Instruction Set Assembly Guide for
Armv7 and earlier Arm® architectures

Version 2.0

Reference Guide

arm

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.
100076_0200_00_en

Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures

Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures
Reference Guide

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0100-00 25 October 2018 Non-Confidential First Release

0200-00 09 October 2019 Non-Confidential Second Release. The title
and scope of the document
has changed.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at

any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the

Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/

trademarks.

Copyright © 2018, 2019 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 2
reserved.
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.
Web Address

www.arm.com

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 3
reserved.
Non-Confidential

https://www.arm.com

Contents

Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Preface
ADOUL TRIS DOOK ...t e 20
Part A Instruction Set Overview
Chapter A1 Overview of AArch32 state
A1.1 TEIMUNOIOQY ..o e A1-26
A1.2 Changing between A32 and T32 instruction set Statesccccce. cuvvvveeesienenns A1-27
A1.3 Processor modes, and privileged and unprivileged software execution A1-28
Al14 Processor modes in Armv6-M, Armv7-M, and Armv8-Mccccceceveeeeeeeeeennnn.. A1-29
A1.5 Reqisters in AAICh32 SEALeccoueeeiieiie e A1-30
A1.6 General-purpose registers in AArch32 Stateccccoevoeeicie evsieieeeee A1-32
A1.7 Register accesses in AAICN32 StAtecccoeueeeeiiiiiiiiiies aeeeeeeeeeeeeeaaaeaees A1-33
A1.8 Predeclared core register names in AArch32 stateccccoeeec voeiieeeeee A1-34
A1.9 Predeclared extension register names in AArch32 stateccccccevovicveeeeenni. A1-35
A1.10 Program Counter in AAICh32 Stateccccveeieeeiiiiiiieies e A1-36
A1.11 The Qflag in AAICR32 SEALEccooeeeeeee et e A1-37
A1.12 Application Program Status ReQiSteroeiiiiiiieiieiii e A1-38
A1.13 Current Program Status Register in AArch32 stateccoccceeeiioiiciieiieee A1-39
A1.14 Saved Program Status Registers in AArch32 stateccccovveevoveveescneena A1-40
A1.15 A32 and T32 inStruction SEt OVEIVIEWcccccecceeiiirieeict e A1-41
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 5

reserved.
Non-Confidential

A1.16 Access to the inline barrel shifter in AArch32 stateccccooceeevoiiivcieeisiiees A1-42
Part B Advanced SIMD and Floating-point Programming
Chapter B1 Advanced SIMD Programming
B1.1 Architecture support for Advanced SIMDccccovveeeeeeieeeeiiiieeeeesiiieaeeeees B1-46
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state B1-47
B1.3 Views of the Advanced SIMD register bank in AArch32 statec..cccccccven. B1-49
B1.4 Load values to Advanced SIMD regiStersccccuuvueeicies weiieeeiieeeiee e B1-50
B1.5 Conditional execution of A32/T32 Advanced SIMD instructions B1-51
B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions B1-52
B1.7 Advanced SIMD data types in A32/T32 inStructionsccccces coeevceeeencnnennans B1-53
B1.8 Polynomial arithmetic OVer {0, 1}ccueeeee oo B1-54
B1.9 Advanced SIMD VECIOIScuoieeeeee et B1-55
B1.10 Normal, long, wide, and narrow Advanced SIMD instructions B1-56
B1.11 Saturating Advanced SIMD inStrucCtionsccccoveoieioiieiisiiieeiie e B1-57
B1.12 Advanced SIMD SCAIAIScccueeeeeeeieieeeeeeeee e B1-58
B1.13 Extended notation extension for Advanced SIMDcccccocvvoreisieeaaceeannn. B1-59
B1.14 Advanced SIMD system registers in AArch32 stateccccceeeeiiooieeiessccnne. B1-60
B1.15 Flush-to-zero mode in Advanced SIMDc.ccoccooiimiiiiis e B1-61
B1.16 When to use flush-to-zero mode in Advanced SIMDcccccccoevvvviiivscneennnen. B1-62
B1.17 The effects of using flush-to-zero mode in Advanced SIMDccc.......... B1-63
B1.18 Advanced SIMD operations not affected by flush-to-zero mode B1-64
Chapter B2 Floating-point Programming
B2.1 Architecture support for floating=-poOintccceucievciies e B2-66
B2.2 Extension register bank mapping for floating-point in AArch32 state B2-67
B2.3 Views of the floating-point extension register bank in AArch32 state B2-69
B2.4 Load values to floating-point reQiStersooiioueeiieiiiis e B2-70
B2.5 Conditional execution of A32/T32 floating-point inStructionscccccccee.. B2-71
B2.6 Floating-point exceptions for floating-point in A32/T32 instructions B2-72
B2.7 Floating-point data types in A32/T32 inStructionsccccuuet voeeeceeeesienannne B2-73
B2.8 Extended notation extension for floating-point codecccccc. coviiiiiiiniieniiis B2-74
B2.9 Floating-point system registers in AArch32 Stateccccoccoievevceeeicceeeiiece B2-75
B2.10 Flush-to-zero mode in floating-pointcccueeeeeeecieeeeeeiescieee e B2-76
B2.11 When to use flush-to-zero mode in floating-pointcccuevveeeesceeesiieesiieens B2-77
B2.12 The effects of using flush-to-zero mode in floating-pointc... ccocovveeecveenas B2-78
B2.13 Floating-point operations not affected by flush-to-zero mode ccccccoc... B2-79
Part C A32/T32 Instruction Set Reference
Chapter C1 Condition Codes
C1.1 Conditional INSIIUCHIONScoeieeeeeeee et e a s C1-84
C1.2 Conditional execution in A32 COUEoooaiiiiiiiieiieeee e C1-85
C1.3 Conditional execution in T32 COUEccuuiioiiiiiiiiieiiiee et C1-86
C1.4 CONAIION TIAQS ..ottt et e e e e a e e C1-87
C1.5 Updates to the condition flags in A32/T32 COAEcccveiieeeair e C1-88
C1.6 Floating-point instructions that update the condition flagsccccccoevvcvennnn. C1-89
(O3 B A 07 T i - Vo ISP OUPPPOPPPN C1-90
CT1.8 OVEITIOW FIAQ ...ttt et e e e C1-91
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 6

reserved.
Non-Confidential

C1.9 Condition COUE SUMIXESuuueiiiieeeiie et e C1-92
C1.10 Condition code suffixes and related flagsccccooveicins coiiiieiiciieeeee C1-93
C1.11 Comparison of condition code meanings in integer and floating-point code C1-94
C1.12 Benefits of using conditional execution in A32 and T32 code cooeeeennn. C1-96
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code .. C1-97
C1.14 Optimization for @XeCution SPEEQccceeiveiiriiieieiieeeie e C1-100
Chapter C2 A32 and T32 Instructions
C2.1 A32 and T32 inStruction SUMMAIYccccceiieieeasiieea e C2-106
C2.2 Instruction Width SPECITIEISuuuuueereeeieieeieieiei e ettt c2-111
C2.3 Flexible second operand (OPerand2)coccuuveeeaciiescieeiiieeesie e C2-112
C2.4 Syntax of Operand2 as @ CONSIANEceveerveeeeeeeiiecieee e eeieaae e C2-113
C2.5 Syntax of Operand?2 as a register with optional Shiftc.ccccc evevevicneennen.. C2-114
C2.6 SRIft OPEIALtIONSeveveeeeeeeeeeeeeee ettt ettt ettt aaaaaaas C2-115
C2.7 Saturating INSIUCHONSccoieiieiiieeeie et e C2-118
C2.8 ADC ... e C2-119
C2.9 ADD ... e C2-121
C2.10 ADR (PC-TEIALIVE) ...t ettt C2-124
C2.11 ADR (reQiSter-rel@tive)cccoomeiiiiiieeiieeies e C2-126
C2.12 AND ..o e C2-128
C2.18 ASKR e et C2-130
(O L = OSSPSR C2-132
C2.18 BFC ..ottt ettt C2-134
C2.T6 BF] e s C2-135
C2.17 BIC e et C2-136
C2.18 BRKPT .ottt ettt C2-138
C2.19 BL et C2-139
C2.20 BLX, BLXINS ...ttt ettt C2-140
C2.21 BX, BXINS ...ttt et C2-142
C2.22 BXU et ettt C2-144
C2.23 CBZ @NU CBINZ ... ettt C2-145
C2.24 CDP @nd CDP2 ..ot et C2-146
C2.25 CLREX ... et C2-147
C2.26 CLZ ..o et ettt C2-148
C2.27 CMP @nd CMNc.oooeeeeeeee ettt C2-149
C2.28 CPS ..ot e C2-151
C2.29 CRECSB2 ...t ettt C2-153
C2.30 CRECB2C ...ttt C2-154
C2.3T CSDB ... ettt C2-155
C2.32 DBG ...t e C2-157
C2.33 DMB ... et C2-158
C2.34 DSB ... ettt C2-160
C2.35 EOR ..t et C2-162
C2.36 ERET .ot et C2-164
C2.37 ESB ..ot e C2-165
C2.38 HLT ..ot ettt C2-166
C2.39 HVC ..ot et C2-167
C2.40 ISB ... e C2-168
C2.47T T et ettt C2-169
C2.42 LDA ..o ettt C2-172
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 7
reserved.

