
Arm® Compiler
Version 6.11

fromelf User Guide

Copyright © 2014–2018 Arm Limited or its affiliates. All rights reserved.
100071_0611_00_en

Arm® Compiler
fromelf User Guide
Copyright © 2014–2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 04 November 2016 Non-Confidential Arm Compiler v6.6 Release

0607-00 05 April 2017 Non-Confidential Arm Compiler v6.7 Release. Document numbering scheme has
changed.

0608-00 30 July 2017 Non-Confidential Arm Compiler v6.8 Release.

0609-00 25 October 2017 Non-Confidential Arm Compiler v6.9 Release.

0610-00 14 March 2018 Non-Confidential Arm Compiler v6.10 Release.

0611-00 25 October 2018 Non-Confidential Arm Compiler v6.11 Release.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the

 Arm® Compiler

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2014–2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Compiler

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
http://www.arm.com

Contents
Arm® Compiler fromelf User Guide

Preface
About this book 10

Chapter 1 Overview of the fromelf Image Converter
1.1 About the fromelf image converter 1-13
1.2 fromelf execution modes 1-14
1.3 Getting help on the fromelf command 1-15
1.4 fromelf command-line syntax 1-16
1.5 Support level definitions 1-17

Chapter 2 Using fromelf
2.1 General considerations when using fromelf 2-22
2.2 Examples of processing ELF files in an archive .. 2-23
2.3 Options to protect code in image files with fromelf .. 2-24
2.4 Options to protect code in object files with fromelf 2-25
2.5 Option to print specific details of ELF files 2-27
2.6 Using fromelf to find where a symbol is placed in an executable ELF image 2-28

Chapter 3 fromelf Command-line Options
3.1 --base [[object_file::]load_region_ID=]num .. 3-32
3.2 --bin 3-34
3.3 --bincombined .. 3-35
3.4 --bincombined_base=address 3-36
3.5 --bincombined_padding=size,num 3-37

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.6 --cad 3-38
3.7 --cadcombined 3-40
3.8 --compare=option[,option,…] 3-41
3.9 --continue_on_error 3-43
3.10 --cpu=list .. 3-44
3.11 --cpu=name 3-45
3.12 --datasymbols .. 3-48
3.13 --debugonly .. 3-49
3.14 --decode_build_attributes .. 3-50
3.15 --diag_error=tag[,tag,…] .. 3-52
3.16 --diag_remark=tag[,tag,…] 3-53
3.17 --diag_style={arm|ide|gnu} 3-54
3.18 --diag_suppress=tag[,tag,…] 3-55
3.19 --diag_warning=tag[,tag,…] 3-56
3.20 --disassemble 3-57
3.21 --dump_build_attributes 3-58
3.22 --elf 3-59
3.23 --emit=option[,option,…] .. 3-60
3.24 --expandarrays 3-62
3.25 --extract_build_attributes 3-63
3.26 --fieldoffsets 3-64
3.27 --fpu=list 3-66
3.28 --fpu=name .. 3-67
3.29 --globalize=option[,option,…] 3-68
3.30 --help 3-69
3.31 --hide=option[,option,…] .. 3-70
3.32 --hide_and_localize=option[,option,…] .. 3-71
3.33 --i32 3-72
3.34 --i32combined .. 3-73
3.35 --ignore_section=option[,option,…] 3-74
3.36 --ignore_symbol=option[,option,…] 3-75
3.37 --in_place 3-76
3.38 --info=topic[,topic,…] 3-77
3.39 input_file 3-78
3.40 --interleave=option 3-80
3.41 --linkview, --no_linkview 3-81
3.42 --localize=option[,option,…] 3-82
3.43 --m32 3-83
3.44 --m32combined .. 3-84
3.45 --only=section_name 3-85
3.46 --output=destination 3-86
3.47 --privacy 3-87
3.48 --qualify .. 3-88
3.49 --relax_section=option[,option,…] .. 3-89
3.50 --relax_symbol=option[,option,…] .. 3-90
3.51 --rename=option[,option,…] 3-91
3.52 --select=select_options .. 3-92
3.53 --show=option[,option,…] 3-93
3.54 --show_and_globalize=option[,option,…] 3-94
3.55 --show_cmdline 3-95

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

3.56 --source_directory=path 3-96
3.57 --strip=option[,option,…] .. 3-97
3.58 --symbolversions, --no_symbolversions 3-99
3.59 --text 3-100
3.60 --version_number 3-102
3.61 --vhx 3-103
3.62 --via=file 3-104
3.63 --vsn 3-105
3.64 -w 3-106
3.65 --wide64bit 3-107
3.66 --widthxbanks 3-108

Chapter 4 Via File Syntax
4.1 Overview of via files 4-111
4.2 Via file syntax rules .. 4-112

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

List of Figures
Arm® Compiler fromelf User Guide

Figure 1-1 Integration boundaries in Arm Compiler 6. .. 1-19

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

List of Tables
Arm® Compiler fromelf User Guide

Table 2-1 Effect of fromelf --privacy and --strip options on images files .. 2-24
Table 2-2 Effect of fromelf --privacy and --strip options on object files .. 2-25
Table 3-1 Examples of using --base .. 3-32
Table 3-2 Supported Arm architectures ... 3-45

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

Preface

This preface introduces the Arm® Compiler fromelf User Guide.

It contains the following:
• About this book on page 10.

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

 About this book
Arm® Compiler fromelf User Guide provides information on how to use the fromelf utility.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview of the fromelf Image Converter
Gives an overview of the fromelf image converter provided with Arm Compiler.

Chapter 2 Using fromelf
Describes how to use the fromelf image converter provided with Arm Compiler.

Chapter 3 fromelf Command-line Options
Describes the command-line options of the fromelf image converter provided with Arm
Compiler.

Chapter 4 Via File Syntax
Describes the syntax of via files accepted by fromelf.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Preface
 About this book

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Compiler fromelf User Guide.
• The number 100071_0611_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of the fromelf Image Converter

Gives an overview of the fromelf image converter provided with Arm Compiler.

It contains the following sections:
• 1.1 About the fromelf image converter on page 1-13.
• 1.2 fromelf execution modes on page 1-14.
• 1.3 Getting help on the fromelf command on page 1-15.
• 1.4 fromelf command-line syntax on page 1-16.
• 1.5 Support level definitions on page 1-17.

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.1 About the fromelf image converter
The fromelf image conversion utility allows you to modify ELF image and object files, and to display
information on those files.

fromelf allows you to:
• Process Arm ELF object and image files that the compiler, assembler, and linker generate.
• Process all ELF files in an archive that armar creates, and output the processed files into another

archive if necessary.
• Convert ELF images into other formats for use by ROM tools or for direct loading into memory. The

formats available are:
— Plain binary.
— Motorola 32-bit S-record. (AArch32 state only).
— Intel Hex-32. (AArch32 state only).
— Byte oriented (Verilog Memory Model) hexadecimal.

• Display information about the input file, for example, disassembly output or symbol listings, to either
stdout or a text file. Disassembly is generated in armasm assembler syntax and not GNU assembler
syntax.

 Note

If your image is produced without debug information, fromelf cannot:
• Translate the image into other file formats.
• Produce a meaningful disassembly listing.

 Note

The command-line option descriptions and related information in the individual Arm Compiler tools
documents describe all the features that Arm Compiler supports. Any features not documented are not
supported and are used at your own risk. You are responsible for making sure that any generated code
using community features on page 1-17 is operating correctly.

Related concepts
2.3 Options to protect code in image files with fromelf on page 2-24
2.4 Options to protect code in object files with fromelf on page 2-25
Related reference
1.2 fromelf execution modes on page 1-14
1.4 fromelf command-line syntax on page 1-16
Chapter 3 fromelf Command-line Options on page 3-30

1 Overview of the fromelf Image Converter
1.1 About the fromelf image converter

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

1.2 fromelf execution modes
You can run fromelf in various execution modes.

The execution modes are:
• ELF mode (--elf), to resave a file as ELF.
• Text mode (--text, and others), to output information about an object or image file.
• Format conversion mode (--bin, --m32, --i32, --vhx).

Related reference
3.2 --bin on page 3-34
3.22 --elf on page 3-59
3.33 --i32 on page 3-72
3.43 --m32 on page 3-83
3.59 --text on page 3-100
3.61 --vhx on page 3-103

1 Overview of the fromelf Image Converter
1.2 fromelf execution modes

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

1.3 Getting help on the fromelf command
Use the --help option to display a summary of the main command-line options.

This is the default if you do not specify any options or files.

To display the help information, enter:

fromelf --help

Related reference
1.4 fromelf command-line syntax on page 1-16
3.30 --help on page 3-69

1 Overview of the fromelf Image Converter
1.3 Getting help on the fromelf command

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.4 fromelf command-line syntax
You can specify an ELF file or library of ELF files on the fromelf command-line.

Syntax

fromelf options input_file
options

fromelf command-line options.

input_file

The ELF file or library file to be processed. When some options are used, multiple input files
can be specified.

Related reference
Chapter 3 fromelf Command-line Options on page 3-30
3.39 input_file on page 3-78

1 Overview of the fromelf Image Converter
1.4 fromelf command-line syntax

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.5 Support level definitions
This describes the levels of support for various Arm Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore it has more functionality than the set
of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and endeavors to support
users to a level that is appropriate for that feature. You can contact support at https://developer.arm.com/
support.

Identification in the documentation

All features that are documented in the Arm Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• Arm endeavors to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, Arm provides full support for use of all product

features.
• Arm welcomes feedback on product features.
• Any issues with product features that Arm encounters or is made aware of are considered for fixing in

future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.

Beta product features are indicated with [BETA].
• Arm endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of Arm Compiler 6.
• Arm encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are indicated with [ALPHA].
• Arm endeavors to document known limitations of alpha product features.
• Arm encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Community features

Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in Arm Compiler that are not listed in the
documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

1 Overview of the fromelf Image Converter
1.5 Support level definitions

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/support
https://developer.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• Arm makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• Arm makes no guarantees that community features will remain functional across update releases,

although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no roadmap
for this. Arm is interested in understanding your use of these features, and welcomes feedback on them.
Arm supports customers using these features on a best-effort basis, unless the features are unsupported.
Arm accepts defect reports on these features, but does not guarantee that these issues will be fixed in
future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the Arm Compiler 6 toolchain:

1 Overview of the fromelf Image Converter
1.5 Support level definitions

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

armasm syntax
assembly

C/C++
Source code

C/C++
Source code

GNU syntax
Assembly

GNU syntax
Assembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure 1-1 Integration boundaries in Arm Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by Arm Compiler 6. See Application Binary Interface (ABI) for the Arm®

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support

1 Overview of the fromelf Image Converter
1.5 Support level definitions

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive list of
unsupported features or use-cases for community features. The known limitations on community features
are listed in Community features on page 1-17.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• C++ static initialization of local variables is not thread-safe when linked against the standard C++

libraries. For thread-safety, you must provide your own implementation of thread-safe functions as
described in Standard C++ library implementation definition.

 Note

This restriction does not apply to the [ALPHA]-supported multithreaded C++ libraries.

• Use of C11 library features is unsupported.
• Any community feature that exclusively pertains to non-Arm architectures is not supported.
• Compilation for targets that implement architectures older than Armv7 or Armv6‑M is not supported.
• The long double data type is not supported for AArch64 state because of limitations in the current

Arm C library.
• Complex numbers are not supported because of limitations in the current Arm C library.

1 Overview of the fromelf Image Converter
1.5 Support level definitions

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

https://developer.arm.com/docs/100073/0611/the-arm-c-and-c-libraries/iso-c-library-implementation-definition/standard-c-library-implementation-definition

Chapter 2
Using fromelf

Describes how to use the fromelf image converter provided with Arm Compiler.

It contains the following sections:
• 2.1 General considerations when using fromelf on page 2-22.
• 2.2 Examples of processing ELF files in an archive on page 2-23.
• 2.3 Options to protect code in image files with fromelf on page 2-24.
• 2.4 Options to protect code in object files with fromelf on page 2-25.
• 2.5 Option to print specific details of ELF files on page 2-27.
• 2.6 Using fromelf to find where a symbol is placed in an executable ELF image on page 2-28.

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.1 General considerations when using fromelf
There are some changes that you cannot make to an image with fromelf.

When using fromelf you cannot:
• Change the image structure or addresses, other than altering the base address of Motorola S-record or

Intel Hex output with the --base option.
• Change a scatter-loaded ELF image into a non scatter-loaded image in another format. Any structural

or addressing information must be provided to the linker at link time.

Related reference
3.1 --base [[object_file::]load_region_ID=]num on page 3-32
3.39 input_file on page 3-78

2 Using fromelf
2.1 General considerations when using fromelf

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

2.2 Examples of processing ELF files in an archive
Examples of how you can process all ELF files in an archive, or a subset of those files. The processed
files together with any unprocessed files are output to another archive.

Examples

Consider an archive, test.a, containing the following ELF files:

bmw.o
bmw1.o
call_c_code.o
newtst.o
shapes.o
strmtst.o

Example of processing all files in the archive

This example removes all debug, comments, notes and symbols from all the files in the archive:

fromelf --elf --strip=all test.a -o strip_all/

This creates an output archive with the name test.a in the subdirectory strip_all

Example of processing a subset of files in the archive

To remove all debug, comments, notes and symbols from only the shapes.o and the strmtst.o
files in the archive, enter:

fromelf --elf --strip=all test.a(s*.o) -o subset/

This creates an output archive with the name test.a in the subdirectory subset. The archive
contains the processed files together with the remaining files that are unprocessed.

