
Instruction Set Assembly Guide for
Armv7 and earlier Arm® architectures

Version 2.0

Reference Guide

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.
100076_0200_00_en

Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures
Reference Guide
Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0100-00 25 October 2018 Non-Confidential First Release

0200-00 09 October 2019 Non-Confidential Second Release. The title
and scope of the document
has changed.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018, 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

 Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://www.arm.com

Contents
Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Preface
About this book 20

Part A Instruction Set Overview

Chapter A1 Overview of AArch32 state
A1.1 Terminology A1-26
A1.2 Changing between A32 and T32 instruction set states A1-27
A1.3 Processor modes, and privileged and unprivileged software execution A1-28
A1.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M A1-29
A1.5 Registers in AArch32 state .. A1-30
A1.6 General-purpose registers in AArch32 state A1-32
A1.7 Register accesses in AArch32 state A1-33
A1.8 Predeclared core register names in AArch32 state A1-34
A1.9 Predeclared extension register names in AArch32 state A1-35
A1.10 Program Counter in AArch32 state A1-36
A1.11 The Q flag in AArch32 state .. A1-37
A1.12 Application Program Status Register A1-38
A1.13 Current Program Status Register in AArch32 state A1-39
A1.14 Saved Program Status Registers in AArch32 state A1-40
A1.15 A32 and T32 instruction set overview A1-41

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

A1.16 Access to the inline barrel shifter in AArch32 state A1-42

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
B1.1 Architecture support for Advanced SIMD .. B1-46
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state B1-47
B1.3 Views of the Advanced SIMD register bank in AArch32 state B1-49
B1.4 Load values to Advanced SIMD registers B1-50
B1.5 Conditional execution of A32/T32 Advanced SIMD instructions B1-51
B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions B1-52
B1.7 Advanced SIMD data types in A32/T32 instructions B1-53
B1.8 Polynomial arithmetic over {0,1} .. B1-54
B1.9 Advanced SIMD vectors .. B1-55
B1.10 Normal, long, wide, and narrow Advanced SIMD instructions B1-56
B1.11 Saturating Advanced SIMD instructions .. B1-57
B1.12 Advanced SIMD scalars .. B1-58
B1.13 Extended notation extension for Advanced SIMD B1-59
B1.14 Advanced SIMD system registers in AArch32 state .. B1-60
B1.15 Flush-to-zero mode in Advanced SIMD B1-61
B1.16 When to use flush-to-zero mode in Advanced SIMD B1-62
B1.17 The effects of using flush-to-zero mode in Advanced SIMD B1-63
B1.18 Advanced SIMD operations not affected by flush-to-zero mode B1-64

Chapter B2 Floating-point Programming
B2.1 Architecture support for floating-point B2-66
B2.2 Extension register bank mapping for floating-point in AArch32 state B2-67
B2.3 Views of the floating-point extension register bank in AArch32 state B2-69
B2.4 Load values to floating-point registers B2-70
B2.5 Conditional execution of A32/T32 floating-point instructions B2-71
B2.6 Floating-point exceptions for floating-point in A32/T32 instructions B2-72
B2.7 Floating-point data types in A32/T32 instructions B2-73
B2.8 Extended notation extension for floating-point code B2-74
B2.9 Floating-point system registers in AArch32 state .. B2-75
B2.10 Flush-to-zero mode in floating-point .. B2-76
B2.11 When to use flush-to-zero mode in floating-point .. B2-77
B2.12 The effects of using flush-to-zero mode in floating-point B2-78
B2.13 Floating-point operations not affected by flush-to-zero mode B2-79

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
C1.1 Conditional instructions C1-84
C1.2 Conditional execution in A32 code .. C1-85
C1.3 Conditional execution in T32 code .. C1-86
C1.4 Condition flags C1-87
C1.5 Updates to the condition flags in A32/T32 code C1-88
C1.6 Floating-point instructions that update the condition flags C1-89
C1.7 Carry flag C1-90
C1.8 Overflow flag C1-91

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

C1.9 Condition code suffixes C1-92
C1.10 Condition code suffixes and related flags C1-93
C1.11 Comparison of condition code meanings in integer and floating-point code C1-94
C1.12 Benefits of using conditional execution in A32 and T32 code C1-96
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code . . C1-97
C1.14 Optimization for execution speed .. C1-100

Chapter C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary C2-106
C2.2 Instruction width specifiers C2-111
C2.3 Flexible second operand (Operand2) .. C2-112
C2.4 Syntax of Operand2 as a constant .. C2-113
C2.5 Syntax of Operand2 as a register with optional shift C2-114
C2.6 Shift operations C2-115
C2.7 Saturating instructions C2-118
C2.8 ADC C2-119
C2.9 ADD C2-121
C2.10 ADR (PC-relative) C2-124
C2.11 ADR (register-relative) C2-126
C2.12 AND C2-128
C2.13 ASR C2-130
C2.14 B .. C2-132
C2.15 BFC C2-134
C2.16 BFI C2-135
C2.17 BIC .. C2-136
C2.18 BKPT C2-138
C2.19 BL .. C2-139
C2.20 BLX, BLXNS C2-140
C2.21 BX, BXNS C2-142
C2.22 BXJ C2-144
C2.23 CBZ and CBNZ C2-145
C2.24 CDP and CDP2 C2-146
C2.25 CLREX .. C2-147
C2.26 CLZ C2-148
C2.27 CMP and CMN .. C2-149
C2.28 CPS C2-151
C2.29 CRC32 C2-153
C2.30 CRC32C .. C2-154
C2.31 CSDB .. C2-155
C2.32 DBG C2-157
C2.33 DMB .. C2-158
C2.34 DSB C2-160
C2.35 EOR C2-162
C2.36 ERET C2-164
C2.37 ESB C2-165
C2.38 HLT C2-166
C2.39 HVC C2-167
C2.40 ISB C2-168
C2.41 IT C2-169
C2.42 LDA C2-172

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

C2.43 LDAEX C2-173
C2.44 LDC and LDC2 .. C2-175
C2.45 LDM C2-177
C2.46 LDR (immediate offset) C2-179
C2.47 LDR (PC-relative) .. C2-181
C2.48 LDR (register offset) .. C2-183
C2.49 LDR (register-relative) C2-185
C2.50 LDR, unprivileged C2-187
C2.51 LDREX .. C2-189
C2.52 LSL .. C2-191
C2.53 LSR C2-193
C2.54 MCR and MCR2 .. C2-195
C2.55 MCRR and MCRR2 C2-196
C2.56 MLA C2-197
C2.57 MLS C2-198
C2.58 MOV .. C2-199
C2.59 MOVT .. C2-201
C2.60 MRC and MRC2 .. C2-202
C2.61 MRRC and MRRC2 C2-203
C2.62 MRS (PSR to general-purpose register) C2-204
C2.63 MRS (system coprocessor register to general-purpose register) C2-206
C2.64 MSR (general-purpose register to system coprocessor register) C2-207
C2.65 MSR (general-purpose register to PSR) C2-208
C2.66 MUL C2-210
C2.67 MVN C2-211
C2.68 NOP C2-213
C2.69 ORN (T32 only) C2-214
C2.70 ORR .. C2-215
C2.71 PKHBT and PKHTB .. C2-217
C2.72 PLD, PLDW, and PLI C2-219
C2.73 POP C2-221
C2.74 PUSH .. C2-222
C2.75 QADD .. C2-223
C2.76 QADD8 .. C2-224
C2.77 QADD16 .. C2-225
C2.78 QASX .. C2-226
C2.79 QDADD C2-227
C2.80 QDSUB C2-228
C2.81 QSAX .. C2-229
C2.82 QSUB .. C2-230
C2.83 QSUB8 .. C2-231
C2.84 QSUB16 .. C2-232
C2.85 RBIT .. C2-233
C2.86 REV C2-234
C2.87 REV16 C2-235
C2.88 REVSH .. C2-236
C2.89 RFE C2-237
C2.90 ROR .. C2-239
C2.91 RRX C2-241
C2.92 RSB C2-243

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

C2.93 RSC C2-245
C2.94 SADD8 .. C2-247
C2.95 SADD16 .. C2-249
C2.96 SASX C2-251
C2.97 SBC C2-253
C2.98 SBFX C2-255
C2.99 SDIV .. C2-256
C2.100 SEL C2-257
C2.101 SETEND C2-259
C2.102 SETPAN .. C2-260
C2.103 SEV C2-261
C2.104 SEVL C2-262
C2.105 SG C2-263
C2.106 SHADD8 C2-264
C2.107 SHADD16 C2-265
C2.108 SHASX .. C2-266
C2.109 SHSAX .. C2-267
C2.110 SHSUB8 .. C2-268
C2.111 SHSUB16 .. C2-269
C2.112 SMC .. C2-270
C2.113 SMLAxy C2-271
C2.114 SMLAD .. C2-273
C2.115 SMLAL C2-274
C2.116 SMLALD .. C2-275
C2.117 SMLALxy C2-276
C2.118 SMLAWy C2-278
C2.119 SMLSD .. C2-279
C2.120 SMLSLD .. C2-280
C2.121 SMMLA C2-281
C2.122 SMMLS C2-282
C2.123 SMMUL C2-283
C2.124 SMUAD C2-284
C2.125 SMULxy C2-285
C2.126 SMULL .. C2-286
C2.127 SMULWy C2-287
C2.128 SMUSD C2-288
C2.129 SRS C2-289
C2.130 SSAT C2-291
C2.131 SSAT16 C2-292
C2.132 SSAX C2-293
C2.133 SSUB8 C2-295
C2.134 SSUB16 C2-297
C2.135 STC and STC2 .. C2-299
C2.136 STL C2-301
C2.137 STLEX C2-302
C2.138 STM C2-304
C2.139 STR (immediate offset) C2-306
C2.140 STR (register offset) .. C2-308
C2.141 STR, unprivileged C2-310
C2.142 STREX .. C2-312

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

C2.143 SUB C2-314
C2.144 SUBS pc, lr C2-317
C2.145 SVC C2-319
C2.146 SWP and SWPB C2-320
C2.147 SXTAB C2-321
C2.148 SXTAB16 C2-323
C2.149 SXTAH C2-325
C2.150 SXTB C2-327
C2.151 SXTB16 C2-329
C2.152 SXTH C2-330
C2.153 SYS C2-332
C2.154 TBB and TBH .. C2-333
C2.155 TEQ C2-334
C2.156 TST C2-336
C2.157 TT, TTT, TTA, TTAT C2-338
C2.158 UADD8 .. C2-340
C2.159 UADD16 .. C2-342
C2.160 UASX C2-344
C2.161 UBFX C2-346
C2.162 UDF C2-347
C2.163 UDIV C2-348
C2.164 UHADD8 C2-349
C2.165 UHADD16 C2-350
C2.166 UHASX .. C2-351
C2.167 UHSAX .. C2-352
C2.168 UHSUB8 C2-353
C2.169 UHSUB16 C2-354
C2.170 UMAAL .. C2-355
C2.171 UMLAL .. C2-356
C2.172 UMULL .. C2-357
C2.173 UQADD8 C2-358
C2.174 UQADD16 C2-359
C2.175 UQASX C2-360
C2.176 UQSAX C2-361
C2.177 UQSUB8 C2-362
C2.178 UQSUB16 C2-363
C2.179 USAD8 .. C2-364
C2.180 USADA8 .. C2-365
C2.181 USAT C2-366
C2.182 USAT16 C2-367
C2.183 USAX C2-368
C2.184 USUB8 .. C2-370
C2.185 USUB16 .. C2-372
C2.186 UXTAB C2-373
C2.187 UXTAB16 C2-375
C2.188 UXTAH .. C2-377
C2.189 UXTB C2-379
C2.190 UXTB16 C2-381
C2.191 UXTH C2-382
C2.192 WFE .. C2-384

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

C2.193 WFI C2-385
C2.194 YIELD .. C2-386

Chapter C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions C3-391
C3.2 Summary of shared Advanced SIMD and floating-point instructions C3-394
C3.3 Interleaving provided by load and store element and structure instructions C3-395
C3.4 Alignment restrictions in load and store element and structure instructions C3-396
C3.5 FLDMDBX, FLDMIAX C3-397
C3.6 FSTMDBX, FSTMIAX C3-398
C3.7 VABA and VABAL C3-399
C3.8 VABD and VABDL C3-400
C3.9 VABS C3-401
C3.10 VACLE, VACLT, VACGE and VACGT C3-402
C3.11 VADD C3-403
C3.12 VADDHN C3-404
C3.13 VADDL and VADDW C3-405
C3.14 VAND (immediate) C3-406
C3.15 VAND (register) C3-407
C3.16 VBIC (immediate) .. C3-408
C3.17 VBIC (register) C3-409
C3.18 VBIF .. C3-410
C3.19 VBIT C3-411
C3.20 VBSL C3-412
C3.21 VCADD C3-413
C3.22 VCEQ (immediate #0) C3-414
C3.23 VCEQ (register) C3-415
C3.24 VCGE (immediate #0) C3-416
C3.25 VCGE (register) C3-417
C3.26 VCGT (immediate #0) C3-418
C3.27 VCGT (register) C3-419
C3.28 VCLE (immediate #0) .. C3-420
C3.29 VCLS C3-421
C3.30 VCLE (register) C3-422
C3.31 VCLT (immediate #0) .. C3-423
C3.32 VCLT (register) .. C3-424
C3.33 VCLZ C3-425
C3.34 VCMLA .. C3-426
C3.35 VCMLA (by element) C3-427
C3.36 VCNT C3-428
C3.37 VCVT (between fixed-point or integer, and floating-point) C3-429
C3.38 VCVT (between half-precision and single-precision floating-point) C3-430
C3.39 VCVT (from floating-point to integer with directed rounding modes) C3-431
C3.40 VCVTB, VCVTT (between half-precision and double-precision) C3-432
C3.41 VDUP .. C3-433
C3.42 VEOR .. C3-434
C3.43 VEXT C3-435
C3.44 VFMA, VFMS .. C3-436
C3.45 VFMAL (by scalar) C3-437
C3.46 VFMAL (vector) C3-438

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

C3.47 VFMSL (by scalar) C3-439
C3.48 VFMSL (vector) C3-440
C3.49 VHADD C3-441
C3.50 VHSUB .. C3-442
C3.51 VLDn (single n-element structure to one lane) C3-443
C3.52 VLDn (single n-element structure to all lanes) .. C3-445
C3.53 VLDn (multiple n-element structures) C3-447
C3.54 VLDM .. C3-449
C3.55 VLDR C3-450
C3.56 VLDR (post-increment and pre-decrement) .. C3-451
C3.57 VLDR pseudo-instruction .. C3-452
C3.58 VMAX and VMIN C3-453
C3.59 VMAXNM, VMINNM .. C3-454
C3.60 VMLA C3-455
C3.61 VMLA (by scalar) C3-456
C3.62 VMLAL (by scalar) C3-457
C3.63 VMLAL C3-458
C3.64 VMLS (by scalar) C3-459
C3.65 VMLS C3-460
C3.66 VMLSL C3-461
C3.67 VMLSL (by scalar) C3-462
C3.68 VMOV (immediate) C3-463
C3.69 VMOV (register) .. C3-464
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)

... C3-465
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) C3-466
C3.72 VMOVL C3-467
C3.73 VMOVN C3-468
C3.74 VMOV2 C3-469
C3.75 VMRS .. C3-470
C3.76 VMSR .. C3-471
C3.77 VMUL .. C3-472
C3.78 VMUL (by scalar) C3-473
C3.79 VMULL .. C3-474
C3.80 VMULL (by scalar) C3-475
C3.81 VMVN (register) C3-476
C3.82 VMVN (immediate) .. C3-477
C3.83 VNEG .. C3-478
C3.84 VORN (register) C3-479
C3.85 VORN (immediate) .. C3-480
C3.86 VORR (register) C3-481
C3.87 VORR (immediate) .. C3-482
C3.88 VPADAL .. C3-483
C3.89 VPADD .. C3-484
C3.90 VPADDL .. C3-485
C3.91 VPMAX and VPMIN .. C3-486
C3.92 VPOP .. C3-487
C3.93 VPUSH .. C3-488
C3.94 VQABS .. C3-489
C3.95 VQADD C3-490

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

C3.96 VQDMLAL and VQDMLSL (by vector or by scalar) .. C3-491
C3.97 VQDMULH (by vector or by scalar) C3-492
C3.98 VQDMULL (by vector or by scalar) C3-493
C3.99 VQMOVN and VQMOVUN C3-494
C3.100 VQNEG C3-495
C3.101 VQRDMULH (by vector or by scalar) .. C3-496
C3.102 VQRSHL (by signed variable) C3-497
C3.103 VQRSHRN and VQRSHRUN (by immediate) C3-498
C3.104 VQSHL (by signed variable) C3-499
C3.105 VQSHL and VQSHLU (by immediate) C3-500
C3.106 VQSHRN and VQSHRUN (by immediate) .. C3-501
C3.107 VQSUB C3-502
C3.108 VRADDHN C3-503
C3.109 VRECPE C3-504
C3.110 VRECPS C3-505
C3.111 VREV16, VREV32, and VREV64 .. C3-506
C3.112 VRHADD C3-507
C3.113 VRSHL (by signed variable) .. C3-508
C3.114 VRSHR (by immediate) C3-509
C3.115 VRSHRN (by immediate) .. C3-510
C3.116 VRINT C3-511
C3.117 VRSQRTE C3-512
C3.118 VRSQRTS C3-513
C3.119 VRSRA (by immediate) C3-514
C3.120 VRSUBHN C3-515
C3.121 VSDOT (vector) C3-516
C3.122 VSDOT (by element) C3-517
C3.123 VSHL (by immediate) .. C3-518
C3.124 VSHL (by signed variable) C3-519
C3.125 VSHLL (by immediate) .. C3-520
C3.126 VSHR (by immediate) C3-521
C3.127 VSHRN (by immediate) C3-522
C3.128 VSLI C3-523
C3.129 VSRA (by immediate) C3-524
C3.130 VSRI .. C3-525
C3.131 VSTM .. C3-526
C3.132 VSTn (multiple n-element structures) C3-527
C3.133 VSTn (single n-element structure to one lane) C3-529
C3.134 VSTR C3-531
C3.135 VSTR (post-increment and pre-decrement) .. C3-532
C3.136 VSUB C3-533
C3.137 VSUBHN C3-534
C3.138 VSUBL and VSUBW C3-535
C3.139 VSWP C3-536
C3.140 VTBL and VTBX .. C3-537
C3.141 VTRN C3-538
C3.142 VTST C3-539
C3.143 VUDOT (vector) C3-540
C3.144 VUDOT (by element) C3-541
C3.145 VUZP C3-542

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

13

Non-Confidential

C3.146 VZIP .. C3-543

Chapter C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point instructions .. C4-547
C4.2 VABS (floating-point) C4-549
C4.3 VADD (floating-point) C4-550
C4.4 VCMP, VCMPE C4-551
C4.5 VCVT (between single-precision and double-precision) C4-552
C4.6 VCVT (between floating-point and integer) C4-553
C4.7 VCVT (from floating-point to integer with directed rounding modes) C4-554
C4.8 VCVT (between floating-point and fixed-point) C4-555
C4.9 VCVTB, VCVTT (half-precision extension) C4-556
C4.10 VCVTB, VCVTT (between half-precision and double-precision) C4-557
C4.11 VDIV .. C4-558
C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point) C4-559
C4.13 VJCVT C4-560
C4.14 VLDM (floating-point) .. C4-561
C4.15 VLDR (floating-point) C4-562
C4.16 VLDR (post-increment and pre-decrement, floating-point) C4-563
C4.17 VLLDM .. C4-564
C4.18 VLSTM .. C4-565
C4.19 VMAXNM, VMINNM (floating-point) .. C4-566
C4.20 VMLA (floating-point) C4-567
C4.21 VMLS (floating-point) C4-568
C4.22 VMOV (floating-point) C4-569
C4.23 VMOV (between one general-purpose register and single precision floating-point

register) C4-570
C4.24 VMOV (between two general-purpose registers and one or two extension registers)

... C4-571
C4.25 VMOV (between a general-purpose register and half a double precision floating-point

register) C4-572
C4.26 VMRS (floating-point) .. C4-573
C4.27 VMSR (floating-point) .. C4-574
C4.28 VMUL (floating-point) .. C4-575
C4.29 VNEG (floating-point) .. C4-576
C4.30 VNMLA (floating-point) .. C4-577
C4.31 VNMLS (floating-point) .. C4-578
C4.32 VNMUL (floating-point) C4-579
C4.33 VPOP (floating-point) .. C4-580
C4.34 VPUSH (floating-point) .. C4-581
C4.35 VRINT (floating-point) C4-582
C4.36 VSEL C4-583
C4.37 VSQRT .. C4-584
C4.38 VSTM (floating-point) .. C4-585
C4.39 VSTR (floating-point) C4-586
C4.40 VSTR (post-increment and pre-decrement, floating-point) C4-587
C4.41 VSUB (floating-point) C4-588

Chapter C5 A32/T32 Cryptographic Algorithms
C5.1 A32/T32 Cryptographic instructions .. C5-590

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

14

Non-Confidential

List of Figures
Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Figure A1-1 Organization of general-purpose registers and Program Status Registers A1-31
Figure B1-1 Extension register bank for Advanced SIMD in AArch32 state ... B1-47
Figure B2-1 Extension register bank for floating-point in AArch32 state .. B2-67
Figure C2-1 ASR #3 .. C2-115
Figure C2-2 LSR #3 .. C2-116
Figure C2-3 LSL #3 ... C2-116
Figure C2-4 ROR #3 ... C2-116
Figure C2-5 RRX ... C2-117
Figure C3-1 De-interleaving an array of 3-element structures .. C3-395
Figure C3-2 Operation of doubleword VEXT for imm = 3 ... C3-435
Figure C3-3 Example of operation of VPADAL (in this case for data type S16) C3-483
Figure C3-4 Example of operation of VPADD (in this case, for data type I16) C3-484
Figure C3-5 Example of operation of doubleword VPADDL (in this case, for data type S16) C3-485
Figure C3-6 Operation of quadword VSHL.I64 Qd, Qm, #1 ... C3-518
Figure C3-7 Operation of quadword VSLI.64 Qd, Qm, #1 .. C3-523
Figure C3-8 Operation of doubleword VSRI.64 Dd, Dm, #2 ... C3-525
Figure C3-9 Operation of doubleword VTRN.8 ... C3-538
Figure C3-10 Operation of doubleword VTRN.32 ... C3-538

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

15

Non-Confidential

List of Tables
Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Table A1-1 AArch32 processor modes .. A1-28
Table A1-2 Predeclared core registers in AArch32 state ... A1-34
Table A1-3 Predeclared extension registers in AArch32 state .. A1-35
Table A1-4 A32 instruction groups .. A1-41
Table B1-1 Advanced SIMD data types ... B1-53
Table B1-2 Advanced SIMD saturation ranges ... B1-57
Table C1-1 Condition code suffixes ... C1-92
Table C1-2 Condition code suffixes and related flags ... C1-93
Table C1-3 Condition codes .. C1-94
Table C1-4 Conditional branches only ... C1-97
Table C1-5 All instructions conditional ... C1-98
Table C2-1 Summary of instructions ... C2-106
Table C2-2 PC-relative offsets ... C2-124
Table C2-3 Register-relative offsets .. C2-126
Table C2-4 B instruction availability and range ... C2-132
Table C2-5 BL instruction availability and range ... C2-139
Table C2-6 BLX instruction availability and range ... C2-140
Table C2-7 BX instruction availability and range ... C2-142
Table C2-8 BXJ instruction availability and range ... C2-144
Table C2-9 Permitted instructions inside an IT block .. C2-170
Table C2-10 Offsets and architectures, LDR, word, halfword, and byte .. C2-179
Table C2-11 PC-relative offsets ... C2-181

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

17

Non-Confidential

Table C2-12 Options and architectures, LDR (register offsets) ... C2-184
Table C2-13 Register-relative offsets .. C2-185
Table C2-14 Offsets and architectures, LDR (User mode) .. C2-187
Table C2-15 Offsets and architectures, STR, word, halfword, and byte .. C2-306
Table C2-16 Options and architectures, STR (register offsets) ... C2-308
Table C2-17 Offsets and architectures, STR (User mode) .. C2-311
Table C3-1 Summary of Advanced SIMD instructions .. C3-391
Table C3-2 Summary of shared Advanced SIMD and floating-point instructions C3-394
Table C3-3 Patterns for immediate value in VBIC (immediate) ... C3-408
Table C3-4 Permitted combinations of parameters for VLDn (single n-element structure to one lane) C3-

443
Table C3-5 Permitted combinations of parameters for VLDn (single n-element structure to all lanes) C3-

445
Table C3-6 Permitted combinations of parameters for VLDn (multiple n-element structures) C3-447
Table C3-7 Available immediate values in VMOV (immediate) ... C3-463
Table C3-8 Available immediate values in VMVN (immediate) ... C3-477
Table C3-9 Patterns for immediate value in VORR (immediate) ... C3-482
Table C3-10 Available immediate ranges in VQRSHRN and VQRSHRUN (by immediate) C3-498
Table C3-11 Available immediate ranges in VQSHL and VQSHLU (by immediate) C3-500
Table C3-12 Available immediate ranges in VQSHRN and VQSHRUN (by immediate) C3-501
Table C3-13 Results for out-of-range inputs in VRECPE .. C3-504
Table C3-14 Results for out-of-range inputs in VRECPS .. C3-505
Table C3-15 Available immediate ranges in VRSHR (by immediate) .. C3-509
Table C3-16 Available immediate ranges in VRSHRN (by immediate) ... C3-510
Table C3-17 Results for out-of-range inputs in VRSQRTE .. C3-512
Table C3-18 Results for out-of-range inputs in VRSQRTS .. C3-513
Table C3-19 Available immediate ranges in VRSRA (by immediate) .. C3-514
Table C3-20 Available immediate ranges in VSHL (by immediate) ... C3-518
Table C3-21 Available immediate ranges in VSHLL (by immediate) ... C3-520
Table C3-22 Available immediate ranges in VSHR (by immediate) .. C3-521
Table C3-23 Available immediate ranges in VSHRN (by immediate) .. C3-522
Table C3-24 Available immediate ranges in VSRA (by immediate) ... C3-524
Table C3-25 Permitted combinations of parameters for VSTn (multiple n-element structures) C3-527
Table C3-26 Permitted combinations of parameters for VSTn (single n-element structure to one lane) C3-

529
Table C3-27 Operation of doubleword VUZP.8 .. C3-542
Table C3-28 Operation of quadword VUZP.32 .. C3-542
Table C3-29 Operation of doubleword VZIP.8 ... C3-543
Table C3-30 Operation of quadword VZIP.32 .. C3-543
Table C4-1 Summary of floating-point instructions .. C4-547
Table C5-1 Summary of A32/T32 cryptographic instructions .. C5-590

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

18

Non-Confidential

Preface

This preface introduces the Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures
Reference Guide.

It contains the following:
• About this book on page 20.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

19

Non-Confidential

 About this book
Arm® Instruction Set Assembly Guide for Armv7 and earlier Arm architectures. This document contains
an overview of the Arm architecture and information on A32 and T32 instruction sets. For assembler-
specific features, such as additional pseudo-instructions, see the documentation for your assembler.

 Using this book

This book is organized into the following chapters:

Part A Instruction Set Overview

Chapter A1 Overview of AArch32 state
Gives an overview of the AArch32 state.

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
Describes Advanced SIMD assembly language programming.

Chapter B2 Floating-point Programming
Describes floating-point assembly language programming.

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
Describes condition codes and conditional execution of A32 and T32 code.

Chapter C2 A32 and T32 Instructions
Describes the A32 and T32 instructions supported in AArch32 state.

Chapter C3 Advanced SIMD Instructions (32-bit)
Describes Advanced SIMD assembly language instructions.

Chapter C4 Floating-point Instructions (32-bit)
Describes floating-point assembly language instructions.

Chapter C5 A32/T32 Cryptographic Algorithms
Lists the cryptographic algorithms that A32 and T32 SIMD instructions support.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 Using this book

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

20

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Instruction Set Assembly Guide for Armv7 and earlier Arm architectures Reference Guide.
• The number 100076_0200_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 Feedback

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

21

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Part A
Instruction Set Overview

Chapter A1
Overview of AArch32 state

Gives an overview of the AArch32 state.

It contains the following sections:
• A1.1 Terminology on page A1-26.
• A1.2 Changing between A32 and T32 instruction set states on page A1-27.
• A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28.
• A1.4 Processor modes in Armv6‑M, Armv7‑M, and Armv8‑M on page A1-29.
• A1.5 Registers in AArch32 state on page A1-30.
• A1.6 General-purpose registers in AArch32 state on page A1-32.
• A1.7 Register accesses in AArch32 state on page A1-33.
• A1.8 Predeclared core register names in AArch32 state on page A1-34.
• A1.9 Predeclared extension register names in AArch32 state on page A1-35.
• A1.10 Program Counter in AArch32 state on page A1-36.
• A1.11 The Q flag in AArch32 state on page A1-37.
• A1.12 Application Program Status Register on page A1-38.
• A1.13 Current Program Status Register in AArch32 state on page A1-39.
• A1.14 Saved Program Status Registers in AArch32 state on page A1-40.
• A1.15 A32 and T32 instruction set overview on page A1-41.
• A1.16 Access to the inline barrel shifter in AArch32 state on page A1-42.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-25

Non-Confidential

A1.1 Terminology
This document uses the following terms to refer to instruction sets.

Instruction sets for Armv7 and earlier architectures were called the ARM and Thumb instruction sets.

This document describes the instruction sets for Armv7 and earlier architectures, but uses terminology
that is introduced with Armv8:

A32
The A32 instruction set was previously called the ARM instruction set. It is a fixed-length
instruction set that uses 32-bit instruction encodings.

T32
The T32 instruction set was previously called the Thumb instruction set. It is a variable-length
instruction set that uses both 16-bit and 32-bit instruction.

AArch32
The AArch32 Execution state supports the A32 and T32 instruction sets.

The Arm 32-bit Execution state uses 32-bit general purpose registers, and a 32-bit program counter (PC),
stack pointer (SP), and link register (LR). In implementations of the Arm architecture beforeArmv8,
execution is always in AArch32 state.

 Note

Some examples and descriptions in this document might apply only to the armasm legacy assembler.

A1 Overview of AArch32 state
A1.1 Terminology

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-26

Non-Confidential

A1.2 Changing between A32 and T32 instruction set states
A processor that is executing A32 instructions is operating in A32 instruction set state. A processor that
is executing T32 instructions is operating in T32 instruction set state. For brevity, this document refers to
them as the A32 state and T32 state respectively.

A processor in A32 state cannot execute T32 instructions, and a processor in T32 state cannot execute
A32 instructions. You must ensure that the processor never receives instructions of the wrong instruction
set for the current state.

The initial state after reset depends on the processor being used and its configuration.

To direct armasm to generate A32 or T32 instruction encodings, you must set the assembler mode using
an ARM or THUMB directive. Assembly code using CODE32 and CODE16 directives can still be assembled,
but Arm recommends you use the ARM and THUMB directives for new code.

These directives do not change the instruction set state of the processor. To do this, you must use an
appropriate instruction, for example BX or BLX to change between A32 and T32 states when performing a
branch.

Related references
C2.20 BLX, BLXNS on page C2-140
C2.21 BX, BXNS on page C2-142

A1 Overview of AArch32 state
A1.2 Changing between A32 and T32 instruction set states

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-27

Non-Confidential

A1.3 Processor modes, and privileged and unprivileged software execution
The Arm architecture supports different levels of execution privilege. The privilege level depends on the
processor mode.

 Note

Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline do not support the same modes as
other Arm architectures and profiles. Some of the processor modes listed here do not apply to these
architectures.

Table A1-1 AArch32 processor modes

Processor mode Mode number

User 0b10000

FIQ 0b10001

IRQ 0b10010

Supervisor 0b10011

Monitor 0b10110

Abort 0b10111

Hyp 0b11010

Undefined 0b11011

System 0b11111

User mode is an unprivileged mode, and has restricted access to system resources. All other modes have
full access to system resources in the current security state, can change mode freely, and execute
software as privileged.

Applications that require task protection usually execute in User mode. Some embedded applications
might run entirely in any mode other than User mode. An application that requires full access to system
resources usually executes in System mode.

Modes other than User mode are entered to service exceptions, or to access privileged resources.

Code can run in either a Secure state or in a Non-secure state. Hypervisor (Hyp) mode has privileged
execution in Non-secure state.

Related concepts
A1.4 Processor modes in Armv6‑M, Armv7‑M, and Armv8‑M on page A1-29
Related information
Arm Architecture Reference Manual

A1 Overview of AArch32 state
A1.3 Processor modes, and privileged and unprivileged software execution

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-28

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M
The processor modes available in Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline are
Thread mode and Handler mode.

Thread mode is the normal mode that programs run in. Thread mode can be privileged or unprivileged
software execution. Handler mode is the mode that exceptions are handled in. It is always privileged
software execution.

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related information
Arm Architecture Reference Manual

A1 Overview of AArch32 state
A1.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-29

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1.5 Registers in AArch32 state
Arm processors provide general-purpose and special-purpose registers. Some additional registers are
available in privileged execution modes.

In all Arm processors in AArch32 state, the following registers are available and accessible in any
processor mode:

• 15 general-purpose registers R0-R12, the Stack Pointer (SP), and Link Register (LR).
• 1 Program Counter (PC).
• 1 Application Program Status Register (APSR).

 Note

• SP and LR can be used as general-purpose registers, although Arm deprecates using SP other than as
a stack pointer.

Additional registers are available in privileged software execution. Arm processors have a total of 43
registers. The registers are arranged in partially overlapping banks. There is a different register bank for
each processor mode. The banked registers give rapid context switching for dealing with processor
exceptions and privileged operations.

The additional registers in Arm processors are:

• 2 supervisor mode registers for banked SP and LR.
• 2 abort mode registers for banked SP and LR.
• 2 undefined mode registers for banked SP and LR.
• 2 interrupt mode registers for banked SP and LR.
• 7 FIQ mode registers for banked R8-R12, SP and LR.
• 2 monitor mode registers for banked SP and LR.
• 1 Hyp mode register for banked SP.
• 7 Saved Program Status Register (SPSRs), one for each exception mode.
• 1 Hyp mode register for ELR_Hyp to store the preferred return address from Hyp mode.

 Note

In privileged software execution, CPSR is an alias for APSR and gives access to additional bits.

The following figure shows how the registers are banked in the Arm architecture.

A1 Overview of AArch32 state
A1.5 Registers in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-30

Non-Confidential

APSR

R12
SP
LR
PC

R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

‡ Exists only in Secure state.

User System Supervisor Abort Undefined IRQ FIQ
R0_usr
R1_usr
R2_usr
R3_usr
R4_usr
R5_usr
R6_usr
R7_usr
R8_usr
R9_usr
R10_usr
R11_usr
R12_usr
SP_usr
LR_usr
PC

CPSR
SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq
SP_svc SP_abt SP_irq SP_fiq

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq

LR_und
SP_und

SPSR_und

Monitor ‡

SPSR_mon

LR_mon
SP_mon

Application
level view System level view

Hyp †

SP_hyp

SPSR_hyp

† Exists only in Non-secure state.

ELR_hyp

Cells with no entry indicate that the User mode register is used.

Figure A1-1 Organization of general-purpose registers and Program Status Registers

In Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline based processors, SP is an alias
for the two banked stack pointer registers:
• Main stack pointer register, that is only available in privileged software execution.
• Process stack pointer register.

Related concepts
A1.6 General-purpose registers in AArch32 state on page A1-32
A1.10 Program Counter in AArch32 state on page A1-36
A1.12 Application Program Status Register on page A1-38
A1.14 Saved Program Status Registers in AArch32 state on page A1-40
A1.13 Current Program Status Register in AArch32 state on page A1-39
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related information
Arm Architecture Reference Manual

A1 Overview of AArch32 state
A1.5 Registers in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-31

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1.6 General-purpose registers in AArch32 state
There are restrictions on the use of SP and LR as general-purpose registers.

With the exception of Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline based
processors, there are 33 general-purpose 32-bit registers, including the banked SP and LR registers.
Fifteen general-purpose registers are visible at any one time, depending on the current processor mode.
These are R0-R12, SP, and LR. The PC (R15) is not considered a general-purpose register.

SP (or R13) is the stack pointer. The C and C++ compilers always use SP as the stack pointer. Arm
deprecates most uses of SP as a general purpose register. In T32 state, SP is strictly defined as the stack
pointer. The instruction descriptions in Chapter C2 A32 and T32 Instructions on page C2-101 describe
when SP and PC can be used.

In User mode, LR (or R14) is used as a link register to store the return address when a subroutine call is
made. It can also be used as a general-purpose register if the return address is stored on the stack.

In the exception handling modes, LR holds the return address for the exception, or a subroutine return
address if subroutine calls are executed within an exception. LR can be used as a general-purpose register
if the return address is stored on the stack.

Related concepts
A1.10 Program Counter in AArch32 state on page A1-36
A1.7 Register accesses in AArch32 state on page A1-33
Related references
A1.8 Predeclared core register names in AArch32 state on page A1-34
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208

A1 Overview of AArch32 state
A1.6 General-purpose registers in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-32

Non-Confidential

A1.7 Register accesses in AArch32 state
16-bit T32 instructions can access only a limited set of registers. There are also some restrictions on the
use of special-purpose registers by A32 and 32-bit T32 instructions.

Most 16-bit T32 instructions can only access R0 to R7. Only a small number of T32 instructions can
access R8-R12, SP, LR, and PC. Registers R0 to R7 are called Lo registers. Registers R8-R12, SP, LR,
and PC are called Hi registers.

All 32-bit T32 instructions can access R0 to R12, and LR. However, apart from a few designated stack
manipulation instructions, most T32 instructions cannot use SP. Except for a few specific instructions
where PC is useful, most T32 instructions cannot use PC.

In A32 state, all instructions can access R0 to R12, SP, and LR, and most instructions can also access PC
(R15). However, the use of the SP in an A32 instruction, in any way that is not possible in the
corresponding T32 instruction, is deprecated. Explicit use of the PC in an A32 instruction is not usually
useful, and except for specific instances that are useful, such use is deprecated. Implicit use of the PC, for
example in branch instructions or load (literal) instructions, is never deprecated.

The MRS instructions can move the contents of a status register to a general-purpose register, where they
can be manipulated by normal data processing operations. You can use the MSR instruction to move the
contents of a general-purpose register to a status register.

Related concepts
A1.6 General-purpose registers in AArch32 state on page A1-32
A1.10 Program Counter in AArch32 state on page A1-36
A1.12 Application Program Status Register on page A1-38
A1.13 Current Program Status Register in AArch32 state on page A1-39
A1.14 Saved Program Status Registers in AArch32 state on page A1-40
Related references
A1.8 Predeclared core register names in AArch32 state on page A1-34
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208

A1 Overview of AArch32 state
A1.7 Register accesses in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-33

Non-Confidential

A1.8 Predeclared core register names in AArch32 state
Many of the core register names have synonyms.

The following table shows the predeclared core registers:

Table A1-2 Predeclared core registers in AArch32 state

Register names Meaning

r0-r15 and R0-R15 General purpose registers.

a1-a4 Argument, result or scratch registers. These are synonyms for R0 to R3.

v1-v8 Variable registers. These are synonyms for R4 to R11.

SB Static base register. This is a synonym for R9.

IP Intra-procedure call scratch register. This is a synonym for R12.

SP Stack pointer. This is a synonym for R13.

LR Link register. This is a synonym for R14.

PC Program counter. This is a synonym for R15.

With the exception of a1-a4 and v1-v8, you can write the register names either in all upper case or all
lower case.

Related concepts
A1.6 General-purpose registers in AArch32 state on page A1-32

A1 Overview of AArch32 state
A1.8 Predeclared core register names in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-34

Non-Confidential

A1.9 Predeclared extension register names in AArch32 state
You can write the names of Advanced SIMD and floating-point registers either in upper case or lower
case.

The following table shows the predeclared extension register names:

Table A1-3 Predeclared extension registers in AArch32 state

Register names Meaning

Q0-Q15 Advanced SIMD quadword registers

D0-D31 Advanced SIMD doubleword registers, floating-point double-precision registers

S0-S31 Floating-point single-precision registers

You can write the register names either in upper case or lower case.

A1 Overview of AArch32 state
A1.9 Predeclared extension register names in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-35

Non-Confidential

A1.10 Program Counter in AArch32 state
You can use the Program Counter explicitly, for example in some T32 data processing instructions, and
implicitly, for example in branch instructions.

The Program Counter (PC) is accessed as PC (or R15). It is incremented by the size of the instruction
executed, which is always four bytes in A32 state. Branch instructions load the destination address into
the PC. You can also load the PC directly using data operation instructions. For example, to branch to the
address in a general purpose register, use:

MOV PC,R0

During execution, the PC does not contain the address of the currently executing instruction. The address
of the currently executing instruction is typically PC-8 for A32, or PC-4 for T32.

 Note

Arm recommends you use the BX instruction to jump to an address or to return from a function, rather
than writing to the PC directly.

Related references
C2.14 B on page C2-132
C2.21 BX, BXNS on page C2-142
C2.23 CBZ and CBNZ on page C2-145
C2.154 TBB and TBH on page C2-333

A1 Overview of AArch32 state
A1.10 Program Counter in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-36

Non-Confidential

A1.11 The Q flag in AArch32 state
The Q flag indicates overflow or saturation. It is one of the program status flags held in the APSR.

The Q flag is set to 1 when saturation occurs in saturating arithmetic instructions, or when overflow
occurs in certain multiply instructions.

The Q flag is a sticky flag. Although the saturating and certain multiply instructions can set the flag, they
cannot clear it. You can execute a series of such instructions, and then test the flag to find out whether
saturation or overflow occurred at any point in the series, without having to check the flag after each
instruction.

To clear the Q flag, use an MSR instruction to read-modify-write the APSR:

 MRS r5, APSR
 BIC r5, r5, #(1<<27)
 MSR APSR_nzcvq, r5

The state of the Q flag cannot be tested directly by the condition codes. To read the state of the Q flag,
use an MRS instruction.

 MRS r6, APSR
 TST r6, #(1<<27); Z is clear if Q flag was set

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.75 QADD on page C2-223
C2.125 SMULxy on page C2-285
C2.127 SMULWy on page C2-287

A1 Overview of AArch32 state
A1.11 The Q flag in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-37

Non-Confidential

A1.12 Application Program Status Register
The Application Program Status Register (APSR) holds the program status flags that are accessible in
any processor mode.

It holds copies of the N, Z, C, and V condition flags. The processor uses them to determine whether or
not to execute conditional instructions.

The APSR also holds:
• The Q (saturation) flag.
• The APSR also holds the GE (Greater than or Equal) flags. The GE flags can be set by the parallel

add and subtract instructions. They are used by the SEL instruction to perform byte-based selection
from two registers.

These flags are accessible in all modes, using the MSR and MRS instructions.

Related concepts
C1.1 Conditional instructions on page C1-84
Related references
C1.5 Updates to the condition flags in A32/T32 code on page C1-88
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.100 SEL on page C2-257

A1 Overview of AArch32 state
A1.12 Application Program Status Register

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-38

Non-Confidential

A1.13 Current Program Status Register in AArch32 state
The Current Program Status Register (CPSR) holds the same program status flags as the APSR, and
some additional information.

It holds:
• The APSR flags.
• The processor mode.
• The interrupt disable flags.
• The instruction set state (A32 or T32).
• The endianness state.
• The execution state bits for the IT block.

The execution state bits control conditional execution in the IT block.

Only the APSR flags are accessible in all modes. Arm deprecates using an MSR instruction to change the
endianness bit (E) of the CPSR, in any mode. Each exception level can have its own endianness, but
mixed endianness within an exception level is deprecated.

The SETEND instruction is deprecated.

The execution state bits for the IT block (IT[1:0]) and the T32 bit (T) can be accessed by MRS only in
Debug state.

Related concepts
A1.14 Saved Program Status Registers in AArch32 state on page A1-40
Related references
C2.41 IT on page C2-169
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.101 SETEND on page C2-259
C1.5 Updates to the condition flags in A32/T32 code on page C1-88

A1 Overview of AArch32 state
A1.13 Current Program Status Register in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-39

Non-Confidential

A1.14 Saved Program Status Registers in AArch32 state
The Saved Program Status Register (SPSR) stores the current value of the CPSR when an exception is
taken so that it can be restored after handling the exception.

Each exception handling mode can access its own SPSR. User mode and System mode do not have an
SPSR because they are not exception handling modes.

The execution state bits, including the endianness state and current instruction set state can be accessed
from the SPSR in any exception mode, using the MSR and MRS instructions. You cannot access the SPSR
using MSR or MRS in User or System mode.

Related concepts
A1.13 Current Program Status Register in AArch32 state on page A1-39

A1 Overview of AArch32 state
A1.14 Saved Program Status Registers in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-40

Non-Confidential

A1.15 A32 and T32 instruction set overview
A32 and T32 instructions can be grouped by functional area.

All A32 instructions are 32 bits long. Instructions are stored word-aligned, so the least significant two
bits of instruction addresses are always zero in A32 state.

T32 instructions are either 16 or 32 bits long. Instructions are stored half-word aligned. Some
instructions use the least significant bit of the address to determine whether the code being branched to is
T32 or A32.

Before the introduction of 32-bit T32 instructions, the T32 instruction set was limited to a restricted
subset of the functionality of the A32 instruction set. Almost all T32 instructions were 16-bit. Together,
the 32-bit and 16-bit T32 instructions provide functionality that is almost identical to that of the A32
instruction set.

The following table describes some of the functional groupings of the available instructions.

Table A1-4 A32 instruction groups

Instruction group Description

Branch and control These instructions do the following:
• Branch to subroutines.
• Branch backwards to form loops.
• Branch forward in conditional structures.
• Make the following instruction conditional without branching.
• Change the processor between A32 state and T32 state.

Data processing These instructions operate on the general-purpose registers. They can perform operations such as addition,
subtraction, or bitwise logic on the contents of two registers and place the result in a third register. They can
also operate on the value in a single register, or on a value in a register and an immediate value supplied
within the instruction.

Long multiply instructions give a 64-bit result in two registers.

Register load and
store

These instructions load or store the value of a single register from or to memory. They can load or store a 32-
bit word, a 16-bit halfword, or an 8-bit unsigned byte. Byte and halfword loads can either be sign extended or
zero extended to fill the 32-bit register.

A few instructions are also defined that can load or store 64-bit doubleword values into two 32-bit registers.

Multiple register load
and store

These instructions load or store any subset of the general-purpose registers from or to memory.

Status register access These instructions move the contents of a status register to or from a general-purpose register.

A1 Overview of AArch32 state
A1.15 A32 and T32 instruction set overview

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-41

Non-Confidential

A1.16 Access to the inline barrel shifter in AArch32 state
The AArch32 arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate operations.

The second operand to many A32 and T32 data-processing and single register data-transfer instructions
can be shifted, before the data-processing or data-transfer is executed, as part of the instruction. This
supports, but is not limited to:
• Scaled addressing.
• Multiplication by an immediate value.
• Constructing immediate values.

32-bit T32 instructions give almost the same access to the barrel shifter as A32 instructions.

16-bit T32 instructions only allow access to the barrel shifter using separate instructions.

A1 Overview of AArch32 state
A1.16 Access to the inline barrel shifter in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

A1-42

Non-Confidential

Part B
Advanced SIMD and Floating-point Programming

Chapter B1
Advanced SIMD Programming

Describes Advanced SIMD assembly language programming.

It contains the following sections:
• B1.1 Architecture support for Advanced SIMD on page B1-46.
• B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47.
• B1.3 Views of the Advanced SIMD register bank in AArch32 state on page B1-49.
• B1.4 Load values to Advanced SIMD registers on page B1-50.
• B1.5 Conditional execution of A32/T32 Advanced SIMD instructions on page B1-51.
• B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions on page B1-52.
• B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53.
• B1.8 Polynomial arithmetic over {0,1} on page B1-54.
• B1.9 Advanced SIMD vectors on page B1-55.
• B1.10 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-56.
• B1.11 Saturating Advanced SIMD instructions on page B1-57.
• B1.12 Advanced SIMD scalars on page B1-58.
• B1.13 Extended notation extension for Advanced SIMD on page B1-59.
• B1.14 Advanced SIMD system registers in AArch32 state on page B1-60.
• B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61.
• B1.16 When to use flush-to-zero mode in Advanced SIMD on page B1-62.
• B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63.
• B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-45

Non-Confidential

B1.1 Architecture support for Advanced SIMD
Advanced SIMD is an optional extension to the Armv7 architecture.

All Advanced SIMD instructions are available on systems that support Advanced SIMD. Some of these
instructions are also available on systems that implement the floating-point extension without Advanced
SIMD. These are called shared instructions.

The Advanced SIMD register bank consists of thirty-two 64-bit registers, and smaller registers are
packed into larger ones.

 Note

Advanced SIMD and floating-point instructions share the same extension register bank.

Related information
Floating-point support

B1 Advanced SIMD Programming
B1.1 Architecture support for Advanced SIMD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-46

Non-Confidential

https://developer.arm.com/docs/100073/0613/floating-point-support

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state
The Advanced SIMD extension register bank is a collection of registers that can be accessed as either 64-
bit or 128-bit registers.

Advanced SIMD and floating-point instructions use the same extension register bank, and is distinct
from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 128-bit register Q0 is an alias for two consecutive 64-bit
registers D0 and D1. The 128-bit register Q8 is an alias for 2 consecutive 64-bit registers D16 and D17.

D0

D3

D31

D30

D1

D2

D14

D15

D16

D17

...

Q0

Q1

Q7

Q8

Q15

...

...

...

Figure B1-1 Extension register bank for Advanced SIMD in AArch32 state

 Note

If your processor supports both Advanced SIMD and floating-point, all the Advanced SIMD registers
overlap with the floating-point registers.

The aliased views enable half-precision, single-precision, and double-precision values, and Advanced
SIMD vectors to coexist in different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values, and Advanced SIMD vectors at different times.

B1 Advanced SIMD Programming
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-47

Non-Confidential

Do not attempt to use overlapped 64-bit and 128-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:
• D<2n> maps to the least significant half of Q<n>
• D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to
D12, and the most significant half of the elements by referring to D13.

Related concepts
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69
B1.3 Views of the Advanced SIMD register bank in AArch32 state on page B1-49

B1 Advanced SIMD Programming
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-48

Non-Confidential

B1.3 Views of the Advanced SIMD register bank in AArch32 state
Advanced SIMD can have different views of the extension register bank in AArch32 state.

It can view the extension register bank as:
• Sixteen 128-bit registers, Q0-Q15.
• Thirty-two 64-bit registers, D0-D31.
• A combination of registers from these views.

Advanced SIMD views each register as containing a vector of 1, 2, 4, 8, or 16 elements, all of the same
size and type. Individual elements can also be accessed as scalars.

In Advanced SIMD, the 64-bit registers are called doubleword registers and the 128-bit registers are
called quadword registers.

Related concepts
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69

B1 Advanced SIMD Programming
B1.3 Views of the Advanced SIMD register bank in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-49

Non-Confidential

B1.4 Load values to Advanced SIMD registers
To load a register with a floating-point immediate value, use VMOV instruction. This instruction has scalar
and vector forms.

The Advanced SIMD instructions VMOV and VMVN can also load integer immediates.

Related references
C3.57 VLDR pseudo-instruction on page C3-452
C4.22 VMOV (floating-point) on page C4-569
C3.68 VMOV (immediate) on page C3-463

B1 Advanced SIMD Programming
B1.4 Load values to Advanced SIMD registers

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-50

Non-Confidential

B1.5 Conditional execution of A32/T32 Advanced SIMD instructions
Most Advanced SIMD instructions always execute unconditionally.

You cannot use any of the following Advanced SIMD instructions in an IT block:
• VCVT{A, N, P, M}.
• VMAXNM.
• VMINNM.
• VRINT{N, X, A, Z, M, P}.
• All instructions in the Crypto extension.

In addition, specifying any other Advanced SIMD instruction in an IT block is deprecated.

Arm deprecates conditionally executing any Advanced SIMD instruction unless it is a shared Advanced
SIMD and floating-point instruction.

Related concepts
C1.2 Conditional execution in A32 code on page C1-85
C1.3 Conditional execution in T32 code on page C1-86
Related references
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94
C1.9 Condition code suffixes on page C1-92

B1 Advanced SIMD Programming
B1.5 Conditional execution of A32/T32 Advanced SIMD instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-51

Non-Confidential

B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions
The Advanced SIMD extension records floating-point exceptions in the FPSCR cumulative flags.

It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
zero.

