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Preface

This preface introduces the Instruction Set Assembly Guide for Armv7 and earlier Arm® architectures
Reference Guide.

It contains the following:
*  About this book on page 20.
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Preface
Using this book

About this book

Arm® Instruction Set Assembly Guide for Armv7 and earlier Arm architectures. This document contains

an overview of the Arm architecture and information on A32 and T32 instruction sets. For assembler-

specific features, such as additional pseudo-instructions, see the documentation for your assembler.
Using this book

This book is organized into the following chapters:

Part A Instruction Set Overview

Chapter A1 Overview of AArch32 state
Gives an overview of the AArch32 state.

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
Describes Advanced SIMD assembly language programming.

Chapter B2 Floating-point Programming
Describes floating-point assembly language programming.

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
Describes condition codes and conditional execution of A32 and T32 code.

Chapter C2 A32 and T32 Instructions
Describes the A32 and T32 instructions supported in AArch32 state.

Chapter C3 Advanced SIMD Instructions (32-bit)
Describes Advanced SIMD assembly language instructions.

Chapter C4 Floating-point Instructions (32-bit)
Describes floating-point assembly language instructions.

Chapter C5 A32/T32 Cryptographic Algorithms
Lists the cryptographic algorithms that A32 and T32 SIMD instructions support.
Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.
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Feedback

Preface
Feedback

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC p15, ©, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

» The title Instruction Set Assembly Guide for Armv7 and earlier Arm architectures Reference Guide.
e The number 100076_0200 00 en.

« Ifapplicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

Other information

o Arm® Developer-.

o Arm® Information Center.

o Arm® Technical Support Knowledge Articles.
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Part A

Instruction Set Overview






Chapter A1
Overview of AArch32 state

Gives an overview of the AArch32 state.

It contains the following sections:

* Al.l Terminology on page A1-26.

* Al.2 Changing between A32 and T32 instruction set states on page A1-27.

* Al.3 Processor modes, and privileged and unprivileged sofiware execution on page A1-28.
* Al.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M on page A1-29.
* Al.5 Registers in AArch32 state on page A1-30.

*  Al.6 General-purpose registers in AArch32 state on page A1-32.

* Al.7 Register accesses in AArch32 state on page A1-33.

*  A1.8 Predeclared core register names in AArch32 state on page Al-34.

*  A1.9 Predeclared extension register names in AArch32 state on page A1-35.
*  A1.10 Program Counter in AArch32 state on page A1-36.

o Al.1ll The O flag in AArch32 state on page A1-37.

* Al.12 Application Program Status Register on page A1-38.

* Al.13 Current Program Status Register in AArch32 state on page A1-39.

» Al.14 Saved Program Status Registers in AArch32 state on page A1-40.

o Al.15 A32 and T32 instruction set overview on page Al-41.

* Al.16 Access to the inline barrel shifter in AArch32 state on page A1-42.
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A1 Overview of AArch32 state
A1.1 Terminology

A11 Terminology
This document uses the following terms to refer to instruction sets.
Instruction sets for Armv7 and earlier architectures were called the ARM and Thumb instruction sets.

This document describes the instruction sets for Armv7 and earlier architectures, but uses terminology
that is introduced with Armv8:

A32
The A32 instruction set was previously called the ARM instruction set. It is a fixed-length
instruction set that uses 32-bit instruction encodings.

T32
The T32 instruction set was previously called the Thumb instruction set. It is a variable-length
instruction set that uses both 16-bit and 32-bit instruction.

AArch32
The AArch32 Execution state supports the A32 and T32 instruction sets.

The Arm 32-bit Execution state uses 32-bit general purpose registers, and a 32-bit program counter (PC),
stack pointer (SP), and link register (LR). In implementations of the Arm architecture beforeArmv8,
execution is always in AArch32 state.

Note

Some examples and descriptions in this document might apply only to the armasm legacy assembler.
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A1 Overview of AArch32 state
A1.2 Changing between A32 and T32 instruction set states

A1.2 Changing between A32 and T32 instruction set states

A processor that is executing A32 instructions is operating in 432 instruction set state. A processor that
is executing T32 instructions is operating in 732 instruction set state. For brevity, this document refers to
them as the 432 state and T32 state respectively.

A processor in A32 state cannot execute T32 instructions, and a processor in T32 state cannot execute
A32 instructions. You must ensure that the processor never receives instructions of the wrong instruction
set for the current state.

The initial state after reset depends on the processor being used and its configuration.

To direct armasm to generate A32 or T32 instruction encodings, you must set the assembler mode using
an ARM or THUMB directive. Assembly code using CODE32 and CODE16 directives can still be assembled,
but Arm recommends you use the ARM and THUMB directives for new code.

These directives do not change the instruction set state of the processor. To do this, you must use an
appropriate instruction, for example BX or BLX to change between A32 and T32 states when performing a
branch.

Related references
C2.20 BLX, BLXNS on page C2-140
C2.21 BX, BXNS on page C2-142
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A1.3 Processor modes, and privileged and unprivileged software execution

A1.3 Processor modes, and privileged and unprivileged software execution

The Arm architecture supports different levels of execution privilege. The privilege level depends on the
processor mode.

Note

Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline do not support the same modes as
other Arm architectures and profiles. Some of the processor modes listed here do not apply to these
architectures.

