
Arm® CoreLink™ CCI-500 Cache
Coherent Interconnect

Revision: r1p0

Technical Reference Manual

Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights reserved.
100023_0100_01_en

Arm® CoreLink™ CCI-500 Cache Coherent Interconnect
Technical Reference Manual
Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 27 November 2014 Non-Confidential First release for r0p0.

0000-01 19 December 2014 Confidential Second release for r0p0.

0001-00 19 March 2015 Non-Confidential First release for r0p1.

0000-02 06 May 2015 Non-Confidential Non-technical update for r0p0.

0002-00 17 September 2015 Non-Confidential First release for r0p2.

0100-00 27 May 2016 Non-Confidential First release for r1p0.

0100-01 10 June 2018 Non-Confidential Second release for r1p0.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

 Arm® CoreLink™ CCI-500 Cache Coherent Interconnect

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Copyright © 2014–2016, 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® CoreLink™ CCI-500 Cache Coherent Interconnect

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com

Contents
Arm® CoreLink™ CCI-500 Cache Coherent
Interconnect Technical Reference Manual

Preface
About this book 7
Feedback .. 10

Chapter 1 Introduction
1.1 About the CCI-500 1-12
1.2 Compliance .. 1-13
1.3 Features 1-14
1.4 Interfaces 1-15
1.5 CCI operation 1-16
1.6 Configurable options .. 1-17
1.7 Test features .. 1-18
1.8 Product design flow and documentation .. 1-19
1.9 Product revisions 1-21

Chapter 2 Functional description
2.1 About the functions .. 2-23
2.2 Interfaces 2-24
2.3 Clocking and reset 2-27
2.4 Operation 2-28

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 3 Programmers model
3.1 About this programmers model 3-43
3.2 Register summary 3-44
3.3 Register descriptions 3-51
3.4 Address map 3-74

Appendix A Signal descriptions
A.1 Clock and reset signals .. Appx-A-78
A.2 Power and clock control signals Appx-A-79
A.3 Configuration signals Appx-A-81
A.4 Debug signals .. Appx-A-83
A.5 DFT signals .. Appx-A-84
A.6 APB4 signals Appx-A-85
A.7 ACE and ACE-Lite slave interface signals Appx-A-86
A.8 AXI master interface signals .. Appx-A-92
A.9 Miscellaneous signals .. Appx-A-96

Appendix B Revisions
B.1 Revisions Appx-B-98

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® CoreLink™ CCI-500 Cache Coherent Interconnect Technical Reference
Manual.

It contains the following:
• About this book on page 7.
• Feedback on page 10.

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book is for the Arm® CoreLink™ CCI-500 Cache Coherent Interconnect.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the CoreLink CCI-500 Cache Coherent Interconnect.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an overview of the CCI-500.

Chapter 2 Functional description
This chapter describes the functionality of the CCI-500.

Chapter 3 Programmers model
This chapter describes the CCI-500 programmers model.

Appendix A Signal descriptions
This appendix describes the external signals of the CCI-500.

Appendix B Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

 Preface
 About this book

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

 Additional reading

This section lists publications by Arm and by third parties.

See Infocenter http://infocenter.arm.com, for access to Arm documentation.

 Preface
 About this book

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

http://infocenter.arm.com

Arm publications
This book contains information that is specific to this product. See the following documents for
other relevant information:
• Arm® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).
• Arm® AMBA® APB Protocol Specification (ARM IHI 0024).
• Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces (ARM

IHI 0068).
• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).
• Principles of Arm® Memory Maps White Paper (ARM DEN 0001).

The following confidential books are only available to licensees:
• Arm® CoreLink™ CCI-500 Cache Coherent Interconnect Configuration and Sign-off Guide

(Arm 100024).
• Arm® CoreLink™ CCI-500 Cache Coherent Interconnect Integration Manual (Arm 100025).

Other publications
This section lists relevant documents published by third parties:
• JEDEC Standard Manufacturer’s Identification Code, JEP106 http://www.jedec.org.

 Preface
 About this book

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

http://www.jedec.org

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm CoreLink CCI-500 Cache Coherent Interconnect Technical Reference Manual.
• The number 100023_0100_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter provides an overview of the CCI-500.

It contains the following sections:
• 1.1 About the CCI-500 on page 1-12.
• 1.2 Compliance on page 1-13.
• 1.3 Features on page 1-14.
• 1.4 Interfaces on page 1-15.
• 1.5 CCI operation on page 1-16.
• 1.6 Configurable options on page 1-17.
• 1.7 Test features on page 1-18.
• 1.8 Product design flow and documentation on page 1-19.
• 1.9 Product revisions on page 1-21.

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.1 About the CCI-500
The CCI-500 is a programmable high bandwidth interconnect that enables hardware-coherent systems.

Hardware-managed coherency can improve system performance and reduce system power by sharing on-
chip data. Managing coherency in hardware has the following benefits:

• Reduces external memory accesses.
• Reduces the software overhead and complexity.
• Enables use of Arm big.LITTLE™ processing technology with multiple processor clusters.

The CCI-500 is a configurable interconnect that supports connectivity of:
• Up to four AMBA 4 ACE masters, such as the Arm Cortex®-A57 or Cortex-A53 processors.
• Up to six AMBA 4 ACE-Lite masters, such as the Arm Mali™-T760.
• Up to six AMBA 4 AXI4 slaves, such as memory and system peripherals.

 Note

The CCI-500 permits combinations of ACE and ACE-Lite masters, up to a maximum total of seven
masters.

The CCI-500 AXI4 master interfaces provide connection to memory and peripheral address space.

1 Introduction
1.1 About the CCI-500

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.2 Compliance
The CCI-500 complies with the following specifications:

• Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite ACE and ACE-Lite.
• Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces.

This TRM complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these sources.

1 Introduction
1.2 Compliance

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.3 Features
The CCI-500 features combine to provide a programmable high-bandwidth interconnect that enables
hardware coherent systems.

The CCI-500 provides:
• Data coherency between ACE masters.
• Quality of Service (QoS) features for traffic management.
• Input and Output (I/O) coherency with ACE-Lite masters.
• Crossbar interconnect functionality between the masters and slaves.
• A Performance Monitoring Unit (PMU) to count performance-related events.
• DVM message transport between masters for communication between MMUs.
• A Programmers View (PV) to control coherency and interconnect functionality.
• A snoop filter to reduce snoop power and improve performance for snoop misses.
• Support for Arm TrustZone® technology to provide Secure, Non-secure, and protected states.

1 Introduction
1.3 Features

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

1.4 Interfaces
The CCI-500 has several interfaces to connect it to a wider system.

The CCI-500 is highly configurable. You can select how many master and slave components to include
in your system. The following figure shows an example CCI-500-based system.

Cortex-
A57

Peripheral

ADB-400 ADB-400

I/O coherent masters

CoreLink MMU-500

CoreLink NIC-450

PeripheralMemory system with CoreLink DMC-500

MMU-
500

NIC-450

Mali-
V550

Mali-
DP550

CoreLink Cache Coherent
InterconnectSnoop filter

S6
ACE

interface

S5
ACE

interface

S4
ACE-Lite +

DVM interface
ACE-Lite +

DVM interface

S3
ACE-Lite +

DVM interface

S2
ACE-Lite +

DVM interface

S1
ACE-Lite +

DVM interface

S0

M5
AXI4

interface

M3
AXI4

interface

M2
AXI4

interface

M1
AXI4

interface

M0
AXI4

interface

M4
AXI4

interface

Cortex-
A72

Cortex-
A57

Cortex-
A53 Mali-T880

APB4 slave

NIC-450

Clock and
power
control

APB

Figure 1-1 Example system with a CCI-500

In this example, slave interfaces S5 and S6 support the ACE protocol for connecting masters such as the
Cortex-A53 or Cortex-A72 processors. The CCI-500 manages full coherency and data sharing between
L1 and L2 caches of all connected processor clusters. Optionally, you can use the AMBA Domain Bridge
(ADB-400) between components to integrate multiple power domains or clock domains.

Slave interfaces S0-S4 support ACE-Lite and DVM signaling for connecting I/O coherent devices such
as the Mali-T860 GPU or the Mali-T880 GPU. You can use DVM signaling for MMUs such as the
MMU-500.

You can use the APB4 slave programming interface to program the CCI-500 registers.

In the example, four AXI4 master interfaces are connected to compatible memory controllers for
LPDDR4 and LPDDR3 memory. Interfaces M5-M2 show these connections.

Typically, up to two AXI4 master interfaces are connected to system components, as shown by interfaces
M1 and M0.

Clock and power control is achieved using Q-Channel and P-Channel interfaces.

1 Introduction
1.4 Interfaces

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.5 CCI operation
The CCI-500 has dual-layer request channels, meaning that it can handle two requests per cycle. It also
has a central Transaction Tracker (TT) that handles coherency and ordering. The TT is non-blocking and
can reorder requests according to QoS requirements.

The following figure shows the CCI-500 high-level operation.

Write address and Read address channels

Request arbiter

Request distributor

Transaction Tracker
(TT) Snoop routerSnoop

filter

Read data channels Write data channels Write response
channels

Register stages

Write address and
Read address channels

Snoop request, data,
and response channels

Read data
crossbar and

response modifier

Write data crossbar
with buffers

Write response
crossbar with re-
ordering buffers

Read data channels Write data channels Write response
channels

Register stages Register stages

CCI slave interfaces

CCI master interfaces

Figure 1-2 CCI-500 high-level operation

The TT uses a snoop filter to determine where to send snoop requests. To maximize throughput:
• The snoop filter has four partitions.
• The read data and write data interconnects are fully-connected crossbars.

Write responses also use a crossbar interconnect and the reorder buffer helps the CCI-500 to meet
ordering requirements without stalling requests.

Each interface has a configurable number of register stages, with a minimum of one stage for each
interface.

1 Introduction
1.5 CCI operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.6 Configurable options
The CCI-500 is highly configurable and provides both design-time and reset-time configuration options.

Design-time configuration options enable you to meet your functional requirements with the smallest
possible area and power. At design-time, you can configure:

• ID widths.
• Address widths.
• User-defined signal widths.
• The number of slave and master interfaces.
• The burst splitting option for slave interfaces.
• The transport of data checksums, for example, parity or ECC.
• The size of the TT, to achieve trade-off between performance and area.
• Write buffering, to achieve trade-off between area and write bandwidth.
• The snoop filter RAM capacity to match connected processor cache sizes.
• The number of pipeline stages on interfaces, to aid timing closure for large designs.
• Low latency mode, enabling you to remove one cycle of latency from request paths between slave

and master interfaces.

Reset-time configuration options enable you to change the functionality of the interconnect for different
applications. At reset-time, you can configure:
• A custom address decoder, to implement any arbitrary addressing scheme.
• QoS threshold, to define the transactions that are treated as high priority within the interconnect.
• The QoS value of read and write requests according to allocated bandwidth, using QoS regulators.

The CCI-500 address map includes options that you can use to interleave memory channels. Optionally,
you can implement your own address decoder that defines any arbitrary addressing scheme. The
CCI-500 includes assertions that you can use with formal tools or in simulation to verify that your
address decoder adheres to CCI-500 requirements.

1 Introduction
1.6 Configurable options

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.7 Test features
The CCI-500 supports both scan cell insertion and MBIST methodologies for your SoC Design for Test
(DFT) strategy. DFT control signals provide high coverage for your test strategy for the CCI-500 design
and associated internal RAM cells.

The DFT control signals provide the following capabilities:
• Disabling internal resets.
• Controlling architectural clock gating.
• Controlling internal RAM MBIST signals.
• Limiting multicycle paths to enable delay testing.
• Controlling internal RAM chip-select, to preserve state.

Related information
A.5 DFT signals on page Appx-A-84

1 Introduction
1.7 Test features

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

1.8 Product design flow and documentation
You are required to perform several processes before using the CCI-500. To obtain the best performance,
Arm recommends that you perform some of the implementation stages, including RAM integration,
before integrating it into your wider SoC.

The processes are as follows:

Implementation
The implementer configures and synthesizes the RTL.

Integration
The integrator connects the implemented design into a SoC. Integration includes connecting the
design to a memory system, processors, and peripherals.

Final SoC implementation
The process of implementing the final, fully integrated SoC in silicon. Arm can provide only
guidance relevant to its own products for this process. If Arm provides guidance on this process
for your product, then a separate document is included in the implementation bundle for that
product.

Programming
Programming is the last process. The system programmer develops the software that is required
to configure and initialize the CCI-500, and tests the required application software.

For information on the CCI-500 documents that provide information on these processes, see
1.8.1 Documentation on page 1-19.

Each process:
• Is separate, and a different person can complete it.
• Can include implementation and integration choices that affect the behavior and features of the

CCI-500, and therefore the other tasks in the flow.

The operation of the final device depends on:

Build configuration
The implementer chooses the configuration options that affect the preprocessing of the RTL
source files. These options usually include or exclude the logic that affects one or more of the
features, the area, or the maximum frequency and performance of the resulting macrocell. For
example, the implementer can control the number of outstanding transactions that each master
and slave interface supports.

Configuration inputs
The integrator configures some features of the CCI-500 by tying inputs to specific values. These
configurations affect the start-up behavior before you specify the software configuration. They
can also limit the options available to the software. For example, the ACCHANNELENSx
signal inputs prevent AC coherency requests from being emitted from an unconnected slave
interface.

Software configuration
The programmer configures the CCI-500 by programming particular values into registers. These
values affect the behavior of the CCI-500, for example, by enabling QoS features.

1.8.1 Documentation

Each CCI-500 document has an intended audience and is associated with specific tasks in the design
flow. These documents do not reproduce Arm architecture and protocol information.

For relevant protocol and architectural information that relates to this product, see Additional reading
on page 8.

The CCI-500 documentation is as follows:

1 Introduction
1.8 Product design flow and documentation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the CCI-500. It is required at all stages of the design flow. The
choices that are made in the design flow can mean that some behaviors described in the TRM
are not relevant. If you are programming the CCI-500, then contact:
• The implementer to determine:

— The build configuration of the implementation.
— What integration, if any, was performed before implementing the CCI-500.

• The integrator to determine the pin configuration of the device that you use.

Configuration and Sign-off Guide
The Configuration and Sign-off Guide (CSG) describes:
• A list of the design-time configuration options.
• The available build configuration options and related issues in selecting them.
• How to configure the Register Transfer Level (RTL) with the build configuration options.
• How to integrate RAM arrays.
• How to run test vectors.
• The processes to sign off the configured design.

The Arm product deliverables include reference scripts and information about using them to
implement your design. Reference methodology flows supplied by Arm are example reference
implementations. Contact your EDA vendor for EDA tool support.

The CSG is a confidential book that is only available to licensees.

Integration Manual
The Integration Manual (IM) describes how to integrate the CCI-500 into a SoC. It includes:
• A description of the CCI-500 features.
• A list of the reset-time configuration options.
• Considerations when integrating the CCI-500 into your system.

The IM is a confidential book that is only available to licensees.

1 Introduction
1.8 Product design flow and documentation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.9 Product revisions
There can be differences in functionality between different product revisions. Arm records these
differences in this section.

r0p0 First release.

r0p0-r0p1
The following changes apply to this release:
• Usage constraints and access permissions for PMCR is changed. See 3.3.6 Performance

Monitor Control Register (PMCR) on page 3-59.
• Usage constraints for Interface Monitor Control Register is changed. See 3.3.7 Interface

Monitor Control Register on page 3-60.
• Peripheral ID2 register value is changed to reflect the product status. See 3.3.8 Component

and Peripheral ID Registers on page 3-61.
• Support for connecting PCIe root complex components to the CCI-500 is added, through the

following changes:
— Added SIx_W_MIN parameter.
— Added MI_DEPENDENT_ON_SI_Mx signal. See A.3 Configuration signals

on page Appx-A-81.
— Amended ORDERED_WRITE_OBSERVATION[n:0] functionality to remove the

option to set Ordered Write Observations on ACE slave interfaces. See A.3 Configuration
signals on page Appx-A-81.

r0p1-r0p2
The following changes apply to this release:
• Added support for trace signaling See 2.4.5 Debug features on page 2-37.
• Added Secure observation override functionality. See 3.3.2 Secure Access Register

on page 3-52.
• Added QoS level input signal VARQOSACCEPTMy[3:0]. See A.8.4 Read address channel

signals on page Appx-A-94.
• Added support for generating a Design Simulation Model (DSM).

r0p2-r1p0
The following changes apply to this release:
• Optimized duration of hazarding window for some write transactions.
• Finer-grained regional clock gating that permits disabling of RAM banks within snoop filter.

