assignments.

Table 3-260 por_hnf_por_hnf_rn_phys_id0 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra1	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra1	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra1	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		

Table 3-260 por_hnf_por_hnf_rn_phys_id0 (high) (continued)

Bits	Field name	Description	Туре	Reset
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra1	Specifies the node ID	RW	11'h0

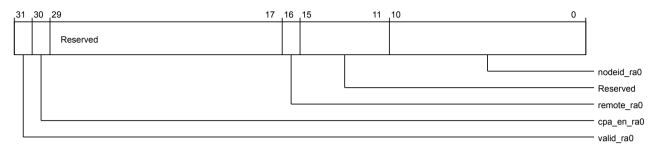


Figure 3-247 por_hnf_por_hnf_rn_phys_id0 (low)

The following table shows the por_hnf_rn_phys_id0 lower register bit assignments.

Table 3-261 por_hnf_por_hnf_rn_phys_id0 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra0	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra0	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra0	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra0	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id1

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD30
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control **override**

The following image shows the higher register bit assignments.

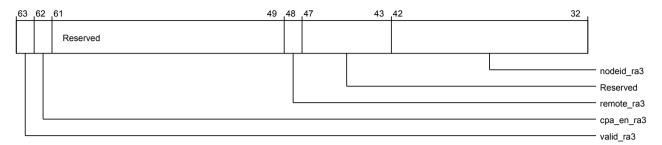


Figure 3-248 por_hnf_por_hnf_rn_phys_id1 (high)

The following table shows the por_hnf_rn_phys_id1 higher register bit assignments.

Table 3-262 por_hnf_por_hnf_rn_phys_id1 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra3	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra3	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra3	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra3	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

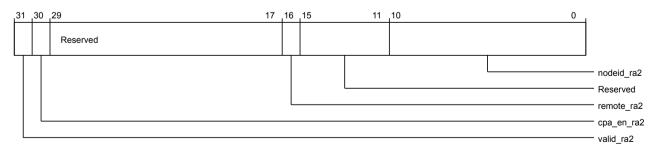


Figure 3-249 por_hnf_por_hnf_rn_phys_id1 (low)

The following table shows the por_hnf_rn_phys_id1 lower register bit assignments.

Table 3-263 por_hnf_por_hnf_rn_phys_id1 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra2	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra2	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra2	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra2	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id2

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD38
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

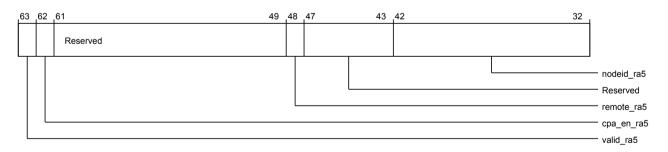


Figure 3-250 por_hnf_por_hnf_rn_phys_id2 (high)

The following table shows the por_hnf_rn_phys_id2 higher register bit assignments.

Table 3-264 por_hnf_por_hnf_rn_phys_id2 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra5	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra5	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra5	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra5	Specifies the node ID	RW	11'h0

Figure 3-251 por_hnf_por_hnf_rn_phys_id2 (low)

The following table shows the por_hnf_rn_phys_id2 lower register bit assignments.

Table 3-265 por_hnf_por_hnf_rn_phys_id2 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra4	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra4	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-265 por_hnf_por_hnf_rn_phys_id2 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra4	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra4	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id3

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD40Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

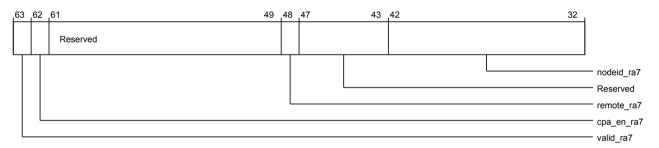


Figure 3-252 por_hnf_por_hnf_rn_phys_id3 (high)

The following table shows the por_hnf_rn_phys_id3 higher register bit assignments.

Table 3-266 por_hnf_por_hnf_rn_phys_id3 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra7	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra7	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-266 por_hnf_por_hnf_rn_phys_id3 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra7	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra7	Specifies the node ID	RW	11'h0

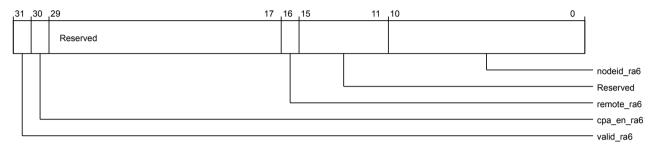


Figure 3-253 por_hnf_por_hnf_rn_phys_id3 (low)

The following table shows the por_hnf_rn_phys_id3 lower register bit assignments.

Table 3-267 por_hnf_por_hnf_rn_phys_id3 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra6	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra6	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra6	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra6	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id4

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hD48 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

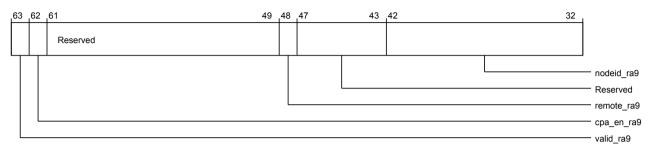


Figure 3-254 por_hnf_por_hnf_rn_phys_id4 (high)

The following table shows the por_hnf_rn_phys_id4 higher register bit assignments.

Table 3-268 por_hnf_por_hnf_rn_phys_id4 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra9	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra9	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra9	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra9	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

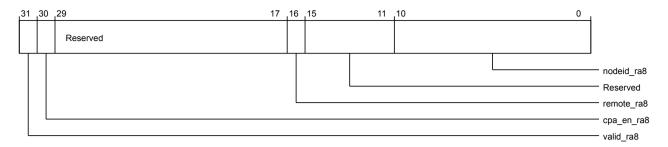


Figure 3-255 por_hnf_por_hnf_rn_phys_id4 (low)

The following table shows the por_hnf_rn_phys_id4 lower register bit assignments.

Table 3-269 por_hnf_por_hnf_rn_phys_id4 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra8	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra8	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra8	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra8	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id5

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD50
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

Figure 3-256 por_hnf_por_hnf_rn_phys_id5 (high)

The following table shows the por_hnf_rn_phys_id5 higher register bit assignments.

Table 3-270 por_hnf_por_hnf_rn_phys_id5 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra11	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra11	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra11	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra11	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

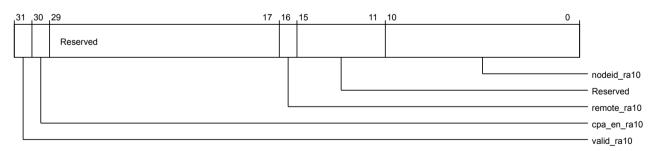


Figure 3-257 por_hnf_por_hnf_rn_phys_id5 (low)

The following table shows the por_hnf_rn_phys_id5 lower register bit assignments.

Table 3-271 por_hnf_por_hnf_rn_phys_id5 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra10	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra10	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra10	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra10	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id6

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD58
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group po override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

Figure 3-258 por_hnf_por_hnf_rn_phys_id6 (high)

The following table shows the por_hnf_rn_phys_id6 higher register bit assignments.

Table 3-272 por_hnf_por_hnf_rn_phys_id6 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra13	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra13	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra13	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra13	Specifies the node ID	RW	11'h0

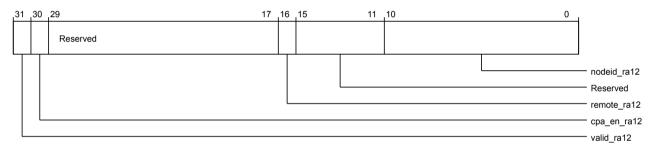


Figure 3-259 por_hnf_por_hnf_rn_phys_id6 (low)

The following table shows the por_hnf_rn_phys_id6 lower register bit assignments.

Table 3-273 por_hnf_por_hnf_rn_phys_id6 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra12	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra12	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-273 por_hnf_por_hnf_rn_phys_id6 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra12	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra12	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id7

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD60Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

 $por_hnf_secure_register_groups_override.sam_control$

The following image shows the higher register bit assignments.

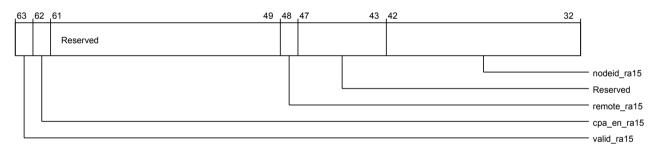


Figure 3-260 por_hnf_por_hnf_rn_phys_id7 (high)

The following table shows the por_hnf_rn_phys_id7 higher register bit assignments.

Table 3-274 por_hnf_por_hnf_rn_phys_id7 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra15	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra15	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-274 por_hnf_por_hnf_rn_phys_id7 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra15	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra15	Specifies the node ID	RW	11'h0

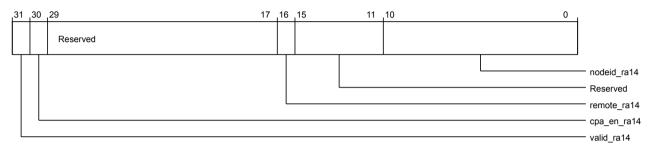


Figure 3-261 por_hnf_por_hnf_rn_phys_id7 (low)

The following table shows the por_hnf_rn_phys_id7 lower register bit assignments.

Table 3-275 por_hnf_por_hnf_rn_phys_id7 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra14	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra14	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra14	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra14	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id8

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hD68 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

Figure 3-262 por_hnf_por_hnf_rn_phys_id8 (high)

The following table shows the por_hnf_rn_phys_id8 higher register bit assignments.

Table 3-276 por_hnf_por_hnf_rn_phys_id8 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra17	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra17	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra17	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra17	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

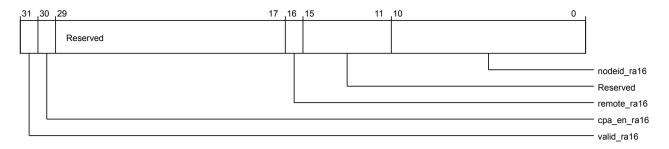


Figure 3-263 por_hnf_por_hnf_rn_phys_id8 (low)

The following table shows the por_hnf_rn_phys_id8 lower register bit assignments.

Table 3-277 por_hnf_por_hnf_rn_phys_id8 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra16	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra16	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra16	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra16	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id9

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD70
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

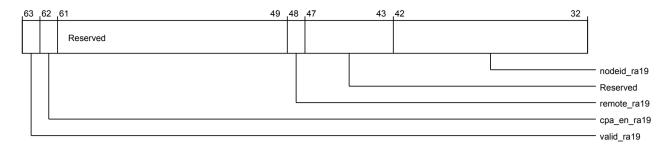


Figure 3-264 por_hnf_por_hnf_rn_phys_id9 (high)

The following table shows the por_hnf_rn_phys_id9 higher register bit assignments.

Table 3-278 por_hnf_por_hnf_rn_phys_id9 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra19	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra19	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra19	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra19	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

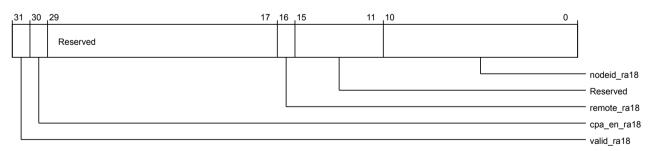


Figure 3-265 por_hnf_por_hnf_rn_phys_id9 (low)

The following table shows the por_hnf_rn_phys_id9 lower register bit assignments.

Table 3-279 por_hnf_por_hnf_rn_phys_id9 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra18	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra18	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra18	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra18	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id10

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD78
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

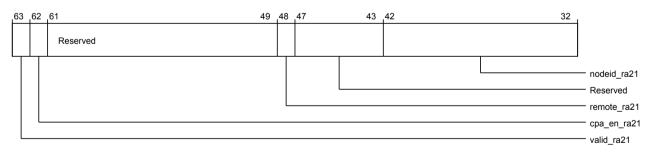


Figure 3-266 por_hnf_por_hnf_rn_phys_id10 (high)

The following table shows the por_hnf_rn_phys_id10 higher register bit assignments.

Table 3-280 por_hnf_por_hnf_rn_phys_id10 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra21	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra21	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra21	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra21	Specifies the node ID	RW	11'h0

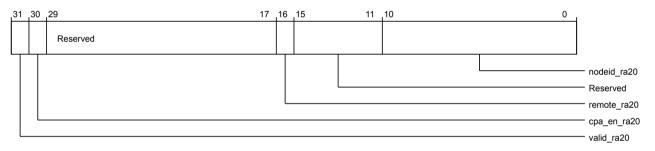


Figure 3-267 por_hnf_por_hnf_rn_phys_id10 (low)

The following table shows the por_hnf_rn_phys_id10 lower register bit assignments.

Table 3-281 por_hnf_por_hnf_rn_phys_id10 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra20	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra20	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-281 por_hnf_por_hnf_rn_phys_id10 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra20	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra20	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id11

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD80Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

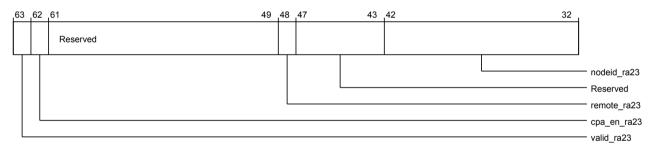


Figure 3-268 por_hnf_por_hnf_rn_phys_id11 (high)

The following table shows the por_hnf_rn_phys_id11 higher register bit assignments.

Table 3-282 por_hnf_por_hnf_rn_phys_id11 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra23	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra23	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-282 por_hnf_por_hnf_rn_phys_id11 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra23	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra23	Specifies the node ID	RW	11'h0

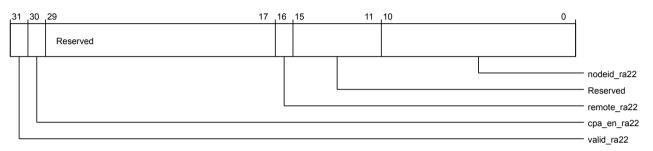


Figure 3-269 por_hnf_por_hnf_rn_phys_id11 (low)

The following table shows the por_hnf_rn_phys_id11 lower register bit assignments.

Table 3-283 por_hnf_por_hnf_rn_phys_id11 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra22	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra22	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra22	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra22	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id12

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hD88 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

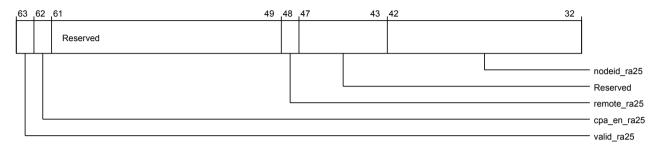


Figure 3-270 por_hnf_por_hnf_rn_phys_id12 (high)

The following table shows the por_hnf_rn_phys_id12 higher register bit assignments.

Table 3-284 por_hnf_por_hnf_rn_phys_id12 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra25	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra25	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra25	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra25	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

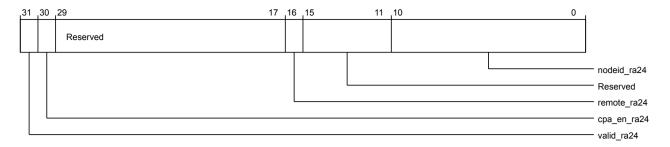


Figure 3-271 por_hnf_por_hnf_rn_phys_id12 (low)

The following table shows the por_hnf_rn_phys_id12 lower register bit assignments.

Table 3-285 por_hnf_por_hnf_rn_phys_id12 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra24	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra24	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra24	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra24	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id13

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD90
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

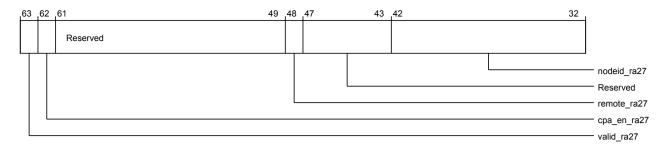


Figure 3-272 por_hnf_por_hnf_rn_phys_id13 (high)

The following table shows the por_hnf_rn_phys_id13 higher register bit assignments.

Table 3-286 por_hnf_por_hnf_rn_phys_id13 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra27	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra27	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra27	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra27	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

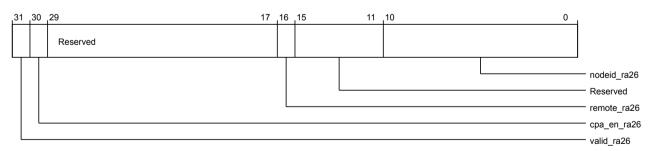


Figure 3-273 por_hnf_por_hnf_rn_phys_id13 (low)

The following table shows the por_hnf_rn_phys_id13 lower register bit assignments.

Table 3-287 por_hnf_por_hnf_rn_phys_id13 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra26	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra26	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra26	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra26	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD98Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por hnf secure register groups override.sam control

The following image shows the higher register bit assignments.

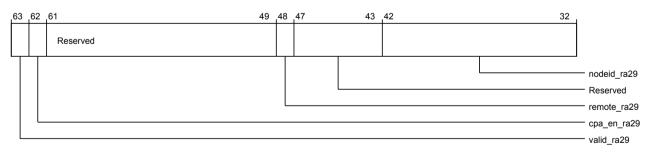


Figure 3-274 por_hnf_por_hnf_rn_phys_id14 (high)

The following table shows the por_hnf_rn_phys_id14 higher register bit assignments.

Table 3-288 por_hnf_por_hnf_rn_phys_id14 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra29	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra29	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra29	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra29	Specifies the node ID	RW	11'h0

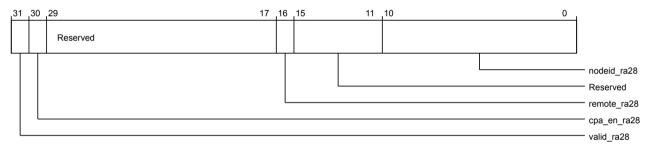


Figure 3-275 por_hnf_por_hnf_rn_phys_id14 (low)

The following table shows the por_hnf_rn_phys_id14 lower register bit assignments.

Table 3-289 por_hnf_por_hnf_rn_phys_id14 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra28	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra28	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-289 por_hnf_por_hnf_rn_phys_id14 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra28	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra28	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hDA0Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

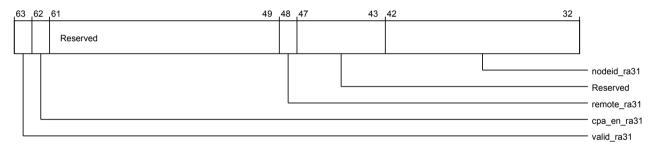


Figure 3-276 por_hnf_por_hnf_rn_phys_id15 (high)

The following table shows the por_hnf_rn_phys_id15 higher register bit assignments.

Table 3-290 por_hnf_por_hnf_rn_phys_id15 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra31	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra31	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-290 por_hnf_por_hnf_rn_phys_id15 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra31	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra31	Specifies the node ID	RW	11'h0

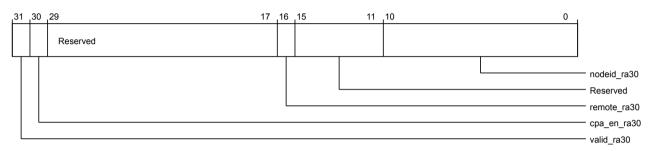


Figure 3-277 por_hnf_por_hnf_rn_phys_id15 (low)

The following table shows the por_hnf_rn_phys_id15 lower register bit assignments.

Table 3-291 por_hnf_por_hnf_rn_phys_id15 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra30	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra30	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra30	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra30	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id16

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hDA8 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

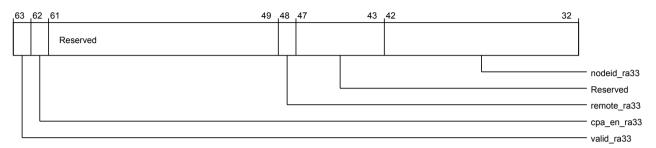


Figure 3-278 por_hnf_por_hnf_rn_phys_id16 (high)

The following table shows the por_hnf_rn_phys_id16 higher register bit assignments.

Table 3-292 por_hnf_por_hnf_rn_phys_id16 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra33	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra33	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra33	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra33	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

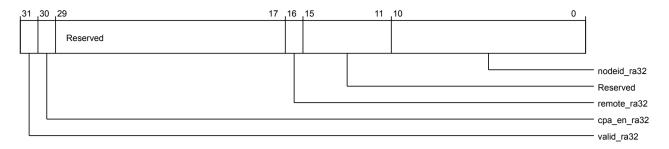


Figure 3-279 por_hnf_por_hnf_rn_phys_id16 (low)

The following table shows the por_hnf_rn_phys_id16 lower register bit assignments.

Table 3-293 por_hnf_por_hnf_rn_phys_id16 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra32	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra32	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra32	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra32	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id17

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDB0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

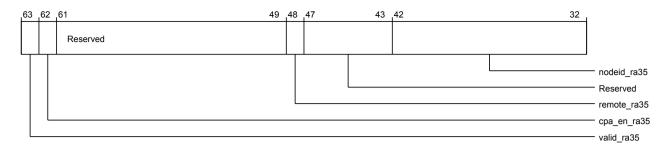


Figure 3-280 por_hnf_por_hnf_rn_phys_id17 (high)

The following table shows the por_hnf_rn_phys_id17 higher register bit assignments.

Table 3-294 por_hnf_por_hnf_rn_phys_id17 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra35	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra35	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra35	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra35	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

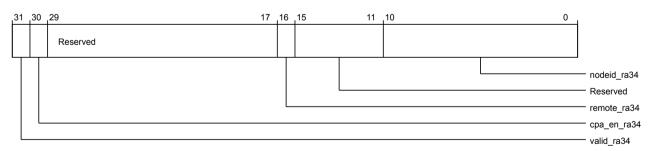


Figure 3-281 por_hnf_por_hnf_rn_phys_id17 (low)

The following table shows the por_hnf_rn_phys_id17 lower register bit assignments.

Table 3-295 por_hnf_por_hnf_rn_phys_id17 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra34	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra34	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra34	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra34	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDB8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

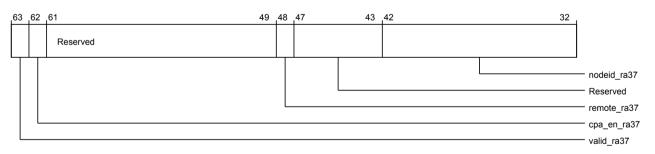


Figure 3-282 por_hnf_por_hnf_rn_phys_id18 (high)

The following table shows the por_hnf_rn_phys_id18 higher register bit assignments.

Table 3-296 por_hnf_por_hnf_rn_phys_id18 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra37	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra37	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra37	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra37	Specifies the node ID	RW	11'h0

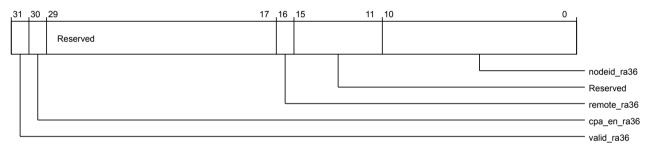


Figure 3-283 por_hnf_por_hnf_rn_phys_id18 (low)

The following table shows the por_hnf_rn_phys_id18 lower register bit assignments.

Table 3-297 por_hnf_por_hnf_rn_phys_id18 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra36	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra36	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-297 por_hnf_por_hnf_rn_phys_id18 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra36	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra36	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hDC0Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

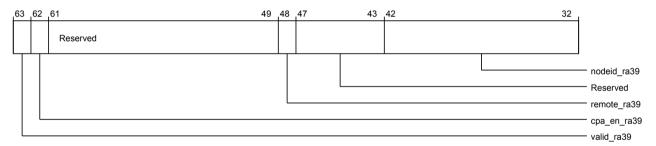


Figure 3-284 por_hnf_por_hnf_rn_phys_id19 (high)

The following table shows the por_hnf_rn_phys_id19 higher register bit assignments.

Table 3-298 por_hnf_por_hnf_rn_phys_id19 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra39	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra39	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-298 por_hnf_por_hnf_rn_phys_id19 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra39	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra39	Specifies the node ID	RW	11'h0

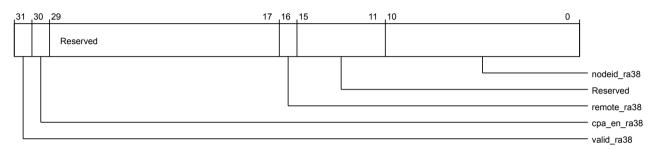


Figure 3-285 por_hnf_por_hnf_rn_phys_id19 (low)

The following table shows the por_hnf_rn_phys_id19 lower register bit assignments.

Table 3-299 por_hnf_por_hnf_rn_phys_id19 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra38	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra38	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra38	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra38	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id20

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hDC8 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

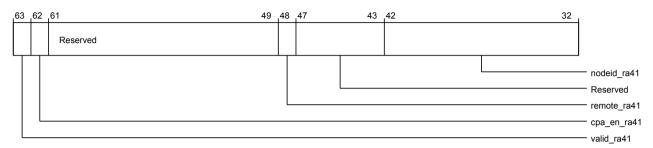


Figure 3-286 por_hnf_por_hnf_rn_phys_id20 (high)

The following table shows the por_hnf_rn_phys_id20 higher register bit assignments.

Table 3-300 por_hnf_por_hnf_rn_phys_id20 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra41	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra41	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra41	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra41	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

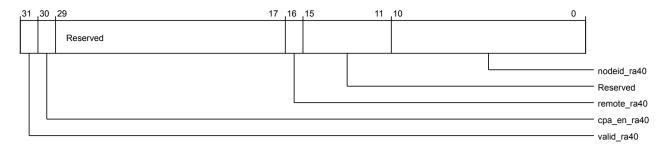


Figure 3-287 por_hnf_por_hnf_rn_phys_id20 (low)

The following table shows the por_hnf_rn_phys_id20 lower register bit assignments.

Table 3-301 por_hnf_por_hnf_rn_phys_id20 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra40	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra40	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra40	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra40	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id21

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDD0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

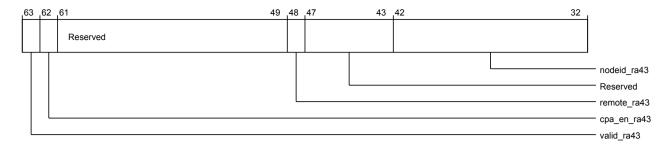


Figure 3-288 por_hnf_por_hnf_rn_phys_id21 (high)

The following table shows the por_hnf_rn_phys_id21 higher register bit assignments.

Table 3-302 por_hnf_por_hnf_rn_phys_id21 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra43	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra43	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra43	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra43	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

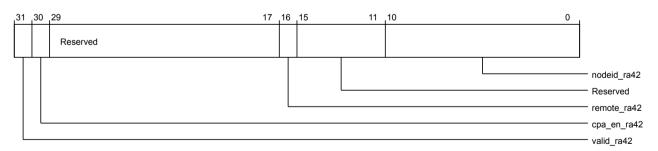


Figure 3-289 por_hnf_por_hnf_rn_phys_id21 (low)

The following table shows the por_hnf_rn_phys_id21 lower register bit assignments.

Table 3-303 por_hnf_por_hnf_rn_phys_id21 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra42	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra42	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra42	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra42	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDD8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

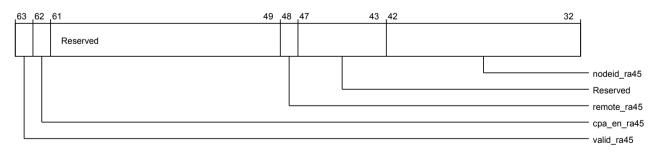


Figure 3-290 por_hnf_por_hnf_rn_phys_id22 (high)

The following table shows the por_hnf_rn_phys_id22 higher register bit assignments.

Table 3-304 por_hnf_por_hnf_rn_phys_id22 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra45	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra45	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra45	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra45	Specifies the node ID	RW	11'h0

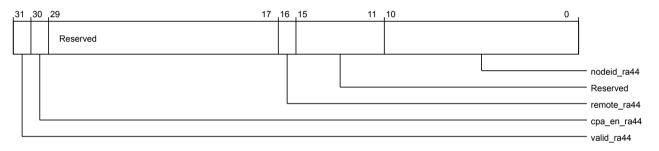


Figure 3-291 por_hnf_por_hnf_rn_phys_id22 (low)

The following table shows the por_hnf_rn_phys_id22 lower register bit assignments.

Table 3-305 por_hnf_por_hnf_rn_phys_id22 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra44	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra44	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-305 por_hnf_por_hnf_rn_phys_id22 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra44	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra44	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hDE0Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

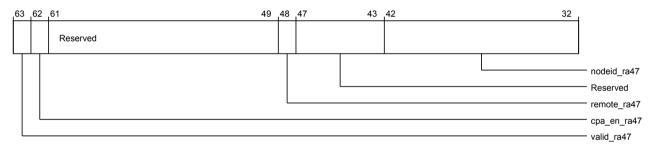


Figure 3-292 por_hnf_por_hnf_rn_phys_id23 (high)

The following table shows the por_hnf_rn_phys_id23 higher register bit assignments.

Table 3-306 por_hnf_por_hnf_rn_phys_id23 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra47	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra47	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-306 por_hnf_por_hnf_rn_phys_id23 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra47	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra47	Specifies the node ID	RW	11'h0

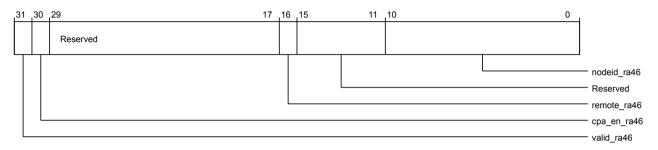


Figure 3-293 por_hnf_por_hnf_rn_phys_id23 (low)

The following table shows the por_hnf_rn_phys_id23 lower register bit assignments.

Table 3-307 por_hnf_por_hnf_rn_phys_id23 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra46	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra46	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra46	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra46	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id24

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hDE8 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

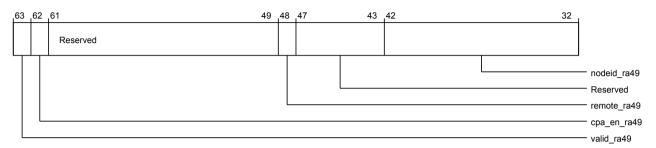


Figure 3-294 por_hnf_por_hnf_rn_phys_id24 (high)

The following table shows the por_hnf_rn_phys_id24 higher register bit assignments.

Table 3-308 por_hnf_por_hnf_rn_phys_id24 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra49	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra49	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra49	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra49	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

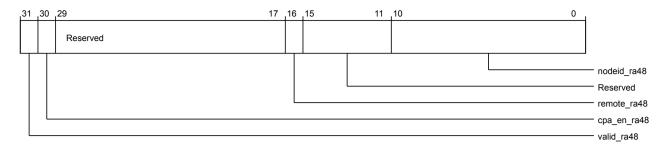


Figure 3-295 por_hnf_por_hnf_rn_phys_id24 (low)

The following table shows the por_hnf_rn_phys_id24 lower register bit assignments.

Table 3-309 por_hnf_por_hnf_rn_phys_id24 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra48	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra48	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra48	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra48	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id25

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDF0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

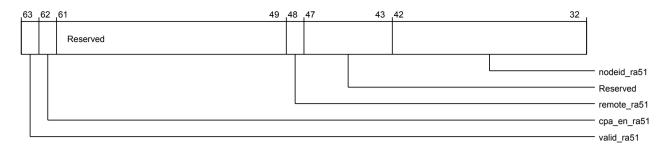


Figure 3-296 por_hnf_por_hnf_rn_phys_id25 (high)

The following table shows the por_hnf_rn_phys_id25 higher register bit assignments.

Table 3-310 por_hnf_por_hnf_rn_phys_id25 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra51	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra51	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra51	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra51	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

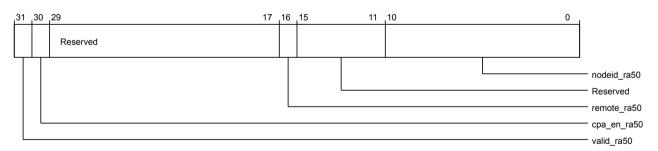


Figure 3-297 por_hnf_por_hnf_rn_phys_id25 (low)

The following table shows the por_hnf_rn_phys_id25 lower register bit assignments.

Table 3-311 por_hnf_por_hnf_rn_phys_id25 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra50	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra50	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra50	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra50	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDF8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

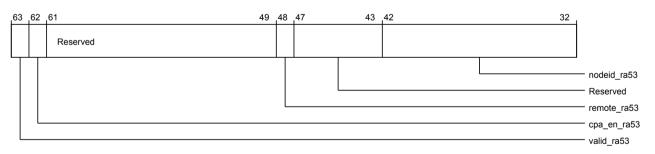


Figure 3-298 por_hnf_por_hnf_rn_phys_id26 (high)

The following table shows the por_hnf_rn_phys_id26 higher register bit assignments.

Table 3-312 por_hnf_por_hnf_rn_phys_id26 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra53	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra53	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra53	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra53	Specifies the node ID	RW	11'h0

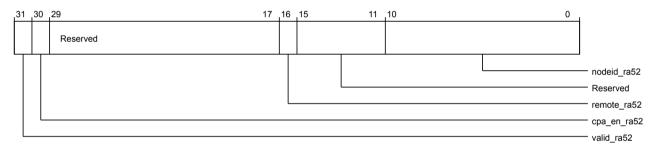


Figure 3-299 por_hnf_por_hnf_rn_phys_id26 (low)

The following table shows the por_hnf_rn_phys_id26 lower register bit assignments.

Table 3-313 por_hnf_por_hnf_rn_phys_id26 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra52	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra52	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-313 por_hnf_por_hnf_rn_phys_id26 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra52	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra52	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE00Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

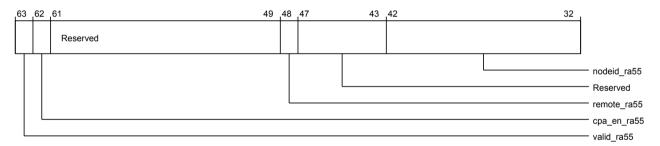


Figure 3-300 por_hnf_por_hnf_rn_phys_id27 (high)

The following table shows the por_hnf_rn_phys_id27 higher register bit assignments.

Table 3-314 por_hnf_por_hnf_rn_phys_id27 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra55	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra55	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-314 por_hnf_por_hnf_rn_phys_id27 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra55	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra55	Specifies the node ID	RW	11'h0

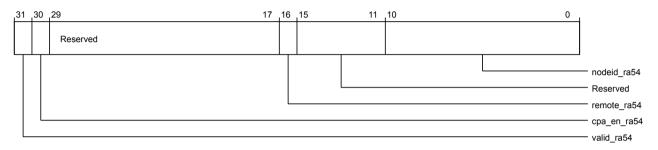


Figure 3-301 por_hnf_por_hnf_rn_phys_id27 (low)

The following table shows the por_hnf_rn_phys_id27 lower register bit assignments.

Table 3-315 por_hnf_por_hnf_rn_phys_id27 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra54	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra54	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra54	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra54	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id28

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset14'hE08Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

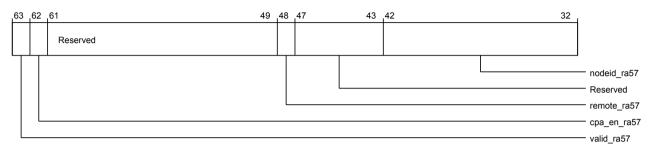


Figure 3-302 por_hnf_por_hnf_rn_phys_id28 (high)

The following table shows the por_hnf_rn_phys_id28 higher register bit assignments.

Table 3-316 por_hnf_por_hnf_rn_phys_id28 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra57	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra57	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra57	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra57	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

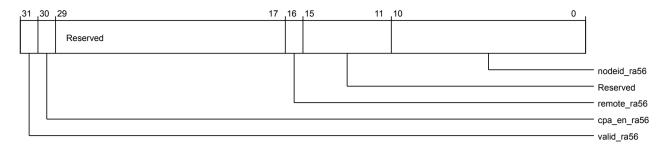


Figure 3-303 por_hnf_por_hnf_rn_phys_id28 (low)

The following table shows the por_hnf_rn_phys_id28 lower register bit assignments.

Table 3-317 por_hnf_por_hnf_rn_phys_id28 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra56	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra56	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra56	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra56	Specifies the node ID	RW	11'h0

por_hnf_rn_phys_id29

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE10
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.sam_control

override

The following image shows the higher register bit assignments.

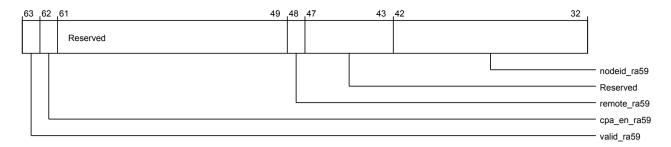


Figure 3-304 por_hnf_por_hnf_rn_phys_id29 (high)

The following table shows the por_hnf_rn_phys_id29 higher register bit assignments.

Table 3-318 por_hnf_por_hnf_rn_phys_id29 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra59	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra59	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra59	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra59	Specifies the node ID	RW	11'h0

The following image shows the lower register bit assignments.

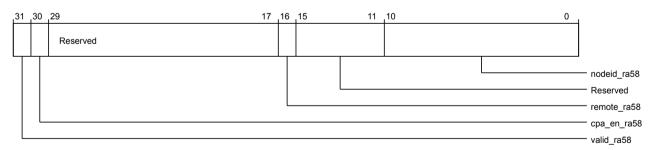


Figure 3-305 por_hnf_por_hnf_rn_phys_id29 (low)

The following table shows the por_hnf_rn_phys_id29 lower register bit assignments.

Table 3-319 por_hnf_por_hnf_rn_phys_id29 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra58	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra58	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra58	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra58	Specifies the node ID	RW	11'h0

$por_hnf_rn_phys_id30$

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE18Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

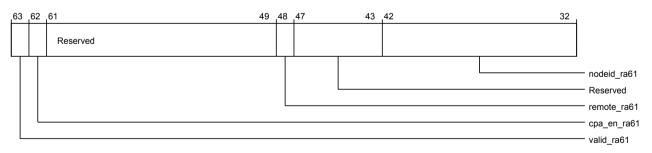


Figure 3-306 por_hnf_por_hnf_rn_phys_id30 (high)

The following table shows the por_hnf_rn_phys_id30 higher register bit assignments.

Table 3-320 por_hnf_por_hnf_rn_phys_id30 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra61	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra61	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-
48	remote_ra61	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra61	Specifies the node ID	RW	11'h0

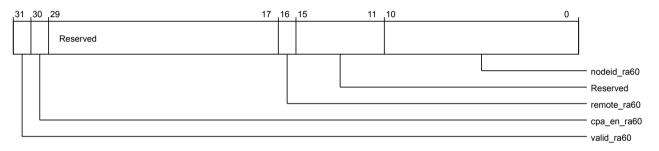


Figure 3-307 por_hnf_por_hnf_rn_phys_id30 (low)

The following table shows the por_hnf_rn_phys_id30 lower register bit assignments.

Table 3-321 por_hnf_por_hnf_rn_phys_id30 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra60	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra60	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-

Table 3-321 por_hnf_por_hnf_rn_phys_id30 (low) (continued)

Bits	Field name	Description	Туре	Reset
16	remote_ra60	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra60	Specifies the node ID	RW	11'h0

Configures node IDs for RNs in the system corresponding to each RN ID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE20Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

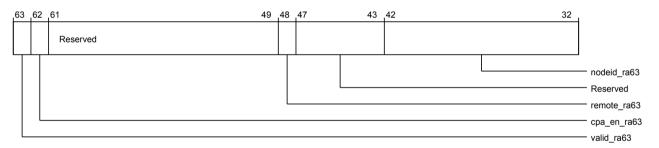


Figure 3-308 por_hnf_por_hnf_rn_phys_id31 (high)

The following table shows the por_hnf_rn_phys_id31 higher register bit assignments.

Table 3-322 por_hnf_por_hnf_rn_phys_id31 (high)

Bits	Field name	Description	Туре	Reset
63	valid_ra63	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
62	cpa_en_ra63	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
61:49	Reserved	Reserved	RO	-

Table 3-322 por_hnf_por_hnf_rn_phys_id31 (high) (continued)

Bits	Field name	Description	Туре	Reset
48	remote_ra63	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
47:43	Reserved	Reserved	RO	-
42:32	nodeid_ra63	Specifies the node ID	RW	11'h0

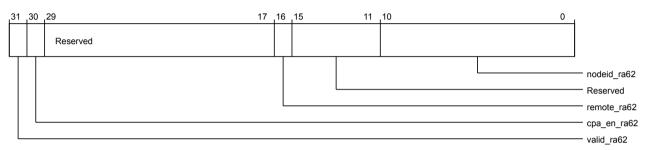


Figure 3-309 por_hnf_por_hnf_rn_phys_id31 (low)

The following table shows the por_hnf_rn_phys_id31 lower register bit assignments.

Table 3-323 por_hnf_por_hnf_rn_phys_id31 (low)

Bits	Field name	Description	Туре	Reset
31	valid_ra62	Specifies whether the RN is valid	RW	1'h0
		1'b0: RN ID is not valid		
		1'b1: RN ID is pointing to a valid CHI device		
30	cpa_en_ra62	Specifies whether the CCIX port aggregation is enabled	RW	1'h0
		1'b0: CPA not enabled		
		1'b1: CPA enabled		
29:17	Reserved	Reserved	RO	-
16	remote_ra62	Specifies whether the RN is remote or local	RW	1'h0
		1'b0: Local RN		
		1'b1: Remote RN		
15:11	Reserved	Reserved	RO	-
10:0	nodeid_ra62	Specifies the node ID	RW	11'h0

por_hnf_sf_cxg_blocked_ways

Specifies the SF ways that are blocked for remote chip to use in CML mode.

Its characteristics are:

Type RW

Register width (Bits) 64

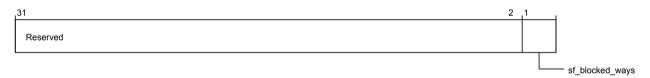

Address offset 14'hF00 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.


Figure 3-310 por_hnf_por_hnf_sf_cxg_blocked_ways (high)

The following table shows the por_hnf_sf_cxg_blocked_ways higher register bit assignments.

Table 3-324 por_hnf_por_hnf_sf_cxg_blocked_ways (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-311 por_hnf_por_hnf_sf_cxg_blocked_ways (low)

The following table shows the por hnf sf cxg blocked ways lower register bit assignments.

Table 3-325 por hnf por hnf sf cxg blocked ways (low)

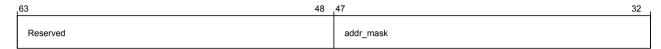
Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1:0	sf_blocked_ways	Number of SF ways blocked for remote chips to use in CML mode (0, 4, 8, or 12)	RW	2'b00
		2'b00: No ways are blocked; all 16 SF ways could be used by local or remote RN-Fs		
		2'b01: Lower 4 ways are blocked from remote RN-Fs; ways 3:0 for local RN-Fs only; ways 15:4 for local and remote RN-Fs		
		2'b10: Lower 8 ways are blocked from remote RN-Fs; ways 7:0 for local RN-Fs only; ways 15:8 for local and remote RN-Fs		
		2'b11: Lower 12 ways are blocked from remote RN-Fs; ways 11:0 for local RN-Fs only; ways 15:12 for local and remote RN-Fs		

por_hnf_cml_port_aggr_grp0_add_mask

Configures the CCIX port aggregation address mask for group $\boldsymbol{0}.$

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF10
Register reset 64'b1


Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_hnf_secure_register_groups_override.sam_control

The following image shows the higher register bit assignments.

Figure 3-312 por_hnf_por_hnf_cml_port_aggr_grp0_add_mask (high)

The following table shows the por hnf cml port aggr grp0 add mask higher register bit assignments.

Table 3-326 por_hnf_por_hnf_cml_port_aggr_grp0_add_mask (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	addr_mask	Address mask to be applied before hashing	RW	42'b1

The following image shows the lower register bit assignments.



Figure 3-313 por_hnf_por_hnf_cml_port_aggr_grp0_add_mask (low)

The following table shows the por_hnf_cml_port_aggr_grp0_add_mask lower register bit assignments.

Table 3-327 por_hnf_por_hnf_cml_port_aggr_grp0_add_mask (low)

Bits	Field name	Description	Туре	Reset
31:6	addr_mask	Address mask to be applied before hashing	RW	42'b1
5:0	Reserved	Reserved	RO	-

por_hnf_cml_port_aggr_grp0_reg

Configures the CCIX port aggregation port IDs for group 0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF28

Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por hnf secure register groups override.sam control

The following image shows the higher register bit assignments.

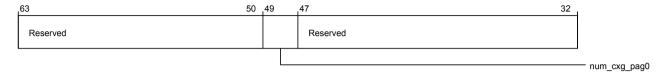


Figure 3-314 por_hnf_por_hnf_cml_port_aggr_grp0_reg (high)

The following table shows the por hnf cml port aggr grp0 reg higher register bit assignments.

Table 3-328 por_hnf_por_hnf_cml_port_aggr_grp0_reg (high)

Bits	Field name	Description	Туре	Reset
63:50	Reserved	Reserved		-
49:48	num_cxg_pag0	Specifies the number of CXRAs in CPAG F		2'b0
		2'b00: 1 port used		
		2'b01: 2 ports used		
		2'b10: Reserved		
		2'b11: Reserved		
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

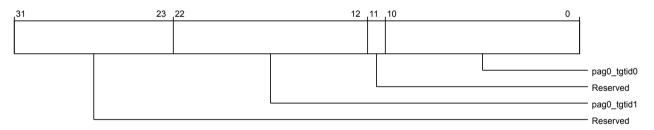


Figure 3-315 por_hnf_por_hnf_cml_port_aggr_grp0_reg (low)

The following table shows the por_hnf_cml_port_aggr_grp0_reg lower register bit assignments.

Table 3-329 por_hnf_por_hnf_cml_port_aggr_grp0_reg (low)

Bits	Field name	Description	Туре	Reset
31:23	Reserved	Reserved	RO	-
22:12	pag0_tgtid1	Specifies the target ID for CPAG	RW	11'b0

Table 3-329 por_hnf_por_hnf_cml_port_aggr_grp0_reg (low) (continued)

Bits	Field name	Description	Туре	Reset
11	Reserved	Reserved	RO	-
10:0	pag0_tgtid0	Specifies the target ID for CPAG	RW	11'b0

por_hnf_cfg_slcsf_dbgrd

Controls access modes for SLC tag, SLC data, and SF tag debug read.

Its characteristics are:

Type WO
Register width (Bits) 64
Address offset 14'hB80
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.slcsf_dbgrd

override

The following image shows the higher register bit assignments.

Figure 3-316 por_hnf_por_hnf_cfg_slcsf_dbgrd (high)

The following table shows the por_hnf_cfg_slcsf_dbgrd higher register bit assignments.

Table 3-330 por_hnf_por_hnf_cfg_slcsf_dbgrd (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

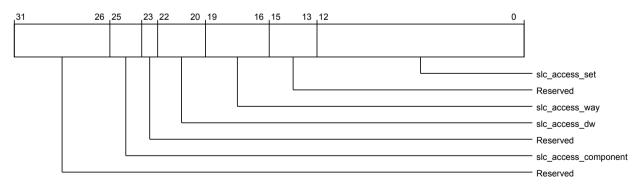


Figure 3-317 por_hnf_por_hnf_cfg_slcsf_dbgrd (low)

The following table shows the por hnf cfg slcsf dbgrd lower register bit assignments.

Table 3-331 por_hnf_por_hnf_cfg_slcsf_dbgrd (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	slc_access_component	Specifies SLC/SF array debug read		2'b00
		2'b01: SLC data read		
		2'b10: SLC tag read		
		2'b11: SF tag read		
23	Reserved	Reserved	RO	-
22:20	slc_access_dw	64-bit chunk address for SLC data debug read access	WO	3'h0
19:16	slc_access_way	Way address for SLC/SF debug read access	WO	4'h0
15:13	Reserved	Reserved	RO	-
12:0	slc_access_set	Set address for SLC/SF debug read access	WO	13'h0

por_hnf_slc_cache_access_slc_tag

Contains SLC tag debug read data.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'hB88
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hi

override

por_hnf_secure_register_groups_override.slcsf_dbgrd

The following image shows the higher register bit assignments.

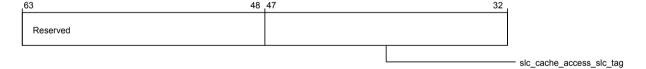


Figure 3-318 por_hnf_por_hnf_slc_cache_access_slc_tag (high)

The following table shows the por hnf slc cache access slc tag higher register bit assignments.

Table 3-332 por_hnf_por_hnf_slc_cache_access_slc_tag (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	slc_cache_access_slc_tag	SLC tag debug read data	RO	48'h0

The following image shows the lower register bit assignments.

Figure 3-319 por_hnf_por_hnf_slc_cache_access_slc_tag (low)

The following table shows the por hnf slc cache access slc tag lower register bit assignments.

Table 3-333 por_hnf_por_hnf_slc_cache_access_slc_tag (low)

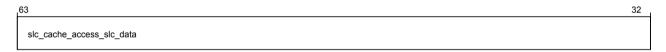
Bit	Field name	Description	Туре	Reset
31:0	slc_cache_access_slc_tag	SLC tag debug read data	RO	48'h0

por_hnf_slc_cache_access_slc_data

Contains SLC data RAM debug read data.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'hB90


Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.slcsf_dbgrd

override

The following image shows the higher register bit assignments.

Figure 3-320 por_hnf_por_hnf_slc_cache_access_slc_data (high)

The following table shows the por_hnf_slc_cache_access_slc_data higher register bit assignments.

Table 3-334 por_hnf_por_hnf_slc_cache_access_slc_data (high)

Bits	Field name	Description	Туре	Reset
63:32	slc_cache_access_slc_data	SLC data RAM debug read data	RO	64'h0

The following image shows the lower register bit assignments.

Figure 3-321 por_hnf_por_hnf_slc_cache_access_slc_data (low)

The following table shows the por hnf slc cache access slc data lower register bit assignments.

Table 3-335 por_hnf_por_hnf_slc_cache_access_slc_data (low)

Bits	Field name	Description	Туре	Reset
31:0	slc_cache_access_slc_data	SLC data RAM debug read data	RO	64'h0

por_hnf_slc_cache_access_sf_tag

Contains SF tag debug read data.

Its characteristics are:

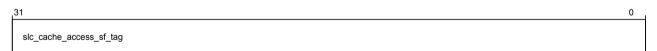
TypeRORegister width (Bits)64Address offset14'hB98Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_hnf_secure_register_groups_override.slcsf_dbgrd

override

The following image shows the higher register bit assignments.


Figure 3-322 por_hnf_por_hnf_slc_cache_access_sf_tag (high)

The following table shows the por hnf slc cache access sf tag higher register bit assignments.

Table 3-336 por_hnf_por_hnf_slc_cache_access_sf_tag (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	slc_cache_access_sf_tag	SF tag debug read data	RO	48'h0

The following image shows the lower register bit assignments.

Figure 3-323 por_hnf_por_hnf_slc_cache_access_sf_tag (low)

The following table shows the por_hnf_slc_cache_access_sf_tag lower register bit assignments.

Table 3-337 por_hnf_por_hnf_slc_cache_access_sf_tag (low)

Bits	Field name	Description	Туре	Reset
31:0	slc_cache_access_sf_tag	SF tag debug read data	RO	48'h0

por_hnf_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14/b2(

Address offset 14'h2000 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-324 por_hnf_por_hnf_pmu_event_sel (high)

The following table shows the por hnf pmu event sel higher register bit assignments.

Table 3-338 por_hnf_por_hnf_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:35	Reserved	Reserved	RO	-
34:32	pmu_occup1_id	HN-F PMU occupancy 1 select	RW	3'h0
		3'b000: All occupancy selected		
		3'b001: Read requests		
		3'b010: Write requests		
		3'b011: Atomic operation requests		
		3'b100: Stash requests		

The following image shows the lower register bit assignments.

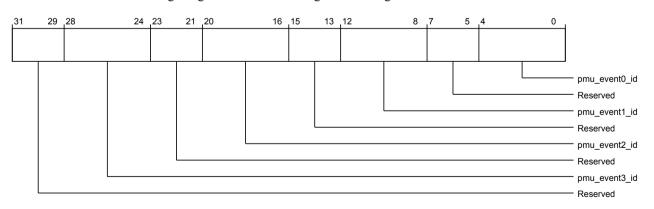


Figure 3-325 por_hnf_por_hnf_pmu_event_sel (low)

The following table shows the por_hnf_pmu_event_sel lower register bit assignments.

Table 3-339 por_hnf_por_hnf_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:29	Reserved	Reserved	RO	-
28:24	pmu_event3_id	HN-F PMU Event 3 select; see pmu_event0_id for encodings	RW	5'h00
23:21	Reserved	Reserved	RO	-
20:16	pmu_event2_id	HN-F PMU Event 2 select; see pmu_event0_id for encodings	RW	5'h00
15:13	Reserved	Reserved	RO	-
12:8	pmu_event1_id	HN-F PMU Event 1 select; see pmu_event0_id for encodings	RW	5'h00
7:5	Reserved	Reserved	RO	-

Table 3-339 por_hnf_por_hnf_pmu_event_sel (low) (continued)

Bits	Field name	Description	Туре	Reset
4:0	pmu_event0_id	HN-F PMU Event 0 select	RW	5'h00
		5'h00: No event		
		5'h01: PMU_HN_CACHE_MISS_EVENT; counts total cache misses in first lookup result (high priority)		
		5'h02: PMU_HNSLC_SF_CACHE_ACCESS_EVENT; counts number of cache accesses in first access (high priority)		
		5'h03: PMU_HN_CACHE_FILL_EVENT; counts total allocations in HN SLC (all cache line allocations to SLC)		
		5'h04: PMU_HN_POCQ_RETRY_EVENT; counts number of retried requests		
		5'h05: PMU_HN_POCQ_REQS_RECVD_EVENT; counts number of requests received by HN		
		5'h06: PMU_HN_SF_HIT_EVENT; counts number of SF hits		
		5'h07: PMU_HN_SF_EVICTIONS_EVENT; counts number of SF eviction cache invalidations initiated		
		5'h08: PMU_HN_DIR_SNOOPS_SENT_EVENT; counts number of directed snoops sent (not including SF back invalidation)		
		5'h09: PMU_HN_DIR_SNOOPS_SENTEVENT; counts number of multicast snoops send (not including SF back invalidation)		
		5'h0A: PMU_HN_SLC_EVICTION_EVENT; counts number of SLC evictions (dirty only)		
		5'h0B: PMU_HN_SLC_FILL_INVALID_WAY_EVENT; counts number of SLC fills to an invalid way		
		5'h0C: PMU_HN_MC_RETRIES_EVENT; counts number of retried transactions by the MC		
		5'h0D: PMU_HN_MC_REQS_EVENT; counts number of requests sent to MC		
		5'h0E: PMU_HN_QOS_HH_RETRY_EVENT; counts number of times a HighHigh priority request is protocol retried at the HN-F		
		5'h0F: PMU_HNF_POCQ_OCCUPANCY_EVENT; counts the POCQ occupancy in HN-F; occupancy filtering is programmed in pmu_occup1_id		
		5'h10: PMU_HN_POCQ_ADDRHAZ_EVENT; counts number of POCQ address hazards upon allocation		
		5'h11: PMU_HN_POCQ_ATOMICS_ADDRHAZ_EVENT; counts number of POCQ address hazards upon allocation for atomic operations		
		5'h12: PMU_HN_LD_ST_SWP_ADQ_FULL_EVENT; counts number of times ADQ is full for Ld/St/SWP type atomic operations while POCQ has pending operations		
		5'h13: PMU_HN_CMP_ADQ_FULL_EVENT; counts number of times ADQ is full for CMP type atomic operations while POCQ has pending operations		
		5'h14: PMU_HN_TXDAT_STALL_EVENT; counts number of times HN-F has a pending TXDAT flit but no credits to upload		
		5'h15: PMU_HN_TXRSP_STALL_EVENT; counts number of times HN-F has a pending TXRSP flit but no credits to upload		
		5'h16: PMU_HN_SEQ_FULL_EVENT; counts number of times requests are replayed in SLC pipe due to SEQ being full		

Table 3-339 por_hnf_por_hnf_pmu_event_sel (low) (continued)

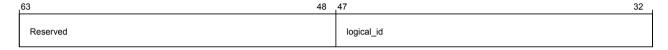
Bits	Field name	Description	Туре	Reset
4:0	pmu_event0_id	5'h17: PMU_HN_SEQ_HIT_EVENT; counts number of times a request in SLC hit a pending SF eviction in SEQ	RW	5'h00
		5'h18: PMU_HN_SNP_SENT_EVENT; counts number of snoops sent including directed/multicast/SF back invalidation		
		5'h19: PMU_HN_SFBI_DIR_SNP_SENT_EVENT; counts number of times directed snoops were sent due to SF back invalidation		
		5'h1a: PMU_HN_SFBI_BRD_SNP_SENT_EVENT; counts number of times multicast snoops were sent due to SF back invalidation		
		5'h1b: PMU_HN_SNP_SENT_UNTRK_EVENT; counts number of times snooped were sent due to untracked RN-Fs		
		5'h1c: PMU_HN_INTV_DIRTY_EVENT; counts number of times SF back invalidation resulted in dirty line intervention from the RN		
		5'h1d: PMU_HN_STASH_SNP_SENT_EVENT; counts number of times stash snoops sent		
		5'h1e: PMU_HN_STASH_DATA_PULL_EVENT; counts number of times stash snoops resulted in data pull from the RN		
		5'h1f: PMU_HN_SNP_FWDED_EVENT; counts number of times data forward snoops sent		

3.3.5 HN-I register descriptions

This section lists the HN-I registers.

por_hni_node_info

Provides component identification information.


Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-326 por hni por hni node info (high)

The following table shows the por hni node info higher register bit assignments.

Table 3-340 por_hni_por_hni_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

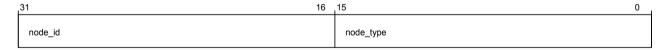


Figure 3-327 por_hni_por_hni_node_info (low)

The following table shows the por_hni_node_info lower register bit assignments.

Table 3-341 por_hni_por_hni_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h0004

por_hni_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-328 por_hni_por_hni_child_info (high)

The following table shows the por hni child info higher register bit assignments.

Table 3-342 por hni por hni child info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

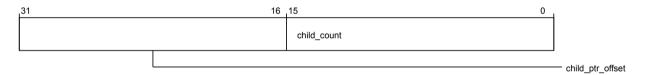


Figure 3-329 por_hni_por_hni_child_info (low)

The following table shows the por hni child info lower register bit assignments.

Table 3-343 por hni por hni child info (low)

Bits	Field name	Description	Туре	Reset
31:1	6 child_ptr_offset	child_ptr_offset Starting register offset which contains pointers to the child nodes R		16'h0
15:0	child_count Number of child nodes; used in discovery process F		RO	16'b0

por_hni_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-330 por_hni_por_hni_secure_register_groups_override (high)

The following table shows the por hni secure register groups override higher register bit assignments.

Table 3-344 por_hni_por_hni_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

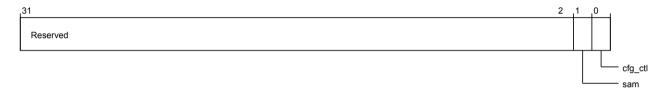


Figure 3-331 por_hni_por_hni_secure_register_groups_override (low)

The following table shows the por hni secure register groups override lower register bit assignments.

Table 3-345 por_hni_por_hni_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1	sam	Allows non-secure access to secure SAM registers	RW	1'b0
0	cfg_ctl	Allows non-secure access to secure configuration control register	RW	1'b0

por_hni_unit_info

Provides component identification information for HN-I.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

63 32 Reserved

Figure 3-332 por_hni_por_hni_unit_info (high)

The following table shows the por_hni_unit_info higher register bit assignments.

Table 3-346 por_hni_por_hni_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

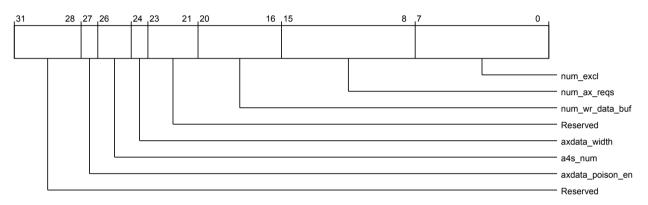


Figure 3-333 por_hni_por_hni_unit_info (low)

The following table shows the por_hni_unit_info lower register bit assignments.

Table 3-347 por_hni_por_hni_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27	axdata_poison_en	Data poison support on ACE-Lite/AXI4 interface 1'b0: Not supported 1'b1: Supported	RO	Configuration dependent
26:25	a4s_num	Number of AXI4Stream interfaces present	RO	Configuration dependent
24	axdata_width	Data width on ACE-Lite/AXI4 interface 1'b0: 128 bits 1'b1: 256 bits	RO	Configuration dependent
23:21	Reserved	Reserved	RO	-
20:16	num_wr_data_buf	Number of write data buffers in HN-I	RO	Configuration dependent
15:8	num_ax_reqs	Maximum number of outstanding ACE-Lite/AXI4 requests	RO	Configuration dependent
7:0	num_excl	Number of exclusive monitors in HN-I	RO	Configuration dependent

por_hni_sam_addrregion0_cfg

Configures Address Region 0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC00

Register reset 64'b11000111111

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por hni secure register groups override.sam

override

The following image shows the higher register bit assignments.

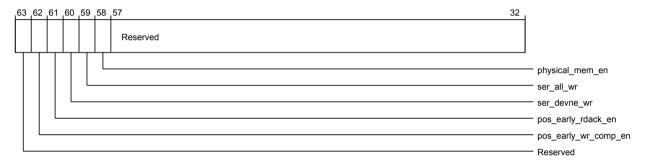


Figure 3-334 por_hni_por_hni_sam_addrregion0_cfg (high)

The following table shows the por hni sam addrregion0 cfg higher register bit assignments.

Table 3-348 por_hni_por_hni_sam_addrregion0_cfg (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62	pos_early_wr_comp_en	Enables early write acknowledgment in Address Region 0; used to improve write performance	RW	1'b1
61	pos_early_rdack_en	os_early_rdack_en Enables sending early read receipts from HN-I in Address Region 0; used to improve ordered read performance		1'b1
60	ser_devne_wr	Used to serialize Device-nGnRnE writes within Address Region 0	RW	1'b0
59	ser_all_wr	Used to serialize all writes within Address Region 0	RW	1'b0
58	physical_mem_en Address Region 0 follows Arm Architecture Reference Manual physical memory ordering guarantees		RW	1'b0
57:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-335 por_hni_por_hni_sam_addrregion0_cfg (low)

The following table shows the por hni sam addrregion0 cfg lower register bit assignments.

Table 3-349 por_hni_por_hni_sam_addrregion0_cfg (low)

Bits	Field name	Description		Reset
31:6	Reserved	Reserved	RO	-
5:0	order_region_size	<n>; used to calculate Order Region 0 size within Address Region 0 (2^n*4KB)</n>	RW	6'b111111

por_hni_sam_addrregion1_cfg

Configures Address Region 1.

Its characteristics are:

Type RW Register width (Bits) 64 Address offset

14'hC08

Register reset

Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

Usage constraints

override

por hni secure register groups override.sam

The following image shows the higher register bit assignments.

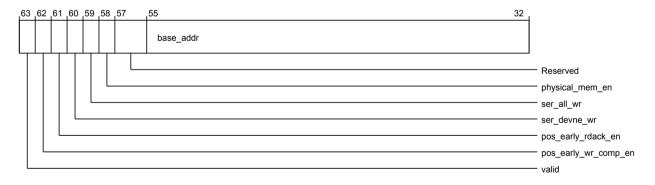


Figure 3-336 por_hni_por_hni_sam_addrregion1_cfg (high)

The following table shows the por hni sam addrregion1 cfg higher register bit assignments.

Table 3-350 por_hni_por_hni_sam_addrregion1_cfg (high)

Bits	Field name	Description	Туре	Reset
63	valid	Address Region 1 fields are programmed and valid	RW	1'h0
62	pos_early_wr_comp_en	Enables early write acknowledgment in Address Region 1; used to improve write performance		1'b1
61	pos_early_rdack_en	nables sending early read receipts from HN-I in Address Region 1; used to improve redered read performance		1'b1
60	ser_devne_wr	Used to serialize Device-nGnRnE writes within Address Region 1		1'b0
59	ser_all_wr	Used to serialize all writes within Address Region 1	RW	1'b0
58	physical_mem_en	Address Region 1 follows Arm Architecture Reference Manual physical memory ordering guarantees		1'b0
57:56	Reserved	Reserved		-
55:32	base_addr	Address Region 1 base address; [address width-1:12] CONSTRAINT: Must be an integer multiple of the Address Region 1 size.		36'h0

The following image shows the lower register bit assignments.

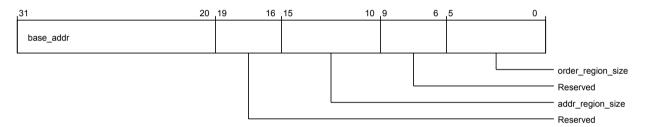


Figure 3-337 por_hni_por_hni_sam_addrregion1_cfg (low)

The following table shows the por_hni_sam_addrregion1_cfg lower register bit assignments.

Table 3-351 por_hni_por_hni_sam_addrregion1_cfg (low)

Bits	Field name	Description	Туре	Reset
31:20	1:20 base_addr Address Region 1 base address; [address width-1:12] CONSTRAINT: Must be an integer multiple of the Address Region 1 size.		RW	36'h0
19:16	Reserved	erved Reserved		-
15:10	addr_region_size	<n>; used to calculate Address Region 1 size (2^n*4KB) CONSTRAINT: <n> must be configured so that the Address Region 1 size is less than or equal to 2^(address width).</n></n>		6'h0
9:6	Reserved	Reserved	RO	-
5:0	order_region_size	er_region_size <n>; used to calculate Order Region 1 size within Address Region 1 (2^n*4KB)</n>		6'h0

por_hni_sam_addrregion2_cfg

Configures Address Region 2.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC10

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_hni_secure_register_groups_override.sam

The following image shows the higher register bit assignments.

58 57 55

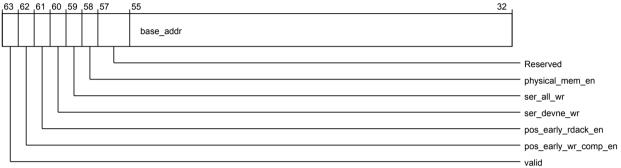


Figure 3-338 por_hni_por_hni_sam_addrregion2_cfg (high)

The following table shows the por_hni_sam_addrregion2_cfg higher register bit assignments.

Table 3-352 por_hni_por_hni_sam_addrregion2_cfg (high)

Bits	Field name	Description	Туре	Reset
63	valid	Address Region 2 fields are programmed and valid	RW	1'h0
62	pos_early_wr_comp_en	Enables early write acknowledgment in Address Region 2; used to improve write erformance		1'b1
61	pos_early_rdack_en	Enables sending early read receipts from HN-I in Address Region 2; used to improve ordered read performance		1'b1
60	ser_devne_wr	Used to serialize Device-nGnRnE writes within Address Region 2		1'b0
59	ser_all_wr	Used to serialize all writes within Address Region 2	RW	1'b0
58	physical_mem_en	Address Region 2 follows Arm Architecture Reference Manual physical memory ordering guarantees		1'b0
57:56	Reserved	Reserved		-
55:32	55:32 base_addr Address Region 2 base address; [address width-1:12] CONSTRAINT: Must be an integer multiple of the Address Region 2 size		RW	36'h0

The following image shows the lower register bit assignments.

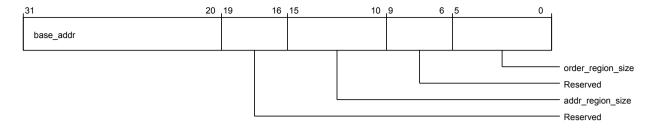


Figure 3-339 por_hni_por_hni_sam_addrregion2_cfg (low)

The following table shows the por hni sam addregion2 cfg lower register bit assignments.

Table 3-353 por_hni_por_hni_sam_addrregion2_cfg (low)

Bits	Field name	Description	Туре	Reset
31:20	1:20 base_addr Address Region 2 base address; [address width-1:12] CONSTRAINT: Must be an integer multiple of the Address Region 2 size		RW	36'h0
19:16	Reserved Reserved		RO	-
15:10	addr_region_size	egion_size		6'h0
9:6	Reserved	Reserved		-
5:0	order_region_size <n>; used to calculate Order Region 2 size within Address Region 2 (2^n*4KB)</n>		RW	6'h0

por_hni_sam_addrregion3_cfg

Configures Address Region 3.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC18

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

por hni secure register groups override.sam

Secure group

override

The following image shows the higher register bit assignments.

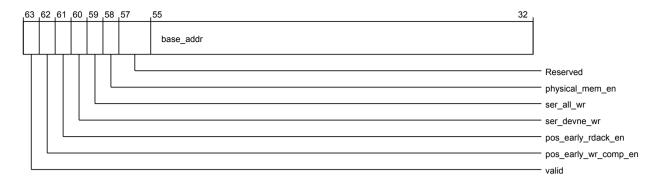


Figure 3-340 por_hni_por_hni_sam_addrregion3_cfg (high)

The following table shows the por_hni_sam_addrregion3_cfg higher register bit assignments.

Table 3-354 por_hni_por_hni_sam_addrregion3_cfg (high)

Bits	Field name	Description	Type	Reset
63	valid	Fields of Address Region 3 are programmed and valid	RW	1'h0
62	pos_early_wr_comp_en	Enables early write acknowledgment in Address Region 3; used to improve write performance		1'b1
61	pos_early_rdack_en	nables sending early read receipts from HN-I in Address Region 3; used to improve Indered read performance		1'b1
60	ser_devne_wr	Used to serialize Device-nGnRnE writes within Address Region 3		1'b0
59	ser_all_wr	Used to serialize all writes within Address Region 3	RW	1'b0
58	physical_mem_en	Address Region 3 follows Arm Architecture Reference Manual physical memory ordering guarantees		1'b0
57:56	Reserved	Reserved		-
55:32	base_addr Address Region 3 base address; [address width-1:12] CONSTRAINT: Must be an integer multiple of the Address Region 3 size		RW	36'h0

The following image shows the lower register bit assignments.

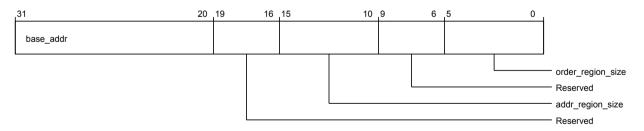


Figure 3-341 por_hni_por_hni_sam_addrregion3_cfg (low)

The following table shows the por_hni_sam_addrregion3_cfg lower register bit assignments.

Table 3-355 por_hni_por_hni_sam_addrregion3_cfg (low)

Bits	Field name	Description	Туре	Reset
31:20	base_addr	Address Region 3 base address; [address width-1:12]	RW	36'h0
		CONSTRAINT: Must be an integer multiple of the Address Region 3 size		
19:16	Reserved	Reserved		-
15:10	addr_region_size	<n>; used to calculate Address Region 3 size (2^n*4KB)</n>		6'h0
		CONSTRAINT: <n> must be configured so that the Address Region 3 size is less than or equal to 2^(address width).</n>		
9:6	Reserved	Reserved		-
5:0	order_region_size	<n>; used to calculate Order Region 3 size within Address Region 3 (2^n*4KB)</n>		6'h0

por_hni_cfg_ctl

Functions as the configuration control register for HN-I.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA00
Register reset 64'b1

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por hni secure register groups override.cfg ctl

The following image shows the higher register bit assignments.

Figure 3-342 por_hni_por_hni_cfg_ctl (high)

The following table shows the por hni cfg ctl higher register bit assignments.

Table 3-356 por_hni_por_hni_cfg_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-343 por_hni_por_hni_cfg_ctl (low)

The following table shows the por hni cfg ctl lower register bit assignments.

Table 3-357 por_hni_por_hni_cfg_ctl (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved		-
0	reqerr_cohreq_en	Enables sending of NDE response error to RN and logging of error information for the following requests: 1. Coherent Read		1'b1
		2. CleanUnique/MakeUnique 3. Coherent/CopyBack Write		

por_hni_aux_ctl

Functions as the auxiliary control register for HN-I.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08
Register reset 64'b0

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-344 por_hni_por_hni_aux_ctl (high)

The following table shows the por_hni_aux_ctl higher register bit assignments.

Table 3-358 por_hni_por_hni_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

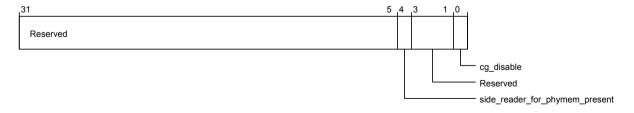


Figure 3-345 por_hni_por_hni_aux_ctl (low)

The following table shows the por hni aux ctl lower register bit assignments.

Table 3-359 por_hni_por_hni_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:5	Reserved	Reserved	RO	-
4	side_reader_for_phymem_present	Enables side reader in physical memory range	RW	1'b0
3:1	Reserved	Reserved	RO	-
0	cg_disable	Disables HN-I architectural clock gates	RW	1'b0

por_hni_errfr

Functions as the error feature register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3000

Register reset 64'b0000010100101

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-346 por_hni_por_hni_errfr (high)

The following table shows the por hni errfr higher register bit assignments.

Table 3-360 por_hni_por_hni_errfr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

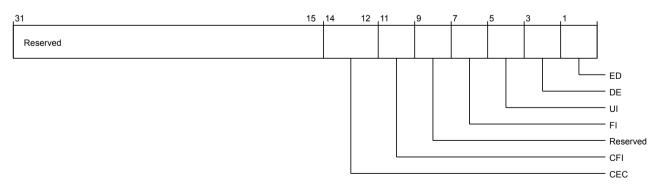


Figure 3-347 por_hni_por_hni_errfr (low)

The following table shows the por hni errfr lower register bit assignments.

Table 3-361 por_hni_por_hni_errfr (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism	RO	3'b000
		3'b000: Does not implement standardized error counter model		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_hni_errctlr

Functions as the error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3008
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-348 por_hni_por_hni_errctlr (high)

The following table shows the por_hni_errctlr higher register bit assignments.

Table 3-362 por_hni_por_hni_errctlr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-349 por_hni_por_hni_errctlr (low)

The following table shows the por_hni_errctlr lower register bit assignments.

Table 3-363 por_hni_por_hni_errctlr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_hni_errfr.CFI	RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_hni_errfr.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_hni_errfr.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_hni_errfr.DE	RW	1'b0
0	ED	Enables error detection as specified in por_hni_errfr.ED	RW	1'b0

por_hni_errstatus

Functions as the error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.

Its characteristics are:

TypeW1CRegister width (Bits)64Address offset14'h3010Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-350 por_hni_por_hni_errstatus (high)

The following table shows the por hni errstatus higher register bit assignments.

Table 3-364 por_hni_por_hni_errstatus (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

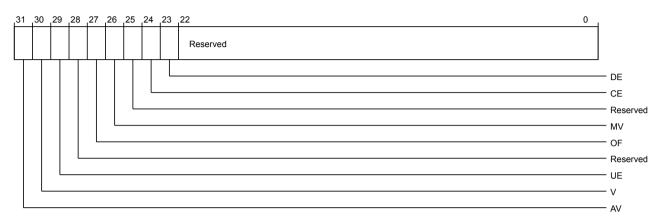


Figure 3-351 por_hni_por_hni_errstatus (low)

The following table shows the por_hni_errstatus lower register bit assignments.

Table 3-365 por_hni_por_hni_errstatus (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid; por_hni_erraddr contains a physical address for that recorded error		
		1'b0: Address is not valid		
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		

Table 3-365 por_hni_por_hni_errstatus (low) (continued)

Bits	Field name	Description	Туре	Reset
26	MV	por_hni_errmisc valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear 1'b1: Miscellaneous registers are valid 1'b0: Miscellaneous registers are not valid	W1C	1'b0
25	Reserved	Reserved	RO	-
24	СЕ	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one transient corrected error recorded 1'b0: No corrected errors recorded	W1C	1'b0
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error is not corrected and is deferred 1'b0: No errors deferred	W1C	1'b0
22:0	Reserved	Reserved	RO	-

por_hni_erraddr

Contains the error record address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h3018Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

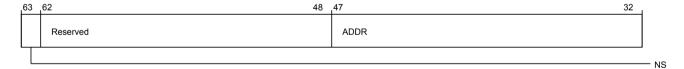


Figure 3-352 por_hni_por_hni_erraddr (high)

The following table shows the por_hni_erraddr higher register bit assignments.

Table 3-366 por_hni_por_hni_erraddr (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_hni_erraddr.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.

Figure 3-353 por_hni_por_hni_erraddr (low)

The following table shows the por_hni_erraddr lower register bit assignments.

Table 3-367 por_hni_por_hni_erraddr (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_hni_errmisc

Functions as the miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3020
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

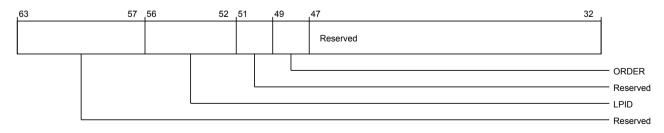


Figure 3-354 por_hni_por_hni_errmisc (high)

The following table shows the por_hni_errmisc higher register bit assignments.

Table 3-368 por_hni_por_hni_errmisc (high)

Bits	Field name	Description	Туре	Reset
63:57	Reserved	Reserved	RO	-
56:52	LPID	Error logic processor ID	RW	5'b0
51:50	Reserved	Reserved	RO	-
49:48	ORDER	Error order	RW	4'b0
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

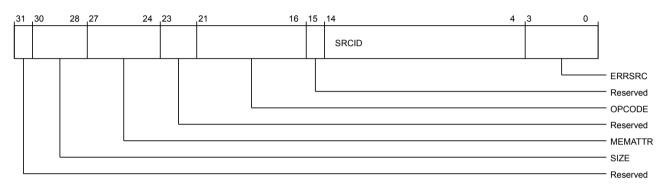


Figure 3-355 por_hni_por_hni_errmisc (low)

The following table shows the por_hni_errmisc lower register bit assignments.

Table 3-369 por_hni_por_hni_errmisc (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:28	SIZE	Error transaction size	RW	3'b0
27:24	MEMATTR	Error memory attributes	RW	4'b0
23:22	Reserved	Reserved	RO	-
21:16	OPCODE	Error opcode	RW	6'b0
15	Reserved	Reserved	RO	-

Table 3-369 por_hni_por_hni_errmisc (low) (continued)

Bits	Field name	Description	Туре	Reset
14:4	SRCID	Error source ID	RW	11'b0
3:0	ERRSRC	Error source	RW	4'b0
		4'b0000: Coherent read		
		4'b0001: Coherent write		
		4'b0010: CleanUnique/MakeUnique		
		4'b0011: Atomic		
		4'b0100: Illegal configuration read		
		4'b0101: Illegal configuration write		
		4'b0110: Configuration write data partial byte enable error		
		4'b0111: Configuration write data parity error or poison error		
		4'b1000: BRESP error		
		4'b1001: Poison error		
		4'b1010: BRESP error and poison error		
		NOTE: For configuration write data, BRESP, and poison errors, por_hni_errmisc.SRCID is the only valid field. For other error types, all fields are valid.		

por_hni_errfr_NS

Functions as the non-secure error feature register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3100

Register reset 64'b0000010100101

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

63 32 Reserved

Figure 3-356 por_hni_por_hni_errfr_ns (high)

The following table shows the por_hni_errfr_NS higher register bit assignments.

Table 3-370 por_hni_por_hni_errfr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

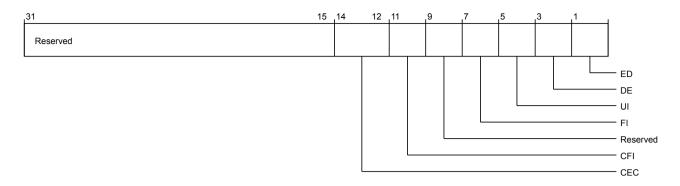


Figure 3-357 por_hni_por_hni_errfr_ns (low)

The following table shows the por_hni_errfr_NS lower register bit assignments.

Table 3-371 por_hni_por_hni_errfr_ns (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism	RO	3'b000
		3'b000: Does not implement standardized error counter model		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_hni_errctlr_NS

Functions as the non-secure error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3108
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-358 por_hni_por_hni_errctlr_ns (high)

The following table shows the por hni erretlr NS higher register bit assignments.

Table 3-372 por_hni_por_hni_errctlr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

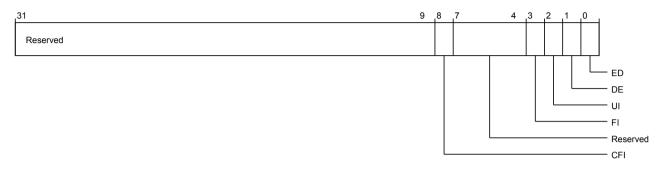


Figure 3-359 por_hni_por_hni_errctlr_ns (low)

The following table shows the por hni erretlr NS lower register bit assignments.

Table 3-373 por_hni_por_hni_errctlr_ns (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_hni_errfr_NS.CFI	RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_hni_errfr_NS.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_hni_errfr_NS.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_hni_errfr_NS.DE	RW	1'b0
0	ED	Enables error detection as specified in por_hni_errfr_NS.ED	RW	1'b0

por_hni_errstatus_NS

Functions as the non-secure error status register.

Its characteristics are:

Type W1C
Register width (Bits) 64
Address offset 14'h3110
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-360 por_hni_por_hni_errstatus_ns (high)

The following table shows the por_hni_errstatus_NS higher register bit assignments.

Table 3-374 por_hni_por_hni_errstatus_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

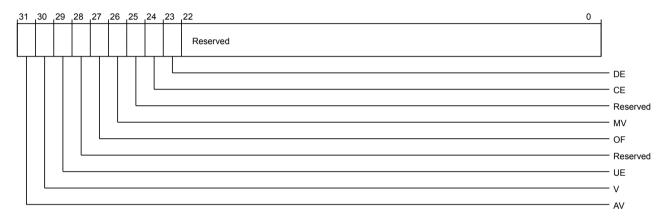


Figure 3-361 por_hni_por_hni_errstatus_ns (low)

The following table shows the por_hni_errstatus_NS lower register bit assignments.

Table 3-375 por_hni_por_hni_errstatus_ns (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid; por_hni_erraddr_NS contains a physical address for that recorded error 1'b0: Address is not valid		
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error recorded; register is valid 1'b0: No errors recorded	W1C	1'b0
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error detected that is not corrected and is not deferred to a slave 1'b0: No uncorrected errors detected	W1C	1'b0

Table 3-375 por_hni_por_hni_errstatus_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear 1'b1: More than one error detected 1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		1'b0
26	MV	por_hni_errmisc_NS valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear 1'b1: Miscellaneous registers are valid 1'b0: Miscellaneous registers are not valid	W1C	1'b0
25	Reserved	Reserved	RO	-
24	CE	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one transient corrected error recorded 1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error is not corrected and is deferred 1'b0: No errors deferred	W1C	1'b0
22:0	Reserved	Reserved	RO	-

por_hni_erraddr_NS

Contains the non-secure error record address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3118
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

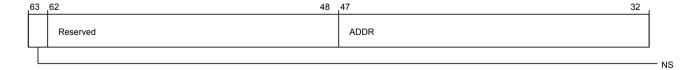


Figure 3-362 por_hni_por_hni_erraddr_ns (high)

The following table shows the por_hni_erraddr_NS higher register bit assignments.

Table 3-376 por_hni_por_hni_erraddr_ns (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_hni_erraddr_NS.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.

Figure 3-363 por_hni_por_hni_erraddr_ns (low)

The following table shows the por_hni_erraddr_NS lower register bit assignments.

Table 3-377 por_hni_por_hni_erraddr_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_hni_errmisc_NS

Functions as the non-secure miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3120
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

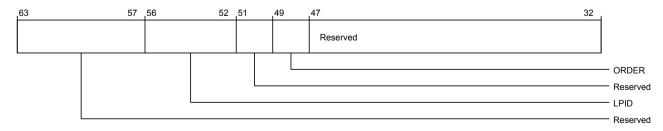


Figure 3-364 por_hni_por_hni_errmisc_ns (high)

The following table shows the por_hni_errmisc_NS higher register bit assignments.

Table 3-378 por_hni_por_hni_errmisc_ns (high)

Bits	Field name	Description	Туре	Reset
63:57	Reserved	Reserved	RO	-
56:52	LPID	Error logic processor ID	RW	5'b0
51:50	Reserved	Reserved	RO	-
49:48	ORDER	Error order	RW	4'b0
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

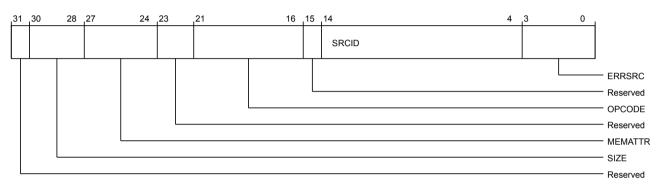


Figure 3-365 por_hni_por_hni_errmisc_ns (low)

The following table shows the por_hni_errmisc_NS lower register bit assignments.

Table 3-379 por_hni_por_hni_errmisc_ns (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:28	SIZE	Error transaction size	RW	3'b0
27:24	MEMATTR	Error memory attributes	RW	4'b0
23:22	Reserved	Reserved	RO	-
21:16	OPCODE	Error opcode	RW	6'b0
15	Reserved	Reserved	RO	-

Table 3-379 por_hni_por_hni_errmisc_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
14:4	SRCID	Error source ID	RW	11'b0
3:0	ERRSRC	Error source	RW	4'b0
		4'b0000: Coherent read		
		4'b0001: Coherent write		
		4'b0010: CleanUnique/MakeUnique		
		4'b0011: Atomic		
		4'b0100: Illegal configuration read		
		4'b0101: Illegal configuration write		
		4'b0110: Configuration write data partial byte enable error		
		4'b0111: Configuration write data parity error or poison error		
		4'b1000: BRESP error		
		4'b1001: Poison error		
		4'b1010: BRESP error and poison error		
		NOTE: For configuration write data, BRESP, and poison errors, por_hni_errmisc_NS.SRCID is the only valid field. For other error types, all fields are valid.		

por_hni_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h2000Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-366 por_hni_por_hni_pmu_event_sel (high)

The following table shows the por_hni_pmu_event_sel higher register bit assignments.

Table 3-380 por_hni_por_hni_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

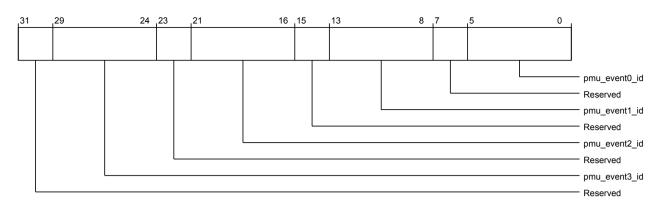


Figure 3-367 por_hni_por_hni_pmu_event_sel (low)

The following table shows the por_hni_pmu_event_sel lower register bit assignments.

Table 3-381 por_hni_por_hni_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	pmu_event3_id	HN-I PMU Event 3 select; see pmu_event0_id for encodings	RW	6'b0
23:22	Reserved Reserved		RO	-
21:16	pmu_event2_id	HN-I PMU Event 2 select; see pmu_event0_id for encodings	RW	6'b0
15:14	14 Reserved Reserved		RO	-
13:8	pmu_event1_id	HN-I PMU Event 1 select; see pmu_event0_id for encodings	RW	6'b0

Table 3-381 por_hni_por_hni_pmu_event_sel (low) (continued)

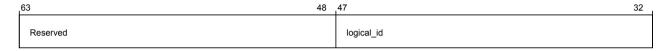
Bits	Field name	Description	Туре	Reset
7:6	Reserved	Reserved	RO	-
5:0	pmu_event0_id	HN-I PMU Event 0 select	RW	6'b0
		6'h00: No event		
		6'h20: RRT read occupancy count overflow		
		6'h21: RRT write occupancy count overflow		
		6'h22: RDT read occupancy count overflow		
		6'h23: RDT write occupancy count overflow		
		6'h24: WDB occupancy count overflow		
		6'h25: RRT read allocation		
		6'h26: RRT write allocation		
		6'h27: RDT read allocation		
		6'h28: RDT write allocation		
		6'h29: WDB allocation		
		6'h2A: RETRYACK TXRSP flit sent		
		6'h2B: ARVALID set without ARREADY event		
		6'h2C: ARREADY set without ARVALID event		
		6'h2D: AWVALID set without AWREADY event		
		6'h2E: AWREADY set without AWVALID event		
		6'h2F: WVALID set without WREADY event		
		6'h30: TXDAT stall (TXDAT valid but no link credit available)		
		6'h31: Non-PCIe serialization event		
		6'h32: PCIe serialization event		
		NOTE: All other encodings are reserved.		

3.3.6 XP register descriptions

Lists the XP registers.

por_mxp_node_info

Provides component identification information.


Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-368 por_mxp_por_mxp_node_info (high)

The following table shows the por mxp node info higher register bit assignments.

Table 3-382 por_mxp_por_mxp_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

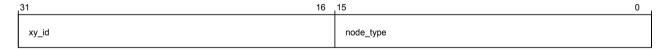


Figure 3-369 por_mxp_por_mxp_node_info (low)

The following table shows the por_mxp_node_info lower register bit assignments.

Table 3-383 por_mxp_por_mxp_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	xy_id	Identifies (X,Y) location of XP within the mesh	RO	16'h0000
		NOTE: The (X,Y) location is specified following the node ID format as defined in Node ID mapping section, with the bottom 3 bits, corresponding to port ID and device ID, set to 0. Bits 31:11 must always be set to 0. The range of bits representing the (X,Y) location varies for different node ID formats.		
15:0	node_type	CMN-600 node type identifier	RO	16'h0006

por_mxp_device_port_connect_info_p0

Contains device port connection information for port 0.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h8

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-370 por_mxp_por_mxp_device_port_connect_info_p0 (high)

The following table shows the por_mxp_device_port_connect_info_p0 higher register bit assignments.

Table 3-384 por_mxp_por_mxp_device_port_connect_info_p0 (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

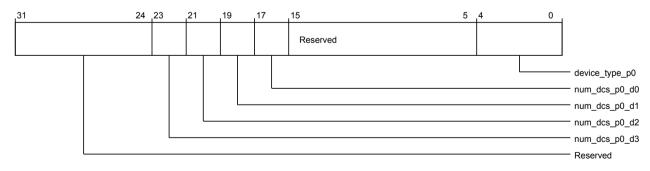


Figure 3-371 por_mxp_por_mxp_device_port_connect_info_p0 (low)

The following table shows the por mxp device port connect info p0 lower register bit assignments.

Table 3-385 por_mxp_por_mxp_device_port_connect_info_p0 (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:22	num_dcs_p0_d3	Number of device credited slices connected to port 0 device 3 (0, 1, or 2)	RO	Configuration dependent
21:20	num_dcs_p0_d2	Number of device credited slices connected to port 0 device 2 (0, 1, or 2)	RO	Configuration dependent
19:18	num_dcs_p0_d1	Number of device credited slices connected to port 0 device 1 (0, 1, or 2)	RO	Configuration dependent
17:16	num_dcs_p0_d0	Number of device credited slices connected to port 0 device 0 (0, 1, or 2)	RO	Configuration dependent
15:5	Reserved	Reserved	RO	-
4:0	device_type_p0	Connected device type	RO	Configuration dependent
		5'b00000: Reserved		
		5'b00001: RN-I		
		5'b00010: RN-D		
		5'b00011: Reserved		
		5'b00100: RN-F_CHIB		
		5'b00101: RN-F_CHIB_ESAM		
		5'b00110: RN-F_CHIA		
		5'b00111: RN-F_CHIA_ESAM		
		5'b01000: HN-T		
		5'b01001: HN-I		
		5'b01010: HN-D		
		5'b01011: Reserved		
		5'b01100: SN-F		
		5'b01101: SBSX		
		5'b01110: HN-F		
		5'b01111: Reserved		
		5'b10000: Reserved		
		5'b10001: CXHA		
		5'b10010: CXRA		
		5'b10011: CXRH		
		5'b10100-5'b11111: Reserved		

por_mxp_device_port_connect_info_p1

Contains device port connection information for port 1.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h10

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-372 por_mxp_por_mxp_device_port_connect_info_p1 (high)

The following table shows the por_mxp_device_port_connect_info_p1 higher register bit assignments.

Table 3-386 por_mxp_por_mxp_device_port_connect_info_p1 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

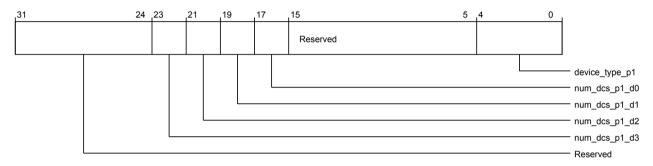


Figure 3-373 por_mxp_por_mxp_device_port_connect_info_p1 (low)

The following table shows the por mxp device port connect info p1 lower register bit assignments.

Table 3-387 por_mxp_por_mxp_device_port_connect_info_p1 (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:22	num_dcs_p1_d3	Number of device credited slices connected to port 1 device 3 (0, 1, or 2)	RO	Configuration dependent
21:20	num_dcs_p1_d2	Number of device credited slices connected to port 1 device 2 (0, 1, or 2)	RO	Configuration dependent
19:18	num_dcs_p1_d1	Number of device credited slices connected to port 1 device 1 (0, 1, or 2)	RO	Configuration dependent
17:16	num_dcs_p1_d0	Number of device credited slices connected to port 1 device 0 (0, 1, or 2)	RO	Configuration dependent

Table 3-387 por_mxp_por_mxp_device_port_connect_info_p1 (low) (continued)

Bits	Field name	Description	Туре	Reset
15:5	Reserved	Reserved	RO	-
4:0	device_type_p1	Connected device type	RO	Configuration dependent
		5'b00000: Reserved		
		5'b00001: RN-I		
		5'b00010: RN-D		
		5'b00011: Reserved		
		5'b00100: RN-F CHIB		
		5'b00101: RN-F CHIB ESAM		
		5'b00110: RN-F CHIA		
		5'b00111: RN-F CHIA ESAM		
		5'b01000: HN-T		
		5'b01001: HN-I		
		5'b01010: HN-D		
		5'b01011: Reserved		
		5'b01100: SN-F		
		5'b01101: SBSX		
		5'b01110: HN-F		
		5'b01111: Reserved		
		5'b10000: Reserved		
		5'b10001: CXHA		
		5'b10010: CXRA		
		5'b10011: CXRH		
		5'b10100-5'b11111: Reserved		

por_mxp_mesh_port_connect_info_east

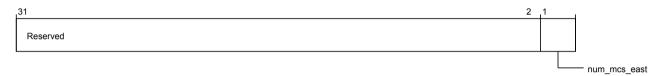
Contains port connection information for East port.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h18

Register reset Configuration dependent **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-374 por_mxp_por_mxp_mesh_port_connect_info_east (high)

The following table shows the por mxp mesh port connect info east higher register bit assignments.

Table 3-388 por_mxp_por_mxp_mesh_port_connect_info_east (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

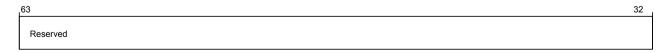
Figure 3-375 por_mxp_por_mxp_mesh_port_connect_info_east (low)

The following table shows the por_mxp_mesh_port_connect_info_east lower register bit assignments.

Table 3-389 por_mxp_por_mxp_mesh_port_connect_info_east (low)

Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1:0	num_mcs_east	Number of mesh credited slices connected to East port (0, 1, or 2)	RO	Configuration dependent

por_mxp_mesh_port_connect_info_north


Contains port connection information for North port.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h20

Register reset Configuration dependent
Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-376 por_mxp_por_mxp_mesh_port_connect_info_north (high)

The following table shows the por_mxp_mesh_port_connect_info_north higher register bit assignments.

Table 3-390 por_mxp_por_mxp_mesh_port_connect_info_north (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

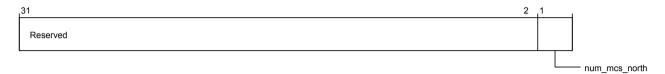


Figure 3-377 por_mxp_por_mxp_mesh_port_connect_info_north (low)

The following table shows the por mxp mesh port connect info north lower register bit assignments.

Table 3-391 por_mxp_por_mxp_mesh_port_connect_info_north (low)

Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1:0	num_mcs_north	Number of mesh credited slices connected to North port (0, 1, or 2)	RO	Configuration dependent

por_mxp_child_info

Provides component child identification information.

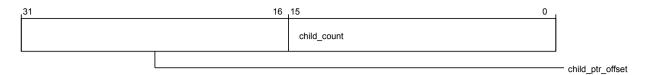
Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h80

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-378 por_mxp_por_mxp_child_info (high)

The following table shows the por mxp child info higher register bit assignments.

Table 3-392 por_mxp_por_mxp_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-379 por_mxp_por_mxp_child_info (low)

The following table shows the por mxp child info lower register bit assignments.

Table 3-393 por_mxp_por_mxp_child_info (low)

Bits	Field name	Description	Туре	Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h100
15:0	child_count	Number of child nodes; used in discovery process	RO	Configuration dependent

por_mxp_child_pointer_0

Contains base address of the configuration slave for child 0.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h100
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-380 por_mxp_por_mxp_child_pointer_0 (high)

The following table shows the por mxp child pointer 0 higher register bit assignments.

Table 3-394 por_mxp_por_mxp_child_pointer_0 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-381 por_mxp_por_mxp_child_pointer_0 (low)

The following table shows the por mxp child pointer 0 lower register bit assignments.

Table 3-395 por_mxp_por_mxp_child_pointer_0 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_0	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_1

Contains base address of the configuration slave for child 1.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h108Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-382 por_mxp_por_mxp_child_pointer_1 (high)

The following table shows the por_mxp_child_pointer_1 higher register bit assignments.

Table 3-396 por_mxp_por_mxp_child_pointer_1 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-383 por_mxp_por_mxp_child_pointer_1 (low)

The following table shows the por_mxp_child_pointer_1 lower register bit assignments.

Table 3-397 por_mxp_por_mxp_child_pointer_1 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_1	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_2

Contains base address of the configuration slave for child 2.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h110Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-384 por_mxp_por_mxp_child_pointer_2 (high)

The following table shows the por_mxp_child_pointer_2 higher register bit assignments.

Table 3-398 por_mxp_por_mxp_child_pointer_2 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-385 por_mxp_por_mxp_child_pointer_2 (low)

The following table shows the por_mxp_child_pointer_2 lower register bit assignments.

Table 3-399 por_mxp_por_mxp_child_pointer_2 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_2	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_3

Contains base address of the configuration slave for child 3.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h118Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-386 por_mxp_por_mxp_child_pointer_3 (high)

The following table shows the por_mxp_child_pointer_3 higher register bit assignments.

Table 3-400 por_mxp_por_mxp_child_pointer_3 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-387 por_mxp_por_mxp_child_pointer_3 (low)

The following table shows the por_mxp_child_pointer_3 lower register bit assignments.

Table 3-401 por_mxp_por_mxp_child_pointer_3 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_3	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_4

Contains base address of the configuration slave for child 4.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h120Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-388 por_mxp_por_mxp_child_pointer_4 (high)

The following table shows the por_mxp_child_pointer_4 higher register bit assignments.

Table 3-402 por_mxp_por_mxp_child_pointer_4 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-389 por_mxp_por_mxp_child_pointer_4 (low)

The following table shows the por_mxp_child_pointer_4 lower register bit assignments.

Table 3-403 por_mxp_por_mxp_child_pointer_4 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_4	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_5

Contains base address of the configuration slave for child 5.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h128Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-390 por_mxp_por_mxp_child_pointer_5 (high)

The following table shows the por_mxp_child_pointer_5 higher register bit assignments.

Table 3-404 por_mxp_por_mxp_child_pointer_5 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-391 por_mxp_por_mxp_child_pointer_5 (low)

The following table shows the por_mxp_child_pointer_5 lower register bit assignments.

Table 3-405 por_mxp_por_mxp_child_pointer_5 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_5	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		sits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_6

Contains base address of the configuration slave for child 6.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h130Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-392 por_mxp_por_mxp_child_pointer_6 (high)

The following table shows the por_mxp_child_pointer_6 higher register bit assignments.