Non-Confidential

C2.43 LDAEX .o e C2-173
C2.44 LDC @NA LDC2 ...t C2-175
C2.45 LDM ...t ettt C2-177
C2.46 LDR (immediate OffSEL)cooueeeeeeeeee et e C2-179
C2.47 LDR (PC-TEIALVE)eeeeeeeeeeeee e C2-181
C2.48 LDR (reGiSter OffSET)ccuuue it C2-183
C2.49 LDR (reGiSter-relative)oouuee oo e C2-185
C2.50 LDR, UNPriVlEgeQcoooeieeeeeeeee et e C2-187
C2.51 LDREX ...ttt et e e C2-189
C2.852 LSL oo C2-191
(O3 T Y PR C2-193
C2.54 MCR @NA MCR2 ...ttt e s C2-195
C2.55 MCRR @NU MCRR2 ...ttt e C2-196
C2.56 MLA ... e C2-197
C2.57 MLS ... ettt e e C2-198
C2.58 MOV ...t ettt e s C2-199
C2.859 MOVT ettt n C2-201
C2.60 MRC @NA MRC2 ...ttt e C2-202
C2.61 MRRC QN MRRGC2 ...t et C2-203
C2.62 MRS (PSR to general-purpoSe reQiSter)couuooeeieeiie e C2-204
C2.63 MRS (system coprocessor register to general-purpose register) C2-206
C2.64 MSR (general-purpose register to system coprocessor register) C2-207
C2.65 MSR (general-purpose register t0 PSR)ccceiveeiiiiieaa e C2-208
C2.66 MUL ...t ettt n C2-210
C2.67 MVIN ..ot e c2-211
C2.68 INOP ...t e C2-213
C2.69 ORN (T32 ONIY) oot et e e e C2-214
C2.70 ORR oottt ettt e e e e e e ens C2-215
C2.71 PKHBT @nd PKHTB ...ttt et C2-217
C2.72 PLD, PLDW, @NU PLI ..o et C2-219
(O3 A T O) SR C2-221
C2.74 PUSH ...ttt ettt e e e e et e e e e C2-222
C2.75 QADD ... s C2-223
C2.76 QADDS ... C2-224
C2.77 QADDTG ...ttt s C2-225
C2.78 QAKX e et n e e e e en C2-226
C2.79 QDADD ... e Cc2-227
C2.80 QDSUB ... s C2-228
C 2.8 QS AKX ettt ettt e e e e C2-229
C2.82 QSUB ...ttt e s C2-230
C2.83 QSUBB ... n C2-231
C2.84 QSUBTG ...t C2-232
C2.85 RBIT ..ottt ettt e e en C2-233
C2.86 REV ..ottt ettt e e ans C2-234
C2.87 REVTG ..ottt et C2-235
C2.88 REVSH ...ttt C2-236
C2.89 RFE ...t ettt C2-237
C2.90 ROR .ottt et e e e e e e en C2-239
C2.9T RRX oottt e e n C2-241
C2.92 RSB ... e et C2-243
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 8
reserved.

Non-Confidential

C2.983 RS C e e C2-245
C2.94 SADDBS ... e e e C2-247
C2.95 SADDTE ... et e e C2-249
C2.96 SASX e et C2-251
C2.97 SBC ..o et C2-253
C2.98 SBIX oot et C2-255
C2.99 SDIV ...ttt C2-256
C2.A00 SEL ..o e C2-257
C2.90T SETEND ... et a e C2-259
C2.102 SETPAN ...ttt e e e et e e e e a e e e e saneaee e C2-260
C2.108 SEV ..ot ettt C2-261
C2.A04 SEVIL ... et C2-262
C2.108 SG ... e e a e C2-263
C2.106 SHADDS ...t et C2-264
C2.107 SHADDTE ...t ee et et e e e e e e e e e anee e e C2-265
C2.108 SHASX oottt e et e e C2-266
C2.109 SHSAX oottt C2-267
C2.1T0 SHSUBS ...ttt C2-268
C2.1TT SHSUBTE ...ttt ettt e e a e ea e nnee s C2-269
C2.112 SMC ... et e et e e e e e e C2-270
C2.018 SMLAXY ...t ettt c2-271
C2.114 SMLAD ... ettt C2-273
C2.1TE5 SMLAL ...t ettt e et C2-274
C2.1T6 SMLALD ...ttt e e e e C2-275
C2. 017 SMLALXY ..o ettt C2-276
C2. 018 SMLAWY ettt e e et e e e e e e e e e ssanee s C2-278
C2.1T9 SMLSD ...ttt et e s C2-279
C2.920 SMLSLD ...ttt a e C2-280
C2.121 SMMLA ...t et C2-281
C2.122 SMMLSoeoeeeeeeeeeeeee ettt et e e e e e e e e e e eaa e C2-282
C2.1283 SMMUL ...ttt et e e e e e e e e e C2-283
C2.924 SMUAD ...t ettt C2-284
C2.925 SMULXY .o ettt C2-285
C2.026 SMULL ...t ettt e et a e e e eaaaeeeans C2-286
C2.127 SMULWY ..ottt ettt e e e C2-287
C2.928 SMUSD ...t ettt C2-288
C2.129 SRS ..o et C2-289
C2.180 SSAT oot et et e e a e e e C2-291
(OFZ R i 1Y AV i C2-292
C 2182 S S AKX e e C2-293
C2.1833 SSUBB ...t et C2-295
C2.1834 SSUBTG ...ttt et e e e e e et e e e C2-297
C2.135 STC @NA STC2 ...ttt ee e e nnee s C2-299
C2.186 STL ...t e e e e e e e e e e e e C2-301
C2.187 STLEX ..ot ettt e e e e e C2-302
C2.138 STM ..ot ettt C2-304
C2.139 STR (immediate OffSEL)cccueeeeeeeeeee et e C2-306
C2.140 STR (regiSter OffSEL)o C2-308
C2.141 STR, UNPriVIIEGEAoooieeeeeeeeeee e e C2-310
C2.042 STREX ...ttt e e e e e e e e e aa e e e e C2-312

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 9

reserved.

Non-Confidential

C2.048 SUB ... ettt C2-314
C2.144 SUBS PC, Il ..ottt ettt e e e e a e C2-317
C2.145 SVIC ...ttt ettt C2-319
C2.146 SWP @Nnd SWPB ... et C2-320
C2. 47 SXTAB ... et C2-321
C2.148 SXTABTE ...ttt e e e e e et a e e e saseee s C2-323
(N L I g Y o C2-325
C2.180 SXTB ...t et e e et e et e e et e e aea e C2-327
C2.18T SXTBTE ...t ettt e e e e eea e C2-329
C2.182 SXTH ..ot ettt e e e e e e e e e e C2-330
(O3 T B 2 R C2-332
C2.1854 TBB @NG TBH ..ot C2-333
C2.185 TEQ oo ettt C2-334
C2.156 TST ...ttt ettt C2-336
C2.157 TT, TTT, TTA, TTAT .ottt et e e e et e nea e e e e C2-338
C2.188 UADDS ... ettt C2-340
C2.189 UADDTG ... ettt C2-342
C2.T60 UASX oo et et e e e e C2-344
C2.16T UBFX ..ottt e et e et e et e et e et e e e s C2-346
C2.162 UDF ... et e et e e et e e e e C2-347
C2.T63 UDIV ...t et C2-348
C2.164 UHADDS ...ttt e et e et a e e e sseaee e C2-349
C2.165 UHADDTE ...ttt et e e e e e e e eenneaennneeenn C2-350
C2.166 UHASX ...ttt e e C2-351
C2.167 UHSAX ..ot e e C2-352
C2.168 UHSUBS ...ttt ettt C2-353
C2.169 UHSUBTE ...t te et e et e e e e e e anneeeanes C2-354
C2.170 UMAAL ...t e e C2-355
C2.AT7T UMLAL ... et C2-356
C2.A72 UMULL ..ot e e e a e e e e ssneee e C2-357
C2.173 UQADDS ...ttt ettt e e C2-358
C2.1974 UQADDTE ...t et a e C2-359
C2.175 UQASX oot et C2-360
C2.176 UQSAX oottt ettt C2-361
C2.177 UQSUBS ...ttt ettt e e e e e eeaennaeeenn C2-362
C2.978 UQSUBTE ...t ettt e e e e e C2-363
C2.979 USADS ... ettt C2-364
C2.180 USADAS ...ttt C2-365
C2.18T USAT ettt ettt e et e e et e e e e e e C2-366
C2.182 USAT TG .ot ettt e ettt e e e e e e e e C2-367
C2.183 USAX e ettt C2-368
C2.184 USUBS ...t ettt C2-370
C2.185 USUBTE ...ttt ettt e e et e e nea e e e eens C2-372
C2.186 UXTAB ...t et et e et e e C2-373
C2. 187 UXTABTE ..o et C2-375
C2.088 UXTAH .ot ettt e e e e e e e e seae e e e C2-377
(N2 1 I U) I = SR C2-379
C2.990 UXTBTG ..o ettt e e a e e C2-381
(O R U) € I = PSR C2-382
C2.192 WFE ...ttt ettt e et e e e e e e e e e aaaeeanan C2-384

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 10

reserved.

Non-Confidential

C2.193 WL ..ot e C2-385

C2.194 YIELD ...ttt C2-386
Chapter C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD inStruCtionscocccoueivies veseieeasee e C3-391
C3.2 Summary of shared Advanced SIMD and floating-point instructions C3-394
C3.3 Interleaving provided by load and store element and structure instructions C3-395
C3.4 Alignment restrictions in load and store element and structure instructions C3-396
C3.5 FLDMDBX, FLDMIAX ...ttt ettt C3-397
C3.6 FSTMDBX, FSTMIAX ..ottt ettt C3-398
C3.7 VABA QNG VABAL ...ttt ettt C3-399
C3.8 VABD @Nd VABDLoooieieeeee et e C3-400
C3.9 VABS ..o s C3-401
C3.10 VACLE, VACLT, VACGE @nd VACGTcccoeeiiiieeeii et et C3-402
CB.T VADD ...ttt C3-403
C3.12 VADDHN ...t et C3-404
C3.13 VADDL @Nd VADDWcooieiiiieeeeteee et ettt C3-405
C3.14 VAND (IMMEUIALE) ..ot ettt C3-406
C3.15 VAND (FQUSIEN) ..ot et C3-407
C3.16 VBIC (IMMEAIALE)ccoeeeeeeeeeeeeeeeeee ettt C3-408
CB.17 VBIC (F€GUSLEN) .ot et e e ene s C3-409
CB.18 VBIF . ettt C3-410
(O3 A L = SRS C3-411
CB.20 VBSKL ...t e C3-412
CB.2T VCADD ...ttt et C3-413
C3.22 VCEQ (immediate H0)ccueeeeeieeee ettt ettt C3-414
C3.23 VCEQ (I8USLEL) ..o et C3-415
C3.24 VCGE (immediate #0)veeeeeeeeeeee ettt e ee e e e C3-416
CB.25 VICGE (FEGUSLEN) .ottt et e na e s C3-417
C3.26 VCGT (immediate #0)cooouieieieiiieeeeeesie e et C3-418
CB.27 VICGT (FEGISTEL) ... ettt C3-419
C3.28 VCLE (immediate #0)coeveeeeeeeeeeeeeeee ettt C3-420
C3.29 VICLS ...t ettt C3-421
C3.30 VCLE (I8GUSHEI) ...t ettt C3-422
C3.31 VCLT (immediate #0)coeueeieeeeeeeeee et ettt C3-423
C3.32 VCLT (TEGUSLEN) ..ottt e e e e e C3-424
CB.33 VICLZ et e C3-425
C3B.34 VIOMLA ...ttt C3-426
C3.35 VCMLA (DY €IEMENL) ...ttt ettt C3-427
C3.36 VIONT ... ettt C3-428
C3.37 VCVT (between fixed-point or integer, and floating-point)cccceeeceven... C3-429
C3.38 VCVT (between half-precision and single-precision floating-point) C3-430
C3.39 VCVT (from floating-point to integer with directed rounding modes) C3-431
C3.40 VCVTB, VCVTT (between half-precision and double-precision) C3-432
C3B.4T VDUP ...t ettt C3-433
€342 VEOR ...ttt C3-434
€343 VEXT ..ot ettt C3-435
C3.44 VEMA, VEMS ... ettt C3-436
CB3.45 VFMAL (BY SCAIAI) ... et C3-437
C3.46 VFEMAL (VECIOL) ..ottt ettt C3-438
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 1
reserved.