Table A1-1 AArch32 processor modes

Processor mode | Mode number
User 0b10000
FIQ 0b10001
IRQ 0b10010
Supervisor 0b10011
Monitor 0b10110
Abort 0b10111
Hyp 0b11010
Undefined 0b11011
System Ob11111

User mode is an unprivileged mode, and has restricted access to system resources. All other modes have
full access to system resources in the current security state, can change mode freely, and execute
software as privileged.

Applications that require task protection usually execute in User mode. Some embedded applications
might run entirely in any mode other than User mode. An application that requires full access to system
resources usually executes in System mode.

Modes other than User mode are entered to service exceptions, or to access privileged resources.

Code can run in either a Secure state or in a Non-secure state. Hypervisor (Hyp) mode has privileged
execution in Non-secure state.

Related concepts
Al.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M on page A1-29
Related information

Arm Architecture Reference Manual
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A1 Overview of AArch32 state
A1.4 Processor modes in Armv6-M, Armv7-M, and Armv8-M

Al14 Processor modes in Armv6-M, Armv7-M, and Armv8-M

The processor modes available in Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline are
Thread mode and Handler mode.

Thread mode is the normal mode that programs run in. Thread mode can be privileged or unprivileged
software execution. Handler mode is the mode that exceptions are handled in. It is always privileged
software execution.

Related concepts
A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28
Related information

Arm Architecture Reference Manual
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A1.5 Registers in AArch32 state

A1.5 Registers in AArch32 state

Arm processors provide general-purpose and special-purpose registers. Some additional registers are
available in privileged execution modes.

In all Arm processors in AArch32 state, the following registers are available and accessible in any
processor mode:

* 15 general-purpose registers R0-R12, the Stack Pointer (SP), and Link Register (LR).
* 1 Program Counter (PC).
» 1 Application Program Status Register (APSR).

Note

* SPand LR can be used as general-purpose registers, although Arm deprecates using SP other than as
a stack pointer.

Additional registers are available in privileged software execution. Arm processors have a total of 43
registers. The registers are arranged in partially overlapping banks. There is a different register bank for
each processor mode. The banked registers give rapid context switching for dealing with processor
exceptions and privileged operations.

The additional registers in Arm processors are:

» 2 supervisor mode registers for banked SP and LR.

* 2 abort mode registers for banked SP and LR.

* 2 undefined mode registers for banked SP and LR.

* 2 interrupt mode registers for banked SP and LR.

* 7 FIQ mode registers for banked R8-R12, SP and LR.

* 2 monitor mode registers for banked SP and LR.

* 1 Hyp mode register for banked SP.

» 7 Saved Program Status Register (SPSRs), one for each exception mode.

* 1 Hyp mode register for ELR Hyp to store the preferred return address from Hyp mode.

Note

In privileged software execution, CPSR is an alias for APSR and gives access to additional bits.

The following figure shows how the registers are banked in the Arm architecture.
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Application
level view

System level view

A1 Overview of AArch32 state
A1.5 Registers in AArch32 state

f I )

User | System Hyp T Supervisor Abort Undefined | Monitor * IRQ FIQ
RO RO_usr
R1 R1_usr
R2 R2_usr
R3 R3_usr
R4 R4 _usr
R5 R5_usr
R6 R6_usr
R7 R7_usr
R8 R8_usr R8_fiq
R9 R9_usr R9 _fiq
R10 R10_usr R10_fiq
R11 R11_usr R11_figq
R12 R12_usr R12_fiq
SP SP_usr SP_hyp SP_svc SP_abt SP_und SP_mon SP_irq SP_fiq
LR LR _usr LR_svc LR_abt LR _und LR_mon LR irq LR _fiq
PC PC
[APSR |[cPsR

SPSR_hyp |SPSR_svc [SPSR_abt [SPSR_und [SPSR_mon|SPSR_irq |SPSR fig
ELR_hyp

T Exists only in Secure state.

T Exists only in Non-secure state.
Cells with no entry indicate that the User mode register is used.

Figure A1-1 Organization of general-purpose registers and Program Status Registers

In Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline based processors, SP is an alias
for the two banked stack pointer registers:
* Main stack pointer register, that is only available in privileged software execution.
* Process stack pointer register.

Related concepts

Al.6 General-purpose registers in AArch32 state on page A1-32

Al1.10 Program Counter in AArch32 state on page A1-36

Al.12 Application Program Status Register on page A1-38
Al.14 Saved Program Status Registers in AArch32 state on page A1-40
Al.13 Current Program Status Register in AArch32 state on page A1-39

A1.3 Processor modes, and privileged and unprivileged software execution on page A1-28

Related information

Arm Architecture Reference Manual
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A1 Overview of AArch32 state
A1.6 General-purpose registers in AArch32 state

A1.6 General-purpose registers in AArch32 state
There are restrictions on the use of SP and LR as general-purpose registers.

With the exception of Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline based
processors, there are 33 general-purpose 32-bit registers, including the banked SP and LR registers.
Fifteen general-purpose registers are visible at any one time, depending on the current processor mode.
These are R0-R12, SP, and LR. The PC (R15) is not considered a general-purpose register.

SP (or R13) is the stack pointer. The C and C++ compilers always use SP as the stack pointer. Arm
deprecates most uses of SP as a general purpose register. In T32 state, SP is strictly defined as the stack
pointer. The instruction descriptions in Chapter C2 A32 and T32 Instructions on page C2-101 describe
when SP and PC can be used.