Table 3-406 por_mxp_por_mxp_child_pointer_6 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-393 por_mxp_por_mxp_child_pointer_6 (low)

The following table shows the por_mxp_child_pointer_6 lower register bit assignments.

Table 3-407 por_mxp_por_mxp_child_pointer_6 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_6	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		its [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_7

Contains base address of the configuration slave for child 7.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h138Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-394 por_mxp_por_mxp_child_pointer_7 (high)

The following table shows the por_mxp_child_pointer_7 higher register bit assignments.

Table 3-408 por_mxp_por_mxp_child_pointer_7 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-395 por_mxp_por_mxp_child_pointer_7 (low)

The following table shows the por_mxp_child_pointer_7 lower register bit assignments.

Table 3-409 por_mxp_por_mxp_child_pointer_7 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_7	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_8

Contains base address of the configuration slave for child 8.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h140Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-396 por_mxp_por_mxp_child_pointer_8 (high)

The following table shows the por_mxp_child_pointer_8 higher register bit assignments.

Table 3-410 por_mxp_por_mxp_child_pointer_8 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-397 por_mxp_por_mxp_child_pointer_8 (low)

The following table shows the por_mxp_child_pointer_8 lower register bit assignments.

Table 3-411 por_mxp_por_mxp_child_pointer_8 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_8	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		its [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_9

Contains base address of the configuration slave for child 9.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h148Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-398 por_mxp_por_mxp_child_pointer_9 (high)

The following table shows the por_mxp_child_pointer_9 higher register bit assignments.

Table 3-412 por_mxp_por_mxp_child_pointer_9 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-399 por_mxp_por_mxp_child_pointer_9 (low)

The following table shows the por_mxp_child_pointer_9 lower register bit assignments.

Table 3-413 por_mxp_por_mxp_child_pointer_9 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_9	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		its [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_10

Contains base address of the configuration slave for child 10.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h150Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-400 por_mxp_por_mxp_child_pointer_10 (high)

The following table shows the por_mxp_child_pointer_10 higher register bit assignments.

Table 3-414 por_mxp_por_mxp_child_pointer_10 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-401 por_mxp_por_mxp_child_pointer_10 (low)

The following table shows the por_mxp_child_pointer_10 lower register bit assignments.

Table 3-415 por_mxp_por_mxp_child_pointer_10 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_10	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_11

Contains base address of the configuration slave for child 11.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h158Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-402 por_mxp_por_mxp_child_pointer_11 (high)

The following table shows the por_mxp_child_pointer_11 higher register bit assignments.

Table 3-416 por_mxp_por_mxp_child_pointer_11 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-403 por_mxp_por_mxp_child_pointer_11 (low)

The following table shows the por mxp child pointer 11 lower register bit assignments.

Table 3-417 por_mxp_por_mxp_child_pointer_11 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_11	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_12

Contains base address of the configuration slave for child 12.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h160Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-404 por_mxp_por_mxp_child_pointer_12 (high)

The following table shows the por_mxp_child_pointer_12 higher register bit assignments.

Table 3-418 por_mxp_por_mxp_child_pointer_12 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-405 por_mxp_por_mxp_child_pointer_12 (low)

The following table shows the por mxp child pointer 12 lower register bit assignments.

Table 3-419 por_mxp_por_mxp_child_pointer_12 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_12	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_13

Contains base address of the configuration slave for child 13.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h168Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-406 por_mxp_por_mxp_child_pointer_13 (high)

The following table shows the por_mxp_child_pointer_13 higher register bit assignments.

Table 3-420 por_mxp_por_mxp_child_pointer_13 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-407 por_mxp_por_mxp_child_pointer_13 (low)

The following table shows the por mxp child pointer 13 lower register bit assignments.

Table 3-421 por_mxp_por_mxp_child_pointer_13 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_13	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_14

Contains base address of the configuration slave for child 14.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h170Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-408 por_mxp_por_mxp_child_pointer_14 (high)

The following table shows the por_mxp_child_pointer_14 higher register bit assignments.

Table 3-422 por_mxp_por_mxp_child_pointer_14 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-409 por_mxp_por_mxp_child_pointer_14 (low)

The following table shows the por mxp child pointer 14 lower register bit assignments.

Table 3-423 por_mxp_por_mxp_child_pointer_14 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_14	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_child_pointer_15

Contains base address of the configuration slave for child 15.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h178Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-410 por_mxp_por_mxp_child_pointer_15 (high)

The following table shows the por_mxp_child_pointer_15 higher register bit assignments.

Table 3-424 por_mxp_por_mxp_child_pointer_15 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-411 por_mxp_por_mxp_child_pointer_15 (low)

The following table shows the por mxp child pointer 15 lower register bit assignments.

Table 3-425 por_mxp_por_mxp_child_pointer_15 (low)

Bits	Field name	Description	Туре	Reset
31:0	relative_address_15	Bit [31]: External or internal child node	RO	32'b0
		1'b1: Indicates this child pointer points to a configuration node that is external to CMN-600		
		1'b0: Indicates this child pointer points to a configuration node that is internal to CMN-600		
		Bits [30:28]: Set to 3'b000		
		Bits [27:0]: Child node address offset relative to PERIPHBASE		

por_mxp_p0_info

Provides component identification information for XP port 0.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-412 por_mxp_por_mxp_p0_info (high)

The following table shows the por_mxp_p0_info higher register bit assignments.

Table 3-426 por_mxp_por_mxp_p0_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

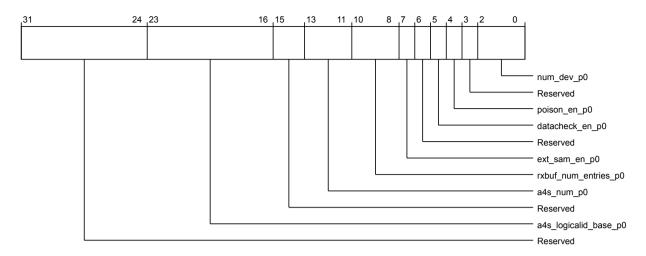


Figure 3-413 por_mxp_por_mxp_p0_info (low)

The following table shows the por mxp p0 info lower register bit assignments.

Table 3-427 por_mxp_por_mxp_p0_info (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:16	a4s_logicalid_base_p0	AXI4Stream interfaces logical ID base at this port (0 or 1)	RO	Configuration dependent
15:14	Reserved	Reserved	RO	-
13:11	a4s_num_p0	Total number of RN-F AXI4Stream interfaces at this port (0 to 4)	RO	Configuration dependent
10:8	rxbuf_num_entries_p0	Number of input buffers for each device at this port (2 to 4)	RO	Configuration dependent
7	ext_sam_en_p0	ESAM enable	RO	Configuration dependent
6	Reserved	Reserved	RO	-
5	datacheck_en_p0	Datacheck enable	RO	Configuration dependent
4	poison_en_p0	Poison enable	RO	Configuration dependent
3	Reserved	Reserved	RO	-
2:0	num_dev_p0	Number of devices connected to this port (0 to 4)	RO	Configuration dependent

por_mxp_p1_info

Provides component identification information for XP port 1.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h908

Register reset Configuration dependent
Usage constraints There are no usage constraints.

8

The following image shows the higher register bit assignments.

63 32 Reserved

Figure 3-414 por_mxp_por_mxp_p1_info (high)

The following table shows the por_mxp_p1_info higher register bit assignments.

Table 3-428 por_mxp_por_mxp_p1_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

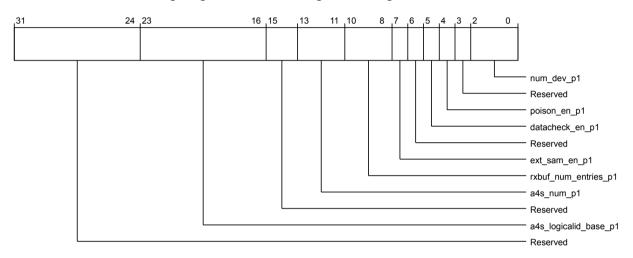


Figure 3-415 por_mxp_por_mxp_p1_info (low)

The following table shows the por mxp p1 info lower register bit assignments.

Table 3-429 por_mxp_por_mxp_p1_info (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:16	a4s_logicalid_base_p1	AXI4Stream interfaces logical ID base at this port (0 or 1)	RO	Configuration dependent
15:14	Reserved	Reserved	RO	-
13:11	a4s_num_p1	Total number of RN-F AXI4Stream interfaces at this port (0 to 4)	RO	Configuration dependent
10:8	rxbuf_num_entries_p1	Number of input buffers at this port (2 to 4)	RO	Configuration dependent
7	ext_sam_en_p1	ESAM enable	RO	Configuration dependent
6	Reserved	Reserved	RO	-
5	datacheck_en_p1	Datacheck enable	RO	Configuration dependent
4	poison_en_p1	Poison enable	RO	Configuration dependent
3	Reserved	Reserved	RO	-
2:0	num_dev_p1	Number of devices connected to this port (0 to 4)	RO	Configuration dependent

por_mxp_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.


Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.


Figure 3-416 por mxp por mxp secure register groups override (high)

The following table shows the por_mxp_secure_register_groups_override higher register bit assignments.

Table 3-430 por_mxp_por_mxp_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-417 por_mxp_por_mxp_secure_register_groups_override (low)

The following table shows the por mxp secure register groups override lower register bit assignments.

Table 3-431 por_mxp_por_mxp_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	qos	Allows non-secure access to secure QoS registers	RW	1'b0

por_mxp_aux_ctl

Functions as the auxiliary control register for XP.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'hA00 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-418 por_mxp_por_mxp_aux_ctl (high)

The following table shows the por mxp aux ctl higher register bit assignments.

Table 3-432 por_mxp_por_mxp_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

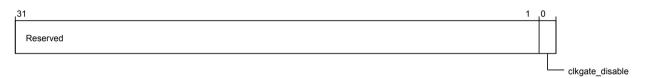


Figure 3-419 por_mxp_por_mxp_aux_ctl (low)

The following table shows the por mxp aux ctl lower register bit assignments.

Table 3-433 por_mxp_por_mxp_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	clkgate_disable	Disables clock gating when set	RW	1'b0

por_mxp_p0_qos_control

Controls QoS settings for devices connected to port 0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA80
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-420 por_mxp_por_mxp_p0_qos_control (high)

The following table shows the por_mxp_p0_qos_control higher register bit assignments.

Table 3-434 por_mxp_por_mxp_p0_qos_control (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

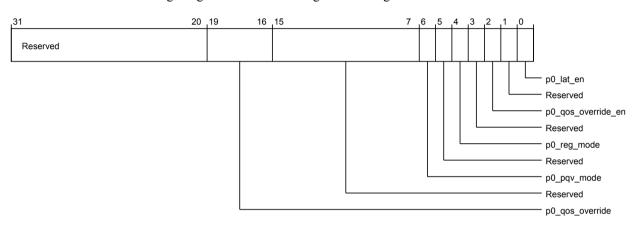


Figure 3-421 por_mxp_por_mxp_p0_qos_control (low)

The following table shows the por_mxp_p0_qos_control lower register bit assignments.

Table 3-435 por_mxp_por_mxp_p0_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:20	Reserved	Reserved	RO	-
19:16	p0_qos_override	QoS override value for port 0	RW	4'b0000
15:7	Reserved	Reserved	RO	-
6	p0_pqv_mode	Configures the QoS regulator mode during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle	RW	1'b0
5	Reserved	Reserved	RO	-
4	p0_reg_mode	Configures the QoS regulator mode 1'b0: Latency mode 1'b1: Period mode; used for bandwidth regulation	RW	1'b0
3	Reserved	Reserved	RO	-

Table 3-435 por_mxp_por_mxp_p0_qos_control (low) (continued)

Bits	Field name	Description	Туре	Reset
2	p0_qos_override_en	Enables port 0 QoS override; when set, allows QoS value on inbound transactions to be overridden	RW	1'b0
1	Reserved	Reserved	RO	-
0	p0_lat_en	Enables port 0 QoS regulation when set	RW	1'b0

por_mxp_p0_qos_lat_tgt

Controls QoS target latency/period (in cycles) for regulation of devices connected to port 0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA88

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-422 por_mxp_por_mxp_p0_qos_lat_tgt (high)

The following table shows the por_mxp_p0_qos_lat_tgt higher register bit assignments.

Table 3-436 por_mxp_por_mxp_p0_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-423 por_mxp_por_mxp_p0_qos_lat_tgt (low)

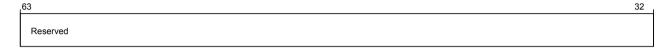
The following table shows the por_mxp_p0_qos_lat_tgt lower register bit assignments.

Table 3-437 por_mxp_por_mxp_p0_qos_lat_tgt (low)

Bit	Field name	Description	Туре	Reset
31:	2 Reserved	Reserved	RO	-
11:	p0_lat_tgt	Port 0 transaction target latency/period; a value of 0 corresponds to no regulation	RW	12'h000

por_mxp_p0_qos_lat_scale

Controls the QoS target scale factor for devices connected to port 0. The scale factor is represented in powers of two from the range 2^{-1} 0 to 2^{-1} 0.


Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14th 4

Address offset 14'hA90 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-424 por_mxp_por_mxp_p0_qos_lat_scale (high)

The following table shows the por mxp p0 qos lat scale higher register bit assignments.

Table 3-438 por_mxp_por_mxp_p0_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-425 por_mxp_por_mxp_p0_qos_lat_scale (low)

The following table shows the por_mxp_p0_qos_lat_scale lower register bit assignments.

Table 3-439 por_mxp_por_mxp_p0_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2:0	p0_lat_scale	Port 0 QoS scale factor	RW	3'h0
		3'b000: 2^(-3)		
		3'b001: 2^(-4)		
		3'b010: 2^(-5)		
		3'b011: 2^(-6)		
		3'b100: 2^(-7)		
		3'b101: 2^(-8)		
		3'b110: 2^(-9)		
		3'b111: 2^(-10)		

por_mxp_p0_qos_lat_range

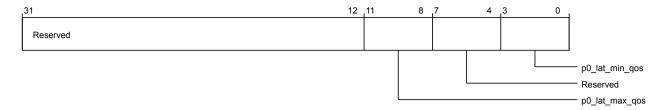
Controls the minimum and maximum QoS values generated by the QoS regulator for devices connected to port 0.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hA98Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.


Figure 3-426 por_mxp_por_mxp_p0_qos_lat_range (high)

The following table shows the por_mxp_p0_qos_lat_range higher register bit assignments.

Table 3-440 por_mxp_por_mxp_p0_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-427 por_mxp_por_mxp_p0_qos_lat_range (low)

The following table shows the por_mxp_p0_qos_lat_range lower register bit assignments.

Table 3-441 por_mxp_por_mxp_p0_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:8	p0_lat_max_qos	Port 0 QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	p0_lat_min_qos	Port 0 QoS minimum value	RW	4'h0

por_mxp_p1_qos_control

Controls QoS settings for devices connected to port 1.

Its characteristics are:

Type RW Register width (Bits) 64 Address offset 14'h.

Address offset14'hAA0Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-428 por_mxp_por_mxp_p1_qos_control (high)

The following table shows the por_mxp_p1_qos_control higher register bit assignments.

Table 3-442 por_mxp_por_mxp_p1_qos_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

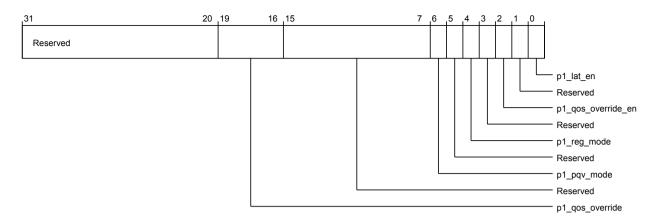


Figure 3-429 por_mxp_por_mxp_p1_qos_control (low)

The following table shows the por_mxp_p1_qos_control lower register bit assignments.

Table 3-443 por_mxp_por_mxp_p1_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:20	Reserved	Reserved	RO	-
19:16	p1_qos_override	QoS override value for port 1	RW	4'b0000
15:7	Reserved	Reserved	RO	-
6	p1_pqv_mode	Configures the QoS regulator mode during period mode	RW	1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
5	Reserved	Reserved	RO	-
4	p1_reg_mode	Configures the QoS regulator mode	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
3	Reserved	Reserved	RO	-
2	p1_qos_override_en	Enables port 1 QoS override; when set, allows QoS value on inbound transactions to be overridden	RW	1'b0
1	Reserved	Reserved	RO	-
0	p1_lat_en	Enables port 1 QoS regulation when set	RW	1'b0

por_mxp_p1_qos_lat_tgt

Controls QoS target latency/period (in cycles) for regulation of devices connected to port 1.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAA8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-430 por_mxp_por_mxp_p1_qos_lat_tgt (high)

The following table shows the por mxp p1 qos lat tgt higher register bit assignments.

Table 3-444 por_mxp_por_mxp_p1_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-431 por_mxp_por_mxp_p1_qos_lat_tgt (low)

The following table shows the por mxp p1 qos lat tgt lower register bit assignments.

Table 3-445 por_mxp_por_mxp_p1_qos_lat_tgt (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:0	p1_lat_tgt	Port 1 transaction target latency/period; a value of 0 corresponds to no regulation	RW	12'h000

por_mxp_p1_qos_lat_scale

Controls the QoS target scale factor for devices connected to port 1. The scale factor is represented in powers of two from the range 2^{-1} 0 to 2^{-1} 0.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hAB0Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-432 por_mxp_por_mxp_p1_qos_lat_scale (high)

The following table shows the por mxp p1 qos lat scale higher register bit assignments.

Table 3-446 por_mxp_por_mxp_p1_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

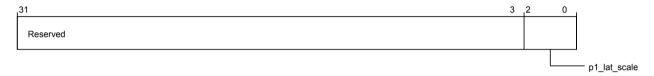


Figure 3-433 por_mxp_por_mxp_p1_qos_lat_scale (low)

The following table shows the por mxp p1 qos lat scale lower register bit assignments.

Table 3-447 por_mxp_por_mxp_p1_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2:0	p1_lat_scale	Port 1 QoS scale factor	RW	3'h0
		3'b000: 2^(-3)		
		3'b001: 2^(-4)		
		3'b010: 2^(-5)		
		3'b011: 2^(-6)		
		3'b100: 2^(-7)		
		3'b101: 2^(-8)		
		3'b110: 2^(-9)		
		3'b111: 2^(-10)		

por_mxp_p1_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS regulator for devices connected to port 1.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAB8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-434 por_mxp_por_mxp_p1_qos_lat_range (high)

The following table shows the por_mxp_p1_qos_lat_range higher register bit assignments.

Table 3-448 por_mxp_por_mxp_p1_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

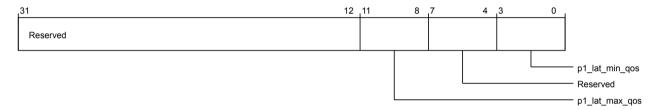


Figure 3-435 por_mxp_por_mxp_p1_qos_lat_range (low)

The following table shows the por mxp p1 qos lat range lower register bit assignments.

Table 3-449 por_mxp_por_mxp_p1_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:8	p1_lat_max_qos	Port 1 QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	p1_lat_min_qos	Port 1 QoS minimum value	RW	4'h0

por_mxp_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2000
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-436 por_mxp_por_mxp_pmu_event_sel (high)

The following table shows the por_mxp_pmu_event_sel higher register bit assignments.

Table 3-450 por_mxp_por_mxp_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

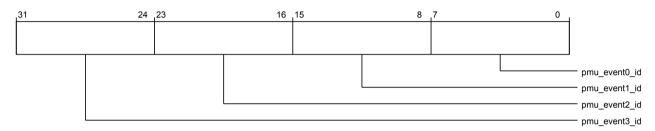


Figure 3-437 por_mxp_por_mxp_pmu_event_sel (low)

The following table shows the por_mxp_pmu_event_sel lower register bit assignments.

Table 3-451 por_mxp_por_mxp_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:24	pmu_event3_id	XP PMU Event 3 ID; see pmu_event0_id for encodings	RW	8'b0
23:16	pmu_event2_id	XP PMU Event 2 ID; see pmu_event0_id for encodings	RW	8'b0

Table 3-451 por_mxp_por_mxp_pmu_event_sel (low) (continued)

Bits	Field name	Description	Туре	Reset
15:8	pmu_event1_id	XP PMU Event 1 ID; see pmu_event0_id for encodings	RW	8'b0
7:0	pmu_event0_id	XP PMU Event 0 ID	RW	8'b0
		Bits [7:5]: PC		
		3'b000: REQ		
		3'b001: RSP		
		3'b010: SNP		
		3'b011: DAT		
		Bits [4:2]: Interface		
		3'b000: East		
		3'b001: West		
		3'b010: North		
		3'b011: South		
		3'b100: Device port 0		
		3'b101: Device port 1		
		Bits [1:0]: Event specifier		
		2'b00: No event		
		2'b01: TX flit valid; signaled when a flit is successfully transmitted		
		2'b10: TX flit stall; signaled when flit transmission is stalled and waiting on credits		
		2'b11: Partial DAT flit; signaled when 128-bit DAT flits could not be merged into a 256-bit DAT flit; only applicable on the DAT PC on RN-F CHIA and RN-F CHIA ESAM ports		

por_mxp_errfr

Functions as the error feature register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3000

Register reset 64'b0000010100101

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-438 por_mxp_por_mxp_errfr (high)

The following table shows the por_mxp_errfr higher register bit assignments.

Table 3-452 por_mxp_por_mxp_errfr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

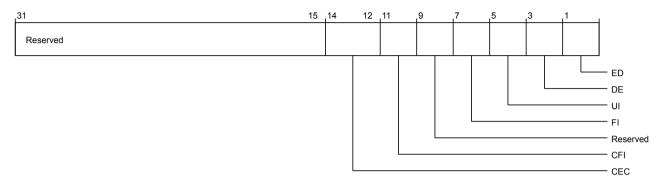


Figure 3-439 por_mxp_por_mxp_errfr (low)

The following table shows the por mxp errfr lower register bit assignments.

Table 3-453 por_mxp_por_mxp_errfr (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism	RO	3'b000
		3'b000: Does not implement standardized error counter model		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors for data poison	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_mxp_errctlr

Functions as the error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3008
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-440 por_mxp_por_mxp_errctlr (high)

The following table shows the por mxp errctlr higher register bit assignments.

Table 3-454 por_mxp_por_mxp_errctlr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

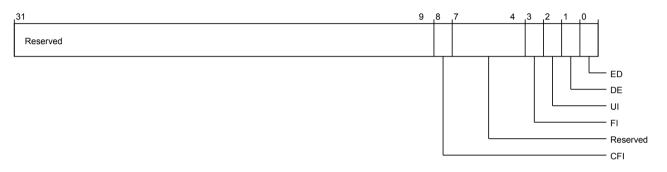


Figure 3-441 por_mxp_por_mxp_errctlr (low)

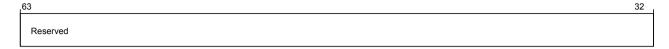
The following table shows the por mxp errctlr lower register bit assignments.

Table 3-455 por_mxp_por_mxp_errctlr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_mxp_errfr.CFI	RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_mxp_errfr.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_mxp_errfr.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_mxp_errfr.DE	RW	1'b0
0	ED	Enables error detection as specified in por_mxp_errfr.ED	RW	1'b0

por_mxp_errstatus

Functions as the error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.


Its characteristics are:

Type W1C
Register width (Bits) 64
Address offset 14'h3010

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-442 por_mxp_por_mxp_errstatus (high)

The following table shows the por mxp errstatus higher register bit assignments.

Table 3-456 por_mxp_por_mxp_errstatus (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

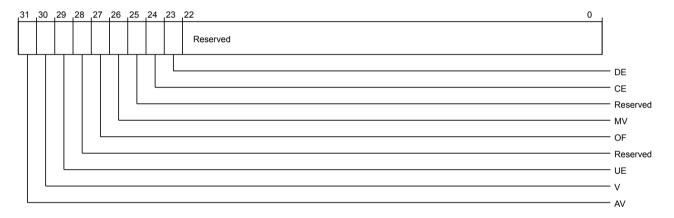


Figure 3-443 por_mxp_por_mxp_errstatus (low)

The following table shows the por_mxp_errstatus lower register bit assignments.

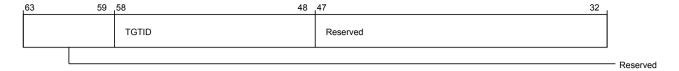
Table 3-457 por_mxp_por_mxp_errstatus (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid		
		1'b0: Address is not valid		
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		

Table 3-457 por_mxp_por_mxp_errstatus (low) (continued)

Bits	Field name	Description	Туре	Reset
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_mxp_errmisc valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Miscellaneous registers are valid		
		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-
24	СЕ	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one transient corrected error recorded		
		1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error is not corrected and is deferred		
		1'b0: No errors deferred		
22:0	Reserved	Reserved	RO	-

por_mxp_errmisc


Functions as the miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3028
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-444 por_mxp_por_mxp_errmisc (high)

The following table shows the por mxp errmisc higher register bit assignments.

Table 3-458 por_mxp_por_mxp_errmisc (high)

Bits	Field name	Description	Туре	Reset
63:59	Reserved	Reserved	RO	-
58:48	TGTID	Error flit target ID	RW	11'b0
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

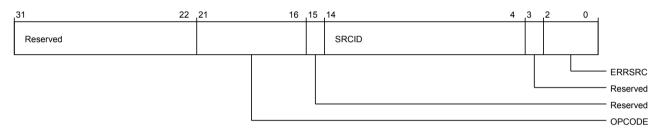


Figure 3-445 por_mxp_por_mxp_errmisc (low)

The following table shows the por_mxp_errmisc lower register bit assignments.

Table 3-459 por_mxp_por_mxp_errmisc (low)

Bits	Field name	Description	Туре	Reset
31:22	Reserved	Reserved	RO	-
21:16	OPCODE	Error flit opcode	RW	6'b0
15	Reserved	Reserved	RO	-
14:4	SRCID	Error flit source ID	RW	11'b0

Table 3-459 por_mxp_por_mxp_errmisc (low) (continued)

Bits	Field name	Description	Туре	Reset
3	Reserved	Reserved	RO	-
2:0	ERRSRC	Error source	RW	3'b0
		Bits [2:1]: Transaction type		
		2'b00: REQ		
		2'b01: RSP		
		2'b10: SNP		
		2'b11: DAT		
		Bit [0]: Port		
		1'b0: Port 0		
		1'b1: Port 1		

por_mxp_p0_byte_par_err_inj

Functions as the byte parity error injection register for XP port 0.

Its characteristics are:

Type WO Register width (Bits) 64

Address offset 14'h3030 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-446 por_mxp_por_mxp_p0_byte_par_err_inj (high)

The following table shows the por_mxp_p0_byte_par_err_inj higher register bit assignments.

Table 3-460 por_mxp_por_mxp_p0_byte_par_err_inj (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

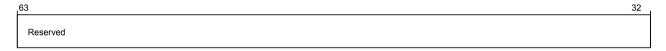
Figure 3-447 por_mxp_por_mxp_p0_byte_par_err_inj (low)

The following table shows the por mxp p0 byte par err inj lower register bit assignments.

Table 3-461 por_mxp_por_mxp_p0_byte_par_err_inj (low)

Bits	Field name	Description	Туре	Reset
31:5	Reserved	Reserved	RO	-
4:0	p0_byte_parity_err_inj	Specifies a byte lane; once this register is written, a byte parity error is injected in the specified byte lane on the next DAT flit upload	WO	5'h00
		NOTE: Only applicable if an RN-F is attached to port 0. Byte parity error is only injected if the RN-F is configured to not support Datacheck.		

por_mxp_p1_byte_par_err_inj


Functions as the byte parity error injection register for XP port 1.

Its characteristics are:

Type WO
Register width (Bits) 64
Address offset 14'h3038
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-448 por_mxp_por_mxp_p1_byte_par_err_inj (high)

The following table shows the por mxp p1 byte par err inj higher register bit assignments.

Table 3-462 por_mxp_por_mxp_p1_byte_par_err_inj (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

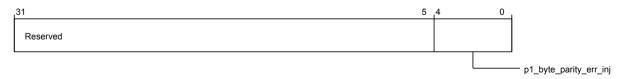


Figure 3-449 por_mxp_por_mxp_p1_byte_par_err_inj (low)

The following table shows the por mxp p1 byte par err inj lower register bit assignments.

Table 3-463 por_mxp_por_mxp_p1_byte_par_err_inj (low)

Bits	Field name	Description	Туре	Reset
31:5	Reserved	Reserved	RO	-
4:0	p1_byte_parity_err_inj	Specifies a byte lane; once this register is written, a byte parity error is injected in the specified byte lane on the next DAT flit upload	WO	5'h00
		NOTE: Only applicable if an RN-F is attached to port 0. Byte parity error is only injected if the RN-F is configured to not support Datacheck.		

por_mxp_errfr_NS

Functions as the non-secure error feature register.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h3100

Register reset 64'b0000010100101

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-450 por_mxp_por_mxp_errfr_ns (high)

The following table shows the por mxp errfr NS higher register bit assignments.

Table 3-464 por mxp por mxp errfr ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

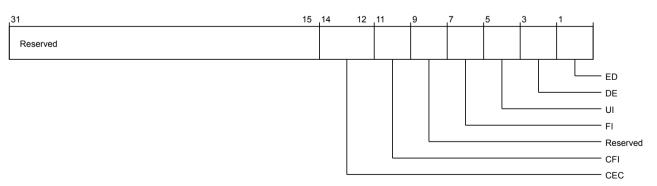


Figure 3-451 por_mxp_por_mxp_errfr_ns (low)

The following table shows the por mxp errfr NS lower register bit assignments.

Table 3-465 por_mxp_por_mxp_errfr_ns (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	standard corrected error count mechanism		3'b000
		3'b000: Does not implement standardized error counter model		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors for data poison	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_mxp_errctlr_NS

Functions as the non-secure error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3108
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-452 por_mxp_por_mxp_errctlr_ns (high)

The following table shows the por_mxp_errctlr_NS higher register bit assignments.

Table 3-466 por_mxp_por_mxp_errctlr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

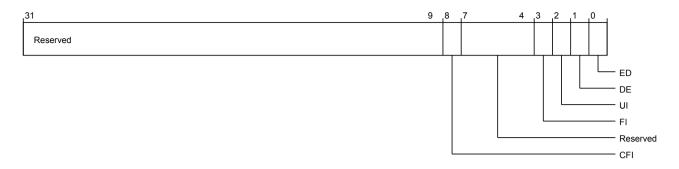


Figure 3-453 por_mxp_por_mxp_errctlr_ns (low)

The following table shows the por_mxp_errctlr_NS lower register bit assignments.

Table 3-467 por_mxp_por_mxp_errctlr_ns (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_mxp_errfr_NS.CFI	RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_mxp_errfr_NS.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_mxp_errfr_NS.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_mxp_errfr_NS.DE	RW	1'b0
0	ED	Enables error detection as specified in por_mxp_errfr_NS.ED	RW	1'b0

por_mxp_errstatus_NS

Functions as the non-secure error status register.

Its characteristics are:

Type W1C
Register width (Bits) 64
Address offset 14'h3110
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-454 por_mxp_por_mxp_errstatus_ns (high)

The following table shows the por mxp errstatus NS higher register bit assignments.

Table 3-468 por_mxp_por_mxp_errstatus_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

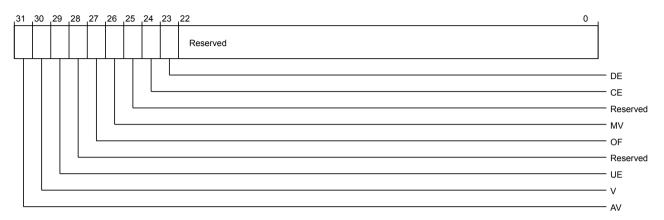


Figure 3-455 por_mxp_por_mxp_errstatus_ns (low)

The following table shows the por_mxp_errstatus_NS lower register bit assignments.

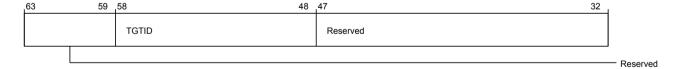
Table 3-469 por_mxp_por_mxp_errstatus_ns (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear 1'b1: Address is valid 1'b0: Address is not valid	W1C	1'b0
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error recorded; register is valid		1'b0
		1'b0: No errors recorded		
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		

Table 3-469 por_mxp_por_mxp_errstatus_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
26	MV	por_mxp_errmisc_NS valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear 1'b1: Miscellaneous registers are valid 1'b0: Miscellaneous registers are not valid	W1C	1'b0
25	Reserved	Reserved	RO	-
24	CE	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one transient corrected error recorded 1'b0: No corrected errors recorded	W1C	1'b0
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error is not corrected and is deferred 1'b0: No errors deferred	W1C	1'b0
22:0	Reserved	Reserved	RO	-

por_mxp_errmisc_NS


Functions as the non-secure miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h3128Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-456 por_mxp_por_mxp_errmisc_ns (high)

The following table shows the por_mxp_errmisc_NS higher register bit assignments.

Table 3-470 por_mxp_por_mxp_errmisc_ns (high)

Bits	Field name	Description	Туре	Reset
63:59	Reserved	Reserved	RO	-
58:48	TGTID	Error flit target ID	RW	11'b0
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

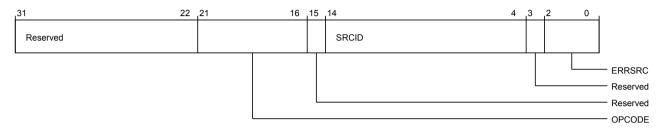


Figure 3-457 por_mxp_por_mxp_errmisc_ns (low)

The following table shows the por mxp errmisc NS lower register bit assignments.

Table 3-471 por_mxp_por_mxp_errmisc_ns (low)

Bits	Field name	Description	Туре	Reset
31:22	Reserved	Reserved	RO	-
21:16	OPCODE	Error flit opcode	RW	6'b0
15	Reserved	Reserved	RO	-
14:4	SRCID	Error flit source ID	RW	11'b0
3	Reserved	Reserved	RO	-
2:0	ERRSRC	Error source	RW	3'b0
		Bits [2:1]: Transaction type		
		2'b00: REQ		
		2'b01: RSP		
		2'b10: SNP		
		2'b11: DAT		
		Bit [0]: Port		
		1'b0: Port 0		
		1'b1: Port 1		

por_mxp_p0_syscoreq_ctl

Functions as the port 0 snoop and DVM domain control register. Provides a software alternative to hardware SYSCOREQ/SYSCOACK handshake. Works with por_mxp_p0_syscoack_status. NOTE: Only valid on RN-F ports.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h1000 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-458 por_mxp_por_mxp_p0_syscoreq_ctl (high)

The following table shows the por mxp p0 syscoreq ctl higher register bit assignments.

Table 3-472 por_mxp_por_mxp_p0_syscoreq_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

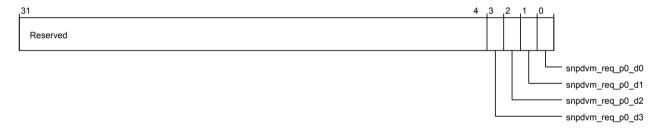


Figure 3-459 por_mxp_por_mxp_p0_syscoreq_ctl (low)

The following table shows the por_mxp_p0_syscoreq_ctl lower register bit assignments.

Table 3-473 por_mxp_por_mxp_p0_syscoreq_ctl (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	snpdvm_req_p0_d3	hpdvm_req_p0_d3 When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 3 on port 0		1'b0
2	snpdvm_req_p0_d2 When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 2 on port 0		RW	1'b0
1	snpdvm_req_p0_d1 When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 1 on port 0		RW	1'b0
0	snpdvm_req_p0_d0	When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 0 on port 0	RW	1'b0

por_mxp_p1_syscoreq_ctl

Functions as the port 1 snoop and DVM domain control register. Provides a software alternative to hardware SYSCOREQ/SYSCOACK handshake. Works with por_mxp_p1_syscoack_status. NOTE: Only valid on RN-F ports.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h1008
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-460 por_mxp_por_mxp_p1_syscoreq_ctl (high)

The following table shows the por mxp p1 syscoreq ctl higher register bit assignments.

Table 3-474 por_mxp_por_mxp_p1_syscoreq_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-461 por_mxp_por_mxp_p1_syscoreq_ctl (low)

The following table shows the por_mxp_p1_syscoreq_ctl lower register bit assignments.

Table 3-475 por_mxp_por_mxp_p1_syscoreq_ctl (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	snpdvm_req_p1_d3	When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 3 on port 1	RW	1'b0
2	snpdvm_req_p1_d2	When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 2 on port 1	RW	1'b0

Table 3-475 por_mxp_por_mxp_p1_syscoreq_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
1	snpdvm_req_p1_d1	When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 1 on port 1	RW	1'b0
0		When set, initiates the process of enabling snoop and DVM dispatches (SYSCOREQ) to device 0 on port 1	RW	1'b0

por_mxp_p0_syscoack_status

Functions as the port 0 snoop and DVM domain status register. Provides a software alternative to hardware SYSCOREQ/SYSCOACK handshake. Works with por_mxp_p0_syscoreq_ctl. NOTE: Only valid on RN-F ports.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h1010

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-462 por_mxp_por_mxp_p0_syscoack_status (high)

The following table shows the por_mxp_p0_syscoack_status higher register bit assignments.

Table 3-476 por_mxp_por_mxp_p0_syscoack_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-463 por_mxp_por_mxp_p0_syscoack_status (low)

The following table shows the por mxp p0 syscoack status lower register bit assignments.

Table 3-477 por_mxp_por_mxp_p0_syscoack_status (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	snpdvm_ack_p0_d3	O_d3 When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 3 on port 0		1'b0
2	snpdvm_ack_p0_d2	nen set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 2 port 0		1'b0
1	snpdvm_ack_p0_d1	When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 1 on port 0		1'b0
0	snpdvm_ack_p0_d0	When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 0 on port 0	RO	1'b0

por_mxp_p1_syscoack_status

Functions as the port 1 snoop and DVM domain status register. Provides a software alternative to hardware SYSCOREQ/SYSCOACK handshake. Works with por_mxp_p1_syscoreq_ctl. NOTE: Only valid on RN-F ports.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h1018
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-464 por_mxp_por_mxp_p1_syscoack_status (high)

The following table shows the por _mxp_p1_syscoack_status higher register bit assignments.

Table 3-478 por mxp por mxp p1 syscoack status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

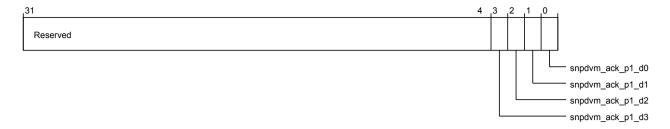


Figure 3-465 por_mxp_por_mxp_p1_syscoack_status (low)

The following table shows the por_mxp_p1_syscoack_status lower register bit assignments.

Table 3-479 por_mxp_por_mxp_p1_syscoack_status (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	snpdvm_ack_p1_d3 When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 3 on port 1		RO	1'b0
2	snpdvm_ack_p1_d2 When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 2 on port 1		RO	1'b0
1	snpdvm_ack_p1_d1 When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 1 on port 1		RO	1'b0
0	snpdvm_ack_p1_d0	When set, indicates snoop and DVM dispatches are enabled (SYSCOACK) for device 0 on port 1	RO	1'b0

por_dtm_control

Functions as the DTM control register.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2100 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-466 por_mxp_por_dtm_control (high)

The following table shows the por_dtm_control higher register bit assignments.

Table 3-480 por_mxp_por_dtm_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

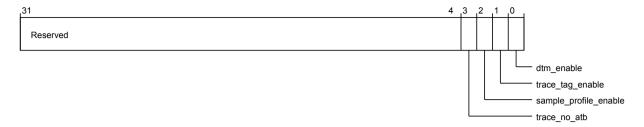


Figure 3-467 por_mxp_por_dtm_control (low)

The following table shows the por_dtm_control lower register bit assignments.

Table 3-481 por_mxp_por_dtm_control (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	trace_no_atb When set, trace packet is not delivered out of ATB, and FIFO entry holds the first trace packet		RW	1'b0
2	sample_profile_enable Enables sample profile function		RW	1'b0
1	trace_tag_enable	Watchpoint trace tag enable		1'b0
		1'b1: Trace tag enabled		
		1'b0: No trace tag		
0	dtm_enable	Enables debug watchpoint and PMU function; prior to writing this bit, all other DT configuration registers must be programmed; once this bit is set, other DT configuration registers must not be modified	RW	1'b0

por_dtm_fifo_entry_ready

Controls status of DTM FIFO entries.

Its characteristics are:

TypeW1CRegister width (Bits)64Address offset14'h2118Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-468 por_mxp_por_dtm_fifo_entry_ready (high)

The following table shows the por_dtm_fifo_entry_ready higher register bit assignments.

Table 3-482 por_mxp_por_dtm_fifo_entry_ready (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

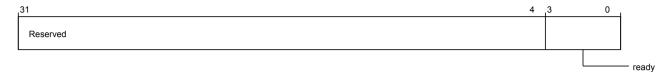


Figure 3-469 por_mxp_por_dtm_fifo_entry_ready (low)

The following table shows the por_dtm_fifo_entry_ready lower register bit assignments.

Table 3-483 por_mxp_por_dtm_fifo_entry_ready (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3:0	ready	Indicates which DTM FIFO entries are ready; write a 1 to clear V		4'b0
		Bit [3]: Entry 3 ready when set		
		Bit [2]: Entry 2 ready when set		
		Bit [1]: Entry 1 ready when set		
		Bit [0]: Entry 0 ready when set		

por_dtm_fifo_entry0_0

Contains DTM FIFO entry 0 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2120 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-470 por_mxp_por_dtm_fifo_entry0_0 (high)

The following table shows the por dtm fifo entry0 0 higher register bit assignments.

Table 3-484 por_mxp_por_dtm_fifo_entry0_0 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data0	Entry data bit vector 63:0	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-471 por_mxp_por_dtm_fifo_entry0_0 (low)

The following table shows the por_dtm_fifo_entry0_0 lower register bit assignments.

Table 3-485 por_mxp_por_dtm_fifo_entry0_0 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data0	Entry data bit vector 63:0	RO	64'b0

por_dtm_fifo_entry0_1

Contains DTM FIFO entry 0 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2128 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-472 por_mxp_por_dtm_fifo_entry0_1 (high)

The following table shows the por_dtm_fifo_entry0_1 higher register bit assignments.

Table 3-486 por_mxp_por_dtm_fifo_entry0_1 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data1	Entry data bit vector 127:64	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-473 por_mxp_por_dtm_fifo_entry0_1 (low)

The following table shows the por dtm fifo entry0 1 lower register bit assignments.

Table 3-487 por_mxp_por_dtm_fifo_entry0_1 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data1	Entry data bit vector 127:64	RO	64'b0

por_dtm_fifo_entry0_2

Contains DTM FIFO entry 0 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2130 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-474 por_mxp_por_dtm_fifo_entry0_2 (high)

The following table shows the por_dtm_fifo_entry0_2 higher register bit assignments.

Table 3-488 por_mxp_por_dtm_fifo_entry0_2 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

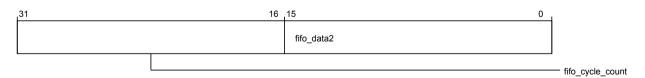


Figure 3-475 por_mxp_por_dtm_fifo_entry0_2 (low)

The following table shows the por dtm fifo entry0 2 lower register bit assignments.

Table 3-489 por_mxp_por_dtm_fifo_entry0_2 (low)

Bits	Field name	Description	Туре	Reset
31:16	fifo_cycle_count	Entry cycle count bit vector 15:0	RO	16'b0
15:0	fifo_data2	Entry data bit vector 143:128	RO	16'b0

por_dtm_fifo_entry1_0

Contains DTM FIFO entry 1 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2138 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-476 por_mxp_por_dtm_fifo_entry1_0 (high)

The following table shows the por dtm fifo entry 1 0 higher register bit assignments.

Table 3-490 por_mxp_por_dtm_fifo_entry1_0 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data0	Entry data bit vector 63:0	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-477 por_mxp_por_dtm_fifo_entry1_0 (low)

The following table shows the por dtm fifo entry 1 0 lower register bit assignments.

Table 3-491 por_mxp_por_dtm_fifo_entry1_0 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data0	Entry data bit vector 63:0	RO	64'b0

por_dtm_fifo_entry1_1

Contains DTM FIFO entry 1 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2140 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-478 por_mxp_por_dtm_fifo_entry1_1 (high)

The following table shows the por_dtm_fifo_entry1_1 higher register bit assignments.

Table 3-492 por_mxp_por_dtm_fifo_entry1_1 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data1	Entry data bit vector 127:64	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-479 por_mxp_por_dtm_fifo_entry1_1 (low)

The following table shows the por_dtm_fifo_entry1_1 lower register bit assignments.

Table 3-493 por_mxp_por_dtm_fifo_entry1_1 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data1	Entry data bit vector 127:64	RO	64'b0

por_dtm_fifo_entry1_2

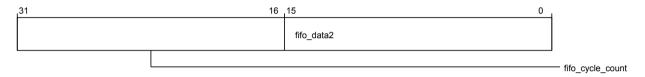
Contains DTM FIFO entry 1 data.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h2148
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-480 por_mxp_por_dtm_fifo_entry1_2 (high)

The following table shows the por dtm fifo entry 1 2 higher register bit assignments.

Table 3-494 por_mxp_por_dtm_fifo_entry1_2 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	1

The following image shows the lower register bit assignments.

Figure 3-481 por_mxp_por_dtm_fifo_entry1_2 (low)

The following table shows the por dtm fifo entry1 2 lower register bit assignments.

Table 3-495 por_mxp_por_dtm_fifo_entry1_2 (low)

Bits	Field name	Description	Туре	Reset
31:16	fifo_cycle_count	Entry cycle count bit vector 15:0	RO	16'b0
15:0	fifo_data2	Entry data bit vector 143:128	RO	16'b0

por_dtm_fifo_entry2_0

Contains DTM FIFO entry 2 data.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h2150
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-482 por_mxp_por_dtm_fifo_entry2_0 (high)

The following table shows the por dtm fifo entry2 0 higher register bit assignments.

Table 3-496 por_mxp_por_dtm_fifo_entry2_0 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data0	Entry data bit vector 63:0	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-483 por_mxp_por_dtm_fifo_entry2_0 (low)

The following table shows the por_dtm_fifo_entry2_0 lower register bit assignments.

Table 3-497 por_mxp_por_dtm_fifo_entry2_0 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data0	Entry data bit vector 63:0	RO	64'b0

por_dtm_fifo_entry2_1

Contains DTM FIFO entry 2 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2158 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-484 por_mxp_por_dtm_fifo_entry2_1 (high)

The following table shows the por_dtm_fifo_entry2_1 higher register bit assignments.

Table 3-498 por_mxp_por_dtm_fifo_entry2_1 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data1	Entry data bit vector 127:64	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-485 por_mxp_por_dtm_fifo_entry2_1 (low)

The following table shows the por dtm fifo entry2 1 lower register bit assignments.

Table 3-499 por_mxp_por_dtm_fifo_entry2_1 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data1	Entry data bit vector 127:64	RO	64'b0

por_dtm_fifo_entry2_2

Contains DTM FIFO entry 2 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2160 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-486 por_mxp_por_dtm_fifo_entry2_2 (high)

The following table shows the por_dtm_fifo_entry2_2 higher register bit assignments.

Table 3-500 por_mxp_por_dtm_fifo_entry2_2 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

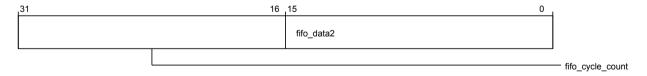


Figure 3-487 por_mxp_por_dtm_fifo_entry2_2 (low)

The following table shows the por dtm fifo entry2 2 lower register bit assignments.

Table 3-501 por_mxp_por_dtm_fifo_entry2_2 (low)

Bits	Field name	Description	Туре	Reset
31:16	fifo_cycle_count	Entry cycle count bit vector 15:0	RO	16'b0
15:0	fifo_data2	Entry data bit vector 143:128	RO	16'b0

por_dtm_fifo_entry3_0

Contains DTM FIFO entry 3 data.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2168 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-488 por_mxp_por_dtm_fifo_entry3_0 (high)

The following table shows the por dtm fifo entry 30 higher register bit assignments.

Table 3-502 por_mxp_por_dtm_fifo_entry3_0 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data0	Entry data bit vector 63:0	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-489 por_mxp_por_dtm_fifo_entry3_0 (low)

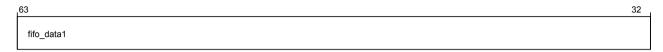
The following table shows the por dtm fifo entry3 0 lower register bit assignments.

Table 3-503 por_mxp_por_dtm_fifo_entry3_0 (low)

Bits	Field name	Description	Туре	Reset	
31:0	fifo_data0	Entry data bit vector 63:0	RO	64'b0	

por_dtm_fifo_entry3_1

Contains DTM FIFO entry 3 data.


Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h2170 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-490 por_mxp_por_dtm_fifo_entry3_1 (high)

The following table shows the por_dtm_fifo_entry3_1 higher register bit assignments.

Table 3-504 por_mxp_por_dtm_fifo_entry3_1 (high)

Bits	Field name	Description	Туре	Reset
63:32	fifo_data1	Entry data bit vector 127:64	RO	64'b0

The following image shows the lower register bit assignments.

Figure 3-491 por_mxp_por_dtm_fifo_entry3_1 (low)

The following table shows the por_dtm_fifo_entry3_1 lower register bit assignments.

Table 3-505 por_mxp_por_dtm_fifo_entry3_1 (low)

Bits	Field name	Description	Туре	Reset
31:0	fifo_data1	Entry data bit vector 127:64	RO	64'b0

por_dtm_fifo_entry3_2

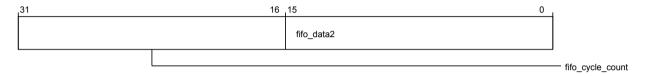
Contains DTM FIFO entry 3 data.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h2178
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-492 por_mxp_por_dtm_fifo_entry3_2 (high)

The following table shows the por dtm fifo entry3 2 higher register bit assignments.

Table 3-506 por_mxp_por_dtm_fifo_entry3_2 (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-493 por_mxp_por_dtm_fifo_entry3_2 (low)

The following table shows the por dtm fifo entry3 2 lower register bit assignments.

Table 3-507 por_mxp_por_dtm_fifo_entry3_2 (low)

Bits	Field name	Description	Туре	Reset
31:16 fifo_cycle_count		Entry cycle count bit vector 15:0	RO	16'b0
15:0	fifo_data2	Entry data bit vector 143:128	RO	16'b0

por_dtm_wp0_config

Configures watchpoint 0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h21A

Address offset 14'h21A0 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-494 por_mxp_por_dtm_wp0_config (high)

The following table shows the por_dtm_wp0_config higher register bit assignments.

Table 3-508 por_mxp_por_dtm_wp0_config (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

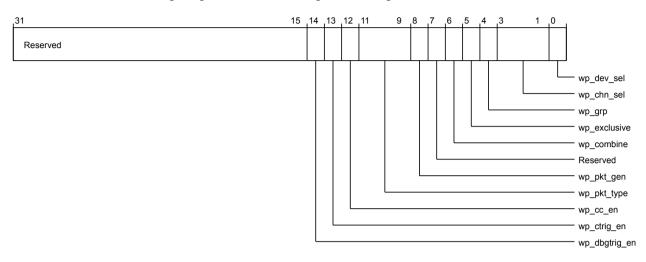


Figure 3-495 por_mxp_por_dtm_wp0_config (low)

The following table shows the por_dtm_wp0_config lower register bit assignments.

Table 3-509 por_mxp_por_dtm_wp0_config (low)

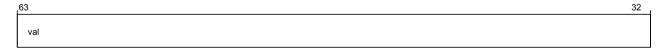
Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14	wp_dbgtrig_en	Enables watchpoint debug trigger packet generation	RW	1'b0
13	wp_ctrig_en	Enables watchpoint cross trigger packet generation	RW	1'b0
12	wp_cc_en	Enables inclusion of cycle count in watchpoint track packet generation	RW	1'b0
11:9	wp_pkt_type	Trace packet type	RW	3'b000
		3'b000: TXNID (up to X18)		
		3'b001: TXNID + opcode (up to X9)		
		3'b010: TXNID + opcode + source ID + target ID (up to X4)		
		3'b011: Reserved		
		3'b100: Control flit		
		3'b101: DATA bit vector 127:0		
		3'b110: DATA bit vector 255:128		
		3'b111: Reserved		
8	wp_pkt_gen	Enables watchpoint trace packet generation	RW	1'b0
7	Reserved	Reserved	RO	-
6	wp_combine	Enables combination of watchpoints 0 and 1	RW	1'b0

Table 3-509 por_mxp_por_dtm_wp0_config (low) (continued)

Bits	Field name	Description	Туре	Reset
5	wp_exclusive	Watchpoint mode	RW	1'b0
		1'b0: Regular mode		
		1'b1: Exclusive mode		
4	wp_grp	_grp Watchpoint register format group		1'b0
		1'b0: Select primary group		
		1'b1: Select secondary group		
3:1	wp_chn_sel	VC selection	RW	3'b000
		3'b000: Select REQ VC		
		3'b001: Select RSP VC		
		3'b010: Select SNP VC		
		3'b011: Select DATA VC		
		NOTE: All other values are reserved.		
0	wp_dev_sel	Device port selection in specified SMXP	RW	1'b0
		1'b0: Select device port 0		
		1'b1: Select device port 1		

por_dtm_wp0_val

Configures watchpoint 0 comparison value.


Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21A8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-496 por_mxp_por_dtm_wp0_val (high)

The following table shows the por_dtm_wp0_val higher register bit assignments.

Table 3-510 por_mxp_por_dtm_wp0_val (high)

Bits	Field name	Description		Reset
63:32	val	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-497 por_mxp_por_dtm_wp0_val (low)

The following table shows the por_dtm_wp0_val lower register bit assignments.

Table 3-511 por_mxp_por_dtm_wp0_val (low)

Bits	Field name	Description	Туре	Reset
31:0	val	Refer to DTM watchpoint section for details		64'b0

por_dtm_wp0_mask

Configures watchpoint 0 comparison mask.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21B0 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-498 por_mxp_por_dtm_wp0_mask (high)

The following table shows the por_dtm_wp0_mask higher register bit assignments.

Table 3-512 por_mxp_por_dtm_wp0_mask (high)

Bits	Field name	Description	Туре	Reset
63:32	mask	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-499 por_mxp_por_dtm_wp0_mask (low)

The following table shows the por_dtm_wp0_mask lower register bit assignments.

Table 3-513 por_mxp_por_dtm_wp0_mask (low)

Bits	Field name	Description	Туре	Reset
31:0	mask	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_wp1_config

Configures watchpoint 1.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21B8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-500 por_mxp_por_dtm_wp1_config (high)

The following table shows the por_dtm_wp1_config higher register bit assignments.

Table 3-514 por_mxp_por_dtm_wp1_config (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

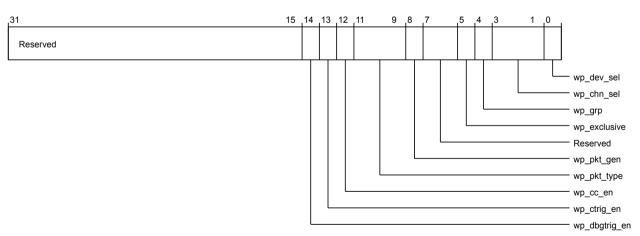


Figure 3-501 por_mxp_por_dtm_wp1_config (low)

The following table shows the por dtm wp1 config lower register bit assignments.

Table 3-515 por_mxp_por_dtm_wp1_config (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14	wp_dbgtrig_en	Enables watchpoint debug trigger packet generation	RW	1'b0
13	wp_ctrig_en	Enables watchpoint cross trigger packet generation	RW	1'b0
12	wp_cc_en	Enables inclusion of cycle count in watchpoint track packet generation	RW	1'b0
11:9	wp_pkt_type	Trace packet type	RW	3'b000
		3'b000: TXNID (up to X18)		
		3'b001: TXNID + opcode (up to X9)		
		3'b010: TXNID + opcode + source ID + target ID (up to X4)		
		3'b011: Reserved		
		3'b100: Control flit		
	3'b101: DATA bit vector 127:0			
		3'b110: DATA bit vector 255:128		
		3'b111: Reserved		
8	wp_pkt_gen	Enables watchpoint trace packet generation		1'b0
7:6	Reserved	Reserved		-
5	wp_exclusive	Watchpoint mode	RW	1'b0
		1'b0: Regular mode		
		1'b1: Exclusive mode		
4	wp_grp	Watchpoint register format group	RW	1'b0
		1'b0: Select primary group		
		1'b1: Select secondary group		
3:1	wp_chn_sel	VC selection	RW	3'b000
		3'b000: Select REQ VC		
		3'b001: Select RSP VC		
		3'b010: Select SNP VC		
		3'b011: Select DATA VC		
		NOTE: All other values are reserved.		
0	wp_dev_sel	wp_dev_sel Device port selection in specified SMXP		1'b0
		1'b0: Select device port 0		
		1'b1: Select device port 1		
		1'b1: Select device port 1		

por_dtm_wp1_val

Configures watchpoint 1 comparison value.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'h21C0 Register reset 64'b0

There are no usage constraints. **Usage constraints**

The following image shows the higher register bit assignments.

Figure 3-502 por_mxp_por_dtm_wp1_val (high)

The following table shows the por dtm wp1 val higher register bit assignments.

Table 3-516 por_mxp_por_dtm_wp1_val (high)

Bits	Field name	Description	Туре	Reset
63:32	val	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-503 por_mxp_por_dtm_wp1_val (low)

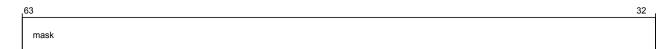
The following table shows the por dtm wpl val lower register bit assignments.

Table 3-517 por_mxp_por_dtm_wp1_val (low)

Bits	Field name	Description	Туре	Reset
31:0	val	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_wp1_mask

Configures watchpoint 1 comparison mask.


Its characteristics are:

Register reset

RW **Type** Register width (Bits) 64 Address offset 14'h21C8

64'b0 **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-504 por_mxp_por_dtm_wp1_mask (high)

The following table shows the por dtm wp1 mask higher register bit assignments.

Table 3-518 por_mxp_por_dtm_wp1_mask (high)

Bits	Field name	Description	Туре	Reset
63:32	mask	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-505 por_mxp_por_dtm_wp1_mask (low)

The following table shows the por_dtm_wp1_mask lower register bit assignments.

Table 3-519 por_mxp_por_dtm_wp1_mask (low)

Bits	Field name	Description		Reset
31:0	mask	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_wp2_config

Configures watchpoint 2.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21D0 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-506 por_mxp_por_dtm_wp2_config (high)

The following table shows the por_dtm_wp2_config higher register bit assignments.

Table 3-520 por_mxp_por_dtm_wp2_config (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

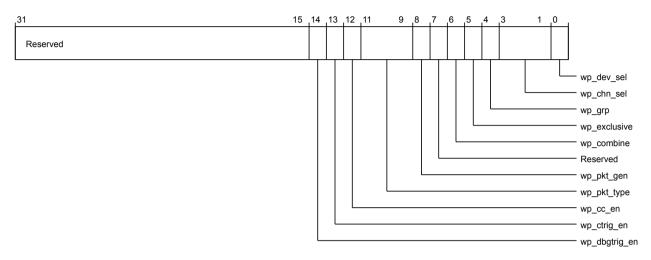


Figure 3-507 por_mxp_por_dtm_wp2_config (low)

The following table shows the por_dtm_wp2_config lower register bit assignments.

Table 3-521 por_mxp_por_dtm_wp2_config (low)

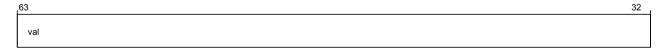
Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14	wp_dbgtrig_en	Enables watchpoint debug trigger packet generation	RW	1'b0
13	wp_ctrig_en	Enables watchpoint cross trigger packet generation	RW	1'b0
12	wp_cc_en	Enables inclusion of cycle count in watchpoint track packet generation	RW	1'b0
11:9	wp_pkt_type	Trace packet type	RW	3'b000
		3'b000: TXNID (up to X18)		
		3'b001: TXNID + opcode (up to X9)		
		3'b010: TXNID + opcode + source ID + target ID (up to X4)		
		3'b011: Reserved		
		3'b100: Control flit		
		3'b101: DATA bit vector 127:0		
		3'b110: DATA bit vector 255:128		
		3'b111: Reserved		
8	wp_pkt_gen	Enables watchpoint trace packet generation	RW	1'b0
7	Reserved	Reserved	RO	-
6	wp_combine	Enables combination of watchpoints 2 and 3	RW	1'b0

Table 3-521 por_mxp_por_dtm_wp2_config (low) (continued)

Bits	Field name	Description	Туре	Reset
5	wp_exclusive	Watchpoint mode	RW	1'b0
		1'b0: Regular mode		
		1'b1: Exclusive mode		
4	wp_grp	Watchpoint register format group	RW	1'b0
		1'b0: Select primary group		
		1'b1: Select secondary group		
3:1	wp_chn_sel	VC selection	RW	3'b000
		3'b000: Select REQ VC		
		3'b001: Select RSP VC		
		3'b010: Select SNP VC		
		3'b011: Select DATA VC		
		NOTE: All other values are reserved.		
0	wp_dev_sel	Device port selection in specified SMXP	RW	1'b0
		1'b0: Select device port 0		
		1'b1: Select device port 1		

por_dtm_wp2_val

Configures watchpoint 2 comparison value.


Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21D8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-508 por_mxp_por_dtm_wp2_val (high)

The following table shows the por_dtm_wp2_val higher register bit assignments.

Table 3-522 por_mxp_por_dtm_wp2_val (high)

I	Bits	Field name	Description	Туре	Reset
	63:32	val	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-509 por_mxp_por_dtm_wp2_val (low)

The following table shows the por dtm wp2 val lower register bit assignments.

Table 3-523 por_mxp_por_dtm_wp2_val (low)

Bits	Field name	Description	Туре	Reset
31:0	val	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_wp2_mask

Configures watchpoint 2 comparison mask.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21E0 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-510 por_mxp_por_dtm_wp2_mask (high)

The following table shows the por dtm wp2 mask higher register bit assignments.

Table 3-524 por_mxp_por_dtm_wp2_mask (high)

Bits	Field name	Description	Туре	Reset
63:32	mask	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-511 por_mxp_por_dtm_wp2_mask (low)

The following table shows the por_dtm_wp2_mask lower register bit assignments.

Table 3-525 por_mxp_por_dtm_wp2_mask (low)

Bits	Field name	Description	Туре	Reset
31:0	mask	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_wp3_config

Configures watchpoint 3.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h21E8 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-512 por_mxp_por_dtm_wp3_config (high)

The following table shows the por_dtm_wp3_config higher register bit assignments.

Table 3-526 por_mxp_por_dtm_wp3_config (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

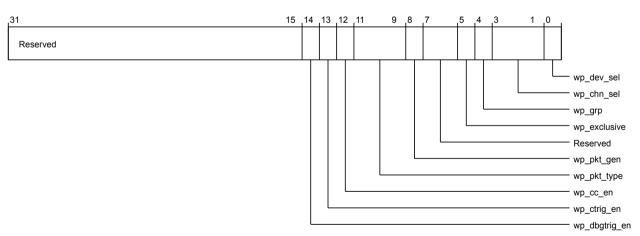


Figure 3-513 por_mxp_por_dtm_wp3_config (low)

The following table shows the por dtm wp3 config lower register bit assignments.

Table 3-527 por_mxp_por_dtm_wp3_config (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14	wp_dbgtrig_en	Enables watchpoint debug trigger packet generation	RW	1'b0
13	wp_ctrig_en	Enables watchpoint cross trigger packet generation	RW	1'b0
12	wp_cc_en	Enables inclusion of cycle count in watchpoint track packet generation	RW	1'b0
11:9	wp_pkt_type	Trace packet type	RW	3'b000
		3'b000: TXNID (up to X18)		
		3'b001: TXNID + opcode (up to X9)		
		3'b010: TXNID + opcode + source ID + target ID (up to X4)		
		3'b011: Reserved		
		3'b100: Control flit		
		3'b101: DATA bit vector 127:0		
		3'b110: DATA bit vector 255:128		
		3'b111: Reserved		
8	wp_pkt_gen	Enables watchpoint trace packet generation	RW	1'b0
7:6	Reserved	Reserved	RO	-
5	wp_exclusive	Watchpoint mode	RW	1'b0
		1'b0: Regular mode		
		1'b1: Exclusive mode		
4	wp_grp	Watchpoint register format group	RW	1'b0
		1'b0: Select primary group		
		1'b1: Select secondary group		
3:1	wp_chn_sel	VC selection	RW	3'b000
		3'b000: Select REQ VC		
		3'b001: Select RSP VC		
		3'b010: Select SNP VC		
		3'b011: Select DATA VC		
		NOTE: All other values are reserved.		
0	wp_dev_sel	Device port selection in specified SMXP	RW	1'b0
		1'b0: Select device port 0		
		1'b1: Select device port 1		
	1	I.	l	

por_dtm_wp3_val

Configures watchpoint 3 comparison value.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'h21F0 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-514 por_mxp_por_dtm_wp3_val (high)

The following table shows the por_dtm_wp3_val higher register bit assignments.

Table 3-528 por_mxp_por_dtm_wp3_val (high)

Bits	Field name	Description	Туре	Reset
63:32	val	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-515 por_mxp_por_dtm_wp3_val (low)

The following table shows the por dtm wp3 val lower register bit assignments.

Table 3-529 por_mxp_por_dtm_wp3_val (low)

Bits	Field name	Description	Туре	Reset
31:0	val	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_wp3_mask

Configures watchpoint 3 comparison mask.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h21F8
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-516 por_mxp_por_dtm_wp3_mask (high)

The following table shows the por dtm wp3 mask higher register bit assignments.

Table 3-530 por_mxp_por_dtm_wp3_mask (high)

Bits	Field name	Description	Туре	Reset
63:32	mask	Refer to DTM watchpoint section for details	RW	64'b0

The following image shows the lower register bit assignments.

Figure 3-517 por_mxp_por_dtm_wp3_mask (low)

The following table shows the por_dtm_wp3_mask lower register bit assignments.

Table 3-531 por_mxp_por_dtm_wp3_mask (low)

Bits	Field name	Description	Туре	Reset
31:0	mask	Refer to DTM watchpoint section for details	RW	64'b0

por_dtm_pmsicr

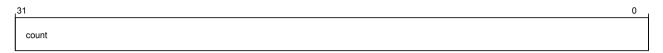
Functions as the sampling interval counter register.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2200
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-518 por_mxp_por_dtm_pmsicr (high)

The following table shows the por_dtm_pmsicr higher register bit assignments.

Table 3-532 por_mxp_por_dtm_pmsicr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-519 por_mxp_por_dtm_pmsicr (low)

The following table shows the por_dtm_pmsicr lower register bit assignments.

Table 3-533 por_mxp_por_dtm_pmsicr (low)

Bits	Field name	Description	Туре	Reset
31:0	count	Current value of sample counter	RW	32'b0

por_dtm_pmsirr

Functions as the sampling interval reload register.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2208 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-520 por_mxp_por_dtm_pmsirr (high)

The following table shows the por_dtm_pmsirr higher register bit assignments.

Table 3-534 por_mxp_por_dtm_pmsirr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

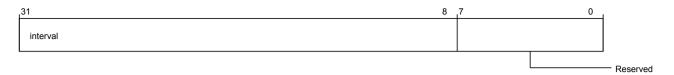


Figure 3-521 por_mxp_por_dtm_pmsirr (low)

The following table shows the por dtm pmsirr lower register bit assignments.

Table 3-535 por_mxp_por_dtm_pmsirr (low)

Bits	Field name	Description	Туре	Reset
31:8	interval	Sampling interval to be reloaded	RW	24'b0
7:0	Reserved	Reserved	RO	-

por_dtm_pmu_config

Configures the DTM PMU.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h2210

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

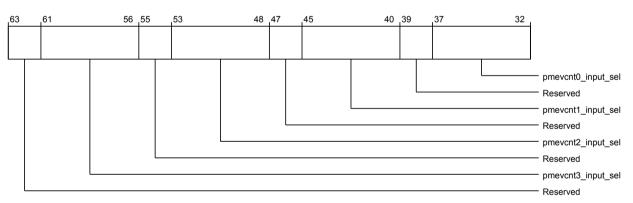


Figure 3-522 por_mxp_por_dtm_pmu_config (high)

The following table shows the por dtm pmu config higher register bit assignments.

Table 3-536 por_mxp_por_dtm_pmu_config (high)

Bits	Field name Description		Туре	Reset
63:62	Reserved Reserved		RO	-
61:56	56 pmevcnt3_input_sel Source to be counted in PMU counter 3; see pmevcnt0_input_sel for encodings		RW	6'b0
55:54	Reserved Reserved		RO	-
53:48	3:48 pmevcnt2_input_sel Source to be counted in PMU counter 2; see pmevcnt0_input_sel for encodings		RW	6'b0

Table 3-536 por_mxp_por_dtm_pmu_config (high) (continued)

Bits	Field name	Field name Description		Reset
47:46	Reserved	Reserved	RO	-
45:40	pmevcnt1_input_sel	Source to be counted in PMU counter 1; see pmevcnt0_input_sel for encodings	RW	6'b0
39:38	Reserved	Reserved	RO	-

Table 3-536 por_mxp_por_dtm_pmu_config (high) (continued)

Bits	Field name	Description	Туре	Reset
37:32	pmevcnt0_input_sel	Source to be counted in PMU counter 0	RW	6'b0
		6'h00: Watchpoint 0		
		6'h01: Watchpoint 1		
		6'h02: Watchpoint 2		
		6'h03: Watchpoint 3		
		6'h04: XP PMU Event 0		
		6'h05: XP PMU Event 1		
		6'h06: XP PMU Event 2		
		6'h07: XP PMU Event 3		
		6'h10: Port 0 Device 0 PMU Event 0		
		6'h11: Port 0 Device 0 PMU Event 1		
		6'h12: Port 0 Device 0 PMU Event 2		
		6'h13: Port 0 Device 0 PMU Event 3		
		6'h14: Port 0 Device 1 PMU Event 0		
		6'h15: Port 0 Device 1 PMU Event 1		
		6'h16: Port 0 Device 1 PMU Event 2		
		6'h17: Port 0 Device 1 PMU Event 3		
		6'h18: Port 0 Device 2 PMU Event 0		
		6'h19: Port 0 Device 2 PMU Event 1		
		6'h1A: Port 0 Device 2 PMU Event 2		
		6'h1B: Port 0 Device 2 PMU Event 3		
		6'h1C: Port 0 Device 3 PMU Event 0		
		6'h1D: Port 0 Device 3 PMU Event 1		
		6'h1E: Port 0 Device 3 PMU Event 2		
		6'h1F: Port 0 Device 3 PMU Event 3		
		6'h20: Port 1 Device 0 PMU Event 0		
		6'h21: Port 1 Device 0 PMU Event 1		
		6'h22: Port 1 Device 0 PMU Event 2		
		6'h23: Port 1 Device 0 PMU Event 3		
		6'h24: Port 1 Device 1 PMU Event 0		
		6'h25: Port 1 Device 1 PMU Event 1		
		6'h26: Port 1 Device 1 PMU Event 2		
		6'h27: Port 1 Device 1 PMU Event 3		
		6'h28: Port 1 Device 2 PMU Event 0		
		6'h29: Port 1 Device 2 PMU Event 1		
		6'h2A: Port 1 Device 2 PMU Event 2		

Table 3-536 por_mxp_por_dtm_pmu_config (high) (continued)

Bits	Field name	Description	Туре	Reset
37:32	2 pmevcnt0_input_sel 6'h2B: Port 1 Device 2 PMU Event 3		RW	6'b0
		6'h2C: Port 1 Device 3 PMU Event 0		
	6'h2D: Port 1 Device 3 PMU Event 1			
		6'h2E: Port 1 Device 3 PMU Event 2		
		6'h2F: Port 1 Device 3 PMU Event 3		

The following image shows the lower register bit assignments.

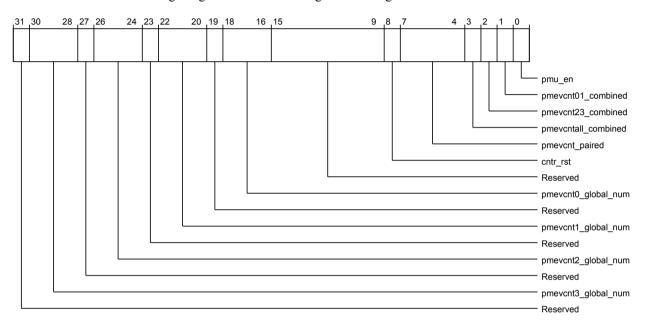


Figure 3-523 por_mxp_por_dtm_pmu_config (low)

The following table shows the por_dtm_pmu_config lower register bit assignments.

Table 3-537 por_mxp_por_dtm_pmu_config (low)

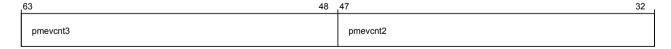
Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved		-
30:28	pmevcnt3_global_num Global counter to pair with PMU counter 3; see pmevcnt0_global_num for encodings		RW	3'b0
27	7 Reserved Reserved		RO	-
26:24	pmevcnt2_global_num	Global counter to pair with PMU counter 2; see pmevcnt0_global_num for encodings	RW	3'b0
23	Reserved	Reserved	RO	-
22:20	pmevcnt1_global_num	Global counter to pair with PMU counter 1; see pmevcnt0_global_num for encodings	RW	3'b0
19	Reserved	Reserved	RO	-

Table 3-537 por_mxp_por_dtm_pmu_config (low) (continued)

Bits	Field name	Description	Туре	Reset
18:16	pmevcnt0_global_num	Global counter to pair with PMU counter 0	RW	3'b0
		3'b000: Global PMU event counter A		
		3'b001: Global PMU event counter B		
		3'b010: Global PMU event counter C		
		3'b011: Global PMU event counter D		
		3'b100: Global PMU event counter E		
		3'b101: Global PMU event counter F		
		3'b110: Global PMU event counter G		
		3'b111: Global PMU event counter H		
15:9	Reserved	Reserved	RO	-
8	cntr_rst	Enables clearing of live counters upon assertion of snapshot	RW	1'b0
7:4	pmevcnt_paired	PMU local counter paired with global counter	RW	4'b0
3	pmevcntall_combined	Enables combination of all PMU counters (0, 1, 2, 3)	RW	1'b0
		NOTE: When set, pmevcnt01_combined and pmevcnt23_combined have no effect.		
2	pmevcnt23_combined Enables combination of PMU counters 2 and 3		RW	1'b0
1	pmevcnt01_combined Enables combination of PMU counters 0 and 1		RW	1'b0
0	pmu_en DTM PMU enable		RW	1'b0
		NOTE: All other fields in this register are valid only if this bit is set.		

por_dtm_pmevcnt

Contains all PMU event counters (0, 1, 2, 3).

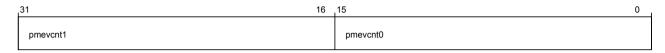

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2220 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-524 por_mxp_por_dtm_pmevcnt (high)

The following table shows the por_dtm_pmevent higher register bit assignments.

Table 3-538 por_mxp_por_dtm_pmevcnt (high)

Bits	Field name	Description	Туре	Reset
63:48	pmevent3	PMU event counter 3	RW	16'h0000
47:32	pmevent2	PMU event counter 2	RW	16'h0000

The following image shows the lower register bit assignments.

Figure 3-525 por_mxp_por_dtm_pmevcnt (low)

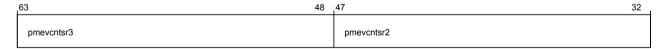
The following table shows the por dtm pmevcnt lower register bit assignments.

Table 3-539 por_mxp_por_dtm_pmevcnt (low)

Bits	Field name	Description	Туре	Reset
31:16	pmevent1	PMU event counter 1	RW	16'h0000
15:0	pmevent0	PMU event counter 0	RW	16'h0000

por_dtm_pmevcntsr

Functions as the PMU event counter shadow register for all counters (0, 1, 2, 3).

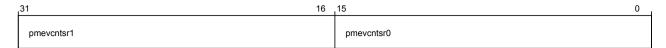

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2240 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-526 por_mxp_por_dtm_pmevcntsr (high)

The following table shows the por_dtm_pmevcntsr higher register bit assignments.

Table 3-540 por_mxp_por_dtm_pmevcntsr (high)

Bits	Field name	Description	Туре	Reset
63:48	pmeventsr3	PMU event counter 3 shadow register	RW	16'h0000
47:32	pmeventsr2	PMU event counter 2 shadow register	RW	16'h0000

The following image shows the lower register bit assignments.

Figure 3-527 por_mxp_por_dtm_pmevcntsr (low)

The following table shows the por_dtm_pmevcntsr lower register bit assignments.

Table 3-541 por_mxp_por_dtm_pmevcntsr (low)

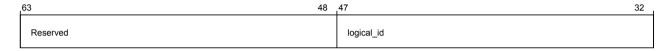
Bits	Field name	Description	Туре	Reset
31:16	pmeventsr1	PMU event counter 1 shadow register	RW	16'h0000
15:0	pmeventsr0	PMU event counter 0 shadow register	RW	16'h0000

3.3.7 RN-D register descriptions

Lists the RN-D registers.

por_rnd_node_info

Provides component identification information.

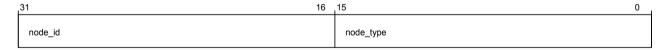

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-528 por rnd por rnd node info (high)

The following table shows the por rnd node info higher register bit assignments.

Table 3-542 por_rnd_por_rnd_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

Figure 3-529 por_rnd_por_rnd_node_info (low)

The following table shows the por_rnd_node_info lower register bit assignments.

Table 3-543 por_rnd_por_rnd_node_info (low)

Bits	Field name Description		Description Type	
31:16	node_id	Component node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h000D

por_rnd_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-530 por_rnd_por_rnd_child_info (high)

The following table shows the por rnd child info higher register bit assignments.

Table 3-544 por rnd por rnd child info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

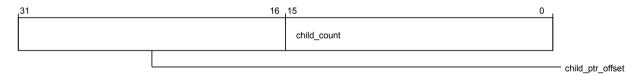


Figure 3-531 por_rnd_por_rnd_child_info (low)

The following table shows the por rnd child info lower register bit assignments.

Table 3-545 por rnd por rnd child info (low)

Bits	Field name	Description		Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15:0	5:0 child_count Number of child nodes; used in discovery process		RO	16'h0

por_rnd_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-532 por_rnd_por_rnd_secure_register_groups_override (high)

The following table shows the por rnd secure register groups override higher register bit assignments.

Table 3-546 por_rnd_por_rnd_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

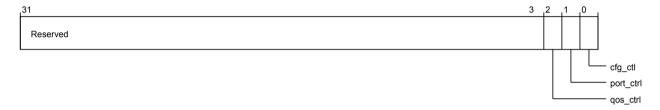


Figure 3-533 por_rnd_por_rnd_secure_register_groups_override (low)

The following table shows the por rnd secure register groups override lower register bit assignments.

Table 3-547 por_rnd_por_rnd_secure_register_groups_override (low)

Bits	Field name	ne Description		Reset
31:3	Reserved	Reserved	RO	-
2	qos_ctrl	Allows non-secure access to secure QoS control registers	RW	1'b0
1	port_ctrl	Allows non-secure access to secure AXI port control registers	RW	1'b0
0	cfg_ctl	Allows non-secure access to secure configuration control register	RW	1'b0

por_rnd_unit_info

Provides component identification information for RN-D.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

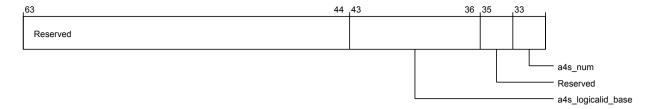


Figure 3-534 por_rnd_por_rnd_unit_info (high)

The following table shows the por_rnd_unit_info higher register bit assignments.

Table 3-548 por_rnd_por_rnd_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:44	Reserved	Reserved	RO	-
43:36	a4s_logicalid_base	AXI4Stream interfaces logical ID base	RO	Configuration dependent
35:34	Reserved	Reserved	RO	-
33:32	a4s_num	Number of AXI4Stream interfaces present	RO	Configuration dependent

The following image shows the lower register bit assignments.

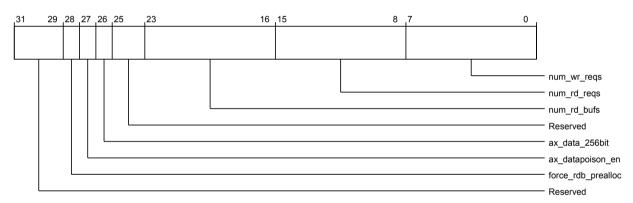


Figure 3-535 por_rnd_por_rnd_unit_info (low)

The following table shows the por_rnd_unit_info lower register bit assignments.

Table 3-549 por_rnd_por_rnd_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:29	Reserved	Reserved	RO	-
28	force_rdb_prealloc	Force read data buffer preallocation	RO	Configuration dependent
		1'b1: yes		
		1'b0: no		
27	ax_datapoison_en	Data Poison enable on ACE-Lite/AXI4 interface	RO	Configuration dependent
		1'b1: Enabled		
		1'b0: Not enabled		

Table 3-549 por_rnd_por_rnd_unit_info (low) (continued)

Bits	Field name	Description	Туре	Reset
26	ax_data_256bit	AXI interface data width	RO	Configuration dependent
		b1: 256 bits		
		1'b0: 128 bits		
25:24	Reserved	Reserved	RO	-
23:16	num_rd_bufs	Number of read data buffers	RO	Configuration dependent
15:8	num_rd_reqs	Number of outstanding read requests	RO	Configuration dependent
7:0	num_wr_reqs	Number of outstanding write requests	RO	Configuration dependent

por_rnd_cfg_ctl

Functions as the configuration control register. Specifies the current mode.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA00

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por rnd secure register groups override.cfg ctl

override

The following image shows the higher register bit assignments.

Figure 3-536 por_rnd_por_rnd_cfg_ctl (high)

The following table shows the por_rnd_cfg_ctl higher register bit assignments.

Table 3-550 por_rnd_por_rnd_cfg_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

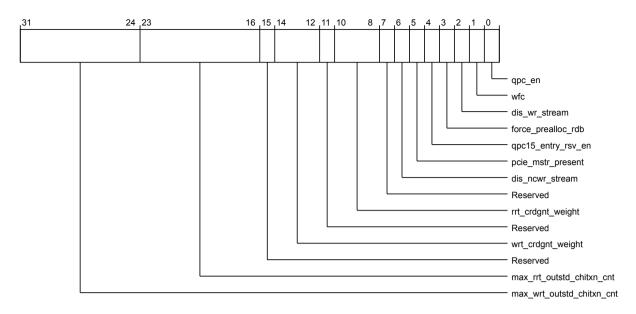


Figure 3-537 por_rnd_por_rnd_cfg_ctl (low)

The following table shows the por_rnd_cfg_ctl lower register bit assignments.

Table 3-551 por_rnd_por_rnd_cfg_ctl (low)

Bits	Field name	Description	Туре	Reset
31:24	max_wrt_outstd_chitxn_cnt	Maximum number of outstanding writes allowed on CHI-side	RW	Configuration dependent
23:16	max_rrt_outstd_chitxn_cnt	Maximum number of outstanding reads allowed on CHI-side	RW	Configuration dependent
15	Reserved	Reserved	RO	-
14:12	wrt_crdgnt_weight	Determines weight of credit grant allocated to retried writes in presence of pending retried reads	RW	3'b001
11	Reserved	Reserved	RO	-
10:8	rrt_crdgnt_weight	Determines weight of credit grant allocated to retried reads in presence of pending retried writes	RW	3'b100
7	Reserved	Reserved	RO	-
6	dis_ncwr_stream	Disables streaming of ordered non-cacheable writes when set	RW	1'b0
5	pcie_mstr_present	Indicates PCIe master is present; must be set if PCIe master is present upstream of RN-I or RN-D	RW	1'b0
4	qpc15_entry_rsv_en	Enables QPC15 entry reservation	RW	1'b0
		1'b1: Reserves tracker entry for QoS15 requests		
		1'b0: Does not reserve tracker entry for QoS15 requests		
		NOTE: Only valid and applicable when por_rnd_qpc_en is set		
3	force_prealloc_rdb	When set, all reads from the RN-D are sent with a preallocated read data buffer	RW	Configuration dependent
2	dis_wr_stream	Disables streaming of ordered writes when set	RW	1'b0

Table 3-551 por_rnd_por_rnd_cfg_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
1	wfc	When set, enables waiting for completion (COMP) before dispatching dependent transaction (TXN)	RW	1'b0
0	qpc_en	When set, enables QPC-based scheduling using two QoS priority classes (QoS15 and non-QoS15)	RW	1'b1

por_rnd_aux_ctl

Functions as the auxiliary control register for RN-D.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-538 por_rnd_por_rnd_aux_ctl (high)

The following table shows the por_rnd_aux_ctl higher register bit assignments.

Table 3-552 por_rnd_por_rnd_aux_ctl (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

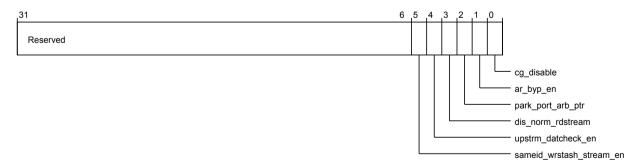


Figure 3-539 por_rnd_por_rnd_aux_ctl (low)

The following table shows the por_rnd_aux_ctl lower register bit assignments.

Table 3-553 por_rnd_por_rnd_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:6	Reserved	Reserved	RO	-
5	sameid_wrstash_stream_en	Enables streaming of same-ID WrUniqStash	RW	Configuration dependent
4	upstrm_datcheck_en	Upstream supports Datacheck	RW	Configuration dependent
3	dis_norm_rdstream	Disables streaming of same ARID normal memory reads to different address	RW	1'b0
2	park_port_arb_ptr	Parks the AXI port arbitration pointer for Burst	RW	1'b0
1	ar_byp_en	AR bypass enable; enables bypass path in the AR pipeline	RW	1'b1
0	cg_disable	Disables clock gating when set	RW	1'b0

por_rnd_s0_port_control

Controls port S0 AXI/ACE slave interface settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA10
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

override

por_rnd_secure_register_groups_override.port_ctrl

The following image shows the higher register bit assignments.

Figure 3-540 por_rnd_por_rnd_s0_port_control (high)

The following table shows the por_rnd_s0_port_control higher register bit assignments.

Table 3-554 por_rnd_por_rnd_s0_port_control (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

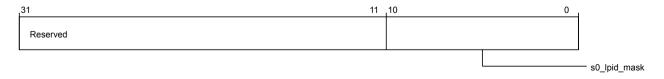


Figure 3-541 por_rnd_por_rnd_s0_port_control (low)

The following table shows the por rnd s0 port control lower register bit assignments.

Table 3-555 por_rnd_por_rnd_s0_port_control (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:0	s0_lpid_mask	rt S0 LPID mask RV		11'b000_0000_0000
	LPID[0]: Equal to the result of UnaryOR of BitwiseAND of LPID mask and AXID (LPID[0] =			
		(AXID and mask)); specifies which AXID bit is reflected in the LSB of LPID		
		LPID[2:1]: Equal to port ID[1:0]; the MSB of LPID contains port ID		

por_rnd_s1_port_control

Controls port S1 AXI/ACE slave interface settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA18
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rnd_secure_register_groups_override.port_ctrl

The following image shows the higher register bit assignments.

Figure 3-542 por_rnd_por_rnd_s1_port_control (high)

The following table shows the por_rnd_s1_port_control higher register bit assignments.

Table 3-556 por_rnd_por_rnd_s1_port_control (high)

Bits	Field name	Description	Type	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

Figure 3-543 por_rnd_por_rnd_s1_port_control (low)

The following table shows the por_rnd_s1_port_control lower register bit assignments.

Table 3-557 por_rnd_por_rnd_s1_port_control (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	eserved R		-
10:0	s1_lpid_mask	rt S1 LPID mask RV		11'b000_0000_0000
		LPID[0]: Equal to the result of UnaryOR of BitwiseAND of LPID mask and AXID (LPID[0] =		
		(AXID and mask)); specifies which AXID bit is reflected in the LSB of LPID		
		LPID[2:1]: Equal to port ID[1:0]; the MSB of LPID contains port ID		

por_rnd_s2_port_control

Controls port S2 AXI/ACE slave interface settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA20
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por rnd secure register groups override.port ctrl

The following image shows the higher register bit assignments.

Figure 3-544 por_rnd_por_rnd_s2_port_control (high)

The following table shows the por_rnd_s2_port_control higher register bit assignments.

Table 3-558 por_rnd_por_rnd_s2_port_control (high)

Bits	Field name	Description	Type	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-545 por_rnd_por_rnd_s2_port_control (low)

The following table shows the por_rnd_s2_port_control lower register bit assignments.

Table 3-559 por_rnd_por_rnd_s2_port_control (low)

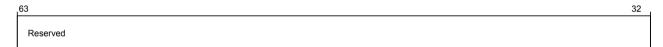
Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:0	s2_lpid_mask	rt S2 LPID mask RV		11'b000_0000_0000
		LPID[0]: Equal to the result of UnaryOR of BitwiseAND of LPID mask and AXID (LPID[0] =		
		(AXID and mask)); specifies which AXID bit is reflected in the LSB of LPID		
		LPID[2:1]: Equal to port ID[1:0]; the MSB of LPID contains port ID		

por_rnd_s0_qos_control

Controls QoS settings for port S0 AXI/ACE slave interface.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA80
Register reset 64'b0


Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por rnd secure register groups override.qos ctrl

The following image shows the higher register bit assignments.

Figure 3-546 por_rnd_por_rnd_s0_qos_control (high)

The following table shows the por_rnd_s0_qos_control higher register bit assignments.

Table 3-560 por_rnd_por_rnd_s0_qos_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

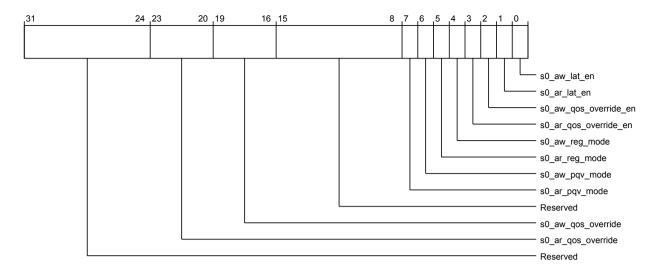


Figure 3-547 por_rnd_por_rnd_s0_qos_control (low)

The following table shows the por_rnd_s0_qos_control lower register bit assignments.

Table 3-561 por_rnd_por_rnd_s0_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	s0_ar_qos_override	AR QoS override value for port S0	RW	4'b0000
19:16	s0_aw_qos_override	AW QoS override value for port S0	RW	4'b0000
15:8	Reserved	Reserved	RO	-
7	s0_ar_pqv_mode	Configures the QoS regulator mode for read transactions during period mode	RW	1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
6	s0_aw_pqv_mode	Configures the QoS regulator mode for write transactions during period mode	RW	1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
5	s0_ar_reg_mode	Configures the QoS regulator mode for read transactions	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
4	s0_aw_reg_mode	Configures the QoS regulator mode for write transactions	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
3	s0_ar_qos_override_en	Enables port S0 AR QoS override; when set, allows QoS value on inbound AR transactions to be overridden	RW	1'b0
2	s0_aw_qos_override_en	Enables port S0 AW QoS override; when set, allows QoS value on inbound AW transactions to be overridden	RW	1'b0

Table 3-561 por_rnd_por_rnd_s0_qos_control (low) (continued)

Bits	Field name	Description	Туре	Reset
1	s0_ar_lat_en	Enables port S0 AR QoS regulation when set	RW	1'b0
0	s0_aw_lat_en	Enables port S0 AW QoS regulation when set	RW	1'b0

por_rnd_s0_qos_lat_tgt

Controls QoS target latency (in cycles) for regulations of port S0 read and write transactions.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA88
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

 $por_rnd_secure_register_groups_override.qos_ctrl$

The following image shows the higher register bit assignments.

Figure 3-548 por_rnd_por_rnd_s0_qos_lat_tgt (high)

The following table shows the por_rnd_s0_qos_lat_tgt higher register bit assignments.

Table 3-562 por_rnd_por_rnd_s0_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

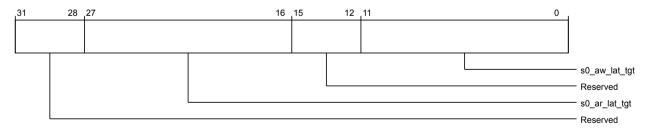


Figure 3-549 por_rnd_por_rnd_s0_qos_lat_tgt (low)

The following table shows the por rnd s0 qos lat tgt lower register bit assignments.

Table 3-563 por_rnd_por_rnd_s0_qos_lat_tgt (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:16	s0_ar_lat_tgt	Port S0 AR channel target latency; a value of 0 corresponds to no regulation	RW	12'h000
15:12	Reserved	Reserved	RO	-
11:0	s0_aw_lat_tgt	Port S0 AW channel target latency; a value of 0 corresponds to no regulation	RW	12'h000

por_rnd_s0_qos_lat_scale

Controls the QoS target latency scale factor for port S0 read and write transactions. This register represents powers of two from the range 2^{-1} to 2^{-1} ; it is used to match a 16-bit integrator.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA90
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rnd_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-550 por_rnd_por_rnd_s0_qos_lat_scale (high)

The following table shows the por_rnd_s0_qos_lat_scale higher register bit assignments.

Table 3-564 por_rnd_por_rnd_s0_qos_lat_scale (high)

Bits	Field name	Description	Type	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

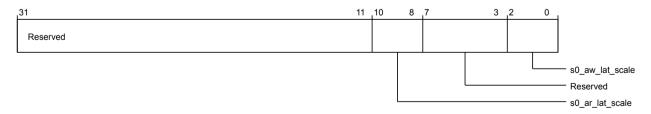


Figure 3-551 por_rnd_por_rnd_s0_qos_lat_scale (low)

The following table shows the por_rnd_s0_qos_lat_scale lower register bit assignments.

Table 3-565 por_rnd_por_rnd_s0_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:8	s0_ar_lat_scale	Port S0 AR QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		
7:3	Reserved	Reserved	RO	-
2:0	s0_aw_lat_scale	Port S0 AW QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		

por_rnd_s0_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS latency regulator for port S0 read and write transactions.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA98
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnd_secure_register_groups_override.qos_ctrl

override

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-552 por_rnd_por_rnd_s0_qos_lat_range (high)

The following table shows the por_rnd_s0_qos_lat_range higher register bit assignments.

Table 3-566 por_rnd_por_rnd_s0_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

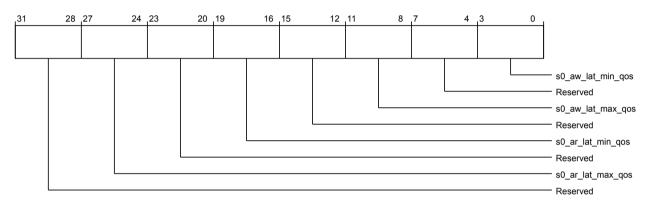


Figure 3-553 por_rnd_por_rnd_s0_qos_lat_range (low)

The following table shows the por rnd s0 qos lat range lower register bit assignments.

Table 3-567 por_rnd_por_rnd_s0_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:24	s0_ar_lat_max_qos	Port S0 AR QoS maximum value	RW	4'h0
23:20	Reserved	Reserved	RO	-
19:16	s0_ar_lat_min_qos	Port S0 AR QoS minimum value	RW	4'h0
15:12	Reserved	Reserved	RO	-
11:8	s0_aw_lat_max_qos	Port S0 AW QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	s0_aw_lat_min_qos	Port S0 AW QoS minimum value	RW	4'h0

por_rnd_s1_qos_control

Controls QoS settings for port S1 AXI/ACE slave interface.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hAA0 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rnd_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-554 por_rnd_por_rnd_s1_qos_control (high)

The following table shows the por rnd s1 gos control higher register bit assignments.

Table 3-568 por_rnd_por_rnd_s1_qos_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

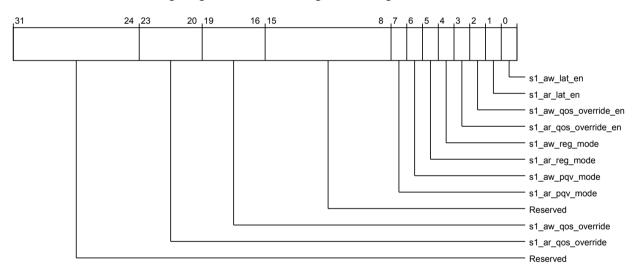


Figure 3-555 por_rnd_por_rnd_s1_qos_control (low)

The following table shows the por rnd s1 qos control lower register bit assignments.

Table 3-569 por_rnd_por_rnd_s1_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	s1_ar_qos_override	AR QoS override value for port S1	RW	4'b0000
19:16	s1_aw_qos_override	AW QoS override value for port S1	RW	4'b0000
15:8	Reserved	Reserved	RO	-

Table 3-569 por_rnd_por_rnd_s1_qos_control (low) (continued)

Bits	Field name	Description	Туре	Reset
7	s1_ar_pqv_mode	Configures the QoS regulator mode for read transactions during period mode	RW	1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
6	s1_aw_pqv_mode	Configures the QoS regulator mode for write transactions during period mode	RW	1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
5	s1_ar_reg_mode	Configures the QoS regulator mode for read transactions	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
4	s1_aw_reg_mode	Configures the QoS regulator mode for write transactions	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
3	s1_ar_qos_override_en	Enables port S1 AR QoS override; when set, allows QoS value on inbound AR transactions to be overridden	RW	1'b0
2	s1_aw_qos_override_en	Enables port S1 AW QoS override; when set, allows QoS value on inbound AW transactions to be overridden	RW	1'b0
1	s1_ar_lat_en	Enables port S1 AR QoS regulation when set	RW	1'b0
0	s1_aw_lat_en	Enables port S1 AW QoS regulation when set	RW	1'b0

por_rnd_s1_qos_lat_tgt

Controls QoS target latency (in cycles) for regulation of port S1 read and write transactions.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAA8
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnd_secure_register_groups_override.qos_ctrl

override

Figure 3-556 por_rnd_por_rnd_s1_qos_lat_tgt (high)

The following table shows the por rnd s1 gos lat tgt higher register bit assignments.

Table 3-570 por_rnd_por_rnd_s1_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

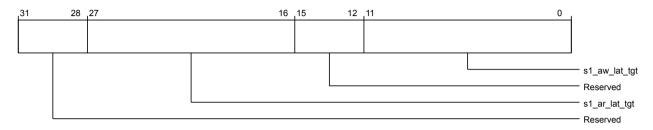


Figure 3-557 por_rnd_por_rnd_s1_qos_lat_tgt (low)

The following table shows the por rnd s1 qos lat tgt lower register bit assignments.

Table 3-571 por_rnd_por_rnd_s1_qos_lat_tgt (low)

Bits	Field name	Field name Description		Reset
31:28	Reserved	Reserved	RO	-
27:16	s1_ar_lat_tgt	Port S1 AR channel target latency; a value of 0 corresponds to no regulation	RW	12'h000
15:12	Reserved	Reserved	RO	-
11:0	s1_aw_lat_tgt	Port S1 AW channel target latency; a value of 0 corresponds to no regulation	RW	12'h000

por_rnd_s1_qos_lat_scale

Controls the QoS target latency scale factor for port S1 read and write transactions. This register represents powers of two from the range 2^{-1} to 2^{-1} ; it is used to match a 16-bit integrator.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAB0
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnd_secure_register_groups_override.qos_ctrl **override**

Figure 3-558 por_rnd_por_rnd_s1_qos_lat_scale (high)

The following table shows the por rnd s1 qos lat scale higher register bit assignments.

Table 3-572 por_rnd_por_rnd_s1_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

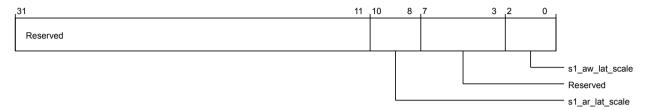


Figure 3-559 por_rnd_por_rnd_s1_qos_lat_scale (low)

The following table shows the por_rnd_s1_qos_lat_scale lower register bit assignments.

Table 3-573 por_rnd_por_rnd_s1_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:8	s1_ar_lat_scale	Port S1 AR QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		
7:3	Reserved	Reserved	RO	-
2:0	s1_aw_lat_scale	Port S1 AW QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		

por_rnd_s1_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS latency regulator for port S1 read and write transactions.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'hAB8 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por rnd secure register groups override.qos ctrl

The following image shows the higher register bit assignments.

Figure 3-560 por_rnd_por_rnd_s1_qos_lat_range (high)

The following table shows the por_rnd_s1_qos_lat_range higher register bit assignments.