1 Introduction
1.9 Product revisions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

Chapter 2
Functional description

This chapter describes the functionality of the CCI-500.

It contains the following sections:
• 2.1 About the functions on page 2-23.
• 2.2 Interfaces on page 2-24.
• 2.3 Clocking and reset on page 2-27.
• 2.4 Operation on page 2-28.

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

2.1 About the functions
The CCI-500 is a coherent interconnect that enables hardware coherency. In hardware coherent systems,
an operating system can run over multiple processor clusters without complicated cache maintenance
software. This is a fundamental requirement for advanced Arm big.LITTLE processing models such as
Global Task Scheduling (GTS).

In addition to the AXI and ACE interfaces, the CCI-500 provides interfaces that you can use for various
system operations, such as:
• Programming the CCI-500 internal registers, debugging, and performance monitoring using an APB4

interface.
• Controlling clock and power states with P-Channel and Q-Channel to minimize power at low

bandwidth.
• Logic and RAM testing, for manufacture test.

The CCI-500 includes snoop functionality that permits snooping of the ACE interfaces. A snoop filter
provides efficient snoop transaction management by keeping a record of the addresses stored in the
caches of the attached ACE masters. This means that the snoop filter can often resolve coherency
messaging instead of broadcasting to all ACE interfaces. This mechanism can offer system power
savings and reduce the latency in the case where data is not held in any of the upstream caches.

A Performance Monitoring Unit (PMU) provides events and counters that indicate CCI-500 runtime
performance. PMU registers provide information on the status of the interconnect and you can use these
registers to help debug system deadlock. In addition, the CCI-500 provides a set of QoS regulation and
control mechanisms.

The CCI-500 supports Secure and Non-secure operations that can be used within a system that uses Arm
TrustZone to provide Secure, Non-secure, and protected states.

The CCI-500 also supports cache maintenance operations and exclusive accesses.

2 Functional description
2.1 About the functions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

2.2 Interfaces
The CCI-500 has several interfaces to connect it to a wider system.

The following figure shows the CCI-500 interfaces.

CCI-500

Clock and reset

Tie-off signals

Debug and profile

APB4 slave

1-21-4

ACE ACE
ACE-Lite + DVM

ACE-Lite + DVM

Q-Channel

P-Channel

AXI4 AXI4 AXI4 AXI4 AXI4 AXI4

1 - 4 0 - 6

Maximum number of slave interfaces is seven

To memory To system

Maximum number of master AXI4 interfaces is six

Figure 2-1 CCI-500 interfaces

All master and slave interfaces are numbered from 0, and the following table shows how many interfaces
the CCI-500 can have.

 Note

You can have a minimum of two and a maximum of seven slave interfaces.

Table 2-1 Permitted CCI-500 interfaces

Interface type Number of interfaces permitted by the CCI-500

Minimum Maximum

ACE slave. 1 4

ACE-Lite + DVM slave. 0 6

2 Functional description
2.2 Interfaces

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

Table 2-1 Permitted CCI-500 interfaces (continued)

Interface type Number of interfaces permitted by the CCI-500

Minimum Maximum

AXI4 master, to memory. 1 4

AXI4 master, to system. 1 2

2.2.1 ACE interfaces

You can configure the CCI-500 to have up to four standard AXI Coherency Extensions (ACE) slave
interfaces.

The CCI-500 supports the full ACE protocol, with a coherency granule of 64-bytes. For more
information about how the CCI-500 handles snoop transactions, see 2.4.3 Snoop connectivity and control
on page 2-29.

See the Arm® AMBA® AXI and ACE Protocol Specification for more information.

2.2.2 ACE-Lite slave interfaces

The ACE-Lite interfaces are a defined subset of the full ACE interfaces.

You can configure the CCI-500 to have up to six ACE-Lite slave interfaces. In addition to standard ACE-
Lite functionality, these interfaces also support DVM messages that are passed to upstream system MMU
components.

See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite ACE and ACE-
Lite.

2.2.3 AXI4 master interfaces

The AMBA 4 protocol defines the AXI4 protocol that supports high-performance, high-frequency
system designs.

Depending on configuration, the CCI-500 includes:
• Between one and four AXI4 master interfaces for connecting to memory.
• One or two AXI4 master interfaces for connecting to the rest of the system.

The primary difference between memory and system interfaces is the definition in the memory map. You
can configure memory interfaces to be interleaved across the memory region, for example striping, to
enable higher utilization of memory. See the Arm® AMBA® AXI and ACE Protocol Specification for more
information about AXI4.

2.2.4 APB4 slave interface

APB is a low-cost AMBA bus protocol that can reduce power consumption when connecting to the main
system bus.

The CCI-500 has an APB4 slave interface for programming the internal registers and reading from the
status, PMU, and debug registers. This interface runs synchronously with the other CCI-500 interfaces.

2.2.5 Clock and power control interfaces

The CCI-500 includes the Arm Q-Channel and P-Channel interfaces to control clock and power states.

To save power, the CCI-500 has:
• A Q-Channel interface that you can use to determine how to control the clock state of devices.
• A P-Channel interface that you can use to control the power state of the snoop filter RAMs within the

CCI-500, for example, enabling a retention state.

2 Functional description
2.2 Interfaces

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

See the Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information.

2.2.6 Debug and performance monitoring interface

The CCI-500 supports debug and performance monitoring using a combination of standard signals and a
dedicated error pin.

The CCI-500 includes standard Arm interface signals for:
• Event outputs.
• Debug configuration.
• PMU counter overflow interrupts.

In addition, the nERRIRQ output pin indicates a transaction error that cannot be signaled precisely.

Related information
2.4.7 Error responses on page 2-39

2.2.7 DFT interface

For in-silicon testing of logic and RAMs, the CCI-500 includes DFT and MBIST testing interfaces.

Related information
A.5 DFT signals on page Appx-A-84

2 Functional description
2.2 Interfaces

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

2.3 Clocking and reset
The CCI-500 uses ACLK and ARESETn signals for clock and reset, respectively.

The CCI-500 has a single main clock signal, ACLK, that it distributes to all sub blocks. Use external
clock-domain-crossing bridges when masters and slaves connecting to the CCI-500 are in different clock
domains.

The CCI-500 has a single reset domain with an active-LOW reset input signal, ARESETn. This is
synchronized with the ACLK with a double-register on the input to the CCI-500 signal. You can replace
this synchronizer with appropriate cells from your target library.

 Note

When deasserting ARESETn, ensure that the following conditions are met for at least three ACLK
cycles:
• There is no activity on the slave interfaces.
• The configuration inputs are static.

The CCI-500 supports the following power-saving features:

Internal regional clock gating

The CCI-500 automatically gates the clock to internal blocks that do not require the clock.

External architectural clock gating

The CCI-500 provides signaling to support implementation of your architectural clock gating
strategy. The CCI-500 provides this support using the Arm Q-Channel.

When the Q-Channel is in the Q_STOPPED state, you can safely disable the clock to the
CCI-500. Any incoming transactions are stalled, and any changes to other inputs are not
registered until the clock is reapplied. This clock gating can reduce dynamic power to zero when
the system is idle.

External architectural power state control

The CCI-500 provides signaling to support implementing your architectural power state control.
The CCI-500 provides this support using the Arm P-Channel.

See the Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces for more
information.

 Note

The Q-Channel and P-Channel supersede the AXI low-power interface that products such as the CCI-400
use. For legacy IP, the Low Power Interface Specification, Arm® Q-Channel and P-Channel Interfaces
provides information on linking to IP that contains an AXI low-power interface.

2 Functional description
2.3 Clocking and reset

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

2.4 Operation
This section groups information based on the operation of various features of the CCI-500.

This section contains the following subsections:
• 2.4.1 Connectivity and address map on page 2-28.
• 2.4.2 Snoop filter on page 2-28.
• 2.4.3 Snoop connectivity and control on page 2-29.
• 2.4.4 Performance Monitoring Unit on page 2-30.
• 2.4.5 Debug features on page 2-37.
• 2.4.6 Security on page 2-37.
• 2.4.7 Error responses on page 2-39.
• 2.4.8 Cache maintenance operations on page 2-39.
• 2.4.9 Barriers on page 2-40.
• 2.4.10 Exclusive accesses on page 2-40.
• 2.4.11 DVM messages on page 2-40.
• 2.4.12 Quality of Service on page 2-40.

2.4.1 Connectivity and address map

The interconnect topology and the address map are factors that can affect whether a particular master can
communicate with a particular slave.

The CCI-500 is a fully-connected interconnect, meaning that any master can communicate with any
slave, subject to the address map you define. See your SoC documentation for the address map that your
implementation supports.

2.4.2 Snoop filter

The CCI-500 contains an inclusive snoop filter that records the addresses of data that is stored in the
ACE master caches.

The snoop filter can respond to snoop transactions in the case of a miss, and snoop appropriate masters
only in the case of a hit. Snoop filter entries are maintained by observing transactions from ACE masters
to determine when entries have to be allocated and deallocated.

The snoop filter can respond to multiple coherency requests without it being necessary to broadcast to all
ACE interfaces. For example, if the address is not in any cache, the snoop filter responds with a miss and
directs the request to memory. If the address is in a processor cache, the request is considered a hit and is
directed to the ACE port containing that address in its cache.

Arm recommends that you configure the snoop filter directory to be 0.75-1 times the total size of
exclusive caches of processors that are attached to the CCI-500. The snoop filter is 8-way set associative
and, to minimize conflicts, stores twice as many tags as the configured size. An example of a conflict is
when the CCI-500 is unable to insert a new entry in an available position in the snoop filter. If a conflict
occurs, an existing entry is evicted, and the snoop filter issues a CleanInvalid snoop to processors that
might be holding the evicted lines. This type of eviction is known as a back-invalidation, and is expected
to occur rarely if you configure the snoop filter size as Arm recommends.

The snoop filter is updated by monitoring transactions from the attached masters, that allocate and
deallocate data into their caches. In the ACE protocol, the deallocation of clean data is indicated using
the Evict transaction.

 Note

Ensure that masters connected to the CCI-500 issue Evict transactions when they deallocate clean data.
For Arm processors, you can control the issuing of Evict transactions using bit[3] of the L2 Auxiliary
Control Register.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

2.4.3 Snoop connectivity and control

The CCI-500 has a fully-connected snoop interconnect and a snoop filter for efficient management of
snoop request transactions.

The issuing of snoop requests and DVM message requests from a slave interface is controlled using the
Snoop Control Registers.

A shareable read request from an ACE master allocates data to the cache of the master. This read request
also allocates an entry in the snoop filter to record that the master has a copy of that data.

For requests for which it might be necessary to retrieve or invalidate data in the cache of another master,
the CCI-500 looks up the address in the snoop filter. If the snoop filter indicates that a master has a copy
of that data, then either:

• A snoop request is issued, if snoops to the master are enabled.
• The snoop filter entry is updated, if snoops to the master are disabled.

If the snoop filter indicates that no ACE master contains that address, then the request is directed to the
appropriate master interface. DVM requests are broadcast through all slave interfaces that are enabled for
DVM messages and do not interact with the snoop filter.

The programmable bits of the 3.3.9 Snoop Control Registers on page 3-62 are LOW at reset. You must
program them HIGH for each master in the shareable domain before the CCI-500 receives shareable
transactions or DVM messages. Before disabling a master, you must disable snoop and DVM messages
for the master by programming the relevant bits of the Snoop Control Registers LOW.

If snoops are sent to interfaces where the master is disabled or not present, the system is likely to
deadlock. The CCI-500 provides a hardware mechanism of disabling snoops to prevent software errors
causing deadlocks in cases where masters are not present or do not support DVMs. Each slave interface
has an ACCHANNELENSx signal input. You can use ACCHANNELENSx to prevent the
corresponding slave interface from issuing snoops or DVM messages, even if they are enabled by other
means.

 Note

These bits are sampled only at reset, and changing them after ARESETn is HIGH has no effect.

Removing a master from the coherent domain

To ensure correct system operation, you must follow a specific procedure to remove the master from the
CCI-500 coherent domain before powering down your master.

Several steps in this procedure require actions on the processor that you want to power down. For these
steps, see the appropriate processor documentation.

Procedure
1. Configure the master so that it does not allocate shareable data into its cache, for example by

disabling the data cache.
2. Clean and invalidate all shareable data from the caches in the master.
3. Disable the sending of snoops or DVM messages to the master, by programming the Snoop Control

Register.
4. Execute a barrier instruction to ensure that the previous step is complete.
5. Poll the Status Register to confirm that the Snoop Control Register changes are effected.

Next Steps

After you complete these actions, the master is no longer in the coherent domain and you can power it
down or disable it.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

Related information
3.3.3 Status Register on page 3-53
3.3.9 Snoop Control Registers on page 3-62

Adding a master to the coherent domain

To ensure correct system operation, you must follow a specific procedure to add a master to the CCI-500
coherent domain.

Before a master allocates any shareable data into its caches, you must add it to the CCI-500 coherent
domain.

Procedure
1. Enable the master to respond to snoops.
2. Enable the sending of snoops or DVM messages to the master, by programming the Snoop Control

Register.
3. Execute a barrier instruction to ensure that the previous step is complete.
4. Poll the Status Register to confirm that the Snoop Control Register changes are effected.
5. Configure the master so that it can issue cacheable, shareable transactions.
Related information
3.3.3 Status Register on page 3-53
3.3.9 Snoop Control Registers on page 3-62

2.4.4 Performance Monitoring Unit

The PMU events and counters indicate the runtime performance of the CCI-500.

The CCI-500 includes logic to gather various statistics on the operation of the interconnect during
runtime, using events and counters. These events provide useful information about the behavior of the
interconnect, that you can use when debugging or profiling traffic.

The PMU provides eight counters. Each counter can count any of the events available in the CCI-500. To
keep the PMU logic overhead to a minimum, the absolute count and timing of events might vary slightly.
This variation has a negligible effect except when the counters are enabled for a very short time.

The PMU consists of:

• Performance event counters that are readable through the internal registers.
• A global start or stop bit that enables the counters to increment when HIGH. The default is LOW.
• A global reset bit that resets all counters to zero.
• A parallel event bus, EVNTBUS, that you can export from the CCI-500 to capture all events

concurrently.
• Eight 32-bit event counters that you can program to count an event from the event bus.
• Input signals DBGEN and NIDEN. If either is HIGH, the counting and exporting of events is

enabled.
• Input signals SPNIDEN and SPIDEN, that enable the counting of both Non-secure and Secure

events.
• A set of counter overflow outputs, nEVNTCNTOVERFLOW, that can raise an interrupt when a

number of events have occurred.

The PMU obeys the following rules:

• Each event can only fire once per cycle.
• The snoop filter emits events separately from any interface.
• Events that are marked ACE only, can only fire for ACE interfaces.
• Each master and slave interface emits events separately from any other interface.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

This section describes:
• PMU event list on page 2-31.
• PMU registers on page 2-35.
• Using the PMU on page 2-36.

PMU event list

The CCI-500 can generate a wide range of events, attributed to a specific interface or globally where
they apply to central functions. A list of these events and interface identifiers enables you to identify and
then program the events and source locations you want to monitor.

To program the CCI-500 use the code column in each respective table to identify the value to program in
to each register field. If you monitor events using the EVNTBUS, then use the EVNTBUS offset column
to identify each position of the bit.

Each event has a 9-bit configuration identifier comprising a source identifier and an event code
concatenated {identifier,code}. The source identifier is a 4-bit code that indicates the interface that
generated the 5-bit event code.

The following table shows the possible 4-bit source identifiers.

Table 2-2 Event source identifiers

Code[8:5] Source

0x0 Slave interface 0, SI0

0x1 Slave interface 1, SI1

0x2 Slave interface 2, SI2

0x3 Slave interface 3, SI3

0x4 Slave interface 4, SI4

0x5 Slave interface 5, SI5

0x6 Slave interface 6, SI6

0x7 Reserved

0x8 Master interface 0, MI0

0x9 Master interface 1, MI1

0xA Master interface 2, MI2

0xB Master interface 3, MI3

0xC Master interface 4, MI4

0xD Master interface 5, MI5

0xE Reserved

0xF Global

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

 Note

As CCI-500 is a configurable product not all interfaces might be present, but the source encodings
remain the same. If you select an interface that is not present in the specific implementation, then no
events are generated.