Non-Confidential

C3.47 VEMSL (DY SCAIAL) ...ttt ettt C3-439
C3.48 VIFEMSL (VECIOL) ...t e C3-440
C3.49 VHADD ...ttt e C3-441
C3.50 VHSUB ...ttt C3-442
C3.51 VLDn (single n-element structure to one 1ane)c.cccccceees covcveercieeesiiees C3-443
C3.52 VLDn (single n-element structure to all 1anes)ccccouvveesieeviiiiiiieesieene C3-445
C3.53 VLDn (multiple n-element StruCtUres)cccueiveeeecceaes e C3-447
C3B.54 VLDM ..o et C3-449
CB.55 VDR ...t s C3-450
C3.56 VLDR (post-increment and pre-decrement)cccceveeeesiioieeseiie e C3-451
C3.57 VLDR pS@UAO-INSIIUCHONeeveeeeeeeeeeeeeee ettt C3-452
C3.58 VIMAX @NA VIMIN ..ottt ettt C3-453
C3.59 VMAXNM, VMINNMoooiiiaiieeee ettt C3-454
C3.60 VIMLA ... ettt C3-455
CB3.61T VMLA (DY SCAIAI) ..ot et eea e C3-456
C3.62 VMLAL (DY SCAIGI) ...t ettt C3-457
CB.63 VIMLAL ... et C3-458
C3.64 VMLS (BY SCAIAY)cooieieieeieeee et et C3-459
C3.65 VIMLS ... ettt C3-460
CB.66 VIMLSL ...t ettt C3-461
C3.67 VMLSL (DY SCAIAI) ...t et C3-462
C3.68 VMOV (immediate)cccoouiiiiiiiiiiiieieii et e C3-463
CB3.69 VMOV (TEGUSLEL) ..ot ettt ea e aeaane e e C3-464
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)
... C3-465
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) C3-466
C3.72 VIMOVL ...t ettt C3-467
C3.73 VMOV ..ot ettt ettt C3-468
C3B.74 VIMOV2 ...t ettt C3-469
C3.75 VMRS ...t C3-470
C3B.76 VIMSR ... C3-471
CB.77 VIMUL ... ettt ettt C3-472
C3.78 VIMUL (DY SCAIAI) ..ot ettt C3-473
CB.79 VIMULL ...t ettt C3-474
C3.80 VMULL (BY SCAIAI) ...t e C3-475
C3.8T VMV (F@GUSTEL) ...ttt ettt C3-476
C3.82 VMVN (IMMEQIALE)c.eeeieeeeieeeee et C3-477
C3.83 VINEG ... e C3-478
CB3.84 VORN ([EGUSLEI) ..ot e C3-479
C3.85 VORN (IMMEAIALE)c..eeeeeeiiieeee e C3-480
C3.86 VORR (F@GUSIEL) ...ttt ettt C3-481
C3.87 VORR (IMMEAIALE)ooeeieiiieeee e C3-482
C3.88 VIPADAL ...t e C3-483
C3.89 VIPADD ...ttt C3-484
C3.90 VIPADDL ... s C3-485
C3.91 VPMAX @Nd VPMINcooeeiieeee et et C3-486
C3.92 VIPOP ...t et C3-487
C3.93 VIPUSH ...ttt C3-488
C3.94 VQABS ...t C3-489
C3.95 VQADD ... e C3-490
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 12
reserved.

Non-Confidential

C3.96 VQDMLAL and VQDMLSL (by vector or by Scalar)coccoveeuiueieisieeeaieeenns C3-491

C3.97 VQDMULH (by vector Or by SCaIaAr)ccoueiiiiiiiiies i C3-492
C3.98 VQDMULL (by vector Or by SCAIAr)cccccuwcueeeiiiiiect e C3-493
C3.99 VQMOVN and VQMOVUNccoomoiiiiiiiiisiiaiesies ettt C3-494
C3.100 VQINEG ...t ettt C3-495
C3.101 VQRDMULH (by vector Or bY SCAIAI)ccoueieieieeiiiiesie s C3-496
C3.102 VQRSHL (by Signed variable)ccccoceeieiriiiiiis ot C3-497
C3.103 VQRSHRN and VQRSHRUN (by immediate)c.ccccooevcies vovceeriiisiiaieenn C3-498
C3.104 VQSHL (by Signed variable)ccccoucoiiiiiiiiiiiies i C3-499
C3.105 VQSHL and VQSHLU (by immediate)cccccciroienoiic i C3-500
C3.106 VQSHRN and VQSHRUN (by immediate)cccoevirviiesiciescieciesiesen C3-501
C3.107 VQSUB ...t ettt C3-502
C3.108 VRADDHN ...ttt ettt C3-503
C3.109 VRECPE ... et C3-504
C3.110 VRECPS ...t ettt C3-505
C3.111 VREV16, VREV32, and VREVEG4ccoooeeeeieeeee e C3-506
C3B.112 VRHADD ...t ettt C3-507
C3.113 VRSHL (by signed variable)cccociiiiiiiiiciiiiieeeee e C3-508
C3.114 VRSHR (BY iMMEAIALE)ccceeiiieiiiieeeee e et C3-509
C3.115 VRSHRN (by immeQiate)ccovcuiiiieiiiiiiieeeee ettt C3-510
CB.T16 VRINT ..ot ettt ettt C3-511
C3.117 VRSQRTE ...ttt ettt ettt n C3-512
C3.118 VRSQRTS ..ot ettt C3-513
C3.119 VRSRA (BY iMMEAIGLE)c.eeeeeiiieseeeeeeeee et ettt C3-514
C3.120 VRSUBHN ... ettt C3-515
C3.127 VSDOT (VECIOI) .. e C3-516
C3.122 VSDOT (DY €IEMENL) ... e C3-517
C3.123 VSHL (BY iMMEQIALE)cceeeeiieieeeeee e C3-518
C3.124 VSHL (by SIgned variable)cccuiiiiiiiiiiieeies e C3-519
C3.125 VSHLL (by iMMEQIALe)c.cocueiiiieiieieeeeee e C3-520
C3.126 VSHR (BY iMMEAIALE)eeeeeeeee et e C3-521
C3.127 VSHRN (BY iMMEAIALE)cccueeiiieee e et C3-522
CB.128 VISLI et ettt C3-523
C3.129 VSRA (by immediate)c.cocueiieiiiiiiiiiciii et et C3-524
C3.180 VISR ettt C3-525
C3B.13T VSTM et ettt C3-526
C3.132 VSTn (multiple n-element SIrUCtUIres)cccoeviiieeccicns e C3-527
C3.133 VSTn (single n-element structure to 0N€ 1ane)cccceceevees ceveeeeeeiiiieeeeanns C3-529
C3.134 VISTR et ettt C3-531
C3.135 VSTR (post-increment and pre-decrement)ccoooveeeeeeieeeeeieieeeeee C3-532
CB.136 VSUB ...t ettt C3-533
C3.137 VSUBHN ...t e C3-534
C3.138 VSUBL @Nd VSUBWcccooiiiieeieeeeeeeeee et et C3-535
CB.189 VSWWP ..ttt ettt C3-536
C3.140 VTBL QNG VTBX ...ttt C3-537
C3B.14T VTR ..o et ettt ettt ae e C3-538
CB.T42 VTST ot ettt ettt C3-539
C3.143 VUDOT (VECIOL) ..ottt ettt C3-540
C3.144 VUDOT (DY ©I8MENL) ... et C3-541
CBA4E VUZP ... et ettt C3-542

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 13

reserved.

Non-Confidential

CBA46 VZIP ... e C3-543

Chapter C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point iNStrUCHIONScccoueeeeieeiiiiiiieeeeesiieeee e C4-547
C4.2 VABS (flo@ting-POiNt)ooeiieeeeeeeee e et C4-549
C4.3 VADD (flo@ting=PpOiNt)ooo oot e C4-550
C4.4 VOMP, VOMPEooooeeeeeeee ettt ettt C4-551
C4.5 VCVT (between single-precision and double-precision) cocueeeeeunee... C4-552
C4.6 VCVT (between floating-point and inte€ger)cocvcveeeceees e C4-553
C4.7 VCVT (from floating-point to integer with directed rounding modes) C4-554
C4.8 VCVT (between floating-point and fixed-point)ccccccovvve eeevviienceeene C4-555
C4.9 VCVTB, VCVTT (half-precision eXtenSion)ccccueeeveir ceveeeeesiiieaaeessanennn C4-556
C4.10 VCVTB, VCVTT (between half-precision and double-precision) C4-557
CA AT VDIV ettt C4-558
C4.12 VFMA, VFMS, VEFNMA, VENMS (floating-point)ccceevees cueseesiieseacens C4-559
CA 18 VUICVT o ettt C4-560
C4.14 VLDM (floating-POINE)ooe it e e e C4-561
C4.15 VLDR (floating=-POiNt)c.ceieiiieeeiieseeeee e et C4-562
C4.16 VLDR (post-increment and pre-decrement, floating-point) cccocceevcnee.n. C4-563
CA AT VLLDM ...t et C4-564
CA T8 VLSTM ..ottt C4-565
C4.19 VMAXNM, VMINNM (floating-point)ccccoueiiisiasiisiieee e C4-566
C4.20 VMLA (flo@ting-POint)c.ooeeiiiiieeie et et C4-567
C4.21 VMLS (flo@ting=-POiNt)eeeeeeeeeeeeeeeeeeee et ettt C4-568
C4.22 VMOV (flo@tinG=-POINt)ceeeeeeeeeeeeee e eeeee e e e e nnee e C4-569
C4.23 VMOV (between one general-purpose register and single precision floating-point
FEGUSTEL) .t e C4-570
C4.24 VMOV (between two general-purpose registers and one or two extension registers)
... C4-571
C4.25 VMOV (between a general-purpose register and half a double precision floating-point
FEGUSTEL) .t et C4-572
C4.26 VMRS (floating=PpOiNt)ceeeuueeeeeeeeeee ettt C4-573
C4.27 VMSR (flo@ting-POINE)ooe it e s C4-574
C4.28 VMUL (flo@tinG=-POINE)cocueeiiiieieeieeee e et C4-575
C4.29 VNEG (flo@ting=POINt)cocuueeiiieeeeie ettt C4-576
C4.30 VNMLA (floating-POiNt)cccoouueeeeeeeeeieee e C4-577
C4.31 VNMLS (flo@ting=POINt)coeiieeeeeee et e s C4-578
C4.32 VNMUL (fIO@tING-POINT) ...ttt et C4-579
C4.33 VPOP (floating-POINE)coeiueeeeiiieeeie et et C4-580
C4.34 VPUSH (floating-POiNt)ccccuveeeeeeeeeiee ettt C4-581
C4.35 VRINT (flo@ting-POiNt)oeeeeeeeeee et e e e nieee s C4-582
CA.36 VSEL ettt ettt C4-583
CA.37 VSQRT ..ottt ettt ettt C4-584
C4.38 VSTM (flo@ting-POiNt)ceeoueeeeeeeeeeeiee ettt C4-585
C4.39 VSTR (flO@tiNG=-POINE) ...t et ea e C4-586
C4.40 VSTR (post-increment and pre-decrement, floating-point) cccocevvcnee.n. C4-587
C4.41 VSUB (flo@ting-POint)c..ooeiueiiiiieeeie et ettt C4-588
Chapter C5 A32/T32 Cryptographic Algorithms
C5.1 A32/T32 CryptographiC iNStrUCHIONScceeeeeeieeiee e C5-590
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 14
reserved.