Table 3-574 por_rnd_por_rnd_s1_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

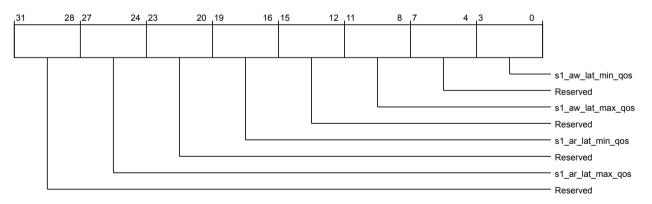


Figure 3-561 por rnd por rnd s1 gos lat range (low)

The following table shows the por rnd s1 qos lat range lower register bit assignments.

Table 3-575 por_rnd_por_rnd_s1_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:24	s1_ar_lat_max_qos	Port S1 AR QoS maximum value	RW	4'h0

Table 3-575 por_rnd_por_rnd_s1_qos_lat_range (low) (continued)

Bits	Field name	Description	Туре	Reset
23:20	Reserved	Reserved	RO	-
19:16	s1_ar_lat_min_qos	Port S1 AR QoS minimum value	RW	4'h0
15:12	Reserved	Reserved	RO	-
11:8	s1_aw_lat_max_qos	Port S1 AW QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	s1_aw_lat_min_qos	Port S1 AW QoS minimum value	RW	4'h0

por_rnd_s2_qos_control

Controls QoS settings for port S2 AXI/ACE slave interface.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAC0

Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por_rnd_secure_register_groups_override.qos_ctrl

override

The following image shows the higher register bit assignments.

Figure 3-562 por_rnd_por_rnd_s2_qos_control (high)

The following table shows the por_rnd_s2_qos_control higher register bit assignments.

Table 3-576 por_rnd_por_rnd_s2_qos_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

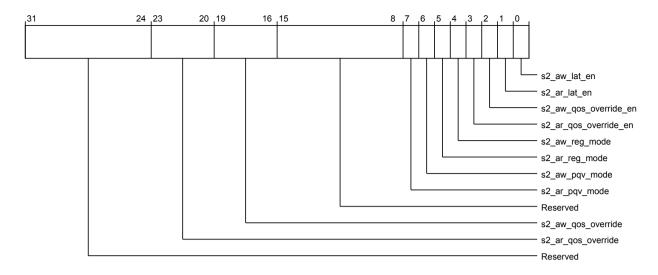


Figure 3-563 por_rnd_por_rnd_s2_qos_control (low)

The following table shows the por_rnd_s2_qos_control lower register bit assignments.

Table 3-577 por_rnd_por_rnd_s2_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	s2_ar_qos_override	AR QoS override value for port S2	RW	4'b0000
19:16	s2_aw_qos_override	AW QoS override value for port S2	RW	4'b0000
15:8	Reserved	Reserved	RO	-
7	s2_ar_pqv_mode	Configures the QoS regulator mode for read transactions during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		1'b0
6	s2_aw_pqv_mode	Configures the QoS regulator mode for write transactions during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle	RW	1'b0
5	s2_ar_reg_mode	Configures the QoS regulator mode for read transactions 1'b0: Latency mode 1'b1: Period mode; used for bandwidth regulation	RW	1'b0
4	s2_aw_reg_mode	Configures the QoS regulator mode for write transactions 1'b0: Latency mode 1'b1: Period mode; used for bandwidth regulation	RW	1'b0
3	s2_ar_qos_override_en	Enables port S2 AR QoS override; when set, allows QoS value on inbound AR transactions to be overridden	RW	1'b0
2	s2_aw_qos_override_en	Enables port S2 AW QoS override; when set, allows QoS value on inbound AW transactions to be overridden	RW	1'b0

Table 3-577 por_rnd_por_rnd_s2_qos_control (low) (continued)

Bits	Field name Description		Туре	Reset
1	s2_ar_lat_en	Enables port S2 AR QoS regulation when set	RW	1'b0
0	s2_aw_lat_en	Enables port S2 AW QoS regulation when set	RW	1'b0

por_rnd_s2_qos_lat_tgt

Controls QoS target latency (in cycles) for regulation of port S2 read and write transactions.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hAC8Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

 $por_rnd_secure_register_groups_override.qos_ctrl$

The following image shows the higher register bit assignments.

Figure 3-564 por_rnd_por_rnd_s2_qos_lat_tgt (high)

The following table shows the por_rnd_s2_qos_lat_tgt higher register bit assignments.

Table 3-578 por_rnd_por_rnd_s2_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

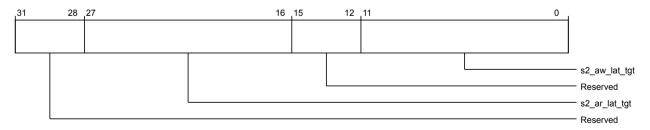


Figure 3-565 por_rnd_por_rnd_s2_qos_lat_tgt (low)

The following table shows the por rnd s2 qos lat tgt lower register bit assignments.

Table 3-579 por_rnd_por_rnd_s2_qos_lat_tgt (low)

Bits	Field name	me Description		Reset
31:28	Reserved	Reserved	RO	-
27:16	s2_ar_lat_tgt	Port S2 AR channel target latency; a value of 0 corresponds to no regulation	RW	12'h000
15:12	Reserved	Reserved	RO	-
11:0	s2_aw_lat_tgt	Port S2 AW channel target latency; a value of 0 corresponds to no regulation	RW	12'h000

por_rnd_s2_qos_lat_scale

Controls the QoS target latency scale factor for port S2 read and write transactions. This register represents powers of two from the range 2^{-1} to 2^{-1} ; it is used to match a 16-bit integrator.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAD0
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rnd_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-566 por_rnd_por_rnd_s2_qos_lat_scale (high)

The following table shows the por_rnd_s2_qos_lat_scale higher register bit assignments.

Table 3-580 por_rnd_por_rnd_s2_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

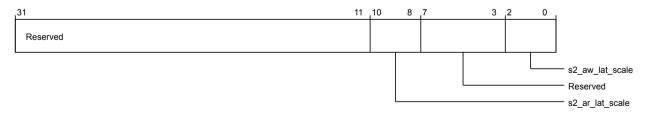


Figure 3-567 por_rnd_por_rnd_s2_qos_lat_scale (low)

The following table shows the por_rnd_s2_qos_lat_scale lower register bit assignments.

Table 3-581 por_rnd_por_rnd_s2_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:8	s2_ar_lat_scale	Port S2 AR QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		
7:3	Reserved	Reserved	RO	-
2:0	s2_aw_lat_scale	Port S2 AW QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		

por_rnd_s2_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS latency regulator for port S2 read and write transactions.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'hAD8 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnd_secure_register_groups_override.qos_ctrl

override

32 Reserved

Figure 3-568 por_rnd_por_rnd_s2_qos_lat_range (high)

The following table shows the por_rnd_s2_qos_lat_range higher register bit assignments.

Table 3-582 por_rnd_por_rnd_s2_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

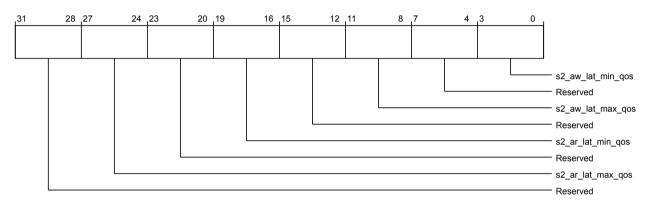


Figure 3-569 por_rnd_por_rnd_s2_qos_lat_range (low)

The following table shows the por_rnd_s2_qos_lat_range lower register bit assignments.

Table 3-583 por_rnd_por_rnd_s2_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:24	s2_ar_lat_max_qos	Port S2 AR QoS maximum value	RW	4'h0
23:20	Reserved	Reserved	RO	-
19:16	s2_ar_lat_min_qos	Port S2 AR QoS minimum value	RW	4'h0
15:12	Reserved	Reserved	RO	-
11:8	s2_aw_lat_max_qos	Port S2 AW QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	s2_aw_lat_min_qos	Port S2 AW QoS minimum value	RW	4'h0

por_rnd_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'h2000 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-570 por_rnd_por_rnd_pmu_event_sel (high)

The following table shows the por_rnd_pmu_event_sel higher register bit assignments.

Table 3-584 por_rnd_por_rnd_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

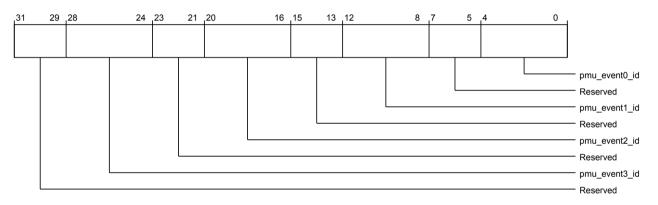


Figure 3-571 por_rnd_por_rnd_pmu_event_sel (low)

The following table shows the por_rnd_pmu_event_sel lower register bit assignments.

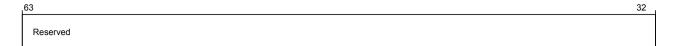
Table 3-585 por_rnd_por_rnd_pmu_event_sel (low)

Bits	Field name	Description		Reset
31:29	Reserved	Reserved	RO	-
28:24	pmu_event3_id	RN-D PMU Event 3 ID; see pmu_event0_id for encodings	RW	5'b0
23:21	Reserved	Reserved	RO	-
20:16	pmu_event2_id	RN-D PMU Event 2 ID; see pmu_event0_id for encodings	RW	5'b0
15:13	Reserved	Reserved	RO	-
12:8	pmu_event1_id	RN-D PMU Event 1 ID; see pmu_event0_id for encodings	RW	5'b0

Table 3-585 por_rnd_por_rnd_pmu_event_sel (low) (continued)

Bits	Field name	Description	Туре	Reset
7:5	Reserved	Reserved	RO	-
4:0	pmu_event0_id	RN-D PMU Event 0 ID	RW	5'b0
		5'h00: No event		
		5'h01: Port S0 RDataBeats		
		5'h02: Port S1 RDataBeats		
		5'h03: Port S2 RDataBeats		
		5'h04: RXDAT flits received		
		5'h05: TXDAT flits sent		
		5'h06: Total TXREQ flits sent		
		5'h07: Retried TXREQ flits sent		
		5'h08: RRT occupancy count overflow		
		5'h09: WRT occupancy count overflow		
		5'h0A: Replayed TXREQ flits		
		5'h0B: WriteCancel sent		
		5'h0C: Port S0 WDataBeats		
		5'h0D: Port S1 WDataBeats		
		5'h0E: Port S2 WDataBeats		
		5'h0F: RRT allocation		
		5'h10: WRT allocation		
		5'h11: RDB pool state is all unordered		
		5'h12: RDB pool state is replay		
		5'h13: RDB pool state is hybrid		
		5'h14: RDB pool state is all ordered		

por_rnd_syscoreq_ctl


Functions as the RN-D DVM domain control register. Provides a software alternative to hardware SYSCOREQ/SYSCOACK handshake. Works with por_rnd_syscoack_status.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h1000 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Figure 3-572 por_rnd_por_rnd_syscoreq_ctl (high)

The following table shows the por rnd syscoreq ctl higher register bit assignments.

Table 3-586 por_rnd_por_rnd_syscoreq_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

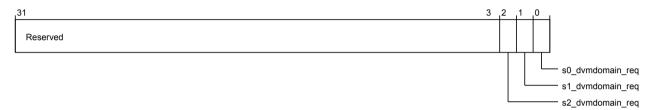


Figure 3-573 por_rnd_por_rnd_syscoreq_ctl (low)

The following table shows the por_rnd_syscoreq_ctl lower register bit assignments.

Table 3-587 por_rnd_por_rnd_syscoreq_ctl (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	s2_dvmdomain_req	Controls DVM domain enable (SYSCOREQ) for port S2	RW	1'b0
1	s1_dvmdomain_req	Controls DVM domain enable (SYSCOREQ) for port S1	RW	1'b0
0	s0_dvmdomain_req	Controls DVM domain enable (SYSCOREQ) for port S0	RW	1'b0

por_rnd_syscoack_status

Functions as the RN-D DVM domain status register. Provides a software alternative to hardware SYSCOREQ/SYSCOACK handshake. Works with por rnd syscoreq ctl.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h1008
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Figure 3-574 por_rnd_por_rnd_syscoack_status (high)

The following table shows the por_rnd_syscoack_status higher register bit assignments.

Table 3-588 por_rnd_por_rnd_syscoack_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

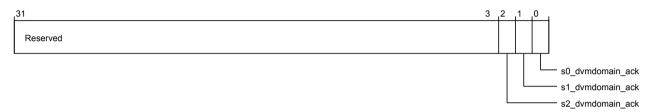


Figure 3-575 por_rnd_por_rnd_syscoack_status (low)

The following table shows the por_rnd_syscoack_status lower register bit assignments.

Table 3-589 por_rnd_por_rnd_syscoack_status (low)

Bits	Field name	Description		Reset
31:3	Reserved	Reserved	RO	-
2	s2_dvmdomain_ack	Provides DVM domain status (SYSCOACK) for port S2	RO	1'b0
1	s1_dvmdomain_ack	Provides DVM domain status (SYSCOACK) for port S1	RO	1'b0
0	s0_dvmdomain_ack	Provides DVM domain status (SYSCOACK) for port S0	RO	1'b0

3.3.8 RN-I register descriptions

Lists the RN-I registers.

por_rni_node_info

Provides component identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

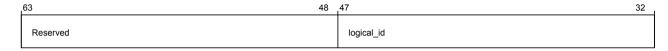


Figure 3-576 por_rni_por_rni_node_info (high)

The following table shows the por rni node info higher register bit assignments.

Table 3-590 por_rni_por_rni_node_info (high)

Bits	Field name	e Description Ty		Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

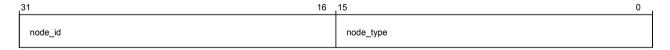


Figure 3-577 por_rni_por_rni_node_info (low)

The following table shows the por_rni_node_info lower register bit assignments.

Table 3-591 por_rni_por_rni_node_info (low)

Bits	Bits Field name Description		Туре	Reset
31:16	node_id	Component node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h000A

por_rni_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-578 por_rni_por_rni_child_info (high)

The following table shows the por rni child info higher register bit assignments.

Table 3-592 por_rni_por_rni_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

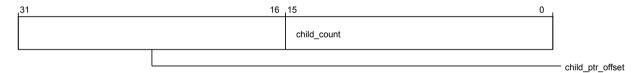


Figure 3-579 por_rni_por_rni_child_info (low)

The following table shows the por rni child info lower register bit assignments.

Table 3-593 por_rni_por_rni_child_info (low)

I	3its	Field name	Description 1		Reset
3	31:16	1:16 child_ptr_offset Starting register offset which contains pointers to the child nodes		RO	16'h0
1	15:0 child_count Number of child nodes; used in discovery process		RO	16'h0	

por_rni_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-580 por_rni_por_rni_secure_register_groups_override (high)

The following table shows the por rni secure register groups override higher register bit assignments.

Table 3-594 por_rni_por_rni_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

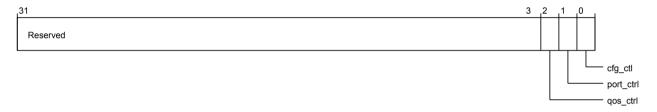


Figure 3-581 por_rni_por_rni_secure_register_groups_override (low)

The following table shows the por rni secure register groups override lower register bit assignments.

Table 3-595 por_rni_por_rni_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	qos_ctrl Allows non-secure access to secure QoS control registers		RW	1'b0
1	port_ctrl Allows non-secure access to secure AXI port control registers		RW	1'b0
0	cfg_ctl	Allows non-secure access to secure configuration control register	RW	1'b0

por_rni_unit_info

Provides component identification information for RN-I.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

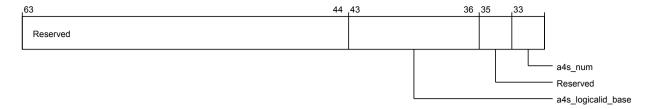


Figure 3-582 por_rni_por_rni_unit_info (high)

The following table shows the por_rni_unit_info higher register bit assignments.

Table 3-596 por_rni_por_rni_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:44	Reserved	Reserved	RO	-
43:36	a4s_logicalid_base	AXI4Stream interfaces logical ID base	RO	Configuration dependent
35:34	Reserved	Reserved	RO	-
33:32	a4s_num	Number of AXI4Stream interfaces present	RO	Configuration dependent

The following image shows the lower register bit assignments.

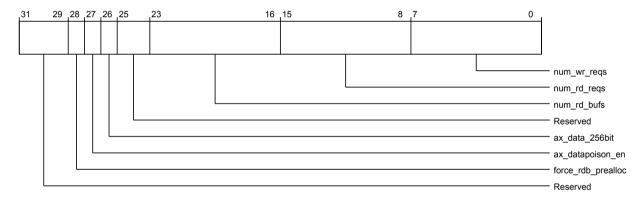


Figure 3-583 por_rni_por_rni_unit_info (low)

The following table shows the por_rni_unit_info lower register bit assignments.

Table 3-597 por_rni_por_rni_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:29	Reserved	Reserved	RO	-
28	force_rdb_prealloc	Force read data buffer preallocation	RO	Configuration dependent
		1'b1: Yes		
		1'b0: No		
27	ax_datapoison_en	Data poison enable on ACE-Lite/AXI4 interface	RO	Configuration dependent
		1'b1: Enabled		
		1'b0: Not enabled		

Table 3-597 por_rni_por_rni_unit_info (low) (continued)

Bits	Field name	Description	Туре	Reset
26	ax_data_256bit	AXI interface data width	RO	Configuration dependent
		1'b1: 256 bits		
		1'b0: 128 bits		
25:24	Reserved	Reserved	RO	-
23:16	num_rd_bufs	Number of read data buffers	RO	Configuration dependent
15:8	num_rd_reqs	Number of outstanding read requests	RO	Configuration dependent
7:0	num_wr_reqs	Number of outstanding write requests	RO	Configuration dependent

por_rni_cfg_ctl

Functions as the configuration control register. Specifies the current mode.

Its characteristics are:

RW **Type** Register width (Bits) 64 Address offset

14'hA00

Register reset Configuration dependent

Only accessible by secure accesses. Writes to this register must occur prior to the **Usage constraints**

first non-configuration access targeting the device.

Secure group

por rni secure register groups override.cfg ctl

override

The following image shows the higher register bit assignments.

Figure 3-584 por_rni_por_rni_cfg_ctl (high)

The following table shows the por_rni_cfg_ctl higher register bit assignments.

Table 3-598 por_rni_por_rni_cfg_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

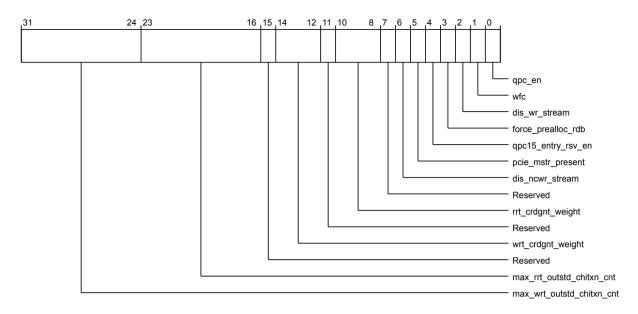


Figure 3-585 por_rni_por_rni_cfg_ctl (low)

The following table shows the por_rni_cfg_ctl lower register bit assignments.

Table 3-599 por_rni_por_rni_cfg_ctl (low)

Bits	Field name	Description	Туре	Reset
31:24	max_wrt_outstd_chitxn_cnt	Maximum number of outstanding writes allowed on CHI-side	RW	Configuration dependent
23:16	max_rrt_outstd_chitxn_cnt	Maximum number of outstanding reads allowed on CHI-side	RW	Configuration dependent
15	Reserved	Reserved	RO	-
14:12	wrt_crdgnt_weight	Determines weight of credit grant allocated to retried writes in presence of pending retried reads	RW	3'b001
11	Reserved	Reserved	RO	-
10:8	rrt_crdgnt_weight	Determines weight of credit grant allocated to retried reads in presence of pending retried writes	RW	3'b100
7	Reserved	Reserved	RO	-
6	dis_ncwr_stream	Disables streaming of ordered non-cacheable writes when set	RW	1'b0
5	pcie_mstr_present	Indicates PCIe master is present; must be set if PCIe master is present upstream of RN-I or RN-D	RW	1'b0
4	qpc15_entry_rsv_en	Enables QPC15 entry reservation	RW	1'b0
		1'b1: Reserves tracker entry for QoS15 requests		
		1'b0: Does not reserve tracker entry for QoS15 requests		
		NOTE: Only valid and applicable when por_rni_qpc_en is set		
3	force_prealloc_rdb	When set, all reads from the RN-I are sent with a preallocated read data buffer	RW	Configuration dependent
2	dis_wr_stream	Disables streaming of ordered writes when set	RW	1'b0

Table 3-599 por_rni_por_rni_cfg_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
1	wfc	When set, enables waiting for completion (COMP) before dispatching dependent transaction (TXN)	RW	1'b0
0	qpc_en	When set, enables QPC-based scheduling using two QoS priority classes (QoS15 and non-QoS15)	RW	1'b1

por_rni_aux_ctl

Functions as the auxiliary control register for RN-I.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-586 por_rni_por_rni_aux_ctl (high)

The following table shows the por_rni_aux_ctl higher register bit assignments.

Table 3-600 por_rni_por_rni_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

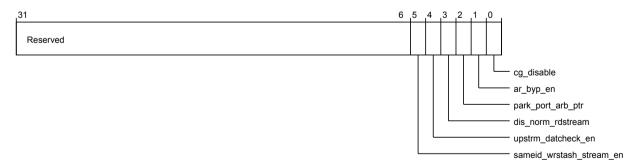


Figure 3-587 por_rni_por_rni_aux_ctl (low)

The following table shows the por_rni_aux_ctl lower register bit assignments.

Table 3-601 por_rni_por_rni_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:6	Reserved	Reserved	RO	-
5	sameid_wrstash_stream_en	Enables streaming of same-ID WrUniqStash	RW	Configuration dependent
4	upstrm_datcheck_en	Upstream supports Datacheck	RW	Configuration dependent
3	dis_norm_rdstream	Disables streaming of same ARID normal memory reads to different address	RW	1'b0
2	park_port_arb_ptr	Parks the AXI port arbitration pointer for Burst	RW	1'b0
1	ar_byp_en	AR bypass enable; enables bypass path in the AR pipeline	RW	1'b1
0	cg_disable	Disables clock gating when set	RW	1'b0

por_rni_s0_port_control

Controls port S0 AXI/ACE slave interface settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA10
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por_rni_secure_register_groups_override.port_ctrl

override

The following image shows the higher register bit assignments.

Figure 3-588 por_rni_por_rni_s0_port_control (high)

The following table shows the por_rni_s0_port_control higher register bit assignments.

Table 3-602 por_rni_por_rni_s0_port_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

Figure 3-589 por_rni_por_rni_s0_port_control (low)

The following table shows the por rni s0 port control lower register bit assignments.

Table 3-603 por_rni_por_rni_s0_port_control (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:0	s0_lpid_mask	Port S0 LPID mask	RW	11'b000_0000_0000
		LPID[0]: Equal to the result of UnaryOR of BitwiseAND of LPID mask and AXID (LPID[0] =		
		(AXID and mask)); specifies which AXID bit is reflected in the LSB of LPID		
		LPID[2:1]: Equal to port ID[1:0]; the MSB of LPID contains port ID		

por_rni_s1_port_control

Controls port S1 AXI/ACE slave interface settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA18
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.port_ctrl

The following image shows the higher register bit assignments.

Figure 3-590 por_rni_por_rni_s1_port_control (high)

The following table shows the por_rni_s1_port_control higher register bit assignments.

Table 3-604 por_rni_por_rni_s1_port_control (high)

Bits	Field name	Description	Type	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

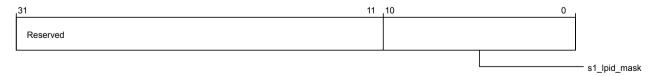


Figure 3-591 por_rni_por_rni_s1_port_control (low)

The following table shows the por_rni_s1_port_control lower register bit assignments.

Table 3-605 por_rni_por_rni_s1_port_control (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:0	s1_lpid_mask	Port S1 LPID mask	RW	11'b000_0000_0000
		LPID[0]: Equal to the result of UnaryOR of BitwiseAND of LPID mask and AXID (LPID[0] =		
		(AXID and mask)); specifies which AXID bit is reflected in the LSB of LPID		
		LPID[2:1]: Equal to port ID[1:0]; the MSB of LPID contains port ID		

por_rni_s2_port_control

Controls port S2 AXI/ACE slave interface settings.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA20
Register reset 64'b0

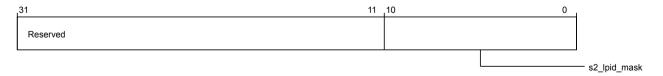
Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por rni secure register groups override.port ctrl

The following image shows the higher register bit assignments.


Figure 3-592 por_rni_por_rni_s2_port_control (high)

The following table shows the por_rni_s2_port_control higher register bit assignments.

Table 3-606 por_rni_por_rni_s2_port_control (high)

Bits	Field name	Description	Type	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-593 por_rni_por_rni_s2_port_control (low)

The following table shows the por_rni_s2_port_control lower register bit assignments.

Table 3-607 por_rni_por_rni_s2_port_control (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:0	s2_lpid_mask	Port S2 LPID mask	RW	11'b000_0000_0000
		LPID[0]: Equal to the result of UnaryOR of BitwiseAND of LPID mask and AXID (LPID[0] =		
		(AXID and mask)); specifies which AXID bit is reflected in the LSB of LPID		
		LPID[2:1]: Equal to port ID[1:0]; the MSB of LPID contains port ID		

por_rni_s0_qos_control

Controls QoS settings for port S0 AXI/ACE slave interface.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hA80Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por rni secure register groups override.qos ctrl

The following image shows the higher register bit assignments.

Figure 3-594 por_rni_por_rni_s0_qos_control (high)

The following table shows the por_rni_s0_qos_control higher register bit assignments.

Table 3-608 por_rni_por_rni_s0_qos_control (high)

Bits	Field name	Description	Type	Reset
63:32	Reserved	Reserved	RO	-

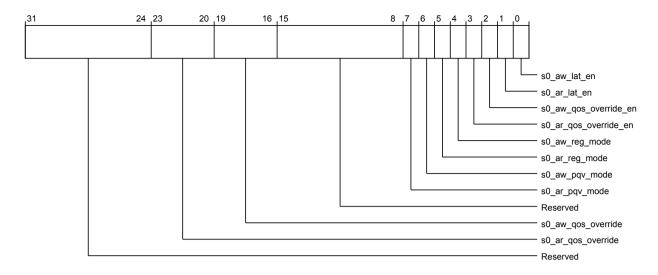


Figure 3-595 por_rni_por_rni_s0_qos_control (low)

The following table shows the por_rni_s0_qos_control lower register bit assignments.

Table 3-609 por_rni_por_rni_s0_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	s0_ar_qos_override	AR QoS override value for port S0	RW	4'b0000
19:16	s0_aw_qos_override	AW QoS override value for port S0	RW	4'b0000
15:8	Reserved	Reserved	RO	-
7	s0_ar_pqv_mode	Configures the QoS regulator mode for read transactions during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		1'b0
6	s0_aw_pqv_mode	Configures the QoS regulator mode for write transactions during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle	RW	1'b0
5	s0_ar_reg_mode	Configures the QoS regulator mode for read transactions 1'b0: Latency mode 1'b1: Period mode; used for bandwidth regulation	RW	1'b0
4	s0_aw_reg_mode	Configures the QoS regulator mode for write transactions 1'b0: Latency mode 1'b1: Period mode; used for bandwidth regulation	RW	1'b0
3	s0_ar_qos_override_en	Enables port S0 AR QoS override; when set, allows QoS value on inbound AR transactions to be overridden	RW	1'b0
2	s0_aw_qos_override_en	Enables port S0 AW QoS override; when set, allows QoS value on inbound AW transactions to be overridden	RW	1'b0

Table 3-609 por_rni_por_rni_s0_qos_control (low) (continued)

Bits	Field name	Description	Туре	Reset
1	s0_ar_lat_en	Enables port S0 AR QoS regulation when set	RW	1'b0
0	s0_aw_lat_en	Enables port S0 AW QoS regulation when set	RW	1'b0

por_rni_s0_qos_lat_tgt

Controls QoS target latency (in cycles) for regulations of port S0 read and write transactions.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA88
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-596 por_rni_por_rni_s0_qos_lat_tgt (high)

The following table shows the por_rni_s0_qos_lat_tgt higher register bit assignments.

Table 3-610 por_rni_por_rni_s0_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

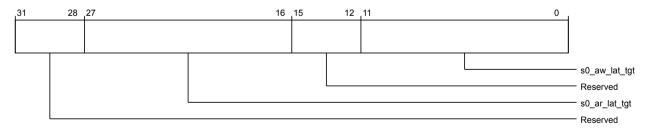


Figure 3-597 por_rni_por_rni_s0_qos_lat_tgt (low)

The following table shows the por rni s0 qos lat tgt lower register bit assignments.

Table 3-611 por_rni_por_rni_s0_qos_lat_tgt (low)

Bits	Field name	Description	Туре	Reset
31:28	:28 Reserved Reserved		RO	-
27:16	s0_ar_lat_tgt	Port S0 AR channel target latency; a value of 0 corresponds to no regulation	RW	12'h000
15:12	Reserved	Reserved	RO	-
11:0	s0_aw_lat_tgt	Port S0 AW channel target latency; a value of 0 corresponds to no regulation	RW	12'h000

por_rni_s0_qos_lat_scale

Controls the QoS target latency scale factor for port S0 read and write transactions. This register represents powers of two from the range 2^{-1} to 2^{-1} ; it is used to match a 16-bit integrator.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA90
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-598 por_rni_por_rni_s0_qos_lat_scale (high)

The following table shows the por rni s0 qos lat scale higher register bit assignments.

Table 3-612 por_rni_por_rni_s0_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

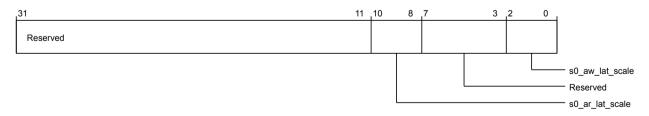


Figure 3-599 por_rni_por_rni_s0_qos_lat_scale (low)

The following table shows the por_rni_s0_qos_lat_scale lower register bit assignments.

Table 3-613 por_rni_por_rni_s0_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:8	s0_ar_lat_scale	Port S0 AR QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		
7:3	Reserved	Reserved	RO	-
2:0	s0_aw_lat_scale	Port S0 AW QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		

por_rni_s0_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS latency regulator for port S0 read and write transactions.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA98
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rni_secure_register_groups_override.qos_ctrl

over ride

63 32
Reserved

Figure 3-600 por_rni_por_rni_s0_qos_lat_range (high)

The following table shows the por rni s0 qos lat range higher register bit assignments.

Table 3-614 por_rni_por_rni_s0_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

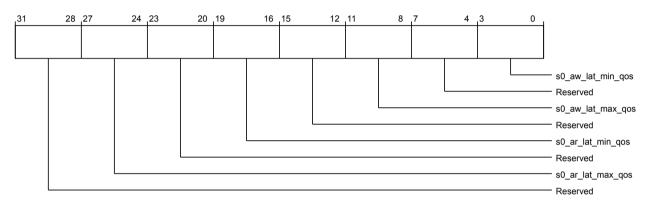


Figure 3-601 por_rni_por_rni_s0_qos_lat_range (low)

The following table shows the por rni s0 qos lat range lower register bit assignments.

Table 3-615 por_rni_por_rni_s0_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:24	s0_ar_lat_max_qos	Port S0 AR QoS maximum value	RW	4'h0
23:20	Reserved	Reserved	RO	-
19:16	s0_ar_lat_min_qos	Port S0 AR QoS minimum value	RW	4'h0
15:12	Reserved	Reserved	RO	-
11:8	s0_aw_lat_max_qos	Port S0 AW QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	s0_aw_lat_min_qos	Port S0 AW QoS minimum value	RW	4'h0

por_rni_s1_qos_control

Controls QoS settings for port S1 AXI/ACE slave interface.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hAA0 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-602 por_rni_por_rni_s1_qos_control (high)

The following table shows the por_rni_s1_qos_control higher register bit assignments.

Table 3-616 por_rni_por_rni_s1_qos_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

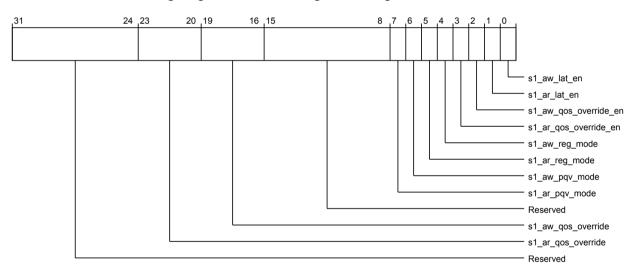


Figure 3-603 por_rni_por_rni_s1_qos_control (low)

The following table shows the por rni s1 qos control lower register bit assignments.

Table 3-617 por_rni_por_rni_s1_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	s1_ar_qos_override	AR QoS override value for port S1	RW	4'b0000
19:16	s1_aw_qos_override	AW QoS override value for port S1	RW	4'b0000
15:8	Reserved	Reserved	RO	-

Table 3-617 por_rni_por_rni_s1_qos_control (low) (continued)

Bits	Field name	Description	Туре	Reset
7	s1_ar_pqv_mode	Configures the QoS regulator mode for read transactions during period mode	RW	1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
6	s1_aw_pqv_mode			1'b0
		1'b0: Normal mode; QoS value is stable when the master is idle		
		1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		
5	s1_ar_reg_mode	Configures the QoS regulator mode for read transactions	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
4	s1_aw_reg_mode	Configures the QoS regulator mode for write transactions	RW	1'b0
		1'b0: Latency mode		
		1'b1: Period mode; used for bandwidth regulation		
3	s1_ar_qos_override_en	Enables port S1 AR QoS override; when set, allows QoS value on inbound AR transactions to be overridden	RW	1'b0
2	s1_aw_qos_override_en	Enables port S1 AW QoS override; when set, allows QoS value on inbound AW transactions to be overridden	RW	1'b0
1	s1_ar_lat_en	Enables port S1 AR QoS regulation when set	RW	1'b0
0	s1_aw_lat_en	Enables port S1 AW QoS regulation when set	RW	1'b0

por_rni_s1_qos_lat_tgt

Controls QoS target latency (in cycles) for regulation of port S1 read and write transactions.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAA8

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rni_secure_register_groups_override.qos_ctrl

override

Register reset

The following image shows the higher register bit assignments.

64'b0

Figure 3-604 por_rni_por_rni_s1_qos_lat_tgt (high)

The following table shows the por rni s1 gos lat tgt higher register bit assignments.

Table 3-618 por rni por rni s1 gos lat tgt (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

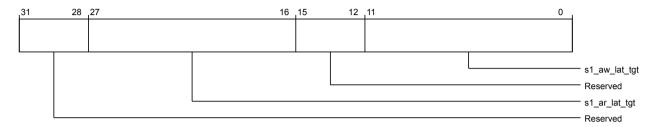


Figure 3-605 por_rni_por_rni_s1_qos_lat_tgt (low)

The following table shows the por rni s1 qos lat tgt lower register bit assignments.

Table 3-619 por_rni_por_rni_s1_qos_lat_tgt (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:16	s1_ar_lat_tgt	Port S1 AR channel target latency; a value of 0 corresponds to no regulation	RW	12'h000
15:12	Reserved	Reserved	RO	-
11:0	s1_aw_lat_tgt	Port S1 AW channel target latency; a value of 0 corresponds to no regulation	RW	12'h000

por_rni_s1_qos_lat_scale

Controls the QoS target latency scale factor for port S1 read and write transactions. This register represents powers of two from the range 2^{-1} to 2^{-1} ; it is used to match a 16-bit integrator.

Its characteristics are:

RW **Type** Register width (Bits) 64 Address offset 14'hAB0 64'b0 Register reset

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por rni secure register groups override.gos ctrl

override

Figure 3-606 por_rni_por_rni_s1_qos_lat_scale (high)

The following table shows the por_rni_s1_qos_lat_scale higher register bit assignments.

Table 3-620 por_rni_por_rni_s1_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

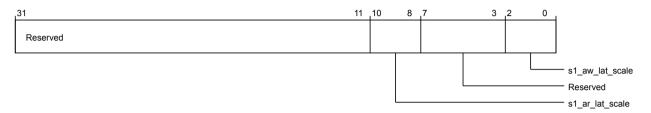


Figure 3-607 por_rni_por_rni_s1_qos_lat_scale (low)

The following table shows the por_rni_s1_qos_lat_scale lower register bit assignments.

Table 3-621 por_rni_por_rni_s1_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:8	s1_ar_lat_scale	Port S1 AR QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		
7:3	Reserved	Reserved	RO	-
2:0	s1_aw_lat_scale	Port S1 AW QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		

por_rni_s1_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS latency regulator for port S1 read and write transactions.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'hAB8 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-608 por_rni_por_rni_s1_qos_lat_range (high)

The following table shows the por_rni_s1_qos_lat_range higher register bit assignments.

Table 3-622 por_rni_por_rni_s1_qos_lat_range (high)

Bits Field name		Field name Description		Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.



Figure 3-609 por rni por rni s1 gos lat range (low)

The following table shows the por rni s1 qos lat range lower register bit assignments.

Table 3-623 por_rni_por_rni_s1_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:24	s1_ar_lat_max_qos	Port S1 AR QoS maximum value	RW	4'h0

Table 3-623 por_rni_por_rni_s1_qos_lat_range (low) (continued)

Bits	Field name	Description	Туре	Reset
23:20	Reserved	Reserved	RO	-
19:16	s1_ar_lat_min_qos	Port S1 AR QoS minimum value	RW	4'h0
15:12	Reserved	Reserved	RO	-
11:8	s1_aw_lat_max_qos	Port S1 AW QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	s1_aw_lat_min_qos	Port S1 AW QoS minimum value	RW	4'h0

por_rni_s2_qos_control

Controls QoS settings for port S2 AXI/ACE slave interface.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAC0

Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por_rni_secure_register_groups_override.qos_ctrl

override

The following image shows the higher register bit assignments.

Figure 3-610 por_rni_por_rni_s2_qos_control (high)

The following table shows the por_rni_s2_qos_control higher register bit assignments.

Table 3-624 por_rni_por_rni_s2_qos_control (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

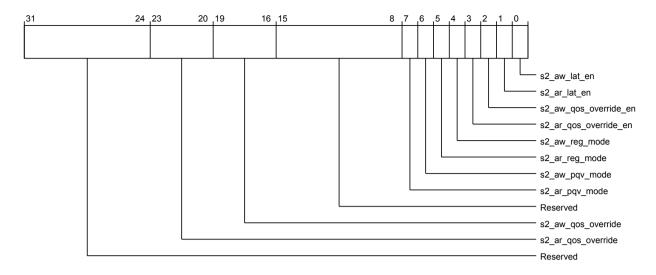


Figure 3-611 por_rni_por_rni_s2_qos_control (low)

The following table shows the por_rni_s2_qos_control lower register bit assignments.

Table 3-625 por_rni_por_rni_s2_qos_control (low)

Bits	Field name	Description	Туре	Reset
31:24	Reserved	Reserved	RO	-
23:20	s2_ar_qos_override	AR QoS override value for port S2	RW	4'b0000
19:16	s2_aw_qos_override	AW QoS override value for port S2	RW	4'b0000
15:8	Reserved	Reserved	RO	-
7	s2_ar_pqv_mode	Configures the QoS regulator mode for read transactions during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		1'b0
6	s2_aw_pqv_mode	Configures the QoS regulator mode for write transactions during period mode 1'b0: Normal mode; QoS value is stable when the master is idle 1'b1: Quiesce high mode; QoS value tends to the maximum value when the master is idle		1'b0
5	s2_ar_reg_mode	Configures the QoS regulator mode for read transactions 1'b0: Latency mode 1'b1: Period mode; used for bandwidth regulation		1'b0
4			RW	1'b0
3	s2_ar_qos_override_en	nables port S2 AR QoS override; when set, allows QoS value on inbound AR ansactions to be overridden		1'b0
2	s2_aw_qos_override_en	Enables port S2 AW QoS override; when set, allows QoS value on inbound AW transactions to be overridden	RW	1'b0

Table 3-625 por_rni_por_rni_s2_qos_control (low) (continued)

Bits	ts Field name Description		Туре	Reset
1	s2_ar_lat_en	Enables port S2 AR QoS regulation when set	RW	1'b0
0	s2_aw_lat_en	Enables port S2 AW QoS regulation when set	RW	1'b0

por_rni_s2_qos_lat_tgt

Controls QoS target latency (in cycles) for regulation of port S2 read and write transactions.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hAC8Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-612 por_rni_por_rni_s2_qos_lat_tgt (high)

The following table shows the por_rni_s2_qos_lat_tgt higher register bit assignments.

Table 3-626 por_rni_por_rni_s2_qos_lat_tgt (high)

Bits	Field name	Description	Туре	Reset	
	63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

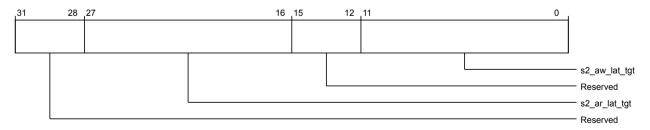


Figure 3-613 por_rni_por_rni_s2_qos_lat_tgt (low)

The following table shows the por_rni_s2_qos_lat_tgt lower register bit assignments.

Table 3-627 por_rni_por_rni_s2_qos_lat_tgt (low)

Bits	Field name Description		Туре	Reset
31:28	1:28 Reserved Reserved		RO	-
27:16	s2_ar_lat_tgt	Port S2 AR channel target latency; a value of 0 corresponds to no regulation	RW	12'h000
15:12	Reserved	Reserved	RO	-
11:0	s2_aw_lat_tgt	Port S2 AW channel target latency; a value of 0 corresponds to no regulation	RW	12'h000

por_rni_s2_qos_lat_scale

Controls the QoS target latency scale factor for port S2 read and write transactions. This register represents powers of two from the range 2^{-1} to 2^{-1} ; it is used to match a 16-bit integrator.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hAD0
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rni_secure_register_groups_override.qos_ctrl

The following image shows the higher register bit assignments.

Figure 3-614 por_rni_por_rni_s2_qos_lat_scale (high)

The following table shows the por rni s2 qos lat scale higher register bit assignments.

Table 3-628 por_rni_por_rni_s2_qos_lat_scale (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

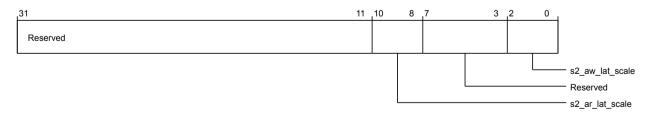


Figure 3-615 por_rni_por_rni_s2_qos_lat_scale (low)

The following table shows the por_rni_s2_qos_lat_scale lower register bit assignments.

Table 3-629 por_rni_por_rni_s2_qos_lat_scale (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10:8	s2_ar_lat_scale	Port S2 AR QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		
7:3	Reserved	Reserved	RO	-
2:0	s2_aw_lat_scale	Port S2 AW QoS scale factor	RW	3'h0
		3'b000: 2^(-5)		
		3'b001: 2^(-6)		
		3'b010: 2^(-7)		
		3'b011: 2^(-8)		
		3'b100: 2^(-9)		
		3'b101: 2^(-10)		
		3'b110: 2^(-11)		
		3'b111: 2^(-12)		

por_rni_s2_qos_lat_range

Controls the minimum and maximum QoS values generated by the QoS latency regulator for port S2 read and write transactions.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'hAD8 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rni_secure_register_groups_override.qos_ctrl

override

The following image shows the higher register bit assignments.

63 32 Reserved

Figure 3-616 por_rni_por_rni_s2_qos_lat_range (high)

The following table shows the por rni s2 qos lat range higher register bit assignments.

Table 3-630 por_rni_por_rni_s2_qos_lat_range (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

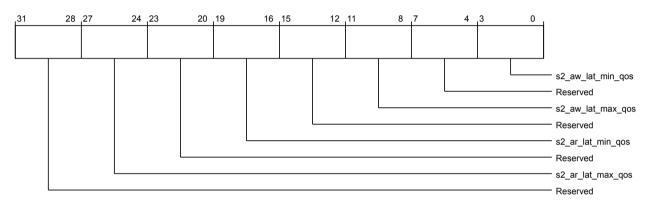


Figure 3-617 por_rni_por_rni_s2_qos_lat_range (low)

The following table shows the por rni s2 qos lat range lower register bit assignments.

Table 3-631 por_rni_por_rni_s2_qos_lat_range (low)

Bits	Field name	Description	Туре	Reset
31:28	Reserved	Reserved	RO	-
27:24	s2_ar_lat_max_qos	Port S2 AR QoS maximum value	RW	4'h0
23:20	Reserved	Reserved	RO	-
19:16	s2_ar_lat_min_qos	Port S2 AR QoS minimum value	RW	4'h0
15:12	Reserved	Reserved	RO	-
11:8	s2_aw_lat_max_qos	Port S2 AW QoS maximum value	RW	4'h0
7:4	Reserved	Reserved	RO	-
3:0	s2_aw_lat_min_qos	Port S2 AW QoS minimum value	RW	4'h0

por_rni_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2000 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-618 por_rni_por_rni_pmu_event_sel (high)

The following table shows the por_rni_pmu_event_sel higher register bit assignments.

Table 3-632 por_rni_por_rni_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

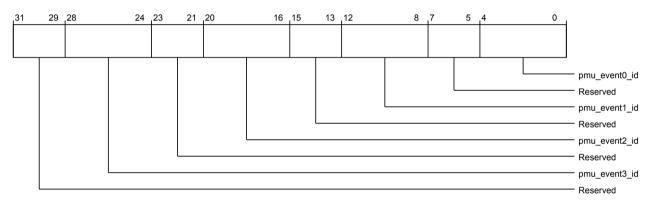


Figure 3-619 por_rni_por_rni_pmu_event_sel (low)

The following table shows the por_rni_pmu_event_sel lower register bit assignments.

Table 3-633 por_rni_por_rni_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:29	Reserved	Reserved	RO	-
28:24	pmu_event3_id	RN-I PMU Event 3 ID; see pmu_event0_id for encodings	RW	5'b0
23:21	Reserved	Reserved	RO	-
20:16	pmu_event2_id	RN-I PMU Event 2 ID; see pmu_event0_id for encodings	RW	5'b0
15:13	Reserved	Reserved	RO	-
12:8	pmu_event1_id	RN-I PMU Event 1 ID; see pmu_event0_id for encodings	RW	5'b0

Table 3-633 por_rni_por_rni_pmu_event_sel (low) (continued)

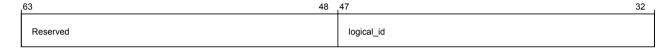
Bits	Field name	Description	Туре	Reset
7:5	Reserved	Reserved	RO	-
4:0	pmu_event0_id	RN-I PMU Event 0 ID	RW	5'b0
		5'h00: No event		
		5'h01: Port S0 RDataBeats		
		5'h02: Port S1 RDataBeats		
		5'h03: Port S2 RDataBeats		
		5'h04: RXDAT flits received		
		5'h05: TXDAT flits sent		
		5'h06: Total TXREQ flits sent		
		5'h07: Retried TXREQ flits sent		
5'h08: RRT occupancy count overflow		5'h08: RRT occupancy count overflow		
		5'h09: WRT occupancy count overflow		
		5'h0A: Replayed TXREQ flits		
		5'h0B: WriteCancel sent		
		5'h0C: Port S0 WDataBeats		
		5'h0D: Port S1 WDataBeats		
		5'h0E: Port S2 WDataBeats		
		5'h0F: RRT allocation		
		5'h10: WRT allocation		
		5'h11: RDB pool state is all unordered		
		5'h12: RDB pool state is replay		
		5'h13: RDB pool state is hybrid		
		5'h14: RDB pool state is all ordered		

3.3.9 RN SAM register descriptions

Lists the RN SAM registers.

por_rnsam_node_info

Provides component identification information.

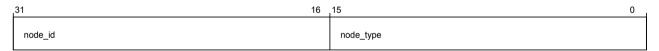

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-620 por_rnsam_por_rnsam_node_info (high)

The following table shows the por rnsam node info higher register bit assignments.

Table 3-634 por_rnsam_por_rnsam_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id Component logical ID		RO	16'h0
		NOTE: RN SAM logical ID is always set to 16'b0.		

The following image shows the lower register bit assignments.

Figure 3-621 por_rnsam_por_rnsam_node_info (low)

The following table shows the por rnsam node info lower register bit assignments.

Table 3-635 por_rnsam_por_rnsam_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h000F

por_rnsam_child_info

Provides component child identification information.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h80
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-622 por_rnsam_por_rnsam_child_info (high)

The following table shows the por_rnsam_child_info higher register bit assignments.

Table 3-636 por_rnsam_por_rnsam_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

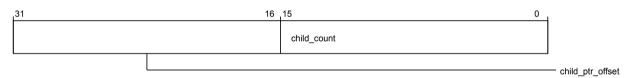


Figure 3-623 por_rnsam_por_rnsam_child_info (low)

The following table shows the por rnsam child info lower register bit assignments.

Table 3-637 por_rnsam_por_rnsam_child_info (low)

Bits	Bits Field name Description		Туре	Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15:0	child_count	Number of child nodes; used in discovery process	RO	16'b0

por_rnsam_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-624 por_rnsam_por_rnsam_secure_register_groups_override (high)

The following table shows the por_rnsam_secure_register_groups_override higher register bit assignments.

Table 3-638 por_rnsam_por_rnsam_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-625 por_rnsam_por_rnsam_secure_register_groups_override (low)

The following table shows the por_rnsam_secure_register_groups_override lower register bit assignments.

Table 3-639 por_rnsam_por_rnsam_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:1	Reserved	Reserved	RO	-
0	mem_range	Allows non-secure access to secure mem_ranges registers	RW	1'b0

por_rnsam_unit_info

Provides component identification information for RN SAM.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-626 por_rnsam_por_rnsam_unit_info (high)

The following table shows the por rnsam unit info higher register bit assignments.

Table 3-640 por_rnsam_por_rnsam_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

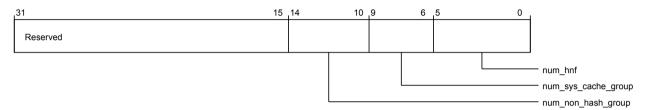


Figure 3-627 por_rnsam_por_rnsam_unit_info (low)

The following table shows the por rnsam unit info lower register bit assignments.

Table 3-641 por_rnsam_por_rnsam_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:10	num_non_hash_group	Number of non-hashed groups supported	RO	Configuration dependent
9:6	num_sys_cache_group	Number of system cache groups supported	RO	Configuration dependent
5:0	num_hnf	Number of HN-Fs supported	RO	Configuration dependent

rnsam_status

Functions as the default and programming mode status register.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC00
Register reset 64'b01

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-628 por_rnsam_rnsam_status (high)

The following table shows the rnsam status higher register bit assignments.

Table 3-642 por_rnsam_rnsam_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

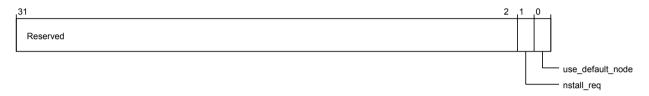


Figure 3-629 por_rnsam_rnsam_status (low)

The following table shows the rnsam status lower register bit assignments.

Table 3-643 por_rnsam_rnsam_status (low)

Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1	nstall_req	Indicates RN SAM is programmed and ready	RW	1'b0
		1'b0: STALL requests		
		1'b1: UNSTALL requests		
0	use_default_node	Indicates target ID selection mode	RW	1'b1
		1'b0: Enables RN SAM to hash address bits and generate target ID		
		1'b1: Uses default target ID		

non_hash_mem_region_reg0

Configures non-hashed memory regions 0 and 1.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC08
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por rnsam secure register groups override.mem range

override

The following image shows the higher register bit assignments.

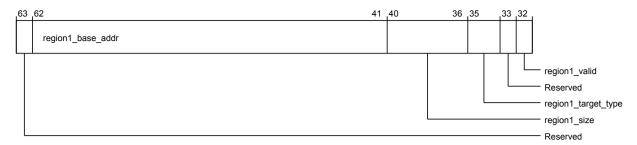


Figure 3-630 por_rnsam_non_hash_mem_region_reg0 (high)

The following table shows the non_hash_mem_region_reg0 higher register bit assignments.

Table 3-644 por_rnsam_non_hash_mem_region_reg0 (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:41	region1_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 1 size		
40:36	region1_size	Memory region 1 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2^address width).		
35:34	region1_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
33	Reserved	Reserved	RO	-
32	region1_valid	Memory region 1 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

The following image shows the lower register bit assignments.

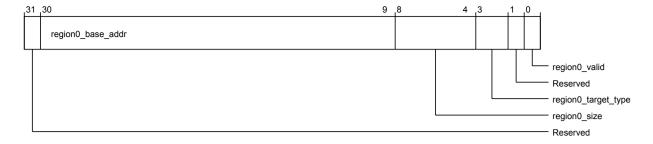


Figure 3-631 por_rnsam_non_hash_mem_region_reg0 (low)

The following table shows the non hash mem region reg0 lower register bit assignments.

Table 3-645 por_rnsam_non_hash_mem_region_reg0 (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:9	region0_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 0 size		
8:4	region0_size	Memory region 0 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2 ^{address} width).		
3:2	region0_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
1	Reserved	Reserved	RO	-
0	region0_valid	Memory region 0 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

non_hash_mem_region_reg1

Configures non-hashed memory regions 2 and 3.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC10
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnsam_secure_register_groups_override.mem_range **override**

The following image shows the higher register bit assignments.

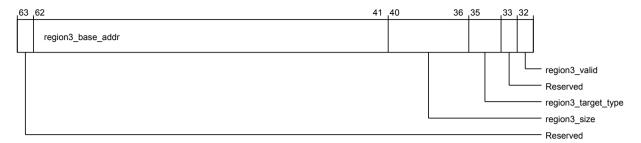


Figure 3-632 por_rnsam_non_hash_mem_region_reg1 (high)

The following table shows the non hash mem region reg1 higher register bit assignments.

Table 3-646 por_rnsam_non_hash_mem_region_reg1 (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:41	region3_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 3 size		
40:36	region3_size	Memory region 3 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2 ^a ddress		
		width).		
35:34	region3_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
33	Reserved	Reserved	RO	-
32	region3_valid	Memory region 3 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

The following image shows the lower register bit assignments.

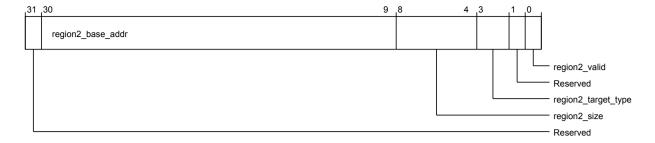


Figure 3-633 por_rnsam_non_hash_mem_region_reg1 (low)

The following table shows the non hash mem region reg1 lower register bit assignments.

Table 3-647 por_rnsam_non_hash_mem_region_reg1 (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:9	region2_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 2 size		
8:4	region2_size	Memory region 2 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2 ^{address} width).		
		<u> </u>		
3:2	region2_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
1	Reserved	Reserved	RO	-
0	region2_valid	Memory region 2 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

non_hash_mem_region_reg2

Configures non-hashed memory regions 4 and 5.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC18
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnsam_secure_register_groups_override.mem_range **override**

The following image shows the higher register bit assignments.

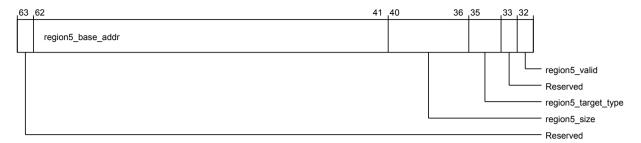


Figure 3-634 por_rnsam_non_hash_mem_region_reg2 (high)

The following table shows the non hash mem region reg2 higher register bit assignments.

Table 3-648 por_rnsam_non_hash_mem_region_reg2 (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:41	region5_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 5 size		
40:36	region5_size	Memory region 5 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2^address width).		
35:34	region5_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
33	Reserved	Reserved	RO	-
32	region5_valid	Memory region 5 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

The following image shows the lower register bit assignments.

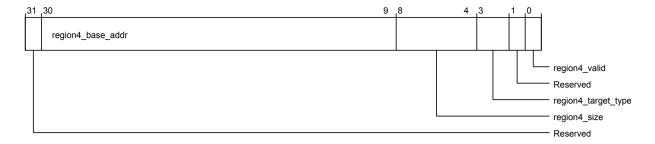


Figure 3-635 por_rnsam_non_hash_mem_region_reg2 (low)

The following table shows the non hash mem region reg2 lower register bit assignments.

Table 3-649 por_rnsam_non_hash_mem_region_reg2 (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:9	region4_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 4 size		
8:4	region4_size	Memory region 4 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2 ^{address} width).		
3:2	region4_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
1	Reserved	Reserved	RO	-
0	region4_valid	Memory region 4 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

non_hash_mem_region_reg3

Configures non-hashed memory regions 6 and 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC20
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group por_rnsam_secure_register_groups_override.mem_range **override**

The following image shows the higher register bit assignments.

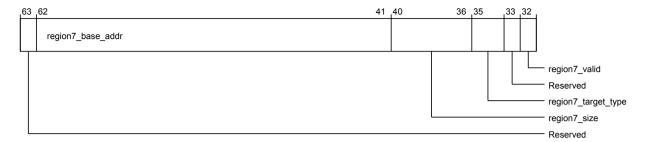


Figure 3-636 por_rnsam_non_hash_mem_region_reg3 (high)

The following table shows the non_hash_mem_region_reg3 higher register bit assignments.

Table 3-650 por_rnsam_non_hash_mem_region_reg3 (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:41	region7_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 7 size		
40:36	region7_size	Memory region 7 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2^address width).		
35:34	region7_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
33	Reserved	Reserved	RO	-
32	region7_valid	Memory region 7 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

The following image shows the lower register bit assignments.

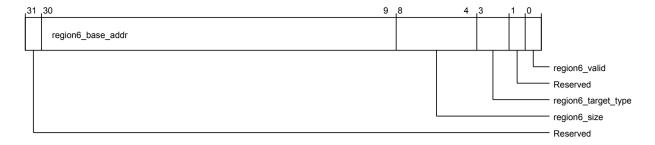


Figure 3-637 por_rnsam_non_hash_mem_region_reg3 (low)

The following table shows the non hash mem region reg3 lower register bit assignments.

Table 3-651 por_rnsam_non_hash_mem_region_reg3 (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:9	region6_base_addr	Bits [47:26] of base address of the range CONSTRAINT: Must be an integer multiple of region 6 size	RW	22'b00000000000000000000000000000000000
8:4	region6_size	Memory region 6 size CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2^address width).	RW	5'b00000
3:2	region6_target_type	Indicates node type 2'b00: HN-F 2'b01: HN-I 2'b10: CXRA 2'b11: Reserved CONSTRAINT: Only applicable for RN-I	RW	2'b00
1	Reserved	Reserved	RO	-
0	region6_valid	Memory region 6 valid 1'b0: Not valid 1'b1: Valid for memory region comparison	RW	1'b0

non_hash_tgt_nodeid0

Configures non-hashed target node IDs 0 to 3.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC30
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

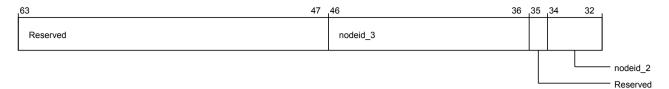


Figure 3-638 por_rnsam_non_hash_tgt_nodeid0 (high)

The following table shows the non hash tgt nodeid0 higher register bit assignments.

Table 3-652 por_rnsam_non_hash_tgt_nodeid0 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_3	Non-hashed target node ID 3	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_2	Non-hashed target node ID 2	RW	11'b000000000000

The following image shows the lower register bit assignments.

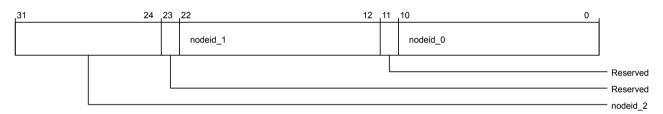


Figure 3-639 por_rnsam_non_hash_tgt_nodeid0 (low)

The following table shows the non hash tgt nodeid0 lower register bit assignments.

Table 3-653 por_rnsam_non_hash_tgt_nodeid0 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_2	Non-hashed target node ID 2	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_1	Non-hashed target node ID 1	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_0	Non-hashed target node ID 0	RW	11'b00000000000

non_hash_tgt_nodeid1

Configures non-hashed target node IDs 4 to 7.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hC38 Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

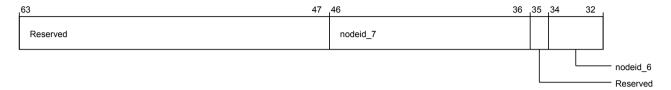


Figure 3-640 por_rnsam_non_hash_tgt_nodeid1 (high)

The following table shows the non_hash_tgt_nodeid1 higher register bit assignments.

Table 3-654 por_rnsam_non_hash_tgt_nodeid1 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_7	Non-hashed target node ID 7	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_6	Non-hashed target node ID 6	RW	11'b00000000000

The following image shows the lower register bit assignments.

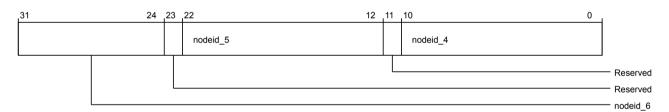


Figure 3-641 por_rnsam_non_hash_tgt_nodeid1 (low)

The following table shows the non hash tgt nodeid1 lower register bit assignments.

Table 3-655 por rnsam non hash tgt nodeid1 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_6	Non-hashed target node ID 6	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_5	Non-hashed target node ID 5	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_4	Non-hashed target node ID 4	RW	11'b000000000000

sys_cache_grp_region0

Configures hashed memory regions 0 and 1.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC48Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por rnsam secure register groups override.mem range

override

The following image shows the higher register bit assignments.

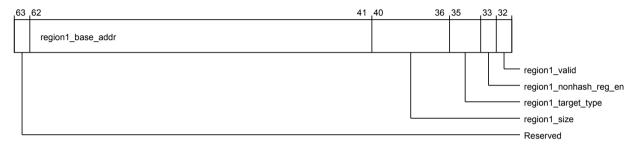


Figure 3-642 por_rnsam_sys_cache_grp_region0 (high)

The following table shows the sys_cache_grp_region0 higher register bit assignments.

Table 3-656 por_rnsam_sys_cache_grp_region0 (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:41	region1_base_addr	Bits [47:26] of base address of the range CONSTRAINT: Must be an integer multiple of region 1 size	RW	22'b00000000000000000000000000000000000
40:36	region1_size	Memory region 1 size CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2^address width).	RW	5'b00000
35:34	region1_target_type	Indicates node type 2'b00: HN-F 2'b01: HN-I 2'b10: CXRA 2'b11: Reserved CONSTRAINT: Only applicable for RN-I	RW	2'b00

Table 3-656 por_rnsam_sys_cache_grp_region0 (high) (continued)

Bits	Field name	Description	Туре	Reset
33	region1_nonhash_reg_en	Enables hashed region 1 to select non-hashed node	RW	1'b0
32	region1_valid	Memory region 1 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

The following image shows the lower register bit assignments.

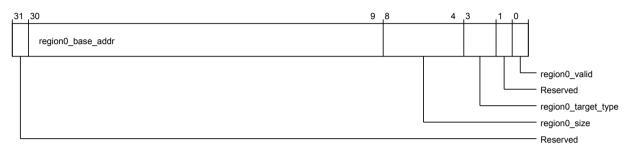


Figure 3-643 por_rnsam_sys_cache_grp_region0 (low)

The following table shows the sys_cache_grp_region0 lower register bit assignments.

Table 3-657 por_rnsam_sys_cache_grp_region0 (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:9	region0_base_addr	Bits [47:26] of base address of the range	RW	22'b00000000000000000000000000000000000
		CONSTRAINT: Must be an integer multiple of region 0 size		
8:4	region0_size	Memory region 0 size	RW	5'b00000
		CONSTRAINT: Memory region must be a power of two, from		
		minimum size supported to maximum memory size (2 ^{address} width).		
3:2	region0_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
1	Reserved	Reserved	RO	-
0	region0_valid	Memory region 0 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

sys_cache_grp_region1

Configures hashed memory regions 2 and 3.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC50Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por rnsam secure register groups override.mem range

override

The following image shows the higher register bit assignments.

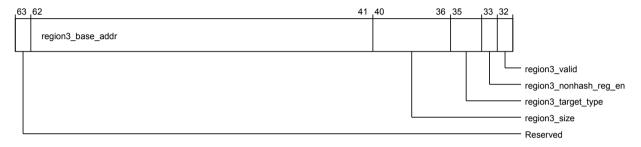


Figure 3-644 por_rnsam_sys_cache_grp_region1 (high)

The following table shows the sys_cache_grp_region1 higher register bit assignments.

Table 3-658 por_rnsam_sys_cache_grp_region1 (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:41	region3_base_addr	Bits [47:26] of base address of the range CONSTRAINT: Must be an integer multiple of region 3 size	RW	22'b00000000000000000000000000000000000
40:36	region3_size	Memory region 3 size CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2^address width).	RW	5'b00000
35:34	region3_target_type	Indicates node type 2'b00: HN-F 2'b01: HN-I 2'b10: CXRA 2'b11: Reserved CONSTRAINT: Only applicable for RN-I	RW	2'b00

Table 3-658 por_rnsam_sys_cache_grp_region1 (high) (continued)

Bits	Field name	Description	Туре	Reset
33	region3_nonhash_reg_en	Enables hashed region 3 to select non-hashed node	RW	1'b0
32	region3_valid	Memory region 3 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

The following image shows the lower register bit assignments.

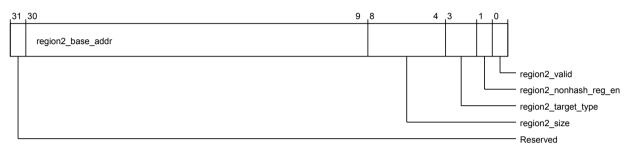


Figure 3-645 por_rnsam_sys_cache_grp_region1 (low)

The following table shows the sys_cache_grp_region1 lower register bit assignments.

Table 3-659 por_rnsam_sys_cache_grp_region1 (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:9	region2_base_addr	Bits [47:26] of base address of the range CONSTRAINT: Must be an integer multiple of region 2 size	RW	22'b00000000000000000000000000000000000
8:4	region2_size	Memory region 2 size CONSTRAINT: Memory region must be a power of two, from minimum size supported to maximum memory size (2^address width).	RW	5'b00000
3:2	region2_target_type	Indicates node type 2'b00: HN-F 2'b01: HN-I 2'b10: CXRA 2'b11: Reserved CONSTRAINT: Only applicable for RN-I	RW	2'b00
1	region2_nonhash_reg_en	Enables hashed region 2 to select non-hashed node	RW	1'b0
0	region2_valid	Memory region 2 valid 1'b0: Not valid 1'b1: Valid for memory region comparison	RW	1'b0

sys_cache_grp_hn_nodeid_reg0

Configures hashed node IDs for system cache group 0. Controls target HN node IDs 0 to 3.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC58Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

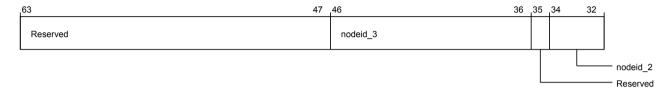


Figure 3-646 por_rnsam_sys_cache_grp_hn_nodeid_reg0 (high)

The following table shows the sys cache grp hn nodeid reg0 higher register bit assignments.

Table 3-660 por_rnsam_sys_cache_grp_hn_nodeid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_3	Hashed target node ID 3	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_2	Hashed target node ID 2	RW	11'b000000000000

The following image shows the lower register bit assignments.

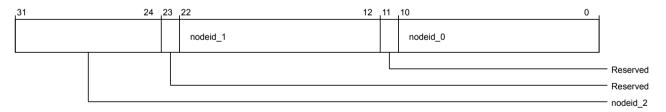


Figure 3-647 por_rnsam_sys_cache_grp_hn_nodeid_reg0 (low)

The following table shows the sys cache grp hn nodeid reg0 lower register bit assignments.

Table 3-661 por_rnsam_sys_cache_grp_hn_nodeid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_2	Hashed target node ID 2	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_1	Hashed target node ID 1	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_0	Hashed target node ID 0	RW	11'b000000000000

sys_cache_grp_hn_nodeid_reg1

Configures hashed node IDs for system cache group 0. Controls target HN node IDs 4 to 7.

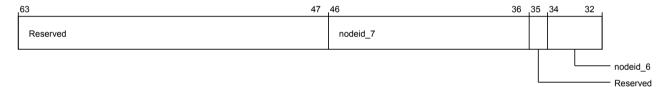
Its characteristics are:

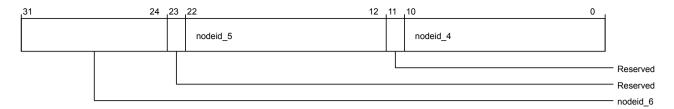
Type RW
Register width (Bits) 64
Address offset 14'hC60
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.




Figure 3-648 por_rnsam_sys_cache_grp_hn_nodeid_reg1 (high)

The following table shows the sys_cache_grp_hn_nodeid_reg1 higher register bit assignments.

Table 3-662 por_rnsam_sys_cache_grp_hn_nodeid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_7	Hashed target node ID 7	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_6	Hashed target node ID 6	RW	11'b00000000000

The following image shows the lower register bit assignments.

Figure 3-649 por_rnsam_sys_cache_grp_hn_nodeid_reg1 (low)

The following table shows the sys cache grp hn nodeid reg1 lower register bit assignments.

Table 3-663 por_rnsam_sys_cache_grp_hn_nodeid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_6	Hashed target node ID 6	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_5	Hashed target node ID 5	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_4	Hashed target node ID 4	RW	11'b000000000000

sys_cache_grp_hn_nodeid_reg2

Configures hashed node IDs for system cache group 1. Controls target HN node IDs 8 to 11.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC68
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

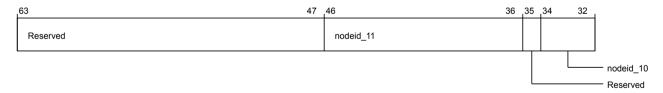


Figure 3-650 por_rnsam_sys_cache_grp_hn_nodeid_reg2 (high)

The following table shows the sys cache grp hn nodeid reg2 higher register bit assignments.

Table 3-664 por_rnsam_sys_cache_grp_hn_nodeid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_11	Hashed target node ID 11	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_10	Hashed target node ID 10	RW	11'b000000000000

The following image shows the lower register bit assignments.

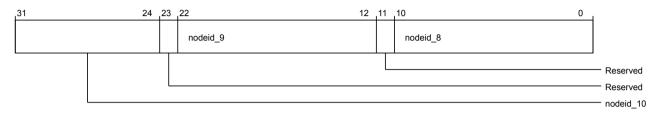


Figure 3-651 por_rnsam_sys_cache_grp_hn_nodeid_reg2 (low)

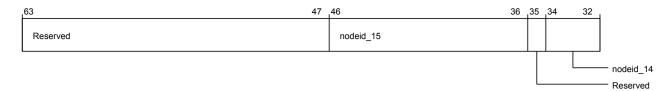
The following table shows the sys cache grp hn nodeid reg2 lower register bit assignments.

Table 3-665 por_rnsam_sys_cache_grp_hn_nodeid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_10	Hashed target node ID 10	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_9	Hashed target node ID 9	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_8	Hashed target node ID 8	RW	11'b000000000000

sys_cache_grp_hn_nodeid_reg3

Configures hashed node IDs for system cache group 1. Controls target HN node IDs 12 to 15.


Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC70
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-652 por_rnsam_sys_cache_grp_hn_nodeid_reg3 (high)

The following table shows the sys_cache_grp_hn_nodeid_reg3 higher register bit assignments.

Table 3-666 por_rnsam_sys_cache_grp_hn_nodeid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_15	Hashed target node ID 15	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_14	Hashed target node ID 14	RW	11'b00000000000

The following image shows the lower register bit assignments.

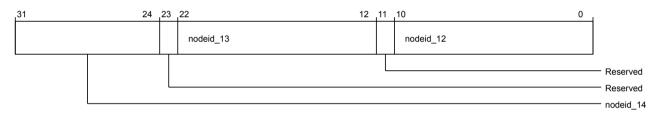


Figure 3-653 por_rnsam_sys_cache_grp_hn_nodeid_reg3 (low)

The following table shows the sys cache grp hn nodeid reg3 lower register bit assignments.

Table 3-667 por_rnsam_sys_cache_grp_hn_nodeid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_14	Hashed target node ID 14	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_13	Hashed target node ID 13	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_12	Hashed target node ID 12	RW	11'b000000000000

sys_cache_grp_hn_nodeid_reg4

Configures hashed node IDs for system cache group 2. Controls target HN node IDs 16 to 19.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hC78 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

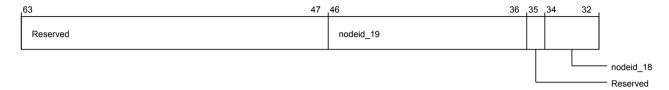


Figure 3-654 por_rnsam_sys_cache_grp_hn_nodeid_reg4 (high)

The following table shows the sys_cache_grp_hn_nodeid_reg4 higher register bit assignments.

Table 3-668 por_rnsam_sys_cache_grp_hn_nodeid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_19	Hashed target node ID 19	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_18	Hashed target node ID 18	RW	11'b00000000000

The following image shows the lower register bit assignments.

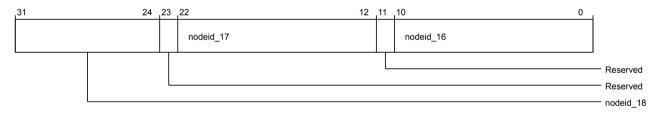


Figure 3-655 por_rnsam_sys_cache_grp_hn_nodeid_reg4 (low)

The following table shows the sys cache grp hn nodeid reg4 lower register bit assignments.

Table 3-669 por_rnsam_sys_cache_grp_hn_nodeid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_18	Hashed target node ID 18	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_17	Hashed target node ID 17	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_16	Hashed target node ID 16	RW	11'b00000000000

sys_cache_grp_hn_nodeid_reg5

Configures hashed node IDs for system cache group 2. Controls target HN node IDs 20 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC80
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

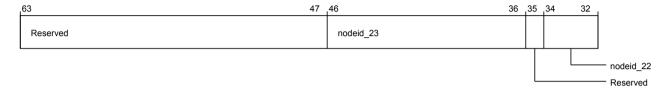


Figure 3-656 por_rnsam_sys_cache_grp_hn_nodeid_reg5 (high)

The following table shows the sys cache grp hn nodeid reg5 higher register bit assignments.

Table 3-670 por_rnsam_sys_cache_grp_hn_nodeid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_23	Hashed target node ID 23	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_22	Hashed target node ID 22	RW	11'b00000000000

The following image shows the lower register bit assignments.

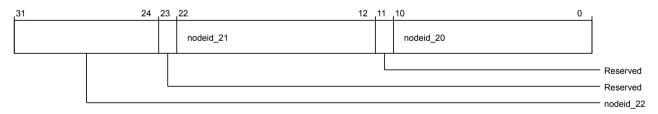


Figure 3-657 por_rnsam_sys_cache_grp_hn_nodeid_reg5 (low)

The following table shows the sys cache grp hn nodeid reg5 lower register bit assignments.

Table 3-671 por_rnsam_sys_cache_grp_hn_nodeid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_22	Hashed target node ID 22	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_21	Hashed target node ID 21	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_20	Hashed target node ID 20	RW	11'b000000000000

sys_cache_grp_hn_nodeid_reg6

Configures hashed node IDs for system cache group 3. Controls target HN node IDs 24 to 27.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC88
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

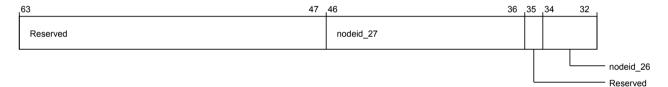


Figure 3-658 por_rnsam_sys_cache_grp_hn_nodeid_reg6 (high)

The following table shows the sys_cache_grp_hn_nodeid_reg6 higher register bit assignments.

Table 3-672 por_rnsam_sys_cache_grp_hn_nodeid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_27	Hashed target node ID 27	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_26	Hashed target node ID 26	RW	11'b000000000000

The following image shows the lower register bit assignments.

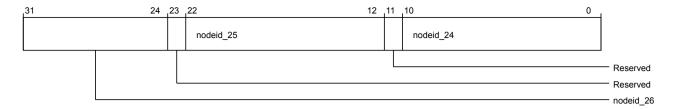


Figure 3-659 por_rnsam_sys_cache_grp_hn_nodeid_reg6 (low)

The following table shows the sys cache grp hn nodeid reg6 lower register bit assignments.

Table 3-673 por_rnsam_sys_cache_grp_hn_nodeid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_26	Hashed target node ID 26	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_25	Hashed target node ID 25	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_24	Hashed target node ID 24	RW	11'b00000000000

sys_cache_grp_hn_nodeid_reg7

Configures hashed node IDs for system cache group 3. Controls target HN node IDs 28 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC90
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

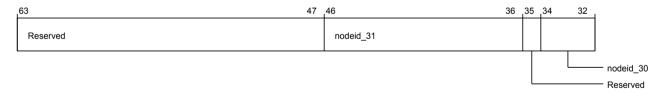


Figure 3-660 por_rnsam_sys_cache_grp_hn_nodeid_reg7 (high)

The following table shows the sys_cache_grp_hn_nodeid_reg7 higher register bit assignments.

Table 3-674 por_rnsam_sys_cache_grp_hn_nodeid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	nodeid_31	Hashed target node ID 31	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	nodeid_30	Hashed target node ID 30	RW	11'b00000000000

The following image shows the lower register bit assignments.

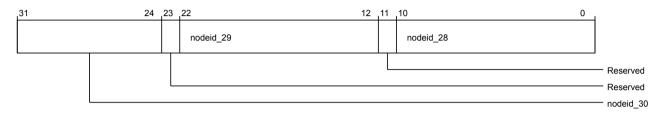


Figure 3-661 por_rnsam_sys_cache_grp_hn_nodeid_reg7 (low)

The following table shows the sys cache grp hn nodeid reg7 lower register bit assignments.

Table 3-675 por_rnsam_sys_cache_grp_hn_nodeid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:24	nodeid_30	Hashed target node ID 30	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	nodeid_29	Hashed target node ID 29	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	nodeid_28	Hashed target node ID 28	RW	11'b000000000000

sys_cache_grp_nonhash_nodeid

Configures non-hashed node IDs for system cache groups 1 to 3. NOTE: Only applicable in the non-hashed mode.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC98Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-662 por_rnsam_sys_cache_grp_nonhash_nodeid (high)

The following table shows the sys cache grp nonhash nodeid higher register bit assignments.

Table 3-676 por_rnsam_sys_cache_grp_nonhash_nodeid (high)

Bits	Field name	Description	Туре	Reset
63:35	Reserved	Reserved	RO	-
34:32	scg3_nodeid	Non-hashed node ID for system cache group 3	RW	11'b00000000000

The following image shows the lower register bit assignments.

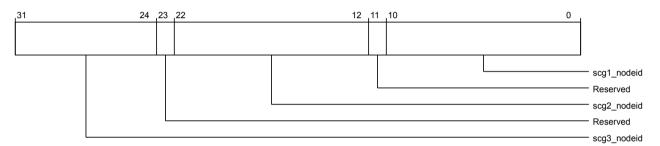


Figure 3-663 por_rnsam_sys_cache_grp_nonhash_nodeid (low)

The following table shows the sys_cache_grp_nonhash_nodeid lower register bit assignments.

Table 3-677 por_rnsam_sys_cache_grp_nonhash_nodeid (low)

Bits	Field name	Description	Туре	Reset
31:24	scg3_nodeid	Non-hashed node ID for system cache group 3	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	scg2_nodeid	Non-hashed node ID for system cache group 2	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	scg1_nodeid	Non-hashed node ID for system cache group 1	RW	11'b000000000000

sys_cache_group_hn_count

Indicates number of HN-Fs in system cache groups 0 to 3.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD00
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-664 por_rnsam_sys_cache_group_hn_count (high)

The following table shows the sys_cache_group_hn_count higher register bit assignments.

Table 3-678 por_rnsam_sys_cache_group_hn_count (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

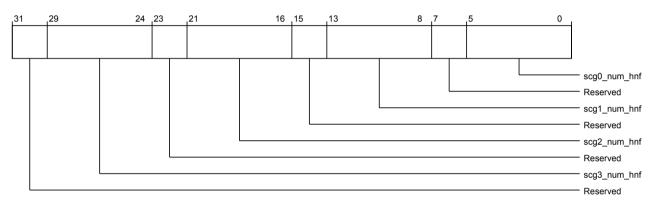


Figure 3-665 por_rnsam_sys_cache_group_hn_count (low)

The following table shows the sys_cache_group_hn_count lower register bit assignments.

Table 3-679 por_rnsam_sys_cache_group_hn_count (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	scg3_num_hnf	HN-F count for system cache group 3	RW	6'b00000
23:22	Reserved	Reserved	RO	-
21:16	scg2_num_hnf	HN-F count for system cache group 2	RW	6'b00000
15:14	Reserved	Reserved	RO	-
13:8	scg1_num_hnf	HN-F count for system cache group 1	RW	6'b00000
7:6	Reserved	Reserved	RO	-
5:0	scg0_num_hnf	HN-F count for system cache group 0	RW	6'b00000

sys_cache_grp_sn_nodeid_reg0

Configures hashed node IDs for system cache group 0. Controls target SN node IDs 0 to 3.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hD08 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

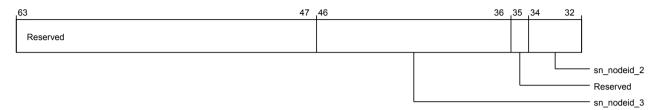


Figure 3-666 por_rnsam_sys_cache_grp_sn_nodeid_reg0 (high)

The following table shows the sys cache grp sn nodeid reg0 higher register bit assignments.

Table 3-680 por_rnsam_sys_cache_grp_sn_nodeid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_3	Hashed target SN node ID 3	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_2	Hashed target SN node ID 2	RW	11'b000000000000

The following image shows the lower register bit assignments.

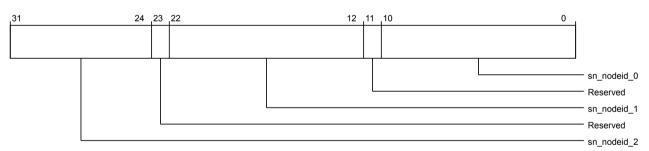


Figure 3-667 por_rnsam_sys_cache_grp_sn_nodeid_reg0 (low)

The following table shows the sys cache grp sn nodeid reg0 lower register bit assignments.

Table 3-681 por rnsam sys cache grp sn nodeid reg0 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_2	Hashed target SN node ID 2	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_1	Hashed target SN node ID 1	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_0	Hashed target SN node ID 0	RW	11'b000000000000

sys_cache_grp_sn_nodeid_reg1

Configures hashed node IDs for system cache group 0. Controls target SN node IDs 4 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD10
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

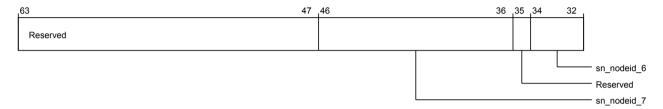


Figure 3-668 por_rnsam_sys_cache_grp_sn_nodeid_reg1 (high)

The following table shows the sys cache grp sn nodeid reg1 higher register bit assignments.

Table 3-682 por_rnsam_sys_cache_grp_sn_nodeid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_7	Hashed target SN node ID 7	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_6	Hashed target SN node ID 6	RW	11'b000000000000

The following image shows the lower register bit assignments.

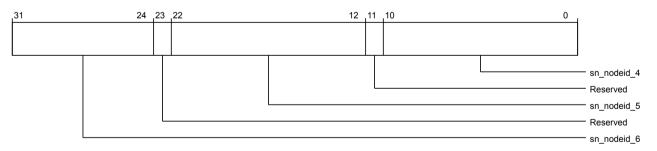


Figure 3-669 por_rnsam_sys_cache_grp_sn_nodeid_reg1 (low)

The following table shows the sys cache grp sn nodeid reg1 lower register bit assignments.

Table 3-683 por_rnsam_sys_cache_grp_sn_nodeid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_6	Hashed target SN node ID 6	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_5	Hashed target SN node ID 5	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_4	Hashed target SN node ID 4	RW	11'b000000000000

sys_cache_grp_sn_nodeid_reg2

Configures hashed node IDs for system cache group 1. Controls target SN node IDs 8 to 11.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD18
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

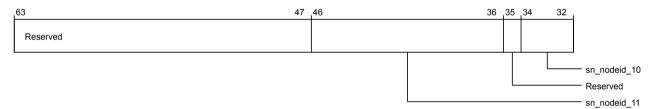


Figure 3-670 por_rnsam_sys_cache_grp_sn_nodeid_reg2 (high)

The following table shows the sys_cache_grp_sn_nodeid_reg2 higher register bit assignments.

Table 3-684 por_rnsam_sys_cache_grp_sn_nodeid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_11	Hashed target SN node ID 11	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_10	Hashed target SN node ID 10	RW	11'b00000000000

The following image shows the lower register bit assignments.

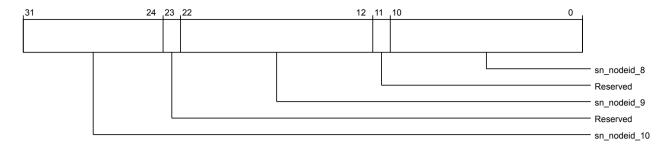


Figure 3-671 por_rnsam_sys_cache_grp_sn_nodeid_reg2 (low)

The following table shows the sys cache grp sn nodeid reg2 lower register bit assignments.

Table 3-685 por_rnsam_sys_cache_grp_sn_nodeid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_10	Hashed target SN node ID 10	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_9	Hashed target SN node ID 9	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_8	Hashed target SN node ID 8	RW	11'b00000000000

sys_cache_grp_sn_nodeid_reg3

Configures hashed node IDs for system cache group 1. Controls target SN node IDs 12 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD20
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

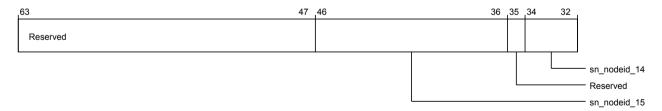


Figure 3-672 por_rnsam_sys_cache_grp_sn_nodeid_reg3 (high)

The following table shows the sys cache grp sn nodeid reg3 higher register bit assignments.

Table 3-686 por_rnsam_sys_cache_grp_sn_nodeid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_15	Hashed target SN node ID 15	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_14	Hashed target SN node ID 14	RW	11'b000000000000

The following image shows the lower register bit assignments.

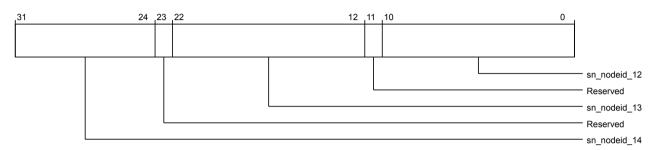


Figure 3-673 por_rnsam_sys_cache_grp_sn_nodeid_reg3 (low)

The following table shows the sys_cache_grp_sn_nodeid_reg3 lower register bit assignments.

Table 3-687 por_rnsam_sys_cache_grp_sn_nodeid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_14	Hashed target SN node ID 14	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_13	Hashed target SN node ID 13	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_12	Hashed target SN node ID 12	RW	11'b00000000000

sys_cache_grp_sn_nodeid_reg4

Configures hashed node IDs for system cache group 2. Controls target SN node IDs 16 to 19.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD28
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

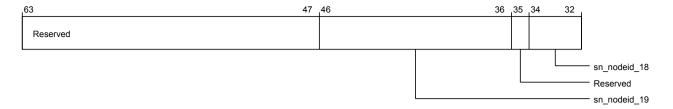


Figure 3-674 por_rnsam_sys_cache_grp_sn_nodeid_reg4 (high)

The following table shows the sys_cache_grp_sn_nodeid_reg4 higher register bit assignments.

Table 3-688 por_rnsam_sys_cache_grp_sn_nodeid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_19	Hashed target SN node ID 19	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_18	Hashed target SN node ID 18	RW	11'b00000000000

The following image shows the lower register bit assignments.

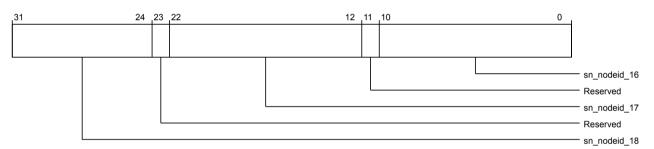


Figure 3-675 por_rnsam_sys_cache_grp_sn_nodeid_reg4 (low)

The following table shows the sys cache grp sn nodeid reg4 lower register bit assignments.

Table 3-689 por_rnsam_sys_cache_grp_sn_nodeid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_18	Hashed target SN node ID 18	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_17	Hashed target SN node ID 17	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_16	Hashed target SN node ID 16	RW	11'b000000000000

sys_cache_grp_sn_nodeid_reg5

RW

Configures hashed node IDs for system cache group 2. Controls target SN node IDs 20 to 23.

Its characteristics are:

Type

Register width (Bits) 64

Address offset 14'hD30 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

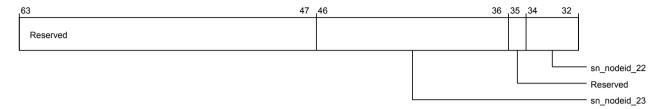


Figure 3-676 por_rnsam_sys_cache_grp_sn_nodeid_reg5 (high)

The following table shows the sys_cache_grp_sn_nodeid_reg5 higher register bit assignments.

Table 3-690 por_rnsam_sys_cache_grp_sn_nodeid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_23	Hashed target SN node ID 23	RW	11'b000000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_22	Hashed target SN node ID 22	RW	11'b00000000000

The following image shows the lower register bit assignments.

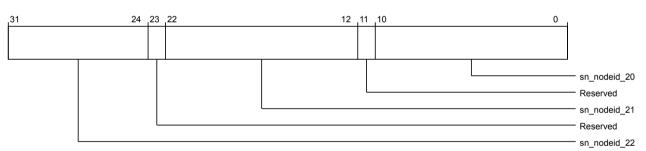


Figure 3-677 por_rnsam_sys_cache_grp_sn_nodeid_reg5 (low)

The following table shows the sys cache grp sn nodeid reg5 lower register bit assignments.

Table 3-691 por_rnsam_sys_cache_grp_sn_nodeid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_22	Hashed target SN node ID 22	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_21	Hashed target SN node ID 21	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_20	Hashed target SN node ID 20	RW	11'b00000000000

sys_cache_grp_sn_nodeid_reg6

Configures hashed node IDs for system cache group 3. Controls target SN node IDs 24 to 27.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD38
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

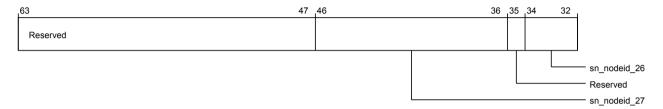


Figure 3-678 por_rnsam_sys_cache_grp_sn_nodeid_reg6 (high)

The following table shows the sys cache grp sn nodeid reg6 higher register bit assignments.

Table 3-692 por_rnsam_sys_cache_grp_sn_nodeid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_27	Hashed target SN node ID 27	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_26	Hashed target SN node ID 26	RW	11'b00000000000

The following image shows the lower register bit assignments.

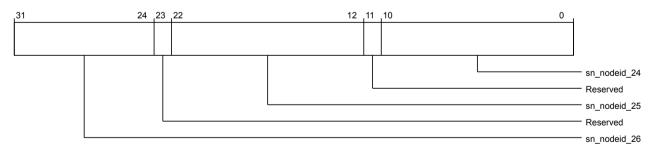


Figure 3-679 por_rnsam_sys_cache_grp_sn_nodeid_reg6 (low)

The following table shows the sys cache grp sn nodeid reg6 lower register bit assignments.

Table 3-693 por_rnsam_sys_cache_grp_sn_nodeid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_26	Hashed target SN node ID 26	RW	11'b00000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_25	Hashed target SN node ID 25	RW	11'b000000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_24	Hashed target SN node ID 24	RW	11'b000000000000

sys_cache_grp_sn_nodeid_reg7

Configures hashed node IDs for system cache group 3. Controls target SN node IDs 28 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD40
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

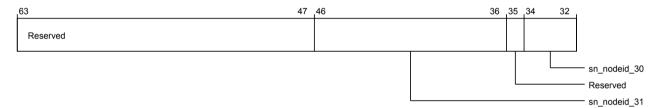


Figure 3-680 por_rnsam_sys_cache_grp_sn_nodeid_reg7 (high)

The following table shows the sys_cache_grp_sn_nodeid_reg7 higher register bit assignments.

Table 3-694 por_rnsam_sys_cache_grp_sn_nodeid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:36	sn_nodeid_31	Hashed target SN node ID 31	RW	11'b00000000000
35	Reserved	Reserved	RO	-
34:32	sn_nodeid_30	Hashed target SN node ID 30	RW	11'b00000000000

The following image shows the lower register bit assignments.

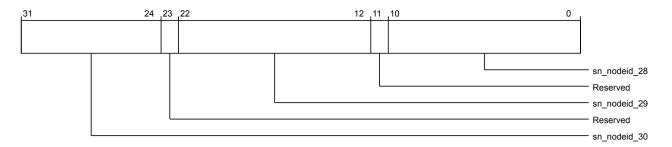


Figure 3-681 por_rnsam_sys_cache_grp_sn_nodeid_reg7 (low)

The following table shows the sys cache grp sn nodeid reg7 lower register bit assignments.

Table 3-695 por_rnsam_sys_cache_grp_sn_nodeid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:24	sn_nodeid_30	Hashed target SN node ID 30	RW	11'b000000000000
23	Reserved	Reserved	RO	-
22:12	sn_nodeid_29	Hashed target SN node ID 29	RW	11'b00000000000
11	Reserved	Reserved	RO	-
10:0	sn_nodeid_28	Hashed target SN node ID 28	RW	11'b00000000000

sys_cache_grp_sn_sam_cfg0

Configures top address bits for SN SAM system cache groups 0 and 1. All top_address_bit fields must be between bits 47 and 28. Top_address_bit2 > top_address_bit1 > top_address_bit0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD48
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

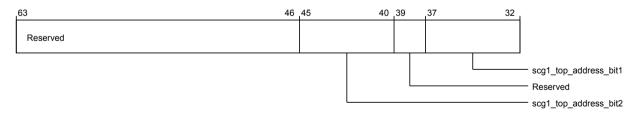


Figure 3-682 por_rnsam_sys_cache_grp_sn_sam_cfg0 (high)

The following table shows the sys cache grp sn sam cfg0 higher register bit assignments.

Table 3-696 por_rnsam_sys_cache_grp_sn_sam_cfg0 (high)

Bits	Field name	Description	Туре	Reset
63:46	Reserved	Reserved	RO	-
45:40	scg1_top_address_bit2	Top address bit 2 for system cache group 1	RW	6'h00
39:38	Reserved	Reserved	RO	-
37:32	scg1_top_address_bit1	Top address bit 1 for system cache group 1	RW	6'h00

The following image shows the lower register bit assignments.

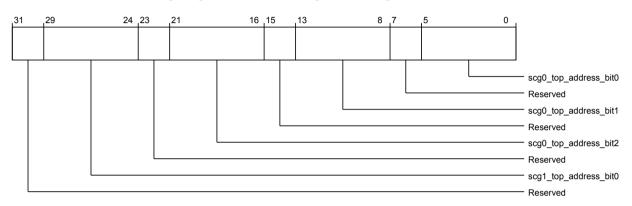


Figure 3-683 por_rnsam_sys_cache_grp_sn_sam_cfg0 (low)

The following table shows the sys cache grp sn sam cfg0 lower register bit assignments.

Table 3-697 por_rnsam_sys_cache_grp_sn_sam_cfg0 (low)

Bits	Field name	I name Description		Reset
31:30	Reserved	Reserved	RO	-
29:24	scg1_top_address_bit0	Top address bit 0 for system cache group 1	RW	6'h00
23:22	Reserved	Reserved	RO	-
21:16	scg0_top_address_bit2	Top address bit 2 for system cache group 0	RW	6'h00
15:14	Reserved	Reserved	RO	-
13:8	scg0_top_address_bit1	Top address bit 1 for system cache group 0	RW	6'h00
7:6	Reserved	Reserved	RO	-
5:0	scg0_top_address_bit0	Top address bit 0 for system cache group 0	RW	6'h00

sys_cache_grp_sn_sam_cfg1

Configures top address bits for SN SAM system cache groups 2 and 3. All top_address_bit fields must be between bits 47 and 28. Top_address_bit2 > top_address_bit1 > top_address_bit0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD50
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

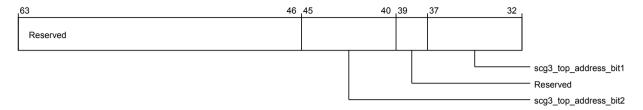


Figure 3-684 por_rnsam_sys_cache_grp_sn_sam_cfg1 (high)

The following table shows the sys cache grp sn sam cfg1 higher register bit assignments.

Table 3-698 por_rnsam_sys_cache_grp_sn_sam_cfg1 (high)

Bits	Field name	Description	Туре	Reset
63:46	Reserved	Reserved	RO	-
45:40	scg3_top_address_bit2	Top address bit 2 for system cache group 3	RW	6'h00
39:38	Reserved	Reserved	RO	-
37:32	scg3_top_address_bit1	Top address bit 1 for system cache group 3	RW	6'h00

The following image shows the lower register bit assignments.

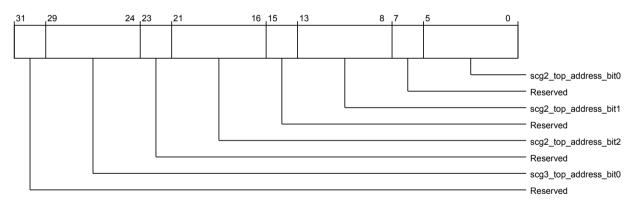


Figure 3-685 por_rnsam_sys_cache_grp_sn_sam_cfg1 (low)

The following table shows the sys cache grp sn sam cfg1 lower register bit assignments.

Table 3-699 por_rnsam_sys_cache_grp_sn_sam_cfg1 (low)

Bits	Field name	Description		Reset
31:30	Reserved	Reserved	RO	-
29:24	scg3_top_address_bit0	Top address bit 0 for system cache group 3	RW	6'h00
23:22	Reserved	Reserved	RO	-
21:16	scg2_top_address_bit2	Top address bit 2 for system cache group 2	RW	6'h00
15:14	Reserved	Reserved	RO	-

Table 3-699 por_rnsam_sys_cache_grp_sn_sam_cfg1 (low) (continued)

Bits	Field name	me Description		Reset
13:8	scg2_top_address_bit1	Top address bit 1 for system cache group 2	RW	6'h00
7:6	Reserved	Reserved	RO	-
5:0	scg2_top_address_bit0	Top address bit 0 for system cache group 2	RW	6'h00

gic_mem_region_reg

Configures GIC memory region.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hD58Register reset64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group override

por_rnsam_secure_register_groups_override.mem_range

The following image shows the higher register bit assignments.

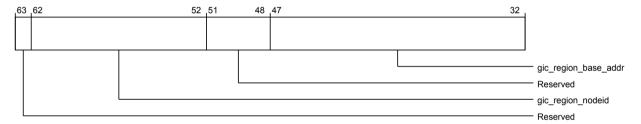


Figure 3-686 por_rnsam_gic_mem_region_reg (high)

The following table shows the gic mem region reg higher register bit assignments.

Table 3-700 por_rnsam_gic_mem_region_reg (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:52	gic_region_nodeid	GIC node ID 30	RW	11'b000000000000
51:48	Reserved	Reserved	RO	-
47:32	gic_region_base_addr	Base address of the GIC memory region	RW	32'h00000000
		CONSTRAINT: Must be an integer multiple of region size		

The following image shows the lower register bit assignments.

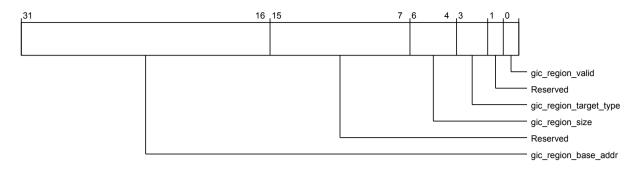


Figure 3-687 por_rnsam_gic_mem_region_reg (low)

The following table shows the gic mem region reg lower register bit assignments.