The following tables show the 5-bit event codes for slave interfaces, master interfaces, and global events.
• Table 2-3 Slave interface event codes on page 2-32.
• Table 2-4 Master interface event codes on page 2-34.
• Table 2-5 Event codes for global events on page 2-34.

Table 2-3 Slave interface event codes

Slave event Code[4:0] EVNTBUS
offset

Secure
exempt

ACE
only

Read request handshake, where both:
• ARVALID is HIGH.
• ARREADY is HIGH.

0x00 0 - -

Read request handshake: Device. 0x01 1 - -

Read request handshake: Normal, Non-shareable. 0x02 2 - -

Read request handshake: Normal, Shareable, non-allocating.

This applies to ReadOnce transactions.

0x03 3 - -

Read request handshake: Normal, Shareable allocating.

This applies to ReadClean, ReadShared, ReadNotSharedDirty, and
ReadUnique transactions.

0x04 4 - Y

Read request handshake: invalidation.

This applies to MakeUnique and CleanUnique transactions.

0x05 5 - Y

Read request handshake: cache maintenance operation.

This applies to CleanInvalid, MakeInvalid, and CleanShared
transactions.

0x06 6 - -

Read request handshake: DVM.

This applies to DVM Message and DVM Complete transactions.

0x07 7 - -

Read data handshake, where both:
• RVALID is HIGH.
• RREADY is HIGH.

0x08 8 Y -

Read data handshake with RLAST HIGH, for a snoop hit. 0x09 9 Y -

Write request handshake, where both:
• AWVALID is HIGH.
• AWREADY is HIGH.

0x0A 10 - -

Write request handshake: Device. 0x0B 11 - -

Write request handshake: Non-shareable. 0x0C 12 - -

Write request handshake: Shareable.

This applies to WriteBack and WriteClean transactions.

0x0D 13 - Y

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

Table 2-3 Slave interface event codes (continued)

Slave event Code[4:0] EVNTBUS
offset

Secure
exempt

ACE
only

Write request handshake: Shareable.

This applies to WriteLineUnique transactions.

0x0E 14 - -

Write request handshake: Shareable.

This applies to WriteUnique transactions.

0x0F 15 - -

Write request handshake.

This applies to Evict transactions.

0x10 16 - Y

Write request handshake.
 Note

This applies to WriteEvict transactions. However, because WriteEvict is
not supported in the CCI-500, this event does not fire.

0x11 17 - Y

Write data handshake, where both:
• WVALID is HIGH.
• WREADY is HIGH.

0x12 18 Y -

Snoop request handshake, where both:
• ACVALID is HIGH.
• ACREADY is HIGH.

0x13 19 - -

Snoop request handshake: read.

This applies to ReadOnce, ReadClean, ReadNotSharedDirty,
ReadShared, and ReadUnique transactions.

0x14 20 - Y

Snoop request handshake: clean or invalidate.

This applies to MakeInvalid, CleanInvalid, and CleanShared
transactions.

0x15 21 - Y

Snoop response handshake: Data Transfer bit, indicated by CRRESP[0]
LOW.

0x16 22 Y -

Read request stall, where both:
• ARVALID is HIGH.
• ARREADY is LOW.

0x17 23 - -

Read data stall, where both:
• RVALID is HIGH.
• RREADY is LOW.

0x18 24 Y -

Write request stall, where both:
• AWVALID is HIGH.
• AWREADY is LOW.

0x19 25 - -

Write data stall, where both:
• WVALID is HIGH.
• WREADY is LOW.

0x1A 26 Y -

Write response stall, where both:
• BVALID is HIGH.
• BREADY is LOW.

0x1B 27 Y -

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

Table 2-3 Slave interface event codes (continued)

Slave event Code[4:0] EVNTBUS
offset

Secure
exempt

ACE
only

Snoop request stall, where both:
• ACVALID is HIGH.
• ACREADY is LOW.

0x1C 28 - -

Snoop data stall, where both:
• CDVALID is HIGH.
• CDREADY is LOW.

0x1D 29 Y Y

Request stall cycle because of OT transaction limit. 0x1E 30 - -

Read stall because of arbitration. 0x1F 31 - -

The following table shows the event codes for master interfaces.

Table 2-4 Master interface event codes

Master event Code[4:0] EVNTBUS offset Secure exempt

Read data handshake. 0x00 0 Y

Write data handshake. 0x01 1 Y

Read request stall, where both:
• ARVALID is HIGH.
• ARREADY is LOW.

0x02 2 -

Read data stall, where both:
• RVALID is HIGH.
• RREADY is LOW.

0x03 3 Y

Write request stall, where both:
• AWVALID is HIGH.
• AWREADY is LOW.

0x04 4 -

Write data stall, where both:
• WVALID is HIGH.
• WREADY is LOW.

0x05 5 Y

Write response stall, where both:
• BVALID is HIGH.
• BREADY is LOW.

0x06 6 Y

The following table shows the event codes for global events.

Table 2-5 Event codes for global events

Global event Code[4:0] EVNTBUS offset Secure exempt

Access to snoop filter bank 0 or 1, any response. 0x00 0 -

Access to snoop filter bank 2 or 3, any response. 0x01 1 -

Access to snoop filter bank 4 or 5, any response. 0x02 2 -

Access to snoop filter bank 6 or 7, any response. 0x03 3 -

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

Table 2-5 Event codes for global events (continued)

Global event Code[4:0] EVNTBUS offset Secure exempt

Access to snoop filter bank 0 or 1, miss response. 0x04 4 -

Access to snoop filter bank 2 or 3, miss response. 0x05 5 -

Access to snoop filter bank 4 or 5, miss response. 0x06 6 -

Access to snoop filter bank 6 or 7, miss response. 0x07 7 -

Back-invalidation from snoop filter. 0x08 8 -

Requests that allocate into a snoop filter bank might be stalled because all ways
are used.

The snoop filter RAM might be too small.

0x09 9 Y

Stall because TT full.

Increase TT_DEPTH parameter to avoid performance degradation.

0x0A 10 -

CCI-generated write request. 0x0B 11 -

CD handshake in snoop network. Use this to measure snoop data bandwidth.
Each event corresponds to 16 bytes of snoop data.

0x0C 12 Y

Request stall because of address hazard. 0x0D 13 -

Snoop request stall because of snoop TT being full. 0x0E 14 Y

Snoop request type override for TZMP1 protection. 0x0F 15 Y

Event bus

The CCI-500 exports a vector of event signals providing information from the Performance Monitor
Unit (PMU) using the EVNTBUS signal. The width of this bus varies depending on the number of
master and slave interfaces in your CCI-500 implementation.

The EVNTBUS output is a concatenation of all events that is, global events and events on each Master
Interface (MI) and Slave Interface (SI). The global events are always the least significant bits from [15:0]
irrespective of the number of interfaces. Table 2-5 Event codes for global events on page 2-34 lists the
bit offsets in the EVNTBUS output.

 Note

By default, only events for Non-secure transactions are recorded. However, if the SPNIDEN input signal
is HIGH, or if both DBGEN and SPIDEN inputs are HIGH, then the CCI-500 counts and exports both
Secure and Non-secure events. Events marked in the tables as Secure exempt do not have a security
classification, so they are counted and exported in either case.

PMU registers

The CCI-500 contains the following performance-related registers:

• 3.3.14 Event Select Registers on page 3-68.
• 3.3.15 Event Count Registers on page 3-69.
• 3.3.16 Count Control Registers on page 3-69.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

Using the PMU

You can run performance and monitor tests to check the CCI-500 performance.

For each performance and monitor test that you run, you can:

• Select a maximum of eight events to monitor during the test.
• Read the value of each event counter at the end of the test.
• Detect counter overflows.

 Note

The CCI-500 PMU does not include a clock counter because the clock can be disabled to save power.
To make time-related measurements, you must use another system timer, for example, the clock
counter in the processor PMU.

Use the following registers to set up your test, and to monitor each event:
• Event Select Register to select the event.
• Event Counter Control Register to enable or disable the event counter.
• Event Count Register to indicate how many events occur.

 Note

The event counters are clock gated when not enabled. You must enable the event counters before
writing values to an Event Count Register.

• Event Overflow Flag Status Register to detect the event counter overflow.

Example of how to use the PMU

Use the following example to run a test scenario and show how to use the PMU to measure the snoop hit
rate for shareable read requests for one ACE master and one ACE-Lite master.

In this example, it is assumed that the ACE master is connected to slave interface 3 and the ACE-Lite
master is connected to slave interface 2.

Procedure
1. Set up the performance counters as follows:

a. Program the Event Select Registers as follows:
• Program the counter 0 register to count shareable, non-allocating read requests through slave

interface 3:
— Program bits[8:5] to 0x3 to select slave interface 3.
— Program bits[4:0] to 0x03 to select the event for Read request handshake: normal,

shareable, non-allocating.
• Program the counter 1 register to count shareable, allocating read requests through slave

interface 3:
— Program bits[8:5] to 0x3 to select slave interface 3.
— Program bits[4:0] to 0x04 to select the event for Read request handshake: normal,

shareable, non-allocating.
• Program the counter 2 register to count slave interface 3 snoop hits:

— Program bits[8:5] to 0x3.
— Program bits[4:0] to 0x09.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

• Program the counter 3 register to count shareable non-allocating read requests through slave
interface 2:
— Program bits[8:5] to 0x2.
— Program bits[4:0] to 0x03.

• Program the counter 4 register to count slave interface 2 snoop hits:
— Program bits[8:5] to 0x2.
— Program bits[4:0] to 0x09.

b. Enable the event counters by programming the Count Control Registers as follows:
• Set counter 0 register bit[0] to 1.

• Set counter 1 register bit[0] to 1.

• Set counter 2 register bit[0] to 1.

• Set counter 3 register bit[0] to 1.

• Set counter 4 register bit[0] to 1.
2. Ensure that the NIDEN and SPNIDEN input are HIGH.
3. Program the following bits in the Performance Monitor Control Register (PMCR):

• Program bit[1] to 1 to reset event counters.
• Program bit[0] to 1 to enable all counters.

4. Permit the test to run for an appropriate amount of time.
5. Program the PMCR bit[0] to 0 to disable all counters to stop the test:
6. Read the results of the test from the event counters:

• Counter 0 and 1 hold the number of shareable reads for slave interface 3.
• Counter 2 holds the number of snoop hits for slave interface 3.
• Counter 3 holds the number of shareable reads for slave interface 4.
• Counter 4 holds the number of snoop hits for slave interface 4.

7. Check the overflow bits of all counters and adjust your results accordingly.

2.4.5 Debug features

The CCI-500 has monitors on all slave and master interfaces that you can use to observe interface status.
Each monitor records the number of outstanding read, write, and snoop transactions. It also records the
status of the handshake signal from each channel.

This feature can be helpful in the case of a deadlock. For example, the monitors can help to determine
outstanding transactions or where back-pressure is being applied.

The monitors are situated inside the outermost registers of the CCI-500. This location means that the
numbers of pipeline stages that are configured in a specific implementation affect the values that the
monitors indicate.

 Note

If the debug registers are accessed through the CCI-500, you might not be able to read the registers in the
case of a deadlock.

2.4.6 Security

To build a system based on the Secure and Non-secure capabilities that Arm TrustZone technology
provides, you must consider the security issues that this section describes.

Security status of the internal programmers view

You can configure the programmers view of the CCI-500 for access by Secure or Non-secure requests.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

With the exception of the PMU registers, the programmers view defaults to Secure access only, as
follows:
• Non-secure reads of Secure registers receive zeroed data.
• Non-secure writes to Secure registers are Write-Ignored (WI).

There is no error response in either of these cases.

You can change the security model by writing to the Secure Access Register. This enables Non-secure
access to all registers except the Control Override Register and the Secure Access Register. You can also
make the PMU registers accessible to Secure requests only.

Related information
3.3.1 Control Override Register on page 3-51
3.3.2 Secure Access Register on page 3-52

Making a non-TrustZone aware master Secure

For a master that is not TrustZone-aware, you can tie the ARPROT[1] and AWPROT[1] input signals
LOW to place it permanently in the Secure domain. This means that the master can access Secure data in
the caches of the ACE masters and Secure registers in the CCI-500, so the resulting system might not be
secure under all circumstances.

Security of master interfaces

Transactions from the CCI-500 master interfaces always retain the security setting of the originating
transactions.

The security settings of the originating transactions apply to:
• Non-shareable transactions.
• Shareable transactions that miss in the snoop filter or receive a snoop miss response.
• Writes generated by the CCI-500.

Security considerations for the PMU

You can configure the PMU to count only Non-secure events or both Secure and Non-secure events,
depending on the SPNIDEN, SPIDEN and DBGEN input signals.

If you configure the PMU to count both Secure and Non-secure events, then there is a potential security
risk because Non-secure software can observe Secure activity through the performance counters. Arm
recommends that you consider the security to be breached for devices placed in this state and take
appropriate action.

If the PMU changes from counting all events to counting only Non-secure events, the counters can
contain information relating to Secure transactions. Therefore, Arm recommends that the software sets
the event counters to zero after changing the configuration to avoid a potential security risk.

 Note

Unlike Arm processors, the CCI-500 makes no distinction between events from user or privileged
transactions.

Support for TrustZone Media Protection

In systems that require hardware protection of media data, you can configure the CCI-500 to support
Arm TZMP1.

To differentiate between Protected and Non-Trusted entities, Arm defines 16 states that mark all
processes within hardware and software. These states are defined using the Non-secure Access ID
(NSAID), and each initiating device in the SoC has one or more NSAID values assigned in hardware.
The NSAID enables other components to identify the initiating device for a particular transaction, and to

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

identify whether the device is treated as Non-protected and therefore permitted to read data from other
Non-protected masters.

2.4.7 Error responses

The CCI-500 uses a combination of precise and imprecise error responses.

Precise errors are signaled on the response to the request that caused the error. Except for DVM or Evict
requests, for accesses to regions that are not mapped in the address decoder, the CCI-500 generates a
DECERR response. For such accesses, snoops or snoop filter updates are suppressed. The address map is
platform-specific. See your platform documentation for more information.

A snoop error response to a CleanInvalid, CleanShared, or MakeInvalid transaction generates a SLVERR
response to the originating device.

There are certain circumstances when it is not possible to signal an error precisely. In these cases, the
CCI-500 signals an error imprecisely, using the nERRIRQ output pin. You can identify the interface that
received the error response by reading the Register summary.

The following table shows the errors that are signaled as imprecise. All other sources of error are
signaled precisely.

 Note

An error is signaled either precisely or imprecisely, but never both.

Table 2-6 Imprecise errors

Error condition Channel receiving error Imprecise error indicator from

A snoop hit response with the error bit set, where data
from another snooped master is returned instead of this
one.

CR Slave interface receiving the CR response.

A snoop miss response with the error bit set. CR Slave interface receiving the CR response.

Write access that the CCI-500 generates. B Master interface receiving the B response.

A snoop response with the error bit set where the snoop
was generated from a WriteLineUnique or WriteUnique
transaction.

CR Master interface receiving the CR response.

A snoop response with the error bit set where the snoop
was generated from a back-invalidation.

CR Slave interface receiving the CR response.

The CCI-500 generates a precise error response for a security violation on a CCI-500 register access.

Related information
2.4.6 Security on page 2-37
3.2 Register summary on page 3-44

2.4.8 Cache maintenance operations

The CCI-500 supports snooping of cache-maintenance operations based on the Snoop Control Register.

You can use snooping and cache maintenance to manage Level 1 and Level 2 caches within the same
domain as the CCI-500. The CCI-500 does not support the propagation of cache maintenance operations
downstream of its master interfaces.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

2.4.9 Barriers

The CCI-500 does not support barrier transactions. You must ensure that barriers are terminated
upstream of the CCI. For example, set SYSBARDISABLE HIGH in Cortex-A processors.

2.4.10 Exclusive accesses

The CCI-500 supports the propagation of exclusive accesses to Shareable and Non-shareable locations. It
does not contain master or slave exclusive access monitors, but does have Point of Serialization (PoS)
exclusive monitors to avoid livelock.