In User mode, LR (or R14) is used as a link register to store the return address when a subroutine call is
made. It can also be used as a general-purpose register if the return address is stored on the stack.

In the exception handling modes, LR holds the return address for the exception, or a subroutine return
address if subroutine calls are executed within an exception. LR can be used as a general-purpose register
if the return address is stored on the stack.

Related concepts

Al1.10 Program Counter in AArch32 state on page A1-36

Al1.7 Register accesses in AArch32 state on page A1-33

Related references

A1.8 Predeclared core register names in AArch32 state on page Al1-34
C2.62 MRS (PSR to general-purpose register) on page C2-204

C2.65 MSR (general-purpose register to PSR) on page C2-208
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A1 Overview of AArch32 state
A1.7 Register accesses in AArch32 state

A1.7 Register accesses in AArch32 state

16-bit T32 instructions can access only a limited set of registers. There are also some restrictions on the
use of special-purpose registers by A32 and 32-bit T32 instructions.

Most 16-bit T32 instructions can only access RO to R7. Only a small number of T32 instructions can
access R8-R12, SP, LR, and PC. Registers RO to R7 are called Lo registers. Registers R8-R12, SP, LR,
and PC are called Hi registers.

All 32-bit T32 instructions can access R0 to R12, and LR. However, apart from a few designated stack
manipulation instructions, most T32 instructions cannot use SP. Except for a few specific instructions
where PC is useful, most T32 instructions cannot use PC.

In A32 state, all instructions can access RO to R12, SP, and LR, and most instructions can also access PC
(R15). However, the use of the SP in an A32 instruction, in any way that is not possible in the
corresponding T32 instruction, is deprecated. Explicit use of the PC in an A32 instruction is not usually
useful, and except for specific instances that are useful, such use is deprecated. Implicit use of the PC, for
example in branch instructions or load (literal) instructions, is never deprecated.

The MRS instructions can move the contents of a status register to a general-purpose register, where they
can be manipulated by normal data processing operations. You can use the MSR instruction to move the
contents of a general-purpose register to a status register.

Related concepts

Al.6 General-purpose registers in AArch32 state on page A1-32

Al.10 Program Counter in AArch32 state on page A1-36

Al.12 Application Program Status Register on page A1-38

Al.13 Current Program Status Register in AArch32 state on page A1-39
Al.14 Saved Program Status Registers in AArch32 state on page A1-40
Related references

Al1.8 Predeclared core register names in AArch32 state on page A1-34
C2.62 MRS (PSR to general-purpose register) on page C2-204

C2.65 MSR (general-purpose register to PSR) on page C2-208
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A1.8 Predeclared core register names in AArch32 state

A1.8 Predeclared core register names in AArch32 state
Many of the core register names have synonyms.

The following table shows the predeclared core registers:

Table A1-2 Predeclared core registers in AArch32 state

Register names Meaning

ro-ri15 and RO-R15 | General purpose registers.

al-a4 Argument, result or scratch registers. These are synonyms for RO to R3.
vl-v8 Variable registers. These are synonyms for R4 to R11.

SB Static base register. This is a synonym for R9.

IpP Intra-procedure call scratch register. This is a synonym for R12.

SP Stack pointer. This is a synonym for R13.

LR Link register. This is a synonym for R14.

PC Program counter. This is a synonym for R15.

With the exception of al-a4 and v1-v8, you can write the register names either in all upper case or all
lower case.

Related concepts
Al.6 General-purpose registers in AArch32 state on page A1-32
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A1.9 Predeclared extension register names in AArch32 state

A1.9 Predeclared extension register names in AArch32 state

You can write the names of Advanced SIMD and floating-point registers either in upper case or lower

case.

The following table shows the predeclared extension register names:

Table A1-3 Predeclared extension registers in AArch32 state

Register names

Meaning

00-015

Advanced SIMD quadword registers

De-D31

Advanced SIMD doubleword registers, floating-point double-precision registers

S0-S31

Floating-point single-precision registers

You can write the register names either in upper case or lower case.
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A1.10 Program Counter in AArch32 state

A1.10 Program Counter in AArch32 state

You can use the Program Counter explicitly, for example in some T32 data processing instructions, and
implicitly, for example in branch instructions.

The Program Counter (PC) is accessed as PC (or R15). It is incremented by the size of the instruction
executed, which is always four bytes in A32 state. Branch instructions load the destination address into
the PC. You can also load the PC directly using data operation instructions. For example, to branch to the
address in a general purpose register, use:

MOV PC,RO

During execution, the PC does not contain the address of the currently executing instruction. The address
of the currently executing instruction is typically PC-8 for A32, or PC-4 for T32.

Note

Arm recommends you use the BX instruction to jump to an address or to return from a function, rather
than writing to the PC directly.

Related references

C2.14 B on page C2-132

C2.21 BX, BXNS on page C2-142
C2.23 CBZ and CBNZ on page C2-145
C2.154 TBB and TBH on page C2-333
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A1.11 The Q flag in AArch32 state

A1.11  The Q flag in AArch32 state

The Q flag indicates overflow or saturation. It is one of the program status flags held in the APSR.

The Q flag is set to 1 when saturation occurs in saturating arithmetic instructions, or when overflow
occurs in certain multiply instructions.

The Q flag is a sticky flag. Although the saturating and certain multiply instructions can set the flag, they
cannot clear it. You can execute a series of such instructions, and then test the flag to find out whether
saturation or overflow occurred at any point in the series, without having to check the flag after each
instruction.