The descriptions of the Advanced SIMD instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts
B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
Related references
Chapter B1 Advanced SIMD Programming on page B1-45
Related information
Arm Architecture Reference Manual

B1 Advanced SIMD Programming
B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-52

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B1.7 Advanced SIMD data types in A32/T32 instructions
Most Advanced SIMD instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in Advanced SIMD instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point. The following table shows the data types available in Advanced SIMD instructions:

Table B1-1 Advanced SIMD data types

8-bit 16-bit 32-bit 64-bit

Unsigned integer U8 U16 U32 U64

Signed integer S8 S16 S32 S64

Integer of unspecified type I8 I16 I32 I64

Floating-point number not available F16 F32 (or F) not available

Polynomial over {0,1} P8 P16 not available not available

The datatype of the second (or only) operand is specified in the instruction.
 Note

Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:
• If the description specifies I, you can also use the S or U data types.
• If only the data size is specified, you can specify a type (I, S, U, P or F).
• If no data type is specified, you can specify a data type.

Related concepts
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.8 Polynomial arithmetic over {0,1} on page B1-54

B1 Advanced SIMD Programming
B1.7 Advanced SIMD data types in A32/T32 instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-53

Non-Confidential

B1.8 Polynomial arithmetic over {0,1}
The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic.

The following rules apply:
• 0 + 0 = 1 + 1 = 0.
• 0 + 1 = 1 + 0 = 1.
• 0 * 0 = 0 * 1 = 1 * 0 = 0.
• 1 * 1 = 1.

That is, adding two polynomials over {0,1} is the same as a bitwise exclusive OR, and multiplying two
polynomials over {0,1} is the same as integer multiplication except that partial products are exclusive-
ORed instead of being added.

Related concepts
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53

B1 Advanced SIMD Programming
B1.8 Polynomial arithmetic over {0,1}

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-54

Non-Confidential

B1.9 Advanced SIMD vectors
An Advanced SIMD operand can be a vector or a scalar. An Advanced SIMD vector can be a 64-bit
doubleword vector or a 128-bit quadword vector.

The size of the elements in an Advanced SIMD vector is specified by a datatype suffix appended to the
mnemonic.

Doubleword vectors can contain:

• Eight 8-bit elements.
• Four 16-bit elements.
• Two 32-bit elements.
• One 64-bit element.

Quadword vectors can contain:
• Sixteen 8-bit elements.
• Eight 16-bit elements.
• Four 32-bit elements.
• Two 64-bit elements.

Related concepts
B1.12 Advanced SIMD scalars on page B1-58
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47
B1.13 Extended notation extension for Advanced SIMD on page B1-59
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.10 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-56

B1 Advanced SIMD Programming
B1.9 Advanced SIMD vectors

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-55

Non-Confidential

B1.10 Normal, long, wide, and narrow Advanced SIMD instructions
Many Advanced SIMD data processing instructions are available in Normal, Long, Wide, Narrow, and
saturating variants.

Normal operation

The operands can be any of the vector types. The result vector is the same width, and usually the
same type, as the operand vectors, for example:

VADD.I16 D0, D1, D2

You can specify that the operands and result of a normal Advanced SIMD instruction must all be
quadwords by appending a Q to the instruction mnemonic. If you do this, armasm produces an
error if the operands or result are not quadwords.

Long operation

The operands are doubleword vectors and the result is a quadword vector. The elements of the
result are usually twice the width of the elements of the operands, and the same type.

Long operation is specified using an L appended to the instruction mnemonic, for example:

VADDL.S16 Q0, D2, D3

Wide operation

One operand vector is doubleword and the other is quadword. The result vector is quadword.
The elements of the result and the first operand are twice the width of the elements of the second
operand.

Wide operation is specified using a W appended to the instruction mnemonic, for example:

VADDW.S16 Q0, Q1, D4

Narrow operation

The operands are quadword vectors and the result is a doubleword vector. The elements of the
result are half the width of the elements of the operands.

Narrow operation is specified using an N appended to the instruction mnemonic, for example:

VADDHN.I16 D0, Q1, Q2

Related concepts
B1.9 Advanced SIMD vectors on page B1-55

B1 Advanced SIMD Programming
B1.10 Normal, long, wide, and narrow Advanced SIMD instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-56

Non-Confidential

B1.11 Saturating Advanced SIMD instructions
Saturating instructions saturate the result to the value of the upper limit or lower limit if the result
overflows or underflows.

The saturation limits depend on the datatype of the instruction. The following table shows the ranges that
Advanced SIMD saturating instructions saturate to, where x is the result of the operation.

Table B1-2 Advanced SIMD saturation ranges

Data type Saturation range of x

Signed byte (S8) -27 <= x < 27

Signed halfword (S16) -215 <= x < 215

Signed word (S32) -231 <= x < 231

Signed doubleword (S64) -263 <= x < 263

Unsigned byte (U8) 0 <= x < 28

Unsigned halfword (U16) 0 <= x < 216

Unsigned word (U32) 0 <= x < 232

Unsigned doubleword (U64) 0 <= x < 264

Saturating Advanced SIMD arithmetic instructions set the QC bit in the floating-point status register
(FPSCR) to indicate that saturation has occurred.

Saturating instructions are specified using a Q prefix, which is inserted between the V and the instruction
mnemonic.

Related references
C2.7 Saturating instructions on page C2-118

B1 Advanced SIMD Programming
B1.11 Saturating Advanced SIMD instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-57

Non-Confidential

B1.12 Advanced SIMD scalars
Some Advanced SIMD instructions act on scalars in combination with vectors. Advanced SIMD scalars
can be 8-bit, 16-bit, 32-bit, or 64-bit.

The instruction syntax refers to a single element in a vector register using an index, x, into the vector, so
that Dm[x] is the xth element in vector Dm.

Except for Advanced SIMD multiply instructions, instructions that access scalars can access any element
in the register bank.

Advanced SIMD multiply instructions only allow 16-bit or 32-bit scalars, and can only access the first 32
scalars in the register bank.

In multiply instructions:
• 16-bit scalars are restricted to registers D0-D7, with x in the range 0-3.
• 32-bit scalars are restricted to registers D0-D15, with x either 0 or 1.

Related concepts
B1.9 Advanced SIMD vectors on page B1-55
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47

B1 Advanced SIMD Programming
B1.12 Advanced SIMD scalars

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-58

Non-Confidential

B1.13 Extended notation extension for Advanced SIMD
armasm implements an extension to the architectural Advanced SIMD assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the DN and QN directives to define names for typed and scalar registers.

Related concepts
B1.9 Advanced SIMD vectors on page B1-55
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.12 Advanced SIMD scalars on page B1-58

B1 Advanced SIMD Programming
B1.13 Extended notation extension for Advanced SIMD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-59

Non-Confidential

B1.14 Advanced SIMD system registers in AArch32 state
Advanced SIMD system registers are accessible in all implementations of Advanced SIMD.

For exception levels using AArch32, the following Advanced SIMD system registers are accessible in all
Advanced SIMD implementations:

• FPSCR, the floating-point status and control register.
• FPEXC, the floating-point exception register.
• FPSID, the floating-point system ID register.

A particular Advanced SIMD implementation can have additional registers. For more information, see
the Technical Reference Manual for your processor.

 Note

Advanced SIMD technology shares the same set of system registers as floating-point.

Related information
Arm Architecture Reference Manual

B1 Advanced SIMD Programming
B1.14 Advanced SIMD system registers in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-60

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B1.15 Flush-to-zero mode in Advanced SIMD
Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Flush-to-zero mode in Advanced SIMD always preserves the sign bit.

Advanced SIMD always uses flush-to-zero mode.

Related concepts
B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63
Related references
B1.16 When to use flush-to-zero mode in Advanced SIMD on page B1-62
B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64

B1 Advanced SIMD Programming
B1.15 Flush-to-zero mode in Advanced SIMD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-61

Non-Confidential

B1.16 When to use flush-to-zero mode in Advanced SIMD
You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:
• IEEE 754 compliance is not a requirement for your system.
• The algorithms you are using sometimes generate denormalized numbers.
• Your system uses support code to handle denormalized numbers.
• The algorithms you are using do not depend for their accuracy on the preservation of denormalized

numbers.
• The algorithms you are using do not generate frequent exceptions as a result of replacing

denormalized numbers with 0.

You select flush-to-zero mode by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and
VMSR instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have
different requirements. Numbers already in registers are not affected by changing mode.

Related concepts
B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63

B1 Advanced SIMD Programming
B1.16 When to use flush-to-zero mode in Advanced SIMD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-62

Non-Confidential

B1.17 The effects of using flush-to-zero mode in Advanced SIMD
In flush-to-zero mode, denormalized inputs are treated as zero. Results that are too small to be
represented in a normalized number are replaced with zero.

With certain exceptions, flush-to-zero mode has the following effects on floating-point operations:
• A denormalized number is treated as 0 when used as an input to a floating-point operation. The

source register is not altered.
• If the result of a single-precision floating-point operation, before rounding, is in the range -2-126 to

+2-126, it is replaced by 0.
• If the result of a double-precision floating-point operation, before rounding, is in the range -2-1022 to

+2-1022, it is replaced by 0.

In flush-to-zero mode, an Input Denormal exception occurs whenever a denormalized number is used as
an operand. An Underflow exception occurs when a result is flushed-to-zero.

Related concepts
B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
Related references
B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64

B1 Advanced SIMD Programming
B1.17 The effects of using flush-to-zero mode in Advanced SIMD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-63

Non-Confidential

B1.18 Advanced SIMD operations not affected by flush-to-zero mode
Some Advanced SIMD instructions can be carried out on denormalized numbers even in flush-to-zero
mode, without flushing the results to zero.

These instructions are as follows:
• Copy, absolute value, and negate (VMOV, VMVN, V{Q}ABS, and V{Q}NEG).
• Duplicate (VDUP).
• Swap (VSWP).
• Load and store (VLDR and VSTR).
• Load multiple and store multiple (VLDM and VSTM).
• Transfer between extension registers and AArch32 general-purpose registers (VMOV).

Related concepts
B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
Related references
C3.9 VABS on page C3-401
C4.2 VABS (floating-point) on page C4-549
C3.41 VDUP on page C3-433
C3.54 VLDM on page C3-449
C3.55 VLDR on page C3-450
C3.69 VMOV (register) on page C3-464
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-465
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-466
C3.139 VSWP on page C3-536

B1 Advanced SIMD Programming
B1.18 Advanced SIMD operations not affected by flush-to-zero mode

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B1-64

Non-Confidential

Chapter B2
Floating-point Programming

Describes floating-point assembly language programming.

It contains the following sections:
• B2.1 Architecture support for floating-point on page B2-66.
• B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-67.
• B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69.
• B2.4 Load values to floating-point registers on page B2-70.
• B2.5 Conditional execution of A32/T32 floating-point instructions on page B2-71.
• B2.6 Floating-point exceptions for floating-point in A32/T32 instructions on page B2-72.
• B2.7 Floating-point data types in A32/T32 instructions on page B2-73.
• B2.8 Extended notation extension for floating-point code on page B2-74.
• B2.9 Floating-point system registers in AArch32 state on page B2-75.
• B2.10 Flush-to-zero mode in floating-point on page B2-76.
• B2.11 When to use flush-to-zero mode in floating-point on page B2-77.
• B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78.
• B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-65

Non-Confidential

B2.1 Architecture support for floating-point
Floating-point is an optional extension to the Arm architecture. There are versions that provide additional
instructions.

The floating-point instruction set is based on VFPv4, but with the addition of some new instructions,
including the following:
• Floating-point round to integral.
• Conversion from floating-point to integer with a directed rounding mode.
• Direct conversion between half-precision and double-precision floating-point.
• Floating-point conditional select.

The register bank consists of thirty-two 64-bit registers, and smaller registers are packed into larger ones,
as in Armv7 and earlier.

B2 Floating-point Programming
B2.1 Architecture support for floating-point

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-66

Non-Confidential

B2.2 Extension register bank mapping for floating-point in AArch32 state
The floating-point extension register bank is a collection of registers that can be accessed as either 32-bit
or 64-bit registers. It is distinct from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 64-bit register D0 is an alias for two consecutive 32-bit registers
S0 and S1. The 64-bit registers D16 and D17 do not have an alias.

D0

D3

D31

D30

S0

S1

S2

S3

S4

S5

S28

S29

S6

S7

S30

S31

...

D1

D2

D14

D15

D16

D17

...

...

Figure B2-1 Extension register bank for floating-point in AArch32 state

The aliased views enable half-precision, single-precision, and double-precision values to coexist in
different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values at different times.

Do not attempt to use overlapped 32-bit and 64-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>
• S<2n+1> maps to the most significant half of D<n>

For example, you can access the least significant half of register D6 by referring to S12, and the most
significant half of D6 by referring to S13.

B2 Floating-point Programming
B2.2 Extension register bank mapping for floating-point in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-67

Non-Confidential

Related concepts
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69

B2 Floating-point Programming
B2.2 Extension register bank mapping for floating-point in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-68

Non-Confidential

B2.3 Views of the floating-point extension register bank in AArch32 state
Floating-point can have different views of the extension register bank in AArch32 state.

The floating-point extension register bank can be viewed as:
• Thirty-two 64-bit registers, D0-D31.
• Thirty-two 32-bit registers, S0-S31. Only half of the register bank is accessible in this view.
• A combination of registers from these views.

64-bit floating-point registers are called double-precision registers and can contain double-precision
floating-point values. 32-bit floating-point registers are called single-precision registers and can contain
either a single-precision or two half-precision floating-point values.

Related concepts
B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-67

B2 Floating-point Programming
B2.3 Views of the floating-point extension register bank in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-69

Non-Confidential

B2.4 Load values to floating-point registers
To load a register with a floating-point immediate value, use VMOV. This instruction has scalar and vector
forms.

Related references
VLDR pseudo-instruction (floating-point)
C4.22 VMOV (floating-point) on page C4-569

B2 Floating-point Programming
B2.4 Load values to floating-point registers

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-70

Non-Confidential

B2.5 Conditional execution of A32/T32 floating-point instructions
You can execute floating-point instructions conditionally, in the same way as most A32 and T32
instructions.

You cannot use any of the following floating-point instructions in an IT block:
• VRINT{A, N, P, M}.
• VSEL.
• VCVT{A, N, P, M}.
• VMAXNM.
• VMINNM.

In addition, specifying any other floating-point instruction in an IT block is deprecated.

Most A32 floating-point instructions can be conditionally executed, by appending a condition code suffix
to the instruction.

Related concepts
C1.2 Conditional execution in A32 code on page C1-85
C1.3 Conditional execution in T32 code on page C1-86
Related references
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94
C1.9 Condition code suffixes on page C1-92

B2 Floating-point Programming
B2.5 Conditional execution of A32/T32 floating-point instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-71

Non-Confidential

B2.6 Floating-point exceptions for floating-point in A32/T32 instructions
The floating-point extension records floating-point exceptions in the FPSCR cumulative flags.

It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
zero.

The descriptions of the floating-point instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts
B2.10 Flush-to-zero mode in floating-point on page B2-76
Related references
Chapter C4 Floating-point Instructions (32-bit) on page C4-545
Related information
Arm Architecture Reference Manual

B2 Floating-point Programming
B2.6 Floating-point exceptions for floating-point in A32/T32 instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-72

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2.7 Floating-point data types in A32/T32 instructions
Most floating-point instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in floating-point instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point.

The following data types are available in floating-point instructions:

16-bit
F16

32-bit
F32 (or F)

64-bit
F64 (or D)

The datatype of the second (or only) operand is specified in the instruction.
 Note

• Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:
— If the description specifies I, you can also use the S or U data types.
— If only the data size is specified, you can specify a type (S, U, P or F).
— If no data type is specified, you can specify a data type.

Related concepts
B1.8 Polynomial arithmetic over {0,1} on page B1-54

B2 Floating-point Programming
B2.7 Floating-point data types in A32/T32 instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-73

Non-Confidential

B2.8 Extended notation extension for floating-point code
armasm implements an extension to the architectural floating-point assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the SN and DN directives to define names for typed and scalar registers.

Related concepts
B2.7 Floating-point data types in A32/T32 instructions on page B2-73

B2 Floating-point Programming
B2.8 Extended notation extension for floating-point code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-74

Non-Confidential

B2.9 Floating-point system registers in AArch32 state
Floating-point system registers are accessible in all implementations of floating-point.

For exception levels using AArch32, the following floating-point system registers are accessible in all
floating-point implementations:
• FPSCR, the floating-point status and control register.
• FPEXC, the floating-point exception register.
• FPSID, the floating-point system ID register.

A particular floating-point implementation can have additional registers. For more information, see the
Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual

B2 Floating-point Programming
B2.9 Floating-point system registers in AArch32 state

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-75

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2.10 Flush-to-zero mode in floating-point
Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Some implementations of floating-point use support code to handle denormalized numbers. The
performance of such systems, in calculations involving denormalized numbers, is much less than it is in
normal calculations.

Flush-to-zero mode in floating-point always preserves the sign bit.

Related concepts
B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78
Related references
B2.11 When to use flush-to-zero mode in floating-point on page B2-77
B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79

B2 Floating-point Programming
B2.10 Flush-to-zero mode in floating-point

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-76

Non-Confidential

B2.11 When to use flush-to-zero mode in floating-point
You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:
• IEEE 754 compliance is not a requirement for your system.
• The algorithms you are using sometimes generate denormalized numbers.
• Your system uses support code to handle denormalized numbers.
• The algorithms you are using do not depend for their accuracy on the preservation of denormalized

numbers.
• The algorithms you are using do not generate frequent exceptions as a result of replacing

denormalized numbers with 0.

You select flush-to-zero mode by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and
VMSR instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have
different requirements. Numbers already in registers are not affected by changing mode.

Related concepts
B2.10 Flush-to-zero mode in floating-point on page B2-76
B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78

B2 Floating-point Programming
B2.11 When to use flush-to-zero mode in floating-point

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-77

Non-Confidential

B2.12 The effects of using flush-to-zero mode in floating-point
In flush-to-zero mode, denormalized inputs are treated as zero. Results that are too small to be
represented in a normalized number are replaced with zero.

With certain exceptions, flush-to-zero mode has the following effects on floating-point operations:
• A denormalized number is treated as 0 when used as an input to a floating-point operation. The

source register is not altered.
• If the result of a single-precision floating-point operation, before rounding, is in the range -2-126 to

+2-126, it is replaced by 0.
• If the result of a double-precision floating-point operation, before rounding, is in the range -2-1022 to

+2-1022, it is replaced by 0.

In flush-to-zero mode, an Input Denormal exception occurs whenever a denormalized number is used as
an operand. An Underflow exception occurs when a result is flushed-to-zero.

Related concepts
B2.10 Flush-to-zero mode in floating-point on page B2-76
Related references
B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79

B2 Floating-point Programming
B2.12 The effects of using flush-to-zero mode in floating-point

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-78

Non-Confidential

B2.13 Floating-point operations not affected by flush-to-zero mode
Some floating-point instructions can be carried out on denormalized numbers even in flush-to-zero
mode, without flushing the results to zero.

These instructions are as follows:
• Absolute value and negate (VABS and VNEG).
• Load and store (VLDR and VSTR).
• Load multiple and store multiple (VLDM and VSTM).
• Transfer between extension registers and general-purpose registers (VMOV).

Related concepts
B2.10 Flush-to-zero mode in floating-point on page B2-76
Related references
C4.2 VABS (floating-point) on page C4-549
C4.14 VLDM (floating-point) on page C4-561
C4.15 VLDR (floating-point) on page C4-562
C4.38 VSTM (floating-point) on page C4-585
C4.39 VSTR (floating-point) on page C4-586
C3.54 VLDM on page C3-449
C3.55 VLDR on page C3-450
C3.131 VSTM on page C3-526
C3.134 VSTR on page C3-531
C4.23 VMOV (between one general-purpose register and single precision floating-point register)
on page C4-570
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-465
C4.29 VNEG (floating-point) on page C4-576
C3.83 VNEG on page C3-478

B2 Floating-point Programming
B2.13 Floating-point operations not affected by flush-to-zero mode

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

B2-79

Non-Confidential

B2 Floating-point Programming
B2.13 Floating-point operations not affected by flush-to-zero mode

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved. B2-80
Non-Confidential

Part C
A32/T32 Instruction Set Reference

Chapter C1
Condition Codes

Describes condition codes and conditional execution of A32 and T32 code.

It contains the following sections:
• C1.1 Conditional instructions on page C1-84.
• C1.2 Conditional execution in A32 code on page C1-85.
• C1.3 Conditional execution in T32 code on page C1-86.
• C1.4 Condition flags on page C1-87.
• C1.5 Updates to the condition flags in A32/T32 code on page C1-88.
• C1.6 Floating-point instructions that update the condition flags on page C1-89.
• C1.7 Carry flag on page C1-90.
• C1.8 Overflow flag on page C1-91.
• C1.9 Condition code suffixes on page C1-92.
• C1.10 Condition code suffixes and related flags on page C1-93.
• C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94.
• C1.12 Benefits of using conditional execution in A32 and T32 code on page C1-96.
• C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

on page C1-97.
• C1.14 Optimization for execution speed on page C1-100.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-83

Non-Confidential

C1.1 Conditional instructions
A32 and T32 instructions can execute conditionally on the condition flags set by a previous instruction.

The conditional instruction can occur either:

• Immediately after the instruction that updated the flags.
• After any number of intervening instructions that have not updated the flags.

In AArch32 state, whether an instruction can be conditional or not depends on the instruction set state
that the processor is in.

To make an instruction conditional, you must add a condition code suffix to the instruction mnemonic.
The condition code suffix enables the processor to test a condition based on the flags. If the condition test
of a conditional instruction fails, the instruction:
• Does not execute.
• Does not write any value to its destination register.
• Does not affect any of the flags.
• Does not generate any exception.

Related concepts
C1.2 Conditional execution in A32 code on page C1-85
C1.3 Conditional execution in T32 code on page C1-86
Related references
C1.10 Condition code suffixes and related flags on page C1-93
C1.5 Updates to the condition flags in A32/T32 code on page C1-88

C1 Condition Codes
C1.1 Conditional instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-84

Non-Confidential

C1.2 Conditional execution in A32 code
Almost all A32 instructions can be executed conditionally on the value of the condition flags in the
APSR. You can either add a condition code suffix to the instruction or you can conditionally skip over
the instruction using a conditional branch instruction.

Using conditional branch instructions to control the flow of execution can be more efficient when a
series of instructions depend on the same condition.

Conditional instructions to control execution

; flags set by a previous instruction
 LSLEQ r0, r0, #24
 ADDEQ r0, r0, #2
 ;…

Conditional branch to control execution

; flags set by a previous instruction
 BNE over
 LSL r0, r0, #24
 ADD r0, r0, #2
over
 ;…

Related concepts
C1.3 Conditional execution in T32 code on page C1-86

C1 Condition Codes
C1.2 Conditional execution in A32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-85

Non-Confidential

C1.3 Conditional execution in T32 code
In T32 code, there are several ways to achieve conditional execution. You can conditionally skip over the
instruction using a conditional branch instruction.

Instructions can also be conditionally executed by using either of the following:

• CBZ and CBNZ.
• The IT (If-Then) instruction.

The T32 CBZ (Conditional Branch on Zero) and CBNZ (Conditional Branch on Non-Zero) instructions
compare the value of a register against zero and branch on the result.

IT is a 16-bit instruction that enables a single subsequent 16-bit T32 instruction from a restricted set to
be conditionally executed, based on the value of the condition flags, and the condition code suffix
specified.

Conditional instructions using IT block

; flags set by a previous instruction
 IT EQ
 LSLEQ r0, r0, #24
 ;…

The use of the IT instruction is deprecated when any of the following are true:
• There is more than one instruction in the IT block.
• There is a 32-bit instruction in the IT block.
• The instruction in the IT block references the PC.

Related concepts
C1.2 Conditional execution in A32 code on page C1-85
Related references
C2.41 IT on page C2-169
C2.23 CBZ and CBNZ on page C2-145

C1 Condition Codes
C1.3 Conditional execution in T32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-86

Non-Confidential

C1.4 Condition flags
The N, Z, C, and V condition flags are held in the APSR.

The condition flags are held in the APSR. They are set or cleared as follows:

N
Set to 1 when the result of the operation is negative, cleared to 0 otherwise.

Z
Set to 1 when the result of the operation is zero, cleared to 0 otherwise.

C
Set to 1 when the operation results in a carry, or when a subtraction results in no borrow, cleared
to 0 otherwise.

V
Set to 1 when the operation causes overflow, cleared to 0 otherwise.

C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a

carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a

borrow (that is, an unsigned underflow), and to 1 otherwise.
• For non-addition/subtractions that incorporate a shift operation, C is set to the last bit shifted out of

the value by the shifter.
• For other non-addition/subtractions, C is normally left unchanged, but see the individual instruction

descriptions for any special cases.

Overflow occurs if the result of a signed add, subtract, or compare is greater than or equal to 231, or less
than -231.

Related references
C1.5 Updates to the condition flags in A32/T32 code on page C1-88
C1.10 Condition code suffixes and related flags on page C1-93

C1 Condition Codes
C1.4 Condition flags

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-87

Non-Confidential

C1.5 Updates to the condition flags in A32/T32 code
In AArch32 state, the condition flags are held in the Application Program Status Register (APSR). You
can read and modify the flags using the read-modify-write procedure.

Most A32 and T32 data processing instructions have an option to update the condition flags according to
the result of the operation. Instructions with the optional S suffix update the flags. Conditional
instructions that are not executed have no effect on the flags.

Which flags are updated depends on the instruction. Some instructions update all flags, and some update
a subset of the flags. If a flag is not updated, the original value is preserved. The description of each
instruction mentions the effect that it has on the flags.

 Note

Most instructions update the condition flags only if the S suffix is specified. The instructions CMP, CMN,
TEQ, and TST always update the flags.

Related concepts
C1.1 Conditional instructions on page C1-84
Related references
C1.4 Condition flags on page C1-87
C1.10 Condition code suffixes and related flags on page C1-93
Chapter C2 A32 and T32 Instructions on page C2-101

C1 Condition Codes
C1.5 Updates to the condition flags in A32/T32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-88

Non-Confidential

C1.6 Floating-point instructions that update the condition flags
The only A32/T32 floating-point instructions that can update the condition flags are VCMP and VCMPE.
Other floating-point or Advanced SIMD instructions cannot modify the flags.

VCMP and VCMPE do not update the flags directly, but update a separate set of flags in the Floating-Point
Status and Control Register (FPSCR). To use these flags to control conditional instructions, including
conditional floating-point instructions, you must first update the condition flags yourself. To do this,
copy the flags from the FPSCR into the APSR using a VMRS instruction:

VMRS APSR_nzcv, FPSCR

Related concepts
C1.7 Carry flag on page C1-90
C1.8 Overflow flag on page C1-91
Related references
C4.4 VCMP, VCMPE on page C4-551
C3.75 VMRS on page C3-470
C4.26 VMRS (floating-point) on page C4-573
Related information
Arm Architecture Reference Manual

C1 Condition Codes
C1.6 Floating-point instructions that update the condition flags

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-89

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C1.7 Carry flag
The carry (C) flag is set when an operation results in a carry, or when a subtraction results in no borrow.

In A32/T32 code, C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a

carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a

borrow (that is, an unsigned underflow), and to 1 otherwise.
• For non-additions/subtractions that incorporate a shift operation, C is set to the last bit shifted out of

the value by the shifter.
• For other non-additions/subtractions, C is normally left unchanged, but see the individual instruction

descriptions for any special cases.
• The floating-point compare instructions, VCMP and VCMPE set the C flag and the other condition flags

in the FPSCR to the result of the comparison.

Related concepts
C1.8 Overflow flag on page C1-91
Related references
A1.8 Predeclared core register names in AArch32 state on page A1-34
C1.10 Condition code suffixes and related flags on page C1-93
C1.5 Updates to the condition flags in A32/T32 code on page C1-88

C1 Condition Codes
C1.7 Carry flag

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-90

Non-Confidential

C1.8 Overflow flag
Overflow can occur for add, subtract, and compare operations.

In A32/T32 code, overflow occurs if the result of the operation is greater than or equal to 231, or less than
-231.

Related concepts
C1.7 Carry flag on page C1-90
Related references
A1.8 Predeclared core register names in AArch32 state on page A1-34
C1.5 Updates to the condition flags in A32/T32 code on page C1-88

C1 Condition Codes
C1.8 Overflow flag

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-91

Non-Confidential

C1.9 Condition code suffixes
Instructions that can be conditional have an optional two character condition code suffix.

Condition codes are shown in syntax descriptions as {cond}. The following table shows the condition
codes that you can use:

Table C1-1 Condition code suffixes

Suffix Meaning

EQ Equal

NE Not equal

CS Carry set (identical to HS)

HS Unsigned higher or same (identical to CS)

CC Carry clear (identical to LO)

LO Unsigned lower (identical to CC)

MI Minus or negative result

PL Positive or zero result

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Signed greater than or equal

LT Signed less than

GT Signed greater than

LE Signed less than or equal

AL Always (this is the default)

 Note

The meaning of some of these condition codes depends on whether the instruction that last updated the
condition flags is a floating-point or integer instruction.

Related references
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94
C2.41 IT on page C2-169
C3.75 VMRS on page C3-470
C4.26 VMRS (floating-point) on page C4-573

C1 Condition Codes
C1.9 Condition code suffixes

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-92

Non-Confidential

C1.10 Condition code suffixes and related flags
Condition code suffixes define the conditions that must be met for the instruction to execute.

The following table shows the condition codes that you can use and the flag settings they depend on:

Table C1-2 Condition code suffixes and related flags

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is normally omitted.

The optional condition code is shown in syntax descriptions as {cond}. This condition is encoded in A32
instructions. For T32 instructions, the condition is encoded in a preceding IT instruction. An instruction
with a condition code is only executed if the condition flags meet the specified condition.

The following is an example of conditional execution in A32 code:

 ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags
 ADDS r0, r1, r2 ; r0 = r1 + r2, and update flags
 ADDSCS r0, r1, r2 ; If C flag set then r0 = r1 + r2,
 ; and update flags
 CMP r0, r1 ; update flags based on r0-r1.

Related concepts
C1.1 Conditional instructions on page C1-84
Related references
C1.4 Condition flags on page C1-87
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94
C1.5 Updates to the condition flags in A32/T32 code on page C1-88
Chapter C2 A32 and T32 Instructions on page C2-101

C1 Condition Codes
C1.10 Condition code suffixes and related flags

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-93

Non-Confidential

C1.11 Comparison of condition code meanings in integer and floating-point code
The meaning of the condition code mnemonic suffixes depends on whether the condition flags were set
by a floating-point instruction or by an A32 or T32 data processing instruction.

This is because:
• Floating-point values are never unsigned, so the unsigned conditions are not required.
• Not-a-Number (NaN) values have no ordering relationship with numbers or with each other, so

additional conditions are required to account for unordered results.

The meaning of the condition code mnemonic suffixes is shown in the following table:

Table C1-3 Condition codes

Suffix Meaning after integer data processing instruction Meaning after floating-point instruction

EQ Equal Equal

NE Not equal Not equal, or unordered

CS Carry set Greater than or equal, or unordered

HS Unsigned higher or same Greater than or equal, or unordered

CC Carry clear Less than

LO Unsigned lower Less than

MI Negative Less than

PL Positive or zero Greater than or equal, or unordered

VS Overflow Unordered (at least one NaN operand)

VC No overflow Not unordered

HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal

GE Signed greater than or equal Greater than or equal

LT Signed less than Less than, or unordered

GT Signed greater than Greater than

LE Signed less than or equal Less than or equal, or unordered

AL Always (normally omitted) Always (normally omitted)

 Note

The type of the instruction that last updated the condition flags determines the meaning of the condition
codes.

Related concepts
C1.1 Conditional instructions on page C1-84
Related references
C1.10 Condition code suffixes and related flags on page C1-93
C1.5 Updates to the condition flags in A32/T32 code on page C1-88
C4.4 VCMP, VCMPE on page C4-551
C3.75 VMRS on page C3-470
C4.26 VMRS (floating-point) on page C4-573

C1 Condition Codes
C1.11 Comparison of condition code meanings in integer and floating-point code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-94

Non-Confidential

Related information
Arm Architecture Reference Manual

C1 Condition Codes
C1.11 Comparison of condition code meanings in integer and floating-point code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-95

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C1.12 Benefits of using conditional execution in A32 and T32 code
It can be more efficient to use conditional instructions rather than conditional branches.

You can use conditional execution of A32 instructions to reduce the number of branch instructions in
your code, and improve code density. The IT instruction in T32 achieves a similar improvement.

Branch instructions are also expensive in processor cycles. On Arm processors without branch prediction
hardware, it typically takes three processor cycles to refill the processor pipeline each time a branch is
taken.

Some Arm processors have branch prediction hardware. In systems using these processors, the pipeline
only has to be flushed and refilled when there is a misprediction.

Related concepts
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code on page C1-97

C1 Condition Codes
C1.12 Benefits of using conditional execution in A32 and T32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-96

Non-Confidential

C1.13 Example showing the benefits of conditional instructions in A32 and T32
code

Using conditional instructions rather than conditional branches can save both code size and cycles.

This example shows the difference between using branches and using conditional instructions. It uses the
Euclid algorithm for the Greatest Common Divisor (gcd) to show how conditional instructions improve
code size and speed.

In C the gcd algorithm can be expressed as:

int gcd(int a, int b)
{
 while (a != b)
 {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

The following examples show implementations of the gcd algorithm with and without conditional
instructions.

Example of conditional execution using branches in A32 code

This example is an A32 code implementation of the gcd algorithm. It achieves conditional execution by
using conditional branches, rather than individual conditional instructions:

gcd CMP r0, r1
 BEQ end
 BLT less
 SUBS r0, r0, r1 ; could be SUB r0, r0, r1 for A32
 B gcd
less
 SUBS r1, r1, r0 ; could be SUB r1, r1, r0 for A32
 B gcd
end

The code is seven instructions long because of the number of branches. Every time a branch is taken, the
processor must refill the pipeline and continue from the new location. The other instructions and non-
executed branches use a single cycle each.

The following table shows the number of cycles this implementation uses on an Arm7™ processor when
R0 equals 1 and R1 equals 2.

Table C1-4 Conditional branches only

R0: a R1: b Instruction Cycles (Arm7)

1 2 CMP r0, r1 1

1 2 BEQ end 1 (not executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13

C1 Condition Codes
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-97

Non-Confidential

Example of conditional execution using conditional instructions in A32 code

This example is an A32 code implementation of the gcd algorithm using individual conditional
instructions in A32 code. The gcd algorithm only takes four instructions:

gcd
 CMP r0, r1
 SUBGT r0, r0, r1
 SUBLE r1, r1, r0
 BNE gcd

In addition to improving code size, in most cases this code executes faster than the version that uses only
branches.

The following table shows the number of cycles this implementation uses on an Arm7 processor when
R0 equals 1 and R1 equals 2.

Table C1-5 All instructions conditional

R0: a R1: b Instruction Cycles (Arm7)

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1

1 1 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1 (not executed)

1 1 BNE gcd 1 (not executed)

Total = 10

Comparing this with the example that uses only branches:
• Replacing branches with conditional execution of all instructions saves three cycles.
• Where R0 equals R1, both implementations execute in the same number of cycles. For all other cases,

the implementation that uses conditional instructions executes in fewer cycles than the
implementation that uses branches only.

Example of conditional execution using conditional instructions in T32 code

You can use the IT instruction to write conditional instructions in T32 code. The T32 code
implementation of the gcd algorithm using conditional instructions is similar to the implementation in
A32 code. The implementation in T32 code is:

gcd
 CMP r0, r1
 ITE GT
 SUBGT r0, r0, r1
 SUBLE r1, r1, r0
 BNE gcd

These instructions assemble equally well to A32 or T32 code. The assembler checks the IT instructions,
but omits them on assembly to A32 code.

It requires one more instruction in T32 code (the IT instruction) than in A32 code, but the overall code
size is 10 bytes in T32 code, compared with 16 bytes in A32 code.

Example of conditional execution code using branches in T32 code

In architectures before Armv6T2, there is no IT instruction and therefore T32 instructions cannot be
executed conditionally except for the B branch instruction. The gcd algorithm must be written with

C1 Condition Codes
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-98

Non-Confidential

conditional branches and is similar to the A32 code implementation using branches, without conditional
instructions.

The T32 code implementation of the gcd algorithm without conditional instructions requires seven
instructions. The overall code size is 14 bytes. This figure is even less than the A32 implementation that
uses conditional instructions, which uses 16 bytes.

In addition, on a system using 16-bit memory this T32 implementation runs faster than both A32
implementations because only one memory access is required for each 16-bit T32 instruction, whereas
each 32-bit A32 instruction requires two fetches.

Related concepts
C1.12 Benefits of using conditional execution in A32 and T32 code on page C1-96
C1.14 Optimization for execution speed on page C1-100
Related references
C2.41 IT on page C2-169
C1.10 Condition code suffixes and related flags on page C1-93
Related information
Arm Architecture Reference Manual

C1 Condition Codes
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-99

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C1.14 Optimization for execution speed
To optimize code for execution speed you must have detailed knowledge of the instruction timings,
branch prediction logic, and cache behavior of your target system.

For more information, see the Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual
Further reading

C1 Condition Codes
C1.14 Optimization for execution speed

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C1-100

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374245422802.html

Chapter C2
A32 and T32 Instructions

Describes the A32 and T32 instructions supported in AArch32 state.

It contains the following sections:
• C2.1 A32 and T32 instruction summary on page C2-106.
• C2.2 Instruction width specifiers on page C2-111.
• C2.3 Flexible second operand (Operand2) on page C2-112.
• C2.4 Syntax of Operand2 as a constant on page C2-113.
• C2.5 Syntax of Operand2 as a register with optional shift on page C2-114.
• C2.6 Shift operations on page C2-115.
• C2.7 Saturating instructions on page C2-118.
• C2.8 ADC on page C2-119.
• C2.9 ADD on page C2-121.
• C2.10 ADR (PC-relative) on page C2-124.
• C2.11 ADR (register-relative) on page C2-126.
• C2.12 AND on page C2-128.
• C2.13 ASR on page C2-130.
• C2.14 B on page C2-132.
• C2.15 BFC on page C2-134.
• C2.16 BFI on page C2-135.
• C2.17 BIC on page C2-136.
• C2.18 BKPT on page C2-138.
• C2.19 BL on page C2-139.
• C2.20 BLX, BLXNS on page C2-140.
• C2.21 BX, BXNS on page C2-142.
• C2.22 BXJ on page C2-144.
• C2.23 CBZ and CBNZ on page C2-145.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-101

Non-Confidential

• C2.24 CDP and CDP2 on page C2-146.
• C2.25 CLREX on page C2-147.
• C2.26 CLZ on page C2-148.
• C2.27 CMP and CMN on page C2-149.
• C2.28 CPS on page C2-151.
• C2.29 CRC32 on page C2-153.
• C2.30 CRC32C on page C2-154.
• C2.31 CSDB on page C2-155.
• C2.32 DBG on page C2-157.
• C2.33 DMB on page C2-158.
• C2.34 DSB on page C2-160.
• C2.35 EOR on page C2-162.
• C2.36 ERET on page C2-164.
• C2.37 ESB on page C2-165.
• C2.38 HLT on page C2-166.
• C2.39 HVC on page C2-167.
• C2.40 ISB on page C2-168.
• C2.41 IT on page C2-169.
• C2.42 LDA on page C2-172.
• C2.43 LDAEX on page C2-173.
• C2.44 LDC and LDC2 on page C2-175.
• C2.45 LDM on page C2-177.
• C2.46 LDR (immediate offset) on page C2-179.
• C2.47 LDR (PC-relative) on page C2-181.
• C2.48 LDR (register offset) on page C2-183.
• C2.49 LDR (register-relative) on page C2-185.
• C2.50 LDR, unprivileged on page C2-187.
• C2.51 LDREX on page C2-189.
• C2.52 LSL on page C2-191.
• C2.53 LSR on page C2-193.
• C2.54 MCR and MCR2 on page C2-195.
• C2.55 MCRR and MCRR2 on page C2-196.
• C2.56 MLA on page C2-197.
• C2.57 MLS on page C2-198.
• C2.58 MOV on page C2-199.
• C2.59 MOVT on page C2-201.
• C2.60 MRC and MRC2 on page C2-202.
• C2.61 MRRC and MRRC2 on page C2-203.
• C2.62 MRS (PSR to general-purpose register) on page C2-204.
• C2.63 MRS (system coprocessor register to general-purpose register) on page C2-206.
• C2.64 MSR (general-purpose register to system coprocessor register) on page C2-207.
• C2.65 MSR (general-purpose register to PSR) on page C2-208.
• C2.66 MUL on page C2-210.
• C2.67 MVN on page C2-211.
• C2.68 NOP on page C2-213.
• C2.69 ORN (T32 only) on page C2-214.
• C2.70 ORR on page C2-215.
• C2.71 PKHBT and PKHTB on page C2-217.
• C2.72 PLD, PLDW, and PLI on page C2-219.
• C2.73 POP on page C2-221.
• C2.74 PUSH on page C2-222.
• C2.75 QADD on page C2-223.
• C2.76 QADD8 on page C2-224.
• C2.77 QADD16 on page C2-225.
• C2.78 QASX on page C2-226.
• C2.79 QDADD on page C2-227.

C2 A32 and T32 Instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-102

Non-Confidential

• C2.80 QDSUB on page C2-228.
• C2.81 QSAX on page C2-229.
• C2.82 QSUB on page C2-230.
• C2.83 QSUB8 on page C2-231.
• C2.84 QSUB16 on page C2-232.
• C2.85 RBIT on page C2-233.
• C2.86 REV on page C2-234.
• C2.87 REV16 on page C2-235.
• C2.88 REVSH on page C2-236.
• C2.89 RFE on page C2-237.
• C2.90 ROR on page C2-239.
• C2.91 RRX on page C2-241.
• C2.92 RSB on page C2-243.
• C2.93 RSC on page C2-245.
• C2.94 SADD8 on page C2-247.
• C2.95 SADD16 on page C2-249.
• C2.96 SASX on page C2-251.
• C2.97 SBC on page C2-253.
• C2.98 SBFX on page C2-255.
• C2.99 SDIV on page C2-256.
• C2.100 SEL on page C2-257.
• C2.101 SETEND on page C2-259.
• C2.102 SETPAN on page C2-260.
• C2.103 SEV on page C2-261.
• C2.104 SEVL on page C2-262.
• C2.105 SG on page C2-263.
• C2.106 SHADD8 on page C2-264.
• C2.107 SHADD16 on page C2-265.
• C2.108 SHASX on page C2-266.
• C2.109 SHSAX on page C2-267.
• C2.110 SHSUB8 on page C2-268.
• C2.111 SHSUB16 on page C2-269.
• C2.112 SMC on page C2-270.
• C2.113 SMLAxy on page C2-271.
• C2.114 SMLAD on page C2-273.
• C2.115 SMLAL on page C2-274.
• C2.116 SMLALD on page C2-275.
• C2.117 SMLALxy on page C2-276.
• C2.118 SMLAWy on page C2-278.
• C2.119 SMLSD on page C2-279.
• C2.120 SMLSLD on page C2-280.
• C2.121 SMMLA on page C2-281.
• C2.122 SMMLS on page C2-282.
• C2.123 SMMUL on page C2-283.
• C2.124 SMUAD on page C2-284.
• C2.125 SMULxy on page C2-285.
• C2.126 SMULL on page C2-286.
• C2.127 SMULWy on page C2-287.
• C2.128 SMUSD on page C2-288.
• C2.129 SRS on page C2-289.
• C2.130 SSAT on page C2-291.
• C2.131 SSAT16 on page C2-292.
• C2.132 SSAX on page C2-293.
• C2.133 SSUB8 on page C2-295.
• C2.134 SSUB16 on page C2-297.
• C2.135 STC and STC2 on page C2-299.

C2 A32 and T32 Instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-103

Non-Confidential

• C2.136 STL on page C2-301.
• C2.137 STLEX on page C2-302.
• C2.138 STM on page C2-304.
• C2.139 STR (immediate offset) on page C2-306.
• C2.140 STR (register offset) on page C2-308.
• C2.141 STR, unprivileged on page C2-310.
• C2.142 STREX on page C2-312.
• C2.143 SUB on page C2-314.
• C2.144 SUBS pc, lr on page C2-317.
• C2.145 SVC on page C2-319.
• C2.146 SWP and SWPB on page C2-320.
• C2.147 SXTAB on page C2-321.
• C2.148 SXTAB16 on page C2-323.
• C2.149 SXTAH on page C2-325.
• C2.150 SXTB on page C2-327.
• C2.151 SXTB16 on page C2-329.
• C2.152 SXTH on page C2-330.
• C2.153 SYS on page C2-332.
• C2.154 TBB and TBH on page C2-333.
• C2.155 TEQ on page C2-334.
• C2.156 TST on page C2-336.
• C2.157 TT, TTT, TTA, TTAT on page C2-338.
• C2.158 UADD8 on page C2-340.
• C2.159 UADD16 on page C2-342.
• C2.160 UASX on page C2-344.
• C2.161 UBFX on page C2-346.
• C2.162 UDF on page C2-347.
• C2.163 UDIV on page C2-348.
• C2.164 UHADD8 on page C2-349.
• C2.165 UHADD16 on page C2-350.
• C2.166 UHASX on page C2-351.
• C2.167 UHSAX on page C2-352.
• C2.168 UHSUB8 on page C2-353.
• C2.169 UHSUB16 on page C2-354.
• C2.170 UMAAL on page C2-355.
• C2.171 UMLAL on page C2-356.
• C2.172 UMULL on page C2-357.
• C2.173 UQADD8 on page C2-358.
• C2.174 UQADD16 on page C2-359.
• C2.175 UQASX on page C2-360.
• C2.176 UQSAX on page C2-361.
• C2.177 UQSUB8 on page C2-362.
• C2.178 UQSUB16 on page C2-363.
• C2.179 USAD8 on page C2-364.
• C2.180 USADA8 on page C2-365.
• C2.181 USAT on page C2-366.
• C2.182 USAT16 on page C2-367.
• C2.183 USAX on page C2-368.
• C2.184 USUB8 on page C2-370.
• C2.185 USUB16 on page C2-372.
• C2.186 UXTAB on page C2-373.
• C2.187 UXTAB16 on page C2-375.
• C2.188 UXTAH on page C2-377.
• C2.189 UXTB on page C2-379.
• C2.190 UXTB16 on page C2-381.
• C2.191 UXTH on page C2-382.

C2 A32 and T32 Instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-104

Non-Confidential

• C2.192 WFE on page C2-384.
• C2.193 WFI on page C2-385.
• C2.194 YIELD on page C2-386.

C2 A32 and T32 Instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-105

Non-Confidential

C2.1 A32 and T32 instruction summary
An overview of the instructions available in the A32 and T32 instruction sets.

Table C2-1 Summary of instructions

Mnemonic Brief description

ADC, ADD Add with Carry, Add

ADR Load program or register-relative address (short range)

AND Logical AND

ASR Arithmetic Shift Right

B Branch

BFC, BFI Bit Field Clear and Insert

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX, BLXNS Branch with Link, change instruction set, Branch with Link and Exchange (Non-secure)

BX, BXNS Branch, change instruction set, Branch and Exchange (Non-secure)

CBZ, CBNZ Compare and Branch if {Non}Zero

CDP Coprocessor Data Processing operation

CDP2 Coprocessor Data Processing operation

CLREX Clear Exclusive

CLZ Count leading zeros

CMN, CMP Compare Negative, Compare

CPS Change Processor State

CRC32 CRC32

CRC32C CRC32C

CSDB Consumption of Speculative Data Barrier

DBG Debug

DCPS1 Debug switch to exception level 1

DCPS2 Debug switch to exception level 2

DCPS3 Debug switch to exception level 3

DMB, DSB Data Memory Barrier, Data Synchronization Barrier

DSB Data Synchronization Barrier

EOR Exclusive OR

ERET Exception Return

ESB Error Synchronization Barrier

HLT Halting breakpoint

HVC Hypervisor Call

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-106

Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

ISB Instruction Synchronization Barrier

IT If-Then

LDAEX, LDAEXB, LDAEXH, LDAEXD Load-Acquire Register Exclusive Word, Byte, Halfword, Doubleword

LDC, LDC2 Load Coprocessor

LDM Load Multiple registers

LDR Load Register with word

LDA, LDAB, LDAH Load-Acquire Register Word, Byte, Halfword

LDRB Load Register with Byte

LDRBT Load Register with Byte, user mode

LDRD Load Registers with two words

LDREX, LDREXB, LDREXH, LDREXD Load Register Exclusive Word, Byte, Halfword, Doubleword

LDRH Load Register with Halfword

LDRHT Load Register with Halfword, user mode

LDRSB Load Register with Signed Byte

LDRSBT Load Register with Signed Byte, user mode

LDRSH Load Register with Signed Halfword

LDRSHT Load Register with Signed Halfword, user mode

LDRT Load Register with word, user mode

LSL, LSR Logical Shift Left, Logical Shift Right

MCR Move from Register to Coprocessor

MCRR Move from Registers to Coprocessor

MLA Multiply Accumulate

MLS Multiply and Subtract

MOV Move

MOVT Move Top

MRC Move from Coprocessor to Register

MRRC Move from Coprocessor to Registers

MRS Move from PSR to Register

MSR Move from Register to PSR

MUL Multiply

MVN Move Not

NOP No Operation

ORN Logical OR NOT

ORR Logical OR

PKHBT, PKHTB Pack Halfwords

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-107

Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

PLD Preload Data

PLDW Preload Data with intent to Write

PLI Preload Instruction

PUSH, POP PUSH registers to stack, POP registers from stack

QADD, QDADD, QDSUB, QSUB Saturating arithmetic

QADD8, QADD16, QASX, QSUB8, QSUB16,
QSAX

Parallel signed saturating arithmetic

RBIT Reverse Bits

REV, REV16, REVSH Reverse byte order

RFE Return From Exception

ROR Rotate Right Register

RRX Rotate Right with Extend

RSB Reverse Subtract

RSC Reverse Subtract with Carry

SADD8, SADD16, SASX Parallel Signed arithmetic

SBC Subtract with Carry

SBFX, UBFX Signed, Unsigned Bit Field eXtract

SDIV Signed Divide

SEL Select bytes according to APSR GE flags

SETEND Set Endianness for memory accesses

SETPAN Set Privileged Access Never

SEV Set Event

SEVL Set Event Locally

SG Secure Gateway

SHADD8, SHADD16, SHASX, SHSUB8,
SHSUB16, SHSAX

Parallel Signed Halving arithmetic

SMC Secure Monitor Call

SMLAxy Signed Multiply with Accumulate (32 <= 16 x 16 + 32)

SMLAD Dual Signed Multiply Accumulate

(32 <= 32 + 16 x 16 + 16 x 16)

SMLAL Signed Multiply Accumulate (64 <= 64 + 32 x 32)

SMLALxy Signed Multiply Accumulate (64 <= 64 + 16 x 16)

SMLALD Dual Signed Multiply Accumulate Long

(64 <= 64 + 16 x 16 + 16 x 16)

SMLAWy Signed Multiply with Accumulate (32 <= 32 x 16 + 32)

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-108

Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

SMLSD Dual Signed Multiply Subtract Accumulate

(32 <= 32 + 16 x 16 – 16 x 16)

SMLSLD Dual Signed Multiply Subtract Accumulate Long

(64 <= 64 + 16 x 16 – 16 x 16)

SMMLA Signed top word Multiply with Accumulate (32 <= TopWord(32 x 32 + 32))

SMMLS Signed top word Multiply with Subtract (32 <= TopWord(32 - 32 x 32))

SMMUL Signed top word Multiply (32 <= TopWord(32 x 32))

SMUAD, SMUSD Dual Signed Multiply, and Add or Subtract products

SMULxy Signed Multiply (32 <= 16 x 16)

SMULL Signed Multiply (64 <= 32 x 32)

SMULWy Signed Multiply (32 <= 32 x 16)

SRS Store Return State

SSAT Signed Saturate

SSAT16 Signed Saturate, parallel halfwords

SSUB8, SSUB16, SSAX Parallel Signed arithmetic

STC Store Coprocessor

STM Store Multiple registers

STR Store Register with word

STRB Store Register with Byte

STRBT Store Register with Byte, user mode

STRD Store Registers with two words

STREX, STREXB, STREXH,STREXD Store Register Exclusive Word, Byte, Halfword, Doubleword

STRH Store Register with Halfword

STRHT Store Register with Halfword, user mode

STL, STLB, STLH Store-Release Word, Byte, Halfword

STLEX, STLEXB, STLEXH, STLEXD Store-Release Exclusive Word, Byte, Halfword, Doubleword

STRT Store Register with word, user mode

SUB Subtract

SUBS pc, lr Exception return, no stack

SVC (formerly SWI) Supervisor Call

SXTAB, SXTAB16, SXTAH Signed extend, with Addition

SXTB, SXTH Signed extend

SXTB16 Signed extend

SYS Execute System coprocessor instruction

TBB, TBH Table Branch Byte, Halfword

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-109

Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

TEQ Test Equivalence

TST Test

TT, TTT, TTA, TTAT Test Target (Alternate Domain, Unprivileged)

UADD8, UADD16, UASX Parallel Unsigned arithmetic

UDF Permanently Undefined

UDIV Unsigned Divide

UHADD8, UHADD16, UHASX, UHSUB8,
UHSUB16, UHSAX

Parallel Unsigned Halving arithmetic

UMAAL Unsigned Multiply Accumulate Accumulate Long

(64 <= 32 + 32 + 32 x 32)

UMLAL, UMULL Unsigned Multiply Accumulate, Unsigned Multiply

(64 <= 32 x 32 + 64), (64 <= 32 x 32)

UQADD8, UQADD16, UQASX, UQSUB8,
UQSUB16, UQSAX

Parallel Unsigned Saturating arithmetic

USAD8 Unsigned Sum of Absolute Differences

USADA8 Accumulate Unsigned Sum of Absolute Differences

USAT Unsigned Saturate

USAT16 Unsigned Saturate, parallel halfwords

USUB8, USUB16, USAX Parallel Unsigned arithmetic

UXTAB, UXTAB16, UXTAH Unsigned extend with Addition

UXTB, UXTH Unsigned extend

UXTB16 Unsigned extend

V* See Chapter C3 Advanced SIMD Instructions (32-bit) on page C3-387 and
Chapter C4 Floating-point Instructions (32-bit) on page C4-545

WFE, WFI, YIELD Wait For Event, Wait For Interrupt, Yield

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-110

Non-Confidential

C2.2 Instruction width specifiers
The instruction width specifiers .W and .N control the size of T32 instruction encodings.