Table 3-701 por_rnsam_gic_mem_region_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	gic_region_base_addr	Base address of the GIC memory region	RW	32'h00000000
		CONSTRAINT: Must be an integer multiple of region size		
15:7	Reserved	Reserved	RO	-
6:4	gic_region_size	GIC memory region size	RW	3'b000
		3'b000: 64KB		
		3'b001: 128KB		
		3'b010: 256KB		
		3'b011: 512KB		
		CONSTRAINT: Memory region must be a power of 2.		
3:2	gic_region_target_type	Indicates node type	RW	2'b00
		2'b00: HN-F		
		2'b01: HN-I		
		2'b10: CXRA		
		2'b11: Reserved		
		CONSTRAINT: Only applicable for RN-I		
1	Reserved	Reserved	RO	-
0	gic_region_valid	Memory region 1 valid	RW	1'b0
		1'b0: Not valid		
		1'b1: Valid for memory region comparison		

sys_cache_grp_sn_attr

Configures attributes for SN node IDs for system cache groups.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD60

Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

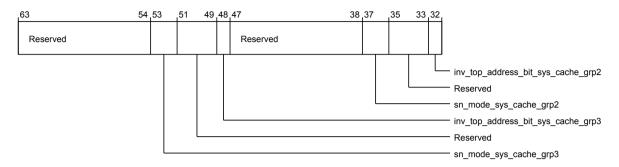


Figure 3-688 por_rnsam_sys_cache_grp_sn_attr (high)

The following table shows the sys_cache_grp_sn_attr higher register bit assignments.

Table 3-702 por_rnsam_sys_cache_grp_sn_attr (high)

Bits	Field name	Description	Туре	Reset
63:54	Reserved	Reserved	RO	-
53:52	sn_mode_sys_cache_grp3	SN selection mode	RW	2'b0
		2'b00: 1-SN mode (SN0)		
		2'b01: 3-SN mode (SN0, SN1, SN2)		
		2'b10: 6-SN mode (SN0, SN1, SN2, SN3, SN4, SN5)		
		2'b11: Reserved		
51:49	Reserved	Reserved	RO	-
48	inv_top_address_bit_sys_cache_grp3	Inverts the top address bit (top_address_bit1 if 3-SN, top_address_bit2 if 6-SN); only used when the address map does not have unique address bit combinations	RW	1'h0
47:38	Reserved	Reserved	RO	-
37:36	sn_mode_sys_cache_grp2	SN selection mode	RW	2'b00
		2'b00: 1-SN mode (SN0)		
		2'b01: 3-SN mode (SN0, SN1, SN2)		
		2'b10: 6-SN mode (SN0, SN1, SN2, SN3, SN4, SN5)		
		2'b11: Reserved		
35:33	Reserved	Reserved	RO	-
32	inv_top_address_bit_sys_cache_grp2 Inverts the top address bit (top_address_bit1 if 3-SN, top_address_bit2 if 6-SN); only used when the address map does not have unique address bit combinations		RW	1'h0

The following image shows the lower register bit assignments.

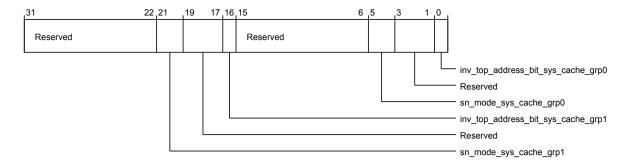


Figure 3-689 por_rnsam_sys_cache_grp_sn_attr (low)

The following table shows the sys_cache_grp_sn_attr lower register bit assignments.

Table 3-703 por_rnsam_sys_cache_grp_sn_attr (low)

Bits	Field name	Description	Туре	Reset
31:22	Reserved	Reserved	RO	-
21:20	sn_mode_sys_cache_grp1	SN selection mode	RW	2'b0
		2'b00: 1-SN mode (SN0)		
		2'b01: 3-SN mode (SN0, SN1, SN2)		
		2'b10: 6-SN mode (SN0, SN1, SN2, SN3, SN4, SN5)		
		2'b11: Reserved		
19:17	Reserved	Reserved	RO	-
16	inv_top_address_bit_sys_cache_grp1	Inverts the top address bit (top_address_bit1 if 3-SN, top_address_bit2 if 6-SN); only used when the address map does not have unique address bit combinations	RW	1'h0
15:6	Reserved	Reserved	RO	-
5:4	sn_mode_sys_cache_grp0	SN selection mode	RW	2'b0
		2'b00: 1-SN mode (SN0)		
		2'b01: 3-SN mode (SN0, SN1, SN2)		
		2'b10: 6-SN mode (SN0, SN1, SN2, SN3, SN4, SN5)		
		2'b11: Reserved		
3:1	Reserved	Reserved	RO	-
0	inv_top_address_bit_sys_cache_grp0 Inverts the top address bit (top_address_bit1 if 3-SN, top_address_bit2 if 6-SN); only used when the address map does not have unique address bit combinations		RW	1'h0

cml_port_aggr_mode_ctrl_reg

Configures the CCIX port aggregation modes for all non-hashed memory regions.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'hE00 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-690 por_rnsam_cml_port_aggr_mode_ctrl_reg (high)

The following table shows the cml_port_aggr_mode_ctrl_reg higher register bit assignments.

Table 3-704 por_rnsam_cml_port_aggr_mode_ctrl_reg (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

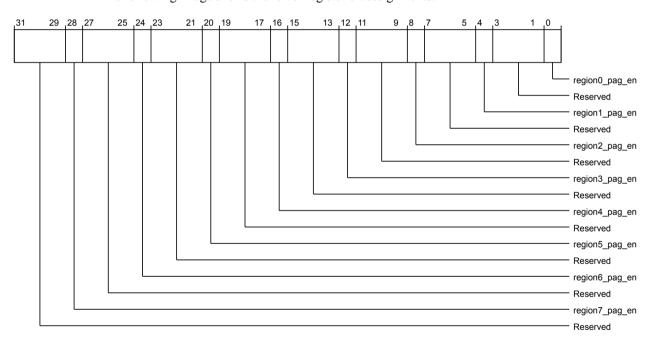


Figure 3-691 por_rnsam_cml_port_aggr_mode_ctrl_reg (low)

The following table shows the cml port aggr mode ctrl reg lower register bit assignments.

Table 3-705 por_rnsam_cml_port_aggr_mode_ctrl_reg (low)

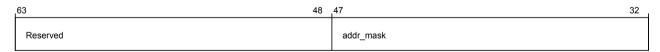
Bits	Field name Description		Туре	Reset
31:29	Reserved	Reserved	RO	-
28	region7_pag_en	Enables the CPA mode for non-hashed memory region 7	RW	1'b0
27:25	Reserved	Reserved	RO	-

Table 3-705 por_rnsam_cml_port_aggr_mode_ctrl_reg (low) (continued)

Bits	Field name	Description	Туре	Reset
24	region6_pag_en	Enables the CPA mode for non-hashed memory region 6	RW	1'b0
23:21	Reserved	Reserved	RO	-
20	region5_pag_en	Enables the CPA mode for non-hashed memory region 5	RW	1'b0
19:17	Reserved	Reserved	RO	-
16	region4_pag_en	Enables the CPA mode for non-hashed memory region 4	RW	1'b0
15:13	Reserved	Reserved	RO	-
12	region3_pag_en	Enables the CPA mode for non-hashed memory region 3	RW	1'b0
11:9	Reserved	Reserved	RO	-
8	region2_pag_en	Enables the CPA mode for non-hashed memory region 2	RW	1'b0
7:5	Reserved	Reserved	RO	-
4	region1_pag_en	Enables the CPA mode for non-hashed memory region 1	RW	1'b0
3:1	Reserved	Reserved	RO	-
0	region0_pag_en	Enables the CPA mode for non-hashed memory region 0	RW	1'b0

cml_port_aggr_grp0_add_mask

Configures the CCIX port aggregation address mask for group 0.


Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE08
Register reset 64'b1

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-692 por_rnsam_cml_port_aggr_grp0_add_mask (high)

The following table shows the cml_port_aggr_grp0_add_mask higher register bit assignments.

Table 3-706 por_rnsam_cml_port_aggr_grp0_add_mask (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	addr_mask	Address mask to be applied before hashing	RW	42'b1

The following image shows the lower register bit assignments.

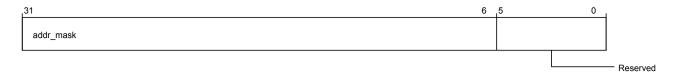


Figure 3-693 por_rnsam_cml_port_aggr_grp0_add_mask (low)

The following table shows the cml_port_aggr_grp0_add_mask lower register bit assignments.

Table 3-707 por_rnsam_cml_port_aggr_grp0_add_mask (low)

Bits	Field name	Description	Туре	Reset
31:6	addr_mask	Address mask to be applied before hashing	RW	42'b1
5:0	Reserved	Reserved	RO	-

cml_port_aggr_grp0_reg

Configures the CCIX port aggregation port IDs for group 0.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE40
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

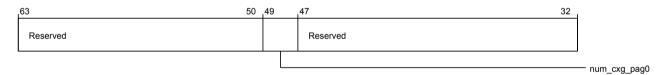


Figure 3-694 por_rnsam_cml_port_aggr_grp0_reg (high)

The following table shows the cml port aggr grp0 reg higher register bit assignments.

Table 3-708 por_rnsam_cml_port_aggr_grp0_reg (high)

Bits	Field name	Description	Туре	Reset
63:50	Reserved	Reserved		-
49:48	num_cxg_pag0	Specifies the number of CXRAs in CPAG 0		2'b0
		2'b00: 1 port used		
		2'b01: 2 ports used		
		2'b10: Reserved		
		2'b11: Reserved		
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

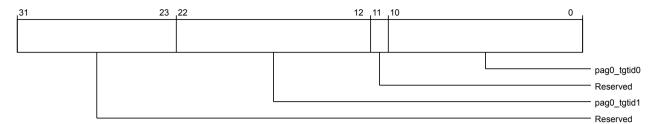


Figure 3-695 por_rnsam_cml_port_aggr_grp0_reg (low)

The following table shows the cml_port_aggr_grp0_reg lower register bit assignments.

Table 3-709 por_rnsam_cml_port_aggr_grp0_reg (low)

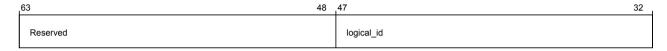
Bits	Field name	Description	Туре	Reset
31:23	Reserved	Reserved	RO	-
22:12	pag0_tgtid1	Specifies target ID 1 for CPAG 0	RW	11'b0
11	Reserved	Reserved	RO	-
10:0	pag0_tgtid0	Specifies target ID 0 for CPAG 0	RW	11'b0

3.3.10 SBSX register descriptions

This section lists the SBSX registers.

por_sbsx_node_info

Provides component identification information.


Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-696 por_sbsx_por_sbsx_node_info (high)

The following table shows the por sbsx node info higher register bit assignments.

Table 3-710 por_sbsx_por_sbsx_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

Figure 3-697 por_sbsx_por_sbsx_node_info (low)

The following table shows the por_sbsx_node_info lower register bit assignments.

Table 3-711 por_sbsx_por_sbsx_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h0007

por_sbsx_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-698 por_sbsx_por_sbsx_child_info (high)

The following table shows the por sbsx child info higher register bit assignments.

Table 3-712 por_sbsx_por_sbsx_child_info (high)

Bits Field name		Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

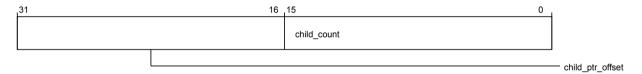


Figure 3-699 por_sbsx_por_sbsx_child_info (low)

The following table shows the por_sbsx_child_info lower register bit assignments.

Table 3-713 por_sbsx_por_sbsx_child_info (low)

В	its	Field name	Description	Туре	Reset
31	1:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15	5:0	child_count	Number of child nodes; used in discovery process	RO	16'b0

por_sbsx_unit_info

Provides component identification information for SBSX.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

63 32 Reserved

Figure 3-700 por_sbsx_por_sbsx_unit_info (high)

The following table shows the por sbsx unit info higher register bit assignments.

Table 3-714 por_sbsx_por_sbsx_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

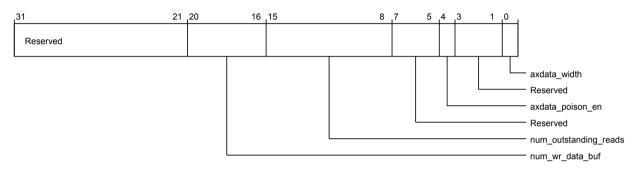


Figure 3-701 por_sbsx_por_sbsx_unit_info (low)

The following table shows the por sbsx unit info lower register bit assignments.

Table 3-715 por_sbsx_por_sbsx_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:21	Reserved	Reserved	RO	-
20:16	num_wr_data_buf	Number of write data buffers in SBSX	RO	Configuration dependent
15:8	num_outstanding_reads	Maximum number of outstanding AXI read requests from SBSX	RO	Configuration dependent
7:5	Reserved	Reserved	RO	-
4	axdata_poison_en	Data poison support on ACE-Lite/AXI4 interface	RO	Configuration dependent
		1'b0: Not supported		
		1'b1: Supported		
3:1	Reserved	Reserved	RO	-
0	axdata_width	Data width on ACE-Lite/AXI4 interface	RO	Configuration dependent
		1'b0: 128 bits		
		1'b1: 256 bits		

por_sbsx_aux_ctl

Functions as the auxiliary control register for the SBSX bridge.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hA08Register reset64'b0

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-702 por_sbsx_por_sbsx_aux_ctl (high)

The following table shows the por sbsx aux ctl higher register bit assignments.

Table 3-716 por_sbsx_por_sbsx_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

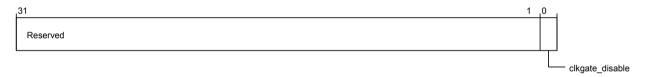


Figure 3-703 por_sbsx_por_sbsx_aux_ctl (low)

The following table shows the por sbsx aux ctl lower register bit assignments.

Table 3-717 por sbsx por sbsx aux ctl (low)

Bits	Field name	Description		Reset
31:1	Reserved	Reserved	RO	-
0	clkgate_disable	Disables internal clock gating in SBSX bridge	RW	1'b0

por_sbsx_errfr

Functions as the error feature register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3000

Register reset 64'b0000010100001

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-704 por_sbsx_por_sbsx_errfr (high)

The following table shows the por_sbsx_errfr higher register bit assignments.

Table 3-718 por_sbsx_por_sbsx_errfr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

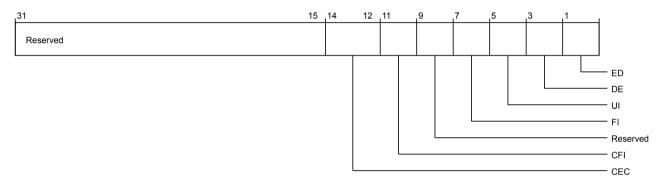


Figure 3-705 por_sbsx_por_sbsx_errfr (low)

The following table shows the por_sbsx_errfr lower register bit assignments.

Table 3-719 por_sbsx_por_sbsx_errfr (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism		3'b000
		3'b000: Does not implement standardized error counter model		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors	RO	2'b00
1:0	ED	Error detection	RO	2'b01

por_sbsx_errctlr

Functions as the error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h300

Address offset 14'h3008 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-706 por_sbsx_por_sbsx_errctlr (high)

The following table shows the por sbsx errctlr higher register bit assignments.

Table 3-720 por_sbsx_por_sbsx_errctlr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-707 por_sbsx_por_sbsx_errctlr (low)

The following table shows the por sbsx errctlr lower register bit assignments.

Table 3-721 por_sbsx_por_sbsx_errctlr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_sbsx_errfr.CFI		1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_sbsx_errfr.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_sbsx_errfr.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_sbsx_errfr.DE	RW	1'b0
0	ED	Enables error detection as specified in por_sbsx_errfr.ED	RW	1'b0

por_sbsx_errstatus

Functions as the error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.

Its characteristics are:

Type W1C Register width (Bits) 64 Address offset 14'h3

Address offset 14'h3010 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-708 por_sbsx_por_sbsx_errstatus (high)

The following table shows the por sbsx errstatus higher register bit assignments.

Table 3-722 por_sbsx_por_sbsx_errstatus (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

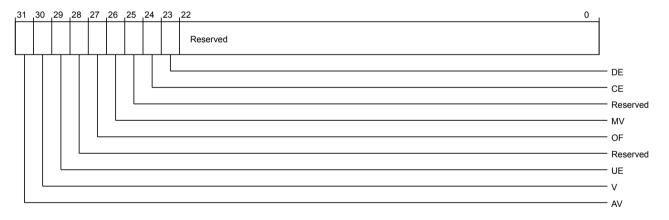


Figure 3-709 por_sbsx_por_sbsx_errstatus (low)

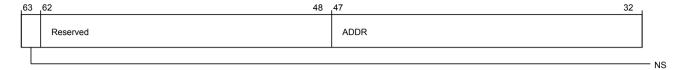
The following table shows the por_sbsx_errstatus lower register bit assignments.

Table 3-723 por_sbsx_por_sbsx_errstatus (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid; por_sbsx_erraddr contains a physical address for that recorded error		
		1'b0: Address is not valid		
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved		-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_sbsx_errmisc valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Miscellaneous registers are valid		
		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-
24	CE	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one transient corrected error recorded		
		1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error is not corrected and is deferred		
		1'b0: No errors deferred		
22:0	Reserved	Reserved	RO	-

por_sbsx_erraddr

Contains the error record address.


Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3018

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-710 por_sbsx_por_sbsx_erraddr (high)

The following table shows the por sbsx erraddr higher register bit assignments.

Table 3-724 por_sbsx_por_sbsx_erraddr (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_sbsx_erraddr.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.

Figure 3-711 por_sbsx_por_sbsx_erraddr (low)

The following table shows the por sbsx erraddr lower register bit assignments.

Table 3-725 por_sbsx_por_sbsx_erraddr (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_sbsx_errmisc

Functions as the miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3020

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

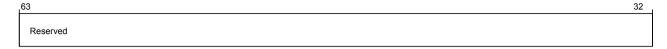


Figure 3-712 por_sbsx_por_sbsx_errmisc (high)

The following table shows the por sbsx errmisc higher register bit assignments.

Table 3-726 por_sbsx_por_sbsx_errmisc (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

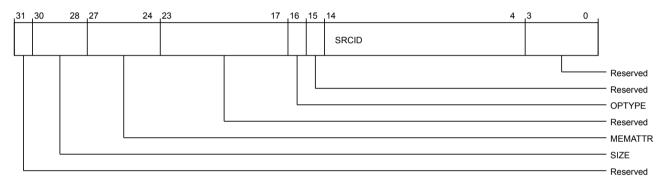


Figure 3-713 por_sbsx_por_sbsx_errmisc (low)

The following table shows the por_sbsx_errmisc lower register bit assignments.

Table 3-727 por_sbsx_por_sbsx_errmisc (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:28	SIZE	Error transaction size	RW	3'b0
27:24	MEMATTR	Error memory attributes	RW	4'b0
23:17	Reserved	Reserved	RO	-
16	ОРТҮРЕ	Error opcode type	RW	1'b0
		1'b1: WR_NO_SNP_PTL (partial)		
		1'b0: WR_NO_SNP_FULL		
15	Reserved	Reserved	RO	-
14:4	SRCID	Error source ID	RW	11'b0
3:0	Reserved	Reserved	RO	-

por_sbsx_errfr_NS

Functions as the non-secure error feature register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3100 Register reset 64'b0000010100

Register reset 64'b0000010100001 **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-714 por_sbsx_por_sbsx_errfr_ns (high)

The following table shows the por_sbsx_errfr_NS higher register bit assignments.

Table 3-728 por_sbsx_por_sbsx_errfr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

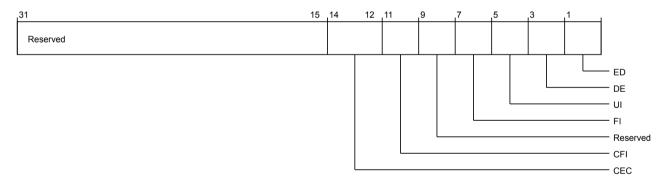


Figure 3-715 por_sbsx_por_sbsx_errfr_ns (low)

The following table shows the por sbsx errfr NS lower register bit assignments.

Table 3-729 por_sbsx_por_sbsx_errfr_ns (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism 3'b000: Does not implement standardized error counter model	RO	3'b000
11:10	CFI	Corrected error interrupt	RO	2'b00

Table 3-729 por_sbsx_por_sbsx_errfr_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
9:8	Reserved	eserved F		-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors	RO	2'b00
1:0	ED	Error detection	RO	2'b01

por_sbsx_errctlr_NS

Functions as the non-secure error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3108
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-716 por_sbsx_por_sbsx_errctlr_ns (high)

The following table shows the por sbsx errctlr NS higher register bit assignments.

Table 3-730 por_sbsx_por_sbsx_errctlr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

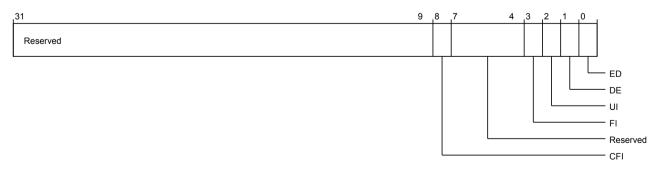


Figure 3-717 por_sbsx_por_sbsx_errctlr_ns (low)

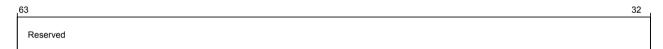
The following table shows the por sbsx errctlr NS lower register bit assignments.

Table 3-731 por_sbsx_por_sbsx_errctir_ns (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	les corrected error interrupt as specified in por_sbsx_errfr_NS.CFI		1'b0
7:4	Reserved	Reserved		-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_sbsx_errfr_NS.FI		1'b0
2	UI	Enables uncorrected error interrupt as specified in por_sbsx_errfr_NS.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_sbsx_errfr_NS.DE	RW	1'b0
0	ED	Enables error detection as specified in por_sbsx_errfr_NS.ED	RW	1'b0

por_sbsx_errstatus_NS

Functions as the non-secure error status register.


Its characteristics are:

Type W1C Register width (Bits) 64 Address offset 14'h3110

Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-718 por_sbsx_por_sbsx_errstatus_ns (high)

The following table shows the por_sbsx_errstatus_NS higher register bit assignments.

Table 3-732 por_sbsx_por_sbsx_errstatus_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

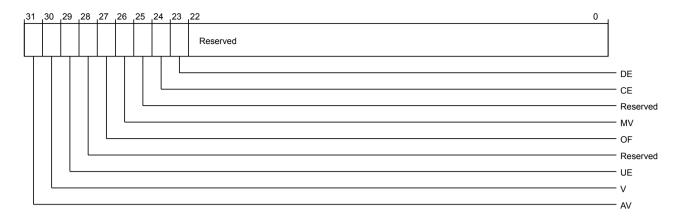


Figure 3-719 por_sbsx_por_sbsx_errstatus_ns (low)

The following table shows the por_sbsx_errstatus_NS lower register bit assignments.

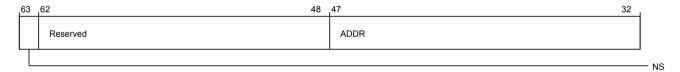
Table 3-733 por_sbsx_por_sbsx_errstatus_ns (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid; por_sbsx_erraddr_NS contains a physical address for that recorded error 1'b0: Address is not valid		
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_sbsx_errmisc_NS valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Miscellaneous registers are valid		
		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-

Table 3-733 por_sbsx_por_sbsx_errstatus_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
24	СЕ	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one transient corrected error recorded 1'b0: No corrected errors recorded	W1C	1'b0
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear 1'b1: At least one error is not corrected and is deferred 1'b0: No errors deferred		1'b0
22:0	Reserved	Reserved	RO	-

por_sbsx_erraddr_NS


Contains the non-secure error record address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3118
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-720 por_sbsx_por_sbsx_erraddr_ns (high)

The following table shows the por sbsx erraddr NS higher register bit assignments.

Table 3-734 por_sbsx_por_sbsx_erraddr_ns (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction		1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_sbsx_erraddr_NS.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

Figure 3-721 por_sbsx_por_sbsx_erraddr_ns (low)

The following table shows the por_sbsx_erraddr_NS lower register bit assignments.

Table 3-735 por_sbsx_por_sbsx_erraddr_ns (low)

Bits Field name		Description	Туре	Reset	
31:0	ADDR	Transaction address	RW	48'b0	

por_sbsx_errmisc_NS

Functions as the non-secure miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Usage constraints

Type RW
Register width (Bits) 64
Address offset 14'h3120

Register reset 64'b0

The following image shows the higher register bit assignments.

There are no usage constraints.

Figure 3-722 por_sbsx_por_sbsx_errmisc_ns (high)

The following table shows the por_sbsx_errmisc_NS higher register bit assignments.

Table 3-736 por_sbsx_por_sbsx_errmisc_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

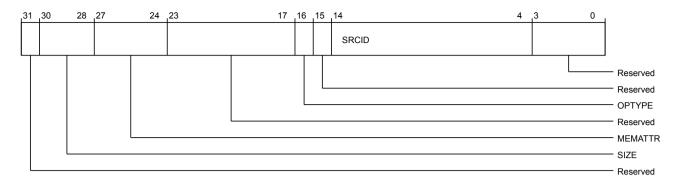


Figure 3-723 por_sbsx_por_sbsx_errmisc_ns (low)

The following table shows the por_sbsx_errmisc_NS lower register bit assignments.

Table 3-737 por_sbsx_por_sbsx_errmisc_ns (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:28	SIZE	Error transaction size	RW	3'b0
27:24	MEMATTR	Error memory attributes	RW	4'b0
23:17	Reserved	Reserved	RO	-
16	ОРТҮРЕ	Error opcode type	RW	1'b0
		1'b1: WR_NO_SNP_PTL (partial)		
		1'b0: WR_NO_SNP_FULL		
15	Reserved	Reserved	RO	-
14:4	SRCID	Error source ID	RW	11'b0
3:0	Reserved	Reserved	RO	-

por_sbsx_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2000 Register reset 64'b0

Usage constraints There are no usage constraints.

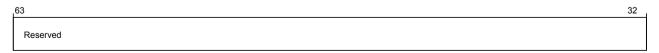


Figure 3-724 por_sbsx_por_sbsx_pmu_event_sel (high)

The following table shows the por_sbsx_pmu_event_sel higher register bit assignments.

Table 3-738 por_sbsx_por_sbsx_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

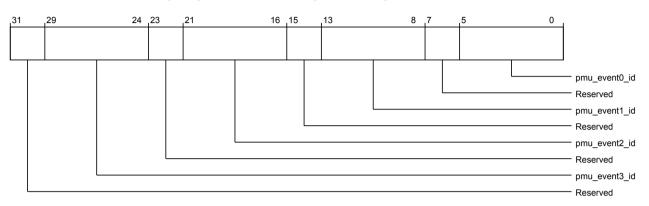


Figure 3-725 por_sbsx_por_sbsx_pmu_event_sel (low)

The following table shows the por_sbsx_pmu_event_sel lower register bit assignments.

Table 3-739 por_sbsx_por_sbsx_pmu_event_sel (low)

Bits	Field name	Description		Reset
31:30	Reserved	Reserved	RO	-
29:24	pmu_event3_id	SBSX PMU Event 3 select; see pmu_event0_id for encodings	RW	6'b0
23:22	Reserved	Reserved	RO	-
21:16	pmu_event2_id	SBSX PMU Event 2 select; see pmu_event0_id for encodings	RW	6'b0
15:14	Reserved	Reserved	RO	-
13:8	pmu_event1_id	SBSX PMU Event 1 select; see pmu_event0_id for encodings	RW	6'b0

Table 3-739 por_sbsx_por_sbsx_pmu_event_sel (low) (continued)

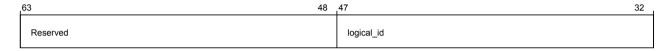
Bits	Field name	Description	Туре	Reset
7:6	Reserved	Reserved	RO	-
5:0	pmu_event0_id	SBSX PMU Event 0 select	RW	6'b0
		6'h00: No event		
		6'h01: Read request		
		6'h02: Write request		
		6'h03: CMO request		
		6'h04: RETRYACK TXRSP flit sent		
		6'h05: TXDAT flit seen		
		6'h06: TXRSP flit seen		
		6'h11: Read request tracker occupancy count overflow		
		6'h12: Write request tracker occupancy count overflow		
		6'h13: CMO request tracker occupancy count overflow		
		6'h14: WDB occupancy count overflow		
		6'h15: Read AXI pending tracker occupancy count overflow		
		6'h16: CMO AXI pending tracker occupancy count overflow		
		6'h21: ARVALID set without ARREADY		
		6'h22: AWVALID set without AWREADY		
		6'h23: WVALID set without WREADY		
		6'h24: TXDAT stall (TXDAT valid but no link credit available)		
		6'h25: TXRSP stall (TXRSP valid but no link credit available)		
		NOTE: All other encodings are reserved.		

3.3.11 CXHA configuration registers

This section lists the CXHA configuration registers.

por_cxg_ha_node_info

Provides component identification information.

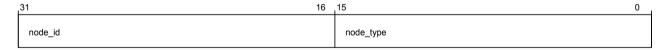

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-726 por_cxg_ha_por_cxg_ha_node_info (high)

The following table shows the por cxg ha node info higher register bit assignments.

Table 3-740 por_cxg_ha_por_cxg_ha_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

Figure 3-727 por_cxg_ha_por_cxg_ha_node_info (low)

The following table shows the por_cxg_ha_node_info lower register bit assignments.

Table 3-741 por_cxg_ha_por_cxg_ha_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component CHI node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h0101

por_cxg_ha_id

Contains the CCIX-assigned HAID.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h8Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-728 por_cxg_ha_por_cxg_ha_id (high)

The following table shows the por cxg ha id higher register bit assignments.

Table 3-742 por_cxg_ha_por_cxg_ha_id (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

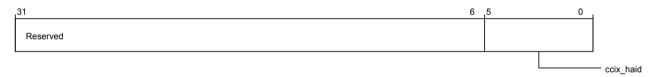


Figure 3-729 por_cxg_ha_por_cxg_ha_id (low)

The following table shows the por_cxg_ha_id lower register bit assignments.

Table 3-743 por_cxg_ha_por_cxg_ha_id (low)

Bits	Field name	Description	Туре	Reset
31:6	Reserved	Reserved	RO	-
5:0	ccix_haid	CCIX HAID	RW	6'h0

por_cxg_ha_child_info

Provides component child identification information.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h80
Register reset 64'b0

Usage constraints There are no usage constraints.

Figure 3-730 por_cxg_ha_por_cxg_ha_child_info (high)

The following table shows the por cxg ha child info higher register bit assignments.

Table 3-744 por_cxg_ha_por_cxg_ha_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

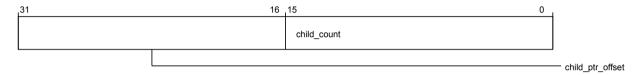


Figure 3-731 por_cxg_ha_por_cxg_ha_child_info (low)

The following table shows the por cxg ha child info lower register bit assignments.

Table 3-745 por_cxg_ha_por_cxg_ha_child_info (low)

Bits	Field name	Description	Туре	Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15:0	child_count	Number of child nodes; used in discovery process	RO	16'h0

por_cxg_ha_aux_ctl

Functions as the auxiliary control register for CXHA.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08
Register reset 64'b001000

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

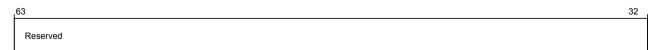


Figure 3-732 por_cxg_ha_por_cxg_ha_aux_ctl (high)

The following table shows the por_cxg_ha_aux_ctl higher register bit assignments.

Table 3-746 por_cxg_ha_por_cxg_ha_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

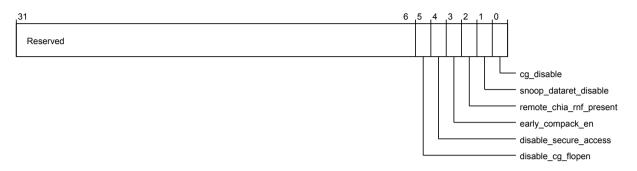


Figure 3-733 por_cxg_ha_por_cxg_ha_aux_ctl (low)

The following table shows the por_cxg_ha_aux_ctl lower register bit assignments.

Table 3-747 por_cxg_ha_por_cxg_ha_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:6	Reserved	Reserved	RO	-
5	disable_cg_flopen	Disables enhanced flop enable control for dynamic power savings	RW	1'b0
4	disable_secure_access	Converts all accesses to non-secure	RW	1'b0
3	early_compack_en	Early CompAck enable; enables sending early CompAck on CCIX for requests that require CompAck	RW	1'b1
2	remote_chia_rnf_present	Indicates existence of CHIA RN-F in system; HA uses this indication to send SnpToS or SnpToSC	RW	1'b0
		1'b0: HA converts SnpShared, SnpClean, and SnpNotSharedDirty to SnpToSC		
		1'b1: HA converts SnpShared, SnpClean, and SnpNotSharedDirty to SnpToS		
1	snoop_dataret_disable	Disables setting data return for CCIX snoop requests for all CHI snoop opcodes	RW	1'b0
0	cg_disable	Disables clock gating when set	RW	1'b0

por_cxg_ha_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Figure 3-734 por_cxg_ha_por_cxg_ha_secure_register_groups_override (high)

The following table shows the por_cxg_ha_secure_register_groups_override higher register bit assignments.

Table 3-748 por_cxg_ha_por_cxg_ha_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset	
63:32	Reserved	Reserved	RO	-	

The following image shows the lower register bit assignments.

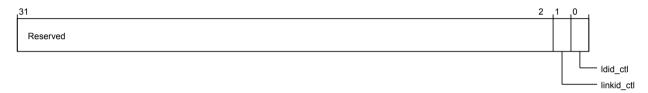


Figure 3-735 por_cxg_ha_por_cxg_ha_secure_register_groups_override (low)

The following table shows the por_cxg_ha_secure_register_groups_override lower register bit assignments.

Table 3-749 por_cxg_ha_por_cxg_ha_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:2	Reserved	Reserved	RO	-
1	linkid_ctl	Allows non-secure access to secure HA Link ID registers	RW	1'b0
0	ldid_ctl	Allows non-secure access to secure HA LDID registers	RW	1'b0

por_cxg_ha_unit_info

Provides component identification information for CXHA.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register reset Configuration dependent

Usage constraints There are no usage constraints.

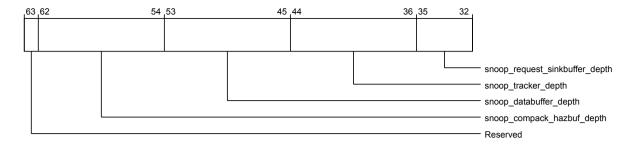


Figure 3-736 por_cxg_ha_por_cxg_ha_unit_info (high)

The following table shows the por_cxg_ha_unit_info higher register bit assignments.

Table 3-750 por_cxg_ha_por_cxg_ha_unit_info (high)

Bits	Field name	Description	Туре	Reset
63	Reserved	Reserved	RO	-
62:54	snoop_compack_hazbuf_depth	Depth of CompAck snoop hazard buffer	RO	Configuration dependent
53:45	snoop_databuffer_depth	Depth of snoop data buffer	RO	Configuration dependent
44:36	snoop_tracker_depth	Depth of snoop tracker; number of outstanding SNP requests on CCIX	RO	Configuration dependent
35:32	snoop_request_sinkbuffer_depth	Depth of snoop request sink buffer; number of CHI SNP requests that can be sunk by CXHA	RO	Configuration dependent

The following image shows the lower register bit assignments.

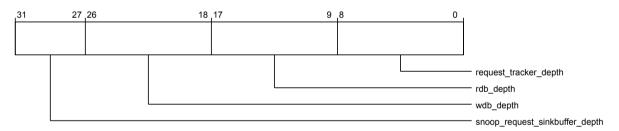


Figure 3-737 por_cxg_ha_por_cxg_ha_unit_info (low)

The following table shows the por_cxg_ha_unit_info lower register bit assignments.

Table 3-751 por_cxg_ha_por_cxg_ha_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:27	snoop_request_sinkbuffer_depth	Depth of snoop request sink buffer; number of CHI SNP requests that can be sunk by CXHA	RO	Configuration dependent
26:18	wdb_depth	Depth of write data buffer	RO	Configuration dependent
17:9	rdb_depth	Depth of read data buffer	RO	Configuration dependent
8:0	request_tracker_depth	Depth of request tracker	RO	Configuration dependent

por_cxg_ha_rnf_raid_to_ldid_reg0

Specifies the mapping of RAID to RN-F LDID for RAIDs 0 to 7.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC00Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

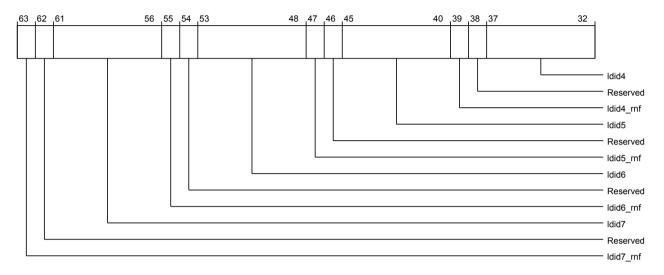


Figure 3-738 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg0 (high)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg0 higher register bit assignments.

Table 3-752 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63	ldid7_rnf	Specifies if RAID 7 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid7	Specifies the LDID for RAID 7	RW	6'h0
55	ldid6_rnf	Specifies if RAID 6 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid6	Specifies the LDID for RAID 6	RW	6'h0
47	ldid5_rnf	Specifies if RAID 5 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	1did5	Specifies the LDID for RAID 5	RW	6'h0
39	ldid4_rnf	Specifies if RAID 4 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid4	Specifies the LDID for RAID 4	RW	6'h0

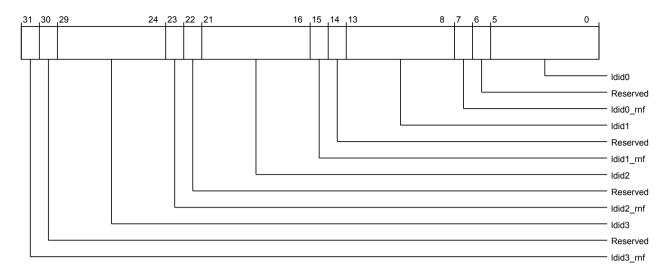


Figure 3-739 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg0 (low)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg0 lower register bit assignments.

Table 3-753 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31	ldid3_rnf	Specifies if RAID 3 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid3	Specifies the LDID for RAID 3	RW	6'h0
23	ldid2_rnf	Specifies if RAID 2 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid2	Specifies the LDID for RAID 2	RW	6'h0
15	ldid1_rnf	Specifies if RAID 1 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid1	Specifies the LDID for RAID 1	RW	6'h0
7	ldid0_rnf	Specifies if RAID 0 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid0	Specifies the LDID for RAID 0	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg1

Specifies the mapping of RAID to RN-F LDID for RAIDs 8 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC08

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por cxg_ha_secure_register_groups_override.ldid_ctl

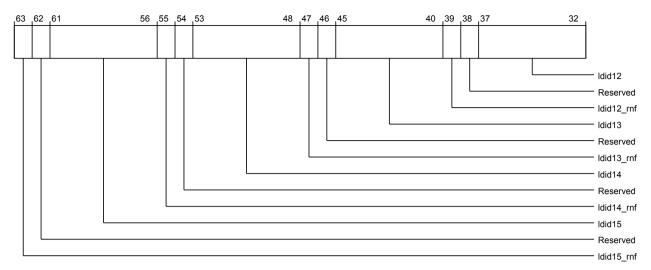


Figure 3-740 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg1 (high)

The following table shows the por cxg ha rnf raid to ldid reg1 higher register bit assignments.

Table 3-754 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63	ldid15_rnf	Specifies if RAID 15 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid15	Specifies the LDID for RAID 15	RW	6'h0
55	ldid14_rnf	Specifies if RAID 14 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid14	Specifies the LDID for RAID 14	RW	6'h0
47	ldid13_rnf	Specifies if RAID 13 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid13	Specifies the LDID for RAID 13	RW	6'h0
39	ldid12_rnf	Specifies if RAID 12 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid12	Specifies the LDID for RAID 12	RW	6'h0

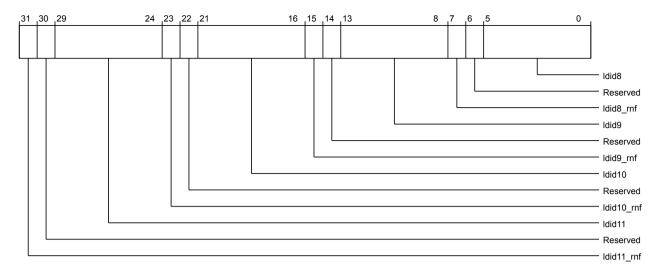


Figure 3-741 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg1 (low)

The following table shows the por cxg ha rnf raid to ldid reg1 lower register bit assignments.

Table 3-755 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31	ldid11_rnf	Specifies if RAID 11 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid11	Specifies the LDID for RAID 11	RW	6'h0
23	ldid10_rnf	Specifies if RAID 10 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid10	Specifies the LDID for RAID 10	RW	6'h0
15	ldid9_rnf	Specifies if RAID 9 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid9	Specifies the LDID for RAID 9	RW	6'h0
7	ldid8_rnf	Specifies if RAID 8 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid8	Specifies the LDID for RAID 8	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg2

Specifies the mapping of RAID to RN-F LDID for RAIDs 16 to 23.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hC10Register reset64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxg_ha_secure_register_groups_override.ldid_ctl \\ \end{tabular}$

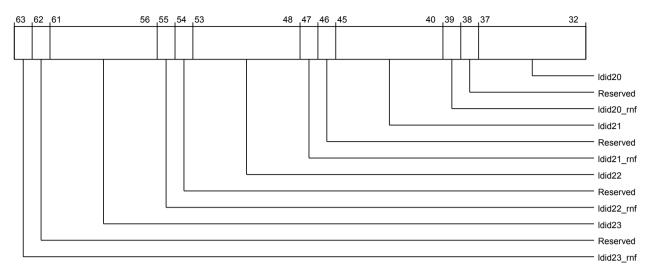


Figure 3-742 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg2 (high)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg2 higher register bit assignments.

Table 3-756 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63	ldid23_rnf	Specifies if RAID 23 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid23	Specifies the LDID for RAID 23	RW	6'h0
55	ldid22_rnf	Specifies if RAID 22 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid22	Specifies the LDID for RAID 22	RW	6'h0
47	ldid21_rnf	Specifies if RAID 21 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid21	Specifies the LDID for RAID 21	RW	6'h0
39	ldid20_rnf	Specifies if RAID 20 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid20	Specifies the LDID for RAID 20	RW	6'h0

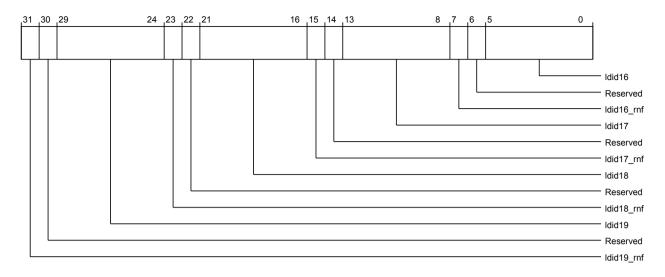


Figure 3-743 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg2 (low)

The following table shows the por cxg ha rnf raid to ldid reg2 lower register bit assignments.

Table 3-757 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31	ldid19_rnf	Specifies if RAID 19 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid19	Specifies the LDID for RAID 19	RW	6'h0
23	ldid18_rnf	Specifies if RAID 18 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid18	Specifies the LDID for RAID 18	RW	6'h0
15	ldid17_rnf	Specifies if RAID 17 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid17	Specifies the LDID for RAID 17	RW	6'h0
7	ldid16_rnf	Specifies if RAID 16 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid16	Specifies the LDID for RAID 16	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg3

Specifies the mapping of RAID to RN-F LDID for RAIDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC18
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.ldid_ctl

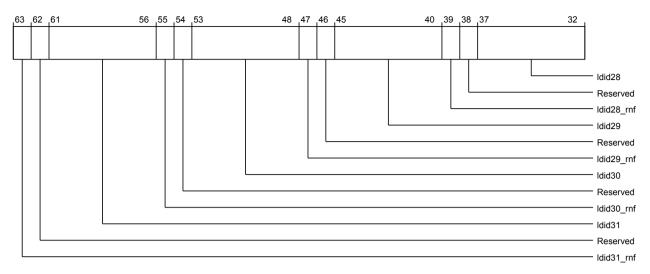


Figure 3-744 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg3 (high)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg3 higher register bit assignments.

Table 3-758 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63	ldid31_rnf	Specifies if RAID 31 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid31	Specifies the LDID for RAID 31	RW	6'h0
55	ldid30_rnf	Specifies if RAID 30 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid30	Specifies the LDID for RAID 30	RW	6'h0
47	ldid29_rnf	Specifies if RAID 29 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid29	Specifies the LDID for RAID 29	RW	6'h0
39	ldid28_rnf	Specifies if RAID 28 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid28	Specifies the LDID for RAID 28	RW	6'h0

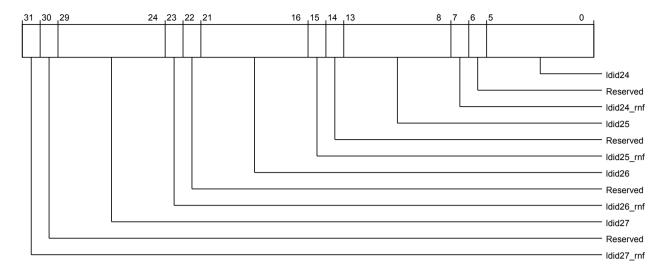


Figure 3-745 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg3 (low)

The following table shows the por cxg ha rnf raid to ldid reg3 lower register bit assignments.

Table 3-759 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31	ldid27_rnf	Specifies if RAID 27 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid27	Specifies the LDID for RAID 27	RW	6'h0
23	ldid26_rnf	Specifies if RAID 26 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid26	Specifies the LDID for RAID 26	RW	6'h0
15	ldid25_rnf	Specifies if RAID 25 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid25	Specifies the LDID for RAID 25	RW	6'h0
7	ldid24_rnf	Specifies if RAID 24 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid24	Specifies the LDID for RAID 24	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg4

Specifies the mapping of RAID to RN-F LDID for RAIDs 32 to 39.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC20
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxg_ha_secure_register_groups_override.ldid_ctl \\ \end{tabular}$

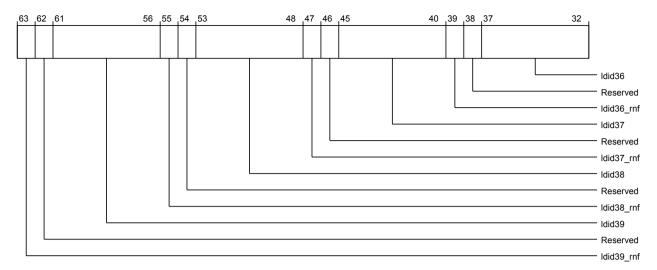


Figure 3-746 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg4 (high)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg4 higher register bit assignments.

Table 3-760 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63	ldid39_rnf	Specifies if RAID 39 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid39	Specifies the LDID for RAID 39	RW	6'h0
55	ldid38_rnf	Specifies if RAID 38 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid38	Specifies the LDID for RAID 38	RW	6'h0
47	ldid37_rnf	Specifies if RAID 37 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid37	Specifies the LDID for RAID 37	RW	6'h0
39	ldid36_rnf	Specifies if RAID 36 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid36	Specifies the LDID for RAID 36	RW	6'h0

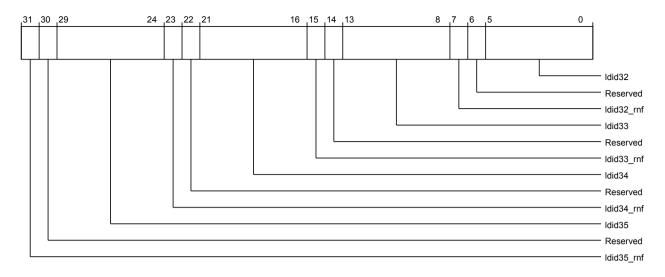


Figure 3-747 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg4 (low)

The following table shows the por cxg ha rnf raid to ldid reg4 lower register bit assignments.

Table 3-761 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31	ldid35_rnf	Specifies if RAID 35 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid35	Specifies the LDID for RAID 35	RW	6'h0
23	ldid34_rnf	Specifies if RAID 34 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid34	Specifies the LDID for RAID 34	RW	6'h0
15	ldid33_rnf	Specifies if RAID 33 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid33	Specifies the LDID for RAID 33	RW	6'h0
7	ldid32_rnf	Specifies if RAID 32 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid32	Specifies the LDID for RAID 32	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg5

Specifies the mapping of RAID to RN-F LDID for RAIDs 40 to 47.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC28
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxg_ha_secure_register_groups_override.ldid_ctl \\ \end{tabular}$

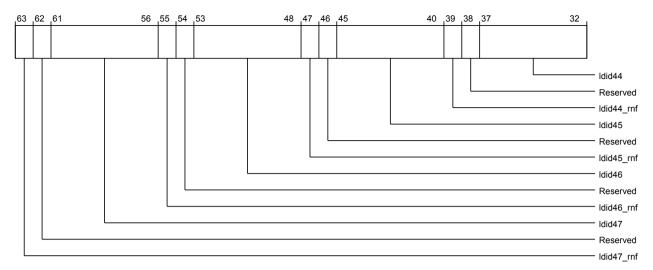


Figure 3-748 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg5 (high)

The following table shows the por cxg ha rnf raid to ldid reg5 higher register bit assignments.

Table 3-762 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63	ldid47_rnf	Specifies if RAID 47 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid47	Specifies the LDID for RAID 47	RW	6'h0
55	ldid46_rnf	Specifies if RAID 46 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid46	Specifies the LDID for RAID 46	RW	6'h0
47	ldid45_rnf	Specifies if RAID 45 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid45	Specifies the LDID for RAID 45	RW	6'h0
39	ldid44_rnf	Specifies if RAID 44 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid44	Specifies the LDID for RAID 44	RW	6'h0

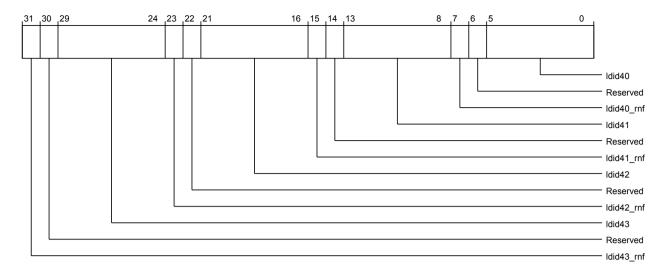


Figure 3-749 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg5 (low)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg5 lower register bit assignments.

Table 3-763 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31	ldid43_rnf	Specifies if RAID 43 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid43	Specifies the LDID for RAID 43	RW	6'h0
23	ldid42_rnf	Specifies if RAID 42 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid42	Specifies the LDID for RAID 42	RW	6'h0
15	ldid41_rnf	Specifies if RAID 41 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid41	Specifies the LDID for RAID 41	RW	6'h0
7	ldid40_rnf	Specifies if RAID 40 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid40	Specifies the LDID for RAID 40	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg6

Specifies the mapping of RAID to RN-F LDID for RAIDs 48 to 55.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC30
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por cxg_ha_secure_register_groups_override.ldid_ctl

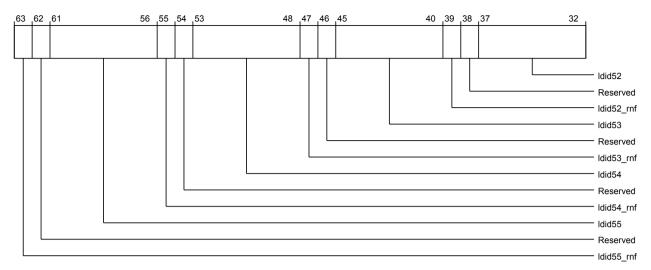


Figure 3-750 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg6 (high)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg6 higher register bit assignments.

Table 3-764 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63	ldid55_rnf	Specifies if RAID 55 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid55	Specifies the LDID for RAID 55	RW	6'h0
55	ldid54_rnf	Specifies if RAID 54 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid54	Specifies the LDID for RAID 54	RW	6'h0
47	ldid53_rnf	Specifies if RAID 53 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid53	Specifies the LDID for RAID 53	RW	6'h0
39	ldid52_rnf	Specifies if RAID 52 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid52	Specifies the LDID for RAID 52	RW	6'h0

Figure 3-751 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg6 (low)

The following table shows the por cxg ha rnf raid to ldid reg6 lower register bit assignments.

Table 3-765 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31	ldid51_rnf	Specifies if RAID 51 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid51	Specifies the LDID for RAID 51	RW	6'h0
23	ldid50_rnf	Specifies if RAID 50 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid50	Specifies the LDID for RAID 50	RW	6'h0
15	ldid49_rnf	Specifies if RAID 49 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid49	Specifies the LDID for RAID 49	RW	6'h0
7	ldid48_rnf	Specifies if RAID 48 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid48	Specifies the LDID for RAID 48	RW	6'h0

por_cxg_ha_rnf_raid_to_ldid_reg7

Specifies the mapping of RAID to RN-F LDID for RAIDs 56 to 63.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC38
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.ldid_ctl

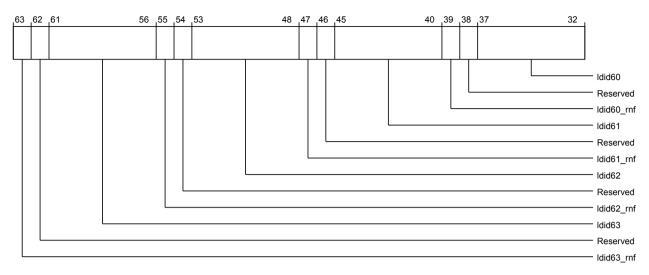


Figure 3-752 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg7 (high)

The following table shows the por cxg ha rnf raid to ldid reg7 higher register bit assignments.

Table 3-766 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63	ldid63_rnf	Specifies if RAID 63 is RN-F	RW	1'b0
62	Reserved	Reserved	RO	-
61:56	ldid63	Specifies the LDID for RAID 63	RW	6'h0
55	ldid62_rnf	Specifies if RAID 62 is RN-F	RW	1'b0
54	Reserved	Reserved	RO	-
53:48	ldid62	Specifies the LDID for RAID 62	RW	6'h0
47	ldid61_rnf	Specifies if RAID 61 is RN-F	RW	1'b0
46	Reserved	Reserved	RO	-
45:40	ldid61	Specifies the LDID for RAID 61	RW	6'h0
39	ldid60_rnf	Specifies if RAID 60 is RN-F	RW	1'b0
38	Reserved	Reserved	RO	-
37:32	ldid60	Specifies the LDID for RAID 60	RW	6'h0

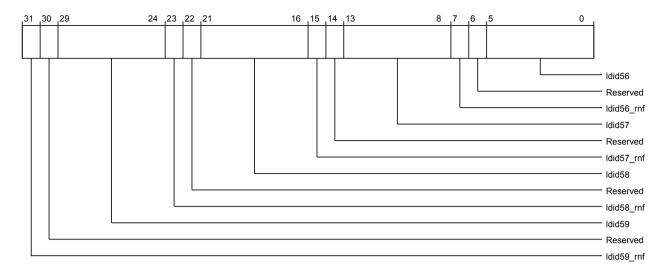


Figure 3-753 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg7 (low)

The following table shows the por_cxg_ha_rnf_raid_to_ldid_reg7 lower register bit assignments.

Table 3-767 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31	ldid59_rnf	Specifies if RAID 59 is RN-F	RW	1'b0
30	Reserved	Reserved	RO	-
29:24	ldid59	Specifies the LDID for RAID 59	RW	6'h0
23	ldid58_rnf	Specifies if RAID 58 is RN-F	RW	1'b0
22	Reserved	Reserved	RO	-
21:16	ldid58	Specifies the LDID for RAID 58	RW	6'h0
15	ldid57_rnf	Specifies if RAID 57 is RN-F	RW	1'b0
14	Reserved	Reserved	RO	-
13:8	ldid57	Specifies the LDID for RAID 57	RW	6'h0
7	ldid56_rnf	Specifies if RAID 56 is RN-F	RW	1'b0
6	Reserved	Reserved	RO	-
5:0	ldid56	Specifies the LDID for RAID 56	RW	6'h0

por_cxg_ha_agentid_to_linkid_reg0

Specifies the mapping of Agent ID to Link ID for Agent IDs 0 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC40

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

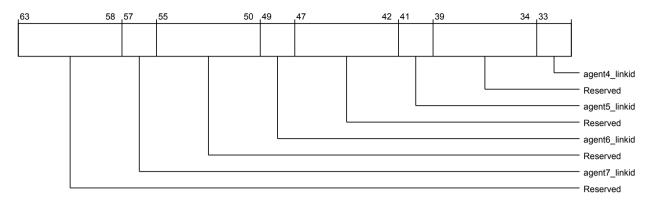


Figure 3-754 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg0 (high)

The following table shows the por cxg ha agentid to linkid reg0 higher register bit assignments.

Table 3-768 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent7_linkid	Specifies Link ID 7	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent6_linkid	Specifies Link ID 6	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent5_linkid	Specifies Link ID 5	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent4_linkid	Specifies Link ID 4	RW	2'h0

The following image shows the lower register bit assignments.

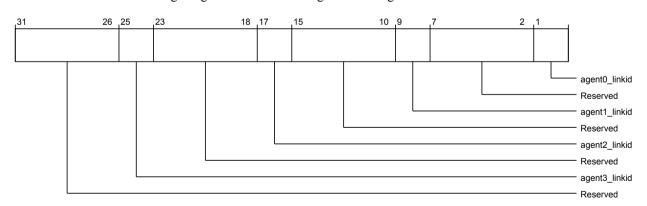


Figure 3-755 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg0 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg0 lower register bit assignments.

Table 3-769 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent3_linkid	Specifies Link ID 3	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent2_linkid	Specifies Link ID 2	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent1_linkid	Specifies Link ID 1	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent0_linkid	Specifies Link ID 0	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg1

Specifies the mapping of Agent ID to Link ID for Agent IDs 8 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC48
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

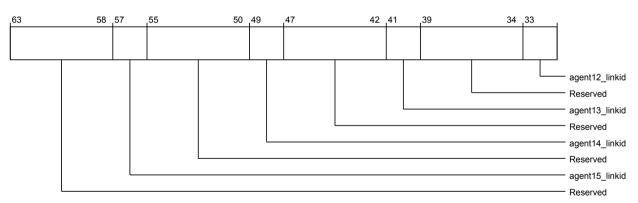


Figure 3-756 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg1 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg1 higher register bit assignments.

Table 3-770 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent15_linkid	Specifies Link ID 15	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-770 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg1 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent14_linkid	Specifies Link ID 14	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent13_linkid	Specifies Link ID 13	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent12_linkid	Specifies Link ID 12	RW	2'h0

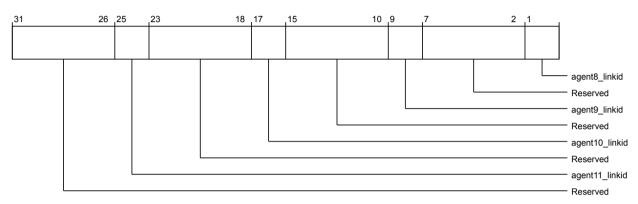


Figure 3-757 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg1 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg1 lower register bit assignments.

Table 3-771 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent11_linkid	Specifies Link ID 11	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent10_linkid	Specifies Link ID 10	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent9_linkid	Specifies Link ID 9	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent8_linkid	Specifies Link ID 8	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg2

Specifies the mapping of Agent ID to Link ID for Agent IDs 16 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC50
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

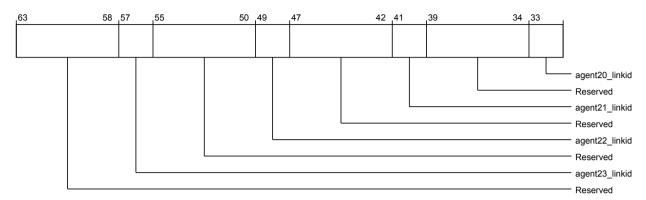


Figure 3-758 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg2 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg2 higher register bit assignments.

Table 3-772 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent23_linkid	Specifies Link ID 23	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent22_linkid	Specifies Link ID 22	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent21_linkid	Specifies Link ID 21	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent20_linkid	Specifies Link ID 20	RW	2'h0

The following image shows the lower register bit assignments.

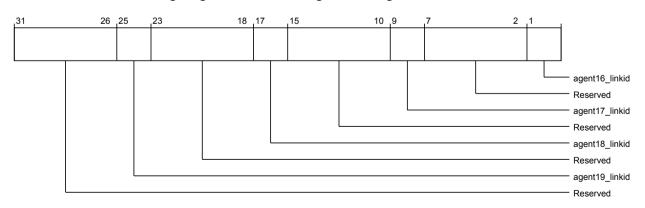


Figure 3-759 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg2 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg2 lower register bit assignments.

Table 3-773 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent19_linkid	Specifies Link ID 19	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent18_linkid	Specifies Link ID 18	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent17_linkid	Specifies Link ID 17	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent16_linkid	Specifies Link ID 16	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg3

Specifies the mapping of Agent ID to Link ID for Agent IDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC58
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

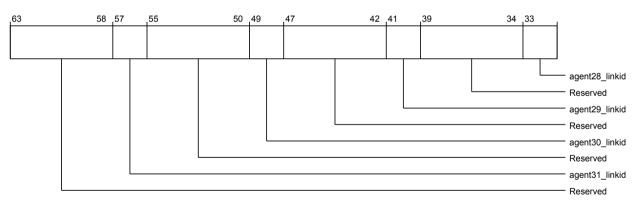


Figure 3-760 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg3 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg3 higher register bit assignments.

Table 3-774 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent31_linkid	Specifies Link ID 31	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-774 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent30_linkid	Specifies Link ID 30	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent29_linkid	Specifies Link ID 29	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent28_linkid	Specifies Link ID 28	RW	2'h0

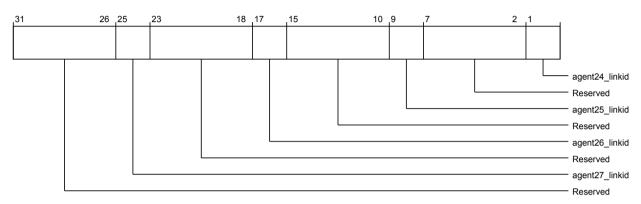


Figure 3-761 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg3 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg3 lower register bit assignments.

Table 3-775 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent27_linkid	Specifies Link ID 27	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent26_linkid	Specifies Link ID 26	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent25_linkid	Specifies Link ID 25	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent24_linkid	Specifies Link ID 24	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg4

Specifies the mapping of Agent ID to Link ID for Agent IDs 32 to 39.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC60
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxg_ha_secure_register_groups_override.linkid_ctl \\ \end{tabular}$

override

The following image shows the higher register bit assignments.

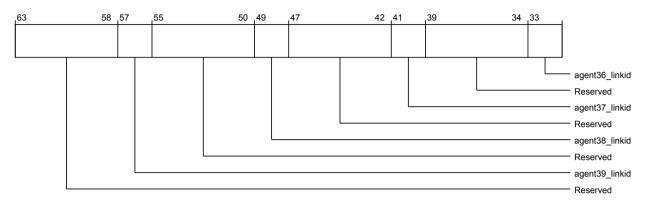


Figure 3-762 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg4 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg4 higher register bit assignments.

Table 3-776 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent39_linkid	Specifies Link ID 39	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent38_linkid	Specifies Link ID 38	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent37_linkid	Specifies Link ID 37	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent36_linkid	Specifies Link ID 36	RW	2'h0

The following image shows the lower register bit assignments.

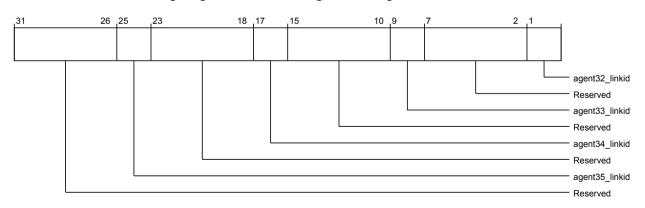


Figure 3-763 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg4 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg4 lower register bit assignments.

Table 3-777 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent35_linkid	Specifies Link ID 35	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent34_linkid	Specifies Link ID 34	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent33_linkid	Specifies Link ID 33	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent32_linkid	Specifies Link ID 32	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg5

Specifies the mapping of Agent ID to Link ID for Agent IDs 40 to 47.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC68
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

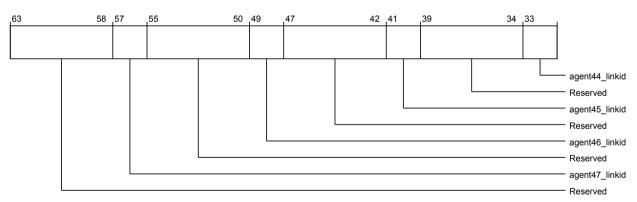


Figure 3-764 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg5 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg5 higher register bit assignments.

Table 3-778 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent47_linkid	Specifies Link ID 47	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-778 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg5 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent46_linkid	Specifies Link ID 46	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent45_linkid	Specifies Link ID 45	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent44_linkid	Specifies Link ID 44	RW	2'h0

The following image shows the lower register bit assignments.

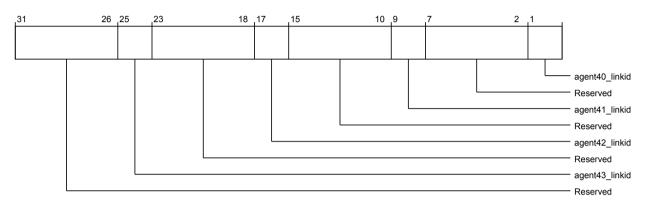


Figure 3-765 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg5 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg5 lower register bit assignments.

Table 3-779 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent43_linkid	Specifies Link ID 43	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent42_linkid	Specifies Link ID 42	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent41_linkid	Specifies Link ID 41	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent40_linkid	Specifies Link ID 40	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg6

Specifies the mapping of Agent ID to Link ID for Agent IDs 48 to 55.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC70
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

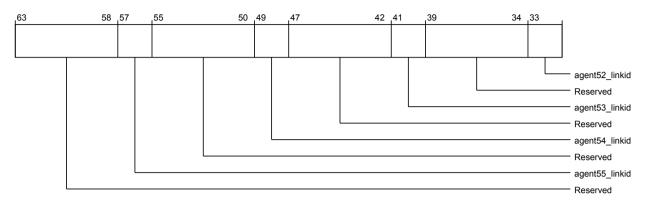


Figure 3-766 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg6 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg6 higher register bit assignments.

Table 3-780 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent55_linkid	Specifies Link ID 55	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent54_linkid	Specifies Link ID 54	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent53_linkid	Specifies Link ID 53	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent52_linkid	Specifies Link ID 52	RW	2'h0

The following image shows the lower register bit assignments.

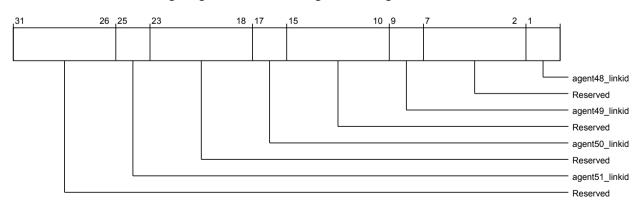


Figure 3-767 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg6 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg6 lower register bit assignments.

Table 3-781 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent51_linkid	Specifies Link ID 51	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent50_linkid	Specifies Link ID 50	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent49_linkid	Specifies Link ID 49	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent48_linkid	Specifies Link ID 48	RW	2'h0

por_cxg_ha_agentid_to_linkid_reg7

Specifies the mapping of Agent ID to Link ID for Agent IDs 56 to 63.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC78
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

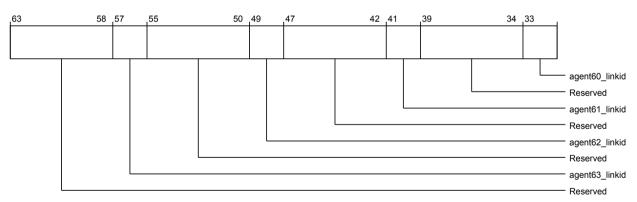


Figure 3-768 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg7 (high)

The following table shows the por_cxg_ha_agentid_to_linkid_reg7 higher register bit assignments.

Table 3-782 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent63_linkid	Specifies Link ID 63	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-782 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg7 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent62_linkid	Specifies Link ID 62	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent61_linkid	Specifies Link ID 61	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent60_linkid	Specifies Link ID 60	RW	2'h0

The following image shows the lower register bit assignments.

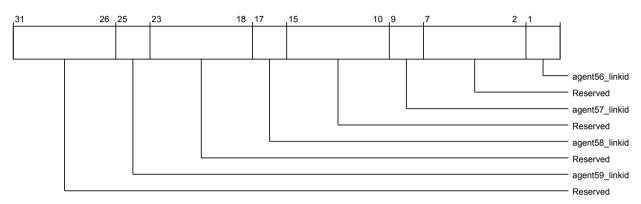


Figure 3-769 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg7 (low)

The following table shows the por_cxg_ha_agentid_to_linkid_reg7 lower register bit assignments.

Table 3-783 por_cxg_ha_por_cxg_ha_agentid_to_linkid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent59_linkid	Specifies Link ID 59	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent58_linkid	Specifies Link ID 58	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent57_linkid	Specifies Link ID 57	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent56_linkid	Specifies Link ID 56	RW	2'h0

por_cxg_ha_agentid_to_linkid_val

Specifies which Agent ID to Link ID mappings are valid.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hD00
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por cxg ha secure register groups override.linkid ctl

override

The following image shows the higher register bit assignments.

Figure 3-770 por cxg ha por cxg ha agentid to linkid val (high)

The following table shows the por_cxg_ha_agentid_to_linkid_val higher register bit assignments.

Table 3-784 por_cxg_ha_por_cxg_ha_agentid_to_linkid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	valid	Specifies whether the Link ID is valid; bit number corresponds to logical Agent ID number (from 0 to 63)	RW	63'h0

The following image shows the lower register bit assignments.

Figure 3-771 por_cxg_ha_por_cxg_ha_agentid_to_linkid_val (low)

The following table shows the por cxg ha agentid to linkid val lower register bit assignments.

Table 3-785 por_cxg_ha_por_cxg_ha_agentid_to_linkid_val (low)

Ві	ts	Field name	Description	Туре	Reset
31	:0		Specifies whether the Link ID is valid; bit number corresponds to logical Agent ID number (from $0\ to\ 63)$	RW	63'h0

por_cxg_ha_rnf_raid_to_ldid_val

Specifies which RAID to RN-F LDID mappings are valid.

Its characteristics are:

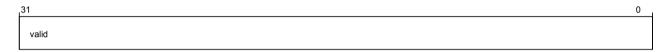
Type RW
Register width (Bits) 64
Address offset 14'hD08
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ha_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.


Figure 3-772 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_val (high)

The following table shows the por cxg ha rnf raid to ldid val higher register bit assignments.

Table 3-786 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	valid	Specifies whether the LDID is valid; bit number corresponds to logical RN-F LDID number (from 0 to 63)	RW	63'h0

The following image shows the lower register bit assignments.

Figure 3-773 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_val (low)

The following table shows the por exg ha rnf raid to ldid val lower register bit assignments.

Table 3-787 por_cxg_ha_por_cxg_ha_rnf_raid_to_ldid_val (low)

Bits	Field name	Description	Туре	Reset
31:0		Specifies whether the LDID is valid; bit number corresponds to logical RN-F LDID number (from 0 to 63)	RW	63'h0

por_cxg_ha_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h2000Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-774 por_cxg_ha_por_cxg_ha_pmu_event_sel (high)

The following table shows the por_cxg_ha_pmu_event_sel higher register bit assignments.

Table 3-788 por_cxg_ha_por_cxg_ha_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:36	Reserved	Reserved	RO	
35:32	pmu_occup1_id	CXHA PMU occupancy event selector ID	RW	4'b0

The following image shows the lower register bit assignments.

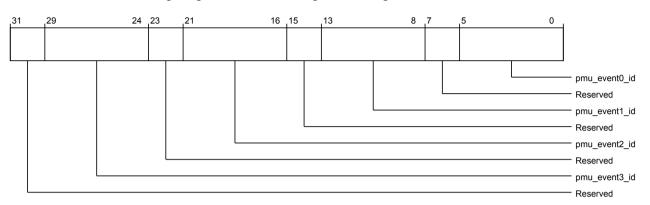


Figure 3-775 por_cxg_ha_por_cxg_ha_pmu_event_sel (low)

The following table shows the por_cxg_ha_pmu_event_sel lower register bit assignments.

Table 3-789 por_cxg_ha_por_cxg_ha_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	pmu_event3_id	CXHA PMU Event 3 ID; see pmu_event0_id for encodings	RW	6'b0
23:22	Reserved	Reserved	RO	-
21:16	pmu_event2_id	CXHA PMU Event 2 ID; see pmu_event0_id for encodings	RW	6'b0
15:14	Reserved	Reserved	RO	-
13:8	pmu_event1_id	CXHA PMU Event 1 ID; see pmu_event0_id for encodings	RW	6'b0

Table 3-789 por_cxg_ha_por_cxg_ha_pmu_event_sel (low) (continued)

Bits	Field name	Description	Туре	Reset
7:6	Reserved	Reserved	RO	-
5:0	pmu_event0_id	CXHA PMU Event 0 ID	RW	6'b0
		6'b000000: CXHA_PMU_EVENT_NULL		
		6'b100001: CXHA_PMU_EVENT_RDDATBYP		
		6'b100010: CXHA_PMU_EVENT_CHIRSP_UP_STALL		
		6'b100011: CXHA_PMU_EVENT_CHIDAT_UP_STALL		
		6'b100100: CXHA_PMU_EVENT_SNPPCRD_LNK0_STALL		
		6'b100101: CXHA_PMU_EVENT_SNPPCRD_LNK1_STALL		
		6'b100110: CXHA_PMU_EVENT_SNPPCRD_LNK2_STALL		
		6'b100111: CXHA_PMU_EVENT_REQTRK_OCC		
		6'b101000: CXHA_PMU_EVENT_RDB_OCC		
		6'b101001: CXHA_PMU_EVENT_RDBBYP_OCC		
		6'b101010: CXHA_PMU_EVENT_WDB_OCC		
		6'b101011: CXHA_PMU_EVENT_SNPTRK_OCC		
		6'b101100: CXHA_PMU_EVENT_SDB_OCC		
		6'b101101: CXHA_PMU_EVENT_SNPHAZ_OCC		

por_cxg_ha_cxprtcl_link0_ctl

Functions as the CXHA CCIX Protocol Link 0 control register. Works with por_cxg_ha_cxprtcl_link0_status.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h1000 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-776 por_cxg_ha_por_cxg_ha_cxprtcl_link0_ctl (high)

The following table shows the por_cxg_ha_cxprtcl_link0_ctl higher register bit assignments.

Table 3-790 por_cxg_ha_por_cxg_ha_cxprtcl_link0_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

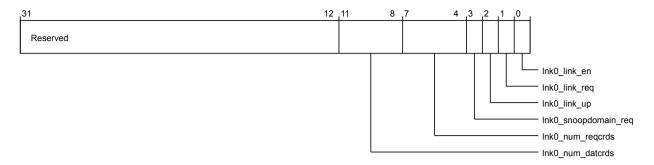


Figure 3-777 por_cxg_ha_por_cxg_ha_cxprtcl_link0_ctl (low)

The following table shows the por_cxg_ha_cxprtcl_link0_ctl lower register bit assignments.

Table 3-791 por_cxg_ha_por_cxg_ha_cxprtcl_link0_ctl (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:8	lnk0_num_daterds	Controls the number of CCIX data credits assigned to Link 0	RW	4'b0
		4'h0: Total credits are equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
7:4	lnk0_num_reqcrds	Controls the number of CCIX request credits assigned to Link 0	RW	4'b0
		4'h0: Total credits are equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
3	lnk0_snoopdomain_req	Controls Snoop domain enable (SYSCOREQ) for CCIX Link 0	RW	1'b0
2	lnk0_link_up	Link Up status. Software writes this register bit to indicate Link status after polling Link_ACK and Link_DN status in the remote agent	RW	1'b0
		1'b0: Link is not Up. Software clears Link_UP when Link_ACK status is clear and Link_DN status is set in both local and remote agents. The local agent stops responding to any protocol activity from remote agent, including acceptance of protocol credits, when Link_UP is clear		
		1'b1: Link is Up. Software sets Link_UP when Link_ACK status is set and Link_DN status is clear in both local and remote agents; the local agent starts sending local protocol credits to remote agent		

Table 3-791 por_cxg_ha_por_cxg_ha_cxprtcl_link0_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
1	lnk0_link_req	Link Up/Down request; software writes this register bit to request a Link Up or	RW	1'b0
		Link Down in the local agent		
		1'b0: Link Down request		
		NOTE: The local agent does not return remote protocol credits yet since remote agent may still be in Link_UP state.		
		1'b1: Link Up request		
0	lnk0_link_en	Enables CCIX Link 0 when set	RW	1'b0
		1'b0: Link is disabled		
		1'b1: Link is enabled		

por_cxg_ha_cxprtcl_link0_status

Functions as the CXHA CCIX Protocol Link 0 status register. Works with por_cxg_ha_cxprtcl_link0_ctl.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h1008 Register reset 64'b010

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-778 por_cxg_ha_por_cxg_ha_cxprtcl_link0_status (high)

The following table shows the por_cxg_ha_cxprtcl_link0_status higher register bit assignments.

Table 3-792 por_cxg_ha_por_cxg_ha_cxprtcl_link0_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-779 por_cxg_ha_por_cxg_ha_cxprtcl_link0_status (low)

The following table shows the por_cxg_ha_cxprtcl_link0_status lower register bit assignments.

Table 3-793 por_cxg_ha_por_cxg_ha_cxprtcl_link0_status (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	lnk0_snoopdomain_ack	Provides Snoop domain status (SYSCOACK) for CCIX Link 0	RO	1'b0
1	lnk0_link_down	Link Down status; hardware updates this register bit to indicate Link Down status 1'b0: Link is not Down; hardware clears Link_DN when it receives a Link Up request 1'b1: Link is Down; hardware sets Link_DN after the local agent has received all local protocol credits. The local agent must continue to respond to any remote protocol activity, including accepting and returning remote protocol credits until Link Up is clear	RO	1'b1
0	Ink0_link_ack	Link Up/Down acknowledge; hardware updates this register bit to acknowledge the software link request 1'b0: Link Down acknowledge; hardware clears Link_ACK on receiving a Link Down request; the local agent stops sending protocol credits to the remote agent when Link_ACK is clear 1'b1: Link Up acknowledge; hardware sets Link_ACK when the local agent is ready to start accepting protocol credits from the remote agent NOTE: The local agent must clear Link_DN before setting Link_ACK.	RO	1'b0

por_cxg_ha_cxprtcl_link1_ctl

Functions as the CXHA CCIX Protocol Link 1 control register. Works with por_cxg_ha_cxprtcl_link1_status.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h1010
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Reserved 32

Figure 3-780 por_cxg_ha_por_cxg_ha_cxprtcl_link1_ctl (high)

The following table shows the por_cxg_ha_cxprtcl_link1_ctl higher register bit assignments.

Table 3-794 por_cxg_ha_por_cxg_ha_cxprtcl_link1_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

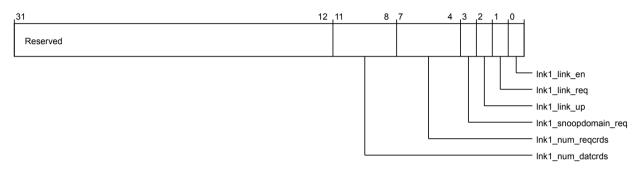


Figure 3-781 por_cxg_ha_por_cxg_ha_cxprtcl_link1_ctl (low)

The following table shows the por_cxg_ha_cxprtcl_link1_ctl lower register bit assignments.

Table 3-795 por_cxg_ha_por_cxg_ha_cxprtcl_link1_ctl (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:8	lnk1_num_daterds	Controls the number of CCIX data credits assigned to Link 1	RW	4'b0
		4'h0: Total credits equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		

Table 3-795 por_cxg_ha_por_cxg_ha_cxprtcl_link1_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
7:4	lnk1_num_reqcrds	Controls the number of CCIX request credits assigned to Link 1	RW	4'b0
		4'h0: Total credits are equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
3	lnk1_snoopdomain_req	Controls Snoop domain enable (SYSCOREQ) for CCIX Link 1	RW	1'b0
2	lnk1_link_up	Link Up status. Software writes this register bit to indicate Link status after polling Link_ACK and Link_DN status in the remote agent	RW	1'b0
		1'b0: Link is not Up. Software clears Link_UP when Link_ACK status is clear and Link_DN status is set in both local and remote agents. The local agent stops responding to any protocol activity from remote agent, including acceptance of protocol credits, when Link_UP is clear		
		1'b1: Link is Up. Software sets Link_UP when Link_ACK status is set and Link_DN status is clear in both local and remote agents; the local agent starts sending local protocol credits to remote agent		
1	lnk1_link_req	Link Up/Down request; software writes this register bit to request a Link Up or Link Down in the local agent	RW	1'b0
		1'b0: Link Down request		
		NOTE: The local agent does not return remote protocol credits yet since remote agent may still be in Link_UP state.		
		1'b1: Link Up request		
0	lnk1_link_en	Enables CCIX Link 1 when set	RW	1'b0
		1'b0: Link is disabled		
		1'b1: Link is enabled		

por_cxg_ha_cxprtcl_link1_status

Functions as the CXHA CCIX Protocol Link 1 status register. Works with por_cxg_ha_cxprtcl_link1_ctl. Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h1018
Register reset 64'b010

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-782 por_cxg_ha_por_cxg_ha_cxprtcl_link1_status (high)

The following table shows the por_cxg_ha_cxprtcl_link1_status higher register bit assignments.

Table 3-796 por_cxg_ha_por_cxg_ha_cxprtcl_link1_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

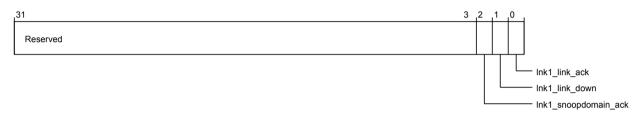


Figure 3-783 por_cxg_ha_por_cxg_ha_cxprtcl_link1_status (low)

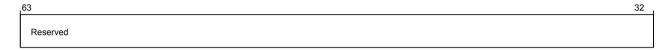
The following table shows the por_cxg_ha_cxprtcl_link1_status lower register bit assignments.

Table 3-797 por_cxg_ha_por_cxg_ha_cxprtcl_link1_status (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	lnk1_snoopdomain_ack	Provides Snoop domain status (SYSCOACK) for CCIX Link 1	RO	1'b0
1	lnk1_link_down	Link Down status; hardware updates this register bit to indicate Link Down status 1'b0: Link is not Down; hardware clears Link_DN when it receives a Link Up request 1'b1: Link is Down; hardware sets Link_DN after the local agent has received all local protocol credits. The local agent must continue to respond to any remote protocol activity, including accepting and returning remote protocol credits until Link Up is clear	RO	1'b1
0	lnk1_link_ack	Link Up/Down Acknowledge; hardware updates this register bit to acknowledge the software link request 1'b0: Link Down acknowledge; hardware clears Link_ACK on receiving a Link Down request; the local agent stops sending protocol credits to the remote agent when Link_ACK is clear 1'b1: Link Up acknowledge; hardware sets Link_ACK when the local agent is ready to start accepting protocol credits from the remote agent NOTE: The local agent must clear Link_DN before setting Link_ACK.	RO	1'b0

por_cxg_ha_cxprtcl_link2_ctl

Functions as the CXHA CCIX Protocol Link 2 control register. Works with por cxg ha cxprtcl link2 status.


Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h1020 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-784 por_cxg_ha_por_cxg_ha_cxprtcl_link2_ctl (high)

The following table shows the por_cxg_ha_cxprtcl_link2_ctl higher register bit assignments.

Table 3-798 por_cxg_ha_por_cxg_ha_cxprtcl_link2_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

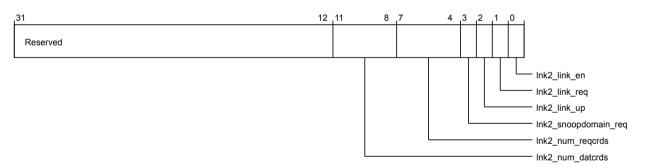


Figure 3-785 por_cxg_ha_por_cxg_ha_cxprtcl_link2_ctl (low)

The following table shows the por cxg ha cxprtcl link2 ctl lower register bit assignments.

Table 3-799 por_cxg_ha_por_cxg_ha_cxprtcl_link2_ctl (low)

Bits	Field name	Description	Туре	Reset
31:12	Reserved	Reserved	RO	-
11:8	lnk2_num_daterds	Controls the number of CCIX data credits assigned to Link 2	RW	4'b0
		4'h0: Total credits are equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
7:4	lnk2_num_reqcrds	Controls the number of CCIX request credits assigned to Link 2	RW	4'b0
		4'h0: Total credits are equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
3	lnk2_snoopdomain_req	Controls Snoop domain enable (SYSCOREQ) for CCIX Link 2	RW	1'b0
2	lnk2_link_up	Link Up status. Software writes this register bit to indicate Link status after polling Link_ACK and Link_DN status in the remote agent	RW	1'b0
		1'b0: Link is not Up. Software clears Link_UP when Link_ACK status is clear and Link_DN status is set in both local and remote agents. The local agent stops responding to any protocol activity from remote agent, including acceptance of protocol credits, when Link_UP is clear		
		1'b1: Link is Up. Software sets Link_UP when Link_ACK status is set and Link_DN status is clear in both local and remote agents; the local agent starts sending local protocol credits to remote agent		
1	lnk2_link_req	Link Up/Down request; software writes this register bit to request a Link Up or Link Down in the local agent	RW	1'b0
		1'b0: Link Down request		
		NOTE: The local agent does not return remote protocol credits yet since remote agent may still be in Link_UP state.		
		1'b1: Link Up request		
0	lnk2_link_en	Enables CCIX Link 2 when set	RW	1'b0
		1'b0: Link is disabled		
		1'b1: Link is enabled		

por_cxg_ha_cxprtcl_link2_status

Functions as the CXHA CCIX Protocol Link 2 status register. Works with por_cxg_ha_cxprtcl_link2_ctl. Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h1028 **Register reset** 64'b010

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-786 por_cxg_ha_por_cxg_ha_cxprtcl_link2_status (high)

The following table shows the por_cxg_ha_cxprtcl_link2_status higher register bit assignments.

Table 3-800 por_cxg_ha_por_cxg_ha_cxprtcl_link2_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

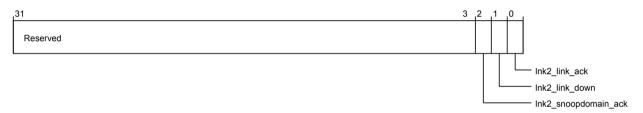


Figure 3-787 por_cxg_ha_por_cxg_ha_cxprtcl_link2_status (low)

The following table shows the por_cxg_ha_cxprtcl_link2_status lower register bit assignments.

Table 3-801 por_cxg_ha_por_cxg_ha_cxprtcl_link2_status (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	lnk2_snoopdomain_ack	Provides Snoop domain status (SYSCOACK) for CCIX Link 2	RO	1'b0

Table 3-801 por_cxg_ha_por_cxg_ha_cxprtcl_link2_status (low) (continued)

Bits	Field name	Description	Туре	Reset
1	lnk2_link_down	Link Down status; hardware updates this register bit to indicate Link Down status	RO	1'b1
		1'b0: Link is not Down; hardware clears Link_DN when it receives a Link Up request		
		1'b1: Link is Down; hardware sets Link_DN after the local agent has received all local protocol credits. The local agent must continue to respond to any remote protocol activity, including accepting and returning remote protocol credits until Link Up is clear		
0	lnk2_link_ack	Link Up/Down acknowledge; hardware updates this register bit to acknowledge the software link request		1'b0
		1'b0: Link Down acknowledge; hardware clears Link_ACK on receiving a Link Down request; the local agent stops sending protocol credits to the remote agent when Link_ACK is clear		
		1'b1: Link Up acknowledge; hardware sets Link_ACK when the local agent is ready to start accepting protocol credits from the remote agent		
		NOTE: The local agent must clear Link_DN before setting Link_ACK.		

por_cxg_ha_errfr

Functions as the error feature register.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'h3000

Register reset 64'b0000010100101

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-788 por_cxg_ha_por_cxg_ha_errfr (high)

The following table shows the por_cxg_ha_errfr higher register bit assignments.

Table 3-802 por_cxg_ha_por_cxg_ha_errfr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

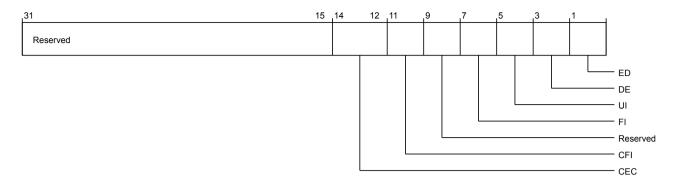


Figure 3-789 por_cxg_ha_por_cxg_ha_errfr (low)

The following table shows the por_cxg_ha_errfr lower register bit assignments.

Table 3-803 por_cxg_ha_por_cxg_ha_errfr (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved		-
14:12	CEC	Standard corrected error count mechanism I		3'b000
		3'b000: Does not implement standardized error counter model		
		3'b010: Implements 8-bit error counter in por_cxg_ha_errmisc[39:32]		
		3'b100: Implements 16-bit error counter in por_cxg_ha_errmisc[47:32]		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors for data poison	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_cxg_ha_errctlr

Functions as the error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3008
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-790 por_cxg_ha_por_cxg_ha_errctlr (high)

The following table shows the por cxg ha errctlr higher register bit assignments.

Table 3-804 por_cxg_ha_por_cxg_ha_errctlr (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

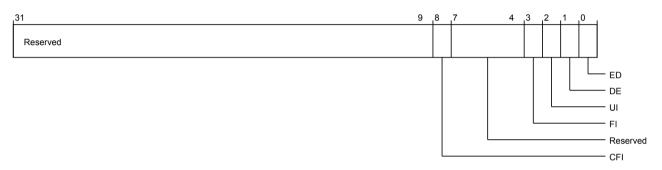


Figure 3-791 por_cxg_ha_por_cxg_ha_errctlr (low)

The following table shows the por cxg ha errctlr lower register bit assignments.

Table 3-805 por_cxg_ha_por_cxg_ha_errctlr (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	FI Enables corrected error interrupt as specified in por_cxg_ha_errfr.CFI		1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_cxg_ha_errfr.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_cxg_ha_errfr.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_cxg_ha_errfr.DE	RW	1'b0
0	ED	Enables error detection as specified in por_cxg_ha_errfr.ED	RW	1'b0

por_cxg_ha_errstatus

Functions as the error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.

Its characteristics are:

Type W1C Register width (Bits) 64 **Address offset** 14'h3010 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-792 por_cxg_ha_por_cxg_ha_errstatus (high)

The following table shows the por_cxg_ha_errstatus higher register bit assignments.

Table 3-806 por_cxg_ha_por_cxg_ha_errstatus (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

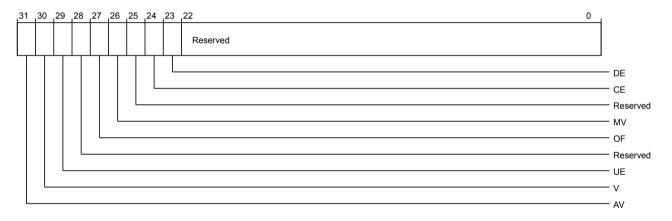


Figure 3-793 por_cxg_ha_por_cxg_ha_errstatus (low)

The following table shows the por_cxg_ha_errstatus lower register bit assignments.

Table 3-807 por_cxg_ha_por_cxg_ha_errstatus (low)

Bits	Field name	Description	Туре	Reset
31	AV Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear		W1C	1'b0
		1'b1: Address is valid; por_cxg_ha_erraddr contains a physical address for that recorded error		
		1'b0: Address is not valid		
30	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear		W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		

Table 3-807 por_cxg_ha_por_cxg_ha_errstatus (low) (continued)

Bits	Field name	Description	Туре	Reset
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_cxg_ha_errmisc valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Miscellaneous registers are valid		
		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-
24	CE	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one transient corrected error recorded		
		1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error is not corrected and is deferred		
		1'b0: No errors deferred		
22:0	Reserved	Reserved	RO	-

por_cxg_ha_erraddr

Contains the error record address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3018
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

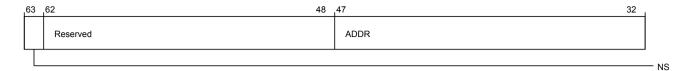


Figure 3-794 por_cxg_ha_por_cxg_ha_erraddr (high)

The following table shows the por_cxg_ha_erraddr higher register bit assignments.

Table 3-808 por_cxg_ha_por_cxg_ha_erraddr (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_cxg_ha_erraddr.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.

Figure 3-795 por_cxg_ha_por_cxg_ha_erraddr (low)

The following table shows the por_cxg_ha_erraddr lower register bit assignments.

Table 3-809 por_cxg_ha_por_cxg_ha_erraddr (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_cxg_ha_errmisc

Functions as the miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3020
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

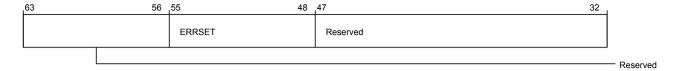


Figure 3-796 por_cxg_ha_por_cxg_ha_errmisc (high)

The following table shows the por_cxg_ha_errmisc higher register bit assignments.

Table 3-810 por_cxg_ha_por_cxg_ha_errmisc (high)

Bits	Field name	Description	Туре	Reset
63:56	Reserved	Reserved	RO	-
55:48	ERRSET	RAM entry set address for parity error	RW	8'b0
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

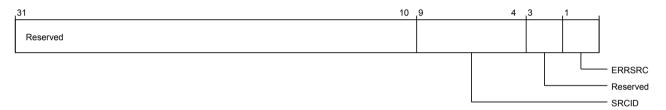


Figure 3-797 por_cxg_ha_por_cxg_ha_errmisc (low)

The following table shows the por cxg ha errmisc lower register bit assignments.

Table 3-811 por_cxg_ha_por_cxg_ha_errmisc (low)

Bits	Field name	Description	Туре	Reset
31:10	Reserved	Reserved	RO	-
9:4	SRCID	CCIX RAID of the requestor or the snoop target	RW	6'b0
3:2	Reserved	Reserved	RO	-
1:0	ERRSRC	Source of the parity error	RW	2'b00
		2'b00: Read data buffer 0		
		2'b01: Read data buffer 1		
		2'b10: Write data buffer 0		
		2'b11: Write data buffer 1		

por_cxg_ha_errfr_NS

Functions as the non-secure error feature register.

Its characteristics are:

Type

RO

Register width (Bits) 64

Address offset 14'h3100

Register reset 64'b0000010100101

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-798 por_cxg_ha_por_cxg_ha_errfr_ns (high)

The following table shows the por_cxg_ha_errfr_NS higher register bit assignments.

Table 3-812 por_cxg_ha_por_cxg_ha_errfr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

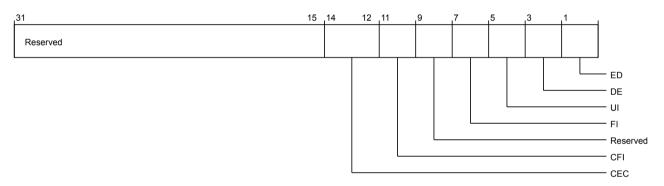


Figure 3-799 por_cxg_ha_por_cxg_ha_errfr_ns (low)

The following table shows the por_cxg_ha_errfr_NS lower register bit assignments.

Table 3-813 por_cxg_ha_por_cxg_ha_errfr_ns (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	CEC	Standard corrected error count mechanism		3'b000
		3'b000: Does not implement standardized error counter model		
		3'b010: Implements 8-bit error counter in por_cxg_ha_errmisc[39:32]		
		3'b100: Implements 16-bit error counter in por_cxg_ha_errmisc[47:32]		
11:10	CFI	Corrected error interrupt	RO	2'b00
9:8	Reserved	Reserved	RO	-
7:6	FI	Fault handling interrupt	RO	2'b10

Table 3-813 por_cxg_ha_por_cxg_ha_errfr_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
5:4	UI	Uncorrected error interrupt	RO	2'b10
3:2	DE	Deferred errors for data poison	RO	2'b01
1:0	ED	Error detection	RO	2'b01

por_cxg_ha_errctlr_NS

Functions as the non-secure error control register. Controls whether specific error-handling interrupts and error detection/deferment are enabled.

Its characteristics are:

Register reset

Type RW
Register width (Bits) 64
Address offset 14'h3108

Usage constraints Only accessible by secure accesses.

64'b0

The following image shows the higher register bit assignments.

Figure 3-800 por_cxg_ha_por_cxg_ha_errctlr_ns (high)

The following table shows the por_cxg_ha_errctlr_NS higher register bit assignments.

Table 3-814 por_cxg_ha_por_cxg_ha_errctlr_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

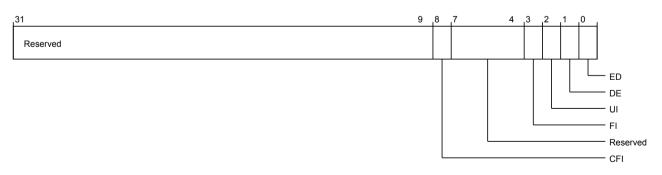


Figure 3-801 por_cxg_ha_por_cxg_ha_errctlr_ns (low)

The following table shows the por cxg ha errctlr NS lower register bit assignments.

Table 3-815 por_cxg_ha_por_cxg_ha_errctlr_ns (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	CFI	Enables corrected error interrupt as specified in por_cxg_ha_errfr.CFI	RW	1'b0
7:4	Reserved	Reserved	RO	-
3	FI	Enables fault handling interrupt for all detected deferred errors as specified in por_cxg_ha_errfr.FI	RW	1'b0
2	UI	Enables uncorrected error interrupt as specified in por_cxg_ha_errfr.UI	RW	1'b0
1	DE	Enables error deferment as specified in por_cxg_ha_errfr.DE	RW	1'b0
0	ED	Enables error detection as specified in por_cxg_ha_errfr.ED	RW	1'b0

por_cxg_ha_errstatus_NS

Functions as the non-secure error status register. AV and MV bits must be cleared in the same cycle, otherwise the error record does not have a consistent view.

Its characteristics are:

Type W1C Register width (Bits) 64 Address offset 14'h3110

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-802 por_cxg_ha_por_cxg_ha_errstatus_ns (high)

The following table shows the por_cxg_ha_errstatus_NS higher register bit assignments.

Table 3-816 por_cxg_ha_por_cxg_ha_errstatus_ns (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

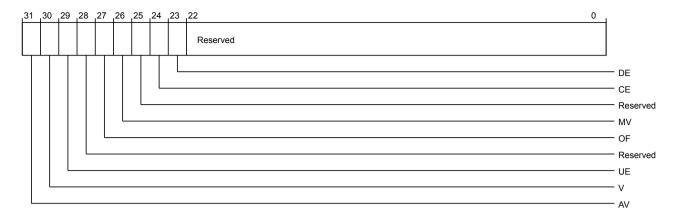


Figure 3-803 por_cxg_ha_por_cxg_ha_errstatus_ns (low)

The following table shows the por_cxg_ha_errstatus_NS lower register bit assignments.

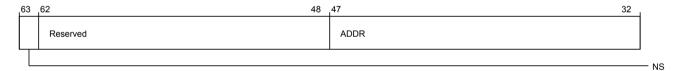
Table 3-817 por_cxg_ha_por_cxg_ha_errstatus_ns (low)

Bits	Field name	Description	Туре	Reset
31	AV	Address register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: Address is valid; por_cxg_ha_erraddr contains a physical address for that recorded error		
		1'b0: Address is not valid		
30	V	Register valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error recorded; register is valid		
		1'b0: No errors recorded		
29	UE	Uncorrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error detected that is not corrected and is not deferred to a slave		
		1'b0: No uncorrected errors detected		
28	Reserved	Reserved	RO	-
27	OF	Overflow; asserted when multiple errors of the highest priority type are detected; write a 1 to clear	W1C	1'b0
		1'b1: More than one error detected		
		1'b0: Only one error of the highest priority type detected as described by UE/DE/CE fields		
26	MV	por_cxg_ha_errmisc valid; writes to this bit are ignored if any of the UE, DE, or CE bits are set to 1, and the highest priority are not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
ļ		1'b1: Miscellaneous registers are valid		
ļ		1'b0: Miscellaneous registers are not valid		
25	Reserved	Reserved	RO	-

Table 3-817 por_cxg_ha_por_cxg_ha_errstatus_ns (low) (continued)

Bits	Field name	Description	Туре	Reset
24	СЕ	Corrected errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		At least one transient corrected error recorded		
		1'b0: No corrected errors recorded		
23	DE	Deferred errors; writes to this bit are ignored if the OF bit is set to 1, and is not cleared to 0 in the same write; write a 1 to clear	W1C	1'b0
		1'b1: At least one error is not corrected and is deferred		
		1'b0: No errors deferred		
22:0	Reserved	Reserved	RO	-

por_cxg_ha_erraddr_NS


Contains the non-secure error record address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h3118
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-804 por_cxg_ha_por_cxg_ha_erraddr_ns (high)

The following table shows the por_cxg_ha_erraddr_NS higher register bit assignments.