 Note

• See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite ACE and
ACE-Lite for more information on Shareable and Non-shareable locations and PoS exclusive
monitors.

• The Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite ACE and ACE-
Lite permits Shareable exclusive accesses on ACE interfaces only.

2.4.11 DVM messages

All slave interfaces on the CCI-500 support DVM messages. For ACE-Lite interfaces, this is through the
addition of AC and CR channels. Each slave interface has a hardware enable input and programmable
enable bit to determine whether it supports the issuing of AC requests for DVM messages.

The Snoop Control Registers and Control Override Register control DVM message requests.
 Note

A master that issues DVM messages must also be able to receive DVM messages. The slave interface
through which the master connects must have DVM messages enabled.

Related information
3.3.1 Control Override Register on page 3-51
3.3.9 Snoop Control Registers on page 3-62

2.4.12 Quality of Service

The CCI-500 provides a set of QoS regulation and control mechanisms.

The following mechanisms are supported:
• QoS value as a priority indicator on page 2-40. This is the reservation of resource based on a QoS

threshold.
• Regulation based on outstanding transactions on page 2-41.

QoS value as a priority indicator

The CCI-500 uses the QoS value as a priority indicator for arbitration of requests. The QoS value can be
from an input to a slave interface, or it can be overwritten by a programmed value.

The CCI-500 uses the QoS value when selecting the request to admit into the main transaction queue.
Requests with the highest QoS have the highest priority unless an anti-starvation mechanism is activated.
The CCI-500 uses a Least Recently Granted (LRG) scheme when two or more transactions share the
highest priority. The arbiter has starvation avoidance mechanisms to prevent high bandwidth requests
from stalling lower priority requests indefinitely.

The CCI-500 propagates QoS values. This determines the service rate when downstream interconnect
and slave devices are sensitive to the QoS value. The NIC-400 Network Interconnect is sensitive to the
QoS value.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

 Note

Ensure that you balance the relative priorities of all slave interfaces. For example, setting each one to the
highest QoS value reduces the arbitration to LRG, and there is no advantage in using the QoS value.

You can override the ARQOS and AWQOS input signals on each slave interface by using a
programmable register. The value from this register is only applied if the relevant static input signal,
QOSOVERRIDE[6:0], is HIGH. CCI-500-generated transactions use the QoS value of the trigger
transaction or the override value if the QOSOVERRIDE signal is set.

 Note

The QOSOVERRIDE signal only applies to transactions for which the ARQOS or AWQOS signals are
set to a value of zero. Therefore, each interface can have a mixture of overridden traffic and other traffic,
with an unaffected non-zero QoS value.

High and low priority requests

You can use a design-time parameter to set a QoS value threshold that classifies requests as high or low
priority. A high priority request is a read or write request with an ARQOS or AWQOS value that is
equal to or greater than the threshold.

In heavy congestion, high priority requests use a TT reserved slot to take a fast path through the
CCI-500.

Regulation based on outstanding transactions

Each slave interface has a programmable mechanism for limiting the number of outstanding read and
write transactions.

An Outstanding Transaction (OT) is a read request that has not yet received its last beat of read data, or a
write request that has not yet received a response. You can use the OT regulation mechanism with QoS
value mechanisms or when the system is not sensitive to the QoS value.

There is a combined OT count for read and write transactions, and this count includes all possible request
types. Two-part DVM messages count as two outstanding transactions, and transactions that the CCI-500
splits into 64-byte granules count as multiple transactions.

When programming the Maximum OT register, the hardware implementation sets the value for the
maximum number of OTs for a slave interface. This maximum value is the value of the register from
reset. The minimum value for the OT register is SIx_W_MIN + 2. This minimum value is the number of
tracker slots that are reserved for requests from each slave interface, to prevent deadlock. If you write a
value outside these limits, then the limited value is set and read back.

The OT limit sets a maximum bandwidth for the attached master, based on the average response latency
from downstream. You can use the following approximation to allocate memory bandwidth resource
among various masters in the system:

• OT limit = maximum bandwidth * average latency / bytes per request

For example, if the average latency between arrival at the main CCI-500 tracking structures and
downstream response is 128ns, the maximum required bandwidth is 8GB/s, and requests are 64 bytes in
length, then the necessary OT limit for an ACE-Lite master assuming a negligible hit rate is:
• max OT = 8 * 128 / 64 = 16

 Note

For ACE masters, the time from the response to the RACK or WACK acknowledgement must be
included in the response latency.

2 Functional description
2.4 Operation

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

Chapter 3
Programmers model

This chapter describes the CCI-500 programmers model.

It contains the following sections:
• 3.1 About this programmers model on page 3-43.
• 3.2 Register summary on page 3-44.
• 3.3 Register descriptions on page 3-51.
• 3.4 Address map on page 3-74.

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

3.1 About this programmers model
This section provides general information about the CCI-500 register properties.

The following information applies to the CCI-500 registers:
• The base address is not fixed, and can be different for any particular system implementation. The

offset of each register from the base address is fixed.
• Do not attempt to access reserved or unused address locations. Attempting to access these locations

can result in UNPREDICTABLE behavior.
• Unless otherwise stated in the accompanying text:

— Do not modify undefined register bits.
— Ignore undefined register bits on reads.
— All register bits are reset to 0 by a system or powerup reset.

• Access type is described as follows:

RW Read and write.
RO Read only.
WO Write only.
RAZ Read as zero.
WI Write ignored.

• Bit positions described as reserved are:
— In an RW register, RAZ/WI
— In an RO register, RAZ
— In a WO register, WI.

The CCI-500 registers are accessed using the APB4 slave interface and cannot be accessed directly
through the ACE or ACE-Lite slave interfaces.

The programmers model contains regions for control, slave interface, and performance counter registers.
Accesses to unmapped or reserved registers are WI/RAZ. Non-secure accesses to Secure registers are
WI/RAZ.

The programmers model is not affected by the number of interfaces on a specific CCI-500 configuration.
Writing to registers pertaining to interfaces that are not present on your specific implementation has no
effect.

3 Programmers model
3.1 About this programmers model

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

3.2 Register summary
The register summary lists all CCI-500 registers and some key characteristics.

The following table shows the registers in offset order. The base address of the CCI-500 is not fixed, and
can be different for any particular system implementation. Consult your SoC implementation
documentation for more information. The offset of each register from the base address is fixed.

Table 3-1 Register summary

Offset Name Type Reset Width Description

0x00000 ctrl_ovr RW 0x00000000 32 3.3.1 Control Override Register
on page 3-51

0x00008 secr_acc RW 0x00000000 32 3.3.2 Secure Access Register on page 3-52

0x0000C status RO 0x00000000
 Note

Assuming requested power
state is OFF at reset.

32 3.3.3 Status Register on page 3-53

0x00010 impr_err RW 0x00000000 32 3.3.4 Imprecise Error Register
on page 3-55

0x00014 qos_threshold RW 0x00F00F0 32 3.3.5 QoS Threshold Register on page 3-57

0x00100 pmu_ctrl - 0x00004000 32 3.3.6 Performance Monitor Control Register
(PMCR) on page 3-59

0x00104 debug_ctrl RW 0x00000000 32 3.3.7 Interface Monitor Control Register
on page 3-60

0x00FD0 peripheral_id4 RO 0x00000084 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FD4 peripheral_id5 RO 0x00000000 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FD8 peripheral_id6 RO 0x00000000 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FDC peripheral_id7 RO 0x00000000 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FE0 peripheral_id0 RO 0x00000022 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FE4 peripheral_id1 RO 0x000000B4 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FE8 peripheral_id2 RO 0x0000003B 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

Table 3-1 Register summary (continued)

Offset Name Type Reset Width Description

0x00FEC peripheral_id3 RO 0x00000000 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FF0 component_id0 RO 0x0000000D 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FF4 component_id1 RO 0x000000F0 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FF8 component_id2 RO 0x00000005 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

0x00FFC component_id3 RO 0x000000B1 32 3.3.8 Component and Peripheral ID
Registers on page 3-61

Slave interface 0 registers

0x01000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

0x01004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x01100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65.

0x01104 awqos_ovr RW 0x00000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

0x01110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI0_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67.

Slave interface 1 registers

0x02000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

0x02004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x02100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65.

0x02104 awqos_ovr RW 0x00000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

Table 3-1 Register summary (continued)

Offset Name Type Reset Width Description

0x02110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI1_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67.

Slave interface 2 registers

0x03000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

0x03004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x03100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65.

0x03104 awqos_ovr RW 0x00000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

0x03110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI2_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67.

Slave interface 3 registers

0x04000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

0x04004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x04100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65

0x04104 awqos_ovr RW 0x00000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

0x04110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI3_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67.

Slave interface 4 registers

0x05000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

Table 3-1 Register summary (continued)

Offset Name Type Reset Width Description

0x05004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x05100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65.

0x05104 awqos_ovr RW 0x00000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

0x05110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI4_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67.

Slave interface 5 registers

0x06000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

0x06004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x06100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65.

0x06104 awqos_ovr RW 0x0000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

0x06110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI5_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67. .

Slave interface 6 registers

0x07000 snoop_ctrl - [31:30] IMPLEMENTATION

DEFINED

[29:0] 0x00000000

32 3.3.9 Snoop Control Registers
on page 3-62.

0x07004 share_ovr RW 0x00000000 32 3.3.10 Shareable Override Register
on page 3-64.

0x07100 arqos_ovr RW 0x00000000 32 3.3.11 Read Channel QoS Value Override
Register on page 3-65.

0x07104 awqos_ovr RW 0x00000000 32 3.3.12 Write Channel QoS Value Override
Register on page 3-66.

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

Table 3-1 Register summary (continued)

Offset Name Type Reset Width Description

0x07110 qos_max_ot RW Maximum number of OT
supported by this
implementation, based on
SI6_RW_MAX parameter

32 3.3.13 Maximum Outstanding Transactions
Registers on page 3-67.

Performance counter 0 registers

0x10000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x10004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x10008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x1000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 1 registers

0x20000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x20004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x20008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x2000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 2 registers

0x30000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x30004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x30008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x3000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 3 registers

0x40000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x40004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x40008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x4000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 4 registers

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

Table 3-1 Register summary (continued)

Offset Name Type Reset Width Description

0x50000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x50004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x50008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x5000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 5 registers

0x60000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x60004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x60008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x6000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 6 registers

0x70000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x70004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x70008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x7000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Performance counter 7 registers

0x80000 evnt_sel RW 0x00000000 32 3.3.14 Event Select Registers on page 3-68

0x80004 ecnt_data RW 0x00000000 32 3.3.15 Event Count Registers on page 3-69

0x80008 ecnt_ctrl RW 0x00000000 32 3.3.16 Count Control Registers
on page 3-69

0x8000C ecnt_clr_ovfl RW 0x00000000 32 3.3.17 Overflow Flag Status Registers
on page 3-70

Slave Interface Monitor Registers

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

Table 3-1 Register summary (continued)

Offset Name Type Reset Width Description

0x90000 slave_debug, slave
interface 0

R0 0x00000000 32 3.3.18 Slave Interface Monitor Registers
on page 3-70

0x90004 slave_debug, slave
interface 1

RO 0x00000000 32

0x90008 slave_debug, slave
interface 2

RO 0x00000000 32

0x9000C slave_debug, slave
interface 3

RO 0x00000000 32

0x90010 slave_debug, slave
interface 4

RO 0x00000000 32

0x90014 slave_debug, slave
interface 5

RO 0x00000000 32

0x90018 slave_debug, slave
interface 6

RO 0x00000000 32

Master Interface Monitor Registers

0x90100 master_debug,
master interface 0

RO 0x00000000 32 3.3.19 Master Interface Monitor Registers
on page 3-72

0x90104 master_debug,
master interface 1

RO 0x00000000 32

0x90108 master_debug,
master interface 2

RO 0x00000000 32

0x9010C master_debug,
master interface 3

RO 0x00000000 32

0x90110 master_debug,
master interface 4

RO 0x00000000 32

0x90114 master_debug,
master interface 5

RO 0x00000000 32

3 Programmers model
3.2 Register summary

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

3.3 Register descriptions
Each register description provides information about the register, such as usage constraints,
configurations, attributes, and bit assignments.

This section contains the following subsections:
• 3.3.1 Control Override Register on page 3-51.
• 3.3.2 Secure Access Register on page 3-52.
• 3.3.3 Status Register on page 3-53.
• 3.3.4 Imprecise Error Register on page 3-55.
• 3.3.5 QoS Threshold Register on page 3-57.
• 3.3.6 Performance Monitor Control Register (PMCR) on page 3-59.
• 3.3.7 Interface Monitor Control Register on page 3-60.
• 3.3.8 Component and Peripheral ID Registers on page 3-61.
• 3.3.9 Snoop Control Registers on page 3-62.
• 3.3.10 Shareable Override Register on page 3-64.
• 3.3.11 Read Channel QoS Value Override Register on page 3-65.
• 3.3.12 Write Channel QoS Value Override Register on page 3-66.
• 3.3.13 Maximum Outstanding Transactions Registers on page 3-67.
• 3.3.14 Event Select Registers on page 3-68.
• 3.3.15 Event Count Registers on page 3-69.
• 3.3.16 Count Control Registers on page 3-69.
• 3.3.17 Overflow Flag Status Registers on page 3-70.
• 3.3.18 Slave Interface Monitor Registers on page 3-70.
• 3.3.19 Master Interface Monitor Registers on page 3-72.

3.3.1 Control Override Register

This register provides a fail-safe override for some CCI-500 functions. Use this register to resolve
problems that you cannot work around in another way.

Usage constraints
If you have to write to this register, you must do so before issuing any shareable transactions or
DVM messages to the CCI-500. For example, you can do it very early in the boot sequence
before installing any Secure OS.
You can access this register using Secure transactions only, irrespective of the programming of
the 3.3.2 Secure Access Register on page 3-52.

Configurations
Available in all CCI-500 configurations.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 4 3 2 1 0

Reserved

snoop_disable
dvm_message_disable

disable_snoop_filter
disable_clock_gating

Figure 3-1 ctrl_ovr register bit assignments

The following table shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

Table 3-2 ctrl_ovr register bit assignments

Bits Name Function

[31:4] - Reserved.

[3] disable_clock_gating Disable regional clock gating:

0 Regional clock gating operates in the CCI-500. See 1.7 Test features on page 1-18 and
2.3 Clocking and reset on page 2-27.

1 Disable regional clock gating in the CCI-500.

[2] disable_snoop_filter Disable the snoop filter:

0 Snoop filter operation is defined by the power state input, PSTATE.

1 Disable snoop filter operation.

[1] dvm_message_disable DVM message disable:

0 Send DVM messages according to the Snoop Control Registers.

1 Disable propagation of all DVM messages.

[0] snoop_disable Snoop disable:

0 Send snoop requests according to the Snoop Control Registers.

1 Disable all snoops but not DVM messages.

Related information
3.2 Register summary on page 3-44
3.3.9 Snoop Control Registers on page 3-62

3.3.2 Secure Access Register

This register controls whether only Non-secure transactions can read and program the CCI-500 registers.

Usage constraints
You can write to this register using Secure transactions only.

Configurations
Available in all CCI-500 configurations.

Attributes
See 3.2 Register summary on page 3-44 for more information.

 Warning

This register enables Non-secure access for all masters to the CCI-500 registers. This compromises the
security of your system.

The following figure shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

31 2 1 0

Reserved

non_secure_register_access override
debug_monitor_security_override

secure_observation_override

3

Figure 3-2 secr_acc register bit assignments

The following table shows the bit assignments.

Table 3-3 secr_acc register bit assignments

Bits Name Function

[31:3] - Reserved.

[2] secure_observation_override Secure observation override:

0 Disabled. The PMU counts Secure events according to the SPIDEN and
SPNIDEN signals.

1 Enabled. The PMU counts both Secure and Non-secure events.

[1] debug_monitor_security_override Debug monitor security override:

0 Enable Non-secure access to the PMU and Interface Monitor Registers.

1 Disable Non-secure access to the PMU and Interface Monitor Registers, unless
overridden by bit[0].

[0] non_secure_register_access_override Non-secure register access override:

0 Disable Non-secure access to the CCI-500 registers.

1 Enable Non-secure access to the CCI-500 registers.

Related information
3.2 Register summary on page 3-44
3.3.18 Slave Interface Monitor Registers on page 3-70
3.3.19 Master Interface Monitor Registers on page 3-72

3.3.3 Status Register

This register permits snooping to be enabled and disabled safely by indicating when changes made to the
enable_snoops or enable_dvms bits in the Snoop Control Registers have not taken effect for all
transactions outstanding in the system.