In T32 code the .W width specifier forces the assembler to generate a 32-bit encoding, even if a 16-bit
encoding is available. The .W specifier has no effect when assembling to A32 code.

In T32 code the .N width specifier forces the assembler to generate a 16-bit encoding. In this case, if the
instruction cannot be encoded in 16 bits or if .N is used in A32 code, the assembler generates an error.

If you use an instruction width specifier, you must place it immediately after the instruction mnemonic
and any condition code, for example:

BCS.W label ; forces 32-bit instruction even for a short branch
B.N label ; faults if label out of range for 16-bit instruction

C2 A32 and T32 Instructions
C2.2 Instruction width specifiers

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-111

Non-Confidential

C2.3 Flexible second operand (Operand2)
Many A32 and T32 general data processing instructions have a flexible second operand.

This is shown as Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:
• Constant.
• Register with optional shift.

Related concepts
C2.6 Shift operations on page C2-115
Related references
C2.4 Syntax of Operand2 as a constant on page C2-113
C2.5 Syntax of Operand2 as a register with optional shift on page C2-114

C2 A32 and T32 Instructions
C2.3 Flexible second operand (Operand2)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-112

Non-Confidential

C2.4 Syntax of Operand2 as a constant
An Operand2 constant in an instruction has a limited range of values.

Syntax

#constant

where constant is an expression evaluating to a numeric value.

Usage

In A32 instructions, constant can have any value that can be produced by rotating an 8-bit value right
by any even number of bits within a 32-bit word.

In T32 instructions, constant can be:

• Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-
bit word.

• Any constant of the form 0x00XY00XY.
• Any constant of the form 0xXY00XY00.
• Any constant of the form 0xXYXYXYXY.

 Note

In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are
listed in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ
or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any
other constant.

Instruction substitution

If the value of an Operand2 constant is not available, but its logical inverse or negation is available, then
the assembler produces an equivalent instruction and inverts or negates the constant.

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Be aware of this when comparing disassembly listings with source code.

Related concepts
C2.6 Shift operations on page C2-115
Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.5 Syntax of Operand2 as a register with optional shift on page C2-114

C2 A32 and T32 Instructions
C2.4 Syntax of Operand2 as a constant

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-113

Non-Confidential

C2.5 Syntax of Operand2 as a register with optional shift
When you use an Operand2 register in an instruction, you can optionally also specify a shift value.

Syntax

Rm {, shift}

where:

Rm

is the register holding the data for the second operand.

shift

is an optional constant or register-controlled shift to be applied to Rm. It can be one of:

ASR #n

arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n

logical shift left n bits, 1 ≤ n ≤ 31.

LSR #n

logical shift right n bits, 1 ≤ n ≤ 32.

ROR #n

rotate right n bits, 1 ≤ n ≤ 31.

RRX

rotate right one bit, with extend.

type Rs

register-controlled shift is available in Arm code only, where:

type

is one of ASR, LSL, LSR, ROR.

Rs

is a register supplying the shift amount, and only the least significant byte is
used.

-

if omitted, no shift occurs, equivalent to LSL #0.

Usage

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents of the register Rm remain unchanged. Specifying a register with shift
also updates the carry flag when used with certain instructions.

Related concepts
C2.6 Shift operations on page C2-115
Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.4 Syntax of Operand2 as a constant on page C2-113

C2 A32 and T32 Instructions
C2.5 Syntax of Operand2 as a register with optional shift

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-114

Non-Confidential

C2.6 Shift operations
Register shift operations move the bits in a register left or right by a specified number of bits, called the
shift length.

Register shift can be performed:
• Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination

register.
• During the calculation of Operand2 by the instructions that specify the second operand as a register

with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction
description or the flexible second operand description. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0.

Arithmetic shift right (ASR)

Arithmetic shift right by n bits moves the left-hand 32-n bits of a register to the right by n places, into the
right-hand 32-n bits of the result. It copies the original bit[31] of the register into the left-hand n bits of
the result.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note

• If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

31 1 0

Carry
Flag

...
2345

Figure C2-1 ASR #3

Logical shift right (LSR)

Logical shift right by n bits moves the left-hand 32-n bits of a register to the right by n places, into the
right-hand 32-n bits of the result. It sets the left-hand n bits of the result to 0.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is regarded as
an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

C2 A32 and T32 Instructions
C2.6 Shift operations

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-115

Non-Confidential

31 1 0

Carry
Flag

...

000

2345

Figure C2-2 LSR #3

Logical shift left (LSL)

Logical shift left by n bits moves the right-hand 32-n bits of a register to the left by n places, into the left-
hand 32-n bits of the result. It sets the right-hand n bits of the result to 0.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is regarded
as an unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out,
bit[32-n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

 Note

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

31 1 0
Carry
Flag ...

000

2345

Figure C2-3 LSL #3

Rotate right (ROR)

Rotate right by n bits moves the left-hand 32-n bits of a register to the right by n places, into the right-
hand 32-n bits of the result. It also moves the right-hand n bits of the register into the left-hand n bits of
the result.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

 Note

• If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is
updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

31 1 0

Carry
Flag

...
2345

Figure C2-4 ROR #3

C2 A32 and T32 Instructions
C2.6 Shift operations

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-116

Non-Confidential

Rotate right with extend (RRX)

Rotate right with extend moves the bits of a register to the right by one bit. It copies the carry flag into
bit[31] of the result.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

31 1 0

Carry
Flag

... ...
Figure C2-5 RRX

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.4 Syntax of Operand2 as a constant on page C2-113
C2.5 Syntax of Operand2 as a register with optional shift on page C2-114

C2 A32 and T32 Instructions
C2.6 Shift operations

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-117

Non-Confidential

C2.7 Saturating instructions
Some A32 and T32 instructions perform saturating arithmetic.

The saturating instructions are:
• QADD.
• QDADD.
• QDSUB.
• QSUB.
• SSAT.
• USAT.

Some of the parallel instructions are also saturating.

Saturating arithmetic

Saturation means that, for some value of 2n that depends on the instruction:

• For a signed saturating operation, if the full result would be less than -2n, the result returned is -2n.
• For an unsigned saturating operation, if the full result would be negative, the result returned is zero.
• If the full result would be greater than 2n-1, the result returned is 2n-1.

When any of these occurs, it is called saturation. Some instructions set the Q flag when saturation occurs.
 Note

Saturating instructions do not clear the Q flag when saturation does not occur. To clear the Q flag, use an
MSR instruction.

The Q flag can also be set by two other instructions, but these instructions do not saturate.

Related references
C2.75 QADD on page C2-223
C2.82 QSUB on page C2-230
C2.79 QDADD on page C2-227
C2.80 QDSUB on page C2-228
C2.113 SMLAxy on page C2-271
C2.118 SMLAWy on page C2-278
C2.125 SMULxy on page C2-285
C2.127 SMULWy on page C2-287
C2.130 SSAT on page C2-291
C2.181 USAT on page C2-366
C2.65 MSR (general-purpose register to PSR) on page C2-208

C2 A32 and T32 Instructions
C2.7 Saturating instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-118

Non-Confidential

C2.8 ADC
Add with Carry.

Syntax

ADC{S}{cond} {Rd}, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Usage

The ADC (Add with Carry) instruction adds the values in Rn and Operand2, together with the carry flag.

You can use ADC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

You cannot use PC (R15) for Rd, or any operand with the ADC command.

You cannot use SP (R13) for Rd, or any operand with the ADC command.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

Use of PC for any operand, in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Operand2, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP with the ADC A32 instruction is deprecated.

Condition flags

If S is specified, the ADC instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

ADCS Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

C2 A32 and T32 Instructions
C2.8 ADC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-119

Non-Confidential

ADC{cond} Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Multiword arithmetic examples

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer contained in
R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.8 ADC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-120

Non-Confidential

C2.9 ADD
Add without Carry.

Syntax

ADD{S}{cond} {Rd}, Rn, Operand2

ADD{cond} {Rd}, Rn, #imm12 ; T32, 32-bit encoding only

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

imm12
is any value in the range 0-4095.

Operation

The ADD instruction adds the values in Rn and Operand2 or imm12.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

Generally, you cannot use PC (R15) for Rd, or any operand.

The exceptions are:

• you can use PC for Rn in 32-bit encodings of T32 ADD instructions, with a constant Operand2 value in
the range 0-4095, and no S suffix. These instructions are useful for generating PC-relative addresses.
Bit[1] of the PC value reads as 0 in this case, so that the base address for the calculation is always
word-aligned.

• you can use PC in 16-bit encodings of T32 ADD{cond} Rd, Rd, Rm instructions, where both registers
cannot be PC. However, the following 16-bit T32 instructions are deprecated:
— ADD{cond} PC, SP, PC.
— ADD{cond} SP, SP, PC.

Generally, you cannot use SP (R13) for Rd, or any operand. Except that:
• You can use SP for Rn in ADD instructions.
• ADD{cond} SP, SP, SP is permitted but is deprecated in Armv6T2 and above.
• ADD{S}{cond} SP, SP, Rm{,shift} and SUB{S}{cond} SP, SP, Rm{,shift} are permitted if

shift is omitted or LSL #1, LSL #2, or LSL #3.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

In ADD instructions without register-controlled shift, use of PC is deprecated except for the following
cases:

C2 A32 and T32 Instructions
C2.9 ADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-121

Non-Confidential

• Use of PC for Rd in instructions that do not add SP to a register.
• Use of PC for Rn and use of PC for Rm in instructions that add two registers other than SP.
• Use of PC for Rn in the instruction ADD{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in ADD instructions, however, ADDS PC, SP, #Constant is deprecated.

You can use SP in ADD (register) if Rn is SP and shift is omitted or LSL #1, LSL #2, or LSL #3.

Other uses of SP in these A32 instructions are deprecated.

Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ADDS Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

ADD{cond} Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT
block.

ADDS Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

ADD{cond} Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

ADDS Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

ADD{cond} Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

ADD SP, SP, #imm
imm range 0-508, word aligned.

ADD Rd, SP, #imm
imm range 0-1020, word aligned. Rd must be a Lo register.

ADD Rd, pc, #imm
imm range 0-1020, word aligned. Rd must be a Lo register. Bits[1:0] of the PC are read as 0 in
this instruction.

Example
 ADD r2, r1, r3

Multiword arithmetic example

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer contained in
R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

C2 A32 and T32 Instructions
C2.9 ADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-122

Non-Confidential

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92
C2.144 SUBS pc, lr on page C2-317

C2 A32 and T32 Instructions
C2.9 ADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-123

Non-Confidential

C2.10 ADR (PC-relative)
Generate a PC-relative address in the destination register, for a label in the current area.

Syntax

ADR{cond}{.W} Rd,label

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rd
is the destination register to load.

label

is a PC-relative expression.

label must be within a limited distance of the current instruction.

Usage

ADR produces position-independent code, because the assembler generates an instruction that adds or
subtracts a value to the PC.

label must evaluate to an address in the same assembler area as the ADR instruction.

If you use ADR to generate a target for a BX or BLX instruction, it is your responsibility to set the T32 bit
(bit 0) of the address if the target contains T32 instructions.

Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if label is out
of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-2 PC-relative offsets

Instruction Offset range

A32 ADR See C2.4 Syntax of Operand2 as a constant on page C2-113.

T32 ADR, 32-bit encoding ±4095

T32 ADR, 16-bit encoding a 0-1020 b

ADR in T32

You can use the .W width specifier to force ADR to generate a 32-bit instruction in T32 code. ADR with .W
always generates a 32-bit instruction, even if the address can be generated in a 16-bit instruction.

For forward references, ADR without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for an address that could be generated in a 32-bit T32 ADD instruction.

Restrictions

In T32 code, Rd cannot be PC or SP.

In A32 code, Rd can be PC or SP but use of SP is deprecated.

a Rd must be in the range R0-R7.
b Must be a multiple of 4.

C2 A32 and T32 Instructions
C2.10 ADR (PC-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-124

Non-Confidential

Related references
C2.4 Syntax of Operand2 as a constant on page C2-113
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.10 ADR (PC-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-125

Non-Confidential

C2.11 ADR (register-relative)
Generate a register-relative address in the destination register, for a label defined in a storage map.

Syntax

ADR{cond}{.W} Rd,label

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rd
is the destination register to load.

label

is a symbol defined by the FIELD directive. label specifies an offset from the base register
which is defined using the MAP directive.

label must be within a limited distance from the base register.

Usage

ADR generates code to easily access named fields inside a storage map.

Restrictions
In T32 code:
• Rd cannot be PC.
• Rd can be SP only if the base register is SP.

Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an error if
label is out of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-3 Register-relative offsets

Instruction Offset range

A32 ADR See C2.4 Syntax of Operand2 as a constant on page C2-113

T32 ADR, 32-bit encoding ±4095

T32 ADR, 16-bit encoding, base register is SP c 0-1020 d

ADR in T32

You can use the .W width specifier to force ADR to generate a 32-bit instruction in T32 code. ADR with .W
always generates a 32-bit instruction, even if the address can be generated in a 16-bit instruction.

For forward references, ADR without .W, with base register SP, always generates a 16-bit instruction in
T32 code, even if that results in failure for an address that could be generated in a 32-bit T32 ADD
instruction.

Related references
C2.4 Syntax of Operand2 as a constant on page C2-113

c Rd must be in the range R0-R7 or SP. If Rd is SP, the offset range is -508 to 508 and must be a multiple of 4
d Must be a multiple of 4.

C2 A32 and T32 Instructions
C2.11 ADR (register-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-126

Non-Confidential

C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.11 ADR (register-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-127

Non-Confidential

C2.12 AND
Logical AND.

Syntax

AND{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The AND instruction performs bitwise AND operations on the values in Rn and Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of this when
reading disassembly listings.

Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand with the AND instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the AND A32 instruction but this is deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the AND instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

ANDS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

AND{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify AND{S} Rd, Rm, Rd. The instruction is the same.

C2 A32 and T32 Instructions
C2.12 AND

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-128

Non-Confidential

Examples
 AND r9,r2,#0xFF00
 ANDS r9, r8, #0x19

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.12 AND

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-129

Non-Confidential

C2.13 ASR
Arithmetic Shift Right. This instruction is a preferred synonym for MOV instructions with shifted register
operands.

Syntax

ASR{S}{cond} Rd, Rm, Rs

ASR{S}{cond} Rd, Rm, #sh

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rm
is the register holding the first operand. This operand is shifted right.

Rs
is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh
is a constant shift. The range of values permitted is 1-32.

Operation

ASR provides the signed value of the contents of a register divided by a power of two. It copies the sign
bit into vacated bit positions on the left.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in the ASR A32 instruction but this is deprecated.

You cannot use PC in instructions with the ASR{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction ASRS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in the ASR instruction if it has a register-controlled shift.

C2 A32 and T32 Instructions
C2.13 ASR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-130

Non-Confidential

Condition flags

If S is specified, the ASR instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ASRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

ASRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This instruction is available in A32 and T32.

Example
 ASR r7, r8, r9

Related references
C2.58 MOV on page C2-199
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.13 ASR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-131

Non-Confidential

C2.14 B
Branch.

Syntax

B{cond}{.W} label

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier to force the use of a 32-bit B instruction in T32.

label
is a PC-relative expression.

Operation

The B instruction causes a branch to label.

Instruction availability and branch ranges

The following table shows the branch ranges that are available in A32 and T32 code. Instructions that are
not shown in this table are not available.

Table C2-4 B instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

B label ±32MB ±2KB ±16MB e

B{cond} label ±32MB -252 to +258 ±1MB e

Extending branch ranges

Machine-level B instructions have restricted ranges from the address of the current instruction. However,
you can use these instructions even if label is out of range. Often you do not know where the linker
places label. When necessary, the linker adds code to enable longer branches. The added code is called
a veneer.

B in T32

You can use the .W width specifier to force B to generate a 32-bit instruction in T32 code.

B.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit instruction.

For forward references, B without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for a target that could be reached using a 32-bit T32 instruction.

Condition flags

The B instruction does not change the flags.

Architectures

See the earlier table for details of availability of the B instruction.

Example
 B loopA

e Use .W to instruct the assembler to use this 32-bit instruction.

C2 A32 and T32 Instructions
C2.14 B

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-132

Non-Confidential

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.14 B

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-133

Non-Confidential

C2.15 BFC
Bit Field Clear.

Syntax

BFC{cond} Rd, #lsb, #width

where:

cond
is an optional condition code.

Rd
is the destination register.

lsb
is the least significant bit that is to be cleared.

width
is the number of bits to be cleared. width must not be 0, and (width+lsb) must be less than or
equal to 32.

Operation

Clears adjacent bits in a register. width bits in Rd are cleared, starting at lsb. Other bits in Rd are
unchanged.

Register restrictions

You cannot use PC for any register.

You can use SP in the BFC A32 instruction but this is deprecated. You cannot use SP in the BFC T32
instruction.

Condition flags

The BFC instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.15 BFC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-134

Non-Confidential

C2.16 BFI
Bit Field Insert.

Syntax

BFI{cond} Rd, Rn, #lsb, #width

where:

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the source register.

lsb
is the least significant bit that is to be copied.

width
is the number of bits to be copied. width must not be 0, and (width+lsb) must be less than or
equal to 32.

Operation

Inserts adjacent bits from one register into another. width bits in Rd, starting at lsb, are replaced by
width bits from Rn, starting at bit[0]. Other bits in Rd are unchanged.

Register restrictions

You cannot use PC for any register.

You can use SP in the BFI A32 instruction but this is deprecated. You cannot use SP in the BFI T32
instruction.

Condition flags

The BFI instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.16 BFI

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-135

Non-Confidential

C2.17 BIC
Bit Clear.

Syntax

BIC{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The BIC (Bit Clear) instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of this when
reading disassembly listings.

Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand in a BIC instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the BIC instruction but they are deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the BIC instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of the BIC instruction are available in T32 code, and are 16-bit instructions:

BICS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

BIC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

C2 A32 and T32 Instructions
C2.17 BIC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-136

Non-Confidential

Example
 BIC r0, r1, #0xab

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.17 BIC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-137

Non-Confidential

C2.18 BKPT
Breakpoint.

Syntax

BKPT #imm

where:

imm
is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an A32 instruction.
• 0-255 (an 8-bit value) in a 16-bit T32 instruction.

Usage

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate
system state when the instruction at a particular address is reached.

In both A32 state and T32 state, imm is ignored by the Arm hardware. However, a debugger can use it to
store additional information about the breakpoint.

BKPT is an unconditional instruction. It must not have a condition code in A32 code. In T32 code, the
BKPT instruction does not require a condition code suffix because BKPT always executes irrespective of its
condition code suffix.

Architectures

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.

C2 A32 and T32 Instructions
C2.18 BKPT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-138

Non-Confidential

C2.19 BL
Branch with Link.

Syntax

BL{cond}{.W} label

where:

cond
is an optional condition code. cond is not available on all forms of this instruction.

.W
is an optional instruction width specifier to force the use of a 32-bit BL instruction in T32.

label
is a PC-relative expression.

Operation

The BL instruction causes a branch to label, and copies the address of the next instruction into LR (R14,
the link register).

Instruction availability and branch ranges

The following table shows the BL instructions that are available in A32 and T32 state. Instructions that
are not shown in this table are not available.

Table C2-5 BL instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BL label ±32MB ±4MB f ±16MB

BL{cond} label ±32MB - -

Extending branch ranges

Machine-level BL instructions have restricted ranges from the address of the current instruction.
However, you can use these instructions even if label is out of range. Often you do not know where the
linker places label. When necessary, the linker adds code to enable longer branches. The added code is
called a veneer.

Condition flags

The BL instruction does not change the flags.

Availability

See the preceding table for details of availability of the BL instruction in both instruction sets.

Examples
 BLE ng+8
 BL subC
 BLLT rtX

Related references
C1.9 Condition code suffixes on page C1-92

f BL label and BLX label are an instruction pair.

C2 A32 and T32 Instructions
C2.19 BL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-139

Non-Confidential

C2.20 BLX, BLXNS
Branch with Link and exchange instruction set and Branch with Link and Exchange (Non-secure).

Syntax

BLX{cond}{q} label

BLX{cond}{q} Rm

BLXNS{cond}{q} Rm (Armv8‑M only)

Where:

cond
Is an optional condition code. cond is not available on all forms of this instruction.

q
Is an optional instruction width specifier. Must be set to .W when label is used.

label
Is a PC-relative expression.

Rm
Is a register containing an address to branch to.

Operation
The BLX instruction causes a branch to label, or to the address contained in Rm. In addition:
• The BLX instruction copies the address of the next instruction into LR (R14, the link register).
• The BLX instruction can change the instruction set.

BLX label always changes the instruction set. It changes a processor in A32 state to T32 state, or a
processor in T32 state to A32 state.

BLX Rm derives the target instruction set from bit[0] of Rm:
— If bit[0] of Rm is 0, the processor changes to, or remains in, A32 state.
— If bit[0] of Rm is 1, the processor changes to, or remains in, T32 state.

 Note

• Armv7‑M and Armv6‑M only support the T32 instruction set. An attempt to change the instruction
execution state causes the processor to take an exception on the instruction at the target address.

The BLXNS instruction calls a subroutine at an address and instruction set specified by a register, and
causes a transition from the Secure to the Non-secure domain. This variant of the instruction must only
be used when additional steps required to make such a transition safe are taken.

Instruction availability and branch ranges

The following table shows the instructions that are available in A32 and T32 state. Instructions that are
not shown in this table are not available.

Table C2-6 BLX instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BLX label ±32MB ±4MB g ±16MB

BLX Rm Available Available Use 16-bit

BLX{cond} Rm Available - -

BLXNS - Available -

g BLX label and BL label are an instruction pair.

C2 A32 and T32 Instructions
C2.20 BLX, BLXNS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-140

Non-Confidential

Register restrictions

You can use PC for Rm in the A32 BLX instruction, but this is deprecated. You cannot use PC in other A32
instructions.

You can use PC for Rm in the T32 BLX instruction. You cannot use PC in other T32 instructions.

You can use SP for Rm in this A32 instruction but this is deprecated.

You can use SP for Rm in the T32 BLX and BLXNS instructions, but this is deprecated. You cannot use SP
in the other T32 instructions.

Condition flags

These instructions do not change the flags.

Availability

See the preceding table for details of availability of the BLX and BLXNS instructions in both instruction
sets.

Related references
C1.9 Condition code suffixes on page C1-92
C2.2 Instruction width specifiers on page C2-111

C2 A32 and T32 Instructions
C2.20 BLX, BLXNS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-141

Non-Confidential

C2.21 BX, BXNS
Branch and exchange instruction set and Branch and Exchange Non-secure.

Syntax

BX{cond}{q} Rm

BXNS{cond}{q} Rm (Armv8‑M only)

Where:

cond
Is an optional condition code. cond is not available on all forms of this instruction.

q
Is an optional instruction width specifier.

Rm
Is a register containing an address to branch to.

Operation

The BX instruction causes a branch to the address contained in Rm and exchanges the instruction set, if
necessary. The BX instruction can change the instruction set.

BX Rm derives the target instruction set from bit[0] of Rm:
• If bit[0] of Rm is 0, the processor changes to, or remains in, A32 state.
• If bit[0] of Rm is 1, the processor changes to, or remains in, T32 state.

 Note

• Armv7‑M and Armv6‑M only support the T32 instruction set. An attempt to change the instruction
execution state causes the processor to take an exception on the instruction at the target address.

BX can also be used for an exception return.

The BXNS instruction causes a branch to an address and instruction set specified by a register, and causes
a transition from the Secure to the Non-secure domain. This variant of the instruction must only be used
when additional steps required to make such a transition safe are taken.

Instruction availability and branch ranges

The following table shows the instructions that are available in A32 and T32 state. Instructions that are
not shown in this table are not available.

Table C2-7 BX instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BX Rm Available Available Use 16-bit

BX{cond} Rm Available - -

BXNS - Available -

Register restrictions

You can use PC for Rm in the A32 BX instruction, but this is deprecated. You cannot use PC in other A32
instructions.

You can use PC for Rm in the T32 BX and BXNS instructions. You cannot use PC in other T32 instructions.

You can use SP for Rm in the A32 BX instruction but this is deprecated.

C2 A32 and T32 Instructions
C2.21 BX, BXNS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-142

Non-Confidential

You can use SP for Rm in the T32 BX and BXNS instructions, but this is deprecated.

Condition flags

These instructions do not change the flags.

Availability

See the preceding table for details of availability of the BX and BXNS instructions in both instruction sets.

Related references
C1.9 Condition code suffixes on page C1-92
C2.2 Instruction width specifiers on page C2-111

C2 A32 and T32 Instructions
C2.21 BX, BXNS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-143

Non-Confidential

C2.22 BXJ
Branch and change to Jazelle state.

Syntax

BXJ{cond} Rm

where:

cond
is an optional condition code. cond is not available on all forms of this instruction.

Rm
is a register containing an address to branch to.

Operation
The BXJ instruction causes a branch to the address contained in Rm and changes the instruction set state to
Jazelle.

 Note

In Armv8, BXJ behaves as a BX instruction. This means it causes a branch to an address and instruction
set specified by a register.

Instruction availability and branch ranges

The following table shows the BXJ instructions that are available in A32 and T32 state. Instructions that
are not shown in this table are not available.

Table C2-8 BXJ instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BXJ Rm Available - Available

BXJ{cond} Rm Available - -

Register restrictions

You can use SP for Rm in the BXJ A32 instruction but this is deprecated.

You cannot use SP in the BXJ T32 instruction.

Condition flags

The BXJ instruction does not change the flags.

Availability

See the preceding table for details of availability of the BXJ instruction in both instruction sets.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.22 BXJ

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-144

Non-Confidential

C2.23 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ{q} Rn, label

CBNZ{q} Rn, label

where:

q
Is an optional instruction width specifier.

Rn
Is the register holding the operand.

label
Is the branch destination.

Usage

You can use the CBZ or CBNZ instructions to avoid changing the condition flags and to reduce the number
of instructions.

Except that it does not change the condition flags, CBZ Rn, label is equivalent to:

 CMP Rn, #0
 BEQ label

Except that it does not change the condition flags, CBNZ Rn, label is equivalent to:

 CMP Rn, #0
 BNE label

Restrictions

The branch destination must be a multiple of 2 in the range 0 to 126 bytes after the instruction and in the
same execution state.

These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Architectures

These 16-bit instructions are available in Armv7‑A T32, Armv8‑A T32, and Armv8‑M only.

There are no Armv7‑A A32, or Armv8‑A A32 or 32-bit T32 encodings of these instructions.

Related references
C2.14 B on page C2-132
C2.27 CMP and CMN on page C2-149
C2.2 Instruction width specifiers on page C2-111

C2 A32 and T32 Instructions
C2.23 CBZ and CBNZ

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-145

Non-Confidential

C2.24 CDP and CDP2
Coprocessor data operations.

 Note

CDP and CDP2 are not supported in Armv8.

Syntax

CDP{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

CDP2{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for CDP2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer in the range 0-15.

opcode1
is a 4-bit coprocessor-specific opcode.

opcode2
is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm
are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.24 CDP and CDP2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-146

Non-Confidential

C2.25 CLREX
Clear Exclusive.

Syntax

CLREX{cond}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
Armv8. This is an unconditional instruction in A32.

Usage

Use the CLREX instruction to clear the local record of the executing processor that an address has had a
request for an exclusive access.

CLREX returns a closely-coupled exclusive access monitor to its open-access state. This removes the
requirement for a dummy store to memory.

It is implementation defined whether CLREX also clears the global record of the executing processor that
an address has had a request for an exclusive access.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit CLREX instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.25 CLREX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-147

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.26 CLZ
Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rm
is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd.
The result value is 32 if no bits are set in the source register, and zero if bit 31 is set.

Register restrictions

You cannot use PC for any operand.

You can use SP in these A32 instructions but this is deprecated.

You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Examples
 CLZ r4,r9
 CLZNE r2,r3

Use the CLZ T32 instruction followed by a left shift of Rm by the resulting Rd value to normalize the value
of register Rm. Use MOVS, rather than MOV, to flag the case where Rm is zero:

 CLZ r5, r9
 MOVS r9, r9, LSL r5

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.26 CLZ

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-148

Non-Confidential

C2.27 CMP and CMN
Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond
is an optional condition code.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the
result, but do not place the result in any register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute CMN for CMP, or CMP for CMN. Be aware of this when
reading disassembly listings.

Use of PC in A32 and T32 instructions

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

You can use PC (R15) in these A32 instructions without register controlled shift but this is deprecated.

If you use PC as Rn in A32 instructions, the value used is the address of the instruction plus 8.

You cannot use PC for any operand in these T32 instructions.

Use of SP in A32 and T32 instructions

You can use SP for Rn in A32 and T32 instructions.

You can use SP for Rm in A32 instructions but this is deprecated.

You can use SP for Rm in a 16-bit T32 CMP Rn, Rm instruction but this is deprecated. Other uses of SP for
Rm are not permitted in T32.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

CMP Rn, Rm
Lo register restriction does not apply.

CMN Rn, Rm
Rn and Rm must both be Lo registers.

C2 A32 and T32 Instructions
C2.27 CMP and CMN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-149

Non-Confidential

CMP Rn, #imm
Rn must be a Lo register. imm range 0-255.

Correct examples
 CMP r2, r9
 CMN r0, #6400
 CMPGT sp, r7, LSL #2

Incorrect example
 CMP r2, pc, ASR r0 ; PC not permitted with register-controlled
 ; shift.

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.27 CMP and CMN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-150

Non-Confidential

C2.28 CPS
Change Processor State.

Syntax

CPSeffect iflags{, #mode}

CPS #mode

where:

effect

is one of:

IE
Interrupt or abort enable.

ID
Interrupt or abort disable.

iflags

is a sequence of one or more of:

a
Enables or disables imprecise aborts.

i
Enables or disables IRQ interrupts.

f
Enables or disables FIQ interrupts.

mode
specifies the number of the mode to change to.

Usage

Changes one or more of the mode, A, I, and F bits in the CPSR, without changing the other CPSR bits.

CPS is only permitted in privileged software execution, and has no effect in User mode.

CPS cannot be conditional, and is not permitted in an IT block.

Condition flags

This instruction does not change the condition flags.

16-bit instructions
The following forms of these instructions are available in T32 code, and are 16-bit instructions:
• CPSIE iflags.
• CPSID iflags.

You cannot specify a mode change in a 16-bit T32 instruction.

Architectures

This instruction is available in A32 and T32.

In T32, 16-bit and 32-bit versions of this instruction are available.

Examples
 CPSIE if ; Enable IRQ and FIQ interrupts.
 CPSID A ; Disable imprecise aborts.
 CPSID ai, #17 ; Disable imprecise aborts and interrupts, and enter

C2 A32 and T32 Instructions
C2.28 CPS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-151

Non-Confidential

 ; FIQ mode.
 CPS #16 ; Enter User mode.

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28

C2 A32 and T32 Instructions
C2.28 CPS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-152

Non-Confidential

C2.29 CRC32
CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register.

Syntax

CRC32B{q} Rd, Rn, Rm ; A1 Wd = CRC32(Wn, Rm[<7:0>])

CRC32H{q} Rd, Rn, Rm ; A1 Wd = CRC32(Wn, Rm[<15:0>])

CRC32W{q} Rd, Rn, Rm ; A1 Wd = CRC32(Wn, Rm[<31:0>])

CRC32B{q} Rd, Rn, Rm ; T1 Wd = CRC32(Wn, Rm[<7:0>])

CRC32H{q} Rd, Rn, Rm ; T1 Wd = CRC32(Wn, Rm[<15:0>])

CRC32W{q} Rd, Rn, Rm ; T1 Wd = CRC32(Wn, Rm[<31:0>])

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.
A CRC32 instruction must be unconditional.

Rd
Is the general-purpose accumulator output register.

Rn
Is the general-purpose accumulator input register.

Rm
Is the general-purpose data source register.

Architectures supported

Supported in architecture Armv8.1 and later. Optionally supported in the Armv8‑A architecture.

Usage
CRC32 takes an input CRC value in the first source operand, performs a CRC on the input value in the
second source operand, and returns the output CRC value. The second source operand can be 8, 16, or 32
bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the
polynomial 0x04C11DB7 is used for the CRC calculation.

 Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Related references
C2.29 CRC32 on page C2-153
C2.1 A32 and T32 instruction summary on page C2-106

C2 A32 and T32 Instructions
C2.29 CRC32

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-153

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C2.30 CRC32C
CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register.

Syntax

CRC32CB{q} Rd, Rn, Rm ; A1 Wd = CRC32C(Wn, Rm[<7:0>])

CRC32CH{q} Rd, Rn, Rm ; A1 Wd = CRC32C(Wn, Rm[<15:0>])

CRC32CW{q} Rd, Rn, Rm ; A1 Wd = CRC32C(Wn, Rm[<31:0>])

CRC32CB{q} Rd, Rn, Rm ; T1 Wd = CRC32C(Wn, Rm[<7:0>])

CRC32CH{q} Rd, Rn, Rm ; T1 Wd = CRC32C(Wn, Rm[<15:0>])

CRC32CW{q} Rd, Rn, Rm ; T1 Wd = CRC32C(Wn, Rm[<31:0>])

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.
A CRC32C instruction must be unconditional.

Rd
Is the general-purpose accumulator output register.

Rn
Is the general-purpose accumulator input register.

Rm
Is the general-purpose data source register.

Architectures supported

Supported in architecture Armv8‑A.1 and later. Optionally supported in the Armv8‑A architecture.

Usage
CRC32C takes an input CRC value in the first source operand, performs a CRC on the input value in the
second source operand, and returns the output CRC value. The second source operand can be 8, 16, or 32
bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the
polynomial 0x1EDC6F41 is used for the CRC calculation.

 Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Related references
C2.29 CRC32 on page C2-153
C2.1 A32 and T32 instruction summary on page C2-106

C2 A32 and T32 Instructions
C2.30 CRC32C

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-154

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C2.31 CSDB
Consumption of Speculative Data Barrier.

Syntax

CSDB{c}{q} ; A32

CSDB{c}.W ; T32

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83.

Usage

Consumption of Speculative Data Barrier is a memory barrier that controls Speculative execution and
data value prediction. Arm Compiler supports the mitigation of the Variant 1 mechanism that is described
in the whitepaper at Vulnerability of Speculative Processors to Cache Timing Side-Channel Mechanism.

The CSDB instruction allows Speculative execution of:

• Branch instructions.
• Instructions that write to the PC.
• Instructions that are not a result of data value predictions.
• Instructions that are the result of PSTATE.{N,Z,C,V} predictions from conditional branch

instructions or from conditional instructions that write to the PC.

The CSDB instruction prevents Speculative execution of:
• Non-branch instructions.
• Instructions that do not write to the PC.
• Instructions that are the result of data value predictions.
• Instructions that are the result of PSTATE.{N,Z,C,V} predictions from instructions other than

conditional branch instructions and conditional instructions that write to the PC.

CONSTRAINED UNPREDICTABLE behavior
For conditional CSDB instructions that specify a condition {c} other than AL in A32, and for any
condition {c} used inside an IT block in T32, then how the instructions are rejected depends on your
assembler implementation. See your assembler documentation for details.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Examples

The following example shows a code sequence that could result in the processor loading data from an
untrusted location that is provided by a user as the result of Speculative execution of instructions:

 CMP R0, R1
 BGE out_of_range
 LDRB R4, [R5, R0] ; load data from list A
 ; speculative execution of this instruction
 ; must be prevented
 AND R4, R4, #1
 LSL R4, R4, #8
 ADD R4, R4, #0x200
 CMP R4, R6
 BGE out_of_range

C2 A32 and T32 Instructions
C2.31 CSDB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-155

Non-Confidential

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

 LDRB R7, [R8, R4] ; load data from list B
out_of_range

In this example:

• There are two list objects A and B.
• A contains a list of values that are used to calculate offsets from which data can be loaded from B.
• R1 is the length of A.
• R5 is the base address of A.
• R6 is the length of B.
• R8 is the base address of B.
• R0 is an untrusted offset that is provided by a user, and is used to load an element from A.

When R0 is greater-than or equal-to the length of A, it is outside the address range of A. Therefore, the
first branch instruction BGE out_of_range is taken, and instructions LDRB R4, [R5, R0] through LDRB
R7, [R8, R4] are skipped.

Without a CSDB instruction, these skipped instructions can still be speculatively executed, and could
result in:
• If R0 is maliciously set to an incorrect value, then data can be loaded into R4 from an address outside

the address range of A.
• Data can be loaded into R7 from an address outside the address range of B.

To mitigate against these untrusted accesses, add a pair of MOVGE and CSDB instructions between the BGE
out_of_range and LDRB R4, [R5, R0] instructions as follows:

 CMP R0, R1
 BGE out_of_range

 MOVGE R0, #0 ; conditonally clears the untrusted
 ; offset provided by the user so that
 ; it cannot affect any other code

 CSDB ; new barrier instruction

 LDRB R4, [R5, R0] ; load data from list A
 ; speculative execution of this instruction
 ; is prevented
 AND R4, R4, #1
 LSL R4, R4, #8
 ADD R4, R4, #0x200
 CMP R4, R6
 BGE out_of_range
 LDRB R7, [R8, R4] ; load data from list B
out_of_range

Related references
C2.1 A32 and T32 instruction summary on page C2-106
C2.58 MOV on page C2-199
Related information
Arm Processor Security Update
Compiler support for mitigations

C2 A32 and T32 Instructions
C2.31 CSDB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-156

Non-Confidential

https://developer.arm.com/support/security-update
https://developer.arm.com/support/security-update/compiler-support-for-mitigations

C2.32 DBG
Debug.

Syntax

DBG{cond} {option}

where:

cond
is an optional condition code.

option
is an optional limitation on the operation of the hint. The range is 0-15.

Usage

DBG is a hint instruction. It is optional whether it is implemented or not. If it is not implemented, it
behaves as a NOP. The assembler produces a diagnostic message if the instruction executes as NOP on the
target.

Debug hint provides a hint to a debugger and related tools. See your debugger and related tools
documentation to determine the use, if any, of this instruction.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C2.68 NOP on page C2-213
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.32 DBG

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-157

Non-Confidential

C2.33 DMB
Data Memory Barrier.

Syntax

DMB{cond} {option}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code. This is an unconditional instruction in A32 code.

option

is an optional limitation on the operation of the hint. Permitted values are:

SY
Full system barrier operation. This is the default and can be omitted.

LD
Barrier operation that waits only for loads to complete.

ST
Barrier operation that waits only for stores to complete.

ISH
Barrier operation only to the inner shareable domain.

ISHLD
Barrier operation that waits only for loads to complete, and only applies to the inner
shareable domain.

ISHST
Barrier operation that waits only for stores to complete, and only to the inner shareable
domain.

NSH
Barrier operation only out to the point of unification.

NSHLD
Barrier operation that waits only for loads to complete and only applies out to the point
of unification.

NSHST
Barrier operation that waits only for stores to complete and only out to the point of
unification.

OSH
Barrier operation only to the outer shareable domain.

OSHLD
DMB operation that waits only for loads to complete, and only applies to the outer
shareable domain.

OSHST
Barrier operation that waits only for stores to complete, and only to the outer shareable
domain.

 Note

The options LD, ISHLD, NSHLD, and OSHLD are supported only in the Armv8-A and Armv8-R
architectures.

C2 A32 and T32 Instructions
C2.33 DMB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-158

Non-Confidential

Operation

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that appear in
program order before the DMB instruction are observed before any explicit memory accesses that appear
in program order after the DMB instruction. It does not affect the ordering of any other instructions
executing on the processor.

Alias
The following alternative values of option are supported, but Arm recommends that you do not use
them:
• SH is an alias for ISH.
• SHST is an alias for ISHST.
• UN is an alias for NSH.
• UNST is an alias for NSHST.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.33 DMB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-159

Non-Confidential

C2.34 DSB
Data Synchronization Barrier.

Syntax

DSB{cond} {option}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code. This is an unconditional instruction in A32 code.

option

is an optional limitation on the operation of the hint. Permitted values are:

SY
Full system barrier operation. This is the default and can be omitted.

LD
Barrier operation that waits only for loads to complete.

ST
Barrier operation that waits only for stores to complete.

ISH
Barrier operation only to the inner shareable domain.

ISHLD
Barrier operation that waits only for loads to complete, and only applies to the inner
shareable domain.

ISHST
Barrier operation that waits only for stores to complete, and only to the inner shareable
domain.

NSH
Barrier operation only out to the point of unification.

NSHLD
Barrier operation that waits only for loads to complete and only applies out to the point
of unification.

NSHST
Barrier operation that waits only for stores to complete and only out to the point of
unification.

OSH
Barrier operation only to the outer shareable domain.

OSHLD
DMB operation that waits only for loads to complete, and only applies to the outer
shareable domain.

OSHST
Barrier operation that waits only for stores to complete, and only to the outer shareable
domain.

 Note

The options LD, ISHLD, NSHLD, and OSHLD are supported only in the Armv8-A and Armv8-R
architectures.

C2 A32 and T32 Instructions
C2.34 DSB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-160

Non-Confidential

Operation
Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in program order
after this instruction executes until this instruction completes. This instruction completes when:
• All explicit memory accesses before this instruction complete.
• All Cache, Branch predictor and TLB maintenance operations before this instruction complete.

Alias
The following alternative values of option are supported for DSB, but Arm recommends that you do not
use them:
• SH is an alias for ISH.
• SHST is an alias for ISHST.
• UN is an alias for NSH.
• UNST is an alias for NSHST.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.34 DSB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-161

Non-Confidential

C2.35 EOR
Logical Exclusive OR.

Syntax

EOR{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The EOR instruction performs bitwise Exclusive OR operations on the values in Rn and Operand2.

Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand in an EOR instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the EOR instruction but they are deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the EOR instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of the EOR instruction are available in T32 code, and are 16-bit instructions:

EORS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

EOR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify EOR{S} Rd, Rm, Rd. The instruction is the same.

C2 A32 and T32 Instructions
C2.35 EOR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-162

Non-Confidential

Correct examples
 EORS r0,r0,r3,ROR r6
 EORS r7, r11, #0x18181818

Incorrect example
 EORS r0,pc,r3,ROR r6 ; PC not permitted with register
 ; controlled shift

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.35 EOR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-163

Non-Confidential

C2.36 ERET
Exception Return.

Syntax

ERET{cond}

where:

cond

is an optional condition code.

Usage

In a processor that implements the Virtualization Extensions, you can use ERET to perform a return from
an exception taken to Hyp mode.

Operation
When executed in Hyp mode, ERET loads the PC from ELR_hyp and loads the CPSR from SPSR_hyp.
When executed in any other mode, apart from User or System, it behaves as:
• MOVS PC, LR in the A32 instruction set.
• SUBS PC, LR, #0 in the T32 instruction set.

Notes

You must not use ERET in User or System mode. The assembler cannot warn you about this because it
has no information about what the processor mode is likely to be at execution time.

ERET is the preferred synonym for SUBS PC, LR, #0 in the T32 instruction set.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related references
C2.58 MOV on page C2-199
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92
C2.39 HVC on page C2-167

C2 A32 and T32 Instructions
C2.36 ERET

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-164

Non-Confidential

C2.37 ESB
Error Synchronization Barrier.

Syntax

ESB{c}{q}

ESB{c}.W

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83.

Architectures supported

Supported in the Armv8-A and Armv8-R architectures.

Usage

Error Synchronization Barrier.

Related references
C2.1 A32 and T32 instruction summary on page C2-106

C2 A32 and T32 Instructions
C2.37 ESB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-165

Non-Confidential

C2.38 HLT
Halting breakpoint.

 Note

This instruction is supported only in the Armv8 architecture.

Syntax

HLT{Q} #imm

Where:

Q
is an optional suffix. It only has an effect when Halting debug-mode is disabled. In this case, if Q
is specified, the instruction behaves as a NOP. If Q is not specified, the instruction is UNDEFINED.

imm
is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an A32 instruction.
• 0-63 (a 6-bit value) in a 16-bit T32 instruction.

Usage

The HLT instruction causes the processor to enter Debug state if Halting debug-mode is enabled.

In both A32 state and T32 state, imm is ignored by the Arm hardware. However, a debugger can use it to
store additional information about the breakpoint.

HLT is an unconditional instruction. It must not have a condition code in A32 code. In T32 code, the HLT
instruction does not require a condition code suffix because it always executes irrespective of its
condition code suffix.

Availability

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.

Related references
C2.68 NOP on page C2-213

C2 A32 and T32 Instructions
C2.38 HLT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-166

Non-Confidential

C2.39 HVC
Hypervisor Call.

Syntax

HVC #imm

where:

imm
is an expression evaluating to an integer in the range 0-65535.

Operation

In a processor that implements the Virtualization Extensions, the HVC instruction causes a Hypervisor
Call exception. This means that the processor enters Hyp mode, the CPSR value is saved to the Hyp
mode SPSR, and execution branches to the HVC vector.

HVC must not be used if the processor is in Secure state, or in User mode in Non-secure state.

imm is ignored by the processor. However, it can be retrieved by the exception handler to determine what
service is being requested.

HVC cannot be conditional, and is not permitted in an IT block.

Notes

The ERET instruction performs an exception return from Hyp mode.

Architectures

This 32-bit instruction is available in A32 and T32. It is available in Armv7 architectures that include the
Virtualization Extensions.

There is no 16-bit version of this instruction in T32.

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related references
C2.36 ERET on page C2-164

C2 A32 and T32 Instructions
C2.39 HVC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-167

Non-Confidential

C2.40 ISB
Instruction Synchronization Barrier.

Syntax

ISB{cond} {option}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code. This is an unconditional instruction in A32 code.

option

is an optional limitation on the operation of the hint. The permitted value is:

SY
Full system barrier operation. This is the default and can be omitted.

Operation

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following
the ISB are fetched from cache or memory, after the instruction has been completed. It ensures that the
effects of context altering operations, such as changing the ASID, or completed TLB maintenance
operations, or branch predictor maintenance operations, in addition to all changes to the CP15 registers,
executed before the ISB instruction are visible to the instructions fetched after the ISB.

In addition, the ISB instruction ensures that any branches that appear in program order after it are always
written into the branch prediction logic with the context that is visible after the ISB instruction. This is
required to ensure correct execution of the instruction stream.

 Note

When the target architecture is Armv7‑M, you cannot use an ISB instruction in an IT block, unless it is
the last instruction in the block.

Architectures

This 32-bit instructions are available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.40 ISB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-168

Non-Confidential

C2.41 IT
The IT (If-Then) instruction makes a single following instruction (the IT block) conditional. The
conditional instruction must be from a restricted set of 16-bit instructions.

Syntax

IT cond

where:

cond
specifies the condition for the following instruction.

Deprecated syntax

IT{x{y{z}}} {cond}

where:

x
specifies the condition switch for the second instruction in the IT block.

y
specifies the condition switch for the third instruction in the IT block.

z
specifies the condition switch for the fourth instruction in the IT block.

cond
specifies the condition for the first instruction in the IT block.

The condition switches for the second, third, and fourth instructions in the IT block can be either:

T
Then. Applies the condition cond to the instruction.

E
Else. Applies the inverse condition of cond to the instruction.

Usage

The IT block can contain between two and four conditional instructions, where the conditions can be all
the same, or some of them can be the logical inverse of the others, but this is deprecated in Armv8.

The conditional instruction (including branches, but excluding the BKPT instruction) must specify the
condition in the {cond} part of its syntax.

You are not required to write IT instructions in your code, because the assembler generates them for you
automatically according to the conditions specified on the following instructions. However, if you do
write IT instructions, the assembler validates the conditions specified in the IT instructions against the
conditions specified in the following instructions.

Writing the IT instructions ensures that you consider the placing of conditional instructions, and the
choice of conditions, in the design of your code.

When assembling to A32 code, the assembler performs the same checks, but does not generate any IT
instructions.

With the exception of CMP, CMN, and TST, the 16-bit instructions that normally affect the condition flags,
do not affect them when used inside an IT block.

C2 A32 and T32 Instructions
C2.41 IT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-169

Non-Confidential

A BKPT instruction in an IT block is always executed, so it does not require a condition in the {cond} part
of its syntax. The IT block continues from the next instruction. Using a BKPT or HLT instruction inside an
IT block is deprecated.

 Note

You can use an IT block for unconditional instructions by using the AL condition.

Conditional branches inside an IT block have a longer branch range than those outside the IT block.

Restrictions

The following instructions are not permitted in an IT block:

• IT.
• CBZ and CBNZ.
• TBB and TBH.
• CPS, CPSID and CPSIE.
• SETEND.

Other restrictions when using an IT block are:
• A branch or any instruction that modifies the PC is only permitted in an IT block if it is the last

instruction in the block.
• You cannot branch to any instruction in an IT block, unless when returning from an exception

handler.
• You cannot use any assembler directives in an IT block.

 Note

armasm shows a diagnostic message when any of these instructions are used in an IT block.

Using any instruction not listed in the following table in an IT block is deprecated. Also, any explicit
reference to R15 (the PC) in the IT block is deprecated.

Table C2-9 Permitted instructions inside an IT block

16-bit instruction When deprecated

MOV, MVN When Rm or Rd is the PC

LDR, LDRB, LDRH, LDRSB, LDRSH For PC-relative forms

STR, STRB, STRH -

ADD, ADC, RSB, SBC, SUB ADD SP, SP, #imm or SUB SP, SP, #imm or when Rm, Rdn
or Rdm is the PC

CMP, CMN When Rm or Rn is the PC

MUL -

ASR, LSL, LSR, ROR -

AND, BIC, EOR, ORR, TST -

BX, BLX When Rm is the PC

Condition flags

This instruction does not change the flags.

C2 A32 and T32 Instructions
C2.41 IT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-170

Non-Confidential

Exceptions

Exceptions can occur between an IT instruction and the corresponding IT block, or within an IT block.
This exception results in entry to the appropriate exception handler, with suitable return information in
LR and SPSR.

Instructions designed for use as exception returns can be used as normal to return from the exception,
and execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction
can branch to an instruction in an IT block.

Availability

This 16-bit instruction is available in T32 only.

In A32 code, IT is a pseudo-instruction that does not generate any code.

There is no 32-bit version of this instruction.

Correct examples
 IT GT
 LDRGT r0, [r1,#4]

 IT EQ
 ADDEQ r0, r1, r2

Incorrect examples
 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used in IT block

 ITT EQ
 MOVEQ r0,r1
 ADDEQ r0,r0,#1 ; IT block covering more than one instruction is deprecated

 IT GT
 LDRGT r0,label ; LDR (PC-relative) is deprecated in an IT block

 IT EQ
 ADDEQ PC,r0 ; ADD is deprecated when Rdn is the PC

C2 A32 and T32 Instructions
C2.41 IT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-171

Non-Confidential

C2.42 LDA
Load-Acquire Register.

 Note

This instruction is supported only in Armv8.