To process the bmw.o, bmw1.o, and newtst.o files in the archive, enter:

fromelf --elf --strip=all test.a(??w*) -o subset/

Example of displaying a disassembled version of files in an archive

To display the disassembled version of call_c_code.o in the archive, enter:

fromelf --disassemble test.a(c*)

Related reference
3.20 --disassemble on page 3-57
3.22 --elf on page 3-59
3.39 input_file on page 3-78
3.46 --output=destination on page 3-86
3.57 --strip=option[,option,…] on page 3-97

2 Using fromelf
2.2 Examples of processing ELF files in an archive

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

2.3 Options to protect code in image files with fromelf
If you are delivering images to third parties, then you might want to protect the code they contain.

To help you to protect this code, fromelf provides the --strip option and the --privacy option. These
options remove or obscure the symbol names in the image. The option that you choose depends on how
much information you want to remove. The effect of these options is different for image files.

Restrictions

You must use --elf with these options. Because you have to use --elf, you must also use --output.

Effect of the options for protecting code in image files

For image files:

Table 2-1 Effect of fromelf --privacy and --strip options on images files

Option Effect

fromelf --elf --privacy Removes the whole symbol table.

Removes the .comment section name. This section is marked as [Anonymous
Section] in the fromelf --text output.

Gives section names a default value. For example, changes code section names to
'.text'.

fromelf --elf --strip=symbols Removes the whole symbol table.

Section names remain the same.

fromelf --elf --strip=localsymbols Removes local and mapping symbols.

Retains section names and build attributes.

Example

To produce a new ELF executable image with the complete symbol table removed and with the various
section names changed, enter:

fromelf --elf --privacy --output=outfile.axf infile.axf

Related concepts
2.4 Options to protect code in object files with fromelf on page 2-25
Related reference
1.4 fromelf command-line syntax on page 1-16
3.22 --elf on page 3-59
3.46 --output=destination on page 3-86
3.47 --privacy on page 3-87
3.57 --strip=option[,option,…] on page 3-97

2 Using fromelf
2.3 Options to protect code in image files with fromelf

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

2.4 Options to protect code in object files with fromelf
If you are delivering objects to third parties, then you might want to protect the code they contain.

To help you to protect this code, fromelf provides the --strip option and the --privacy option. These
options remove or obscure the symbol names in the object. The option you choose depends on how much
information you want to remove. The effect of these options is different for object files.

Restrictions

You must use --elf with these options. Because you have to use --elf, you must also use --output.

Effect of the options for protecting code in object files

For object files:

Table 2-2 Effect of fromelf --privacy and --strip options on object files

Option Local symbols Section
names

Mapping
symbols

Build
attributes

fromelf --elf --privacy Removes those local symbols that can be removed
without loss of functionality.

Symbols that cannot be removed, such as the targets
for relocations, are kept. For these symbols, the
names are removed. These are marked as
[Anonymous Symbol] in the fromelf --text
output.

Gives section
names a default
value. For
example,
changes code
section names to
'.text'

Present Present

fromelf --elf
--strip=symbols

Removes those local symbols that can be removed
without loss of functionality.

Symbols that cannot be removed, such as the targets
for relocations, are kept. For these symbols, the
names are removed. These are marked as
[Anonymous Symbol] in the fromelf --text
output.

Section names
remain the same

Present Present

fromelf --elf
--strip=localsymbols

Removes those local symbols that can be removed
without loss of functionality.

Symbols that cannot be removed, such as the targets
for relocations, are kept. For these symbols, the
names are removed. These are marked as
[Anonymous Symbol] in the fromelf --text
output.

Section names
remain the same

Present Present

Example

To produce a new ELF object with the complete symbol table removed and various section names
changed, enter:

fromelf --elf --privacy --output=outfile.o infile.o

Related concepts
2.3 Options to protect code in image files with fromelf on page 2-24
Related reference
1.4 fromelf command-line syntax on page 1-16
3.22 --elf on page 3-59

2 Using fromelf
2.4 Options to protect code in object files with fromelf

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

3.46 --output=destination on page 3-86
3.47 --privacy on page 3-87
3.57 --strip=option[,option,…] on page 3-97

2 Using fromelf
2.4 Options to protect code in object files with fromelf

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

2.5 Option to print specific details of ELF files
You can specify the elements of an ELF object that you want to appear in the textual output with the
--emit option.

The output includes ELF header and section information. You can specify these elements as a comma
separated list.

 Note

You can specify some of the --emit options using the --text option.

Examples

To print the contents of the data sections of an ELF file, infile.axf, enter:

fromelf --emit=data infile.axf

To print relocation information and the dynamic section contents for the ELF file infile2.axf, enter:

fromelf --emit=relocation_tables,dynamic_segment infile2.axf

Related reference
1.4 fromelf command-line syntax on page 1-16
3.23 --emit=option[,option,…] on page 3-60
3.59 --text on page 3-100

2 Using fromelf
2.5 Option to print specific details of ELF files

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

2.6 Using fromelf to find where a symbol is placed in an executable ELF image
You can find where a symbol is placed in an executable ELF image.

To find where a symbol is placed in an ELF image file, use the --text -s -v options to view the
symbol table and detailed information on each segment and section header, for example:

The symbol table identifies the section where the symbol is placed.

Procedure
1. Create the file s.c containing the following source code:

long long arr[10] __attribute__ ((section ("ARRAY")));
int main()
{
 return sizeof(arr);
}

2. Compile the source:

armclang --target=arm-arm-none-eabi -march=armv8-a -c s.c -o s.o

3. Link the object s.o and keep the ARRAY symbol:
armlink --cpu=8-A.32 --keep=s.o(ARRAY) s.o --output=s.axf

4. Run the fromelf command to display the symbol table and detailed information on each segment and
section header:
fromelf --text -s -v s.o

5. Locate the arr symbol in the fromelf output, for example:

 ...
 ** Section #24
 Name : .symtab
 Type : SHT_SYMTAB (0x00000002)
 Flags : None (0x00000000)
 Addr : 0x00000000
 File Offset : 868 (0x364)
 Size : 464 bytes (0x1d0)
 Link : Section 1 (.strtab)
 Info : Last local symbol no = 26
 Alignment : 4
 Entry Size : 16

 Symbol table .symtab (28 symbols, 26 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ===
 ...
 27 arr 0x00000000 Gb 5 Data De 0x50
 ...

The Sec column shows the section where the stack is placed. In this example, section 5.
6. Locate the section identified for the symbol in the fromelf output, for example:

...
====================================
** Section #5
 Name : ARRAY
 Type : SHT_PROGBITS (0x00000001)
 Flags : SHF_ALLOC + SHF_WRITE (0x00000003)
 Addr : 0x00000000
 File Offset : 88 (0x58)
 Size : 80 bytes (0x50)
 Link : SHN_UNDEF
 Info : 0
 Alignment : 8
 Entry Size : 0
 ====================================
 ...

This shows that the symbols are placed in an ARRAY section.

2 Using fromelf
2.6 Using fromelf to find where a symbol is placed in an executable ELF image

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

Related reference
3.59 --text on page 3-100

2 Using fromelf
2.6 Using fromelf to find where a symbol is placed in an executable ELF image

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

Chapter 3
fromelf Command-line Options

Describes the command-line options of the fromelf image converter provided with Arm Compiler.

It contains the following sections:
• 3.1 --base [[object_file::]load_region_ID=]num on page 3-32.
• 3.2 --bin on page 3-34.
• 3.3 --bincombined on page 3-35.
• 3.4 --bincombined_base=address on page 3-36.
• 3.5 --bincombined_padding=size,num on page 3-37.
• 3.6 --cad on page 3-38.
• 3.7 --cadcombined on page 3-40.
• 3.8 --compare=option[,option,…] on page 3-41.
• 3.9 --continue_on_error on page 3-43.
• 3.10 --cpu=list on page 3-44.
• 3.11 --cpu=name on page 3-45.
• 3.12 --datasymbols on page 3-48.
• 3.13 --debugonly on page 3-49.
• 3.14 --decode_build_attributes on page 3-50.
• 3.15 --diag_error=tag[,tag,…] on page 3-52.
• 3.16 --diag_remark=tag[,tag,…] on page 3-53.
• 3.17 --diag_style={arm|ide|gnu} on page 3-54.
• 3.18 --diag_suppress=tag[,tag,…] on page 3-55.
• 3.19 --diag_warning=tag[,tag,…] on page 3-56.
• 3.20 --disassemble on page 3-57.
• 3.21 --dump_build_attributes on page 3-58.
• 3.22 --elf on page 3-59.
• 3.23 --emit=option[,option,…] on page 3-60.

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-30

Non-Confidential

• 3.24 --expandarrays on page 3-62.
• 3.25 --extract_build_attributes on page 3-63.
• 3.26 --fieldoffsets on page 3-64.
• 3.27 --fpu=list on page 3-66.
• 3.28 --fpu=name on page 3-67.
• 3.29 --globalize=option[,option,…] on page 3-68.
• 3.30 --help on page 3-69.
• 3.31 --hide=option[,option,…] on page 3-70.
• 3.32 --hide_and_localize=option[,option,…] on page 3-71.
• 3.33 --i32 on page 3-72.
• 3.34 --i32combined on page 3-73.
• 3.35 --ignore_section=option[,option,…] on page 3-74.
• 3.36 --ignore_symbol=option[,option,…] on page 3-75.
• 3.37 --in_place on page 3-76.
• 3.38 --info=topic[,topic,…] on page 3-77.
• 3.39 input_file on page 3-78.
• 3.40 --interleave=option on page 3-80.
• 3.41 --linkview, --no_linkview on page 3-81.
• 3.42 --localize=option[,option,…] on page 3-82.
• 3.43 --m32 on page 3-83.
• 3.44 --m32combined on page 3-84.
• 3.45 --only=section_name on page 3-85.
• 3.46 --output=destination on page 3-86.
• 3.47 --privacy on page 3-87.
• 3.48 --qualify on page 3-88.
• 3.49 --relax_section=option[,option,…] on page 3-89.
• 3.50 --relax_symbol=option[,option,…] on page 3-90.
• 3.51 --rename=option[,option,…] on page 3-91.
• 3.52 --select=select_options on page 3-92.
• 3.53 --show=option[,option,…] on page 3-93.
• 3.54 --show_and_globalize=option[,option,…] on page 3-94.
• 3.55 --show_cmdline on page 3-95.
• 3.56 --source_directory=path on page 3-96.
• 3.57 --strip=option[,option,…] on page 3-97.
• 3.58 --symbolversions, --no_symbolversions on page 3-99.
• 3.59 --text on page 3-100.
• 3.60 --version_number on page 3-102.
• 3.61 --vhx on page 3-103.
• 3.62 --via=file on page 3-104.
• 3.63 --vsn on page 3-105.
• 3.64 -w on page 3-106.
• 3.65 --wide64bit on page 3-107.
• 3.66 --widthxbanks on page 3-108.

3 fromelf Command-line Options

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-31

Non-Confidential

3.1 --base [[object_file::]load_region_ID=]num
Enables you to alter the base address specified for one or more load regions in Motorola S-record and
Intel Hex file formats.

 Note

Not supported for AArch64 state inputs.

Syntax

--base [[object_file::]load_region_ID=]num

Where:

object_file

An optional ELF input file.

load_region_ID

An optional load region. This can either be a symbolic name of an execution region belonging to
a load region or a zero-based load region number, for example #0 if referring to the first region.

num

Either a decimal or hexadecimal value.

You can:
• Use wildcard characters ? and * for symbolic names in object_file and load_region_ID

arguments.
• Specify multiple values in one option followed by a comma-separated list of arguments.

All addresses encoded in the output file start at the base address num. If you do not specify a --base
option, the base address is taken from the load region address.

Restrictions

You must use one of the output formats --i32, --i32combined, --m32, or --m32combined with this
option. Therefore, you cannot use this option with object files.

Examples

The following table shows examples:

Table 3-1 Examples of using --base

--base 0 decimal value

--base 0x8000 hexadecimal value

--base #0=0 base address for the first load region

--base foo.o::*=0 base address for all load regions in foo.o

--base #0=0,#1=0x8000 base address for the first and second load regions

Related concepts
2.1 General considerations when using fromelf on page 2-22
Related reference
3.33 --i32 on page 3-72

3 fromelf Command-line Options
3.1 --base [[object_file::]load_region_ID=]num

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-32

Non-Confidential

3.34 --i32combined on page 3-73
3.43 --m32 on page 3-83
3.44 --m32combined on page 3-84

3 fromelf Command-line Options
3.1 --base [[object_file::]load_region_ID=]num

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

3.2 --bin
Produces plain binary output, one file for each load region. You can split the output from this option into
multiple files with the --widthxbanks option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --bin
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in an output
file.

Example

To convert an ELF file to a plain binary file, for example outfile.bin, enter:

fromelf --bin --output=outfile.bin infile.axf

Related reference
3.46 --output=destination on page 3-86
3.66 --widthxbanks on page 3-108

3 fromelf Command-line Options
3.2 --bin

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

3.3 --bincombined
Produces plain binary output. It generates one output file for an image containing multiple load regions.