Non-Confidential

List of Figures
Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Figure A1-1 Organization of general-purpose registers and Program Status Registers A1-31
Figure B1-1 Extension register bank for Advanced SIMD in AArch32 statecccccoouvcooeieeeaccane. B1-47
Figure B2-1 Extension register bank for floating-point in AArch32 stateccccoeviievccieisiiieiees B2-67
Figure C2-1 AS R S e C2-115
Figure C2-2 LSR B3 oottt C2-116
Figure C2-3 LS L B ettt C2-116
Figure C2-4 ROR B3 oottt e e et e e e e et e e e e et ra e e e C2-116
Figure C2-5 RRX ettt C2-117
Figure C3-1 De-interleaving an array of 3-element StruCtUIrescoccoveeeieiicieie e C3-395
Figure C3-2 Operation of doubleword VEXT fOr imm = 3ooooeeiiiiiiee e C3-435
Figure C3-3 Example of operation of VPADAL (in this case for data type S16)ccccccovvvvivevninnens C3-483
Figure C3-4 Example of operation of VPADD (in this case, for data type I116)cccccecovvevvveveeeecnne.. C3-484
Figure C3-5 Example of operation of doubleword VPADDL (in this case, for data type S16) C3-485
Figure C3-6 Operation of quadword VSHL.164 Qd, QM #Toeveeeeeeieeeeeeeeeeeeeeee e C3-518
Figure C3-7 Operation of quadword VSLI.64 Qd, Qm, #71c.coomieiiieeeee e C3-523
Figure C3-8 Operation of doubleword VSRI.64 Dd, D, #2cc.coveeeeeeeieeeeeiieaeeeeeeeeee e C3-525
Figure C3-9 Operation of doubleWord VTRIN.8ooo e C3-538
Figure C3-10 Operation of doubleword VTRIN.32oo e C3-538
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 15
reserved.

Non-Confidential

List of Tables
Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Table A1-1 AAICh32 PrOCESSON MOUES ...ttt ettt ettt aaaaa e e e e e e e e e e e eanaeas A1-28
Table A1-2 Predeclared core registers in AArch32 Stateooccoiiiiiiiiiiie e A1-34
Table A1-3 Predeclared extension registers in AArCh32 Stateccccoceeeiiieieciiiieeee e A1-35
Table A1-4 AB2 INSEFUCLION QFOUDS ..ottt e e e e e e e e e e e e e e e e e s s s et raaeaaaaaaeens A1-41
Table B1-1 Advanced SIMD data tYPESooo oo B1-53
Table B1-2 Advanced SIMD SAtUuration raNQESc..eeee oot B1-57
Table C1-1 CONAItION COUR SUMIXES ..ottt C1-92
Table C1-2 Condition code suffixes and related flagsccoeeeieeeecreeieeieiciiee e C1-93
Table C1-3 CONAIION COUBS ...ttt a e C1-94
Table C1-4 Conditional BranChes ONIYoooo oo C1-97
Table C1-5 Al InStructions CONAILIONALc..eeeiiiieie et C1-98
Table C2-1 SUMMAry Of INSIIUCHIONSccoeeeeeee et e e C2-106
Table C2-2 PC-relatiVe OFfSELS ... e e e C2-124
Table C2-3 ReQiSter-relative OffSELSc..eeeeeeeeeee e C2-126
Table C2-4 B instruction availability @nd range ..o C2-132
Table C2-5 BL instruction availability @nd rangecccceeeeeeeeeeieeeee et C2-139
Table C2-6 BLX instruction availability @nd rangecoooueeeie e C2-140
Table C2-7 BX instruction availability and rangeccoooeiiieiie e C2-142
Table C2-8 BXJ instruction availability @and rangeccoouiiioeeieeeeee e C2-144
Table C2-9 Permitted instructions inSide @n IT DIOCKc.ccoioeeeeeeeee e C2-170
Table C2-10 Offsets and architectures, LDR, word, halfword, and bytecccccoeemiiiiinieeiie C2-179
Table C2-11 PC-relatiVe OFfSELS ...t C2-181
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 17
reserved.

Non-Confidential

Table C2-12
Table C2-13
Table C2-14
Table C2-15
Table C2-16
Table C2-17
Table C3-1
Table C3-2
Table C3-3
Table C3-4

Table C3-5

Table C3-6

Table C3-7

Table C3-8

Table C3-9

Table C3-10
Table C3-11
Table C3-12
Table C3-13
Table C3-14
Table C3-15
Table C3-16
Table C3-17
Table C3-18
Table C3-19
Table C3-20
Table C3-21
Table C3-22
Table C3-23
Table C3-24
Table C3-25
Table C3-26

Options and architectures, LDR (reqQiSter OffSEtS)ccccouiviiiiiiiiieiiiieee e C2-184

REGISIEr-relative OffSELSooo it C2-185
Offsets and architectures, LDR (USEI MOAE)cceeieeeeeeeeaiieeaeee e C2-187
Offsets and architectures, STR, word, halfword, and byteccccoveimiiiiiiieeiie C2-306
Options and architectures, STR (reqiSter OffSEtS)cccccvireiiiiiiiiieciie e C2-308
Offsets and architectures, STR (USEIr MOdE)ccoeeicuiiiiieiiiiieesie e C2-311
Summary of Advanced SIMD iNStrUCHIONScccceeiieeeseeeeee e C3-391
Summary of shared Advanced SIMD and floating-point instructionsc..cccc....... C3-394
Patterns for immediate value in VBIC (immediate)cccevviieiiciiiniiiiiiceeeee C3-408

Permitted combinations of parameters for VLDn (single n-element structure to one lane) C3-
443
Permitted combinations of parameters for VLDn (single n-element structure to all lanes) C3-
445

Permitted combinations of parameters for VLDn (multiple n-element structures) C3-447
Available immediate values in VMOV (immediate)cccceueoeieeoeeiieessie e C3-463
Available immediate values in VMVN (immediate)ccccoooeeeioiiiiieeee e C3-477
Patterns for immediate value in VORR (immediate)cccccovveeeaciiiniieeiiiieesicce C3-482
Available immediate ranges in VQRSHRN and VQRSHRUN (by immediate) C3-498
Available immediate ranges in VQSHL and VQSHLU (by immediate)cccc.c....... C3-500
Available immediate ranges in VQSHRN and VQSHRUN (by immediate) C3-501
Results for out-of-range inputs in VRECPEcoccuiiiiiiieiieiieeeete e C3-504
Results for out-of-range inputs in VRECPSccoooiiiiiiiiieeeeeete e C3-505
Available immediate ranges in VRSHR (by immediate)cccoveooveiieeaaiiesaeaien C3-509
Available immediate ranges in VRSHRN (by immediate)c.ccoooeeiaiioiiiaeie C3-510
Results for out-of-range inputs in VRSQRTEcoooiiiiiieeeeeeie e C3-512
Results for out-of-range inputs in VRSQRTScccooi oo C3-513
Available immediate ranges in VRSRA (by immediate)coceuvieeesceeisiieeaiieeee C3-514
Available immediate ranges in VSHL (by immediate)ccccoeieiiiiiiiieeieieee e C3-518
Available immediate ranges in VSHLL (by immediate)ccccovviiimiciiisiieescien. C3-520
Available immediate ranges in VSHR (by immediate)ccccccoviviiiniieesiiiieiieeen C3-521
Available immediate ranges in VSHRN (by immediate)cccoueoeeiieeaiiiasaeiien C3-522
Available immediate ranges in VSRA (by immediate)occooeeeeiiioiieeeeiee e C3-524
Permitted combinations of parameters for VSTn (multiple n-element structures) C3-527

Permitted combinations of parameters for VSTn (single n-element structure to one lane) C3-
529

Table C3-27 Operation of dOUBDIEWOId VUZP.8oueeeeeeeeeeeeeeee ettt e aaaaa s C3-542
Table C3-28 Operation of QUAAWOrd VUZP.32c.ooooiiiieeeeee et C3-542
Table C3-29 Operation of doubIeWOrd VZIP.8coee et C3-543
Table C3-30 Operation of QUAAWOIT VZIP.32ccooooeeeeeeeeeeeeee ettt C3-543
Table C4-1 Summary of floating-point INSTIUCHONSoeeeeiiee e C4-547
Table C5-1 Summary of A32/T32 cryptographiC iNStrUCHONSccceevcuiiiiiieesiieeee e C5-590
100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 18
reserved.

Non-Confidential

Preface

This preface introduces the Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures
Reference Guide.

It contains the following:
* About this book on page 20.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

19

Preface
Using this book

About this book

Arm® Instruction Set Assembly Guide for Armv7 and earlier Arm architectures. This document contains

an overview of the Arm architecture and information on A32 and T32 instruction sets. For assembler-

specific features, such as additional pseudo-instructions, see the documentation for your assembler.
Using this book

This book is organized into the following chapters:

Part A Instruction Set Overview

Chapter A1 Overview of AArch32 state
Gives an overview of the AArch32 state.

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
Describes Advanced SIMD assembly language programming.

Chapter B2 Floating-point Programming
Describes floating-point assembly language programming.

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
Describes condition codes and conditional execution of A32 and T32 code.

Chapter C2 A32 and T32 Instructions
Describes the A32 and T32 instructions supported in AArch32 state.

Chapter C3 Advanced SIMD Instructions (32-bit)
Describes Advanced SIMD assembly language instructions.

Chapter C4 Floating-point Instructions (32-bit)
Describes floating-point assembly language instructions.