Syntax

LDA{cond} Rt, [Rn]

LDAB{cond} Rt, [Rn]

LDAH{cond} Rt, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

Operation

LDA loads data from memory. If any loads or stores appear after a load-acquire in program order, then all
observers are guaranteed to observe the load-acquire before observing the loads and stores. Loads and
stores appearing before a load-acquire are unaffected.

If a store-release follows a load-acquire, each observer is guaranteed to observe them in program order.

There is no requirement that a load-acquire be paired with a store-release.

Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not be used for Rt or Rn.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction.

Related references
C2.43 LDAEX on page C2-173
C2.136 STL on page C2-301
C2.137 STLEX on page C2-302
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.42 LDA

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-172

Non-Confidential

C2.43 LDAEX
Load-Acquire Register Exclusive.

 Note

This instruction is supported only in Armv8.

Syntax

LDAEX{cond} Rt, [Rn]

LDAEXB{cond} Rt, [Rn]

LDAEXH{cond} Rt, [Rn]

LDAEXD{cond} Rt, Rt2, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to load.

Rt2
is the second register for doubleword loads.

Rn
is the register on which the memory address is based.

Operation
LDAEX loads data from memory.
• If the physical address has the Shared TLB attribute, LDAEX tags the physical address as exclusive

access for the current processor, and clears any exclusive access tag for this processor for any other
physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical address.
• If any loads or stores appear after LDAEX in program order, then all observers are guaranteed to

observe the LDAEX before observing the loads and stores. Loads and stores appearing before LDAEX
are unaffected.

Restrictions

The PC must not be used for any of Rt, Rt2, or Rn.

For A32 instructions:

• SP can be used but use of SP for any of Rt, or Rt2 is deprecated.
• For LDAEXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).

For T32 instructions:
• SP can be used for Rn, but must not be used for any of Rt, or Rt2.
• For LDAEXD, Rt and Rt2 must not be the same register.

Usage

Use LDAEX and STLEX to implement interprocess communication in multiple-processor and shared-
memory systems.

C2 A32 and T32 Instructions
C2.43 LDAEX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-173

Non-Confidential

For reasons of performance, keep the number of instructions between corresponding LDAEX and STLEX
instructions to a minimum.

 Note

The address used in a STLEX instruction must be the same as the address in the most recently executed
LDAEX instruction.

Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

Related references
C2.136 STL on page C2-301
C2.42 LDA on page C2-172
C2.137 STLEX on page C2-302
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.43 LDAEX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-174

Non-Confidential

C2.44 LDC and LDC2
Transfer Data from memory to Coprocessor.

 Note

LDC2 is not supported in Armv8.

Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, label

op{L}{cond} coproc, CRd, [Rn], {option}

where:

op
is LDC or LDC2.

cond

is an optional condition code.

In A32 code, cond is not permitted for LDC2.

L
is an optional suffix specifying a long transfer.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0 to 15 in Armv7 and earlier.
• 14 in Armv8.

CRd
is the coprocessor register to load.

Rn
is the register on which the memory address is based. If PC is specified, the value used is the
address of the current instruction plus eight.

-
is an optional minus sign. If - is present, the offset is subtracted from Rn. Otherwise, the offset is
added to Rn.

offset
is an expression evaluating to a multiple of 4, in the range 0 to 1020.

!
is an optional suffix. If ! is present, the address including the offset is written back into Rn.

label

is a word-aligned PC-relative expression.

label must be within 1020 bytes of the current instruction.

option
is a coprocessor option in the range 0-255, enclosed in braces.

C2 A32 and T32 Instructions
C2.44 LDC and LDC2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-175

Non-Confidential

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that write
back to Rn.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.44 LDC and LDC2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-176

Non-Confidential

C2.45 LDM
Load Multiple registers.

Syntax

LDM{addr_mode}{cond} Rn{!}, reglist{^}

where:

addr_mode

is any one of the following:

IA
Increment address After each transfer. This is the default, and can be omitted.

IB
Increment address Before each transfer (A32 only).

DA
Decrement address After each transfer (A32 only).

DB
Decrement address Before each transfer.

You can also use the stack oriented addressing mode suffixes, for example, when implementing
stacks.

cond
is an optional condition code.

Rn
is the base register, the AArch32 register holding the initial address for the transfer. Rn must not
be PC.

!
is an optional suffix. If ! is present, the final address is written back into Rn.

reglist
is a list of one or more registers to be loaded, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range. Any
combination of registers R0 to R15 (PC) can be transferred in A32 state, but there are some
restrictions in T32 state.

^
is an optional suffix, available in A32 state only. You must not use it in User mode or System
mode. It has the following purposes:
• If reglist contains the PC (R15), in addition to the normal multiple register transfer, the

SPSR is copied into the CPSR. This is for returning from exception handlers. Use this only
from exception modes.

• Otherwise, data is transferred into or out of the User mode registers instead of the current
mode registers.

Restrictions on reglist in 32-bit T32 instructions
In 32-bit T32 instructions:
• The SP cannot be in the list.
• The PC and LR cannot both be in the list.
• There must be two or more registers in the list.

If you write an LDM instruction with only one register in reglist, the assembler automatically substitutes
the equivalent LDR instruction. Be aware of this when comparing disassembly listings with source code.

Restrictions on reglist in A32 instructions

A32 load instructions can have SP and PC in the reglist but these instructions that include SP in the
reglist or both PC and LR in the reglist are deprecated.

C2 A32 and T32 Instructions
C2.45 LDM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-177

Non-Confidential

16-bit instructions

16-bit versions of a subset of these instructions are available in T32 code.

The following restrictions apply to the 16-bit instructions:
• All registers in reglist must be Lo registers.
• Rn must be a Lo register.
• addr_mode must be omitted (or IA), meaning increment address after each transfer.
• Writeback must be specified for LDM instructions where Rn is not in the reglist.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can therefore
be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also 16-bit
instructions.

Loading to the PC

A load to the PC causes a branch to the instruction at the address loaded.

Also:
• Bits[1:0] must not be 0b10.
• If bit[0] is 1, execution continues in T32 state.
• If bit[0] is 0, execution continues in A32 state.

Loading or storing the base register, with writeback
In A32 or 16-bit T32 instructions, if Rn is in reglist, and writeback is specified with the ! suffix:
• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in reglist, the

initial value of Rn is stored. These instructions are deprecated.
• Otherwise, the loaded or stored value of Rn cannot be relied on, so these instructions are not

permitted.

32-bit T32 instructions are not permitted if Rn is in reglist, and writeback is specified with the ! suffix.

Correct example
 LDM r8,{r0,r2,r9} ; LDMIA is a synonym for LDM

Incorrect example
 LDMDA r2, {} ; must be at least one register in list

Related references
C2.73 POP on page C2-221
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.45 LDM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-178

Non-Confidential

C2.46 LDR (immediate offset)
Load with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

LDR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

LDR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

LDR{type}{cond} Rt, [Rn], #offset ; post-indexed

LDRD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

LDRD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

LDRD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

offset
is an offset. If offset is omitted, the address is the contents of Rn.

Rt2
is the additional register to load for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of these instructions:

Table C2-10 Offsets and architectures, LDR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed

A32, word or byte h -4095 to 4095 -4095 to 4095 -4095 to 4095

A32, signed byte, halfword, or signed halfword -255 to 255 -255 to 255 -255 to 255

A32, doubleword -255 to 255 -255 to 255 -255 to 255

T32 32-bit encoding, word, halfword, signed halfword, byte, or signed byte h -255 to 4095 -255 to 255 -255 to 255

T32 32-bit encoding, doubleword -1020 to 1020 i -1020 to 1020 i -1020 to 1020 i

C2 A32 and T32 Instructions
C2.46 LDR (immediate offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-179

Non-Confidential

Table C2-10 Offsets and architectures, LDR, word, halfword, and byte (continued)

Instruction Immediate offset Pre-indexed Post-indexed

T32 16-bit encoding, word j 0 to 124 i Not available Not available

T32 16-bit encoding, unsigned halfword j 0 to 62 k Not available Not available

T32 16-bit encoding, unsigned byte j 0 to 31 Not available Not available

T32 16-bit encoding, word, Rn is SP l 0 to 1020 i Not available Not available

Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of PC

In A32 code you can use PC for Rt in LDR word instructions and PC for Rn in LDR instructions.

Other uses of PC are not permitted in these A32 instructions.

In T32 code you can use PC for Rt in LDR word instructions and PC for Rn in LDR instructions. Other uses
of PC in these T32 instructions are not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word instructions
in A32 code but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

Examples
 LDR r8,[r10] ; loads R8 from the address in R10.
 LDRNE r2,[r5,#960]! ; (conditionally) loads R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.

Related references
C1.9 Condition code suffixes on page C1-92

h For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

i Must be divisible by 4.
j Rt and Rn must be in the range R0-R7.
k Must be divisible by 2.
l Rt must be in the range R0-R7.

C2 A32 and T32 Instructions
C2.46 LDR (immediate offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-180

Non-Confidential

C2.47 LDR (PC-relative)
Load register. The address is an offset from the PC.

Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:
type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rt
is the register to load or store.

Rt2
is the second register to load or store.

label

is a PC-relative expression.

label must be within a limited distance of the current instruction.

 Note

Equivalent syntaxes are available for the STR instruction in A32 code but they are deprecated.

Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if label is out
of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-11 PC-relative offsets

Instruction Offset range

A32 LDR, LDRB, LDRSB, LDRH, LDRSH m ±4095

A32 LDRD ±255

m For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

C2 A32 and T32 Instructions
C2.47 LDR (PC-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-181

Non-Confidential

Table C2-11 PC-relative offsets (continued)

Instruction Offset range

32-bit T32 LDR, LDRB, LDRSB, LDRH, LDRSH m ±4095

32-bit T32 LDRD n ±1020 o

16-bit T32 LDR p 0-1020 o

LDR (PC-relative) in T32

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the target could be reached using a 16-bit LDR.

For forward references, LDR without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for a target that could be reached using a 32-bit T32 LDR instruction.

Doubleword register restrictions

For 32-bit T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of SP

In A32 code, you can use SP for Rt in LDR word instructions. You can use SP for Rt in LDR non-word
A32 instructions but this is deprecated.

In T32 code, you can use SP for Rt in LDR word instructions only. All other uses of SP in these
instructions are not permitted in T32 code.

Related references
C1.9 Condition code suffixes on page C1-92

m For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

n In Armv7‑M, LDRD (PC-relative) instructions must be on a word-aligned address.
o Must be a multiple of 4.
p Rt must be in the range R0-R7. There are no byte, halfword, or doubleword 16-bit instructions.

C2 A32 and T32 Instructions
C2.47 LDR (PC-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-182

Non-Confidential

C2.48 LDR (register offset)
Load with register offset, pre-indexed register offset, or post-indexed register offset.

Syntax

LDR{type}{cond} Rt, [Rn, ±Rm {, shift}] ; register offset

LDR{type}{cond} Rt, [Rn, ±Rm {, shift}]! ; pre-indexed ; A32 only

LDR{type}{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed ; A32 only

LDRD{cond} Rt, Rt2, [Rn, ±Rm] ; register offset, doubleword ; A32 only

LDRD{cond} Rt, Rt2, [Rn, ±Rm]! ; pre-indexed, doubleword ; A32 only

LDRD{cond} Rt, Rt2, [Rn], ±Rm ; post-indexed, doubleword ; A32 only

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

Rm
is a register containing a value to be used as the offset. –Rm is not permitted in T32 code.

shift
is an optional shift.

Rt2
is the additional register to load for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset register and shift options

The following table shows the ranges of offsets and availability of these instructions:

C2 A32 and T32 Instructions
C2.48 LDR (register offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-183

Non-Confidential

Table C2-12 Options and architectures, LDR (register offsets)

Instruction ±Rm q shift

A32, word or byte r ±Rm LSL #0-31 LSR #1-32

ASR #1-32 ROR #1-31 RRX

A32, signed byte, halfword, or signed halfword ±Rm Not available

A32, doubleword ±Rm Not available

T32 32-bit encoding, word, halfword, signed halfword, byte, or signed byte r +Rm LSL #0-3

T32 16-bit encoding, all except doubleword s +Rm Not available

Register restrictions

In the pre-index and post-index forms, Rn must be different from Rt.

Doubleword register restrictions
For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).
• Rm must be different from Rt and Rt2 in LDRD instructions.
• Rn must be different from Rt2 in the pre-index and post-index forms.

Use of PC

In A32 instructions you can use PC for Rt in LDR word instructions, and you can use PC for Rn in LDR
instructions with register offset syntax (that is the forms that do not writeback to the Rn).

Other uses of PC are not permitted in A32 instructions.

In T32 instructions you can use PC for Rt in LDR word instructions. Other uses of PC in these T32
instructions are not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

You can use SP for Rm in A32 instructions but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

Use of SP for Rm is not permitted in T32 state.

Related references
C1.9 Condition code suffixes on page C1-92

q Where ±Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
r For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and

above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.
s Rt, Rn, and Rm must all be in the range R0-R7.

C2 A32 and T32 Instructions
C2.48 LDR (register offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-184

Non-Confidential

C2.49 LDR (register-relative)
Load register. The address is an offset from a base register.

Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rt
is the register to load or store.

Rt2
is the second register to load or store.

label

is a symbol defined by the FIELD directive. label specifies an offset from the base register
which is defined using the MAP directive.

label must be within a limited distance of the value in the base register.

Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an error if
label is out of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-13 Register-relative offsets

Instruction Offset range

A32 LDR, LDRB t ±4095

A32 LDRSB, LDRH, LDRSH ±255

A32 LDRD ±255

T32, 32-bit LDR, LDRB, LDRSB, LDRH, LDRSH t -255 to 4095

t For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

u Must be a multiple of 4.

C2 A32 and T32 Instructions
C2.49 LDR (register-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-185

Non-Confidential

Table C2-13 Register-relative offsets (continued)

Instruction Offset range

T32, 32-bit LDRD ±1020 u

T32, 16-bit LDR v 0 to 124 u

T32, 16-bit LDRH v 0 to 62 w

T32, 16-bit LDRB v 0 to 31

T32, 16-bit LDR, base register is SP x 0 to 1020 u

LDR (register-relative) in T32

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the target could be reached using a 16-bit LDR.

For forward references, LDR without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for a target that could be reached using a 32-bit T32 LDR instruction.

Doubleword register restrictions

For 32-bit T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of PC

You can use PC for Rt in word instructions. Other uses of PC are not permitted in these instructions.

Use of SP

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

Related references
C1.9 Condition code suffixes on page C1-92

v Rt and base register must be in the range R0-R7.
w Must be a multiple of 2.
x Rt must be in the range R0-R7.

C2 A32 and T32 Instructions
C2.49 LDR (register-relative)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-186

Non-Confidential

C2.50 LDR, unprivileged
Unprivileged load byte, halfword, or word.

Syntax

LDR{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (32-bit T32 encoding only)

LDR{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (A32 only)

LDR{type}T{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed (register) (A32 only)

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

offset
is an offset. If offset is omitted, the address is the value in Rn.

Rm
is a register containing a value to be used as the offset. Rm must not be PC.

shift
is an optional shift.

Operation

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software these instructions behave in exactly the same way as the
corresponding load instruction, for example LDRSBT behaves in the same way as LDRSB.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of these instructions.

Table C2-14 Offsets and architectures, LDR (User mode)

Instruction Immediate offset Post-indexed ±Rm y shift

A32, word or byte Not available -4095 to 4095 ±Rm LSL #0-31

LSR #1-32

y You can use –Rm, +Rm, or Rm.

C2 A32 and T32 Instructions
C2.50 LDR, unprivileged

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-187

Non-Confidential

Table C2-14 Offsets and architectures, LDR (User mode) (continued)

Instruction Immediate offset Post-indexed ±Rm y shift

ASR #1-32

ROR #1-31

RRX

A32, signed byte, halfword, or signed halfword Not available -255 to 255 ±Rm Not available

T32, 32-bit encoding, word, halfword, signed halfword, byte, or signed
byte

0 to 255 Not available Not available

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.50 LDR, unprivileged

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-188

Non-Confidential

C2.51 LDREX
Load Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

LDREXH{cond} Rt, [Rn]

LDREXD{cond} Rt, Rt2, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to load.

Rt2
is the second register for doubleword loads.

Rn
is the register on which the memory address is based.

offset
is an optional offset applied to the value in Rn. offset is permitted only in 32-bit T32
instructions. If offset is omitted, an offset of zero is assumed.

Operation
LDREX loads data from memory.
• If the physical address has the Shared TLB attribute, LDREX tags the physical address as exclusive

access for the current processor, and clears any exclusive access tag for this processor for any other
physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical address.

LDREXB and LDREXH zero extend the value loaded.

Restrictions

PC must not be used for any of Rt, Rt2, or Rn.

For A32 instructions:

• SP can be used but use of SP for any of Rt, or Rt2 is deprecated.
• For LDREXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).
• offset is not permitted.

For T32 instructions:
• SP can be used for Rn, but must not be used for Rt or Rt2.
• For LDREXD, Rt and Rt2 must not be the same register.
• The value of offset can be any multiple of four in the range 0-1020.

Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and shared-
memory systems.

C2 A32 and T32 Instructions
C2.51 LDREX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-189

Non-Confidential

For reasons of performance, keep the number of instructions between corresponding LDREX and STREX
instructions to a minimum.

 Note

The address used in a STREX instruction must be the same as the address in the most recently executed
LDREX instruction.

Architectures

These 32-bit instructions are available in A32 and T32.

The LDREXD instruction is not available in the Armv7‑M architecture.

There are no 16-bit versions of these instructions in T32.

Examples
 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.51 LDREX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-190

Non-Confidential

C2.52 LSL
Logical Shift Left. This instruction is a preferred synonym for MOV instructions with shifted register
operands.

Syntax

LSL{S}{cond} Rd, Rm, Rs

LSL{S}{cond} Rd, Rm, #sh

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rm
is the register holding the first operand. This operand is shifted left.

Rs
is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh
is a constant shift. The range of values permitted is 0-31.

Operation

LSL provides the value of a register multiplied by a power of two, inserting zeros into the vacated bit
positions.

Restrictions in T32 code

T32 instructions must not use PC or SP.

You cannot specify zero for the sh value in an LSL instruction in an IT block.

Use of SP and PC in A32 instructions

You can use SP in these A32 instructions but this is deprecated.

You cannot use PC in instructions with the LSL{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction LSLS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

C2 A32 and T32 Instructions
C2.52 LSL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-191

Non-Confidential

You cannot use PC for Rd or any operand in the LSL instruction if it has a register-controlled shift.

Condition flags

If S is specified, the LSL instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

LSLS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSLS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This 32-bit instruction is available in A32 and T32.

This 16-bit T32 instruction is available in T32.

Example
 LSLS r1, r2, r3

Related references
C2.58 MOV on page C2-199
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.52 LSL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-192

Non-Confidential

C2.53 LSR
Logical Shift Right. This instruction is a preferred synonym for MOV instructions with shifted register
operands.

Syntax

LSR{S}{cond} Rd, Rm, Rs

LSR{S}{cond} Rd, Rm, #sh

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rm
is the register holding the first operand. This operand is shifted right.

Rs
is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh
is a constant shift. The range of values permitted is 1-32.

Operation

LSR provides the unsigned value of a register divided by a variable power of two, inserting zeros into the
vacated bit positions.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in these A32 instructions but they are deprecated.

You cannot use PC in instructions with the LSR{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction LSRS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in the LSR instruction if it has a register-controlled shift.

C2 A32 and T32 Instructions
C2.53 LSR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-193

Non-Confidential

Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

LSRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This 32-bit instruction is available in A32 and T32.

This 16-bit T32 instruction is available in T32.

Example
 LSR r4, r5, r6

Related references
C2.58 MOV on page C2-199
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.53 LSR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-194

Non-Confidential

C2.54 MCR and MCR2
Move to Coprocessor from general-purpose register. Depending on the coprocessor, you might be able to
specify various additional operations.

 Note

MCR2 is not supported in Armv8.

Syntax

MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MCR2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MCR2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode1
is a 3-bit coprocessor-specific opcode.

opcode2
is an optional 3-bit coprocessor-specific opcode.

Rt
is a general-purpose register. Rt must not be PC.

CRn, CRm
are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.54 MCR and MCR2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-195

Non-Confidential

C2.55 MCRR and MCRR2
Move to Coprocessor from two general-purpose registers. Depending on the coprocessor, you might be
able to specify various additional operations.

 Note

MCRR2 is not supported in Armv8.

Syntax

MCRR{cond} coproc, #opcode, Rt, Rt2, CRn

MCRR2{cond} coproc, #opcode, Rt, Rt2, CRn

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MCRR2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode
is a 4-bit coprocessor-specific opcode.

Rt, Rt2
are general-purpose registers. Rt and Rt2 must not be PC.

CRn
is a coprocessor register.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.55 MCRR and MCRR2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-196

Non-Confidential

C2.56 MLA
Multiply-Accumulate with signed or unsigned 32-bit operands, giving the least significant 32 bits of the
result.

Syntax

MLA{S}{cond} Rd, Rn, Rm, Ra

where:

cond
is an optional condition code.

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rn, Rm
are registers holding the values to be multiplied.

Ra
is a register holding the value to be added.

Operation

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, the MLA instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flag.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 MLA r10, r2, r1, r5

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.56 MLA

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-197

Non-Confidential

C2.57 MLS
Multiply-Subtract, with signed or unsigned 32-bit operands, giving the least significant 32 bits of the
result.

Syntax

MLS{cond} Rd, Rn, Rm, Ra

where:

cond
is an optional condition code.

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rn, Rm
are registers holding the values to be multiplied.

Ra
is a register holding the value to be subtracted from.

Operation

The MLS instruction multiplies the values in Rn and Rm, subtracts the result from the value in Ra, and
places the least significant 32 bits of the final result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 MLS r4, r5, r6, r7

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.57 MLS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-198

Non-Confidential

C2.58 MOV
Move.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Operand2
is a flexible second operand.

imm16
is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of this when
reading disassembly listings.

Use of PC and SP in 32-bit T32 encodings
You cannot use PC (R15) for Rd, or in Operand2, in 32-bit T32 MOV instructions. With the following
exceptions, you cannot use SP (R13) for Rd, or in Operand2:
• MOV{cond}.W Rd, SP, where Rd is not SP.
• MOV{cond}.W SP, Rm, where Rm is not SP.

Use of PC and SP in 16-bit T32 encodings

You can use PC or SP in 16-bit T32 MOV{cond} Rd, Rm instructions but these instructions in which both
Rd and Rm are SP or PC are deprecated.

You cannot use PC or SP in any other MOV{S} 16-bit T32 instructions.

Use of PC and SP in A32 MOV

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

In instructions without register-controlled shift, the use of PC is deprecated except for the following
cases:

• MOVS PC, LR.
• MOV PC, Rm when Rm is not PC or SP.
• MOV Rd, PC when Rd is not PC or SP.

You can use SP for Rd or Rm. But this is deprecated except for the following cases:

• MOV SP, Rm when Rm is not PC or SP.
• MOV Rd, SP when Rd is not PC or SP.

C2 A32 and T32 Instructions
C2.58 MOV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-199

Non-Confidential

 Note

• You cannot use PC for Rd in MOV Rd, #imm16 if the #imm16 value is not a permitted Operand2 value.
You can use PC in forms with Operand2 without register-controlled shift.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags
If S is specified, the instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

MOVS Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used outside an IT block.

MOV{cond} Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used inside an IT block.

MOVS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MOV{cond} Rd, Rm
Rd or Rm can be Lo or Hi registers.

Availability

These instructions are available in A32 and T32.

In T32, 16-bit and 32-bit versions of these instructions are available.

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.58 MOV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-200

Non-Confidential

C2.59 MOVT
Move Top.

Syntax

MOVT{cond} Rd, #imm16

where:

cond
is an optional condition code.

Rd
is the destination register.

imm16
is a 16-bit immediate value.

Usage

MOVT writes imm16 to Rd[31:16], without affecting Rd[15:0].

You can generate any 32-bit immediate with a MOV, MOVT instruction pair.

Register restrictions

You cannot use PC in A32 or T32 instructions.

You can use SP for Rd in A32 instructions but this is deprecated.

You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.59 MOVT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-201

Non-Confidential

C2.60 MRC and MRC2
Move to general-purpose register from Coprocessor. Depending on the coprocessor, you might be able to
specify various additional operations.

 Note

MRC2 is not supported in Armv8.

Syntax

MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MRC2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MRC2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode1
is a 3-bit coprocessor-specific opcode.

opcode2
is an optional 3-bit coprocessor-specific opcode.

Rt

is the general-purpose register. Rt must not be PC.

Rt can be APSR_nzcv. This means that the coprocessor executes an instruction that changes the
value of the condition flags in the APSR.

CRn, CRm

are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.60 MRC and MRC2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-202

Non-Confidential

C2.61 MRRC and MRRC2
Move to two general-purpose registers from coprocessor. Depending on the coprocessor, you might be
able to specify various additional operations.

 Note

MRRC2 is not supported in Armv8.

Syntax

MRRC{cond} coproc, #opcode, Rt, Rt2, CRm

MRRC2{cond} coproc, #opcode, Rt, Rt2, CRm

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MRRC2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode
is a 4-bit coprocessor-specific opcode.

Rt, Rt2
are general-purpose registers. Rt and Rt2 must not be PC.

CRm
is a coprocessor register.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.61 MRRC and MRRC2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-203

Non-Confidential

C2.62 MRS (PSR to general-purpose register)
Move the contents of a PSR to a general-purpose register.

Syntax

MRS{cond} Rd, psr

where:

cond
is an optional condition code.

Rd
is the destination register.

psr

is one of:

APSR
on any processor, in any mode.

CPSR
deprecated synonym for APSR and for use in Debug state, on any processor except
Armv7‑M and Armv6‑M.

SPSR
on any processor, except Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M
Mainline, in privileged software execution only.

Mpsr
on Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline processors only.

Mpsr
can be any of: IPSR, EPSR, IEPSR, IAPSR, EAPSR, MSP, PSP, XPSR, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for
example to change processor mode, or to clear the Q flag.

In process swap code, the programmers’ model state of the process being swapped out must be saved,
including relevant PSR contents. Similarly, the state of the process being swapped in must also be
restored. These operations make use of MRS/store and load/MSR instruction sequences.

SPSR

You must not attempt to access the SPSR when the processor is in User or System mode. This is your
responsibility. The assembler cannot warn you about this, because it has no information about the
processor mode at execution time.

CPSR

Arm deprecates reading the CPSR endianness bit (E) with an MRS instruction.

The CPSR execution state bits, other than the E bit, can only be read when the processor is in Debug
state, halting debug-mode. Otherwise, the execution state bits in the CPSR read as zero.

The condition flags can be read in any mode on any processor. Use APSR if you are only interested in
accessing the condition flags in User mode.

Register restrictions

You cannot use PC for Rd in A32 instructions. You can use SP for Rd in A32 instructions but this is
deprecated.

You cannot use PC or SP for Rd in T32 instructions.

C2 A32 and T32 Instructions
C2.62 MRS (PSR to general-purpose register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-204

Non-Confidential

Condition flags

This instruction does not change the flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related concepts
A1.13 Current Program Status Register in AArch32 state on page A1-39
Related references
C2.63 MRS (system coprocessor register to general-purpose register) on page C2-206
C2.64 MSR (general-purpose register to system coprocessor register) on page C2-207
C2.65 MSR (general-purpose register to PSR) on page C2-208
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.62 MRS (PSR to general-purpose register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-205

Non-Confidential

C2.63 MRS (system coprocessor register to general-purpose register)
Move to general-purpose register from system coprocessor register.

Syntax

MRS{cond} Rn, coproc_register

MRS{cond} APSR_nzcv, special_register

where:

cond
is an optional condition code.

coproc_register
is the name of the coprocessor register.

special_register
is the name of the coprocessor register that can be written to APSR_nzcv. This is only possible
for the coprocessor register DBGDSCRint.

Rn
is the general-purpose register. Rn must not be PC.

Usage

You can use this pseudo-instruction to read CP14 or CP15 coprocessor registers, with the exception of
write-only registers. A complete list of the applicable coprocessor register names is in the Arm®v7-AR
Architecture Reference Manual. For example:

 MRS R1, SCTLR ; writes the contents of the CP15 coprocessor
 ; register SCTLR into R1

Architectures

This pseudo-instruction is available in Armv7‑A and Armv7‑R in A32 and 32-bit T32 code.

There is no 16-bit version of this pseudo-instruction in T32.

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.64 MSR (general-purpose register to system coprocessor register) on page C2-207
C2.65 MSR (general-purpose register to PSR) on page C2-208
C1.9 Condition code suffixes on page C1-92
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.63 MRS (system coprocessor register to general-purpose register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-206

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.64 MSR (general-purpose register to system coprocessor register)
Move to system coprocessor register from general-purpose register.

Syntax

MSR{cond} coproc_register, Rn

where:

cond
is an optional condition code.

coproc_register
is the name of the coprocessor register.

Rn
is the general-purpose register. Rn must not be PC.

Usage

You can use this pseudo-instruction to write to any CP14 or CP15 coprocessor writable register. A
complete list of the applicable coprocessor register names is in the Arm Architecture Reference Manual.
For example:

 MSR SCTLR, R1 ; writes the contents of R1 into the CP15
 ; coprocessor register SCTLR

Availability

This pseudo-instruction is available in A32 and T32.

This pseudo-instruction is available in Armv7‑A and Armv7‑R in A32 and 32-bit T32 code.

There is no 16-bit version of this pseudo-instruction in T32.

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.63 MRS (system coprocessor register to general-purpose register) on page C2-206
C2.65 MSR (general-purpose register to PSR) on page C2-208
C1.9 Condition code suffixes on page C1-92
C2.153 SYS on page C2-332
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.64 MSR (general-purpose register to system coprocessor register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-207

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.65 MSR (general-purpose register to PSR)
Load an immediate value, or the contents of a general-purpose register, into the specified fields of a
Program Status Register (PSR).

Syntax

MSR{cond} APSR_flags, Rm

where:

cond
is an optional condition code.

flags

specifies the APSR flags to be moved. flags can be one or more of:

nzcvq
ALU flags field mask, PSR[31:27] (User mode)

g
SIMD GE flags field mask, PSR[19:16] (User mode).

Rm
is the general-purpose register. Rm must not be PC.

Syntax on architectures other than Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M
Mainline

MSR{cond} APSR_flags, #constant

MSR{cond} psr_fields, #constant

MSR{cond} psr_fields, Rm

where:

cond
is an optional condition code.

flags

specifies the APSR flags to be moved. flags can be one or more of:

nzcvq
ALU flags field mask, PSR[31:27] (User mode)

g
SIMD GE flags field mask, PSR[19:16] (User mode).

constant
is an expression evaluating to a numeric value. The value must correspond to an 8-bit pattern
rotated by an even number of bits within a 32-bit word. Not available in T32.

Rm
is the source register. Rm must not be PC.

psr

is one of:

CPSR
for use in Debug state, also deprecated synonym for APSR

SPSR
on any processor, in privileged software execution only.

fields

specifies the SPSR or CPSR fields to be moved. fields can be one or more of:

c
control field mask byte, PSR[7:0] (privileged software execution)

C2 A32 and T32 Instructions
C2.65 MSR (general-purpose register to PSR)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-208

Non-Confidential

x
extension field mask byte, PSR[15:8] (privileged software execution)

s
status field mask byte, PSR[23:16] (privileged software execution)

f
flags field mask byte, PSR[31:24] (privileged software execution).

Syntax on architectures Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline
only

MSR{cond} psr, Rm

where:

cond
is an optional condition code.

Rm
is the source register. Rm must not be PC.

psr
can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, XPSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Usage
In User mode:
• Use APSR to access the condition flags, Q, or GE bits.
• Writes to unallocated, privileged or execution state bits in the CPSR are ignored. This ensures that

User mode programs cannot change to privileged software execution.

Arm deprecates using MSR to change the endianness bit (E) of the CPSR, in any mode.

You must not attempt to access the SPSR when the processor is in User or System mode.

Register restrictions

You cannot use PC in A32 instructions. You can use SP for Rm in A32 instructions but this is deprecated.

You cannot use PC or SP in T32 instructions.

Condition flags

This instruction updates the flags explicitly if the APSR_nzcvq or CPSR_f field is specified.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.63 MRS (system coprocessor register to general-purpose register) on page C2-206
C2.64 MSR (general-purpose register to system coprocessor register) on page C2-207
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.65 MSR (general-purpose register to PSR)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-209

Non-Confidential

C2.66 MUL
Multiply with signed or unsigned 32-bit operands, giving the least significant 32 bits of the result.

Syntax

MUL{S}{cond} {Rd}, Rn, Rm

where:

cond
is an optional condition code.

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rn, Rm
are registers holding the values to be multiplied.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the
result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, the MUL instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flag.

16-bit instructions

The following forms of the MUL instruction are available in T32 code, and are 16-bit instructions:

MULS Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

MUL{cond} Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

There are no other T32 multiply instructions that can update the condition flags.

Availability

This instruction is available in A32 and T32.

The MULS instruction is available in T32 in a 16-bit encoding.

Examples
 MUL r10, r2, r5
 MULS r0, r2, r2
 MULLT r2, r3, r2

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.66 MUL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-210

Non-Confidential

C2.67 MVN
Move Not.

Syntax

MVN{S}{cond} Rd, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Operand2
is a flexible second operand.

Operation

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value,
and places the result into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of this when
reading disassembly listings.

Use of PC and SP in 32-bit T32 MVN

You cannot use PC (R15) for Rd, or in Operand2, in 32-bit T32 MVN instructions. You cannot use SP (R13)
for Rd, or in Operand2.

Use of PC and SP in 16-bit T32 instructions

You cannot use PC or SP in any MVN{S} 16-bit T32 instructions.

Use of PC and SP in A32 MVN

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

In instructions without register-controlled shift, use of PC is deprecated.

You can use SP for Rd or Rm, but this is deprecated.

 Note

• PC and SP in A32 instructions are deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags
If S is specified, the instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

C2 A32 and T32 Instructions
C2.67 MVN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-211

Non-Confidential

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

MVNS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MVN{cond} Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Architectures

This instruction is available in A32 and T32.

Correct example
 MVNNE r11, #0xF000000B ; A32 only. This immediate value is not
 ; available in T32.

Incorrect example
 MVN pc,r3,ASR r0 ; PC not permitted with
 ; register-controlled shift

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.67 MVN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-212

Non-Confidential

C2.68 NOP
No Operation.

Syntax

NOP{cond}

where:

cond
is an optional condition code.

Usage

NOP does nothing. If NOP is not implemented as a specific instruction on your target architecture, the
assembler treats it as a pseudo-instruction and generates an alternative instruction that does nothing, such
as MOV r0, r0 (A32) or MOV r8, r8 (T32).

NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline before it
reaches the execution stage.

You can use NOP for padding, for example to place the following instruction on a 64-bit boundary in A32,
or a 32-bit boundary in T32.

Architectures

This instruction is available in A32 and T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.68 NOP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-213

Non-Confidential

C2.69 ORN (T32 only)
Logical OR NOT.

Syntax

ORN{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The ORN T32 instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute ORN for ORR, or ORR for ORN. Be aware of this when
reading disassembly listings.

Use of PC

You cannot use PC (R15) for Rd or any operand in the ORN instruction.

Condition flags
If S is specified, the ORN instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

Examples
 ORN r7, r11, lr, ROR #4
 ORNS r7, r11, lr, ASR #32

Architectures

This 32-bit instruction is available in T32.

There is no A32 or 16-bit T32 ORN instruction.

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.69 ORN (T32 only)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-214

Non-Confidential

C2.70 ORR
Logical OR.

Syntax

ORR{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The ORR instruction performs bitwise OR operations on the values in Rn and Operand2.

In certain circumstances, the assembler can substitute ORN for ORR, or ORR for ORN. Be aware of this when
reading disassembly listings.

Use of PC in 32-bit T32 instructions

You cannot use PC (R15) for Rd or any operand with the ORR instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the ORR instruction but this is deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the ORR instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of the ORR instruction are available in T32 code, and are 16-bit instructions:

ORRS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ORR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify ORR{S} Rd, Rm, Rd. The instruction is the same.

C2 A32 and T32 Instructions
C2.70 ORR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-215

Non-Confidential

Example
 ORREQ r2,r0,r5

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.70 ORR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-216

Non-Confidential

C2.71 PKHBT and PKHTB
Halfword Packing instructions that combine a halfword from one register with a halfword from another
register. One of the operands can be shifted before extraction of the halfword.

Syntax

PKHBT{cond} {Rd}, Rn, Rm{, LSL #leftshift}

PKHTB{cond} {Rd}, Rn, Rm{, ASR #rightshift}

where:

PKHBT

Combines bits[15:0] of Rn with bits[31:16] of the shifted value from Rm.

PKHTB

Combines bits[31:16] of Rn with bits[15:0] of the shifted value from Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the first operand.

leftshift

is in the range 0 to 31.

rightshift

is in the range 1 to 32.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

These instructions do not change the flags.

Architectures

These instructions are available in A32.

These 32-bit instructions are available T32. For the Armv7‑M architecture, they are only available in an
Armv7E-M implementation.

There are no 16-bit versions of these instructions in T32.

Correct examples
 PKHBT r0, r3, r5 ; combine the bottom halfword of R3
 ; with the top halfword of R5
 PKHBT r0, r3, r5, LSL #16 ; combine the bottom halfword of R3
 ; with the bottom halfword of R5

C2 A32 and T32 Instructions
C2.71 PKHBT and PKHTB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-217

Non-Confidential

 PKHTB r0, r3, r5, ASR #16 ; combine the top halfword of R3
 ; with the top halfword of R5

You can also scale the second operand by using different values of shift.

Incorrect example
 PKHBTEQ r4, r5, r1, ASR #8 ; ASR not permitted with PKHBT

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.71 PKHBT and PKHTB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-218

Non-Confidential

C2.72 PLD, PLDW, and PLI
Preload Data and Preload Instruction allow the processor to signal the memory system that a data or
instruction load from an address is likely in the near future.

Syntax

PLtype{cond} [Rn {, #offset}]

PLtype{cond} [Rn, ±Rm {, shift}]

PLtype{cond} label

where:

type

can be one of:

D

Data address.

DW

Data address with intention to write.

I

Instruction address.

type cannot be DW if the syntax specifies label.

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
the Armv8 architecture. This is an unconditional instruction in A32 code and you must not use
cond.

Rn

is the register on which the memory address is based.

offset

is an immediate offset. If offset is omitted, the address is the value in Rn.

Rm

is a register containing a value to be used as the offset.

shift

is an optional shift.

label

is a PC-relative expression.

Range of offsets
The offset is applied to the value in Rn before the preload takes place. The result is used as the memory
address for the preload. The range of offsets permitted is:
• -4095 to +4095 for A32 instructions.
• -255 to +4095 for T32 instructions, when Rn is not PC.
• -4095 to +4095 for T32 instructions, when Rn is PC.

C2 A32 and T32 Instructions
C2.72 PLD, PLDW, and PLI

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-219

Non-Confidential

The assembler calculates the offset from the PC for you. The assembler generates an error if label is out
of range.

Register or shifted register offset

In A32 code, the value in Rm is added to or subtracted from the value in Rn. In T32 code, the value in Rm
can only be added to the value in Rn. The result is used as the memory address for the preload.

The range of shifts permitted is:
• LSL #0 to #3 for T32 instructions.
• Any one of the following for A32 instructions:

— LSL #0 to #31.
— LSR #1 to #32.
— ASR #1 to #32.
— ROR #1 to #31.
— RRX.

Address alignment for preloads

No alignment checking is performed for preload instructions.

Register restrictions

Rm must not be PC. For T32 instructions Rm must also not be SP.

Rn must not be PC for T32 instructions of the syntax PLtype{cond} [Rn, ±Rm{, #shift}].

Architectures

The PLD instruction is available in A32.

The 32-bit encoding of PLD is available in T32.

PLDW is available only in the Armv7 architecture and above that implement the Multiprocessing
Extensions.

PLI is available only in the Armv7 architecture and above.

There are no 16-bit encodings of these instructions in T32.

These are hint instructions, and their implementation is optional. If they are not implemented, they
execute as NOPs.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.72 PLD, PLDW, and PLI

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-220

Non-Confidential

C2.73 POP
Pop registers off a full descending stack.

Syntax

POP{cond} reglist

where:

cond

is an optional condition code.

reglist

is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or register range.

Operation
POP is a synonym for LDMIA sp! reglist. POP is the preferred mnemonic.

 Note

LDM and LDMFD are synonyms of LDMIA.

Registers are stored on the stack in numerical order, with the lowest numbered register at the lowest
address.

POP, with reglist including the PC

This instruction causes a branch to the address popped off the stack into the PC. This is usually a return
from a subroutine, where the LR was pushed onto the stack at the start of the subroutine.

Also:
• Bits[1:0] must not be 0b10.
• If bit[0] is 1, execution continues in T32 state.
• If bit[0] is 0, execution continues in A32 state.

T32 instructions

A subset of this instruction is available in the T32 instruction set.

The following restriction applies to the 16-bit POP instruction:

• reglist can only include the Lo registers and the PC.

The following restrictions apply to the 32-bit POP instruction:
• reglist must not include the SP.
• reglist can include either the LR or the PC, but not both.

Restrictions on reglist in A32 instructions

The A32 POP instruction cannot have SP but can have PC in the reglist. The instruction that includes
both PC and LR in the reglist is deprecated.

Example
 POP {r0,r10,pc} ; no 16-bit version available

Related references
C2.45 LDM on page C2-177
C2.74 PUSH on page C2-222
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.73 POP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-221

Non-Confidential

C2.74 PUSH
Push registers onto a full descending stack.

Syntax

PUSH{cond} reglist

where:

cond

is an optional condition code.

reglist

is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or register range.

Operation
PUSH is a synonym for STMDB sp!, reglist. PUSH is the preferred mnemonic.

 Note

STMFD is a synonym of STMDB.

Registers are stored on the stack in numerical order, with the lowest numbered register at the lowest
address.

T32 instructions

The following restriction applies to the 16-bit PUSH instruction:

• reglist can only include the Lo registers and the LR.

The following restrictions apply to the 32-bit PUSH instruction:
• reglist must not include the SP.
• reglist must not include the PC.

Restrictions on reglist in A32 instructions

The A32 PUSH instruction can have SP and PC in the reglist but the instruction that includes SP or PC
in the reglist is deprecated.

Examples
 PUSH {r0,r4-r7}
 PUSH {r2,lr}

Related references
C2.45 LDM on page C2-177
C2.73 POP on page C2-221
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.74 PUSH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-222

Non-Confidential

C2.75 QADD
Signed saturating addition.

Syntax

QADD{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the registers holding the operands.

Operation
The QADD instruction adds the values in Rm and Rn. It saturates the result to the signed range -231 ≤ x ≤
231-1.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 QADD r0, r1, r9

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.75 QADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-223

Non-Confidential

C2.76 QADD8
Signed saturating parallel byte-wise addition.

Syntax

QADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four signed integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. It saturates the results to the signed
range -27 ≤ x ≤ 27 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.76 QADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-224

Non-Confidential

C2.77 QADD16
Signed saturating parallel halfword-wise addition.

Syntax

QADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two signed integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. It saturates the results to the
signed range -215 ≤ x ≤ 215 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.77 QADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-225

Non-Confidential

C2.78 QASX
Signed saturating parallel add and subtract halfwords with exchange.

Syntax

QASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. It saturates the results to the signed range -215 ≤ x ≤
215 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.78 QASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-226

Non-Confidential

C2.79 QDADD
Signed saturating Double and Add.

Syntax

QDADD{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation
QDADD calculates SAT(Rm + SAT(Rn * 2)). It saturates the result to the signed range -231 ≤ x ≤ 231-1.
Saturation can occur on the doubling operation, on the addition, or on both. If saturation occurs on the
doubling but not on the addition, the Q flag is set but the final result is unsaturated.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.79 QDADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-227

Non-Confidential

C2.80 QDSUB
Signed saturating Double and Subtract.

Syntax

QDSUB{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation
QDSUB calculates SAT(Rm - SAT(Rn * 2)). It saturates the result to the signed range -231 ≤ x ≤ 231-1.
Saturation can occur on the doubling operation, on the subtraction, or on both. If saturation occurs on the
doubling but not on the subtraction, the Q flag is set but the final result is unsaturated.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 QDSUBLT r9, r0, r1

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.80 QDSUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-228

Non-Confidential

C2.81 QSAX
Signed saturating parallel subtract and add halfwords with exchange.

Syntax

QSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. It saturates the results to the signed range -215 ≤ x ≤ 215

-1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.81 QSAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-229

Non-Confidential

C2.82 QSUB
Signed saturating Subtract.

Syntax

QSUB{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation
The QSUB instruction subtracts the value in Rn from the value in Rm. It saturates the result to the signed
range -231 ≤ x ≤ 231-1.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.82 QSUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-230

Non-Confidential

C2.83 QSUB8
Signed saturating parallel byte-wise subtraction.

Syntax

QSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. It saturates the results to
the signed range -27 ≤ x ≤ 27 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.83 QSUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-231

Non-Confidential

C2.84 QSUB16
Signed saturating parallel halfword-wise subtraction.

Syntax

QSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. It saturates the
results to the signed range -215 ≤ x ≤ 215 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
A1.11 The Q flag in AArch32 state on page A1-37
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.84 QSUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-232

Non-Confidential

C2.85 RBIT
Reverse the bit order in a 32-bit word.

Syntax

RBIT{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 RBIT r7, r8

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.85 RBIT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-233

Non-Confidential

C2.86 REV
Reverse the byte order in a word.

Syntax

REV{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Usage

You can use this instruction to change endianness. REV converts 32-bit big-endian data into little-endian
data or 32-bit little-endian data into big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

REV Rd, Rm

Rd and Rm must both be Lo registers.

Architectures

This instruction is available in A32 and T32.

Example
 REV r3, r7

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.86 REV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-234

Non-Confidential

C2.87 REV16
Reverse the byte order in each halfword independently.

Syntax

REV16{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Usage

You can use this instruction to change endianness. REV16 converts 16-bit big-endian data into little-
endian data or 16-bit little-endian data into big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

REV16 Rd, Rm

Rd and Rm must both be Lo registers.

Architectures

This instruction is available in A32 and T32.

Example
 REV16 r0, r0

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.87 REV16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-235

Non-Confidential

C2.88 REVSH
Reverse the byte order in the bottom halfword, and sign extend to 32 bits.

Syntax

REVSH{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Usage
You can use this instruction to change endianness. REVSH converts either:
• 16-bit signed big-endian data into 32-bit signed little-endian data.
• 16-bit signed little-endian data into 32-bit signed big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

REVSH Rd, Rm

Rd and Rm must both be Lo registers.

Architectures

This instruction is available in A32 and T32.

Example
 REVSH r0, r5 ; Reverse Signed Halfword

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.88 REVSH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-236

Non-Confidential

C2.89 RFE
Return From Exception.

Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode

is any one of the following:

IA
Increment address After each transfer (Full Descending stack)

IB
Increment address Before each transfer (A32 only)

DA
Decrement address After each transfer (A32 only)

DB
Decrement address Before each transfer.

If addr_mode is omitted, it defaults to Increment After.

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
Armv8. This is an unconditional instruction in A32 code.

Rn
specifies the base register. Rn must not be PC.

!
is an optional suffix. If ! is present, the final address is written back into Rn.

Usage

You can use RFE to return from an exception if you previously saved the return state using the SRS
instruction. Rn is usually the SP where the return state information was saved.

Operation

Loads the PC and the CPSR from the address contained in Rn, and the following address. Optionally
updates Rn.

Notes
RFE writes an address to the PC. The alignment of this address must be correct for the instruction set in
use after the exception return:
• For a return to A32, the address written to the PC must be word-aligned.
• For a return to T32, the address written to the PC must be halfword-aligned.
• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

No special precautions are required in software to follow these rules, if you use the instruction to return
after a valid exception entry mechanism.

Where addresses are not word-aligned, RFE ignores the least significant two bits of Rn.

The time order of the accesses to individual words of memory generated by RFE is not architecturally
defined. Do not use this instruction on memory-mapped I/O locations where access order matters.

C2 A32 and T32 Instructions
C2.89 RFE

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-237

Non-Confidential

Do not use RFE in unprivileged software execution.

Architectures

This instruction is available in A32.

This 32-bit T32 instruction is available, except in the Armv7‑M and Armv8‑M Mainline architectures.

There is no 16-bit version of this instruction.

Example
 RFE sp!

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related references
C2.129 SRS on page C2-289
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.89 RFE

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-238

Non-Confidential

C2.90 ROR
Rotate Right. This instruction is a preferred synonym for MOV instructions with shifted register operands.

Syntax

ROR{S}{cond} Rd, Rm, Rs

ROR{S}{cond} Rd, Rm, #sh

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd

is the destination register.

Rm

is the register holding the first operand. This operand is shifted right.

Rs

is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh

is a constant shift. The range of values is 1-31.

Operation

ROR provides the value of the contents of a register rotated by a value. The bits that are rotated off the
right end are inserted into the vacated bit positions on the left.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in these A32 instructions but this is deprecated.

You cannot use PC in instructions with the ROR{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction RORS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

C2 A32 and T32 Instructions
C2.90 ROR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-239

Non-Confidential

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in this instruction if it has a register-controlled shift.

Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

RORS Rd, Rd, Rs

Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ROR{cond} Rd, Rd, Rs

Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This instruction is available in A32 and T32.

Example
 ROR r4, r5, r6

Related references
C2.58 MOV on page C2-199
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.90 ROR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-240

Non-Confidential

C2.91 RRX
Rotate Right with Extend. This instruction is a preferred synonym for MOV instructions with shifted
register operands.

Syntax

RRX{S}{cond} Rd, Rm

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd

is the destination register.

Rm

is the register holding the first operand. This operand is shifted right.

Operation

RRX provides the value of the contents of a register shifted right one bit. The old carry flag is shifted into
bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in this A32 instruction but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction RRXS{cond} pc,Rm always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in this instruction if it has a register-controlled shift.

Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

C2 A32 and T32 Instructions
C2.91 RRX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-241

Non-Confidential

Architectures

The 32-bit instruction is available in A32 and T32.

There is no 16-bit instruction in T32.

Related references
C2.58 MOV on page C2-199
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.91 RRX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-242

Non-Confidential

C2.92 RSB
Reverse Subtract without carry.

Syntax

RSB{S}{cond} {Rd}, Rn, Operand2

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

Operation

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the
wide range of options for Operand2.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

You cannot use PC (R15) for Rd or any operand.

You cannot use SP (R13) for Rd or any operand.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in an RSB instruction that has a register-controlled shift.

Use of PC for any operand, in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP and PC in A32 instructions is deprecated.

Condition flags

If S is specified, the RSB instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

C2 A32 and T32 Instructions
C2.92 RSB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-243

Non-Confidential

RSBS Rd, Rn, #0

Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

RSB{cond} Rd, Rn, #0

Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

Example
 RSB r4, r4, #1280 ; subtracts contents of R4 from 1280

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.92 RSB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-244

Non-Confidential

C2.93 RSC
Reverse Subtract with Carry.

Syntax

RSC{S}{cond} {Rd}, Rn, Operand2

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

Usage

The RSC instruction subtracts the value in Rn from the value of Operand2. If the carry flag is clear, the
result is reduced by one.

You can use RSC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

RSC is not available in T32 code.

Use of PC and SP

Use of PC and SP is deprecated.

You cannot use PC for Rd or any operand in an RSC instruction that has a register-controlled shift.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags

If S is specified, the RSC instruction updates the N, Z, C and V flags according to the result.

Correct example
 RSCSLE r0,r5,r0,LSL r4 ; conditional, flags set

Incorrect example
 RSCSLE r0,pc,r0,LSL r4 ; PC not permitted with register
 ; controlled shift

C2 A32 and T32 Instructions
C2.93 RSC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-245

Non-Confidential

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.93 RSC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-246

Non-Confidential

C2.94 SADD8
Signed parallel byte-wise addition.

Syntax

SADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four signed integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. The results are modulo 28. It sets the
APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result is greater than or equal to zero. This is
equivalent to an ADDS instruction setting the N and V condition flags to the same value, so that the GE
condition passes.

You can use these flags to control a following SEL instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.94 SADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-247

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.94 SADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-248

Non-Confidential

C2.95 SADD16
Signed parallel halfword-wise addition.

Syntax

SADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two signed integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. The results are modulo 216. It
sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to an ADDS instruction setting the N and V condition flags to the same value, so that the
GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.95 SADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-249

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.95 SADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-250

Non-Confidential

C2.96 SASX
Signed parallel add and subtract halfwords with exchange.

Syntax

SASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE
flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to an ADDS or SUBS instruction setting the N and V condition flags to the same value,
so that the GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.96 SASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-251

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.96 SASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-252

Non-Confidential

C2.97 SBC
Subtract with Carry.