When changing these bits, the CCI-500 goes through a transition period where a mixture of transactions
with the old value and transactions with the new value are in flight. During this time, the
change_pending bit stays set to 1. You must wait for the change_pending bit to change to 0 before
removing or adding masters into the coherency domain.

 Note

Wait for the completion of the write to the Snoop Control Register before testing the change_pending bit.

This register indicates whether:

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

• There are any changes to the enables that have not yet been applied.
• A slave interface has been disabled for future snoop and DVM messages, but has outstanding AC

requests.

Other bits in the Status Register indicate:
• Current power state.
• Requested power state.
• Power state change pending.
• Snoop filter initialization phase.

Usage constraints
There are no usage constraints.

Configurations
Available in all CCI-500 configurations.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 2 1 0

Reserved

change_pending

4578

sf_ram_initialization
sf_ram_state

sf_ram_state request
sf_ram_state_change_pending

9

Figure 3-3 status register bit assignments

The following table shows the bit assignments.

Table 3-4 status register bit assignments

Bits Name Function

[31:9] - Reserved.

[8] sf_ram_state_change_pending Snoop filter RAM power state change pending. This bit reads back the PREQ input.

0 No change pending, any previous requests have been accepted or denied.

1 State change is pending and might be accepted or denied.

[7:5] sf_ram_state_request This field indicates the last requested power state of the snoop filter RAMs. The possible
values of this field are the same as those of sf_ram_state.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

Table 3-4 status register bit assignments (continued)

Bits Name Function

[4:2] sf_ram_state The snoop filter RAM power states are:

0b000 Off.

0b001 Static snoop filter RAM retention.

0b010 Reserved.

0b011 Dynamic snoop filter RAM retention.

0b100 On.

0b101-0b111 Reserved.

 Note

This register is readable only when the interconnect is in either the dynamic retention or the
On state.

[1] sf_ram_initialization Indicates when the snoop filter RAM is initialized. Shareable requests are not serviced during
this period.

0 Snoop filter RAM initialization is complete.

1 Snoop filter RAM initialization is in progress.

 Note

If you use the interconnect to access the CCI-500 registers when the trackers are full of
shareable requests waiting for initialization completion, it might not be possible to read this
register until initialization is complete.

[0] change_pending Indicates whether any changes to the Snoop Control Registers or the Control Override
Register are pending in the CCI-500:

0 No changes are pending.

1 Changes are pending.

Related information
2.4.3 Snoop connectivity and control on page 2-29
3.2 Register summary on page 3-44
3.3.9 Snoop Control Registers on page 3-62

3.3.4 Imprecise Error Register

This register records the CCI-500 interfaces that have encountered an error that cannot be signaled
precisely.

A register bit corresponding to a CCI-500 interface is set when one or more error responses are detected
on that interface. Each bit is reset on a write of 1 to that bit.

Usage constraints
Accessible using only Secure accesses, unless you set the Secure Access Register. See
3.3.2 Secure Access Register on page 3-52.

Configurations
Available in all CCI-500 configurations.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

Attributes
See 3.2 Register summary on page 3-44 for more information.

 Note

If any bits are set in this register, the nERRIRQ signal is asserted, active LOW.

The following figure shows the bit assignments.

31 2 1 0

Reserved

imprecise_error_indicator_mi1

456

imprecise_error_indicator_mi2
imprecise_error_indicator_mi3
imprecise_error_indicator_mi4
imprecise_error_indicator_mi5

31516

imprecise_error_indicator_mi0

Reserved

18 17202122 1923

imprecise_error_indicator_si1
imprecise_error_indicator_si2
imprecise_error_indicator_si3
imprecise_error_indicator_si4
imprecise_error_indicator_si5

imprecise_error_indicator_si0

imprecise_error_indicator_si6

Figure 3-4 impr_err register bit assignments

The following table shows the bit assignments.

Table 3-5 impr_err register bit assignments

Bits Name Function

[31:23] - Reserved.

[22] imprecise_error_indicator_si6 Imprecise error indicator for slave interface 6:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[21] imprecise_error_indicator_si5 Imprecise error indicator for slave interface 5:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[20] imprecise_error_indicator_si4 Imprecise error indicator for slave interface 4:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[19] imprecise_error_indicator_si3 Imprecise error indicator for slave interface 3:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[18] imprecise_error_indicator_si2 Imprecise error indicator for slave interface 2:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

Table 3-5 impr_err register bit assignments (continued)

Bits Name Function

[17] imprecise_error_indicator_si1 Imprecise error indicator for slave interface 1:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[16] imprecise_error_indicator_si0 Imprecise error indicator for slave interface 0:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[15:6] - Reserved.

[5] imprecise_error_indicator_mi5 Imprecise error indicator for master interface 5:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[4] imprecise_error_indicator_mi4 Imprecise error indicator for master interface 4:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[3] imprecise_error_indicator_mi3 Imprecise error indicator for master interface 3:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[2] imprecise_error_indicator_mi2 Imprecise error indicator for master interface 2:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[1] imprecise_error_indicator_mi1 Imprecise error indicator for master interface 1:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

[0] imprecise_error_indicator_mi0 Imprecise error indicator for master interface 0:

0 No error from the time this bit was last reset.

1 An error response has been received, but not signaled precisely.

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.5 QoS Threshold Register

This register stores QoS threshold values for read and write requests. These thresholds categorize
requests as high priority or low priority.

Usage constraints
Accessible using only Secure accesses, unless you set the Secure Access Register to permit
Non-secure accesses.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

Configurations
Available in all CCI-500 configurations.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 4 3 016 15

Reserved

20 19

w_qv_thresh_high r_qv_thresh_high

Reserved

Figure 3-5 qos_threshold register bit assignments

The following table shows the bit assignments.

Table 3-6 awqos_ovr register bit assignments

Bits Name Function

[31:20] - Reserved.

[19:16] w_qv_thresh_high Write QoS threshold for high priority requests.

[15:4] - Reserved.

[3:0] r_qv_thresh_high Read QoS threshold for high priority requests.

 Note

The reset values for this register are set at design-time using the QOS_THRESHOLD_UPPER parameter. The
implementer can set QOS_THRESHOLD_UPPER to an appropriate value for the system, removing the
requirement to program this register.

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

3.3.6 Performance Monitor Control Register (PMCR)

This register controls the PMU.

Usage constraints
Accessible using both Secure and Non-secure accesses, unless you set bit[1] of the Secure
Access Register to disable Non-secure accesses to this register.

Configurations
Available in all CCI-500 configurations.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 2 1 0

Reserved

CEN

45

RST
Reserved

EX

31516

Reserved

11 10

number_of_
counters

Figure 3-6 pmu_ctrl register bit assignments

The following table shows the bit assignments.

Table 3-7 pmu_ctrl register bit assignments

Bits Name Access Function

[31:16] - - Reserved.

[15:11] number_of_counters RO Specifies the number of counters implemented.

[10:5] - - Reserved.

[4] EX RW Enables export of the events to the event bus, EVNTBUS, to permit an external monitoring
block to trace events:

0 Do not export EVNTBUS.

1 Export EVNTBUS.

[3:2] - - Reserved.

[1] RST RAZ/W Performance counter reset:

0 No action.

1 Reset all performance counters to zero.

[0] CEN RW Enable bit:

0 Disable all event counters.

1 Enable all event counters.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

The following table shows the relationship between the debug enable inputs, NIDEN and DBGEN, and
the PMCR register settings.

 Note

In this table, X can be any value.

Table 3-8 Relationship between NIDEN and DBGEN, and PMCR register settings

NIDEN OR
DBGEN

PMCR.CEN PMCR.EX Event counters
enabled

Events
exported

0 X X No No

1 0 X No No

1 1 0 Yes No

1 1 1 Yes Yes

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.7 Interface Monitor Control Register

This register enables all interface monitor control.

Usage constraints
Accessible using both Secure and Non-secure accesses, unless you set bit[1] of the Secure
Access Register to disable Non-secure accesses to this register.

Configurations
Available in all CCI-500 configurations.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 1 0

Reserved

enable_interface_monitors

Figure 3-7 debug_ctrl register bit assignments

The following table shows the bit assignments.

Table 3-9 debug_ctrl register bit assignments

Bits Name Function

[31:1] Reserved -

[0] enable_interface_monitors Enable bit:

0 Interface Monitor counters and flags are set to 0.

1 Enable all Interface Monitors.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.8 Component and Peripheral ID Registers

The component and peripheral identity registers are standard JEP106 registers. They provide key
information about the CCI-500 hardware, including the product and associated revision number. They
also identify Arm as the manufacturer.

These registers are all read-only. Each field is a single byte. This means you must read the most
significant 24 bits as zero and only the least significant byte is valid. The least significant 8 bits of the
four Component ID registers form a single 32-bit conceptual ID register. In a similar way, the defined
fields of the eight Peripheral ID registers form a conceptual 64-bit ID register.

Table 3-10 Component and Peripheral ID registers bit assignments

Register Offset Bits Value Function

Peripheral ID4 0xFD0 [7:4] 0x8 4KB region count.

[3:0] 0x4 JEP106 continuation code for Arm.

Peripheral ID5 0xFD4 [7:0] 0x00 Reserved.

Peripheral ID6 0xFD8 [7:0] 0x00 Reserved.

Peripheral ID7 0xFDC [7:0] 0x00 Reserved.

Peripheral ID0 0xFE0 [7:0] 0x22 Part number[7:0].

Peripheral ID1 0xFE4 [7:4] 0xB JEP106 ID code[3:0] for Arm.

[3:0] 0x4 Part number[11:8].

Peripheral ID2 0xFE8 [7:4] 0x3 CCI-500 revision.

The value 0x3 indicates product revision r1p0.

[3] 0x1 IC uses a manufacturer identity code that is allocated by JEDEC, according to the JEP106
specification.

[2:0] 0x3 JEP106 ID code[6:4] for Arm.

Peripheral ID3 0xFEC [7:4] 0x0 Arm-approved ECO number. Use the ECOREVNUM inputs to modify this value.

[3:0] 0x0 Customer modification number. Do not modify this number unless you have permission
from Arm.

Component ID0 0xFF0 [7:0] 0x0D These values identify the CCI-500 as an Arm component.

Component ID1 0xFF4 [7:0] 0xF0

Component ID2 0xFF8 [7:0] 0x05

Component ID3 0xFFC [7:0] 0xB1

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

ECO revision number

To track any Engineering Change Order (ECO) fixes in the CCI-500, you can change part of the
peripheral ID register using the ECOREVNUM input pins. You must tie these signals LOW unless you
have an ECO from Arm.

The ECOREVNUM[3:0] input corresponds to bits[7:4] of the Peripheral ID3 register, MSB to MSB.
Driving an input bit HIGH inverts the associated Peripheral ID3 bit.

 Note

Arm recommends that each of the signal drivers is distinct and readily identifiable to facilitate possible
metal layer modification.

Related information
3.2 Register summary on page 3-44

3.3.9 Snoop Control Registers

These registers control the issuing of snoop and DVM requests on slave interfaces.

You can read the register to determine if the interface supports snoops or DVM messages. Enabling
snoop or DVM requests on an interface that does not support them has no effect.

Usage constraints
Accessible using only Secure accesses, unless you set the Secure Access Register to permit
Non-secure accesses. See 3.3.2 Secure Access Register on page 3-52.

Configurations
Available in all CCI-500 configurations.
A copy of this register exists for each slave interface.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 1 0

Reserved

enable_dvms
enable_snoops

22930

support_snoops
support_dvms

Figure 3-8 snoop_ctrl register bit assignments

The following table shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

Table 3-11 snoop_ctrl register bit assignments

Bits Name Reset Access Function

[31] support_dvms ACCHANNELENSx[0] input RO Indicates whether the slave interface
supports DVM messages.

0 The interface does not support DVM
messages.

1 The interface supports DVM messages.

This is overridden to 0 if you set the Control
Override Register bit[1]. See 3.3.1 Control
Override Register on page 3-51.

[30] support_snoops ACCHANNELENSx[1] input for
ACE interfaces.

This bit is set to 0 for ACE-Lite
interfaces.

RO Indicates whether the slave interface
supports snoop requests.

0 The interface does not support snoops.

1 The interface supports snoops.

This is overridden to 0 if you set the Control
Override Register bit[0]. See 3.3.1 Control
Override Register on page 3-51.

 Note

This bit only affects the operation of ACE
interfaces.

[29:2] Reserved - - -

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

Table 3-11 snoop_ctrl register bit assignments (continued)

Bits Name Reset Access Function

[1] enable_dvms 0 RW When the slave interface supports DVM
messages, enables issuing of DVM message
requests from this slave interface:

0 Disable DVM message requests.

1 Enable DVM message requests.

This bit is RAZ/WI for interfaces that do not
support DVM messages.

 Note

This bit is writable only when bit[31] is set
to 1.

[0] enable_snoops 0 RW When the slave interface supports snoops,
enables issuing of snoop requests from this
slave interface:

0 Disable snoop requests.

1 Enable snoop requests.

This bit is RAZ/WI for interfaces that do not
support snoops.

 Note

• This bit only affects the operation of
ACE interfaces.

• This bit is writable only when bit[30] is
set to 1.

Related information
3.2 Register summary on page 3-44

3.3.10 Shareable Override Register

This register overrides the shareability characteristics of Normal transactions that are received on the
relevant interface. Overriding of the shareability settings does not occur for FIXED bursts, Device
transactions, or DVM message transactions.

Usage constraints

This register is for ACE-Lite slave interfaces only.

Accessible using only Secure accesses, unless you set the Secure Access Register to permit
Non-secure accesses.

Configurations
Available in all CCI-500 configurations.
An instance of this register exists for each slave interface.

Attributes
See 3.2 Register summary on page 3-44 for more information.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

 Note

Exclusive accesses must not be issued on an interface that is being overridden as shareable. If the
CCI-500 is programmed to override transactions as shareable, exclusive accesses are overridden to
normal accesses. An exclusive write then receives an OKAY response to indicate that the slave does not
support exclusive accesses.

The following figure shows the bit assignments.

31 1 0

Reserved

shareable_override

2

Figure 3-9 share_ovr register bit assignments

The following table shows the bit assignments.

Table 3-12 share_ovr register bit assignments

Bits Name Function

[31:2] Reserved -

[1:0] shareable_override Shareable override for slave interface:

0b00-0b01 Do not override AxDOMAIN inputs.

0b10 Override AxDOMAIN inputs to 0b00, meaning that all transactions are treated as Non-
shareable:
• ReadOnce becomes ReadNoSnoop.
• WriteUnique and WriteLineUnique become WriteNoSnoop.
• CleanShared, CleanInvalid, and MakeInvalid transactions do not generate snoops.

0b11 Override AxDOMAIN inputs to 0b01, meaning that all Normal transactions are treated as
Shareable:
• ReadNoSnoop becomes ReadOnce.
• WriteNoSnoop becomes WriteUnique.
• CleanShared, CleanInvalid, and MakeInvalid transactions generate snoops.

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.11 Read Channel QoS Value Override Register

This register stores the override value for the ARQOS signal when there is a separate register for each
slave interface. This value is applied to transactions when the QOSOVERRIDE input signal bit is HIGH
for the relevant slave interface, and the ARQOS input is zero for that request.

Usage constraints
Accessible using only Secure accesses, unless you set the 3.3.2 Secure Access Register
on page 3-52 to permit Non‑secure accesses.

Configurations
Available in all CCI-500 configurations.
A copy of this register exists for each slave interface.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 4 3 0

Reserved

arqos_value

Figure 3-10 arqos_ovr register bit assignments

The following table shows the bit assignments.

Table 3-13 arqos_ovr register bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] arqos_value ARQOS value override for the slave interface.
 Note

This value is applied to transactions with an ARQOS value of zero, if the QOSOVERRIDE input is HIGH for
this interface.