Chapter C5 A32/T32 Cryptographic Algorithms
Lists the cryptographic algorithms that A32 and T32 SIMD instructions support.
Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 20

reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback

Preface
Feedback

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC p15, ©, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

» The title Instruction Set Assembly Guide for Armv7 and earlier Arm architectures Reference Guide.
e The number 100076_0200 00 en.

« Ifapplicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

Other information

o Arm® Developer-.

o Arm® Information Center.

o Arm® Technical Support Knowledge Articles.
» Technical Support.

o Arm® Glossary.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 21

reserved.
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Part A

Instruction Set Overview

Chapter A1
Overview of AArch32 state

Gives an overview of the AArch32 state.

It contains the following sections:

* Al.l Terminology on page A1-26.

* Al.2 Changing between A32 and T32 instruction set states on page A1-27.

* Al.3 Processor modes, and privileged and unprivileged sofiware execution on page A1-28.
* Al.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M on page A1-29.
* Al.5 Registers in AArch32 state on page A1-30.

* Al.6 General-purpose registers in AArch32 state on page A1-32.

* Al.7 Register accesses in AArch32 state on page A1-33.

* A1.8 Predeclared core register names in AArch32 state on page Al-34.

* A1.9 Predeclared extension register names in AArch32 state on page A1-35.
* A1.10 Program Counter in AArch32 state on page A1-36.

o Al.1ll The O flag in AArch32 state on page A1-37.

* Al.12 Application Program Status Register on page A1-38.

* Al.13 Current Program Status Register in AArch32 state on page A1-39.

» Al.14 Saved Program Status Registers in AArch32 state on page A1-40.

o Al.15 A32 and T32 instruction set overview on page Al-41.

* Al.16 Access to the inline barrel shifter in AArch32 state on page A1-42.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-25
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.1 Terminology

A11 Terminology
This document uses the following terms to refer to instruction sets.
Instruction sets for Armv7 and earlier architectures were called the ARM and Thumb instruction sets.

This document describes the instruction sets for Armv7 and earlier architectures, but uses terminology
that is introduced with Armv8:

A32
The A32 instruction set was previously called the ARM instruction set. It is a fixed-length
instruction set that uses 32-bit instruction encodings.

T32
The T32 instruction set was previously called the Thumb instruction set. It is a variable-length
instruction set that uses both 16-bit and 32-bit instruction.

AArch32
The AArch32 Execution state supports the A32 and T32 instruction sets.

The Arm 32-bit Execution state uses 32-bit general purpose registers, and a 32-bit program counter (PC),
stack pointer (SP), and link register (LR). In implementations of the Arm architecture beforeArmv8,
execution is always in AArch32 state.

Note

Some examples and descriptions in this document might apply only to the armasm legacy assembler.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-26
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.2 Changing between A32 and T32 instruction set states

A1.2 Changing between A32 and T32 instruction set states

A processor that is executing A32 instructions is operating in 432 instruction set state. A processor that
is executing T32 instructions is operating in 732 instruction set state. For brevity, this document refers to
them as the 432 state and T32 state respectively.

A processor in A32 state cannot execute T32 instructions, and a processor in T32 state cannot execute
A32 instructions. You must ensure that the processor never receives instructions of the wrong instruction
set for the current state.

The initial state after reset depends on the processor being used and its configuration.

To direct armasm to generate A32 or T32 instruction encodings, you must set the assembler mode using
an ARM or THUMB directive. Assembly code using CODE32 and CODE16 directives can still be assembled,
but Arm recommends you use the ARM and THUMB directives for new code.

These directives do not change the instruction set state of the processor. To do this, you must use an
appropriate instruction, for example BX or BLX to change between A32 and T32 states when performing a
branch.

Related references
C2.20 BLX, BLXNS on page C2-140
C2.21 BX, BXNS on page C2-142

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-27
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.3 Processor modes, and privileged and unprivileged software execution

A1.3 Processor modes, and privileged and unprivileged software execution

The Arm architecture supports different levels of execution privilege. The privilege level depends on the
processor mode.

Note

Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline do not support the same modes as
other Arm architectures and profiles. Some of the processor modes listed here do not apply to these
architectures.

Table A1-1 AArch32 processor modes

Processor mode | Mode number
User 0b10000
FIQ 0b10001
IRQ 0b10010
Supervisor 0b10011
Monitor 0b10110
Abort 0b10111
Hyp 0b11010
Undefined 0b11011
System Ob11111

User mode is an unprivileged mode, and has restricted access to system resources. All other modes have
full access to system resources in the current security state, can change mode freely, and execute
software as privileged.

Applications that require task protection usually execute in User mode. Some embedded applications
might run entirely in any mode other than User mode. An application that requires full access to system
resources usually executes in System mode.

Modes other than User mode are entered to service exceptions, or to access privileged resources.

Code can run in either a Secure state or in a Non-secure state. Hypervisor (Hyp) mode has privileged
execution in Non-secure state.

Related concepts
Al.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M on page A1-29
Related information

Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-28
reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1 Overview of AArch32 state
A1.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M

Al14 Processor modes in Armv6-M, Armv7-M, and Armv8-M

The processor modes available in Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline are
Thread mode and Handler mode.

Thread mode is the normal mode that programs run in. Thread mode can be privileged or unprivileged
software execution. Handler mode is the mode that exceptions are handled in. It is always privileged
software execution.

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related information

Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-29
reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1 Overview of AArch32 state
A1.5 Registers in AArch32 state

A1.5 Registers in AArch32 state

Arm processors provide general-purpose and special-purpose registers. Some additional registers are
available in privileged execution modes.

In all Arm processors in AArch32 state, the following registers are available and accessible in any
processor mode:

* 15 general-purpose registers R0-R12, the Stack Pointer (SP), and Link Register (LR).
* 1 Program Counter (PC).
» 1 Application Program Status Register (APSR).

Note

* SPand LR can be used as general-purpose registers, although Arm deprecates using SP other than as
a stack pointer.

Additional registers are available in privileged software execution. Arm processors have a total of 43
registers. The registers are arranged in partially overlapping banks. There is a different register bank for
each processor mode. The banked registers give rapid context switching for dealing with processor
exceptions and privileged operations.

The additional registers in Arm processors are:

» 2 supervisor mode registers for banked SP and LR.

* 2 abort mode registers for banked SP and LR.

* 2 undefined mode registers for banked SP and LR.

* 2 interrupt mode registers for banked SP and LR.

* 7 FIQ mode registers for banked R8-R12, SP and LR.

* 2 monitor mode registers for banked SP and LR.

* 1 Hyp mode register for banked SP.

» 7 Saved Program Status Register (SPSRs), one for each exception mode.

* 1 Hyp mode register for ELR Hyp to store the preferred return address from Hyp mode.

Note

In privileged software execution, CPSR is an alias for APSR and gives access to additional bits.

The following figure shows how the registers are banked in the Arm architecture.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-30
reserved.
Non-Confidential

Application
level view

System level view

A1 Overview of AArch32 state
A1.5 Registers in AArch32 state

f I)

User | System Hyp T Supervisor Abort Undefined | Monitor * IRQ FIQ
RO RO_usr
R1 R1_usr
R2 R2_usr
R3 R3_usr
R4 R4 _usr
R5 R5_usr
R6 R6_usr
R7 R7_usr
R8 R8_usr R8_fiq
R9 R9_usr R9 _fiq
R10 R10_usr R10_fiq
R11 R11_usr R11_figq
R12 R12_usr R12_fiq
SP SP_usr SP_hyp SP_svc SP_abt SP_und SP_mon SP_irq SP_fiq
LR LR _usr LR_svc LR_abt LR _und LR_mon LR irq LR _fiq
PC PC
[APSR |[cPsR

SPSR_hyp |SPSR_svc [SPSR_abt [SPSR_und [SPSR_mon|SPSR_irq |SPSR fig
ELR_hyp

T Exists only in Secure state.

T Exists only in Non-secure state.
Cells with no entry indicate that the User mode register is used.

Figure A1-1 Organization of general-purpose registers and Program Status Registers

In Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline based processors, SP is an alias
for the two banked stack pointer registers:
* Main stack pointer register, that is only available in privileged software execution.
* Process stack pointer register.

Related concepts

Al.6 General-purpose registers in AArch32 state on page A1-32

Al1.10 Program Counter in AArch32 state on page A1-36

Al.12 Application Program Status Register on page A1-38
Al.14 Saved Program Status Registers in AArch32 state on page A1-40
Al.13 Current Program Status Register in AArch32 state on page A1-39

A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28

Related information

Arm Architecture Reference Manual

100076_0200_00_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

A1-31

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1 Overview of AArch32 state
A1.6 General-purpose registers in AArch32 state

A1.6 General-purpose registers in AArch32 state
There are restrictions on the use of SP and LR as general-purpose registers.

With the exception of Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline based
processors, there are 33 general-purpose 32-bit registers, including the banked SP and LR registers.
Fifteen general-purpose registers are visible at any one time, depending on the current processor mode.
These are R0-R12, SP, and LR. The PC (R15) is not considered a general-purpose register.

SP (or R13) is the stack pointer. The C and C++ compilers always use SP as the stack pointer. Arm
deprecates most uses of SP as a general purpose register. In T32 state, SP is strictly defined as the stack
pointer. The instruction descriptions in Chapter C2 A32 and T32 Instructions on page C2-101 describe
when SP and PC can be used.

In User mode, LR (or R14) is used as a link register to store the return address when a subroutine call is
made. It can also be used as a general-purpose register if the return address is stored on the stack.

In the exception handling modes, LR holds the return address for the exception, or a subroutine return
address if subroutine calls are executed within an exception. LR can be used as a general-purpose register
if the return address is stored on the stack.

Related concepts

Al1.10 Program Counter in AArch32 state on page A1-36

Al1.7 Register accesses in AArch32 state on page A1-33

Related references

A1.8 Predeclared core register names in AArch32 state on page Al1-34
C2.62 MRS (PSR to general-purpose register) on page C2-204

C2.65 MSR (general-purpose register to PSR) on page C2-208

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-32
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.7 Register accesses in AArch32 state

A1.7 Register accesses in AArch32 state

16-bit T32 instructions can access only a limited set of registers. There are also some restrictions on the
use of special-purpose registers by A32 and 32-bit T32 instructions.

Most 16-bit T32 instructions can only access RO to R7. Only a small number of T32 instructions can
access R8-R12, SP, LR, and PC. Registers RO to R7 are called Lo registers. Registers R8-R12, SP, LR,
and PC are called Hi registers.

All 32-bit T32 instructions can access R0 to R12, and LR. However, apart from a few designated stack
manipulation instructions, most T32 instructions cannot use SP. Except for a few specific instructions
where PC is useful, most T32 instructions cannot use PC.