Syntax

SBC{S}{cond} {Rd}, Rn, Operand2

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

Usage

The SBC (Subtract with Carry) instruction subtracts the value of Operand2 from the value in Rn. If the
carry flag is clear, the result is reduced by one.

You can use SBC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

You cannot use PC (R15) for Rd, or any operand.

You cannot use SP (R13) for Rd, or any operand.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in an SBC instruction that has a register-controlled shift.

Use of PC for any operand in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP and PC in SBC A32 instructions is deprecated.

Condition flags

If S is specified, the SBC instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

C2 A32 and T32 Instructions
C2.97 SBC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-253

Non-Confidential

SBCS Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

SBC{cond} Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Multiword arithmetic examples

These instructions subtract one 96-bit integer contained in R9, R10, and R11 from another 96-bit integer
contained in R6, R7, and R8, and place the result in R3, R4, and R5:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no requirement
to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.97 SBC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-254

Non-Confidential

C2.98 SBFX
Signed Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the source register.

lsb

is the bit number of the least significant bit in the bitfield, in the range 0 to 31.

width

is the width of the bitfield, in the range 1 to (32–lsb).

Operation

Copies adjacent bits from one register into the least significant bits of a second register, and sign extends
to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.98 SBFX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-255

Non-Confidential

C2.99 SDIV
Signed Divide.

Syntax

SDIV{cond} {Rd}, Rn, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the value to be divided.

Rm
is a register holding the divisor.

Register restrictions

PC or SP cannot be used for Rd, Rn, or Rm.

Architectures

This 32-bit T32 instruction is available in Armv7‑R, Armv7‑M, and Armv8‑M Mainline.

This 32-bit A32 instruction is optional in Armv7‑R.

This 32-bit A32 and T32 instruction is available in Armv7‑A if Virtualization Extensions are
implemented, and optional if not.

There is no 16-bit T32 SDIV instruction.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.99 SDIV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-256

Non-Confidential

C2.100 SEL
Select bytes from each operand according to the state of the APSR GE flags.

Syntax

SEL{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the second operand.

Operation
The SEL instruction selects bytes from Rn or Rm according to the APSR GE flags:
• If GE[0] is set, Rd[7:0] come from Rn[7:0], otherwise from Rm[7:0].
• If GE[1] is set, Rd[15:8] come from Rn[15:8], otherwise from Rm[15:8].
• If GE[2] is set, Rd[23:16] come from Rn[23:16], otherwise from Rm[23:16].
• If GE[3] is set, Rd[31:24] come from Rn[31:24], otherwise from Rm[31:24].

Usage

Use the SEL instruction after one of the signed parallel instructions. You can use this to select maximum
or minimum values in multiple byte or halfword data.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SEL r0, r4, r5
 SELLT r4, r0, r4

The following instruction sequence sets each byte in R4 equal to the unsigned minimum of the
corresponding bytes of R1 and R2:

 USUB8 r4, r1, r2
 SEL r4, r2, r1

C2 A32 and T32 Instructions
C2.100 SEL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-257

Non-Confidential

Related concepts
A1.12 Application Program Status Register on page A1-38
Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.100 SEL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-258

Non-Confidential

C2.101 SETEND
Set the endianness bit in the CPSR, without affecting any other bits in the CPSR.

 Note

This instruction is deprecated in Armv8.

Syntax

SETEND specifier

where:

specifier

is one of:

BE

Big-endian.

LE

Little-endian.

Usage

Use SETEND to access data of different endianness, for example, to access several big-endian DMA-
formatted data fields from an otherwise little-endian application.

SETEND cannot be conditional, and is not permitted in an IT block.

Architectures

This instruction is available in A32 and 16-bit T32.

This 16-bit instruction is available in T32, except in the Armv6‑M and Armv7‑M architectures.

There is no 32-bit version of this instruction in T32.

Example
 SETEND BE ; Set the CPSR E bit for big-endian accesses
 LDR r0, [r2, #header]
 LDR r1, [r2, #CRC32]
 SETEND le ; Set the CPSR E bit for little-endian accesses
 ; for the rest of the application

C2 A32 and T32 Instructions
C2.101 SETEND

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-259

Non-Confidential

C2.102 SETPAN
Set Privileged Access Never.

Syntax

SETPAN{q} #imm ; A1 general registers (A32)

SETPAN{q} #imm ; T1 general registers (T32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

imm
Is the unsigned immediate 0 or 1.

Architectures supported

Supported in Armv8.1 and later.

Usage

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.

Related references
C2.1 A32 and T32 instruction summary on page C2-106

C2 A32 and T32 Instructions
C2.102 SETPAN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-260

Non-Confidential

C2.103 SEV
Set Event.

Syntax

SEV{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether it is implemented or not. If it is not implemented, it
executes as a NOP. The assembler produces a diagnostic message if the instruction executes as a NOP on
the target.

SEV causes an event to be signaled to all cores within a multiprocessor system. If SEV is implemented,
WFE must also be implemented.

Availability

This instruction is available in A32 and T32.

Related references
C2.104 SEVL on page C2-262
C2.68 NOP on page C2-213
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.103 SEV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-261

Non-Confidential

C2.104 SEVL
Set Event Locally.

 Note

This instruction is supported only in Armv8.

Syntax

SEVL{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether it is implemented or not. If it is not implemented, it
executes as a NOP. armasm produces a diagnostic message if the instruction executes as a NOP on the
target.

SEVL causes an event to be signaled to all cores the current processor. SEVL is not required to affect other
processors although it is permitted to do so.

Availability

This instruction is available in A32 and T32.

Related references
C2.103 SEV on page C2-261
C2.68 NOP on page C2-213
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.104 SEVL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-262

Non-Confidential

C2.105 SG
Secure Gateway.

Syntax

SG

Usage

Secure Gateway marks a valid branch target for branches from Non-secure code that wants to call Secure
code.

C2 A32 and T32 Instructions
C2.105 SG

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-263

Non-Confidential

C2.106 SHADD8
Signed halving parallel byte-wise addition.

Syntax

SHADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four signed integer additions on the corresponding bytes of the operands,
halves the results, and writes the results into the corresponding bytes of the destination. This cannot
cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.106 SHADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-264

Non-Confidential

C2.107 SHADD16
Signed halving parallel halfword-wise addition.

Syntax

SHADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two signed integer additions on the corresponding halfwords of the operands,
halves the results, and writes the results into the corresponding halfwords of the destination. This cannot
cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.107 SHADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-265

Non-Confidential

C2.108 SHASX
Signed halving parallel add and subtract halfwords with exchange.

Syntax

SHASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It halves the results
and writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.108 SHASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-266

Non-Confidential

C2.109 SHSAX
Signed halving parallel subtract and add halfwords with exchange.

Syntax

SHSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It halves the results and
writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.109 SHSAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-267

Non-Confidential

C2.110 SHSUB8
Signed halving parallel byte-wise subtraction.

Syntax

SHSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand, halves the results, and writes the results into the corresponding bytes of the destination. This
cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.110 SHSUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-268

Non-Confidential

C2.111 SHSUB16
Signed halving parallel halfword-wise subtraction.

Syntax

SHSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand, halves the results, and writes the results into the corresponding halfwords of the
destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.111 SHSUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-269

Non-Confidential

C2.112 SMC
Secure Monitor Call.

Syntax

SMC{cond} #imm4

where:

cond

is an optional condition code.

imm4

is a 4-bit immediate value. This is ignored by the Arm processor, but can be used by the SMC
exception handler to determine what service is being requested.

 Note

SMC was called SMI in earlier versions of the A32 assembly language. SMI instructions disassemble to
SMC, with a comment to say that this was formerly SMI.

Architectures

This 32-bit instruction is available in A32 and T32, if the Arm architecture has the Security Extensions.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.112 SMC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-270

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.113 SMLAxy
Signed Multiply Accumulate, with 16-bit operands and a 32-bit result and accumulator.

Syntax

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x>

is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top half (bits
[31:16]) of Rn.

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Ra

is the register holding the value to be added.

Operation

SMLAxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, adds the 32-bit result
to the 32-bit value in Ra, and places the result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAxy sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

 Note

SMLAxy never clears the Q flag. To clear the Q flag, use an MSR instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.113 SMLAxy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-271

Non-Confidential

Examples
 SMLABBNE r0, r2, r1, r10
 SMLABT r0, r0, r3, r5

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.113 SMLAxy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-272

Non-Confidential

C2.114 SMLAD
Dual 16-bit Signed Multiply with Addition of products and 32-bit accumulation.

Syntax

SMLAD{X}{cond} Rd, Rn, Rm, Ra

where:

cond

is an optional condition code.

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is the register holding the accumulate operand.

Operation

SMLAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then adds both products to the value in Ra and stores the sum to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMLADLT r1, r2, r4, r1

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.114 SMLAD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-273

Non-Confidential

C2.115 SMLAL
Signed Long Multiply, with optional Accumulate, with 32-bit operands, and 64-bit result and
accumulator.

Syntax

SMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. They also hold the accumulating value. RdLo and RdHi must be
different registers

Rn, Rm

are general-purpose registers holding the operands.

Operation

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers, and adds the 64-bit result to the 64-bit signed integer contained in RdHi and
RdLo.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.115 SMLAL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-274

Non-Confidential

C2.116 SMLALD
Dual 16-bit Signed Multiply with Addition of products and 64-bit Accumulation.

Syntax

SMLALD{X}{cond} RdLo, RdHi, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers for the 64-bit result. They also hold the 64-bit accumulate operand.
RdHi and RdLo must be different registers.

Rn, Rm

are the general-purpose registers holding the operands.

Operation

SMLALD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then adds both products to the value in RdLo, RdHi and stores the sum to
RdLo, RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMLALD r10, r11, r5, r1

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.116 SMLALD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-275

Non-Confidential

C2.117 SMLALxy
Signed Multiply-Accumulate with 16-bit operands and a 64-bit accumulator.

Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x>

is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top half (bits
[31:16]) of Rn.

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. They also hold the accumulate value. RdHi and RdLo must be
different registers.

Rn, Rm

are the general-purpose registers holding the values to be multiplied.

Operation

SMLALxy multiplies the signed integer from the selected half of Rm by the signed integer from the selected
half of Rn, and adds the 32-bit result to the 64-bit value in RdHi and RdLo.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
This instruction does not change the flags.

 Note

SMLALxy cannot raise an exception. If overflow occurs on this instruction, the result wraps round without
any warning.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMLALTB r2, r3, r7, r1
 SMLALBTVS r0, r1, r9, r2

C2 A32 and T32 Instructions
C2.117 SMLALxy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-276

Non-Confidential

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.117 SMLALxy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-277

Non-Confidential

C2.118 SMLAWy
Signed Multiply-Accumulate Wide, with one 32-bit and one 16-bit operand, and a 32-bit accumulate
value, providing the top 32 bits of the result.

Syntax

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Ra

is the register holding the value to be added.

Operation

SMLAWy multiplies the signed 16-bit integer from the selected half of Rm by the signed 32-bit integer from
Rn, adds the top 32 bits of the 48-bit result to the 32-bit value in Ra, and places the result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAWy sets the Q flag.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.118 SMLAWy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-278

Non-Confidential

C2.119 SMLSD
Dual 16-bit Signed Multiply with Subtraction of products and 32-bit accumulation.

Syntax

SMLSD{X}{cond} Rd, Rn, Rm, Ra

where:

cond

is an optional condition code.

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is the register holding the accumulate operand.

Operation

SMLSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then subtracts the second product from the first, adds the difference to the
value in Ra, and stores the result to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMLSD r1, r2, r0, r7
 SMLSDX r11, r10, r2, r3

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.119 SMLSD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-279

Non-Confidential

C2.120 SMLSLD
Dual 16-bit Signed Multiply with Subtraction of products and 64-bit accumulation.

Syntax

SMLSD{X}{cond} RdLo, RdHi, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers for the 64-bit result. They also hold the 64-bit accumulate operand.
RdHi and RdLo must be different registers.

Rn, Rm

are the general-purpose registers holding the operands.

Operation

SMLSLD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then subtracts the second product from the first, adds the difference to the
value in RdLo, RdHi, and stores the result to RdLo, RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMLSLD r3, r0, r5, r1

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.120 SMLSLD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-280

Non-Confidential

C2.121 SMMLA
Signed Most significant word Multiply with Accumulation.

Syntax

SMMLA{R}{cond} Rd, Rn, Rm, Ra

where:

R

is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is a register holding the value to be added or subtracted from.

Operation

SMMLA multiplies the values from Rn and Rm, adds the value in Ra to the most significant 32 bits of the
product, and stores the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32
bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.121 SMMLA

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-281

Non-Confidential

C2.122 SMMLS
Signed Most significant word Multiply with Subtraction.

Syntax

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R

is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is a register holding the value to be added or subtracted from.

Operation

SMMLS multiplies the values from Rn and Rm, subtracts the product from the value in Ra shifted left by 32
bits, and stores the most significant 32 bits of the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32
bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.122 SMMLS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-282

Non-Confidential

C2.123 SMMUL
Signed Most significant word Multiply.

Syntax

SMMUL{R}{cond} {Rd}, Rn, Rm

where:

R

is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is a register holding the value to be added or subtracted from.

Operation

SMMUL multiplies the 32-bit values from Rn and Rm, and stores the most significant 32 bits of the 64-bit
result to Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32
bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMMULGE r6, r4, r3
 SMMULR r2, r2, r2

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.123 SMMUL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-283

Non-Confidential

C2.124 SMUAD
Dual 16-bit Signed Multiply with Addition of products, and optional exchange of operand halves.

Syntax

SMUAD{X}{cond} {Rd}, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Operation

SMUAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then adds the products and stores the sum to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

The SMUAD instruction sets the Q flag if the addition overflows.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMUAD r2, r3, r2

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.124 SMUAD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-284

Non-Confidential

C2.125 SMULxy
Signed Multiply, with 16-bit operands and a 32-bit result.

Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

where:

<x>

is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top half (bits
[31:16]) of Rn.

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Operation

SMULxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, and places the 32-bit
result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

These instructions do not affect the N, Z, C, or V flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMULTBEQ r8, r7, r9

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.125 SMULxy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-285

Non-Confidential

C2.126 SMULL
Signed Long Multiply, with 32-bit operands and 64-bit result.

Syntax

SMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. RdLo and RdHi must be different registers

Rn, Rm

are general-purpose registers holding the operands.

Operation

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.126 SMULL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-286

Non-Confidential

C2.127 SMULWy
Signed Multiply Wide, with one 32-bit and one 16-bit operand, providing the top 32 bits of the result.

Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

where:

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Operation

SMULWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn, and
places the upper 32-bits of the 48-bit result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.127 SMULWy

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-287

Non-Confidential

C2.128 SMUSD
Dual 16-bit Signed Multiply with Subtraction of products, and optional exchange of operand halves.

Syntax

SMUSD{X}{cond} {Rd}, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Operation

SMUSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then subtracts the second product from the first, and stores the difference
to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMUSDXNE r0, r1, r2

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.128 SMUSD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-288

Non-Confidential

C2.129 SRS
Store Return State onto a stack.

Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

SRS{addr_mode}{cond} #modenum{!} ; This is pre-UAL syntax

where:

addr_mode

is any one of the following:

IA

Increment address After each transfer

IB

Increment address Before each transfer (A32 only)

DA

Decrement address After each transfer (A32 only)

DB

Decrement address Before each transfer (Full Descending stack).

If addr_mode is omitted, it defaults to Increment After. You can also use stack oriented
addressing mode suffixes, for example, when implementing stacks.

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
the Armv8 architecture. This is an unconditional instruction in A32.

!

is an optional suffix. If ! is present, the final address is written back into the SP of the mode
specified by modenum.

modenum

specifies the number of the mode whose banked SP is used as the base register. You must use
only the defined mode numbers.

Operation
SRS stores the LR and the SPSR of the current mode, at the address contained in SP of the mode
specified by modenum, and the following word respectively. Optionally updates SP of the mode specified
by modenum. This is compatible with the normal use of the STM instruction for stack accesses.

 Note

For full descending stack, you must use SRSFD or SRSDB.

Usage

You can use SRS to store return state for an exception handler on a different stack from the one
automatically selected.

C2 A32 and T32 Instructions
C2.129 SRS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-289

Non-Confidential

Notes

Where addresses are not word-aligned, SRS ignores the least significant two bits of the specified address.

The time order of the accesses to individual words of memory generated by SRS is not architecturally
defined. Do not use this instruction on memory-mapped I/O locations where access order matters.

Do not use SRS in User and System modes because these modes do not have a SPSR.

SRS is not permitted in a non-secure state if modenum specifies monitor mode.

Availability

This 32-bit instruction is available in A32 and T32.

The 32-bit T32 instruction is not available in the Armv7‑M architecture.

There is no 16-bit version of this instruction in T32.

Example
R13_usr EQU 16
 SRSFD sp,#R13_usr

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related references
C2.45 LDM on page C2-177
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.129 SRS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-290

Non-Confidential

C2.130 SSAT
Signed Saturate to any bit position, with optional shift before saturating.

Syntax

SSAT{cond} Rd, #sat, Rm{, shift}

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 1 to 32.

Rm

is the register containing the operand.

shift

is an optional shift. It must be one of the following:

ASR #n

where n is in the range 1-32 (A32) or 1-31 (T32)

LSL #n

where n is in the range 0-31.

Operation

The SSAT instruction applies the specified shift, then saturates a signed value to the signed range -2sat-1 ≤
x ≤ 2sat-1 -1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 SSAT r7, #16, r7, LSL #4

Related references
C2.131 SSAT16 on page C2-292
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.130 SSAT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-291

Non-Confidential

C2.131 SSAT16
Parallel halfword Saturate.

Syntax

SSAT16{cond} Rd, #sat, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 1 to 16.

Rn

is the register holding the operand.

Operation

Halfword-wise signed saturation to any bit position.

The SSAT16 instruction saturates each signed halfword to the signed range -2sat-1 ≤ x ≤ 2sat-1 -1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs on either halfword, this instruction sets the Q flag. To read the state of the Q flag, use
an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Correct example
 SSAT16 r7, #12, r7

Incorrect example
 SSAT16 r1, #16, r2, LSL #4 ; shifts not permitted with halfword
 ; saturations

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.131 SSAT16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-292

Non-Confidential

C2.132 SSAX
Signed parallel subtract and add halfwords with exchange.

Syntax

SSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to an ADDS or SUBS instruction setting the N and V condition flags to the same value,
so that the GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.132 SSAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-293

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.132 SSAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-294

Non-Confidential

C2.133 SSUB8
Signed parallel byte-wise subtraction.

Syntax

SSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. The results are modulo 28.
It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result is greater than or equal to zero. This is
equivalent to a SUBS instruction setting the N and V condition flags to the same value, so that the GE
condition passes.

You can use these flags to control a following SEL instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.133 SSUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-295

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.133 SSUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-296

Non-Confidential

C2.134 SSUB16
Signed parallel halfword-wise subtraction.

Syntax

SSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. The results are
modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to a SUBS instruction setting the N and V condition flags to the same value, so that the
GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.134 SSUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-297

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.134 SSUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-298

Non-Confidential

C2.135 STC and STC2
Transfer Data between memory and Coprocessor.

 Note

STC2 is not supported in Armv8.

Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, [Rn], {option}

where:

op

is one of STC or STC2.

cond

is an optional condition code.

In A32 code, cond is not permitted for STC2.

L

is an optional suffix specifying a long transfer.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 in Armv8.

CRd

is the coprocessor register to store.

Rn

is the register on which the memory address is based. If PC is specified, the value used is the
address of the current instruction plus eight.

-

is an optional minus sign. If - is present, the offset is subtracted from Rn. Otherwise, the offset is
added to Rn.

offset

is an expression evaluating to a multiple of 4, in the range 0 to 1020.

!

is an optional suffix. If ! is present, the address including the offset is written back into Rn.

option

is a coprocessor option in the range 0-255, enclosed in braces.

C2 A32 and T32 Instructions
C2.135 STC and STC2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-299

Non-Confidential

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that write
back to Rn.

You cannot use PC for Rn in T32 STC and STC2 instructions.

A32 STC and STC2 instructions where Rn is PC, are deprecated.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.135 STC and STC2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-300

Non-Confidential

C2.136 STL
Store-Release Register.

 Note

This instruction is supported only in Armv8.

Syntax

STL{cond} Rt, [Rn]

STLB{cond} Rt, [Rn]

STLH{cond} Rt, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to store.

Rn
is the register on which the memory address is based.

Operation

STL stores data to memory. If any loads or stores appear before a store-release in program order, then all
observers are guaranteed to observe the loads and stores before observing the store-release. Loads and
stores appearing after a store-release are unaffected.

If a store-release follows a load-acquire, each observer is guaranteed to observe them in program order.

There is no requirement that a store-release be paired with a load-acquire.

All store-release operations are multi-copy atomic, meaning that in a multiprocessing system, if one
observer observes a write to memory because of a store-release operation, then all observers observe it.
Also, all observers observe all such writes to the same location in the same order.

Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not be used for Rt or Rn.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction.

Related references
C2.43 LDAEX on page C2-173
C2.42 LDA on page C2-172
C2.137 STLEX on page C2-302
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.136 STL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-301

Non-Confidential

C2.137 STLEX
Store-Release Register Exclusive.

 Note

This instruction is supported only in Armv8.

Syntax

STLEX{cond} Rd, Rt, [Rn]

STLEXB{cond} Rd, Rt, [Rn]

STLEXH{cond} Rd, Rt, [Rn]

STLEXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond
is an optional condition code.

Rd
is the destination register for the returned status.

Rt
is the register to load or store.

Rt2
is the second register for doubleword loads or stores.

Rn
is the register on which the memory address is based.

Operation
STLEX performs a conditional store to memory. The conditions are as follows:
• If the physical address does not have the Shared TLB attribute, and the executing processor has an

outstanding tagged physical address, the store takes place, the tag is cleared, and the value 0 is
returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing processor does not
have an outstanding tagged physical address, the store does not take place, and the value 1 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as exclusive
access for the executing processor, the store takes place, the tag is cleared, and the value 0 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is not tagged as
exclusive access for the executing processor, the store does not take place, and the value 1 is returned
in Rd.

If any loads or stores appear before STLEX in program order, then all observers are guaranteed to observe
the loads and stores before observing the store-release. Loads and stores appearing after STLEX are
unaffected.

All store-release operations are multi-copy atomic.

Restrictions

The PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STLEX, Rd must not be the same register as Rt, Rt2, or Rn.

C2 A32 and T32 Instructions
C2.137 STLEX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-302

Non-Confidential

For A32 instructions:
• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated.
• For STLEXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).

For T32 instructions, SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2.

Usage

Use LDAEX and STLEX to implement interprocess communication in multiple-processor and shared-
memory systems.

For reasons of performance, keep the number of instructions between corresponding LDAEX and STLEX
instructions to a minimum.

 Note

The address used in a STLEX instruction must be the same as the address in the most recently executed
LDAEX instruction.

Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

Related references
C2.43 LDAEX on page C2-173
C2.136 STL on page C2-301
C2.42 LDA on page C2-172
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.137 STLEX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-303

Non-Confidential

C2.138 STM
Store Multiple registers.

Syntax

STM{addr_mode}{cond} Rn{!}, reglist{^}

where:

addr_mode

is any one of the following:

IA

Increment address After each transfer. This is the default, and can be omitted.

IB

Increment address Before each transfer (A32 only).

DA

Decrement address After each transfer (A32 only).

DB

Decrement address Before each transfer.

You can also use the stack-oriented addressing mode suffixes, for example when implementing
stacks.

cond

is an optional condition code.

Rn

is the base register, the general-purpose register holding the initial address for the transfer. Rn
must not be PC.

!

is an optional suffix. If ! is present, the final address is written back into Rn.

reglist

is a list of one or more registers to be stored, enclosed in braces. It can contain register ranges. It
must be comma-separated if it contains more than one register or register range. Any
combination of registers R0 to R15 (PC) can be transferred in A32 state, but there are some
restrictions in T32 state.

^

is an optional suffix, available in A32 state only. You must not use it in User mode or System
mode. Data is transferred into or out of the User mode registers instead of the current mode
registers.

Restrictions on reglist in 32-bit T32 instructions
In 32-bit T32 instructions:
• The SP cannot be in the list.
• The PC cannot be in the list.
• There must be two or more registers in the list.

If you write an STM instruction with only one register in reglist, the assembler automatically substitutes
the equivalent STR instruction. Be aware of this when comparing disassembly listings with source code.

C2 A32 and T32 Instructions
C2.138 STM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-304

Non-Confidential

Restrictions on reglist in A32 instructions

A32 store instructions can have SP and PC in the reglist but these instructions that include SP or PC in
the reglist are deprecated.

16-bit instruction

A 16-bit version of this instruction is available in T32 code.

The following restrictions apply to the 16-bit instruction:
• All registers in reglist must be Lo registers.
• Rn must be a Lo register.
• addr_mode must be omitted (or IA), meaning increment address after each transfer.
• Writeback must be specified for STM instructions.

 Note

16-bit T32 STM instructions with writeback that specify Rn as the lowest register in the reglist are
deprecated.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can therefore
be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also 16-bit
instructions.

Storing the base register, with writeback
In A32 or 16-bit T32 instructions, if Rn is in reglist, and writeback is specified with the ! suffix:
• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in reglist, the

initial value of Rn is stored. These instructions are deprecated.
• Otherwise, the stored value of Rn cannot be relied on, so these instructions are not permitted.

32-bit T32 instructions are not permitted if Rn is in reglist, and writeback is specified with the ! suffix.

Correct example
 STMDB r1!,{r3-r6,r11,r12}

Incorrect example
 STM r5!,{r5,r4,r9} ; value stored for R5 unknown

Related references
C2.73 POP on page C2-221
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.138 STM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-305

Non-Confidential

C2.139 STR (immediate offset)
Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

STR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

STR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

STR{type}{cond} Rt, [Rn], #offset ; post-indexed

STRD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

STRD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

STRD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

type

can be any one of:

B

Byte

H

Halfword

-

omitted, for Word.

cond

is an optional condition code.

Rt

is the general-purpose register to store.

Rn

is the general-purpose register on which the memory address is based.

offset

is an offset. If offset is omitted, the address is the contents of Rn.

Rt2

is the additional register to store for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of this instruction:

Table C2-15 Offsets and architectures, STR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed

A32, word or byte -4095 to 4095 -4095 to 4095 -4095 to 4095

A32, halfword -255 to 255 -255 to 255 -255 to 255

C2 A32 and T32 Instructions
C2.139 STR (immediate offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-306

Non-Confidential

Table C2-15 Offsets and architectures, STR, word, halfword, and byte (continued)

Instruction Immediate offset Pre-indexed Post-indexed

A32, doubleword -255 to 255 -255 to 255 -255 to 255

T32 32-bit encoding, word, halfword, or byte -255 to 4095 -255 to 255 -255 to 255

T32 32-bit encoding, doubleword -1020 to 1020 z -1020 to 1020 z -1020 to 1020 z

T32 16-bit encoding, word aa 0 to 124 z Not available Not available

T32 16-bit encoding, halfword aa 0 to 62 ac Not available Not available

T32 16-bit encoding, byte aa 0 to 31 Not available Not available

T32 16-bit encoding, word, Rn is SP ab 0 to 1020 z Not available Not available

Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of PC

In A32 instructions you can use PC for Rt in STR word instructions and PC for Rn in STR instructions
with immediate offset syntax (that is the forms that do not writeback to the Rn). However, this is
deprecated.

Other uses of PC are not permitted in these A32 instructions.

In T32 code, using PC in STR instructions is not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word instructions
in A32 code but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in this
instruction is not permitted in T32 code.

Example
 STR r2,[r9,#consta-struc] ; consta-struc is an expression
 ; evaluating to a constant in
 ; the range 0-4095.

Related references
C1.9 Condition code suffixes on page C1-92

z Must be divisible by 4.
aa Rt and Rn must be in the range R0-R7.
ab Rt must be in the range R0-R7.
ac Must be divisible by 2.

C2 A32 and T32 Instructions
C2.139 STR (immediate offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-307

Non-Confidential

C2.140 STR (register offset)
Store with register offset, pre-indexed register offset, or post-indexed register offset.

Syntax

STR{type}{cond} Rt, [Rn, ±Rm {, shift}] ; register offset

STR{type}{cond} Rt, [Rn, ±Rm {, shift}]! ; pre-indexed ; A32 only

STR{type}{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed ; A32 only

STRD{cond} Rt, Rt2, [Rn, ±Rm] ; register offset, doubleword ; A32 only

STRD{cond} Rt, Rt2, [Rn, ±Rm]! ; pre-indexed, doubleword ; A32 only

STRD{cond} Rt, Rt2, [Rn], ±Rm ; post-indexed, doubleword ; A32 only

where:

type

can be any one of:

B
Byte

H
Halfword

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the general-purpose register to store.

Rn
is the general-purpose register on which the memory address is based.

Rm
is a general-purpose register containing a value to be used as the offset. –Rm is not permitted in
T32 code.

shift
is an optional shift.

Rt2
is the additional register to store for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset register and shift options

The following table shows the ranges of offsets and availability of this instruction:

Table C2-16 Options and architectures, STR (register offsets)

Instruction ±Rm ad shift

A32, word or byte ±Rm LSL #0-31 LSR #1-32

ASR #1-32 ROR #1-31 RRX

A32, halfword ±Rm Not available

A32, doubleword ±Rm Not available

ad Where ±Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
ae Rt, Rn, and Rm must all be in the range R0-R7.

C2 A32 and T32 Instructions
C2.140 STR (register offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-308

Non-Confidential

Table C2-16 Options and architectures, STR (register offsets) (continued)

Instruction ±Rm ad shift

T32 32-bit encoding, word, halfword, or byte +Rm LSL #0-3

T32 16-bit encoding, all except doubleword ae +Rm Not available

Register restrictions

In the pre-index and post-index forms, Rn must be different from Rt.

Doubleword register restrictions
For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).
• Rn must be different from Rt2 in the pre-index and post-index forms.

Use of PC

In A32 instructions you can use PC for Rt in STR word instructions, and you can use PC for Rn in STR
instructions with register offset syntax (that is, the forms that do not writeback to the Rn). However, this
is deprecated.

Other uses of PC are not permitted in A32 instructions.

Use of PC in STR T32 instructions is not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

You can use SP for Rm in A32 instructions but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in this
instruction is not permitted in T32 code.

Use of SP for Rm is not permitted in T32 state.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.140 STR (register offset)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-309

Non-Confidential

C2.141 STR, unprivileged
Unprivileged Store, byte, halfword, or word.

Syntax

STR{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (T32, 32-bit encoding only)

STR{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (A32 only)

STR{type}T{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed (register) (A32 only)

where:

type

can be any one of:

B

Byte

H

Halfword

-

omitted, for Word.

cond

is an optional condition code.

Rt

is the register to load or store.

Rn

is the register on which the memory address is based.

offset

is an offset. If offset is omitted, the address is the value in Rn.

Rm

is a register containing a value to be used as the offset. Rm must not be PC.

shift

is an optional shift.

Operation

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software, these instructions behave in exactly the same way as the
corresponding store instruction, for example STRBT behaves in the same way as STRB.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of this instruction:

C2 A32 and T32 Instructions
C2.141 STR, unprivileged

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-310

Non-Confidential

Table C2-17 Offsets and architectures, STR (User mode)

Instruction Immediate offset Post-indexed +/–Rm af shift

A32, word or byte Not available -4095 to 4095 +/–Rm LSL #0-31

LSR #1-32

ASR #1-32

ROR #1-31

RRX

A32, halfword Not available -255 to 255 +/–Rm Not available

T32 32-bit encoding, word, halfword, or byte 0 to 255 Not available Not available

Related references
C1.9 Condition code suffixes on page C1-92

af You can use –Rm, +Rm, or Rm.

C2 A32 and T32 Instructions
C2.141 STR, unprivileged

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-311

Non-Confidential

C2.142 STREX
Store Register Exclusive.

Syntax

STREX{cond} Rd, Rt, [Rn {, #offset}]

STREXB{cond} Rd, Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond

is an optional condition code.

Rd

is the destination register for the returned status.

Rt

is the register to store.

Rt2

is the second register for doubleword stores.

Rn

is the register on which the memory address is based.

offset

is an optional offset applied to the value in Rn. offset is permitted only in T32 instructions. If
offset is omitted, an offset of 0 is assumed.

Operation
STREX performs a conditional store to memory. The conditions are as follows:
• If the physical address does not have the Shared TLB attribute, and the executing processor has an

outstanding tagged physical address, the store takes place, the tag is cleared, and the value 0 is
returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing processor does not
have an outstanding tagged physical address, the store does not take place, and the value 1 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as exclusive
access for the executing processor, the store takes place, the tag is cleared, and the value 0 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is not tagged as
exclusive access for the executing processor, the store does not take place, and the value 1 is returned
in Rd.

Restrictions

PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STREX, Rd must not be the same register as Rt, Rt2, or Rn.

For A32 instructions:

• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated.
• For STREXD, Rt must be an even numbered register, and not LR.

C2 A32 and T32 Instructions
C2.142 STREX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-312

Non-Confidential

• Rt2 must be R(t+1).
• offset is not permitted.

For T32 instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2.
• The value of offset can be any multiple of four in the range 0-1020.

Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and shared-
memory systems.

For reasons of performance, keep the number of instructions between corresponding LDREX and STREX
instructions to a minimum.

 Note

The address used in a STREX instruction must be the same as the address in the most recently executed
LDREX instruction.

Availability

All these 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

Examples
 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.142 STREX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-313

Non-Confidential

C2.143 SUB
Subtract without carry.

Syntax

SUB{S}{cond} {Rd}, Rn, Operand2

SUB{cond} {Rd}, Rn, #imm12 ; T32, 32-bit encoding only

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

imm12

is any value in the range 0-4095.

Operation

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

In general, you cannot use PC (R15) for Rd, or any operand. The exception is you can use PC for Rn in
32-bit T32 SUB instructions, with a constant Operand2 value in the range 0-4095, and no S suffix. These
instructions are useful for generating PC-relative addresses. Bit[1] of the PC value reads as 0 in this case,
so that the base address for the calculation is always word-aligned.

Generally, you cannot use SP (R13) for Rd, or any operand, except that you can use SP for Rn.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in a SUB instruction that has a register-controlled shift.

In SUB instructions without register-controlled shift, use of PC is deprecated except for the following
cases:

• Use of PC for Rd.
• Use of PC for Rn in the instruction SUB{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

C2 A32 and T32 Instructions
C2.143 SUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-314

Non-Confidential

• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in SUB instructions, however, SUBS PC, SP, #Constant is deprecated.

You can use SP in SUB (register) if Rn is SP and shift is omitted or LSL #1, LSL #2, or LSL #3.

Other uses of SP in A32 SUB instructions are deprecated.
 Note

Use of SP and PC is deprecated in A32 instructions.

Condition flags

If S is specified, the SUB instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

SUBS Rd, Rn, Rm

Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

SUB{cond} Rd, Rn, Rm

Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

SUBS Rd, Rn, #imm

imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

SUB{cond} Rd, Rn, #imm

imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT
block.

SUBS Rd, Rd, #imm

imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

SUB{cond} Rd, Rd, #imm

imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

SUB{cond} SP, SP, #imm

imm range 0-508, word aligned.

Example
 SUBS r8, r6, #240 ; sets the flags based on the result

Multiword arithmetic examples

These instructions subtract one 96-bit integer contained in R9, R10, and R11 from another 96-bit integer
contained in R6, R7, and R8, and place the result in R3, R4, and R5:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no requirement
to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11

C2 A32 and T32 Instructions
C2.143 SUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-315

Non-Confidential

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C2.144 SUBS pc, lr on page C2-317
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.143 SUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-316

Non-Confidential

C2.144 SUBS pc, lr
Exception return, without popping anything from the stack.

Syntax

SUBS{cond} pc, lr, #imm ; A32 and T32 code

MOVS{cond} pc, lr ; A32 and T32 code

op1S{cond} pc, Rn, #imm ; A32 code only and is deprecated

op1S{cond} pc, Rn, Rm {, shift} ; A32 code only and is deprecated

op2S{cond} pc, #imm ; A32 code only and is deprecated

op2S{cond} pc, Rm {, shift} ; A32 code only and is deprecated

where:

op1

is one of ADC, ADD, AND, BIC, EOR, ORN, ORR, RSB, RSC, SBC, and SUB.

op2

is one of MOV and MVN.

cond

is an optional condition code.

imm

is an immediate value. In T32 code, it is limited to the range 0-255. In A32 code, it is a flexible
second operand.

Rn

is the first general-purpose source register. Arm deprecates the use of any register except LR.

Rm

is the optionally shifted second or only general-purpose register.

shift

is an optional condition code.

Usage

SUBS pc, lr, #imm subtracts a value from the link register and loads the PC with the result, then copies
the SPSR to the CPSR.

You can use SUBS pc, lr, #imm to return from an exception if there is no return state on the stack. The
value of #imm depends on the exception to return from.

Notes

SUBS pc, lr, #imm writes an address to the PC. The alignment of this address must be correct for the
instruction set in use after the exception return:

• For a return to A32, the address written to the PC must be word-aligned.
• For a return to T32, the address written to the PC must be halfword-aligned.
• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

No special precautions are required in software to follow these rules, if you use the instruction to return
after a valid exception entry mechanism.

C2 A32 and T32 Instructions
C2.144 SUBS pc, lr

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-317

Non-Confidential

In T32, only SUBS{cond} pc, lr, #imm is a valid instruction. MOVS pc, lr is a synonym of SUBS pc,
lr, #0. Other instructions are undefined.

In A32, only SUBS{cond} pc, lr, #imm and MOVS{cond} pc, lr are valid instructions. Other
instructions are deprecated.

 Caution

Do not use these instructions in User mode or System mode. The assembler cannot warn you about this.

Availability

This 32-bit instruction is available in A32 and T32.

The 32-bit T32 instruction is not available in the Armv7‑M architecture.

There is no 16-bit version of this instruction in T32.

Related references
C2.12 AND on page C2-128
C2.58 MOV on page C2-199
C2.3 Flexible second operand (Operand2) on page C2-112
C2.9 ADD on page C2-121
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.144 SUBS pc, lr

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-318

Non-Confidential

C2.145 SVC
SuperVisor Call.

Syntax

SVC{cond} #imm

where:

cond

is an optional condition code.

imm
is an expression evaluating to an integer in the range:
• 0 to 224-1 (a 24-bit value) in an A32 instruction.
• 0-255 (an 8-bit value) in a T32 instruction.

Operation

The SVC instruction causes an exception. This means that the processor mode changes to Supervisor, the
CPSR is saved to the Supervisor mode SPSR, and execution branches to the SVC vector.

imm is ignored by the processor. However, it can be retrieved by the exception handler to determine what
service is being requested.

 Note

SVC was called SWI in earlier versions of the A32 assembly language. SWI instructions disassemble to
SVC, with a comment to say that this was formerly SWI.

Condition flags

This instruction does not change the flags.

Availability

This instruction is available in A32 and 16-bit T32 and in the Armv7 architectures.

There is no 32-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.145 SVC

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-319

Non-Confidential

C2.146 SWP and SWPB
Swap data between registers and memory.

 Note

These instruction are not supported in Armv8.

Syntax

SWP{B}{cond} Rt, Rt2, [Rn]

where:

cond

is an optional condition code.

B

is an optional suffix. If B is present, a byte is swapped. Otherwise, a 32-bit word is swapped.

Rt

is the destination register. Rt must not be PC.

Rt2

is the source register. Rt2 can be the same register as Rt. Rt2 must not be PC.

Rn

contains the address in memory. Rn must be a different register from both Rt and Rt2. Rn must
not be PC.

Usage
You can use SWP and SWPB to implement semaphores:
• Data from memory is loaded into Rt.
• The contents of Rt2 are saved to memory.
• If Rt2 is the same register as Rt, the contents of the register are swapped with the contents of the

memory location.

Note

The use of SWP and SWPB is deprecated. You can use LDREX and STREX instructions to implement more
sophisticated semaphores.

Availability

These instructions are available in A32.

There are no T32 SWP or SWPB instructions.

Related references
C2.51 LDREX on page C2-189
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.146 SWP and SWPB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-320

Non-Confidential

C2.147 SXTAB
Sign extend Byte with Add, to extend an 8-bit value to a 32-bit value.

Syntax

SXTAB{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits[7:0] from the value obtained.
3. Sign extend to 32 bits.
4. Add the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.147 SXTAB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-321

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.147 SXTAB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-322

Non-Confidential

C2.148 SXTAB16
Sign extend two Bytes with Add, to extend two 8-bit values to two 16-bit values.

Syntax

SXTAB16{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits[23:16] and bits[7:0] from the value obtained.
3. Sign extend to 16 bits.
4. Add them to bits[31:16] and bits[15:0] respectively of Rn to form bits[31:16] and bits[15:0] of the

result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.148 SXTAB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-323

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.148 SXTAB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-324

Non-Confidential

C2.149 SXTAH
Sign extend Halfword with Add, to extend a 16-bit value to a 32-bit value.

Syntax

SXTAH{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits[15:0] from the value obtained.
3. Sign extend to 32 bits.
4. Add the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.149 SXTAH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-325

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.149 SXTAH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-326

Non-Confidential

C2.150 SXTB
Sign extend Byte, to extend an 8-bit value to a 32-bit value.

Syntax

SXTB{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotates the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracts bits[7:0] from the value obtained.
3. Sign extends to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

SXTB Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.150 SXTB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-327

Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.150 SXTB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-328

Non-Confidential

C2.151 SXTB16
Sign extend two bytes.

Syntax

SXTB16{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
SXTB16 extends two 8-bit values to two 16-bit values. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[23:16] and bits[7:0] from the value obtained.
3. Sign extending to 16 bits each.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.151 SXTB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-329

Non-Confidential

C2.152 SXTH
Sign extend Halfword.

Syntax

SXTH{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
SXTH extends a 16-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[15:0] from the value obtained.
3. Sign extending to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

SXTH Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.152 SXTH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-330

Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Example
 SXTH r3, r9

Incorrect example
 SXTH r3, r9, ROR #12 ; rotation must be 0, 8, 16, or 24.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.152 SXTH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-331

Non-Confidential

C2.153 SYS
Execute system coprocessor instruction.

Syntax

SYS{cond} instruction{, Rn}

where:

cond

is an optional condition code.

instruction

is the coprocessor instruction to execute.

Rn

is an operand to the instruction. For instructions that take an argument, Rn is compulsory. For
instructions that do not take an argument, Rn is optional and if it is not specified, R0 is used. Rn
must not be PC.

Usage

You can use this pseudo-instruction to execute special coprocessor instructions such as cache, branch
predictor, and TLB operations. The instructions operate by writing to special write-only coprocessor
registers. The instruction names are the same as the write-only coprocessor register names and are listed
in the Arm® Architecture Reference Manual. For example:

 SYS ICIALLUIS ; invalidates all instruction caches Inner Shareable
 ; to Point of Unification and also flushes branch
 ; target cache.

Availability

This 32-bit instruction is available in A32 and T32.

The 32-bit T32 instruction is not available in the Armv7‑M architecture.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.153 SYS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-332

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.154 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn

is the base register. This contains the address of the table of branch lengths. Rn must not be SP.

If PC is specified for Rn, the value used is the address of the instruction plus 4.

Rm

is the index register. This contains an index into the table.

Rm must not be PC or SP.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets (TBB) or
halfword offsets (TBH). Rn provides a pointer to the table, and Rm supplies an index into the table. The
branch length is twice the value of the byte (TBB) or the halfword (TBH) returned from the table. The
target of the branch table must be in the same execution state.

Architectures

These 32-bit T32 instructions are available.

There are no versions of these instructions in A32 or in 16-bit T32 encodings.

C2 A32 and T32 Instructions
C2.154 TBB and TBH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-333

Non-Confidential

C2.155 TEQ
Test Equivalence.

Syntax

TEQ{cond} Rn, Operand2

where:

cond

is an optional condition code.

Rn

is the general-purpose register holding the first operand.

Operand2

is a flexible second operand.

Usage

This instruction tests the value in a register against Operand2. It updates the condition flags on the result,
but does not place the result in any register.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand2. This is the same as an EORS instruction, except that the result is discarded.

Use the TEQ instruction to test if two values are equal, without affecting the V or C flags (as CMP does).

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive
OR of the sign bits of the two operands.

Register restrictions

In this T32 instruction, you cannot use SP or PC for Rn or Operand2.

In this A32 instruction, use of SP or PC is deprecated.

For A32 instructions:
• If you use PC (R15) as Rn, the value used is the address of the instruction plus 8.
• You cannot use PC for any operand in any data processing instruction that has a register-controlled

shift.

Condition flags
This instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

Architectures

This instruction is available in A32 and T32.

Correct example
 TEQEQ r10, r9

Incorrect example
 TEQ pc, r1, ROR r0 ; PC not permitted with register
 ; controlled shift

C2 A32 and T32 Instructions
C2.155 TEQ

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-334

Non-Confidential

Related references
C2.3 Flexible second operand (Operand2) on page C2-112
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.155 TEQ

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-335

Non-Confidential

C2.156 TST
Test bits.

Syntax

TST{cond} Rn, Operand2

where:

cond

is an optional condition code.

Rn

is the general-purpose register holding the first operand.

Operand2

is a flexible second operand.

Operation

This instruction tests the value in a register against Operand2. It updates the condition flags on the result,
but does not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2.
This is the same as an ANDS instruction, except that the result is discarded.

Register restrictions

In this T32 instruction, you cannot use SP or PC for Rn or Operand2.

In this A32 instruction, use of SP or PC is deprecated.

For A32 instructions:
• If you use PC (R15) as Rn, the value used is the address of the instruction plus 8.
• You cannot use PC for any operand in any data processing instruction that has a register-controlled

shift.

Condition flags
This instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following form of the TST instruction is available in T32 code, and is a 16-bit instruction:

TST Rn, Rm

Rn and Rm must both be Lo registers.

Architectures

This instruction is available A32 and T32.

Examples
 TST r0, #0x3F8
 TSTNE r1, r5, ASR r1

Related references
C2.3 Flexible second operand (Operand2) on page C2-112

C2 A32 and T32 Instructions
C2.156 TST

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-336

Non-Confidential

C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.156 TST

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-337

Non-Confidential

C2.157 TT, TTT, TTA, TTAT
Test Target (Alternate Domain, Unprivileged).

Syntax

TT{cond}{q} Rd, Rn ; T1 TT general registers (T32)

TTA{cond}{q} Rd, Rn ; T1 TTA general registers (T32)

TTAT{cond}{q} Rd, Rn ; T1 TTAT general registers (T32)

TTT{cond}{q} Rd, Rn ; T1 TTT general registers (T32)

Where:

cond
Is an optional condition code. It specifies the condition under which the instruction is executed.
If cond is omitted, it defaults to always (AL). See Chapter C1 Condition Codes on page C1-83.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Rd
Is the destination general-purpose register into which the status result of the target test is written.

Rn
Is the general-purpose base register.

Usage

Test Target (TT) queries the security state and access permissions of a memory location.

Test Target Unprivileged (TTT) queries the security state and access permissions of a memory location
for an unprivileged access to that location.

Test Target Alternate Domain (TTA) and Test Target Alternate Domain Unprivileged (TTAT) query the
security state and access permissions of a memory location for a Non-secure access to that location.
These instructions are only valid when executing in Secure state, and are UNDEFINED if used from Non-
secure state.

These instructions return the security state and access permissions in the destination register, the contents
of which are as follows:

Bits Name Description

[7:0] MREGION The MPU region that the address maps to. This field is 0 if MRVALID is 0.

[15:8] SREGION The SAU region that the address maps to. This field is only valid if the instruction is executed from Secure
state. This field is 0 if SRVALID is 0.

[16] MRVALID Set to 1 if the MREGION content is valid. Set to 0 if the MREGION content is invalid.

[17] SRVALID Set to 1 if the SREGION content is valid. Set to 0 if the SREGION content is invalid.

[18] R Read accessibility. Set to 1 if the memory location can be read according to the permissions of the selected
MPU when operating in the current mode. For TTT and TTAT, this bit returns the permissions for unprivileged
access, regardless of whether the current mode is privileged or unprivileged.

[19] RW Read/write accessibility. Set to 1 if the memory location can be read and written according to the permissions of
the selected MPU when operating in the current mode. For TTT and TTAT, this bit returns the permissions for
unprivileged access, regardless of whether the current mode is privileged or unprivileged.

[20] NSR Equal to R AND NOT S. Can be used in combination with the LSLS (immediate) instruction to check both the
MPU and SAU/IDAU permissions. This bit is only valid if the instruction is executed from Secure state and the
R field is valid.

C2 A32 and T32 Instructions
C2.157 TT, TTT, TTA, TTAT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-338

Non-Confidential

 (continued)

Bits Name Description

[21] NSRW Equal to RW AND NOT S. Can be used in combination with the LSLS (immediate) instruction to check both
the MPU and SAU/IDAU permissions. This bit is only valid if the instruction is executed from Secure state and
the RW field is valid.

[22] S Security. A value of 1 indicates the memory location is Secure, and a value of 0 indicates the memory location
is Non-secure. This bit is only valid if the instruction is executed from Secure state.

[23] IRVALID IREGION valid flag. For a Secure request, indicates the validity of the IREGION field. Set to 1 if the IREGION
content is valid. Set to 0 if the IREGION content is invalid.

This bit is always 0 if the IDAU cannot provide a region number, the address is exempt from security
attribution, or if the requesting TT instruction is executed from the Non-secure state.

[31:24] IREGION IDAU region number. Indicates the IDAU region number containing the target address. This field is 0 if
IRVALID is0.

Invalid fields are 0.

The MREGION field is invalid and 0 if any of the following conditions are true:

• The MPU is not present or MPU_CTRL.ENABLE is 0.
• The address did not match any enabled MPU regions.
• The address matched multiple MPU regions.
• TT or TTT was executed from an unprivileged mode.

The SREGION field is invalid and 0 if any of the following conditions are true:

• SAU_CTRL.ENABLE is set to 0.
• The address did not match any enabled SAU regions.
• The address matched multiple SAU regions.
• The SAU attributes were overridden by the IDAU.
• The instruction is executed from Non-secure state, or is executed on a processor that does not

implement the Armv8‑M Security Extensions.

The R and RW bits are invalid and 0 if any of the following conditions are true:
• The address matched multiple MPU regions.
• TT or TTT is executed from an unprivileged mode.

Related references
C1.9 Condition code suffixes on page C1-92
C2.2 Instruction width specifiers on page C2-111

C2 A32 and T32 Instructions
C2.157 TT, TTT, TTA, TTAT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-339

Non-Confidential

C2.158 UADD8
Unsigned parallel byte-wise addition.

Syntax

UADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four unsigned integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. The results are modulo 28. It sets the
APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result overflowed, generating a carry. This is
equivalent to an ADDS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.158 UADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-340

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.158 UADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-341

Non-Confidential

C2.159 UADD16
Unsigned parallel halfword-wise addition.

Syntax

UADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two unsigned integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. The results are modulo 216. It
sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result overflowed, generating a carry.
This is equivalent to an ADDS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.159 UADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-342

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.159 UADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-343

Non-Confidential

C2.160 UASX
Unsigned parallel add and subtract halfwords with exchange.

Syntax

UASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE
flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets GE[1:0] to 1 to indicate that the subtraction gave a result greater than or equal to zero, meaning a
borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

It sets GE[3:2] to 1 to indicate that the addition overflowed, generating a carry. This is equivalent to an
ADDS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.160 UASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-344

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.160 UASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-345

Non-Confidential

C2.161 UBFX
Unsigned Bit Field Extract.

Syntax

UBFX{cond} Rd, Rn, #lsb, #width

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the source register.

lsb

is the bit number of the least significant bit in the bitfield, in the range 0 to 31.

width

is the width of the bitfield, in the range 1 to (32–lsb).

Operation

Copies adjacent bits from one register into the least significant bits of a second register, and zero extends
to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.161 UBFX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-346

Non-Confidential

C2.162 UDF
Permanently Undefined.

Syntax

UDF{c}{q} {#}imm ; A1 general registers (A32)

UDF{c}{q} {#}imm ; T1 general registers (T32)

UDF{c}.W {#}imm ; T2 general registers (T32)

Where:

imm
The value depends on the instruction variant:

A1 general registers
For A32, a 16-bit unsigned immediate, in the range 0 to 65535.

T1 general registers
For T32, an 8-bit unsigned immediate, in the range 0 to 255.

T2 general registers
For T32, a 16-bit unsigned immediate, in the range 0 to 65535.

 Note

The PE ignores the value of this constant.

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83. Arm deprecates
using any c value other than AL.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Usage

Permanently Undefined generates an Undefined Instruction exception.