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.12 Write Channel QoS Value Override Register

This register stores the override value for the AWQOS signal. If the QOSOVERRIDE input bit is
HIGH for the relevant slave interface, this override value is applied to requests that have an AWQOS
value of zero.

Usage constraints
Accessible using only Secure accesses, unless you set the 3.3.2 Secure Access Register
on page 3-52 to permit Non‑secure accesses.

Configurations
Available in all CCI-500 configurations.
A copy of this register exists for each slave interface.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 4 3 0

Reserved

awqos_value

Figure 3-11 awqos_ovr register bit assignments

The following table shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

Table 3-14 awqos_ovr register bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] awqos_value AWQOS value override for the slave interface.
 Note

This value is applied to transactions with an AWQOS value of zero, if the QOSOVERRIDE input is HIGH for
this interface.

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.13 Maximum Outstanding Transactions Registers

These registers determine how many Outstanding Transactions (OTs) are permitted when the OT
regulator is enabled for the relevant slave interface.

Usage constraints
If you set the maximum OT size greater than that configured in the RTL, then the value of
SIx_RW_MAX is written into the register. The minimum value of SIx_RW_MAX is 4. Writing values
lower than 4 writes a value of 4 into the register.
Accessible using only Secure accesses, unless you set the Secure Access Register to permit
Non-secure accesses.

Configurations
Available in all CCI-500 configurations.
An instance of this register exists for each slave interface.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 8 7 0

Reserved max_ot

Figure 3-12 qos_max_ot register bit assignments

The following table shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

Table 3-15 qos_max_ot register bit assignments

Bits Name Reset Function

[31:8] Reserved - -

[7:0] max_ot SIx_RW_MAX The maximum number of OTs for the interface. This value is a combined issuing limit. It represents
the maximum number of transactions that the upstream master can issue when the AR and AW
channels are considered as one issuing source.

 Note

Additional transactions can be issued into the CCI-500 at the boundary of the device. This is
because of the presence of configurable registering between the boundary and the main trackers.

Related information
3.2 Register summary on page 3-44
3.3.2 Secure Access Register on page 3-52

3.3.14 Event Select Registers

These registers determine the event that a particular counter tracks.

Usage constraints
There are no usage constraints.

Configurations
Available in all CCI-500 configurations.
One register exists per counter.

Attributes
See 3.2 Register summary on page 3-44 for more information.

 Note

You can use event counters in different ways, for example:
• To measure traffic across all interfaces by using a counter for each interface.
• To analyze a particular interface by using all the counters to measure a different aspect of the

interface.

The following figure shows the bit assignments.

31 9 8 5 4 0

mon_evtxmon_intxReserved

Figure 3-13 evnt_sel register bit assignments

The following table shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

Table 3-16 evnt_sel register bit assignments

Bits Name Function

[31:9] Reserved -

[8:5] mon_intx Event code that defines the interface to monitor. See PMU event list on page 2-31.

[4:0] mon_evtx Event code that defines the event to monitor. See PMU event list on page 2-31.

Related information
3.2 Register summary on page 3-44

3.3.15 Event Count Registers

One of these 32-bit RW registers exists for each of the eight corresponding event counters.

You can reset all event counter values to zero by writing a 1 to the PMCR bit[1].

3.3.16 Count Control Registers

These registers enable or disable the event counters.

Usage constraints
There are no usage constraints.

Configurations
Available in all CCI-500 configurations.
One register exists per counter.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

0

31 1 0

Reserved

counter_enable

Figure 3-14 ecnt_ctrl register bit assignments

The following table shows the bit assignments.

Table 3-17 ecnt_ctrl register bit assignments

Bits Name Function

[31:1] Reserved -

[0] counter_enable Counter enable:

0 Counter disabled.

1 Counter enabled.

Related information
3.2 Register summary on page 3-44

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

3.3.17 Overflow Flag Status Registers

These registers contain the state of the overflow flags for the event counters.

Usage constraints
There are no usage constraints.

Configurations
Available in all CCI-500 configurations.
One register exists for each event counter.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 1 0

Reserved

event_counter

Figure 3-15 ecnt_clr_ovfl register bit assignments

The following table shows the bit assignments.

Table 3-18 ecnt_clr_ovfl register bit assignments

Bits Name Function

[31:1] Reserved -

[0] event_counter Event counter overflow flag:

0 The counter has not overflowed.

1 The counter has overflowed.

When writing to this register, any overflow flag that is written with a value of 0 is ignored, that is, no
change. An overflow flag that is written with a value of 1 clears the counter overflow flag. The negated
counter overflow bits are exported from the CCI-500 on the nEVNTCNTOVERFLOW[7:0] signal.
You can use this signal to trigger interrupts. The MSB corresponds to the cycle count overflow.

Related information
3.2 Register summary on page 3-44

3.3.18 Slave Interface Monitor Registers

These 32-bit RO registers monitor each slave interface.

Usage constraints
There are no usage constraints.

Configurations
Available in all CCI-500 configurations.
An instance of this register exists for each slave interface.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential

31 1 0

outstanding_reads

stalled_cd_channel
stalled_cr_channel

2345678

stalled_ac_channel
stalled_b_channel
stalled_w_channel

stalled_aw_channel
stalled_r_channel

stalled_ar_channel

1516

outstanding_writes

2324

outstanding_snoops

Figure 3-16 slave_debug register bit assignments

The following table shows the bit assignments.

Table 3-19 slave_debug register bit assignments

Bits Name Function

[31:24] outstanding_snoops Number of outstanding snoop requests or DVM messages counted between request handshake and
response, or snoop data for a hit.

This field applies to ACE slave interfaces only.

[23:16] outstanding_writes Number of outstanding write transactions counted between request handshake and response for ACE-
Lite interfaces, or WACK for ACE interfaces.

[15:8] outstanding_reads Number of outstanding read transactions counted between request handshake and response for ACE-
Lite interfaces, or RACK for ACE interfaces.

[7] stalled_cd_channel When this bit is set to 1, a transfer is stalled on the CD channel, where both:
• CDVALID is HIGH.
• CDREADY is LOW.

This bit applies to ACE slave interfaces only.

[6] stalled_cr_channel When this bit is set to 1, a transfer is stalled on the CR channel, where both:
• CRVALID is HIGH.
• CRREADY is LOW.

This bit applies to ACE slave interfaces only.

[5] stalled_ac_channel When this bit is set to 1, a transfer is stalled on the AC channel, where both:
• ACVALID is HIGH.
• ACREADY is LOW.

[4] stalled_b_channel When this bit is set to 1, a transfer is stalled on the B channel, where both:
• BVALID is HIGH.
• BREADY is LOW.

[3] stalled_w_channel When this bit is set to 1, a transfer is stalled on the W channel, where both:
• WVALID is HIGH.
• WREADY is LOW.

[2] stalled_aw_channel When this bit is set to 1, a transfer is stalled on the AW channel, where both:
• AWVALID is HIGH.
• AWREADY is LOW.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential

Table 3-19 slave_debug register bit assignments (continued)

Bits Name Function

[1] stalled_r_channel When this bit is set to 1, a transfer is stalled on the R channel, where both:
• RVALID is HIGH.
• RREADY is LOW.

[0] stalled_ar_channel When this bit is set to 1, a transfer is stalled on the AR channel, where both:
• ARVALID is HIGH.
• ARREADY is LOW.

Related information
3.2 Register summary on page 3-44

3.3.19 Master Interface Monitor Registers

These 32-bit RO registers monitor each master interface.

Usage constraints
There are no usage constraints.

Configurations
Available in all CCI-500 configurations.
An instance of this register exists for each master interface.

Attributes
See 3.2 Register summary on page 3-44 for more information.

The following figure shows the bit assignments.

31 1 0

outstanding_reads

Reserved
stalled_b_channel

234578

stalled_w_channel
stalled_aw_channel

stalled_r_channel
stalled_ar_channel

1516

outstanding_writes

2324

Reserved

Figure 3-17 master_debug register bit assignments

The following table shows the bit assignments.

Table 3-20 master_debug register bit assignments

Bits Name Function

[31:24] - Reserved.

[23:16] outstanding_writes Number of outstanding write transactions. From request handshake to response.

[15:8] outstanding_reads Number of outstanding read transactions. From request handshake to response.

[7:5] - Reserved.

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-72

Non-Confidential

Table 3-20 master_debug register bit assignments (continued)

Bits Name Function

[4] stalled_b_channel When this bit is set to 1, a transfer is stalled on the B channel, where both:
• BVALID is HIGH.
• BREADY is LOW.

[3] stalled_w_channel When this bit is set to 1, a transfer is stalled on the W channel, where both:
• WVALID is HIGH.
• WREADY is LOW.

[2] stalled_aw_channel When this bit is set to 1, a transfer is stalled on the AW channel, where both:
• AWVALID is HIGH.
• AWREADY is LOW.

[1] stalled_r_channel When this bit is set to 1, a transfer is stalled on the R channel, where both:
• RVALID is HIGH.
• RREADY is LOW.

[0] stalled_ar_channel When this bit is set to 1, a transfer is stalled on the AR channel, where both:
• ARVALID is HIGH.
• ARREADY is LOW.

Related information
3.2 Register summary on page 3-44

3 Programmers model
3.3 Register descriptions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-73

Non-Confidential

3.4 Address map
The CCI-500 uses an address map to route requests from slave interfaces to master interfaces. It is
supplied with an example address decoder, that defines a global address map. You can rewrite the address
decoders to define any address map at implementation time and also reconfigure the decoders at reset-
time.

There is an address decoder per slave interface for each of read and write requests. You can, for example,
use the same address map for each, or have a different decoder per slave interface. Ensure that accesses
to the same address are routed to the same slaves downstream of the CCI-500.

 Note

The following text and diagram describes the operation of the address decoder that is supplied with
CCI-500. However, the implementer is permitted to modify the address decoder. See your platform
documentation to determine the address map for a particular implementation.

The supplied example decoder defines address regions, as specified in the document Principles of Arm®

Memory Maps. The CCI-500 physical address width is configurable from 32-48 bits. The example
address map is defined up to 44 bits. If a request accesses a region where the address is greater than 44
bits, the CCI-500 generates a DECERR response. If your implementation uses a smaller address width,
then some regions are not addressable. Figure 3-18 Example decoder address regions on page 3-75
shows the region sizes and offsets, with associated ADDRMAP inputs and address width limits.

3 Programmers model
3.4 Address map

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-74

Non-Confidential

ADDRMAP[26:24]

ADDRMAP[23:21]

ADDRMAP[20:18]

ADDRMAP[17:15]

ADDRMAP[14:12]

ADDRMAP[11:9]

ADDRMAP[8:6]

ADDRMAP[5:3]

ADDRMAP[2:0]

0GB

1GB

2GB

4GB

16GB

32GB

34GB

64GB

256GB

512GB

544GB

1TB

4TB

8TB

8704GB

16TB

< 32-bit

< 36-bit

< 40-bit

< 44-bit

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

256TB < 48-bit

Figure 3-18 Example decoder address regions

In the example decoder, accesses to reserved regions generate a DECERR response.

For each non-reserved region, accesses are mapped to one of the master interfaces, or can be striped
across several master interfaces. The mapping is determined using configuration input signals,
ADDRMAP, that are sampled at reset. In the example address map, there are three ADDRMAP bits per
region, with the encoding defined as:

Table 3-21 Decoder mapping

ADDRMAP[2:0] Decode

0b000 Master interface 0

0b001 Master interface 1

3 Programmers model
3.4 Address map

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-75

Non-Confidential

Table 3-21 Decoder mapping (continued)

ADDRMAP[2:0] Decode

0b010 Master interface 2

0b011 Master interface 3

0b100 Master interface 4

0b101 Master interface 5

0b110 Reserved

0b111 The behavior depends on the number of memory interfaces that are configured:
• With one memory port, all accesses in the region are to that port.
• With two memory ports, striping occurs across both ports.
• With three memory ports, striping occurs across the two highest numbered ports.
• With four or more memory ports, striping occurs across the four highest numbered ports.

 Note

When using the supplied address decoder, memory ports are the highest numbered master interfaces.

If the ADDRMAP input maps a region to a master interface that is not present, the CCI-500 generates a
DECERR response for requests that target that region.

The example decoder uses a stripe size of 256 bytes.

3 Programmers model
3.4 Address map

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

3-76

Non-Confidential

Appendix A
Signal descriptions

This appendix describes the external signals of the CCI-500.

It contains the following sections:
• A.1 Clock and reset signals on page Appx-A-78.
• A.2 Power and clock control signals on page Appx-A-79.
• A.3 Configuration signals on page Appx-A-81.
• A.4 Debug signals on page Appx-A-83.
• A.5 DFT signals on page Appx-A-84.
• A.6 APB4 signals on page Appx-A-85.
• A.7 ACE and ACE-Lite slave interface signals on page Appx-A-86.
• A.8 AXI master interface signals on page Appx-A-92.
• A.9 Miscellaneous signals on page Appx-A-96.

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-77

Non-Confidential

A.1 Clock and reset signals
The CCI-500 uses a single set of standard clock and reset signals.

The following table shows the clock and reset signals.

Table A-1 Clock and reset signals

Signal Direction Description

ACLK Input Global clock.

ARESETn Input Global reset.

A Signal descriptions
A.1 Clock and reset signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-78

Non-Confidential

A.2 Power and clock control signals
The CCI-500 uses a range of signals to communicate with the Q-Channel and P-Channel interfaces.

The following table shows the power and clock control signals.

Table A-2 Power and clock control signals

Signal Direction Description

AWAKEUPSx Input This signal must be driven HIGH when any of ARVALID, AWVALID, or WVALID are HIGH on
the associated slave interface. When AWAKEUPSx is HIGH, the CCI-500 takes
ACLKQACTIVE HIGH to request that the CCI clock is enabled.

There is one input for each slave interface, so that x = 0-6, depending on the configuration.

AWAKEUPMy Output HIGH when transfers are pending on the AR, AW, or W channels of the associated master
interface. You can use this signal to request that the clock is turned on to downstream components.

There is one output for each master interface, so that y = 0-5, depending on the configuration.

PWAKEUP Input Indicates that the APB4 interface requires a clock because a transaction is incoming.

ACLKQREQn Input Request to disable the ACLK input. If the clock control channel is not used, then tie
ACLKQREQn HIGH.

ACLKQACCEPTn Output Clock disable acceptance response.

ACLKQDENY Output Clock disable denial response.

ACLKQACTIVE Output Indicates that the CCI-500 requires the ACLK input to run.

PREQ Input Request to change power state.

PSTATE[2:0] Input Required power state.

The encodings for this input are:

0b000 Off.

0b001 Static snoop filter RAM retention.

0b010 Reserved.

0b011 Dynamic snoop filter RAM retention.

0b100 On.

0b101-0b111 Reserved.

If the P channel is not used, tie PSTATE to 0b100, On state.

PACCEPT Output Power state transition acceptance.

A Signal descriptions
A.2 Power and clock control signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-79

Non-Confidential

Table A-2 Power and clock control signals (continued)

Signal Direction Description

PDENY Output Power state transition denial.

PACTIVE[4:0] Output Hint from the CCI-500 to indicate the power states that it can accept.

Each bit corresponds to a power state. If the bit is HIGH, the state is a legal power transition:

[0] Off.

[1] Static snoop filter RAM retention.

[2] Reserved.

[3] Dynamic snoop filter RAM retention.

[4] On.

A Signal descriptions
A.2 Power and clock control signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-80

Non-Confidential

A.3 Configuration signals
The CCI-500 samples configuration signals only when the ARESETn signal transitions from LOW to
HIGH.

The following table shows the configuration signals.

Table A-3 Configuration signals

Signal Direction Description

ADDRMAP[ADDRMAP_WIDTH-1:0] Input Configuration inputs that you can use to define the mapping scheme of
the address decoder. In the example decoder, there are 3 bits for each of
the possible nine address regions.

 Note

It is the reset sampled version of the ADDRMAP that is passed to the
address decode irrespective of whether it is the Arm supplied address
map or a modified version.

QOSOVERRIDE[n:0] Input If HIGH, the internally generated values override the ARQOS and
AWQOS input signals. See 2.4.12 Quality of Service on page 2-40 for
more information.

One bit exists for each slave interface.