Usage

By default, the start address of the first load region in memory is used as the base address. fromelf
inserts padding between load regions as required to ensure that they are at the correct relative offset from
each other. Separating the load regions in this way means that the output file can be loaded into memory
and correctly aligned starting at the base address.

Use this option with --bincombined_base and --bincombined_padding to change the default values
for the base address and padding.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --bincombined

Use this option with --bincombined_base to change the default value for the base address.

The default padding value is 0xFF. Use this option with --bincombined_padding to change the default
padding value.

If you use a scatter file that defines two load regions with a large address space between them, the
resulting binary can be very large because it contains mostly padding. For example, if you have a load
region of size 0x100 bytes at address 0x00000000 and another load region at address 0x30000000, the
amount of padding is 0x2FFFFF00 bytes.

Arm recommends that you use a different method of placing widely spaced load regions, such as --bin,
and make your own arrangements to load the multiple output files at the correct addresses.

Examples

To produce a binary file that can be loaded at start address 0x1000, enter:

fromelf --bincombined --bincombined_base=0x1000 --output=out.bin in.axf

To produce plain binary output and fill the space between load regions with copies of the 32-bit word
0x12345678, enter:

fromelf --bincombined --bincombined_padding=4,0x12345678 --output=out.bin in.axf

Related reference
3.4 --bincombined_base=address on page 3-36
3.5 --bincombined_padding=size,num on page 3-37
3.46 --output=destination on page 3-86
3.66 --widthxbanks on page 3-108
Related information
Input sections, output sections, regions, and Program Segments

3 fromelf Command-line Options
3.3 --bincombined

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

https://developer.arm.com/docs/100070/0611/image-structure-and-generation/the-structure-of-an-arm-elf-image/input-sections-output-sections-regions-and-program-segments

3.4 --bincombined_base=address
Enables you to lower the base address used by the --bincombined output mode. The output file
generated is suitable to be loaded into memory starting at the specified address.

Syntax

--bincombined_base=address
Where address is the start address where the image is to be loaded:
• If the specified address is lower than the start of the first load region, fromelf adds padding at the

start of the output file.
• If the specified address is higher than the start of the first load region, fromelf gives an error.

Default

By default the start address of the first load region in memory is used as the base address.

Restrictions

You must use --bincombined with this option. If you omit --bincombined, a warning message is
displayed.

Example

--bincombined --bincombined_base=0x1000

Related reference
3.3 --bincombined on page 3-35
3.5 --bincombined_padding=size,num on page 3-37
Related information
Input sections, output sections, regions, and Program Segments

3 fromelf Command-line Options
3.4 --bincombined_base=address

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

https://developer.arm.com/docs/100070/0611/image-structure-and-generation/the-structure-of-an-arm-elf-image/input-sections-output-sections-regions-and-program-segments

3.5 --bincombined_padding=size,num
Enables you to specify a different padding value from the default used by the --bincombined output
mode.

Syntax

--bincombined_padding=size,num
Where:

size

Is 1, 2, or 4 bytes to define whether it is a byte, halfword, or word.

num

The value to be used for padding. If you specify a value that is too large to fit in the specified
size, a warning message is displayed.

 Note

fromelf expects that 2-byte and 4-byte padding values are specified in the appropriate endianness for the
input file. For example, if you are translating a big endian ELF file into binary, the specified padding
value is treated as a big endian word or halfword.

Default

The default is --bincombined_padding=1,0xFF.

Restrictions

You must use --bincombined with this option. If you omit --bincombined, a warning message is
displayed.

Examples

The following examples show how to use --bincombined_padding:

--bincombined --bincombined_padding=4,0x12345678

This example produces plain binary output and fills the space between load regions with copies
of the 32-bit word 0x12345678.

--bincombined --bincombined_padding=2,0x1234

This example produces plain binary output and fills the space between load regions with copies
of the 16-bit halfword 0x1234.

--bincombined --bincombined_padding=2,0x01

This example when specified for big endian memory, fills the space between load regions with
0x0100.

Related reference
3.3 --bincombined on page 3-35
3.4 --bincombined_base=address on page 3-36

3 fromelf Command-line Options
3.5 --bincombined_padding=size,num

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

3.6 --cad
Produces a C array definition or C++ array definition containing binary output.

Usage

You can use each array definition in the source code of another application. For example, you might want
to embed an image in the address space of another application, such as an embedded operating system.

If your image has a single load region, the output is directed to stdout by default. To save the output to a
file, use the --output option together with a filename.

If your image has multiple load regions, then you must also use the --output option together with a
directory name. Unless you specify a full path name, the path is relative to the current directory. A file is
created for each load region in the specified directory. The name of each file is the name of the
corresponding execution region.

Use this option with --output to generate one output file for each load region in the image.

Restrictions

You cannot use this option with object files.

Considerations when using --cad

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in an output
file.

Example
The following examples show how to use --cad:
• To produce an array definition for an image that has a single load region, enter:

fromelf --cad myimage.axf
unsigned char LR0[] = {
 0x00,0x00,0x00,0xEB,0x28,0x00,0x00,0xEB,0x2C,0x00,0x8F,0xE2,0x00,0x0C,0x90,0xE8,
 0x00,0xA0,0x8A,0xE0,0x00,0xB0,0x8B,0xE0,0x01,0x70,0x4A,0xE2,0x0B,0x00,0x5A,0xE1,
 0x00,0x00,0x00,0x1A,0x20,0x00,0x00,0xEB,0x0F,0x00,0xBA,0xE8,0x18,0xE0,0x4F,0xE2,
 0x01,0x00,0x13,0xE3,0x03,0xF0,0x47,0x10,0x03,0xF0,0xA0,0xE1,0xAC,0x18,0x00,0x00,
 0xBC,0x18,0x00,0x00,0x00,0x30,0xB0,0xE3,0x00,0x40,0xB0,0xE3,0x00,0x50,0xB0,0xE3,
 0x00,0x60,0xB0,0xE3,0x10,0x20,0x52,0xE2,0x78,0x00,0xA1,0x28,0xFC,0xFF,0xFF,0x8A,
 0x82,0x2E,0xB0,0xE1,0x30,0x00,0xA1,0x28,0x00,0x30,0x81,0x45,0x0E,0xF0,0xA0,0xE1,
 0x70,0x00,0x51,0xE3,0x66,0x00,0x00,0x0A,0x64,0x00,0x51,0xE3,0x38,0x00,0x00,0x0A,
 0x00,0x00,0xB0,0xE3,0x0E,0xF0,0xA0,0xE1,0x1F,0x40,0x2D,0xE9,0x00,0x00,0xA0,0xE1,
.
.
.
 0x3A,0x74,0x74,0x00,0x43,0x6F,0x6E,0x73,0x74,0x72,0x75,0x63,0x74,0x65,0x64,0x20,
 0x41,0x20,0x23,0x25,0x64,0x20,0x61,0x74,0x20,0x25,0x70,0x0A,0x00,0x00,0x00,0x00,
 0x44,0x65,0x73,0x74,0x72,0x6F,0x79,0x65,0x64,0x20,0x41,0x20,0x23,0x25,0x64,0x20,
 0x61,0x74,0x20,0x25,0x70,0x0A,0x00,0x00,0x0C,0x99,0x00,0x00,0x0C,0x99,0x00,0x00,
 0x50,0x01,0x00,0x00,0x44,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};

• For an image that has multiple load regions, the following commands create a file for each load
region in the directory root\myprojects\multiload\load_regions:

cd root\myprojects\multiload
fromelf --cad image_multiload.axf --output load_regions

If image_multiload.axf contains the execution regions EXEC_ROM and RAM, then the files EXEC_ROM
and RAM are created in the load_regions subdirectory.

Related reference
3.7 --cadcombined on page 3-40
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.6 --cad

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

Related information
Input sections, output sections, regions, and Program Segments

3 fromelf Command-line Options
3.6 --cad

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

https://developer.arm.com/docs/100070/0611/image-structure-and-generation/the-structure-of-an-arm-elf-image/input-sections-output-sections-regions-and-program-segments

3.7 --cadcombined
Produces a C array definition or C++ array definition containing binary output.

Usage

You can use each array definition in the source code of another application. For example, you might want
to embed an image in the address space of another application, such as an embedded operating system.

The output is directed to stdout by default. To save the output to a file, use the --output option
together with a filename.

Restrictions

You cannot use this option with object files.

Example

The following commands create the file load_regions.c in the directory root\myprojects
\multiload:

cd root\myprojects\multiload
fromelf --cadcombined image_multiload.axf --output load_regions.c

Related reference
3.6 --cad on page 3-38
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.7 --cadcombined

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

3.8 --compare=option[,option,…]
Compares two input files and prints a textual list of the differences.

Usage

The input files must be the same type, either two ELF files or two library files. Library files are
compared member by member and the differences are concatenated in the output.

All differences between the two input files are reported as errors unless specifically downgraded to
warnings by using the --relax_section option.

Syntax

--compare=option[,option,…]

Where option is one of:

section_sizes

Compares the size of all sections for each ELF file or ELF member of a library file.

section_sizes::object_name

Compares the sizes of all sections in ELF objects with a name matching object_name.

section_sizes::section_name

Compares the sizes of all sections with a name matching section_name.

sections

Compares the size and contents of all sections for each ELF file or ELF member of a library file.

sections::object_name

Compares the size and contents of all sections in ELF objects with a name matching
object_name.

sections::section_name

Compares the size and contents of all sections with a name matching section_name.

function_sizes

Compares the size of all functions for each ELF file or ELF member of a library file.

function_sizes::object_name

Compares the size of all functions in ELF objects with a name matching object_name.

function_size::function_name

Compares the size of all functions with a name matching function_name.

global_function_sizes

Compares the size of all global functions for each ELF file or ELF member of a library file.

global_function_sizes::function_name

Compares the size of all global functions in ELF objects with a name matching function_name.

You can:
• Use wildcard characters ? and * for symbolic names in section_name, function_name, and

object_name arguments.
• Specify multiple values in one option followed by a comma-separated list of arguments.

3 fromelf Command-line Options
3.8 --compare=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

Related reference
3.35 --ignore_section=option[,option,…] on page 3-74
3.36 --ignore_symbol=option[,option,…] on page 3-75
3.49 --relax_section=option[,option,…] on page 3-89
3.50 --relax_symbol=option[,option,…] on page 3-90

3 fromelf Command-line Options
3.8 --compare=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

3.9 --continue_on_error
Reports any errors and then continues.

Usage

Use --diag_warning=error instead of this option.

Related reference
3.19 --diag_warning=tag[,tag,…] on page 3-56

3 fromelf Command-line Options
3.9 --continue_on_error

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

3.10 --cpu=list
Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax

--cpu=list

Related reference
3.11 --cpu=name on page 3-45

3 fromelf Command-line Options
3.10 --cpu=list

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

3.11 --cpu=name
Affects the way machine code is disassembled by options such as -c or --disassemble, so that it is
disassembled in the same way that the specified processor or architecture interprets it.

Syntax

--cpu=name

Where name is the name of a processor or architecture:

Processor and architecture names are not case-sensitive.

Wildcard characters are not accepted.

The following table shows the supported architectures. For a complete list of the supported architecture
and processor names, specify the --cpu=list option.

Table 3-2 Supported Arm architectures

Architecture name Description

6-M Armv6 architecture microcontroller profile.

6S-M Armv6 architecture microcontroller profile with OS extensions.

7-A Armv7 architecture application profile.

7-A.security Armv7‑A architecture profile with Security Extensions and includes the SMC instruction (formerly
SMI).

7-R Armv7 architecture real-time profile.

7-M Armv7 architecture microcontroller profile.

7E-M Armv7‑M architecture profile with DSP extension.

8-A.32 Armv8‑A architecture profile, AArch32 state.

8-A.32.crypto Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8-A.64 Armv8‑A architecture profile, AArch64 state.

8-A.64.crypto Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.1-A.32 Armv8.1, for Armv8‑A architecture profile, AArch32 state.

8.1-A.32.crypto Armv8.1, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8.1-A.64 Armv8.1, for Armv8‑A architecture profile, AArch64 state.

8.1-A.64.crypto Armv8.1, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.2-A.32 Armv8.2, for Armv8‑A architecture profile, AArch32 state.

8.2-A.32.crypto Armv8.2, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8.2-A.32.crypto.dotprod Armv8.2, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions and the
VSDOT and VUDOT instructions.

8.2-A.32.dotprod Armv8.2, for Armv8‑A architecture profile, AArch32 state with the VSDOT and VUDOT instructions.

8.2-A.64 Armv8.2, for Armv8‑A architecture profile, AArch64 state.

8.2-A.64.crypto Armv8.2, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

3 fromelf Command-line Options
3.11 --cpu=name

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

Table 3-2 Supported Arm architectures (continued)

Architecture name Description

8.2-A.64.crypto.dotprod Armv8.2, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions and the
SDOT and UDOT instructions.

8.2-A.64.dotprod Armv8.2, for Armv8‑A architecture profile, AArch64 state with the SDOT and UDOT instructions.

8.3-A.32 Armv8.3, for Armv8‑A architecture profile, AArch32 state.

8.3-A.32.crypto Armv8.3, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8.3-A.32.crypto.dotprod Armv8.3, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions and the
VSDOT and VUDOT instructions.