Table 3-818 por_cxg_ha_por_cxg_ha_erraddr_ns (high)

Bits	Field name	Description	Туре	Reset
63	NS	Security status of transaction	RW	1'b0
		1'b1: Non-secure transaction		
		1'b0: Secure transaction		
		CONSTRAINT: por_cxg_ha_erraddr.NS is redundant. Since it is writable, it cannot be used for logic qualification.		
62:48	Reserved	Reserved	RO	-
47:32	ADDR	Transaction address	RW	48'b0

The following image shows the lower register bit assignments.

Figure 3-805 por_cxg_ha_por_cxg_ha_erraddr_ns (low)

The following table shows the por cxg ha erraddr NS lower register bit assignments.

Table 3-819 por_cxg_ha_por_cxg_ha_erraddr_ns (low)

Bits	Field name	Description	Туре	Reset
31:0	ADDR	Transaction address	RW	48'b0

por_cxg_ha_errmisc_NS

Functions as the non-secure miscellaneous error register. Contains miscellaneous information about deferred/uncorrected errors.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h3120 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

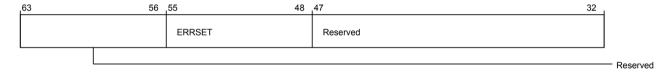


Figure 3-806 por_cxg_ha_por_cxg_ha_errmisc_ns (high)

The following table shows the por cxg ha errmisc NS higher register bit assignments.

Table 3-820 por_cxg_ha_por_cxg_ha_errmisc_ns (high)

Bits	Field name	Description	Туре	Reset
63:56	Reserved	Reserved	RO	-
55:48	ERRSET	RAM entry set address for parity error	RW	8'b0
47:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

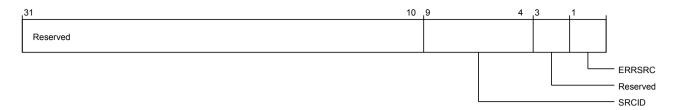


Figure 3-807 por_cxg_ha_por_cxg_ha_errmisc_ns (low)

The following table shows the por_cxg_ha_errmisc_NS lower register bit assignments.

Table 3-821 por_cxg_ha_por_cxg_ha_errmisc_ns (low)

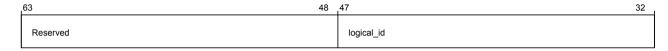
Bits	Field name	Description	Туре	Reset
31:10	Reserved	Reserved	RO	-
9:4	SRCID	CCIX RAID of the requestor or the snoop target	RW	6'b0
3:2	Reserved	Reserved	RO	-
1:0	ERRSRC	Source of the parity error	RW	2'b00
		2'b00: Read data buffer 0		
		2'b01: Read data buffer 1		
		2'b10: Write data buffer 0		
		2'b11: Write data buffer 1		

3.3.12 CXRA configuration registers

This section lists the CXRA configuration registers.

por_cxg_ra_node_info

Provides component identification information.

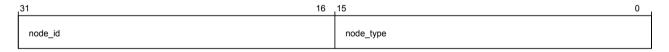

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-808 por_cxg_ra_por_cxg_ra_node_info (high)

The following table shows the por cxg ra node info higher register bit assignments.

Table 3-822 por_cxg_ra_por_cxg_ra_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

Figure 3-809 por_cxg_ra_por_cxg_ra_node_info (low)

The following table shows the por_cxg_ra_node_info lower register bit assignments.

Table 3-823 por_cxg_ra_por_cxg_ra_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component CHI node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h0100

por_cxg_ra_child_info

Provides component child identification information.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h80Register reset64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-810 por_cxg_ra_por_cxg_ra_child_info (high)

The following table shows the por cxg ra child info higher register bit assignments.

Table 3-824 por_cxg_ra_por_cxg_ra_child_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

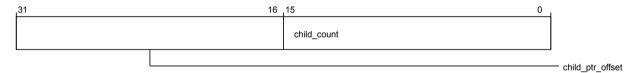


Figure 3-811 por_cxg_ra_por_cxg_ra_child_info (low)

The following table shows the por_cxg_ra_child_info lower register bit assignments.

Table 3-825 por_cxg_ra_por_cxg_ra_child_info (low)

Bits	Field name	Description	Туре	Reset
31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
15:0	child_count	Number of child nodes; used in discovery process	RO	16'h0

por_cxg_ra_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-812 por_cxg_ra_por_cxg_ra_secure_register_groups_override (high)

The following table shows the por_cxg_ra_secure_register_groups_override higher register bit assignments.

Table 3-826 por_cxg_ra_por_cxg_ra_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

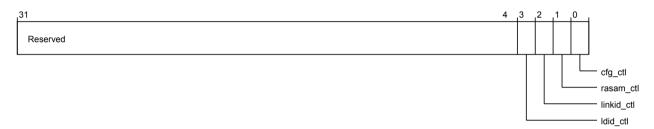


Figure 3-813 por_cxg_ra_por_cxg_ra_secure_register_groups_override (low)

The following table shows the por_cxg_ra_secure_register_groups_override lower register bit assignments.

Table 3-827 por_cxg_ra_por_cxg_ra_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	ldid_ctl	Allows non-secure access to secure RA LDID registers	RW	1'b0
2	linkid_ctl	Allows non-secure access to secure RA Link ID registers	RW	1'b0
1	rasam_ctl	Allows non-secure access to secure RA SAM control registers	RW	1'b0
0	cfg_ctl	Allows non-secure access to secure configuration control register	RW	1'b0

por_cxg_ra_unit_info

Provides component identification information for CXRA.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h900

Register reset Configuration dependent **Usage constraints** There are no usage constraints.

The following image shows the higher register bit assignments.

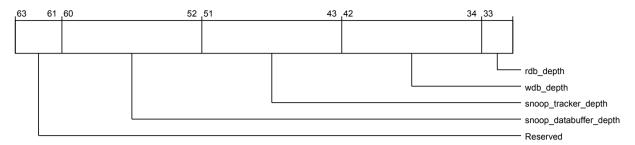


Figure 3-814 por_cxg_ra_por_cxg_ra_unit_info (high)

The following table shows the por cxg ra unit info higher register bit assignments.

Table 3-828 por_cxg_ra_por_cxg_ra_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:61	Reserved	Reserved	RO	-
60:52	snoop_databuffer_depth	Depth of Snoop Data Buffer - number of outstanding SNP requests on CHI	RO	Configuration dependent
51:43	snoop_tracker_depth	Depth of Snoop Tracker - number of outstanding SNP requests on CCIX	RO	Configuration dependent
42:34	wdb_depth	Depth of Write Data Buffer	RO	Configuration dependent
33:32	rdb_depth	Depth of Read Data Buffer	RO	Configuration dependent

The following image shows the lower register bit assignments.

Figure 3-815 por_cxg_ra_por_cxg_ra_unit_info (low)

The following table shows the por_cxg_ra_unit_info lower register bit assignments.

Table 3-829 por_cxg_ra_por_cxg_ra_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:25	rdb_depth	Depth of Read Data Buffer	RO	Configuration dependent
24:16	request_tracker_depth	Depth of Request Tracker - number of outstanding Memory requests on CCIX	RO	Configuration dependent
15:8	a4s_logicalid	AXI4Stream interfaces logical ID	RO	Configuration dependent
7	Reserved	Reserved	RO	-

Table 3-829 por_cxg_ra_por_cxg_ra_unit_info (low) (continued)

Bits	Field name	Description	Туре	Reset
6	num_mem_region_limit_enabled	Memory region limiting enabled	RO	Configuration dependent
5	Reserved	Reserved	RO	-
4:0	num_mem_regions	Number of memory regions supported	RO	Configuration dependent

por_cxg_ra_cfg_ctl

Functions as the configuration control register. Specifies the current mode.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA00

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

Secure group

por_cxg_ra_secure_register_groups_override.cfg_ctl

override

The following image shows the higher register bit assignments.

Figure 3-816 por_cxg_ra_por_cxg_ra_cfg_ctl (high)

The following table shows the por_cxg_ra_cfg_ctl higher register bit assignments.

Table 3-830 por_cxg_ra_por_cxg_ra_cfg_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

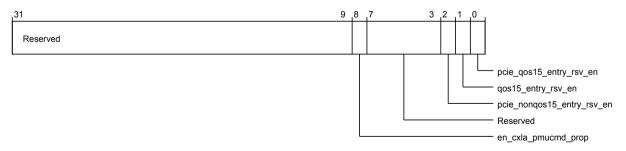


Figure 3-817 por_cxg_ra_por_cxg_ra_cfg_ctl (low)

The following table shows the por cxg ra cfg ctl lower register bit assignments.

Table 3-831 por_cxg_ra_por_cxg_ra_cfg_ctl (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	en_cxla_pmucmd_prop	When set, enables the propagation of PMU commands to CXLA NOTE: By default, CXLA PMU command propagation is disabled.	RW	1'b0
7:3	Reserved	Reserved	RO	-
2	pcie_nonqos15_entry_rsv_en	Enables entry reservation for non QoS15 traffic from PCIe RN-I/RN-D	RW	Configuration dependent
		1'b1: Reserves tracker entry for non QoS15 requests from PCIe RN-I/RN-D		
		1'b0: Does not reserve tracker entry for non QoS15 requests from PCIe RN-I/RN-D		
1	qos15_entry_rsv_en	Enables entry reservation for QoS15 traffic	RW	1'b1
		1'b1: Reserves tracker entry for QoS15 requests		
		1'b0: Does not reserve tracker entry for QoS15 requests		
0	pcie_qos15_entry_rsv_en	Enables entry reservation for QoS15 traffic from PCIe RN-I/RN-D	RW	Configuration
		1'b1: Reserves tracker entry for QoS15 requests from PCIe RN-I/RN-D		dependent
		1'b0: Does not reserve tracker entry for QoS15 requests from PCIe RN-I/RN-D		

por_cxg_ra_aux_ctl

Functions as the auxiliary control register for CXRA.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08
Register reset 64'b000000110

Usage constraints Only accessible by secure accesses. This register can be modified only with prior

written permission from Arm.

The following image shows the higher register bit assignments.

Figure 3-818 por_cxg_ra_por_cxg_ra_aux_ctl (high)

The following table shows the por_cxg_ra_aux_ctl higher register bit assignments.

Table 3-832 por_cxg_ra_por_cxg_ra_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

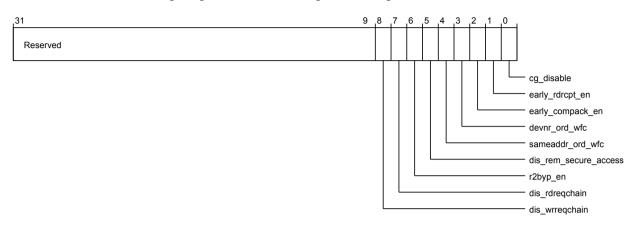


Figure 3-819 por_cxg_ra_por_cxg_ra_aux_ctl (low)

The following table shows the por_cxg_ra_aux_ctl lower register bit assignments.

Table 3-833 por_cxg_ra_por_cxg_ra_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	dis_wrreqchain	When set, disables chaining of write requests.	RW	1'b0
7	dis_rdreqchain	When set, disables chaining of read and dataless requests.	RW	1'b0
6	r2byp_en	When set, enables request bypass. Applies to read and dataless requests only. Note: When set will affect the capability to chain a request on the TX side	RW	1'b0
5	dis_rem_secure_access	When set, treats all the incoming snoops as non-secure and forces the NS bit to 1	RW	1'b0
4	sameaddr_ord_wfc	When set, enables waiting for completion (COMP) before dispatching next same Addr dependent transaction (TXN)	RW	1'b0
3	devnr_ord_wfc	When set, enables waiting for completion (COMP) before dispatching next Device-nR dependent transaction (TXN)	RW	1'b0
2	early_compack_en	Early CompAck enable; enables sending early CompAck on CCIX for requests that require CompAck	RW	1'b1
1	early_rdrcpt_en	Early ReadReceipt enable; enables sending early ReadReceipt for ordered read requests	RW	1'b1
0	cg_disable	Disables clock gating when set	RW	1'b0

por_cxg_ra_sam_addr_region_reg0

Configures Address Region 0 for RA SAM.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hDA8 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

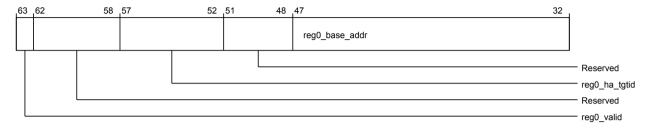


Figure 3-820 por_cxg_ra_por_cxg_ra_sam_addr_region_reg0 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg0 higher register bit assignments.

Table 3-834 por_cxg_ra_por_cxg_ra_sam_addr_region_reg0 (high)

Bits	Field name	Description	Туре	Reset
63	reg0_valid	Specifies if the memory region is valid	RW	1'b0
62:58	Reserved	Reserved	RO	-
57:52	reg0_ha_tgtid	Specifies the target HAID	RW	6'b0
51:48	Reserved	Reserved	RO	-
47:32	reg0_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0

The following image shows the lower register bit assignments.

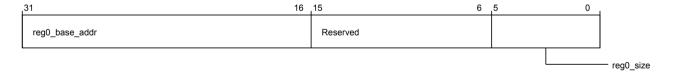


Figure 3-821 por_cxg_ra_por_cxg_ra_sam_addr_region_reg0 (low)

The following table shows the por_cxg_ra_sam_addr_region_reg0 lower register bit assignments.

Table 3-835 por_cxg_ra_por_cxg_ra_sam_addr_region_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:16	reg0_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0
15:6	Reserved	Reserved	RO	-
5:0	reg0_size	Specifies the size of the memory region	RW	1'b0

por_cxg_ra_sam_addr_region_reg1

Configures Address Region 1 for RA SAM.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDB0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group

por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

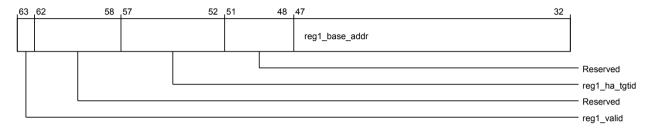


Figure 3-822 por_cxg_ra_por_cxg_ra_sam_addr_region_reg1 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg1 higher register bit assignments.

Table 3-836 por_cxg_ra_por_cxg_ra_sam_addr_region_reg1 (high)

Bits	Field name	Description	Туре	Reset
63	reg1_valid	Specifies if the memory region is valid	RW	1'b0
62:58	Reserved	Reserved	RO	-
57:52	reg1_ha_tgtid	Specifies the target HAID	RW	6'b0
51:48	Reserved	Reserved	RO	-
47:32	reg1_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0

The following image shows the lower register bit assignments.

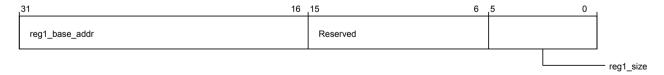


Figure 3-823 por_cxg_ra_por_cxg_ra_sam_addr_region_reg1 (low)

The following table shows the por cxg ra sam addr region reg1 lower register bit assignments.

Table 3-837 por_cxg_ra_por_cxg_ra_sam_addr_region_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:16	reg1_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0
15:6	Reserved	Reserved	RO	-
5:0	reg1_size	Specifies the size of the memory region	RW	1'b0

por_cxg_ra_sam_addr_region_reg2

Configures Address Region 2 for RA SAM.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hDB8Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group override

por_cxg_ra_secure_register_groups_override.rasam_ctl

The following image shows the higher register bit assignments.

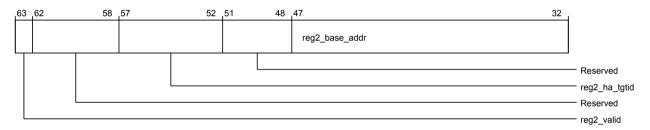


Figure 3-824 por_cxg_ra_por_cxg_ra_sam_addr_region_reg2 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg2 higher register bit assignments.

Table 3-838 por_cxg_ra_por_cxg_ra_sam_addr_region_reg2 (high)

Bits	Field name	Description	Туре	Reset
63	reg2_valid	Specifies if the memory region is valid	RW	1'b0
62:58	Reserved	Reserved	RO	-
57:52	reg2_ha_tgtid	Specifies the target HAID	RW	6'b0
51:48	Reserved	Reserved	RO	-
47:32	reg2_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0

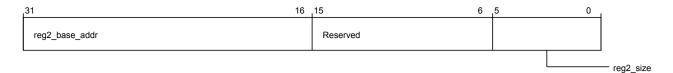


Figure 3-825 por_cxg_ra_por_cxg_ra_sam_addr_region_reg2 (low)

The following table shows the por cxg ra sam addr region reg2 lower register bit assignments.

Table 3-839 por_cxg_ra_por_cxg_ra_sam_addr_region_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:16	reg2_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0
15:6	Reserved	Reserved	RO	-
5:0	reg2_size	Specifies the size of the memory region	RW	1'b0

por_cxg_ra_sam_addr_region_reg3

Configures Address Region 3 for RA SAM.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDC0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

over ride

The following image shows the higher register bit assignments.

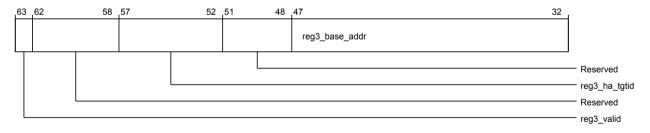


Figure 3-826 por_cxg_ra_por_cxg_ra_sam_addr_region_reg3 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg3 higher register bit assignments.

Table 3-840 por_cxg_ra_por_cxg_ra_sam_addr_region_reg3 (high)

Bits	Field name	Description	Туре	Reset
63	reg3_valid	Specifies if the memory region is valid	RW	1'b0
62:58	Reserved	Reserved	RO	-
57:52	reg3_ha_tgtid	Specifies the target HAID	RW	6'b0

Table 3-840 por_cxg_ra_por_cxg_ra_sam_addr_region_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
51:48	Reserved	Reserved	RO	-
47:32	reg3_base_addr	Specifies the 2 ⁿ -aligned base address for the memory region	RW	32'h0

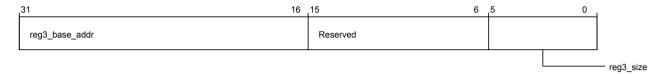


Figure 3-827 por_cxg_ra_por_cxg_ra_sam_addr_region_reg3 (low)

The following table shows the por_cxg_ra_sam_addr_region_reg3 lower register bit assignments.

Table 3-841 por_cxg_ra_por_cxg_ra_sam_addr_region_reg3 (low)

Bits	Field name	Description		Reset
31:16	reg3_base_addr	2_addr Specifies the 2^n-aligned base address for the memory region R		32'h0
15:6	Reserved	d Reserved F		-
5:0	reg3_size Specifies the size of the memory region		RW	1'b0

por_cxg_ra_sam_addr_region_reg4

Configures Address Region 4 for RA SAM.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDC8

Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl **override**

The following image shows the higher register bit assignments.

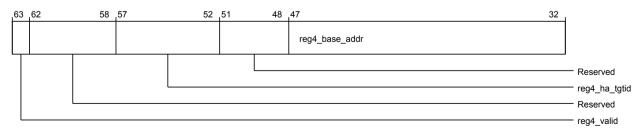


Figure 3-828 por_cxg_ra_por_cxg_ra_sam_addr_region_reg4 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg4 higher register bit assignments.

Table 3-842 por_cxg_ra_por_cxg_ra_sam_addr_region_reg4 (high)

Bits	Field name	Description	Туре	Reset
63	reg4_valid	pecifies if the memory region is valid		1'b0
62:58	Reserved	eserved R		-
57:52	reg4_ha_tgtid	Specifies the target HAID		6'b0
51:48	Reserved	eserved Reserved		-
47:32	reg4_base_addr	eg4_base_addr Specifies the 2^n-aligned base address for the memory region		32'h0

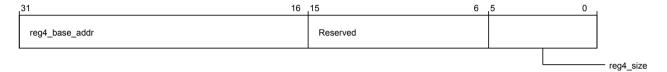


Figure 3-829 por_cxg_ra_por_cxg_ra_sam_addr_region_reg4 (low)

The following table shows the por_cxg_ra_sam_addr_region_reg4 lower register bit assignments.

Table 3-843 por_cxg_ra_por_cxg_ra_sam_addr_region_reg4 (low)

Bits	Field name	eld name Description		Reset
31:16	reg4_base_addr	dr Specifies the 2^n-aligned base address for the memory region R		32'h0
15:6	Reserved	red Reserved F		-
5:0	reg4_size	size Specifies the size of the memory region F		1'b0

por_cxg_ra_sam_addr_region_reg5

Configures Address Region 5 for RA SAM.

Its characteristics are:

Type RW
Register width (Bits) 64

Address offset 14'hDD0 **Register reset** 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

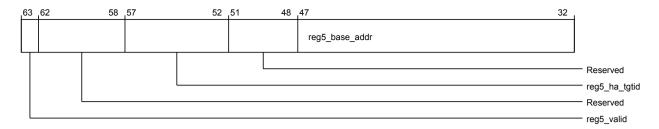


Figure 3-830 por_cxg_ra_por_cxg_ra_sam_addr_region_reg5 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg5 higher register bit assignments.

Table 3-844 por_cxg_ra_por_cxg_ra_sam_addr_region_reg5 (high)

Bits	Field name	Description	Туре	Reset
63	reg5_valid	ecifies if the memory region is valid		1'b0
62:58	Reserved	eserved R		-
57:52	reg5_ha_tgtid	Specifies the target HAID F		6'b0
51:48	Reserved	Reserved		-
47:32	reg5_base_addr	Specifies the 2^n-aligned base address for the memory region		32'h0

The following image shows the lower register bit assignments.

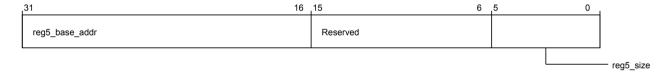


Figure 3-831 por_cxg_ra_por_cxg_ra_sam_addr_region_reg5 (low)

The following table shows the por_cxg_ra_sam_addr_region_reg5 lower register bit assignments.

Table 3-845 por_cxg_ra_por_cxg_ra_sam_addr_region_reg5 (low)

Bits	Field name	Id name Description		Reset
31:16	reg5_base_addr	be_addr Specifies the 2^n-aligned base address for the memory region R		32'h0
15:6	Reserved Reserved		RO	-
5:0	reg5_size	Specifies the size of the memory region	RW	1'b0

por_cxg_ra_sam_addr_region_reg6

Configures Address Region 6 for RA SAM.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDD8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

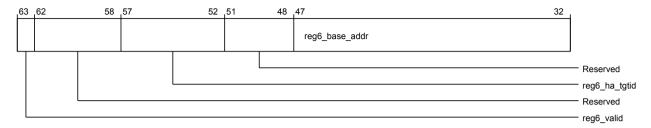


Figure 3-832 por_cxg_ra_por_cxg_ra_sam_addr_region_reg6 (high)

The following table shows the por_cxg_ra_sam_addr_region_reg6 higher register bit assignments.

Table 3-846 por_cxg_ra_por_cxg_ra_sam_addr_region_reg6 (high)

Bits	Field name	Description	Туре	Reset
63	reg6_valid	pecifies if the memory region is valid		1'b0
62:58	Reserved	Reserved		-
57:52	reg6_ha_tgtid	Specifies the target HAID		6'b0
51:48	Reserved	Reserved Reserved		-
47:32	reg6_base_addr	addr Specifies the 2^n-aligned base address for the memory region		32'h0

The following image shows the lower register bit assignments.

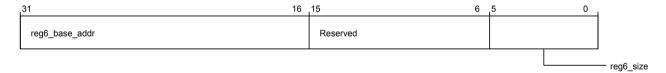


Figure 3-833 por_cxg_ra_por_cxg_ra_sam_addr_region_reg6 (low)

The following table shows the por_cxg_ra_sam_addr_region_reg6 lower register bit assignments.

Table 3-847 por_cxg_ra_por_cxg_ra_sam_addr_region_reg6 (low)

Bits	Field name	ame Description		Reset
31:16	reg6_base_addr	ddr Specifies the 2^n-aligned base address for the memory region R		32'h0
15:6	Reserved	ved Reserved F		-
5:0	reg6_size	ize Specifies the size of the memory region I		1'b0

por_cxg_ra_sam_addr_region_reg7

Configures Address Region 7 for RA SAM.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hDF

Address offset14'hDE0Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

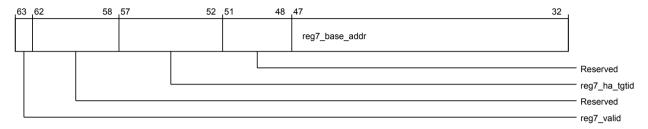


Figure 3-834 por_cxg_ra_por_cxg_ra_sam_addr_region_reg7 (high)

The following table shows the por cxg ra sam addr region reg7 higher register bit assignments.

Table 3-848 por_cxg_ra_por_cxg_ra_sam_addr_region_reg7 (high)

Bits	Field name	Description	Туре	Reset
63	reg7_valid	Specifies if the memory region is valid	RW	1'b0
62:58	Reserved	Reserved		-
57:52	reg7_ha_tgtid	Specifies the target HAID		6'b0
51:48	Reserved	served Reserved		-
47:32	reg7_base_addr	Specifies the 2^n-aligned base address for the memory region		32'h0

The following image shows the lower register bit assignments.

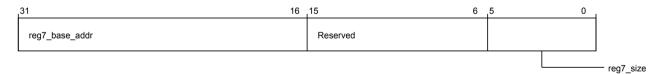


Figure 3-835 por_cxg_ra_por_cxg_ra_sam_addr_region_reg7 (low)

The following table shows the por_cxg_ra_sam_addr_region_reg7 lower register bit assignments.

Table 3-849 por_cxg_ra_por_cxg_ra_sam_addr_region_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:16	reg7_base_addr	reg7_base_addr Specifies the 2^n-aligned base address for the memory region 1		32'h0
15:6	Reserved	Reserved Reserved I		-
5:0	reg7_size	Specifies the size of the memory region	RW	1'b0

por_cxg_ra_sam_mem_region0_limit_reg

Specifies the memory region 0 limit address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE00Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

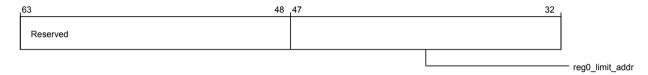


Figure 3-836 por_cxg_ra_por_cxg_ra_sam_mem_region0_limit_reg (high)

The following table shows the por cxg ra sam mem region0 limit reg higher register bit assignments.

Table 3-850 por_cxg_ra_por_cxg_ra_sam_mem_region0_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg0_limit_addr	Memory region 0 limit address	RW	32'h0

The following image shows the lower register bit assignments.

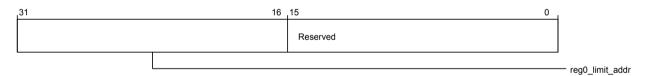


Figure 3-837 por_cxg_ra_por_cxg_ra_sam_mem_region0_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region0_limit_reg lower register bit assignments.

Table 3-851 por_cxg_ra_por_cxg_ra_sam_mem_region0_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg0_limit_addr	Memory region 0 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region1_limit_reg

Specifies the memory region 1 limit address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE08Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

Figure 3-838 por_cxg_ra_por_cxg_ra_sam_mem_region1_limit_reg (high)

The following table shows the por cxg_ra_sam_mem_region1_limit_reg higher register bit assignments.

Table 3-852 por_cxg_ra_por_cxg_ra_sam_mem_region1_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg1_limit_addr	Memory region 1 limit address	RW	32'h0

The following image shows the lower register bit assignments.

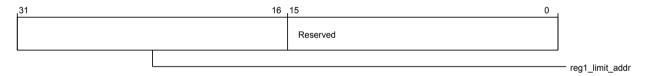


Figure 3-839 por_cxg_ra_por_cxg_ra_sam_mem_region1_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region1_limit_reg lower register bit assignments.

Table 3-853 por_cxg_ra_por_cxg_ra_sam_mem_region1_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg1_limit_addr	Memory region 1 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region2_limit_reg

Specifies the memory region 2 limit address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE10
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl

override

The following image shows the higher register bit assignments.

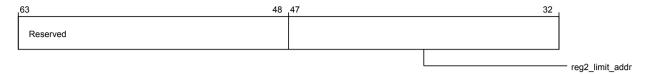


Figure 3-840 por_cxg_ra_por_cxg_ra_sam_mem_region2_limit_reg (high)

The following table shows the por_cxg_ra_sam_mem_region2_limit_reg higher register bit assignments.

Table 3-854 por_cxg_ra_por_cxg_ra_sam_mem_region2_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg2_limit_addr	Memory region 2 limit address	RW	32'h0

The following image shows the lower register bit assignments.

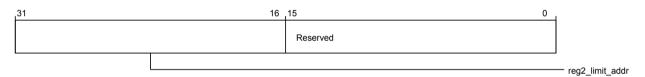


Figure 3-841 por_cxg_ra_por_cxg_ra_sam_mem_region2_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region2_limit_reg lower register bit assignments.

Table 3-855 por_cxg_ra_por_cxg_ra_sam_mem_region2_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg2_limit_addr	Memory region 2 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region3_limit_reg

Specifies the memory region 3 limit address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE18Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl **override**

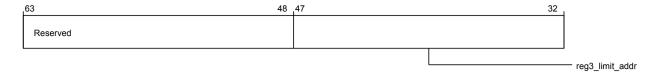


Figure 3-842 por_cxg_ra_por_cxg_ra_sam_mem_region3_limit_reg (high)

The following table shows the por_cxg_ra_sam_mem_region3_limit_reg higher register bit assignments.

Table 3-856 por_cxg_ra_por_cxg_ra_sam_mem_region3_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg3_limit_addr	Memory region 3 limit address	RW	32'h0

The following image shows the lower register bit assignments.

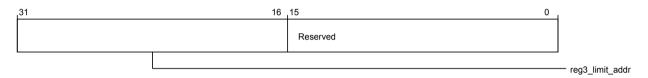


Figure 3-843 por_cxg_ra_por_cxg_ra_sam_mem_region3_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region3_limit_reg lower register bit assignments.

Table 3-857 por_cxg_ra_por_cxg_ra_sam_mem_region3_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg3_limit_addr	Memory region 3 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region4_limit_reg

Specifies the memory region 4 limit address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE20
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl **override**

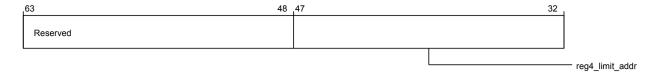


Figure 3-844 por_cxg_ra_por_cxg_ra_sam_mem_region4_limit_reg (high)

The following table shows the por_cxg_ra_sam_mem_region4_limit_reg higher register bit assignments.

Table 3-858 por_cxg_ra_por_cxg_ra_sam_mem_region4_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg4_limit_addr	Memory region 4 limit address	RW	32'h0

The following image shows the lower register bit assignments.

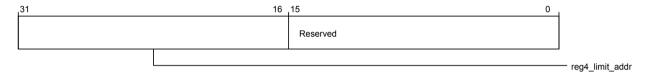


Figure 3-845 por_cxg_ra_por_cxg_ra_sam_mem_region4_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region4_limit_reg lower register bit assignments.

Table 3-859 por_cxg_ra_por_cxg_ra_sam_mem_region4_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg4_limit_addr	Memory region 4 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region5_limit_reg

Specifies the memory region 5 limit address.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE28
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl **override**

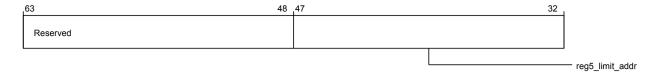


Figure 3-846 por_cxg_ra_por_cxg_ra_sam_mem_region5_limit_reg (high)

The following table shows the por_cxg_ra_sam_mem_region5_limit_reg higher register bit assignments.

Table 3-860 por_cxg_ra_por_cxg_ra_sam_mem_region5_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg5_limit_addr	Memory region 5 limit address	RW	32'h0

The following image shows the lower register bit assignments.

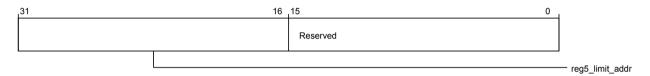


Figure 3-847 por_cxg_ra_por_cxg_ra_sam_mem_region5_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region5_limit_reg lower register bit assignments.

Table 3-861 por_cxg_ra_por_cxg_ra_sam_mem_region5_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg5_limit_addr	Memory region 5 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region6_limit_reg

Specifies the memory region 6 limit address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE30Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl **override**

Figure 3-848 por_cxg_ra_por_cxg_ra_sam_mem_region6_limit_reg (high)

The following table shows the por_cxg_ra_sam_mem_region6_limit_reg higher register bit assignments.

Table 3-862 por_cxg_ra_por_cxg_ra_sam_mem_region6_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg6_limit_addr	Memory region 6 limit address	RW	32'h0

The following image shows the lower register bit assignments.

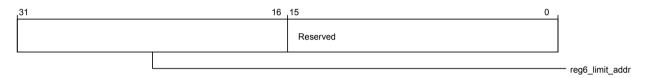


Figure 3-849 por_cxg_ra_por_cxg_ra_sam_mem_region6_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region6_limit_reg lower register bit assignments.

Table 3-863 por_cxg_ra_por_cxg_ra_sam_mem_region6_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg6_limit_addr	Memory region 6 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_sam_mem_region7_limit_reg

Specifies the memory region 7 limit address.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'hE38Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.rasam_ctl **override**

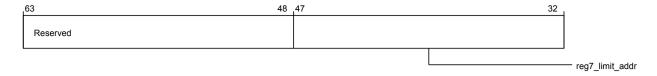


Figure 3-850 por_cxg_ra_por_cxg_ra_sam_mem_region7_limit_reg (high)

The following table shows the por cxg ra sam mem region7 limit reg higher register bit assignments.

Table 3-864 por_cxg_ra_por_cxg_ra_sam_mem_region7_limit_reg (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	reg7_limit_addr	Memory region 7 limit address	RW	32'h0

The following image shows the lower register bit assignments.

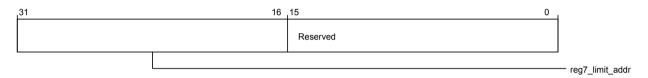


Figure 3-851 por_cxg_ra_por_cxg_ra_sam_mem_region7_limit_reg (low)

The following table shows the por_cxg_ra_sam_mem_region7_limit_reg lower register bit assignments.

Table 3-865 por_cxg_ra_por_cxg_ra_sam_mem_region7_limit_reg (low)

Bits	Field name	Description	Туре	Reset
31:16	reg7_limit_addr	Memory region 7 limit address	RW	32'h0
15:0	Reserved	Reserved	RO	-

por_cxg_ra_agentid_to_linkid_reg0

Specifies the mapping of Agent ID to Link ID for Agent IDs 0 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE60
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl **override**

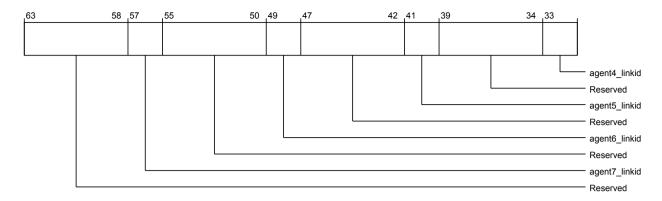


Figure 3-852 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg0 (high)

The following table shows the por_cxg_ra_agentid_to_linkid_reg0 higher register bit assignments.

Table 3-866 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent7_linkid	Specifies the Link ID for Agent ID 7	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent6_linkid	Specifies the Link ID for Agent ID 6	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent5_linkid	Specifies the Link ID for Agent ID 5	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent4_linkid	Specifies the Link ID for Agent ID 4	RW	2'h0

The following image shows the lower register bit assignments.

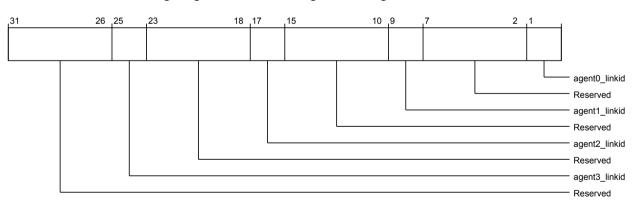


Figure 3-853 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg0 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg0 lower register bit assignments.

Table 3-867 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent3_linkid	Specifies the Link ID for Agent ID 3	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent2_linkid	Specifies the Link ID for Agent ID 2	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent1_linkid	Specifies the Link ID for Agent ID 1	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent0_linkid	Specifies the Link ID for Agent ID 0	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg1

Specifies the mapping of Agent ID to Link ID for Agent IDs 8 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE68
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

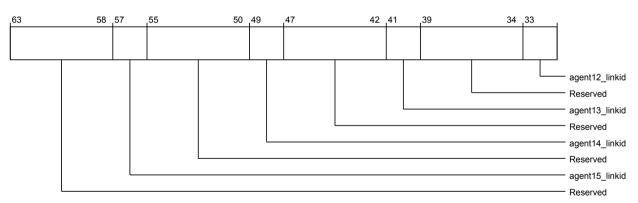


Figure 3-854 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg1 (high)

The following table shows the por_exg_ra_agentid_to_linkid_reg1 higher register bit assignments.

Table 3-868 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent15_linkid	Specifies the Link ID for Agent ID 15	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-868 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg1 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent14_linkid	Specifies the Link ID for Agent ID 14	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent13_linkid	Specifies the Link ID for Agent ID 13	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent12_linkid	Specifies the Link ID for Agent ID 12	RW	2'h0

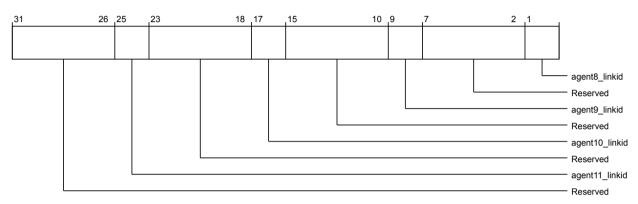


Figure 3-855 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg1 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg1 lower register bit assignments.

Table 3-869 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent11_linkid	Specifies the Link ID for Agent ID 11	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent10_linkid	Specifies the Link ID for Agent ID 10	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent9_linkid	Specifies the Link ID for Agent ID 9	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent8_linkid	Specifies the Link ID for Agent ID 8	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg2

Specifies the mapping of Agent ID to Link ID for Agent IDs 16 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE70
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

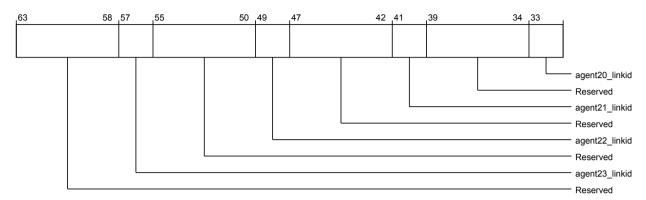


Figure 3-856 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg2 (high)

The following table shows the por cxg ra agentid to linkid reg2 higher register bit assignments.

Table 3-870 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent23_linkid	Specifies the Link ID for Agent ID 23	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent22_linkid	Specifies the Link ID for Agent ID 22	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent21_linkid	Specifies the Link ID for Agent ID 21	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent20_linkid	Specifies the Link ID for Agent ID 20	RW	2'h0

The following image shows the lower register bit assignments.

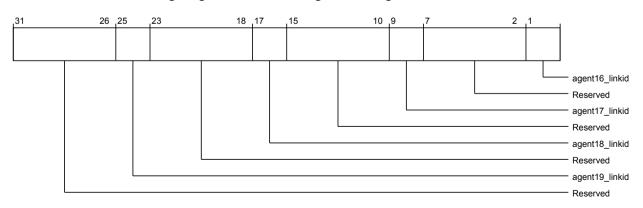


Figure 3-857 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg2 (low)

The following table shows the por cxg ra agentid to linkid reg2 lower register bit assignments.

Table 3-871 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent19_linkid	Specifies the Link ID for Agent ID 19	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent18_linkid	Specifies the Link ID for Agent ID 18	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent17_linkid	Specifies the Link ID for Agent ID 17	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent16_linkid	Specifies the Link ID for Agent ID 16	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg3

Specifies the mapping of Agent ID to Link ID for Agent IDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE78
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

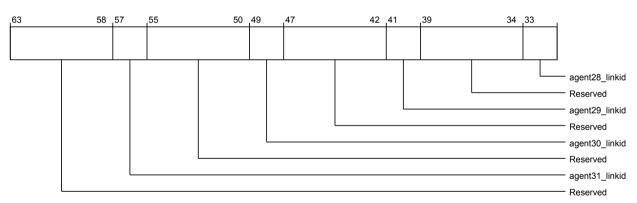


Figure 3-858 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg3 (high)

The following table shows the por_exg_ra_agentid_to_linkid_reg3 higher register bit assignments.

Table 3-872 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent31_linkid	Specifies the Link ID for Agent ID 31	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-872 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent30_linkid	Specifies the Link ID for Agent ID 30	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent29_linkid	Specifies the Link ID for Agent ID 29	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent28_linkid	Specifies the Link ID for Agent ID 28	RW	2'h0

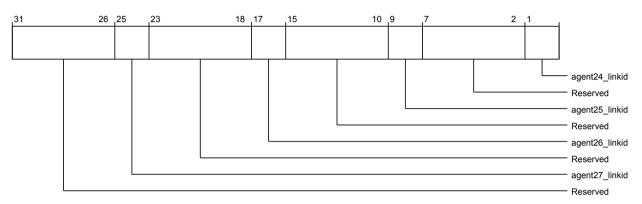


Figure 3-859 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg3 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg3 lower register bit assignments.

Table 3-873 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent27_linkid	Specifies the Link ID for Agent ID 27	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent26_linkid	Specifies the Link ID for Agent ID 26	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent25_linkid	Specifies the Link ID for Agent ID 25	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent24_linkid	Specifies the Link ID for Agent ID 24	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg4

Specifies the mapping of Agent ID to Link ID for Agent IDs 32 to 39.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE80
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

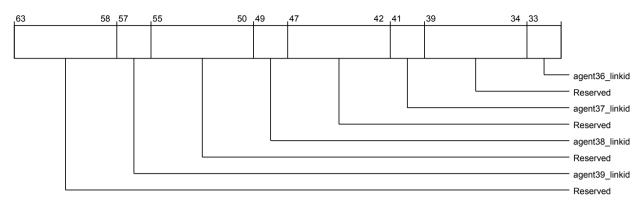


Figure 3-860 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg4 (high)

The following table shows the por cxg ra agentid to linkid reg4 higher register bit assignments.

Table 3-874 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent39_linkid	Specifies the Link ID for Agent ID 39	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent38_linkid	Specifies the Link ID for Agent ID 38	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent37_linkid	Specifies the Link ID for Agent ID 37	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent36_linkid	Specifies the Link ID for Agent ID 36	RW	2'h0

The following image shows the lower register bit assignments.

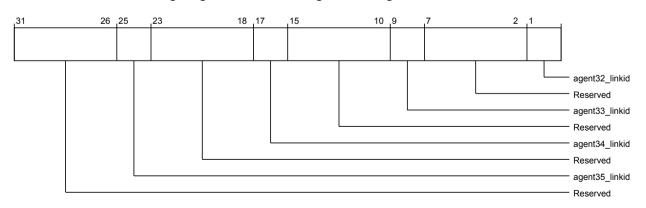


Figure 3-861 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg4 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg4 lower register bit assignments.

Table 3-875 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent35_linkid	Specifies the Link ID for Agent ID 35	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent34_linkid	Specifies the Link ID for Agent ID 34	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent33_linkid	Specifies the Link ID for Agent ID 33	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent32_linkid	Specifies the Link ID for Agent ID 32	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg5

Specifies the mapping of Agent ID to Link ID for Agent IDs 40 to 47.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE88
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl **override**

The following image shows the higher register bit assignments.

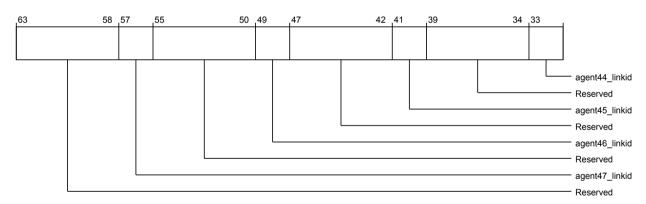


Figure 3-862 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg5 (high)

The following table shows the por_cxg_ra_agentid_to_linkid_reg5 higher register bit assignments.

Table 3-876 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent47_linkid	Specifies the Link ID for Agent ID 47	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-876 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg5 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent46_linkid	Specifies the Link ID for Agent ID 46	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent45_linkid	Specifies the Link ID for Agent ID 45	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent44_linkid	Specifies the Link ID for Agent ID 44	RW	2'h0

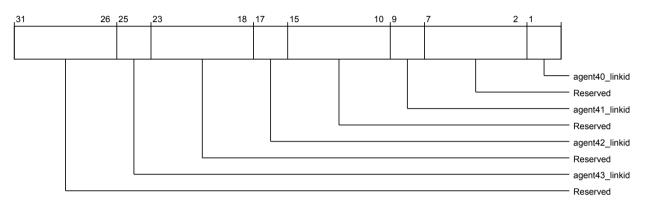


Figure 3-863 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg5 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg5 lower register bit assignments.

Table 3-877 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent43_linkid	Specifies the Link ID for Agent ID 43	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent42_linkid	Specifies the Link ID for Agent ID 42	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent41_linkid	Specifies the Link ID for Agent ID 41	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent40_linkid	Specifies the Link ID for Agent ID 40	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg6

Specifies the mapping of Agent ID to Link ID for Agent IDs 48 to 55.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE90
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

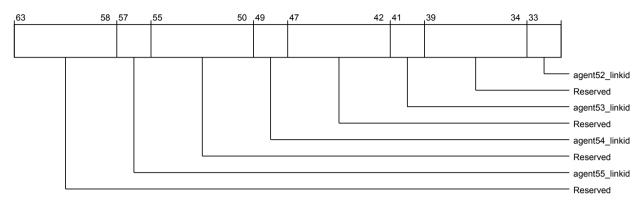


Figure 3-864 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg6 (high)

The following table shows the por cxg ra agentid to linkid reg6 higher register bit assignments.

Table 3-878 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent55_linkid	Specifies the Link ID for Agent ID 55	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent54_linkid	Specifies the Link ID for Agent ID 54	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent53_linkid	Specifies the Link ID for Agent ID 53	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent52_linkid	Specifies the Link ID for Agent ID 52	RW	2'h0

The following image shows the lower register bit assignments.

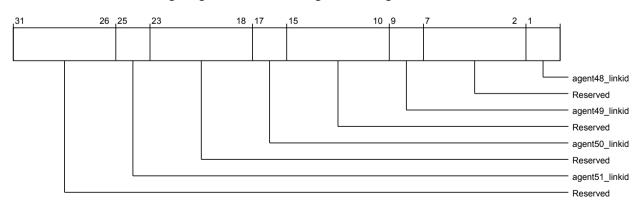


Figure 3-865 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg6 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg6 lower register bit assignments.

Table 3-879 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent51_linkid	Specifies the Link ID for Agent ID 51	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent50_linkid	Specifies the Link ID for Agent ID 50	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent49_linkid	Specifies the Link ID for Agent ID 49	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent48_linkid	Specifies the Link ID for Agent ID 48	RW	2'h0

por_cxg_ra_agentid_to_linkid_reg7

Specifies the mapping of Agent ID to Link ID for Agent IDs 56 to 63.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hE98
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

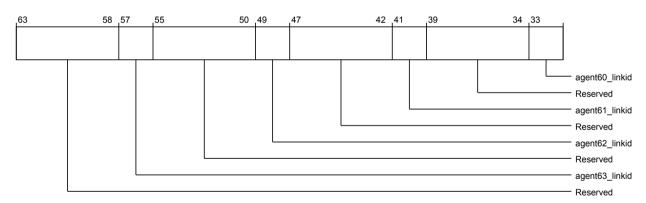


Figure 3-866 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg7 (high)

The following table shows the por_cxg_ra_agentid_to_linkid_reg7 higher register bit assignments.

Table 3-880 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent63_linkid	Specifies the Link ID for Agent ID 63	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-880 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg7 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent62_linkid	Specifies the Link ID for Agent ID 62	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent61_linkid	Specifies the Link ID for Agent ID 61	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent60_linkid	Specifies the Link ID for Agent ID 60	RW	2'h0

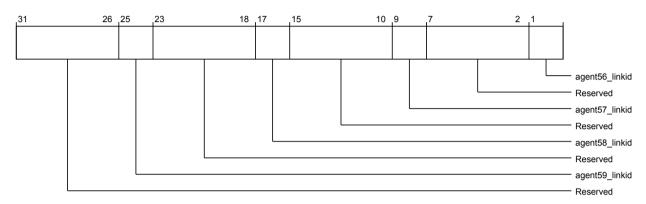


Figure 3-867 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg7 (low)

The following table shows the por_cxg_ra_agentid_to_linkid_reg7 lower register bit assignments.

Table 3-881 por_cxg_ra_por_cxg_ra_agentid_to_linkid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent59_linkid	Specifies the Link ID for Agent ID 59	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent58_linkid	Specifies the Link ID for Agent ID 58	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent57_linkid	Specifies the Link ID for Agent ID 57	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent56_linkid	Specifies the Link ID for Agent ID 56	RW	2'h0

por_cxg_ra_rnf_ldid_to_raid_reg0

Specifies the mapping of RN-F LDID to RAID for LDIDs 0 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEA0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

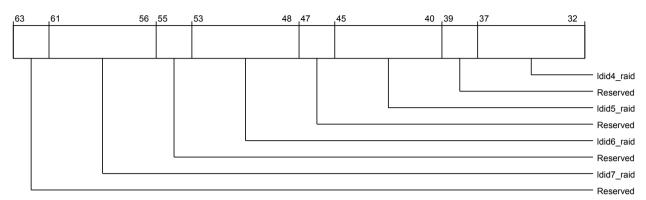


Figure 3-868 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg0 (high)

The following table shows the por cxg ra rnf ldid to raid reg0 higher register bit assignments.

Table 3-882 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid7_raid	Specifies the RAID for LDID 7	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid6_raid	Specifies the RAID for LDID 6	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid5_raid	Specifies the RAID for LDID 5	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid4_raid	Specifies the RAID for LDID 4	RW	6'h0

The following image shows the lower register bit assignments.

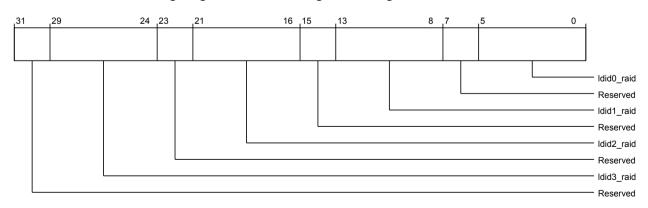


Figure 3-869 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg0 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg0 lower register bit assignments.

Table 3-883 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid3_raid	Specifies the RAID for LDID 3	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid2_raid	Specifies the RAID for LDID 2	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid1_raid	Specifies the RAID for LDID 1	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid0_raid	Specifies the RAID for LDID 0	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg1

Specifies the mapping of RN-F LDID to RAID for LDIDs 8 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEA8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

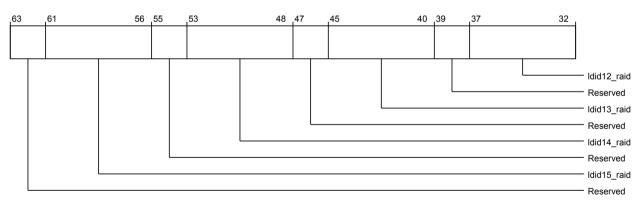


Figure 3-870 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg1 (high)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg1 higher register bit assignments.

Table 3-884 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid15_raid	Specifies the RAID for LDID 15	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-884 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg1 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid14_raid	Specifies the RAID for LDID 14	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid13_raid	Specifies the RAID for LDID 13	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid12_raid	Specifies the RAID for LDID 12	RW	6'h0

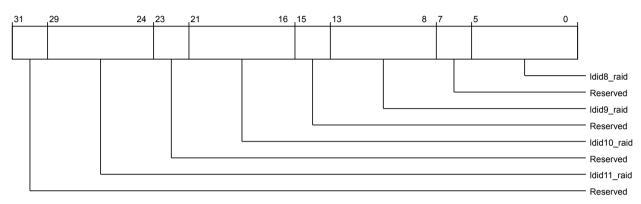


Figure 3-871 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg1 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg1 lower register bit assignments.

Table 3-885 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid11_raid	Specifies the RAID for LDID 11	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid10_raid	Specifies the RAID for LDID 10	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid9_raid	Specifies the RAID for LDID 9	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid8_raid	Specifies the RAID for LDID 8	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg2

Specifies the mapping of RN-F LDID to RAID for LDIDs 16 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEB0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

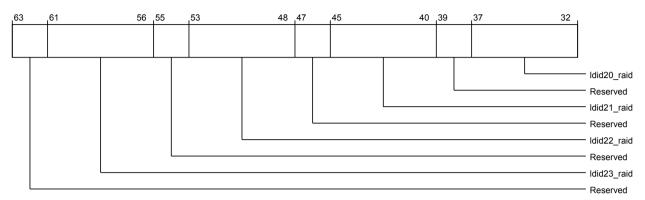


Figure 3-872 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg2 (high)

The following table shows the por cxg ra rnf ldid to raid reg2 higher register bit assignments.

Table 3-886 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid23_raid	Specifies the RAID for LDID 23	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid22_raid	Specifies the RAID for LDID 22	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid21_raid	Specifies the RAID for LDID 21	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid20_raid	Specifies the RAID for LDID 20	RW	6'h0

The following image shows the lower register bit assignments.

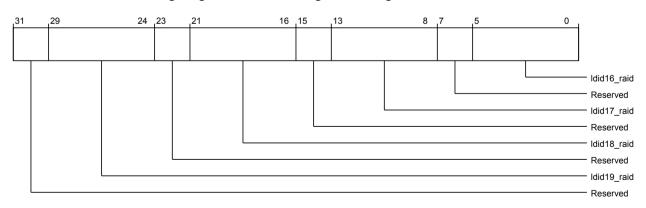


Figure 3-873 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg2 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg2 lower register bit assignments.

Table 3-887 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid19_raid	Specifies the RAID for LDID 19	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid18_raid	Specifies the RAID for LDID 18	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid17_raid	Specifies the RAID for LDID 17	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid16_raid	Specifies the RAID for LDID 16	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg3

Specifies the mapping of RN-F LDID to RAID for LDIDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEB8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

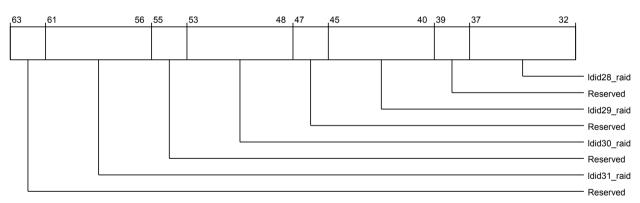


Figure 3-874 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg3 (high)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg3 higher register bit assignments.

Table 3-888 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid31_raid	Specifies the RAID for LDID 31	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-888 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid30_raid	Specifies the RAID for LDID 30	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid29_raid	Specifies the RAID for LDID 29	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid28_raid	Specifies the RAID for LDID 28	RW	6'h0

The following image shows the lower register bit assignments.

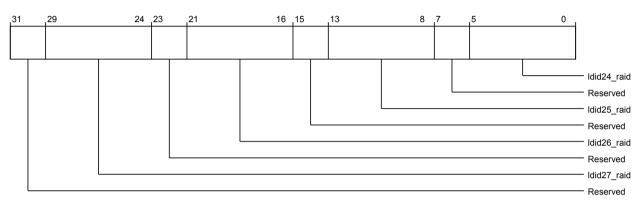


Figure 3-875 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg3 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg3 lower register bit assignments.

Table 3-889 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid27_raid	Specifies the RAID for LDID 27	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid26_raid	Specifies the RAID for LDID 26	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid25_raid	Specifies the RAID for LDID 25	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid24_raid	Specifies the RAID for LDID 24	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg4

Specifies the mapping of RN-F LDID to RAID for LDIDs 32 to 39.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEC0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

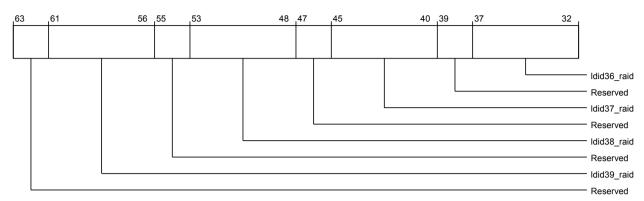


Figure 3-876 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg4 (high)

The following table shows the por cxg ra rnf ldid to raid reg4 higher register bit assignments.

Table 3-890 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid39_raid	Specifies the RAID for LDID 39	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid38_raid	Specifies the RAID for LDID 38	RW	6'h0
47:46	Reserved	Reserved	RO	
45:40	ldid37_raid	Specifies the RAID for LDID 37	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid36_raid	Specifies the RAID for LDID 36	RW	6'h0

The following image shows the lower register bit assignments.

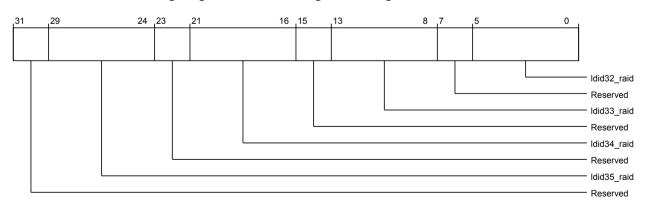


Figure 3-877 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg4 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg4 lower register bit assignments.

Table 3-891 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid35_raid	Specifies the RAID for LDID 35	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid34_raid	Specifies the RAID for LDID 34	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid33_raid	Specifies the RAID for LDID 33	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid32_raid	Specifies the RAID for LDID 32	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg5

Specifies the mapping of RN-F LDID to RAID for LDIDs 40 to 47.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEC8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxg_ra_secure_register_groups_override.ldid_ctl \\ \end{tabular}$

override

The following image shows the higher register bit assignments.

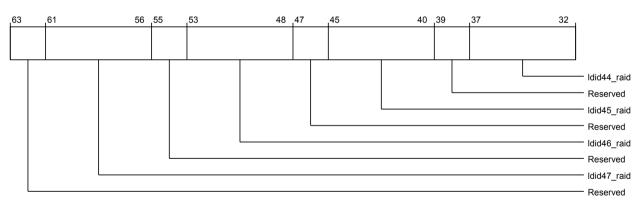


Figure 3-878 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg5 (high)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg5 higher register bit assignments.

Table 3-892 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid47_raid	Specifies the RAID for LDID 47	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-892 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg5 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid46_raid	Specifies the RAID for LDID 46	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid45_raid	Specifies the RAID for LDID 45	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid44_raid	Specifies the RAID for LDID 44	RW	6'h0

The following image shows the lower register bit assignments.

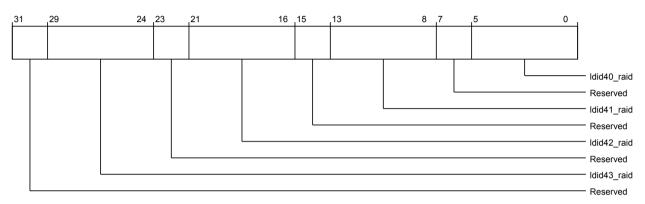


Figure 3-879 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg5 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg5 lower register bit assignments.

Table 3-893 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid43_raid	Specifies the RAID for LDID 43	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid42_raid	Specifies the RAID for LDID 42	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid41_raid	Specifies the RAID for LDID 41	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid40_raid	Specifies the RAID for LDID 40	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg6

Specifies the mapping of RN-F LDID to RAID for LDIDs 48 to 55.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hED0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

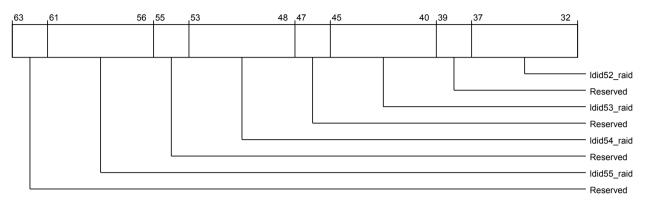


Figure 3-880 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg6 (high)

The following table shows the por cxg ra rnf ldid to raid reg6 higher register bit assignments.

Table 3-894 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid55_raid	Specifies the RAID for LDID 55	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid54_raid	Specifies the RAID for LDID 54	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid53_raid	Specifies the RAID for LDID 53	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid52_raid	Specifies the RAID for LDID 52	RW	6'h0

The following image shows the lower register bit assignments.

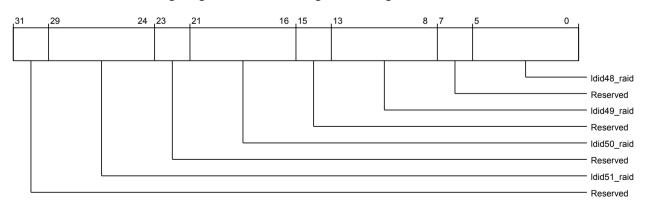


Figure 3-881 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg6 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg6 lower register bit assignments.

Table 3-895 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid51_raid	Specifies the RAID for LDID 51	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid50_raid	Specifies the RAID for LDID 50	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid49_raid	Specifies the RAID for LDID 49	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid48_raid	Specifies the RAID for LDID 48	RW	6'h0

por_cxg_ra_rnf_ldid_to_raid_reg7

Specifies the mapping of RN-F LDID to RAID for LDIDs 56 to 63.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hED8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

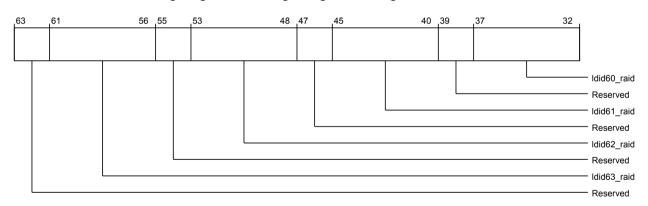


Figure 3-882 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg7 (high)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg7 higher register bit assignments.

Table 3-896 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid63_raid	Specifies the RAID for LDID 63	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-896 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg7 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid62_raid	Specifies the RAID for LDID 62	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid61_raid	Specifies the RAID for LDID 61	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid60_raid	Specifies the RAID for LDID 60	RW	6'h0

The following image shows the lower register bit assignments.

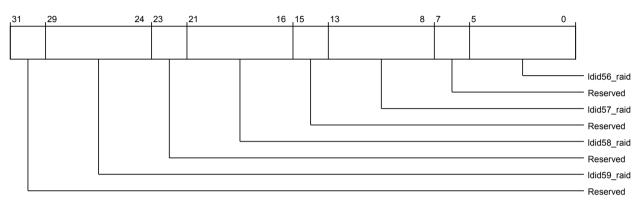


Figure 3-883 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg7 (low)

The following table shows the por_cxg_ra_rnf_ldid_to_raid_reg7 lower register bit assignments.

Table 3-897 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid59_raid	Specifies the RAID for LDID 59	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid58_raid	Specifies the RAID for LDID 58	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid57_raid	Specifies the RAID for LDID 57	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid56_raid	Specifies the RAID for LDID 56	RW	6'h0

por_cxg_ra_rni_ldid_to_raid_reg0

Specifies the mapping of RN-I LDID to RAID for LDIDs 0 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEE0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

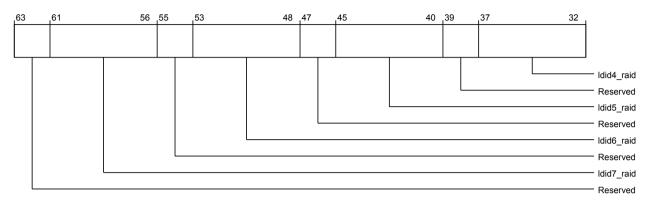


Figure 3-884 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg0 (high)

The following table shows the por cxg ra rni ldid to raid reg0 higher register bit assignments.

Table 3-898 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid7_raid	Specifies the RAID for LDID 7	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid6_raid	Specifies the RAID for LDID 6	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid5_raid	Specifies the RAID for LDID 5	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid4_raid	Specifies the RAID for LDID 4	RW	6'h0

The following image shows the lower register bit assignments.

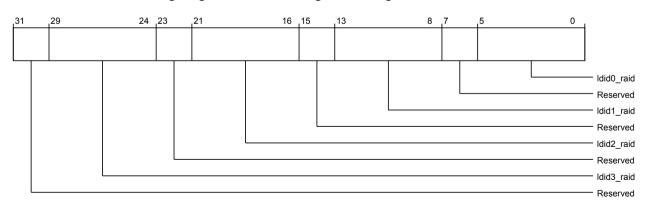


Figure 3-885 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg0 (low)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg0 lower register bit assignments.

Table 3-899 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid3_raid	Specifies the RAID for LDID 3	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid2_raid	Specifies the RAID for LDID 2	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid1_raid	Specifies the RAID for LDID 1	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid0_raid	Specifies the RAID for LDID 0	RW	6'h0

por_cxg_ra_rni_ldid_to_raid_reg1

Specifies the mapping of RN-I LDID to RAID for LDIDs 8 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEE8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.



Figure 3-886 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg1 (high)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg1 higher register bit assignments.

Table 3-900 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid15_raid	Specifies the RAID for LDID 15	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-900 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg1 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid14_raid	Specifies the RAID for LDID 14	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid13_raid	Specifies the RAID for LDID 13	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid12_raid	Specifies the RAID for LDID 12	RW	6'h0

The following image shows the lower register bit assignments.

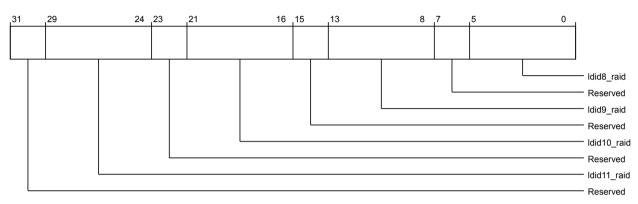


Figure 3-887 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg1 (low)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg1 lower register bit assignments.

Table 3-901 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid11_raid	Specifies the RAID for LDID 11	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid10_raid	Specifies the RAID for LDID 10	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid9_raid	Specifies the RAID for LDID 9	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid8_raid	Specifies the RAID for LDID 8	RW	6'h0

por_cxg_ra_rni_ldid_to_raid_reg2

Specifies the mapping of RN-I LDID to RAID for LDIDs 16 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEF0
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

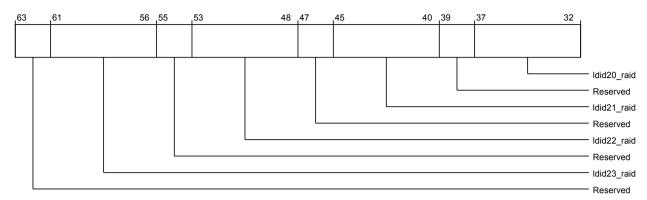


Figure 3-888 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg2 (high)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg2 higher register bit assignments.

Table 3-902 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid23_raid	Specifies the RAID for LDID 23	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid22_raid	Specifies the RAID for LDID 22	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid21_raid	Specifies the RAID for LDID 21	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid20_raid	Specifies the RAID for LDID 20	RW	6'h0

The following image shows the lower register bit assignments.

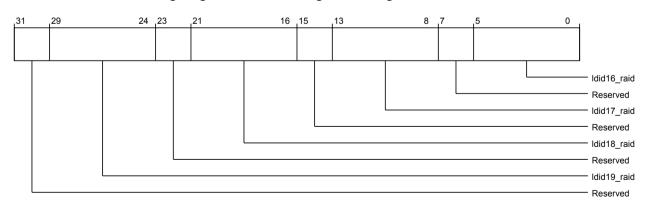


Figure 3-889 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg2 (low)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg2 lower register bit assignments.

Table 3-903 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid19_raid	Specifies the RAID for LDID 19	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid18_raid	Specifies the RAID for LDID 18	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid17_raid	Specifies the RAID for LDID 17	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid16_raid	Specifies the RAID for LDID 16	RW	6'h0

por_cxg_ra_rni_ldid_to_raid_reg3

Specifies the mapping of RN-I LDID to RAID for LDIDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hEF8
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxg_ra_secure_register_groups_override.ldid_ctl \\ \end{tabular}$

override

The following image shows the higher register bit assignments.

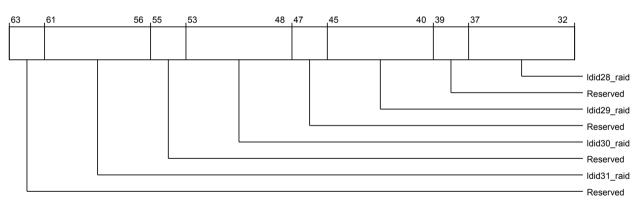


Figure 3-890 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg3 (high)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg3 higher register bit assignments.

Table 3-904 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid31_raid	Specifies the RAID for LDID 31	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-904 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid30_raid	Specifies the RAID for LDID 30	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid29_raid	Specifies the RAID for LDID 29	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid28_raid	Specifies the RAID for LDID 28	RW	6'h0

The following image shows the lower register bit assignments.

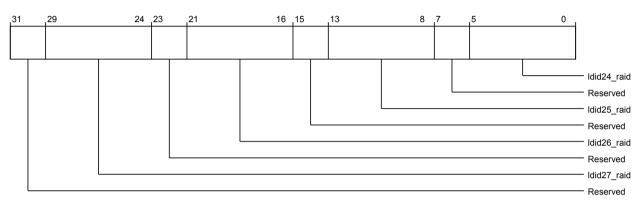


Figure 3-891 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg3 (low)

The following table shows the por_cxg_ra_rni_ldid_to_raid_reg3 lower register bit assignments.

Table 3-905 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid27_raid	Specifies the RAID for LDID 27	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid26_raid	Specifies the RAID for LDID 26	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid25_raid	Specifies the RAID for LDID 25	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid24_raid	Specifies the RAID for LDID 24	RW	6'h0

por_cxg_ra_rnd_ldid_to_raid_reg0

Specifies the mapping of RN-D LDID to RAID for LDIDs 0 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF00
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

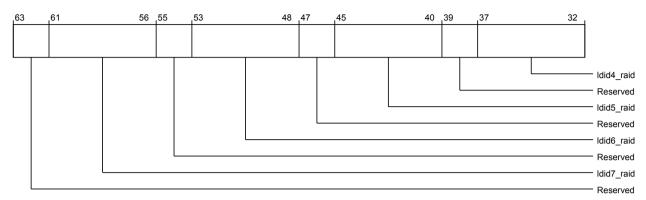


Figure 3-892 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg0 (high)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_reg0 higher register bit assignments.

Table 3-906 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid7_raid	Specifies the RAID for LDID 7	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid6_raid	Specifies the RAID for LDID 6	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid5_raid	Specifies the RAID for LDID 5	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid4_raid	Specifies the RAID for LDID 4	RW	6'h0

The following image shows the lower register bit assignments.

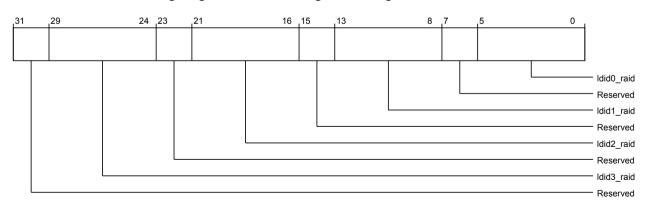


Figure 3-893 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg0 (low)

The following table shows the por cxg ra rnd ldid to raid reg0 lower register bit assignments.

Table 3-907 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid3_raid	Specifies the RAID for LDID 3	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid2_raid	Specifies the RAID for LDID 2	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid1_raid	Specifies the RAID for LDID 1	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid0_raid	Specifies the RAID for LDID 0	RW	6'h0

por_cxg_ra_rnd_ldid_to_raid_reg1

Specifies the mapping of RN-D LDID to RAID for LDIDs 8 to 15.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF08
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.



Figure 3-894 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg1 (high)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_reg1 higher register bit assignments.

Table 3-908 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid15_raid	Specifies the RAID for LDID 15	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-908 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg1 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid14_raid	Specifies the RAID for LDID 14	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid13_raid	Specifies the RAID for LDID 13	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid12_raid	Specifies the RAID for LDID 12	RW	6'h0

The following image shows the lower register bit assignments.

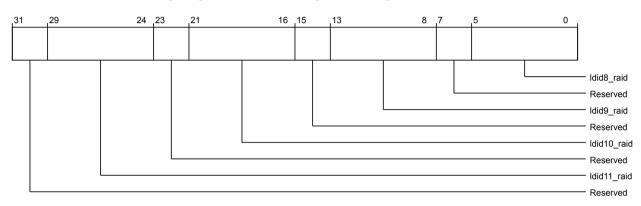


Figure 3-895 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg1 (low)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_reg1 lower register bit assignments.

Table 3-909 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid11_raid	Specifies the RAID for LDID 11	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid10_raid	Specifies the RAID for LDID 10	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid9_raid	Specifies the RAID for LDID 9	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid8_raid	Specifies the RAID for LDID 8	RW	6'h0

por_cxg_ra_rnd_ldid_to_raid_reg2

Specifies the mapping of RN-D LDID to RAID for LDIDs 16 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF10
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

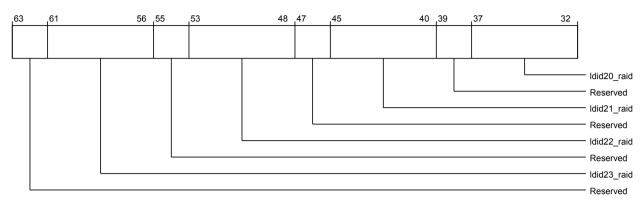


Figure 3-896 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg2 (high)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_reg2 higher register bit assignments.

Table 3-910 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid23_raid	Specifies the RAID for LDID 23	RW	6'h0
55:54	Reserved	Reserved	RO	-
53:48	ldid22_raid	Specifies the RAID for LDID 22	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid21_raid	Specifies the RAID for LDID 21	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid20_raid	Specifies the RAID for LDID 20	RW	6'h0

The following image shows the lower register bit assignments.

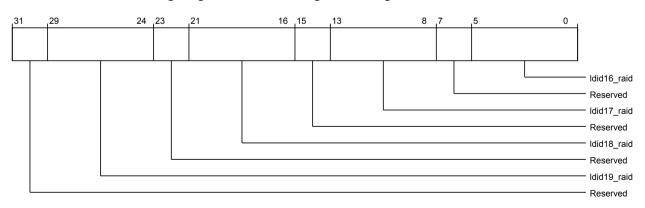


Figure 3-897 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg2 (low)

The following table shows the por cxg ra rnd ldid to raid reg2 lower register bit assignments.

Table 3-911 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid19_raid	Specifies the RAID for LDID 19	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid18_raid	Specifies the RAID for LDID 18	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid17_raid	Specifies the RAID for LDID 17	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid16_raid	Specifies the RAID for LDID 16	RW	6'h0

por_cxg_ra_rnd_ldid_to_raid_reg3

Specifies the mapping of RN-D LDID to RAID for LDIDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF18
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

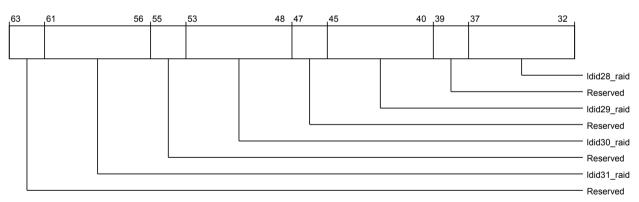


Figure 3-898 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg3 (high)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_reg3 higher register bit assignments.

Table 3-912 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:62	Reserved	Reserved	RO	-
61:56	ldid31_raid	Specifies the RAID for LDID 31	RW	6'h0
55:54	Reserved	Reserved	RO	-

Table 3-912 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
53:48	ldid30_raid	Specifies the RAID for LDID 30	RW	6'h0
47:46	Reserved	Reserved	RO	-
45:40	ldid29_raid	Specifies the RAID for LDID 29	RW	6'h0
39:38	Reserved	Reserved	RO	-
37:32	ldid28_raid	Specifies the RAID for LDID 28	RW	6'h0

The following image shows the lower register bit assignments.

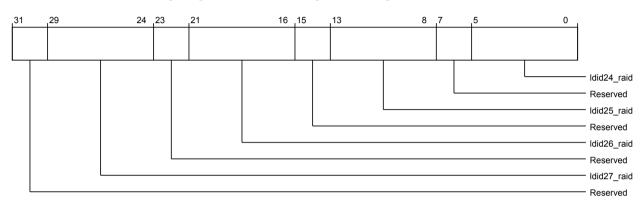


Figure 3-899 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg3 (low)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_reg3 lower register bit assignments.

Table 3-913 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	ldid27_raid	Specifies the RAID for LDID 27	RW	6'h0
23:22	Reserved	Reserved	RO	-
21:16	ldid26_raid	Specifies the RAID for LDID 26	RW	6'h0
15:14	Reserved	Reserved	RO	-
13:8	ldid25_raid	Specifies the RAID for LDID 25	RW	6'h0
7:6	Reserved	Reserved	RO	-
5:0	ldid24_raid	Specifies the RAID for LDID 24	RW	6'h0

por_cxg_ra_agentid_to_linkid_val

Specifies which Agent ID to Link ID mappings are valid.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF20
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por cxg ra secure register groups override.linkid ctl

override

The following image shows the higher register bit assignments.

Figure 3-900 por_cxg_ra_por_cxg_ra_agentid_to_linkid_val (high)

The following table shows the por_cxg_ra_agentid_to_linkid_val higher register bit assignments.

Table 3-914 por_cxg_ra_por_cxg_ra_agentid_to_linkid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	valid	Specifies whether the Link ID is valid; bit number corresponds to logical Agent ID number (from 0 to 63)	RW	63'h0

The following image shows the lower register bit assignments.

Figure 3-901 por_cxg_ra_por_cxg_ra_agentid_to_linkid_val (low)

The following table shows the por cxg ra agentid to linkid val lower register bit assignments.

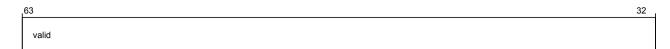
Table 3-915 por_cxg_ra_por_cxg_ra_agentid_to_linkid_val (low)

Ві	ts	Field name	Description	Туре	Reset
31	:0		Specifies whether the Link ID is valid; bit number corresponds to logical Agent ID number (from $0\ to\ 63)$	RW	63'h0

por_cxg_ra_rnf_ldid_to_raid_val

Specifies which RN-F LDID to RAID mappings are valid.

Its characteristics are:


Type RW
Register width (Bits) 64
Address offset 14'hF28
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

Figure 3-902 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_val (high)

The following table shows the por exg ra rnf ldid to raid val higher register bit assignments.

Table 3-916 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	valid	Specifies whether the RAID is valid; bit number corresponds to logical RN-F LDID number (from 0 to 63)	RW	63'h0

The following image shows the lower register bit assignments.

Figure 3-903 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_val (low)

The following table shows the por exg ra rnf ldid to raid val lower register bit assignments.

Table 3-917 por_cxg_ra_por_cxg_ra_rnf_ldid_to_raid_val (low)

Bits	Field name	Description	Туре	Reset
31:0		Specifies whether the RAID is valid; bit number corresponds to logical RN-F LDID number (from 0 to 63)	RW	63'h0

por_cxg_ra_rni_ldid_to_raid_val

Specifies which RN-I LDID to RAID mappings are valid.

Its characteristics are:

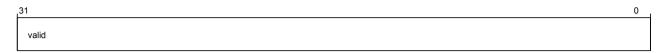
TypeRWRegister width (Bits)64Address offset14'hF30Register reset64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.


Figure 3-904 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_val (high)

The following table shows the por_cxg_ra_rni_ldid_to_raid_val higher register bit assignments.

Table 3-918 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-905 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_val (low)

The following table shows the por_cxg_ra_rni_ldid_to_raid_val lower register bit assignments.

Table 3-919 por_cxg_ra_por_cxg_ra_rni_ldid_to_raid_val (low)

Bits	Field name	Description	Туре	Reset
31:0	valid	Specifies whether the RAID is valid; bit number corresponds to logical RN-I LDID number (from 0 to 31)	RW	32'h0

por_cxg_ra_rnd_ldid_to_raid_val

Specifies which RN-D LDID to RAID mappings are valid.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hF38
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxg_ra_secure_register_groups_override.ldid_ctl

override

The following image shows the higher register bit assignments.

Figure 3-906 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_val (high)

The following table shows the por_cxg_ra_rnd_ldid_to_raid_val higher register bit assignments.

Table 3-920 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

Figure 3-907 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_val (low)

The following table shows the por cxg ra rnd ldid to raid val lower register bit assignments.

Table 3-921 por_cxg_ra_por_cxg_ra_rnd_ldid_to_raid_val (low)

Bits	Field name	Description	Туре	Reset
31:0	valid	Specifies whether the RAID is valid; bit number corresponds to logical RN-D LDID number (from 0 to 31)	RW	32'h0

por_cxg_ra_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2000 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-908 por_cxg_ra_por_cxg_ra_pmu_event_sel (high)

The following table shows the por_cxg_ra_pmu_event_sel higher register bit assignments.

Table 3-922 por_cxg_ra_por_cxg_ra_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:36	Reserved	Reserved	RO	-
35:32	pmu_occup1_id	PMU occupancy event selector ID	RW	4'b0

The following image shows the lower register bit assignments.

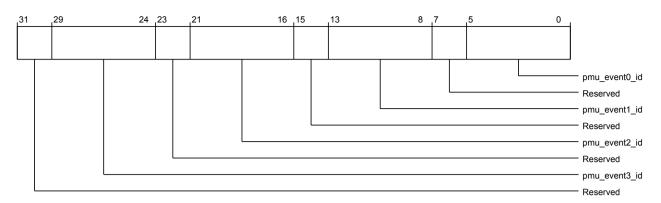


Figure 3-909 por_cxg_ra_por_cxg_ra_pmu_event_sel (low)

The following table shows the por_cxg_ra_pmu_event_sel lower register bit assignments.

Table 3-923 por_cxg_ra_por_cxg_ra_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:30	Reserved	Reserved	RO	-
29:24	pmu_event3_id	CXRA PMU Event 3 ID; see pmu_event0_id for encodings	RW	6'b0
23:22	Reserved	Reserved	RO	-
21:16	pmu_event2_id	CXRA PMU Event 2 ID; see pmu_event0_id for encodings	RW	6'b0
15:14	Reserved	Reserved	RO	-
13:8	pmu_event1_id	CXRA PMU Event 1 ID; see pmu_event0_id for encodings	RW	6'b0

Table 3-923 por_cxg_ra_por_cxg_ra_pmu_event_sel (low) (continued)

Bits	Field name	Description	Туре	Reset
7:6	Reserved	Reserved	RO	-
5:0	pmu_event0_id	CXRA PMU Event 0 ID	RW	6'b0
		6'h00: No event		
		6'h01: Request Tracker (RHT) occupancy count overflow		
		6'h02: Snoop Tracker (SHT) occupancy count overflow		
		6'h03: Read Data Buffer (RDB) occupancy count overflow		
		6'h04: Write Data Buffer (WDB) occupancy count overflow		
		6'h05: Snoop Sink Buffer (SSB) occupancy count overflow		
		6'h06: CCIX RX broadcast snoops		
		6'h07: CCIX TX request chain		
		6'h08: CCIX TX request chain average length		
		6'h09: CHI internal RSP stall		
		6'h0A: CHI internal DAT stall		
		6'h0B: CCIX REQ Protocol credit Link 0 stall		
		6'h0C: CCIX REQ Protocol credit Link 1 stall		
		6'h0D: CCIX REQ Protocol credit Link 2 stall		
		6'h0E: CCIX DAT Protocol credit Link 0 stall		
		6'h0F: CCIX DAT Protocol credit Link 1 stall		
		6'h10: CCIX DAT Protocol credit Link 2 stall		
		6'h11: CHI external RSP stall		
		6'h12: CHI external DAT stall		

por_cxg_ra_cxprtcl_link0_ctl

Functions as the CXRA CCIX Protocol Link 0 control register. Works with por_cxg_ra_cxprtcl_link0_status.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h1000Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-910 por_cxg_ra_por_cxg_ra_cxprtcl_link0_ctl (high)

The following table shows the por cxg ra cxprtcl link0 ctl higher register bit assignments.

Table 3-924 por_cxg_ra_por_cxg_ra_cxprtcl_link0_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

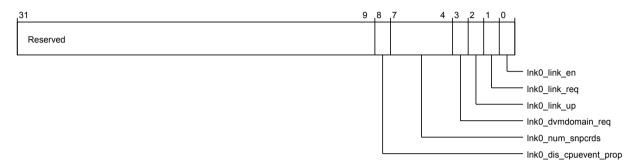


Figure 3-911 por_cxg_ra_por_cxg_ra_cxprtcl_link0_ctl (low)

The following table shows the por_cxg_ra_cxprtcl_link0_ctl lower register bit assignments.

Table 3-925 por_cxg_ra_por_cxg_ra_cxprtcl_link0_ctl (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	lnk0_dis_cpuevent_prop	When set, disables the propagation of CPU Events on CCIX Link 0	RW	1'b0
		NOTE: This field is applicable only when SMP Mode enable parameter is set.		
7:4	lnk0_num_snpcrds	Controls the number of CCIX snoop credits assigned to Link 0	RW	4'b0
		4'h0: Total credits are equally divided across all links		
		4'h1: 25% of credits assigned		
		4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned		
		4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
3	lnk0_dvmdomain_req	Controls DVM domain enable (SYSCOREQ) for CCIX Link 0	RW	1'b0
2	lnk0_link_up	Link Up status. Software writes this register bit to indicate Link status after polling Link_ACK and Link_DN status in the remote agent	RW	1'b0
		1'b0: Link is not Up. Software clears Link_UP when Link_ACK status is clear and Link_DN status is set in both local and remote agents. The local agent stops responding to any protocol activity from remote agent, including acceptance of protocol credits, when Link_UP is clear		
		1'b1: Link is Up. Software sets Link_UP when Link_ACK status is set and Link_DN status is clear in both local and remote agents; the local agent starts sending local protocol credits to remote agent		

Table 3-925 por_cxg_ra_por_cxg_ra_cxprtcl_link0_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
1	lnk0_link_req	Link Up/Down request; software writes this register bit to request a Link Up or Link Down in the local agent	RW	1'b0
		1'b0: Link Down request		
		NOTE: The local agent does not return remote protocol credits yet since remote agent may still be in Link_UP state.		
		1'b1: Link Up request		
0	lnk0_link_en	Enables CCIX Link 0 when set	RW	1'b0
		1'b0: Link is disabled		
		1'b1: Link is enabled		

por_cxg_ra_cxprtcl_link0_status

Functions as the CXRA CCIX Protocol Link 0 status register. Works with por_cxg_ra_cxprtcl_link0_ctl.

Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h1008

Register reset 64'b0010
Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-912 por_cxg_ra_por_cxg_ra_cxprtcl_link0_status (high)

The following table shows the por cxg ra cxprtcl link0 status higher register bit assignments.

Table 3-926 por_cxg_ra_por_cxg_ra_cxprtcl_link0_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

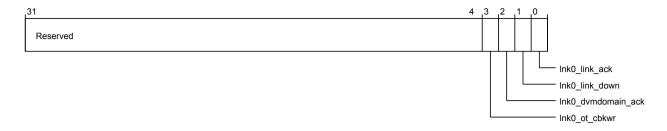


Figure 3-913 por_cxg_ra_por_cxg_ra_cxprtcl_link0_status (low)

The following table shows the por cxg ra cxprtcl link0 status lower register bit assignments.

Table 3-927 por_cxg_ra_por_cxg_ra_cxprtcl_link0_status (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	lnk0_ot_cbkwr	Provides status for outstanding CopyBack Write for CCIX Link0	RO	1'b0
2	lnk0_dvmdomain_ack	Provides DVM domain status (SYSCOACK) for CCIX Link 0	RO	1'b0
1	lnk0_link_down	Link Down status; hardware updates this register bit to indicate Link Down status R		1'b1
		1'b0: Link is not Down; hardware clears Link_DN when it receives a Link Up request		
		1'b1: Link is Down; hardware sets Link_DN after the local agent has received all local protocol credits. The local agent must continue to respond to any remote protocol activity, including accepting and returning remote protocol credits until Link Up is clear		
0	lnk0_link_ack	Link Up/Down acknowledge; hardware updates this register bit to acknowledge the software link request	RO	1'b0
		1'b0: Link Down acknowledge; hardware clears Link_ACK on receiving a Link Down request; the local agent stops granting protocol credits and starts returning protocol credits to the remote agent when Link_ACK is clear		
		1'b1: Link Up acknowledge; hardware sets Link_ACK when the local agent is ready to start accepting protocol credits from the remote agent		
		NOTE: The local agent must clear Link_DN before setting Link_ACK.		

por_cxg_ra_cxprtcl_link1_ctl

Functions as the CXRA CCIX Protocol Link 1 control register. Works with por_cxg_ra_cxprtcl_link1_status.

Its characteristics are:

TypeRWRegister width (Bits)64Address offset14'h1010Register reset64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Reserved 32

Figure 3-914 por_cxg_ra_por_cxg_ra_cxprtcl_link1_ctl (high)

The following table shows the por_cxg_ra_cxprtcl_link1_ctl higher register bit assignments.

Table 3-928 por_cxg_ra_por_cxg_ra_cxprtcl_link1_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

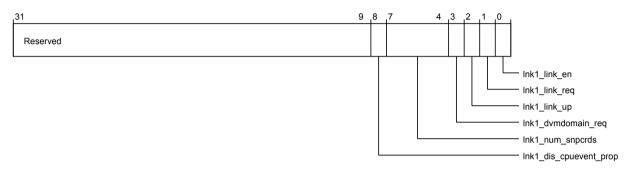


Figure 3-915 por_cxg_ra_por_cxg_ra_cxprtcl_link1_ctl (low)

The following table shows the por_cxg_ra_cxprtcl_link1_ctl lower register bit assignments.

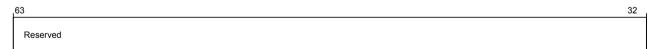
Table 3-929 por_cxg_ra_por_cxg_ra_cxprtcl_link1_ctl (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	lnk1_dis_cpuevent_prop	When set, disables the propagation of CPU Events on CCIX Link 1 NOTE: This field is applicable only when SMP Mode enable parameter is set.	RW	1'b0
7:4	lnk1_num_snpcrds	Controls the number of CCIX snoop credits assigned to Link 1 4'h0: Total credits are equally divided across all links	RW	4'b0
		4'h1: 25% of credits assigned 4'h2: 50% of credits assigned		
		4'h3: 75% of credits assigned 4'h4: 100% of credits assigned		
		4'hF: 0% of credits assigned		
3	lnk1_dvmdomain_req	Controls DVM domain enable (SYSCOREQ) for CCIX Link 1	RW	1'b0

Table 3-929 por_cxg_ra_por_cxg_ra_cxprtcl_link1_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
2	lnk1_link_up	Link Up status. Software writes this register bit to indicate Link status after polling Link_ACK and Link_DN status in the remote agent	RW	1'b0
		1'b0: Link is not Up. Software clears Link_UP when Link_ACK status is clear and Link_DN status is set in both local and remote agents. The local agent stops responding to any protocol activity from remote agent, including acceptance of protocol credits, when Link_UP is clear		
		1'b1: Link is Up. Software sets Link_UP when Link_ACK status is set and Link_DN status is clear in both local and remote agents; the local agent starts sending local protocol credits to remote agent		
1	lnk1_link_req	Link Up/Down request; software writes this register bit to request a Link Up or Link Down in the local agent	RW	1'b0
		1'b0: Link Down request		
		NOTE: The local agent does not return remote protocol credits yet since remote agent may still be in Link_UP state.		
		1'b1: Link Up request		
0	lnk1_link_en	Enables CCIX Link 1 when set	RW	1'b0
		1'b0: Link is disabled		
		1'b1: Link is enabled		

por_cxg_ra_cxprtcl_link1_status


Functions as the CXRA CCIX Protocol Link 1 status register. Works with por cxg ra cxprtcl link1 ctl.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h1018Register reset64'b0010

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-916 por_cxg_ra_por_cxg_ra_cxprtcl_link1_status (high)

The following table shows the por_cxg_ra_cxprtcl_link1_status higher register bit assignments.

Table 3-930 por_cxg_ra_por_cxg_ra_cxprtcl_link1_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

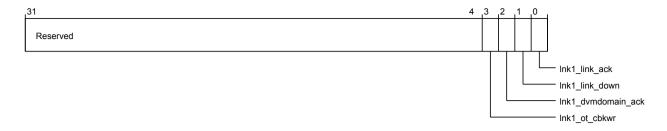


Figure 3-917 por_cxg_ra_por_cxg_ra_cxprtcl_link1_status (low)

The following table shows the por cxg ra cxprtcl link1 status lower register bit assignments.

Table 3-931 por_cxg_ra_por_cxg_ra_cxprtcl_link1_status (low)

Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	lnk1_ot_cbkwr	Provides status for outstanding CopyBack Write for CCIX Link1	RO	1'b0
2	lnk1_dvmdomain_ack	Provides DVM domain status (SYSCOACK) for CCIX Link 1	RO	1'b0
1	lnk1_link_down	Link Down status; hardware updates this register bit to indicate Link Down status 1'b0: Link is not Down; hardware clears Link_DN when it receives a Link Up request 1'b1: Link is Down; hardware sets Link_DN after the local agent has received all local protocol credits. The local agent must continue to respond to any remote protocol activity, including accepting and returning remote protocol credits until Link Up is clear	RO	1'b1
0	Ink1_link_ack	Link Up/Down acknowledge; hardware updates this register bit to acknowledge the software link request 1'b0: Link Down acknowledge; hardware clears Link_ACK on receiving a Link Down request; the local agent stops sending protocol credits to the remote agent when Link_ACK is clear 1'b1: Link Up acknowledge; hardware sets Link_ACK when the local agent is ready to start accepting protocol credits from the remote agent NOTE: The local agent must clear Link_DN before setting Link_ACK.	RO	1'b0

por_cxg_ra_cxprtcl_link2_ctl

Functions as the CXRA CCIX Protocol Link 2 control register. Works with por_cxg_ra_cxprtcl_link2_status.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h1020
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Reserved 32

Figure 3-918 por_cxg_ra_por_cxg_ra_cxprtcl_link2_ctl (high)

The following table shows the por_cxg_ra_cxprtcl_link2_ctl higher register bit assignments.

Table 3-932 por_cxg_ra_por_cxg_ra_cxprtcl_link2_ctl (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

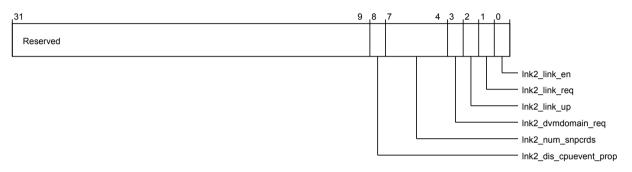


Figure 3-919 por_cxg_ra_por_cxg_ra_cxprtcl_link2_ctl (low)

The following table shows the por_cxg_ra_cxprtcl_link2_ctl lower register bit assignments.

Table 3-933 por_cxg_ra_por_cxg_ra_cxprtcl_link2_ctl (low)

Bits	Field name	Description	Туре	Reset
31:9	Reserved	Reserved	RO	-
8	lnk2_dis_cpuevent_prop	When set, disables the propagation of CPU Events on CCIX Link 2 NOTE: This field is applicable only when SMP Mode enable parameter is set.		1'b0
7:4	lnk2_num_snpcrds	Controls the number of CCIX snoop credits assigned to Link 2 4'h0: Total credits are equally divided across all links 4'h1: 25% of credits assigned 4'h2: 50% of credits assigned 4'h3: 75% of credits assigned 4'h4: 100% of credits assigned 4'hF: 0% of credits assigned	RW	4'b0
3	lnk2_dvmdomain_req	Controls DVM domain enable (SYSCOREQ) for CCIX Link 2	RW	1'b0

Table 3-933 por_cxg_ra_por_cxg_ra_cxprtcl_link2_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
2	lnk2_link_up	Link Up status. Software writes this register bit to indicate Link status after polling Link_ACK and Link_DN status in the remote agent	RW	1'b0
		1'b0: Link is not Up. Software clears Link_UP when Link_ACK status is clear and Link_DN status is set in both local and remote agents. The local agent stops responding to any protocol activity from remote agent, including acceptance of protocol credits, when Link_UP is clear		
		1'b1: Link is Up. Software sets Link_UP when Link_ACK status is set and Link_DN status is clear in both local and remote agents; the local agent starts sending local protocol credits to remote agent		
1	lnk2_link_req	Link Up/Down request; software writes this register bit to request a Link Up or Link Down in the local agent	RW	1'b0
		1'b0: Link Down request		
		NOTE: The local agent does not return remote protocol credits yet since remote agent may still be in Link_UP state.		
		1'b1: Link Up request		
0	lnk2_link_en	Enables CCIX Link 2 when set	RW	1'b0
		1'b0: Link is disabled		
		1'b1: Link is enabled		

por_cxg_ra_cxprtcl_link2_status

Functions as the CXRA CCIX Protocol Link 2 status register. Works with por cxg ra cxprtcl link2 ctl.

Its characteristics are:

TypeRORegister width (Bits)64Address offset14'h1028Register reset64'b0010

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-920 por_cxg_ra_por_cxg_ra_cxprtcl_link2_status (high)

The following table shows the por_cxg_ra_cxprtcl_link2_status higher register bit assignments.

Table 3-934 por_cxg_ra_por_cxg_ra_cxprtcl_link2_status (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

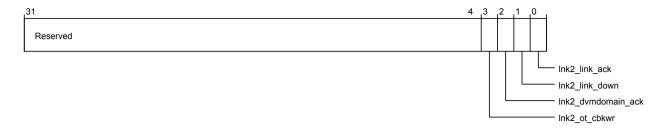


Figure 3-921 por_cxg_ra_por_cxg_ra_cxprtcl_link2_status (low)

The following table shows the por_cxg_ra_cxprtcl_link2_status lower register bit assignments.

Table 3-935 por_cxg_ra_por_cxg_ra_cxprtcl_link2_status (low)

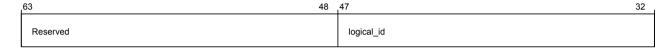
Bits	Field name	Description	Туре	Reset
31:4	Reserved	Reserved	RO	-
3	lnk2_ot_cbkwr	Provides status for outstanding CopyBack Write for CCIX Link2	RO	1'b0
2	lnk2_dvmdomain_ack	Provides DVM domain status (SYSCOACK) for CCIX Link 2	RO	1'b0
1	lnk2_link_down	Link Down status; hardware updates this register bit to indicate Link Down status 1'b0: Link is not Down; hardware clears Link_DN when it receives a Link Up request 1'b1: Link is Down; hardware sets Link_DN after the local agent has received all local protocol credits. The local agent must continue to respond to any remote protocol activity, including accepting and returning remote protocol credits until Link Up is clear	RO	1'b1
0	lnk2_link_ack	Link Up/Down acknowledge; hardware updates this register bit to acknowledge the software link request 1'b0: Link Down acknowledge; hardware clears Link_ACK on receiving a Link Down request; the local agent stops sending protocol credits to the remote agent when Link_ACK is clear 1'b1: Link Up acknowledge; hardware sets Link_ACK when the local agent is ready to start accepting protocol credits from the remote agent NOTE: The local agent must clear Link_DN before setting Link_ACK.	RO	1'b0

3.3.13 CXLA configuration registers

This section lists the CXLA configuration registers.

por_cxla_node_info

Provides component identification information.


Its characteristics are:

Type RO Register width (Bits) 64 Address offset 14'h0

Register reset Configuration dependent

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-922 por cxla por cxla node info (high)

The following table shows the por cxla node info higher register bit assignments.

Table 3-936 por_cxla_por_cxla_node_info (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:32	logical_id	Component logical ID	RO	Configuration dependent

The following image shows the lower register bit assignments.

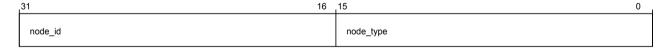


Figure 3-923 por_cxla_por_cxla_node_info (low)

The following table shows the por_cxla_node_info lower register bit assignments.

Table 3-937 por_cxla_por_cxla_node_info (low)

Bits	Field name	Description	Туре	Reset
31:16	node_id	Component CHI node ID	RO	Configuration dependent
15:0	node_type	CMN-600 node type identifier	RO	16'h0102

por_cxla_child_info

Provides component child identification information.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h80
Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-924 por_cxla_por_cxla_child_info (high)

The following table shows the por cxla child info higher register bit assignments.