In A32 state, all instructions can access RO to R12, SP, and LR, and most instructions can also access PC
(R15). However, the use of the SP in an A32 instruction, in any way that is not possible in the
corresponding T32 instruction, is deprecated. Explicit use of the PC in an A32 instruction is not usually
useful, and except for specific instances that are useful, such use is deprecated. Implicit use of the PC, for
example in branch instructions or load (literal) instructions, is never deprecated.

The MRS instructions can move the contents of a status register to a general-purpose register, where they
can be manipulated by normal data processing operations. You can use the MSR instruction to move the
contents of a general-purpose register to a status register.

Related concepts

Al.6 General-purpose registers in AArch32 state on page A1-32

Al.10 Program Counter in AArch32 state on page A1-36

Al.12 Application Program Status Register on page A1-38

Al.13 Current Program Status Register in AArch32 state on page A1-39
Al.14 Saved Program Status Registers in AArch32 state on page A1-40
Related references

Al1.8 Predeclared core register names in AArch32 state on page A1-34
C2.62 MRS (PSR to general-purpose register) on page C2-204

C2.65 MSR (general-purpose register to PSR) on page C2-208

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-33
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.8 Predeclared core register names in AArch32 state

A1.8 Predeclared core register names in AArch32 state
Many of the core register names have synonyms.

The following table shows the predeclared core registers:

Table A1-2 Predeclared core registers in AArch32 state

Register names Meaning

ro-ri15 and RO-R15 | General purpose registers.

al-a4 Argument, result or scratch registers. These are synonyms for RO to R3.
vl-v8 Variable registers. These are synonyms for R4 to R11.

SB Static base register. This is a synonym for R9.

IpP Intra-procedure call scratch register. This is a synonym for R12.

SP Stack pointer. This is a synonym for R13.

LR Link register. This is a synonym for R14.

PC Program counter. This is a synonym for R15.

With the exception of al-a4 and v1-v8, you can write the register names either in all upper case or all
lower case.

Related concepts
Al.6 General-purpose registers in AArch32 state on page A1-32

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-34
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.9 Predeclared extension register names in AArch32 state

A1.9 Predeclared extension register names in AArch32 state

You can write the names of Advanced SIMD and floating-point registers either in upper case or lower

case.

The following table shows the predeclared extension register names:

Table A1-3 Predeclared extension registers in AArch32 state

Register names

Meaning

00-015

Advanced SIMD quadword registers

De-D31

Advanced SIMD doubleword registers, floating-point double-precision registers

S0-S31

Floating-point single-precision registers

You can write the register names either in upper case or lower case.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-35

reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.10 Program Counter in AArch32 state

A1.10 Program Counter in AArch32 state

You can use the Program Counter explicitly, for example in some T32 data processing instructions, and
implicitly, for example in branch instructions.

The Program Counter (PC) is accessed as PC (or R15). It is incremented by the size of the instruction
executed, which is always four bytes in A32 state. Branch instructions load the destination address into
the PC. You can also load the PC directly using data operation instructions. For example, to branch to the
address in a general purpose register, use:

MOV PC,RO

During execution, the PC does not contain the address of the currently executing instruction. The address
of the currently executing instruction is typically PC-8 for A32, or PC-4 for T32.

Note

Arm recommends you use the BX instruction to jump to an address or to return from a function, rather
than writing to the PC directly.

Related references

C2.14 B on page C2-132

C2.21 BX, BXNS on page C2-142
C2.23 CBZ and CBNZ on page C2-145
C2.154 TBB and TBH on page C2-333

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-36
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.11 The Q flag in AArch32 state

A1.11 The Q flag in AArch32 state

The Q flag indicates overflow or saturation. It is one of the program status flags held in the APSR.

The Q flag is set to 1 when saturation occurs in saturating arithmetic instructions, or when overflow
occurs in certain multiply instructions.

The Q flag is a sticky flag. Although the saturating and certain multiply instructions can set the flag, they
cannot clear it. You can execute a series of such instructions, and then test the flag to find out whether
saturation or overflow occurred at any point in the series, without having to check the flag after each
instruction.

To clear the Q flag, use an MSR instruction to read-modify-write the APSR:

MRS r5, APSR
BIC r5, r5, #(1<<27)
MSR APSR_nzcvqg, r5

The state of the Q flag cannot be tested directly by the condition codes. To read the state of the Q flag,
use an MRS instruction.

MRS r6, APSR
TST r6, #(1<<27); Z is clear if Q flag was set

Related references

C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.75 QADD on page C2-223

C2.125 SMULxy on page C2-285

C2.127 SMULWy on page C2-287

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-37
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.12 Application Program Status Register

A1.12 Application Program Status Register

The Application Program Status Register (APSR) holds the program status flags that are accessible in
any processor mode.

It holds copies of the N, Z, C, and V condition flags. The processor uses them to determine whether or
not to execute conditional instructions.

The APSR also holds:

» The Q (saturation) flag.

» The APSR also holds the GE (Greater than or Equal) flags. The GE flags can be set by the parallel

add and subtract instructions. They are used by the SEL instruction to perform byte-based selection
from two registers.

These flags are accessible in all modes, using the MSR and MRS instructions.

Related concepts

C1.1 Conditional instructions on page C1-84

Related references

C1.5 Updates to the condition flags in A32/T32 code on page C1-88
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.100 SEL on page C2-257

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-38
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.13 Current Program Status Register in AArch32 state

A1.13 Current Program Status Register in AArch32 state

The Current Program Status Register (CPSR) holds the same program status flags as the APSR, and
some additional information.

It holds:

» The APSR flags.

* The processor mode.

* The interrupt disable flags.

» The instruction set state (A32 or T32).

» The endianness state.

» The execution state bits for the IT block.

The execution state bits control conditional execution in the IT block.

Only the APSR flags are accessible in all modes. Arm deprecates using an MSR instruction to change the
endianness bit (E) of the CPSR, in any mode. Each exception level can have its own endianness, but
mixed endianness within an exception level is deprecated.

The SETEND instruction is deprecated.

The execution state bits for the IT block (IT[1:0]) and the T32 bit (T) can be accessed by MRS only in
Debug state.

Related concepts

Al.14 Saved Program Status Registers in AArch32 state on page A1-40
Related references

C2.41 IT on page C2-169

C2.62 MRS (PSR to general-purpose register) on page C2-204

C2.65 MSR (general-purpose register to PSR) on page C2-208

C2.101 SETEND on page C2-259

C1.5 Updates to the condition flags in A32/T32 code on page C1-88

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-39
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.14 Saved Program Status Registers in AArch32 state

A1.14 Saved Program Status Registers in AArch32 state

The Saved Program Status Register (SPSR) stores the current value of the CPSR when an exception is
taken so that it can be restored after handling the exception.

Each exception handling mode can access its own SPSR. User mode and System mode do not have an
SPSR because they are not exception handling modes.

The execution state bits, including the endianness state and current instruction set state can be accessed
from the SPSR in any exception mode, using the MSR and MRS instructions. You cannot access the SPSR
using MSR or MRS in User or System mode.

Related concepts
Al1.13 Current Program Status Register in AArch32 state on page A1-39

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-40
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.15 A32 and T32 instruction set overview

A32 and T32 instruction set overview

A32 and T32 instructions can be grouped by functional area.

All A32 instructions are 32 bits long. Instructions are stored word-aligned, so the least significant two
bits of instruction addresses are always zero in A32 state.

T32 instructions are either 16 or 32 bits long. Instructions are stored half-word aligned. Some
instructions use the least significant bit of the address to determine whether the code being branched to is
T32 or A32.

Before the introduction of 32-bit T32 instructions, the T32 instruction set was limited to a restricted
subset of the functionality of the A32 instruction set. Almost all T32 instructions were 16-bit. Together,
the 32-bit and 16-bit T32 instructions provide functionality that is almost identical to that of the A32

instruction set.

The following table describes some of the functional groupings of the available instructions.

Table A1-4 A32 instruction groups

Instruction group

Description

Branch and control

These instructions do the following:

+ Branch to subroutines.

* Branch backwards to form loops.

» Branch forward in conditional structures.

* Make the following instruction conditional without branching.
» Change the processor between A32 state and T32 state.

Data processing

These instructions operate on the general-purpose registers. They can perform operations such as addition,
subtraction, or bitwise logic on the contents of two registers and place the result in a third register. They can
also operate on the value in a single register, or on a value in a register and an immediate value supplied
within the instruction.

Long multiply instructions give a 64-bit result in two registers.

Register load and
store

These instructions load or store the value of a single register from or to memory. They can load or store a 32-
bit word, a 16-bit halfword, or an 8-bit unsigned byte. Byte and halfword loads can either be sign extended or
zero extended to fill the 32-bit register.

A few instructions are also defined that can load or store 64-bit doubleword values into two 32-bit registers.

Multiple register load
and store

These instructions load or store any subset of the general-purpose registers from or to memory.

Status register access

These instructions move the contents of a status register to or from a general-purpose register.

100076_0200_00_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-41
reserved.
Non-Confidential

A1 Overview of AArch32 state
A1.16 Access to the inline barrel shifter in AArch32 state

A1.16 Access to the inline barrel shifter in AArch32 state
The AArch32 arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate operations.

The second operand to many A32 and T32 data-processing and single register data-transfer instructions
can be shifted, before the data-processing or data-transfer is executed, as part of the instruction. This
supports, but is not limited to:

* Scaled addressing.

* Multiplication by an immediate value.

* Constructing immediate values.

32-bit T32 instructions give almost the same access to the barrel shifter as A32 instructions.

16-bit T32 instructions only allow access to the barrel shifter using separate instructions.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights A1-42
reserved.
Non-Confidential

Part B
Advanced SIMD and Floating-point Programming

Chapter B1
Advanced SIMD Programming

Describes Advanced SIMD assembly language programming.

It contains the following sections:

B1.1 Architecture support for Advanced SIMD on page B1-46.

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47.

B1.3 Views of the Advanced SIMD register bank in AArch32 state on page B1-49.
B1.4 Load values to Advanced SIMD registers on page B1-50.
B1.5 Conditional execution of A32/T32 Advanced SIMD instructions on page B1-51.

B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions on page B1-52.

B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53.

B1.8 Polynomial arithmetic over {0,1} on page B1-54.

B1.9 Advanced SIMD vectors on page B1-55.

B1.10 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-56.
B1.11 Saturating Advanced SIMD instructions on page B1-57.

B1.12 Advanced SIMD scalars on page B1-58.

B1.13 Extended notation extension for Advanced SIMD on page B1-59.

B1.14 Advanced SIMD system registers in AArch32 state on page B1-60.

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61.

B1.16 When to use flush-to-zero mode in Advanced SIMD on page B1-62.

B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63.
B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64.