ACCHANNELENSx[1:0] for ACE interfaces

ACCHANNELENSx[0] for ACE-Lite
interfaces

Input AC channel enables, one input per slave interface. These inputs override
any software enables.

Bit[0], DVM message enable

This bit is encoded as follows:

0 DVM messages are disabled.

1 DVM messages are enabled.

Bit[1], Snoop enable

This bit applies to ACE interfaces only, and is encoded as follows:

0 Snoop requests are disabled.

1 Snoop requests are enabled.

 Note

Snoops and DVM messages must still be enabled in the Snoop Control
Registers.

A Signal descriptions
A.3 Configuration signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-81

Non-Confidential

Table A-3 Configuration signals (continued)

Signal Direction Description

ORDERED_WRITE_OBSERVATION[n:0] Input Controls whether an ACE-Lite slave interface supports the Ordered
Write Observation property.

 Note

ACE interfaces do not support the Ordered Write Observation property.
This input is ignored for ACE slave interfaces.

This bit is encoded as follows:

0 Interface does not support Ordered Write Observation.

1 Interface supports Ordered Write Observation.

One bit exists for each slave interface.

BURST_SPLIT_ALL[n:0] Input If HIGH, all incoming requests are split into 64-byte transfers, rather
than shareable requests only. This signal has no effect on an interface
where the SIx_BURST_SPLITTER parameter is set to 0.

One bit exists for each ACE-Lite slave interface.

NSAID_ENABLED_Sx Input If HIGH, indicates that this interface is protected under TZMP1 and uses
NSAID. Snoop data from this ACE interface is not returned directly to
any other initiator.

One input signal exists for each ACE slave interface.

This signal is present only when the
non_secure_access_id_support configuration parameter is set to
1.

MI_DEPENDENT_ON_SI[n:0] Input If HIGH, indicates that this master interface is connected to a component
with both slave and master interfaces, where there is a dependency
between them. For example, a PCIe root complex usually has a slave
interface where completion of a write depends on the progress of
transactions on its master interface.

This signal contains one bit per master interface.

This signal is present only when the
mi_to_si_dependency_support configuration parameter is set to 1.

A Signal descriptions
A.3 Configuration signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-82

Non-Confidential

A.4 Debug signals
The inputs can change at runtime and you must synchronize them to the CCI-500 clock to prevent timing
hazards.

The following table shows the debug signals.

Table A-4 Debug signals

Signal Direction Description

NIDEN Input Non-invasive debug enable. If HIGH, the signal enables counting and export of PMU
events.

SPNIDEN Input Secure privileged non-invasive debug enable. When HIGH, this signal enables the
counting of both Non-secure and Secure events, provided NIDEN is HIGH also.

DBGEN Input Invasive debug enable. If HIGH, enables the counting and export of PMU events.

SPIDEN Input Secure privileged invasive debug enable. When HIGH, this signal enables the counting
of both Non-secure and Secure events, provided DBGEN is HIGH also.

EVNTBUS[n:0] Output The CCI-500 events that are exported if event export functionality is enabled in the
PMCR. See PMU event list on page 2-31 for information on pin allocations of this
vector.

The vector width depends on the number of master interfaces, M, and the number of
slave interfaces, S, and is defined as:

S*32 + M*7 + 15.

nEVNTCNTOVERFLOW[7:0] Output Overflow flags for the PMU clock and counters. This is an active-LOW signal. Each
bit represents the overflow for the event counter with that number.

nERRIRQ Output Indicates that an error response, DECERR or SLVERR, is received on the RRESP,
BRESP, or CRRESP input signals, and it cannot be signaled precisely. If LOW, the
signal indicates that an error has occurred.

See the Arm® CoreSight™ Architecture Specification for more information.

A Signal descriptions
A.4 Debug signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-83

Non-Confidential

A.5 DFT signals
The CCI-500 uses the Design For Test (DFT) signals to communicate with the DFT and MBIST
interfaces.

The following table shows the DFT signals.

Table A-5 DFT signals

Signal Direction Description

DFTRSTDISABLE Input Disables reset during scan shift.

DFTCGEN Input Assert HIGH during scan shift to enable architectural clock gates for ACLK clocks.

DFTRAMHOLD Input Blocks chip select to RAMs to preserve state.

DFTMCPHOLD Input Limits number of multi-cycle path toggles during ATPG delay test.

nMBISTRESET Input Resets MBIST mode. Tie HIGH for normal operation.

MBISTREQ Input Selects MBIST mode.

MBISTACK Output Acknowledges MBIST mode.

A Signal descriptions
A.5 DFT signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-84

Non-Confidential

A.6 APB4 signals
The following table shows the APB4 slave interface signals. These signals are clocked using ACLK and
reset using ARESETn.

Table A-6 APB4 signals

Signal Direction Description

PADDR[31:0] Input Address.

PPROT[2:0] Input Protection type.

PSEL Input Peripheral select.

PENABLE Input Enable for transfer.

PWRITE Input Write transaction indicator.

PWDATA[31:0] Input Write data.

PSTRB[3:0] Input Write data strobe.

PREADY Output Transfer ready.

PRDATA[31:0] Output Read data.

PSLVERR Output Error response.

A Signal descriptions
A.6 APB4 signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-85

Non-Confidential

A.7 ACE and ACE-Lite slave interface signals
The CCI-500 has a configurable number of ACE and ACE-Lite slave interfaces. The suffix is Sx, where
x is 0-6, depending on the configuration.

This section contains the following subsections:
• A.7.1 Write address channel signals on page Appx-A-86.
• A.7.2 Write data channel signals on page Appx-A-87.
• A.7.3 Write data response channel signals on page Appx-A-87.
• A.7.4 Read address channel signals on page Appx-A-88.
• A.7.5 Read data channel signals on page Appx-A-89.
• A.7.6 Coherency address channel signals on page Appx-A-89.
• A.7.7 Coherency response channel signals on page Appx-A-90.
• A.7.8 Coherency data channel signals for ACE interfaces on page Appx-A-90.
• A.7.9 Acknowledge signals for ACE interfaces on page Appx-A-91.

A.7.1 Write address channel signals

These signals carry control information that describes the nature of the data to be transferred. The data is
transferred between master and slave using either a read data channel or a write data channel.

The following table shows the write address channel signals.

Table A-7 Write address channel signals

Signal Direction Description

AWIDSx[n:0] Input Write address ID.

The width of this signal is IMPLEMENTATION DEFINED.

AWADDRSx[n:0] Input Write address.

The width of this signal is IMPLEMENTATION DEFINED.

AWREGIONSx[3:0] Input Write address region. If the master does not drive this signal, you can tie it LOW.

AWLENSx[7:0] Input Write burst length.

AWSIZESx[2:0] Input Write burst size.

AWBURSTSx[1:0] Input Write burst type.

AWLOCKSx Input Write lock type.

AWCACHESx[3:0] Input Write cache type.

AWPROTSx[2:0] Input Write protection type.

AWSNOOPSx[2:0] Input Write snoop request type.

AWDOMAINSx[1:0] Input Write domain.

AWQOSSx[3:0] Input Write QoS value.

AWUSERSx[n:0] Input Specified extension to AW payload.

The width of this signal is IMPLEMENTATION DEFINED.

A Signal descriptions
A.7 ACE and ACE-Lite slave interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-86

Non-Confidential

Table A-7 Write address channel signals (continued)

Signal Direction Description

NSAIDWSx[3:0] Input Optional extension to AW payload, that transmits the Non-secure access identifier for a request.

AWVALIDSx Input Write address valid.

AWREADYSx Output Write address ready.

AWTRACESx Input Write trace input.

This signal is replicated on the corresponding BTRACESx output, for all writes except Evict
transactions.

A.7.2 Write data channel signals

Write data channel signals carry the write data from the master to the slave, and include the data bus and
a byte lane strobe signal.

The following table shows the write data channel signals.

Table A-8 Write data channel signals

Signal Direction Description

WDATASx[127:0] Input Write data.

WSTRBSx[15:0] Input Write byte-lane strobes.

WLASTSx Input Write last. This signal indicates the last transfer in a write burst.

WUSERSx[n:0] Input The specified extension to the W payload.

The width of this signal is IMPLEMENTATION DEFINED.

WCHECKSUMSx[n:0] Input An optional extension to the W payload that can transmit checksum or parity information for
the data.

The width of this signal is IMPLEMENTATION DEFINED.

WVALIDSx Input Write data is valid.

WREADYSx Output Write data is ready.

A.7.3 Write data response channel signals

A slave uses the write response channel to respond to write transactions. All write transactions require
completion signaling on the write response channel.

The following table shows the write data response channel signals.

A Signal descriptions
A.7 ACE and ACE-Lite slave interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-87

Non-Confidential

Table A-9 Write data response channel signals

Signal Direction Description

BIDSx[n:0] Output Write response ID.

The width of this signal is IMPLEMENTATION DEFINED.

BRESPSx[1:0] Output Write response.

BUSERSx[n:0] Output The specified extension to the B payload.

The width of this signal is IMPLEMENTATION DEFINED.

BVALIDSx Output Write response is valid.

BREADYSx Input Write response is ready.

BTRACESx Output Write response trace output.

This signal replicates AWTRACESx for the corresponding request, for all writes except Evict
transactions.

A.7.4 Read address channel signals

The following table shows the read address channel signals.

Table A-10 Read address channel signals

Signal Direction Description

ARIDSx[n:0] Input Read address ID.

The width of this signal is IMPLEMENTATION DEFINED.

ARADDRSx[n:0] Input Read address.

The width of this signal is IMPLEMENTATION DEFINED.

ARREGIONSx[3:0] Input Read address region. If the master does not drive this signal, you can tie it LOW.

ARLENSx[7:0] Input Read burst length.

ARSIZESx[2:0] Input Read burst size.

ARBURSTSx[1:0] Input Read burst type.

ARLOCKSx Input Read lock type.

ARCACHESx[3:0] Input Read cache type.

ARPROTSx[2:0] Input Read protection type.

ARDOMAINSx[1:0] Input Read domain.

ARSNOOPSx[3:0] Input Read snoop request type.

ARQOSSx[3:0] Input Read QoS.

A Signal descriptions
A.7 ACE and ACE-Lite slave interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-88

Non-Confidential

Table A-10 Read address channel signals (continued)

Signal Direction Description

ARUSERSx[n:0] Input The specified extension to the AR payload.

The width of this signal is IMPLEMENTATION DEFINED.

NSAIDRSx[3:0] Input Optional extension to AR payload, that transmits the Non-secure access identifier for a request.

ARVALIDSx Input Read address is valid.

ARREADYSx Output Read address is ready.

ARTRACESx Input Read trace input. This signal is replicated on the corresponding RTRACESx output.

A.7.5 Read data channel signals

Read data channel signals carry the read data and the read response information from the slave to the
master, and include the data bus and a read response signal.

The following table shows the read data channel signals.

Table A-11 Read data channel signals

Signal Direction Description

RIDSx[n:0] Output Read data ID.

The width of this signal is IMPLEMENTATION DEFINED.

RDATASx[127:0] Output Read data.

RRESPSx[3:0] Output Read data response for ACE interfaces.

RRESPSx[1:0] Output Read data response for ACE-Lite interfaces.

RLASTSx Output Read last. This signal indicates the last transfer in a read burst.

RUSERSx[n:0] Output The specified extension to the R payload.

The width of this signal is IMPLEMENTATION DEFINED.

RCHECKSUMSx[n:0] Output An optional extension to the R payload that can transmit checksum or parity information for the
data.

The width of this signal is IMPLEMENTATION DEFINED.

RVALIDSx Output Read data is valid.

RREADYSx Input Read data is ready.

RTRACESx Output Read trace output. This signal replicates ARTRACESx for the corresponding request.

A.7.6 Coherency address channel signals

Coherency address channel signals provide address and associated control information for snoop
transactions.

The following table shows the coherency address channel signals.

A Signal descriptions
A.7 ACE and ACE-Lite slave interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-89

Non-Confidential

Table A-12 Coherency address channel signals

Signal Direction Description

ACADDRSx[n:0] Output Snoop address.

The width of this signal is IMPLEMENTATION DEFINED.

ACPROTSx[2:0] Output Snoop protection type.

ACSNOOPSx[3:0] Output Snoop request type.

ACVALIDSx Output Snoop address is valid.

ACREADYSx Input The master interface is ready to accept the snoop address.

A.7.7 Coherency response channel signals

Coherency response channel signals provide the response to snoop transactions.

The following table shows the coherency response channel signals.

Table A-13 Coherency response channel signals

Signal Direction Description

CRRESPSx[4:0] Input Snoop response.

NSAIDCRSx[3:0] Input Optional extension to CR payload, that transmits the Non-secure access identifier for a snoop
response.

CRVALIDSx Input Snoop response is valid.

CRREADYSx Output The slave interface is ready to accept the snoop response.

A.7.8 Coherency data channel signals for ACE interfaces

Coherency data channel signals, if used, pass snoop data out from an ACE master.

The following table shows the coherency data channel signals for ACE interfaces.

Table A-14 Coherency data channel signals, ACE interfaces

Signal Direction Description

CDDATASx[127:0] Input Snoop data.

CDLASTSx Input Snoop data last transfer.

CDCHECKSUMSx[n:0] Input An optional extension to the CD payload that can transmit checksum or parity information for
the data.

The width of this signal is IMPLEMENTATION DEFINED.

CDVALIDSx Input Snoop data is valid.

CDREADYSx Output When HIGH, indicates that the corresponding slave interface is ready to accept snoop data.

A Signal descriptions
A.7 ACE and ACE-Lite slave interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-90

Non-Confidential

A.7.9 Acknowledge signals for ACE interfaces

Acknowledge signals indicate that a master or slave has completed a read or write transaction.

The following table shows the acknowledge signals for ACE interfaces.

Table A-15 Acknowledge signals, ACE interfaces

Signal Direction Description

RACKSx Input Read acknowledge.

WACKSx Input Write acknowledge.

A Signal descriptions
A.7 ACE and ACE-Lite slave interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-91

Non-Confidential

A.8 AXI master interface signals
The CCI-500 has a configurable number of AXI4 master interfaces. The suffix is My, where y is 0-5,
depending on the configuration.

This section contains the following subsections:
• A.8.1 Write address channel signals on page Appx-A-92.
• A.8.2 Write data channel signals on page Appx-A-93.
• A.8.3 Write data response channel signals on page Appx-A-93.
• A.8.4 Read address channel signals on page Appx-A-94.
• A.8.5 Read data channel signals on page Appx-A-94.
• A.8.6 QoS signals on page Appx-A-95.

A.8.1 Write address channel signals

These signals carry control information that describes the nature of the data to be transferred. The data is
transferred between master and slave using either a read data channel or a write data channel.

The following table shows the write address channel signals.

Table A-16 Write address channel signals

Signal Direction Description

AWIDMy[n:0] Output Write address ID. The width is the maximum AWID signal width across the slave interfaces + 3
bits, and it is a minimum of 9 bits.

AWADDRMy[n:0] Output Write address.

The width of this signal is IMPLEMENTATION DEFINED.

AWREGIONMy[3:0] Output Write address region.

AWLENMy[7:0] Output Write burst length.

AWSIZEMy[2:0] Output Write burst size.

AWBURSTMy[1:0] Output Write burst type.

AWLOCKMy Output Write lock type.

AWCACHEMy[3:0] Output Write cache type.

AWPROTMy[2:0] Output Write protection type.

AWQOSMy[3:0] Output Write QoS value.

AWUSERMy[n:0] Output The specified extension to the AW payload.

AWVALIDMy Output Write address is valid.

NSAIDWMy[3:0] Output Optional extension to AW payload, that transmits the Non-secure access identifier for a request.

AWREADYMy Input Write address is ready.

AWTRACEMy Output Write trace output. This signal is replicated on the corresponding BTRACEMy input.

A Signal descriptions
A.8 AXI master interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-92

Non-Confidential

A.8.2 Write data channel signals

Write data channel signals carry the write data from the master to the slave, and include the data bus and
a byte lane strobe signal.

The following table shows the write data channel signals where y represents the master interface number.

Table A-17 Write data channel signals

Signal Direction Description

WIDMy[n:0] Output Write ID tag.

This signal is included to help connecting to AXI3 slave interfaces.

The width of this signal is the same as the corresponding AWIDMy[n:0] signal.