Table 3-938 por cxla por cxla child info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

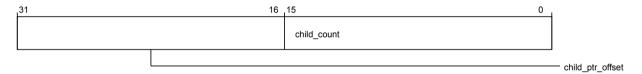


Figure 3-925 por_cxla_por_cxla_child_info (low)

The following table shows the por_cxla_child_info lower register bit assignments.

Table 3-939 por_cxla_por_cxla_child_info (low)

	Bits	Field name	Description	Туре	Reset
	31:16	child_ptr_offset	Starting register offset which contains pointers to the child nodes	RO	16'h0
Ī	15:0	5:0 child_count Number of child nodes; used in discovery process		RO	16'b0

por_cxla_secure_register_groups_override

Allows non-secure access to predefined groups of secure registers.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'h980
Register reset 64'b0

Usage constraints Only accessible by secure accesses. Writes to this register must occur prior to the

first non-configuration access targeting the device.

The following image shows the higher register bit assignments.

Figure 3-926 por_cxla_por_cxla_secure_register_groups_override (high)

The following table shows the por cxla secure register groups override higher register bit assignments.

Table 3-940 por_cxla_por_cxla_secure_register_groups_override (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

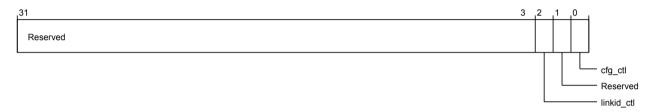


Figure 3-927 por_cxla_por_cxla_secure_register_groups_override (low)

The following table shows the por cxla secure register groups override lower register bit assignments.

Table 3-941 por_cxla_por_cxla_secure_register_groups_override (low)

Bits	Field name	Description	Туре	Reset
31:3	Reserved	Reserved	RO	-
2	linkid_ctl Allows non-secure access to secure LA Link ID registers		RW	1'b0
1	Reserved Reserved		RO	-
0	cfg_ctl	Allows non-secure access to secure configuration control register	RW	1'b0

por_cxla_unit_info

Provides component identification information for CXLA.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'h900

Register resetConfiguration dependentUsage constraintsThere are no usage constraints.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-928 por_cxla_por_cxla_unit_info (high)

The following table shows the por cxla unit info higher register bit assignments.

Table 3-942 por_cxla_por_cxla_unit_info (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

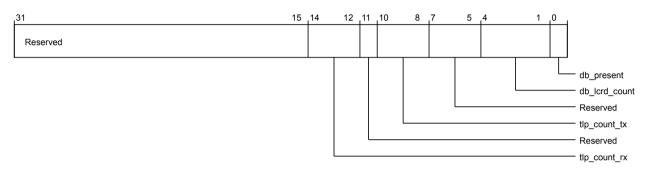


Figure 3-929 por_cxla_por_cxla_unit_info (low)

The following table shows the por cxla unit info lower register bit assignments.

Table 3-943 por_cxla_por_cxla_unit_info (low)

Bits	Field name	Description	Туре	Reset
31:15	Reserved	Reserved	RO	-
14:12	tlp_count_rx	Maximum number of TLPs supported by RX TLP buffer	RO	Configuration dependent
11	Reserved	Reserved	RO	-
10:8	tlp_count_tx	Maximum number of TLPs supported by TX TLP buffer	RO	Configuration dependent
7:5	Reserved	Reserved	RO	-
4:1	db_lcrd_count	Number of flit credits between CXG and CXLA	RO	Configuration dependent
0	db_present	DB present in CXLA	RO	Configuration dependent

por_cxla_aux_ctl

Functions as the auxiliary control register for CXLA.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hA08

Register reset 64'b0100100000000000000000000000110

Usage constraints Only accessible by secure accesses. This register can be modified only with prior written permission from Arm.

The following image shows the higher register bit assignments.

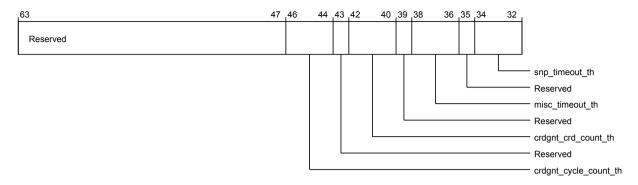


Figure 3-930 por_cxla_por_cxla_aux_ctl (high)

The following table shows the por cxla aux ctl higher register bit assignments.

Table 3-944 por_cxla_por_cxla_aux_ctl (high)

Bits	Field name	Description	Туре	Reset
63:47	Reserved	Reserved	RO	-
46:44	crdgnt_cycle_count_th	Maximum number of cycles that need to be elapsed since the end of previous TLP to send a credit grant message	RW	3'b010
		3'b000: 32 cycles		
		3'b001: 64 cycles		
		3'b010: 128 cycles		
		3'b011: 256 cycles		
43	Reserved	Reserved	RO	-
42:40	crdgnt_crd_count_th	Maximum number of credits that need to be accumulated to send a credit grant message	RW	3'b010
		3'b000: 16 credits		
		3'b001: 32 credits		
		3'b010: 64 credits		
		3'b011: 128 credits		
39	Reserved	Reserved	RO	-
38:36	misc_timeout_th	Maximum number of cycles a MISC message packed into a TLP waits to complete/end the TLP; applies for message packing	RW	3'b000
		3'b000: Same as idle_timeout_th		
		3'b001: 4 cycles		
		3'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		

Table 3-944 por_cxla_por_cxla_aux_ctl (high) (continued)

Bits	Field name	Description	Туре	Reset
35	Reserved	Reserved	RO	-
34:32	snp_timeout_th	Maximum number of cycles a SNP message packed into a TLP waits to complete/end the TLP; applies for message packing		3'b000
		3'b000: Same as idle_timeout_th		
		3'b001: 4 cycles		
		3'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		

The following image shows the lower register bit assignments.

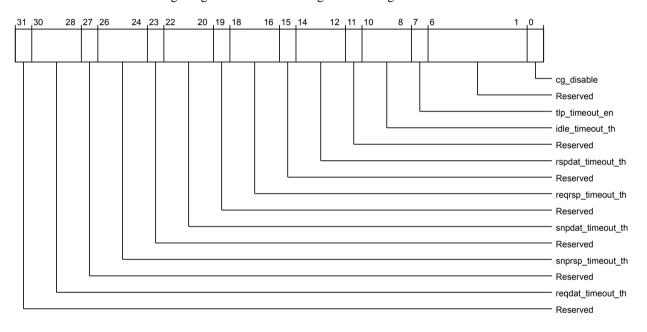


Figure 3-931 por_cxla_por_cxla_aux_ctl (low)

The following table shows the por cxla aux ctl lower register bit assignments.

Table 3-945 por_cxla_por_cxla_aux_ctl (low)

Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:28	reqdat_timeout_th	Maximum number of cycles a REQDAT message packed into a TLP waits to complete/end Rthe TLP; applies for message packing		3'b000
		3'b000: Same as idle_timeout_th		
		3'b001: 4 cycles		
		3'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		

Table 3-945 por_cxla_por_cxla_aux_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
27	Reserved	Reserved	RO	-
26:24	snprsp_timeout_th	Maximum number of cycles a SNPRSP message packed into a TLP waits to complete/end the TLP; applies for message packing	RW	3'b000
		3'b000: Same as idle_timeout_th		
		3'b001: 4 cycles		
		3'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		
23	Reserved	Reserved	RO	-
22:20	snpdat_timeout_th	meout_th Maximum number of cycles a SNPDAT message packed into a TLP waits to complete/end the TLP; applies for message packing		3'b000
		b000: Same as idle_timeout_th		
		0001: 4 cycles		
		'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		
19	Reserved	Reserved	RO	-
18:16	reqrsp_timeout_th	Maximum number of cycles a REQRSP message packed into a TLP waits to complete/end the TLP; applies for message packing	RW	3'b000
		3'b000: Same as idle_timeout_th		
		3'b001: 4 cycles		
		3'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		
15	Reserved	Reserved	RO	-
14:12	rspdat_timeout_th	Maximum number of cycles a RSPDAT message packed into a TLP waits to complete/end the TLP; applies for message packing	RW	3'b000
		3'b000: Same as idle_timeout_th		
		3'b001: 4 cycles		
		3'b010: 8 cycles		
		3'b011: 16 cycles		
		3'b100: 32 cycles		
11	Reserved	Reserved	RO	-
	l	I.		

Table 3-945 por_cxla_por_cxla_aux_ctl (low) (continued)

Bits	Field name	Description	Туре	Reset
10:8	idle_timeout_th	Maximum number of idle cycles a TLP waits for a message to pack to complete/end the TLP; applies for message packing	RW	3'b001
		000: 4 cycles		
		001: 8 cycles		
		b010: 16 cycles		
		3'b011: 32 cycles		
7	tlp_timeout_en	Enables TLP timeout based on thresholds set for each message type; doesn't apply for idle timeout; applies for message packing	RW	1'b1
6:1	Reserved	Reserved	RO	-
0	cg_disable	Disables CXLA architectural clock gates	RW	1'b0

por_cxla_ccix_prop_capabilities

Contains CCIX-supported properties.

Its characteristics are:

Type RO Register width (Bits) 64

Address offset 14'hC00

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-932 por_cxla_por_cxla_ccix_prop_capabilities (high)

The following table shows the por_cxla_ccix_prop_capabilities higher register bit assignments.

Table 3-946 por_cxla_por_cxla_ccix_prop_capabilities (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

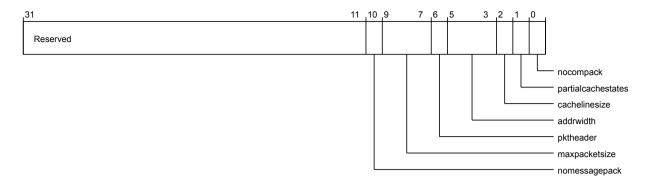


Figure 3-933 por_cxla_por_cxla_ccix_prop_capabilities (low)

The following table shows the por_cxla_ccix_prop_capabilities lower register bit assignments.

Table 3-947 por_cxla_por_cxla_ccix_prop_capabilities (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10	nomessagepack	No message packing only supported 1'b0: False 1'b1: True	RO	Configuration dependent
9:7	maxpacketsize	Maximum packet size supported 3'b000: 128B 3'b001: 256B 3'b010: 512B	RO	Configuration dependent
6	pktheader	Packet header supported 1'b0: PCIe compatible header 1'b1: Optimized header	RO	Configuration dependent
5:3	addrwidth	Address width supported 3'b000: 48b 3'b001: 52b 3'b010: 56b 3'b011: 60b 3'b100: 64b	RO	Configuration dependent
2	cachelinesize	Cacheline size supported 1'b0: 64B 1'b1: 128B	RO	Configuration dependent

Table 3-947 por_cxla_por_cxla_ccix_prop_capabilities (low) (continued)

Bits	Field name	Description	Туре	Reset
1	partialcachestates	Partial cache states supported	RO	Configuration dependent
		1'b0: False		
		1'b1: True		
0	nocompack	No CompAck supported	RO	Configuration dependent
		1'b0: False		
		1'b1: True		

por_cxla_ccix_prop_configured

Contains CCIX-configured properties.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC08

Register reset 64'b10100000000

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-934 por_cxla_por_cxla_ccix_prop_configured (high)

The following table shows the por cxla ccix prop configured higher register bit assignments.

Table 3-948 por_cxla_por_cxla_ccix_prop_configured (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

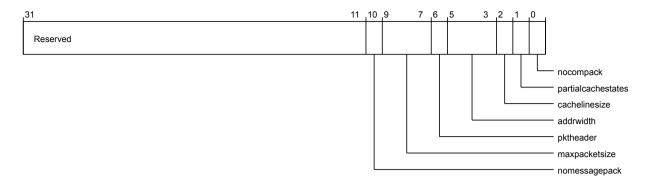


Figure 3-935 por_cxla_por_cxla_ccix_prop_configured (low)

The following table shows the por_cxla_ccix_prop_configured lower register bit assignments.

Table 3-949 por_cxla_por_cxla_ccix_prop_configured (low)

Bits	Field name	Description	Туре	Reset
31:11	Reserved	Reserved	RO	-
10	nomessagepack	No message packing configured	RW	1'b1
		1'b0: False		
		1'b1: True		
9:7	maxpacketsize	Maximum packet size configured	RW	3'b010
		3'b000: 128B		
		3'b001: 256B		
		3'b010: 512B		
6	pktheader	Packet header configured	RW	1'b0
		1'b0: PCIe compatible header		
		1'b1: Optimized header		
5:3	addrwidth	Address width configured	RW	3'b000
		3'b000: 48b		
		3'b001: 52b		
		3'b010: 56b		
		3'b011: 60b		
		3'b100: 64b		
2	cachelinesize	CacheLine size configured	RW	1'b0
		1'b0: 64B		
		1'b1: 128B		

Table 3-949 por_cxla_por_cxla_ccix_prop_configured (low) (continued)

Bits	Field name	Description	Туре	Reset
1	partialcachestates	Partial cache states configured	RW	1'b0
		1'b0: False		
		1'b1: True		
0	nocompack	No CompAck configured	RW	1'b0
		1'b0: False		
		1'b1: True		

por_cxla_tx_cxs_attr_capabilities

Contains TX CXS supported attributes.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'hC10

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-936 por_cxla_por_cxla_tx_cxs_attr_capabilities (high)

The following table shows the por cxla tx cxs attr capabilities higher register bit assignments.

Table 3-950 por_cxla_por_cxla_tx_cxs_attr_capabilities (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

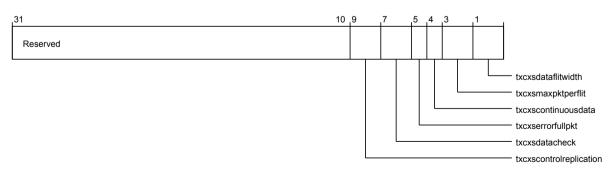


Figure 3-937 por_cxla_por_cxla_tx_cxs_attr_capabilities (low)

The following table shows the por_cxla_tx_cxs_attr_capabilities lower register bit assignments.

Table 3-951 por_cxla_por_cxla_tx_cxs_attr_capabilities (low)

Bits	Field name	Description	Туре	Reset
31:10	Reserved	Reserved	RO	-
9:8	txcxscontrolreplication	TX CXS control replication supported	RO	Configuration dependent
		2'b00: None		
		2'b01: Duplicate		
		2'b10: Triplicate		
7:6	txcxsdatacheck	TX CXS datacheck supported	RO	Configuration dependent
		2'b00: None		
		2'b01: Parity		
		2'b10: SECDED		
5	txcxserrorfullpkt	TX CXS error full packet supported	RO	Configuration dependent
		1'b0: False		
		1'b1: True		
4	txcxscontinuousdata	TX CXS continuous data supported	RO	Configuration dependent
		1'b0: False		
		1'b1: True		
3:2	txcxsmaxpktperflit	TX CXS maximum packets per flit supported	RO	Configuration dependent
		2'b00: 2		
		2'b01: 3		
		2'b10: 4		
1:0	txcxsdataflitwidth	TX CXS data flit width supported	RO	Configuration dependent
		2'b00: 256b		
		2'b01: 512b		
		2'b10: 1024b		

por_cxla_rx_cxs_attr_capabilities

Contains RX CXS supported attributes.

Its characteristics are:

Type RO
Register width (Bits) 64
Address offset 14'hC18

Register reset Configuration dependent

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

Figure 3-938 por_cxla_por_cxla_rx_cxs_attr_capabilities (high)

The following table shows the por_cxla_rx_cxs_attr_capabilities higher register bit assignments.

Table 3-952 por_cxla_por_cxla_rx_cxs_attr_capabilities (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

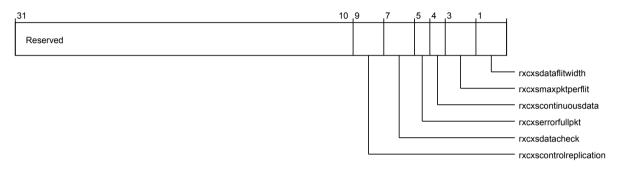


Figure 3-939 por_cxla_por_cxla_rx_cxs_attr_capabilities (low)

The following table shows the por_cxla_rx_cxs_attr_capabilities lower register bit assignments.

Table 3-953 por_cxla_por_cxla_rx_cxs_attr_capabilities (low)

Bits	Field name	Description	Туре	Reset
31:10	Reserved	Reserved	RO	-
9:8	rxcxscontrolreplication	RX CXS control replication supported 2'b00: None 2'b01: Duplicate 2'b10: Triplicate	RO	Configuration dependent
7:6	rxcxsdatacheck	RX CXS datacheck supported 2'b00: None 2'b01: Parity 2'b10: SECDED	RO	Configuration dependent
5	rxcxserrorfullpkt	RX CXS error full packet supported 1'b0: False 1'b1: True	RO	Configuration dependent

Table 3-953 por_cxla_por_cxla_rx_cxs_attr_capabilities (low) (continued)

Bits	Field name	Description	Туре	Reset
4	rxcxscontinuousdata	RX CXS continuous data supported	RO	Configuration dependent
		1'b0: False		
		1'b1: True		
3:2	rxcxsmaxpktperflit	RX CXS maximum packets per flit supported	RO	Configuration dependent
		2'b00: 2		
		2'b01: 3		
		2'b10: 4		
1:0	rxcxsdataflitwidth	RX CXS data flit width supported	RO	Configuration dependent
		2'b00: 256b		
		2'b01: 512b		
		2'b10: 1024b		

por_cxla_agentid_to_linkid_reg0

Specifies the mapping of Agent ID to Link ID for Agent IDs 0 to 7.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC30
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.



Figure 3-940 por_cxla_por_cxla_agentid_to_linkid_reg0 (high)

The following table shows the por_cxla_agentid_to_linkid_reg0 higher register bit assignments.

Table 3-954 por_cxla_por_cxla_agentid_to_linkid_reg0 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent7_linkid	Specifies the Link ID for Agent ID 7	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent6_linkid	Specifies the Link ID for Agent ID 6	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent5_linkid	Specifies the Link ID for Agent ID 5	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent4_linkid	Specifies the Link ID for Agent ID 4	RW	2'h0

The following image shows the lower register bit assignments.

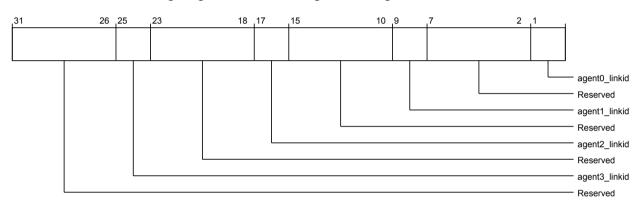


Figure 3-941 por_cxla_por_cxla_agentid_to_linkid_reg0 (low)

The following table shows the por_cxla_agentid_to_linkid_reg0 lower register bit assignments.

Table 3-955 por_cxla_por_cxla_agentid_to_linkid_reg0 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent3_linkid	Specifies the Link ID for Agent ID 3	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent2_linkid	Specifies the Link ID for Agent ID 2	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent1_linkid	Specifies the Link ID for Agent ID 1	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent0_linkid	Specifies the Link ID for Agent ID 0	RW	2'h0

por_cxla_agentid_to_linkid_reg1

Specifies the mapping of Agent ID to Link ID for Agent IDs 8 to 15.

Its characteristics are:

Type RW

Register width (Bits) 64

Address offset 14'hC38 Register reset 64'b0

Usage constraints Only accessible by secure accesses.

 $\begin{tabular}{ll} \textbf{Secure group} & por_cxla_secure_register_groups_override.linkid_ctl \\ \end{tabular}$

override

The following image shows the higher register bit assignments.

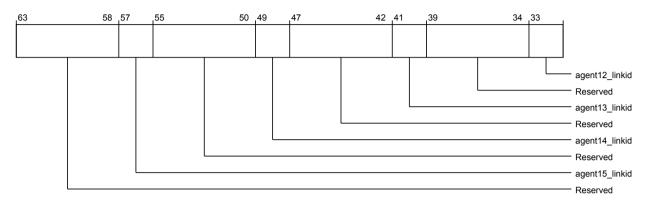


Figure 3-942 por_cxla_por_cxla_agentid_to_linkid_reg1 (high)

The following table shows the por cxla agentid to linkid reg1 higher register bit assignments.

Table 3-956 por_cxla_por_cxla_agentid_to_linkid_reg1 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent15_linkid	Specifies the Link ID for Agent ID 15	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent14_linkid	Specifies the Link ID for Agent ID 14	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent13_linkid	Specifies the Link ID for Agent ID 13	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent12_linkid	Specifies the Link ID for Agent ID 12	RW	2'h0

The following image shows the lower register bit assignments.

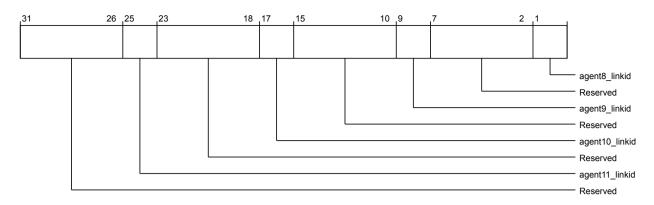


Figure 3-943 por_cxla_por_cxla_agentid_to_linkid_reg1 (low)

The following table shows the por_cxla_agentid_to_linkid_reg1 lower register bit assignments.

Table 3-957 por_cxla_por_cxla_agentid_to_linkid_reg1 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent11_linkid	Specifies the Link ID for Agent ID 11	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent10_linkid	Specifies the Link ID for Agent ID 10	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent9_linkid	Specifies the Link ID for Agent ID 9	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent8_linkid	Specifies the Link ID for Agent ID 8	RW	2'h0

por_cxla_agentid_to_linkid_reg2

Specifies the mapping of Agent ID to Link ID for Agent IDs 16 to 23.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC40
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

over ride

The following image shows the higher register bit assignments.

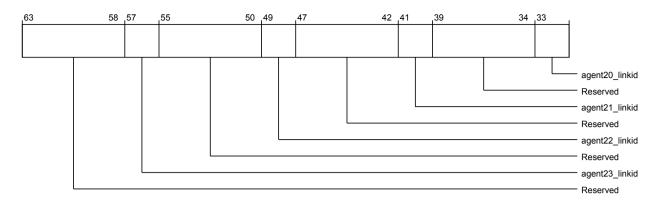


Figure 3-944 por_cxla_por_cxla_agentid_to_linkid_reg2 (high)

The following table shows the por_cxla_agentid_to_linkid_reg2 higher register bit assignments.

Table 3-958 por_cxla_por_cxla_agentid_to_linkid_reg2 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent23_linkid	Specifies the Link ID for Agent ID 23	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent22_linkid	Specifies the Link ID for Agent ID 22	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent21_linkid	Specifies the Link ID for Agent ID 21	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent20_linkid	Specifies the Link ID for Agent ID 20	RW	2'h0

The following image shows the lower register bit assignments.

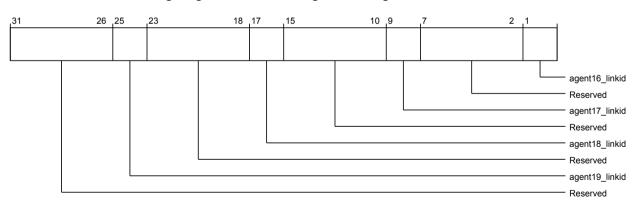


Figure 3-945 por_cxla_por_cxla_agentid_to_linkid_reg2 (low)

The following table shows the por_cxla_agentid_to_linkid_reg2 lower register bit assignments.

Table 3-959 por_cxla_por_cxla_agentid_to_linkid_reg2 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent19_linkid	Specifies the Link ID for Agent ID 19	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent18_linkid	Specifies the Link ID for Agent ID 18	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent17_linkid	Specifies the Link ID for Agent ID 17	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent16_linkid	Specifies the Link ID for Agent ID 16	RW	2'h0

por_cxla_agentid_to_linkid_reg3

Specifies the mapping of Agent ID to Link ID for Agent IDs 24 to 31.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC48
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

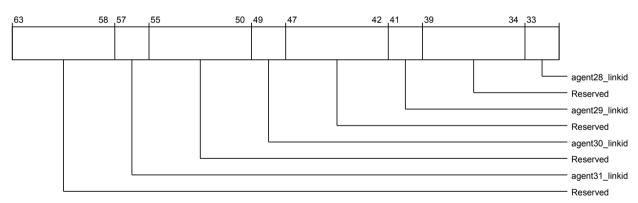


Figure 3-946 por_cxla_por_cxla_agentid_to_linkid_reg3 (high)

The following table shows the por_cxla_agentid_to_linkid_reg3 higher register bit assignments.

Table 3-960 por_cxla_por_cxla_agentid_to_linkid_reg3 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent31_linkid	Specifies the Link ID for Agent ID 31	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-960 por_cxla_por_cxla_agentid_to_linkid_reg3 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent30_linkid	Specifies the Link ID for Agent ID 30	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent29_linkid	Specifies the Link ID for Agent ID 29	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent28_linkid	Specifies the Link ID for Agent ID 28	RW	2'h0

The following image shows the lower register bit assignments.

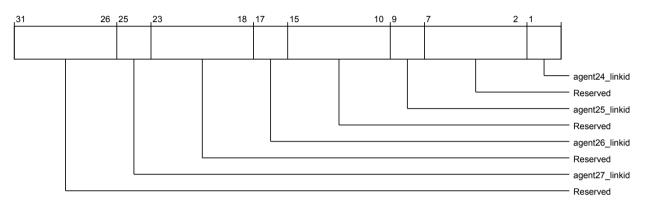


Figure 3-947 por_cxla_por_cxla_agentid_to_linkid_reg3 (low)

The following table shows the por_cxla_agentid_to_linkid_reg3 lower register bit assignments.

Table 3-961 por_cxla_por_cxla_agentid_to_linkid_reg3 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent27_linkid	Specifies the Link ID for Agent ID 27	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent26_linkid	Specifies the Link ID for Agent ID 26	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent25_linkid	Specifies the Link ID for Agent ID 25	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent24_linkid	Specifies the Link ID for Agent ID 24	RW	2'h0

por_cxla_agentid_to_linkid_reg4

Specifies the mapping of Agent ID to Link ID for Agent IDs 32 to 39.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC50
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

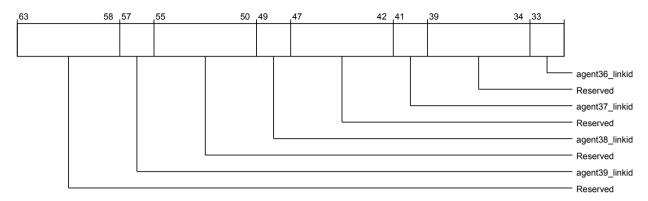


Figure 3-948 por_cxla_por_cxla_agentid_to_linkid_reg4 (high)

The following table shows the por cxla agentid to linkid reg4 higher register bit assignments.

Table 3-962 por_cxla_por_cxla_agentid_to_linkid_reg4 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent39_linkid	Specifies the Link ID for Agent ID 39	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent38_linkid	Specifies the Link ID for Agent ID 38	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent37_linkid	Specifies the Link ID for Agent ID 37	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent36_linkid	Specifies the Link ID for Agent ID 36	RW	2'h0

The following image shows the lower register bit assignments.

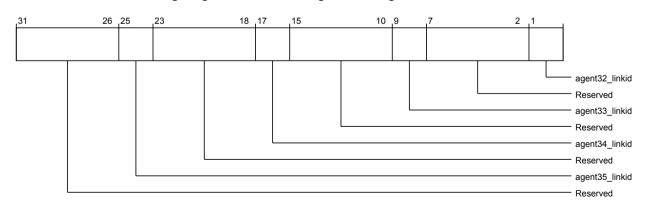


Figure 3-949 por_cxla_por_cxla_agentid_to_linkid_reg4 (low)

The following table shows the por_cxla_agentid_to_linkid_reg4 lower register bit assignments.

Table 3-963 por_cxla_por_cxla_agentid_to_linkid_reg4 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent35_linkid	Specifies the Link ID for Agent ID 35	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent34_linkid	Specifies the Link ID for Agent ID 34	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent33_linkid	Specifies the Link ID for Agent ID 33	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent32_linkid	Specifies the Link ID for Agent ID 32	RW	2'h0

por_cxla_agentid_to_linkid_reg5

Specifies the mapping of Agent ID to Link ID for Agent IDs 40 to 47.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC58
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

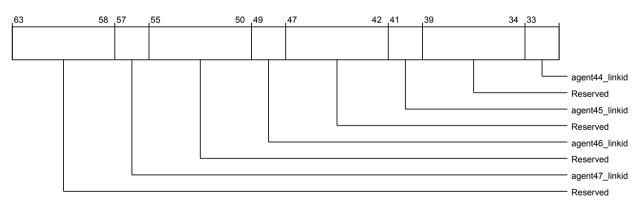


Figure 3-950 por_cxla_por_cxla_agentid_to_linkid_reg5 (high)

The following table shows the por_cxla_agentid_to_linkid_reg5 higher register bit assignments.

Table 3-964 por_cxla_por_cxla_agentid_to_linkid_reg5 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent47_linkid	Specifies the Link ID for Agent ID 47	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-964 por_cxla_por_cxla_agentid_to_linkid_reg5 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent46_linkid	Specifies the Link ID for Agent ID 46	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent45_linkid	Specifies the Link ID for Agent ID 45	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent44_linkid	Specifies the Link ID for Agent ID 44	RW	2'h0

The following image shows the lower register bit assignments.

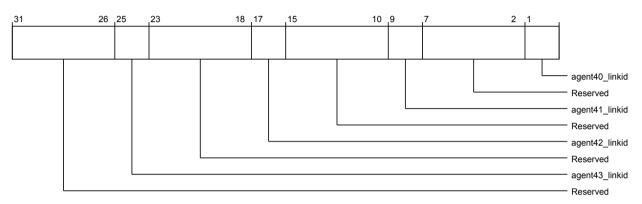


Figure 3-951 por_cxla_por_cxla_agentid_to_linkid_reg5 (low)

The following table shows the por_cxla_agentid_to_linkid_reg5 lower register bit assignments.

Table 3-965 por_cxla_por_cxla_agentid_to_linkid_reg5 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent43_linkid	Specifies the Link ID for Agent ID 43	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent42_linkid	Specifies the Link ID for Agent ID 42	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent41_linkid	Specifies the Link ID for Agent ID 41	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent40_linkid	Specifies the Link ID for Agent ID 40	RW	2'h0

por_cxla_agentid_to_linkid_reg6

Specifies the mapping of Agent ID to Link ID for Agent IDs 48 to 55.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC60
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

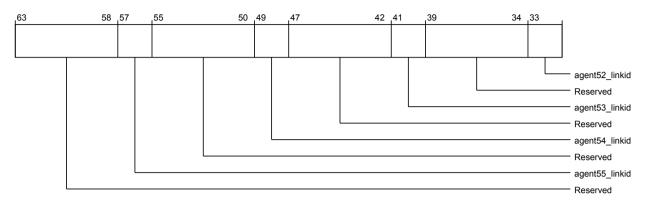


Figure 3-952 por_cxla_por_cxla_agentid_to_linkid_reg6 (high)

The following table shows the por_cxla_agentid_to_linkid_reg6 higher register bit assignments.

Table 3-966 por_cxla_por_cxla_agentid_to_linkid_reg6 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent55_linkid	Specifies the Link ID for Agent ID 55	RW	2'h0
55:50	Reserved	Reserved	RO	-
49:48	agent54_linkid	Specifies the Link ID for Agent ID 54	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent53_linkid	Specifies the Link ID for Agent ID 53	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent52_linkid	Specifies the Link ID for Agent ID 52	RW	2'h0

The following image shows the lower register bit assignments.

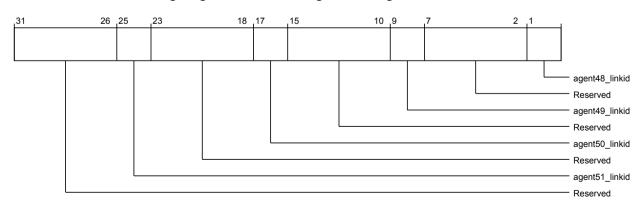


Figure 3-953 por_cxla_por_cxla_agentid_to_linkid_reg6 (low)

The following table shows the por_cxla_agentid_to_linkid_reg6 lower register bit assignments.

Table 3-967 por_cxla_por_cxla_agentid_to_linkid_reg6 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent51_linkid	Specifies the Link ID for Agent ID 51	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent50_linkid	Specifies the Link ID for Agent ID 50	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent49_linkid	Specifies the Link ID for Agent ID 49	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent48_linkid	Specifies the Link ID for Agent ID 48	RW	2'h0

por_cxla_agentid_to_linkid_reg7

Specifies the mapping of Agent ID to Link ID for Agent IDs 56 to 63.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC68
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

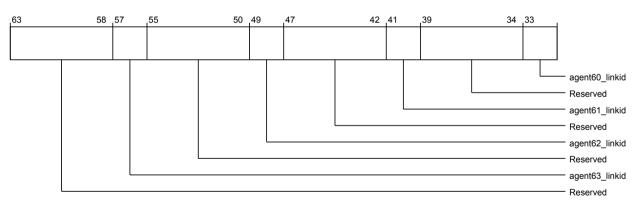


Figure 3-954 por_cxla_por_cxla_agentid_to_linkid_reg7 (high)

The following table shows the por_cxla_agentid_to_linkid_reg7 higher register bit assignments.

Table 3-968 por_cxla_por_cxla_agentid_to_linkid_reg7 (high)

Bits	Field name	Description	Туре	Reset
63:58	Reserved	Reserved	RO	-
57:56	agent63_linkid	Specifies the Link ID for Agent ID 63	RW	2'h0
55:50	Reserved	Reserved	RO	-

Table 3-968 por_cxla_por_cxla_agentid_to_linkid_reg7 (high) (continued)

Bits	Field name	Description	Туре	Reset
49:48	agent62_linkid	Specifies the Link ID for Agent ID 62	RW	2'h0
47:42	Reserved	Reserved	RO	-
41:40	agent61_linkid	Specifies the Link ID for Agent ID 61	RW	2'h0
39:34	Reserved	Reserved	RO	-
33:32	agent60_linkid	Specifies the Link ID for Agent ID 60	RW	2'h0

The following image shows the lower register bit assignments.

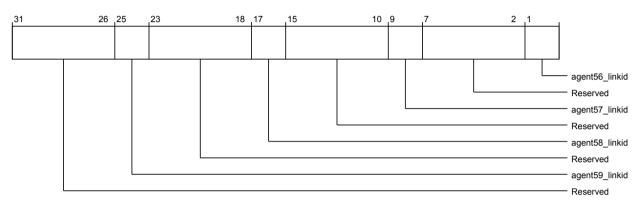


Figure 3-955 por_cxla_por_cxla_agentid_to_linkid_reg7 (low)

The following table shows the por_cxla_agentid_to_linkid_reg7 lower register bit assignments.

Table 3-969 por_cxla_por_cxla_agentid_to_linkid_reg7 (low)

Bits	Field name	Description	Туре	Reset
31:26	Reserved	Reserved	RO	-
25:24	agent59_linkid	Specifies the Link ID for Agent ID 59	RW	2'h0
23:18	Reserved	Reserved	RO	-
17:16	agent58_linkid	Specifies the Link ID for Agent ID 58	RW	2'h0
15:10	Reserved	Reserved	RO	-
9:8	agent57_linkid	Specifies the Link ID for Agent ID 57	RW	2'h0
7:2	Reserved	Reserved	RO	-
1:0	agent56_linkid	Specifies the Link ID for Agent ID 56	RW	2'h0

por_cxla_agentid_to_linkid_val

Specifies which Agent ID to Link ID mappings are valid.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC70
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

Secure group por_cxla_secure_register_groups_override.linkid_ctl

override

The following image shows the higher register bit assignments.

Figure 3-956 por_cxla_por_cxla_agentid_to_linkid_val (high)

The following table shows the por_cxla_agentid_to_linkid_val higher register bit assignments.

Table 3-970 por_cxla_por_cxla_agentid_to_linkid_val (high)

Bits	Field name	Description	Туре	Reset
63:32	valid	Specifies whether the Link ID is valid; bit number corresponds to logical Agent ID number (from 0 to 63)	RW	63'h0

The following image shows the lower register bit assignments.

Figure 3-957 por_cxla_por_cxla_agentid_to_linkid_val (low)

The following table shows the por cxla agentid to linkid val lower register bit assignments.

Table 3-971 por_cxla_por_cxla_agentid_to_linkid_val (low)

E	Bits	Field name	Description	Туре	Reset
3	31:0	valid	Specifies whether the Link ID is valid; bit number corresponds to logical Agent ID number (from $0\ to\ 63)$	RW	63'h0

por_cxla_linkid_to_pcie_bus_num

Specifies the mapping of CCIX Link ID to PCIe bus number.

Its characteristics are:

Type RW
Register width (Bits) 64
Address offset 14'hC78
Register reset 64'b0

Usage constraints Only accessible by secure accesses.

The following image shows the higher register bit assignments.

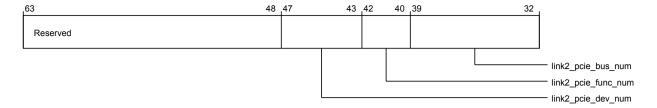


Figure 3-958 por_cxla_por_cxla_linkid_to_pcie_bus_num (high)

The following table shows the por_cxla_linkid_to_pcie_bus_num higher register bit assignments.

Table 3-972 por_cxla_por_cxla_linkid_to_pcie_bus_num (high)

Bits	Field name	Description	Туре	Reset
63:48	Reserved	Reserved	RO	-
47:43	link2_pcie_dev_num	PCIe Device number for Link ID 2	RW	5'h00
42:40	link2_pcie_func_num	PCIe Function number for Link ID 2	RW	3'h0
39:32	link2_pcie_bus_num	PCIe bus number for Link ID 2	RW	8'h00

The following image shows the lower register bit assignments.

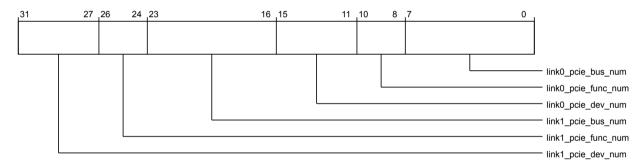


Figure 3-959 por_cxla_por_cxla_linkid_to_pcie_bus_num (low)

The following table shows the por_cxla_linkid_to_pcie_bus_num lower register bit assignments.

Table 3-973 por_cxla_por_cxla_linkid_to_pcie_bus_num (low)

Bits	Field name	Description	Туре	Reset
31:27	link1_pcie_dev_num	PCIe Device number for Link ID 1	RW	5'h00
26:24	link1_pcie_func_num	PCIe Function number for Link ID 1	RW	3'h0
23:16	link1_pcie_bus_num	PCIe bus number for Link ID 1	RW	8'h00
15:11	link0_pcie_dev_num	PCIe Device number for Link ID 0	RW	5'h00
10:8	link0_pcie_func_num	PCIe Function number for Link ID 0	RW	3'h0
7:0	link0_pcie_bus_num	PCIe bus number for Link ID 0	RW	8'h00

por_cxla_pmu_event_sel

Specifies the PMU event to be counted.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2000 Register reset 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

Figure 3-960 por_cxla_por_cxla_pmu_event_sel (high)

The following table shows the por_cxla_pmu_event_sel higher register bit assignments.

Table 3-974 por_cxla_por_cxla_pmu_event_sel (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

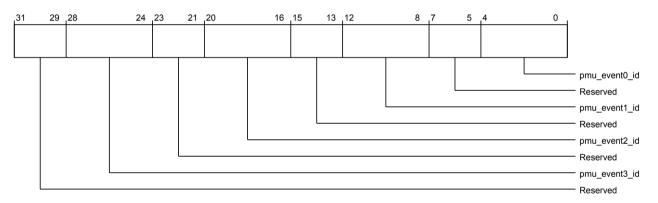


Figure 3-961 por_cxla_por_cxla_pmu_event_sel (low)

The following table shows the por_cxla_pmu_event_sel lower register bit assignments.

Table 3-975 por_cxla_por_cxla_pmu_event_sel (low)

Bits	Field name	Description	Туре	Reset
31:29	Reserved	Reserved	RO	-
28:24	pmu_event3_id	CXLA PMU Event 3 ID; see pmu_event0_id for encodings	RW	5'b0
23:21	Reserved	Reserved	RO	-
20:16	pmu_event2_id	CXLA PMU Event 2 ID; see pmu_event0_id for encodings	RW	5'b0
15:13	Reserved	Reserved	RO	-
12:8	pmu_event1_id	CXLA PMU Event 1 ID; see pmu_event0_id for encodings	RW	5'b0

Table 3-975 por_cxla_por_cxla_pmu_event_sel (low) (continued)

Bits	Field name	Description	Туре	Reset
7:5	Reserved	Reserved	RO	-
4:0	pmu_event0_id	CXLA PMU Event 0 ID	RW	5'b0
		5'h00: No event		
		5'h01: RX TLP for Link 0		
		5'h02: RX TLP for Link 1		
		5'h03: RX TLP for Link 2		
		5'h04: TX TLP for Link 0		
		5'h05: TX TLP for Link 1		
		5'h06: TX TLP for Link 2		
		5'h07: RX CXS for Link 0		
		5'h08: RX CXS for Link 1		
		5'h09: RX CXS for Link 2		
		5'h0A: TX CXS for Link 0		
		5'h0B: TX CXS for Link 1		
		5'h0B: TX CXS for Link 2		
		5'h0D: Average RX TLP size in DWs		
		5'h0E: Average TX TLP size in DWs		
		5'h0F: Average RX TLP size in CCIX messages		
		5'h10: Average TX TLP size in CCIX messages		
		5'h11: Average size of RX CXS in DWs within a beat		
		5'h12: Average size of TX CXS in DWs within a beat		
		5'h13: TX CXS link credit backpressure		
		5'h14: RX TLP buffer full and backpressured		
		5'h15: TX TLP buffer full and backpressured		
		5'h16: Average latency to process an RX TLP		
		5'h17: Average latency to form a TX TLP		

por_cxla_pmu_config

Configures the CXLA PMU.

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2210 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.

63 32
Reserved

Figure 3-962 por_cxla_por_cxla_pmu_config (high)

The following table shows the por_cxla_pmu_config higher register bit assignments.

Table 3-976 por_cxla_por_cxla_pmu_config (high)

Bits	Field name	Description	Туре	Reset
63:32	Reserved	Reserved	RO	-

The following image shows the lower register bit assignments.

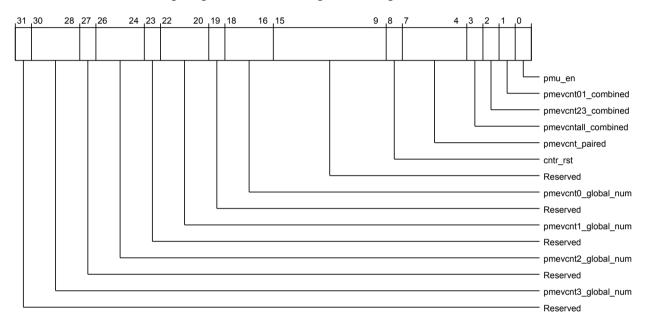


Figure 3-963 por_cxla_por_cxla_pmu_config (low)

The following table shows the por_cxla_pmu_config lower register bit assignments.

Table 3-977 por_cxla_por_cxla_pmu_config (low)

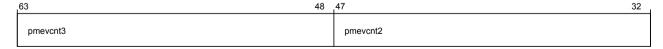
Bits	Field name	Description	Туре	Reset
31	Reserved	Reserved	RO	-
30:28	pmevcnt3_global_num	Global counter to pair with PMU counter 3; see pmevcnt0_global_num for encodings	RW	3'b0
27	Reserved	Reserved	RO	-
26:24	pmevcnt2_global_num	Global counter to pair with PMU counter 2; see pmevcnt0_global_num for encodings	RW	3'b0
23	Reserved	Reserved	RO	-
22:20	pmevcnt1_global_num	Global counter to pair with PMU counter 1; see pmevcnt0_global_num for encodings	RW	3'b0
19	Reserved	Reserved	RO	-

Table 3-977 por_cxla_por_cxla_pmu_config (low) (continued)

Bits	Field name	Description	Туре	Reset
18:16	pmevcnt0_global_num	Global counter to pair with PMU counter 0	RW	3'b0
		3'b000: Global PMU event counter A		
		3'b001: Global PMU event counter B		
		3'b010: Global PMU event counter C		
		3'b011: Global PMU event counter D		
		3'b100: Global PMU event counter E		
		3'b101: Global PMU event counter F		
		3'b110: Global PMU event counter G		
		3'b111: Global PMU event counter H		
15:9	Reserved	Reserved	RO	-
8	cntr_rst	Enables clearing of live counters upon assertion of snapshot	RW	1'b0
7:4	pmevcnt_paired	PMU local counter paired with global counter		4'b0
3	pmevcntall_combined	Enables combination of all PMU counters (0, 1, 2, 3)	RW	1'b0
		NOTE: When set, pmevcnt01_combined and pmevcnt23_combined have no effect.		
2	pmevcnt23_combined	Enables combination of PMU counters 2 and 3	RW	1'b0
1	pmevcnt01_combined	Enables combination of PMU counters 0 and 1	RW	1'b0
0	pmu_en	CXLA PMU enable	RW	1'b0
		NOTE: All other fields in this register are valid only if this bit is set.		

por_cxla_pmevcnt

Contains all PMU event counters (0, 1, 2, 3).

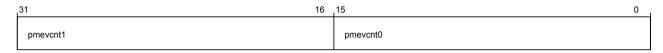

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2220 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-964 por_cxla_por_cxla_pmevcnt (high)

The following table shows the por_cxla_pmevent higher register bit assignments.

Table 3-978 por_cxla_por_cxla_pmevcnt (high)

Bits	Field name	Description	Туре	Reset
63:48	pmevent3	PMU event counter 3	RW	16'h0000
47:32	pmevent2	PMU event counter 2	RW	16'h0000

The following image shows the lower register bit assignments.

Figure 3-965 por_cxla_por_cxla_pmevcnt (low)

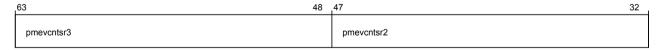
The following table shows the por cxla pmevent lower register bit assignments.

Table 3-979 por cxla por cxla pmevcnt (low)

Bits	Field name	Description	Туре	Reset
31:16	pmevent1	PMU event counter 1	RW	16'h0000
15:0	pmevent0	PMU event counter 0	RW	16'h0000

por_cxla_pmevcntsr

Functions as the PMU event counter shadow register for all counters (0, 1, 2, 3).

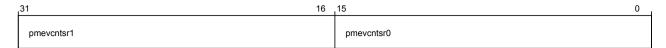

Its characteristics are:

Type RW Register width (Bits) 64

Address offset 14'h2240 **Register reset** 64'b0

Usage constraints There are no usage constraints.

The following image shows the higher register bit assignments.


Figure 3-966 por_cxla_por_cxla_pmevcntsr (high)

The following table shows the por_cxla_pmevcntsr higher register bit assignments.

Table 3-980 por_cxla_por_cxla_pmevcntsr (high)

Bits	Field name	Description	Туре	Reset
63:48	pmeventsr3	PMU event counter 3 shadow register	RW	16'h0000
47:32	pmevcntsr2	PMU event counter 2 shadow register	RW	16'h0000

The following image shows the lower register bit assignments.

Figure 3-967 por_cxla_por_cxla_pmevcntsr (low)

The following table shows the por_cxla_pmevcntsr lower register bit assignments.

Table 3-981 por_cxla_por_cxla_pmevcntsr (low)

Bits	Field name	Description	Туре	Reset
31:16	pmeventsr1	PMU event counter 1 shadow register	RW	16'h0000
15:0	pmeventsr0	PMU event counter 0 shadow register	RW	16'h0000

3.4 CMN-600 programming

This section contains CMN-600 programming information.

This section contains the following subsections:

- 3.4.1 Boot-time programming requirements on page 3-791.
- 3.4.2 Runtime programming requirements on page 3-791.

3.4.1 Boot-time programming requirements

After reset, CMN-600 uses a default configuration that accesses the HN-D ACE-Lite master interface (to access boot flash) and the configuration registers. An RN-F, or master behind an RN-I, must then access the configuration registers to configure CMN-600 before there is broader access to components such as HN-F or SN.

The following example assumes a system control processor (SCP) is performing the CMN-600 configuration.

- The SCP boots, either from local memory or through CMN-600 memory accesses targeting memory behind the HN-D:
 - All other masters are held in reset or otherwise issue no requests to CMN-600.
 - The HN-D is identified through straps on the RN SAM.
- The SCP discovers the system, if needed.
- The SCP determines the desired address map and corresponding SAM register values.
- The SCP performs a sequence to remap the configuration register space, if needed.
 - Drain all requests in flight by waiting for their responses.
 - Issue a single 64-bit store to a PERIPHBASE register behind the HN-D. This register would be in logic external to CMN-600 and an update would cause the signal values on the CFGM PERIPHBASE input to change.
 - Wait for the response for that store.
- The SCP uses CMN-600 configuration register writes to program the SAM for all HN-Fs, if needed.
- The SCP uses the CMN-600 configuration registers to program the SAM for all RNs including the one being used by the SCP.

Note
RN-F ESAM types are not able to block transactions before RN SAM programming and transaction
must be blocked by some external mechanism.

- The SCP's SAM is then programmed as the rest of the system. The last step is to set a bit that indicates using the programmed address map instead of using the default map.
- At this point, the SCP can make general accesses anywhere in the address space and other masters can begin issuing requests.

3.4.2 Runtime programming requirements

This section describes the requirements for programming during runtime.

The hardware for handling RN membership in the coherence domain or DVM domain has been shifted to the XP to which the RN is attached. A low-level four-phase handshake mechanism (SYSCOREQ/SYSCOACK) has been added to allow quick and local entry to and exit from snoop and DVM domains. No communication with central hardware resources is needed. When a block is removed from the coherence or DVM domain, the XP acts as a protocol agent to give a generic response to any snoop or DVM messages.

For legacy devices that do not support the SYSCOREQ/SYSCOACK mechanism, direct configuration writes to the XP by software can trigger the same mechanism. Refer to 2.25 RN entry to and exit from Snoop and DVM domains on page 2-147 for more details.

3.5 CML programming

The system must be programmed to enable correct operation with CML.

This section contains the following subsections:

- 3.5.1 CMN-600 CML (CCIX) Related Programmable Registers on page 3-792.
- 3.5.2 CML Bring-up Sequence on page 3-793.
- 3.5.3 CMN-600 initial programming requirements to enable CCIX communication on page 3-794.
- 3.5.4 Runtime programming on page 3-796.
- 3.5.5 CCIX Protocol Link-up Sequence on page 3-796.
- 3.5.6 CCIX Protocol Link-down Sequence on page 3-797.
- 3.5.7 CCIX Protocol Link Coherency and DVM Domain Entry/Exit on page 3-798.

3.5.1 CMN-600 CML (CCIX) Related Programmable Registers

This section contains a list of CML programmable registers.

CXRA:

- RA SAM
 - por cxg ra sam addr region reg<X>
- · LDID to RAID LUT
 - por_cxg_ra_rnf_ldid_to_raid_reg<X>
 - por cxg ra rnd ldid to raid reg<X>
 - por_cxg_ra_rni_ldid_to_raid_reg<X>
 - por_cxg_ra_rnf_ldid_to_raid_val
 - por_cxg_ra_rni_ldid_to_raid_val
 - por_cxg_ra_rnd_ldid_to_raid_val
- Remote AgentID (RAID/HAID) to LinkID LUT
 - por cxg ra agentid to linkid reg<X>
 - por_cxg_ra_agentid_to_linkid_val
- CCIX protocol link control and status
 - por_cxg_ra_cxprtcl_link<X>_ctl
 - por_cxg_ra_cxprtcl_link<X>_status

CXHA:

- HAID
 - por cxg ha id
- RAID to LDID LUT
 - por cxg ha rnf raid to ldid reg<X>
 - por cxg ha rnf raid to ldid val
- Remote AgentID (RAID/HAID) to LinkID LUT
 - por_cxg_ha_agentid_to_linkid_reg<X>
 - $-- por_cxg_ha_agentid_to_linkid_val$
- · CCIX protocol link control and status
 - por_cxg_ha_cxprtcl_link<X>_ctl
 - por cxg ha cxprtcl link<X> status
- RN SAM

CXLA:

- CCIX capabilities (read only)
 - por cxla ccix prop capabilities
- CCIX configured properties
 - por cxla ccix prop configured
- CXS I/F properties/parameters (read only)

- por_cxla_tx_cxs_attr_capabilities
- por cxla rx cxs attr capabilities
- Remote AgentID (RAID/HAID) to LinkID LUT
 - por_cxla_agentid_to_linkid_reg<X>
 - por_cxla_agentid_to_linkid_val
- LinkID to PCIe Bus Number LUT
 - por cxla linkid to pcie bus num

HN-F:

- · LDID to CHI NodeID register
 - por hnf rn phys id<X>
- CCIX port aggregation mask register
 - por hnf cml port aggr grp0 add mask
- CCIX port aggregation control register
 - por_hnf_cml_port_aggr_grp0_reg

RN-F/RN-I/RN-D:

- RN SAM
- CCIX port aggregation mode enable and control register
 - cml port aggr grp0 reg
 - cml port aggr mode ctrl reg
- · CCIX port aggregation mask register
 - cml_port_aggr_grp0_add_mask

3.5.2 CML Bring-up Sequence

Use the following information to bring up a CML sequence.

- 1. Local system discovery and bring-up.
 - a. Use the CMN-600 discovery mechanism, as defined in *2.4 Node ID mapping* on page 2-46, to discover node types, their corresponding locations (node IDs) and logical IDs. Node types that are of interest for CML specific programming are RN-Fs, RN-Is, RN-Ds, HN-Fs and CCIX gateway blocks (CXRA, CXHA and CXLA).
 - b. Bring up the local system to allow normal local operations. Complete the CMN-600 boot time programming requirements specified in *3.4.1 Boot-time programming requirements* on page 3-791 to bring up all local non-CCIX components (HN-F, HN-D, HN-I, RN-I, SN-F and XP) and program RN SAM with the local address map.
- 2. CCIX device and system discovery.
 - a. CCIX system discovery may involve going through the PCIe link activation and device enumeration mechanism. Please follow the standard PCIe device enumeration steps to detect CCIX capable devices.
 - b. If CCIX capable device(s) are detected during PCIe device enumeration, proceed to the remaining steps. In addition, program the PCIe RC to enable multiple VCs.
- 3. CCIX device enumeration.
 - a. Discover all CCIX agents (RA and HA) at each CCIX device. These agents must be uniquely identified (ID). If any CCIX device contains CMN-600, follow the CMN-600 discovery mechanism, as defined in 2.4 Node ID mapping on page 2-46, to discover node types, corresponding locations (node IDs) and logical IDs.
 - b. Discover the address map requirements of each CCIX device.
 - c. Read the CCIX capabilities of each CCIX device.
 - To determine CMN-600 CCIX capabilities, read the CCIX capabilities register (**por cxla ccix prop capabilities**) present in each CXLA.

- d. Determine the common properties and capabilities supported by all CCIX devices and configure them in each CCIX device.
 - Configure these properties in the CCIX configured properties register (por cxla ccix prop configured) present in each CXLA.
- e. Follow the programming requirements as specified in 3.5.3 CMN-600 initial programming requirements to enable CCIX communication on page 3-794

3.5.3 CMN-600 initial programming requirements to enable CCIX communication

The terms *link*, *CCIX link*, and *CCIX protocol link* used in subsequent sections refer to CCIX logical link as defined in CCIX protocol specification. Please refer to CCIX protocol specification for more details.

Programming requirements corresponding to local CCIX agents:

- Requesting Agent ID (RAID) assignment.
 - For all Requesting Agents, program the RAIDs in LDID to RAID LUT registers (por_cxg_ra_rn{f, i, d}_ldid_to_raid_reg<X>) and set the corresponding valid bit in the por cxg ra rn{f, i, d} ldid to raid val register present in each CXRA.

— Program the HAID in the HAID register (**por cxg ha id**) present in each CXHA.

• Home Agent ID (HAID) assignment.

Note	
1. Since all CXHAs can communicate with all local HNs (HN-F, HN-I, and HN-D), they	can
have the same HAID unless uniqueness is required for routing purposes.	

2. According to CCIX specification, HA and RA with the same ID must reside behind the same CCIX protocol link. Please refer to CCIX specification for more details.

Programming requirements corresponding to remote CCIX agents:

- LinkID assignment.
 - Assign a unique LinkID to each remote CCIX protocol link with which a CCIX gateway (CXRA, CXHA and CXLA) can communicate. Each CCIX gateway block can communicate with up to three remote CCIX protocol links. These links are marked sequentially as links 0, 1, and 2. Each remote CCIX agent (RA or HA), identified by their RAID or HAID, that the gateway can communicate with must be behind only one link. Determine the LinkID of each remote agent (target) and program it in the AgentID (RAID/HAID) to LinkID LUT register (por_{cxg_ra, cxg_ha, cxla}_agentid_to_linkid_reg<X>) present in each CXRA, CXHA, and CXLA. Set the respective valid bits in por_{cxg_ra, cxg_ha, cxla}_agentid_to_linkid_val.

1. LinkID must only be unique within a CCIX gateway block. Each CCIX gateway has a respective LinkID space.

- 2. Each remote link, identified by its LinkID, has its own CCIX protocol link control and status registers.
- PCIe Bus Number assignment.

- Note

Program the PCIe Bus Number for each remote link in the LinkID to PCIe Bus Number LUT register (por_cxla_linkid_to_pcie_bus_num) present in each CXLA.
Note
This is only needed if PCIe header is used to route a CCIX TLP.

- LDID assignment.
 - Assign a unique Logical Device ID (LDID) for each remote caching agent (RN-F) that can send requests to HNs (HN-F, HN-I and HN-D).

- Program these unique LDIDs in the RAID to LDID LUT register (por_cxg_ha_rnf_raid_to_ldid_reg<X>) present in each CXHA. Set the ldid<X> rnf bit to mark the remote agent as a caching agent. Set the respective valid bit in register por cxg ha rnf raid to ldid val. Program the NodeID of each CXHA in HN-F's LDID to CHI NodeID register
- nat

(por_hnf_rn_phys_id<x></x>) for each remote RN-F (caching agent) that is proxied through that CXHA.
Note
 Remote LDID values must be greater than those used by the local RN-F nodes. HN-F uses LDID for Snoop Filter (SF) tracking. LDID assignment is not required for non-caching Requesting Agents (RAs), which do not need to be snooped.
RA SAM.
— For each remote Home Agent, program the address range and corresponding HAID in RA SAM register (por_cxg_ra_sam_addr_region_reg <x>) present in each CXRA. CXHA RN SAM.</x>
 Program the RN SAM present in each CXHA with address/memory map of local HNs. Please refer to 2.19 RN and HN-F SAM programming on page 2-104 for details on RN SAM programming. Note
CXHA RN SAM can be programmed as part of local system bring-up, when programming the RN SAM inside each RN with local HNs address/memory map.
Program the CCIX protocol link control register (por_cxg_{ra, ha}_cxprtcl_link<x>_ctl</x>) present in each CXRA and CXHA.
Note
There is a CCIX protocol link control register for each CCIX protocol link that a given CCIX gateway block (CXRA, CXHA and CXLA) can communicate with.
— Set the link enable bit (lnk0_link_en) for each CCIX protocol link that can be used in the future. Note ————

- If this bit is not set, credits are not set aside for this link.
- Program the number of credits (lnk0 num {snpcrds, reqdatcrds}) field with the percentage of protocol credits that must be assigned/granted for a given link.

1. This step is optional. Default credits are equally assigned/granted to each enabled link as determined by the link enable bit (lnk<X> link en).

2. Please ensure that the total percentage of credits allocated to all links does not exceed 100.

- Note -

Refer to the following table for the number of links and related allowed credit distribution percentage:

Table 3-982 Number of links and allowed credit distribution percentage

Number of links	Allowed Credit Distribution
1	100%
2	50%/50%
2	25%/75%
3	50%/25%/25%
3	33%/33%/33%

After distributing credits based on the programmed percentage across all the links available, any remaining credits are allocated to link0. For example, link0 will be allocated 44 credits while link1 and link2 will be allocated 42 credits each for the 128 credit, 33% credit distribution configuration.

- CCIX Port Aggregation (CPA) programming sequence for RN SAM.
 - Set the **region<N>_pag_en bit in cml_port_aggr_mode_ctrl_reg** register to 1'b1 for each remote non-hashed memory region that must use CPA.
 - Set 1'b1 in each bit of **addr_mask field in the cml_port_aggr_grp0_add_mask** register that must be used in hashing to distribute the request traffic between CCIX gateways.
 - Program the number of CCIX gateways and their Node ID's in cml_port_aggr_grp0_reg register's num cxg pag0 and pag0 tgtid0 and pag0 tgtid1 fields.
- CCIX Port Aggregation programming sequence for HN-F SAM.
 - For each valid LDID in the in the **por_hnf_rn_phys_id<X>** registers, set the cpa_en_ra<ldid> to 1'b1 if it must use CPA.
 - Set 1'b1 in each bit of addr_mask field in the **por_hnf_cml_port_aggr_grp0_add_mask** register that must be used in hashing to distribute the snoop traffic between CCIX gateways.
 - Program the number of CCIX gateways and their Node ID's in por_hnf_cml_port_aggr_grp0_reg register's num_cxg_pag0, pag0_tgtid0, and pag0_tgtid1 fields

3.5.4 Runtime programming

Use the following information for runtime programming.

- 1. Bring up CCIX protocol link. Please refer to 3.5.5 CCIX Protocol Link-up Sequence on page 3-796.
- 2. Add a CCIX protocol link in system coherency and DVM domains. Please refer to 3.5.7 CCIX Protocol Link Coherency and DVM Domain Entry/Exit on page 3-798.
- 3. Program the remote address range and corresponding CXRA node ID for each remote memory region in RN SAM present in CMN-600 RN-F, RN-I, and RN-D.

1	,	,		
Note				

If the software can guarantee that there is no traffic to the remote address range until CCIX-related initial programming is complete and CCIX protocol links are up, then this programming should be done upfront (i.e. when programming RN SAMs with local address map).

3.5.5 CCIX Protocol Link-up Sequence

Use the following information to link-up.

This section describes the steps to set up a CCIX protocol link between each CMN-600's CCIX gateway block (CXRA, CXHA and CXLA) and corresponding remote CCIX link that it is communicating with.

The term *link* used in this section refers to CCIX protocol link. Multiple CCIX links can be setup simultaneously by extending this sequence for each link.

- 1. Check if the communication on link can be established.
 - a. Poll link enable bit (lnk<X>_link_en) in CCIX protocol link control register (por_cxg_<ra/ ha> cxprtcl link<X> ctl) in CXRA and CXHA to ensure that the link is enabled.
- 2. Ensure that the link is down and can accept a new link up request.
 - a. Poll link up bit (lnk<X>_link_up) in CCIX protocol link control register (por_cxg_<ra/ha>_cxprtcl_link<X>_ctl) to ensure that it is clear. Poll link down bit (lnk<X>_link_down) in CCIX protocol link status register (por_cxg_<ra/ha>_cxprtcl_link<X>_status) to ensure that it is set. Poll link ACK bit (lnk<X>_link_ack) in CCIX protocol link status register (por_cxg_<ra/ha> cxprtcl_link<X> status) to ensure that it is clear.
- 3. Make a request to bring up the link.
 - a. Set link request bit (lnk<X>_link_req) in CCIX protocol link control register (por_cxg_<ra/ ha> cxprtcl link<X> ctl) in CXRA and CXHA.
- 4. Ensure that the link up request is accepted.
 - a. Link up request is acknowledged by setting link ACK bit (Ink<X>_link_ack) and clearing link down bit (Ink<X>_link_down) in CCIX protocol link status register (por_cxg_<ra/>ra/ha>_cxprtcl_link<X>_status) present in CXRA and CXHA. Link up means that both sides are ready to receive and grant CCIX protocol credits.
- 5. After both sides acknowledge the link up request, instruct both sides to start granting credits.
 - a. Set link up bit (lnk<X>_link_up) in CCIX protocol link control register (por_cxg_<ra/ra/ha> cxprtcl link<X> ctl) in CXRA and CXHA.
- 6. Link<X> is now up. Both sides can now exchange CCIX protocol credits and protocol messages.

3.5.6 CCIX Protocol Link-down Sequence

Use the following information to link down.

This section describes steps to bring down a CCIX protocol link between each CMN-600's CCIX gateway block (CXRA, CXHA and CXLA) and corresponding remote CCIX protocol link that it is communicating with. The term *link* used in this section refers to CCIX protocol link. Multiple CCIX protocol links can be brought down simultaneously by extending this sequence for each link.

 - Note —		

Before initiating a link down sequence, software must ensure the following:

- There are no outstanding transactions that require CCIX message transfers across the link for their completion. This includes GIC-D in SMP mode.
- 2. The protocol agents on both sides of the link are configured to not initiate new transactions across the link. For CMN-600:
 - a. Poll "link OT CopyBack" (lnk<X>_ot_cbkwr) bit in CXRA's "CCIX Protocol Link Status" (por_cxg_ra_cxprtcl_link<X>_status) register to make sure that it is cleared. This is to ensure that there are no outstanding CopyBack requests targeting that link.
 - b. Take the link out of system coherency and DVM domains. Please refer to 3.5.7 CCIX Protocol Link Coherency and DVM Domain Entry/Exit on page 3-798

^{1.} Ensure that the link is up and can accept a new link down request.

a. Poll link up bit (lnk<X>_link_up) in CCIX protocol link control register (por_cxg_<ra/>ha>_cxprtcl_link<X>_ctl) in CXRA and CXHA to ensure that the link is up. Poll link request bit (lnk<X>_link_req) to ensure that it is set.

^{2.} Make a request to bring down the link.

a. Clear link request bit (lnk<X>_link_req) in CCIX protocol link control register (por_cxg_<ra/ra/ha>_cxprtcl_link<X>_ctl) in CXRA and CXHA to make a link down request.

^{3.} Ensure that the link down request is accepted.

a. Poll link ACK bit (lnk<X>_link_ack) in CCIX protocol link status register (por_cxg_<ra/ha>_cxprtcl_link<X>_status) to ensure that it is cleared. After link down request is accepted,

each side must stop granting local CCIX protocol credits and start returning remote CCIX protocol credits.

- 4. Ensure that each side has received all its protocol credits and is ready to go down.
 - a. Link down ready status is conveyed by setting link down bit (lnk<X>_link_down) in CCIX protocol link status register (por cxg <ra/ha> cxprtcl link<X> status) in CXRA and CXHA.
- 5. After both sides acknowledge that they are ready to take down the link, instruct both sides to shut down the link.
 - a. This is done by clearing link up bit (lnk<X>_link_up) in CCIX protocol link control register (por cxg <ra/rha> cxprtcl link<X> ctl) present in CXRA and CXHA.
- 6. Link<X> is now down. No protocol message or credit transfers should occur across link.

3.5.7 CCIX Protocol Link Coherency and DVM Domain Entry/Exit

Each CCIX Gateway block (CXRA, CXHA and CXLA) includes software bits for entry and exit of a given CCIX protocol link from system coherency and DVM domains.

Snoop coherency domain entry/exit request bit (lnk<X>_snoopdomain_req) is present in each CXHA's CCIX protocol link control register (por_cxg_ha_cxprtcl_link<X>_ctl) and the corresponding acknowledge bit (lnk<X>_snoopdomain_ack) is present in CCIX protocol link status register (por_cxg_ha_cxprtcl_link<X>_status).

DVM domain entry/exit request bit (lnk<X>_dvmdomain_req) is present in each CXRA's CCIX protocol link control register (por_cxg_ra_cxprtcl_link<X>_ctl) and the corresponding acknowledge bit (lnk<X>_dvmdomain_ack) is present in CCIX protocol link status register (por cxg ra cxprtcl link<X> status).

Please refer to 2.25 RN entry to and exit from Snoop and DVM domains on page 2-147 for additional information.

3.6 Support for RN-Fs compliant with CHI Issue A specification

Although CMN-600 natively supports devices compliant with CHI Issue B specification, it also provides support for connecting RN-Fs based on CHI Issue A specification with some feature restrictions and the corresponding CMN-600 programming requirements.

This section describes these feature restrictions.

This section contains the following subsections:

- 3.6.1 CHI Issue A device node ID mapping on page 3-799.
- 3.6.2 Stashing on page 3-799.
- 3.6.3 Direct Cache Transfer on page 3-799.
- 3.6.4 Data poison on page 3-799.
- 3.6.5 RN SAM programming on page 3-800.
- 3.6.6 System coherency entry and exit on page 3-800.

3.6.1 CHI Issue A device node ID mapping

In a CMN-600 system, all devices are assigned a unique CHI Issue B node ID such as B_NID [n:0], where n = 6, 8, or 10 based on the system node ID width.

CHI Issue A devices, however, have a fixed 7-bit wide node ID such as A_NID[6:0]. For such devices, the A_NID is derived from the CHI Issue B node ID by shifting the LSBs and padding the MSBs with zeros as necessary as shown in the following tables.

Table 3-983 Mapping CHI Issue A device node ID into CMN-600 device node ID

Node ID width	CMN-600 device node ID	Comments
7 bits	B_NID [6:0] = (A_NID[4:0], 2'b00)	A_NID[6:5] must be zero
9 bits	B_NID [8:0] = (A_NID[6:0], 2'b00)	-
11 bits	B_NID [10:0] = (2'b00, A_NID[6:0], 2'b00)	2 MSBs of B_NID are padded with zeros

Table 3-984 Mapping CMN-600 device node ID into CHI Issue A device node ID

Node ID width	CHI Issue A device node ID	Comments
7 bits	A_NID [6:0] = (2'b00, B_NID[6:2])	B_NID[1:0] are zeros and are discarded
9 bits	A_NID [6:0] = B_NID[8:2]	B_NID[1:0] bits are zeros and are discarded
11 bits	A_NID [6:0] = B_NID[8:2]	B_NID[10:9] and B_NID[1:0] bits are zeros and are discarded

3.6.2 Stashing

CHI Issue A RN-Fs do not support stashing.

All HN-F instances are configured to not send snoop stash requests to the CHI Issue A RN-F.

3.6.3 Direct Cache Transfer

CHI Issue A RN-Fs do not support *Direct Cache Transfer* (DCT).

All HN-F instances are configured to disable DCT in snoop requests to the CHI Issue A RN-F.

3.6.4 Data poison

CHI Issue A RN-Fs do not support data poisoning.

All HN-F instances are configured to report and log data poison errors detected on SLC data sent to the CHI Issue A RN-F.

Likewise, DMC must be configured to report and log data poison errors detected on read data.

3.6.5 RN SAM programming

CHI Issue A RN-Fs can be configured as ESAM.

When CHI Issue A RN-F is configured as ESAM, then the SAM in CMN-600 must be programmed following the steps described in 2.16 RN SAM on page 2-92.

3.6.6 System coherency entry and exit

For system coherency entry or exit, either the hardware or software interface must be enabled.

For system coherency entry or exit, either the hardware or software interface must be enabled as described in 2.25 RN entry to and exit from Snoop and DVM domains on page 2-147.

Chapter 4 **SLC Memory System**

This chapter describes the SLC memory system.

It contains the following sections:

- 4.1 About the SLC memory system on page 4-802.
- 4.2 Configurable options on page 4-804.
- 4.3 Basic operation on page 4-805.
- 4.4 Cache maintenance operations on page 4-806.
- 4.5 Cacheable and Non-cacheable exclusives on page 4-807.
- 4.6 TrustZone technology support on page 4-808.
- 4.7 Snoop connectivity and control on page 4-809.
- 4.8 *OoS features* on page 4-810.
- 4.9 Data Source Handling on page 4-812.
- 4.10 Software configurable memory region locking on page 4-813.
- 4.11 Software-configurable On-Chip Memory on page 4-815.
- 4.12 CMO propagation from HN-F to SN-F/SBSX on page 4-816.
- 4.13 Error reporting and software-configured error injection on page 4-817.

4.1 About the SLC memory system

The SLC memory system consists of the HN-F protocol nodes in CMN-600.

There is a configurable number of instances (1-32) of the HN-F, and each HN-F node or slice has the following features:

- 0KB, 128KB, 256KB, 512KB, 1MB, 2MB, 3MB, or 4MB of SLC data RAM and tag RAM.
- Combined Point-of-Coherency (PoC) and Point-of-Serialization (PoS).
- SF size of 512KB, 1MB, 2MB, 4MB, or 8MB.

Each HN-F in CMN-600 is configured to manage a specific portion of the total address space. For each portion of the address, each HN-F:

- Can cache data in SLC.
- Manages PoC and PoS functionality for ordering and coherency.
- Tracks RN-F caching in the SF.

The SLC memory system has the following features:

- Physically Indexed and Physically Tagged (PIPT).
- Coherency granule is a fixed length of 64 bytes. SLC line size is a fixed length of 64 bytes.
- Both SLC and SF are 16-way set-associative. 12-way for 3MB SLC configurations.
- The SLC and SF victim selection policy is:
 - Pseudo random if all ways are valid.
 - If there is invalid way, there is no need to victim.
 - Victim selection is needed only if all ways are taken.
- SLC and SF arrays:
 - Supports one-, two-, or three-cycle non-pipelined tag array.
 - Supports two- or three-cycle non-pipelined data array.
 - SLC tag, SF tag, and SLC data arrays are single-ported, supporting one read or write access with no concurrency available.
 - SLC tag, SF tag, and SLC data arrays are ECC (SECDED) protected, with inline ECC checking and correction. SECDED means *Single-Error Correction and Double-Error Detection*.
- 32 or 64 entry address and data buffer, known as *PoC Queue* (POCQ), to service:
 - All transactions from the CHI interface.
 - SLC evictions to the memory controller.
 - SF evictions and associated writebacks to the memory controller.
- CMO propagation to SN-F/SBSX:
 - Propagates CHI-B Persistent CMO requests to a cache line to the memory controller.
 - Conditional CMO propagation to the memory controller to support external DRAM caches.
 - HN-F must be explicitly programmed to allow such propagation using the HN-F SAM's **por_hnf_sam_sn_properties** register to each SN-F.
- Supports QoS-based protocol flow control:
 - PoC and PoS resources (POCQ) are allocated or rejected for protocol retry, based on the QoS class.
 - POCQ resources are watermarked for different QoS classes with user-configurable options.
 - Starvation prevention for lower-priority QoS classes.
 - QoS-based static grantee selection for CHI architecture credit return.
- QoS priority based request selection to the memory controller.
- Supports allocation in the SLC from snoop intervention. This enables data sharing through the SLC for multiple sharers.
- SLC state includes caching Logical Device IDentifier (LDID) to detect dynamic read sharing.
- Configurable 34, 44, or 48-bit physical address support.
- PoC and PoS for all snoopable and non-snoopable, and Cacheable and Non-cacheable address space.
- Supports ECC scrubbing for single-bit ECC errors.
- Software-controlled error injection support to enable testing of software error handler routine.
- Power-management states to support:

- Full powerdown of the SLC and SF. HN-F only mode when both SLC and SF are powered down.
- Half the SLC ways powered down.
- Retention for SLC and SF.
- SLC full powerdown with SF on, when in SF only mode.
- Arm TrustZone® technology support in SLC and SF.
- Software configurable (1, 2, 4, 8, or 12 ways) Memory Region locking support in the SLC.
- Software configurable (1, 2, 4, 8, or 12 ways) On Chip Memory (OCM) support in the SLC:
 - OCM memory does not need any physical memory backing.
- Supports CHI enhancements for:
 - Direct Cache Transfer (DCT).
 - Direct Memory Transfer (DMT). DMT not supported with 128b SBSX configurations.
 - Cache Stashing.
 - Atomics support.
 - Data Poison.
 - Data Parity (Datacheck).
 - Trace Tag.
- Invisible SLC support:
 - CMN-600 HN-F implements an invisible cache. All accesses (cacheable/non-cacheable/Device types) are checked against the SLC and snoop filter. The SLC cannot be cleaned and invalidated (flushed) by software using ARM architecture set/way operations. Software specific to CMN-600 would instead be required to flush the SLC, as described in this TRM. Invisible SLC support eliminates the need to perform SLC flushes for software context switches from cacheable to non-cacheable.
- Supports up to two memory-region-based SN targets and 1, 3, or 6 SN-F address hashing.

4.2 Configurable options

The HN-F can be configured in several ways.

The HN-F has the following configurable parameters:

- SLC size of 0KB, 128KB, 256KB, 512KB, 1MB, 2MB, 3MB, or 4MB.
- SF size of 512K, 1M, 2MB, 4MB, or 8MB.
- 32 or 64 POCQ entries.
- One-, two-, or three-cycle tag RAM arrays. For a given configuration, both SLC tag and SF tag have the same latency.
- Two- or three-cycle Data RAMs, data, and SF array RAMs. All data RAMs have the same latency.

The HN-F has the following static, or fixed, parameters:

• HN-F CHI interface data-VC (DAT) width of 256 bits.

4.3 Basic operation

CMN-600 system level cache is a distributed, mostly-exclusive last-level cache.

The SLC is optimized to eliminate redundancy for private data lines from the RN-F, and enables redundancy, or pseudo-inclusion, when a sharing pattern is detected between RN-F clusters. CMN-600 SLC also acts as DRAM cache for I/O coherent agents, that is, RN-Is, by enabling RN-Is to allocate or not allocate, based on the usage model.

The SF works in conjunction with the SLC to track coherent lines that are present in the RN-F caches. The SF is fully inclusive of all the lines present in the RN-F caches. SF eviction invalidates the lines from RN-F caches to maintain this inclusion.

Normally, a particular coherent cache line is present only in the system level cache or SF except when the line is shared between RN-F clusters. In the shared case, the line can be present in both the SLC and the SF.

4.4 Cache maintenance operations

The CMN-600 uses a number of CHI Cache Maintenance Operations (CMOs).

The following operations are supported:

- CleanInvalid.
- · CleanShared.
- MakeInvalid.
- · CleanSharedPersist.

These operations always look up the SLC and the SF, and take the following actions:

- Clean and invalidate the line if present in the SLC.
- If the CMO is snoopable, the HN-F sends a snoop to the RN-F post snoop filter lookup if required.
- If the cache line is modified in the SLC or in the cache of the RN-Fs, the HN-F initiates a memory controller writeback if required.

Note	
If the CMO is MakeInvalid, there is no writeback to the memory controller.	

4.5 Cacheable and Non-cacheable exclusives

The HN-F supports PoC monitor functionality for Cacheable and snoopable exclusive operations from the RN-Fs.

The Cacheable and snoopable exclusive transactions are:

- ReadShared.
- ReadClean.
- CleanUnique.

The HN-F also supports system monitor functionality for Non-cacheable exclusive support. See the Arm
AMBA® 5 CHI Architecture Specification for more information about exclusives.
Note

Each HN-F in CMN-600 can support tracking of up to 64 logical processors for exclusive operations. The system programmer must ensure that there are no more than 64 logical processors capable of concurrently sending exclusive operations.

4.6 TrustZone technology support

The HN-F supports TrustZone technology by treating the NS bit from a request as part of the address.

TrustZone enables the HN-F to treat Secure and Non-secure as two different areas of the memory space:

- The NS bit is stored in the SLC and SF tags.
- Snoops also propagate the NS bit as part of the message.
- Any request to the memory controller also propagates the NS bit.

4.7 Snoop connectivity and control

Each HN-F can send three types of snoop.

The snoop requests are:

- Directed, to one RN-F.
- Multicast, to more than one but not all.
- Broadcast, to all RN-Fs.

4.8 QoS features

The HN-F protocol queue (POCQ) is a key shared system resource that communicates with the memory controller for external memory access.

The HN-F provides QoS capabilities in support of the following traffic classes:

- Real-time or pseudo-real-time traffic that requires a maximum bounded latency at potentially fixed bandwidth.
- Latency-sensitive traffic, traditionally from a processor device.

CMN-600 uses QoS values to designate these traffic classes. Every request to the HN-F has a 4-bit QoS value that is associated with it, with a higher number indicating a higher priority. The four QoS classes are:

- · Highest priority, known as HighHigh.
- High priority.
- · Medium priority.
- · Low priority.

This section contains the following subsections:

- 4.8.1 QoS decoding on page 4-810.
- 4.8.2 QoS class and POCQ resource availability on page 4-810.

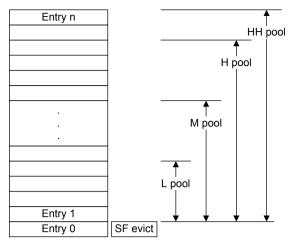
4.8.1 QoS decoding

QoS decoding takes place inside the HN-F.

The QoS decoding is as follows:

- The CHI interface supports a 4-bit QoS value.
- The 4-bit QoS has 16 possible values. Refer to *Table 2-12 QoS classes in HN-F* on page 2-67 for the QoS ranges and class values in HN-F.
- QoS mapping is fixed, and is shown in the qos_band register.

The POCQ is logically partitioned to service different QoS class traffic. The HN-F also uses the priorities in the table to arbitrate for the following:


- Memory controller request selection in the POCQ control block.
- Data return selection logic, that is, a CompData to a requester.
- Protocol credits sent to an RN-F or RN-I following a protocol-layer retry.

4.8.2 QoS class and POCQ resource availability

The POCQ buffers are shared resources for all QoS classes.

The higher the QoS class, the higher the occupancy availability. For example, the *HighHigh* (HH) QoS class can use all the POCQ entries except for the dedicated SF pool.

The following figure shows the availability of POCQ resources for various QoS levels, using a particular QoS pool that is shared between multiple QoS classes.

POCQ logical view

Figure 4-1 POCQ availability and QoS classes

The QoS pools are:

hh_pool Available for HH class.

h pool Available for H class and HH class.

m pool Available for M class, H class, and HH class.

l pool Available for all classes.

seq SF evictions only.

This scheme enables a higher-priority QoS class to have more POCQ resources for transaction processing, and prevents a lower-priority QoS from using all the POCQ. The level of POCQ availability decreases for the lower QoS classes.

QoS pool distribution of the POCQ is software-configurable using the qos_reservation register.

4.9 Data Source Handling

CMN-600 populates DataSource field of CompData response to specify source of the data.

DataSource information can be used to:

- Determine usefulness of PrefetchTgt (Memory controller prefetch) transaction.
- Profile and debug software to evaluate and optimize data sharing patterns.

Table 4-1 DataSource encodings

Source of Data	Message	Encoding
HN-I	Default (Non-memory source)	3'b000
RN-F	Peer CPU cache within local Cluster	3'b001
RN-F	Local Cluster cache	3'b010
HN-F	SLC (system level cache)	3'b011
RN-F	Peer cluster cache	3'b100
Remote Chip	Remote chip caches	3'b101
SN-F/SBSX	PrefetchTgt was useful	3'b110
SN-F/SBSX	PrefetchTgt was not useful	3'b111

CMN-600 drives DataSource value only when the source of the data is either HN-F or HN-I. For other data sources, CMN-600 acts as a conduit.

The encoding of DataSource indication used by CMN-600 is same as the suggested value in CHI architecture document. Any deviation from those encoding may result in unexpected behavior.

4.10 Software configurable memory region locking

The HN-F supports variable size memory regions that can be locked in the system level cache with way reservation.

These variable size memory regions ensure that locked lines are not evicted from the SLC, and any access to those lines is guaranteed to hit in the SLC. The variable memory region can be one of the following sizes:

- 0.5MB
- 1MB
- 2MB
- 4MB
- 8MB

Software uses the following mechanism to program the HN-F configuration registers to enable region locking:

- The hnf_slc_lock_ways register specifies the total number of locked HN-F system level cache ways. This can be a value of 1, 2, 4, 8, or 12.
- The following region base registers specify the base address of the region that is using locked ways:
 - hnf slc lock base0 register.
 - hnf_slc_lock_base1 register.
 - hnf_slc_lock_base2 register.
 - hnf_slc_lock_base3 register.
- A combination of the total SLC size, hnf_slc_lock_ways register, and the hnf_slc_lock_base0 register to hnf_slc_lock_base3 register defines the following:
 - The total amount of cache locked, calculated as follows:

Total SLC size x Number of locked ways 16

- Ways are locked beginning with way 0 and then in ascending order.
- The number of valid regions and exactly which regions, and therefore which of the hnf_slc_lock_base0 to hnf_slc_lock_base3 registers, are valid and included in the HN-F way allocation.
- The exact location, size, and alignment requirement of each region.
- The region alignment is identical to the region size, for example:
 - A 0.5MB region is aligned to any 0.5MB boundary.
 - A 4MB region is aligned to any 4MB boundary.
- The size and alignment requirement is enforced in hardware, to prevent any errors in software.
- Regions can be disjointed or contiguous, to create a larger single region.
- All valid regions use all locked ways. There is no application-level way segregation.
- No overlocking is allowed. This means it is not possible to have more indices per set than is supported by the number of locked ways, preventing the spilling of locked ways.

Note
The locked regions do not comprehend Secure as opposed to Non-secure memory regions, so overlocking can occur if aliasing is performed between Secure and Non-secure regions.

The following tables specify various combinations of region size and the number of locked ways that software must program using the hnf_slc_lock_ways register and the hnf_slc_lock_base0 register to hnf slc_lock_base3 register.

Table 4-2 SLC Region Lock sizes

SLC size	Number of locked ways	Total locked region size	Locked ways	Number of ways per region	Region 0	Region 1	Region 2	Region 3
8MB	1	0.5MB	0	1	0.5MB	-	-	-
8MB	2	1MB	0-1	1, 1	0.5MB	0.5MB	-	-
8MB	4	2MB	0-3	1, 1, 1, 1	0.5MB	0.5MB	0.5MB	0.5MB
8MB	8	4MB	0-7	2, 2, 2, 2	1MB	1MB	1MB	1MB
8MB	12	6MB	0-11	2, 2, 4, 4	1MB	1MB	2MB	2MB

Table 4-3 Settings for hnf_slc_lock_baseX

Region size	Valid bits		
0.5MB	[43:18]		
1MB	[43:19]		
2MB	[43:20]		
4MB	[43:21]		
8MB	[43:22]		

4.11 Software-configurable On-Chip Memory

The CMN-600 HN-F supports software configurable *On-Chip Memory* (OCM) which allows for the creation of systems without physical DDR memory. It also allows a system to use SLC as scratchpad memory.

In OCM mode, the HN-F does not send requests to the SN-F. In order to enable OCM, the following requirements must be met:

- The HN-F must be in the FAM power state. Other CMN-600 power states are not supported in OCM mode.
- All OCM ways must be same across all HN-Fs in a system cache group.
- OCM mode must be enabled before any non-config accesses are sent to HN-F.

In OCM mode, the following CMOs terminate in the SLC:

- CleanInvalid and CleanShared CMOs terminate in the SLC without performing a WriteBack to the SN-F
- MakeInvalid invalidates the cache line in SLC, and can be used to invalidate the OCM region.

OCM mode can be enabled by programming the hnf_ocm_en bit in the por_hnf_cfg_ctl register. If the hnf_ocm_allways_en bit is set to 1, then all transactions targeting the HN-Fs have OCM behavior. The OCM region must be contiguous and aligned to the total SLC size of the configuration when the hnf_ocm_allways_en is set to 1. If the hnf_ocm_allways_en bit is 0, the OCM regions are defined by the region locking registers that 4.10 Software configurable memory region locking on page 4-813 describes.

describes.	
Note	
Secure and non-secure memory regions are not explicitly controlled by the region Hence secure and non-secure memory regions combined should not exceed the total locked for OCM.	0 0

4.12 CMO propagation from HN-F to SN-F/SBSX

CMN-600 supports propagation of CMO and PCMO requests for a given cache line to the memory controller.

This feature ensures that the cache line has been written to the memory controller and any copies in the CMN-600 system have been removed. Conditional CMO and PCMO propagation to the memory controller also supports external DRAM caches. This feature can be enabled or disabled in each HN-F's **por hnf sam sn properties** register bits corresponding to each SN-F.

4.13 Error reporting and software-configured error injection

HN-F detects and reports errors of several types to the error block.

Below are the errors HN-F supports:

- Correctable Errors: Such as, single-bit ECC error detection and correction in the SLC Tag RAM, SF Tag RAM, and SLC Data RAM.
- Deferred Errors: Such as, double-bit ECC error detection in SLC Data RAM.
- Uncorrectable Errors: Such as, double-bit ECC error detection in SLC Tag RAM and SF Tag RAM.

If the DATACHECK_EN parameter is enabled, HN-F may also support Data parity error detection in the SLC Data RAM. Such errors are logged as Deferred Errors.

HN-F follows the procedures described in 2.14 Error handling on page 2-75 for logging and reporting all error types.

Refer to **por hnf errmisc.errsrc** for information regarding the error source.

4.13.1 Software-configurable error injection

The HN-F supports software-configurable error injection and reporting. This feature enables testing of the software error handler routine for SLC double-bit ECC data errors.

The HN-F configuration register for a particular logical thread enables configurable error injection and reporting. When enabled, any Cacheable read for which the HN-F provides the data, that is, a system cache hit, drives the slave error from the system cache pipe and drives a fault interrupt through the RAS control block for that read. This emulates a double-bit ECC error in the system cache data RAM without polluting the system level cache data RAM through the fill path.

polititing the system level cache data KAW through the fift path.
Note
SLC misses do not drive any slave errors or error interrupts. This mechanism is designed to mimic SLC data ECC errors for SLC hits.

To configure error injection, refer to the por hnf por hnf err inj register for details.

4.13.2 Software-configurable parity error injection

The HN-F supports software-configurable parity error injection.

This feature enables testing of the software error handler routine for parity error. To enable this feature, refer to the **por_hnf_byte_par_err_inj** register. It specifies the byte lane from 0 to 31 in which a parity error is introduced. The memory data is uncorrupted with such injection.

Chapter 5 **Debug trace and PMU**

This chapter describes the *Debug Trace* (DT) and *Performance Monitoring Unit* (PMU) features.

It contains the following sections:

- 5.1 DT system overview on page 5-819.
- 5.2 DT programming on page 5-832.
- 5.3 DT usage examples on page 5-833.
- 5.4 PMU system overview on page 5-837.
- 5.5 PMU feature description on page 5-838.
- 5.6 PMU system programming on page 5-839.
- 5.7 Secure debug support on page 5-841.

5.1 DT system overview

CMN-600 provides at-speed self-hosted Debug Trace (DT) capabilities.

The DT capabilities include:

- Watch-point- and trace-tag-initiated transaction tracing.
- Globally synchronized cycle counters for precise tracing.
- CHI trace tag generation.
- CoreSight[™] ATB trace streaming.
- Configuration register access to trace data.
- Cross trigger support.
- Secure debug support.
- Event-based interrupts.

The CMN-600 DT system consists of a set of *Debug Trace Controllers* (DTCs) and *Debug Trace Monitors* (DTMs) distributed across the interconnect. DTCs are located inside HN-Ds and HN-Ts while DTMs are located inside XPs.

The following interfaces are present in all DTCs:

- ATB.
- DBGWATCHTRIGREQ.
- DBGWATCHTRIGACK.
- INTREOPMU.

The following interfaces are present only in the master DTC:

- NIDEN.
- · SPNIDEN.
- PMUSNAPSHOTREQ.
- PMUSNAPSHOTACK.

Note	
NIDEN and SPNIDEN are propagated from master DTC to all DTMs. When asserted, they must remain asserted for at least 72 clock cycles. Likewise, when deasserted, they must remain deasserted for at least 72 clock cycles. This ensures that all internal CMN-600 components transit into their debug and trace states correctly.	ast

The following figure shows an example DT system with two DTC domains.

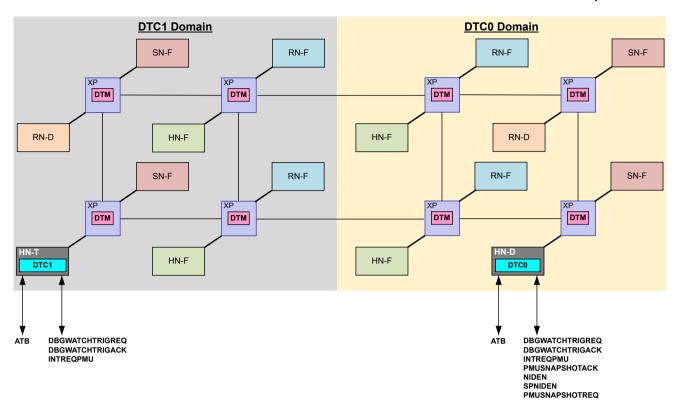


Figure 5-1 Example DT System with two DTC domains

Each DTC is associated with a set of DTMs to form an exclusive DTC domain. When enabled, DTMs within a DTC domain collect trace data and transmit it to the associated DTC. The number of DTC domains is determined by the number of HN-T nodes in the mesh.

In a DT system comprising multiple DTCs, the one located inside the HN-D is designated as the master DTC or DTC0. DTM assignment to DTCs is achieved via configuring XP parameters within Socrates System Builder.

The DT system implements the following functions:

- CHI flit monitoring at XP device ports using four sets of WatchPoints (WPs) in each DTM.
- Flit trace generation and storage at each DTM with control register access to trace packets.
- Trace tag generation.
- Debug trigger signaling and trace packet streaming over the Arm Trace Bus (ATB) at each DTC.
- Internal event-based cross trigger generation and broadcast to all DTMs.
- Globally synchronized cycle counters.

This section contains the following subsections:

- 5.1.1 DTM watchpoint on page 5-820.
- 5.1.2 DTM FIFO buffer on page 5-824.
- 5.1.3 Read mode on page 5-827.
- 5.1.4 DTC on page 5-828.
- 5.1.5 ATB packets on page 5-828.

5.1.1 DTM watchpoint

A DTM has four WatchPoints (WPs) that monitor flit uploads and downloads at XP device ports.

WPs monitor flits by matching on a subset of flit fields that are specified using a pair of val and mask registers as shown in the following figure:

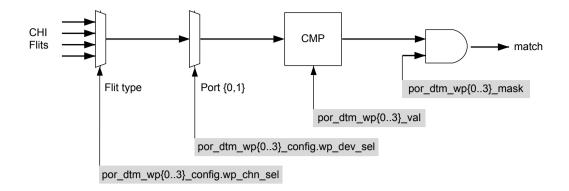


Figure 5-2 CMN-600 DTM WP comparator

A WP can be configured to monitor flits from one of two XP device ports and one of four CHI channels:

- REO
- RSP
- SNP
- DAT

In addition, the WP can be configured to do one or more of the following tasks on detecting a flit match:

- Set trace tag bit on the flit.
- Generate flit trace.
- Generate cross trigger to DTC.
- Generate debug trigger to DTC.
- Increment PMU counters.

Two WPs within a group can be combined for complex matching. For example, WP0 and WP1 can be combined, just as WP2 and WP3 can be combined.

The four DTM WPs are assigned in groups of two each to flit uploads and downloads as follows:

- WP0 and WP1 are assigned to flit uploads.
- WP2 and WP3 are assigned to flit downloads.

WP match value and mask register

The WP flit matching criterion is specified using a 64b match value register (**dtm_wpN_val**) and a 64b mask register (**dtm_wpN_mask**), where N=0, 1, 2, or 3. These registers allow matching up to 64b of the flit.

The value to be matched is written in dtm_wpN_val register. Bits that need to be masked off in the match comparison are specified in the dtm_wpN_mask register by writing a 1'b1 in the corresponding bit positions.

The CHI flits fields are divided into two match groups: a primary match group, and a secondary match group. The tables below specify the flits fields that belong to each of the groups for the different CHI channels. The RSP and DAT channels have only a primary match group while REQ and SNP channels have both primary and secondary match groups.

Flit matching from two different match groups requires two WPs to be combined. For example, if both Opcode and Address fields of flits uploaded on the REQ channel are to be matched, then WP0 and WP1 need to be combined, with Opcode match specified in WP0 and Address match specified in WP1 or vice versa. Likewise, if both Opcode and Address fields of flits downloaded on the REQ channel must match, then WP2 and WP3 must be combined in a similar manner.

REQ channel width and bit ranges for the primary match group are contained in the following table.

Table 5-1 REQ channel: primary match group

Field	Width	Bit range
SRCID/TGTID	11	10:0
STASHNID/RETURNNID	11	21:11
STASHNIDVALID/ENDIAN	1	22:22
RETURNTXNID/{3'b0, STASHLPIDVALID, STASHLPID[3:0]}	8	30:23
OPCODE	6	36:31
SIZE	3	39:37
NS	1	40:40
ALLOWRETRY	1	41:41
ORDER	2	43:42
PCRDTYPE	4	47:44
LPID	5	52:48
EXPCOMPACK	1	53:53
TRACETAG	1	54:54
RSVDC	8	62:55

REQ channel width and bit ranges for the secondary match group are contained in the following table.

Table 5-2 REQ channel: secondary match group

Field	Width	Bit range
QOS	4	3:0
ADDR	48	51:4
LIKELYSHARED	1	52:52
MEMATTR	4	56:53
SNPATTR	1	57:57
EXCL/SNOOPME	1	58:58
TRACETAG	1	59:59

RSP channel width and bit ranges for the primary match group are contained in the following table.

Table 5-3 RSP channel: primary match group

Field	Width	Bit range
QOS	4	3:0
SRCID/TGTID	11	14:4
OPCODE	4	18:15
RESPERR	2	20:19
RESP	3	23:21
FWDSTATE / STASH	3	26:24

Table 5-3 RSP channel: primary match group (continued)

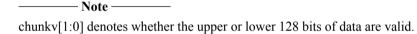
Field	Width	Bit range
DBID	8	34:27
PCRDTYPE	4	38:35
TRACETAG	1	39:35
DEVEVENT	2	41:40

SNP channel width and bit ranges for the primary match group are contained in the following table.

Table 5-4 SNP channel: primary match group

Field	Width	Bit range
SRCID	11	10:0
FWDTXNID / {3'b0, STASHLPIDVALID, STASHLPID[3:0]} / VMIDEXT	8	18:11
OPCODE	5	23:19
NS	1	24:24
DONOTGOTOSD	1	25:25
RETTOSRC	1	26:26
TRACETAG	1	27:27
ADDR[35:0]	36	63:28

SNP channel width and bit ranges for the secondary match group are contained in the following table.


Table 5-5 SNP channel: secondary match group

Field	Width	Bit range
SRCID	11	10:0
FWDTXNID /	8	18:11
{3'b0,		
STASHLPIDVALID, STASHLPID[3:0]} / VMIDEXT		
OPCODE	5	23:19
NS	1	24:24
DONOTGOTOSD	1	25:25
RETTOSRC	1	26:26
TRACETAG	1	27:27
QOS	4	31:28
ADDR[44:13]	32	63:32

DAT channel width and bit ranges for the primary match group are contained in the following table.

Table 5-6 DAT channel: primary match group

Field	Width	Bit range
QOS	4	3:0
SRC/TGTID	11	14:4
HOMENID	11	25:15
OPCODE	3	28:26
RESPERR	2	30:29
RESP	3	33:31
FWDSTATE / STASH	3	36:34
DBID	8	44:37
CCID	2	46:45
DATAID	2	48:47
TRACETAG	1	49:49
POISON	1	50:50
CHUNKV	2	52:51
DEVEVENT	2	54:53
RSVDC	8	62:55

5.1.2 DTM FIFO buffer

Traces captured by the DTM are stored in a four-entry DTM FIFO buffer. Each entry is 144-bits wide.

Entries are allocated to all enabled WPs as needed. Trace data from WPs are packed based on the trace data format and stored within each entry to efficiently use the limited buffer storage. Hence an entry may contain trace data from multiple flits captured at different times.

As each FIFO entry fills up, trace data from that entry is sent to the DTC for streaming out via the ATB interface.

Trace data format

CMN-600 supports several trace data formats.

The trace data format is specified by the 3-bit packet type encoding in the DTM WP configuration register **por_dtm_wp{0..3}_config.wp_pkt_type**. The following table provides the supported trace data formats and their packet type encodings.

Table 5-7 Trace data formats

Packet type	Trace data format	Size	Max traces per FIFO entry
000	TXNID[7:0]	8 bits	18
001	{2'b00, OPCODE[5:0],TXNID[7:0]}	16 bits	9
010	{TGTID[10:0], SRCID[10:0], OPCODE[5:0],TXNID[7:0]}	36 bits	4
011	Reserved	-	-

Table 5-7 Trace data formats (continued)

Packet type	Trace data format			Max traces per FIFO entry	
100	Control Flit	REQ	141 bits	1	
	(see tables below for field descriptions)	RSP	61 bits		
		SNP	96 bits		
		DAT	83 bits		
101	DATA[127:0]		128 bits	1	
110	DATA[255:128]		128 bits	1	
111	Reserved		-	-	

Trace data is packed into a DTM FIFO buffer entry such that the higher order bytes contain older trace data. For example, if the trace data format is set to TXNID (type 0) and three TXNIDs (trace data) are received in the order 0x01, followed by 0x02, followed by 0x03, then the trace FIFO entry is set to:

The following tables describe the control flit formats for various flit channels beginning with REQ control flit information.