100076_0200_00_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

B1-45

B1 Advanced SIMD Programming
B1.1 Architecture support for Advanced SIMD

B1.1 Architecture support for Advanced SIMD

Advanced SIMD is an optional extension to the Armv7 architecture.

All Advanced SIMD instructions are available on systems that support Advanced SIMD. Some of these
instructions are also available on systems that implement the floating-point extension without Advanced
SIMD. These are called shared instructions.

The Advanced SIMD register bank consists of thirty-two 64-bit registers, and smaller registers are
packed into larger ones.
Note

Advanced SIMD and floating-point instructions share the same extension register bank.

Related information
Floating-point support

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-46
reserved.
Non-Confidential

https://developer.arm.com/docs/100073/0613/floating-point-support

B1 Advanced SIMD Programming
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

The Advanced SIMD extension register bank is a collection of registers that can be accessed as either 64-
bit or 128-bit registers.

Advanced SIMD and floating-point instructions use the same extension register bank, and is distinct
from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 128-bit register Q0 is an alias for two consecutive 64-bit
registers D@ and D1. The 128-bit register Q8 is an alias for 2 consecutive 64-bit registers D16 and D17.

o
0
o
oo
P
s

D14
L Q7
D15
D16
L Qs
D17

— D30

—Q15—
— D31

Figure B1-1 Extension register bank for Advanced SIMD in AArch32 state

Note

If your processor supports both Advanced SIMD and floating-point, all the Advanced SIMD registers
overlap with the floating-point registers.

The aliased views enable half-precision, single-precision, and double-precision values, and Advanced
SIMD vectors to coexist in different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values, and Advanced SIMD vectors at different times.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-47
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

Do not attempt to use overlapped 64-bit and 128-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:
* D<2n> maps to the least significant half of Q<n>
* D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to
D12, and the most significant half of the elements by referring to D13.

Related concepts
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69
B1.3 Views of the Advanced SIMD register bank in AArch32 state on page B1-49

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-48
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.3 Views of the Advanced SIMD register bank in AArch32 state

B1.3 Views of the Advanced SIMD register bank in AArch32 state

Advanced SIMD can have different views of the extension register bank in AArch32 state.

It can view the extension register bank as:

» Sixteen 128-bit registers, Q0-Q15.

* Thirty-two 64-bit registers, D@-D31.

* A combination of registers from these views.

Advanced SIMD views each register as containing a vector of 1, 2, 4, 8, or 16 elements, all of the same
size and type. Individual elements can also be accessed as scalars.

In Advanced SIMD, the 64-bit registers are called doubleword registers and the 128-bit registers are
called quadword registers.

Related concepts

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47

B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-49
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.4 Load values to Advanced SIMD registers

B1.4 Load values to Advanced SIMD registers

To load a register with a floating-point immediate value, use VMOV instruction. This instruction has scalar
and vector forms.

The Advanced SIMD instructions VMOV and VMVN can also load integer immediates.

Related references

C3.57 VLDR pseudo-instruction on page C3-452
C4.22 VMOV (floating-point) on page C4-569
C3.68 VMOV (immediate) on page C3-463

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-50
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.5 Conditional execution of A32/T32 Advanced SIMD instructions

B1.5 Conditional execution of A32/T32 Advanced SIMD instructions

Most Advanced SIMD instructions always execute unconditionally.

You cannot use any of the following Advanced SIMD instructions in an IT block:
« VCVT{A,N, P, M}.

¢ VMAXNM.

¢ VMINNM.

« VRINT{N, X, A, Z, M, P}.

« All instructions in the Crypto extension.

In addition, specifying any other Advanced SIMD instruction in an IT block is deprecated.

Arm deprecates conditionally executing any Advanced SIMD instruction unless it is a shared Advanced
SIMD and floating-point instruction.

Related concepts

C1.2 Conditional execution in A32 code on page C1-85

C1.3 Conditional execution in T32 code on page C1-86

Related references

C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94

C1.9 Condition code suffixes on page C1-92

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-51
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions

B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions
The Advanced SIMD extension records floating-point exceptions in the FPSCR cumulative flags.
It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
ZET0.

The descriptions of the Advanced SIMD instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
Related references

Chapter Bl Advanced SIMD Programming on page B1-45
Related information

Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-52
reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B1 Advanced SIMD Programming
B1.7 Advanced SIMD data types in A32/T32 instructions

B1.7 Advanced SIMD data types in A32/T32 instructions

Most Advanced SIMD instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in Advanced SIMD instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point. The following table shows the data types available in Advanced SIMD instructions:

Table B1-1 Advanced SIMD data types

8-bit 16-bit | 32-bit 64-bit
Unsigned integer us uie |[U32 u64
Signed integer S8 S16 S32 S64
Integer of unspecified type | I8 Il6 |I32 Ie4
Floating-point number not available | F16 F32 (or F) |notavailable
Polynomial over {0,1} P8 P16 |not available | not available

The datatype of the second (or only) operand is specified in the instruction.
Note

Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:

+ If the description specifies I, you can also use the S or U data types.
» If only the data size is specified, you can specify a type (I, S, U, P or F).
+ Ifno data type is specified, you can specify a data type.

Related concepts
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.8 Polynomial arithmetic over {0,1} on page B1-54

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-53
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.8 Polynomial arithmetic over {0,1}

B1.8 Polynomial arithmetic over {0,1}
The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic.

The following rules apply:
e« 0+0=1+1=0.

e 0+1=1+0=1.

e 0*0=0*1=1%*0=0.
e 1*1=1.

That is, adding two polynomials over {0,1} is the same as a bitwise exclusive OR, and multiplying two
polynomials over {0,1} is the same as integer multiplication except that partial products are exclusive-
ORed instead of being added.

Related concepts
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-54
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.9 Advanced SIMD vectors

B1.9 Advanced SIMD vectors

An Advanced SIMD operand can be a vector or a scalar. An Advanced SIMD vector can be a 64-bit
doubleword vector or a 128-bit quadword vector.

The size of the elements in an Advanced SIMD vector is specified by a datatype suffix appended to the
mnemonic.

Doubleword vectors can contain:

+ Eight 8-bit elements.
« Four 16-bit elements.
e Two 32-bit elements.
¢ One 64-bit element.

Quadword vectors can contain:
» Sixteen 8-bit elements.

» Eight 16-bit elements.

* Four 32-bit elements.

* Two 64-bit elements.

Related concepts

B1.12 Advanced SIMD scalars on page B1-58

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47
B1.13 Extended notation extension for Advanced SIMD on page B1-59

B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53

B1.10 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-56

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-55
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.10 Normal, long, wide, and narrow Advanced SIMD instructions

B1.10 Normal, long, wide, and narrow Advanced SIMD instructions

Many Advanced SIMD data processing instructions are available in Normal, Long, Wide, Narrow, and
saturating variants.

Normal operation

The operands can be any of the vector types. The result vector is the same width, and usually the
same type, as the operand vectors, for example:

VADD.I16 Do, D1, D2

You can specify that the operands and result of a normal Advanced SIMD instruction must all be
quadwords by appending a Q to the instruction mnemonic. If you do this, armasm produces an
error if the operands or result are not quadwords.

Long operation

The operands are doubleword vectors and the result is a quadword vector. The elements of the
result are usually twice the width of the elements of the operands, and the same type.

Long operation is specified using an L appended to the instruction mnemonic, for example:

VADDL.S16 Q@, D2, D3

Wide operation

One operand vector is doubleword and the other is quadword. The result vector is quadword.
The elements of the result and the first operand are twice the width of the elements of the second
operand.

Wide operation is specified using a W appended to the instruction mnemonic, for example:

VADDW.S16 Q@, Q1, D4

Narrow operation

The operands are quadword vectors and the result is a doubleword vector. The elements of the
result are half the width of the elements of the operands.

Narrow operation is specified using an N appended to the instruction mnemonic, for example:

VADDHN.I16 D@, Q1, Q2

Related concepts
B1.9 Advanced SIMD vectors on page B1-55

100076_0200_00_en

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-56
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.11 Saturating Advanced SIMD instructions

B1.11 Saturating Advanced SIMD instructions

Saturating instructions saturate the result to the value of the upper limit or lower limit if the result
overflows or underflows.

The saturation limits depend on the datatype of the instruction. The following table shows the ranges that
Advanced SIMD saturating instructions saturate to, where x is the result of the operation.

Table B1-2 Advanced SIMD saturation ranges

Data type Saturation range of x
Signed byte (S8) 27<=x<27

Signed halfword (516) 2B <=x<2P

Signed word (532) 23l <= x <231

Signed doubleword (564) | -203 <= x <29

Unsigned byte (U8) 0<=x<28

Unsigned halfword (U16) |0 <=x <216

Unsigned word (U32) 0<=x<232

Unsigned doubleword (U64) | 0 <= x <264

Saturating Advanced SIMD arithmetic instructions set the QC bit in the floating-point status register
(FPSCR) to indicate that saturation has occurred.

Saturating instructions are specified using a Q prefix, which is inserted between the V and the instruction
mnemonic.

Related references
C2.7 Saturating instructions on page C2-118

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-57
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.12 Advanced SIMD scalars

B1.12 Advanced SIMD scalars

Some Advanced SIMD instructions act on scalars in combination with vectors. Advanced SIMD scalars
can be 8-bit, 16-bit, 32-bit, or 64-bit.

The instruction syntax refers to a single element in a vector register using an index, x, into the vector, so
that Dm[x] is the xth element in vector Dm.

Except for Advanced SIMD multiply instructions, instructions that access scalars can access any element
in the register bank.

Advanced SIMD multiply instructions only allow 16-bit or 32-bit scalars, and can only access the first 32
scalars in the register bank.

In multiply instructions:
* 16-bit scalars are restricted to registers DO-D7, with x in the range 0-3.
* 32-bit scalars are restricted to registers DO-D15, with x either 0 or 1.

Related concepts
B1.9 Advanced SIMD vectors on page B1-55
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-58
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.13 Extended notation extension for Advanced SIMD

B1.13 Extended notation extension for Advanced SIMD

armasm implements an extension to the architectural Advanced SIMD assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the DN and QN directives to define names for typed and scalar registers.

Related concepts

B1.9 Advanced SIMD vectors on page B1-55

B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.12 Advanced SIMD scalars on page B1-58

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-59
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.14 Advanced SIMD system registers in AArch32 state

B1.14 Advanced SIMD system registers in AArch32 state

Advanced SIMD system registers are accessible in all implementations of Advanced SIMD.

For exception levels using AArch32, the following Advanced SIMD system registers are accessible in all
Advanced SIMD implementations:

* FPSCR, the floating-point status and control register.
* FPEXC, the floating-point exception register.
+ FPSID, the floating-point system ID register.