8.3-A.32.dotprod Armv8.3, for Armv8‑A architecture profile, AArch32 state with the VSDOT and VUDOT instructions.

8.3-A.64 Armv8.3, for Armv8‑A architecture profile, AArch64 state.

8.3-A.64.crypto Armv8.3, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.3-A.64.crypto.dotprod Armv8.3, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions and the
SDOT and UDOT instructions.

8.3-A.64.dotprod Armv8.3, for Armv8‑A architecture profile, AArch64 state with the SDOT and UDOT instructions.

8-R Armv8‑R architecture profile.

8-M.Base Armv8‑M baseline architecture profile. Derived from the Armv6‑M architecture.

8-M.Main Armv8‑M mainline architecture profile. Derived from the Armv7‑M architecture.

8-M.Main.dsp Armv8‑M mainline architecture profile with DSP extension.

 Note

• The full list of supported architectures and processors depends on your license.

 Note

You cannot specify targets with Armv8.4-A or later architectures on the fromelf command-line. To
disassemble instructions for such targets, you must not specify the --cpu option when invoking fromelf.

Usage

The following general points apply to processor and architecture options:

3 fromelf Command-line Options
3.11 --cpu=name

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

Processors
• Selecting the processor selects the appropriate architecture, Floating-Point Unit (FPU), and

memory organization.

Architectures
• If you specify an architecture name for the --cpu option, machine code is disassembled by

options such as -c or --disassemble for that architecture. If you specify --disassemble,
then the disassembly can be assembled for any processor supporting that architecture.

For example, --cpu=7-A --disassemble produces disassembly that can be assembled for
the Cortex®‑A7 processor.

FPU
• Some specifications of --cpu imply an --fpu selection.

 Note

Any explicit FPU, set with --fpu on the command line, overrides an implicit FPU.

• If no --fpu option is specified and no --cpu option is specified, --fpu=softvfp is used.

Default
If you do not specify a --cpu option, then fromelf disassembles machine instructions in an architecture-
independent way. This means that fromelf disassembles anything that it recognizes as an instruction by
some architecture.

 Note

To disassemble SVE instructions, you must not specify the --cpu option. fromelf cannot disassemble
Armv8.4 instructions without also disassembling Scalable Vector Extension (SVE) instructions.

Example

To specify the Cortex-M4 processor, use:

--cpu=Cortex-M4

Related reference
3.10 --cpu=list on page 3-44
3.20 --disassemble on page 3-57
3.38 --info=topic[,topic,…] on page 3-77
3.59 --text on page 3-100

3 fromelf Command-line Options
3.11 --cpu=name

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

3.12 --datasymbols
Modifies the output information of data sections so that symbol definitions are interleaved.

Usage

You can use this option only with --text -d.

Related reference
3.59 --text on page 3-100

3 fromelf Command-line Options
3.12 --datasymbols

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.13 --debugonly
Removes the content of any code or data sections.

Usage

This option ensures that the output file contains only the information required for debugging, for
example, debug sections, symbol table, and string table. Section headers are retained because they are
required to act as targets for symbols.

Restrictions

You must use --elf with this option.

Example

To create an ELF file, debugout.axf, from the ELF file infile.axf, containing only debug
information, enter:

fromelf --elf --debugonly --output=debugout.axf infile.axf

Related reference
3.22 --elf on page 3-59

3 fromelf Command-line Options
3.13 --debugonly

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

3.14 --decode_build_attributes
Prints the contents of the build attributes section in human-readable form for standard build attributes or
raw hexadecimal form for nonstandard build attributes.

 Note

The standard build attributes are documented in the Application Binary Interface for the Arm®

Architecture.

Restrictions

You can use this option only in text mode for 8-A.32 targets.

This option has no effect for 8-A.64 targets.

Example

The following example shows the output for --decode_build_attributes:

armclang --target=arm-arm-eabi-none -march=armv8-a -c hello.c -o hello.o
fromelf -v --decode_build_attributes hello.o

...
** Section #6

 Name : .ARM.attributes
 Type : SHT_ARM_ATTRIBUTES (0x70000003)
 Flags : None (0x00000000)
 Addr : 0x00000000
 File Offset : 112 (0x70)
 Size : 74 bytes (0x4a)
 Link : SHN_UNDEF
 Info : 0
 Alignment : 1
 Entry Size : 0

 'aeabi' file build attributes:
 0x000000: 43 32 2e 30 39 00 05 63 6f 72 74 65 78 2d 61 35 C2.09..cortex-a5
 0x000010: 33 00 06 0e 07 41 08 01 09 02 0a 07 0c 03 0e 00 3....A..........
 0x000020: 11 01 12 04 14 01 15 01 17 03 18 01 19 01 1a 02
 0x000030: 22 00 24 01 26 01 2a 01 44 03 ".$.&.*.D.
 Tag_conformance = "2.09"
 Tag_CPU_name = "cortex-a53"
 Tag_CPU_arch = ARM v8 (=14)
 Tag_CPU_arch_profile = The application profile 'A' (e.g. for Cortex A8)
(=65)
 Tag_ARM_ISA_use = ARM instructions were permitted to be used (=1)
 Tag_THUMB_ISA_use = Thumb2 instructions were permitted (implies Thumb in
structions permitted) (=2)
 Tag_VFP_arch = Use of the ARM v8-A FP ISA was permitted (=7)
 Tag_NEON_arch = Use of the ARM v8-A Advanced SIMD Architecture (Neon) wa
s permitted (=3)
 Tag_ABI_PCS_R9_use = R9 used as V6 (just another callee-saved register)
(=0)
 Tag_ABI_PCS_GOT_use = Data are imported directly (=1)
 Tag_ABI_PCS_wchar_t = Size of wchar_t is 4 (=4)
 Tag_ABI_FP_denormal = This code was permitted to require IEEE 754 denorm
al numbers (=1)
 Tag_ABI_FP_exceptions = This code was permitted to check the IEEE 754 in
exact exception (=1)
 Tag_ABI_FP_number_model = This code may use all the IEEE 754-defined FP
encodings (=3)
 Tag_ABI_align8_needed = Code was permitted to depend on the 8-byte align
ment of 8-byte data items (=1)
 Tag_ABI_align8_preserved = Code was required to preserve 8-byte alignmen
t of 8-byte data objects (=1)
 Tag_ABI_enum_size = Enum containers are 32-bit (=2)
 Tag_CPU_unaligned_access = The producer was not permitted to make unalig
ned data accesses (=0)
 Tag_VFP_HP_extension = The producer was permitted to use the VFPv3/Advan
ced SIMD optional half-precision extension (=1)
 Tag_ABI_FP_16bit_format = The producer was permitted to use IEEE 754 for
mat 16-bit floating point numbers (=1)
 Tag_MPextension_use = Use of the ARM v7 MP extension was permitted (=1)

3 fromelf Command-line Options
3.14 --decode_build_attributes

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

 Tag_Virtualization_use = Use of TrustZone and virtualization extensions
was permitted (=3)
...

Related reference
3.21 --dump_build_attributes on page 3-58
3.23 --emit=option[,option,…] on page 3-60
3.25 --extract_build_attributes on page 3-63
Related information
Application Binary Interface for the Arm Architecture

3 fromelf Command-line Options
3.14 --decode_build_attributes

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

3.15 --diag_error=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax

--diag_error=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• warning, to treat all warnings as errors.

Related reference
3.16 --diag_remark=tag[,tag,…] on page 3-53
3.17 --diag_style={arm|ide|gnu} on page 3-54
3.18 --diag_suppress=tag[,tag,…] on page 3-55
3.19 --diag_warning=tag[,tag,…] on page 3-56

3 fromelf Command-line Options
3.15 --diag_error=tag[,tag,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

3.16 --diag_remark=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Remark severity.

Syntax

--diag_remark=tag[,tag,…]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Related reference
3.15 --diag_error=tag[,tag,…] on page 3-52
3.17 --diag_style={arm|ide|gnu} on page 3-54
3.18 --diag_suppress=tag[,tag,…] on page 3-55
3.19 --diag_warning=tag[,tag,…] on page 3-56

3 fromelf Command-line Options
3.16 --diag_remark=tag[,tag,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

3.17 --diag_style={arm|ide|gnu}
Specifies the display style for diagnostic messages.

Syntax

--diag_style=string

Where string is one of:

arm
Display messages using the legacy Arm compiler style.

ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

gnu
Display messages in the format used by gcc.

Usage

--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Default

The default is --diag_style=arm.

Related reference
3.15 --diag_error=tag[,tag,…] on page 3-52
3.16 --diag_remark=tag[,tag,…] on page 3-53
3.18 --diag_suppress=tag[,tag,…] on page 3-55
3.19 --diag_warning=tag[,tag,…] on page 3-56

3 fromelf Command-line Options
3.17 --diag_style={arm|ide|gnu}

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.18 --diag_suppress=tag[,tag,…]
Suppresses diagnostic messages that have a specific tag.

Syntax

--diag_suppress=tag[,tag,…]
Where tag can be:
• A diagnostic message number to be suppressed. This is the four-digit number, nnnn, with the tool

letter prefix, but without the letter suffix indicating the severity.
• error, to suppress all errors that can be downgraded.
• warning, to suppress all warnings.

Related reference
3.15 --diag_error=tag[,tag,…] on page 3-52
3.16 --diag_remark=tag[,tag,…] on page 3-53
3.17 --diag_style={arm|ide|gnu} on page 3-54
3.19 --diag_warning=tag[,tag,…] on page 3-56

3 fromelf Command-line Options
3.18 --diag_suppress=tag[,tag,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

3.19 --diag_warning=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax

--diag_warning=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to warning severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• error, to set all errors that can be downgraded to warnings.

Related reference
3.15 --diag_error=tag[,tag,…] on page 3-52
3.16 --diag_remark=tag[,tag,…] on page 3-53
3.17 --diag_style={arm|ide|gnu} on page 3-54
3.19 --diag_warning=tag[,tag,…] on page 3-56

3 fromelf Command-line Options
3.19 --diag_warning=tag[,tag,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

3.20 --disassemble
Displays a disassembled version of the image to stdout. Disassembly is generated in armasm assembler
syntax and not GNU assembler syntax.

Usage

If you use this option with --output destination, you can reassemble the output file with armasm.

You can use this option to disassemble either an ELF image or an ELF object file.
 Note

The output is not the same as that from --emit=code and --text -c.

 Note

To disassemble SVE instructions, you must not specify the --cpu option. fromelf cannot disassemble
Armv8.4 instructions without also disassembling Scalable Vector Extension (SVE) instructions.

armasm cannot assemble code containing SVE instructions.

Example

To disassemble the ELF file infile.axf for the Cortex‑A7 processor and create a source file
outfile.asm, enter:

fromelf --cpu=Cortex-A7 --disassemble --output=outfile.asm infile.axf

Related reference
3.11 --cpu=name on page 3-45
3.23 --emit=option[,option,…] on page 3-60
3.40 --interleave=option on page 3-80
3.46 --output=destination on page 3-86
3.59 --text on page 3-100

3 fromelf Command-line Options
3.20 --disassemble

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

3.21 --dump_build_attributes
Prints the contents of the build attributes section in raw hexadecimal form.

Restrictions

You can use this option only in text mode for 8-A.32 targets.

This option has no effect for 8-A.64 targets.

Example

The following example shows the output for --dump_build_attributes:

...
** Section #10 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)
 Size : 89 bytes

 0x000000: 41 47 00 00 00 61 65 61 62 69 00 01 3d 00 00 00 AG...aeabi..=...
 0x000010: 43 32 2e 30 36 00 05 38 2d 41 2e 33 32 00 06 0a C2.06..8-A.32...
 0x000020: 07 41 08 01 09 02 0a 05 0c 02 11 01 12 02 14 02 .A..............
 0x000030: 17 01 18 01 19 01 1a 01 1c 01 1e 03 22 01 24 01 ".$.
 0x000040: 42 01 44 03 46 01 2c 02 11 00 00 00 41 52 4d 00 B.D.F.,.....ARM.
 0x000050: 01 09 00 00 00 12 01 16 01

Related reference
3.14 --decode_build_attributes on page 3-50
3.23 --emit=option[,option,…] on page 3-60
3.25 --extract_build_attributes on page 3-63
3.59 --text on page 3-100

3 fromelf Command-line Options
3.21 --dump_build_attributes

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

3.22 --elf
Selects ELF output mode.

Usage
Use this option whenever you have to transform an ELF file into a slightly different ELF file. You also
have to provide options to indicate how you want the file to be modified. The options are:
• --debugonly.
• --globalize.
• --hide.
• --hide_and_localize.
• --in_place.
• --hide.
• --linkview or --no_linkview. This option is deprecated.
• --localize.
• --rename.
• --show.
• --show_and_globalize.
• --strip.
• --show.
• --symbolversions or --no_symbolversions.

Restrictions

You must use --output with this option.

Related reference
3.37 --in_place on page 3-76
3.46 --output=destination on page 3-86
3.57 --strip=option[,option,…] on page 3-97

3 fromelf Command-line Options
3.22 --elf

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

3.23 --emit=option[,option,…]
Enables you to specify the elements of an ELF object that you want to appear in the textual output. The
output includes ELF header and section information.

Restrictions

You can use this option only in text mode.

Syntax

--emit=option[,option,…]

Where option is one of:

addresses

Prints global and static data addresses (including addresses for structure and union contents). It
has the same effect as --text -a.