To clear the Q flag, use an MSR instruction to read-modify-write the APSR:

MRS r5, APSR
BIC r5, r5, #(1<<27)
MSR APSR_nzcvqg, r5

The state of the Q flag cannot be tested directly by the condition codes. To read the state of the Q flag,
use an MRS instruction.

MRS r6, APSR
TST r6, #(1<<27); Z is clear if Q flag was set

Related references

C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.75 QADD on page C2-223

C2.125 SMULxy on page C2-285

C2.127 SMULWy on page C2-287
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A1.12 Application Program Status Register

A1.12 Application Program Status Register

The Application Program Status Register (APSR) holds the program status flags that are accessible in
any processor mode.

It holds copies of the N, Z, C, and V condition flags. The processor uses them to determine whether or
not to execute conditional instructions.

The APSR also holds:

» The Q (saturation) flag.

» The APSR also holds the GE (Greater than or Equal) flags. The GE flags can be set by the parallel

add and subtract instructions. They are used by the SEL instruction to perform byte-based selection
from two registers.

These flags are accessible in all modes, using the MSR and MRS instructions.

Related concepts

C1.1 Conditional instructions on page C1-84

Related references

C1.5 Updates to the condition flags in A32/T32 code on page C1-88
C2.62 MRS (PSR to general-purpose register) on page C2-204
C2.65 MSR (general-purpose register to PSR) on page C2-208
C2.100 SEL on page C2-257
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A1.13 Current Program Status Register in AArch32 state

A1.13  Current Program Status Register in AArch32 state

The Current Program Status Register (CPSR) holds the same program status flags as the APSR, and
some additional information.

It holds:

» The APSR flags.

* The processor mode.

* The interrupt disable flags.

» The instruction set state (A32 or T32).

» The endianness state.

» The execution state bits for the IT block.

The execution state bits control conditional execution in the IT block.

Only the APSR flags are accessible in all modes. Arm deprecates using an MSR instruction to change the
endianness bit (E) of the CPSR, in any mode. Each exception level can have its own endianness, but
mixed endianness within an exception level is deprecated.

The SETEND instruction is deprecated.

The execution state bits for the IT block (IT[1:0]) and the T32 bit (T) can be accessed by MRS only in
Debug state.

Related concepts

Al.14 Saved Program Status Registers in AArch32 state on page A1-40
Related references

C2.41 IT on page C2-169

C2.62 MRS (PSR to general-purpose register) on page C2-204

C2.65 MSR (general-purpose register to PSR) on page C2-208

C2.101 SETEND on page C2-259

C1.5 Updates to the condition flags in A32/T32 code on page C1-88
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A1.14 Saved Program Status Registers in AArch32 state

A1.14  Saved Program Status Registers in AArch32 state

The Saved Program Status Register (SPSR) stores the current value of the CPSR when an exception is
taken so that it can be restored after handling the exception.

Each exception handling mode can access its own SPSR. User mode and System mode do not have an
SPSR because they are not exception handling modes.

The execution state bits, including the endianness state and current instruction set state can be accessed
from the SPSR in any exception mode, using the MSR and MRS instructions. You cannot access the SPSR
using MSR or MRS in User or System mode.

Related concepts
Al1.13 Current Program Status Register in AArch32 state on page A1-39
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A1.15 A32 and T32 instruction set overview

A32 and T32 instruction set overview

A32 and T32 instructions can be grouped by functional area.

All A32 instructions are 32 bits long. Instructions are stored word-aligned, so the least significant two
bits of instruction addresses are always zero in A32 state.

T32 instructions are either 16 or 32 bits long. Instructions are stored half-word aligned. Some
instructions use the least significant bit of the address to determine whether the code being branched to is
T32 or A32.

Before the introduction of 32-bit T32 instructions, the T32 instruction set was limited to a restricted
subset of the functionality of the A32 instruction set. Almost all T32 instructions were 16-bit. Together,
the 32-bit and 16-bit T32 instructions provide functionality that is almost identical to that of the A32

instruction set.

The following table describes some of the functional groupings of the available instructions.

Table A1-4 A32 instruction groups

Instruction group

Description

Branch and control

These instructions do the following:

+ Branch to subroutines.

*  Branch backwards to form loops.

» Branch forward in conditional structures.

* Make the following instruction conditional without branching.
» Change the processor between A32 state and T32 state.

Data processing

These instructions operate on the general-purpose registers. They can perform operations such as addition,
subtraction, or bitwise logic on the contents of two registers and place the result in a third register. They can
also operate on the value in a single register, or on a value in a register and an immediate value supplied
within the instruction.

Long multiply instructions give a 64-bit result in two registers.

Register load and
store

These instructions load or store the value of a single register from or to memory. They can load or store a 32-
bit word, a 16-bit halfword, or an 8-bit unsigned byte. Byte and halfword loads can either be sign extended or
zero extended to fill the 32-bit register.

A few instructions are also defined that can load or store 64-bit doubleword values into two 32-bit registers.

Multiple register load
and store

These instructions load or store any subset of the general-purpose registers from or to memory.

Status register access

These instructions move the contents of a status register to or from a general-purpose register.
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A1.16 Access to the inline barrel shifter in AArch32 state

A1.16  Access to the inline barrel shifter in AArch32 state
The AArch32 arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate operations.