The encodings for UDF used in this section are defined as permanently UNDEFINED in the Armv8‑A
architecture. However:
• With the T32 instruction set, Arm deprecates using the UDF instruction in an IT block.
• In the A32 instruction set, UDF is not conditional.

Related references
C2.1 A32 and T32 instruction summary on page C2-106

C2 A32 and T32 Instructions
C2.162 UDF

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-347

Non-Confidential

C2.163 UDIV
Unsigned Divide.

Syntax

UDIV{cond} {Rd}, Rn, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the value to be divided.

Rm
is a register holding the divisor.

Register restrictions

PC or SP cannot be used for Rd, Rn, or Rm.

Architectures

This 32-bit T32 instruction is available in Armv7‑R, Armv7‑M and Armv8‑M Mainline.

This 32-bit A32 instruction is optional in Armv7‑R.

This 32-bit A32 and T32 instruction is available in Armv7‑A if Virtualization Extensions are
implemented, and optional if not.

There is no 16-bit T32 UDIV instruction.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.163 UDIV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-348

Non-Confidential

C2.164 UHADD8
Unsigned halving parallel byte-wise addition.

Syntax

UHADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four unsigned integer additions on the corresponding bytes of the operands,
halves the results, and writes the results into the corresponding bytes of the destination. This cannot
cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.164 UHADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-349

Non-Confidential

C2.165 UHADD16
Unsigned halving parallel halfword-wise addition.

Syntax

UHADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two unsigned integer additions on the corresponding halfwords of the
operands, halves the results, and writes the results into the corresponding halfwords of the destination.
This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.165 UHADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-350

Non-Confidential

C2.166 UHASX
Unsigned halving parallel add and subtract halfwords with exchange.

Syntax

UHASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It halves the results
and writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.166 UHASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-351

Non-Confidential

C2.167 UHSAX
Unsigned halving parallel subtract and add halfwords with exchange.

Syntax

UHSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It halves the results and
writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.167 UHSAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-352

Non-Confidential

C2.168 UHSUB8
Unsigned halving parallel byte-wise subtraction.

Syntax

UHSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand, halves the results, and writes the results into the corresponding bytes of the destination. This
cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.168 UHSUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-353

Non-Confidential

C2.169 UHSUB16
Unsigned halving parallel halfword-wise subtraction.

Syntax

UHSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand, halves the results, and writes the results into the corresponding halfwords of the
destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.169 UHSUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-354

Non-Confidential

C2.170 UMAAL
Unsigned Multiply Accumulate Accumulate Long.

Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond

is an optional condition code.

RdLo, RdHi

are the destination registers for the 64-bit result. They also hold the two 32-bit accumulate
operands. RdLo and RdHi must be different registers.

Rn, Rm

are the general-purpose registers holding the multiply operands.

Operation

The UMAAL instruction multiplies the 32-bit values in Rn and Rm, adds the two 32-bit values in RdHi and
RdLo, and stores the 64-bit result to RdLo, RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 UMAAL r8, r9, r2, r3
 UMAALGE r2, r0, r5, r3

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.170 UMAAL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-355

Non-Confidential

C2.171 UMLAL
Unsigned Long Multiply, with optional Accumulate, with 32-bit operands and 64-bit result and
accumulator.

Syntax

UMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
based on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. They also hold the accumulating value. RdLo and RdHi must be
different registers.

Rn, Rm

are general-purpose registers holding the operands.

Operation

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 UMLALS r4, r5, r3, r8

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.171 UMLAL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-356

Non-Confidential

C2.172 UMULL
Unsigned Long Multiply, with 32-bit operands, and 64-bit result.

Syntax

UMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
based on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination general-purpose registers. RdLo and RdHi must be different registers.

Rn, Rm

are general-purpose registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of
the result in RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 UMULL r0, r4, r5, r6

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.172 UMULL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-357

Non-Confidential

C2.173 UQADD8
Unsigned saturating parallel byte-wise addition.

Syntax

UQADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four unsigned integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. It saturates the results to the unsigned
range 0 ≤ x ≤ 28 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.173 UQADD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-358

Non-Confidential

C2.174 UQADD16
Unsigned saturating parallel halfword-wise addition.

Syntax

UQADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two unsigned integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. It saturates the results to the
unsigned range 0 ≤ x ≤ 216 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.174 UQADD16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-359

Non-Confidential

C2.175 UQASX
Unsigned saturating parallel add and subtract halfwords with exchange.

Syntax

UQASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. It saturates the results to the unsigned range 0 ≤ x ≤
216 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.175 UQASX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-360

Non-Confidential

C2.176 UQSAX
Unsigned saturating parallel subtract and add halfwords with exchange.

Syntax

UQSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. It saturates the results to the unsigned range 0 ≤ x ≤ 216

-1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.176 UQSAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-361

Non-Confidential

C2.177 UQSUB8
Unsigned saturating parallel byte-wise subtraction.

Syntax

UQSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. It saturates the results to
the unsigned range 0 ≤ x ≤ 28 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.177 UQSUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-362

Non-Confidential

C2.178 UQSUB16
Unsigned saturating parallel halfword-wise subtraction.

Syntax

UQSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. It saturates the
results to the unsigned range 0 ≤ x ≤ 216 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.178 UQSUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-363

Non-Confidential

C2.179 USAD8
Unsigned Sum of Absolute Differences.

Syntax

USAD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the second operand.

Operation

The USAD8 instruction finds the four differences between the unsigned values in corresponding bytes of
Rn and Rm. It adds the absolute values of the four differences, and saves the result to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 USAD8 r2, r4, r6

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.179 USAD8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-364

Non-Confidential

C2.180 USADA8
Unsigned Sum of Absolute Differences and Accumulate.

Syntax

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the second operand.

Ra

is the register holding the accumulate operand.

Operation

The USADA8 instruction adds the absolute values of the four differences to the value in Ra, and saves the
result to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Correct examples
 USADA8 r0, r3, r5, r2
 USADA8VS r0, r4, r0, r1

Incorrect examples
 USADA8 r2, r4, r6 ; USADA8 requires four registers
 USADA16 r0, r4, r0, r1 ; no such instruction

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.180 USADA8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-365

Non-Confidential

C2.181 USAT
Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

USAT{cond} Rd, #sat, Rm{, shift}

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 0 to 31.

Rm

is the register containing the operand.

shift

is an optional shift. It must be one of the following:

ASR #n

where n is in the range 1-32 (A32) or 1-31 (T32).

LSL #n

where n is in the range 0-31.

Operation

The USAT instruction applies the specified shift to a signed value, then saturates to the unsigned range 0 ≤
x ≤ 2sat – 1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 USATNE r0, #7, r5

Related references
C2.131 SSAT16 on page C2-292
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.181 USAT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-366

Non-Confidential

C2.182 USAT16
Parallel halfword Saturate.

Syntax

USAT16{cond} Rd, #sat, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 0 to 15.

Rn

is the register holding the operand.

Operation

Halfword-wise unsigned saturation to any bit position.

The USAT16 instruction saturates each signed halfword to the unsigned range 0 ≤ x ≤ 2sat -1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs on either halfword, this instruction sets the Q flag. To read the state of the Q flag, use
an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 USAT16 r0, #7, r5

Related references
C2.62 MRS (PSR to general-purpose register) on page C2-204
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.182 USAT16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-367

Non-Confidential

C2.183 USAX
Unsigned parallel subtract and add halfwords with exchange.

Syntax

USAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets GE[1:0] to 1 to indicate that the addition overflowed, generating a carry. This is equivalent to an
ADDS instruction setting the C condition flag to 1.

It sets GE[3:2] to 1 to indicate that the subtraction gave a result greater than or equal to zero, meaning a
borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.183 USAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-368

Non-Confidential

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.183 USAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-369

Non-Confidential

C2.184 USUB8
Unsigned parallel byte-wise subtraction.

Syntax

USUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. The results are modulo 28.
It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result is greater than or equal to zero, meaning a
borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C2.100 SEL on page C2-257

C2 A32 and T32 Instructions
C2.184 USUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-370

Non-Confidential

C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.184 USUB8

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-371

Non-Confidential

C2.185 USUB16
Unsigned parallel halfword-wise subtraction.

Syntax

USUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. The results are
modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero,
meaning a borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related references
C2.100 SEL on page C2-257
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.185 USUB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-372

Non-Confidential

C2.186 UXTAB
Zero extend Byte and Add.

Syntax

UXTAB{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTAB extends an 8-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[7:0] from the value obtained.
3. Zero extending to 32 bits.
4. Adding the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.186 UXTAB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-373

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.186 UXTAB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-374

Non-Confidential

C2.187 UXTAB16
Zero extend two Bytes and Add.

Syntax

UXTAB16{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTAB16 extends two 8-bit values to two 16-bit values. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[23:16] and bits[7:0] from the value obtained.
3. Zero extending them to 16 bits.
4. Adding them to bits[31:16] and bits[15:0] respectively of Rn to form bits[31:16] and bits[15:0] of the

result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.187 UXTAB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-375

Non-Confidential

There is no 16-bit version of this instruction in T32.

Example
 UXTAB16EQ r0, r0, r4, ROR #16

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.187 UXTAB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-376

Non-Confidential

C2.188 UXTAH
Zero extend Halfword and Add.

Syntax

UXTAH{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTAH extends a 16-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[15:0] from the value obtained.
3. Zero extending to 32 bits.
4. Adding the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.188 UXTAH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-377

Non-Confidential

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.188 UXTAH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-378

Non-Confidential

C2.189 UXTB
Zero extend Byte.

Syntax

UXTB{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTB extends an 8-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16, or 24 bits.
2. Extracting bits[7:0] from the value obtained.
3. Zero extending to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instruction

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

UXTB Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.189 UXTB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-379

Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.189 UXTB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-380

Non-Confidential

C2.190 UXTB16
Zero extend two Bytes.

Syntax

UXTB16{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTB16 extends two 8-bit values to two 16-bit values. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[23:16] and bits[7:0] from the value obtained.
3. Zero extending each to 16 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.190 UXTB16

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-381

Non-Confidential

C2.191 UXTH
Zero extend Halfword.

Syntax

UXTH{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTH extends a 16-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16, or 24 bits.
2. Extracting bits[15:0] from the value obtained.
3. Zero extending to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

UXTH Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.191 UXTH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-382

Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Related references
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.191 UXTH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-383

Non-Confidential

C2.192 WFE
Wait For Event.

Syntax

WFE{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether this instruction is implemented or not. If this instruction
is not implemented, it executes as a NOP. The assembler produces a diagnostic message if the instruction
executes as a NOP on the target.

If the Event Register is not set, WFE suspends execution until one of the following events occurs:
• An IRQ interrupt, unless masked by the CPSR I-bit.
• An FIQ interrupt, unless masked by the CPSR F-bit.
• An Imprecise Data abort, unless masked by the CPSR A-bit.
• A Debug Entry request, if Debug is enabled.
• An Event signaled by another processor using the SEV instruction, or by the current processor using

the SEVL instruction.

If the Event Register is set, WFE clears it and returns immediately.

If WFE is implemented, SEV must also be implemented.

Availability

This instruction is available in A32 and T32.

Related references
C2.68 NOP on page C2-213
C1.9 Condition code suffixes on page C1-92
C2.103 SEV on page C2-261
C2.104 SEVL on page C2-262
C2.193 WFI on page C2-385

C2 A32 and T32 Instructions
C2.192 WFE

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-384

Non-Confidential

C2.193 WFI
Wait for Interrupt.

Syntax

WFI{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether this instruction is implemented or not. If this instruction
is not implemented, it executes as a NOP. The assembler produces a diagnostic message if the instruction
executes as a NOP on the target.

WFI suspends execution until one of the following events occurs:
• An IRQ interrupt, regardless of the CPSR I-bit.
• An FIQ interrupt, regardless of the CPSR F-bit.
• An Imprecise Data abort, unless masked by the CPSR A-bit.
• A Debug Entry request, regardless of whether Debug is enabled.

Availability

This instruction is available in A32 and T32.

Related references
C2.68 NOP on page C2-213
C1.9 Condition code suffixes on page C1-92
C2.192 WFE on page C2-384

C2 A32 and T32 Instructions
C2.193 WFI

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-385

Non-Confidential

C2.194 YIELD
Yield.

Syntax

YIELD{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether this instruction is implemented or not. If this instruction
is not implemented, it executes as a NOP. The assembler produces a diagnostic message if the instruction
executes as a NOP on the target.

YIELD indicates to the hardware that the current thread is performing a task, for example a spinlock, that
can be swapped out. Hardware can use this hint to suspend and resume threads in a multithreading
system.

Availability

This instruction is available in A32 and T32.

Related references
C2.68 NOP on page C2-213
C1.9 Condition code suffixes on page C1-92

C2 A32 and T32 Instructions
C2.194 YIELD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C2-386

Non-Confidential

Chapter C3
Advanced SIMD Instructions (32-bit)

Describes Advanced SIMD assembly language instructions.

It contains the following sections:
• C3.1 Summary of Advanced SIMD instructions on page C3-391.
• C3.2 Summary of shared Advanced SIMD and floating-point instructions on page C3-394.
• C3.3 Interleaving provided by load and store element and structure instructions on page C3-395.
• C3.4 Alignment restrictions in load and store element and structure instructions on page C3-396.
• C3.5 FLDMDBX, FLDMIAX on page C3-397.
• C3.6 FSTMDBX, FSTMIAX on page C3-398.
• C3.7 VABA and VABAL on page C3-399.
• C3.8 VABD and VABDL on page C3-400.
• C3.9 VABS on page C3-401.
• C3.10 VACLE, VACLT, VACGE and VACGT on page C3-402.
• C3.11 VADD on page C3-403.
• C3.12 VADDHN on page C3-404.
• C3.13 VADDL and VADDW on page C3-405.
• C3.14 VAND (immediate) on page C3-406.
• C3.15 VAND (register) on page C3-407.
• C3.16 VBIC (immediate) on page C3-408.
• C3.17 VBIC (register) on page C3-409.
• C3.18 VBIF on page C3-410.
• C3.19 VBIT on page C3-411.
• C3.20 VBSL on page C3-412.
• C3.21 VCADD on page C3-413.
• C3.22 VCEQ (immediate #0) on page C3-414.
• C3.23 VCEQ (register) on page C3-415.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-387

Non-Confidential

• C3.24 VCGE (immediate #0) on page C3-416.
• C3.25 VCGE (register) on page C3-417.
• C3.26 VCGT (immediate #0) on page C3-418.
• C3.27 VCGT (register) on page C3-419.
• C3.28 VCLE (immediate #0) on page C3-420.
• C3.29 VCLS on page C3-421.
• C3.30 VCLE (register) on page C3-422.
• C3.31 VCLT (immediate #0) on page C3-423.
• C3.32 VCLT (register) on page C3-424.
• C3.33 VCLZ on page C3-425.
• C3.34 VCMLA on page C3-426.
• C3.35 VCMLA (by element) on page C3-427.
• C3.36 VCNT on page C3-428.
• C3.37 VCVT (between fixed-point or integer, and floating-point) on page C3-429.
• C3.38 VCVT (between half-precision and single-precision floating-point) on page C3-430.
• C3.39 VCVT (from floating-point to integer with directed rounding modes) on page C3-431.
• C3.40 VCVTB, VCVTT (between half-precision and double-precision) on page C3-432.
• C3.41 VDUP on page C3-433.
• C3.42 VEOR on page C3-434.
• C3.43 VEXT on page C3-435.
• C3.44 VFMA, VFMS on page C3-436.
• C3.45 VFMAL (by scalar) on page C3-437.
• C3.46 VFMAL (vector) on page C3-438.
• C3.47 VFMSL (by scalar) on page C3-439.
• C3.48 VFMSL (vector) on page C3-440.
• C3.49 VHADD on page C3-441.
• C3.50 VHSUB on page C3-442.
• C3.51 VLDn (single n-element structure to one lane) on page C3-443.
• C3.52 VLDn (single n-element structure to all lanes) on page C3-445.
• C3.53 VLDn (multiple n-element structures) on page C3-447.
• C3.54 VLDM on page C3-449.
• C3.55 VLDR on page C3-450.
• C3.56 VLDR (post-increment and pre-decrement) on page C3-451.
• C3.57 VLDR pseudo-instruction on page C3-452.
• C3.58 VMAX and VMIN on page C3-453.
• C3.59 VMAXNM, VMINNM on page C3-454.
• C3.60 VMLA on page C3-455.
• C3.61 VMLA (by scalar) on page C3-456.
• C3.62 VMLAL (by scalar) on page C3-457.
• C3.63 VMLAL on page C3-458.
• C3.64 VMLS (by scalar) on page C3-459.
• C3.65 VMLS on page C3-460.
• C3.66 VMLSL on page C3-461.
• C3.67 VMLSL (by scalar) on page C3-462.
• C3.68 VMOV (immediate) on page C3-463.
• C3.69 VMOV (register) on page C3-464.
• C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)

on page C3-465.
• C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-466.
• C3.72 VMOVL on page C3-467.
• C3.73 VMOVN on page C3-468.
• C3.74 VMOV2 on page C3-469.
• C3.75 VMRS on page C3-470.
• C3.76 VMSR on page C3-471.
• C3.77 VMUL on page C3-472.
• C3.78 VMUL (by scalar) on page C3-473.

C3 Advanced SIMD Instructions (32-bit)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-388

Non-Confidential

• C3.79 VMULL on page C3-474.
• C3.80 VMULL (by scalar) on page C3-475.
• C3.81 VMVN (register) on page C3-476.
• C3.82 VMVN (immediate) on page C3-477.
• C3.83 VNEG on page C3-478.
• C3.84 VORN (register) on page C3-479.
• C3.85 VORN (immediate) on page C3-480.
• C3.86 VORR (register) on page C3-481.
• C3.87 VORR (immediate) on page C3-482.
• C3.88 VPADAL on page C3-483.
• C3.89 VPADD on page C3-484.
• C3.90 VPADDL on page C3-485.
• C3.91 VPMAX and VPMIN on page C3-486.
• C3.92 VPOP on page C3-487.
• C3.93 VPUSH on page C3-488.
• C3.94 VQABS on page C3-489.
• C3.95 VQADD on page C3-490.
• C3.96 VQDMLAL and VQDMLSL (by vector or by scalar) on page C3-491.
• C3.97 VQDMULH (by vector or by scalar) on page C3-492.
• C3.98 VQDMULL (by vector or by scalar) on page C3-493.
• C3.99 VQMOVN and VQMOVUN on page C3-494.
• C3.100 VQNEG on page C3-495.
• C3.101 VQRDMULH (by vector or by scalar) on page C3-496.
• C3.102 VQRSHL (by signed variable) on page C3-497.
• C3.103 VQRSHRN and VQRSHRUN (by immediate) on page C3-498.
• C3.104 VQSHL (by signed variable) on page C3-499.
• C3.105 VQSHL and VQSHLU (by immediate) on page C3-500.
• C3.106 VQSHRN and VQSHRUN (by immediate) on page C3-501.
• C3.107 VQSUB on page C3-502.
• C3.108 VRADDHN on page C3-503.
• C3.109 VRECPE on page C3-504.
• C3.110 VRECPS on page C3-505.
• C3.111 VREV16, VREV32, and VREV64 on page C3-506.
• C3.112 VRHADD on page C3-507.
• C3.113 VRSHL (by signed variable) on page C3-508.
• C3.114 VRSHR (by immediate) on page C3-509.
• C3.115 VRSHRN (by immediate) on page C3-510.
• C3.116 VRINT on page C3-511.
• C3.117 VRSQRTE on page C3-512.
• C3.118 VRSQRTS on page C3-513.
• C3.119 VRSRA (by immediate) on page C3-514.
• C3.120 VRSUBHN on page C3-515.
• C3.121 VSDOT (vector) on page C3-516.
• C3.122 VSDOT (by element) on page C3-517.
• C3.123 VSHL (by immediate) on page C3-518.
• C3.124 VSHL (by signed variable) on page C3-519.
• C3.125 VSHLL (by immediate) on page C3-520.
• C3.126 VSHR (by immediate) on page C3-521.
• C3.127 VSHRN (by immediate) on page C3-522.
• C3.128 VSLI on page C3-523.
• C3.129 VSRA (by immediate) on page C3-524.
• C3.130 VSRI on page C3-525.
• C3.131 VSTM on page C3-526.
• C3.132 VSTn (multiple n-element structures) on page C3-527.
• C3.133 VSTn (single n-element structure to one lane) on page C3-529.
• C3.134 VSTR on page C3-531.

C3 Advanced SIMD Instructions (32-bit)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-389

Non-Confidential

• C3.135 VSTR (post-increment and pre-decrement) on page C3-532.
• C3.136 VSUB on page C3-533.
• C3.137 VSUBHN on page C3-534.
• C3.138 VSUBL and VSUBW on page C3-535.
• C3.139 VSWP on page C3-536.
• C3.140 VTBL and VTBX on page C3-537.
• C3.141 VTRN on page C3-538.
• C3.142 VTST on page C3-539.
• C3.143 VUDOT (vector) on page C3-540.
• C3.144 VUDOT (by element) on page C3-541.
• C3.145 VUZP on page C3-542.
• C3.146 VZIP on page C3-543.

C3 Advanced SIMD Instructions (32-bit)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-390

Non-Confidential

C3.1 Summary of Advanced SIMD instructions
Most Advanced SIMD instructions are not available in floating-point.

The following table shows a summary of Advanced SIMD instructions that are not available as floating-
point instructions:

Table C3-1 Summary of Advanced SIMD instructions

Mnemonic Brief description

FLDMDBX, FLDMIAX FLDMX

FSTMDBX, FSTMIAX FSTMX

VABA, VABD Absolute difference and Accumulate, Absolute Difference

VABS Absolute value

VACGE, VACGT Absolute Compare Greater than or Equal, Greater Than

VACLE, VACLT Absolute Compare Less than or Equal, Less Than (pseudo-instructions)

VADD Add

VADDHN Add, select High half

VAND Bitwise AND

VAND Bitwise AND (pseudo-instruction)

VBIC Bitwise Bit Clear (register)

VBIC Bitwise Bit Clear (immediate)

VBIF, VBIT, VBSL Bitwise Insert if False, Insert if True, Select

VCADD Vector Complex Add

VCEQ, VCLE, VCLT Compare Equal, Less than or Equal, Compare Less Than

VCGE, VCGT Compare Greater than or Equal, Greater Than

VCLE, VCLT Compare Less than or Equal, Compare Less Than (pseudo-instruction)

VCLS, VCLZ, VCNT Count Leading Sign bits, Count Leading Zeros, and Count set bits

VCMLA Vector Complex Multiply Accumulate

VCMLA (by element) Vector Complex Multiply Accumulate (by element)

VCVT Convert fixed-point or integer to floating-point, floating-point to integer or fixed-point

VCVT Convert floating-point to integer with directed rounding modes

VCVT Convert between half-precision and single-precision floating-point numbers

VDUP Duplicate scalar to all lanes of vector

VEOR Bitwise Exclusive OR

VEXT Extract

VFMA, VFMS Fused Multiply Accumulate, Fused Multiply Subtract

VFMAL, VFMSL Vector Floating-point Multiply-Add Long to accumulator (by scalar)

VFMAL, VFMSL Vector Floating-point Multiply-Add Long to accumulator (vector)

VHADD, VHSUB Halving Add, Halving Subtract

C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-391

Non-Confidential

Table C3-1 Summary of Advanced SIMD instructions (continued)

Mnemonic Brief description

VLD Vector Load

VMAX, VMIN Maximum, Minimum

VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008

VMLA, VMLS Multiply Accumulate, Multiply Subtract (vector)

VMLA, VMLS Multiply Accumulate, Multiply Subtract (by scalar)

VMOV Move (immediate)

VMOV Move (register)

VMOVL, VMOV{U}N Move Long, Move Narrow (register)

VMUL Multiply (vector)

VMUL Multiply (by scalar)

VMVN Move Negative (immediate)

VNEG Negate

VORN Bitwise OR NOT

VORN Bitwise OR NOT (pseudo-instruction)

VORR Bitwise OR (register)

VORR Bitwise OR (immediate)

VPADD, VPADAL Pairwise Add, Pairwise Add and Accumulate

VPMAX, VPMIN Pairwise Maximum, Pairwise Minimum

VQABS Absolute value, saturate

VQADD Add, saturate

VQDMLAL, VQDMLSL Saturating Doubling Multiply Accumulate, and Multiply Subtract

VQDMULL Saturating Doubling Multiply

VQDMULH Saturating Doubling Multiply returning High half

VQMOV{U}N Saturating Move (register)

VQNEG Negate, saturate

VQRDMULH Saturating Doubling Multiply returning High half

VQRSHL Shift Left, Round, saturate (by signed variable)

VQRSHR{U}N Shift Right, Round, saturate (by immediate)

VQSHL Shift Left, saturate (by immediate)

VQSHL Shift Left, saturate (by signed variable)

VQSHR{U}N Shift Right, saturate (by immediate)

VQSUB Subtract, saturate

VRADDHN Add, select High half, Round

VRECPE Reciprocal Estimate

C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-392

Non-Confidential

Table C3-1 Summary of Advanced SIMD instructions (continued)

Mnemonic Brief description

VRECPS Reciprocal Step

VREV Reverse elements

VRHADD Halving Add, Round

VRINT Round to integer

VRSHR Shift Right and Round (by immediate)

VRSHRN Shift Right, Round, Narrow (by immediate)

VRSQRTE Reciprocal Square Root Estimate

VRSQRTS Reciprocal Square Root Step

VRSRA Shift Right, Round, and Accumulate (by immediate)

VRSUBHN Subtract, select High half, Round

VSDOT (vector) Dot Product vector form with signed integers

VSDOT (by element) Dot Product index form with signed integers

VSHL Shift Left (by immediate)

VSHR Shift Right (by immediate)

VSHRN Shift Right, Narrow (by immediate)

VSLI Shift Left and Insert

VSRA Shift Right, Accumulate (by immediate)

VSRI Shift Right and Insert

VST Vector Store

VSUB Subtract

VSUBHN Subtract, select High half

VSWP Swap vectors

VTBL, VTBX Vector table look-up

VTRN Vector transpose

VTST Test bits

VUDOT (vector) Dot Product vector form with unsigned integers

VUDOT (by element) Dot Product index form with unsigned integers

VUZP, VZIP Vector interleave and de-interleave

VZIP Vector Zip

C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-393

Non-Confidential

C3.2 Summary of shared Advanced SIMD and floating-point instructions
Some instructions are common to Advanced SIMD and floating-point.

The following table shows a summary of instructions that are common to the Advanced SIMD and
floating-point instruction sets.

Table C3-2 Summary of shared Advanced SIMD and floating-point instructions

Mnemonic Brief description

VLDM Load multiple

VLDR Load

Load (post-increment and pre-decrement)

VMOV Transfer from one general-purpose register to a scalar

Transfer from two general-purpose registers to either one double-precision or two single-precision registers

Transfer from a scalar to a general-purpose register

Transfer from either one double-precision or two single-precision registers to two general-purpose registers

VMRS Transfer from a SIMD and floating-point system register to a general-purpose register

VMSR Transfer from a general-purpose register to a SIMD and floating-point system register

VPOP Pop floating-point or SIMD registers from full-descending stack

VPUSH Push floating-point or SIMD registers to full-descending stack

VSTM Store multiple

VSTR Store

Store (post-increment and pre-decrement)

Related references
C3.54 VLDM on page C3-449
C3.55 VLDR on page C3-450
C3.56 VLDR (post-increment and pre-decrement) on page C3-451
C3.57 VLDR pseudo-instruction on page C3-452
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-465
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-466
C3.75 VMRS on page C3-470
C3.76 VMSR on page C3-471
C3.92 VPOP on page C3-487
C3.93 VPUSH on page C3-488
C3.131 VSTM on page C3-526
C3.134 VSTR on page C3-531
C3.135 VSTR (post-increment and pre-decrement) on page C3-532

C3 Advanced SIMD Instructions (32-bit)
C3.2 Summary of shared Advanced SIMD and floating-point instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-394

Non-Confidential

C3.3 Interleaving provided by load and store element and structure instructions
Many instructions in this group provide interleaving when structures are stored to memory, and de-
interleaving when structures are loaded from memory.

The following figure shows an example of de-interleaving. Interleaving is the inverse process.

Z3 D2

A[3].x
A[3].y
A[3].z

Z2 Z1 Z0

A[2].x
A[2].y
A[2].z

A[1].x
A[1].y
A[1].z

A[0].x
A[0].y
A[0].z

Y3 D1Y2 Y1 Y0

X3 D0X2 X1 X0

Figure C3-1 De-interleaving an array of 3-element structures

Related concepts
C3.4 Alignment restrictions in load and store element and structure instructions on page C3-396
Related references
C3.51 VLDn (single n-element structure to one lane) on page C3-443
C3.52 VLDn (single n-element structure to all lanes) on page C3-445
C3.53 VLDn (multiple n-element structures) on page C3-447
C3.132 VSTn (multiple n-element structures) on page C3-527
C3.133 VSTn (single n-element structure to one lane) on page C3-529
Related information
Arm Architecture Reference Manual

C3 Advanced SIMD Instructions (32-bit)
C3.3 Interleaving provided by load and store element and structure instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-395

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C3.4 Alignment restrictions in load and store element and structure instructions
Many of these instructions allow you to specify memory alignment restrictions.

When the alignment is not specified in the instruction, the alignment restriction is controlled by the A bit
(SCTLR bit[1]):
• If the A bit is 0, there are no alignment restrictions (except for strongly-ordered or device memory,

where accesses must be element-aligned).
• If the A bit is 1, accesses must be element-aligned.

If an address is not correctly aligned, an alignment fault occurs.

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
Related references
C3.51 VLDn (single n-element structure to one lane) on page C3-443
C3.52 VLDn (single n-element structure to all lanes) on page C3-445
C3.53 VLDn (multiple n-element structures) on page C3-447
C3.132 VSTn (multiple n-element structures) on page C3-527
C3.133 VSTn (single n-element structure to one lane) on page C3-529
Related information
Arm Architecture Reference Manual

C3 Advanced SIMD Instructions (32-bit)
C3.4 Alignment restrictions in load and store element and structure instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-396

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C3.5 FLDMDBX, FLDMIAX
FLDMX.

Syntax

FLDMDBX{c}{q} Rn!, dreglist ; A1 Decrement Before FP/SIMD registers (A32)

FLDMIAX{c}{q} Rn{!}, dreglist ; A1 Increment After FP/SIMD registers (A32)

FLDMDBX{c}{q} Rn!, dreglist ; T1 Decrement Before FP/SIMD registers (T32)

FLDMIAX{c}{q} Rn{!}, dreglist ; T1 Increment After FP/SIMD registers (T32)

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Rn
Is the general-purpose base register. If writeback is not specified, the PC can be used.

!
Specifies base register writeback.

dreglist
Is the list of consecutively numbered 64-bit SIMD and FP registers to be transferred. The list
must contain at least one register, all registers must be in the range D0-D15, and must not
contain more than 16 registers.

Usage

FLDMX loads multiple SIMD and FP registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.
 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.5 FLDMDBX, FLDMIAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-397

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.6 FSTMDBX, FSTMIAX
FSTMX.

Syntax

FSTMDBX{c}{q} Rn!, dreglist ; A1 Decrement Before FP/SIMD registers (A32)

FSTMIAX{c}{q} Rn{!}, dreglist ; A1 Increment After FP/SIMD registers (A32)

FSTMDBX{c}{q} Rn!, dreglist ; T1 Decrement Before FP/SIMD registers (T32)

FSTMIAX{c}{q} Rn{!}, dreglist ; T1 Increment After FP/SIMD registers (T32)

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Rn
Is the general-purpose base register. If writeback is not specified, the PC can be used. However,
Arm deprecates use of the PC.

!
Specifies base register writeback.

dreglist
Is the list of consecutively numbered 64-bit SIMD and FP registers to be transferred. The list
must contain at least one register, all registers must be in the range D0-D15, and must not
contain more than 16 registers.

Usage

FSTMX stores multiple SIMD and FP registers from the Advanced SIMD and floating-point register file
to consecutive locations in using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the security state and
mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or
trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.6 FSTMDBX, FSTMIAX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-398

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.7 VABA and VABAL
Vector Absolute Difference and Accumulate.

Syntax

VABA{cond}.datatype {Qd}, Qn, Qm

VABA{cond}.datatype {Dd}, Dn, Dm

VABAL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VABA subtracts the elements of one vector from the corresponding elements of another vector, and
accumulates the absolute values of the results into the elements of the destination vector.

VABAL is the long version of the VABA instruction.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.7 VABA and VABAL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-399

Non-Confidential

C3.8 VABD and VABDL
Vector Absolute Difference.

Syntax

VABD{cond}.datatype {Qd}, Qn, Qm

VABD{cond}.datatype {Dd}, Dn, Dm

VABDL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype
must be one of:
• S8, S16, S32, U8, U16, or U32 for VABDL.
• S8, S16, S32, U8, U16, U32 or F32 for VABD.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VABD subtracts the elements of one vector from the corresponding elements of another vector, and places
the absolute values of the results into the elements of the destination vector.

VABDL is the long version of the VABD instruction.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.8 VABD and VABDL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-400

Non-Confidential

C3.9 VABS
Vector Absolute

Syntax

VABS{cond}.datatype Qd, Qm

VABS{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VABS takes the absolute value of each element in a vector, and places the results in a second vector. (The
floating-point version only clears the sign bit.)

Related references
C3.94 VQABS on page C3-489
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.9 VABS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-401

Non-Confidential

C3.10 VACLE, VACLT, VACGE and VACGT
Vector Absolute Compare.

Syntax

VACop{cond}.F32 {Qd}, Qn, Qm

VACop{cond}.F32 {Dd}, Dn, Dm

where:

op

must be one of:

GE

Absolute Greater than or Equal.

GT

Absolute Greater Than.

LE

Absolute Less than or Equal.

LT

Absolute Less Than.

cond

is an optional condition code.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

The result datatype is I32.

Operation
These instructions take the absolute value of each element in a vector, and compare it with the absolute
value of the corresponding element of a second vector. If the condition is true, the corresponding element
in the destination vector is set to all ones. Otherwise, it is set to all zeros.

 Note

On disassembly, the VACLE and VACLT pseudo-instructions are disassembled to the corresponding VACGE
and VACGT instructions, with the operands reversed.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.10 VACLE, VACLT, VACGE and VACGT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-402

Non-Confidential

C3.11 VADD
Vector Add.

Syntax

VADD{cond}.datatype {Qd}, Qn, Qm

VADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VADD adds corresponding elements in two vectors, and places the results in the destination vector.

Related references
C3.13 VADDL and VADDW on page C3-405
C3.95 VQADD on page C3-490
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.11 VADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-403

Non-Confidential

C3.12 VADDHN
Vector Add and Narrow, selecting High half.

Syntax

VADDHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VADDHN adds corresponding elements in two vectors, selects the most significant halves of the results, and
places the final results in the destination vector. Results are truncated.

Related references
C3.108 VRADDHN on page C3-503
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.12 VADDHN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-404

Non-Confidential

C3.13 VADDL and VADDW
Vector Add Long, Vector Add Wide.

Syntax

VADDL{cond}.datatype Qd, Dn, Dm ; Long operation

VADDW{cond}.datatype {Qd,} Qn, Dm ; Wide operation

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Qd, Qn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a wide
operation.

Operation

VADDL adds corresponding elements in two doubleword vectors, and places the results in the destination
quadword vector.

VADDW adds corresponding elements in one quadword and one doubleword vector, and places the results
in the destination quadword vector.

Related references
C3.11 VADD on page C3-403
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.13 VADDL and VADDW

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-405

Non-Confidential

C3.14 VAND (immediate)
Vector bitwise AND immediate pseudo-instruction.

Syntax

VAND{cond}.datatype Qd, #imm

VAND{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is the immediate value.

Operation
VAND takes each element of the destination vector, performs a bitwise AND with an immediate value, and
returns the result into the destination vector.

 Note

On disassembly, this pseudo-instruction is disassembled to a corresponding VBIC instruction, with the
complementary immediate value.

Immediate values

If datatype is I16, the immediate value must have one of the following forms:

• 0xFFXY.
• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY.
• 0xFFFFXYFF.
• 0xFFXYFFFF.
• 0xXYFFFFFF.

Related references
C3.16 VBIC (immediate) on page C3-408
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.14 VAND (immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-406

Non-Confidential

C3.15 VAND (register)
Vector bitwise AND.

Syntax

VAND{cond}{.datatype} {Qd}, Qn, Qm

VAND{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VAND performs a bitwise logical AND between two registers, and places the result in the destination
register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.15 VAND (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-407

Non-Confidential

C3.16 VBIC (immediate)
Vector Bit Clear immediate.

Syntax

VBIC{cond}.datatype Qd, #imm

VBIC{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the source and result.

imm

is the immediate value.

Operation

VBIC takes each element of the destination vector, performs a bitwise AND complement with an
immediate value, and returns the result in the destination vector.

Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination register, or you
can directly specify the immediate value (that conforms to the pattern) in full. The pattern for imm
depends on datatype as shown in the following table:

Table C3-3 Patterns for immediate value in VBIC (immediate)

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

0x00XY0000

0xXY000000

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction to match
the pattern of imm. If the immediate value does not match any of the patterns in the preceding table, the
assembler generates an error.

Related references
C3.14 VAND (immediate) on page C3-406
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.16 VBIC (immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-408

Non-Confidential

C3.17 VBIC (register)
Vector Bit Clear.

Syntax

VBIC{cond}{.datatype} {Qd}, Qn, Qm

VBIC{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBIC performs a bitwise logical AND complement between two registers, and places the result in the
destination register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.17 VBIC (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-409

Non-Confidential

C3.18 VBIF
Vector Bitwise Insert if False.

Syntax

VBIF{cond}{.datatype} {Qd}, Qn, Qm

VBIF{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBIF inserts each bit from the first operand into the destination if the corresponding bit of the second
operand is 0, otherwise it leaves the destination bit unchanged.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.18 VBIF

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-410

Non-Confidential

C3.19 VBIT
Vector Bitwise Insert if True.

Syntax

VBIT{cond}{.datatype} {Qd}, Qn, Qm

VBIT{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBIT inserts each bit from the first operand into the destination if the corresponding bit of the second
operand is 1, otherwise it leaves the destination bit unchanged.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.19 VBIT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-411

Non-Confidential

C3.20 VBSL
Vector Bitwise Select.

Syntax

VBSL{cond}{.datatype} {Qd}, Qn, Qm

VBSL{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBSL selects each bit for the destination from the first operand if the corresponding bit of the destination
is 1, or from the second operand if the corresponding bit of the destination is 0.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.20 VBSL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-412

Non-Confidential

C3.21 VCADD
Vector Complex Add.

Syntax

VCADD{q}.dt {Dd,} Dn, Dm, #rotate ; A1 64-bit SIMD vector FP/SIMD registers (A32)

VCADD{q}.dt {Qd,} Qn, Qm, #rotate ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

dt
Is the data type for the elements of the vectors, and can be either F16 or F32.

rotate
Is the rotation to be applied to elements in the second SIMD and FP source register, and can be
either 90 or 270.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.21 VCADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-413

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.22 VCEQ (immediate #0)
Vector Compare Equal to zero.

Syntax

VCEQ{cond}.datatype {Qd}, Qn, #0

VCEQ{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

The result datatype is:
• I32 for operand datatypes I32 or F32.
• I16 for operand datatype I16.
• I8 for operand datatype I8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCEQ takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.22 VCEQ (immediate #0)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-414

Non-Confidential

C3.23 VCEQ (register)
Vector Compare Equal.

Syntax

VCEQ{cond}.datatype {Qd}, Qn, Qm

VCEQ{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

The result datatype is:
• I32 for operand datatypes I32 or F32.
• I16 for operand datatype I16.
• I8 for operand datatype I8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCEQ takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.23 VCEQ (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-415

Non-Confidential

C3.24 VCGE (immediate #0)
Vector Compare Greater than or Equal to zero.

Syntax

VCGE{cond}.datatype {Qd}, Qn, #0

VCGE{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCGE takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.24 VCGE (immediate #0)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-416

Non-Confidential

C3.25 VCGE (register)
Vector Compare Greater than or Equal.

Syntax

VCGE{cond}.datatype {Qd}, Qn, Qm

VCGE{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCGE takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.25 VCGE (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-417

Non-Confidential

C3.26 VCGT (immediate #0)
Vector Compare Greater Than zero.

Syntax

VCGT{cond}.datatype {Qd}, Qn, #0

VCGT{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

Operation

VCGT takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.26 VCGT (immediate #0)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-418

Non-Confidential

C3.27 VCGT (register)
Vector Compare Greater Than.

Syntax

VCGT{cond}.datatype {Qd}, Qn, Qm

VCGT{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCGT takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.27 VCGT (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-419

Non-Confidential

C3.28 VCLE (immediate #0)
Vector Compare Less than or Equal to zero.

Syntax

VCLE{cond}.datatype {Qd}, Qn, #0

VCLE{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCLE takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.28 VCLE (immediate #0)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-420

Non-Confidential

C3.29 VCLS
Vector Count Leading Sign bits.

Syntax

VCLS{cond}.datatype Qd, Qm

VCLS{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, or S32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VCLS counts the number of consecutive bits following the topmost bit, that are the same as the topmost
bit, in each element in a vector, and places the results in a second vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.29 VCLS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-421

Non-Confidential

C3.30 VCLE (register)
Vector Compare Less than or Equal pseudo-instruction.

Syntax

VCLE{cond}.datatype {Qd}, Qn, Qm

VCLE{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCLE takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

On disassembly, this pseudo-instruction is disassembled to the corresponding VCGE instruction, with the
operands reversed.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.30 VCLE (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-422

Non-Confidential

C3.31 VCLT (immediate #0)
Vector Compare Less Than zero.

Syntax

VCLT{cond}.datatype {Qd}, Qn, #0

VCLT{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCLT takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.31 VCLT (immediate #0)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-423

Non-Confidential

C3.32 VCLT (register)
Vector Compare Less Than.

Syntax

VCLT{cond}.datatype {Qd}, Qn, Qm

VCLT{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation
VCLT takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

 Note

On disassembly, this pseudo-instruction is disassembled to the corresponding VCGT instruction, with the
operands reversed.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.32 VCLT (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-424

Non-Confidential

C3.33 VCLZ
Vector Count Leading Zeros.

Syntax

VCLZ{cond}.datatype Qd, Qm

VCLZ{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, or I32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VCLZ counts the number of consecutive zeros, starting from the top bit, in each element in a vector, and
places the results in a second vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.33 VCLZ

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-425

Non-Confidential

C3.34 VCMLA
Vector Complex Multiply Accumulate.

Syntax

VCMLA{q}.dt {Dd,} Dn, Dm, #rotate ; 64-bit SIMD vector FP/SIMD registers

VCMLA{q}.dt {Qd,} Qn, Qm, #rotate ; 128-bit SIMD vector FP/SIMD registers

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

dt
Is the data type for the elements of the vectors, and can be either F16 or F32.

rotate
Is the rotation to be applied to elements in the second SIMD and FP source register, and can be
one of 0, 90, 180 or 270.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.34 VCMLA

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-426

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.35 VCMLA (by element)
Vector Complex Multiply Accumulate (by element).

Syntax

VCMLA{q}.F16 Dd, Dn, Dm[index], #rotate ; A1 Double,halfprec FP/SIMD registers (A32)

VCMLA{q}.F32 Dd, Dn, Dm[0], #rotate ; A1 Double,singleprec FP/SIMD registers (A32)

VCMLA{q}.F32 Qd, Qn, Dm[0], #rotate ; A1 Quad,singleprec FP/SIMD registers (A32)

VCMLA{q}.F16 Qd, Qn, Dm[index], #rotate ; A1 Halfprec,quad FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

index
Is the element index in the range 0 to 1.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

rotate
Is the rotation to be applied to elements in the second SIMD and FP source register, and can be
one of 0, 90, 180 or 270.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.35 VCMLA (by element)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-427

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.36 VCNT
Vector Count set bits.

Syntax

VCNT{cond}.datatype Qd, Qm

VCNT{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be I8.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VCNT counts the number of bits that are one in each element in a vector, and places the results in a second
vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.36 VCNT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-428

Non-Confidential

C3.37 VCVT (between fixed-point or integer, and floating-point)
Vector Convert.

Syntax

VCVT{cond}.type Qd, Qm {, #fbits}

VCVT{cond}.type Dd, Dm {, #fbits}

where:

cond

is an optional condition code.

type

specifies the data types for the elements of the vectors. It must be one of:

S32.F32

Floating-point to signed integer or fixed-point.

U32.F32

Floating-point to unsigned integer or fixed-point.

F32.S32

Signed integer or fixed-point to floating-point.

F32.U32

Unsigned integer or fixed-point to floating-point.

Qd, Qm

specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the operand vector, for a doubleword operation.

fbits

if present, specifies the number of fraction bits in the fixed point number. Otherwise, the
conversion is between floating-point and integer. fbits must lie in the range 0-32. If fbits is
omitted, the number of fraction bits is 0.

Operation
VCVT converts each element in a vector in one of the following ways, and places the results in the
destination vector:
• From floating-point to integer.
• From integer to floating-point.
• From floating-point to fixed-point.
• From fixed-point to floating-point.

Rounding

Integer or fixed-point to floating-point conversions use round to nearest.

Floating-point to integer or fixed-point conversions use round towards zero.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.37 VCVT (between fixed-point or integer, and floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-429

Non-Confidential

C3.38 VCVT (between half-precision and single-precision floating-point)
Vector Convert.

Syntax

VCVT{cond}.F32.F16 Qd, Dm

VCVT{cond}.F16.F32 Dd, Qm

where:

cond
is an optional condition code.

Qd, Dm
specifies the destination vector for the single-precision results and the half-precision operand
vector.

Dd, Qm
specifies the destination vector for half-precision results and the single-precision operand vector.

Operation
VCVT with half-precision extension, converts each element in a vector in one of the following ways, and
places the results in the destination vector:
• From half-precision floating-point to single-precision floating-point (F32.F16).
• From single-precision floating-point to half-precision floating-point (F16.F32).

Architectures

This instruction is available in Armv8. In earlier architectures, it is only available in NEON systems with
the half-precision extension.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.38 VCVT (between half-precision and single-precision floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-430

Non-Confidential

C3.39 VCVT (from floating-point to integer with directed rounding modes)
VCVT (Vector Convert) converts each element in a vector from floating-point to signed or unsigned
integer, and places the results in the destination vector.

 Note

• This instruction is supported only in Armv8.
• You cannot use VCVT with a directed rounding mode inside an IT block.

Syntax

VCVTmode.type Qd, Qm

VCVTmode.type Dd, Dm

where:

mode

must be one of:

A

meaning round to nearest, ties away from zero

N
meaning round to nearest, ties to even

P
meaning round towards plus infinity

M
meaning round towards minus infinity.

type

specifies the data types for the elements of the vectors. It must be one of:

S32.F32

floating-point to signed integer

U32.F32
floating-point to unsigned integer.

Qd, Qm
specifies the destination and operand vectors, for a quadword operation.

Dd, Dm
specifies the destination and operand vectors, for a doubleword operation.

C3 Advanced SIMD Instructions (32-bit)
C3.39 VCVT (from floating-point to integer with directed rounding modes)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-431

Non-Confidential

C3.40 VCVTB, VCVTT (between half-precision and double-precision)
These instructions convert between half-precision and double-precision floating-point numbers.

The conversion can be done in either of the following ways:

• From half-precision floating-point to double-precision floating-point (F64.F16).
• From double-precision floating-point to half-precision floating-point (F16.F64).

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the half-precision
value.

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the half-precision
value.

 Note

These instructions are supported only in Armv8.

Syntax

VCVTB{cond}.F64.F16 Dd, Sm

VCVTB{cond}.F16.F64 Sd, Dm

VCVTT{cond}.F64.F16 Dd, Sm

VCVTT{cond}.F16.F64 Sd, Dm

where:

cond
is an optional condition code.

Dd
is a double-precision register for the result.

Sm
is a single word register holding the operand.

Sd
is a single word register for the result.

Dm
is a double-precision register holding the operand.

Usage

These instructions convert the half-precision value in Sm to double-precision and place the result in Dd, or
the double-precision value in Dm to half-precision and place the result in Sd.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

C3 Advanced SIMD Instructions (32-bit)
C3.40 VCVTB, VCVTT (between half-precision and double-precision)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-432

Non-Confidential

C3.41 VDUP
Vector Duplicate.

Syntax

VDUP{cond}.size Qd, Dm[x]

VDUP{cond}.size Dd, Dm[x]

VDUP{cond}.size Qd, Rm

VDUP{cond}.size Dd, Rm

where:

cond

is an optional condition code.

size

must be 8, 16, or 32.

Qd

specifies the destination register for a quadword operation.

Dd

specifies the destination register for a doubleword operation.

Dm[x]

specifies the Advanced SIMD scalar.

Rm

specifies the general-purpose register. Rm must not be PC.

Operation

VDUP duplicates a scalar into every element of the destination vector. The source can be an Advanced
SIMD scalar or a general-purpose register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.41 VDUP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-433

Non-Confidential

C3.42 VEOR
Vector Bitwise Exclusive OR.

Syntax

VEOR{cond}{.datatype} {Qd}, Qn, Qm

VEOR{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VEOR performs a logical exclusive OR between two registers, and places the result in the destination
register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.42 VEOR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-434

Non-Confidential

C3.43 VEXT
Vector Extract.

Syntax

VEXT{cond}.8 {Qd}, Qn, Qm, #imm

VEXT{cond}.8 {Dd}, Dn, Dm, #imm

where:

cond

is an optional condition code.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

imm

is the number of 8-bit elements to extract from the bottom of the second operand vector, in the
range 0-7 for doubleword operations, or 0-15 for quadword operations.

Operation

VEXT extracts 8-bit elements from the bottom end of the second operand vector and the top end of the
first, concatenates them, and places the result in the destination vector. See the following figure for an
example:

Vd

VnVm
0123456701234567

Figure C3-2 Operation of doubleword VEXT for imm = 3

VEXT pseudo-instruction

You can specify a datatype of 16, 32, or 64 instead of 8. In this case, #imm refers to halfwords, words, or
doublewords instead of referring to bytes, and the permitted ranges are correspondingly reduced.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.43 VEXT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-435

Non-Confidential

C3.44 VFMA, VFMS
Vector Fused Multiply Accumulate, Vector Fused Multiply Subtract.

Syntax

Vop{cond}.F32 {Qd}, Qn, Qm

Vop{cond}.F32 {Dd}, Dn, Dm

where:

op

is one of FMA or FMS.

cond

is an optional condition code.

Dd, Dn, Dm

are the destination and operand vectors for doubleword operation.

Qd, Qn, Qm

are the destination and operand vectors for quadword operation.

Operation

VFMA multiplies corresponding elements in the two operand vectors, and accumulates the results into the
elements of the destination vector. The result of the multiply is not rounded before the accumulation.

VFMS multiplies corresponding elements in the two operand vectors, then subtracts the products from the
corresponding elements of the destination vector, and places the final results in the destination vector.
The result of the multiply is not rounded before the subtraction.

Related references
C3.77 VMUL on page C3-472
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.44 VFMA, VFMS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-436

Non-Confidential

C3.45 VFMAL (by scalar)
Vector Floating-point Multiply-Add Long to accumulator (by scalar).

Syntax

VFMAL{q}.F16 Dd, Sn, Sm[index] ; 64-bit SIMD vector

VFMAL{q}.F16 Qd, Dn, Dm[index] ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

index

Depends on the instruction variant:

64
For the 64-bit SIMD vector variant: is the element index in the range 0 to 1.

128
For the 128-bit SIMD vector variant: is the element index in the range 0 to 3.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Add Long to accumulator (by scalar). This instruction multiplies the
vector elements in the first source SIMD and FP register by the specified value in the second source
SIMD and FP register, and accumulates the product to the corresponding vector element of the
destination SIMD and FP register. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.45 VFMAL (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-437

Non-Confidential

C3.46 VFMAL (vector)
Vector Floating-point Multiply-Add Long to accumulator (vector).

Syntax

VFMAL{q}.F16 Dd, Sn, Sm ; 64-bit SIMD vector

VFMAL{q}.F16 Qd, Dn, Dm ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Add Long to accumulator (vector). This instruction multiplies
corresponding values in the vectors in the two source SIMD and FP registers, and accumulates the
product to the corresponding vector element of the destination SIMD and FP register. The instruction
does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.46 VFMAL (vector)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-438

Non-Confidential

C3.47 VFMSL (by scalar)
Vector Floating-point Multiply-Subtract Long from accumulator (by scalar).