This option can only be used on files containing debug information. If no debug information is
present, a warning message is generated.

Use the --select option to output a subset of the data addresses.

If you want to view the data addresses of arrays, expanded both inside and outside structures,
use the --expandarrays option with this text category.

build_attributes
Prints the contents of the build attributes section in human-readable form for standard build
attributes or raw hexadecimal form for nonstandard build attributes. The produces the same
output as the --decode_build_attributes option.

code
Disassembles code, alongside a dump of the original binary data being disassembled and the
addresses of the instructions. It has the same effect as --text -c.

 Note

Unlike --disassemble, the disassembly cannot be input to the assembler.

data
Prints contents of the data sections. It has the same effect as --text -d.

data_symbols
Modifies the output information of data sections so that symbol definitions are interleaved.

debug_info
Prints debug information. It has the same effect as --text -g.

dynamic_segment
Prints dynamic segment contents. It has the same effect as --text -y.

exception_tables

Decodes AArch32 exception table information for objects. It has the same effect as --text -e.

frame_directives

Prints the contents of FRAME directives in disassembled code as specified by the debug
information embedded in an object module.

Use this option with --disassemble.

got
Prints the contents of the Global Offset Table (GOT) section.

3 fromelf Command-line Options
3.23 --emit=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

heading_comments

Prints heading comments at the beginning of the disassembly containing tool and command-line
information from .comment sections.

Use this option with --disassemble.

raw_build_attributes
Prints the contents of the build attributes section in raw hexadecimal form, that is, in the same
form as data.

relocation_tables
Prints relocation information. It has the same effect as --text -r.

string_tables
Prints the string tables. It has the same effect as --text -t.

summary
Prints a summary of the segments and sections in a file. It is the default output of fromelf
--text. However, the summary is suppressed by some --info options. Use --emit summary to
explicitly re-enable the summary, if required.

symbol_annotations

Prints symbols in disassembled code and data annotated with comments containing the
respective property information.

Use this option with --disassemble.

symbol_tables
Prints the symbol and versioning tables. It has the same effect as --text -s.

whole_segments

Prints disassembled executables or shared libraries segment by segment even if it has a link
view.

Use this option with --disassemble.

You can specify multiple options in one option followed by a comma-separated list of arguments.

Related reference
3.20 --disassemble on page 3-57
3.14 --decode_build_attributes on page 3-50
3.24 --expandarrays on page 3-62
3.59 --text on page 3-100

3 fromelf Command-line Options
3.23 --emit=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

3.24 --expandarrays
Prints data addresses, including arrays that are expanded both inside and outside structures.

Restrictions

You can use this option with --text -a or with --fieldoffsets.

Example

The following example shows the output for a struct containing arrays when --fieldoffsets
--expandarrays is specified:

// foo.c
struct S {
 char A[8];
 char B[4];
};
struct S s;

struct S* get()
{
 return &s;
}

> armclang -target arm-arm-none-eabi -march=armv8-a -g -c foo.c
> fromelf --fieldoffsets --expandarrays foo.o

; Structure, S , Size 0xc bytes, from foo.c
|S.A| EQU 0 ; array[8] of char
|S.A[0]| EQU 0 ; char
|S.A[1]| EQU 0x1 ; char
|S.A[2]| EQU 0x2 ; char
|S.A[3]| EQU 0x3 ; char
|S.A[4]| EQU 0x4 ; char
|S.A[5]| EQU 0x5 ; char
|S.A[6]| EQU 0x6 ; char
|S.A[7]| EQU 0x7 ; char
|S.B| EQU 0x8 ; array[4] of char
|S.B[0]| EQU 0x8 ; char
|S.B[1]| EQU 0x9 ; char
|S.B[2]| EQU 0xa ; char
|S.B[3]| EQU 0xb ; char
; End of Structure S

 END

Related reference
3.26 --fieldoffsets on page 3-64
3.59 --text on page 3-100

3 fromelf Command-line Options
3.24 --expandarrays

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

3.25 --extract_build_attributes
Prints only the build attributes in a form that depends on the type of attribute.

Usage
Prints the build attributes in:
• Human-readable form for standard build attributes.
• Raw hexadecimal form for nonstandard build attributes.

Restrictions

You can use this option only in text mode for 8-A.32 targets.

This option has no effect for 8-A.64 targets.

Example

The following example shows the output for --extract_build_attributes:

> armclang -c -mcpu=cortex-m7 --target=arm-arm-none-eabi -mfpu=vfpv3 hello.c -o hello.o
> fromelf --cpu=Cortex-M7 --extract_build_attributes hello.o

==

** Object/Image Build Attributes

 'aeabi' file build attributes:
 0x000000: 43 32 2e 30 39 00 05 63 6f 72 74 65 78 2d 6d 37 C2.09..cortex-m7
 0x000010: 00 06 0d 07 4d 08 00 09 02 0a 05 0e 00 11 01 12 M...........
 0x000020: 04 14 01 15 01 17 03 18 01 19 01 1a 02 22 00 24 ".$
 0x000030: 01 26 01 .&.
 Tag_conformance = "2.09"
 Tag_CPU_name = "cortex-m7"
 Tag_CPU_arch = ARM v7E-M (=13)
 Tag_CPU_arch_profile = The microcontroller profile 'M' (e.g. for Cortex M3) (=77)
 Tag_ARM_ISA_use = No ARM instructions were permitted to be used (=0)
 Tag_THUMB_ISA_use = Thumb2 instructions were permitted (implies Thumb instructions
permitted) (=2)
 Tag_VFP_arch = VFPv4 instructions were permitted (implies VFPv3 instructions were
permitted) (=5)
 Tag_ABI_PCS_R9_use = R9 used as V6 (just another callee-saved register) (=0)
 Tag_ABI_PCS_GOT_use = Data are imported directly (=1)
 Tag_ABI_PCS_wchar_t = Size of wchar_t is 4 (=4)
 Tag_ABI_FP_denormal = This code was permitted to require IEEE 754 denormal numbers
(=1)
 Tag_ABI_FP_exceptions = This code was permitted to check the IEEE 754 inexact
exception (=1)
 Tag_ABI_FP_number_model = This code may use all the IEEE 754-defined FP encodings
(=3)
 Tag_ABI_align8_needed = Code was permitted to depend on the 8-byte alignment of 8-
byte data items (=1)
 Tag_ABI_align8_preserved = Code was required to preserve 8-byte alignment of 8-byte
data objects (=1)
 Tag_ABI_enum_size = Enum containers are 32-bit (=2)
 Tag_CPU_unaligned_access = The producer was not permitted to make unaligned data
accesses (=0)
 Tag_VFP_HP_extension = The producer was permitted to use the VFPv3/Advanced SIMD
optional half-precision extension (=1)
 Tag_ABI_FP_16bit_format = The producer was permitted to use IEEE 754 format 16-bit
floating point numbers (=1)

Related reference
3.14 --decode_build_attributes on page 3-50
3.21 --dump_build_attributes on page 3-58
3.23 --emit=option[,option,…] on page 3-60
3.59 --text on page 3-100

3 fromelf Command-line Options
3.25 --extract_build_attributes

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

3.26 --fieldoffsets
Prints a list of armasm style assembly language EQU directives that equate C++ class or C structure field
names to their offsets from the base of the class or structure.

Usage

The input ELF file can be a relocatable object or an image.

Use --output to redirect the output to a file. Use the INCLUDE command from armasm to load the
produced file and provide access to C++ classes and C structure members by name from assembly
language.

 Note

The EQU directives cannot be used with the clang-integrated assembler. To use them, you must change
them to GNU syntax.

This option outputs all structure information. To output a subset of the structures, use --select
select_options.

If you do not require a file that can be input to armasm, use the --text -a options to format the display
addresses in a more readable form. The -a option only outputs address information for structures and
static data in images because the addresses are not known in a relocatable object.

Restrictions
This option:
• Requires that the object or image file has debug information.
• Can be used in text mode and with --expandarrays.

Examples
The following examples show how to use --fieldoffsets:
• To produce an output listing to stdout that contains all the field offsets from all structures in the file

inputfile.o, enter:

fromelf --fieldoffsets inputfile.o

• To produce an output file listing to outputfile.s that contains all the field offsets from structures in
the file inputfile.o that have a name starting with p, enter:

fromelf --fieldoffsets --select=p* --output=outputfile.s inputfile.o

• To produce an output listing to outputfile.s that contains all the field offsets from structures in the
file inputfile.o with names of tools or moretools, enter:

fromelf --fieldoffsets --select=tools.*,moretools.* --output=outputfile.s inputfile.o

• To produce an output file listing to outputfile.s that contains all the field offsets of structure fields
whose name starts with number and are within structure field top in structure tools in the file
inputfile.o, enter:

fromelf --fieldoffsets --select=tools.top.number* --output=outputfile.s inputfile.o

The following is an example of the output, and includes name. and name...member that arise because of
anonymous structs and unions:

; Structure, Table , Size 0x104 bytes, from inputfile.cpp
|Table.TableSize| EQU 0 ; int
|Table.Data| EQU 0x4 ; array[64] of MyClassHandle
; End of Structure Table
; Structure, Box2 , Size 0x8 bytes, from inputfile.cpp
|Box2.| EQU 0 ; anonymous
|Box2..| EQU 0 ; anonymous
|Box2...Min| EQU 0 ; Point2
|Box2...Min.x| EQU 0 ; short
|Box2...Min.y| EQU 0x2 ; short

3 fromelf Command-line Options
3.26 --fieldoffsets

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

|Box2...Max| EQU 0x4 ; Point2
|Box2...Max.x| EQU 0x4 ; short
|Box2...Max.y| EQU 0x6 ; short
; Warning: duplicate name (Box2..) present in (inputfile.cpp) and in (inputfile.cpp)
; please use the --qualify option
|Box2..| EQU 0 ; anonymous
|Box2...Left| EQU 0 ; unsigned short
|Box2...Top| EQU 0x2 ; unsigned short
|Box2...Right| EQU 0x4 ; unsigned short
|Box2...Bottom| EQU 0x6 ; unsigned short
; End of Structure Box2
; Structure, MyClassHandle , Size 0x4 bytes, from inputfile.cpp
|MyClassHandle.Handle| EQU 0 ; pointer to MyClass
; End of Structure MyClassHandle
; Structure, Point2 , Size 0x4 bytes, from defects.cpp
|Point2.x| EQU 0 ; short
|Point2.y| EQU 0x2 ; short
; End of Structure Point2
; Structure, __fpos_t_struct , Size 0x10 bytes, from C:\Program Files\DS-5\bin\..\include
\stdio.h
|__fpos_t_struct.__pos| EQU 0 ; unsigned long long
|__fpos_t_struct.__mbstate| EQU 0x8 ; anonymous
|__fpos_t_struct.__mbstate.__state1| EQU 0x8 ; unsigned int
|__fpos_t_struct.__mbstate.__state2| EQU 0xc ; unsigned int
; End of Structure __fpos_t_struct
 END

Related reference
3.24 --expandarrays on page 3-62
3.48 --qualify on page 3-88
3.52 --select=select_options on page 3-92
3.59 --text on page 3-100
Related information
EQU
GET or INCLUDE
Miscellaneous directives

3 fromelf Command-line Options
3.26 --fieldoffsets

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

https://developer.arm.com/docs/100069/0611/directives-reference/equ
https://developer.arm.com/docs/100069/0611/directives-reference/get-or-include
https://developer.arm.com/docs/100068/0611/migrating-from-armasm-to-the-armclang-integrated-assembler/miscellaneous-directives

3.27 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related reference
3.28 --fpu=name on page 3-67

3 fromelf Command-line Options
3.27 --fpu=list

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

3.28 --fpu=name
Specifies the target FPU architecture.

To obtain a full list of FPU architectures use the --fpu=list option.

Syntax

--fpu=name

Where name is the name of the target FPU architecture. Specify --fpu=list to list the supported FPU
architecture names that you can use with --fpu=name.

The default floating-point architecture depends on the target architecture.
 Note

Software floating-point linkage is not supported for AArch64 state.

Usage

This option selects disassembly for a specific FPU architecture. It affects how fromelf interprets the
instructions it finds in the input files.

If you specify this option, it overrides any implicit FPU option that appears on the command line, for
example, where you use the --cpu option.

Any FPU explicitly selected using the --fpu option always overrides any FPU implicitly selected using
the --cpu option.

Default

The default target FPU architecture is derived from use of the --cpu option.

If the CPU you specify with --cpu has a VFP coprocessor, the default target FPU architecture is the VFP
architecture for that CPU.

Related reference
3.20 --disassemble on page 3-57
3.27 --fpu=list on page 3-66
3.38 --info=topic[,topic,…] on page 3-77
3.59 --text on page 3-100

3 fromelf Command-line Options
3.28 --fpu=name

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

3.29 --globalize=option[,option,…]
Converts the selected symbols to global symbols.

Syntax

--globalize=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name are converted to global
symbols.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name are converted to global symbols.

symbol_name
All symbols with a symbol name matching symbol_name are converted to global symbols.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --elf with this option.

Related reference
3.22 --elf on page 3-59
3.31 --hide=option[,option,…] on page 3-70

3 fromelf Command-line Options
3.29 --globalize=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

3.30 --help
Displays a summary of the main command-line options.