Table 5-8 REQ control flit

Field	Width	Bit range
QOS	4	3:0
TGTID	11	14:4
SRCID	11	25:15
TXNID	8	33:26
STASHNID / RETURNNID	11	44:34
STASHNIDVALID /ENDIAN	1	45:45
RETURNTXNID / {3'b0, STASHLPIDVALID, STASHLPID[3:0]}	8	53:46
OPCODE	6	59:54
SIZE	3	62:60
NS	1	63:63
LIKELYSHARED	1	64:64
ALLOWRETRY	1	65:65
ORDER	2	67:66
PCRDTYPE	4	71:68
MEMATTR	4	75:72
SNPATTR	1	76:76
LPID	5	81:77

Table 5-8 REQ control flit (continued)

Field	Width	Bit range
EXCL/SNOOPME	1	82:82
EXPCOMPACK	1	83:83
TRACETAG	1	84:84
ADDR	48	132:85
RSVDC	8	140:133
Total	141	-

The following table contains RSP control flit information.

Table 5-9 RSP control flit

Field	Width	Bit Range
QOS	4	3:0
TGTID	11	14:4
SRCID	11	25:15
TXNID	8	33:26
OPCODE	4	37:34
RESPERR	2	39:38
RESP	3	42:40
FWDSTATE / STASH	3	45:43
DBID	8	53:46
PCRDTYPE	4	57:54
TRACETAG	1	58:58
DEVEVENT	2	60:59
Total	61	-

The following table contains SNP control flit information. See also 6.10 DEVEVENT in CMN-600 on page 6-866 for more **DEVEVENT** information.

Table 5-10 SNP control flit

Field	Width	Bit Range
QOS	4	3:0
SRCID	11	14:4
TXNID	8	22:15
FWDNID	11	33:23
FWDTXNID / {3'b0, STASHLPIDVALID, STASHLPID[3:0]} / VMIDEXT	8	41:34
OPCODE	5	46:42
NS	1	47:47
DONOTGOTOSD	1	48:48
RETTOSRC	1	49:49

Table 5-10 SNP control flit (continued)

Field	Width	Bit Range
TRACETAG	1	50:50
ADDR	45	95:51
Total	96	-

The following table contains DAT control flit information.

Table 5-11 DAT control flit

Field	Width	Bit Range
QOS	4	3:0
TGTID	11	14:4
SRCID	11	25:15
TXNID	8	33:26
HOMENID	11	44:34
OPCODE	3	47:45
RESPERR	2	49:48
RESP	3	52:50
FWDSTATE / STASH	3	55:53
DBID	8	63:56
CCID	2	65:64
DATAID	2	67:66
TRACETAG	1	68:68
POISON	4	72:69
CHUNKV	2	74:73
DEVEVENT	2	76:75
RSVDC	8	84:77
Total	85	-

See also 6.10 DEVEVENT in CMN-600 on page 6-866 for more **DEVEVENT** information.

_____ Note _____

chunkv[1:0] denotes whether the upper or lower 128 bits of data are valid.

5.1.3 Read mode

Read mode provides an alternate way to access trace data stored in the DTM trace FIFO buffer, via configuration register access.

Each entry in the FIFO buffer is mapped to three 64-bit configuration registers, $dtm_fifo_entry\{0..3\}_X$, where X = 0, 1, or 2.

Read mode is enabled by setting the **trace_no_atb** bit in the DTM control register (**por_dtm_control**). Setting this bit causes all FIFO entries to be cleared and the DTM FIFO read status register (**por_dtm_fifo_entry_ready**) to be reset.

In this mode, each FIFO entry is allocated to the corresponding WP. For example, **por_dtm_fifo_entry0_{0..2**} can be allocated to WP0, **por_dtm_fifo_entry1_{0..2**} can be allocated to WP1, and so on.

The read status for each WP trace data is reflected in the corresponding bit in the DTM FIFO entry ready status register (por_dtm_fifo_entry_ready). When a FIFO entry is full, the corresponding status bit is set, indicating that the trace data is ready to be read. Subsequent writes into that FIFO entry are disabled until the status bit is cleared. A write of 1 clears the status bit and enables the corresponding FIFO entry to capture subsequent trace data.

5.1.4 DTC

DTCs control DTMs.

The main features of the DTC are:

- Trace packing, generation, and streaming via ATB interface
- Time stamping of traces
- Global synchronized cycle counters in all units (16-bit)
- ATB flush of DTM and DTC
- Watch point trigger event based interrupt
- Eight sets of performance counters (32-bit) with shadow registers, paired with one or more DTM local counters
- PMU snapshot of DTM and DTC
- PMU overflow interrupt

5.1.5 ATB packets

Each DTC aggregates flit trace data from the DTMs into the DTC trace FIFO, packetizes them, and sends them out on its ATB interface.

In addition it sends other control and debug packets. This section describes the different packet formats used on the ATB interface.

Trace data packet format

Trace data packet contains a four-byte header and a payload of variable size (in bytes).

The following figure shows the packet header.

\	/C	DEV	WP#	#	Туре			Byte 3
Size					no	ode ID[10:8]		
node ID[7:0]								
0	1					CC	lossy	Byte 0

Figure 5-3 Trace data packet header

The packet header contains the following fields:

- VC is the CHI channel encoded as:
 - 00 REQ
 - --- 01 RSP
 - 10 SNP
 - 11 DAT
- **DEV** is the device port number, 0 or 1.
- **WP**# is the watchpoint number, 0-3, that captured the trace.
- Type is the packet format type.
- Size is the payload size specified as (number of bytes -1).

- **NodeID** is the CHI node ID, shifted right by three bits reflecting the (X,Y) coordinates of the XP where the trace was captured.
- CC is the cycle counter. When set, this field indicates that a 2-byte cycle count is included in the packet after the payload.

The following key points must be observed:

- 2. The **WP** field selection for match might be different from the type of payload generated from the matching. When WPs are combined, the lower watchpoint number is specified as the **WP#** in the trace packet header.
- 3. Trace data is of variable length. The expected number of bytes, not including the header, is (Size + 1). And with CC, another two bytes are included at the end of the trace data.
- 4. Any time the previous packets cannot be transmitted in full, a lossy bit is asserted for the immediate next packet. A separate lossy bit is maintained for each of the watchpoints.

Alignment sync packet format

The alignment sync delimits trace start.

The alignment sync packet is 16 bytes long and comprises 15 bytes of zeros followed by 0x80.

The alignment sync packet is the first packet that is sent after tracing is enabled. In addition, the DTC can be configured to send the alignment sync packet periodically by programming the DTC control register, por dt trace control.

Time stamp packet format

The time stamp packet carries the SoC timer information. The time stamp is used to align the sequence of trace events across the SoC.

The time stamp packet is sent opportunistically under the following circumstances when the DTC FIFO has enough space to accommodate the time stamp packet:

- After each alignment sync packet is sent.
- When flush is complete.
- Periodically based on the setting of por_dt_trace_control.timestamp_period register and only when trace packets have been sent following the last time stamp packet.

The time stamp packet format is shown in the following figure.

The time stamp packet contains the following fields:

- TS# 3-bit encoding of the size of time stamp specified as number of bytes 1
- CC, when set, indicates a 2-byte cycle count is included in the packet after the payload

Figure 5-4 Time stamp packet

Cycle counting packet format

Trace packets include an optional attached cycle counter.

Each watchpoint includes a configuration bit. The logical operator AND is used on the configuration bit and global cycle count enable. The following figure shows a typical cycle counting scenario.

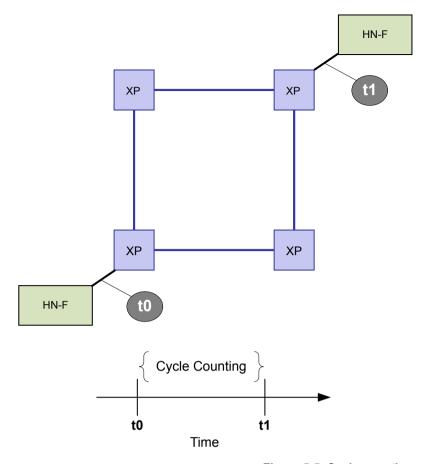


Figure 5-5 Cycle counting

The cycle counter payload is two bytes and is indicated by the CC bit in the trace packet header. Cycle counters across the interconnect are turned on and off synchronously. This ensures that all of them have the same time stamp value.

Trace stream example

DTCs send trace data out on the ATB bus as a trace stream.

An example trace stream is shown in the following figure. It consists of:

- 4-byte trace packet header.
- M-byte trace data.
- 2-byte cycle count.
- 1-byte time stamp header.
- N-byte time stamp.
- 2-byte cycle count.

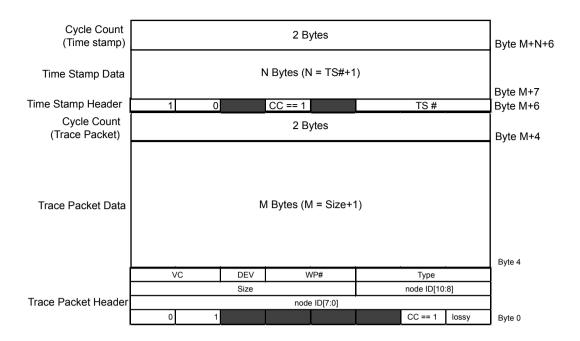


Figure 5-6 Trace stream

5.2 DT programming

This section describes the DTM and DTC programming sequences.

This section contains the following subsections:

- 5.2.1 DTM watchpoint programming on page 5-832.
- 5.2.2 DTC programming on page 5-832.

5.2.1 DTM watchpoint programming

Use this procedure to program Watchpoint N, where N=0..3.

- 1. Program the intended watchpoint matching fields, such as source ID, target ID and opcode, by writing the appropriate values into the dtm_wp0_val and dtm_wp0_mask registers.
- 2. Program the WP settings/function in dtm_wpN_config.wp_dev_sel and dtm_wpN_config.wp_chn_sel to select the device port and flit CHI channel.
- 3. Program dtm_wp0_config.wp_grp for primary or secondary group of watchpoint value.
- 4. If two watchpoints need to be combined, write 1'b1 into dtm wpN config.wp combine.

	— Note —			
The wp	_combine field	is present in	WP0 and	WP2 only.

- 5. If trace packets are to be generated from this watchpoint, program dtm_wp0_config.wp_pkt_type and write 1'b1 to dtm wp0 config.wp pkt gen.
- 6. If cross trigger needs to be setup from this watchpoint, write 1'b1 into dtm wp0 config.wp ctrig en.
- 7. If debug watchpoint trigger needs to be setup from this watchpoint, program dtm wp0 config.wp dbgtrig en.
- 8. If cycle count is needed in the trace packet, set $dtm \ wp0 \ config.wp \ cc \ en = 1$.
- 9. If debug watchpoint trace tag is to be enabled, write 1'b1 to dtm control.trace tag enable.
- 10. The final step is to write 1'b1 to dtm control.dtm enable to enable the WP.

5.2.2 DTC programming

NIDEN needs to be asserted for any trace and PMU operation. All watchpoint functions must be programmed and enabled in the DTMs first.

- 1. Write 1'b1 to por_dt_dtc_ctl.dbgtrigger_en if DBGWATCHTRIG should be generated for DTM debug watchpoint trigger.
- 2. Write 1'b1 to por_dt_dtc_ctl.atbtrigger_en if ATB trigger should be generated for DTM debug watchpoint trigger.
- 3. Write 1'b1 to por dt dtc ctl.cc en to enable cycle count.
- 4. Write 1'b0 to por dt dtc ctl.dt wait for trigger if no cross trigger is required.
- 5. Write 1'b1 to por dt dtc ctl.dt en.

The following register bits are present only in the main DTC (DTC0):

- por dt secure access
- por_dt_dtc_ctl.dt_en
- por_dt_dtc_ctl.wait_for_trigger
- por dt dtc ctl.cc start
- por_dt_pmcr.pmu_en
- por dt pmsrr
- · por dt pmssr.ss cfg active
- por dt pmssr.ss pin active

5.3 DT usage examples

This section describes example usage of DT features.

This section contains the following subsections:

- 5.3.1 Flit tracing on page 5-833.
- 5.3.2 Trace tag on page 5-834.
- 5.3.3 Debug watch trigger on page 5-835.
- *5.3.4 Cross trigger* on page 5-835.

5.3.1 Flit tracing

CMN-600 provides support for tracing individual flits at device interfaces at each XP.

DTM WPs can be programmed to monitor flit uploads and downloads at each of the two XP device ports on any of the four CHI channels:

- REO
- RSP
- SNP
- DAT

Using a set of val/mask registers, the WPs provide flexibility in matching on a user defined subset of flit fields.

On a match, WPs capture and store flit fields, that are most useful for debug, into trace buffers. The generated trace can then be streamed out on the ATB interface or accessed via control register interface.

Details of the format of the value and mask registers, in addition to trace packets can be found in *WP* match value and mask register on page 5-821 and *Trace data format* on page 5-824 sections of this manual.

Flit tracing example

CMN-600 provides support for tracing individual flits at device interfaces at each XP.

Refer to section 5.2.1 DTM watchpoint programming on page 5-832 for more information.

This section shows an example for setting up a simple trace scenario to trace REQ flits corresponding to a ReadShared transaction to address=X initiated by RNF2 and sending the trace packets out on the ATB bus

- Setup watchpoints (WPs) inside XP connected to RNF2 to monitor REQ flits uploaded from RNF2.
 Since Opcode and Address fields are mapped to two different registers: primary and secondary match registers respectively. Two WPs need to be set up: one to monitor the Opcode and the other to monitor the Address.
 - a. Program WP0 (upload WP) to monitor REQ.Opcode as follows:
 - a. Set dtm wp0 val/mask registers to match on Opcode=ReadShared
 - b. Set dtm wp0 config to
 - a. Select upload device port (wp_dev_sel=RNF2_port)
 - b. Flit channel (wp_chn_sel=REQ)
 - c. Match format group to primary for Opcode match (wp grp=0)
 - d. Set combined mode to gang-up WP0 and WP1 (wp combine=1)
 - e. Enable REQ flit trace packet generation (set wp pkt type, wp pkt gen=1)
 - b. Program WP1 (upload WP) to monitor REQ.Address as follows:
 - a. Set dtm_wp1_val/mask registers to match on Address=X
 - b. Set dtm_wp1_config to

- a. Select upload device port (wp dev sel=RNF2 port)
- b. Flit channel (wp chn sel=REQ)
- c. Match format group to secondary for Address match (wp grp=1)

Note: In combined mode, WP0 config settings are used for enabling trace generation

- 1. Enable trace tag generation in the WP
 - Set dtm control.dtm enable = 1
 - Program the DTC to start the trace
- 2. Program por dt dtc ctl as follows:
 - Enable tracing (dt en=1)

5.3.2 Trace tag

CMN-600 provides support for trace tag generation at the device interfaces and propagation to destination devices.

This feature enables a set of flits corresponding to a specific transaction or a set of transactions matching a specific criterion to be tagged for tracing.

For example, using the trace tag mechanism, flits from all four CHI channels:

- REO.
- RSP.
- SNP.
- DAT.

These four channels pertain to a Memory Read transaction to a specific address that can be tagged for tracing.

Trace tag generation

A trace tag is generated internally by an XP, or externally by an RN-F or SN-F device and reflected in the **TRACETAG** field of the uploaded flit.

Inside the XP, DTM WPs generate the trace tag by matching on flits uploaded at the corresponding XP device port. The DTM WPs can be programmed to match on a flit on any of the four CHI channels: REQ, RSP, DAT, and SNP.

DTM WPs can be programmed to match on a flit on any CHI channel and on any device port. However, for debug, it is most useful to program WPs to match on REQ flits uploaded at the RN and HN-F device ports. This programming is useful because these are the starting flits that originate new transactions. Once tagged, subsequent RSP, SNP, and DAT flits pertaining to the same transaction carry the trace tag.

If all the following conditions are true, the trace tag is not generated by the XP:

- Flit transfer takes place from one device port to the other device port, within the same XP.
- The flit destination device is not an HN.
- The flit transfer to its destination occurs one cycle after the XP receives it.

Trace tag propagation

All CMN-600 devices forward on the trace tag, when asserted, from a received flit corresponding to a transaction to all subsequent flits associated with that transaction.

In addition, the HN-F propagates the trace tag from the source transaction to spawned transactions such as SLC evictions and snoop filter back invalidations.

Using OR, the trace tag generated inside the XP is combined with the **TRACETAG** field in the flit received from the source device. This result is sent in the **TRACETAG** field of the flit transmitted to the destination device.

Trace tag example

This section contains a Trace Tag scenario based trace generation with synchronized cycle counts.

Refer to section 5.2.1 DTM watchpoint programming on page 5-832 for more information.

This section shows an example for setting up a simple trace scenario to trace REQ flits corresponding to a ReadShared transaction to address=X initiated by RNF2 and sending the trace packets out on the ATB bus

- Setup watchpoints (WPs) inside XP connected to RNF2 to monitor REQ flits uploaded from RNF2. Since Opcode and Address fields are mapped to two different registers - primary and secondary match registers respectively - two WPs need to be set up: one to monitor the Opcode and the other to monitor the Address.
 - a. Program WP0 (upload WP) to monitor REQ.Opcode as follows:
 - a. Set dtm wp0 val/mask registers to match on Opcode=ReadShared
 - b. Set dtm wp0 config to
 - a. Select upload device port (wp dev sel=RNF2 port)
 - b. Flit channel (wp chn sel=REQ)
 - c. Match format group to primary for Opcode match (wp_grp=0)
 - d. Set combined mode to gang-up WP0 and WP1 (wp combine=1)
 - e. Enable REQ flit trace packet generation (set wp pkt type, wp pkt gen=1)
 - b. Program WP1 (upload WP) to monitor REQ.Address as follows:
 - a. Set dtm wp1 val/mask registers to match on Address=X
 - b. Set dtm_wp1_config to
 - a. Select upload device port (wp dev sel=RNF2 port)
 - b. Flit channel (wp chn sel=REQ)
 - c. Match format group to secondary for Address match (wp_grp=1)

Note: In combined mode, WP0 config settings are used for enabling trace generation

- 1. Enable trace tag generation in the WP
 - Set dtm_control.dtm_enable = 1
 - Program the DTC to start the trace
- 2. Program por dt dtc ctl as follows:
 - Enable tracing (dt en=1)

5.3.3 Debug watch trigger

DTM WPs can be programmed to match on specific flits and generate a debug watch trigger event to the DTC.

The DTC can be programmed to signal the debug watch trigger event in one of the following ways:

1.	Signal a debug watch trigger interrupt on the	DBGWATCHTRIGREQ/DBGWATCHTRIGACK
	interface.	

Note	
This interface is based	on a four-phase handshake protocol.

- 2. Signal an ATB trace trigger with ATID 0x7D on the ATB interface.
- 3. Signal both a debug watch trigger interrupt and an ATB trace trigger.

In a system with multiple DTCs, each DTC has its own ATB interface on which it signals ATB trace triggers from DTMs within its DTC domain. Whereas debug watch trace interrupts are signaled on the single DBGWATCHTRIGREQ/ DBGWATCHTRIGACK interface shared between the DTCs.

5.3.4 Cross trigger

CMN-600 provides support for triggering DTMs based on a specific event(s) occurring elsewhere in the system.

By default, DTMs start monitoring and tracing flits without waiting for another event. The cross trigger feature allows flit monitoring and tracing to to be delayed until after the events of interest are observed in the system.

The cross trigger event is setup in two steps as follows:

- 1. DTM WPs are set up to monitor flits and generate traces.
- 2. Other DTM WPs (in the same XP or different XPs) are set up to generate a cross trigger on specific event(s) to the DTC which is programmed to trigger the DTMs in Step1.

Cross trigger example

CMN-600 provides support for triggering DTMs based on a specific event(s) occurring elsewhere in the system.

Refer to section 5.2.1 DTM watchpoint programming on page 5-832 for more information.

This example illustrates a cross trigger scenario where trace DAT flits corresponding to a ReadShared transaction to address-X that originated at RN-F2 after 10 WriteNoSnoops have been uploaded to the HN-D.

- 1. Set WP at RN-F2 upload port to monitor REQ flits (refer to step 1 in *5.3.4 Cross trigger* on page 5-835).
- 2. Set WP(s) at all DAT download ports to generate DAT flit traces (refer to step 2 in 5.3.4 Cross trigger on page 5-835).
- 3. Setup WP at HN-D upload port to monitor WriteNoSnoop flits.
 - a. Program WP0 (upload WP) to monitor and enable cross trigger REQ. Opcode as follows:
 - a. Set dtm wp0 val/mask registers to match on Opcode = WriteNoSnoop.
 - b. Set dtm_wp0_config to:
 - a. Select upload device port (wp dev sel = HND port).
 - b. Flit channel (wp chn sel = REQ).
 - c. Match format group to primary for Opcode match (wp grp = 0).
 - d. Enable cross trigger (wp_ctrig_en = 1).
 - b. Enable WP.
 - Set dtm control.dtm enable = 1.
- 4. Setup counter in DTC to count 10 trigger events from HN-D WP before.
 - Program por dt dtc ctl as follows:
 - 1. Set cross trigger count (cross trigger count = 9).
 - 2. Enable waiting for HN-D WP trigger event (dt_wait_for_trigger = 1).
 - 3. Enable DTC (dt en = 1).

Sample profile

CMN-600 supports ARMv8.2 sample extension.

WPs can be programmed to monitor channel, opcode, and related PM items. A Sample Interval Counter Register (PMSICR) counts down with each of the match. When the counter hits zero, the Trace Tag of the next matched transaction is asserted. At the same time, the counter is reloaded with programmed value from PMSIRR, and the next count down cycle repeats.

There is only one set of PMSCIR/PMSIRR per XP, as only one outstanding transaction is expected. PMSICR is 24 bits, and the lower 8 bits of PMSIRR are zero.

In general, secure transaction are allowed to be tagged and traced with **secure_debug_disable** register. When this bit is set, secure registers are read with non-secure access.

5.4 PMU system overview

CMN-600 includes Performance Monitoring Unit (PMU) capabilities.

The PMU offers these features:

- Local and global performance counters with shadow registers.
- PMU snapshot across all internal CMN-600 devices.

The PMU consists of local performance counters in the DTMs and global performance counters in the DTCs as shown in the following figure.

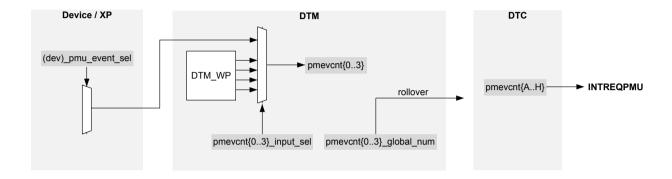


Figure 5-7 CMN-600 PMU local and global performance counters

5.5 PMU feature description

This section describes PMU features.

The PMU system performs the following tasks:

- Select PMU event from XP, the local watchpoint, and the devices on XP ports.
- Operates four local PMU counters (4 × 16b).
- Operates eight global PMU counters (8 × 32b) associated with the local counters.
- · Snapshot.
- Overflow interrupt from global PMU counters.

The PMU counter value can be copied over into the shadow registers when:

- A request of snapshot via input pin PMUSNAPSHOTREQ.
- A write into **por_dt_pmsrr.ss_req** within the DTC.

On receiving a snapshot request, DTC sends the snapshot request to all DTMs. Multiple snapshot requests are collapsed into a single request. On receiving PMU snapshot packets from all DTMs, rollover information is updated at the global counters, and the counter value is copied to the shadow registers.

5.6 PMU system programming

This section contains sequences on how to program the PMU, PMU snapshot, and PMU interrupt.

This section contains the following subsections:

- 5.6.1 PMU counter setup on page 5-839.
- 5.6.2 PMU snapshot programming on page 5-839.
- 5.6.3 PMU interrupt programming on page 5-839.

5.6.1 PMU counter setup

This section contains programming information for the PMU counter.

Use this procedure to setup the PMU counters.

- 1. NIDEN input has to be asserted for any trace and PMU operation.
- 2. Program (dev) pmu event set register in the devices or XP.
- 3. Program **dtm_pmu_config.pmevcnt{0..3}_input_sel** to select PMU event counter inputs. The input can be from watchpoint or from selected events from devices or XP, in the step above.
- 4. Program dtm_pmu_config.pmevcnt_paired and dtm_pmu_config.pmevcnt{0..3}_global_num to select the paired top global PMU counters.
- 5. Program dtm_pmu_config.pmevcnt{01, 23}_combined for any combined local PMU counters.
- 6. Write 1'b1 to dtm_pmu_config.pmu_en.

 Note ———

 To activate CXLA PMU function, program the associated por_cxg_ra_cfg_ctl.en_cxla_pmucmd_prop to 1'b1.
- 7. Program **por_dt_pmevcnt_localnum.localnum{A..H}** to be the number of local counters that feed into this global counter.
- 8. Program **por dt pmcr.cntcfg** to pair the 32-bit global counter to make a 64-bit counter.
- 9. Write 1'b1 to **por_dt_pmcr.ovfl_intr_en** to enable interrupt on INTREQPMU on any global counter overflow.
- 10. Write 1'b1 to por dt pmcr.pmu en to start PMU operation.

5.6.2 PMU snapshot programming

This section contains programming information for the PMU snapshot.

Use this procedure to setup the PMU counters.

- 1. NIDEN input has to be asserted for any trace and PMU operation.
- 2. Program PMU counters as described in 5.6.1 PMU counter setup on page 5-839.
- 3. Write 1'b1 to **por_dt_pmsrr.ss_req**. This causes the DTC to send a PMU snapshot instruction. On receiving this instruction, the DTM sends PMU snapshot packets to the DTC.
- 4. The DTC updates **por dt pmssr.ss status** after receiving PMU snapshot packets.
- 5. Software can poll **por dt pmssr.ss ss status** to check if the snapshot process is done.
- 6. For a multiple-DTC system, sub-DTC maintains snapshot status for the DTM within its own domain.

5.6.3 PMU interrupt programming

This section contains programming information for the PMU interrupt.

Use this procedure to set up the PMU overflow interrupt.

- 1. NIDEN input must be asserted for any trace and PMU operation.
- 2. Program PMU counters as described in 5.6.1 PMU counter setup on page 5-839.

- 3. Write 1'b1 to por dt pmcr.ovfl intr en. Any PMU counter overflow asserts INTREQPMU.
- 4. For multiple DTCs, write 1'b1 to all por dt pmcr.ovfl intr en fields.
- 5. When observing assertion of INTREQPMU, **por_dt_pmovsr.pmovsr[7:0]** should be polled to see which global counter causes the interrupt. For multiple DTCs, all por_dt_pmovsr registers must be polled.
- 6. To clear INTREQPMU, write 1'b1 into the corresponding por dt pmovsr clr.pmovsr clr[7:0].

5.7 Secure debug support

Secure debug state is controlled by SPNIDEN input and the **por_dt_por_dt_secure_access.secure_debug_disable** configuration register bit.

Secure debug is enabled when SPNIDEN is asserted, or when the **por dt por dt secure access.secure debug disable** bit is LOW, which is the default value.

When secure debug is enabled, all events can be counted and all flits can be traced.

When secure debug is disabled, all events with unknown secure state are not counted and all flits with unknown secure state are not traced.

Chapter 6

Performance Optimization and Monitoring

This chapter describes performance optimization techniques for use by system integrators, and the *Performance Monitoring Unit* (PMU).

It contains the following sections:

- 6.1 Performance optimization guidelines on page 6-843.
- 6.2 About the Performance Monitoring Unit on page 6-844.
- 6.3 HN-F performance events on page 6-848.
- 6.4 RN-I performance events on page 6-852.
- 6.5 SBSX performance events on page 6-856.
- 6.6 HN-I performance events on page 6-859.
- 6.7 DN performance events on page 6-863.
- 6.8 XP PMU event summary on page 6-864.
- 6.9 Occupancy and lifetime measurement using PMU events on page 6-865.
- 6.10 DEVEVENT in CMN-600 on page 6-866.

6.1 Performance optimization guidelines

There are some restrictions when optimizing CMN-600.

To obtain maximum performance from CMN-600, the system integrator must be aware of the following information:

RN-I When request ordering is not required, transaction requests must be dispatched with non-overlapping IDs to ensure optimal bandwidth operation. Large burst transactions, that is, larger than 64B, must be split into 64B or smaller burst transactions. In addition, set **AxSIZE** to the RN-I's AXI bus width to fully utilize the available bandwidth.

For example, set AxSIZE to 4 (16B) if AXI bus width is 128 bits or set AxSIZE to 5 (32B) if AXI bus width is 256 bits.

Read or write requests to different parts of the same cache line must be combined into a single cache line request. For example, multiple (partial) WriteUnique transactions must be combined into a single WriteUnique or a single WriteLineUnique transaction, where all bytes in the cache line are written.

Based on the transaction attributes, RN-I can enforce additional ordering on transactions, targeting device memory downstream of HN-I, affecting the overall achievable bandwidth.

- **HN-F** High temporal locality of address usage in transactions can cause same-address dependencies to occur in the event of transactions with addresses to overlapping cache lines. This results in higher latency because of serialization delays between these transactions. CMN-600 is microarchitected to avoid hot spotting in the HN-F partitions or in the memory controllers, but this is unavoidable in cases of temporally local same-address usage.
- **HN-I** Stream of interleaved reads and writes targeting the same peripheral downstream of HN-I results in higher latencies on these transactions. It also could result in serialization delays between these reads and writes. It is recommended not to interleave read and write transactions when targeting the same peripheral.

6.2 About the Performance Monitoring Unit

CMN-600 provides access to various performance events. Some of these events are unique to and originate in a specific CMN-600 component, and some are available by using watchpoints in the *Debug Watchpoint Module* (DWM) in the XP where the component is located.

This chapter describes the performance events and the relevant use cases for most of those events. See *Chapter 5 Debug trace and PMU* on page 5-818 for information about the infrastructure and logic that enable general utility of the performance monitor events.

The following table shows the PMU events.

Table 6-1 PMU events

Component	NS a	Event	Description
HN-D	Refer	to 6.7 DN performance events on page 6-86	3 for event summary details.
HN-I	No	PMU_HNI_TXDATFLITV	Transmitted data flits. Available through the DWM.
	No	PMU_HNI_RXDATFLITV	Received data flits. Available through the DWM.
	Yes	PMU_HNI_RXREQFLITV	Received requests. Available through the DWM.
	Yes	PMU_HNI_RXREQ_REQORDER	Received ReqOrder requests. Available through the DWM.
SBSX	No	PMU_SBSX_TXDATFLITV	Transmitted data flits. Available through the DWM.
	No	PMU_SBSX_RXDATFLITV	Received data flits. Available through the DWM.
	Yes	PMU_SBSX_RXREQFLITV	Received requests. Available through the DWM.
HN-F	Yes	PMU_HN_CACHE_MISS	Total cache misses
	Yes	PMU_HNL3_SF_CACHE_ACCESS	Total number of cache accesses
	Yes	PMU_HN_CACHE_FILL	Total allocations in HN SLC cache
	Yes	PMU_HN_POCQ_RETRY	Total number of requests that have been retried
	Yes	PMU_HN_POCQ_REQS_RECVD	Total number of requests that the HN received
	Yes	PMU_HN_SF_HIT	Total number of SF hits
	Yes	PMU_HN_SF_EVICTIONS	Total number of SF evictions
	Yes	PMU_HN_L3_EVICTION	Number of SLC evictions
	Yes	PMU_HN_L3_FILL_INVALID_WAY	Number of SLC fills to an invalid way
	Yes	PMU_HN_MC_RETRIES	Number of requests receiving retry response from the memory controller
	Yes	PMU_HN_MC_REQS	Total number of requests that are sent to the memory controller
	Yes	PMU_HN_QOS_HH_RETRY	Number of times HN-F protocol retried a QoS 15 (highest) class request

^a Can the event be determined to be Secure or Non-secure? If No, the event is considered to be Secure, irrespective of Secure or Non-secure attributes associated with the event.

Table 6-1 PMU events (continued)

Component	NS a	Event	Description
RN-I, RN-D	No	PMU_RNI_RDATABEATS_P0	S0 RDataBeats
	No	PMU_RNI_RDATABEATS_P1	S1 RDataBeats
	No	PMU_RNI_RDATABEATS_P2	S2 RDataBeats
	Yes	PMU_RNI_RXDATFLITV	RXDAT flits received
	Yes	PMU_RNI_TXDATFLITV	TXDAT flits sent
	Yes	PMU_RNI_TXREQFLITV	Total TXREQ flits sent
	Yes	PMU_RNI_TXREQFLITV_RETRIED	Retried TXREQ flits sent
	No	PMU_RNI_RRTFULL	Read request tracker full
	No	PMU_RNI_WRTFULL	Write request tracker
	Yes	PMU_RNI_TXREQFLITV_REPLAYED	Replayed TXREQ flits
CXHA	Yes	HA_REQ_TRK_OCC	Request tracker occupancy
	Yes	HA_RD_DAT_BUFF_OCC	Read data buffer occupancy
	Yes	HA_RSP_DATA_BYPASS_BUF_OCC	CCIX response data bypass buffer occupancy
	Yes	HA_WR_DAT_BUFF_OCC b	Write data buffer occupancy
	Yes	HA_SNP_TRK_BUF_OCC	Snoop tracker occupancy
	Yes	HA_SNP_DAT_SINK_BUF_OCC	Snoop data sink buffer occupancy
	Yes	HA_SNP_HZD_BUF_OCC	Snoop hazard buffer occupancy
	Yes	HA_RD_DAT_BYPASS	Read data bypass taken
	Yes	HA_SNP_PCRD_STALLS_LNK0 b	Snoop request available but no SNP Pcrd to send over CCIX per LinkEnd for Link 0
	Yes	HA_SNP_PCRD_STALLS_LNK1 b	Snoop request available but no SNP Pcrd to send over CCIX per LinkEnd for Link 1
	Yes	HA_SNP_PCRD_STALLS_LNK2 b	Snoop request available but no SNP Pcrd to send over CCIX per LinkEnd for Link 2
	Yes	HA_CHI_RSP_UPLOAD_STALLS	Local HA upload stalls to CHI because of contention with RA
	Yes	HA_CHI_DAT_UPLOAD_STALLS	Local HA upload stalls to CHI because of contention with RA

a Can the event be determined to be Secure or Non-secure? If No, the event is considered to be Secure, irrespective of Secure or Non-secure attributes associated with the event.

b If applications use only Non-secure transactions, then NS counting will be correct. If a mix of S and NS is used, then use Secure Debug such as assert SPNIDEN.

Table 6-1 PMU events (continued)

Component	NS a	Event	Description
CXLA	No	LA_RX_TLP_LINK0	RX TLPs on Link 0
	No	LA_RX_TLP_LINK1	RX TLPs on Link 1
	No	LA_RX_TLP_LINK2	RX TLPs on Link 2
	No	LA_TX_TLP_LINK0	TX TLPs on Link 0
	No	LA_TX_TLP_LINK1	TX TLPs on Link 1
	No	LA_TX_TLP_LINK2	TX TLPs on Link 2
	No	LA_RX_CXS_LINK0	RX CXS on Link 0
	No	LA_RX_CXS_LINK1	RX CXS on Link 1
	No	LA_RX_CXS_LINK2	RX CXS on Link 2
	No	LA_TX_CXS_LINK0	TX CXS on Link 0
	No	LA_TX_CXS_LINK1	TX CXS on Link 1
	No	LA_TX_CXS_LINK2	TX CXS on Link 2
	No	LA_RX_TLP_AVG_SIZE	Average RX TLP size in DWs
	No	LA_TX_TLP_AVG_SIZE	Average TX TLP size in DWs
	No	LA_RX_TLP_AVG_CCIX_MSGS	Average RX TLP size in CCIX messages
	No	LA_TX_TLP_AVG_CCIX_MSGS	Average TX TLP size in CCIX messages
	No	LA_RX_CXS_AVG_SIZE	Average size of RX CXS in DWs within a beat
	No	LA_TX_CXS_AVG_SIZE	Average size of TX CXS in DWs within a beat
	No	LA_TX_CXS_LCRD_BACKPRESSURE	TX CXS link credit backpressure from PHY
	No	LA_RX_TLPBUF_FULL_STALL	RX TLP buffer full and backpressured
	No	LA_TX_TLPBUF_FULL_STALL	TX TLP buffer full and backpressured
	No	LA_RX_AVG_TLP_LAT	Average latency to process an RX TLP
	No	LA_TX_AVG_TLP_LAT	Average latency to form a TX TLP

^a Can the event be determined to be Secure or Non-secure? If No, the event is considered to be Secure, irrespective of Secure or Non-secure attributes associated with the event.

Table 6-1 PMU events (continued)

Component	NS a	Event	Description
CXRA	Yes	RA_REQ_TRK_OCC	Request tracker occupancy
	Yes	RA_SNP_TRK_OCC	Snoop tracker occupancy
	No	RA_RD_DAT_BUF_OCC	Read data buffer occupancy
	No	RA_WR_DAT_BUF_OCC	Write data buffer occupancy
	No	RA_SNP_SINK_BUF_OCC	Snoop sink buffer occupancy
	Yes	RA_SNP_BCASTS	Snoop broadcasts
	Yes	RA_REQ_CHAINS	Number of request chains formed larger than one
	Yes	RA_REQ_CHAIN_AVG_LEN	Average size of request chains only for chains size larger than one
	No	RA_CHI_RSP_UPLOAD_STALLS	Local RA upload stalls to CHI because of contention with HA
	No	RA_CHI_DAT_UPLOAD_STALLS	Local RA upload stalls to CHI because of contention with HA
	No	RA_DAT_PCRD_STALLS_LNK0	Memory Data Request available, but no DAT Pcrd to send over CCIX per LinkEnd 0
	No	RA_DAT_PCRD_STALLS_LNK1	Memory Data Request available, but no DAT Pcrd to send over CCIX per LinkEnd 1
	No	RA_DAT_PCRD_STALLS_LNK2	Memory Data Request available, but no DAT Pcrd to send over CCIX per LinkEnd 2
	No	RA_REQ_PCRD_STALLS_LNK0	Memory Data Request available but no Req Pcrd to send over CCIX per LinkEnd 0
	No	RA_REQ_PCRD_STALLS_LNK1	Memory Data Request available but no Req Pcrd to send over CCIX per LinkEnd 1
	No	RA_REQ_PCRD_STALLS_LNK2	Memory Data Request available but no Req Pcrd to send over CCIX per LinkEnd 2

6.2.1 Cycle counter

The cycle counter is used to track time.

You can reset this counter to initiate the time interval over which you want to capture the events.

PMU_CYCLE_COUNTER Cycle counter.

Because the cycle counter is clocked by **GCLK0**, it is not incremented during periods of *High-level Clock Gating* (HCG) when the clocks are stopped.

^a Can the event be determined to be Secure or Non-secure? If No, the event is considered to be Secure, irrespective of Secure or Non-secure attributes associated with the event.

6.3 **HN-F** performance events

The HN-F performance analysis counters are used to monitor cache behavior.

For a particular cache, the cache miss or hit rate is used to measure the capacity of the cache, and the location for certain applications. To measure the cache miss rate, the performance monitor counters count the number of instances of cache accesses and cache misses.

This section contains the following subsections:

- 6.3.1 Cache performance on page 6-848.
- 6.3.2 HN-F counters on page 6-849.
- 6.3.3 SF events on page 6-849.
- 6.3.4 System-wide events on page 6-850.
- 6.3.5 Quality of Service on page 6-850.
- 6.3.6 HN-F PMU event summary on page 6-850.

6.3.1 Cache performance

Cache performance events are required to calculate the cache miss rate and the cache allocation.

The following sections describe the cache performance events.

Cache miss rate

The cache events that are required to calculate the cache miss rate are:

PMU HN CACHE MISS EVENT Counts the total cache misses. This is a first-time

lookup result, and is high priority.

PMU HNSLC SF CACHE ACCESS EVENT The total number of cache accesses. These are

first-time accesses, and are high priority.

- Note —

The performance counter architecture enables only four HNs to collect the cache miss rate. However, the CMN-600 microarchitecture is such that the cache miss rate that is measured at one HN-F is a good proxy for the cache miss rate of the remaining HN-Fs.

Calculate the cache miss rate as follows:

Total cache misses x 100 Cache miss rate (%) = $\frac{10 \text{ (a) cache}}{\text{Total cache accesses}}$

Certain request types can cause multiple cache accesses:

- Lookup.
- Tag update.
- Victim selection.
- Cache fill.

Event counting is therefore limited to first time accesses only. For example, for a ReadUnique transaction that leads to an SLC hit, PMU HNSLC SF CACHE ACCESS EVENT is only counted the first time cache lookup is performed. The tag update is not counted as a cache access. Similarly, for WriteBack or Write*Unique transactions with an SLC allocate hint, only the first instance of an SLC lookup is counted as an access and hit or miss. The eventual victim selection and cache fill are not counted as additional accesses.

Cache allocations

The cache allocation event counts the number of times an HN-F SLC cache is allocated. It provides an approximate cache usage for this particular application over a specific time slice. This event does not check whether the application has any hot sets.

PMU HN CACHE FILL EVENT Counts all cache line allocations to SLC cache.

All cache line writes, that is, Write*Unique, WriteBack, and Evictions that are allocated in SLC cache, are counted towards this event.

6.3.2 HN-F counters

Applications can bottleneck on one or more HN-Fs because they frequently target an address or a stream of addresses.

The following POCQ occupancy and request retry events are used to monitor possible performance loss in the system:

PMU HN POCQ RETRY EVENT

The total number of requests that have been

retried.

PMU_HN_POCQ_REQS_RECVD_EVENT The total number of requests that the HN-F

receives.

Requests that cannot be queued in the POCQ, because of lack of credits, are retried. The HN-F responds with a RetryAck response, and the request waits for a static credit. This indicates whether the bottlenecks are caused by a lack of credits, and also shows if the latency of requests is very high.

Calculate the message retry rate as follows:

HN-F message retry rate (%) =
$$\frac{\text{HN-F total messages retried}}{\text{HN-F total messages received}} \times 100$$

6.3.3 SF events

There are three snoop events that can be counted.

The following sections describe the SF performance events.

SF miss rate

This event measures the amount of memory controller traffic that is generated. It can also be used to measure the efficiency of the SF.

PMU HN SF HIT EVENTMeasures the number of SF hits.

Calculate the SF hit rate as follows:

Snoop filter hit rate (%) =
$$\frac{\text{Total snoop filter hits}}{\text{Total SLC lookups}} \times 100$$

SF accesses are only counted for first-time lookups, and not for the victim selection accesses or SF fills. Because the SLC lookup and SF lookups are parallel, the SLC lookups can be used to calculate the SF hit rate.

SF evictions

This event measures the frequency of SF evictions.

PMU_HN_SF_EVICTIONS_EVENT Measures the number of SF evictions when cache invalidations are initiated.

Snoops sent and received with hit rate

This event measures the amount of shared data across clusters for a specific application, using snoops hits or misses.

PMU HN SNOOPS SENT EVENT

Number of snoops sent. Does not differentiate

between broadcast or directed snoops.

PMU HN SNOOPS BROADCAST EVENT

Number of snoop broadcasts sent.

Calculate the snoops sent and received rate as follows:

Shared data (%) =
$$\frac{\text{Total snoops broadcast}}{\text{Total snoops sent}} \times 100$$

The number of broadcast and total snoops measures the shared data invalidations.

6.3.4 System-wide events

The memory controller request retries determine whether the memory controller is the bottleneck in the system, which can cause higher request latencies.

The following events can be counted:

PMU_HN_MC_RETRIES_EVENT
PMU_HN_MC_REQS_EVENT

Number of requests that are retried to the memory controller.

Total number of requests that are sent to the memory

controller.

Calculate the retry rate for requests to the memory controller as follows:

MC message retry rate (%) =
$$\frac{MC \text{ total messages retried}}{MC \text{ total messages received}} \times 100$$

6.3.5 Quality of Service

Requests with a HighHigh QoS must be allocated and processed from the POCQ with the highest priority compared to High, Medium, and Low QoS requests.

If the HighHigh requests are retried too frequently, there could be a bottleneck at a particular HN-F, or the POCQ reservation for HighHigh requests requires adjustment.

PMU HN QOS HH RETRY

How often a HighHigh request is retried.

6.3.6 HN-F PMU event summary

The following table shows a summary of the HN-F PMU events.

Table 6-2 HN-F events

Number	Name	Description
1	PMU_HN_CACHE_MISS_EVENT	Counts total cache misses in first lookup result (high priority)
2	PMU_HNSLC_SF_CACHE_ACCESS_EVENT	Counts number of cache accesses in first access (high priority)
3	PMU_HN_CACHE_FILL_EVENT	Counts total allocations in HN SLC (all cache line allocations to SLC)
4	PMU_HN_POCQ_RETRY_EVENT	Counts number of retried requests
5	PMU_HN_POCQ_REQS_RECVD_EVENT	Counts number of requests received by HN
6	PMU_HN_SF_HIT_EVENT	Counts number of SF hits
7	PMU_HN_SF_EVICTIONS_EVENT	Counts number of SF eviction cache invalidations initiated
8	PMU_HN_DIR_SNOOPS_SENT_EVENT	Counts number of directed snoops sent (not including SF back invalidation)
9	PMU_HN_BRD_SNOOPS_SENTEVENT	Counts number of multicast snoops sent (not including SF back invalidation)

Table 6-2 HN-F events (continued)

Number	Name	Description
10	PMU_HN_SLC_EVICTION_EVENT	Counts number of SLC evictions (dirty only)
11	PMU_HN_SLC_FILL_INVALID_WAY_EVENT	Counts number of SLC fills to an invalid way
12	PMU_HN_MC_RETRIES_EVENT	Counts number of retried transactions by the MC
13	PMU_HN_MC_REQS_EVENT	Counts number of requests sent to MC
14	PMU_HN_QOS_HH_RETRY_EVENT	Counts number of times a HighHigh priority request is protocol- retried at the HN-F
15	PMU_HNF_POCQ_OCCUPANCY_EVENT	Counts the POCQ occupancy in HN-F. Occupancy filtering is programmed in pmu_occup1_id .
16	PMU_HN_POCQ_ADDRHAZ_EVENT	Counts number of POCQ address hazards upon allocation
17	PMU_HN_POCQ_ATOMICS_ADDRHAZ_EVENT	Counts number of POCQ address hazards upon allocation for atomic operations
18	PMU_HN_LD_ST_SWP_ADQ_FULL_EVENT	Counts number of times ADQ is full for Ld/St/SWP type atomic operations while POCQ has pending operations
19	PMU_HN_CMP_ADQ_FULL_EVENT	Counts number of times ADQ is full for CMP type atomic operations while POCQ has pending operations
20	PMU_HN_TXDAT_STALL_EVENT	Counts number of times HN-F has a pending TXDAT flit but no credits to upload
21	PMU_HN_TXRSP_STALL_EVENT	Counts number of times HN-F has a pending TXRSP flit but no credits to upload
22	PMU_HN_SEQ_FULL_EVENT	Counts number of times requests are replayed in SLC pipe due to SEQ being full
23	PMU_HN_SEQ_HIT_EVENT	Counts number of times a request in SLC hit a pending SF eviction in SEQ
24	PMU_HN_SNP_SENT_EVENT	Counts number of snoops sent including directed, multicast, and SF back invalidation
25	PMU_HN_SFBI_DIR_SNP_SENT_EVENT	Counts number of times directed snoops were sent due to SF back invalidation
26	PMU_HN_SFBI_BRD_SNP_SENT_EVENT	Counts number of times multicast snoops were sent due to SF back invalidation
27	PMU_HN_SNP_SENT_UNTRK_EVENT	Counts number of times snooped were sent due to untracked RNF's
28	PMU_HN_INTV_DIRTY_EVENT	Counts number of times SF back invalidation resulted in dirty line intervention from the RN
29	PMU_HN_STASH_SNP_SENT_EVENT	Counts number of times stash snoops were sent
30	PMU_HN_STASH_DATA_PULL_EVENT	Counts number of times stash snoops resulted in data pull from the RN
31	PMU_HN_SNP_FWDED_EVENT	Counts number of times data forward snoops were sent

6.4 RN-I performance events

External devices connect at an RN-I bridge.

This section contains the following subsections:

- 6.4.1 Bandwidth at RN-I bridges on page 6-852.
- 6.4.2 Bottleneck analysis at RN-I bridges on page 6-853.
- 6.4.3 RN-I PMU event summary on page 6-854.

6.4.1 Bandwidth at RN-I bridges

External devices connect at an RN-I bridge.

The following events measure bandwidth at the RN-I bridges:

- Requested read bandwidth at RN-I bridges on page 6-852.
- Actual read bandwidth on interconnect on page 6-852.
- Write bandwidth at RN-I bridges on page 6-853.

Requested read bandwidth at RN-I bridges

External devices connect to CMN-600 at an RN-I bridge.

To monitor the behavior of the system, the following events measure the read bandwidth at each RN-I bridge:

RDataBeats_Port0 Number of RData beats, **RVALID** and **RREADY**, dispatched on port 0. This is a measure of the read bandwidth.

RDataBeats_Port1 Number of RData beats, **RVALID** and **RREADY**, dispatched on port 1. This is a measure of the read bandwidth.

RDataBeats_Port2 Number of RData beats, **RVALID** and **RREADY**, dispatched on port 2. This is a measure of the read bandwidth.

Because CMOs are sent through the read channel, their responses are included in these events.

Calculate the read bandwidth as follows:

$$\label{eq:Read_port_n} \text{Read bandwidth} = \frac{\text{Number RDataBeats_Port} n \times \text{AXIDataBeatSize}}{\text{Cycles}} \times \text{Frequency}$$

Where AXIDataBeatSize is the number of bytes for each AXI beat. In most cases, this is the same size as the AXI bus

Actual read bandwidth on interconnect

RXDATFLITV measures the bandwidth that an RN-I bridge sends to the interconnect.

To measure the actual bandwidth that an RN-I bridge sends to the interconnect, and not the useful bandwidth the external devices can use, this event counts the number of received data flit requests that the bridge receives through the data channel:

RXDATFLITV Number of **RXDAT** flits received. This event is a measure of the true read data bandwidth. It excludes CMOs, because CMO completions return to the RN-I through the response channel, but includes replayed requests.

This event includes the replayed requests because of the read data buffer decoupled scheme.

Calculate the actual read bandwidth as follows:

Write bandwidth at RN-I bridges

TXDATFLITV monitors the number of data flits that the RN-I bridge sends out.

In a similar way to the read actual bandwidth event, this event monitors the number of data flits that the RN-I bridge sends out, to measure the actual write bandwidth that is sent to the interconnect:

TXDATFLITV Number of **TXDAT** flits dispatched. This event is a measure of the write bandwidth.

Calculate the write bandwidth as follows:

$$\mbox{Actual write bandwidth} = \frac{\mbox{TXDATFLITV x DataFlitSize}}{\mbox{Cycles}} \mbox{x Frequency}$$

6.4.2 Bottleneck analysis at RN-I bridges

CMN-600 provides events that observe the locations where the nodes or bridges are full, which can cause delays in the rest of the system.

This enables you to monitor the current bottlenecks in the system, and checks multiple events in the RN-Is, HN-Fs, and memory controllers. In the RN-I bridges, the events monitor the following:

- The number of times the bridge is forced to retry because of the lack of dynamic credits.
- The number of times the read and write tracker is full and therefore cannot accept new requests in the system. This can cause delays in the AXI masters.
- The number of read request replays, because of decoupling of the read request buffers and read data buffers in the RN-I system.

Request retry rate at RN-I bridges

TXREOFLITV RETRIED monitors the efficiency of using dynamic credits in the system.

It does this by measuring the request retry rate:

TXREQFLITV_RETRIED Number of retried **TXREQ** flits dispatched. This event is a measure of the retry rate.

Calculate the request retry rate as follows:

Retry rate =
$$\frac{TXREQFLITV_RETRIED}{TXREQFLITV_TOTAL}$$

Read and write delays at RN-I bridges

To monitor the delays for both reads and writes, CMN-600 enables you to monitor how full the read and write trackers are in the RN-I bridges.

When one of the trackers is full, the bridge cannot accept new requests from the AXI master. This delays the I/O devices that connect to the AXI master.

You can use the measure of how full the trackers are, together with the read and write bandwidth from the RN-I bridge to the interconnect, to help isolate the source of bottlenecks in the system. For example:

- If the read tracker of a specific RN-I bridge is full but the effective read bandwidth from the bridge is not close to the maximum expected, the interconnect cannot keep up with the read traffic from the specific device.
- If the bandwidth is close to maximum, the I/O device can send requests to the maximum of its port bandwidth and this is why the tracker is full.

You can also use the measure of how full the trackers are with AXI PMUs to monitor delays to the AXI masters.

The following events monitor the read and write trackers:

RRT_OCCUPANCY All entries in the read request tracker are occupied. This is a measure of oversubscription in the read request tracker.

WRT_OCCUPANCY All entries in the write request tracker are occupied. This is a measure of oversubscription in the write request tracker.

6.4.3 RN-I PMU event summary

There are twenty RN-I PMU events.

The following table shows a summary of the RN-I PMU events.

Table 6-3 RN-I PMU event summary

Number	Name	Description
1	PMU_RNI_RDATABEATS_P0	Number of RData beats, RVALID and RREADY , dispatched on port 0. This is a measure of the read bandwidth, including CMO responses.
2	PMU_RNI_RDATABEATS_P1	Number of RData beats, RVALID and RREADY , dispatched on port 1. This is a measure of the read bandwidth, including CMO responses.
3	PMU_RNI_RDATABEATS_P2	Number of RData beats, RVALID and RREADY , dispatched on port 2. This is a measure of the read bandwidth, including CMO responses.
4	PMU_RNI_RXDATFLITV	Number of RXDAT flits received. This is a measure of the true read data bandwidth, excluding CMOs.
5	PMU_RNI_TXDATFLITV	Number of TXDAT flits dispatched. This is a measure of the write bandwidth.
6	PMU_RNI_TXREQFLITV	Number of TXREQ flits dispatched. This is a measure of the total request bandwidth.
7	PMU_RNI_TXREQFLITV_RETRIED	Number of retried TXREQ flits dispatched. This is a measure of the retry rate.
8	PMU_RNI_RRT_OCCUPANCY	All entries in the read request tracker are occupied. This is a measure of oversubscription in the read request tracker.
9	PMU_RNI_WRT_OCCUPANCY	All entries in the write request tracker are occupied. This is a measure of oversubscription in the write request tracker.
10	PMU_RNI_TXREQFLITV_REPLAYED	Number of replayed TXREQ flits. This is the measure of replay rate.
11	PMU_RNI_WRCANCEL_SENT	Number of write data cancels sent. This is the measure of write cancel rate
12	PMU_RNI_WDATABEAT_P0	Number of WData beats, WVALID and WREADY , dispatched on port 0. This is a measure of write bandwidth on AXI port 0 .
13	PMU_RNI_WDATABEAT_P1	Number of WData beats, WVALID and WREADY , dispatched on port 1. This is a measure of write bandwidth on AXI port 1.
14	PMU_RNI_WDATABEAT_P2	Number of WData beats, WVALID and WREADY , dispatched on port 2. This is a measure of write bandwidth on AXI port 2.
15	PMU_RNI_RRTALLOC	Number of allocations in the read request tracker. This is a measure of read transaction count
16	PMU_RNI_WRTALLOC	Number of allocations in the write request tracker. This is a measure of write transaction count
17	PMU_RNI_RDB_UNORD	Number of cycles for which Read Data Buffer state machine is in Unordered Mode.
18	PMU_RNI_RDB_REPLAY	Number of cycles for which Read Data Buffer state machine is in Replay mode

Table 6-3 RN-I PMU event summary (continued)

Number	Name	Description
19	PMU_RNI_RDB_HYBRID	Number of cycles for which Read Data Buffer state machine is in hybrid mode. Hybrid mode is where there is mix of ordered/unordered traffic.
20	PMU_RNI_RDB_ORD	Number of cycles for which Read Data Buffer state machine is in ordered Mode.

6.5 SBSX performance events

This section contains SBSX performance event information.

This section contains the following subsections:

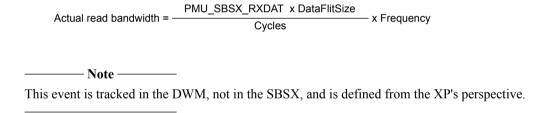
- 6.5.1 Bandwidth at SBSX bridges on page 6-856.
- 6.5.2 Bottleneck analysis at SBSX bridges on page 6-857.
- 6.5.3 SBSX PMU event summary on page 6-858.

6.5.1 Bandwidth at SBSX bridges

This section contains SBSX bridge bandwidth information.

The following events are used to measure bandwidth at the SBSX bridges:

- Read bandwidth on interconnect at SBSX bridges on page 6-856.
- Write bandwidth at SBSX bridges on page 6-856.
- Total requested bandwidth at SBSX bridges on page 6-857.

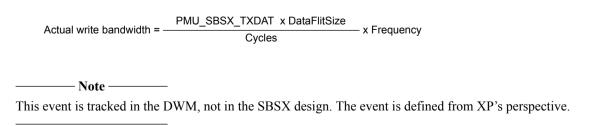

Read bandwidth on interconnect at SBSX bridges

This section contains information on read bandwidth on interconnect at SBSX bridges.

This event counts the number of received data flits at the SBSX and interconnect:

PMU_SBSX_RXDAT Number of RXDAT flits received at XP from SBSX. This event is a measure of the read data bandwidth.

Calculate the actual read bandwidth as follows:

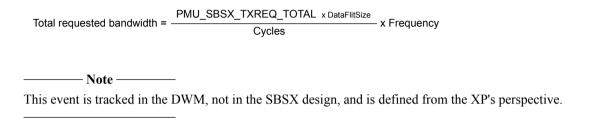

Write bandwidth at SBSX bridges

This section contains information on write bandwidth at SBSX bridges.

In a similar way to the read actual bandwidth event, this event monitors the number of data flits that the SBSX receives, to measure the actual write bandwidth that is received from the interconnect:

PMU_SBSX_TXDAT Number of **TXDAT** flits dispatched from XP to SBSX. This event is a measure of the write bandwidth.

Calculate the write bandwidth as follows:


Total requested bandwidth at SBSX bridges

This section contains information on total requested bandwidth at SBSX bridges.

To improve efficiency when using PMU events and signals, this event combines the read and write bandwidth estimation in a single event by monitoring the number of request flits that a SBSX bridge receives:

PMU_SBSX_TXREQ_TOTAL: Number of **TXREQ** flits dispatched from XP to SBSX. This event is a measure of the total request bandwidth.

Calculate the total bandwidth as follows:

6.5.2 Bottleneck analysis at SBSX bridges

This section contains information on bottleneck analysis at SBSX bridges.

CMN-600 provides events that observe the locations where the nodes or bridges are full, which can cause delays in the rest of the system. This enables you to monitor the current bottlenecks in the system, and checks multiple events in all CMN-600 components. The events monitor the following:

- The number of times the bridge is forced to retry because of the lack of dynamic credits.
- The number of cycles the bridge is forced to stall due to backpressures on AXI/CHI interface.

The following events are used to measure bottlenecks at the SBSX bridges:

• 6.5 SBSX performance events on page 6-856.

•

Request retry rate at SBSX bridges

This section contains information on the request retry rate at SBSX bridges.

RXREQFLITV_RETRIED monitors the efficiency of using dynamic credits in the system. It does this by measuring the request retry rate:

$RXREQFLITV_RETRIED$

Number of RXREQ flits dispatched. This event is a measure of the retry rate. Calculate the retry rate as follows:

Retry rate = RXREQFLITV RETRIED / RXREQFLITV TOTAL

Delays at SBSX bridges due to backpressure

To analyze the delays in SBSX bridges, CMN-600 enables you to monitor the source of backpressure.

When SBSX has requests that are ready to be sent to AXI/ACE-Lite downstream, but cannot send it due to backpressure from AXI/ACE-Lite downstream, it holds the request in the *Receive Request Tracker* (RRT). This results in the RRT getting full and so the SBSX bridge cannot accept any new requests from RNs impacting system performance.

The following table contains events monitor such backpressure from AXI/ACE-Lite downstream:

Table 6-4 AXI/ACE downstream events monitor information

Events	Description
ARVALID_NO_ARREADY	Number of cycles the SBSX bridge is stalled due to backpressure on AR channel.
AWVALID_NO_AWREADY	Number of cycles the SBSX bridge is stalled due to backpressure on AW channel.
WVALID_NO_WREADY	Number of cycles the SBSX bridge is stalled due to backpressure on W channel.

If a mesh is congested with many DAT or RSP flits, it may not give link credits to SBSX in timely manner which results in DAT flits for Reads or RSP flits for Writes getting stalled in SBSX. The following table describes events monitor in such cases where SBSX bridge is not able to upload DAT/RSP flits on the mesh.

Table 6-5 CHI events monitor information

Events	Description
TXDATFLITV_NO_LINKCRD	Number of cycles the TXDAT flit in SBSX bridge is waiting for link credits.
TXRSPFLITV_NO_LINKCRD	Number of cycles the TXRSP flit in SBSX bridge is waiting for link credits.

Tracker occupancy analysis

To debug performance issues, additional events are provided to measure occupancy of various trackers in SBSX such as *Request Received Tracker* (RRT), *Request Dispatch Tracker* (RDT), and *Write Data Buffers* (WDB).

Note that Read, Write, and CMO transactions occupy RRT before they are dispatched on the AXI interface. Once Read/CMO transactions are dispatched on AXI, they move from RRT to RDT. Writes remain on RRT until the write response is obtained from AXI interface and then deallocated from RRT. Knowing the occupancy of RRT and RDT independently can inform you better about the bottleneck source. In the PMU event register description section, RRT is called request tracker, while RDT is called AXI pending tracker.

The following table contains tracker occupancy information.

Table 6-6 Tracker occupancy information

Events	Description
RRT_RD_OCCUPANCY_CNT_OVFL	Read occupancy count overflow event in RRT
RRT_WR_OCCUPANCY_CNT_OVFL	Write occupancy count overflow event in RRT
RRT_CMO_OCCUPANCY_CNT_OVFL	CMO occupancy count overflow event in RRT
WDB_OCCUPANCY_CNT_OVFL	WDB occupancy count overflow event
RDT_RD_OCCUPANCY_CNT_OVFL	Read occupancy count overflow event in RDT
RDT_CMO_OCCUPANCY_CNT_OVFL	CMO occupancy count overflow event in RDT

6.5.3 SBSX PMU event summary

This section contains SBSX PMU event summary information.

Please refer to por sbsx pmu event sel on page 3-617 for more information.

6.6 HN-I performance events

This section contains HN-I performance event information.

This section contains the following subsections:

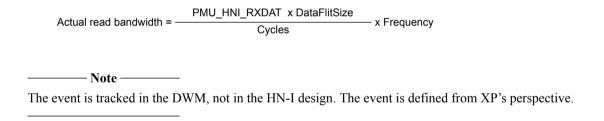
- 6.6.1 Bandwidth at HN-I bridges on page 6-859.
- 6.6.2 Bottleneck analysis at HN-I bridges on page 6-860.
- 6.6.3 HN-I PMU event summary on page 6-862.

6.6.1 Bandwidth at HN-I bridges

This section contains HN-I bridge bandwidth information.

The following events are used to measure bandwidth at the HN-I bridges:

- Read bandwidth on interconnect at SBSX bridges on page 6-856.
- Write bandwidth at SBSX bridges on page 6-856.
- Total requested bandwidth at SBSX bridges on page 6-857.

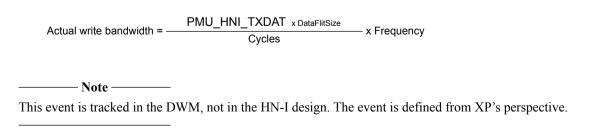

Read bandwidth on interconnect at HN-I bridges

This section contains information on read bandwidth on interconnect at HN-I bridges.

This event counts the number of received data flits at the HN-I and interconnect:

PMU_HNI_RXDAT Number of *RXDAT* flits received at XP from HN-I. This event is a measure of the read data bandwidth.

Calculate the actual read bandwidth as follows:

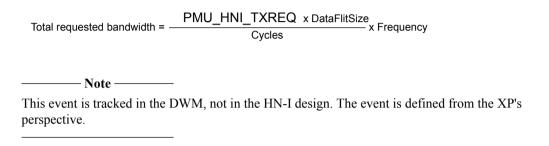

Write bandwidth at HN-I bridges

This section contains information on write bandwidth at HN-I bridges.

In a similar way to the read actual bandwidth event, this event monitors the number of data flits that the HN-I receives, to measure the actual write bandwidth that is received from the interconnect:

PMU_HNI_TXDAT Number of **TXDAT** flits dispatched from XP to HN-I. This event is a measure of the write bandwidth.

Calculate the write bandwidth as follows:


Total requested bandwidth at HN-I bridges

This section contains information on total requested bandwidth at HN-I bridges.

To improve efficiency when using PMU events and signals, this event combines the read and write bandwidth estimation in a single event by monitoring the number of request flits that a HN-I bridge receives:

PMU_HNI_TXREQ_TOTAL: Number of **TXREQ** flits dispatched from XP to HN-I. This event is a measure of the total request bandwidth.

Calculate the total bandwidth as follows:

6.6.2 Bottleneck analysis at HN-I bridges

This section contains information on bottleneck analysis at HN-I bridges.

CMN-600 provides events that observe the locations where the nodes or bridges are full, which can cause delays in the rest of the system. This enables you to monitor the current bottlenecks in the system, and checks multiple events in all CMN-600 components. The events monitor the following:

- The number of times the bridge is forced to retry because of the lack of dynamic credits.
- The number of times requests are serialized due to ordering requirements.
- The number of cycles the bridge is forced to stall due to backpressures.

The following events are used to measure bottlenecks at the HN-I bridges:

• 6.6 HN-I performance events on page 6-859.

Request retry rate at HN-I bridges

This section contains information on the request retry rate at HN-I bridges.

RXREQFLITV_RETRIED monitors the efficiency of using dynamic credits in the system. It does this by measuring the request retry rate:

RXREQFLITV_RETRIED: Number of **RXREQ** flits dispatched. This event is a measure of the retry rate.

Calculate the retry rate as follows:

Retry rate =
$$\frac{\text{RXREQFLITV_RETRIED}}{\text{RXREQFLITV_TOTAL}}$$

Delays at HN-I bridges due to ordering requirements

When requests are received at the HN-I, there are different ordering guarantees HN-I bridge needs to maintain based on the source and attributes of the request.

The requests are serialized in some cases indicating a lower than expected bandwidth at HN-I as shown in the following table.

Table 6-7 PCle and Non-PCle RN request information

Request	Description
NONPCIE_SERIALIZED	Number of Non-PCIe RN requests that are serialized.
PCIE_SERIALIZED	Number of PCIe RN requests that are serialized.

Delays at HN-I bridges due to backpressure

To analyze the delays in HN-I bridges, CMN-600 enables you to monitor the source of backpressure.

When HN-I has requests that are ready to be sent to AXI/ACE-Lite downstream, but cannot send it due to backpressure from AXI/ACE-Lite downstream, it holds onto the request in the *Receive Request Tracker* (RRT). As a result, the RRT gets full. Therefore, the HN-I bridge cannot accept any new requests from RNs, thereby impacting system performance.

The following table contains events monitor such backpressure from AXI/ACE-Lite downstream:

Table 6-8 AXI/ACE downstream events monitor information

Events	Description	
ARVALID_NO_ARREADY	Number of cycles the HN-I bridge is stalled due to backpressure on AR channel	
AWVALID_NO_AWREADY	O_AWREADY Number of cycles the HN-I bridge is stalled due to backpressure on AW channel	
WVALID_NO_WREADY	Number of cycles the HN-I bridge is stalled due to backpressure on W channel	

Even if the AXI/ACE-Lite downstream is ready to accept new requests, the HN-I bridge cannot send them downstream while the *Request Dispatch Tracker* (RDT) is full. The lifetime of a request in the RDT depends on response latency from AXI/ACE-Lite downstream and backpressure on TXDAT channel.

The following table describes events monitor in such cases where an HN-I bridge is unable to send new requests to AXI/ACE-Lite downstream:

Table 6-9 AXI/ACE downstream events monitor information (no new requests sent)

Events	Description	
ARREADY_NO_ARVALID	Number of cycles the AR channel is waiting for new requests from HN-I bridge	
AWREADY_NO_AWVALID	Number of cycles the AW channel is waiting for new requests from HN-I bridge	

If the mesh is congested with many DAT Flits, it may not give link credits to HN-I in timely manner. This delay results in the stalling of DAT flits for Reads in HN-I. The following table describes events monitor in such cases where an HN-I bridge is not able to upload a DAT flit on the mesh.

Table 6-10 CHI events monitor information

Events	Description
TXDATFLITV_NO_LINKCRD	Number of cycles the TXDAT flit in HN-I bridge is waiting for link credits

Tracker occupancy analysis in HN-I

To debug performance issues, additional events are provided to measure occupancy of various trackers in SBSX such as *Request Received Tracker* (RRT), *Request Dispatch Tracker* (RDT), and *Write Data Buffers* (WDB).

Note that Read, Write, and CMO transactions occupy RRT before they are dispatched on the AXI interface. Once Read and CMO transactions are dispatched on AXI, they move from RRT to RDT. Writes remain on RRT until the write response is obtained from AXI interface and then deallocated from RRT. Knowing the occupancy of RRT and RDT independently can inform you better about the bottleneck source. In the PMU event register description section, RRT is called request tracker while RDT is called AXI pending tracker.

The following table contains tracker occupancy information:

Table 6-11 Tracker occupancy information

Events	Description
RRT_RD_OCCUPANCY_CNT_OVFL	Read occupancy count overflow event in RRT
RRT_WR_OCCUPANCY_CNT_OVFL	Write occupancy count overflow event in RRT
RDT_RD_OCCUPANCY_CNT_OVFL	Read occupancy count overflow event in RDT
RDT_WR_OCCUPANCY_CNT_OVFL	Write occupancy count overflow event in RDT
WDB_OCCUPANCY_CNT_OVFL	WDB occupancy count overflow event

6.6.3 HN-I PMU event summary

This section contains HN-I PMU event summary information.

Please refer to por hni pmu event sel on page 3-396 for more information.

6.7 DN performance events

This section contains DN performance event information.

The following table shows a summary of the DN PMU events.

Table 6-12 DN PMU event summary

Number	Name	Description
1	PMU_DN_RXREQ_DVMOP	Number of DVMOP requests received. This includes all the sub-types include TLB invalidate, Branch predictor invalidate, instruction cache (physical and virtual) invalidate.
2	PMU_DN_RXREQ_DVMSYNC	Number of DVM Sync requests received.
3	PMU_DN_RXREQ_DVMOP_VMID_FILTERED	Number of incoming DVMOP requests that are subject to VMID based filtering. This is a measure of the effectiveness of VMID based filtering and potential reduction in DVM snoops.
4	PMU_DN_RXREQ_RETRIED	Number of incoming requests that are retried. This is a measure of the retry rate.
5	PMU_DN_TRK_OCCUPANCY	Counts the tracker occupancy in DN.

The pmu_occup1_id bit field in the por_dn_pmu_event_sel register is used to program the occupancy counter for specific operations types. The following table summarizes the options:

Table 6-13 Field values for pmu_occup1_id

pmu_occup1_id field values	Description
4'b0000	All
4'b0001	DVM Ops
4'b0010	DVM Syncs

6.8 XP PMU event summary

This section contains XP PMU event summary information.

Each of the XP PMU events is associated with:

- one of 6 XP ports East, West, North, South, device port0 or device port1
- one of 4 CHI channels REQ, RSP, SNP or DAT

Up to 4 XP PMU Events can be specified using the por_mxp_pmu_event_sel register described in section 3.3.6.

The following table shows a summary of the XP PMU events.

Table 6-14 XP PMU event summary

Number	Name	Description
1	PMU_XP_TXFLIT_VALID	Number of flits transmitted on a specified port and CHI channel. This is a measure of the flit transfer bandwidth from an XP.
		Note
		On device ports, this event also includes link flit transfers.
2	PMU_XP_TXFLIT_STALL	Number of cycles when a flit is stalled at an XP waiting for link credits at a specified port and CHI channel. This is a measure of the flit traffic congestion on the mesh and at the flit download ports.
3	PMU_XP_PARTIAL_DAT_FLIT_VALID	Number of times when a partial DAT flit is uploaded on to the mesh from a RN-F_CHIA port. Partial DAT flit transmission occurs when XP is not able to combine two 128b DAT flits and send them over the 256b DAT channel. This can happen under 2 circumstances: 1. Only one 128b DAT flit is received within a transmission time window. 2. Two 128b DAT flits are received but they are not two halves of a single 256b word.

6.9 Occupancy and lifetime measurement using PMU events

CMN-600 has PMU events to measure the average occupancy of a tracker and measure the average lifetime of the requests in that tracker.

This event is implemented for many of the trackers in CMN-600 units (HN-F, RN-I/RN-D, HN-I, and others). The following formula measures the average occupancy and lifetime and can be applied to all the trackers where this event is supported:

Occupancy Measurement

The formula to measure the occupancy is:

Average Occupancy (entries) =
$$\frac{PMU_OCCUPANCY_EVENT << 8}{PMU_CYCLE_COUNTER}$$

For example, for RN-I Read Request Tracker (RRT) average occupancy, the formula is:

Average RRT Occupancy (entries) =
$$\frac{\text{PMU_RNI_RRT_OCCUPANCY_EVENT} << 8}{\text{PMU_CYCLE_COUNTER}}$$

Lifetime Measurement

If a tracker supports lifetime event, the formula to measure the lifetime is:

Average Lifetime (cycles) =
$$\frac{PMU_OCCUPANCY_EVENT << 8}{PMU_NUM_TRACKER_ALLOCATIONS}$$

For example, for RN-I Read Request Tracker (RRT) average lifetime, the formula is:

Average Lifetime (cycles) =
$$\frac{PMU_RNI_RRT_OCCUPANCY << 8}{PMU_RNI_RRTALLOC}$$

6.10 DEVEVENT in CMN-600

CMN-600 HN-Fs support device specific events called DEVEVENT that are sent along with the completion of a transaction.

Completion of a transaction can be a data response (DAT) or completion response (RSP). These events contain information regarding the transaction encountering SLC hit or miss. And it also includes information about snoops sent to resolve coherency actions. These events can be measured using watch points on the XP that the RN-F is connected. Refer to 5.1.1 DTM watchpoint on page 5-820 for watchpoint usage.

The following table describes the DEVEVENT encodings from HN-F.

Table 6-15 DEVEVENT encodings from HN-F

Encoding	Description		
2'b00	Line missed in SLC and no snoops sent		
2'b01	Line missed in SLC and directed snoop sent		
2'b10	Line missed in SLC and broadcast snoops sent		
2'b11	Line hit in SLC and no snoops sent		

Responses from other CMN-600 devices have the default 2'b00 as the DEVEVENT value.

Appendix A **Signal Descriptions**

This section describes the CMN-600 I/O signals.

It contains the following sections:

- A.1 About the signal descriptions on page Appx-A-868.
- A.2 Clock and reset signals on page Appx-A-869.
- A.3 Clock management signals on page Appx-A-870.
- A.4 Power management signals on page Appx-A-871.
- A.5 Interrupt and event signals on page Appx-A-872.
- A.6 Configuration input signals on page Appx-A-873.
- A.7 Device population signals on page Appx-A-874.
- A.8 CHI interface signals on page Appx-A-875.
- A.9 ACE-Lite and AXI Interface signals on page Appx-A-881.
- A.10 CXLA interface signals on page Appx-A-890.
- A.11 Debug, trace, and PMU interface signals on page Appx-A-898.
- A.12 DFT and MBIST interface signals on page Appx-A-900.
- A.13 RN SAM configuration interface signals on page Appx-A-901.
- A.14 Processor event interface signals on page Appx-A-902.

A.1 About the signal descriptions

CMN-600 signals are composed of a base name along with identifiers that indicate unique product configuration.

Because there are multiple identical interfaces in CMN-600, the signal names described in this appendix are only root names, in many cases. The actual signal name includes a port-specific identifier suffix. The system configuration determines which of the signals described in this appendix are used in a particular system.

A.2 Clock and reset signals

The following table shows the CMN-600 clock and reset signals.

Table A-1 CMN-600 clock and reset signals

Signal	Туре	Description	Connection information
GCLK0	Input Primary CMN-600 clock input Connect to global clock for CMN-60		Connect to global clock for CMN-600.
nSRESET	Input	CMN-600 reset, active-LOW	Connect to global reset for CMN-600.

A.3 Clock management signals

The following table shows the clock management Q-Channel signals.

Table A-2 Clock management Q-Channel signals

Signal	Туре	Description	Connection information
QACTIVE_CLKCTL	Output	Indication that CMN-600 is active, and that the <i>External Clock Controller</i> (ExtCC) must not make a request for CMN-600 to prepare to stop the clocks	Connect to external clock controller.
QREQn_CLKCTL	Input	Request from the ExtCC for the CMN-600 to prepare to stop the clocks	Connect to external clock controller or tie HIGH if unused.
QACCEPTn_CLKCTL	Output	Positive acknowledgment after receiving QREQn assertion indicating that CMN-600 has completed preparation to stop the clocks and that the ExtCC can stop the clocks	Connect to external clock controller.
QDENY_CLKCTL	Output	Negative acknowledgment after receiving QREQn assertion indicating that CMN-600 has refused the request from the ExtCC to prepare to stop the clocks	

A.4 Power management signals

This section contains information on power management signals.

The following table shows the power management signals for the logic power domain.

Table A-3 Power management signals for logic power domain

Signal	Туре	Description	Connection information	
PREQ_LOGIC	Input	Indicates a request for a power state transition	Connect to external power management controller or tie LOW if unused.	
PSTATE_LOGIC[4:0]	Input	The power state to which a transition is requested ^c	Connect to external power management controller or tie to 5'b01000 if unused.	
PACCEPT_LOGIC	Output	Indicates acknowledgment of the power state transition and completion of the power state transition within the CMN-600	Connect to external power management controller.	
PDENY_LOGIC	Output	Indicates denial of the power state transition		
PACTIVE_LOGIC	Output	Hint that indicates activity across the CMN-600. When LOW, indicates the possibility of entering static retention or the OFF state.		

	Note ——
The system	cannot be powered down if $\mbox{\bf PACTIVE_LOGIC}$ is asserted.

If MultiCycle Path (MCP), the MCP duration must be ≤8 cycles to the last flop to receive this signal. This is a requirement for implementation.

A.5 Interrupt and event signals

The following table shows the interrupt and event signals.
Note
All signal names in this section are only a root name indicated as RootName . CMN-600 interfaces use RootName within a more fully specified signal name as follows:
CMN-600 interface signal name == RootName_NID #, where # represents the node ID corresponding to the specific interface.

Table A-4 Interrupt and event signals

Signal	Туре	Description	Connection information
INTREQPPU	Output	Power state transition complete	Connect to external interrupt control logic or Generic
INTREQPMU_NID <x></x>	Output	PMU count overflow interrupt. NID indicates node ID where <x> represents the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	Interrupt Controller.
INTREQERRNS	Output	Non-secure error handling interrupt	
INTREQERRS	Output	Secure error handling interrupt	
INTREQFAULTNS	Output	Non-secure fault handling interrupt	
INTREQFAULTS	Output	Secure fault handling interrupt	

A.6 Configuration input signals

The following table shows the configuration input signals.

All of these signals must be stable at least ten cycles before deassertion of reset and must remain stable throughout the operation of the CMN-600, until a following reset assertion or power down, if any.

Table A-5 General configuration input signals

Signal Type		Description	Connection information
CFGM_PERIPHBASE[47:26]		Base address [47:26] of the CMN-600 configuration register space	Tie as required for system memory map.

A.7 Device population signals

The following table shows the RN-D ACE-Lite+DVM device population signals.

These signals are present only when CMN-600 has been configured to include the relevant RN-D bridge.

Table A-6 RN-D ACE-Lite+DVM device population signals

Signal	Туре	Description	Connection information
ACCHANNELEN_S0_NID <x></x>	Input	Indicates that the RN-D bridge at NodeID <x> is populated and AMBA slave port 0 for NodeID <x> is of type ACE-Lite+DVM and includes a device which responds to DVM messages on the AC channel. 1 DVM-capable device is not populated. 1 DVM-capable device is populated.</x></x>	Tie as required for system configuration.
ACCHANNELEN_S1_NID <x></x>	Input	Indicates that the RN-D bridge at NodeID <x> is populated and AMBA slave port 1 for NodeID <x> is of type ACE-Lite+DVM and includes a device which responds to DVM messages on the AC channel. 1 DVM-capable device is not populated. 1 DVM-capable device is populated.</x></x>	
ACCHANNELEN_S2_NID <x></x>	Input	Indicates that the RN-I bridge at NodeID <x> is populated and AMBA slave port 2 for NodeID <x> is of type ACE-Lite+DVM and includes a device which responds to DVM messages on the AC channel. 1 DVM-capable device is not populated. 1 DVM-capable device is populated.</x></x>	

A.8 CHI interface signals

CMN-600 uses channels that form an inbound and outbound CHI interface for each device using signals that form each channel in a specific interface.

The Arm AMBA® 5 CHI Architecture Specification defines four channels:

- Request (REQ).
- · Response (RSP).
- Snoop (SNP).
- Data (DAT).

All signal names in this section are only a root name, **RootName**. CMN-600 interfaces use **RootName** within a more fully specified signal name as follows:

• CMN-600 interface signal name == **RootName_NID**#, where # is the node ID corresponding to the specific interface.

This section contains the following subsections:

- A.8.1 Per-device interface definition on page Appx-A-875.
- A.8.2 Per-channel interface signals on page Appx-A-876.
- A.8.3 Non-channel-specific interface signals on page Appx-A-879.

A.8.1 Per-device interface definition

Each CHI device included in a CMN-600 system has distinct functionality, and the requirements and configuration of its respective CHI interfaces differ.

The requirements and configuration for the CHI interfaces are as follows:

External RN-F interface

The RN-F interface consists of a request channel, snoop channel, and two response channels, one in each direction, as the following figure shows.

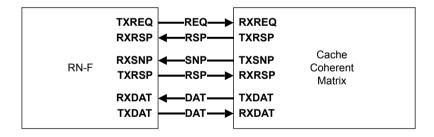


Figure A-1 External RN-F interface

It also has two data channels, one in each direction, for data transfers. CMN-600 receives request messages from the RN-F and sends responses to it. In addition, CMN-600 sends snoop messages to the RN-F and receives snoop response messages.

External SN-F interface

The SN-F interface consists of a request channel and a response channel as the following figure shows.

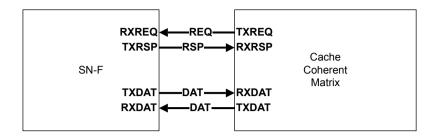
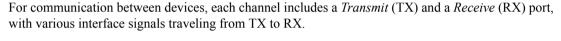



Figure A-2 External SN-F interface

It also has two data channels, one in each direction, for data transfers. The SN-F receives request messages from CMN-600 and returns response messages.

A.8.2 Per-channel interface signals

——Note ——Connection of CHI interfaces between two devices requires cross-coupling of the **TX*** and **RX*** signals between the two devices, as required by the CHI architecture.

The following table shows the Transmit Request channel signals.

Table A-7 Transmit Request channel signals

Signal	Туре	Description	Connection information
TXREQFLITPEND	Output	Transmit Request Early Flit Valid hint	Connect to RXREQFLITPEND of the corresponding CHI device, if populated.
TXREQFLITV	Output	Transmit Request Flit Valid	Connect to RXREQFLITV of the corresponding CHI device, if populated.
TXREQFLIT[n:0]d	Output	Transmit Request Flit	Connect to RXREQFLIT of the corresponding CHI device, if populated.
TXREQLCRDV	Input	Transmit Request channel link layer credit	Connect to RXREQLCRDV of the corresponding CHI device, if populated, otherwise tie LOW.

The following table shows the Transmit Response channel signals.

Table A-8 Transmit Response channel signals

Signal	Туре	Description	Connection information
TXRSPFLITPEND	Output	Transmit Response Early Flit Valid hint	Connect to RXRSPFLITPEND of the corresponding CHI device, if populated.
TXRSPFLITV	Output	Transmit Response Flit Valid	Connect to RXRSPFLITV of the corresponding CHI device, if populated.

d The value of n is configuration-dependent.

Table A-8 Transmit Response channel signals (continued)

Signal	Туре	Description	Connection information
TXRSPFLIT[n:0] ^e	Output	Transmit Response Flit	Connect to RXRSPFLIT of the corresponding CHI device, if populated.
TXRSPLCRDV	Input	Transmit Response channel link layer credit	Connect to RXRSPLCRDV of the corresponding CHI device, if populated, otherwise tie LOW.

The following table shows the Transmit Snoop channel signals.

Table A-9 Transmit Snoop channel signals

Signal	Туре	Description	Connection information	
TXSNPFLITPEND	Output	Transmit Snoop Early Flit Valid hint	Connect to RXSNPFLITPEND of the corresponding CHI device, i populated.	
TXSNPFLITV	Output	Transmit Snoop Flit Valid	Connect to RXSNPFLITV of the corresponding CHI device, if populated.	
TXSNPFLIT[n:0]f	Output	Transmit Snoop Flit	Connect to RXSNPFLIT of the corresponding CHI device, if populated.	
TXSNPLCRDV	Input	Transmit Snoop channel link layer credit	Connect to RXSNPLCRDV of the corresponding CHI device, if populated, otherwise tie LOW.	

The following table shows the Transmit Data channel signals.

Table A-10 Transmit Data channel signals

Signal	Туре	Description	Connection information
TXDATFLITPEND	Output	Transmit Data Early Flit Valid hint	Connect to RXDATFLITPEND of the corresponding CHI device, if populated.
TXDATFLITV	Output	Transmit Data Flit Valid	Connect to RXDATFLITV of the corresponding CHI device, if populated.
TXDATFLIT[n:0]g	Output	Transmit Data Flit	Connect to RXDATFLIT of the corresponding CHI device, if populated.
TXDATLCRDV	Input	Transmit Data channel link layer credit	Connect to RXDATLCRDV of the corresponding CHI device, if populated, otherwise tie LOW.

The following table shows the Receive Request channel signals.

Table A-11 Receive Request channel signals

Signal	Туре	Description	Connection information
RXREQFLITPEND	Input	Receive Request Early Flit Valid hint	Connect to TXREQFLITPEND of the corresponding CHI device, if populated, otherwise tie LOW.
RXREQFLITV	Input	Receive Request Flit Valid	Connect to TXREQFLITV of the corresponding processor, if populated, otherwise tie LOW.

The value of n is configuration-dependent.

The value of n is configuration-dependent.

g The value of n is configuration-dependent.

Table A-11 Receive Request channel signals (continued)

Signal	Туре	Description	Connection information
RXREQFLIT[n:0]h	Input	Receive Request Flit	Connect to TXREQFLIT of the corresponding CHI device, if populated, otherwise tie LOW.
RXREQLCRDV	Output	Receive Request channel link layer credit	Connect to TXREQLCRDV of the corresponding CHI device, if populated.

The following table shows the Receive Response channel signals.

Table A-12 Receive Response channel signals

Signal	Туре	Description	Connection information	
RXRSPFLITPEND	Input	Receive Response Early Flit Valid hint	Connect to TXRSPFLITPEND of the corresponding CHI device, if populated, otherwise tie LOW.	
RXRSPFLITV	Input	Receive Response Flit Valid	Connect to TXRSPFLITV of the corresponding processor, if populated, otherwise tie LOW.	
RXRSPFLIT[n:0]i	Input	Receive Response Flit	Connect to TXRSPFLIT of the corresponding CHI device, if populated, otherwise tie LOW.	
RXRSPLCRDV	Output	Receive Response channel link layer credit	Connect to TXRSPLCRDV of the corresponding CHI device, if populated.	

The following table shows the Receive Snoop channel signals.

Table A-13 Receive Snoop channel signals

Signal	Туре	Description	Connection information	
RXSNPFLITPEND	Input	Receive Snoop Early Flit Valid hint	Connect to TXSNPFLITPEND of the corresponding CHI device, if populated, otherwise tie LOW.	
RXSNPFLITV	Input	Receive Snoop Flit Valid	Connect to TXSNPFLITV of the corresponding processor, if populated, otherwise tie LOW.	
RXSNPFLIT[n:0] ^j	Input	Receive Snoop Flit	Connect to TXSNPFLIT of the corresponding CHI device, if populated, otherwise tie LOW.	
RXSNPLCRDV	Output	Receive Snoop channel link layer credit	Connect to TXSNPLCRDV of the corresponding CHI device, if populated.	

The following table shows the Receive Data channel signals.

Table A-14 Receive Data channel signals

Signal	Туре	Description	Connection information
RXDATFLITPEND	Input	Receive Data Early Flit Valid hint	Connect to TXDATFLITPEND of the corresponding CHI device, if populated, otherwise tie LOW.
RXDATFLITV	Input	Receive Data Flit Valid	Connect to TXDATFLITV of the corresponding processor, if populated, otherwise tie LOW.

h The value of n is configuration-dependent.

The value of n is configuration-dependent.

The value of n is configuration-dependent.

Table A-14 Receive Data channel signals (continued)

Signal	Туре	Description	Connection information
RXDATFLIT[n:0]k	Input	Receive Data Flit	Connect to TXDATFLIT of the corresponding CHI device, if populated, otherwise tie LOW.
RXDATLCRDV	Output	Receive Data channel link layer credit	Connect to TXDATLCRDV of the corresponding CHI device, if populated.

A.8.3 Non-channel-specific interface signals

Every transmit and receive link layer interface includes additional signals that exist only at the interface level and are not channel specific.

The following table shows the LinkActive interface signals.

Table A-15 Receive LinkActive interface signals

Signal	Туре	Description	Connection information
RXLINKACTIVEREQ	Input	Receive channel LinkActive request from adjacent transmitter device	Connect to TXLINKACTIVEREQ of the corresponding CHI device, if populated, otherwise tie LOW.
RXLINKACTIVEACK	Output	Receive channel LinkActive acknowledgment to adjacent transmitter device	Connect to TXLINKACTIVEACK of the corresponding CHI device, if populated.
TXLINKACTIVEREQ	Output	Transmit channel LinkActive request to adjacent receiver device	Connect to RXLINKACTIVEREQ of the corresponding CHI device, if populated.
TXLINKACTIVEACK	Input	Transmit channel LinkActive acknowledgment from adjacent receiver device	Connect to RXLINKACTIVEACK of the corresponding CHI device, if populated, otherwise tie LOW.

The following table shows the Sactive interface signals.

Table A-16 Sactive interface signals

Signal	Туре	Description	Connection information
RXSACTIVE	Input	Indication from the adjacent CHI device that it has one or more outstanding protocol-layer transactions. RXSACTIVE must remain asserted throughout the lifetime of the transaction.	Connect to TXSACTIVE of the corresponding CHI device.
TXSACTIVE	Output	Indication to the adjacent CHI device that CMN-600 has one or more outstanding protocol-layer transactions. TXSACTIVE remains asserted throughout the lifetime of the transaction.	Connect to RXSACTIVE of the corresponding CHI device.

The following table shows the hardware coherency interface signals.

k The value of n is configuration-dependent.

Table A-17 Hardware coherency interface signals

Signal	Туре	Description	Connection information
SYSCOREQ	Input	Request to enter CHI coherence domain when asserted and to exit the CHI coherence domain when deasserted. SYSCOREQ and SYSCOACK implement a four-phase handshake protocol.	Connect to SYSCOREQ of corresponding CHI device, if populated, otherwise tie LOW.
SYSCOACK	Output	Acknowledge CHI coherence domain entry/exit request	Connect to SYSCOACK of corresponding CHI device, if populated.

A.9 ACE-Lite and AXI Interface signals

CMN-600 interfaces use **RootName** signal name within a more fully specified convention.

_____ Note _____

All signal names in this section consist of a root name, **RootName**. CMN-600 interfaces use **RootName** within a more fully specified signal name as follows:

- CMN-600 ACE-Lite and AXI interface signal name == RootName_[S|M]<#a>_NID#b, where:
 - **S**|**M** Defines either a slave or master interface.
 - $\#_a$ Defines an optional interface identifier for a node that can support multiple AMBA interfaces.
 - #b Defines the node ID corresponding to the specific interface.

Multi-bit signals append the bit-range identifier included in the **RootName** to the end of the full signal name.

This section contains the following subsections:

- A.9.1 ACE-Lite-with-DVM slave interface signals on page Appx-A-881.
- A.9.2 AXI/ACE-Lite master interface signals on page Appx-A-886.

A.9.1 ACE-Lite-with-DVM slave interface signals

This interface is present as the ACE-Lite-with-DVM slave port for an RN-D bridge. The signal descriptions show which signals specific to DVM functionality are not present in an ACE-Lite interface without DVM.

The following table shows the clock and power management signals.

Table A-18 Clock and power management signals

Signal	Туре	Description	Connection information
ACLKEN_S	Input	AXI bus clock enable	Connect to clock enable logic. Tie HIGH if RN-I port is unused.
ACWAKEUP_S	Output	Indication that the interconnect is starting a transaction that is being sent to the DVM master (SMMU)	Connect to corresponding master device, if populated.
AWAKEUP_S	Input	Indication that the master is starting a transaction that is being sent to the interconnect	Connect to corresponding master device, if populated, otherwise tie LOW.
CACTIVE_S	Input	Indication that master device is active	Connect to the CACTIVE output of the corresponding ADB-400, if present, otherwise tie LOW.
RNID_SAM_STALL_DIS	Input	Disables RN SAM programming stall for specified RN	Tie HIGH if boot programming, including RN SAM, is done through this RN-I port. Otherwise, tie LOW.
SYSCOREQ_S	Input	Request to enter DVM domain when asserted and to exit the DVM domain when deasserted. SYSCOREQ and SYSCOACK implement a four-phase handshake protocol.	Connect to corresponding master device. Tie LOW if master is not populated or does have port.
SYSCOACK_S	Output	Acknowledge for DVM domain entry/exit	Connect to corresponding master device, if populated.

The following table shows the Write Address Channel signals.

Table A-19 Write Address Channel signals

Signal	Туре	Description	Connection information
AWREADY_S	Output	Write address ready	Connect to corresponding master device, if populated.
AWVALID_S	Input	Write address valid	Connect to corresponding master device,
AWID_S[10:0]	Input	Write address ID	if populated, otherwise tie LOW.
AWADDR_S[n:0] ¹	Input	Write address	
AWLEN_S[7:0]	Input	Write burst length	
AWSIZE_S[2:0]	Input	Write burst size	
AWBURST_S[1:0]	Input	Write burst type	
AWLOCK_S	Input	Write lock type	
AWCACHE_S[3:0]	Input	Write memory type	
AWUSER_S[n:0]	Input. Where n = REQ_RSVDC_WIDTH.	User-defined signal	
AWPROT_S[2:0]	Input	Write protection type	
AWQOS_S[3:0]	Input	Write Quality of Service identifier	
AWSNOOP_S[3:0]	Input	Write transaction type	
AWDOMAIN_S[1:0]	Input	Write shareability domain	
AWATOP[5:0]	Input	Atomic Operation	Tie LOW.
AWSTASHNID[10:0]	Input	Indicates the node identifier of the physical interface that is the target interface for the cache stash operation	Connect to corresponding master device, if populated, otherwise tie LOW.
AWSTASHNIDEN	Input	When asserted, indicates that the AWSTASHNID signal is valid and should be used	Connect to corresponding master device, if populated, otherwise tie LOW.
AWSTASHLPID[4:0]	Input	Indicates the logical processor sub-unit associated with the physical interface that is the target for the cache stash operation	Connect to corresponding master device, if populated, otherwise tie LOW.
AWSTASHLPIDEN	Input	When asserted, indicates that the AWSTASHLPID signal is enabled and should be used	Connect to corresponding master device, if populated, otherwise tie LOW.
AWTRACE	Input	Trace signal associated with the AW Write Address channel	Connect to corresponding master device, if populated, otherwise tie LOW.

The following table shows the Write Data Channel signals.

The value of n is configuration-dependent.

Table A-20 Write Data Channel signals

Signal	Туре	Description	Connection information
WREADY_S	Output	Write data ready	Connect to corresponding master device, if populated.
WVALID_S	Input	Write data valid	Connect to corresponding master device, if populated, otherwise tie LOW.
WDATA_S[n:0] ^m	Input	Write data	Connect to corresponding master device, if populated, otherwise tie LOW.
WSTRB_S[d:0] The value of $d = (n/8 - 1)$.	Input	Write byte-lane strobes	Connect to corresponding master device, if populated, otherwise tie LOW.
WLAST_S	Input	Write data last transfer indication	Connect to corresponding master device, if populated, otherwise tie LOW.
WUSER_S[0]	Input	WDATACHK Valid	Connect to corresponding master device, if populated, otherwise tie LOW.
WTRACE	Input	Trace signal associated with the Write Data channel	Connect to corresponding master device, if populated, otherwise tie LOW.
WPOISON[p:0]	Input	Poison signal associated with the W Write Data channel	Connect to corresponding master device, if populated, otherwise tie LOW.
WDATACHK[d:0] The value of $d = (n/8 - 1)$.	Input	Datacheck signal associated with the Write Data channel	Connect to corresponding master device, if populated, otherwise tie LOW.

The following table shows the Write Response Channel signals.

Table A-21 Write Response Channel signals

Signal	Туре	Description	Connection information
BREADY_S	Input	Write response ready	Connect to corresponding master device, if populated, otherwise tie LOW.
BVALID_S	Output	Write response valid	Connect to corresponding master device, if populated.
BID_S[10:0]	Output	Write response ID	
BRESP_S[1:0]	Output	Write response	
BUSER_S[3:0]	Output	User response signal	
BTRACE	Output	Trace signal associated with the Write Response channel	Connect to corresponding master device, if populated.

The following table shows the Read Address Channel signals.

m The value of n is configuration-dependent.

Table A-22 Read Address Channel signals

Signal	Туре	Description	Connection information
ARREADY_S	Output	Read address ready	Connect to corresponding master device, if populated.
ARVALID_S	Input	Read address valid	Connect to corresponding master device, if
ARID_S[10:0]	Input	Read address ID	populated, otherwise tie LOW.
ARADDR_S[n:0] ⁿ	Input	Read address	
ARLEN_S[7:0]	Input	Read burst length	
ARSIZE_S[2:0]	Input	Read burst size	
ARBURST_S[1:0]	Input	Read burst type	
ARLOCK_S	Input	Read lock type	
ARCACHE_S[3:0]	Input	Read cache type	
ARUSER_S[n:0]	Input. Where n = REQ_RSVDC_WIDTH.	User-defined signal	
ARPROT_S[2:0]	Input	Read protection type	
ARQOS_S[3:0]	Input	Read Quality of Service value	
ARSNOOP_S[3:0]	Input	Read transaction type	
ARDOMAIN_S[1:0]	Input	Read shareability domain	
ARTRACE	Input	Trace signal associated with the Read Address channel	Connect to corresponding master device, if populated, otherwise tie LOW.

The following table shows the Read Data Channel signals.

Table A-23 Read Data Channel signals

Signal	Туре	Description	Connection information
RREADY_S	Input	Read data ready	Connect to corresponding master device, if populated, otherwise tie LOW.
RVALID_S	Output	Read data valid Connect to corresponding master device populated.	
RID_S[10:0]	Output	Read data ID	Connect to corresponding master device, if populated.
RDATA_S[n:0]°	Output	Read data	Connect to corresponding master device, if populated.
RRESP_S[1:0]	Output	Read data response	Connect to corresponding master device, if populated.
RLAST_S	Output	Read data last transfer indication	Connect to corresponding master device, if populated.

The value of n is configuration-dependent. The value of n is configuration-dependent.

Table A-23 Read Data Channel signals (continued)

Signal	Туре	Description	Connection information
RUSER_S[0:0]	Output.	RDATACHK valid signal	Connect to corresponding master device, if populated
RTRACE	Output	Trace signal associated with the Read Data channel	Connect to corresponding master device, if populated.
RPOISON[p-1]	Output	Poison signal associated with the Read Data channel	Connect to corresponding master device, if populated.
RDATACHK[d:0] The value of d is $d = (n/8 - 1)$.	Output	Datacheck signal associated with the Read Data channel	Connect to corresponding master device, if populated.

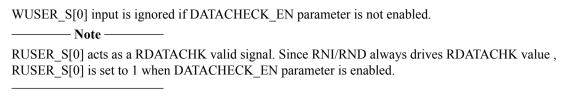
The following table shows the Snoop Address Channel signals. These signals are not included in an ACE-Lite interface without DVM.

Table A-24 Snoop Address Channel signals

Signal	Туре	Description	Connection information
ACREADY_S	Input	Snoop address ready	Connect to corresponding master device, if populated, otherwise tie LOW.
ACVALID_S	Output	Snoop address valid	Connect to corresponding master device, if populated.
ACADDR_S[n:0] ^p	Output	Snoop address	
ACSNOOP_S[3:0]	Output	Snoop transaction type	
ACPROT_S[2:0]	Output	Snoop protection type	
ACVMIDEXT[3:0]	Output	Snoop Address VMID Extension	
ACTRACE	Output	Snoop address trace	

The following table shows the Snoop Response Channel signals. These signals are not included in an ACE-Lite interface without DVM.