WDATAMy[127:0] Output Write data.

WSTRBMy[15:0] Output Write strobes.

WLASTMy Output Write last.

WUSERMy[n:0] Output User signal.

WCHECKSUMMy[n:0] Output An optional extension to the W payload that you can use to transmit checksum or parity
information for the data.

The width of this signal is IMPLEMENTATION DEFINED.

WVALIDMy Output Write valid.

WREADYMy Input Write ready.

A.8.3 Write data response channel signals

A slave uses the write response channel to respond to write transactions. All write transactions require
completion signaling on the write response channel.

The following table shows the write data response channel signals.

Table A-18 Write data response channel signals

Signal Direction Description

BIDMy[n:0] Input Write response ID.

The width of this signal is the same as the corresponding AWIDMy[n:0] signal.

BRESPMy[1:0] Input Write response.

BUSERMy[n:0] Input The specified extension to the B payload.

The width of this signal is IMPLEMENTATION DEFINED.

BVALIDMy Input Write response is valid.

BREADYMy Output Write response is ready.

BTRACEMy Input Write response trace input. This signal replicates AWTRACEMy for the corresponding request.

A Signal descriptions
A.8 AXI master interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-93

Non-Confidential

A.8.4 Read address channel signals

These signals carry control information that describes the nature of the data to be transferred. The data is
transferred between master and slave using either a read data channel or a write data channel.

The following table shows the read address channel signals.

Table A-19 Read address channel signals

Signal Direction Description

ARIDMy[n:0] Output Read address ID. The width is the maximum ARID signal width across slave interfaces + 3 bits,
and it is a minimum of 6 bits.

ARADDRMy[n:0] Output Read address.

The width of this signal is IMPLEMENTATION DEFINED.

ARREGIONMy[3:0] Output Read address region.

ARLENMy[7:0] Output Read burst length.

ARSIZEMy[2:0] Output Read burst size.

ARBURSTMy[1:0] Output Read burst type.

ARLOCKMy Output Read lock type.

ARCACHEMy[3:0] Output Read cache type.

ARPROTMy[2:0] Output Read protection type.

ARQOSMy[3:0] Output Read QoS value.

ARUSERMy[n:0] Output The specified extension to the AR payload.

The width of this signal is IMPLEMENTATION DEFINED.

ARVALIDMy Output Read address is valid.

NSAIDRMy[3:0] Output Optional extension to AR payload, that transmits the Non-secure access identifier for a request

ARREADYMy Input Read address is ready.

ARTRACEMy Output Read trace output. This signal is replicated on the corresponding RTRACEMy input

A.8.5 Read data channel signals

Read data channel signals carry the read data and the read response information from the slave to the
master.

The following table shows the read data channel signals.

Table A-20 Read data channel signals

Signal Direction Description

RIDMy[n:0] Input Read data ID.

RDATAMy[127:0] Input Read data.

A Signal descriptions
A.8 AXI master interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-94

Non-Confidential

Table A-20 Read data channel signals (continued)

Signal Direction Description

RRESPMy[3:0] Input Read data response.

RLASTMy Input Read last. This signal indicates the last transfer in a read burst.

RUSERMy[n:0] Input The specified extension to the R payload.

The width of this signal is IMPLEMENTATION DEFINED.

RCHECKSUMMy[n:0] Input An optional extension to the R payload that you can use to transmit checksum or parity
information for the data.

The width of this signal is IMPLEMENTATION DEFINED.

RVALIDMy Input Read data is valid.

RREADYMy Output Read data is ready.

RTRACEMy Input Read response trace input. This signal replicates ARTRACEMy for the corresponding request.

A.8.6 QoS signals

The QoS signals indicate the QoS level for which the slave accepts read or write requests.

The following table shows the QoS signals.

Table A-21 QoS signals

Signal Direction Description

VAWQOSACCEPTMy[3:0] Input QoS level for which the slave accepts write requests.

VARQOSACCEPTMy[3:0] Input QoS level for which the slave accepts read requests.

A Signal descriptions
A.8 AXI master interface signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-95

Non-Confidential

A.9 Miscellaneous signals
Some signals in the CCI-500 are not applicable for general operation, implementation, or debug of the
CCI-500. However, if there is a problem to resolve, you might require these signals.

The following table shows a signal that you can use to indicate that an ECO applies to this
implementation of the CCI-500.

Table A-22 Miscellaneous signals

Signal Direction Description

ECOREVNUM[3:0] Input Use this signal to update the revision field register if you have an ECO to apply to the CCI-500.
See ECO revision number on page 3-62.

A Signal descriptions
A.9 Miscellaneous signals

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-96

Non-Confidential

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• B.1 Revisions on page Appx-B-98.

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-97

Non-Confidential

B.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table B-1 Issue 0000-00

Change Location Affects

First release - -

Table B-2 Differences between Issue 0000-00 and Issue 0000-01

Change Location Affects

Clarified information about adding and removing
masters from the coherent domain.

2.4.3 Snoop connectivity and control on page 2-29. All revisions.

Clarified descriptions of debug signals. 2.4.4 Performance Monitoring Unit on page 2-30. All revisions.

Updated information about relationship between
debug enable inputs and PMCR settings.

3.3.6 Performance Monitor Control Register (PMCR)
on page 3-59.

All revisions.

Clarified descriptions of SPNIDEN and SPIDEN A.4 Debug signals on page Appx-A-83. All revisions.

Table B-3 Differences between Issue 0000-01 and Issue 0001-00

Change Location Affects

Clarified description of snoop filter directory configuration. 2.4.2 Snoop filter on page 2-28. All revisions.

Clarified procedure for removing a master from the coherent domain. 2.4.3 Snoop connectivity and control
on page 2-29.

All revisions.

Clarified the example of how to use the PMU. 2.4.4 Performance Monitoring Unit
on page 2-30.

All revisions.

Amended register names to match RTL names. 3.2 Register summary on page 3-44. All revisions.

Revised peripheral_id2 entry. 3.2 Register summary on page 3-44 r0p1.

Amended some register bit names and field names for consistency
with other Arm documents.

3.3 Register descriptions on page 3-51. All revisions.

Clarified configurations descriptions to indicate that certain registers
have multiple copies.

3.3 Register descriptions on page 3-51. All revisions.

Amended usage constraints.

Amended access permissions of bits[15:11].

3.3.6 Performance Monitor Control Register
(PMCR) on page 3-59.

r0p1.

Amended usage constraints. 3.3.7 Interface Monitor Control Register
on page 3-60

r0p1.

Updated revision number in Peripheral ID2 register. 3.3.8 Component and Peripheral ID Registers
on page 3-61

r0p1.

B Revisions
B.1 Revisions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-98

Non-Confidential

Table B-3 Differences between Issue 0000-01 and Issue 0001-00 (continued)

Change Location Affects

Clarified bit assignment descriptions. 3.3.9 Snoop Control Registers on page 3-62. All revisions.

Clarified bit assignment descriptions for bits[7:0]. 3.3.18 Slave Interface Monitor Registers
on page 3-70.

All revisions.

Clarified bit assignment descriptions for bits[4:0]. 3.3.19 Master Interface Monitor Registers
on page 3-72.

All revisions.

Amended example address map. 3.4 Address map on page 3-74. All revisions.

Added note to clarify description of 0b111 setting for
ADDRMAP[2:0].

3.4 Address map on page 3-74. All revisions.

Clarified ORDERED_WRITE_OBSERVATION[n:0] description. A.3 Configuration signals on page Appx-A-81 r0p1.

Added NSAID_ENABLED_Sx signal. A.3 Configuration signals on page Appx-A-81 All revisions.

Added MI_DEPENDENT_ON_SI_Mx signal. A.3 Configuration signals on page Appx-A-81 r0p1.

Table B-4 Differences between Issue 0000-01 and Issue 0000-02

Change Location Affects

No technical changes - -

Table B-5 Differences between Issue 0001-00 and Issue 0002-00

Change Location Affects

Clarified information about crossbar interconnect
functionality.

1.3 Features on page 1-14. r0p2.

Updated example system figure and corresponding text. 1.4 Interfaces on page 1-15. r0p2.

Updated high-level operation figure and corresponding
text.

1.5 CCI operation on page 1-16. All revisions.

Clarified explanation of design-time and reset-time
options.

1.6 Configurable options on page 1-17. All revisions.

Clarified maximum permitted AXI4 master interfaces in
Figure.

2.2 Interfaces on page 2-24. r0p2.

Clarified APB version. 2.2.4 APB4 slave interface on page 2-25. All revisions.

Clarified conditions for deasserting ARESETn. 2.3 Clocking and reset on page 2-27. All revisions.

Clarified description of snoop connectivity and control.

Clarified procedures for adding and removing masters.

2.4.3 Snoop connectivity and control on page 2-29. All revisions.

Revised EVNTBUS output bits used for global events. Event bus on page 2-35. r0p2.

B Revisions
B.1 Revisions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-99

Non-Confidential

Table B-5 Differences between Issue 0001-00 and Issue 0002-00 (continued)

Change Location Affects

Added note about enabling event counters. Using the PMU on page 2-36. All revisions.

Added trace signaling functionality. 2.4.5 Debug features on page 2-37. All revisions.

Clarified error response behavior for Non-secure reads
and writes.

Security status of the internal programmers view
on page 2-37.

All revisions.

Added new section. High and low priority requests on page 2-41. All revisions.

Added QoS Threshold Register. 3.2 Register summary on page 3-44. r0p2.

Added new bit secure_observation_override. 3.3.2 Secure Access Register on page 3-52. r0p2.

Added QoS Threshold Register. 3.3.5 QoS Threshold Register on page 3-57. r0p2.

Changed access type of bits[15:11]. 3.3.6 Performance Monitor Control Register (PMCR)
on page 3-59.

r0p2.

Clarified address width information and revised example
decoder address regions.

3.4 Address map on page 3-74. All revisions.

Clarified description of AWAKEUPSx and
AWAKEUPMy inputs.

A.2 Power and clock control signals on page Appx-A-79 All revisions.

Revised some signal names. A.5 DFT signals on page Appx-A-84. All revisions.

Clarified many signal descriptions. A.7 ACE and ACE-Lite slave interface signals
on page Appx-A-86.

A.8 AXI master interface signals on page Appx-A-92.

All revisions.

Added AWTRACESx input A.7.1 Write address channel signals on page Appx-A-86. r0p2.

Added BTRACESx output A.7.3 Write data response channel signals
on page Appx-A-87.

r0p2.

Added ARTRACESx input A.7.4 Read address channel signals on page Appx-A-88. r0p2.

Added RTRACESx output A.7.5 Read data channel signals on page Appx-A-89. r0p2.

Added VAWQOSACCEPTMy[3:0] input. A.8.1 Write address channel signals on page Appx-A-92. r0p2.

Added VARQOSACCEPTMy[3:0] input. A.8.4 Read address channel signals on page Appx-A-94. r0p2.

Table B-6 Differences between Issue 0002-00 and Issue 0100-00

Change Location Affects

Clarified section. Regulation based on outstanding transactions
on page 2-41.

All revisions.

Updated peripheral_id2 reset value. 3.2 Register summary on page 3-44. r1p0.

B Revisions
B.1 Revisions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-100

Non-Confidential

Table B-6 Differences between Issue 0002-00 and Issue 0100-00 (continued)

Change Location Affects

Updated revision number in Peripheral ID2 register. 3.3.8 Component and Peripheral ID Registers
on page 3-61.

r1p0.

Clarified description of stalled_cd_channel bit.

Clarified applicability of some bits and fields.

3.3.18 Slave Interface Monitor Registers on page 3-70. All revisions.

Clarified description of NSAID_ENABLED_Sx signal. A.3 Configuration signals on page Appx-A-81. All revisions.

Moved VAWQOSACCEPTMy[3:0] and
VARQOSACCEPTMy[3:0] into a new section.

A.8.6 QoS signals on page Appx-A-95. -

Table B-7 Differences between Issue 0100-00 and Issue 0100-01

Change Location Affects

Removed references to hardware controls, as these do not
apply to CCI-500.

Removing a master from the coherent domain
on page 2-29.

Adding a master to the coherent domain on page 2-30.

All revisions.

Modified name and description of
MI_DEPENDENT_ON_SI_M[n:0].

A.3 Configuration signals on page Appx-A-81. All revisions.

Modified description of RRESPSx signal. A.7.5 Read data channel signals on page Appx-A-89. All revisions.

B Revisions
B.1 Revisions

100023_0100_01_en Copyright © 2014–2016, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-101

Non-Confidential

	Arm® CoreLink™ CCI-500 Cache Coherent Interconnect Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the CCI-500
	1.2 : Compliance
	1.3 : Features
	1.4 : Interfaces
	1.5 : CCI operation
	1.6 : Configurable options
	1.7 : Test features
	1.8 : Product design flow and documentation
	1.8.1 : Documentation

	1.9 : Product revisions

	2 : Functional description
	2.1 : About the functions
	2.2 : Interfaces
	2.2.1 : ACE interfaces
	2.2.2 : ACE-Lite slave interfaces
	2.2.3 : AXI4 master interfaces
	2.2.4 : APB4 slave interface
	2.2.5 : Clock and power control interfaces
	2.2.6 : Debug and performance monitoring interface
	2.2.7 : DFT interface

	2.3 : Clocking and reset
	2.4 : Operation
	2.4.1 : Connectivity and address map
	2.4.2 : Snoop filter
	2.4.3 : Snoop connectivity and control
	Removing a master from the coherent domain
	Adding a master to the coherent domain

	2.4.4 : Performance Monitoring Unit
	PMU event list
	Event bus

	PMU registers
	Using the PMU
	Example of how to use the PMU

	2.4.5 : Debug features
	2.4.6 : Security
	Security status of the internal programmers view
	Making a non-TrustZone aware master Secure
	Security of master interfaces
	Security considerations for the PMU
	Support for TrustZone Media Protection

	2.4.7 : Error responses
	2.4.8 : Cache maintenance operations
	2.4.9 : Barriers
	2.4.10 : Exclusive accesses
	2.4.11 : DVM messages
	2.4.12 : Quality of Service
	QoS value as a priority indicator
	High and low priority requests
	Regulation based on outstanding transactions

	3 : Programmers model
	3.1 : About this programmers model
	3.2 : Register summary
	3.3 : Register descriptions
	3.3.1 : Control Override Register
	3.3.2 : Secure Access Register
	3.3.3 : Status Register
	3.3.4 : Imprecise Error Register
	3.3.5 : QoS Threshold Register
	3.3.6 : Performance Monitor Control Register (PMCR)
	3.3.7 : Interface Monitor Control Register
	3.3.8 : Component and Peripheral ID Registers
	ECO revision number

	3.3.9 : Snoop Control Registers
	3.3.10 : Shareable Override Register
	3.3.11 : Read Channel QoS Value Override Register
	3.3.12 : Write Channel QoS Value Override Register
	3.3.13 : Maximum Outstanding Transactions Registers
	3.3.14 : Event Select Registers
	3.3.15 : Event Count Registers
	3.3.16 : Count Control Registers
	3.3.17 : Overflow Flag Status Registers
	3.3.18 : Slave Interface Monitor Registers
	3.3.19 : Master Interface Monitor Registers

	3.4 : Address map

	A : Signal descriptions
	A.1 : Clock and reset signals
	A.2 : Power and clock control signals
	A.3 : Configuration signals
	A.4 : Debug signals
	A.5 : DFT signals
	A.6 : APB4 signals
	A.7 : ACE and ACE-Lite slave interface signals
	A.7.1 : Write address channel signals
	A.7.2 : Write data channel signals
	A.7.3 : Write data response channel signals
	A.7.4 : Read address channel signals
	A.7.5 : Read data channel signals
	A.7.6 : Coherency address channel signals
	A.7.7 : Coherency response channel signals
	A.7.8 : Coherency data channel signals for ACE interfaces
	A.7.9 : Acknowledge signals for ACE interfaces

	A.8 : AXI master interface signals
	A.8.1 : Write address channel signals
	A.8.2 : Write data channel signals
	A.8.3 : Write data response channel signals
	A.8.4 : Read address channel signals
	A.8.5 : Read data channel signals
	A.8.6 : QoS signals

	A.9 : Miscellaneous signals

	B : Revisions
	B.1 : Revisions