Default

This is the default if you specify fromelf without any options or source files.

Related reference
3.55 --show_cmdline on page 3-95
3.60 --version_number on page 3-102
3.63 --vsn on page 3-105

3 fromelf Command-line Options
3.30 --help

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

3.31 --hide=option[,option,…]
Changes the symbol visibility property to mark selected symbols as hidden.

Syntax

--hide=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name.

symbol_name
All symbols with a symbol name matching symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --elf with this option.

Related reference
3.22 --elf on page 3-59
3.53 --show=option[,option,…] on page 3-93

3 fromelf Command-line Options
3.31 --hide=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential

3.32 --hide_and_localize=option[,option,…]
Changes the symbol visibility property to mark selected symbols as hidden, and converts the selected
symbols to local symbols.

Syntax

--hide_and_localize=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name are marked as hidden and
converted to local symbols.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name are marked as hidden and converted to local symbols.

symbol_name
All symbols with a symbol name matching symbol_name are marked as hidden and converted to
local symbols.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --elf with this option.

Related reference
3.22 --elf on page 3-59

3 fromelf Command-line Options
3.32 --hide_and_localize=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential

3.33 --i32
Produces Intel Hex-32 format output. It generates one output file for each load region in the image.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• Not supported for AArch64 state.
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --i32
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in an output
file.

Example

To convert the ELF file infile.axf to an Intel Hex-32 format file, for example outfile.bin, enter:

fromelf --i32 --output=outfile.bin infile.axf

Related reference
3.1 --base [[object_file::]load_region_ID=]num on page 3-32
3.34 --i32combined on page 3-73
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.33 --i32

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-72

Non-Confidential

3.34 --i32combined
Produces Intel Hex-32 format output. It generates one output file for an image containing multiple load
regions.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• Not supported for AArch64 state.
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --i32combined

If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for all load regions in the
input image. fromelf places the output file in the destination directory.

ELF images contain multiple load regions if, for example, they are built with a scatter file that defines
more than one load region.

Example

To create a single output file,outfile2.bin, from an image file infile2.axf, with two load regions,
and with a start address of 0x1000, enter:

fromelf --i32combined --base=0x1000 --output=outfile2.bin infile2.axf

Related reference
3.1 --base [[object_file::]load_region_ID=]num on page 3-32
3.33 --i32 on page 3-72
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.34 --i32combined

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-73

Non-Confidential

3.35 --ignore_section=option[,option,…]
Specifies the sections to be ignored during a compare. Differences between the input files being
compared are ignored if they are in these sections.

Syntax

--ignore_section=option[,option,…]

Where option is one of:

object_name::
All sections in ELF objects with a name matching object_name.

object_name::section_name
All sections in ELF objects with a name matching object_name and also a section name
matching section_name.

section_name
All sections with a name matching section_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --compare with this option.

Related reference
3.8 --compare=option[,option,…] on page 3-41
3.36 --ignore_symbol=option[,option,…] on page 3-75
3.49 --relax_section=option[,option,…] on page 3-89

3 fromelf Command-line Options
3.35 --ignore_section=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-74

Non-Confidential

3.36 --ignore_symbol=option[,option,…]
Specifies the symbols to be ignored during a compare. Differences between the input files being
compared are ignored if they are related to these symbols.

Syntax

--ignore_symbol=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also all symbols with
names matching symbol_name.

symbol_name
All symbols with names matching symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --compare with this option.

Related reference
3.8 --compare=option[,option,…] on page 3-41
3.35 --ignore_section=option[,option,…] on page 3-74
3.50 --relax_symbol=option[,option,…] on page 3-90

3 fromelf Command-line Options
3.36 --ignore_symbol=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-75

Non-Confidential

3.37 --in_place
Enables the translation of ELF members in an input file to overwrite the previous content.

Restrictions

You must use --elf with this option.

Example

To remove debug information from members of the library file test.a, enter:

fromelf --elf --in_place --strip=debug test.a

Related reference
3.22 --elf on page 3-59
3.57 --strip=option[,option,…] on page 3-97

3 fromelf Command-line Options
3.37 --in_place

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-76

Non-Confidential

3.38 --info=topic[,topic,…]
Prints information about specific topics.

Syntax

--info=topic[,topic,…]

Where topic is a comma-separated list from the following topic keywords:

instruction_usage
Categorizes and lists the A32 and T32 instructions defined in the code sections of each input
file.

 Note

Not supported for AArch64 state.

function_sizes

Lists the names of the global functions defined in one or more input files, together with their
sizes in bytes and whether they are A32 or T32 functions.

function_sizes_all

Lists the names of the local and global functions defined in one or more input files, together
with their sizes in bytes and whether they are A32 or T32 functions.

sizes

Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes for each input object and library
member in the image. Using this option implies --info=sizes,totals.

totals

Lists the totals of the Code, RO Data, RW Data, ZI Data, and Debug sizes for input objects and
libraries.

 Note

Code related sizes also include the size of any execute-only code.

The output from --info=sizes,totals always includes the padding values in the totals for input
objects and libraries.

 Note

Spaces are not permitted between topic keywords in the list. For example, you can enter --
info=sizes,totals but not --info=sizes, totals.

Restrictions

You can use this option only in text mode.

Related reference
3.59 --text on page 3-100

3 fromelf Command-line Options
3.38 --info=topic[,topic,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-77

Non-Confidential

3.39 input_file
Specifies the ELF file or archive containing ELF files to be processed.

Usage

Multiple input files are supported if you:

• Output --text format.
• Use the --compare option.
• Use --elf with --in_place.
• Specify an output directory using --output.

If input_file is a scatter-loaded image that contains more than one load region and the output format is
one of --bin, --cad, --m32, --i32, or --vhx, then fromelf creates a separate file for each load region.

If input_file is a scatter-loaded image that contains more than one load region and the output format is
one of --cadcombined, --m32combined, or --i32combined, then fromelf creates a single file
containing all load regions.

If input_file is an archive, you can process all files, or a subset of files, in that archive. To process a
subset of files in the archive, specify a filter after the archive name as follows:

archive.a(filter_pattern)

where filter_pattern specifies a member file. To specify a subset of files use the following wildcard
characters:
*

Matches zero or more characters.

?

Matched any single character.

 Note

On Unix systems your shell typically requires the parentheses and these characters to be escaped with
backslashes. Alternatively, enclose the archive name and filter in single quotes, for example:

'archive.a(??str*)'

Any files in the archive that are not processed are included in the output archive together with the
processed files.

Example

To convert all files in the archive beginning with s, and create a new archive, my_archive.a, containing
the processed and unprocessed files, enter:

fromelf archive.a(s*.o) --output=my_archive.a

Related concepts
2.2 Examples of processing ELF files in an archive on page 2-23
Related reference
3.2 --bin on page 3-34
3.6 --cad on page 3-38
3.7 --cadcombined on page 3-40
3.8 --compare=option[,option,…] on page 3-41
3.22 --elf on page 3-59
3.33 --i32 on page 3-72

3 fromelf Command-line Options
3.39 input_file

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-78

Non-Confidential

3.34 --i32combined on page 3-73
3.37 --in_place on page 3-76
3.43 --m32 on page 3-83
3.44 --m32combined on page 3-84
3.46 --output=destination on page 3-86
3.59 --text on page 3-100
3.61 --vhx on page 3-103

3 fromelf Command-line Options
3.39 input_file

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-79

Non-Confidential

3.40 --interleave=option
Inserts the original source code as comments into the disassembly if debug information is present.

Syntax

--interleave=option

Where option can be one of the following:

line_directives

Interleaves #line directives containing filenames and line numbers of the disassembled
instructions.

line_numbers

Interleaves comments containing filenames and line numbers of the disassembled instructions.

none

Disables interleaving. This is useful if you have a generated makefile where the fromelf
command has multiple options in addition to --interleave. You can then specify
--interleave=none as the last option to ensure that interleaving is disabled without having to
reproduce the complete fromelf command.

source

Interleaves comments containing source code. If the source code is no longer available then
fromelf interleaves in the same way as line_numbers.

source_only

Interleaves comments containing source code. If the source code is no longer available then
fromelf does not interleave that code.

Usage

Use this option with --emit=code, --text -c, or --disassemble.

Use this option with --source_directory if you want to specify additional paths to search for source
code.

Default

The default is --interleave=none.

Related reference
3.20 --disassemble on page 3-57
3.23 --emit=option[,option,…] on page 3-60
3.56 --source_directory=path on page 3-96
3.59 --text on page 3-100

3 fromelf Command-line Options
3.40 --interleave=option

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-80

Non-Confidential

3.41 --linkview, --no_linkview
Controls the section-level view from the ELF image.

Usage

--no_linkview discards the section-level view and retains only the segment-level view (load time
view).

Discarding the section-level view eliminates:

• The section header table.
• The section header string table.
• The string table.
• The symbol table.
• All debug sections.

All that is left in the output is the program header table and the program segments.
 Note

This option is deprecated.

Restrictions
The following restrictions apply:
• You must use --elf with --linkview and --no_linkview.

Example

To get ELF format output for image.axf, enter:

fromelf --no_linkview --elf image.axf --output=image_nlk.axf

Related reference
3.22 --elf on page 3-59
3.47 --privacy on page 3-87
3.57 --strip=option[,option,…] on page 3-97
Related information
--privacy linker option

3 fromelf Command-line Options
3.41 --linkview, --no_linkview

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-81

Non-Confidential

https://developer.arm.com/docs/100070/0611/linker-command-line-options/-privacy

3.42 --localize=option[,option,…]
Converts the selected symbols to local symbols.

Syntax

--localize=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name are converted to local symbols.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name are converted to local symbols.

symbol_name
All symbols with a symbol name matching symbol_name are converted to local symbols.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --elf with this option.

Related reference
3.22 --elf on page 3-59
3.31 --hide=option[,option,…] on page 3-70

3 fromelf Command-line Options
3.42 --localize=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-82

Non-Confidential

3.43 --m32
Produces Motorola 32-bit format (32-bit S-records) output. It generates one output file for each load
region in the image.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• Not supported for AArch64 state.
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --m32
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in an output
file.

Example

To convert the ELF file infile.axf to a Motorola 32-bit format file, for example outfile.bin, enter:

fromelf --m32 --output=outfile.bin infile.axf

Related reference
3.1 --base [[object_file::]load_region_ID=]num on page 3-32
3.44 --m32combined on page 3-84
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.43 --m32

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-83

Non-Confidential

3.44 --m32combined
Produces Motorola 32-bit format (32-bit S-records) output. It generates one output file for an image
containing multiple load regions.

You can specify the base address of the output with the --base option.

Restrictions
The following restrictions apply:
• Not supported for AArch64 state.
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --m32combined

If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for all load regions in the
input image. fromelf places the output file in the destination directory.

ELF images contain multiple load regions if, for example, they are built with a scatter file that defines
more than one load region.

Example

To create a single Motorola 32-bit format output file, outfile2.bin, from an image file infile2.axf,
with two load regions, and with a start address of 0x1000, enter:

fromelf --m32combined --base=0x1000 --output=outfile2.bin infile2.axf

Related reference
3.1 --base [[object_file::]load_region_ID=]num on page 3-32
3.43 --m32 on page 3-83
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.44 --m32combined

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-84

Non-Confidential

3.45 --only=section_name
Filters the list of sections that are displayed in the main section-by-section output from --text. It does
not affect any additional output after the main section-by-section output.

Syntax

--only=section_name

Where section_name is the name of the section to be displayed.

You can:
• Use wildcard characters ? and * for a section name.
• Use multiple --only options to specify additional sections to display.

Examples
The following examples show how to use --only:
• To display only the symbol table, .symtab, from the section-by-section output, enter:

fromelf --only=.symtab --text -s test.axf
• To display all ERn sections, enter:

fromelf --only=ER? test.axf
• To display the HEAP section and all symbol and string table sections, enter:

fromelf --only=HEAP --only=.*tab --text -s -t test.axf

Related reference
3.59 --text on page 3-100

3 fromelf Command-line Options
3.45 --only=section_name

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-85

Non-Confidential

3.46 --output=destination
Specifies the name of the output file, or the name of the output directory if multiple output files are
created.

Syntax

--output=destination

--o destination

Where destination can be either a file or a directory. For example:

--output=foo

is the name of an output file

--output=foo/

is the name of an output directory.

Usage
Usage with --bin or --elf:
• You can specify a single input file and a single output filename.
• If you specify many input files and use --elf, you can use --in_place to write the output of

processing each file over the top of the input file.
• If you specify many input filenames and specify an output directory, then the output from processing

each file is written into the output directory. Each output filename is derived from the corresponding
input file. Therefore, specifying an output directory in this way is the only method of converting
many ELF files to a binary or hexadecimal format in a single run of fromelf.

• If you specify an archive file as the input, then the output file is also an archive. For example, the
following command creates an archive file called output.o:

fromelf --elf --strip=debug archive.a --output=output.o

• If you specify a pattern in parentheses to select a subset of objects from an archive, fromelf only
converts the subset. All the other objects are passed through to the output archive unchanged.

Related reference
3.2 --bin on page 3-34
3.22 --elf on page 3-59
3.59 --text on page 3-100

3 fromelf Command-line Options
3.46 --output=destination

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-86

Non-Confidential

3.47 --privacy
Modifies the output file to protect your code in images and objects that are delivered to third parties.