Table A-25 Snoop Response Channel signals


Signal	Туре	Description	Connection information
CRREADY_S	Output	Snoop response ready	Connect to corresponding master device, if populated.
CRVALID_S	Input	Snoop response valid	Connect to corresponding master device, if populated, otherwise tie LOW.
CRRESP_S[4:0]	Input	Snoop response	
CRTRACE	Input	Snoop response trace	

_____ Note _____

WUSER_S[0] acts as a WDATACHK valid signal when DATACHECK_EN parameter is enabled.

- If WUSER_S[0]=0, RNI/RND synthesizes the correct WDATACHK value before sending it on CHI write request.
- If WUSER S[0]=1, RNI/RND uses WDATACHK pin value to drive on CHI write request.

P The value of n is configuration-dependent.

RUSER_S[0] output is set to 0 if DATACHECK_EN parameter is not enabled.

A.9.2 AXI/ACE-Lite master interface signals

HN-I and SBSX have an AXI/ACE-Lite master interface.

The following table shows the clock enable signal.

Table A-26 Clock enable signal

Signal	Туре	Description	Connection information
ACLKEN_M	Input	AXI Master bus clock enable	Connect to clock-enable logic.
AWAKEUP_M	Output	Indication that CMN-600 is starting an AXI transaction	Connect to corresponding slave device, if populated.

The following table shows the Write Address Channel signals.

Table A-27 Write Address Channel signals

Signal	Туре	Description	Connection information
AWREADY_M	Input	Write address ready	Connect to corresponding slave device, if populated, otherwise tie LOW.
AWVALID_M	Output	Write address valid	Connect to corresponding slave device, if
AWID_M[10:0]	Output	Write address ID	populated.
AWADDR_M[n:0] ^q	Output	Write address	
AWLEN_M[7:0]	Output	Write burst length	
AWSIZE_M[2:0]	Output	Write burst size	
AWBURST_M[1:0]	Output	Write burst type	
AWLOCK_M	Output	Write lock type	
AWCACHE_M[3:0]	Output	Write cache type	
AWUSER_M[n:0]	Output. Where n = REQ_RSVDC_WIDTH.	User signal	
AWPROT_M[2:0]	Output	Write protection type	
AWQOS_M[3:0]	Output	Write Quality of Service value	
AWSNOOP_M[3:0]	Output	Shareable write transaction type	
AWDOMAIN_M[1:0]	Output	Write shareability domain	
AWTRACE_M	Output	-	

q The value of n is configuration-dependent.

The following table shows the Write Data Channel signals.

Table A-28 Write Data Channel signals

Signal	Туре	Description	Connection information
WREADY_M	Input	Write data ready	Connect to corresponding slave device, if populated, otherwise tie LOW.
WVALID_M	Output	Write data valid	Connect to corresponding slave device, if populated.
WDATA_M[n:0] ST	Output	Write data	Connect to corresponding slave device, if populated.
WSTRB_M[n:0] ^{tr}	Output	Write byte-lane strobes	Connect to corresponding slave device, if populated.
WLAST_M	Output	Write data last transfer indication	Connect to corresponding slave device, if populated.
WUSER_M[0:0]	Output	WDATACHK valid signal	Connect to corresponding slave device, if populated.
WPOISONM[p:0] The value of $p = (n/64) - 1$.	Output	Poison signal associated with the Write Data channel	Connect to corresponding master device, if populated, otherwise tie LOW.
WDATACHKM[d:0] The value of $d = (n/8 - 1)$.	Output	Datacheck signal associated with the Write Data channel	Connect to corresponding master device, if populated, otherwise tie LOW.
WTRACEM	Output	Trace signal associated with the Write Data channel	Connect to corresponding master device, if populated, otherwise tie LOW.

The following table shows the Write Response Channel signals.

Table A-29 Write Response Channel signals

Signal	Туре	Description	Connection information
BREADY_M	Output	Write response ready	Connect to corresponding slave device, if populated.
BVALID_M	Input	Write response valid	Connect to corresponding slave device, if populated, otherwise tie LOW.
BID_M[10:0]	Input	Write response ID	
BRESP_M[1:0]	Input	Write response	
BUSER_M[3:0]	Input	User signal	
BTRACEM	Input	-	

The following table shows the Read Address Channel signals.

WDATA is configurable to 128 bits or 256 bits. **WSTRB** scales accordingly. The value of n is configuration-dependent.

The value of n is configuration-dependent.

Table A-30 Read Address Channel signals

Signal	Туре	Description	Connection information
ARREADY_M	Input	Read address ready	Connect to corresponding slave device, if populated, otherwise tie LOW.
ARVALID_M	Output	Read address valid	Connect to corresponding slave device, if
ARID_M[10:0]	Output	Read address ID	populated.
ARADDR_M[n:0]u	Output	Read address	
ARLEN_M[7:0]	Output	Read burst length	
ARSIZE_M[2:0]	Output	Read burst size	
ARBURST_M[1:0]	Output	Read burst type	
ARLOCK_M	Output	Read lock type	
ARCACHE_M[3:0]	Output	Read cache type	
ARUSER_M[n:0]	Output, where n = REQ_RSVDC_WIDTH.	User signal	
ARPROT_M[2:0]	Output	Read protection type	
ARQOS_M[3:0]	Output	Read Quality of Service value	
ARSNOOP_M[3:0]	Output	Shareable read transaction type	
ARDOMAIN_M[1:0]	Output	Read shareability domain	
ARTRACEM	Output	-	

The following table shows the Read Data Channel signals.

Table A-31 Read Data Channel signals

Signal	Туре	Description	Connection information
RREADY_M	Output	Read data ready	Connect to corresponding slave device, if populated.
RVALID_M	Input	Read data valid	Connect to corresponding slave device, if populated, otherwise tie LOW.
RID_M[10:0]	Input	Read data ID	Connect to corresponding slave device, if populated, otherwise tie LOW.
RDATA_M[127:0]/[255:0]	Input	Read data	Connect to corresponding slave device, if populated, otherwise tie LOW.
RRESP_M[1:0]	Input	Read data response	Connect to corresponding slave device, if populated, otherwise tie LOW.
RLAST_M	Input	Read data last transfer indication	Connect to corresponding slave device, if populated, otherwise tie LOW.
RUSER_M[0:0]	Input	RDATACHK valid signal	Connect to corresponding slave device, if populated, otherwise tie LOW.

The value of n is configuration-dependent.

Table A-31 Read Data Channel signals (continued)

Signal	Туре	Description	Connection information
RPOISONM[p:0] The value of p = $(n/64) - 1$.	Input	Poison signal associated with the Read Data channel	Connect to corresponding master device, if populated.
RDATACHKM[d:0] The value of $d = (n/8 - 1)$.	Input	Datacheck signal associated with the Read Data channel	Connect to corresponding master device, if populated.
RTRACEM	Input	Trace signal associated with the Read Data channel	Connect to corresponding master device, if populated.

	Read Data channel	populated.	
	ets as a RDATACHK valid signal v	when DATACHECK_EN parameter is enabled.	
read data resp	oonse.	e correct RDATACHK value before sending it of CHK pin value to drive on CHI read data respon	
RUSER_M[0] in Note	put is ignored if DATACHECK_E	EN parameter is not enabled.	
	cts as a WDATACHK valid signal M[0] is set to 1 when DATACHE	l. Since SBSX/HNI always drives WDATACHECK_EN parameter is enabled.	K
WIISER MIOLO	output is driven to 0 if DATACHEO	CK FN parameter is not enabled	

A.10 CXLA interface signals

The following tables describe CMN-600 CXLA interface signals.

The following table contains global signals.

Table A-32 Global signals

Signal	Туре	Description	Connection information
CLK_CGL	Input	CML CGL clock input.	Connect to CGL clock for CXLA.
nRESET_CGL	Input	CML CGL reset, active LOW.	Connect to CGL reset for CXLA.
CLK_CXS	Input	CML CXS clock input.	Connect to CXS clock for CXLA.
nRESET_CXS	Input	CML CXS reset, active LOW.	Connect to CXS reset for CXLA.
DFTCLKBYPASS	Input	See A.12 DFT and MBIST interface	See A.12 DFT and MBIST interface
DFTCLKDISABLE	Input	signals on page Appx-A-900 for more DFT information.	signals on page Appx-A-900 for more DFT information.
DFTRSTDISABLE	Input	DIT Information.	DI I miormanon.
DFTCGEN	Input		
DFTRAMHOLD	Input		
DFTMCPHOLD	Input		
QACTIVE_CGLCLKCTL	Output (CMN-600)	Indication that the CGL side of the CMN-600 is active and that the External Clock Controller (ExtCC) must not make a request for the CMN-600 and corresponding CXLA to prepare to stop the clock CLK_CGL.	OR with QACTIVE_CGLCLKCTL (CXLA) and connect to external clock controller.
QACTIVE_CGLCLKCTL	Output (CXLA)	Indication that the CGL side of the CXRH is active and that the External Clock Controller (ExtCC) must not make a request for the CMN-600 and corresponding CXLA to prepare to stop the clock CLK_CGL.	OR with QACTIVE_CGLCLKCTL (CMN-600) and connect to external clock controller.
QACTIVE_CXSCLKCTL	Output	Indication that the CXS side of CXLA is active and that the External Clock Controller (ExtCC) must not make a request for the corresponding CXLA to prepare to stop the clock CLK_CXS.	Connect to external clock controller.
QREQn_CXSCLKCTL	Input	Request from the ExtCC for the CXLA to prepare to stop the clock CLK_CXS	Connect to external clock controller or tie HIGH if unused.
QACCEPTn_CXSCLKCTL	Output	Positive acknowledgment after receiving QREQn assertion indicating that the CXLA has completed preparation to stop the clock CLK_CXS and that the ExtCC can stop the clock CLK_CXS.	Connect to external clock controller.
QDENY_CXSCLKCTL	Output	Negative acknowledgment after receiving QREQn assertion indicating that the CXLA has refused the request from the ExtCC to prepare to stop the clock CLK_CXS.	Connect to external clock controller.

Table A-32 Global signals (continued)

Signal	Туре	Description	Connection information
PWR_QREQn_CXLA	Input	Indicates a request for a power state transition in CXLA.	Connect to external power management controller or tie HIGH if unused.
PWR_QACCEPTn_CXLA	Output	Indicates acknowledgment of the power state transition and completion of the power state transition within the CXLA.	Connect to external power management controller.
PWR_QDENY_CXLA	Output	Indicates denial of the power state transition.	Connect to external power management controller.
PWR_QACTIVE_CXLA	Output	Hint that indicates activity across the CXLA. When LOW, indicates the possibility of entering the OFF state.	Connect to external power management controller.
PCIE_BUS_NUM	Input	Requester ID of the corresponding PCIe IP.	-

CCIX Gateway Link (CGL) interface (Credited Micro-Architecture interface between RA, HA, and LA components)

The following tables contain CCIX Gateway Link (CGL) interface signals.

The following table contains Transmit Memory Request interface signals.

Table A-33 Transmit Memory Request interface signals

Signal	Туре	Description	Connection information
TXCGLREQDATFLITPEND	Output	Transmit Memory Request Early Flit Valid hint.	Connect to RXCGLREQDATFLITPEND of the corresponding CXLA.
TXCGLREQDATFLITV	Output	Transmit Memory Request Flit Valid.	Connect to RXCGLREQDATFLITV of the corresponding CXLA.
TXCGLREQDATFLIT[n:0]	Output	Transmit Memory Request Flit.	Connect to RXCGLREQDATFLIT of the corresponding CXLA.
TXCGLREQDATLCRDV	Input	Transmit Memory Request channel link layer credit.	Connect to RXCGLREQDATLCRDV of the corresponding CXLA.

The following table contains Transmit Snoop Request interface signals.

Table A-34 Transmit Snoop Request interface signals

Signal	Туре	Description	Connection information
TXCGLSNPFLITPEND	Output	Transmit Snoop Request Early Flit Valid hint.	Connect to RXCGLSNPFLITPEND of the corresponding CXLA.
TXCGLSNPFLITV	Output	Transmit Snoop Request Flit Valid.	Connect to RXCGLSNPFLITV of the corresponding CXLA.
TXCGLSNPFLIT[n:0]	Output	Transmit Snoop Request Flit.	Connect to RXCGLSNPFLIT of the corresponding CXLA.
TXCGLSNPLCRDV	Input	Transmit Snoop Request channel link layer credit.	Connect to RXCGLSNPLCRDV of the corresponding CXLA.

The following table contains Transmit Memory Response interface signals.

Table A-35 Transmit Memory Response interface signals

Signal	Туре	Description	Connection information
TXCGLREQRSPFLITPEND	Output	Transmit Memory Response Early Flit Valid hint.	Connect to RXCGLREQRSPFLITPEND of the corresponding CXLA.
TXCGLREQRSPFLITV	Output	Transmit Memory Response Flit Valid.	Connect to RXCGLREQRSPFLITV of the corresponding CXLA.
TXCGLREQRSPFLIT[n:0]	Output	Transmit Memory Response Flit.	Connect to RXCGLREQRSPFLIT of the corresponding CXLA.
TXCGLREQRSPLCRDV	Input	Transmit Memory Response channel link layer credit.	Connect to RXCGLREQRSPLCRDV of the corresponding CXLA.

The following table contains Transmit Snoop Response interface signals.

Table A-36 Transmit Snoop Response interface signals

Signal	Туре	Description	Connection information
TXCGLSNPRSPFLITPEND	Output	Transmit Snoop Response Early Flit Valid hint.	Connect to RXCGLSNPRSPFLITPEND of the corresponding CXLA.
TXCGLSNPRSPFLITV	Output	Transmit Snoop Response Flit Valid.	Connect to RXCGLSNPRSPFLITV of the corresponding CXLA.
TXCGLSNPRSPFLIT[n:0]	Output	Transmit Snoop Response Flit.	Connect to RXCGLSNPRSPFLIT of the corresponding CXLA.
TXCGLSNPRSPLCRDV	Input	Transmit Snoop Response channel link layer credit.	Connect to RXCGLSNPRSPLCRDV of the corresponding CXLA.

The following table contains Transmit Snoop Data interface signals.

Table A-37 Transmit Snoop Data interface signals

Signal	Туре	Description	Connection information
TXCGLSNPDATFLITPEND	Output	Transmit Snoop Data Early Flit Valid hint.	Connect to RXCGLSNPDATFLITPEND of the corresponding CXLA.
TXCGLSNPDATFLITV	Output	Transmit Snoop Data Flit Valid.	Connect to RXCGLSNPDATFLITV of the corresponding CXLA.
TXCGLSNPDATFLIT[n:0]	Output	Transmit Snoop Data Flit.	Connect to RXCGLSNPDATFLIT of the corresponding CXLA.
TXCGLSNPDATLCRDV	Input	Transmit Snoop Data channel link layer credit.	Connect to RXCGLSNPDATLCRDV of the corresponding CXLA.

The following table contains Transmit Memory Response interface signals.

Table A-38 Transmit Memory Response interface signals

Signal	Туре	Description	Connection information
TXCGLRSPDATFLITPEND	Output	Transmit Memory Response Data Early Flit Valid hint.	Connect to RXCGLRSPDATFLITPEND of the corresponding CXLA.
TXCGLRSPDATFLITV	Output	Transmit Memory Response Data Flit Valid.	Connect to RXCGLRSPDATFLITV of the corresponding CXLA.

Table A-38 Transmit Memory Response interface signals (continued)

Signal	Туре	Description	Connection information
TXCGLRSPDATFLIT[n:0]	Output	Transmit Memory Response Data Flit.	Connect to RXCGLRSPDATFLIT of the corresponding CXLA.
TXCGLRSPDATLCRDV	Input	Transmit Memory Response Data channel link layer credit.	Connect to RXCGLRSPDATLCRDV of the corresponding CXLA.

The following table contains Transmit Protocol Credit interface signals.

Table A-39 Transmit Protocol Credit interface signals

Signal	Туре	Description	Connection information
TXCGLPCRDFLITPEND	Output	Transmit Protocol Credit Early Flit Valid hint.	Connect to RXCGLPCRDFLITPEND of the corresponding CXLA.
TXCGLPCRDFLITV	Output	Transmit Protocol Credit Flit Valid.	Connect to RXCGLPCRDFLITV of the corresponding CXLA.
TXCGLPCRDFLIT[n:0]	Output	Transmit Protocol Credit Flit.	Connect to RXCGLPCRDFLIT of the corresponding CXLA.
TXCGLPCRDLCRDV	Input	Transmit Protocol Credit channel link layer credit.	Connect to RXCGLPCRDLCRDV of the corresponding CXLA.

The following table contains Receive Memory Request interface signals.

Table A-40 Receive Memory Request interface signals

Signal	Туре	Description	Connection information
RXCGLREQDATFLITPEND	Input	Receive Memory Request Early Flit Valid hint.	Connect to TXCGLREQDATFLITPEND of the corresponding CXLA.
RXCGLREQDATFLITV	Input	Receive Memory Request Flit Valid.	Connect to TXCGLREQDATFLITV of the corresponding CXLA.
RXCGLREQDATFLIT[n:0]	Input	Receive Memory Request Flit.	Connect to TXCGLREQDATFLIT of the corresponding CXLA.
RXCGLREQDATLCRDV	Output	Receive Memory Request channel link layer credit.	Connect to TXCGLREQDATLCRDV of the corresponding CXLA.

The following table contains Receive Snoop Request interface signals.

Table A-41 Receive Snoop Request interface signals

Signal	Туре	Description	Connection information
RXCGLSNPFLITPEND	Input	Receive Snoop Request Early Flit Valid hint.	Connect to TXCGLSNPFLITPEND of the corresponding CXLA.
RXCGLSNPFLITV	Input	Receive Snoop Request Flit Valid.	Connect to TXCGLSNPFLITV of the corresponding CXLA.

Table A-41 Receive Snoop Request interface signals (continued)

Signal	Туре	Description	Connection information
RXCGLSNPFLIT[n:0]	Input	Receive Snoop Request Flit.	Connect to TXCGLSNPFLIT of the corresponding CXLA.
RXCGLSNPLCRDV	Output	Receive Snoop Request channel link layer credit.	Connect to TXCGLSNPLCRDV of the corresponding CXLA.

The following table contains Receive Memory Response interface signals.

Table A-42 Receive Memory Response interface signals

Signal	Туре	Description	Connection information
RXCGLREQRSPFLITPEND	Input	Receive Memory Response Early Flit Valid hint.	Connect to TXCGLREQRSPFLITPEND of the corresponding CXLA.
RXCGLREQRSPFLITV	Input	Receive Memory Response Flit Valid.	Connect to TXCGLREQRSPFLITV of the corresponding CXLA.
RXCGLREQRSPFLIT[n:0]	Input	Receive Memory Response Flit.	Connect to TXCGLREQRSPFLIT of the corresponding CXLA.
RXCGLREQRSPLCRDV	Output	Receive Memory Response channel link layer credit.	Connect to TXCGLREQRSPLCRDV of the corresponding CXLA.

The following table contains Receive Snoop Response interface signals.

Table A-43 Receive Snoop Response interface signals

Signal	Туре	Description	Connection information
RXCGLSNPRSPFLITPEND	Input	Receive Snoop Response Early Flit Valid hint.	Connect to TXCGLSNPRSPFLITPEND of the corresponding CXLA.
RXCGLSNPRSPFLITV	Input	Receive Snoop Response Flit Valid.	Connect to TXCGLSNPRSPFLITV of the corresponding CXLA.
RXCGLSNPRSPFLIT[n:0]	Input	Receive Snoop Response Flit.	Connect to TXCGLSNPRSPFLIT of the corresponding CXLA.
RXCGLSNPRSPLCRDV	Output	Receive Snoop Response channel link layer credit.	Connect to TXCGLSNPRSPLCRDV of the corresponding CXLA.

The following table contains Receive Snoop Data interface signals.

Table A-44 Receive Snoop Data interface signals

Signal	Туре	Description	Connection information
RXCGLSNPDATFLITPEND	Input	Receive Snoop Data Early Flit Valid hint.	Connect to TXCGLSNPDATFLITPEND of the corresponding CXLA.
RXCGLSNPDATFLITV	Input	Receive Snoop Data Flit Valid.	Connect to TXCGLSNPDATFLITV of the corresponding CXLA.

Table A-44 Receive Snoop Data interface signals (continued)

Signal	Туре	Description	Connection information
RXCGLSNPDATFLIT[n:0]	Input	Receive Snoop Data Flit.	Connect to TXCGLSNPDATFLIT of the corresponding CXLA.
RXCGLSNPDATLCRDV	Output	Receive Snoop Data channel link layer credit.	Connect to TXCGLSNPDATLCRDV of the corresponding CXLA.

The following table contains Receive Memory Response interface signals.

Table A-45 Receive Memory Response interface signals

Signal	Туре	Description	Connection information
RXCGLRSPDATFLITPEND	Input	Receive Memory Response Data Early Flit Valid hint.	Connect to TXCGLRSPDATFLITPEND of the corresponding CXLA.
RXCGLRSPDATFLITV	Input	Receive Memory Response Data Flit Valid.	Connect to TXCGLRSPDATFLITV of the corresponding CXLA.
RXCGLRSPDATFLIT[n:0]	Input	Receive Memory Response Data Flit.	Connect to TXCGLRSPDATFLIT of the corresponding CXLA.
RXCGLRSPDATLCRDV	Output	Receive Memory Response Data channel link layer credit.	Connect to TXCGLRSPDATLCRDV of the corresponding CXLA.

The following table contains Receive Protocol Credit interface signals.

Table A-46 Receive Protocol Credit interface signals

Signal	Туре	Description	Connection information
RXCGLPCRDFLITPEND	Input	Receive Protocol Credit Early Flit Valid hint.	Connect to TXCGLPCRDFLITPEND of the corresponding CXLA
RXCGLPCRDFLITV	Input	Receive Protocol Credit Flit Valid.	Connect to TXCGLPCRDFLITV of the corresponding CXLA.
RXCGLPCRDFLIT[n:0]	Input	Receive Protocol Credit Flit.	Connect to TXCGLPCRDFLIT of the corresponding CXLA.
RXCGLPCRDLCRDV	Output	Receive Protocol Credit channel link layer credit.	Connect to TXCGLPCRDLCRDV of the corresponding CXLA.

The following table contains Receive and Transmit channel LinkActive interface signals.

Table A-47 Receive and Transmit channel LinkActive interface signals

Signal	Туре	Description	Connection information
RXCGLLINKACTIVEREQ	Input	Receive channel LinkActive request from CXLA.	Connect to TXCGLLINKACTIVEREQ of the corresponding CXLA.
RXCGLLINKACTIVEACK	Output	Receive channel LinkActive acknowledgement to CXLA.	Connect to TXCGLLINKACTIVEACK of the corresponding CXLA.

Table A-47 Receive and Transmit channel LinkActive interface signals (continued)

Signal	Туре	Description	Connection information
TXCGLLINKACTIVEREQ	Output	Transmit channel LinkActive request to CXLA.	Connect to RXCGLLINKACTIVEREQ of the corresponding CXLA.
TXCGLLINKACTIVEACK Input		Transmit channel LinkActive acknowledgement from CXLA.	Connect to RXCGLLINKACTIVEACK of the corresponding CXLA.

The following table contains RXCGLSACTIVE and TXCGLSACTIVE interface signals.

Table A-48 RXCGLSACTIVE and TXCGLSACTIVE interface signals

Signal	Туре	Description	Connection information
RXCGLSACTIVE	Input	Indication from CXLA that it has one or more outstanding protocol-layer transactions. RXSACTIVE must remain asserted throughout the lifetime of the transaction.	Connect to TXCGLSACTIVE of the corresponding CXLA.
TXCGLSACTIVE	Output	Indication to CXLA that CXRH has one or more outstanding protocol-layer transactions. TXSACTIVE remains asserted throughout the lifetime of the transaction.	Connect to RXCGLSACTIVE of the corresponding CXLA.

The following table contains CXLA configuration interface signals.

Table A-49 CXLA configuration interface signals

Signal	Туре	Description	Connection information	
TXPUBFLITPEND	Output	Transmit Utility Bus Early Flit Valid hint	Connect to RXPUBFLITPEND of the corresponding CXLA.	
TXPUBFLITV	Output	Transmit Utility Bus Flit Valid	Connect to RXPUBFLITV of the corresponding CXLA.	
TXPUBFLIT [34:0]	Output	Transmit Utility Bus Flit	Connect to RXPUBFLIT of the corresponding CXLA.	
TXPUBLCRDV[1:0]	Input	Transmit Utility Bus channel link layer credit	Connect to RXPUBLCRDV of the corresponding CXLA.	
RXPUBFLITPEND	Input	Receive Utility Bus Early Flit Valid hint	Connect to TXPUBFLITPEND of the corresponding CXLA.	
RXPUBFLITV	Input	Receive Utility Bus Flit Valid	Connect to TXPUBFLITV of the corresponding CXLA.	
RXPUBFLIT [34:0]	Input	Receive Utility Bus Flit	Connect to TXPUBFLIT of the corresponding CXLA.	
RXPUBLCRDV[1:0]	Output	Receive Utility Bus channel link layer credit	Connect to TXPUBLCRDV of the corresponding CXLA.	
RXPUBLINKACTIVEREQ	Input	Receive channel LinkActive request from CXLA	Connect to TXPUBLINKACTIVEREQ of the corresponding CXLA.	
RXPUBLINKACTIVEACK	Output	Receive channel LinkActive acknowledgement to CXLA	Connect to TXPUBLINKACTIVEACK of the corresponding CXLA.	
RXPUBLINKFLIT	Input	Receive channel Link Flit valid from CXLA. Indicates that RXPUBFLITV is a link flit	Connect to TXPUBLINKFLIT of the corresponding CXLA.	

Table A-49 CXLA configuration interface signals (continued)

Signal	Туре	Description	Connection information
TXPUBLINKACTIVEREQ	Output	Transmit channel LinkActive request to CXLA	Connect to RXPUBLINKACTIVEREQ of the corresponding CXLA.
TXPUBLINKACTIVEACK	Input	Transmit channel LinkActive acknowledgement from CXLA	Connect to RXPUBLINKACTIVEACK of the corresponding CXLA.
TXPUBLINKFLIT	Output	Transmit channel Link Flit valid to CXLA. Indicates that TXPUBFLITV is a link flit	Connect to RXPUBLINKFLIT of the corresponding CXLA.

A.11 Debug, trace, and PMU interface signals

Signals that aid debugging are included in CMN-600.

The following table shows the debug, trace, and PMU interface signals.

Note

Note

All signal names in this section are only a root name indicated as RootName. CMN-600 interfaces use RootName within a more fully specified signal name as follows:

CMN-600 interface signal name == RootName_NID#, where # represents the node ID corresponding to the specific interface.

Table A-50 Debug, trace, and PMU interface signals

Signal	Туре	Description	Connection information
ATCLKEN_NID <x></x>	Input	ATB clock enable, where <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
ATREADY_NID <x></x>	Input	ATB device ready: 0 = not ready, 1 = ready. <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
AFVALID_NID <x></x>	Input	FIFO flush request, where <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
ATDATA[63:0]_NID <x></x>	Output	ATB data bus, where <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
ATVALID_NID <x></x>	Output	ATB valid data: 0 = no valid data, 1 = valid data. <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
ATBYTES[1:0]_NID <x></x>	Output	CoreSight ATB device data size: 0b00 = 1 byte, 0b01 = 2 bytes, 0b10 = 3 bytes, 0b11 = 4 bytes. <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
AFREADY_NID <x></x>	Output	FIFO flush acknowledge: 0 = FIFO flush not complete, 1 = FIFO flush complete. <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
ATID[6:0]_NID <x></x>	Output	ATB trace source identification, where <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	-
DBGWATCHTRIGREQ_NID <x></x>	Output	Trigger output from DEM indicating assertion of a DT event. DBGWATCHTRIGREQ is asynchronoussafe, and operates in a four-phase handshake with DBGWATCHTRIGACK . <x> is the NodeID number for that HN-D/DTC or HN-T/DTC.</x>	Connect to external debug and trace control logic.
DBGWATCHTRIGACK_NID <x></x>	Input	External acknowledgment of receipt of DBGWATCHTRIGREQ . DBGWATCHTRIGACK must be asynchronous-safe, and operates in a four-phase handshake with DBGWATCHTRIGREQ . <<>> is the NodeID number for that HN-D/DTC or HN-T/DTC.	Connect to external debug and trace control logic, or tie LOW if DBGWATCHTRIGREQ is unused.

Table A-50 Debug, trace, and PMU interface signals (continued)

Signal	Туре	Description	Connection information
PMUSNAPSHOTREQ	Input	External request that the live PMU counters are snapshot to the shadow registers.PMUSNAPSHOTREQ must be asynchronous-safe, and operates in a four-phase handshake with PMUSNAPSHOTACK.	Connect to external debug and trace control logic, or tie LOW if unused.
PMUSNAPSHOTACK	Output	Indication that all live PMU counters have been copied to shadow registers and the contents can be read. PMUSNAPSHOTACK is asynchronous-safe, and operates in a four-phase handshake with PMUSNAPSHOTREQ.	Connect to external debug and trace control logic.
NIDEN	Input	Global enable for all debug, trace, and PMU functionality. O Disabled. 1 Enabled.	Tie or drive as appropriate to meet system security requirements.
SPNIDEN	Input	Global enable for secure debug, trace, and PMU capability. Only applicable when NIDEN is enabled. 0 Disabled. 1 Enabled.	
TSVALUEB[63:0]	Input	Global system timestamp value in binary format.	Connect to external system timestamp counter output.

A.12 DFT and MBIST interface signals

Signals that support DFT and MBIST capabilities are included in CMN-600.

The following table shows the DFT signals.

Table A-51 DFT signals

Signal	Туре	Description	Connection information
DFTCLKBYPASS	Input	Select the SLC RAM clock to follow the CMN-600 input clock, as applicable for each clock region.	Tie LOW if unused.
DFTCLKDISABLE[3:0]	Input	Disable clock regions during scan shift.	
DFTRAMHOLD	Input	Disable the RAM chip select during scan shift.	
DFTMCPHOLD	Input	Assert to prevent HN-F multicycle RAMs from clocking during capture cycles.	
DFTRSTDISABLE	Input	Disable internal synchronized reset during scan shift.	
DFTCGEN	Input	Scan shift enable. Forces on the clock grids during scan shift.	
DFTSCANMODE	Input	During functional mode, the HN-F SLC and SF RAM set address and write data inputs satisfy RAM hold timing constraints using pipeline behavior. The set address and write data are only clocked and enabled the cycle before the RAMs are accessed, and are held the cycle that the RAM clock asserts.	
		The RAM hold constraints are not guaranteed during ATPG test, because random data is shifted into the flops that control the set address and write data flop enables. This allows the set address and write data to change in the same cycle as a RAM access, violating the RAM hold constraints.	
		This signal addresses the hold constraints during ATPG test. It is used to force the RAM set address and write data flop enables LOW in the cycle that RAM clocks are enabled during ATPG test.	
		The combination of the functional pipeline behavior and this override logic enable holds MCPs to be used on the RAM set address and write data inputs in the implementation flow and during static timing analysis.	

The following table shows the MBIST signals.

Table A-52 MBIST signals

Signal	Туре	Description	Connection information
nMBISTRESET	Input	Primary reset to enter MBIST. Must be HIGH during functional non-MBIST operation.	Tie HIGH if unused.
MBISTREQ	Input	SLC MBIST mode request	Tie LOW if unused.

A.13 RN SAM configuration interface signals

Signals that support RN SAM configuration are included in CMN-600.
The following table shows the RN SAM configuration interface signals.
Note
All signal names in this section are only a root name indicated as RootName . CMN-600 interfaces use RootName within a more fully specified signal name as follows:
CMN-600 interface signal name == RootName_NID #, where # represents the node ID corresponding to the specific interface.

Table A-53 RN SAM configuration interface signals

Signal	Туре	Description	Connection information
RXPUBFLITPEND	Input	Receive channel early flit valid hint	Connect to TXPUBFLITPEND of the corresponding CHI device, if populated. Otherwise, tie LOW.
RXPUBFLITV	Input	Receive channel flit valid	Connect to TXPUBFLITV of the corresponding CHI device, if populated. Otherwise, tie LOW.
RXPUBFLIT[34:0]	Input	Receive channel flit	Connect to TXPUBFLIT [n:0] of the corresponding CHI device, if populated. Otherwise, tie LOW.
RXPUBLINKFLIT	Input	Receive channel link flit	Connect to TXPUBLINKFLIT of the corresponding CHI device, if populated. Otherwise, tie LOW.
RXPUBLCRDV_RP1	Output	Receive channel link layer credit	Connect to TXPUBLCRDV_RP1 of the corresponding CHI device, if populated.
RXPUBLINKACTIVEREQ	Input	Receive channel LinkActive request	Connect to TXPUBLINKACTIVEREQ of the corresponding CHI device, if populated. Otherwise, tie LOW.
RXPUBLINKACTIVEACK	Output	Receive channel LinkActive acknowledge	Connect to TXPUBLINKACTIVEACK of the corresponding CHI device, if populated.
TXPUBFLITPEND	Output	Transmit channel flit valid	Connect to RXPUBFLITPEND of the corresponding CHI device, if populated.
TXPUBFLITV	Output	Transmit channel early flit valid hint	Connect to RXPUBFLITV of the corresponding CHI device, if populated.
TXPUBFLIT[34:0]	Output	Transmit channel flit	Connect to RXPUBFLIT[34:0] of the corresponding CHI device, if populated.
TXPUBLINKFLIT	Output	Transmit channel link flit	Connect to RXPUBLINKFLIT of the corresponding CHI device, if populated.
TXPUBLCRDV_RP1	Input	Transmit channel link layer credit	Connect to RXPUBLCRDV_RP1 of the corresponding CHI device, if populated, otherwise tie LOW.
TXPUBLINKACTIVEREQ	Output	Transmit channel LinkActive request	Connect to RXPUBLINKACTIVEREQ of the corresponding CHI device, if populated.
TXPUBLINKACTIVEACK	Input	Transmit channel LinkActive acknowledge	Connect to RXPUBLINKACTIVEACK of the corresponding CHI device, if populated, otherwise tie LOW.
TXPUBCFGACTIVE	Output	Transmit channel Configuration Active	Connect to RXPUBCFGACTIVE of the corresponding CHI device, if populated.

A.14 Processor event interface signals

Signals that support processor event interface capabilities are included in CMN-600.

The following table shows the processor event interface signals.

Note

Note

Note

RootName within a more fully specified signal name as follows:

CMN-600 interface signal name == RootName_NID#, where # represents the node ID corresponding to the specific interface.

Table A-54 Processor event interface signals

Signal	Туре	Description	Connection information
EVENTIREQ	Output	Event input request for processor wake up from WFE state. Remains asserted until EVENTIACK is asserted, and is not reasserted until EVENTIACK is LOW.	Connect to EVENTIREQ input of processor.
EVENTIACK	Input	Event input request acknowledge. Must not be asserted until EVENTIREQ is HIGH, and then must remain asserted until after EVENTIREQ goes LOW.	Connect to EVENTIACK output of processor, or tie to EVENTIREQ output of CMN-600 if unused.
EVENTOREQ	Input	Event output request for processor wake up, triggered by SEV instruction. Must only be asserted when EVENTOACK is LOW, and then must remain HIGH until after EVENTOACK goes HIGH.	Connect to EVENTOREQ output of processor, or tie LOW if unused.
EVENTOACK	Output	Event output request acknowledge. Is not asserted until EVENTOREQ is HIGH, and then remains asserted until after EVENTOREQ goes LOW.	Connect to EVENTOACK input of processor.

The following table shows the CHI Issue A processor event interface signals.

Table A-55 CHI Issue A processor event interface signals

Signal	Туре	Description	Connection information
EVENTIREQ	Output	Event input request for processor wake up from WFE state. Remains asserted until EVENTIACK is asserted, and is not reasserted until EVENTIACK is LOW.	Connect to CLREXMON_REQ input of processor.
EVENTIACK	Input	Event input request acknowledge. Must not be asserted until EVENTIREQ is HIGH, and then must remain asserted until after EVENTIREQ goes LOW.	Connect to CLREXMON_ACK output of processor, or tie to EVENTIREQ output of CMN-600 if unused.
EVENTOREQ	Input	Event output request for processor wake up, triggered by SEV instruction. Must only be asserted when EVENTOACK is LOW, and then must remain HIGH until after EVENTOACK goes high.	Refer to first note below, otherwise tie LOW.
EVENTOACK	Output	Event output request acknowledge. Is not asserted until EVENTOREQ is HIGH, and then remains asserted until after EVENTOREQ goes LOW.	Refer to note below.

 Note —
11016

- EVENT_OUT from CHI Issue A processor must be handled by the event handling logic external to CMN-600. If system integration wants to connect the EVENT_OUT to CMN-600 EVENTOREQ/ ACK, it is the responsibility of the integrator to design the necessary logic to stitch EVENT_OUT which is a multicycle pulse to the four-phase handshake pair taking into account the asynchronous domain crossing.
- 2. EVENT_IN of CHI Issue A processor may be driven by event handling logic external to CMN-600.

Appendix B **CXS Specification**

This appendix describes the Coherent Multichip Link product.

It contains the following sections:

- B.1 CCIX interfaces on page Appx-B-905.
- *B.2 Signal descriptions* on page Appx-B-909.
- B.3 Packet control fields on page Appx-B-912.
- B.4 Packet size constraints on page Appx-B-915.
- *B.5 Packet position constraints* on page Appx-B-916.
- *B.6 CCIX Packet Details* on page Appx-B-917.
- *B.7 Packet examples* on page Appx-B-918.
- B.8 CXS flow control on page Appx-B-920.
- B.9 CXS interface activation and deactivation on page Appx-B-922.
- B.10 CXS packet continuous delivery guarantees on page Appx-B-930.
- B.11 CXS Error signaling on page Appx-B-931.

B.1 CCIX interfaces

The CCIX protocol specifies messages that are conveyed between the participating chips. It supports packing one or more messages into a packet.

While CCIX is designed to work over PCIe, the protocol is agnostic to the transport used and other transport mechanism are possible. Examples could include wide direct interfaces over a silicon interposer, optical connections, or encapsulated transport over any number of network technologies.

CML is agnostic to the specific transport used in a system while ensuring that PCIe implementations are efficient and easy to implement by using a lightweight interface designed to efficiently issue CCIX protocol messages to transport logic outside of CMN-600-CML. It is the responsibility of this transport logic to convey the messages to the specified CCIX agents.

CCIX protocol communication consists of a series of messages that are sent between agents in the system. The size of a CCIX message varies from 4 bytes to more than 100 bytes, in 4-byte increments.

Multiple CCIX messages that target the same destination can be assembled into a CCIX packet. For inbound and outbound messages, this packing occurs inside CML. The minimum size for a CCIX packet is 8 bytes, and the maximum is 512 bytes. Smaller maximum sizes are specified by some components.

The CXS interface efficiently passes CCIX packets from one block to another. For a given instance of the interface, all CCIX packet transport occurs in one direction, for example, from block A to block B. In CCIX systems, packets move in both directions by sending messages to and receiving messages from other agents. Because of this packet transport, it is typical for a given pair of blocks to have two instances of this interface, one for each direction, as the following figure shows.

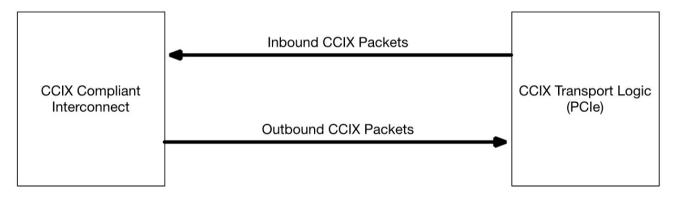


Figure B-1 Basic CXS connectivity

This section contains the following subsections:

- B.1.1 CXS basic operation on page Appx-B-905.
- B.1.2 CXS interface attributes on page Appx-B-906.

B.1.1 CXS basic operation

A single instance of the interface, or one transmitter that is connected to one receiver, sends data in one direction.

If the transmitter has at least one credit from the receiver, and has valid data to send to the receiver, the transmitter:

- 1. Asserts the **CXSTXVALID** signal.
- 2. Places the data to be transmitted in **CXSTXDATA**.
- 3. Sends the required packet control information in **CXSTXCNTL**.
- 4. Decrements its credit counter by one.

A single cycle of data (data and control) is referred to as a flit.

The receiver does not stall or delay a flit if the transmitter has received a credit. If the receiver is not guaranteed to be ready to accept any flit, no credit is granted to the transmitter.

When the receiver is capable to receive additional flits, it returns credits to the transmitter by asserting CXSRXCRDGNT. When the transmitter sees CXSTXCRDGNT asserted, it increments its credit counter by one. If it receives a credit during the same cycle that it is returning or using a credit, the counter does not change. The receiver generally has sufficient storage to issue multiple credits to the transmitter. The number of credits that are needed to keep the interface flowing at full bandwidth is dependent on the credit return latency. The credit return latency is the number of cycles in the full loop of CXSRXCRDGNT, CXSTXCRDGNT, CXSTXVALID, CXSRX VALID, and CXSCRDGNT. If the available storage in the receiver (and therefore the number of credits the receiver can issue) is greater than or equal to the credit return latency, the interface can sustain one flit per cycle.

The following table shows the main signals of the interface.

Table B-1 CXS signal names

Name	Direction	Description	
CXSVALID	Sender to receiver	Indicates that valid information is being passed this cycle	
CXSDATA	Sender to receiver	The flit data containing the packet bytes being transmitted. Ignore if CXSVALID is not asserted.	
CXSCNTL	Sender to receiver	Control information for identifying the start and end of packets within the data field. Ignore if CXSVALID is not asserted.	
CXSCRDGNT	Receiver to sender	Flow control information indicating that the receiver can accept one flit of data	
CXSCRDRTN	Sender to receiver	Flow control information indicating that the sender is returning a previously granted credit without using it. Can only be asserted if CXSVALID is not asserted.	

In a typical connection between an interconnect block and a transport block, each block has two ports: a CXS TX port and a CXS RX port. The TX port of one block is generally connected to the RX port of the other block in pairs as the following figure shows. In this configuration, there are two independent instances of the CXS interface.

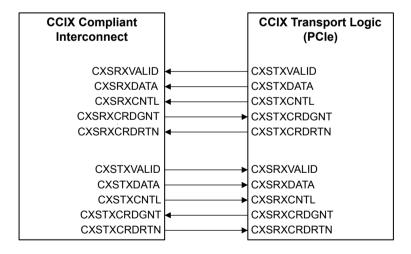


Figure B-2 CXS interface example connection example

B.1.2 CXS interface attributes

The CXS interface has options to meet the needs for CCIX transport in various systems.

These attributes are set independently for the transmitter and the receiver as the following table shows.

Table B-2 Interface attributes

Attribute	Options	Description
CXSDATAFLITWIDTH	256, 512, 1024	Width (in bits) of the CXSDATA signal
CXSMAXPKTPERFLIT	2, 3, 4	Maximum number of packets that can be present in a single flit of data
CXSCONTINUOUSDATA	True, False	Receiver (RX):
		If set to True, this receiver requires that after a packet is started, it is completed in consecutive cycles if enough credits are available.
		Transmitter (TX):
		If set to True, this transmitter does not begin a packet until it can deliver the complete packet in consecutive cycles as long as credits are available.
CXSERRORFULLPKT	True, False	RX:
		If set to True, this receiver requires that the length of every packet (including packets ending with EndError) match the packet length specified in the packet header.
		TX:
		If set to True, if this transmitter is unable to complete a packet and must end the packet with an EndError indication, the transmitter sends the number of bytes specified in the packet header before ending the packet.
		NOTE: The encoding of the packet length within the packet is outside of the scope of the CXS document. For use of this interface for CCIX packet transmission, see the CCIX specification for packet length encoding.
CXSDATACHECK	None, Parity,	Datacheck support on CXSDATA, CXSCNTL.
	Single Error Correct, Double	Parity: Odd parity
	Error Detect (SECDED)	 1 bit per byte on CXSDATA. 1 bit for CXSCNTL.
		SECDED: ECC on a 64-bit granularity
		 8 bits per 64 bits of data. 8 bits for CXSCNTL (zero extended to 64 bits).
		NOTE: 1. The SECDED ECC algorithm is not yet specified. 2. CXSDATA and CXSCNTL is the same level of Datacheck support.
CXSREPLICATION	None, Duplicate,	Signal replication on CXSVALID, CXSCRDGNT, CXSCRDRTN.
	Triplicate	Duplicate: CXSVALIDCHK, CXSCRDGNTCHK, and CXSCRDRTNCHK are each single bit signals duplicating the value of the corresponding control signal.
		Triplicate: CXSVALIDCHK, CXSCRDGNTCHK, and CXSCRDRTNCHK are each two-bit signals with each of the two bits having the same value as the corresponding control signal.

When assembling a system, the attributes of the connected CXS TX and CXS RX interfaces must be compatible. The following table shows the compatibility requirements for each of the defined attributes.

Table B-3 CXS attribute compatibility

Attribute	Compatibility requirement		
CXSDATAFLITWIDTH	TX and RX must match		
CXSMAXPKTPERFLIT	TX must be less than or equal to RX		
CXSCONTINUOUSDATA	If RX CXSCONTINUOUSDATA = True, then TX CXSCONTINUOUSDATA must be True		

Table B-3 CXS attribute compatibility (continued)

Attribute	Compatibility requirement
CXSERRORFULLDATA	If RX CXSERRORFULDATA = True, then TX CXSERRORFULLDATA must be True
CXSDATACHECK	 If RX CXSDATACHECK = None: TX CXSDATACHECK can be any value. Associated TX signals can be disconnected. If RX CXSDATACHECK = Parity or SECDED: TX CXSDATACHECK must have the same value.
CXSREPLICATION	 If RX CXSREPLICATION = None: TX CXSREPLICATION can be any value. Associated TX signals can be left disconnected. If RX CXSREPLICATION = Duplicate or Triplicate: TX CXSREPLICATION must have the same value.

B.2 Signal descriptions

The CMN-600 product includes transmit, receive, and width signals for the CXS and CHI interfaces.

CXS interface

The following table contains the transmit signals.

Table B-4 TX signals

Signal	Туре	Description	Connection information
CXSTXDATA	Output	Transmit channel data flit.	Connect to CXSRXDATA of the corresponding PCIe IP.
CXSTXCNTL	Output	Transmit channel control information.	Connect to CXSRXCNTL of the corresponding PCIe IP.
CXSTXVALID	Output	Transmit channel data flit valid.	Connect to CXSRXVALID of the corresponding PCIe IP.
CXSTXCRDGNT	Input	Transmit channel link layer credit grant.	Connect to CXSRXCRDGNT of the corresponding PCIe IP.
CXSTXCRDRTN	Output	Transmit channel link layer credit return.	Connect to CXSRXCRDRTN of the corresponding PCIe IP.
CXSTXDATACHK	Output	Transmit channel Parity or ECC for DATA field.	Connect to CXSRXDATACHK of the corresponding PCIe IP.
CXSTXCNTLCHK	Output	Transmit channel Parity or ECC for CNTL field.	Connect to CXSRXCNTLCHK of the corresponding PCIe IP.
CXSTXVALIDCHK	Output	Transmit channel Duplication or Triplication for VALID bit.	Connect to CXSRXVALIDCHK of the corresponding PCIe IP.
CXSTXCRDGNTCHK	Input	Transmit channel Duplication or Triplication for CRDGNT bit.	Connect to CXSRXCRDGNTCHK of the corresponding PCIe IP.
CXSTXCRDRTNCHK	Output	Transmit channel Duplication or Triplication for CRDRTN bit.	Connect to CXSRXCRDRTNCHK of the corresponding PCIe IP.
CXSTXACTIVEREQ	Output	Transmit channel link activation/deactivation request.	Connect to CXSRXACTIVEREQ of the corresponding PCIe IP.
CXSTXACTIVEACK	Input	Transmit channel link activation/deactivation acknowledge.	Connect to CXSRXACTIVEACK of the corresponding PCIe IP.
CXSTXDEACTHINT	Input	Transmit channel hint for link deactivation.	Connect to CXSRXDEACTHINT of the corresponding PCIe IP.

The following table contains the receive signals.

Table B-5 RX signals

Signal	I/O	Description	Connection information
CXSRXDATA	Input	Receive channel data flit.	Connect to CXSTXDATA of the corresponding PCIe IP.
CXSRXCNTL	Input	Receive channel control information.	Connect to CXSTXCNTL of the corresponding PCIe IP.
CXSRXVALID	Input	Receive channel data flit valid.	Connect to CXSTXVALID of the corresponding PCIe IP.
CXSRXCRDGNT	Output	Receive channel link layer credit grant.	Connect to CXSTXCRDGNT of the corresponding PCIe IP.

Table B-5 RX signals (continued)

Signal	I/O	Description	Connection information
CXSRXCRDRTN	Input	Receive channel link layer credit return.	Connect to CXSTXCRDRTN of the corresponding PCIe IP.
CXSRXDATACHK	Input	Receive channel Parity or ECC for DATA field.	Connect to CXSTXDATACHK of the corresponding PCIe IP.
CXSRXCNTLCHK	Input	Receive channel Parity or ECC for CNTL field.	Connect to CXSTXCNTLCHK of the corresponding PCIe IP.
CXSRXVALIDCHK	Input	Receive channel Duplication or Triplication for VALID bit.	Connect to CXSTXVALIDCHK of the corresponding PCIe IP.
CXSRXCRDGNTCHK	Output	Receive channel Duplication or Triplication for CRDGNT bit.	Connect to CXSTXCRDGNTCHK of the corresponding PCIe IP.
CXSRXCRDRTNCHK	Input	Receive channel Duplication or Triplication for CRDRTN bit.	Connect to CXSTXCRDRTNCHK of the corresponding PCIe IP.
CXSRXACTIVEREQ	Input	Receive channel link activation/ deactivation request.	Connect to CXSTXACTIVEREQ of the corresponding PCIe IP.
CXSRXACTIVEACK	Output	Receive channel link activation/ deactivation acknowledge.	Connect to CXSTXACTIVEACK of the corresponding PCIe IP.
CXSRXDEACTHINT	Output	Receive channel hint for link deactivation.	Connect to CXSTXDEACTHINT of the corresponding PCIe IP.

The following table contains the width signals.

Table B-6 Signal widths

Signal	Width
CXS[TX/RX]DATA	CXSDATAFLITWIDTH (256, 512, 1024 bits)
CXS[TX/RX]CNTL	See the Control Field Widths and Placement portion of this manual for more information.
CXS[TX/RX]VALID	1 bit
CXS[TX/RX]CRDGNT	1 bit
CXS[TX/RX]CRDRTN	1 bit
CXS[TX/RX]DATACHK	CXSDATACHECK = 'Parity': CXSDATAFLITWIDTH/8 bits
	CXSDATACHECK = 'SECDED': (CXSDATAFLITWIDTH/64) * 8 bits
CXS[TX/RX]CNTLCHK	CXSDATACHECK = 'Parity': 1 bit
	CXSATACHECK = 'SECDED': 8 bits
CXS[TX/RX]VALIDCHK	CXSREPLICATION = 'Duplicate': 1 bit
	CXSREPLICATION = 'Triplicate': 2 bit
CXS[TX/RX]CRDGNTCHK	CXSREPLICATION = 'Duplicate': 1 bit
	CXSREPLICATION = 'Triplicate': 2 bit
CXS[TX/RX]CRDRTNCHK	CXSREPLICATION = 'Duplicate': 1 bit
	CXSREPLICATION = 'Triplicate': 2 bit

Table B-6 Signal widths (continued)

Signal	Width
CXS[TX/RX]ACTIVEREQ	1 bit
CXS[TX/RX]ACTIVEACK	1 bit
CXS[TX/RX]DEACTHINT	1 bit

B.3 Packet control fields

The CXSCNTL signal contains five fields.

The widths of each field, and therefore the bit position of each field, within **CXSCNTL** vary with the attributes of the interface as the following table shows.

Table B-7 Packet control fields

Field	Description
START	Each bit in START indicates a packet is starting in this flit.
	START[0] = 1: At least one packet is starting in this flit.
	START[1] = 1: At least two packets are starting in this flit.
	The number of bits in START is the number of packets that can be present in a flit of data (CXSMAXPKTPERFLIT). If any bit in START is 1, all lower bits of START must be 1.
START[N:0]P	This field is an array of pointers to the starting location of packets in this flit.
TR	There is one pointer for each START bit, valid only if that START bit is set. Contact Contact
	 If the corresponding START bit is 0, the pointer can have any value and should be ignored. All packet starts are 16-byte aligned.
	• The width of each pointer is $\log_2(\text{CXSDATAFLITWIDTH}/128)$ bits.
	• The first byte of the Xth starting packet is (START[X]PTR << 4).
END	Each bit in END indicates a packet is ending in this flit.
	END[0] = 1: At least one packet is ending in this flit.
	END[1] = 1: At least two packets are ending in this flit.
	The number of bits in END is the number of packets that can be present in a flit of data (CXSMAXPKTPERFLIT). If any bit of END is 1, all lower bits of END must be 1.
ENDERROR	Each bit in ENDERROR indicates that a packet is ending with an error condition this flit.
	ENDERROR[0] = 1: The first packet ending this cycle has an error.
	ENDERROR[1] = 1: The second packet ending this cycle has an error.
	The number of bits in ENDERROR is the number of bits in END. If ENDERROR[N] is asserted, END[N] must be asserted.
END[N:0]PTR	This field is an array of pointers to the last four bytes of packets ending in this flit.
	There is one pointer for each END bit, valid only if that END bit is set.
	 If the corresponding END bit is 0, the pointer can have any value and should be ignored. All packet ends are four-byte aligned.
	• The width of each pointer is $log_2(CXSDATAFLITWIDTH/32)$ bits.
	• Each end pointer points to the first byte of the last aligned four bytes of the packet.
	— The last byte of the Xth ending packet is therefore [(END[X]PTR << 2) + 3].

The following table shows packet control field widths and placement information.

Table B-8 Packet control field widths and placement

CXSMAXPKTPERFLIT	CXSDATAFLITWIDTH	Width of CXSCNTL	Bit positions in field	Bit positions in CXSCNTL
2	256	14	START[1:0]	CXSCNTL[1:0]
			START0PTR[0]	CXSCNTL[2]
			START1PTR[0]	CXSCNTL[3]
			END[1:0]	CXSCNTL[5:4]
			ENDERROR[1:0]	CXSCNTL[7:6]
			END0PTR[2:0]	CXSCNTL[10:8]
			END1PTR[2:0]	CXSCNTL[13:11]
2	512	18	START[1:0]	CXSCNTL[1:0]
			START0PTR[1:0]	CXSCNTL[3:2]
			START1PTR[1:0]	CXSCNTL[5:4]
			END[1:0]	CXSCNTL[7:6]
			ENDERROR[1:0]	CXSCNTL[9:8]
			END0PTR[3:0]	CXSCNTL[13:10]
			END1PTR[3:0]	CXSCNTL[17:14]
2	1024	22	START[1:0]	CXSCNTL[1:0]
			START0PTR[2:0]	CXSCNTL[4:2]
			START1PTR[2:0]	CXSCNTL[7:5]
			END[1:0]	CXSCNTL[9:8]
			ENDERROR[1:0]	CXSCNTL[11:10]
			END0PTR[4:0]	CXSCNTL[16:12]
			END1PTR[4:0]	CXSCNTL[21:17]
3	256	-	(Not legal: 256 bit interf	ace has maximum of 2 packets)
3	512	27	START[2:0]	CXSCNTL[2:0]
			START0PTR[1:0]	CXSCNTL[4:3]
			START1PTR[1:0]	CXSCNTL[6:5]
			START2PTR[1:0]	CXSCNTL[8:7]
			END[2:0]	CXSCNTL[11:9]
			ENDERROR[2:0]	CXSCNTL[14:12]
			END0PTR[3:0]	CXSCNTL[18:15]
			END1PTR[3:0]	CXSCNTL[22:19]
			END2PTR[3:0]	CXSCNTL[26:23]

Table B-8 Packet control field widths and placement (continued)

CXSMAXPKTPERFLIT	CXSDATAFLITWIDTH	Width of CXSCNTL	Bit positions in field	Bit positions in CXSCNTL
3	1024	33	START[2:0]	CXSCNTL[2:0]
			START0PTR[2:0]	CXSCNTL[5:3]
			START1PTR[2:0]	CXSCNTL[8:6]
			START2PTR[2:0]	CXSCNTL[11:9]
			END[2:0]	CXSCNTL[14:12]
			ENDERROR[2:0]	CXSCNTL[17:15]
			END0PTR[4:0]	CXSCNTL[22:18]
			END1PTR[4:0]	CXSCNTL[27:23]
			END2PTR[4:0]	CXSCNTL[32:28]
4	256	-	(Not legal: 256 bit interf	ace has maximum of 2 packets)
4	512	36	START[3:0]	CXSCNTL[3:0]
			START0PTR[1:0]	CXSCNTL[5:4]
			START1PTR[1:0]	CXSCNTL[7:6]
			START2PTR[1:0]	CXSCNTL[9:8]
			START3PTR[1:0]	CXSCNTL[11:10]
			END[3:0]	CXSCNTL[15:12]
			ENDERROR[3:0]	CXSCNTL[19:16]
			END0PTR[3:0]	CXSCNTL[23:20]
			END1PTR[3:0]	CXSCNTL[27:24]
			END2PTR[3:0]	CXSCNTL[31:28]
			END3PTR[3:0]	CXSCNTL[35:32]
4	1024	44	START[3:0]	CXSCNTL[3:0]
			START0PTR[2:0]	CXSCNTL[6:4]
			START1PTR[2:0]	CXSCNTL[9:7]
			START2PTR[2:0]	CXSCNTL[12:10]
			START3PTR[2:0]	CXSCNTL[15:13]
			END[3:0]	CXSCNTL[19:16]
			ENDERROR[3:0]	CXSCNTL[23:20]
			END0PTR[4:0]	CXSCNTL[28:24]
			END1PTR[4:0]	CXSCNTL[33:29]
			END2PTR[4:0]	CXSCNTL[38:34]
			END3PTR[4:0]	CXSCNTL[43:39]

B.4 Packet size constraints

The CXS interface transmits a very specific payload.

The CXS interface transmits packets of data that meet the following requirements:

- At least 4 bytes in size
- A multiple of 4 bytes in size
- No limit on packet size.

The CCIX places further constraints on packet size:

- At least 8 bytes in size.
- No more than 512 bytes in size.

When used for CCIX packet transfer, CXS packets must meet these constraints.

B.5 Packet position constraints

The CXS interface transmits a very specific payload.

To simplify datapath implementation, CXS places restrictions on the placement of packets within each flit of data.

- The first byte of a packet must be placed on an aligned 16-byte boundary (byte 0, 16, 32, 48, 64, 80, 96, or 112).
- Subsequent bytes of the packet occupy subsequent bytes of the flit.
- · Packets can end on any four-byte aligned boundary.
- Once a packet has been started at a byte position in the current flit, that packet occupies every subsequent byte in that flit until the packet ends or the flit ends.
- If there are remaining bytes in the packet when the flit ends, that packet starts at byte 0 of the next flit and occupies every subsequent byte position until the packet ends or the flit ends.
- When a packet ends within a flit, the remaining bytes in the flit may be unused. These unused bytes are not part of any packet.
- Any packet in a flit must begin at the first available 16-byte boundary relative to the start of the flit or the ending of a previous packet.

CXSMAXPKTPERFLIT specifies the maximum number of packets that can have bytes in the current flit. There can be up to **CXSMAXPKTPERFLIT** new packets starting in a flit, and up to **CXSMAXPKTPERFLIT** packets ending in a flit.

If a packet started on a previous flit and is continuing on the current flit, that continuing packet counts towards the packet limit. That packet could therefore only have one less than **CXSMAXPKTPERFLIT** new packets starting.

B.6 CCIX Packet Details

This section contains CCIX packet details.

CMN supports:

- Both PCIe and optimized header formats.
- Both single message per packet, No Message Packing, and multiple messages per packet: Message packing.
- Maximum TLP size of 512B which is the maximum permitted by CCIX specification.

All of these CMN supported properties are found in the por_cxla_ccix_prop_capabilities register.

Based on the system requirements/support, these properties can be programmed in configuration register por_cxla_ccix_prop_configured during system discovery. CMN generates a TLP-based on the configured properties in por_cxla_ccix_prop_configured register.

B.7 Packet examples

These following examples illustrate packet placement rules as well as the CXSCNTL field usage.

Examples in the following two tables both have CXSCONTINUOUSDATA = TRUE and CXSDATACHECK = None. Each data packet in the figures is shaded and has a unique identifier. Unused packet slots have dashes instead of identifiers.

The following table shows an example with 256-bit data, CXSDATAFLITWIDTH = 256. It has up to two packets per flit, CXSMAXPKTPERFLIT = 2.

	Cycle												
Signal	Field	0	1	2	3	4	5	6	7	8	9	10	11
CXSVALID		0	1	1	0	1	1	1	1	1	1	1	1
CXSDATA[31:0]		12	TLPA	TLPB	-	TLPD	TLPD	TLPE	TLPE	TLPF	TLPH	TLPI	TLPK
CXSDATA[63:32]		12	TLPA	TLPB	2	TLPD	928	TLPE	TLPE	14.	TLPH	TLPI	TLPK
CXSDATA[95:64]		12	TLPA	TLPB	2	TLPD	123	TLPE	TLPE	120	TLPH	TLPI	TLPK
CXSDATA[127:96]		<u>12</u>	TLPA	2	2	TLPD	724	TLPE	TLPE	1427	TLPH	TLPI	TLPK
CXSDATA[159:128]		=	TLPA	TLPC	-	TLPD	TLPE	TLPE	TLPE	TLPG	TLPI	TLPJ	TLPI
CXSDATA[191:160]		-	TLPA	TLPC	-	TLPD	TLPE	TLPE	-	TLPG	TLPI	TLPJ	TLPL
CXSDATA[223:192]			TLPA	TLPC	-	TLPD	TLPE	TLPE	-	TLPG	TLPI	TLPJ	TLPL
CXSDATA[255:224]		÷	7-1	TLPC	-	TLPD	TLPE	TLPE	-	TLPG	TLPI	TLPJ	TLPL
CXSCNTL[1:0]	START[1:0]	12	0x1	0x3	1	0x1	0x1	0x0		0x3	0x3	0x1	0x3
CXSCNTL[2]	STARTOPTR[0]	<u>=</u>	0x0	0x0	125	0x0	0x1	2	10	0x0	0x0	0x0	0x0
CXSCNTL[3]	START1PTR[0]	2	101	0x1	2	12.5	323	24	12	0x1	0x1	121	0x1
CXSCNTL[5:4]	END[1:0]	-	0x1	0x3	-	0x0	0x1	0x0	0x1	0x3	0x1	0x3	0x3
CXSCNTL[7:6]	ENDERROR[1:0]		0x0	0x0	10	0x0							
CXSCNTL[10:8]	END0PTR[2:0]	-	0x6	0x2	-	150	0x0	-	0x4	0x0	0x3	0x3	0x3
CXSCNTL[13:11]	END1PTR[2:0]	-	=	0x7	-	-	1-1	-	-	0x7	-	0x7	0x7

Figure B-3 Example 256-bit wide interface with maximum of two packets per flit.

The following table shows an example with 512-bit data, CXSDATAFLITWIDTH = 512. It has up to four packets per flit, CXSMAXPKTPERFLIT = 4.

	Cycl	e											
Signal	Field	0	1	2	3	4	5	6	7	8	9	10	1
CXSVALID		0	1	1	0	1	1	1	1	1	1	1	
CXSDATA[31:0]		250	TLPA	TLPB	-	TLPD	TLPD	TLPE	TLPE	TLPF	TLPI	TLPM	
CXSDATA[63:32]		1.00	TLPA	TLPB	-	TLPD		TLPE	TLPE	3 .	TLPI	TLPM	
CXSDATA[95:64]		1-0	TLPA	TLPB	-	TLPD	7.5	TLPE	TLPE		TLPI	TLPM	
CXSDATA[127:96]			TLPA	TLPB	-	TLPD	12	TLPE	TLPE	72	TLPI	TLPM	
CXSDATA[159128]		(23)	TLPA	TLPB	2	TLPD	TLPE	TLPE	TLPE	TLPG	TLPJ	TLPN	
CXSDATA[191:160]		125	TLPA	TLPB	2	TLPD	TLPE	TLPE	TLPE	TLPG	TLPJ	TLPN	
CXSDATA[223:192]		-	TLPA	-	-	TLPD	TLPE	TLPE	TLPE	TLPG	TLPJ	TLPN	
CXSDATA[255:224]		-	TLPA	-	-	TLPD	TLPE	TLPE	TLPE	TLPG	TLPJ	TLPN	
CXSDATA[287:256]		250	TLPA	TLPC	-	TLPD	TLPE	TLPE	TLPE	TLPH	TLPK	TLPO	
CXSDATA[319:288]		-	1 - 1	TLPC	-	TLPD	TLPE	TLPE	TLPE	TLPH	TLPK	TLPO	
CXSDATA[351:320]		-	-	TLPC	-	TLPD	TLPE	TLPE	TLPE	TLPH	TLPK	TLPO	
CXSDATA[383:352]		-	1 -	TLPC	-	TLPD	TLPE	TLPE	TLPE	TLPH	TLPK	TLPO	
CXSDATA[415:384]		(23)	820	TLPC	2	TLPD	TLPE	TLPE	TLPE	TLPI	TLPL	TLPP	1
CXSDATA[447:416]		127	721	TLPC	<u></u>	TLPD	TLPE	TLPE	-	TLPI	TLPL	TLPP	
CXSDATA[479:448]		-	2573	TLPC	-	TLPD	TLPE	TLPE	-	TLPI	TLPL	TLPP	
CXSDATA[511:480]		153	850	TLPC	-	TLPD	TLPE	TLPE	1 15	TLPI	TLPL	TLPP	
CXSCNTL[3:0]	START[3:0]	120	0x1	0x3	-	0x1	0x1	0x0	0x0	0xF	0x7	0xF	
CXSCNTL[5:4]	STARTOPTR[1:0]	-	0x0	0x0	_	0x0	0x1	-	-	0x0	0x1	0x0	
CXSCNTL[7:6]	START1PTR[1:0]	128	17 <u>-</u> 17	0x2	12	823	520	Ψ,	12	0x1	0x2	0x1	
CXSCNTL[8:9]	START2PTR[1:0]	928	1021	=	92			_	-	0x2	0x3	0x2	
CXSCNTL[11:10]	START3PTR[1:0]	(<u>P</u> 2)	929	_	120	125		_	(2)	0x3	_	0x3	
CXSCNTL[15:12]	END[3:0]	65%	0x1	0x3	-	0x0	0x1	0x0	0x1	0x7	0xF	0xF	
CXSCNTL[19:16]	ENDERROR[3:0]	158	0x0	0x0	-	0x0	0x0	0x0	0x0	0x0	0x0	0x0	
CXSCNTL[23:20]	ENDOPTR[3:0]	1,-0	0x8	0x5	-	15-3	0x0	-	0xC	0x0	0x3	0x3	
CXSCNTL[27:24]	END1PTR[3:0]	-	85	0xF	-	Q=./	3-1	-	-	0x7	0x7	0x7	
CXSCNTL[31:28]	END2PTR[3:0]	(-)	89-0	=	-	723	(E)	=	Į.	0xB	0xB	0xB	
CXSCNTL[35:32]	END3PTR[3:0]	1239	1000	399	590	0.000	1000	100	671	0xF	0xF	0xF	

Figure B-4 Packet examples 512 bit four packets per flit

B.8 CXS flow control

Flow control on the CXS interface is implemented through a credit exchange mechanism.

When the CXS interface is reset or activated, the transmitter has no credits. Therefore, the transmitter can send no data across the interface. The receiver grants credits to the transmitter by asserting the CXSRXCRDGNT signal. A credit allows the transmitter to send a single flit across the interface. Each cycle in which CXSRXCRDGNT is asserted grants a single credit to the transmitter. Each cycle in which CXSTXVALID is asserted sends one valid flit of data and implicitly returns one credit to the receiver. In cycles where CXSTXVALID is not asserted, the transmitter can explicitly return one credit by asserting CXSTXCRDRTN. The CXSTXCRDRTN mechanism is typically used to return credits before deactivating the link.

The maximum number of credits that a receiver grants a transmitter is implementation-defined, with a limit of 15 credits. The transmitter must be able to track up to 15 credits at a time. The receiver must guarantee that it can receive one flit of data for each credit that it grants.

A transmitter cannot use a credit to send a flit until the cycle after the CXSTXCRDGNT signal is asserted. This means there must be at least one flop between CXSTXCRDGNT and the CXSTXVALID signal. A pure combinational path between CXSTXCRDGNT and CXSTXVALID is not allowed.

The following figure shows a basic credit exchange as seen on the transmitter's pins. The receiver sends a single credit and gets a single flit in return. The receiver then sends four credits and receives four flits.

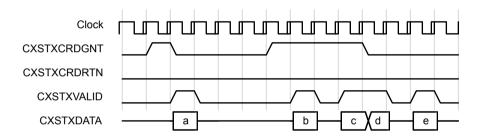


Figure B-5 Basic credit mechanism

The following figure shows a steady state credit exchange example. In this example system, the credit loop is three cycles:

- 1. The steady state delay between sending a valid flit.
- 2. Receiving back the credit that flit consumes.
- 3. Sending another flit targeting the same buffer resource.

In this case:

- 1. Flit A is transmitted.
- 2. The credit is returned two cycles later.
- 3. Flit D is sent one cycle later using the returned credit.

Because this is a three-cycle loop, the receiver on this interface must have storage to grant at least three credits in order to keep the interface flowing at full bandwidth.

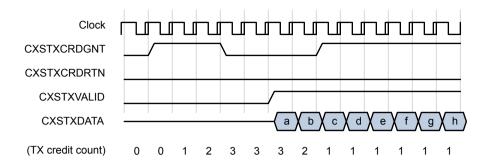


Figure B-6 Steady state credit example

In the same system, if the receiver only had two buffers available, the performance would be lower, as the following figure shows.

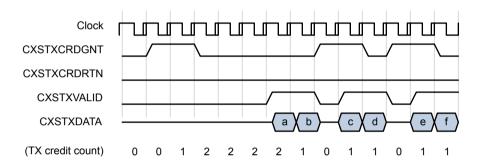


Figure B-7 Too few credits example

B.9 CXS interface activation and deactivation

A mechanism is provided for a CXS interface to move between a full running operational state and a low power state.

When moving between operational states, including when exiting from reset, it is important that the exchange of credits is carefully controlled to avoid the loss of flits or credits.

On exit from reset, or when moving to a full running operational state, the interface starts in an idle state and the transfer of flits can only commence when credits have been exchanged. Credits can only be exchanged when the sender of the credits knows the receiver is ready to receive them.

A two-signal, four-phase handshake mechanism is used. This mechanism synchronizes the state of the link between the transmitter and receiver, initiated by the transmitter. In addition, a deactivation request hint is available for the receiver to request that the link be brought down.

In a typical connection with two CXS interfaces (one outbound, one inbound), there are two independent instances of the handshake mechanism.

This section contains the following subsections:

- B.9.1 Request and acknowledge handshaking on page Appx-B-922.
- B.9.2 Race conditions on page Appx-B-925.
- B.9.3 Response to a new state on page Appx-B-926.
- B.9.4 Interface activation and deactivation examples on page Appx-B-927.

B.9.1 Request and acknowledge handshaking

Request and acknowledge handshaking uses **CXSACTIVEREQ** and **CXSACTIVEACK** as primary signals.

The following figure shows the relationship between the payload, credit, **CXSACTIVEREQ**, and **CXSACTIVEACK** signals.

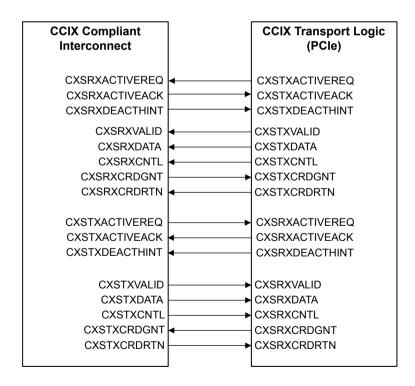


Figure B-8 CXS link activation

The transmitter, which sends the payload flits, requires a credit before it can send a flit. The receiver passes a credit when it has the resources available to accept a flit.

- On exit from reset, all credits are held by the receiver and at least one must be passed to the transmitter before flit transfer can begin.
- During normal operation, there is an ongoing exchange of flits and credits between the two sides of the interface.
- Before entering a low-power state, the sending of payload flits must be stopped and all credits must be returned to the receiver. These requirements effectively return the interface to the same state as immediately after reset.

Four states are defined for the interface operation:

RUN

There is an ongoing exchange of flits and credits between the two components.

STOP

The interface is in a low-power state and is not operational. All credits are held by the receiver and the transmitter is not permitted to send any flits.

ACTIVATE

This state is used when moving from the STOP state to the RUN state.

DEACTIVATE

This state is used when moving from the RUN state to the STOP state.

RUN and STOP are stable states. When one of these states is entered, a channel can remain in this state indefinitely.

DEACTIVATE and ACTIVATE are transient states. It is expected that when one of these states is entered, a channel moves to the next stable state relatively quickly.

_____ Note ____

The specification does not define a maximum period of time in a transient state, but it is expected that it is deterministic for any given implementation.

The **CXSACTIVEREQ** and **CXSACTIVEACK** signals determine the state. The following figure shows the relationship between the four states.

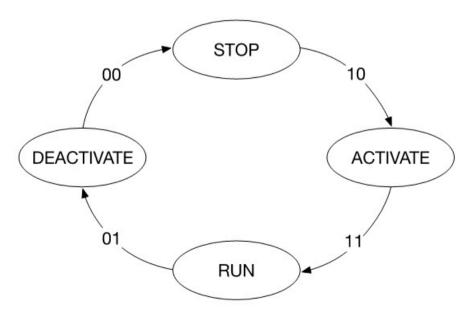


Figure B-9 Request and acknowledge handshake states

The following table provides the mapping of the states to the **CXSACTIVEREQ** and **CXSACTIVEACK** signals.

Table B-9 Mapping of states to the ACTIVE signals

State	CXSACTIVEREQ	CXSACTIVEACK
STOP	0	0
ACTIVATE	1	0
RUN	1	1
DEACTIVATE	0	1

The following table describes the transmitter's and receiver's behavior within a single link for each state.

Table B-10 Behavior for request and acknowledge states

State	Transmitter	Receiver
STOP	Has no credits. Must not send any flits or credit returns.	Is guaranteed not to receive any flits or credit returns.
	Is guaranteed not to receive any credits.	Must not send any credits.
	Must assert CXSTXACTIVEREQ to move to the ACTIVATE state if it has flits to send.	
ACTIVATE	Must not send any flits.	Is guaranteed not to receive any flits.
	Must be prepared to receive credits in this state, although	Must not send any credits.
	it must not use them until in RUN state. Remains in the ACTIVATE state while waiting for the receiver to acknowledge the move to RUN state.	The ACTIVATE state is a transient state and the receiver controls the move to the RUN state by asserting CXSACTIVEACK .
	NOTE: The transmitter only receives credits in the ACTIVATE state when there is a race between the receiver sending credits and asserting	Must assert CXSACTIVEACK and move to the RUN state before sending credits. Is permitted to assert CXSACTIVEACK and send a credit in the same cycle.
	CXSACTIVEACK to move to the RUN state.	NOTE: It may appear that a receiver has sent credits in the ACTIVATE state if there is a race between the receiver sending credits and asserting CXSACTIVEACK to move to the RUN state.
RUN	Can receive credits.	Can receive flits corresponding to the credits it has sent.
	Can send flits when it has credits available.	Sends credits when it has resources available to accept further flits.
	Deasserts CXSTXACTIVEREQ to exit from this state if it wants to move to a low-power state.	Must remain in the RUN state until it observes the deassertion of CXSRXACTIVEREQ.
DEACTIVATE	Must return credits using flits or CXSTXCRDRTN.	Stops sending credits and collects all returned credits.
	It is recommended that the transmitter enters the DEACTIVATE state only when it has no more flits to	Must be prepared to receive flits in this state. This is not expected, but can occur.
	send. Therefore, it is expected that the transmitter returns credits using only CXSTXCRDRTN .	Is permitted to send credits when first entering this state However, it must have stopped sending credits and had
	Must be prepared to continue receiving credits. For each additional credit received, it must return the credit by	all credits returned before exiting this state.
	sending a valid flit or asserting CXSTXCRDRTN.	Receives flits or explicit credit returns until all credits at returned.
	Remains in the DEACTIVATE state while waiting for the receiver to acknowledge the move to the STOP state. At this point, it is guaranteed to receive no more credits.	Must wait for all credits to be returned before deassertin CXSACTIVEACK and entering STOP state.

The following table describes the behavior for each request and acknowledge state.

Table B-11 Request and acknowledge states summary

State	Transmitter	Receiver
STOP	Must not send flits.	Must not send credits.
	Will not receive credits.	Will not receive flits.
ACTIVATE	Must not send flits.	Must not send credits.
	Must accept credits.	Will not receive flits.
RUN	Can send flits.	Must accept flits.
	Must accept credits.	Can send credits.
DEACTIVATE	Must not send flits, except for credit return flits.	Must accept flits.
	Must accept credits.	Must stop sending credits.
	Must return credit.	

CXSDEACTHINT is not part of the four-phase handshake. The receiver can assert this signal HIGH to indicate to the transmitter that it wants to go to a lower power state, therefore deactivating the link. It is implementation-defined whether the transmitter ignores the hint or uses it to influence link deactivation. The receiver can change the value of **CXSDEACTHINT** at any time regardless of link state.

If the transmitter has flits to send, it is expected, but not required, that it ignores **CXSDEACTHINT** and keeps the link in RUN state. If the transmitter has no flits to send, it can keep the link in RUN state or transition to STOP state. In this case, the transmitter can use **CXSDEACTHINT** to affect that decision.

One usage example in a CCIX system is an interconnect transitioning to a low-power state. The interconnect can directly transition the outbound channel to STOP state. The inbound channel is under control of the CCIX transport logic, however. The interconnect asserts **CXSDEACTHINT** on the inbound channel. If the transport logic has no flits to send, it can transition the inbound interface to STOP state allowing the interconnect to go to a low-power state.

B.9.2 Race conditions

A race condition exists when one side of the interface performs two actions at or around the same time.

There are two situations where one side of the interface performs two actions at or around the same time:

- 1. Changing the CXSACTIVEREQ or CXSACTIVEACK signal to change the state of the interface.
- 2. Sending an associated credit, flit, or credit return around the time of the state change.

This occurs in the following situations:

- When the receiver is asserting **CXSACTIVEACK**, to move from ACTIVATE to RUN, it is also permitted to start sending credits:
 - A race can occur between the sending of a credit, which is expected in the new state, and the assertion of the **CXSACTIVEACK** signal indicating the state change.
 - This is acceptable because the transmitter is required to be able to accept the credit in the previous state as well as in the new state.
 - For the receiver, it is permitted to send a credit in the same cycle that CXSACTIVEACK is asserted.
 - For the transmitter, it is required to accept a credit both before and after the assertion of CXSACTIVEACK.
- When the transmitter is deasserting **CXSACTIVEREQ**, to move from RUN to DEACTIVATE, it must stop sending flits:

- A race can occur between the last flit sent, which is expected in the previous state, and the deassertion of the **CXSACTIVE REQ** signal indicating the state change.
- This is acceptable because the receiver is required to be able to accept the flit in the next state, as well as in the previous state.
- For the transmitter, it is permitted to send a flit in the last cycle that **CXSACTIVEACK** is asserted.
- For the receiver, it is required to accept flits both before and after the deassertion of CXSACTIVEACK.

These race conditions are possible because the **CXSACTIVEREQ** and **CXSACTIVEACK** need not have the same delay between transmitter and receiver as the other signals. In order for the interface to work correctly, the following signals from TX to RX must have exactly the same cycle delay between transmitter and receiver, and are expected to be synchronous:

- CXSVALID
- CXSDATA
- CXSCNTL
- CXSVALIDCHK
- CXSDATACHK
- CXSCNTLCHK
- CXSCRDRTN
- CXSCRDRTNCHK

Also, these two signals from RX to TX must have the same delay between receiver and transmitter, and are expected to be synchronous:

- CXSCRDGNT
- CXSCRDGNTCHK

The delay on the TX->RX signals can be different than the delay on the RX->TX signals.

These signals can have any delay, and need not have the same delay as each other or the other signals. They are expected to be synchronous:

- CXSACTIVEACK
- CXSDEACTHINT

The signal **CXSACTIVEREQ** can have any delay, and need not have the same delay as the other signals. This signal can be asynchronous and must be synchronized by the receiver.

Generally, the physical distance between the transmitter and receiver determines the number of flop stages required to achieve the desired frequency. That number of flop stages is most likely applied to all of the signals on the interface.

The exception is **CXSACTIVEREQ**. It is common for the receiver's clock to stop during the STOP state due to clock gating. **CXSTXACTIVEREQ** assertion may be used to restart that clock. It is possible that the flops between transmitter and receiver are in the receiver clock domain and are also clock gated during STOP state. Because of this, **CXSACTIVEREQ** may need to have a purely combinational path (no flops) between transmitter and receiver, and may be a multicycle path due to distance and required frequency of the interface. This is acceptable because **CXSACTIVEREQ** and **CXSACTIVEACK** form a four-phase handshake and can run asynchronously.

CXSACTIVEREQ should therefore be treated by the receiver as an asynchronous signal and run through appropriate synchronization logic to avoid metastability before use. **CXSACTIVEACK** and **CXSDEACTHINT** are only sent when clocks are running in both TX and RX, and therefore should be treated as synchronous signals. This means that **CXSACTIVEACK** and **CXSDEACTHINT** should not be multicycle path between RX and TX, although they can have multiple flops as needed.

B.9.3 Response to a new state

When moving to a new state, where the state change has been initiated by the other-side of the interface, a component might be required to change its behavior.

If the state change requires a component to start sending flits or credits, then there is no defined limit on the time taken for the component to start the new behavior. This new behavior only occurs in the new state.

If the state change requires a component to stop sending flits or credits, then the component is permitted to take some time to respond. In this scenario, it is possible to see behavior when first entering a new state which is not expected within that state.

The state change from RUN to DEACTIVATE is the point at which flits, credits, and credit returns stop being sent.

Flits are sent by the transmitter, which is also the component that determines the state change, and therefore the transmitter can ensure flits are not sent after the state change. However, a race condition might still occur as described previously.

Credits are sent by the receiver, but that component does not determine the state change. The receiver might take some time to react to the state change and therefore it is possible for credits to be sent when first entering the DEACTIVATE state.

The protocol requires that the receiver has stopped sending credits and has had all credits returned before it signals the change from DEACTIVATE to STOP.

Determining when to move to ACTIVATE or DEACTIVATE

The transmitter is always responsible for initiating the state change from RUN to STOP, or from STOP to RUN

The transmitter itself can determine that a state change is needed. This can happen through a number of mechanisms.

The following examples are not exhaustive:

- The transmitter can determine that it has flits to send, so must move from STOP to RUN.
- The transmitter can determine that it has no activity to perform for a significant period of time, so can
 move from RUN to STOP.
- The transmitter can observe an independent sideband signal that indicates it should move either from RUN to STOP, or from STOP to RUN.
- The transmitter can observe the CXSDEACTHINT signal from the receiver and decide to move from RUN to STOP.

B.9.4 Interface activation and deactivation examples

This section provides interface activation and deactivation examples.

An activation of an interface is shown in the following figure. At time zero, the interface is in STOP state. The receiver could be clock-gated or powered down at this time. The transmitter asserted **CXSTXACTIVEREQ** and shifts to ACTIVATE state. It then waits for the receiver to wake up. The transmitter sees that the receiver is ready when **CXSTXACTIVEACK** is asserted. This indicates that the interface has moved to RUN state. In this case, **CXSTXCRDGNT** is asserted the same cycle, which allows the transmitter to begin sending flits. In this example, the transmitter receives a credit in the same cycle that the interface shifts to RUN state.

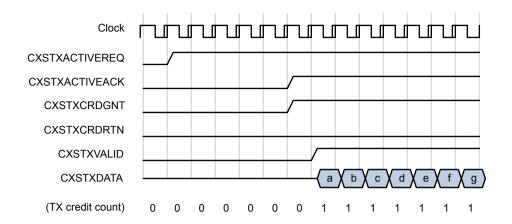


Figure B-10 Interface activation example

The following figure shows the same example with one modification: there is more delay between the receiver and transmitter on the **CXSTXACTIVEACK** path than there is on the **CXSTXCRDGNT** path. Because of this, the transmitter receives a credit while the interface is still in ACTIVATE state. However, the transmitter must wait to send a flit until the interface is in RUN state.

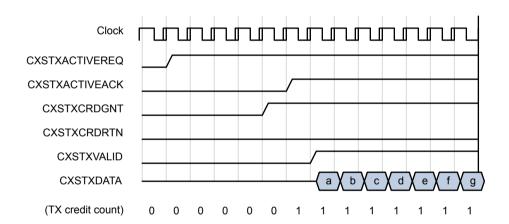


Figure B-11 Interface activation example with race

The following figure shows an interface deactivation example. The interface starts in RUN state. The transmitter runs out of flits to send and decides to deactivate the interface. The transmitter deasserts **CXSTXACTIVEREQ** taking the interface into DEACTIVATE state. Because the transmitter still has a non-zero credit count, the transmitter begins returning credits by asserting **CXSTXCRDRTN**.

The receiver continues to grant credits to the transmitter for a number of cycles until the receiver recognizes that the link is being deactivated. The transmitter must return the additional credits as well, asserting CXSTXCRDRTN until its credit count is zero and it sees CXSTXACTIVEACK deasserted, signaling the entry into STOP state. Because the receiver can't assert CXSRXACTIVEACK until it has all of the credits and there are no credit grants in flight, the transmitter never sees CXSTXACTIVEACK deasserted while the transmitter still has credits.

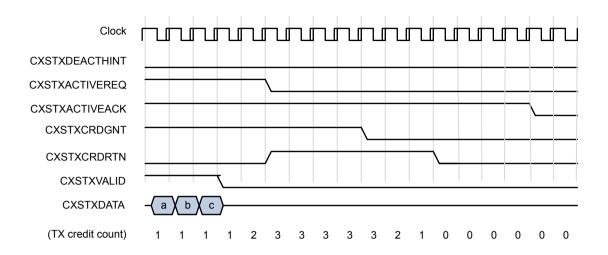


Figure B-12 Interface deactivation example

B.10 CXS packet continuous delivery guarantees

A receiver on a CXS interface can be built with a store-and-forward approach, in which each packet is fully received before it is used or sent out on another interface. Any receiver built in this way does not need to assert the **CXSCONTINUOUSDATA** attribute and can ignore this section.

However, if lowest latency is desired, a receiver can be built to begin transmission of a packet on another interface before the full packet has been received on the CXS interface. This results in lower latency, but if the downstream interface can't tolerate interruptions in the data flow (e.g. PCIe), this imposes a requirement on the CXS interface to deliver data at a rate high enough to ensure uninterrupted transmission of the full packet on the other interface.

The CXSCONTINUOUSDATA attribute is set by a transmitter if the transmitter can guarantee that a packet is not started on the CXS interface until transmitter can deliver all the data of that packet in subsequent cycles with no interruptions if it is given enough credits on the CXS interface. If a transmitter does not assert the CXSCONTINUOUSDATA attribute the receiver can't rely on the continuous delivery of data.

A transmitter that guarantees continuous delivery is generally designed such that a packet is not started on the interface until:

- The full packet is available in the transmitter.
- The packet is stored in the same clock domain or a higher frequency clock domain than the CXS interface.
- The datapath, clocking, and arbitration logic can guarantee delivery of the packet at full interface bandwidth.

One further implication is that the transmitter should not attempt to deactivate the link if that deactivation could occur at a time when some but not all packet data has been issued.

For continuous delivery to be effective and avoid the need for store-and-forward, the receiver must grant enough credits (and therefore have sufficient buffering) to keep the packet flowing at the required bandwidth. Specifying the buffering required is outside the scope of this specification, but in general the number of credits needed is a function of:

- The latency on **CXSCRDGNT** between receiver and transmitter.
- The maximum internal transmitter delay between CXSTXCRDGNT and CXSTXVALID when the transmitter has a packet stalled waiting for credits.
- The latency on **CXSVALID** between the transmitter and receiver.
- The microarchitecture of the receiver.
- The bandwidth of the downstream interface.

B.11 CXS Error signaling

This section describes how the CXS interface handles errors.

There are three error types:

- Transport errors between transmitter and receiver on CXS
- · Packet errors on CXS
- Errors outside of the scope of the CXS interface

This section contains the following subsections:

- B.11.1 Transport errors on page Appx-B-931.
- B.11.2 Packet errors on page Appx-B-931.
- B.11.3 Errors outside of CXS scope on page Appx-B-932.

B.11.1 Transport errors

Information on the CXS signals may be corrupted between the transmitter and receiver. One potential corruption source is a bit flipped from an alpha particle or voltage drop.

No Single Error Detect (SED), Double Error Detect (DED), or Single Error Correct, Double Error Detect (SECDED) protection on the corrupted interface signals leads to a silent error. This can cause unpredictable effects on the receiver or transmitter, including possible corrupt data, performance degradation (if a credit is lost), or the interface hanging.

For interface signals with data checking, there are four types of errors:

- 1. Single-bit error on signal protected by parity.
- 2. Duplicated or triplicated signals that are not all identical.
- 3. Double-bit error on signal protected by SECDED or ECC.
- 4. Single-bit error on signal protected by SECDED or ECC.

The first three cases are uncorrectable errors. The receiver of the signal (the transmitter for **CXSCRDGNT**, the receiver for all other signals) is responsible for detecting the error. The response to the error is implementation-defined, but should generally include recording information about the error and notifying the system that an unrecoverable error has occurred.

The last case is a correctable error. The receiver is expected to correct the error and proceed as if the error had not occurred. If the receiver asserts the attribute **CXSCONTINUOUSDATA**, any extra delay required to correct single-bit errors must not cause the continuous data guarantee to be violated.

In an uncorrectable error case, the receiver should generally attempt to continue operation after the error, if possible.

B.11.2 Packet errors

There are conditions which the transmitter may not be able to complete a packet which has been started on the CXS.

- 1. Uncorrectable Error:
 - a. The transmitter has started a packet, but is permanently unable to send the full contents of the packet.
 - b. For example, there is an uncorrectable error reading the later bytes of the packet from a RAM.
- 2. Error Correctable through Retry:
 - a. The transmitter has started a packet and detected an error on that packet. The transmitter may have a mechanism to reissue that packet in the future.
 - b. For example, a PCIe controller that passes through a packet coming from PCIe and later discovers a CRC error. The PCIe logic can request a retransmission of that packet.

In both of these cases, the transmitter must end the packet with the ENDERROR indicator in the control field. The receiver should then drop that packet and generally behave as if the packet was never sent. It

is, of course, permissible for the receiver to record the fact that the packet was dropped as part of performance monitoring logic, but the receiver should not treat the dropped packet as an error condition.

The transmitter has responsibility for retransmitting the packet, if possible, or logging/reporting the error through implementation-defined means.

If the receiver and transmitter both assert the **CXSERRORFULLDATA** attribute, the transmitter should send the number of bytes of data specified in the packet header before ending the packet with END and ENDERROR, even if the error is detected somewhere in the middle of the packet. This may mean padding the packet out with zeroes or invalid data to achieve the correct length. The encoding of the packet size within the packet is outside the scope of the CXS specification.

If **CXSERRORFULLDATA** is not an attribute of the transmitter the packet can be terminated on the next flit regardless of the original planned length of the packet.

B.11.3 Errors outside of CXS scope

If an error is detected by the transmitter logic early enough that the packet is not sent across the CXS interface, the CXS interface does not define a method for the transmitter to inform the receiver that an error has occurred.

In general, this should be considered an error in the transmitter and logged/reported to the system through implementation specific means.

Any bad data or errors that are reported inside the CCIX messages, such as poison data, or an error response on a memory request to an invalid address, is communicated through the CCIX protocol messages within the CXS packets. These errors are outside of the scope of CXS.

Appendix C **Revisions**

This appendix describes the technical changes between released issues of this book.

It contains the following section:

• *C.1 Revisions* on page Appx-C-934.

C.1 Revisions

Differences between released versions of the document are listed in this appendix.

Table C-1 Issue 0000-00

Change	Location	Affects
First release	-	-

Table C-2 Differences between issue 0000-00 and issue 0000-01

Change	Location	Affects
CMN-600 product name update.	Various locations in manual.	r0p0
Various product overview changes.	Chapter 1 Introduction on page 1-12.	
Various product feature changes.	Chapter 2 Functional Description on page 2-32.	
Register content update.	3.3 Register descriptions on page 3-173.	
System Level Cache content changes.	Chapter 4 SLC Memory System on page 4-801.	
Updated Debug Trace and PMU section.	Chapter 5 Debug trace and PMU on page 5-818.	
Updated signal descriptions.	Chapter 6 Performance Optimization and Monitoring on page 6-842.	

Table C-3 Differences between issue 0000-01 and issue 0101-00

Change	Location	Affects
Addition of CML product information.	1.1 About CMN-600 on page 1-13 Optional CML product overview in Section 1.1.	r1p1
Addition of CML product information.	1.3 Features on page 1-16 introducing the Optional CML features in Section 1.3.	
Addition of CML product information.	1.4 Interfaces on page 1-19 updated Figure 1-1 including CML interfaces in Section 1.4.	
New configuration information.	Configurable components new Section 1.5.1 added.	
CML interfaces content added.	1.5.1 System component selection on page 1-20 Section 1.5.2 updated.	
Configuration tables 1-1, 1-2, and 1-3 updated with CMN clarifications and new CML content	1.5.2 Mesh sizing and top-level configuration on page 1-21 Section 1.5.2 updated.	
CXG content added.	2.1.6 CXG on page 2-37 Section 2.1.6 updated.	
Cross chip routing an ID mapping information added/updated.	2.21 Cross chip routing and ID mapping on page 2-122 Section 2.3 updated including several flow diagrams.	
Updated flow diagrams.	CCIX ID management and mapping Section 2.5 updated including several flow diagrams.	
New CML discovery information.	2.5 Discovery on page 2-48 Section 2.7 updated.	
Table 2-7 updated with XID values.	2.5.1 Configuration address space organization on page 2-48 Section 2.7 updated.	
Table 2-8 added with new CML node ID information.	2.5.2 Configuration register node structure on page 2-51 Section 2.7.2 updated.	
Table 2-10 updated: removed invalid values.	2.5.3 Child pointers on page 2-53 Section 2.7.2.	
Atomics clarification for RN-I interfaces added.	2.7 Atomics on page 2-60 Section 2.9.	
Global address map topic added.	Global address map Section 2.17.1.	
RN-SAM clarification regarding GIC support. Also, RN-SAM target ID selection priorities clarified.	2.16 RN SAM on page 2-92 Section 2.17.2.	
RA-SAM information added for CXG.	2.17 CXRA SAM on page 2-97 Section 2.17.3.	
HN-F clarification regarding system implementation.	2.18 HN-F SAM on page 2-98 Section 2.18.	
Addition of CCIX port aggregation.	2.19.4 Support for CCIX Port Aggregation on page 2-109 topic.	
Clock domain diagrams updated to include CX-LA functionality: Figures 2-54 and 2-55.	2.22.1 Clock domains on page 2-128 section.	
Global clock information updated to include CML support: Table 2-48.	2.22.5 Clock enable inputs on page 2-131 section.	
Section 2.21.1 added to include CML information.	2.23.1 CML reset on page 2-134 section.	
Addition of CML register content.	3.3.11 CXHA configuration registers on page 3-620, 3.3.12 CXRA configuration registers on page 3-681, and 3.3.13 CXLA configuration registers on page 3-756 register sections.	
Various updated signal descriptions to include CML support.	Appendix A Signal Descriptions on page Appx-A-867 section.	
CXS specification added including all Appendix B subsections.	Appendix B CXS Specification on page Appx-B-904 section.	

Table C-4 Differences between LAC issue 0101-00 and EAC issue 0100-00

Change	Location	Affects
Configurable option addition to Table 1-2. Global parameters section.	1.5.2 Mesh sizing and top-level configuration on page 1-21.	r1p0
Configurable option addition to Table 1-3. HN-I and SBSX sections.	1.5.3 Device placement and configuration on page 1-24.	
Various text edits for clarification and technical accuracy.	2.14 Error handling on page 2-75.	
Various text edits for technical accuracy.	2.14.1 Error types on page 2-78.	
Updated tables contain a new bit 58: physical_mem_en	2.20 HN-I SAM on page 2-112.	
Added programming sequence.	2.19 RN and HN-F SAM programming on page 2-104.	
Tables 1-2 and 1-3 updated; default values added.	1.5.2 Mesh sizing and top-level configuration on page 1-21 and 1.5.3 Device placement and configuration on page 1-24.	
Table 2-8, updated CXHA and CXLA values.	2.5.2 Configuration register node structure on page 2-51.	
Added new topic.	4.9 Data Source Handling on page 4-812.	
Added new topic.	6.9 Occupancy and lifetime measurement using PMU events on page 6-865.	
Register content update.	3.3 Register descriptions on page 3-173.	
Added new topic.	Delays at SBSX bridges due to backpressure on page 6-857.	
Added new topics.	Tracker occupancy analysis on page 6-858 and Tracker occupancy analysis in HN-I on page 6-861.	
NIDEN and SPNIDEN note added.	5.1 DT system overview on page 5-819.	
BRESP values updated.	A.9.1 ACE-Lite-with-DVM slave interface signals on page Appx-A-881 and A.9.2 AXI/ACE-Lite master interface signals on page Appx-A-886.	

Table C-5 Differences between EAC issue 0100-00 and EAC issue 0100-01

Change	Location	Affects
Added new topic.	2.14.10 CXHA error handling on page 2-89.	r1p0
Added new section including seven sub-topics.	3.5 CML programming on page 3-792.	
Text edits for technical clarifications.	2.6 Addressing capabilities on page 2-59.	
Text edits for technical clarifications.	2.7 Atomics on page 2-60.	
Added new topic.	1.3.2 CCIX and CXS property support on page 1-17.	

Table C-6 Differences between EAC issue 0100-00 and EAC issue 0101-01

Change	Location	Affects
Updated figure RN SAM target ID selection policy.	2.16.1 Target IDs on page 2-92.	r1p1
Text edits for technical accuracy.	2.18 HN-F SAM on page 2-98.	
GIC Memory partition sizes updated.	2.19.2 Region size configuration on page 2-105.	
Content updated.	2.22.2 CML clock inputs on page 2-128.	
Updated signal names.	2.24.4 P-Channel on device reset on page 2-139.	
Updated register reset values.	por_dt_dbg_id and por_rnsam_unit_info.	
Text edits for technical accuracy.	3.4.1 Boot-time programming requirements on page 3-791.	
Updated parameters for technical accuracy.	4.1 About the SLC memory system on page 4-802.	
Updated event names.	Read and write delays at RN-I bridges on page 6-853.	
Updated endpoint references.	2.20 HN-I SAM on page 2-112.	

Table C-7 Differences between EAC issue 0101-01 and EAC issue 0102-00

Change	Location	Affects
Updated RN-F LDID assignment and new bullet added for LDIDs.	2.21 Cross chip routing and ID mapping on page 2-122.	r1p2
Figures 2-32, 2-33, and 2-34 updated to include CXHA blocks.	2.14 Error handling on page 2-75.	
Updated Table 2-22 for ERRMISC fields.	2.14.3 Error detection, signaling, and reporting on page 2-80.	
New HN-F bullet.	2.19.1 SAM programming sequence on page 2-104.	
Updated figure 2-57 to include NOSFLC references and Logic=ON transition states.	2.24.7 HN-F power domains on page 2-140.	
Updated CMO propagation bullet and corrections to OCM support bullets.	4.1 About the SLC memory system on page 4-802.	
Updated descriptions for WUSER_S, RUSER_S, WUSER_M, and RUSER_M. Also, new notes added for these channel signals.	A.9.1 ACE-Lite-with-DVM slave interface signals on page Appx-A-881.	
Updated descriptions for WUSER_M and RUSER_M. Also, new notes added for these channel signals.	A.9.2 AXI/ACE-Lite master interface signals on page Appx-A-886.	
Various register descriptions and content updates.	Register description section.	
Added new section for CHI support for CML.	1.3.1 CML Properties, Support, and Requirements on page 1-16.	

Table C-8 Differences between EAC issue 0102-00 and EAC issue 0103-00

Change	Location	Affects
New RA SAM configuration register table.	2.19.2 Region size configuration on page 2-105.	r1p3
CCIX port aggregation content added.	3.5.1 CMN-600 CML (CCIX) Related Programmable Registers on page 3-792.	
Various register descriptions and content updates.	3.3 Register descriptions on page 3-173.	
Updated MCSX, MCSY, and DCS count values.	1.5.2 Mesh sizing and top-level configuration on page 1-21.	
Updated NUM_WR_REQ, NUM_RD_REQ, NUM_RD_BUF, and NUM_AXI_REQS values.	1.5.3 Device placement and configuration on page 1-24.	