The second operand to many A32 and T32 data-processing and single register data-transfer instructions
can be shifted, before the data-processing or data-transfer is executed, as part of the instruction. This
supports, but is not limited to:

* Scaled addressing.

* Multiplication by an immediate value.

* Constructing immediate values.

32-bit T32 instructions give almost the same access to the barrel shifter as A32 instructions.

16-bit T32 instructions only allow access to the barrel shifter using separate instructions.
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Chapter B1
Advanced SIMD Programming

Describes Advanced SIMD assembly language programming.

It contains the following sections:

B1.1 Architecture support for Advanced SIMD on page B1-46.

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47.

B1.3 Views of the Advanced SIMD register bank in AArch32 state on page B1-49.
B1.4 Load values to Advanced SIMD registers on page B1-50.
B1.5 Conditional execution of A32/T32 Advanced SIMD instructions on page B1-51.

B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions on page B1-52.

B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53.

B1.8 Polynomial arithmetic over {0,1} on page B1-54.

B1.9 Advanced SIMD vectors on page B1-55.

B1.10 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-56.
B1.11 Saturating Advanced SIMD instructions on page B1-57.

B1.12 Advanced SIMD scalars on page B1-58.

B1.13 Extended notation extension for Advanced SIMD on page B1-59.

B1.14 Advanced SIMD system registers in AArch32 state on page B1-60.

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61.

B1.16 When to use flush-to-zero mode in Advanced SIMD on page B1-62.

B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63.
B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64.
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B1.1 Architecture support for Advanced SIMD

B1.1 Architecture support for Advanced SIMD

Advanced SIMD is an optional extension to the Armv7 architecture.

All Advanced SIMD instructions are available on systems that support Advanced SIMD. Some of these
instructions are also available on systems that implement the floating-point extension without Advanced
SIMD. These are called shared instructions.

The Advanced SIMD register bank consists of thirty-two 64-bit registers, and smaller registers are
packed into larger ones.
Note

Advanced SIMD and floating-point instructions share the same extension register bank.

Related information
Floating-point support
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B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

The Advanced SIMD extension register bank is a collection of registers that can be accessed as either 64-
bit or 128-bit registers.

Advanced SIMD and floating-point instructions use the same extension register bank, and is distinct
from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 128-bit register Q0 is an alias for two consecutive 64-bit
registers D@ and D1. The 128-bit register Q8 is an alias for 2 consecutive 64-bit registers D16 and D17.

o
0
o
oo
P
s

D14
L Q7
D15
D16
L Qs
D17

— D30

—Q15—
— D31

Figure B1-1 Extension register bank for Advanced SIMD in AArch32 state

Note

If your processor supports both Advanced SIMD and floating-point, all the Advanced SIMD registers
overlap with the floating-point registers.

The aliased views enable half-precision, single-precision, and double-precision values, and Advanced
SIMD vectors to coexist in different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values, and Advanced SIMD vectors at different times.
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B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

Do not attempt to use overlapped 64-bit and 128-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:
* D<2n> maps to the least significant half of Q<n>
*  D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to
D12, and the most significant half of the elements by referring to D13.

Related concepts
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69
B1.3 Views of the Advanced SIMD register bank in AArch32 state on page B1-49
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B1.3 Views of the Advanced SIMD register bank in AArch32 state

Advanced SIMD can have different views of the extension register bank in AArch32 state.

It can view the extension register bank as:

» Sixteen 128-bit registers, Q0-Q15.

* Thirty-two 64-bit registers, D@-D31.

* A combination of registers from these views.

Advanced SIMD views each register as containing a vector of 1, 2, 4, 8, or 16 elements, all of the same
size and type. Individual elements can also be accessed as scalars.

In Advanced SIMD, the 64-bit registers are called doubleword registers and the 128-bit registers are
called quadword registers.

Related concepts

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47

B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69
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B1.4 Load values to Advanced SIMD registers

To load a register with a floating-point immediate value, use VMOV instruction. This instruction has scalar
and vector forms.

The Advanced SIMD instructions VMOV and VMVN can also load integer immediates.

Related references

C3.57 VLDR pseudo-instruction on page C3-452
C4.22 VMOV (floating-point) on page C4-569
C3.68 VMOV (immediate) on page C3-463
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B1.5 Conditional execution of A32/T32 Advanced SIMD instructions

Most Advanced SIMD instructions always execute unconditionally.

You cannot use any of the following Advanced SIMD instructions in an IT block:
« VCVT{A,N, P, M}.

¢ VMAXNM.

¢ VMINNM.

« VRINT{N, X, A, Z, M, P}.

« All instructions in the Crypto extension.

In addition, specifying any other Advanced SIMD instruction in an IT block is deprecated.

Arm deprecates conditionally executing any Advanced SIMD instruction unless it is a shared Advanced
SIMD and floating-point instruction.

Related concepts

C1.2 Conditional execution in A32 code on page C1-85

C1.3 Conditional execution in T32 code on page C1-86

Related references

C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94

C1.9 Condition code suffixes on page C1-92

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B1-51
reserved.
Non-Confidential



B1 Advanced SIMD Programming
B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions

B1.6 Floating-point exceptions for Advanced SIMD in A32/T32 instructions
The Advanced SIMD extension records floating-point exceptions in the FPSCR cumulative flags.
It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
ZET0.