Usage

The effect of this option is different for images and object files.

For images, this option:

• Changes section names to a default value, for example, changes code section names to .text
• Removes the complete symbol table in the same way as --strip symbols
• Removes the .comment section name, and is marked as [Anonymous Section] in the fromelf --

text output.

For object files, this option:
• Changes section names to a default value, for example, changes code section names to .text.
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these symbols, the
names are removed. These are marked as [Anonymous Symbol] in the fromelf --text output.

Related reference
3.57 --strip=option[,option,…] on page 3-97
Related information
--locals, --no_locals linker option
--privacy linker option

3 fromelf Command-line Options
3.47 --privacy

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-87

Non-Confidential

https://developer.arm.com/docs/100070/0611/linker-command-line-options/-locals-no_locals
https://developer.arm.com/docs/100070/0611/linker-command-line-options/-privacy

3.48 --qualify
Modifies the effect of the --fieldoffsets option so that the name of each output symbol includes an
indication of the source file containing the relevant structure.

Usage

This enables the --fieldoffsets option to produce functional output even if two source files define
different structures with the same name.

If the source file is in a different location from the current location, then the source file path is also
included.

Examples

A structure called foo is defined in two headers for example, one.h and two.h.

Using fromelf --fieldoffsets, the linker might define the following symbols:

• foo.a, foo.b, and foo.c.
• foo.x, foo.y, and foo.z.

Using fromelf --qualify --fieldoffsets, the linker defines the following symbols:
• oneh_foo.a, oneh_foo.b and oneh_foo.c.
• twoh_foo.x, twoh_foo.y and twoh_foo.z.

Related reference
3.26 --fieldoffsets on page 3-64

3 fromelf Command-line Options
3.48 --qualify

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-88

Non-Confidential

3.49 --relax_section=option[,option,…]
Changes the severity of a compare report for the specified sections to warnings rather than errors.

Restrictions

You must use --compare with this option.

Syntax

--relax_section=option[,option,…]

Where option is one of:

object_name::
All sections in ELF objects with a name matching object_name.

object_name::section_name
All sections in ELF objects with a name matching object_name and also a section name
matching section_name.

section_name
All sections with a name matching section_name.

You can:
• Use wildcard characters ? and * for symbolic names in section_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Related reference
3.8 --compare=option[,option,…] on page 3-41
3.35 --ignore_section=option[,option,…] on page 3-74
3.50 --relax_symbol=option[,option,…] on page 3-90

3 fromelf Command-line Options
3.49 --relax_section=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-89

Non-Confidential

3.50 --relax_symbol=option[,option,…]
Changes the severity of a compare report for the specified symbols to warnings rather than errors.

Restrictions

You must use --compare with this option.

Syntax

--relax_symbol=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name.

symbol_name
All symbols with a name matching symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Related reference
3.8 --compare=option[,option,…] on page 3-41
3.36 --ignore_symbol=option[,option,…] on page 3-75
3.49 --relax_section=option[,option,…] on page 3-89

3 fromelf Command-line Options
3.50 --relax_symbol=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-90

Non-Confidential

3.51 --rename=option[,option,…]
Renames the specified symbol in an output ELF object.

Restrictions

You must use --elf and --output with this option.

Syntax

--rename=option[,option,…]

Where option is one of:

object_name::old_symbol_name=new_symbol_name
This replaces all symbols in the ELF object object_name that have a symbol name matching
old_symbol_name.

old_symbol_name=new_symbol_name
This replaces all symbols that have a symbol name matching old_symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in old_symbol_name, new_symbol_name, and

object_name arguments.
• Specify multiple values in one option followed by a comma-separated list of arguments.

Example

This example renames the clock symbol in the timer.axf image to myclock, and creates a new file
called mytimer.axf:

fromelf --elf --rename=clock=myclock --output=mytimer.axf timer.axf

Related reference
3.22 --elf on page 3-59
3.46 --output=destination on page 3-86

3 fromelf Command-line Options
3.51 --rename=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-91

Non-Confidential

3.52 --select=select_options
When used with --fieldoffsets or --text -a options, displays only those fields that match a
specified pattern list.

Syntax

--select=select_options
Where select_options is a list of patterns to match. Use special characters to select multiple fields:
• Use a comma-separated list to specify multiple fields, for example:

a*,b*,c*
• Use the wildcard character * to match any name.
• Use the wildcard character ? to match any single letter.
• Prefix the select_options string with + to specify the fields to include. This is the default behavior.
• Prefix the select_options string with ~ to specify the fields to exclude.

If you are using a special character on Unix platforms, you must enclose the options in quotes to prevent
the shell expanding the selection.

Usage

Use this option with either --fieldoffsets or --text -a.

Example

The output from the --fieldoffsets option might include the following data structure:

|structure.f1| EQU 0 ; int16_t
|structure.f2| EQU 0x2 ; int16_t
|structure.f3| EQU 0x4 ; int16_t
|structure.f11| EQU 0x6 ; int16_t
|structure.f21| EQU 0x8 ; int16_t
|structure.f31| EQU 0xA ; int16_t
|structure.f111| EQU 0xC ; int16_t

To output only those fields that start with f1, enter:

fromelf --select=structure.f1* --fieldoffsets infile.axf

This produces the output:

|structure.f1| EQU 0 ; int16_t
|structure.f11| EQU 0x6 ; int16_t
|structure.f111| EQU 0xC ; int16_t

 END

Related reference
3.26 --fieldoffsets on page 3-64
3.59 --text on page 3-100

3 fromelf Command-line Options
3.52 --select=select_options

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-92

Non-Confidential

3.53 --show=option[,option,…]
Changes the symbol visibility property of the selected symbols, to mark them with default visibility.

Syntax

--show=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name are marked as having default
visibility.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name are marked as having default visibility.

symbol_name
All symbols with a symbol name matching symbol_name are marked as having default visibility.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --elf with this option.

Related reference
3.22 --elf on page 3-59
3.31 --hide=option[,option,…] on page 3-70

3 fromelf Command-line Options
3.53 --show=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-93

Non-Confidential

3.54 --show_and_globalize=option[,option,…]
Changes the symbol visibility property of the selected symbols, to mark them with default visibility, and
converts the selected symbols to global symbols.

Syntax

--show_and_globalize=option[,option,…]

Where option is one of:

object_name::
All symbols in ELF objects with a name matching object_name.

object_name::symbol_name
All symbols in ELF objects with a name matching object_name and also a symbol name
matching symbol_name.

symbol_name
All symbols with a symbol name matching symbol_name.

You can:
• Use wildcard characters ? and * for symbolic names in symbol_name and object_name arguments
• Specify multiple values in one option followed by a comma-separated list of arguments.

Restrictions

You must use --elf with this option.

Related reference
3.22 --elf on page 3-59

3 fromelf Command-line Options
3.54 --show_and_globalize=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-94

Non-Confidential

3.55 --show_cmdline
Outputs the command line used by the ELF file converter.

Usage
Shows the command line after processing by the ELF file converter, and can be useful to check:
• The command line a build system is using.
• How the ELF file converter is interpreting the supplied command line, for example, the ordering of

command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related reference
3.62 --via=file on page 3-104

3 fromelf Command-line Options
3.55 --show_cmdline

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-95

Non-Confidential

3.56 --source_directory=path
Explicitly specifies the directory of the source code.

Syntax

--source_directory=path

Usage

By default, the source code is assumed to be located in a directory relative to the ELF input file. You can
use this option multiple times to specify a search path involving multiple directories.

You can use this option with --interleave.

Related reference
3.40 --interleave=option on page 3-80

3 fromelf Command-line Options
3.56 --source_directory=path

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-96

Non-Confidential

3.57 --strip=option[,option,…]
Helps to protect your code in images and objects that are delivered to third parties. You can also use it to
help reduce the size of the output image.

Syntax

--strip=option[,option,…]
Where option is one of:
all

For object modules, this option removes all debug, comments, notes and symbols from the ELF
file. For executables, this option works the same as --no_linkview.

debug

Removes all debug sections from the ELF file.

comment

Removes the .comment section from the ELF file.

filesymbols

The STT_FILE symbols are removed from the ELF file.

localsymbols

The effect of this option is different for images and object files.

For images, this option removes all local symbols, including mapping symbols, from the output
symbol table.

For object files, this option:
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the fromelf
--text output.

notes

Removes the .notes section from the ELF file.

pathnames
Removes the path information from all symbols with type STT_FILE. For example, an STT_FILE
symbol with the name C:\work\myobject.o is renamed to myobject.o.

 Note

This option does not strip path names that are in the debug information.

3 fromelf Command-line Options
3.57 --strip=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-97

Non-Confidential

symbols

The effect of this option is different for images and object files.

For images, this option removes the complete symbol table, and all static symbols. If any of
these static symbols are used as a static relocation target, then these relocations are also
removed. In all cases, STT_FILE symbols are removed.

For object files, this option:
• Keeps mapping symbols and build attributes in the symbol table.
• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the fromelf
--text output.

 Note

Stripping the symbols, path names, or file symbols might make the file harder to debug.

Restrictions

You must use --elf and --output with this option.

Example

To produce an output.axf file without debug from the ELF file infile.axf originally produced with
debug, enter:

fromelf --strip=debug,symbols --elf --output=outfile.axf infile.axf

Related reference
3.22 --elf on page 3-59
3.41 --linkview, --no_linkview on page 3-81
3.47 --privacy on page 3-87
Related information
About mapping symbols
--locals, --no_locals linker option
--privacy linker option

3 fromelf Command-line Options
3.57 --strip=option[,option,…]

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-98

Non-Confidential

https://developer.arm.com/docs/100070/0611/accessing-and-managing-symbols-with-armlink/about-mapping-symbols
https://developer.arm.com/docs/100070/0611/linker-command-line-options/-locals-no_locals
https://developer.arm.com/docs/100070/0611/linker-command-line-options/-privacy

3.58 --symbolversions, --no_symbolversions
Turns off the decoding of symbol version tables.

Restrictions

If you use --elf with this option, you must also use --output.

Related information
About symbol versioning
Base Platform ABI for the Arm Architecture

3 fromelf Command-line Options
3.58 --symbolversions, --no_symbolversions

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-99

Non-Confidential

https://developer.arm.com/docs/100070/0611/bpabi-shared-libraries-and-executables/symbol-versioning
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html

3.59 --text
Prints image information in text format. You can decode an ELF image or ELF object file using this
option.

Syntax

--text [options]

Where options specifies what is displayed, and can be one or more of the following:

-a

Prints the global and static data addresses (including addresses for structure and union contents).

This option can only be used on files containing debug information. If no debug information is
present, a warning is displayed.

Use the --select option to output a subset of fields in a data structure.

If you want to view the data addresses of arrays, expanded both inside and outside structures,
use the --expandarrays option with this text category.

-c
This option disassembles code, alongside a dump of the original binary data being disassembled
and the addresses of the instructions.

 Note

Disassembly is generated in armasm assembler syntax and not GNU assembler syntax.

Unlike --disassemble, the disassembly cannot be input to the assembler.

 Note

To disassemble SVE instructions, you must not specify the --cpu option. fromelf cannot
disassemble Armv8.4 instructions without also disassembling Scalable Vector Extension (SVE)
instructions.

-d
Prints contents of the data sections.

-e
Decodes exception table information for objects. Use with -c when disassembling images.

 Note

Not supported for AArch64 state.

-g
Prints debug information.

-r
Prints relocation information.

-s
Prints the symbol and versioning tables.

-t
Prints the string tables.

-v
Prints detailed information on each segment and section header of the image.

-w
Eliminates line wrapping.

-y
Prints dynamic segment contents.

3 fromelf Command-line Options
3.59 --text

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-100

Non-Confidential

-z
Prints the code and data sizes.

These options are only recognized in text mode.

Usage

If you do not specify a code output format, --text is assumed. That is, you can specify one or more
options without having to specify --text. For example, fromelf -a is the same as
fromelf --text -a.

If you specify a code output format, such as --bin, then any --text options are ignored.

If destination is not specified with the --output option, or --output is not specified, the information
is displayed on stdout.

Use the --only option to filter the list of sections.

Examples
The following examples show how to use --text:
• To produce a plain text output file that contains the disassembled version of an ELF image and the

symbol table, enter:

fromelf --text -c -s --output=outfile.lst infile.axf

• To list to stdout all the global and static data variables and all the structure field addresses, enter:

fromelf -a --select=* infile.axf

• To produce a text file containing all of the structure addresses in infile.axf but none of the global
or static data variable information, enter:

fromelf --text -a --select=*.* --output=structaddress.txt infile.axf

• To produce a text file containing addresses of the nested structures only, enter:

fromelf --text -a --select=*.*.* --output=structaddress.txt infile.axf

• To produce a text file containing all of the global or static data variable information in infile.axf
but none of the structure addresses, enter:

fromelf --text -a --select=*,~*.* --output=structaddress.txt infile.axf

• To output only the .symtab section information in infile.axf, enter:

fromelf --only .symtab -s --output=symtab.txt infile.axf

Related tasks
2.6 Using fromelf to find where a symbol is placed in an executable ELF image on page 2-28
Related reference
3.11 --cpu=name on page 3-45
3.20 --disassemble on page 3-57
3.23 --emit=option[,option,…] on page 3-60
3.24 --expandarrays on page 3-62
3.38 --info=topic[,topic,…] on page 3-77
3.40 --interleave=option on page 3-80
3.45 --only=section_name on page 3-85
3.46 --output=destination on page 3-86
3.52 --select=select_options on page 3-92
3.64 -w on page 3-106
Related information
Linker options for getting information about images

3 fromelf Command-line Options
3.59 --text

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-101

Non-Confidential

https://developer.arm.com/docs/100070/0611/getting-image-details

3.60 --version_number
Displays the version of fromelf you are using.