Syntax

VFMSL{q}.F16 Dd, Sn, Sm[index] ; 64-bit SIMD vector

VFMSL{q}.F16 Qd, Dn, Dm[index] ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

index

Depends on the instruction variant:

64
For the 64-bit SIMD vector variant: is the element index in the range 0 to 1.

128
For the 128-bit SIMD vector variant: is the element index in the range 0 to 3.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Subtract Long from accumulator (by scalar). This instruction multiplies
the negated vector elements in the first source SIMD and FP register by the specified value in the second
source SIMD and FP register, and accumulates the product to the corresponding vector element of the
destination SIMD and FP register. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.47 VFMSL (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-439

Non-Confidential

C3.48 VFMSL (vector)
Vector Floating-point Multiply-Subtract Long from accumulator (vector).

Syntax

VFMSL{q}.F16 Dd, Sn, Sm ; 64-bit SIMD vector

VFMSL{q}.F16 Qd, Dn, Dm ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Subtract Long from accumulator (vector). This instruction negates the
values in the vector of one SIMD and FP register, multiplies these with the corresponding values in
another vector, and accumulates the product to the corresponding vector element of the destination SIMD
and FP register. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.48 VFMSL (vector)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-440

Non-Confidential

C3.49 VHADD
Vector Halving Add.

Syntax

VHADD{cond}.datatype {Qd}, Qn, Qm

VHADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VHADD adds corresponding elements in two vectors, shifts each result right one bit, and places the results
in the destination vector. Results are truncated.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.49 VHADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-441

Non-Confidential

C3.50 VHSUB
Vector Halving Subtract.

Syntax

VHSUB{cond}.datatype {Qd}, Qn, Qm

VHSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VHSUB subtracts the elements of one vector from the corresponding elements of another vector, shifts
each result right one bit, and places the results in the destination vector. Results are always truncated.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.50 VHSUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-442

Non-Confidential

C3.51 VLDn (single n-element structure to one lane)
Vector Load single n-element structure to one lane.

Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the loads have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VLDn loads one n-element structure from memory into one or more Advanced SIMD registers. Elements
of the register that are not loaded are unaltered.

Table C3-4 Permitted combinations of parameters for VLDn (single n-element structure to one lane)

n datatype list ag align ah alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

ag Every register in the list must be in the range D0-D31.
ah align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.51 VLDn (single n-element structure to one lane)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-443

Non-Confidential

Table C3-4 Permitted combinations of parameters for VLDn (single n-element structure to one lane) (continued)

n datatype list ag align ah alignment

16 {Dd[x], D(d+1)[x]} @32 4-byte

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.51 VLDn (single n-element structure to one lane)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-444

Non-Confidential

C3.52 VLDn (single n-element structure to all lanes)
Vector Load single n-element structure to all lanes.

Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the loads have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VLDn loads multiple copies of one n-element structure from memory into one or more Advanced SIMD
registers.

Table C3-5 Permitted combinations of parameters for VLDn (single n-element structure to all lanes)

n datatype list ai align aj alignment

1 8 {Dd[]} - Standard only

{Dd[],D(d+1)[]} - Standard only

16 {Dd[]} @16 2-byte

{Dd[],D(d+1)[]} @16 2-byte

ai Every register in the list must be in the range D0-D31.
aj align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.52 VLDn (single n-element structure to all lanes)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-445

Non-Confidential

Table C3-5 Permitted combinations of parameters for VLDn (single n-element structure to all lanes) (continued)

n datatype list ai align aj alignment

32 {Dd[]} @32 4-byte

{Dd[],D(d+1)[]} @32 4-byte

2 8 {Dd[], D(d+1)[]} @8 byte

{Dd[], D(d+2)[]} @8 byte

16 {Dd[], D(d+1)[]} @16 2-byte

{Dd[], D(d+2)[]} @16 2-byte

32 {Dd[], D(d+1)[]} @32 4-byte

{Dd[], D(d+2)[]} @32 4-byte

3 8, 16, or 32 {Dd[], D(d+1)[], D(d+2)[]} - Standard only

{Dd[], D(d+2)[], D(d+4)[]} - Standard only

4 8 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @32 4-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @32 4-byte

16 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 8-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 8-byte

32 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 or @128 8-byte or 16-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 or @128 8-byte or 16-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.52 VLDn (single n-element structure to all lanes)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-446

Non-Confidential

C3.53 VLDn (multiple n-element structures)
Vector Load multiple n-element structures.

Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table for options.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the loads have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VLDn loads multiple n-element structures from memory into one or more Advanced SIMD registers, with
de-interleaving (unless n == 1). Every element of each register is loaded.

Table C3-6 Permitted combinations of parameters for VLDn (multiple n-element structures)

n datatype list ak align al alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

ak Every register in the list must be in the range D0-D31.
al align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.53 VLDn (multiple n-element structures)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-447

Non-Confidential

Table C3-6 Permitted combinations of parameters for VLDn (multiple n-element structures) (continued)

n datatype list ak align al alignment

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.53 VLDn (multiple n-element structures)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-448

Non-Confidential

C3.54 VLDM
Extension register load multiple.

Syntax

VLDMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as DB for loads.

FD

meaning Full Descending stack operation. This is the same as IA for loads.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related references
C1.9 Condition code suffixes on page C1-92
C4.14 VLDM (floating-point) on page C4-561

C3 Advanced SIMD Instructions (32-bit)
C3.54 VLDM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-449

Non-Confidential

C3.55 VLDR
Extension register load.

Syntax

VLDR{cond}{.64} Dd, [Rn{, #offset}]

VLDR{cond}{.64} Dd, label

where:

cond

is an optional condition code.

Dd

is the extension register to be loaded.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

label

is a PC-relative expression.

label must be aligned on a word boundary within ±1KB of the current instruction.

Operation

The VLDR instruction loads an extension register from memory.

Two words are transferred.

There is also a VLDR pseudo-instruction.

Related references
C3.57 VLDR pseudo-instruction on page C3-452
C1.9 Condition code suffixes on page C1-92
C4.15 VLDR (floating-point) on page C4-562

C3 Advanced SIMD Instructions (32-bit)
C3.55 VLDR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-450

Non-Confidential

C3.56 VLDR (post-increment and pre-decrement)
Pseudo-instruction that loads extension registers, with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VLDR{cond}{.64} Dd, [Rn], #offset ; post-increment

VLDR{cond}{.64} Dd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

Dd

is the extension register to load.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to 8 at assembly time.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VLDM instruction.

Related references
C3.54 VLDM on page C3-449
C3.55 VLDR on page C3-450
C1.9 Condition code suffixes on page C1-92
C4.16 VLDR (post-increment and pre-decrement, floating-point) on page C4-563

C3 Advanced SIMD Instructions (32-bit)
C3.56 VLDR (post-increment and pre-decrement)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-451

Non-Confidential

C3.57 VLDR pseudo-instruction
The VLDR pseudo-instruction loads a constant value into every element of a 64-bit Advanced SIMD
vector.

 Note

This description is for the VLDR pseudo-instruction only.

Syntax

VLDR{cond}.datatype Dd,=constant

where:

cond
is an optional condition code.

datatype

must be one of In, Sn, Un, or F32.

n
must be one of 8, 16, 32, or 64.

Dd
is the extension register to be loaded.

constant
is an immediate value of the appropriate type for datatype.

Usage

If an instruction (for example, VMOV) is available that can generate the constant directly into the register,
the assembler uses it. Otherwise, it generates a doubleword literal pool entry containing the constant and
loads the constant using a VLDR instruction.

Related references
C3.55 VLDR on page C3-450
C1.9 Condition code suffixes on page C1-92
C3.57 VLDR pseudo-instruction on page C3-452

C3 Advanced SIMD Instructions (32-bit)
C3.57 VLDR pseudo-instruction

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-452

Non-Confidential

C3.58 VMAX and VMIN
Vector Maximum, Vector Minimum.

Syntax

Vop{cond}.datatype Qd, Qn, Qm

Vop{cond}.datatype Dd, Dn, Dm

where:

op

must be either MAX or MIN.

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMAX compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

VMIN compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

Floating-point maximum and minimum

max(+0.0, -0.0) = +0.0.

min(+0.0, -0.0) = -0.0

If any input is a NaN, the corresponding result element is the default NaN.

Related references
C3.89 VPADD on page C3-484
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.58 VMAX and VMIN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-453

Non-Confidential

C3.59 VMAXNM, VMINNM
Vector Minimum, Vector Maximum.

 Note

• These instructions are supported only in Armv8.
• You cannot use VMAXNM or VMINNM inside an IT block.

Syntax

Vop.F32 Qd, Qn, Qm

Vop.F32 Dd, Dn, Dm

where:

op
must be either MAXNM or MINNM.

Qd, Qn, Qm
are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm
are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMAXNM compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

VMINNM compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

If one of the elements in a pair is a number and the other element is NaN, the corresponding result
element is the number. This is consistent with the IEEE 754-2008 standard.

C3 Advanced SIMD Instructions (32-bit)
C3.59 VMAXNM, VMINNM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-454

Non-Confidential

C3.60 VMLA
Vector Multiply Accumulate.

Syntax

VMLA{cond}.datatype {Qd}, Qn, Qm

VMLA{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMLA multiplies corresponding elements in two vectors, and accumulates the results into the elements of
the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.60 VMLA

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-455

Non-Confidential

C3.61 VMLA (by scalar)
Vector Multiply by scalar and Accumulate.

Syntax

VMLA{cond}.datatype {Qd}, Qn, Dm[x]

VMLA{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or F32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLA multiplies each element in a vector by a scalar, and accumulates the results into the corresponding
elements of the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.61 VMLA (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-456

Non-Confidential

C3.62 VMLAL (by scalar)
Vector Multiply by scalar and Accumulate Long.

Syntax

VMLAL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of S16, S32, U16, or U32

Qd, Dn

are the destination vector and the first operand vector, for a long operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLAL multiplies each element in a vector by a scalar, and accumulates the results into the corresponding
elements of the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.62 VMLAL (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-457

Non-Confidential

C3.63 VMLAL
Vector Multiply Accumulate Long.

Syntax

VMLAL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32,U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VMLAL multiplies corresponding elements in two vectors, and accumulates the results into the elements of
the destination vector.

Related concepts
B1.8 Polynomial arithmetic over {0,1} on page B1-54

C3 Advanced SIMD Instructions (32-bit)
C3.63 VMLAL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-458

Non-Confidential

C3.64 VMLS (by scalar)
Vector Multiply by scalar and Subtract.

Syntax

VMLS{cond}.datatype {Qd}, Qn, Dm[x]

VMLS{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or F32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLS multiplies each element in a vector by a scalar, subtracts the results from the corresponding
elements of the destination vector, and places the final results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.64 VMLS (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-459

Non-Confidential

C3.65 VMLS
Vector Multiply Subtract.

Syntax

VMLS{cond}.datatype {Qd}, Qn, Qm

VMLS{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMLS multiplies corresponding elements in two vectors, subtracts the results from corresponding
elements of the destination vector, and places the final results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.65 VMLS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-460

Non-Confidential

C3.66 VMLSL
Vector Multiply Subtract Long.

Syntax

VMLSL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VMLSL multiplies corresponding elements in two vectors, subtracts the results from corresponding
elements of the destination vector, and places the final results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.66 VMLSL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-461

Non-Confidential

C3.67 VMLSL (by scalar)
Vector Multiply by scalar and Subtract Long.

Syntax

VMLSL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of S16, S32, U16, or U32.

Qd, Dn

are the destination vector and the first operand vector, for a long operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLSL multiplies each element in a vector by a scalar, subtracts the results from the corresponding
elements of the destination vector, and places the final results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.67 VMLSL (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-462

Non-Confidential

C3.68 VMOV (immediate)
Vector Move.

Syntax

VMOV{cond}.datatype Qd, #imm

VMOV{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is an immediate value of the type specified by datatype. This is replicated to fill the destination
register.

Operation

VMOV replicates an immediate value in every element of the destination register.

Table C3-7 Available immediate values in VMOV (immediate)

datatype imm

I8 0xXY

I16 0x00XY, 0xXY00

I32 0x000000XY, 0x0000XY00, 0x00XY0000, 0xXY000000

0x0000XYFF, 0x00XYFFFF

I64 byte masks, 0xGGHHJJKKLLMMNNPP am

F32 floating-point numbers an

Related references
C1.9 Condition code suffixes on page C1-92

am Each of 0xGG, 0xHH, 0xJJ, 0xKK, 0xLL, 0xMM, 0xNN, and 0xPP must be either 0x00 or 0xFF.
an Any number that can be expressed as +/–n * 2–r, where n and r are integers, 16 <= n <= 31, 0 <= r <= 7.

C3 Advanced SIMD Instructions (32-bit)
C3.68 VMOV (immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-463

Non-Confidential

C3.69 VMOV (register)
Vector Move.

Syntax

VMOV{cond}{.datatype} Qd, Qm

VMOV{cond}{.datatype} Dd, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qm

specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the source vector, for a doubleword operation.

Operation

VMOV copies the contents of the source register into the destination register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.69 VMOV (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-464

Non-Confidential

C3.70 VMOV (between two general-purpose registers and a 64-bit extension
register)

Transfer contents between two general-purpose registers and a 64-bit extension register.

Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

where:

cond

is an optional condition code.

Dm

is a 64-bit extension register.

Rd, Rn

are the general-purpose registers. Rd and Rn must not be PC.

Operation

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into the
high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high half of
Dm into Rn.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-465

Non-Confidential

C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar)
Transfer contents between a general-purpose register and an Advanced SIMD scalar.

Syntax

VMOV{cond}{.size} Dn[x], Rd

VMOV{cond}{.datatype} Rd, Dn[x]

where:

cond

is an optional condition code.

size

the data size. Can be 8, 16, or 32. If omitted, size is 32.

datatype

the data type. Can be U8, S8, U16, S16, or 32. If omitted, datatype is 32.

Dn[x]

is the Advanced SIMD scalar.

Rd

is the general-purpose register. Rd must not be PC.

Operation

VMOV Dn[x], Rd transfers the contents of the least significant byte, halfword, or word of Rd into Dn[x].

VMOV Rd, Dn[x] transfers the contents of Dn[x] into the least significant byte, halfword, or word of Rd.
The remaining bits of Rd are either zero or sign extended.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-466

Non-Confidential

C3.72 VMOVL
Vector Move Long.

Syntax

VMOVL{cond}.datatype Qd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dm

specifies the destination vector and the operand vector.

Operation

VMOVL takes each element in a doubleword vector, sign or zero extends them to twice their original
length, and places the results in a quadword vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.72 VMOVL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-467

Non-Confidential

C3.73 VMOVN
Vector Move and Narrow.

Syntax

VMOVN{cond}.datatype Dd, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qm

specifies the destination vector and the operand vector.

Operation

VMOVN copies the least significant half of each element of a quadword vector into the corresponding
elements of a doubleword vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.73 VMOVN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-468

Non-Confidential

C3.74 VMOV2
Pseudo-instruction that generates an immediate value and places it in every element of an Advanced
SIMD vector, without loading a value from a literal pool.

Syntax

VMOV2{cond}.datatype Qd, #constant

VMOV2{cond}.datatype Dd, #constant

where:

datatype
must be one of:
• I8, I16, I32, or I64.
• S8, S16, S32, or S64.
• U8, U16, U32, or U64.
• F32.

cond

is an optional condition code.

Qd or Dd
is the extension register to be loaded.

constant
is an immediate value of the appropriate type for datatype.

Operation

VMOV2 can generate any 16-bit immediate value, and a restricted range of 32-bit and 64-bit immediate
values.

VMOV2 is a pseudo-instruction that always assembles to exactly two instructions. It typically assembles to
a VMOV or VMVN instruction, followed by a VBIC or VORR instruction.

Related references
C3.68 VMOV (immediate) on page C3-463
C3.16 VBIC (immediate) on page C3-408
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.74 VMOV2

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-469

Non-Confidential

C3.75 VMRS
Transfer contents from an Advanced SIMD system register to a general-purpose register.

Syntax

VMRS{cond} Rd, extsysreg

where:

cond
is an optional condition code.

extsysreg
is the Advanced SIMD and floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMRS instruction transfers the contents of extsysreg into Rd.

 Note

The instruction stalls the processor until all current Advanced SIMD or floating-point operations
complete.

Example
 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to the
 ; special-purpose APSR

Related references
B1.14 Advanced SIMD system registers in AArch32 state on page B1-60
C1.9 Condition code suffixes on page C1-92
C4.26 VMRS (floating-point) on page C4-573

C3 Advanced SIMD Instructions (32-bit)
C3.75 VMRS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-470

Non-Confidential

C3.76 VMSR
Transfer contents of a general-purpose register to an Advanced SIMD system register.

Syntax

VMSR{cond} extsysreg, Rd

where:

cond
is an optional condition code.

extsysreg
is the Advanced SIMD and floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMSR instruction transfers the contents of Rd into extsysreg.

 Note

The instruction stalls the processor until all current Advanced SIMD operations complete.

Example
 VMSR FPSCR, r4

Related references
B1.14 Advanced SIMD system registers in AArch32 state on page B1-60
C1.9 Condition code suffixes on page C1-92
C4.27 VMSR (floating-point) on page C4-574

C3 Advanced SIMD Instructions (32-bit)
C3.76 VMSR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-471

Non-Confidential

C3.77 VMUL
Vector Multiply.

Syntax

VMUL{cond}.datatype {Qd}, Qn, Qm

VMUL{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, F32, or P8.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMUL multiplies corresponding elements in two vectors, and places the results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.77 VMUL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-472

Non-Confidential

C3.78 VMUL (by scalar)
Vector Multiply by scalar.

Syntax

VMUL{cond}.datatype {Qd}, Qn, Dm[x]

VMUL{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or F32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMUL multiplies each element in a vector by a scalar, and places the results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.78 VMUL (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-473

Non-Confidential

C3.79 VMULL
Vector Multiply Long

Syntax

VMULL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of U8, U16, U32, S8, S16, S32, or P8.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VMULL multiplies corresponding elements in two vectors, and places the results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.79 VMULL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-474

Non-Confidential

C3.80 VMULL (by scalar)
Vector Multiply Long by scalar

Syntax

VMULL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of S16, S32, U16, or U32.

Qd, Dn

are the destination vector and the first operand vector, for a long operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMULL multiplies each element in a vector by a scalar, and places the results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.80 VMULL (by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-475

Non-Confidential

C3.81 VMVN (register)
Vector Move NOT (register).

Syntax

VMVN{cond}{.datatype} Qd, Qm

VMVN{cond}{.datatype} Dd, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qm

specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the source vector, for a doubleword operation.

Operation

VMVN inverts the value of each bit from the source register and places the results into the destination
register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.81 VMVN (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-476

Non-Confidential

C3.82 VMVN (immediate)
Vector Move NOT (immediate).

Syntax

VMVN{cond}.datatype Qd, #imm

VMVN{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is an immediate value of the type specified by datatype. This is replicated to fill the destination
register.

Operation

VMVN inverts the value of each bit from an immediate value and places the results into each element in the
destination register.

Table C3-8 Available immediate values in VMVN (immediate)

datatype imm

I8 -

I16 0xFFXY, 0xXYFF

I32 0xFFFFFFXY, 0xFFFFXYFF, 0xFFXYFFFF, 0xXYFFFFFF

0xFFFFXY00, 0xFFXY0000

I64 -

F32 -

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.82 VMVN (immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-477

Non-Confidential

C3.83 VNEG
Vector Negate.

Syntax

VNEG{cond}.datatype Qd, Qm

VNEG{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VNEG negates each element in a vector, and places the results in a second vector. (The floating-point
version only inverts the sign bit.)

Related references
C4.29 VNEG (floating-point) on page C4-576
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.83 VNEG

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-478

Non-Confidential

C3.84 VORN (register)
Vector bitwise OR NOT (register).

Syntax

VORN{cond}{.datatype} {Qd}, Qn, Qm

VORN{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VORN performs a bitwise logical OR complement between two registers, and places the results in the
destination register.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.84 VORN (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-479

Non-Confidential

C3.85 VORN (immediate)
Vector bitwise OR NOT (immediate) pseudo-instruction.

Syntax

VORN{cond}.datatype Qd, #imm

VORN{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is the immediate value.

Operation
VORN takes each element of the destination vector, performs a bitwise OR complement with an immediate
value, and returns the results in the destination vector.

 Note

On disassembly, this pseudo-instruction is disassembled to a corresponding VORR instruction, with a
complementary immediate value.

Immediate values

If datatype is I16, the immediate value must have one of the following forms:

• 0xFFXY.
• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY.
• 0xFFFFXYFF.
• 0xFFXYFFFF.
• 0xXYFFFFFF.

Related references
C3.87 VORR (immediate) on page C3-482
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.85 VORN (immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-480

Non-Confidential

C3.86 VORR (register)
Vector bitwise OR (register).

Syntax

VORR{cond}{.datatype} {Qd}, Qn, Qm

VORR{cond}{.datatype} {Dd}, Dn, Dm

where:
cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

 Note

VORR with the same register for both operands is a VMOV instruction. You can use VORR in this way, but
disassembly of the resulting code produces the VMOV syntax.

Operation

VORR performs a bitwise logical OR between two registers, and places the result in the destination
register.

Related references
C3.69 VMOV (register) on page C3-464
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.86 VORR (register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-481

Non-Confidential

C3.87 VORR (immediate)
Vector bitwise OR immediate.

Syntax

VORR{cond}.datatype Qd, #imm

VORR{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the source and result.

imm

is the immediate value.

Operation

VORR takes each element of the destination vector, performs a bitwise logical OR with an immediate
value, and places the results in the destination vector.

Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination register, or you
can directly specify the immediate value (that conforms to the pattern) in full. The pattern for imm
depends on the datatype, as shown in the following table:

Table C3-9 Patterns for immediate value in VORR (immediate)

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

- 0x00XY0000

- 0xXY000000

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction to match
the pattern of imm. If the immediate value does not match any of the patterns in the preceding table, the
assembler generates an error.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.87 VORR (immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-482

Non-Confidential

C3.88 VPADAL
Vector Pairwise Add and Accumulate Long.

Syntax

VPADAL{cond}.datatype Qd, Qm

VPADAL{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qm

are the destination vector and the operand vector, for a quadword instruction.

Dd, Dm

are the destination vector and the operand vector, for a doubleword instruction.

Operation

VPADAL adds adjacent pairs of elements of a vector, and accumulates the absolute values of the results
into the elements of the destination vector.

Dd

Dm

+ +

Figure C3-3 Example of operation of VPADAL (in this case for data type S16)

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.88 VPADAL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-483

Non-Confidential

C3.89 VPADD
Vector Pairwise Add.

Syntax

VPADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VPADD adds adjacent pairs of elements of two vectors, and places the results in the destination vector.

Dd

DnDm

+ + ++

Figure C3-4 Example of operation of VPADD (in this case, for data type I16)

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.89 VPADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-484

Non-Confidential

C3.90 VPADDL
Vector Pairwise Add Long.

Syntax

VPADDL{cond}.datatype Qd, Qm

VPADDL{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qm

are the destination vector and the operand vector, for a quadword instruction.

Dd, Dm

are the destination vector and the operand vector, for a doubleword instruction.

Operation

VPADDL adds adjacent pairs of elements of a vector, sign or zero extends the results to twice their original
width, and places the final results in the destination vector.

Dd

Dm

+ +

Figure C3-5 Example of operation of doubleword VPADDL (in this case, for data type S16)

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.90 VPADDL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-485

Non-Confidential

C3.91 VPMAX and VPMIN
Vector Pairwise Maximum, Vector Pairwise Minimum.

Syntax

VPop{cond}.datatype Dd, Dn, Dm

where:

op

must be either MAX or MIN.

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

Dd, Dn, Dm

are the destination doubleword vector, the first operand doubleword vector, and the second
operand doubleword vector.

Operation

VPMAX compares adjacent pairs of elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector. Operands and results must be doubleword vectors.

VPMIN compares adjacent pairs of elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector. Operands and results must be doubleword vectors.

Floating-point maximum and minimum

max(+0.0, -0.0) = +0.0.

min(+0.0, -0.0) = -0.0

If any input is a NaN, the corresponding result element is the default NaN.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.91 VPMAX and VPMIN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-486

Non-Confidential

C3.92 VPOP
Pop extension registers from the stack.

Syntax

VPOP{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related references
C1.9 Condition code suffixes on page C1-92
C3.93 VPUSH on page C3-488
C4.33 VPOP (floating-point) on page C4-580

C3 Advanced SIMD Instructions (32-bit)
C3.92 VPOP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-487

Non-Confidential

C3.93 VPUSH
Push extension registers onto the stack.

Syntax

VPUSH{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related references
C1.9 Condition code suffixes on page C1-92
C3.92 VPOP on page C3-487
C4.34 VPUSH (floating-point) on page C4-581

C3 Advanced SIMD Instructions (32-bit)
C3.93 VPUSH

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-488

Non-Confidential

C3.94 VQABS
Vector Saturating Absolute.

Syntax

VQABS{cond}.datatype Qd, Qm

VQABS{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, or S32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VQABS takes the absolute value of each element in a vector, and places the results in a second vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.94 VQABS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-489

Non-Confidential

C3.95 VQADD
Vector Saturating Add.

Syntax

VQADD{cond}.datatype {Qd}, Qn, Qm

VQADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQADD adds corresponding elements in two vectors, and places the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.95 VQADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-490

Non-Confidential

C3.96 VQDMLAL and VQDMLSL (by vector or by scalar)
Vector Saturating Doubling Multiply Accumulate Long, Vector Saturating Doubling Multiply Subtract
Long.

Syntax

VQDopL{cond}.datatype Qd, Dn, Dm

VQDopL{cond}.datatype Qd, Dn, Dm[x]

where:

op

must be one of:

MLA

Multiply Accumulate.

MLS

Multiply Subtract.

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Dn

are the destination vector and the first operand vector.

Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

These instructions multiply their operands and double the results. VQDMLAL adds the results to the values
in the destination register. VQDMLSL subtracts the results from the values in the destination register.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.96 VQDMLAL and VQDMLSL (by vector or by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-491

Non-Confidential

C3.97 VQDMULH (by vector or by scalar)
Vector Saturating Doubling Multiply Returning High Half.

Syntax

VQDMULH{cond}.datatype {Qd}, Qn, Qm

VQDMULH{cond}.datatype {Dd}, Dn, Dm

VQDMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQDMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Qm or Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

VQDMULH multiplies corresponding elements in two vectors, doubles the results, and places the most
significant half of the final results in the destination vector.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs. Each result is truncated.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.97 VQDMULH (by vector or by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-492

Non-Confidential

C3.98 VQDMULL (by vector or by scalar)
Vector Saturating Doubling Multiply Long.

Syntax

VQDMULL{cond}.datatype Qd, Dn, Dm

VQDMULL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Dn

are the destination vector and the first operand vector.

Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

VQDMULL multiplies corresponding elements in two vectors, doubles the results and places the results in
the destination register.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.98 VQDMULL (by vector or by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-493

Non-Confidential

C3.99 VQMOVN and VQMOVUN
Vector Saturating Move and Narrow.

Syntax

VQMOVN{cond}.datatype Dd, Qm

VQMOVUN{cond}.datatype Dd, Qm

where:

cond

is an optional condition code.

datatype

must be one of:

S16, S32, S64

for VQMOVN or VQMOVUN.

U16, U32, U64

for VQMOVN.

Dd, Qm

specifies the destination vector and the operand vector.

Operation

VQMOVN copies each element of the operand vector to the corresponding element of the destination vector.
The result element is half the width of the operand element, and values are saturated to the result width.
The results are the same type as the operands.

VQMOVUN copies each element of the operand vector to the corresponding element of the destination
vector. The result element is half the width of the operand element, and values are saturated to the result
width. The elements in the operand are signed and the elements in the result are unsigned.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.99 VQMOVN and VQMOVUN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-494

Non-Confidential

C3.100 VQNEG
Vector Saturating Negate.

Syntax

VQNEG{cond}.datatype Qd, Qm

VQNEG{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, or S32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VQNEG negates each element in a vector, and places the results in a second vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.100 VQNEG

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-495

Non-Confidential

C3.101 VQRDMULH (by vector or by scalar)
Vector Saturating Rounding Doubling Multiply Returning High Half.

Syntax

VQRDMULH{cond}.datatype {Qd}, Qn, Qm

VQRDMULH{cond}.datatype {Dd}, Dn, Dm

VQRDMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQRDMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Qm or Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

VQRDMULH multiplies corresponding elements in two vectors, doubles the results, and places the most
significant half of the final results in the destination vector.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs. Each result is rounded.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.101 VQRDMULH (by vector or by scalar)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-496

Non-Confidential

C3.102 VQRSHL (by signed variable)
Vector Saturating Rounding Shift Left by signed variable.

Syntax

VQRSHL{cond}.datatype {Qd}, Qm, Qn

VQRSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQRSHL takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a rounding right shift.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.102 VQRSHL (by signed variable)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-497

Non-Confidential

C3.103 VQRSHRN and VQRSHRUN (by immediate)
Vector Saturating Shift Right, Narrow, by immediate value, with Rounding.

Syntax

VQRSHR{U}N{cond}.datatype Dd, Qm, #imm

where:

U

if present, indicates that the results are unsigned, although the operands are signed. Otherwise,
the results are the same type as the operands.

cond

is an optional condition code.

datatype

must be one of:

I16, I32, I64

for VQRSHRN or VQRSHRUN. Only a #0 immediate is permitted with these datatypes.

S16, S32, S64

for VQRSHRN or VQRSHRUN.

U16, U32, U64

for VQRSHRN only.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-10 Available immediate ranges in VQRSHRN and VQRSHRUN (by immediate)

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32

Operation

VQRSHR{U}N takes each element in a quadword vector of integers, right shifts them by an immediate
value, and places the results in a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Results are rounded.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.103 VQRSHRN and VQRSHRUN (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-498

Non-Confidential

C3.104 VQSHL (by signed variable)
Vector Saturating Shift Left by signed variable.

Syntax

VQSHL{cond}.datatype {Qd}, Qm, Qn

VQSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQSHL takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a truncating right shift.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.104 VQSHL (by signed variable)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-499

Non-Confidential

C3.105 VQSHL and VQSHLU (by immediate)
Vector Saturating Shift Left.

Syntax

VQSHL{U}{cond}.datatype {Qd}, Qm, #imm

VQSHL{U}{cond}.datatype {Dd}, Dm, #imm

where:

U

only permitted if Q is also present. Indicates that the results are unsigned even though the
operands are signed.

cond

is an optional condition code.

datatype

must be one of :

S8, S16, S32, S64

for VQSHL or VQSHLU.

U8, U16, U32, U64

for VQSHL only.

Qd, Qm

are the destination and operand vectors, for a quadword operation.

Dd, Dm

are the destination and operand vectors, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size(datatype) – 1).
The ranges are shown in the following table:

Table C3-11 Available immediate ranges in VQSHL and VQSHLU (by immediate)

datatype imm range

S8 or U8 0 to 7

S16 or U16 0 to 15

S32 or U32 0 to 31

S64 or U64 0 to 63

Operation

VQSHL and VQSHLU instructions take each element in a vector of integers, left shift them by an immediate
value, and place the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.105 VQSHL and VQSHLU (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-500

Non-Confidential

C3.106 VQSHRN and VQSHRUN (by immediate)
Vector Saturating Shift Right, Narrow, by immediate value.

Syntax

VQSHR{U}N{cond}.datatype Dd, Qm, #imm

where:

U

if present, indicates that the results are unsigned, although the operands are signed. Otherwise,
the results are the same type as the operands.

cond

is an optional condition code.

datatype

must be one of:

I16, I32, I64

for VQSHRN or VQSHRUN. Only a #0 immediate is permitted with these datatypes.

S16, S32, S64

for VQSHRN or VQSHRUN.

U16, U32, U64

for VQSHRN only.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-12 Available immediate ranges in VQSHRN and VQSHRUN (by immediate)

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32

Operation

VQSHR{U}N takes each element in a quadword vector of integers, right shifts them by an immediate value,
and places the results in a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Results are truncated.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.106 VQSHRN and VQSHRUN (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-501

Non-Confidential

C3.107 VQSUB
Vector Saturating Subtract.

Syntax

VQSUB{cond}.datatype {Qd}, Qn, Qm

VQSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQSUB subtracts the elements of one vector from the corresponding elements of another vector, and
places the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.107 VQSUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-502

Non-Confidential

C3.108 VRADDHN
Vector Rounding Add and Narrow, selecting High half.

Syntax

VRADDHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VRADDHN adds corresponding elements in two quadword vectors, selects the most significant halves of the
results, and places the final results in the destination doubleword vector. Results are rounded.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.108 VRADDHN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-503

Non-Confidential

C3.109 VRECPE
Vector Reciprocal Estimate.

Syntax

VRECPE{cond}.datatype Qd, Qm

VRECPE{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be either U32 or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VRECPE finds an approximate reciprocal of each element in a vector, and places the results in a second
vector.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-13 Results for out-of-range inputs in VRECPE

Operand element Result element

Integer <= 0x7FFFFFFF 0xFFFFFFFF

Floating-point NaN Default NaN

Negative 0, Negative Denormal Negative Infinity ao

Positive 0, Positive Denormal Positive Infinity ao

Positive infinity Positive 0

Negative infinity Negative 0

Related references
C1.9 Condition code suffixes on page C1-92

ao The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

C3 Advanced SIMD Instructions (32-bit)
C3.109 VRECPE

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-504

Non-Confidential

C3.110 VRECPS
Vector Reciprocal Step.

Syntax

VRECPS{cond}.F32 {Qd}, Qn, Qm

VRECPS{cond}.F32 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRECPS multiplies the elements of one vector by the corresponding elements of another vector, subtracts
each of the results from 2, and places the final results into the elements of the destination vector.

The Newton-Raphson iteration:

xn+1 = xn (2–dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-14 Results for out-of-range inputs in VRECPS

1st operand element 2nd operand element Result element

NaN - Default NaN

- NaN Default NaN

± 0.0 or denormal ± infinity 2.0

± infinity ± 0.0 or denormal 2.0

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.110 VRECPS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-505

Non-Confidential

C3.111 VREV16, VREV32, and VREV64
Vector Reverse within halfwords, words, or doublewords.

Syntax

VREVn{cond}.size Qd, Qm

VREVn{cond}.size Dd, Dm

where:

n

must be one of 16, 32, or 64.

cond

is an optional condition code.

size

must be one of 8, 16, or 32, and must be less than n.

Qd, Qm

specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the operand vector, for a doubleword operation.

Operation

VREV16 reverses the order of 8-bit elements within each halfword of the vector, and places the result in
the corresponding destination vector.

VREV32 reverses the order of 8-bit or 16-bit elements within each word of the vector, and places the result
in the corresponding destination vector.

VREV64 reverses the order of 8-bit, 16-bit, or 32-bit elements within each doubleword of the vector, and
places the result in the corresponding destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.111 VREV16, VREV32, and VREV64

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-506

Non-Confidential

C3.112 VRHADD
Vector Rounding Halving Add.

Syntax

VRHADD{cond}.datatype {Qd}, Qn, Qm

VRHADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRHADD adds corresponding elements in two vectors, shifts each result right one bit, and places the results
in the destination vector. Results are rounded.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.112 VRHADD

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-507

Non-Confidential

C3.113 VRSHL (by signed variable)
Vector Rounding Shift Left by signed variable.

Syntax

VRSHL{cond}.datatype {Qd}, Qm, Qn

VRSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRSHL takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a rounding right shift.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.113 VRSHL (by signed variable)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-508

Non-Confidential

C3.114 VRSHR (by immediate)
Vector Rounding Shift Right by immediate value.

Syntax

VRSHR{cond}.datatype {Qd}, Qm, #imm

VRSHR{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size(datatype)). The
ranges are shown in the following table:

Table C3-15 Available immediate ranges in VRSHR (by immediate)

datatype imm range

S8 or U8 0 to 8

S16 or U16 0 to 16

S32 or U32 0 to 32

S64 or U64 0 to 64

VRSHR with an immediate value of zero is a pseudo-instruction for VORR.

Operation

VRSHR takes each element in a vector, right shifts them by an immediate value, and places the results in
the destination vector. The results are rounded.

Related references
C3.86 VORR (register) on page C3-481
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.114 VRSHR (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-509

Non-Confidential

C3.115 VRSHRN (by immediate)
Vector Rounding Shift Right, Narrow, by immediate value.

Syntax

VRSHRN{cond}.datatype Dd, Qm, #imm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size(datatype)/2). The
ranges are shown in the following table:

Table C3-16 Available immediate ranges in VRSHRN (by immediate)

datatype imm range

I16 0 to 8

I32 0 to 16

I64 0 to 32

VRSHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

Operation

VRSHRN takes each element in a quadword vector, right shifts them by an immediate value, and places the
results in a doubleword vector. The results are rounded.

Related references
C3.73 VMOVN on page C3-468
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.115 VRSHRN (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-510

Non-Confidential

C3.116 VRINT
VRINT (Vector Round to Integer) rounds each floating-point element in a vector to integer, and places the
results in the destination vector.

The resulting integers are represented in floating-point format.
 Note

This instruction is supported only in Armv8.

Syntax

VRINTmode.F32.F32 Qd, Qm

VRINTmode.F32.F32 Dd, Dm

where:

mode

must be one of:

A

meaning round to nearest, ties away from zero. This cannot generate an Inexact
exception, even if the result is not exact.

N
meaning round to nearest, ties to even. This cannot generate an Inexact exception, even
if the result is not exact.

X
meaning round to nearest, ties to even, generating an Inexact exception if the result is
not exact.

P
meaning round towards plus infinity. This cannot generate an Inexact exception, even if
the result is not exact.

M
meaning round towards minus infinity. This cannot generate an Inexact exception, even
if the result is not exact.

Z
meaning round towards zero. This cannot generate an Inexact exception, even if the
result is not exact.

Qd, Qm
specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm
specifies the destination and operand vectors, for a doubleword operation.

Notes

You cannot use VRINT inside an IT block.

C3 Advanced SIMD Instructions (32-bit)
C3.116 VRINT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-511

Non-Confidential

C3.117 VRSQRTE
Vector Reciprocal Square Root Estimate.

Syntax

VRSQRTE{cond}.datatype Qd, Qm

VRSQRTE{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be either U32 or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VRSQRTE finds an approximate reciprocal square root of each element in a vector, and places the results in
a second vector.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-17 Results for out-of-range inputs in VRSQRTE

Operand element Result element

Integer <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN, Negative Normal, Negative Infinity Default NaN

Negative 0, Negative Denormal Negative Infinity ap

Positive 0, Positive Denormal Positive Infinity ap

Positive infinity Positive 0

Negative 0

Related references
C1.9 Condition code suffixes on page C1-92

ap The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

C3 Advanced SIMD Instructions (32-bit)
C3.117 VRSQRTE

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-512

Non-Confidential

C3.118 VRSQRTS
Vector Reciprocal Square Root Step.

Syntax

VRSQRTS{cond}.F32 {Qd}, Qn, Qm

VRSQRTS{cond}.F32 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRSQRTS multiplies the elements of one vector by the corresponding elements of another vector, subtracts
each of the results from three, divides these results by two, and places the final results into the elements
of the destination vector.

The Newton-Raphson iteration:

xn+1 = xn (3–dxn2)/2

converges to (1/√d) if x0 is the result of VRSQRTE applied to d.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-18 Results for out-of-range inputs in VRSQRTS

1st operand element 2nd operand element Result element

NaN - Default NaN

- NaN Default NaN

± 0.0 or denormal ± infinity 1.5

± infinity ± 0.0 or denormal 1.5

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.118 VRSQRTS

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-513

Non-Confidential

C3.119 VRSRA (by immediate)
Vector Rounding Shift Right by immediate value and Accumulate.

Syntax

VRSRA{cond}.datatype {Qd}, Qm, #imm

VRSRA{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 1 to (size(datatype)). The
ranges are shown in the following table:

Table C3-19 Available immediate ranges in VRSRA (by immediate)

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

S64 or U64 1 to 64

Operation

VRSRA takes each element in a vector, right shifts them by an immediate value, and accumulates the
results into the destination vector. The results are rounded.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.119 VRSRA (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-514

Non-Confidential

C3.120 VRSUBHN
Vector Rounding Subtract and Narrow, selecting High half.

Syntax

VRSUBHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VRSUBHN subtracts the elements of one quadword vector from the corresponding elements of another
quadword vector, selects the most significant halves of the results, and places the final results in the
destination doubleword vector. Results are rounded.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.120 VRSUBHN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-515

Non-Confidential

C3.121 VSDOT (vector)
Dot Product vector form with signed integers.

Syntax

VSDOT{q}.S8 Dd, Dn, Dm ; 64-bit SIMD vector

VSDOT{q}.S8 Qd, Qn, Qm ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product vector form with signed integers. This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.121 VSDOT (vector)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-516

Non-Confidential

C3.122 VSDOT (by element)
Dot Product index form with signed integers.

Syntax

VSDOT{q}.S8 Dd, Dn, Dm[index] ; 64-bit SIMD vector

VSDOT{q}.S8 Qd, Qn, Dm[index] ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

index
Is the element index in the range 0 to 1.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product index form with signed integers. This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-
bit element in the second source register, accumulating the result into the corresponding 32-bit element
of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.122 VSDOT (by element)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-517

Non-Confidential

C3.123 VSHL (by immediate)
Vector Shift Left by immediate.

Syntax

VSHL{cond}.datatype {Qd}, Qm, #imm

VSHL{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or I64.

Qd, Qm

are the destination and operand vectors, for a quadword operation.

Dd, Dm

are the destination and operand vectors, for a doubleword operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-20 Available immediate ranges in VSHL (by immediate)

datatype imm range

I8 0 to 7

I16 0 to 15

I32 0 to 31

I64 0 to 63

Operation

VSHL takes each element in a vector of integers, left shifts them by an immediate value, and places the
results in the destination vector.

Bits shifted out of the left of each element are lost.

The following figure shows the operation of VSHL with two elements and a shift value of one. The least
significant bit in each element in the destination vector is set to zero.

Qd

Qm
Element 0

0

Element 1

0

... ...

Figure C3-6 Operation of quadword VSHL.I64 Qd, Qm, #1

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.123 VSHL (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-518

Non-Confidential

C3.124 VSHL (by signed variable)
Vector Shift Left by signed variable.

Syntax

VSHL{cond}.datatype {Qd}, Qm, Qn

VSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VSHL takes each element in a vector, shifts them by the value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a truncating right shift.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.124 VSHL (by signed variable)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-519

Non-Confidential

C3.125 VSHLL (by immediate)
Vector Shift Left Long.

Syntax

VSHLL{cond}.datatype Qd, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dm

are the destination and operand vectors, for a long operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-21 Available immediate ranges in VSHLL (by immediate)

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

0 is permitted, but the resulting code disassembles to VMOVL.

Operation

VSHLL takes each element in a vector of integers, left shifts them by an immediate value, and places the
results in the destination vector. Values are sign or zero extended.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.125 VSHLL (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-520

Non-Confidential

C3.126 VSHR (by immediate)
Vector Shift Right by immediate value.

Syntax

VSHR{cond}.datatype {Qd}, Qm, #imm

VSHR{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-22 Available immediate ranges in VSHR (by immediate)

datatype imm range

S8 or U8 0 to 8

S16 or U16 0 to 16

S32 or U32 0 to 32

S64 or U64 0 to 64

VSHR with an immediate value of zero is a pseudo-instruction for VORR.

Operation

VSHR takes each element in a vector, right shifts them by an immediate value, and places the results in the
destination vector. The results are truncated.

Related references
C3.86 VORR (register) on page C3-481
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.126 VSHR (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-521

Non-Confidential

C3.127 VSHRN (by immediate)
Vector Shift Right, Narrow, by immediate value.

Syntax

VSHRN{cond}.datatype Dd, Qm, #imm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-23 Available immediate ranges in VSHRN (by immediate)

datatype imm range

I16 0 to 8

I32 0 to 16

I64 0 to 32

VSHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

Operation

VSHRN takes each element in a quadword vector, right shifts them by an immediate value, and places the
results in a doubleword vector. The results are truncated.

Related references
C3.73 VMOVN on page C3-468
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.127 VSHRN (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-522

Non-Confidential

C3.128 VSLI
Vector Shift Left and Insert.

Syntax

VSLI{cond}.size {Qd}, Qm, #imm

VSLI{cond}.size {Dd}, Dm, #imm

where:

cond

is an optional condition code.

size

must be one of 8, 16, 32, or 64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size – 1).

Operation

VSLI takes each element in a vector, left shifts them by an immediate value, and inserts the results in the
destination vector. Bits shifted out of the left of each element are lost. The following figure shows the
operation of VSLI with two elements and a shift value of one. The least significant bit in each element in
the destination vector is unchanged.

Qd

Qm
Element 0Element 1

... ...

Unchanged
bit

Unchanged
bit

Figure C3-7 Operation of quadword VSLI.64 Qd, Qm, #1

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.128 VSLI

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-523

Non-Confidential

C3.129 VSRA (by immediate)
Vector Shift Right by immediate value and Accumulate.

Syntax

VSRA{cond}.datatype {Qd}, Qm, #imm

VSRA{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-24 Available immediate ranges in VSRA (by immediate)

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

S64 or U64 1 to 64

Operation

VSRA takes each element in a vector, right shifts them by an immediate value, and accumulates the results
into the destination vector. The results are truncated.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.129 VSRA (by immediate)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-524

Non-Confidential

C3.130 VSRI
Vector Shift Right and Insert.

Syntax

VSRI{cond}.size {Qd}, Qm, #imm

VSRI{cond}.size {Dd}, Dm, #imm

where:

cond

is an optional condition code.

size

must be one of 8, 16, 32, or 64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 1 to size.

Operation

VSRI takes each element in a vector, right shifts them by an immediate value, and inserts the results in the
destination vector. Bits shifted out of the right of each element are lost. The following figure shows the
operation of VSRI with a single element and a shift value of two. The two most significant bits in the
destination vector are unchanged.

Dd

Dm
Element 0

... ...

Unchanged
bits

Figure C3-8 Operation of doubleword VSRI.64 Dd, Dm, #2

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.130 VSRI

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-525

Non-Confidential

C3.131 VSTM
Extension register store multiple.

Syntax

VSTMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as IA for stores.

FD

meaning Full Descending stack operation. This is the same as DB for stores.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related references
C1.9 Condition code suffixes on page C1-92
C4.38 VSTM (floating-point) on page C4-585

C3 Advanced SIMD Instructions (32-bit)
C3.131 VSTM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-526

Non-Confidential

C3.132 VSTn (multiple n-element structures)
Vector Store multiple n-element structures.

Syntax

VSTn{cond}.datatype list, [Rn{@align}]{!}

VSTn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table for options.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the stores have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VSTn stores multiple n-element structures to memory from one or more Advanced SIMD registers, with
interleaving (unless n == 1). Every element of each register is stored.

Table C3-25 Permitted combinations of parameters for VSTn (multiple n-element structures)

n datatype list aq align ar alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

aq Every register in the list must be in the range D0-D31.
ar align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.132 VSTn (multiple n-element structures)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-527

Non-Confidential

Table C3-25 Permitted combinations of parameters for VSTn (multiple n-element structures) (continued)

n datatype list aq align ar alignment

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
C3.4 Alignment restrictions in load and store element and structure instructions on page C3-396
Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.132 VSTn (multiple n-element structures)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-528

Non-Confidential

C3.133 VSTn (single n-element structure to one lane)
Vector Store single n-element structure to one lane.

Syntax

VSTn{cond}.datatype list, [Rn{@align}]{!}

VSTn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the stores have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VSTn stores one n-element structure into memory from one or more Advanced SIMD registers.

Table C3-26 Permitted combinations of parameters for VSTn (single n-element structure to one lane)

n datatype list as align at alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

16 {Dd[x], D(d+1)[x]} @32 4-byte

as Every register in the list must be in the range D0-D31.
at align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.133 VSTn (single n-element structure to one lane)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-529

Non-Confidential

Table C3-26 Permitted combinations of parameters for VSTn (single n-element structure to one lane) (continued)

n datatype list as align at alignment

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
C3.4 Alignment restrictions in load and store element and structure instructions on page C3-396
Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.133 VSTn (single n-element structure to one lane)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-530

Non-Confidential

C3.134 VSTR
Extension register store.

Syntax

VSTR{cond}{.64} Dd, [Rn{, #offset}]

where:

cond

is an optional condition code.

Dd

is the extension register to be saved.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

Operation

The VSTR instruction saves the contents of an extension register to memory.

Two words are transferred.

Related references
C1.9 Condition code suffixes on page C1-92
C4.39 VSTR (floating-point) on page C4-586

C3 Advanced SIMD Instructions (32-bit)
C3.134 VSTR

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-531

Non-Confidential

C3.135 VSTR (post-increment and pre-decrement)
Pseudo-instruction that stores extension registers with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VSTR{cond}{.64} Dd, [Rn], #offset ; post-increment

VSTR{cond}{.64} Dd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

Dd

is the extension register to be saved.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to 8 at assembly time.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VSTM instruction.

Related references
C3.134 VSTR on page C3-531
C3.131 VSTM on page C3-526
C1.9 Condition code suffixes on page C1-92
C4.40 VSTR (post-increment and pre-decrement, floating-point) on page C4-587

C3 Advanced SIMD Instructions (32-bit)
C3.135 VSTR (post-increment and pre-decrement)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-532

Non-Confidential

C3.136 VSUB
Vector Subtract.

Syntax

VSUB{cond}.datatype {Qd}, Qn, Qm

VSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Operation

VSUB subtracts the elements of one vector from the corresponding elements of another vector, and places
the results in the destination vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.136 VSUB

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-533

Non-Confidential

C3.137 VSUBHN
Vector Subtract and Narrow, selecting High half.

Syntax

VSUBHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VSUBHN subtracts the elements of one quadword vector from the corresponding elements of another
quadword vector, selects the most significant halves of the results, and places the final results in the
destination doubleword vector. Results are truncated.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.137 VSUBHN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-534

Non-Confidential

C3.138 VSUBL and VSUBW
Vector Subtract Long, Vector Subtract Wide.

Syntax

VSUBL{cond}.datatype Qd, Dn, Dm ; Long operation

VSUBW{cond}.datatype {Qd}, Qn, Dm ; Wide operation

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Qd, Qn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a wide
operation.

Operation

VSUBL subtracts the elements of one doubleword vector from the corresponding elements of another
doubleword vector, and places the results in the destination quadword vector.

VSUBW subtracts the elements of a doubleword vector from the corresponding elements of a quadword
vector, and places the results in the destination quadword vector.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.138 VSUBL and VSUBW

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-535

Non-Confidential

C3.139 VSWP
Vector Swap.

Syntax

VSWP{cond}{.datatype} Qd, Qm

VSWP{cond}{.datatype} Dd, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qm

specifies the vectors for a quadword operation.

Dd, Dm

specifies the vectors for a doubleword operation.

Operation

VSWP exchanges the contents of two vectors. The vectors can be either doubleword or quadword. There is
no distinction between data types.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.139 VSWP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-536

Non-Confidential

C3.140 VTBL and VTBX
Vector Table Lookup, Vector Table Extension.

Syntax

Vop{cond}.8 Dd, list, Dm

where:

op

must be either TBL or TBX.

cond

is an optional condition code.

Dd

specifies the destination vector.

list
Specifies the vectors containing the table. It must be one of:
• {Dn}.
• {Dn,D(n+1)}.
• {Dn,D(n+1),D(n+2)}.
• {Dn,D(n+1),D(n+2),D(n+3)}.
• {Qn,Q(n+1)}.

All the registers in list must be in the range D0-D31 or Q0-Q15 and must not wrap around the
end of the register bank. For example {D31,D0,D1} is not permitted. If list contains Q registers,
they disassemble to the equivalent D registers.

Dm

specifies the index vector.

Operation

VTBL uses byte indexes in a control vector to look up byte values in a table and generate a new vector.
Indexes out of range return zero.

VTBX works in the same way, except that indexes out of range leave the destination element unchanged.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.140 VTBL and VTBX

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-537

Non-Confidential

C3.141 VTRN
Vector Transpose.

Syntax

VTRN{cond}.size Qd, Qm

VTRN{cond}.size Dd, Dm

where:

cond

is an optional condition code.

size

must be one of 8, 16, or 32.

Qd, Qm

specifies the vectors, for a quadword operation.

Dd, Dm

specifies the vectors, for a doubleword operation.

Operation

VTRN treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.
The following figures show examples of the operation of VTRN:

Dd

Dm
017 6 5 4 3 2

Figure C3-9 Operation of doubleword VTRN.8

Dd

Dm
01

Figure C3-10 Operation of doubleword VTRN.32

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.141 VTRN

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-538

Non-Confidential

C3.142 VTST
Vector Test bits.