The descriptions of the Advanced SIMD instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
Related references

Chapter Bl Advanced SIMD Programming on page B1-45
Related information

Arm Architecture Reference Manual
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B1.7 Advanced SIMD data types in A32/T32 instructions

Most Advanced SIMD instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in Advanced SIMD instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point. The following table shows the data types available in Advanced SIMD instructions:

Table B1-1 Advanced SIMD data types

8-bit 16-bit | 32-bit 64-bit
Unsigned integer us uie |[U32 u64
Signed integer S8 S16 S32 S64
Integer of unspecified type | I8 Il6 |I32 Ie4
Floating-point number not available | F16 F32 (or F) |notavailable
Polynomial over {0,1} P8 P16 |not available | not available

The datatype of the second (or only) operand is specified in the instruction.
Note

Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:

+ If the description specifies I, you can also use the S or U data types.
» If only the data size is specified, you can specify a type (I, S, U, P or F).
+ Ifno data type is specified, you can specify a data type.

Related concepts
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.8 Polynomial arithmetic over {0,1} on page B1-54
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B1.8 Polynomial arithmetic over {0,1}
The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic.

The following rules apply:
e« 0+0=1+1=0.

e 0+1=1+0=1.

e 0*0=0*1=1%*0=0.
e 1*1=1.

That is, adding two polynomials over {0,1} is the same as a bitwise exclusive OR, and multiplying two
polynomials over {0,1} is the same as integer multiplication except that partial products are exclusive-
ORed instead of being added.

Related concepts
B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
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B1.9 Advanced SIMD vectors

An Advanced SIMD operand can be a vector or a scalar. An Advanced SIMD vector can be a 64-bit
doubleword vector or a 128-bit quadword vector.

The size of the elements in an Advanced SIMD vector is specified by a datatype suffix appended to the
mnemonic.

Doubleword vectors can contain:

+ Eight 8-bit elements.
« Four 16-bit elements.
e Two 32-bit elements.
¢ One 64-bit element.

Quadword vectors can contain:
» Sixteen 8-bit elements.

» Eight 16-bit elements.

* Four 32-bit elements.

*  Two 64-bit elements.

Related concepts

B1.12 Advanced SIMD scalars on page B1-58

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47
B1.13 Extended notation extension for Advanced SIMD on page B1-59

B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53

B1.10 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-56
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B1.10 Normal, long, wide, and narrow Advanced SIMD instructions

Many Advanced SIMD data processing instructions are available in Normal, Long, Wide, Narrow, and
saturating variants.

Normal operation

The operands can be any of the vector types. The result vector is the same width, and usually the
same type, as the operand vectors, for example:

VADD.I16 Do, D1, D2

You can specify that the operands and result of a normal Advanced SIMD instruction must all be
quadwords by appending a Q to the instruction mnemonic. If you do this, armasm produces an
error if the operands or result are not quadwords.

Long operation

The operands are doubleword vectors and the result is a quadword vector. The elements of the
result are usually twice the width of the elements of the operands, and the same type.

Long operation is specified using an L appended to the instruction mnemonic, for example:

VADDL.S16 Q@, D2, D3

Wide operation

One operand vector is doubleword and the other is quadword. The result vector is quadword.
The elements of the result and the first operand are twice the width of the elements of the second
operand.

Wide operation is specified using a W appended to the instruction mnemonic, for example:

VADDW.S16 Q@, Q1, D4

Narrow operation

The operands are quadword vectors and the result is a doubleword vector. The elements of the
result are half the width of the elements of the operands.

Narrow operation is specified using an N appended to the instruction mnemonic, for example:

VADDHN.I16 D@, Q1, Q2

Related concepts
B1.9 Advanced SIMD vectors on page B1-55
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B1.11  Saturating Advanced SIMD instructions

Saturating instructions saturate the result to the value of the upper limit or lower limit if the result
overflows or underflows.

The saturation limits depend on the datatype of the instruction. The following table shows the ranges that
Advanced SIMD saturating instructions saturate to, where x is the result of the operation.

Table B1-2 Advanced SIMD saturation ranges

Data type Saturation range of x
Signed byte (S8) 27<=x<27

Signed halfword (516) 2B <=x<2P

Signed word (532) 23l <= x <231

Signed doubleword (564) | -203 <= x <29

Unsigned byte (U8) 0<=x<28

Unsigned halfword (U16) |0 <=x <216

Unsigned word (U32) 0<=x<232

Unsigned doubleword (U64) | 0 <= x <264

Saturating Advanced SIMD arithmetic instructions set the QC bit in the floating-point status register
(FPSCR) to indicate that saturation has occurred.

Saturating instructions are specified using a Q prefix, which is inserted between the V and the instruction
mnemonic.

Related references
C2.7 Saturating instructions on page C2-118
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B1.12 Advanced SIMD scalars

Some Advanced SIMD instructions act on scalars in combination with vectors. Advanced SIMD scalars
can be 8-bit, 16-bit, 32-bit, or 64-bit.

The instruction syntax refers to a single element in a vector register using an index, x, into the vector, so
that Dm[ x] is the xth element in vector Dm.

Except for Advanced SIMD multiply instructions, instructions that access scalars can access any element
in the register bank.

Advanced SIMD multiply instructions only allow 16-bit or 32-bit scalars, and can only access the first 32
scalars in the register bank.

In multiply instructions:
* 16-bit scalars are restricted to registers DO-D7, with x in the range 0-3.
* 32-bit scalars are restricted to registers DO-D15, with x either 0 or 1.