A particular Advanced SIMD implementation can have additional registers. For more information, see
the Technical Reference Manual for your processor.
Note

Advanced SIMD technology shares the same set of system registers as floating-point.

Related information
Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-60
reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B1 Advanced SIMD Programming
B1.15 Flush-to-zero mode in Advanced SIMD

B1.15 Flush-to-zero mode in Advanced SIMD

Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Flush-to-zero mode in Advanced SIMD always preserves the sign bit.
Advanced SIMD always uses flush-to-zero mode.

Related concepts

B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63
Related references

B1.16 When to use flush-to-zero mode in Advanced SIMD on page B1-62

B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-61
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.16 When to use flush-to-zero mode in Advanced SIMD

B1.16 When to use flush-to-zero mode in Advanced SIMD

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:

» IEEE 754 compliance is not a requirement for your system.

+ The algorithms you are using sometimes generate denormalized numbers.

* Your system uses support code to handle denormalized numbers.

+ The algorithms you are using do not depend for their accuracy on the preservation of denormalized
numbers.

» The algorithms you are using do not generate frequent exceptions as a result of replacing
denormalized numbers with 0.

You select flush-to-zero mode by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and
VMSR instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have
different requirements. Numbers already in registers are not affected by changing mode.

Related concepts
B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-62
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.17 The effects of using flush-to-zero mode in Advanced SIMD

B1.17 The effects of using flush-to-zero mode in Advanced SIMD

In flush-to-zero mode, denormalized inputs are treated as zero. Results that are too small to be
represented in a normalized number are replaced with zero.

With certain exceptions, flush-to-zero mode has the following effects on floating-point operations:

* A denormalized number is treated as 0 when used as an input to a floating-point operation. The
source register is not altered.

+ If the result of a single-precision floating-point operation, before rounding, is in the range -2712% to
+27126 it is replaced by 0.

+ If the result of a double-precision floating-point operation, before rounding, is in the range -271922 to
+271022 it is replaced by 0.

In flush-to-zero mode, an Input Denormal exception occurs whenever a denormalized number is used as
an operand. An Underflow exception occurs when a result is flushed-to-zero.

Related concepts

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61

Related references

B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-63
reserved.
Non-Confidential

B1 Advanced SIMD Programming
B1.18 Advanced SIMD operations not affected by flush-to-zero mode

B1.18 Advanced SIMD operations not affected by flush-to-zero mode

Some Advanced SIMD instructions can be carried out on denormalized numbers even in flush-to-zero
mode, without flushing the results to zero.

These instructions are as follows:

» Copy, absolute value, and negate (VMOV, VMVN, V{Q}ABS, and V{Q}NEG).

* Duplicate (VDUP).

e Swap (VSWP).

* Load and store (VLDR and VSTR).

* Load multiple and store multiple (VLDM and VSTM).

» Transfer between extension registers and AArch32 general-purpose registers (VMOV).

Related concepts

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61

Related references

C3.9 VABS on page C3-401

C4.2 VABS (floating-point) on page C4-549

C3.41 VDUP on page C3-433

C3.54 VLDM on page C3-449

C3.55 VLDR on page C3-450

C3.69 VMOV (register) on page C3-464

C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-465
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-466
C3.139 VSWP on page C3-536

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-64
reserved.
Non-Confidential

Chapter B2
Floating-point Programming

Describes floating-point assembly language programming.

It contains the following sections:
* B2.1 Architecture support for floating-point on page B2-66.

* B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-67.

* B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69.
* B2.4 Load values to floating-point registers on page B2-70.
* B2.5 Conditional execution of A32/T32 floating-point instructions on page B2-71.

* B2.6 Floating-point exceptions for floating-point in A32/T32 instructions on page B2-72.

* B2.7 Floating-point data types in A32/T32 instructions on page B2-73.

* B2.8 Extended notation extension for floating-point code on page B2-74.

* B2.9 Floating-point system registers in AArch32 state on page B2-75.

* B2.10 Flush-to-zero mode in floating-point on page B2-76.

* B2.11 When to use flush-to-zero mode in floating-point on page B2-77.

* B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78.

» B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

B2-65

B2 Floating-point Programming
B2.1 Architecture support for floating-point

B2.1 Architecture support for floating-point

Floating-point is an optional extension to the Arm architecture. There are versions that provide additional
instructions.

The floating-point instruction set is based on VFPv4, but with the addition of some new instructions,
including the following:

» Floating-point round to integral.

» Conversion from floating-point to integer with a directed rounding mode.

» Direct conversion between half-precision and double-precision floating-point.

* Floating-point conditional select.

The register bank consists of thirty-two 64-bit registers, and smaller registers are packed into larger ones,
as in Armv7 and earlier.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-66
reserved.
Non-Confidential

B2 Floating-point Programming
B2.2 Extension register bank mapping for floating-point in AArch32 state

B2.2 Extension register bank mapping for floating-point in AArch32 state

The floating-point extension register bank is a collection of registers that can be accessed as either 32-bit
or 64-bit registers. It is distinct from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 64-bit register DO is an alias for two consecutive 32-bit registers
S0 and S1. The 64-bit registers D16 and D17 do not have an alias.

S0

s1

s2

S3

sS4

S5

S6

s7

S28
—D14—

S29

S30
—D15—

S31
—D16—
— D17
— D30
— D31

Figure B2-1 Extension register bank for floating-point in AArch32 state

The aliased views enable half-precision, single-precision, and double-precision values to coexist in
different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values at different times.

Do not attempt to use overlapped 32-bit and 64-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:

* S<2n> maps to the least significant half of D<n>
e S<2n+1> maps to the most significant half of D<n>

For example, you can access the least significant half of register D6 by referring to S12, and the most
significant half of D6 by referring to S13.

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-67
reserved.
Non-Confidential

B2 Floating-point Programming
B2.2 Extension register bank mapping for floating-point in AArch32 state

Related concepts
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-68
reserved.
Non-Confidential

B2 Floating-point Programming
B2.3 Views of the floating-point extension register bank in AArch32 state

B2.3 Views of the floating-point extension register bank in AArch32 state
Floating-point can have different views of the extension register bank in AArch32 state.

The floating-point extension register bank can be viewed as:

+ Thirty-two 64-bit registers, DO-D31.

* Thirty-two 32-bit registers, S@-S31. Only half of the register bank is accessible in this view.
* A combination of registers from these views.

64-bit floating-point registers are called double-precision registers and can contain double-precision
floating-point values. 32-bit floating-point registers are called single-precision registers and can contain
either a single-precision or two half-precision floating-point values.

Related concepts
B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-67

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-69
reserved.
Non-Confidential

B2 Floating-point Programming
B2.4 Load values to floating-point registers

B2.4 Load values to floating-point registers

To load a register with a floating-point immediate value, use VMOV. This instruction has scalar and vector
forms.

Related references

VLDR pseudo-instruction (floating-point)

C4.22 VMOV (floating-point) on page C4-569

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-70
reserved.
Non-Confidential

B2 Floating-point Programming
B2.5 Conditional execution of A32/T32 floating-point instructions

B2.5 Conditional execution of A32/T32 floating-point instructions

You can execute floating-point instructions conditionally, in the same way as most A32 and T32
instructions.

You cannot use any of the following floating-point instructions in an IT block:
« VRINT{A,N, P, M}.

+ VSEL.

+ VCVT{A,N, P, M}.
+ VMAXNM.

+ VMINNM.

In addition, specifying any other floating-point instruction in an IT block is deprecated.

Most A32 floating-point instructions can be conditionally executed, by appending a condition code suffix
to the instruction.

Related concepts

C1.2 Conditional execution in A32 code on page C1-85

C1.3 Conditional execution in T32 code on page C1-86

Related references

C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94

C1.9 Condition code suffixes on page C1-92

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-71
reserved.
Non-Confidential

B2 Floating-point Programming
B2.6 Floating-point exceptions for floating-point in A32/T32 instructions

B2.6 Floating-point exceptions for floating-point in A32/T32 instructions
The floating-point extension records floating-point exceptions in the FPSCR cumulative flags.
It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
Zero.

The descriptions of the floating-point instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts

B2.10 Flush-to-zero mode in floating-point on page B2-76
Related references

Chapter C4 Floating-point Instructions (32-bit) on page C4-545
Related information

Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-72
reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2 Floating-point Programming
B2.7 Floating-point data types in A32/T32 instructions

B2.7 Floating-point data types in A32/T32 instructions

Most floating-point instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in floating-point instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point.

The following data types are available in floating-point instructions:

16-bit

F16
32-bit

F32 (or F)
64-bit

F64 (or D)

The datatype of the second (or only) operand is specified in the instruction.
Note

* Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:

— If the description specifies I, you can also use the S or U data types.
— If only the data size is specified, you can specify a type (S, U, P or F).
— If no data type is specified, you can specify a data type.

Related concepts
B1.8 Polynomial arithmetic over {0,1} on page B1-54

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-73
reserved.
Non-Confidential

B2 Floating-point Programming
B2.8 Extended notation extension for floating-point code

B2.8 Extended notation extension for floating-point code

armasm implements an extension to the architectural floating-point assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the SN and DN directives to define names for typed and scalar registers.

Related concepts
B2.7 Floating-point data types in A32/T32 instructions on page B2-73

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-74
reserved.
Non-Confidential

B2 Floating-point Programming
B2.9 Floating-point system registers in AArch32 state

B2.9 Floating-point system registers in AArch32 state
Floating-point system registers are accessible in all implementations of floating-point.

For exception levels using AArch32, the following floating-point system registers are accessible in all
floating-point implementations:

» FPSCR, the floating-point status and control register.

* FPEXC, the floating-point exception register.

« FPSID, the floating-point system ID register.

A particular floating-point implementation can have additional registers. For more information, see the
Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-75
reserved.
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2 Floating-point Programming
B2.10 Flush-to-zero mode in floating-point

B2.10 Flush-to-zero mode in floating-point

Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Some implementations of floating-point use support code to handle denormalized numbers. The
performance of such systems, in calculations involving denormalized numbers, is much less than it is in
normal calculations.

Flush-to-zero mode in floating-point always preserves the sign bit.

Related concepts

B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78
Related references

B2.11 When to use flush-to-zero mode in floating-point on page B2-77

B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-76
reserved.
Non-Confidential

B2 Floating-point Programming
B2.11 When to use flush-to-zero mode in floating-point

B2.11 When to use flush-to-zero mode in floating-point

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:

» IEEE 754 compliance is not a requirement for your system.

+ The algorithms you are using sometimes generate denormalized numbers.

* Your system uses support code to handle denormalized numbers.

* The algorithms you are using do not depend for their accuracy on the preservation of denormalized
numbers.

» The algorithms you are using do not generate frequent excepti