Syntax

VTST{cond}.size {Qd}, Qn, Qm

VTST{cond}.size {Dd}, Dn, Dm

where:

cond

is an optional condition code.

size

must be one of 8, 16, or 32.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VTST takes each element in a vector, and bitwise logical ANDs them with the corresponding element of a
second vector. If the result is not zero, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

Related references
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.142 VTST

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-539

Non-Confidential

C3.143 VUDOT (vector)
Dot Product vector form with unsigned integers.

Syntax

VUDOT{q}.U8 Dd, Dn, Dm ; 64-bit SIMD vector

VUDOT{q}.U8 Qd, Qn, Qm ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product vector form with unsigned integers. This instruction performs the dot product of the four 8-
bit elements in each 32-bit element of the first source register with the four 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.143 VUDOT (vector)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-540

Non-Confidential

C3.144 VUDOT (by element)
Dot Product index form with unsigned integers.

Syntax

VUDOT{q}.U8 Dd, Dn, Dm[index] ; 64-bit SIMD vector

VUDOT{q}.U8 Qd, Qn, Dm[index] ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

index
Is the element index in the range 0 to 1.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product index form with unsigned integers. This instruction performs the dot product of the four 8-
bit elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed
32-bit element in the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related references
C3.1 Summary of Advanced SIMD instructions on page C3-391

C3 Advanced SIMD Instructions (32-bit)
C3.144 VUDOT (by element)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-541

Non-Confidential

C3.145 VUZP
Vector Unzip.

Syntax

VUZP{cond}.size Qd, Qm

VUZP{cond}.size Dd, Dm

where:
cond

is an optional condition code.
size

must be one of 8, 16, or 32.
Qd, Qm

specifies the vectors, for a quadword operation.
Dd, Dm

specifies the vectors, for a doubleword operation.
 Note

The following are all the same instruction:
• VZIP.32 Dd, Dm.
• VUZP.32 Dd, Dm.
• VTRN.32 Dd, Dm.

The instruction is disassembled as VTRN.32 Dd, Dm.

Operation

VUZP de-interleaves the elements of two vectors.

De-interleaving is the inverse process of interleaving.

Table C3-27 Operation of doubleword VUZP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1

Table C3-28 Operation of quadword VUZP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B2 B0 A2 A0

Qm B3 B2 B1 B0 B3 B1 A3 A1

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
Related references
C3.141 VTRN on page C3-538
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.145 VUZP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-542

Non-Confidential

C3.146 VZIP
Vector Zip.

Syntax

VZIP{cond}.size Qd, Qm

VZIP{cond}.size Dd, Dm

where:
cond

is an optional condition code.

size

must be one of 8, 16, or 32.

Qd, Qm

specifies the vectors, for a quadword operation.

Dd, Dm

specifies the vectors, for a doubleword operation.

 Note

The following are all the same instruction:
• VZIP.32 Dd, Dm.
• VUZP.32 Dd, Dm.
• VTRN.32 Dd, Dm.

The instruction is disassembled as VTRN.32 Dd, Dm.

Operation

VZIP interleaves the elements of two vectors.

Table C3-29 Operation of doubleword VZIP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B3 A3 B2 A2 B1 A1 B0 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 A7 B6 A6 B5 A5 B4 A4

Table C3-30 Operation of quadword VZIP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B1 A1 B0 A0

Qm B3 B2 B1 B0 B3 A3 B2 A2

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-395
Related references
C3.141 VTRN on page C3-538
C1.9 Condition code suffixes on page C1-92

C3 Advanced SIMD Instructions (32-bit)
C3.146 VZIP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C3-543

Non-Confidential

C3 Advanced SIMD Instructions (32-bit)
C3.146 VZIP

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved. C3-544
Non-Confidential

Chapter C4
Floating-point Instructions (32-bit)

Describes floating-point assembly language instructions.

It contains the following sections:
• C4.1 Summary of floating-point instructions on page C4-547.
• C4.2 VABS (floating-point) on page C4-549.
• C4.3 VADD (floating-point) on page C4-550.
• C4.4 VCMP, VCMPE on page C4-551.
• C4.5 VCVT (between single-precision and double-precision) on page C4-552.
• C4.6 VCVT (between floating-point and integer) on page C4-553.
• C4.7 VCVT (from floating-point to integer with directed rounding modes) on page C4-554.
• C4.8 VCVT (between floating-point and fixed-point) on page C4-555.
• C4.9 VCVTB, VCVTT (half-precision extension) on page C4-556.
• C4.10 VCVTB, VCVTT (between half-precision and double-precision) on page C4-557.
• C4.11 VDIV on page C4-558.
• C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point) on page C4-559.
• C4.13 VJCVT on page C4-560.
• C4.14 VLDM (floating-point) on page C4-561.
• C4.15 VLDR (floating-point) on page C4-562.
• C4.16 VLDR (post-increment and pre-decrement, floating-point) on page C4-563.
• C4.17 VLLDM on page C4-564.
• C4.18 VLSTM on page C4-565.
• C4.19 VMAXNM, VMINNM (floating-point) on page C4-566.
• C4.20 VMLA (floating-point) on page C4-567.
• C4.21 VMLS (floating-point) on page C4-568.
• C4.22 VMOV (floating-point) on page C4-569.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-545

Non-Confidential

• C4.23 VMOV (between one general-purpose register and single precision floating-point register)
on page C4-570.

• C4.24 VMOV (between two general-purpose registers and one or two extension registers)
on page C4-571.

• C4.25 VMOV (between a general-purpose register and half a double precision floating-point
register) on page C4-572.

• C4.26 VMRS (floating-point) on page C4-573.
• C4.27 VMSR (floating-point) on page C4-574.
• C4.28 VMUL (floating-point) on page C4-575.
• C4.29 VNEG (floating-point) on page C4-576.
• C4.30 VNMLA (floating-point) on page C4-577.
• C4.31 VNMLS (floating-point) on page C4-578.
• C4.32 VNMUL (floating-point) on page C4-579.
• C4.33 VPOP (floating-point) on page C4-580.
• C4.34 VPUSH (floating-point) on page C4-581.
• C4.35 VRINT (floating-point) on page C4-582.
• C4.36 VSEL on page C4-583.
• C4.37 VSQRT on page C4-584.
• C4.38 VSTM (floating-point) on page C4-585.
• C4.39 VSTR (floating-point) on page C4-586.
• C4.40 VSTR (post-increment and pre-decrement, floating-point) on page C4-587.
• C4.41 VSUB (floating-point) on page C4-588.

C4 Floating-point Instructions (32-bit)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-546

Non-Confidential

C4.1 Summary of floating-point instructions
A summary of the floating-point instructions. Not all of these instructions are available in all floating-
point versions.

The following table shows a summary of floating-point instructions that are not available in Advanced
SIMD.

 Note

Floating-point vector mode is not supported in Armv8. Use Advanced SIMD instructions for vector
floating-point.

Table C4-1 Summary of floating-point instructions

Mnemonic Brief description

VABS Absolute value

VADD Add

VCMP, VCMPE Compare

VCVT Convert between single-precision and double-precision

Convert between floating-point and integer

Convert between floating-point and fixed-point

Convert floating-point to integer with directed rounding modes

VCVTB, VCVTT Convert between half-precision and single-precision floating-point

Convert between half-precision and double-precision

VDIV Divide

VFMA, VFMS Fused multiply accumulate, Fused multiply subtract

VFNMA, VFNMS Fused multiply accumulate with negation, Fused multiply subtract with negation

VJCVT Javascript Convert to signed fixed-point, rounding toward Zero

VLDM Extension register load multiple

VLDR Extension register load

VLLDM Floating-point Lazy Load Multiple

VLSTM Floating-point Lazy Store Multiple

VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008

VMLA Multiply accumulate

VMLS Multiply subtract

VMOV Insert floating-point immediate in single-precision or double-precision register, or copy one FP register into
another FP register of the same width

VMRS Transfer contents from a floating-point system register to a general-purpose register

VMSR Transfer contents from a general-purpose register to a floating-point system register

VMUL Multiply

VNEG Negate

C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-547

Non-Confidential

Table C4-1 Summary of floating-point instructions (continued)

Mnemonic Brief description

VNMLA Negated multiply accumulate

VNMLS Negated multiply subtract

VNMUL Negated multiply

VPOP Extension register load multiple

VPUSH Extension register store multiple

VRINT Round to integer

VSEL Select

VSQRT Square Root

VSTM Extension register store multiple

VSTR Extension register store

VSUB Subtract

C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-548

Non-Confidential

C4.2 VABS (floating-point)
Floating-point absolute value.

Syntax

VABS{cond}.F32 Sd, Sm

VABS{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd, Sm

are the single-precision registers for the result and operand.

Dd, Dm

are the double-precision registers for the result and operand.

Operation

The VABS instruction takes the contents of Sm or Dm, clears the sign bit, and places the result in Sd or Dd.
This gives the absolute value.

If the operand is a NaN, the sign bit is cleared, but no exception is produced.

Floating-point exceptions

VABS instructions do not produce any exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.2 VABS (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-549

Non-Confidential

C4.3 VADD (floating-point)
Floating-point add.

Syntax

VADD{cond}.F32 {Sd}, Sn, Sm

VADD{cond}.F64 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VADD instruction adds the values in the operand registers and places the result in the destination
register.

Floating-point exceptions

The VADD instruction can produce Invalid Operation, Overflow, or Inexact exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.3 VADD (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-550

Non-Confidential

C4.4 VCMP, VCMPE
Floating-point compare.

Syntax

VCMP{E}{cond}.F32 Sd, Sm

VCMP{E}{cond}.F32 Sd, #0

VCMP{E}{cond}.F64 Dd, Dm

VCMP{E}{cond}.F64 Dd, #0

where:

E

if present, indicates that the instruction raises an Invalid Operation exception if either operand is
a quiet or signaling NaN. Otherwise, it raises the exception only if either operand is a signaling
NaN.

cond

is an optional condition code.

Sd, Sm

are the single-precision registers holding the operands.

Dd, Dm

are the double-precision registers holding the operands.

Operation

The VCMP{E} instruction subtracts the value in the second operand register (or 0 if the second operand is
#0) from the value in the first operand register, and sets the VFP condition flags based on the result.

Floating-point exceptions

VCMP{E} instructions can produce Invalid Operation exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.4 VCMP, VCMPE

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-551

Non-Confidential

C4.5 VCVT (between single-precision and double-precision)
Convert between single-precision and double-precision numbers.

Syntax

VCVT{cond}.F64.F32 Dd, Sm

VCVT{cond}.F32.F64 Sd, Dm

where:

cond

is an optional condition code.

Dd

is a double-precision register for the result.

Sm

is a single-precision register holding the operand.

Sd

is a single-precision register for the result.

Dm

is a double-precision register holding the operand.

Operation

These instructions convert the single-precision value in Sm to double-precision, placing the result in Dd,
or the double-precision value in Dm to single-precision, placing the result in Sd.

Floating-point exceptions

These instructions can produce Invalid Operation, Input Denormal, Overflow, Underflow, or Inexact
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.5 VCVT (between single-precision and double-precision)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-552

Non-Confidential

C4.6 VCVT (between floating-point and integer)
Convert between floating-point numbers and integers.

Syntax

VCVT{R}{cond}.type.F64 Sd, Dm

VCVT{R}{cond}.type.F32 Sd, Sm

VCVT{cond}.F64.type Dd, Sm

VCVT{cond}.F32.type Sd, Sm

where:

R

makes the operation use the rounding mode specified by the FPSCR. Otherwise, the operation
rounds towards zero.

cond

is an optional condition code.

type

can be either U32 (unsigned 32-bit integer) or S32 (signed 32-bit integer).

Sd

is a single-precision register for the result.

Dd

is a double-precision register for the result.

Sm

is a single-precision register holding the operand.

Dm

is a double-precision register holding the operand.

Operation

The first two forms of this instruction convert from floating-point to integer.

The third and fourth forms convert from integer to floating-point.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.6 VCVT (between floating-point and integer)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-553

Non-Confidential

C4.7 VCVT (from floating-point to integer with directed rounding modes)
Convert from floating-point to signed or unsigned integer with directed rounding modes.

 Note

This instruction is supported only in Armv8.

Syntax

VCVTmode.S32.F64 Sd, Dm

VCVTmode.S32.F32 Sd, Sm

VCVTmode.U32.F64 Sd, Dm

VCVTmode.U32.F32 Sd, Sm

where:

mode

must be one of:

A

meaning round to nearest, ties away from zero

N
meaning round to nearest, ties to even

P
meaning round towards plus infinity

M
meaning round towards minus infinity.

Sd, Sm
specifies the single-precision registers for the operand and result.

Sd, Dm
specifies a single-precision register for the result and double-precision register holding the
operand.

Notes

You cannot use VCVT with a directed rounding mode inside an IT block.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

C4 Floating-point Instructions (32-bit)
C4.7 VCVT (from floating-point to integer with directed rounding modes)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-554

Non-Confidential

C4.8 VCVT (between floating-point and fixed-point)
Convert between floating-point and fixed-point numbers.

Syntax

VCVT{cond}.type.F64 Dd, Dd, #fbits

VCVT{cond}.type.F32 Sd, Sd, #fbits

VCVT{cond}.F64.type Dd, Dd, #fbits

VCVT{cond}.F32.type Sd, Sd, #fbits

where:

cond

is an optional condition code.

type

can be any one of:

S16

16-bit signed fixed-point number.

U16

16-bit unsigned fixed-point number.

S32

32-bit signed fixed-point number.

U32

32-bit unsigned fixed-point number.

Sd

is a single-precision register for the operand and result.

Dd

is a double-precision register for the operand and result.

fbits

is the number of fraction bits in the fixed-point number, in the range 0-16 if type is S16 or U16,
or in the range 1-32 if type is S32 or U32.

Operation

The first two forms of this instruction convert from floating-point to fixed-point.

The third and fourth forms convert from fixed-point to floating-point.

In all cases the fixed-point number is contained in the least significant 16 or 32 bits of the register.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.8 VCVT (between floating-point and fixed-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-555

Non-Confidential

C4.9 VCVTB, VCVTT (half-precision extension)
Convert between half-precision and single-precision floating-point numbers.

Syntax

VCVTB{cond}.type Sd, Sm

VCVTT{cond}.type Sd, Sm

where:

cond

is an optional condition code.

type

can be any one of:

F32.F16

Convert from half-precision to single-precision.

F16.F32

Convert from single-precision to half-precision.

Sd

is a single word register for the result.

Sm

is a single word register for the operand.

Operation

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the half-precision
value

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the half-precision
value.

Architectures

The instructions are only available in VFPv3 systems with the half-precision extension, and VFPv4.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.9 VCVTB, VCVTT (half-precision extension)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-556

Non-Confidential

C4.10 VCVTB, VCVTT (between half-precision and double-precision)
These instructions convert between half-precision and double-precision floating-point numbers.

The conversion can be done in either of the following ways:

• From half-precision floating-point to double-precision floating-point (F64.F16).
• From double-precision floating-point to half-precision floating-point (F16.F64).

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the half-precision
value.

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the half-precision
value.

 Note

These instructions are supported only in Armv8.

Syntax

VCVTB{cond}.F64.F16 Dd, Sm

VCVTB{cond}.F16.F64 Sd, Dm

VCVTT{cond}.F64.F16 Dd, Sm

VCVTT{cond}.F16.F64 Sd, Dm

where:

cond
is an optional condition code.

Dd
is a double-precision register for the result.

Sm
is a single word register holding the operand.

Sd
is a single word register for the result.

Dm
is a double-precision register holding the operand.

Usage

These instructions convert the half-precision value in Sm to double-precision and place the result in Dd, or
the double-precision value in Dm to half-precision and place the result in Sd.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

C4 Floating-point Instructions (32-bit)
C4.10 VCVTB, VCVTT (between half-precision and double-precision)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-557

Non-Confidential

C4.11 VDIV
Floating-point divide.

Syntax

VDIV{cond}.F32 {Sd}, Sn, Sm

VDIV{cond}.F64 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VDIV instruction divides the value in the first operand register by the value in the second operand
register, and places the result in the destination register.

Floating-point exceptions

VDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.11 VDIV

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-558

Non-Confidential

C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point)
Fused floating-point multiply accumulate and fused floating-point multiply subtract, with optional
negation.

Syntax

VF{N}op{cond}.F64 {Dd}, Dn, Dm

VF{N}op{cond}.F32 {Sd}, Sn, Sm

where:

op

is one of MA or MS.

N

negates the final result.

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

VFMA multiplies the values in the operand registers, adds the value in the destination register, and places
the final result in the destination register. The result of the multiply is not rounded before the
accumulation.

VFMS multiplies the values in the operand registers, subtracts the product from the value in the destination
register, and places the final result in the destination register. The result of the multiply is not rounded
before the subtraction.

In each case, the final result is negated if the N option is used.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Related references
C4.28 VMUL (floating-point) on page C4-575
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-559

Non-Confidential

C4.13 VJCVT
Javascript Convert to signed fixed-point, rounding toward Zero.

Syntax

VJCVT{q}.S32.F64 Sd, Dm ; A1 FP/SIMD registers (A32)

VJCVT{q}.S32.F64 Sd, Dm ; T1 FP/SIMD registers (T32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dm
Is the 64-bit name of the SIMD and FP source register.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Javascript Convert to signed fixed-point, rounding toward Zero. This instruction converts the double-
precision floating-point value in the SIMD and FP source register to a 32-bit signed integer using the
Round towards Zero rounding mode, and write the result to the general-purpose destination register. If
the result is too large to be held as a 32-bit signed integer, then the result is the integer modulo 232, as
held in a 32-bit signed integer.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the security state and
mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or
trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related references
C4.1 Summary of floating-point instructions on page C4-547

C4 Floating-point Instructions (32-bit)
C4.13 VJCVT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-560

Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C4.14 VLDM (floating-point)
Extension register load multiple.

Syntax

VLDMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as DB for loads.

FD

meaning Full Descending stack operation. This is the same as IA for loads.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.14 VLDM (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-561

Non-Confidential

C4.15 VLDR (floating-point)
Extension register load.

Syntax

VLDR{cond}{.size} Fd, [Rn{, #offset}]

VLDR{cond}{.size} Fd, label

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd

is the extension register to be loaded, and can be either a D or S register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

label

is a PC-relative expression.

label must be aligned on a word boundary within ±1KB of the current instruction.

Operation

The VLDR instruction loads an extension register from memory.

One word is transferred if Fd is an S register. Two words are transferred otherwise.

There is also a VLDR pseudo-instruction.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.15 VLDR (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-562

Non-Confidential

C4.16 VLDR (post-increment and pre-decrement, floating-point)
Pseudo-instruction that loads extension registers, with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VLDR{cond}{.size} Fd, [Rn], #offset ; post-increment

VLDR{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a D register.

Fd

is the extension register to load. It can be either a double precision (Dd) or a single precision (Sd)
register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to a numeric value at assembly time. The value must
be 4 if Fd is an S register, or 8 if Fd is a D register.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VLDM instruction.

Related references
C4.14 VLDM (floating-point) on page C4-561
C4.15 VLDR (floating-point) on page C4-562
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.16 VLDR (post-increment and pre-decrement, floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-563

Non-Confidential

C4.17 VLLDM
Floating-point Lazy Load Multiple.

Syntax

VLLDM{c}{q} Rn

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Rn
Is the general-purpose base register.

Architectures supported

Supported in Armv8‑M Main extension only.

Usage

Floating-point Lazy Load Multiple restores the contents of the Secure floating-point registers that were
protected by a VLSTM instruction, and marks the floating-point context as active.

If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT == 1),
this instruction deactivates lazy state preservation and enables access to the Secure floating-point
registers.

If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state preservation was
not enabled (FPCCR.LSPEN == 0) or because a floating-point instruction caused the Secure floating-
point register contents to be stored to memory, this instruction loads the stored Secure floating-point
register contents back into the floating-point registers.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension is not implemented, this instruction is available in Secure state, but
behaves as a NOP.

Related references
C4.1 Summary of floating-point instructions on page C4-547

C4 Floating-point Instructions (32-bit)
C4.17 VLLDM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-564

Non-Confidential

C4.18 VLSTM
Floating-point Lazy Store Multiple.

Syntax

VLSTM{c}{q} Rn

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-83.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-111.

Rn
Is the general-purpose base register.

Architectures supported

Supported in Armv8‑M Main extension only.

Usage

Floating-point Lazy Store Multiple stores the contents of Secure floating-point registers to a prepared
stack frame, and clears the Secure floating-point registers.

If floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a floating-point
instruction other than VLSTM or VLLDM is executed:
• The contents of Secure floating-point registers are stored to memory.
• The Secure floating-point registers are cleared.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point extension is not implemented, this instruction is available in Secure state, but
behaves as a NOP.

Related references
C4.1 Summary of floating-point instructions on page C4-547

C4 Floating-point Instructions (32-bit)
C4.18 VLSTM

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-565

Non-Confidential

C4.19 VMAXNM, VMINNM (floating-point)
Vector Minimum, Vector Maximum.

 Note

These instructions are supported only in Armv8.

Syntax

Vop.F32 Sd, Sn, Sm

Vop.F64 Dd, Dn, Dm

where:

op
must be either MAXNM or MINNM.

Sd, Sn, Sm
are the single-precision destination register, first operand register, and second operand register.

Dd, Dn, Dm
are the double-precision destination register, first operand register, and second operand register.

Operation

VMAXNM compares the values in the operand registers, and copies the larger value into the destination
operand register.

VMINNM compares the values in the operand registers, and copies the smaller value into the destination
operand register.

If one of the values being compared is a number and the other value is NaN, the number is copied into
the destination operand register. This is consistent with the IEEE 754-2008 standard.

Notes

You cannot use VMAXNM or VMINNM inside an IT block.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

C4 Floating-point Instructions (32-bit)
C4.19 VMAXNM, VMINNM (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-566

Non-Confidential

C4.20 VMLA (floating-point)
Floating-point multiply accumulate.

Syntax

VMLA{cond}.F32 Sd, Sn, Sm

VMLA{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VMLA instruction multiplies the values in the operand registers, adds the value in the destination
register, and places the final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.20 VMLA (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-567

Non-Confidential

C4.21 VMLS (floating-point)
Floating-point multiply subtract.

Syntax

VMLS{cond}.F32 Sd, Sn, Sm

VMLS{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VMLS instruction multiplies the values in the operand registers, subtracts the result from the value in
the destination register, and places the final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.21 VMLS (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-568

Non-Confidential

C4.22 VMOV (floating-point)
Insert a floating-point immediate value into a single-precision or double-precision register, or copy one
register into another register. This instruction is always scalar.

Syntax

VMOV{cond}.F32 Sd, #imm

VMOV{cond}.F64 Dd, #imm

VMOV{cond}.F32 Sd, Sm

VMOV{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd

is the single-precision destination register.

Dd

is the double-precision destination register.

imm

is the floating-point immediate value.

Sm

is the single-precision source register.

Dm

is the double-precision source register.

Immediate values

Any number that can be expressed as ±n * 2–r,where n and r are integers, 16 <= n <= 31, 0 <= r <= 7.

Architectures

The instructions that copy immediate constants are available in VFPv3 and above.

The instructions that copy from registers are available in all VFP systems.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.22 VMOV (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-569

Non-Confidential

C4.23 VMOV (between one general-purpose register and single precision floating-
point register)

Transfer contents between a single-precision floating-point register and a general-purpose register.

Syntax

VMOV{cond} Rd, Sn

VMOV{cond} Sn, Rd

where:

cond

is an optional condition code.

Sn

is the floating-point single-precision register.

Rd

is the general-purpose register. Rd must not be PC.

Operation

VMOV Rd, Sn transfers the contents of Sn into Rd.

VMOV Sn, Rd transfers the contents of Rd into Sn.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.23 VMOV (between one general-purpose register and single precision floating-point register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-570

Non-Confidential

C4.24 VMOV (between two general-purpose registers and one or two extension
registers)

Transfer contents between two general-purpose registers and either one 64-bit register or two consecutive
32-bit registers.

Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

VMOV{cond} Sm, Sm1, Rd, Rn

VMOV{cond} Rd, Rn, Sm, Sm1

where:

cond

is an optional condition code.

Dm

is a 64-bit extension register.

Sm

is a VFP 32-bit register.

Sm1

is the next consecutive VFP 32-bit register after Sm.

Rd, Rn

are the general-purpose registers. Rd and Rn must not be PC.

Operation

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into the
high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high half of
Dm into Rn.

VMOV Rd, Rn, Sm, Sm1 transfers the contents of Sm into Rd, and the contents of Sm1 into Rn.

VMOV Sm, Sm1, Rd, Rn transfers the contents of Rd into Sm, and the contents of Rn into Sm1.

Architectures

The instructions are available in VFPv2 and above.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.24 VMOV (between two general-purpose registers and one or two extension registers)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-571

Non-Confidential

C4.25 VMOV (between a general-purpose register and half a double precision
floating-point register)

Transfer contents between a general-purpose register and half a double precision floating-point register.

Syntax

VMOV{cond}{.size} Dn[x], Rd

VMOV{cond}{.size} Rd, Dn[x]

where:

cond

is an optional condition code.

size

the data size. Must be either 32 or omitted. If omitted, size is 32.

Dn[x]

is the upper or lower half of a double precision floating-point register.

Rd

is the general-purpose register. Rd must not be PC.

Operation

VMOV Dn[x], Rd transfers the contents of Rd into Dn[x].

VMOV Rd, Dn[x] transfers the contents of Dn[x] into Rd.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.25 VMOV (between a general-purpose register and half a double precision floating-point register)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-572

Non-Confidential

C4.26 VMRS (floating-point)
Transfer contents from an floating-point system register to a general-purpose register.

Syntax

VMRS{cond} Rd, extsysreg

where:

cond
is an optional condition code.

extsysreg
is the floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMRS instruction transfers the contents of extsysreg into Rd.

 Note

The instruction stalls the processor until all current floating-point operations complete.

Examples
 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to the
 ; special-purpose APSR

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.26 VMRS (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-573

Non-Confidential

C4.27 VMSR (floating-point)
Transfer contents of a general-purpose register to a floating-point system register.

Syntax

VMSR{cond} extsysreg, Rd

where:

cond
is an optional condition code.

extsysreg
is the floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMSR instruction transfers the contents of Rd into extsysreg.

 Note

The instruction stalls the processor until all current floating-point operations complete.

Example
 VMSR FPSCR, r4

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.27 VMSR (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-574

Non-Confidential

C4.28 VMUL (floating-point)
Floating-point multiply.

Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm

VMUL{cond}.F64 {Dd,} Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VMUL operation multiplies the values in the operand registers and places the result in the destination
register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.28 VMUL (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-575

Non-Confidential

C4.29 VNEG (floating-point)
Floating-point negate.

Syntax

VNEG{cond}.F32 Sd, Sm

VNEG{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd, Sm

are the single-precision registers for the result and operand.

Dd, Dm

are the double-precision registers for the result and operand.

Operation

The VNEG instruction takes the contents of Sm or Dm, changes the sign bit, and places the result in Sd or Dd.
This gives the negation of the value.

If the operand is a NaN, the sign bit is changed, but no exception is produced.

Floating-point exceptions

VNEG instructions do not produce any exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.29 VNEG (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-576

Non-Confidential

C4.30 VNMLA (floating-point)
Floating-point multiply accumulate with negation.

Syntax

VNMLA{cond}.F32 Sd, Sn, Sm

VNMLA{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VNMLA instruction multiplies the values in the operand registers, adds the value to the destination
register, and places the negated final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.30 VNMLA (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-577

Non-Confidential

C4.31 VNMLS (floating-point)
Floating-point multiply subtract with negation.

Syntax

VNMLS{cond}.F32 Sd, Sn, Sm

VNMLS{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VNMLS instruction multiplies the values in the operand registers, subtracts the result from the value in
the destination register, and places the negated final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.31 VNMLS (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-578

Non-Confidential

C4.32 VNMUL (floating-point)
Floating-point multiply with negation.

Syntax

VNMUL{cond}.F32 {Sd,} Sn, Sm

VNMUL{cond}.F64 {Dd,} Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VNMUL instruction multiplies the values in the operand registers and places the negated result in the
destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.32 VNMUL (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-579

Non-Confidential

C4.33 VPOP (floating-point)
Pop extension registers from the stack.

Syntax

VPOP{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related references
C1.9 Condition code suffixes on page C1-92
C4.34 VPUSH (floating-point) on page C4-581

C4 Floating-point Instructions (32-bit)
C4.33 VPOP (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-580

Non-Confidential

C4.34 VPUSH (floating-point)
Push extension registers onto the stack.

Syntax

VPUSH{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related references
C1.9 Condition code suffixes on page C1-92
C4.33 VPOP (floating-point) on page C4-580

C4 Floating-point Instructions (32-bit)
C4.34 VPUSH (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-581

Non-Confidential

C4.35 VRINT (floating-point)
Rounds a floating-point number to integer and places the result in the destination register. The resulting
integer is represented in floating-point format.

 Note

This instruction is supported only in Armv8.

Syntax

VRINTmode{cond}.F64.F64 Dd, Dm

VRINTmode{cond}.F32.F32 Sd, Sm

where:

mode

must be one of:

Z

meaning round towards zero.

R
meaning use the rounding mode specified in the FPSCR.

X
meaning use the rounding mode specified in the FPSCR, generating an Inexact
exception if the result is not exact.

A
meaning round to nearest, ties away from zero.

N
meaning round to nearest, ties to even.

P
meaning round towards plus infinity.

M
meaning round towards minus infinity.

cond
is an optional condition code. This can only be used when mode is Z, R or X.

Sd, Sm
specifies the destination and operand registers, for a word operation.

Dd, Dm
specifies the destination and operand registers, for a doubleword operation.

Notes

You cannot use VRINT with a rounding mode of A, N, P or M inside an IT block.

Floating-point exceptions

These instructions cannot produce any exceptions, except VRINTX which can generate an Inexact
exception.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.35 VRINT (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-582

Non-Confidential

C4.36 VSEL
Floating-point select.

 Note

This instruction is supported only in Armv8.

Syntax

VSELcond.F32 Sd, Sn, Sm

VSELcond.F64 Dd, Dn, Dm

where:

cond
must be one of GE, GT, EQ, VS.

Sd, Sn, Sm
are the single-precision registers for the result and operands.

Dd, Dn, Dm
are the double-precision registers for the result and operands.

Usage

The VSEL instruction compares the values in the operand registers. If the condition is true, it copies the
value in the first operand register into the destination operand register. Otherwise, it copies the value in
the second operand register.

You cannot use VSEL inside an IT block.

Floating-point exceptions

VSEL instructions cannot produce any exceptions.

Related references
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.36 VSEL

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-583

Non-Confidential

C4.37 VSQRT
Floating-point square root.

Syntax

VSQRT{cond}.F32 Sd, Sm

VSQRT{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd, Sm

are the single-precision registers for the result and operand.

Dd, Dm

are the double-precision registers for the result and operand.

Operation

The VSQRT instruction takes the square root of the contents of Sm or Dm, and places the result in Sd or Dd.

Floating-point exceptions

VSQRT instructions can produce Invalid Operation or Inexact exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.37 VSQRT

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-584

Non-Confidential

C4.38 VSTM (floating-point)
Extension register store multiple.

Syntax

VSTMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as IA for stores.

FD

meaning Full Descending stack operation. This is the same as DB for stores.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.38 VSTM (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-585

Non-Confidential

C4.39 VSTR (floating-point)
Extension register store.

Syntax

VSTR{cond}{.size} Fd, [Rn{, #offset}]

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd

is the extension register to be saved. It can be either a D or S register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

Operation

The VSTR instruction saves the contents of an extension register to memory.

One word is transferred if Fd is an S register. Two words are transferred otherwise.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.39 VSTR (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-586

Non-Confidential

C4.40 VSTR (post-increment and pre-decrement, floating-point)
Pseudo-instruction that stores extension registers with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VSTR{cond}{.size} Fd, [Rn], #offset ; post-increment

VSTR{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a D register.

Fd

is the extension register to be saved. It can be either a double precision (Dd) or a single precision
(Sd) register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to a numeric value at assembly time. The value must
be 4 if Fd is an S register, or 8 if Fd is a D register.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VSTM instruction.

Related references
C4.39 VSTR (floating-point) on page C4-586
C4.38 VSTM (floating-point) on page C4-585
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.40 VSTR (post-increment and pre-decrement, floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-587

Non-Confidential

C4.41 VSUB (floating-point)
Floating-point subtract.

Syntax

VSUB{cond}.F32 {Sd}, Sn, Sm

VSUB{cond}.F64 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VSUB instruction subtracts the value in the second operand register from the value in the first operand
register, and places the result in the destination register.

Floating-point exceptions

The VSUB instruction can produce Invalid Operation, Overflow, or Inexact exceptions.

Related references
C1.9 Condition code suffixes on page C1-92

C4 Floating-point Instructions (32-bit)
C4.41 VSUB (floating-point)

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C4-588

Non-Confidential

Chapter C5
A32/T32 Cryptographic Algorithms

Lists the cryptographic algorithms that A32 and T32 SIMD instructions support.

It contains the following section:
• C5.1 A32/T32 Cryptographic instructions on page C5-590.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C5-589

Non-Confidential

C5.1 A32/T32 Cryptographic instructions
A set of A32 and T32 cryptographic instructions is available in the Armv8 architecture.

These instructions use the 128-bit Advanced SIMD registers and support the acceleration of the
following cryptographic and hash algorithms:
• AES.
• SHA1.
• SHA256.

Summary of A32/T32 cryptographic instructions

The following table lists the A32/T32 cryptographic instructions that are supported:

Table C5-1 Summary of A32/T32 cryptographic instructions

Mnemonic Brief description

AESD AES single round decryption

AESE AES single round encryption

AESIMC AES inverse mix columns

AESMC AES mix columns

SHA1C SHA1 hash update (choose)

SHA1H SHA1 fixed rotate

SHA1M SHA1 hash update (majority)

SHA1P SHA1 hash update (parity)

SHA1SU0 SHA1 schedule update 0

SHA1SU1 SHA1 schedule update 1

SHA256H2 SHA256 hash update part 2

SHA256H SHA256 hash update part 1

SHA256SU0 SHA256 schedule update 0

SHA256SU1 SHA256 schedule update 1

C5 A32/T32 Cryptographic Algorithms
C5.1 A32/T32 Cryptographic instructions

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.

C5-590

Non-Confidential

	Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures Reference Guide
	Table of Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	Part A : Instruction Set Overview
	A1 : Overview of AArch32 state
	A1.1 : Terminology
	A1.2 : Changing between A32 and T32 instruction set states
	A1.3 : Processor modes, and privileged and unprivileged software execution
	A1.4 : Processor modes in Armv6‑M, Armv7‑M, and Armv8‑M
	A1.5 : Registers in AArch32 state
	A1.6 : General-purpose registers in AArch32 state
	A1.7 : Register accesses in AArch32 state
	A1.8 : Predeclared core register names in AArch32 state
	A1.9 : Predeclared extension register names in AArch32 state
	A1.10 : Program Counter in AArch32 state
	A1.11 : The Q flag in AArch32 state
	A1.12 : Application Program Status Register
	A1.13 : Current Program Status Register in AArch32 state
	A1.14 : Saved Program Status Registers in AArch32 state
	A1.15 : A32 and T32 instruction set overview
	A1.16 : Access to the inline barrel shifter in AArch32 state

	Part B : Advanced SIMD and Floating-point Programming
	B1 : Advanced SIMD Programming
	B1.1 : Architecture support for Advanced SIMD
	B1.2 : Extension register bank mapping for Advanced SIMD in AArch32 state
	B1.3 : Views of the Advanced SIMD register bank in AArch32 state
	B1.4 : Load values to Advanced SIMD registers
	B1.5 : Conditional execution of A32/T32 Advanced SIMD instructions
	B1.6 : Floating-point exceptions for Advanced SIMD in A32/T32 instructions
	B1.7 : Advanced SIMD data types in A32/T32 instructions
	B1.8 : Polynomial arithmetic over {0,1}
	B1.9 : Advanced SIMD vectors
	B1.10 : Normal, long, wide, and narrow Advanced SIMD instructions
	B1.11 : Saturating Advanced SIMD instructions
	B1.12 : Advanced SIMD scalars
	B1.13 : Extended notation extension for Advanced SIMD
	B1.14 : Advanced SIMD system registers in AArch32 state
	B1.15 : Flush-to-zero mode in Advanced SIMD
	B1.16 : When to use flush-to-zero mode in Advanced SIMD
	B1.17 : The effects of using flush-to-zero mode in Advanced SIMD
	B1.18 : Advanced SIMD operations not affected by flush-to-zero mode

	B2 : Floating-point Programming
	B2.1 : Architecture support for floating-point
	B2.2 : Extension register bank mapping for floating-point in AArch32 state
	B2.3 : Views of the floating-point extension register bank in AArch32 state
	B2.4 : Load values to floating-point registers
	B2.5 : Conditional execution of A32/T32 floating-point instructions
	B2.6 : Floating-point exceptions for floating-point in A32/T32 instructions
	B2.7 : Floating-point data types in A32/T32 instructions
	B2.8 : Extended notation extension for floating-point code
	B2.9 : Floating-point system registers in AArch32 state
	B2.10 : Flush-to-zero mode in floating-point
	B2.11 : When to use flush-to-zero mode in floating-point
	B2.12 : The effects of using flush-to-zero mode in floating-point
	B2.13 : Floating-point operations not affected by flush-to-zero mode

	Part C : A32/T32 Instruction Set Reference
	C1 : Condition Codes
	C1.1 : Conditional instructions
	C1.2 : Conditional execution in A32 code
	C1.3 : Conditional execution in T32 code
	C1.4 : Condition flags
	C1.5 : Updates to the condition flags in A32/T32 code
	C1.6 : Floating-point instructions that update the condition flags
	C1.7 : Carry flag
	C1.8 : Overflow flag
	C1.9 : Condition code suffixes
	C1.10 : Condition code suffixes and related flags
	C1.11 : Comparison of condition code meanings in integer and floating-point code
	C1.12 : Benefits of using conditional execution in A32 and T32 code
	C1.13 : Example showing the benefits of conditional instructions in A32 and T32 code
	C1.14 : Optimization for execution speed

	C2 : A32 and T32 Instructions
	C2.1 : A32 and T32 instruction summary
	C2.2 : Instruction width specifiers
	C2.3 : Flexible second operand (Operand2)
	C2.4 : Syntax of Operand2 as a constant
	C2.5 : Syntax of Operand2 as a register with optional shift
	C2.6 : Shift operations
	C2.7 : Saturating instructions
	C2.8 : ADC
	C2.9 : ADD
	C2.10 : ADR (PC-relative)
	C2.11 : ADR (register-relative)
	C2.12 : AND
	C2.13 : ASR
	C2.14 : B
	C2.15 : BFC
	C2.16 : BFI
	C2.17 : BIC
	C2.18 : BKPT
	C2.19 : BL
	C2.20 : BLX, BLXNS
	C2.21 : BX, BXNS
	C2.22 : BXJ
	C2.23 : CBZ and CBNZ
	C2.24 : CDP and CDP2
	C2.25 : CLREX
	C2.26 : CLZ
	C2.27 : CMP and CMN
	C2.28 : CPS
	C2.29 : CRC32
	C2.30 : CRC32C
	C2.31 : CSDB
	C2.32 : DBG
	C2.33 : DMB
	C2.34 : DSB
	C2.35 : EOR
	C2.36 : ERET
	C2.37 : ESB
	C2.38 : HLT
	C2.39 : HVC
	C2.40 : ISB
	C2.41 : IT
	C2.42 : LDA
	C2.43 : LDAEX
	C2.44 : LDC and LDC2
	C2.45 : LDM
	C2.46 : LDR (immediate offset)
	C2.47 : LDR (PC-relative)
	C2.48 : LDR (register offset)
	C2.49 : LDR (register-relative)
	C2.50 : LDR, unprivileged
	C2.51 : LDREX
	C2.52 : LSL
	C2.53 : LSR
	C2.54 : MCR and MCR2
	C2.55 : MCRR and MCRR2
	C2.56 : MLA
	C2.57 : MLS
	C2.58 : MOV
	C2.59 : MOVT
	C2.60 : MRC and MRC2
	C2.61 : MRRC and MRRC2
	C2.62 : MRS (PSR to general-purpose register)
	C2.63 : MRS (system coprocessor register to general-purpose register)
	C2.64 : MSR (general-purpose register to system coprocessor register)
	C2.65 : MSR (general-purpose register to PSR)
	C2.66 : MUL
	C2.67 : MVN
	C2.68 : NOP
	C2.69 : ORN (T32 only)
	C2.70 : ORR
	C2.71 : PKHBT and PKHTB
	C2.72 : PLD, PLDW, and PLI
	C2.73 : POP
	C2.74 : PUSH
	C2.75 : QADD
	C2.76 : QADD8
	C2.77 : QADD16
	C2.78 : QASX
	C2.79 : QDADD
	C2.80 : QDSUB
	C2.81 : QSAX
	C2.82 : QSUB
	C2.83 : QSUB8
	C2.84 : QSUB16
	C2.85 : RBIT
	C2.86 : REV
	C2.87 : REV16
	C2.88 : REVSH
	C2.89 : RFE
	C2.90 : ROR
	C2.91 : RRX
	C2.92 : RSB
	C2.93 : RSC
	C2.94 : SADD8
	C2.95 : SADD16
	C2.96 : SASX
	C2.97 : SBC
	C2.98 : SBFX
	C2.99 : SDIV
	C2.100 : SEL
	C2.101 : SETEND
	C2.102 : SETPAN
	C2.103 : SEV
	C2.104 : SEVL
	C2.105 : SG
	C2.106 : SHADD8
	C2.107 : SHADD16
	C2.108 : SHASX
	C2.109 : SHSAX
	C2.110 : SHSUB8
	C2.111 : SHSUB16
	C2.112 : SMC
	C2.113 : SMLAxy
	C2.114 : SMLAD
	C2.115 : SMLAL
	C2.116 : SMLALD
	C2.117 : SMLALxy
	C2.118 : SMLAWy
	C2.119 : SMLSD
	C2.120 : SMLSLD
	C2.121 : SMMLA
	C2.122 : SMMLS
	C2.123 : SMMUL
	C2.124 : SMUAD
	C2.125 : SMULxy
	C2.126 : SMULL
	C2.127 : SMULWy
	C2.128 : SMUSD
	C2.129 : SRS
	C2.130 : SSAT
	C2.131 : SSAT16
	C2.132 : SSAX
	C2.133 : SSUB8
	C2.134 : SSUB16
	C2.135 : STC and STC2
	C2.136 : STL
	C2.137 : STLEX
	C2.138 : STM
	C2.139 : STR (immediate offset)
	C2.140 : STR (register offset)
	C2.141 : STR, unprivileged
	C2.142 : STREX
	C2.143 : SUB
	C2.144 : SUBS pc, lr
	C2.145 : SVC
	C2.146 : SWP and SWPB
	C2.147 : SXTAB
	C2.148 : SXTAB16
	C2.149 : SXTAH
	C2.150 : SXTB
	C2.151 : SXTB16
	C2.152 : SXTH
	C2.153 : SYS
	C2.154 : TBB and TBH
	C2.155 : TEQ
	C2.156 : TST
	C2.157 : TT, TTT, TTA, TTAT
	C2.158 : UADD8
	C2.159 : UADD16
	C2.160 : UASX
	C2.161 : UBFX
	C2.162 : UDF
	C2.163 : UDIV
	C2.164 : UHADD8
	C2.165 : UHADD16
	C2.166 : UHASX
	C2.167 : UHSAX
	C2.168 : UHSUB8
	C2.169 : UHSUB16
	C2.170 : UMAAL
	C2.171 : UMLAL
	C2.172 : UMULL
	C2.173 : UQADD8
	C2.174 : UQADD16
	C2.175 : UQASX
	C2.176 : UQSAX
	C2.177 : UQSUB8
	C2.178 : UQSUB16
	C2.179 : USAD8
	C2.180 : USADA8
	C2.181 : USAT
	C2.182 : USAT16
	C2.183 : USAX
	C2.184 : USUB8
	C2.185 : USUB16
	C2.186 : UXTAB
	C2.187 : UXTAB16
	C2.188 : UXTAH
	C2.189 : UXTB
	C2.190 : UXTB16
	C2.191 : UXTH
	C2.192 : WFE
	C2.193 : WFI
	C2.194 : YIELD

	C3 : Advanced SIMD Instructions (32-bit)
	C3.1 : Summary of Advanced SIMD instructions
	C3.2 : Summary of shared Advanced SIMD and floating-point instructions
	C3.3 : Interleaving provided by load and store element and structure instructions
	C3.4 : Alignment restrictions in load and store element and structure instructions
	C3.5 : FLDMDBX, FLDMIAX
	C3.6 : FSTMDBX, FSTMIAX
	C3.7 : VABA and VABAL
	C3.8 : VABD and VABDL
	C3.9 : VABS
	C3.10 : VACLE, VACLT, VACGE and VACGT
	C3.11 : VADD
	C3.12 : VADDHN
	C3.13 : VADDL and VADDW
	C3.14 : VAND (immediate)
	C3.15 : VAND (register)
	C3.16 : VBIC (immediate)
	C3.17 : VBIC (register)
	C3.18 : VBIF
	C3.19 : VBIT
	C3.20 : VBSL
	C3.21 : VCADD
	C3.22 : VCEQ (immediate #0)
	C3.23 : VCEQ (register)
	C3.24 : VCGE (immediate #0)
	C3.25 : VCGE (register)
	C3.26 : VCGT (immediate #0)
	C3.27 : VCGT (register)
	C3.28 : VCLE (immediate #0)
	C3.29 : VCLS
	C3.30 : VCLE (register)
	C3.31 : VCLT (immediate #0)
	C3.32 : VCLT (register)
	C3.33 : VCLZ
	C3.34 : VCMLA
	C3.35 : VCMLA (by element)
	C3.36 : VCNT
	C3.37 : VCVT (between fixed-point or integer, and floating-point)
	C3.38 : VCVT (between half-precision and single-precision floating-point)
	C3.39 : VCVT (from floating-point to integer with directed rounding modes)
	C3.40 : VCVTB, VCVTT (between half-precision and double-precision)
	C3.41 : VDUP
	C3.42 : VEOR
	C3.43 : VEXT
	C3.44 : VFMA, VFMS
	C3.45 : VFMAL (by scalar)
	C3.46 : VFMAL (vector)
	C3.47 : VFMSL (by scalar)
	C3.48 : VFMSL (vector)
	C3.49 : VHADD
	C3.50 : VHSUB
	C3.51 : VLDn (single n-element structure to one lane)
	C3.52 : VLDn (single n-element structure to all lanes)
	C3.53 : VLDn (multiple n-element structures)
	C3.54 : VLDM
	C3.55 : VLDR
	C3.56 : VLDR (post-increment and pre-decrement)
	C3.57 : VLDR pseudo-instruction
	C3.58 : VMAX and VMIN
	C3.59 : VMAXNM, VMINNM
	C3.60 : VMLA
	C3.61 : VMLA (by scalar)
	C3.62 : VMLAL (by scalar)
	C3.63 : VMLAL
	C3.64 : VMLS (by scalar)
	C3.65 : VMLS
	C3.66 : VMLSL
	C3.67 : VMLSL (by scalar)
	C3.68 : VMOV (immediate)
	C3.69 : VMOV (register)
	C3.70 : VMOV (between two general-purpose registers and a 64-bit extension register)
	C3.71 : VMOV (between a general-purpose register and an Advanced SIMD scalar)
	C3.72 : VMOVL
	C3.73 : VMOVN
	C3.74 : VMOV2
	C3.75 : VMRS
	C3.76 : VMSR
	C3.77 : VMUL
	C3.78 : VMUL (by scalar)
	C3.79 : VMULL
	C3.80 : VMULL (by scalar)
	C3.81 : VMVN (register)
	C3.82 : VMVN (immediate)
	C3.83 : VNEG
	C3.84 : VORN (register)
	C3.85 : VORN (immediate)
	C3.86 : VORR (register)
	C3.87 : VORR (immediate)
	C3.88 : VPADAL
	C3.89 : VPADD
	C3.90 : VPADDL
	C3.91 : VPMAX and VPMIN
	C3.92 : VPOP
	C3.93 : VPUSH
	C3.94 : VQABS
	C3.95 : VQADD
	C3.96 : VQDMLAL and VQDMLSL (by vector or by scalar)
	C3.97 : VQDMULH (by vector or by scalar)
	C3.98 : VQDMULL (by vector or by scalar)
	C3.99 : VQMOVN and VQMOVUN
	C3.100 : VQNEG
	C3.101 : VQRDMULH (by vector or by scalar)
	C3.102 : VQRSHL (by signed variable)
	C3.103 : VQRSHRN and VQRSHRUN (by immediate)
	C3.104 : VQSHL (by signed variable)
	C3.105 : VQSHL and VQSHLU (by immediate)
	C3.106 : VQSHRN and VQSHRUN (by immediate)
	C3.107 : VQSUB
	C3.108 : VRADDHN
	C3.109 : VRECPE
	C3.110 : VRECPS
	C3.111 : VREV16, VREV32, and VREV64
	C3.112 : VRHADD
	C3.113 : VRSHL (by signed variable)
	C3.114 : VRSHR (by immediate)
	C3.115 : VRSHRN (by immediate)
	C3.116 : VRINT
	C3.117 : VRSQRTE
	C3.118 : VRSQRTS
	C3.119 : VRSRA (by immediate)
	C3.120 : VRSUBHN
	C3.121 : VSDOT (vector)
	C3.122 : VSDOT (by element)
	C3.123 : VSHL (by immediate)
	C3.124 : VSHL (by signed variable)
	C3.125 : VSHLL (by immediate)
	C3.126 : VSHR (by immediate)
	C3.127 : VSHRN (by immediate)
	C3.128 : VSLI
	C3.129 : VSRA (by immediate)
	C3.130 : VSRI
	C3.131 : VSTM
	C3.132 : VSTn (multiple n-element structures)
	C3.133 : VSTn (single n-element structure to one lane)
	C3.134 : VSTR
	C3.135 : VSTR (post-increment and pre-decrement)
	C3.136 : VSUB
	C3.137 : VSUBHN
	C3.138 : VSUBL and VSUBW
	C3.139 : VSWP
	C3.140 : VTBL and VTBX
	C3.141 : VTRN
	C3.142 : VTST
	C3.143 : VUDOT (vector)
	C3.144 : VUDOT (by element)
	C3.145 : VUZP
	C3.146 : VZIP

	C4 : Floating-point Instructions (32-bit)
	C4.1 : Summary of floating-point instructions
	C4.2 : VABS (floating-point)
	C4.3 : VADD (floating-point)
	C4.4 : VCMP, VCMPE
	C4.5 : VCVT (between single-precision and double-precision)
	C4.6 : VCVT (between floating-point and integer)
	C4.7 : VCVT (from floating-point to integer with directed rounding modes)
	C4.8 : VCVT (between floating-point and fixed-point)
	C4.9 : VCVTB, VCVTT (half-precision extension)
	C4.10 : VCVTB, VCVTT (between half-precision and double-precision)
	C4.11 : VDIV
	C4.12 : VFMA, VFMS, VFNMA, VFNMS (floating-point)
	C4.13 : VJCVT
	C4.14 : VLDM (floating-point)
	C4.15 : VLDR (floating-point)
	C4.16 : VLDR (post-increment and pre-decrement, floating-point)
	C4.17 : VLLDM
	C4.18 : VLSTM
	C4.19 : VMAXNM, VMINNM (floating-point)
	C4.20 : VMLA (floating-point)
	C4.21 : VMLS (floating-point)
	C4.22 : VMOV (floating-point)
	C4.23 : VMOV (between one general-purpose register and single precision floating-point register)
	C4.24 : VMOV (between two general-purpose registers and one or two extension registers)
	C4.25 : VMOV (between a general-purpose register and half a double precision floating-point register)
	C4.26 : VMRS (floating-point)
	C4.27 : VMSR (floating-point)
	C4.28 : VMUL (floating-point)
	C4.29 : VNEG (floating-point)
	C4.30 : VNMLA (floating-point)
	C4.31 : VNMLS (floating-point)
	C4.32 : VNMUL (floating-point)
	C4.33 : VPOP (floating-point)
	C4.34 : VPUSH (floating-point)
	C4.35 : VRINT (floating-point)
	C4.36 : VSEL
	C4.37 : VSQRT
	C4.38 : VSTM (floating-point)
	C4.39 : VSTR (floating-point)
	C4.40 : VSTR (post-increment and pre-decrement, floating-point)
	C4.41 : VSUB (floating-point)

	C5 : A32/T32 Cryptographic Algorithms
	C5.1 : A32/T32 Cryptographic instructions