Related concepts
B1.9 Advanced SIMD vectors on page B1-55
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-47
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B1.13 Extended notation extension for Advanced SIMD

armasm implements an extension to the architectural Advanced SIMD assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the DN and QN directives to define names for typed and scalar registers.

Related concepts

B1.9 Advanced SIMD vectors on page B1-55

B1.7 Advanced SIMD data types in A32/T32 instructions on page B1-53
B1.12 Advanced SIMD scalars on page B1-58
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B1.14 Advanced SIMD system registers in AArch32 state

Advanced SIMD system registers are accessible in all implementations of Advanced SIMD.

For exception levels using AArch32, the following Advanced SIMD system registers are accessible in all
Advanced SIMD implementations:

* FPSCR, the floating-point status and control register.
* FPEXC, the floating-point exception register.
+ FPSID, the floating-point system ID register.

A particular Advanced SIMD implementation can have additional registers. For more information, see
the Technical Reference Manual for your processor.
Note

Advanced SIMD technology shares the same set of system registers as floating-point.

Related information
Arm Architecture Reference Manual
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B1.15 Flush-to-zero mode in Advanced SIMD

Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Flush-to-zero mode in Advanced SIMD always preserves the sign bit.
Advanced SIMD always uses flush-to-zero mode.

Related concepts

B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63
Related references

B1.16 When to use flush-to-zero mode in Advanced SIMD on page B1-62

B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64
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B1.16 When to use flush-to-zero mode in Advanced SIMD

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:

» IEEE 754 compliance is not a requirement for your system.

+ The algorithms you are using sometimes generate denormalized numbers.

*  Your system uses support code to handle denormalized numbers.

+ The algorithms you are using do not depend for their accuracy on the preservation of denormalized
numbers.

» The algorithms you are using do not generate frequent exceptions as a result of replacing
denormalized numbers with 0.

You select flush-to-zero mode by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and
VMSR instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have
different requirements. Numbers already in registers are not affected by changing mode.

Related concepts
B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61
B1.17 The effects of using flush-to-zero mode in Advanced SIMD on page B1-63
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B1.17 The effects of using flush-to-zero mode in Advanced SIMD

In flush-to-zero mode, denormalized inputs are treated as zero. Results that are too small to be
represented in a normalized number are replaced with zero.

With certain exceptions, flush-to-zero mode has the following effects on floating-point operations:

* A denormalized number is treated as 0 when used as an input to a floating-point operation. The
source register is not altered.

+ If the result of a single-precision floating-point operation, before rounding, is in the range -2712% to
+27126 it is replaced by 0.

+ If the result of a double-precision floating-point operation, before rounding, is in the range -271922 to
+271022 it is replaced by 0.

In flush-to-zero mode, an Input Denormal exception occurs whenever a denormalized number is used as
an operand. An Underflow exception occurs when a result is flushed-to-zero.

Related concepts

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61

Related references

B1.18 Advanced SIMD operations not affected by flush-to-zero mode on page B1-64
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B1.18 Advanced SIMD operations not affected by flush-to-zero mode

Some Advanced SIMD instructions can be carried out on denormalized numbers even in flush-to-zero
mode, without flushing the results to zero.

These instructions are as follows:

» Copy, absolute value, and negate (VMOV, VMVN, V{Q}ABS, and V{Q}NEG).

* Duplicate (VDUP).

e Swap (VSWP).

* Load and store (VLDR and VSTR).

* Load multiple and store multiple (VLDM and VSTM).

» Transfer between extension registers and AArch32 general-purpose registers (VMOV).

Related concepts

B1.15 Flush-to-zero mode in Advanced SIMD on page B1-61

Related references

C3.9 VABS on page C3-401

C4.2 VABS (floating-point) on page C4-549

C3.41 VDUP on page C3-433

C3.54 VLDM on page C3-449

C3.55 VLDR on page C3-450

C3.69 VMOV (register) on page C3-464

C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-465
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-466
C3.139 VSWP on page C3-536
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Chapter B2
Floating-point Programming

Describes floating-point assembly language programming.

It contains the following sections:
*  B2.1 Architecture support for floating-point on page B2-66.

* B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-67.

* B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69.
*  B2.4 Load values to floating-point registers on page B2-70.
* B2.5 Conditional execution of A32/T32 floating-point instructions on page B2-71.

* B2.6 Floating-point exceptions for floating-point in A32/T32 instructions on page B2-72.

* B2.7 Floating-point data types in A32/T32 instructions on page B2-73.

* B2.8 Extended notation extension for floating-point code on page B2-74.

* B2.9 Floating-point system registers in AArch32 state on page B2-75.

*  B2.10 Flush-to-zero mode in floating-point on page B2-76.

*  B2.11 When to use flush-to-zero mode in floating-point on page B2-77.

*  B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78.

» B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79.
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B2.1 Architecture support for floating-point

Floating-point is an optional extension to the Arm architecture. There are versions that provide additional
instructions.

The floating-point instruction set is based on VFPv4, but with the addition of some new instructions,
including the following:

» Floating-point round to integral.

» Conversion from floating-point to integer with a directed rounding mode.

» Direct conversion between half-precision and double-precision floating-point.

* Floating-point conditional select.