Usage
The ELF file converter displays the version number in the format Mmmuuxx, where:
• M is the major version number, 6.
• mm is the minor version number.
• uu is the update number.
• xx is reserved for Arm internal use. You can ignore this for the purposes of checking whether the

current release is a specific version or within a range of versions.

Related reference
3.30 --help on page 3-69
3.63 --vsn on page 3-105

3 fromelf Command-line Options
3.60 --version_number

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-102

Non-Confidential

3.61 --vhx
Produces Byte oriented (Verilog Memory Model) hexadecimal format output.

Usage

This format is suitable for loading into the memory models of Hardware Description Language (HDL)
simulators. You can split output from this option into multiple files with the --widthxbanks option.

Restrictions
The following restrictions apply:
• You cannot use this option with object files.
• You must use --output with this option.

Considerations when using --vhx
If you convert an ELF image containing multiple load regions to a binary format, fromelf creates an
output directory named destination and generates one binary output file for each load region in the
input image. fromelf places the output files in the destination directory.

 Note

For multiple load regions, the name of the first non-empty execution region in the corresponding load
region is used for the filename.

A file is only created when the load region describes code or data that is present in the ELF file. For
example a load region containing only execution regions with ZI data in them does not result in an output
file.

Examples

To convert the ELF file infile.axf to a byte oriented hexadecimal format file, for example
outfile.bin, enter:

fromelf --vhx --output=outfile.bin infile.axf

To create multiple output files, in the regions directory, from an image file multiload.axf, with two 8-bit
memory banks, enter:

fromelf --vhx --8x2 multiload.axf --output=regions

Related reference
3.46 --output=destination on page 3-86
3.66 --widthxbanks on page 3-108

3 fromelf Command-line Options
3.61 --vhx

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-103

Non-Confidential

3.62 --via=file
Reads an additional list of input filenames and ELF file converter options from filename.

Syntax

--via=filename

Where filename is the name of a via file containing options to be included on the command line.

Usage

You can enter multiple --via options on the ELF file converter command line. The --via options can
also be included within a via file.

3 fromelf Command-line Options
3.62 --via=file

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-104

Non-Confidential

3.63 --vsn
Displays the version information and the license details.

 Note

--vsn is intended to report the version information for manual inspection. The Component line indicates
the release of Arm Compiler you are using. If you need to access the version in other tools or scripts, for
example in build scripts, use the output from --version_number.

Example

> fromelf --vsn
Product: ARM Compiler N.n
Component: ARM Compiler N.n
Tool: fromelf [tool_id]
license_type
Software supplied by: ARM Limited

Related reference
3.30 --help on page 3-69
3.60 --version_number on page 3-102

3 fromelf Command-line Options
3.63 --vsn

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-105

Non-Confidential

3.64 -w
Causes some text output information that usually appears on multiple lines to be displayed on a single
line.

Usage

This makes the output easier to parse with text processing utilities such as Perl.

Example

> fromelf --text -w -c test.axf
==
** ELF Header Information
.
.
.
==
** Section #1 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR] Size : 36 bytes
(alignment 4) Address: 0x00000000 $a
 .text
.
.
.
** Section #7 '.rel.text' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table #6
'.symtab' 1 relocations applied to section #1 '.text'
** Section #2 '.ARM.exidx' (SHT_ARM_EXIDX) [SHF_ALLOC + SHF_LINK_ORDER] Size : 8 bytes
(alignment 4) Address: 0x
00000000 Link to section #1 '.text'
** Section #8 '.rel.ARM.exidx' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table
#6 '.symtab' 1 relocations applied to section #2 '.ARM.exidx'
** Section #3 '.arm_vfe_header' (SHT_PROGBITS) Size : 4 bytes (alignment 4)
** Section #4 '.comment' (SHT_PROGBITS) Size : 74 bytes
** Section #5 '.debug_frame' (SHT_PROGBITS) Size : 140 bytes
** Section #9 '.rel.debug_frame' (SHT_REL) Size : 32 bytes (alignment 4) Symbol
table #6 '.symtab' 4 relocations applied to section #5 '.debug_frame'
** Section #6 '.symtab' (SHT_SYMTAB) Size : 176 bytes (alignment 4) String table #11
'.strtab' Last local symbol no. 5
** Section #10 '.shstrtab' (SHT_STRTAB) Size : 110 bytes
** Section #11 '.strtab' (SHT_STRTAB) Size : 223 bytes
** Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES) Size : 69 bytes

Related reference
3.59 --text on page 3-100

3 fromelf Command-line Options
3.64 -w

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-106

Non-Confidential

3.65 --wide64bit
Causes all addresses to be displayed with a width of 64 bits.

Usage

Without this option fromelf displays addresses as 32 bits where possible, and only displays them as 64
bits when necessary.

This option is ignored if the input file is not an AArch64 state file.

Related reference
3.39 input_file on page 3-78

3 fromelf Command-line Options
3.65 --wide64bit

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-107

Non-Confidential

3.66 --widthxbanks
Outputs multiple files for multiple memory banks.

Syntax

--widthxbanks

Where:

banks
specifies the number of memory banks in the target memory system. It determines the number
of output files that are generated for each load region.

width
is the width of memory in the target memory system (8-bit, 16-bit, 32-bit, or 64-bit).

Valid configurations are:

--8x1
--8x2
--8x4
--16x1
--16x2
--32x1
--32x2
--64x1

Usage

fromelf uses the last specified configuration if more than one configuration is specified.

If the image has one load region, fromelf generates the same number of files as the number of banks
specified. The filenames are derived from the --output=destination argument, using the following
naming conventions:

• If there is one memory bank (banks = 1) the output file is named destination.
• If there are multiple memory banks (banks > 1), fromelf generates banks number of files named

destinationN where N is in the range 0 to banks - 1. If you specify a file extension for the output
filename, then the number N is placed before the file extension. For example:

fromelf --cpu=8-A.32 --vhx --8x2 test.axf --output=test.txt

This generates two files named test0.txt and test1.txt.

If the image has multiple load regions, fromelf creates a directory named destination and generates
banks files for each load region in that directory. The files for each load region are named load_regionN
where load_region is the name of the load region, and N is in the range 0 to banks - 1. For example:

fromelf --cpu=8-A.32 --vhx --8x2 multiload.axf --output=regions/

This might produce the following files in the regions directory:

EXEC_ROM0
EXEC_ROM1
RAM0
RAM1

The memory width specified by width controls the amount of memory that is stored in a single line of
each output file. The size of each output file is the size of memory to be read divided by the number of
files created. For example:
• fromelf --cpu=8-A.32 --vhx --8x4 test.axf --output=file produces four files (file0,

file1, file2, and file3). Each file contains lines of single bytes, for example:

00
00
2D
00
2C

3 fromelf Command-line Options
3.66 --widthxbanks

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-108

Non-Confidential

8F
…

• fromelf --vhx --16x2 test.axf --output=file produces two files (file0 and file1). Each file
contains lines of two bytes, for example:

0000
002D
002C
…

Restrictions

You must use --output with this option.

Related reference
3.2 --bin on page 3-34
3.46 --output=destination on page 3-86
3.61 --vhx on page 3-103

3 fromelf Command-line Options
3.66 --widthxbanks

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

3-109

Non-Confidential

Chapter 4
Via File Syntax

Describes the syntax of via files accepted by fromelf.

It contains the following sections:
• 4.1 Overview of via files on page 4-111.
• 4.2 Via file syntax rules on page 4-112.

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

4-110

Non-Confidential

4.1 Overview of via files
Via files are plain text files that allow you to specify ELF file converter command-line arguments and
options.

Typically, you use a via file to overcome the command-line length limitations. However, you might want
to create multiple via files that:
• Group similar arguments and options together.
• Contain different sets of arguments and options to be used in different scenarios.

 Note

In general, you can use a via file to specify any command-line option to a tool, including --via. This
means that you can call multiple nested via files from within a via file.

Via file evaluation
When the ELF file converter is invoked it:
1. Replaces the first specified --via via_file argument with the sequence of argument words

extracted from the via file, including recursively processing any nested --via commands in the via
file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed completely
including processing nested via files before processing the next via file.

Related reference
4.2 Via file syntax rules on page 4-112
3.62 --via=file on page 3-104

4 Via File Syntax
4.1 Overview of via files

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

4-111

Non-Confidential

4.2 Via file syntax rules
Via files must conform to some syntax rules.

• A via file is a text file containing a sequence of words. Each word in the text file is converted into an
argument string and passed to the tool.

• Words are separated by whitespace, or the end of a line, except in delimited strings, for example:

--vhx --8x2 (two words)

--vhx--8x2 (one word)
• The end of a line is treated as whitespace, for example:

--vhx
--8x2

This is equivalent to:

--vhx --8x2
• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within a

quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited word,
a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:

--output C:\My Project\output.txt (three words)

--output "C:\My Project\output.txt" (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME='"ARM Compiler"' (one word)
• Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)
• Within quoted or apostrophe delimited strings, you can use a backslash (\) character to escape the

quote, apostrophe, and backslash characters.
• A word that occurs immediately next to a delimited word is treated as a single word, for example:

--output"C:\Project\output.txt"

This is treated as the single word:

--outputC:\Project\output.txt
• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character are

comment lines. A semicolon or hash character that appears anywhere else in a line is not treated as
the start of a comment, for example:

-o objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line comments, and
there are no part-line comments.

Related concepts
4.1 Overview of via files on page 4-111
Related reference
3.62 --via=file on page 3-104

4 Via File Syntax
4.2 Via file syntax rules

100071_0611_00_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights
reserved.

4-112

Non-Confidential

	Arm® Compiler fromelf User Guide
	Table of Contents
	List of Figures
	List of Figures
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Overview of the fromelf Image Converter
	1.1 : About the fromelf image converter
	1.2 : fromelf execution modes
	1.3 : Getting help on the fromelf command
	1.4 : fromelf command-line syntax
	1.5 : Support level definitions

	2 : Using fromelf
	2.1 : General considerations when using fromelf
	2.2 : Examples of processing ELF files in an archive
	2.3 : Options to protect code in image files with fromelf
	2.4 : Options to protect code in object files with fromelf
	2.5 : Option to print specific details of ELF files
	2.6 : Using fromelf to find where a symbol is placed in an executable ELF image

	3 : fromelf Command-line Options
	3.1 : --base [[object_file::]load_region_ID=]num
	3.2 : --bin
	3.3 : --bincombined
	3.4 : --bincombined_base=address
	3.5 : --bincombined_padding=size,num
	3.6 : --cad
	3.7 : --cadcombined
	3.8 : --compare=option[,option,…]
	3.9 : --continue_on_error
	3.10 : --cpu=list
	3.11 : --cpu=name
	3.12 : --datasymbols
	3.13 : --debugonly
	3.14 : --decode_build_attributes
	3.15 : --diag_error=tag[,tag,…]
	3.16 : --diag_remark=tag[,tag,…]
	3.17 : --diag_style={arm|ide|gnu}
	3.18 : --diag_suppress=tag[,tag,…]
	3.19 : --diag_warning=tag[,tag,…]
	3.20 : --disassemble
	3.21 : --dump_build_attributes
	3.22 : --elf
	3.23 : --emit=option[,option,…]
	3.24 : --expandarrays
	3.25 : --extract_build_attributes
	3.26 : --fieldoffsets
	3.27 : --fpu=list
	3.28 : --fpu=name
	3.29 : --globalize=option[,option,…]
	3.30 : --help
	3.31 : --hide=option[,option,…]
	3.32 : --hide_and_localize=option[,option,…]
	3.33 : --i32
	3.34 : --i32combined
	3.35 : --ignore_section=option[,option,…]
	3.36 : --ignore_symbol=option[,option,…]
	3.37 : --in_place
	3.38 : --info=topic[,topic,…]
	3.39 : input_file
	3.40 : --interleave=option
	3.41 : --linkview, --no_linkview
	3.42 : --localize=option[,option,…]
	3.43 : --m32
	3.44 : --m32combined
	3.45 : --only=section_name
	3.46 : --output=destination
	3.47 : --privacy
	3.48 : --qualify
	3.49 : --relax_section=option[,option,…]
	3.50 : --relax_symbol=option[,option,…]
	3.51 : --rename=option[,option,…]
	3.52 : --select=select_options
	3.53 : --show=option[,option,…]
	3.54 : --show_and_globalize=option[,option,…]
	3.55 : --show_cmdline
	3.56 : --source_directory=path
	3.57 : --strip=option[,option,…]
	3.58 : --symbolversions, --no_symbolversions
	3.59 : --text
	3.60 : --version_number
	3.61 : --vhx
	3.62 : --via=file
	3.63 : --vsn
	3.64 : -w
	3.65 : --wide64bit
	3.66 : --widthxbanks

	4 : Via File Syntax
	4.1 : Overview of via files
	4.2 : Via file syntax rules