The register bank consists of thirty-two 64-bit registers, and smaller registers are packed into larger ones,
as in Armv7 and earlier.
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B2.2 Extension register bank mapping for floating-point in AArch32 state

The floating-point extension register bank is a collection of registers that can be accessed as either 32-bit
or 64-bit registers. It is distinct from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 64-bit register DO is an alias for two consecutive 32-bit registers
S0 and S1. The 64-bit registers D16 and D17 do not have an alias.

S0

s1

s2

S3

sS4

S5

S6

s7

S28
—D14—

S29

S30
—D15—

S31
—D16—
— D17
— D30
— D31

Figure B2-1 Extension register bank for floating-point in AArch32 state

The aliased views enable half-precision, single-precision, and double-precision values to coexist in
different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values at different times.

Do not attempt to use overlapped 32-bit and 64-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:

*  S<2n> maps to the least significant half of D<n>
e S<2n+1> maps to the most significant half of D<n>

For example, you can access the least significant half of register D6 by referring to S12, and the most
significant half of D6 by referring to S13.
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Related concepts
B2.3 Views of the floating-point extension register bank in AArch32 state on page B2-69

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-68
reserved.
Non-Confidential



B2 Floating-point Programming
B2.3 Views of the floating-point extension register bank in AArch32 state

B2.3 Views of the floating-point extension register bank in AArch32 state
Floating-point can have different views of the extension register bank in AArch32 state.

The floating-point extension register bank can be viewed as:

+ Thirty-two 64-bit registers, DO-D31.

* Thirty-two 32-bit registers, S@-S31. Only half of the register bank is accessible in this view.
* A combination of registers from these views.

64-bit floating-point registers are called double-precision registers and can contain double-precision
floating-point values. 32-bit floating-point registers are called single-precision registers and can contain
either a single-precision or two half-precision floating-point values.

Related concepts
B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-67
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B2.4 Load values to floating-point registers

To load a register with a floating-point immediate value, use VMOV. This instruction has scalar and vector
forms.

Related references

VLDR pseudo-instruction (floating-point)

C4.22 VMOV (floating-point) on page C4-569
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B2.5 Conditional execution of A32/T32 floating-point instructions

You can execute floating-point instructions conditionally, in the same way as most A32 and T32
instructions.

You cannot use any of the following floating-point instructions in an IT block:
« VRINT{A,N, P, M}.

+  VSEL.

+ VCVT{A,N, P, M}.
+  VMAXNM.

+  VMINNM.

In addition, specifying any other floating-point instruction in an IT block is deprecated.

Most A32 floating-point instructions can be conditionally executed, by appending a condition code suffix
to the instruction.

Related concepts

C1.2 Conditional execution in A32 code on page C1-85

C1.3 Conditional execution in T32 code on page C1-86

Related references

C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-94

C1.9 Condition code suffixes on page C1-92
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B2.6 Floating-point exceptions for floating-point in A32/T32 instructions
The floating-point extension records floating-point exceptions in the FPSCR cumulative flags.
It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
Zero.

The descriptions of the floating-point instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts

B2.10 Flush-to-zero mode in floating-point on page B2-76
Related references

Chapter C4 Floating-point Instructions (32-bit) on page C4-545
Related information

Arm Architecture Reference Manual
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B2.7 Floating-point data types in A32/T32 instructions

Most floating-point instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in floating-point instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point.

The following data types are available in floating-point instructions:

16-bit

F16
32-bit

F32 (or F)
64-bit

F64 (or D)

The datatype of the second (or only) operand is specified in the instruction.
Note

* Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:

— If the description specifies I, you can also use the S or U data types.
— If only the data size is specified, you can specify a type (S, U, P or F).
— If no data type is specified, you can specify a data type.

Related concepts
B1.8 Polynomial arithmetic over {0,1} on page B1-54
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B2.8 Extended notation extension for floating-point code

armasm implements an extension to the architectural floating-point assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the SN and DN directives to define names for typed and scalar registers.

Related concepts
B2.7 Floating-point data types in A32/T32 instructions on page B2-73
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B2.9 Floating-point system registers in AArch32 state
Floating-point system registers are accessible in all implementations of floating-point.

For exception levels using AArch32, the following floating-point system registers are accessible in all
floating-point implementations:

» FPSCR, the floating-point status and control register.

* FPEXC, the floating-point exception register.

« FPSID, the floating-point system ID register.

A particular floating-point implementation can have additional registers. For more information, see the
Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual

100076_0200_00_en Copyright © 2018, 2019 Arm Limited or its affiliates. All rights B2-75
reserved.
Non-Confidential


http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2 Floating-point Programming
B2.10 Flush-to-zero mode in floating-point

B2.10 Flush-to-zero mode in floating-point

Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Some implementations of floating-point use support code to handle denormalized numbers. The
performance of such systems, in calculations involving denormalized numbers, is much less than it is in
normal calculations.

Flush-to-zero mode in floating-point always preserves the sign bit.

Related concepts

B2.12 The effects of using flush-to-zero mode in floating-point on page B2-78
Related references

B2.11 When to use flush-to-zero mode in floating-point on page B2-77

B2.13 Floating-point operations not affected by flush-to-zero mode on page B2-79
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B2.11  When to use flush-to-zero mode in floating-point

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:

» IEEE 754 compliance is not a requirement for your system.

+ The algorithms you are using sometimes generate denormalized numbers.

*  Your system uses support code to handle denormalized numbers.

* The algorithms you are using do not depend for their accuracy on the preservation of denormalized
numbers.

» The algorithms you are using do not generate frequent excepti